ABSTRACTION OF REASONING FOR

PROBLEM SOLVING AND TUTORING ASSISTANTS

Committee:

- =] }4 | ({,/

by

Vu Le

A Dissertation
Submitted to the
Graduate Faculty

of

George Mason University
In Partial fulfillment of
The Requirements for the Degree

of

Doctor of Philosophy
Information Technology

g o

&
)}
,

oL OO

Date: "Fe/l)wtma{ 98(3#/\

Dr. Gheorghe Tecuci, Dissertation
Co-Director

Dr. Mihai Boicu, Dissertation Co-Director
Dr. James Chen, Committee Member

Dr. Nada Dabbagh, Committee Member
Dr. Harry Wechsler, Committee Member

Dr. Daniel Menascé, Associate Dean for
Research and Graduate Studies

Dr. Lloyd J. Griffiths, Dean, The Volgenau
School of Information Technology and
Engineering

Spring Semester 2008
George Mason University
Fairfax, VA

Abstraction of Reasoning For
Problem Solving and Tutoring Assistants

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

Vu Le
Master of Science
George Mason University, 1999

Co-Director: Gheorghe Tecuci, Professor,
Department of Computer Science
Co-Director: Mihai Boicu, Assistant Professor,
Department of Applied Information Technology

Spring Semester 2008
George Mason University
Fairfax, VA

Copyright 2008 Vu Le
All Rights Reserved

il

TABLE OF CONTENTS

Page

LIST OF TABLES oot e vi
LIST OF FIGURES e e vii
LIST OF ABBREVIATIONS/SYMBOLS ..ot X
AB ST R A CT Xiii
1. INTRODUCTIONoottitiiieeeeeeeieeeetieeeeeee e e e e e eeeeeeeeeeeeee s e eeeeeseeeear e eeeesseeesrraeeeeens 1
1.1. Knowledge-Based AZENtSoeeeiiiiiieiiiiiiieeiiiiee et 1

1.2. EXPErt SYStEIMS.eviiiiiiiiiiiiiiiiiiiee et e e e e 3
1.3. Machine Learning and Learning Agent Shellscccoccoviiiiniiiiiinniiieneene, 5

1.4. Intelligent Tutoring SYStEMS.........ceeeriuriiieeriiiieeeeiieeeeeiie e e e eieeeeeeeraeeaeenes 11

L.5. Sample Application Area: Intelligence AnalysiS........cccocuvvevvivieniiveennneennnne. 15
1.6. DiSSErtation OVEIVIBWeieeiuiiieeeniiieeeeiiiieeeesirreeeesetaeeeeenneeeessnssaeeaaanes 15

2. RESEARCH PROBLEMuciiiiiiiiiiiiieeeeeeeeeeeeiee e e e e e e eee e e e e e e e e eees e e eeeeeeeeasaaneeeens 17
2.1. Problem Definition..........ccuuiiiiiiiiiiiieeiiiee et 17
2.2. Related ReSEarch..........coocviiiiiiiiiiiiciice et 20
2.2.1. Abstraction Related Research............ccccoeeviiiiiiiniiiiiiiniiieeeeeee e 20
2.2.2. ITS Related ReSearchcoccuviiiiiiiiiiiiiiiiie e 31

3. ABSTRACTION OF REASONING TREEScovvtiiiieeieiiiiiiiiiiieeeeeee e eee e 48
3.1 ReEASONING TTEE ...eeeiviiieeiiiiiie ettt e e e e eaaaea e 49
3.1.1 Problem-Reduction/Solution-Synthesis Paradigm...............cccceevveeeennnne. 52

3.1.2 Question-Answering Based Problem-Reductioncc.ccceevuieinninnnnne 54

3.1.3 Reduction and Synthesis Process.........ccccecuvirerniiiiieeeiiiiiiieeniiiee e 57

3.2. ADSLraction 0@ TTEC.......cccuuiiiiiiiiiie et 65
3.3. Abstraction of Reasoning Trees for Collaborative Problem Solving............ 67
3.4. Abstraction of Reasoning Trees for Tutoring..........cccceeeevveeeeniiiieeennieeeens 69
3.4.1. ADbStract Probleme........ccccuiiiiiiiiiiieiiieeeee e 71
342, Abstract ReEAUCHIONccuvviiiiiiiiiieeciiiee e 73
3.4.3. ADSLract SOIUtION....eeiiiiiiiiieeeiiiie ettt e e e e e 75
344, ADStract SYNthesiSccouiiiieiiiiiieiiiiie e 76
3.4.5. Abstract Reasoning TTeeccccceevriiiiieiiiiiireeeiiieeesiiee et e eieeee e 77

3.4.6 ADbStraction Mapping........ccceevuiiieeriiiieeeiiiieeeeeiieee et e e ieee e e aaee e 87

3.4.7 Algorithm for Generation of Abstract Reduction Trees...........c.cccuveeene. 96

3.4.8 Complexity Analysis of Generation of Abstract Reduction Trees.......... 103

4. ABSTRACTION-BASED COLLABORATIVE PROBLEM SOLVING......ccccuvieiiniiiieeeniiieeeenns 106
4.1. Abstraction-Based Table of Contentscccceeevriiiieerniiieeeeniiiee e 106
4.2. Optimization of the Reasoning Tree Displayccooeviiviiiiiiiiieiniiiienen, 110
4.3. Evaluation of Abstraction for Collaborative Problem Solving................... 111

v

5. ABSTRACTION-BASED TUTORING......uutttttieeeeiniiiiiitieeeeeeesnniiiereeeeeeeessnnnnsaneeeseeessnnnns 113

5.1. Lesson Design and Generationeeecuveeeeeniuiieeeeniiiieeeeniiieeesniieeeeenes 113
5.1.1 Abstraction-Based Lesson Designoeeevvuiiieeiiiiiieeiniiiee e 114

5.1.2 Lesson Script and Its Languageccccoecvvveeeriiiieeeeiiiieeeeieee e 124

5.1.3 LeSSON GENEIatiON......cccuuviieeeiiiiieeeeiiiieeeeiiiteeeerireeeeesinereeeenenreeeeeeneeeans 129

5.1.4 Lesson Generation Alorithm.............cceoviiiiiiiiiiiiiiieniiiee e 139

5.1.5 Complexity Analysis of the Lesson Generation Process........................ 144

5.1.6 Generality of Abstraction-Based Lesson Generation............cccccceevueeenne 148

5.1.7 USer INtETTaCE ...coniviiieeiiiiee e 152

5.1.8 Evaluation of Lesson Generation.............cccveeeeviiieeenniieeeennniieeeeineennn 160

5.2. Learning and Generation of Test QUEStONScevveeeriieeriiieeniiieeniieene 164
5.2.1 Learning of Test QUESHIONS........cccviiiierriiieeeeiiiieeeeiieeeeeireeeeeiiaeee e 165

5.2.2 Generation of Test QUESHIONS...........uvvviiieeeeiiiiiiiiiieeeeeeeeciiieee e e e e e 171

523 Complexity ANALYSIScoeeeiiiiiiiiiiiiiee e 174

5.2.4 Evaluation of Test Generationccceevvvreeeriiiieeenniiieeeeiieeeeeneeenes 175

6. LEARNING AND TUTORING AGENT SHELL (LTAS).ccoiiiiii 177
6.1. From Expert System Shells to Learning and Tutoring Agent Shells.......... 177
6.2. Architecture of the Learning and Tutoring Agent Shellc.cceee... 180
6.2.1 Pedagogical Knowledgecoeeeeiiiiieiiiiiiieeiiieeeeeee e 181

6.2.2 Knowledge Management............cceeruiieeeriiiieeeniiiieeeeiieeeeeiieee e e 192

6.2.3 Authoring Module..........c..ooiiiiiiiiiiiiiie e 194

6.2.4 Tutoring Moduleccceiiiiiiiiiiiiiiee e 197

6.2.5 Student ModUlEooeeiiiiiieiiiieeeee e 201

6.3. Methodology for Building Tutoring Systems..........ccccccuveeeeeniiiieeenniiieeens 202

7. CONTRIBUTIONS AND FUTURE RESEARCH.......cccuutttiiiiiiiieeaniiiee e niieee e ee e 205
7.1. Summary of CONtribULIONSeeeeriiiiiieeiiiiiieeeiiiee et 205
7.2. Future Research Dir€Ctionsoccveiieeriiiiieiiiiiiie e 208
APPENDIX A: ABSTRACTION-BASED LESSON EMULATION (ABLE)........ccvvviiiiiiiiiiiiiinnns 210
APPENDIX B: LESSON SCRIPTS IN XML L...coiiiiiiiiiiiiiiiiieceeceeee e 212
REFERENCEcooiiiitititieie ettt ettt et ettt et et esate e 215

LIST OF TABLES

Table Page
TABLE 1: A QUESTION-ANSWERING BASED REDUCTION STEP.......cccetteiiiiiiiiiiieeeeeeeenans 54
TABLE 2: ASSOCIATE ABSTRACTION RULE.......ouuiiiiiiiiiiiiiiiiieeeeeeeeeeeeee e 97
TABLE 3: GET ABSTRACTION RULE.......ciiiiiiiiiiiiiiiieeeee e 98
TABLE 4: GENERATION OF ABSTRACT REDUCTION TREEccuuuiiiiiiiiieiiiieeeeeeieeeeevean. 99
TABLE 5: ABSTRACT PROBLEM SOLVING STRATEGY GENERATION ALGORITHM............. 139
TABLE 6: CONCRETE COMPONENT RETRIEVALcoiiiiiiiiiiiiiiiieeeeeeeeeeeriiiiieeeeeeeeeeenrnnnnns 140
TABLE 7: SEARCH INSTANTIATIONS ...uuuuueeeeiiieeriiiiiieeeeeeeeeeerrtiineeeeeseeeeersnnnaeeeeessesessnnnnns 141
TABLE 8: LESSON EXAMPLE GENERATION ALGORITHMccovvuuiiiiiiieeeiiieeeeiineeeenannnss 142
TABLE 9: INSTANTIATED REDUCTION RULE IN INTELLIGENCE ANALYSIS SCENARIO....... 150
TABLE 10: INSTANTIATED REDUCTION RULE IN CRIME SCENE INVESTIGATION SCENARIO150
TABLE 11: ABSTRACT RULE CORRESPONDING TO THE RULE INSTANCE IN TABLE 2........ 151
TABLE 12: ALGORITHM OF TEST QUESTION GENERATIONcutviiieeeeeeniiiiiiiieeeeeeennnnnens 171
TABLE 13: THE ABLE SCRIPTING LANGUAGEcuooiieiiiiiiiiiiiiiieeeeeeeeeeeviiieeeeeeeeeeeevviannns 210
TABLE 14: LIFECYCLE FEATURE.......outiiiiieiiiiiiiiiiceeeeeeeeeeeeieeeeeeeeeeeevteeeeeeeeeeeensaannns 211
TABLE 15: ORDER AND DURATION COMPUTATIONccevvvrriniieeeeeeeeeeeriiiiieeeeeeeeeeerrnnnnns 211
TABLE 16: LESSON ANNOTATION SCRIPTIN XMLccooiiiiiiiiiiieeeeiiiieeiiiceeeeeeeeeeeeen, 212
TABLE 17: LESSON DEFINITION SCRIPTIN XMLcoooiiiiiiiiiiiiiiiieeeeeiieeeieeeeeeeeeeeeeen, 212
TABLE 18: LESSON TITLE SCRIPTIN XMLooiiiiiiiiiiiiiiiiiiiiciieeeeeeeeeeecieee e 212
TABLE 19: LESSON OBJECTIVE SCRIPTIN XMLooiiiiiiiiiiiiiiiiieeeeeeeeeeicceeee e, 213
TABLE 20: LESSON PROBLEM COMPONENT SCRIPIN XMLoooviiiiiiiiiiiieiiiieeeee, 213
TABLE 21: LESSON REDUCTION SCRIPTIN XMLooiiiiiiiiiiiiiiiiieeeeeeeeeecieeee e, 213
TABLE 22: THE LESSON SOLUTION SCRIPTIN XML.........coovviiiiiiieiiiiiiiiiiicieeeeeeeeeeein, 214
TABLE 23: THE LESSON SYNTHESIS SCRIPTIN XMLooovvmiiiiiieeiiiiiiiiiicieeeeeeeeeeeeevn, 214

vi

LIST OF FIGURES

Figure Page
FIGURE 1: INTELLIGENT LEARNER, ASSISTANT AND TUTOR...........ccvvveeeeeeeeiiiiiiriiiieeeeeeenennns 2
FIGURE 2: EXPERT SYSTEM DEVELOPMENTcuiiieeiiiiiitiiiieeeeeeeeeeeeriiieeeeeeeseeesrinieeeeeeesseenns 4
FIGURE 3: LEARNING AGENT SHELL ARCHITECTUREcuciieeeeiiiiiiriiiieeeeeeeeeerriiieeeeeeanennns 8
FIGURE 4: GENERAL ARCHITECTURE OF AN INTELLIGENT TUTORING SYSTEM.................. 11
FIGURE 5: PROCESSES FACILITATED BY THE PROPOSED APPROACH TO ABSTRACTION 18
FIGURE 6: TD, TC AND TI ABSTRACTIONS ...uuuiiiiiiiiiiiieeeeeiieeeeeeieeeeevae e e e eaaeeeevanneeees 24
FIGURE 7: FOUR LEVELS OF REPRESENTING AND REASONING ABOUT THE WORLD — FROM
(ZUCKER, 2003) .o, 27
FIGURE 8: KNOWLEDGE ABSTRACTION AND REPRESENTATION - FROM (MUSTIERE ET AL.,
2000) 1 a e e e e e e e e e e e 28
FIGURE 9: APPLICATION OF PERCEPTION-BASED ABSTRACTION IN CARTOGRAPHY - FROM
(ZUCKER, 2003) .o, 30
FIGURE 10: THE SUBTRACT KNOWLEDGE FUNCTION - FROM (BLESSING, 1997) 34
FIGURE 11: THE INTERFACE OF A COGNITIVE TUTOR - FROM (MATSUDA, 2005 A) 36
FIGURE 12: INITIAL QUESTION, ONE SCAFFOLD, AND INCORRECT ANSWER IN ASSISTMENT
BUILDER - FROM (TURNER, 2005) ...cciiiiiiiiiiiiiieee e 40
FIGURE 13: A SCENE FROM A DIAG APPLICATION TO OIL BURNER - FROM (EUGENIO,
20005) e e e e 42
FIGURE 14: AUTHORING INTERFACE FOR SPECIFYING FAULT EFFECTS - FROM (TOWNE,
L0) 44
FIGURE 15: CTAT - FROM (KOEDINGER ET AL., 2003)cuvviiiiiiiiiiiiierienrererereensesessennennn. 46
FIGURE 16: A SIMPLE TREEccoutuiiiiiiiiiiiiiiiiiiieeeeee et e e e e e e eeeetiee e e e e e e e e e e e e 50
FIGURE 17: PROBLEM-REDUCTION/SOLUTION-SYNTHESIS PARADIGMcccvvvvvvvvvennnnnn. 53
FIGURE 18: REDUCTION RULEovuuiiiiiiiiiiiiiiiiieeeeeeeeeeeeee e e 56
FIGURE 19: HYPOTHESIS ANALYSIS THROUGH PROBLEM REDUCTIONcovvvvvrunnnnnn... 59
FIGURE 20: HYPOTHESIS ANALYSIS THROUGH SOLUTION SYNTHESIS.....cceeeeeiiirirriiinnnnnnn.. 60
FIGURE 21: REDUCTION REASONING STEP........uueiiieeiiiiiiiiiiiiieeeeeeeeeeriiiiieeeeeeseeeersinineeeeens 64
FIGURE 22: PARTITION OF A REDUCTION TREEcccoiiiiiiiiiiiieeeeeiieeiiiiiiieeeeeee e 67
FIGURE 23: ABSTRACTION OF A REDUCTION TREE FOR COLLABORATIVE PROBLEM
N1 0) A4 1\ € PSR 68
FIGURE 24: CONCRETE REASONING TREE AND ITS ABSTRACTION FOR TUTORING 70
FIGURE 25: ABSTRACT PROBLEMcuiiiiiiiiiiiiiiiieeeeeeeeeeeeiiieeeeeeeeeeeeeesiieeeeeesseeesssnnnneeeens 72
FIGURE 26: TOP LEVEL OF A CONCRETE REASONING TREEcccoevvvviiiieeeeeeeiieeiriiieeennn. 74
FIGURE 27: ABSTRACT REDUCTION AND ITS CONCRETIONSccotvvvviriieeeeeeeeeeerriiineeennns 75
FIGURE 28: ABSTRACT SOLUTIONS AND ABSTRACT SYNTHESISccvvvueeeeeeeeieeerrireneennn. 76
FIGURE 29: REDUCTION SUB-TREE......cceeiititiiiiiiieeeeeeeeeeeriiiieeeeeeeeeeesriieeeeeesseeessnnnneeeeens 80

FIGURE 30: ABSTRACT REDUCTION SUB-TREEccccooivtiiiiiiiieeeeeeeereriiiiieeeeeeeeeeersinineeeeens 80
FIGURE 31: ABSTRACTION OF REDUCTION TREES FOR TUTORINGcovvuneiiiiinneeiiinnnnnens 81
FIGURE 32: THE RELATION BETWEEN REDUCTION TREE AND ITS ABSTRACT REDUCTION
TREE ettt ettt ettt e e e e e e e e e e e e e e eeeee e e e e a i aeeaaaaaae 90
FIGURE 33: ABSTRACTION OF REASONING TREE AS TABLE OF CONTENTScccuuvevevnnnn.. 107
FIGURE 34: AN EXPANDED FRAGMENT OF TOCooovviiiiiiieeiiiiiieiicieeeeeeeeeee e 108
FIGURE 35: ABSTRACT AND CONCRETE REDUCTION AND SYNTHESIS TREE.................... 110
FIGURE 36: OPTIMIZATION OF THE DISPLAY OF A LARGE REASONING TREE 111
FIGURE 37: EVALUATION OF ABSTRACTION FOR COLLABORATIVE PROBLEM SOLVING...112
FIGURE 38: LESSON SECTIONScvvvvtttteeeeeeeeeeeseeessssessssssssssssssssssssssssssssssssssssensn... 117
FIGURE 39: ABSTRACT NODE AND ITS CONCRETIONSvuuuieeeeeeiiirerriiieeeeeeeeeeerriineeeenns 119
FIGURE 40: EXAMPLES ILLUSTRATING THE ABSTRACT REDUCTION IN FIGURE 38........... 121
FIGURE 41: DESCRIPTION OF A PIECE OF EVIDENCEcuoviiiiiiiiiiiieeeeeeeee e 122
FIGURE 42: LESSON’S ABSTRACT SYNTHESES AND THEIR CONCRETIONS........cccuverevnnnn.. 123
FIGURE 43: TOP-DOWN TUTORING STRATEGY ...uuueiiiiiiiriiiiiieeeeeeeeeeerriieeeeeesseeeerrnineeeeens 127
FIGURE 44: BOTTOM-UP TUTORING STRATEGYceeeiiiiiiiiiiieeeeeeeeeeeriiiineeeeeseeeeerrnineeeeens 127
FIGURE 45: VARIATION OF THE DEPTH-FIRST STRATEGY «...cevvvniiiiiieeeeeieeeeeee e 128
FIGURE 46: LESSON TOCooiiiiiiiieiieeieeeeeeeeeeeeeeeeeeea s aaaasasanssanssssnnnns 130
FIGURE 47: AN EXAMPLE OF ANNOTATIONuuuueeeeeiiieeeiiiieeeeeeeeeeeeriiieeeeeesseeeerrnineeeeens 131
FIGURE 48: LESSON DEFINITIONS........0uvtuerutereeereeeeesreeessssssrsssssssssssssssssssssssessssrssn... 133
FIGURE 49: LESSON TITLE AND LESSON OBJECTIVEcovvuuiieeeeeeieeeviiiiieeeeeeeeeeeeriiineeeenns 134
FIGURE 50: LESSON’S EXAMPLES GENERATED FOR A LESSON’S SECTION.........ceevvvnn... 136
FIGURE 51: LESSON TEXT PANELuiiiiiiiiiiiiiiiieeee ettt 138
FIGURE 52: REDUCTION RULEoovviiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeeeesesasaaaesssssessssssssssssssnnes 149
FIGURE 53: THE INTERFACE OF THE LESSON EDITORcoiiiiiiiiiiiiiieeeeeieee e 153
FIGURE 54: THE INTERFACE OF THE DEFINITION EDITORccuoviiiiiiiiiiiiiieeeeeiieeeevean. 154
FIGURE 55: THE INTERFACE OF THE ORDER SETTING MODULEcceeeiviiieeeiiiiieeeeennnnn. 155
FIGURE 56: PREVIEW OF A DESIGNED LESSONcccoiiiiiiiiiiiieeeeeeieeeeiiieeeeee e 157
FIGURE 57: LESSON’S TABLE OF CONTENTS PANELcovuiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeveee e 158
FIGURE 58: SAMPLE LESSON CONTENTcvvvvvvrvrreereeereeeesrssseresssssssssssssssssessssnssnssnnsnnnes 159
FIGURE 59: EVALUATION OF GENERATED LESSONScotttiiiieeeeiiiiieiiiiieeeeeeeeeeeerriineeeenns 162
FIGURE 60: EVALUATION OF TUTORINGccvvvvvvurereeeeerreeesressesesesssssssssssssssssssssssssssssnnnn 164
FIGURE 61: TEST EXAMPLE FOR KNOWLEDGE LEVELcciiviiiiiiiiiiieeieieeeeeeee e 166
FIGURE 62: TEST EXAMPLE FOR COMPREHENSION LEVEL........coiiiiiiiiiiiiiiieeeceiieeeeevenan. 167
FIGURE 63: TEST EXAMPLE FOR ANALYSIS LEVELccovvviiiiieeiiiiiiieiiiiieeeeeeeeeeeeeee e 168
FIGURE 64: EXPLANATIONS CONSTRUCTIONcuuieeeiiiieriiinieeeeeeeeererrineeeeeesseeesrrnnneeeeens 169
FIGURE 65: A REDUCTION RULE........ccvviiiiiiiiiiieiiiieeeeeeeeeeeeeeeeeeeeeeeesassssesssssesssssssssssssnnnns 170
FIGURE 66: A GENERATED TEST QUESTIONccuvvvvrurrrrerrerrerereessssssssssssssssssssssssssssnsneees 173
FIGURE 67: A GENERATED CONSTRUCTION TEST QUESTIONccvvvvvrrrrrrrnrererrrnenenneennnns 174
FIGURE 68: EVALUATION OF THE TEST AGENTcciiiiiiiiiiiieeeeeeeeeeeeiiieeeeeee e e 176
FIGURE 69: KNOWLEDGE ENGINEERING WITH DISCIPLE LEARNING AGENT - FROM (BOICU,
2002) e e e e e e e 179
FIGURE 70: ARCHITECTURE OF THE DISCIPLE LEARNING AND TUTORING AGENT SHELL. 181

FIGURE 71:

LESSON INTERFACE

FIGURE 72:
FIGURE 73:
FIGURE 74:
FIGURE 75:
FIGURE 76:
FIGURE 77:
FIGURE 78:
FIGURE 79:
FIGURE 80:
FIGURE 81:

TABLE OF CONTENTSuuuuuuuuuuuuuuusussessssssnnnsssssssssnsssssssssssssnnssnsennnnsnnsrn—... 186
SAMPLE GLOSSARYvvvvvvvvtteeesssesesseessssssssssssssssssssssssessssssssssssnnnnnsnsr———.. 187
PRESENTATION OF THE VERACITY CONCEPTcovvvviieeeeeeeieeerriiiiieeeeeenneenns 188
REASONING STEP FROM A TEST QUESTIONcceeiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenns 190
INTERFACE OF THE ABSTRACTION EDITORcovvvviiiieeeeeiiiiiiiiiiiieeeeeeeeeen, 193
WIDGET TOOLBAR FOR LESSON DESIGN......cceeiiiiiiiiiiiiieeeeeeeeeeeeriiiieeeeeeeneenns 195
INTERFACE OF THE TEST EDITOR.........ccovvtiiiiieeiiiiiiiiiiieeeeeeeeeeeeevciieeeeeeeeeeens 197
LESSON INTERFACEcciiiieiiieieeeanenns 199
TEST GENERATION INTERFACEcccooiiiiiiiiiiieeeeeeeeeeeriiieeeeeeeeeeeesineeeeeeeneenns 201
METHODOLOGY FOR BUILDING A TUTORING SYSTEM.....ccvvuviiiiiineeeiiiinnnnnns 204

X

LIST OF ABBREVIATIONS/SYMBOLS

201, ?02,..., ?N1, ... - variables in problems, reductions or solutions
V - for all
3 - there is at least one

3! - there is only one

7 - set of vertices
0, - argument function of the tree ¢

t= (Wt ,0,) - tree with finite vertices set 7/ and argument function J,

vi(x) — the valence of x in tree ¢

st = (U, Oy)- sub-tree with finite vertices set ¥y and argument function O
7/(t) — natural notation of a tree ¢

2, — the set of problem nodes in tree ¢

&4, — the set of reduction nodes in tree ¢

S, — the set of solution nodes in tree ¢
Root(t) — the root of the tree ¢
Leaves(t) — the leaves of the tree ¢

0, - problem node argument function

O ;- solution node argument function

0 ,, - reduction node argument function

SN — the sub-node

Partition, — partition of tree ¢, a set of sub-trees of tree ¢

17- a tree at abstract level i

oy(st) — abstraction function of a sub-tree of a tree ¢

op(st) — problem node abstraction function of a sub-tree s¢
ora(st) — reduction node abstraction function of a sub-tree st
ois(st) — solution node abstraction function of a sub-tree st

P4 — set of problem classes of abstraction mapping A

S — set of solution classes of abstraction mapping A

RA&R 1 — set of reduction rules of abstraction mapping A

2R &R 4 — set of root reduction rules of abstraction mapping A
AP — set of abstract problem classes of abstraction mapping A
A4S, — set of abstract solution classes of abstract mapping A
ARAR 1 — set of abstract reduction rules of abstract mapping A
A(0) — abstraction mapping of a class o€ Pl Sl U RAR,

Ap(0) — problem abstraction mapping of a problem class o

As(0o) — solution abstraction mapping of a solution class o

Xi

Agra(0) — reduction abstraction mapping of a reduction rule o

A,yra(0) — root reduction abstraction mapping of a reduction rule o

Xii

ABSTRACT
ABSTRACTION OF REASONING FOR PROBLEM SOLVING AND TUTORING
ASSISTANTS
Vu Le, PhD
George Mason University, 2008

Dissertation Directors: Dr. Gheorghe Tecuci and Dr. Mihai Boicu

This dissertation presents an approach to the abstraction of the reasoning of a
knowledge-based agent that facilitates human-agent collaboration in complex problem
solving and decision-making and the development of systems for tutoring expert problem
solving to non-experts.

Effective human-agent collaboration requires an ability of the user to easily
understand the complex reasoning generated by the agent. The methods presented in this
dissertation allow the partition of a complex reasoning tree into meaningful and
manageable sub-trees, the abstraction of individual sub-trees, and the automatic
generation of an abstract tree that plays the role of a table of contents for the display,
understanding and navigation of the concrete tree.

Abstraction of reasoning is also very important for teaching complex problem-solving
to non-experts. This dissertation presents a set of integrated methods that allow the

abstraction of complex reasoning trees to define abstract problem solving strategies for

tutoring, the rapid development of lesson scripts for teaching these strategies to non-
experts, and the automatic generation of domain-specific lessons. These methods are
augmented with ones for learning and context-sensitive generation of omission,
modification, and construction test questions, to assess a student’s problem solving
knowledge.

The developed methods have been implemented as an extension of the Disciple
learning agent shell and have led to the development of the concept of learning and
tutoring agent shell. This is a general tool for building a new type of intelligent assistants
that can learn complex problem solving expertise directly from human experts, support
human experts in problem solving and decision making, and teach their problem solving
expertise to non-experts. The developed learning and tutoring shell has been used to build
a prototype tutoring system in the intelligence analysis domain which has been used and

evaluated in courses at the US Army War College and George Mason University.

1. Introduction

1.1. Knowledge-Based Agents

An important goal of Artificial Intelligence is to develop knowledge-based agents that
represent the subject matter expertise of human experts in particular domains, such as
engineering design, emergency response planning, intelligence analysis, medical
diagnosis and treatment, etc. These agents could act as “interactive, user-adaptive
problem solving aids that understand what they do, accept goals being set as input rather
than instructions or deduce such goals, and, once these goals are identified, aim at solving
them independently from their user” (Kaschek, 2006).

A knowledge-based agent may be used by a subject matter expert as a decision-
making assistant, or by a non-expert user as an expert system, or by a student as a
tutoring system. In the words of Edward Feigenbaum (1993), “Rarely does a technology
arise that offers such a wide range of important benefits of this magnitude. Yet as the
technology moved through the phase of early adoption to general industry adoption, the
response has been cautious, slow, and ‘linear’ (rather than exponential).”

There are several explanations of this situation. One is the difficulty of acquiring and
representing the subject matter expertise of human experts (Buchanan and Wilkins,
1993). Knowledge acquisition for tutoring purposes, which also involves building lessons

and exercises, is even more difficult (Murray, 1999). Anderson (1992) estimated that “it

takes at least 100 hours to do the development that corresponds to an hour of instruction
for a student.” Other difficulties are related to the actual use of such systems. Solving
complex, real-world problems involves reasoning trees with thousands or tens of
thousands of reasoning steps. A user must be able to understand and work with this
complex reasoning if he or she is to use the system as a decision-making assistant.
Similarly, a student has to be able to learn from such a complex reasoning.

A general objective of this PhD dissertation is to investigate how abstraction of
reasoning may advance the state of the art in the development and use of knowledge-
based agents. In particular, we investigate the development of a specific type of
intelligent assistant (see Figure 1) that can:

e learn complex problem solving expertise directly from human experts;

e support human experts in complex problem solving and decision making;

e teach their complex problem solving expertise to non-experts.

Figure 1: Intelligent Learner, Assistant and Tutor

2

For this type of agents, we investigate how abstraction of complex reasoning, viewed
as a type of simplification that removes less important details, may facilitate human-agent
collaboration in complex problem solving and decision-making, teaching complex
problem-solving to non-experts, and rapid development of intelligent tutoring systems for
complex problem solving.

This dissertation builds upon three areas, Expert Systems, Machine Learning, and
Intelligent Tutoring Systems, which are briefly reviewed in the following sections.

1.2. Expert Systems

An expert system is a knowledge-based system which represents the human expertise
in some specialized area and uses that knowledge to solve problems in that area. The
expert system behaves as a human expert during the problem solving process to find
solutions to problems and present the appropriate explanations of the problem solving
process.

The input problems for an expert system are usually complex and difficult enough to
require significant human expertise for their solutions (Feigenbaum, 1982). These
problems demand a substantial body of knowledge with different levels of uncertainty
(Waltz, 1983).

The main modules of an expert system are the knowledge base and the inference
engine. The knowledge base stores the knowledge of a certain expertise domain, acquired
by the knowledge engineer from a given subject matter expert, and encoded in production

rules, heuristics, facts, etc. The inference engine implements a general method for solving

problems by using the knowledge from the knowledge base. A main architectural
principle in the development of an expert system is the separation between the inference
engine and the knowledge base (Davis, 1982), as shown in Figure 2. These two modules
are usually built separately so that the same inference engine can potentially be used with
different knowledge bases. Apart from reusing the inference engine (Whitley, 1990), this

makes the knowledge in knowledge base more easily identifiable, more explicit and more

accessible.
Knowledge
Engineer
. Inference
Dialo 6\\ \/ Representatlon Engine
(()a -
Knowledge
Subject Matter Expert System
Expert

Figure 2: Expert System Development

The communication between the subject matter expert and the expert system is a
difficult issue. Each side speaks a different language and the common understanding is
usually vague. The knowledge engineer has to interact with the subject matter expert to
understand how a problem is to be solved, then uses some representation to encode the
expert’s knowledge into the system. This process is time consuming, difficult and error
prone, being well known as the knowledge acquisition bottleneck (Buchanan and

Wilkins, 1993).

Due to the separation between the inference engine and the knowledge base, a generic
inference engine can be developed and used with different knowledge bases to create
expert systems for different purposes. This approach, Expert System Shell, revolutionizes
the way the expert systems are built. The expert system shell contains a generic inference
engine and an empty knowledge base with a pre-defined knowledge representation. Now
the developers of the expert systems are no longer concerned with building the problem
solving engine. Building an expert system reduces to building a knowledge base
following a pre-defined syntax. In addition, most shells provide useful utilities that can
do some additional tasks such as knowledge base integrity checking and debugging
(Whitley, 1990).

A critical characteristic of expert systems that are used as decision-support assistants
is the ability to make very clear their reasoning process. For very complex problems,
however, the reasoning trees are very large, making their browsing and understanding
difficult. This problem can be alleviated by abstracting the reasoning process, as
proposed in this PhD dissertation. This allows the user of an expert system to both get a
general understanding of the reasoning strategy (at an abstract level) and investigate the
details of the reasoning (when needed).

1.3. Machine Learning and Learning Agent Shells

The knowledge acquisition bottleneck plagues the development of expert systems.
One approach to alleviate this problem is to automatically acquire domain knowledge
through learning. Knowledge acquisition can be based on several Machine Learning

strategies (Tecuci, 1998):

Empirical inductive learning from examples learns the definition of a concept
from a set of positive and negative examples. The inductive process generates the

generalized description for that concept (Mitchell, 1978).

Explanation-based learning learns by observing a single example to improve
system’s performance. However, this technique requires complete and correct

knowledge of the domain under study (Mitchell, 1997).

Analogical learning learns by transferring knowledge from a source entity to a

target entity (Winston, 1980).

Abductive learning hypothesizes the causes of observed effects (Josephson et al.,

1987).

Conceptual clustering classifies a set of objects into concepts and learns the

descriptions of these concepts (Kodratoff and Tecuci, 1988; Fisher, 1987).

Quantitative discovery discovers quantitative laws that relate to the values of

variables characterizing objects (Langley et al., 1987).

Reinforcement learning learns by using the feedback on an agent’s performance

from the environment (Sutton, 1988).

Genetic algorithms learn by evolving a population of individuals over a sequence

of generations (DeJong, 2006).

Neural networks learn by evolving a network of connected nodes which simulates

the brain’s dendrites and axons (Rumelhart and McClelland, 1986).

e Multistrategy learning integrates complementary machine learning approaches to
solve learning problems that are beyond the capabilities of the integrated methods

(Michalski and Tecuci, 1994).

A significant advance in the use of machine learning for knowledge acquisition was
the development of the concept of learning agent shell (LAS), as an extension and
generalization of the concept of expert system shell (Tecuci, 1998). A learning agent
shell is a tool for building expert systems. It contains a general problem solving engine, a
learning engine and a generic knowledge base structured into object ontology and a set of
rules (see Figure 3).

The main purpose of the learning agent shell is to enable rapid development of the
knowledge base, directly by the subject matter experts, with limited assistance from the
knowledge engineers. A specific type of learning agent shell which was used as an
experimentation platform for this dissertation research is the Disciple shell (Tecuci et al.,
1998; Boicu, M., 2004). It consists of:

e A problem solving component based on problem reduction. This component
includes a modeling agent that helps the user to express his/her contributions to
the problem solving process, a mixed-initiative (step-by-step) problem solving
agent, and an autonomous problem solving agent.

e A learning component for acquiring and refining the knowledge of the agent,
allowing a wide range of operations, from ontology import and user definition of
knowledge base elements (through the use of editors and browsers), to ontology

learning and rule learning.

e A knowledge base manager which controls the access and the updates to the
knowledge base. Each module of Disciple can access the knowledge base only
through the functions of the knowledge base manager.

e A domain-independent, graphical user interface.

ﬁ
\’/1 = Problem

\ §)/\)\\/ L <«— | Interface Soving | pomain KB
S(@r,\ Learning ontology-+rule

Figure 3: Learning Agent Shell Architecture

Building an agent for a specific application consists of customizing the shell for that
application and developing the domain knowledge base. The learning engine (which uses
various learning strategies, such as learning from examples, from explanations, and by
analogy) facilitates the building of the knowledge base by subject matter experts. It
reduces the involvement of the knowledge engineers who otherwise would play a very
important role in acquiring knowledge from the expert and encoding it in the knowledge
base. This leads to a significant speed-up of the process of building a knowledge-based
system.

The methodology to build an end-to-end knowledge-based agent with a Disciple shell

is the following one (Tecuci et al., 1999):

Specification of the problem: The subject matter expert and the knowledge
engineer usually accomplish this step to identify the types of problems to be
solved by the system.

Modeling the problem solving process as problem reduction: The expert and the
knowledge engineer work together to model the problem solving process as
problem reduction and, in the process, define: a) an informal description of the
agent’s problems, b) instances and concepts are defined, and (3) conceptual
problem reduction trees to guide the training of the agent by the subject matter
expert.

Developing the customized agent. Add auxiliary components (as needed) such as
graphical viewer for a reasoning tree, special report generation capabilities, etc.
Importing and developing the ontology: There are many available ontologies that
can be imported partially. The imported ontology is then extended by using the
different tools for different knowledge elements, such as feature editor, problem
editor, object editor, etc.

Training the agent for its domain-specific problems: During this step, the expert
teaches the agent to solve problems in a cooperative, step-by-step problem solving
scenario. The expert defines an initial problem and asks the agent to reduce it. The
agent will try different methods to reduce the current problem. If the solution was
defined or modified by the expert, then it represents an initial example for

learning a new reduction rule. To learn the rule, the agent will first try to find an

explanation of why the reduction is correct. Then the example and the explanation
are generalized to a rule which becomes part of the agent’s knowledge base.

o Testing and using the agent: The agent is tested with additional problems. The
agent will solve the problems alone. The solutions are then inspected by the
expert. If the agent generated wrong solutions then the expert will identify the
errors and will help the agent to fix them.

An important characteristic of a Disciple-type learning agent shell is that it allows the
subject matter expert to teach the agent in a very natural way, similar to how the expert
would teach a student. As a consequence, the reasoning of the agent will be very natural,
similar to that of the expert who has taught it. This will facilitate the understanding of the
agent’s reasoning by an end-user. But it also opens a significant opportunity with respect
to tutoring, which is exploited by our dissertation research. It may make possible for such
an agent to teach students in a way that is similar to how it was taught by the subject
matter expert. This is important for two different reasons. First, a new user of the agent
should become familiar with how the agent solves problems, if the user is to use the agent
for decision-support. Second, teaching expert problem solving strategies is an important
application area and easily building such tutoring systems would have a significant
economic impact.

As discussed in Chapter 6, we have developed the concept of learning and
tutoring agent shell, as an extension of the concept of learning agent shell. A learning and
tutoring agent shell allows rapid development of intelligent tutoring systems for problem

solving knowledge.

10

1.4. Intelligent Tutoring Systems

Intelligent tutoring systems (ITS) emulate the human tutors in teaching the students.
Unlike the computer-based training (CBT) or computer-aided instruction (CAl) systems
(Carbonell, 1970) which drive the students inflexibly following predefined scripts, an ITS
focuses on individualized curriculum that suits the student’s need. In order to do that, the
ITS needs: 1) the representation of the domain knowledge which is handled by the expert
module; 2) the tutoring knowledge which is stored in the tutoring module; and 3) the
knowledge of the student’s capability and progress which is stored in the student module
(Polson and Richardson, 1988). These three modules constitute the backbone of the
tutoring system. The other modules such as the user interface play supportive roles in
preparing and constructing the curriculum customized to the student ability as shown in

Figure 4 (Polson and Richardson, 1988).

Expert Module

| User Interface

| |
Tutoring Student
Module Module

Figure 4: General Architecture of an Intelligent Tutoring System

The expert module contains the domain knowledge and has the problem solving

capability necessary for the subjects that the tutoring system is designed for. Acquiring

11

the expert knowledge is both time consuming and difficult. For instance, Anderson
(1998) estimated that for the applications to programming and mathematics, over 50% of
the effort goes into encoding the domain knowledge (Anderson, 1998).

There are several models that are typically used by the expert module. The black box
model encapsulates the domain knowledge and delivers the output based on the given
input without explanations of why the problem is solved that way (Anderson, 1998). This
type of behavior can be used to judge the correctness of student’s performance while
executing the same tasks. A typical example of the use of a black box model in a tutoring
system is SOPHIE (Brown et al., 1982) which teaches students how to troubleshoot
faulty electronic circuits. An alternative model is based on expert systems and is widely
used in teaching the expert knowledge (Anderson, 1998). A classic and well-known
tutoring system which teaches students how to diagnose the bacterial infection is
GUIDON (Clancey, 1987). GUIDON is based on the MYCIN expert system and
generates explanations of how the results have been obtained. Yet another type of expert
model is the cognitive model. This model simulates the “human problem solving in a
domain in which the knowledge is decomposed into meaningful, human-like components
and deployed in a human-like manner.” (Anderson, 1998). A typical example of this type
is the LISP Tutor (Anderson and Reiser, 1985) which teaches the students how to
program in LISP. Because the cognitive systems simulate the human problem solving
knowledge, the understanding of different types of knowledge that need to be tutored is
useful. There are 3 levels of knowledge: procedural, declarative and qualitative. The
procedural knowledge relates to how a task is performed (Anderson, 1998). The LISP

tutor is a cognitive tutoring system which uses procedural knowledge. The declarative

12

knowledge is a set of facts appropriately organized to be reasoned with. The tutoring
systems which use the declarative knowledge are designed to teach the students the basic
principles and facts of the domain and how to reason with them in general (Anderson,
1998). An example of this type of tutoring system is SCHOLAR which teaches the
students the South American geography (Carbonell, 1970). Qualitative knowledge is “any
kind of knowledge that does not always allow a correct and consistent match between the
represented objects and the real world, but can nevertheless be used to get approximate
characterizations of the behavior of the modeled domain” (Furnkranz, 1992). This type of
knowledge therefore underlies the human capability of simulation and reasoning. Thus it
is essential in the troubleshooting process. SOPHIE (Brown et al., 1982) uses this type of
knowledge as well to teach a student how to troubleshoot a faulty circuit.

The student module (see Figure 4) evaluates the student’s performance to determine
his/her knowledge of the domain and reasoning skills (Ong and Ramachandran, 2000).
The student model built and maintained by this module uses that understanding to help
the student in many ways. It can advance the student to a higher level if it is determined
that the student succeeded in answering most of the questions or seemed to master the
presented topics. The tutoring system can give explanations to the student based on the
concepts and definitions that have been previously presented to the student and are
recorded in the student model. Or the system can give some advice during runtime when
the student model can “feel” that the student does not know how to proceed further based

on his/her suboptimal performance or misconceptions (Digangi, A. S., et al., 1999).

13

There are 3 types of student models: overlay model, differential model and
perturbation model (Smith, 1998; Tsinakos and Margaritis, 2000). In the overlay model
the student’s knowledge is a subset of the expert’s knowledge. The student knowledge
will expand when more knowledge is acquired and eventually becomes the expert
knowledge. The differential model is an extension of the overlay model where it focuses
on two types of learner knowledge: the knowledge that the student must have, and the
knowledge the student is not exposed to. The student knowledge may never be the expert
knowledge and is limited by the knowledge that the student is not supposed to be exposed
to. Neither the overlay model nor the differential model supports the correction of the
faulty knowledge of the student. The perturbation model is an overlay model with such
faulty knowledge which is called “bug library” (Tsinakos and Margaritis, 2000).

The student performance is evaluated by the student model. This model keeps track of
student progress. The tutoring module interacts with the student module to define the
curriculum which is appropriate, based on the student’s capability. This module must
possess at least the following three characteristics (Halff, 1988):

o It should control the generation of the curriculum (which is the selection and

sequencing of the material to be presented).

e [t should be able to answer the questions posted by the student during the tutoring

process.

e It should have a mechanism to determine when the student needs help and what

type of help the student should receive.

The tutoring module can define different tutoring strategies to deal with different

student skills. For the beginner, the tutoring module can guide the student with step-by-
14

step procedures. For the advanced student, it can decide to have the student work on
her/his own unless the student needs help. In other words, the tutoring module adapts to
the student performance and skill to ensure the effective learning.

In our dissertation research we have developed an abstraction-based approach for
tutoring expert problem solving knowledge, as discussed in Chapter 4.

1.5. Sample Application Area: Intelligence Analysis

The purpose of intelligence analysis is to analyze available partial and uncertain
information in order to estimate the likelihood of one possible outcome, given the many
possibilities in a particular scenario. An intelligence analyst has to solve complex
problems such as

o Assess whether Location-A is a training base for terrorist operations.

o Assess whether Agent-B has nuclear weapons.

o Assess whether Agent-C is pursuing nuclear energy for peaceful purposes.

Solving such problems involve analyzing large amounts of uncertain, incomplete
and/or incorrect information in the form of pieces of evidence whose relevance and
believability have to be evaluated and correlated. They result in large reasoning trees of
thousands or even tens of thousands of reasoning steps.

Therefore, this application domain is very appropriate for demonstrating and testing
the abstraction-based methods proposed in this dissertation

1.6. Dissertation Overview
The rest of this dissertation is organized as follows. Chapter 2 presents the research

problem addressed along with other related research. Chapter 3 presents the developed

15

theory for abstracting a complex reasoning tree generated by a knowledge-based agent, in
order to facilitate human-agent collaborative problem solving, and tutoring expert
problem solving to non-experts. Chapter 4 presents the abstraction-based methods
developed to facilitate a human’s browsing and understanding of a complex reasoning
tree generated by an agent. The methods were also evaluated. Then, Chapter 5 presents
the application of our theory of abstraction to the tutoring of expert problem solving
strategies. It describes a set of integrated methods that allow the abstraction of complex
reasoning trees to define abstract problem solving strategies for tutoring, the rapid
development of lesson scripts for teaching these strategies to non-experts, and the
automatic generation of domain-specific lessons. It also describes the developed methods
for learning and context-sensitive generation of omission, modification, and construction
test questions, to assess a student’s problem solving knowledge. It also includes the
evaluation of these methods. Chapter 6 presents the concept of learning and tutoring
agent shell, the architecture of the prototype shell developed, and the methodology of
building a learning and tutoring agent with such a shell. Chapter 7 concludes this
dissertation with a summary of my research contributions and some of the most
promising directions for future research. The dissertation also includes several

Appendices with more details on several aspects presented in the dissertation.

16

2. Research Problem

2.1. Problem Definition

Research progress in Artificial Intelligence has led to the development of knowledge-
based agents that can solve complex real-world problems requiring large amounts of
human subject matter expertise. In principle, such an agent can be used by a subject
matter expert as a decision-making assistant, or by a non-expert user as an expert system,
or by a student as a tutoring system.

A critical requirement for such a knowledge-based agent is the transparency of its
reasoning process. To accept a decision suggested by an agent, its user has to be able to
easily understand how that decision has been reached. Similarly, to teach a student, the
reasoning of the agent has to be natural and easily understood. This requirement becomes
increasingly difficult to be achieved when the reasoning trees generated by the agent are
very complex, with thousands of reasoning steps. This also makes it very difficult, not
only to teach a student, but also to build the necessary tutoring knowledge.

Abstraction of complex reasoning, viewed as a type of simplification that removes
less important details, may be the key to both facilitate human-agent collaboration and
teach students complex problem-solving.

Consequently, the problem addressed by this dissertation research is to develop an

approach to the abstraction of complex reasoning processes that facilitates:

17

- human-agent collaboration in complex problem solving and decision-making;

- rapid development of intelligent tutoring systems for complex problem solving;

- teaching complex problem-solving to non-experts.

Figure 5 shows the three main processes that are addressed by the researched
approach to abstraction: human-agent collaboration, instructor authoring of tutoring

knowledge, and agent teaching of a student.

Instructor Student
Figure 5: Processes Facilitated by the Proposed Approach to Abstraction

A fourth process, related to those from Figure 5, is that of knowledge acquisition
from a subject matter expert. This process is critical because it is the knowledge acquired
from the subject matter expert that is used in problem solving, and it is this knowledge
that has to be taught to a student.

One of the most advanced and successful approaches to knowledge acquisition is to
use a learning agent that can be taught directly by a subject matter expert how to reason

and solve problems, as illustrated by the family of Disciple systems (Tecuci et al., 1998;

18

Boicu 2002). One advantage of this knowledge acquisition approach to the research
problem we are investigating is that the reasoning of the agent is already natural, as it
emulates the reasoning used by the expert when teaching the agent. Thus our efforts can
concentrate on how abstraction can deal with the complexity of the reasoning trees, and
not with reformulating this reasoning to make it more natural. Moreover, the agent might
be able to teach a student similarly to how it was taught by the subject matter expert.
This creates the opportunity to develop a new type of intelligent assistant that
integrates the three complementary capabilities shown in Figure 1:
e can learn complex problem solving expertise directly from human experts;
e can support human experts in complex problem solving and decision making;
e can teach their complex problem solving expertise to non-experts.
The addressed research problem includes:
e the development of a theory of the abstraction of complex reasoning processes for
collaborative problem solving and tutoring;
e the development of methods for abstracting concrete reasoning trees to facilitate
collaborative problem solving;
e the development of methods for abstracting concrete reasoning trees to facilitate
the tutoring of expert problem solving strategies;
e the development of abstraction-based methods for authoring lessons to teach
students;

e the development of methods to teach the agent to generate test questions;

19

e the development of the concept of learning and tutoring agent shell as a powerful
tool for building learning, problem solving and tutoring agents for complex
application domains.

The next section discusses the related research, pointing to existing limitations that

are addressed by our work.
2.2. Related Research
There are two major issues presented in this dissertation. One is the abstraction
theories and the other is the intelligent tutoring systems. The two will be discussed in
details in Section 2.2.1 and Section 2.2.2 respectively.
2.2.1. Abstraction Related Research

Abstraction has been widely used in human perception, reasoning and problem
solving. Its benefit has motivated the Artificial Intelligence theorists and practitioners to
capture the underlying principles and characteristics of abstraction and apply them to
building intelligent systems that can reason and solve problems. The theories of
abstraction were needed for three reasons: to understand different abstraction approaches
that have been used in the past, to justify the need to use abstraction in terms of
computational complexity, and to construct the intended abstractions automatically
(Zucker, 2003).

There are several existing theories of abstractions. In essence, they can be classified
into four categories (Zucker, 2003): abstraction as predicate mapping (Plaisted, 1981),
(Tenenberg, 1987), abstraction as mapping between formal systems (Giunchiglia and

Walsh, 1992), abstraction as semantic mapping of interpretation models (Giordana and

20

Saitta, 1990), (Nayak and Levy, 1995), and perception-based abstraction (Saitta and

Zucker, 1998). We will present the frameworks for each of the categories and find the

relations between them and our abstraction of reasoning presented in Chapter 3.
Abstraction as Predicate Mapping

Abstraction as predicate mapping is the class of abstractions that maps a set of
predicates in one first-order language to those of another language f: P; — P, where P; is
a set of predicates of language L;, and P, is a set of predicates of language L,. The
mapping f'is not a one-to-one relationship. It is possible that more than one predicate p; €
P, can be mapped to the same predicate p; € P,. The mapping f then can be extended to
map the literals in L, to those in L, (Tenenberg, 1987).

The predicate mappings are in fact the subclass of abstraction mapping defined in
(Plaisted, 1981), quoted by Tenneberg (1987).

Definition 1.1 (Abstraction Mapping — Plaisted, 1981): “An abstraction is an
association of a set f{C) of clauses with each clause C such that f/ has the following
properties:

[1] If clause C; is a resolvent of C; and C; and D; € f{C3), then there exist D; € f(C})
and D, € f(C,) such that some resolvent of D; and D, subsumes D;.

[2]1/(©) = {2}

[3] If C; subsumes C,, then for every abstraction D, of C; there is an abstraction D; of
C; such that D;subsumes D,.” m

If f is a mapping with these properties, then we call f an abstraction mapping of
clauses. The set of clauses C is called original theory and f(C) is called abstract theory.

21

The mapping however could lead to undesirable false proof - discovered in (Plaisted,
1981), as quoted by Zucker (2003). To solve this problem Tenneberg proposed the
Restricted Predicate Mappings. The restriction interprets an abstract predicate of the
abstract theory as the union of the predicates from the original theory that are mapped to
it (Tenneberg, 1987).

This type of abstraction however is not applicable to our abstraction of reasoning due
to the fact that it does not take into account the reason why the abstraction is justified,
1.e., the semantics of the abstraction.

Abstraction as Mapping between Formal Systems

Giunchiglia and Walsh (1992) defines a formal system X' as a triple (A, 4, £2) where
A is the language, A is the deductive engine of the system X and 2 is the set of axioms.

Definition 1.2 (Formal System Abstraction — Giunchiglia and Walsh, 1992): “An
abstraction, written as f> 2; => X, is a pair of formal systems (X;, 2») with language A,
and A, respectively, and an effective total function f4: A; — A,. “m

2 is called “ground space” and X, “abstract space”, the effective total function f, is
an abstraction. The function f, is called “tofal” because all the well-formed formulas
(wff) of the system X, are mapped to 2.

According to Giunchiglia and Walsh (1992), there are three types of abstraction:
theorem increasing (Tl), theorem decreasing (TD), and theorem complete (TC). They are
defined as follows:

Definition 1.3 (T* Abstraction — Giunchiglia and Walsh, 1992): “An abstraction f-
2 => 2, is called

22

e TC abstraction iff, for any wif a, a € TH(X)) iff fa(a) € TH(Z)).

e TD abstraction iff, for any wff a, if fa(a) € TH(2,) then a € TH(X)).

e TI abstraction iff, for any wff a, if a € TH(2;) then f4(a) € TH(Z,)”
where TH(Z) is the set of theorems of 2; and TH(2,) is the set of theorems of 2,. T*
abstraction is either of the types. m
In TC abstraction, all members of TH(Z;) are mapped to all members of TH(2), as
shown in middle of Figure 6. In TD abstraction, only a subset of 7H(2;) is mapped to the
members of TH(2,) as shown in top part of Figure 6. An example of such abstraction is
the dropping axioms and/or inference rules. TD abstraction is therefore called weak
abstraction, because not all members of 7H(Z)) are mapped to TH(2,). Oppositely, the TI
abstraction maps all members of TH(2;) to a subset of TH(2,) (bottom part of Figure 6).
TI abstraction is preferable in problem solving because all the ground problems can have
solutions once their abstract problems are solvable (Giunchiglia and Walsh, 1992). An
example of TI abstraction is Abstrips which builds STRIPS plan (Giunchiglia and Walsh,
1992). Abstrips’s operators together with pre-condition apply to the current state to
generate new states. The TI abstraction can be applied to it. For example, the operator for
climbing an object with a condition of being climbable

at(z, x, s) A climbable(y, z, s) — at(z, x, climb(y, z, s))
can be abstracted to
at(z, x, s) = at(z, x, climb(y, z, s))

with the condition of c/imbable being dropped.

23

This theory is useful in terms of classification of different types of abstractions. This
theory of abstraction, however, is just a syntactic abstraction that does not take into
account the semantics of the abstraction. Therefore, it is not qualified as our desirable
theory of abstraction of reasoning where the underlying justification is too important to

ignore.

TH(Z1) TH(z2)

TH(Z1) TH(2)
Tl abstraction

Figure 6: TD, TC and TI Abstractions

Abstraction as Mapping between Models
What we have presented so far is the syntactic abstraction. This type of abstraction

does not take into account the underlying justifications that lead to the abstraction

24

(Zucker, 2003). Nayak and Levy (1995) proposes the theory of semantic abstraction. This
theory defines the abstraction on the model level rather than the predicate level as the
syntactic approaches. The semantic abstraction consists of two steps: the first step is to
abstract the intended domain model and the second step is to construct the abstract
formulae to capture the abstracted domain model. The abstract formulae are indeed the
justification of the syntactic abstraction of the first step.

Nayak and Levy (1995) base their abstraction theory on the model which is defined as
“an interpretation, /, is a model of a set of sentences, 2, (denoted / |= 2) if and only if /
satisfies each sentence in the set” (Nayak and Levy, 1995).

Definition 1.4 (Model Increasing Abstractions — Nayak and Levy, 1995): “Let
Trase and T,y be sets of sentences in languages Lp.e and Lgps, respectively. Let z:
Interpretations(Tpase) — Interpretations(T,ps) be an abstraction mapping. T, is a model
increasing abstraction of Tp,se, With respect to z, if for every model Mp,se Of Thpuse, T(Mpase)
is a model of 7ips.”

One important notion that Nayak and Levy (1995) propose is the simplifying
assumption. This notion can be used to prevent false proofs and can be used to evaluate
the usefulness of the abstraction by the assessment of the reliability of the simplifying
assumption (Zucker, 2003). Let us consider two railroad cars that are linked by a linkage.
The linkage is modeled as a spring with a very large sprint constant, i.e., the spring is
very stiff. The simplifying assumption sets the linkage as infinitive which makes the two
railroad cars become one single rigid body. According to Nayak and Levy (1995),

viewing abstraction as a combination of MI abstraction and simplifying assumption has

25

two advantages: one is that the simplifying assumption is made explicit and therefore it is
very useful in reasoning or modeling. The other advantage is the MI abstraction admits
false proof only when the simplifying assumption is inappropriate.

The theory of semantic abstraction now is equipped with the semantic underlying
justification. It constructs the abstract formulae as the justification of the syntactic
abstraction. The theory is based on models instead of on predicates as the other two. With
these two properties, the theory of semantic abstraction can be a starting point in our
formulation of abstraction of reasoning. The reasoning that is embedded in intelligent
assistants is the product of a multi-step process from modeling the expert knowledge to
learning the reasoning rules. We expect to have a theory that can capture such a
complicated process. The next theory of abstraction comes closer to what we anticipate.

Perception-Based Abstraction

Perception-based abstraction was developed based on the observation that the
conceptualization of a domain involves at least four different levels. They are perception,
structure, language, and theory levels (Zucker, 2003). The concrete level is the world W
where the concrete objects exist. The objects are perceived by the observer through
his/her physical sensors. The perception P(W) is what the observers “feels” about the
world, not the world per se. The perception is the internal representation of the perceived
world. The perception however decays over time; the memorization of the perception into
a structure S must be implemented to preserve the perception. The structure is the
external representation of the perceived world. So far P(W) and S exist with respect to

the observer only. To be able to reason about the perceived world, there must be a

26

language L to communicate with other agents. Now the perceived world can be described
intensionally. Finally, the theory 7 is established to embed the properties and the
knowledge of the world (Saitta and Zucker, 1998). Figure 7 shows the four level model
with the general background knowledge providing inputs at all levels. Saitta and Zucker

(1998) define R = < P(W), S, L, T > as a Reasoning Context.

+Qignals /

I 4 peceptual -
- . anchoring *

O e
-:’*‘_-J,"‘ S=4(P)
< |7 tables _
= structure .
Z h *— .
"é | . | l-stmguatgi -
. interpretatio
g L= (W) prEs
= > facts '
= language
* theory
T= mterpretatl-?:r

— formula
theory

Figure 7: Four Levels of Representing and Reasoning about the World — from
(Zucker, 2003)

27

The abstraction process starts from the perception level and propagates through all the
levels. Figure 8 displays the models of abstraction that occur on the four levels. For each
level, there is a corresponding abstraction operator. Specifically, P, = w(Py(W)), S, =

0(S), Lo = A(Lg) and T, = t(T).

PW)) o | P =a(P,(W))
A 4
=== 8,=0(5,)

Figure 8: Knowledge Abstraction and Representation - from (Mustiére et al., 2000)

Figure 9 presents an example of perception-based abstraction in cartography. This

example concerns two aspects: the modeling of the knowledge acquisition of the map

design process and partial automation of the process named cartographic generalization

28

(Zucker, 2003). The horizontal axis shows the abstraction process and vertical one shows
the reformulation process.

As for the modeling process, the world W is perceived by aerial photographs or
satellite images P,(W). The abstraction occurs at the perception level to map the captured
images with appropriate resolutions P, = w(Pg(W)) (step 1 in Figure 9). Step 2 involves
the expert — photogrammetrist - who extracts a Digital Landscape Model (DLM) that

contains the coordinates of all the objects in the images. This is the process of

determining S, = 7(Py(W)). This step involves the abstraction and reformulation of an

image to have it structured in some recognizable form and associated with categories
such as road, building, rivers, etc - S, = o(S,). In the third step, a language L is selected to

assign symbols to map objects, such as houses, roads, etc. L, = D(S,). The abstraction of

the language level is not applied in the modeling process, but it will be used in the
cartographic generalization process. Finally, the theory level is achieved by the use of

maps in different areas, such as space and landscape analysis, direction guidance, or

geographic theory, Ty = 7(Lg) (Zucker, 2003).

With regard to the cartographic generalization process, the abstraction involves
repetitive scaling, reorganization of the map objects, and arrangement of different levels
of details, L, = A(L,). The basic operations that the expert uses in this process are the

applications of transformation algorithms to the GDB (Zucker, 2003).

29

geograpmc worla aopstracuon

' \h: collection
[

image

@

stereoplotting

geographical

| ®

database
1/25000 . .
cartographic generalization and
symbolization
map map

1725000 1/100000
g
£
=
g
E

thematic map
v

Figure 9: Application of Perception-Based Abstraction in Cartography - from
(Zucker, 2003)
This view of abstraction is appropriate to what we have been doing in our research.
At the first level, the expert knowledge is acquired and modeled. At the second level, the
knowledge is structured into knowledge base components such as problem classes,
reduction rules, solution classes and so on. At the third level, the knowledge components
are the set of symbols and the operators are defined upon the symbols to construct an

instantiated reasoning tree. At each level, there is a corresponding abstraction, but we are

30

interested of the abstraction of reasoning trees, i.e., the abstraction at the third level.
Chapter 3 presents a formal definition of the abstraction of the reasoning trees.
2.2.2. ITS Related Research

The rapid development of an intelligent tutoring system (ITS) has been an important
research area. Developing an ITS is notoriously costly and time consuming. In addition to
that, the ITS development requires high skills in programming and cognitive science.
Therefore it is hard for teachers who do not have experience or skills in computer science
to develop such systems. The ITS authoring systems are intended to provide tools that
can ease the process of developing an ITS. Murray (2003) classified the authoring
systems into seven types:

e Curriculum sequencing and planning authoring which focuses on organizing
instructional units into a hierarchy of courses, lessons, presentations. Each
instructional unit typically has an instructional objective. The content of the
tutoring system built by this type usually consists of canned texts and graphics,
which is applicable for computer-based learning. The limit of this type of
authoring systems is the shallow skill representation (Murray, 2003).

e Tutoring strategies authoring which presents diverse tutoring strategies. This type
of systems is similar to the curriculum sequencing authoring above in the sense
that the content consists of canned texts and graphics. However, it has
sophisticated tutoring strategies and “meta-strategies” that select the appropriate
tutoring strategies in a given situation. The weakness of this category is also the

shallow skill representation (Murray, 2003).

31

Simulation-based learning authoring which builds a simulation system for
tutoring purposes. The expert knowledge in the systems belonging to this category
consists of the component locations and operational scripts. The performance
monitor and feedback are straightforward such as “You should have checked the
safety valve as your next step.” The most difficult task in building the tutoring
system of this category is building the device simulation. The limits of this type of
authoring systems are limited instructional strategies and limited student model
(Murray, 2003).

Expert systems authoring which uses rule-based expert system to construct the
tutoring systems. The expert systems provide relatively deep domain knowledge
and can solve problems. Such systems not only teach but can also help students
when stuck to continue next steps or to complete the solution for the entire
problem. The weaknesses of this type of authoring systems are the difficulty of
building the expert systems, limited to procedural and problem solving expertise
and limited instructional strategies (Murray, 2003).

Multiple-knowledge types authoring treats knowledge into different types: facts,
concepts and procedures. The tutoring systems built by this type of authoring
system tend to treat the knowledge differently. The limits are relatively simple
facts, concepts and procedures. It is also limited by the predefined tutoring
strategies (Murray, 2003).

Special purpose authoring specializes in particular tasks or domains. The authors

are usually given the templates to fill them in. The examples of how to fill in the

32

blank are given to help the author doing the task. Once the tutor is built by using
this type of authoring system, it is only used for that particular task. The limits of
this type of systems are each tool is confined in specific type of tutor and the
inflexibility of representation and pedagogical knowledge (Murray, 2003).

e [ntelligent/adaptive hypermedia authoring which builds the web-based tutoring
systems. These systems have limited interactivity and student model. These
systems are constrained by the bandwidth (Murray, 2003).

In this dissertation, we focus only on the expert system type of authoring tools.
Compared to other types of systems, authoring an expert system is particularly complex
and time-consuming task (Murray, 1999). Due to that reason, there are only a few such
systems available for evaluation or usage. Among them are Demonst8 (Blessing, 1997),
Simulated Students (Matsuda et al., 2005), Assistment Builder (Turner et al., 2007),
DIAG (Eugenio, 2005) and CTAT (Aleven et al, 2006). We will review them in
following subsections to identify their strengths and weaknesses as compared to our new
approach.

Demonstr8

One approach to rapid development of a cognitive tutoring system is using the
programming by demonstration technique. The basic idea behind this approach is that the
demonstrations of how to solve particular problems from the creator are generalized to
become the rules for teaching the students how to solve that problem. Demonstr§ is the
authoring tutoring system that employs that technique (Murray, 1999). The author can

create different tutoring systems by using the provided toolkit to create the user interface

33

for each system. The higher-order working memory elements (WME) must be defined for
that particular interface. Each interface can be associated with multiple WMEs. Each
WME can be responsible for a particular feature such as name, number of columns in a
subtraction interface, etc. The WME can be created by grouping several interface
components or by building the table of values. The most important WME is the problem
WME which semantically describes a problem. In the subtraction problem, the WME

problem is a table of values, as shown in Figure 10.

-+

$

Fesult Top ::
A

o (1 |2 |3 |4 |5 |6 |7 |8 |9 ¢

0 (1 |2 |3 [4 |5 |6 |7 (8 |9 %

0|0 (1 |2 |3 |4 (5 |6 (7 |8 |9 %

1|/ |0 [1 |2 |3 |4 |5 [6 |7 |8 &

2 |4 |/ o (1 |2 [3 |4 |5 |6 |7 &

304 |4 |4 o |1 2 |3 |4 |5 |6 %

:
4 |/ |/ |4 |F o (1 2 (3 |4 |5 §

T P A P A P 1 R I - - T I ¢

6 |/ |/ |4 |45 s[4 o |1 (2 |3 %

LIS T F O T A A C P L LV s ¢

Figure 10: The Subtract Knowledge Function - from (Blessing, 1997)

Once the WMEs associated with the desired user interfaces are constructed, the
author can demonstrate the skill to be tutored, and have Demonstr8 induces the
underlying production rules (Blessing, 1997). The author first creates an example by

using the newly built interface. Then he/she starts solving the problem. This can be done

34

in two ways: either the author interacts directly with the Knowledge Function, or he/she
enters input and output values. The system will induce the production rules based on the
WME:s.

Demonstr8 is useful in creating a simple tutoring system to teach simple problems in
arithmetic or algebra, but it is difficult to deal with more complex problems. The reason
is the system totally relies on the WMEs which are constructed from the interface toolkit.
It is difficult to define and solve complex problems by merely manipulating the interface
elements. Another reason is that Demonstr8 induces simple production rules from a
single example (Jarvis, 2004). That makes it hard to have the production rules cover a
broad set of examples, and tends to make them overly general. It also causes the problem
for rule refinement, the important process in learning agent. The rule refinement requires
the production rules are able to be modified either manually or automatically to cover the
exceptions or new conditions. As Matsuda (2005) pointed out, Demonstr8 hard codes
pre-defined predicate symbols to specify conditions to fire the rules; hence it is difficult
to add conditions or exceptions to these rules. My research is based on a Learning Agent
Shell (Tecuci, 1998) which facilitates the knowledge acquisition and refinement. The
research also presents a new approach that overcomes the difficulty to deal with complex
problems by using the abstraction of reasoning to construct the tutoring lessons for
complex domains (see Section 5.1.1).

Simulated Student
Another authoring system named Simulated Student (Matsuda et al.,, 2005 a), a

machine learning agent, is using the programming by demonstration technique. Simulated

35

Student observes the author’s demonstrations of solving a task and induces a set of
production rules that replicate the author’s performance.

The instructor starts the content construction by building the desired GUI for the
Cognitive Tutor using the system’s toolkit. The instructor then specifies all the necessary
predicate symbols and operator symbols which will be represented in production rules.
The operator symbol represents the function which takes parameters as input and
produces a single value. The predicate symbol functions as a test for a specific feature.
All the symbols are task-dependent and have to be crafted carefully to produce the
desired results. Once all the symbols are defined, the instructor presents a few
demonstrations by solving a certain numbers of problems. The demonstrations are fed
into the Simulated Student and generalized into production rules. The production rules
are then loaded back into the Cognitive Tutor with the GUI components. The resulted
production rules are tested by trying to solve different problems. Some erroneous rules
may be generated and will be corrected by the tutors either by using the GUI component
or by modifying the rules directly. Figure 11 illustrates the interface of the Cognitive

Tutor.

(= SSriidenn inrerface M=
| student

Messages

4x -2 =2X+5
4x :‘

[oome][ren |

Figure 11: The Interface of a Cognitive Tutor - from (Matsuda, 2005 a)
36

The production rules define a way to manipulate objects such as buttons, text fields,
etc. A production rule consists of three main components: working memory element path,
feature tests (the left hand side), and a set of operators (the right hand side) (Matsuda et
al., 2005 b). The working memory element (WME) path is the sequence of WMEs from
the problem to the current WME. Each WME is associated with a GUI element, so the
sequence of GUI elements in solving a problem is captured in the WME path.

The Simulated Student is easy to use when building the small and simple tutoring
systems. The learning agent learns the production rules from the demonstrations. This
system, however, is plagued by the limitation of the available GUI elements to capture
the complex actions during the demonstration. Furthermore, the number of demonstrated
problems required to induce the production rules are high. Matsuda et al. (2006) stated
that solving ten problems generated nine production rules for algebra equation solving.
Therefore to solve a real world problem, there must have been a larger number of
problems to be used for demonstration. The other drawback of this system is the machine
learning techniques being used in the system. Simulated System uses only the inductive
generation which is limited compared to multi-strategies learning mentioned in Section
1.3. The rule revision is also simple, only the manual refinements are available either by
GUI manipulation or directly on the production rules. This type of refinement limits the
agent to apply the revision to similar production rules in the system. Matsuda et al.
(2007) acknowledged that having training on twenty problems, the correctness of the

production rules were just 82% which is a slow progress. So far the Simulated Student

37

has been tested only on some simple domains such as algebra equation solving, long
division, multi-column multiplication, fraction addition, chemistry and Tic-Tac-Toe
(Matsuda et al., 2007). In other words, it is almost impossible to build an intelligent
tutoring system for complex domains such as planning using Simulated Student.

My research is able to overcome the problems presented above. Based on its learning
capability, the tutoring system is able to acquire expert knowledge to solve complex
problems. Using the abstraction of reasoning facilitates the process of building the
curriculums that cover the strategies that has been used in problem solving, even in a
complex domain such as Intelligence Analysis (see Section 5.1).

Assistment Builder

The purpose of the Assistment Builder is to help the teacher who has little or no
computer science and cognitive psychological background to build a cognitive tutoring
system in a relatively short time (Turner et al., 2005). The system is built based on the
state graphs which are finite graphs with arcs representing the student’s actions and nodes
representing the states of the problem’s interface. The student’s actions change the states
of the system which are stored in the state graph. The state graph models the expected
behaviors in problem solving, and can predict behaviors as well as provide feedback on
them. The instructional scaffolding — a technique to promote learning at different levels,
providing sufficient supports at first and reduce them gradually when the students
develop their own cognitive or learning skill - is implemented in the system and used to

provide the appropriate questions or feedback for students at different levels.

38

The Assistment Builder builds cognitive tutoring systems over the web. The system
implements different tutoring strategies, the scaffolding strategy being one of them. The
underlying content representation, the XML schema, defines the problem. The problem
consists of an interface definition and a behavior definition, plus some metadata such as
problem id and comments (Turner, 2005). The interface definition includes a set of
selected widgets, images and texts to present to the students. The behavior definition is
the state graph with all the transitions between the nodes. One important type of interface
elements is the answerable element. This element is able to capture the student’s actions
and pass them onto the behavior component in the system. The student’s actions then are
analyzed against the state graph which represents the expected behaviors. The difference
between the expected behavior and student behavior is used to provide appropriate
actions.

The behavior acts as the tutoring logic of a problem. It interprets the student’s actions
which are translated into high-level actions before passing them to the behavior
component. Depending on the action and tutoring strategies, different messages can be
invoked such as hints, explanations via buggy messages or even scaffolds. If a student’s
answer is correct, then the problem’s state transitions to a new state. Otherwise, the
student’s actions are mapped to the tutoring strategies and no state transition takes place.

One can use the Assistment Builder to rapidly build a simple tutoring system for a
particular problem. There are five types of interface elements that are used to build the
content: radio buttons, pull-down menus, checkboxes, text-fields, and algebra text fields

that automatically evaluate mathematical expressions. The content builder can assign

39

only two states to each question in the state graph. An arc that connects the two states
allows the student to be moved to the next state if the answer is correct. Along with the
interface elements, messages are added to provide the scaffolding questions, hints and

feedback. Figure 12 presents a snapshot of a lesson preparation interface.

Refresh I

ltem 20 N-2003 Save Assistment Start New Assistment Pretty Print Assistment
|En1er ain Quastion: Enter Corract Answer Customize this Guestion
Bold liaiics Underline Superscript W@g . _
\\fhat iS 3;4 Of 1 }-#2? | |H It expeciad incarrect answers

Edit correct answers
Edit all answers
Edit Transfer Model

What is 34 of 1 1727
@ End line of questioning Randomize answers: @

y et Add Media (pictures: *jpg, *png, *.gif):
¢ Ask next question in line of questioning San answers: ’—L e
¢ Deleta this gueston and all of its Scafolds

|En|el Main Quastion:

Enter Camact Answar: Customiza this Quastion
Bold lialics Underling Superscript Edit hint messages
Th the tat T what mathematical Multiplication Edit expecied incorect answars
n ine statement above, whal mathemailca i Edit corract answers
operation does the word siswboofoibogyis

Edit 3l 3hEwais

represent? Edit Transfer Model

In the statement above, what mathematical aperation does the
lword of reprasent?

@ End line of questioning Randomize answers:
 Ask next question in line of questioning Sort answers:
 Delete this question and all of its scaffolds Browse...

Add Media (pictures: *.jpg, *.pnc
*.qif):

l&lﬁ:‘zg If the student enters any ¢ Comment on wrong answer. ¢ Question onwrong answer.

incorrect answer then the Eome Default Message

computer should

[Delate] Ifthe |omsien then the computer should & Comment on Wiong answer.
siudent I\Vhat's the opposite of Division
enters ¢ Question on wrong answer.

Add more expected incorrect answers...

Figure 12: Initial Question, One Scaffold, and Incorrect Answer in Assistment
Builder - from (Turner, 2005)

The Assistment Builder is deployed in several schools. Its domains are usually from
mathematics such as algebra, geometry. Due to the limit of using simple interface
components - radio buttons, pull-down menus, checkboxes, text fields and algebra text
fields to evaluate mathematical expressions - to generate the problem, the system is only

able to construct a simple pseudo-tutor (Turner et al., 2005). The state graphs for each

40

question have only binary values and therefore cannot represent complex reasoning. The
Assistment Builder does not have a capability to learn rules, and thus cannot construct the
tutoring system for problems other than the ones that have been developed specifically by
the instructor. In other words, the system does not learn from one problem to generate
other problems. Therefore it requires a lot of effort from the instructor who designs the
lessons.

The Learning and Tutoring Agent Shell concept (LTAS) that is part of my
contribution can learn from the instructor how to generate lessons automatically and
adaptively from the content of the knowledge base. That capability can ease the burden of
the instructor who designed the lessons (see Section 5.1.2). Furthermore, the tutoring
system is constructed based on the abstraction of a complex reasoning tree that is
appropriate for complex domains.

DIAG

Diagnostic Instruction and Guidance (DIAG) is an authoring system that uses
graphical models to build interactive user interfaces and the lessons. The tutoring systems
built with DIAG — also called DIAG applications - are specialized in troubleshooting

complex systems, such as heating or circuitry, as shown in Figure 13.

41

? e

furnace

Furnace body

Fire door

atoelectric cell
y Qil Flow Indicator

Qil Supply Valve

Legend:
Zoomahle block
Raplaceahle unit

Welcome, davide. Click on Begin to start exersise 1.

Figure 13: A Scene from a DIAG Application to Oil Burner - from (Eugenio, 2005)

The DIAG application presents a set of scenarios of faulty systems to the students.
The student has to figure out the defective components by testing the indicators and
inferring what components are not working. Once the problem is identified, the student
has to fix the system by using the graphical model. The set of scenarios is presented in a
sequence ordered by level of difficulty. The student can ask for help via the Consult

menu and the system will generate a context-sensitive hint (Eugenio, 2002).

42

The main feature of DIAG is the automatic generation of the diagnostic instructions.
The steps to author a new diagnostic ITS are (Towne, 1997):

e C(Create a graphical model of the target system (to be diagnosed) and establish its
modes of operation. The graphical model is developed such that it responds to the
user’s actions and to the failures that are introduced during the troubleshooting
exercises. This is structured in a hierarchy fashion of subsystems. This structure
allows user to go down to different levels of details. The modes of operation are
set by using different combination of switch settings.

e Define the replaceable units (RU) with names, replacement times, and their
reliabilities.

e Define the faults in a pool. Specify what impacts the faults can have on the system
and provide these statements to the student at the end of the exercises. The details
of the statement can vary from simple facts to complex technical details.

e Specify an exercise by selecting a fault from the pool, writing a statement for the
beginning of the exercise, setting up the mode that the system is initially in, and
setting the time limit to troubleshoot the problem. The author can provide
multiple exercises for each fault.

e Produce the symptom data that support the diagnostic reasoning process. DIAG
first generates a provisional set of fault effect statements. It does this by
simulating each fault and recording the frequency of the various outcomes. The

author then refines these statements to reflect his or her own view. Figure 14

43

illustrates the symptom specifications when a faulty RU occurs. The author can

indicate visual symptoms such as the alarm goes off when the fault happens.

| operate
standby
lightTest

Giome
tirmes

Mewer

Figure 14: Authoring Interface for Specifying Fault Effects - from (Towne, 1997)

DIAG teaches a student to diagnose faulty systems using clarifications and a highly
interactive graphical model. Such a system is useful in occupational training. The
problem with this approach is, however, that for each type of the system, a graphical

model must be defined with details of faulty statements. No learning capability is

44

implemented in this approach to save time for lesson preparation. That drawback is
addressed in this dissertation (see Section 5.1).
CTAT

Cognitive Tutor Authoring Tools (CTAT) is a tool suite for rapid development of
ITSs. CTAT has two types of tutors: example-tracing tutors — also named Pseudo Tutor -
which can be constructed without programming but require problem specific authoring,
and cognitive tutors which, on the contrary, require Al programming to build a cognitive
model but can be used across a range of problems from the same domain. In this research
we review the cognitive tutors which can be compared to our approach.

CTAT is based on the ACT-R cognitive theory (Anderson, 1993). This system
involves creating a cognitive model of a student’s problem solving by using production
rules that governs the misconceptions and the different reasoning strategies that a student
may use. CTAT consists of the set of tools presented in Figure 15 (Koedinger et al.,
2003) such as:

e GUI Builder builds the student interface where the student interacts with the tutor.
The author uses the tool to build the user interface by dragging-and-dropping the
interface widgets on the canvas.

e Behavior Recorder records the solution paths of a given problem demonstrated by
the author. It has three main functions. First, it builds the Behavior Graph which
captures the correct or the incorrect demonstrated behavior. Second, it builds the
example-tracing function which belongs to the first type of the tutor that CTAT

authors. Third, it supports planning and testing of the cognitive model.

45

e Working Memory Editor inspects and modifies the contents of the cognitive

model.

e Production Rule Editor generalizes the production rules based on the

demonstration given by the author.

e Cognitive Model Visualizer debugs the production rules.

Drag & drop interface
design & implementathn

= BT BSRE FTaE
| Prmpmtius

alaliel

N | LS

USEI‘-QUiﬂEd generalization for

model desian & implementation ~"

tognitwe task analysis by demnstration

nnnnn

Froguction fslc Editer

Swilchily Frog__ | wilimy nwds ‘

Automated testing

I s varslon of ruleli
State:
T E— we - Debugging visualizations
i [EH % EXTTTeT)
[ET [BE] r :
rIOmFe r21
FHIIL u'.\ RTTE YRAT [FZ] |_
..... 1A
T Lat
New | Edit | [Remove | [_tre
Type: CELL | | ” |
Shets Typun Slot Valu es 7 Rule Instantiation
VALLE p— |5 ham: lmnm:mmc
D ALAEHR
[DES CRIPTION none a2 - an iy ‘ ‘
LR

Figure 15: CTAT - from (Koedinger et al., 2003)

The production rule model plays an important role in constructing a Cognitive Tutor.

It handles general categories of problems in a specific domain. The module consists of a

specification of the objects in “working memory” representing the initial state of the

46

problem and a set of production rules to transit the objects from one state to the other
until the solution of the problem is reached. The development of the production rules is
supported by Production Rule Editor which uses the user-guided generalization process.
The generalization process starts by the author entering the concrete production rule, and
then the editor generalizes the rule by replacing the constants by the variables and adding
list matching patterns (Koedinger et al., 2003).

CTAT is quickly generating the Pseudo Tutors which tutor only specific problems.
Cognitive Tutors is more interesting in which it can cover similar problems in the same
domain, but writing the production rules for CTAT is a time consuming process due to no
help from the tool. The author must know Jess — the Java Expert System Shell — and write
Jess by hand. Koedinger (2004) stated that it took roughly 200 hour development of
Cognitive Tutor for one hour of instruction. CTAT does not have the capability of rule
refinement. The production rules once written can not be refined unless the author has to
modify the code by himself/herself.

The problem with the CTAT production rules is addressed in our Learning and
Tutoring Agent Shell which allows the instructor to build the lessons without writing a
single line of code. The shell generates the lesson scripts that underlie the lesson
structures designed by the instructor and uses the scripts to construct the lessons

automatically (see Section 5.1.3).

47

3. Abstraction of Reasoning Trees

For real world domains, the formalization of the reasoning process for a given
problem is very complex and involves thousands (or even hundred of thousands) of
specific reasoning steps. It is very difficult to fully review, understand and verify
completely such huge reasoning trees. This section describes an innovative approach of
using an abstraction of the reasoning trees in order to significantly simplifying their
browsing and understanding.

For instance, the problem “Assess whether Al Qaeda has nuclear weapons” from the
Intelligence Analysis domain has a reasoning tree of over 1700 nodes. A large tree is hard
to be rendered intelligibly on a computer display and therefore hard to comprehend. An
abstraction of such a large reasoning tree would help facilitate its browsing and
understanding by a user. In addition, a reasoning tree can be partitioned into several sub-
trees, based on the corresponding abstract problem solving strategies involved. The
abstraction of the reasoning tree in that sense can help identify the abstract reasoning
strategies that the expert had used in teaching the agent. Those learned strategies can be
reused in solving problems or teaching the students how to solve similar problems. The
subsequent sections will explain in detail the methodology of the abstraction of the

reasoning tree and its application for problem solving and tutoring assistants.

48

3.1. Reasoning Tree
A reasoning tree is a special type of tree. Therefore, before defining it, we should take

a look at the definition of a tree, as stated by Meyers (1971):

Definition 3.1 (Tree): A tree is a pair ¢t = (7, 0,) where?, is a finite set of vertices of ¢
and O,(x): U, — U* is the argument function' of t, Jy(x) represents the sequence of

children of the vertex xe& U, satisfying the following axioms:

[a] A vertex x cannot be a child of itself and cannot have same child twice:

Vxe 7, 5, (x) is a (possibly empty) sequence, without repetitions, of elements of
7\ {x}

[b] There is only one root vertex, which has no parent: there is one and only one
point 7 € 7 (called the root of #) such that for no x€ 7, is » an argument of x in .
Formally: re 7, 1Ixe 7, red (x).

t

[c] Each node has at most one parent: for Vx, y € 7., x # y then d,(x) and d,(y) have
no elements in common.

[d] There is only a single path from a node x to the root - Vxe& 7,3 sequence S =
Xi..xox;suchthat x; = x, x, =7, x; € Oxi+1), 1 <i<k. m

Notation: Ifx has n children then d,(x) is defined as d,(x) = x;x;...x,, in this case, x; is
called the i/ argument of x in ¢ (i.e. the i children); if x has no child then Jd(x) =1,

where A represents the empty sequence.

! The argument function of a vertex x is in fact the edge that links x with its n children x,X,...x,

49

Definition 3.2 (Valence): For any nodexe 7., we define v(x)€ Z - the valence of x

in ¢ — to be the length of J,(x) (i.e., the number of children of x in 7). A vertex xe 7, is
called an “endpoint” (leave) of ¢ if and only if v,(x)=0 or d(x) =1, and a “node” of ¢ if

and only if v,(x) > 0.m (Meyers, 1971).
Example of a tree: Figure 16 presents a simple tree which has only six nodes. The

tree is denoted as follows: ¢ = (¥, 0,) where ¥; = {a,b,c,def}, 0(x) = {a—bc, b—de

,c—f, d— A, e—> A, f— A}, specifically, 0, (a) = bc, 0; (b) = de, 0, (c) = f, O0(d) = A,

51(6) = ﬂ and 5[0) = ﬂ

Figure 16: A Simple Tree

Meyers (1971) also defines the sub-tree as follows:

50

Definition 3.3 (Sub-tree): Given a tree ¢ =(?,0,), and st =(?.',8'), st is a sub-

tree, denoted as st € ¢ if and only if 7,'C % and Vxe 7.', J,'(x) is obtained from

st

the sequence O, (x) with all elements of?; |7’ deleted. m (Meyers, 1971).

Definition 3.4 (Singleton Sub-tree): A singleton sub-tree is a sub-tree that has only
one node.
The following definition introduces the natural notation of a tree, which is a

refinement of the isotone notation developed by (Meyers, 1971):

Definition 3.5 (Natural Notation of a Tree): Let r = (7, 0, be a tree. A natural
notation of ¢ is a sequence 7(t)€ (W, X Z)* that satisfies the following propertics:

[a] A natural notation is a sequence of the vertices powered by their

V2
5 e

valences: 72(t) = x"

. X

X", where x; € U, vi = v(x)e Z is the valence of x; for i =
1,..n.

[b] The parent appears before its children: Vx,ye 7, if ye 0,(x) then x")
precedes y”'(y) in 72(¢). This property enforces the prefix notation.

[c] The children appear from left to right in the sequence: Vx, y,z € 7 ,ify and z are
the i and /" arguments of §,(x) and j=i+1 (i.e. y is the left sibling of z) then """ is the
left sibling of z") in 72(z). This property enforces the order of the children from left to

right.m

? Prefix notation presents the parent before the children

51

As an example, the natural notation 7() of the tree in Figure 16 is %(t) = a’b’c'd’e"f’.
Lemma 3.1: For a given tree ¢ there is a unique natural notation 7(z).

The reasoning tree structure utilizes the problem-reduction/solution-synthesis

paradigm. A brief overview of this paradigm is presented in the next section.
3.1.1 Problem-Reduction/Solution-Synthesis Paradigm

A general problem solving paradigm is the problem-reduction/solution-synthesis
paradigm — this paradigm is also known as “divide and conquer” or “problem
decomposition” (Durham, 2000; Powel and Schmidt, 1998; Tecuci, 1998). In this
paradigm, which is illustrated in Figure 17, a complex problem is successively reduced to
simpler problems via the reduction operators. The reduction continues until elementary
problems are reached for which there are known solutions. Then the synthesis process
begins to synthesize all the solutions successively from the simplest problems upwards

via the synthesis operators, until a solution is found for the original problem.

52

Figure 17: Problem-Reduction/Solution-Synthesis Paradigm

In the illustration from Figure 17, the solution of problem P; is obtained by reducing
that problem into » simpler problems Py;... Py, via the reduction operators RO;. Each
problem then is reduced into simpler problems. For instance, P;; is reduced to Pj;...
Piim. Pin is not reduced further because it has its solution S;,. Once the solutions
Sii1...S11m of the sub-problems Py;;...Py1m are obtained, the synthesis starts by combining
Sii1...Si1im Into the solution S;; of problem P;; via the synthesis operators SO;. The
process continues until the final solution S; of original problem P, is found.

This paradigm has been successfully applied in a wide variety of problems such as
course of action critiquing (Tecuci et al.,, 2001), intelligence analysis (Tecuci et al.,
2005), planning (Sebastia et al., 2006), requirements engineering (Maiden and Sutcliffe,

1996), to name a few. As demonstrated in (Barr et al., 1998) the problem reduction

53

representation of the problem solving process is equivalent with the state-space search
representation, and most of the problems can be represented using the state-space
representation.
3.1.2 Question-Answering Based Problem-Reduction

In order to facilitate the knowledge acquisition and problem solving processes, the
problem reduction paradigm was refined by introducing a question and an answer to
guide each reduction. The question considers relevant aspects of the problem to be
reduced and the answer suggests how to reduce it (Bowman et al., 2001), as shown in

Table 1.

Table 1: A Question-Answering Based Reduction Step

e Assess the credibility of Osama Bin Laden as the source of EVD-Dawn-Mir01-02c.

e Q: What factors determine the credibility of Osama Bin Laden as the source of EVD-
Danw-Mir01-02¢?
A: The veracity, objectivity and observational sensitivity of Osama Bin Laden
because EVD-Dawn-Mir01-02c is testimonial evidence based upon the direct
observation.

e Therefore one has to:
o Assess the veracity of Osama Bin Laden with respect to the information provided

in EVD-Dawn-Mir01-02c.

o Assess the objectivity of Osama Bin Laden with respect to the information

provided in EVD-Dawn-Mir01-02c.

54

o Assess the observational sensitivity of Osama Bin Laden with respect to the

information provided in EVD-Dawn-Mir01-02c.

In this question-answering based problem-reduction paradigm, an application domain
is modeled based on the following main types of knowledge elements: objects (concepts
and instances), features and facts, problems, solutions, examples, explanations and rules
(Tecuci et al. 1999).

e Concepts represent sets of individuals. An example of the concept is “evidence”.

e Instances are the instantiations of concepts in a specific scenario. For example, an

instance of evidence in Intelligence Analysis is “EVD-Dawn-Mir01-02¢> .

e Objects represent individuals or set of individuals in the application domain that
are organized hierarchically in an ontology. An object can be a concept or an
instance.

e Features are to describe further the objects, problems and other features. Each
feature has a domain and a range. The domain of a feature is the set of objects that
can have that feature and the range is the set of possible values of that feature.
The features are hierarchically organized. An example of a feature is “has as

description” whose domain is “evidence” and range is “any string”.

? EVD-Dawn-Mir01-02¢ is a fragment of an article by Hamid Mir, published in Dawn, a Pakistani
magazine.

55

Facts are features with specific values. An example of fact is “EVD-Dawn-Mir01-
02c has as description ‘We have chemical and nuclear weapons as a deterrent
and if America used them against us we reserve the right to use them.”

Problems represent anything that the agent attempts to solve. An example of a
problem is:

Assess the credibility of ?O1 as the source of 702 (701 and 7?02 are variables
that can be instantiated to a person and an evidence, respectively).

A problem with instantiated variables is called an instantiated problem. The

problem that is illustrated in the top part of Figure 18 is a part of a problem

reduction rule.

IIF:

IAssess the credibility of ?OF as the source of 202,

Q: |What factors deterrnine the credibiity of the source of 2027

A: || The veracity, objectivity, and observational sensitivity of 707 becausze 702 iz testimonial evidence bazed upon direct observation,

MAIN CONDITION

Var Lower Bound Upper Bound

207 (terrorist) (person)

F02 || (testimonial evidence based upon direct observation) || (testimonial evidence based upon direct observation)

Var Relationship | Var

202 ||is a testimony by || 207

THEN: | Assess the objectivity of #OF with respect to the information provided in 202,

Asgess the veracity of 207 with respect to the information provided in 702

Assess the observational sensitivity of 207 with respect to the information provided in 702,

Figure 18: Reduction Rule

56

e Solutions are associated with the problems. An example of a solution is “The
credibility of Osama Bin Laden as the source of EVD-Dawn-Mir(1-02c is an even
chance”.

e Examples are the instances of problem reduction and solution synthesis steps. An
example can be negative or positive. A negative example represents an incorrect
problem reduction step and a positive example represents a correct problem
reduction step. A positive example of problem reduction step is the one from
Table 1.

e Explanation is the justification of why a problem reduction step or a solution
synthesis steps is correct or incorrect. An explanation is expressed as a set of
facts, called explanation pieces. The explanation pieces for the problem reduction
example in Table 1 are:

o EVD-Dawn-Mir01-02c is testimonial evidence based upon direct observation.
o EVD-Dawn-Mir01-02c is a testimony by Osama Bin Laden.
o Osama Bin Laden is a terrorist.

e Rules are generalizations of problem reduction or solution synthesis steps. For
instance, Figure 18 shows the rule which is a generalization of the problem
reduction step in Table 1. As with a general problem, a rule can be instantiated to
different reduction steps.

3.1.3 Reduction and Synthesis Process
During problem solving, a reasoning tree is created by using the knowledge elements

described in the previous section. This tree is “a natural and explicit representation of the

57

thread of logic of the analyst, as if he or she would be thinking aloud” (Tecuci et al.,
2005). The reasoning tree hierarchically represents the discrete steps in the problem
solving process based on the problem reduction paradigm. The root of the tree indicates
the problem to be solved. The tree is basically composed of successive sequences of
problem — reduction — sub-problems, which are represented by corresponding sequences
of problem nodes - reduction nodes — sub-problem nodes. The reasoning tree consists of
instantiated problems and instantiated reduction rules or reduction examples. Therefore
the reasoning tree represents an instantiated reasoning process.

The Figure 19 illustrates a fragment of an instantiated reasoning tree for assessing the
credibility of Osama Bin Laden as the source of testimonial evidence EVD-Dawn-Mir(1-
02c. (a statement made by Osama bin Laden in an interview). The reasoning tree leads to
the assessing of three main components of the credibility. A solution for each of them is
found. Then these solutions are composed, from bottom up, as illustrated in Figure 19

and Figure 20.

58

P4

Assess the extent to which one can believe Osama bin Laden as
the source of EVD-Dawn-Mir01-02¢c

T Rd

[Q: What factors determine the extent to which a source of piece of evidence can be trusted?

A: The competency and the credibility of the source

— O === C

Assess the competency of Osama bin Laden Assess the credibility of Osama bin Laden
as the source of EVD-Dawn-Mir01-02¢c the source of EVD-Dawn-Mir01-02¢
T
. ! Rd,
Reductlon Process Q: What factors determine the credibility of the source of EVD-Dawn-Mir01-02¢c?
A: The veracity, objectivity, and observational sensitivity of Osama bin Laden because
I EVD-Dawn-Mir01-02c¢ is testimonial evidence based upon direct observation.
I - @) ===="=====) == . Ps
Assess the veracity of Osama bin sess the objectivity of Osama bin sess the observational sensitivity
I Laden with respect to the information Laden with respect to the information of Osama bin Laden with respect to
provided in EVD-Dawn-Mir01-02¢ provided in EVD-Dawn-Mir01-02c the information provided in EVD-
| awn-Mir01-02c
T T
| /\Rd3) (Rds) ' { Rds
Q: What is the veracity of Osama 4 What is the obijectivity of Osama\ - What is the observational \\
!:)ln Ladgn with rgspe(l:t to the !:)ln Ladgn with rgspe(l:t to the sensitivity of Osama bin Laden with
v information provided in EVD-Dawn- information provided in EVD-Dawn- respect to the information provided

Mir01-02¢? Mir01-02¢?

: almost certain.

in EVD-Dawn-Mir01-02c?

A: an even chance. . i
_ / almost certain.
; { s) : (s (s
The veracity of Osama bin Laden © objectivity of Osama bin Laden e observational sensitivity of \
with respect to the information with respect to the information Osama bin Laden with respect to the
provided in EVD-Dawn-Mir01-02c is provided in EVD-Dawn-Mir01-02¢ is information provided in EVD-Dawn-

an even chance almost certain Mir01-02c is almost certain

Figure 19: Hypothesis Analysis through Problem Reduction

The solution of a problem is obtained from the synthesis of the solutions of its sub-
problems. The synthesis starts from the assessed veracity, objectivity and observational
sensitivity of Osama bin Laden (i.e. an even chance, almost certain and almost certain,
respectively). The process goes upward until the solution of the top problem is found
(which is the assessed believability of Bin Laden). The synthesis of the solutions is based
on certain synthesis rules acquired from a subject matter expert. In the example from
Figure 20, the credibility of Osama bin Laden (i.e. “an even chance’) is obtained as the
minimum of his veracity, objectivity and observational sensitivity (i.e. “an even

chance”). Similarly, the believability of Bin Laden as the source of EVD-Dawn-Mir(1-

59

02c is obtained as “an even chance”, the minimum between his competence

credibility”.

and his

Mir01-02¢c

Itis an even chance that Osama bin Laden is believable as the source of EVD-Dawn-

A

E

NV bt e At Aoty el

a

o)

o) ooy

Mir01-02¢c

Itis an even chance that Osama bin Laden is believable as the source of EVD-Dawn-

Sy5

§

The competence of Osama bin Laden as the
source of EVD-Dawn-Mir01-02c¢ is almost
certain

Synthesis Process

The credibility of Osama bin Laden as the
source of EVD-Dawn-Mir01-02c¢ is an eve,

SSe

nheal

Q: What fatrorsaétermine the credibility of the source of EVD-Dawn-Mir01-02¢c?
A:TH
beca| The credibility of Osama bin Laden as the source of EVD-Dawn-Mir01-

02c is an even chance

A
The veracity of Osama bin Laden with

A
The objectivity of Osama bin Laden

=in Y

The observational sensitivity of Osama

g respect to the information provided in g with respect to the information bin Laden with respect to the
| EVD-Dawn-Mir01-02c is an even _ provided in EVD-Dawn-Mir01-02c is ~{_information provided in EVD-Dawn-
— chance SS;, almost certain sS, ‘Air01-020 is almost certain SS,
[N

(T
Q:\\lhat ic th, it af O hi

The veracity of Osama bin Laden with
respect to the information provided in

[N\
The veracity of Osama bin Laden with
respect to the information provided in
EVD-Dawn-Mir01-02c is an even
chance

ES;

The objectivity of Osama bin Laden
with respect to the information

\—| EVD-Dawn-Mir01-02¢ is an eve N provided in EVD-Dawn-Mir01-02¢ —Jnformation provided in EVD-Da:
chance Sy1 almost certain Sy2 y_lir01-020 is almost certain

i N\ / !

The observational sensitivity of Osama
bin Laden with respect to the

yA 1

The objectivity of Osama bin Laden
with respect to the information
provided in EVD-Dawn-Mir01-02c is, information provided in EVD-Dawn-

\Mir01-02c is almost certain

almost certain

ES,

The observational sensitivity of Osama
bin Laden with respect to the

N

Figure 20: Hypothesis Analysis through Solution Synthesis

Due to the fact that the reduction and synthesis processes are synchronized, Figure 20

also indicates the correlation between the reduction process and the synthesis process.

Each problem in the tree (cyan rectangle) is associated with a synthesized solution (light

green rectangle). The question/answer pair from a reduction step (round cyan rectangle)

is associated with a synthesis from a synthesis step which synthesizes the sub-solutions to

a solution (sub-solution is a solution of a sub-problem).

* The synthesis of the solutions can be performed through different strategies as indicated by the expert

who teaches the agent.

60

From what we presented above, a reasoning tree in the problem reduction/solution
synthesis paradigm can be seen as consisting of two isomorphic trees: the reduction tree
and the synthesis tree. The reduction tree shows how the top-level problem is reduced to
simpler sub-problems until the elementary solutions are found for the simplest problems.
The synthesis tree shows how the elementary solutions are composed to the solution of
the original problem. Because they are isomorphic to each other, we will provide only the
definitions for a reduction tree. The definitions for a synthesis tree are similar to those for
a reduction tree.

A reduction tree ¢ is formally defined as follows:

Definition 3.6 (Reduction Reasoning Tree): A tree ¢t = (7, 0, is a reduction

reasoning tree — a.k.a. reduction tree - if the following properties are satisfied:
[a] There are three types of reasoning nodes named problem nodes, reduction nodes

and solution nodes. We denote the reasoning nodes as follows:

o 2, is the set of problem nodes in the tree .

o A is the set of reduction nodes in the tree .

e S, is the set of solution nodes in the tree 7.

By definition, 7, = P,U R4, U S, A vertex ve 7, is also called reasoning node or

simply node.

[b] The root is a problem node: Root(t) € P,. It represents the top level problem.

61

[c] The reasoning nodes are connected together by the argument function d,(x) which
is defined using the following functions: 0,» represents the connection from a problem

node to its reduction children nodes, and d,z, represents the connection from a reduction

node to its problem or solution children nodes.

Where:

e O, P, — &d,* indicates that a problem node can be either a leaf of a tree or can

be further reduced to reduction nodes.

o Oua: Bd — [P US,]" indicates that a reduction node can be reduced further to

problem nodes and/or solution nodes.

e J,x)=Afor x € S;: indicates that the solution node is the leaf of the reasoning

tree.m
Notations:
e If there are more than one tree, the superscript (i) is used where 0 <i <n for trees

and their components. For example, a list of n trees are denoted as (” =

(7(0),5(0)) P (7(1)95(1)),___, M — (W("),é‘(”)).

t t t t t t
e A tree ¢ with root r can be notated as #,.

e A tree ¢ with root r and leaves {n;,ny, ...,n3} can be notated as tm1,n2,..n3-

62

e A node x; which is the parent of node x; is denoted as x; = Parent(x,).

Remark: The root of a sub-tree st of a tree ¢ is not necessary a problem node, it can
be any type of node.

A reduction reasoning step consists of a problem, a question/answer pair and one or
several sub-problems, as shown in Table 1. Similarly, a synthesis reasoning step consists
of a set of sub-solutions, a question/answer pair and a solution synthesized from the sub-
solutions. The association between a reduction step and its counterpart synthesis step is a
one-to-one relationship. The reduction and synthesis reasoning steps can partition a tree
into several smaller sub-trees which are as functional as the original tree. For instance,
Figure 20 shows a tree which is by itself a sub-tree of a larger reasoning tree. This sub-
tree contains five reduction reasoning steps and five corresponding synthesis reasoning
steps. The sub-trees are trees themselves. This observation is the foundation of the
operations of the reasoning tree abstraction.

Definition 3.7 (Reduction Reasoning Step): A reduction reasoning step in a

reasoning tree £, is a sub-tree rs = (¥, 0,,) of t, satisfying the following properties:

[a] The root node of the reduction step is a problem node, named the problem node of

the reduction step, and denoted with P,; € 2.

[b] The reduction step must contain only one reduction node, child of the reasoning

step problem node, named the reduction of the reasoning step, and denoted with

Rdrse 2‘4 N Rdrs € 51P(Prs)-

63

[c] The reduction step will contain all the children of the reasoning step reduction

node, named sub-nodes of the reduction step and denoted with SN, i=I,n:
Ora(Rdy)=SN1)rs SNpys .. SNayrs. A sub-node can be a sub-problem node or a
solution node.

[d] There are no other nodes in a reasoning step: ¥={ Py, Rdys, SNy, SNoys, ..
SNeyrs}.m

Example (Reduction Reasoning Step) Figure 21 shows an example of a reduction

reasoning step. Its formalization is:

V.s={Py, Ry, P, P>, P}

5m(x) = {P0—>R0, R0—>P1P2P3, P1—>ﬂ . P2—>ﬂ ,P3—> ﬂ}

Problem P,

v

Reduction Ry

v v v

Sub-Problem P, Sub-Problem P, Sub-Problem P;

Figure 21: Reduction Reasoning Step

Until now, the definitions of the tree in general and reasoning tree in particular have
been presented thoroughly. Next we will present the abstraction of a tree. This will be the
foundation of two types of abstraction that are applied to collaborative problem solving

and to tutoring.

64

According to Giunchiglia and Walsh (1992), the abstraction is “the process of
mapping a representation of a problem, called the “ground” representation, onto a new
representation, called the “abstract” representation” (Giunchiglia and Walsh, 1992). In
this dissertation we focus on the abstraction of the reduction tree. Based on Giunchiglia
definition, we will use the term reduction tree at “ground level” as the initial (concrete)
reduction tree and reduction tree at “abstract level” as the abstracted reduction tree.
Reduction tree is a specific representation of tree (see Definition 3.6). It is possible to
have numerous ways to abstract a reduction tree; each type of abstraction will result in
different abstract reduction tree. We will consider two types of abstractions that are
suitable for our considered representations. Both types share a common definition of
abstraction as presented below.

3.2. Abstraction of a Tree

Definition 3.8 (Partition): A partition of tree ¢, Partition, is a set of sub-trees st of
tree ¢ for which Vx € V,, A! st € Partition, such that x € V,.

Definition 3.9 (Singleton Partition): A singleton partition is a partition that has only
singleton sub-trees.

Definition 3.10 (Root of Partition): A sub-tree st is a root of a partition
Root(Partition,) = st,, if and only if st, € Partition, and Root(t) € V.

Definition 3.11 (Parent Sub-tree): A sub-tree s¢; is a parent sub-tree of sub-tree st,
st; = Parent(st;) if and only if dx € V,;, Root(sty) € d(x).

Definition 3.12 (Tree Abstraction): We define the abstraction of a tree at ground

level t = (¥, 0,) (ground tree) to be the tree at abstract level ¢, = (7, 0.,) (abstract tree),

65

if there is a partition of # Partition, and an abstraction function a such that a: Partition; —
Vt, U {A}. The abstraction function « satisfies the following properties:
[a] The abstraction of the root of the ground tree must be the root of the abstract tree.
For the root sub-tree st, = Root(Partition,), a(st,) = Root(t,).
[b] The parent-child relationships of nodes of the ground tree are preserved in the
abstract tree. If s¢;, st; € Partition, such that s¢, is the parent sub-tree of sz, then
o ifa(st;) #then a(sty) € Ou(a(st;)) or a(st;) = 4
o ifa(st;)) =Athena(st;)) =1
[c] The sibling relations of the nodes of the ground tree are partially preserved in the

abstract tree, i.e., Vv;, v» € P, v; is left sibling of v, if and only if 3st; €

Partition, such that v; = a(st;) and Vst, € Partition, v> = a(stz), st; is left sibling
of st..
[d] Any abstract node is the abstraction of at least one concrete sub-tree. Vx € V,,, st
€ Partition,, a(st) =x. m
Definition 3.13 (Complete Abstraction): An abstraction is called complete
abstraction if and only if all the sub-trees of the ground tree ¢ have abstractions in the
abstract tree #,. Vst € Partition,, a(st) # A.
In the next two sections, we will focus on two different types of abstraction of
reasoning trees that are suitable for two different purposes: collaborative problem solving
and tutoring problem solving strategies. We will introduce the concepts of the two

abstractions and then will provide the detailed definitions for both of them.

66

3.3. Abstraction of Reasoning Trees for Collaborative Problem Solving

As mentioned above, a very large reasoning tree is difficult to view and understand.

An abstraction of complex reasoning tree that partitions the complex tree into meaningful

and manageable sub-trees is desirable. Once the tree is partitioned into smaller but

manageable sub-trees, the browsing of the concrete tree now is facilitated by its abstract

tree. Figure 22 shows how a complex tree can be partitioned, abstracted and presented as

table of contents.

|Assess whether Al Qaeda has nuclear weapons| 4—

- Deterrence as a reason

- Self defense as a reason
[# Spectacular operations as a reason

------ Establishment of a power base as a reason

el

- Ideology as a reason

&)

- Desire to obtain nuclear weapons

#

Ability to obtain nuclear weapons
- Credible Al Qaeda claims to have nuclear weapons

e

-Belief of other countries that Al Qaeda has nuclear weapons

=)

-~ Possession of non-nuclear WD

o

- Reasons why Al Qaeda has not used nuclear weapons, assuminfli = 41°

oq 0
o0 9

affe v2e o

EEEEEY ; ‘
e o ff ¢

01 RO 40 (il
i fmo o m
i |]

Figure 22: Partition of a Reduction Tree

In order to abstract a reasoning tree for collaborative problem solving, the tree must

be partitioned into several distinct sub-trees. Each sub-tree is abstracted into an abstract

node in abstract reasoning tree. Consider the example in Figure 23, where a fragment of a

concrete reasoning tree is partitioned into five sub-trees:

o st;” where Vi, = {P,"” R, P;” Rd;”}, Root(Vi,”) = P,

o s, where Vi, = {P,’”}, Root (V™) = Py,

67

o st;” where Vi3 = {P,/” Rd;” S,”}, Root(Vyis”) = P,

o st,” where Vi = {P5s” Rd,” S;”}, Root(Vys”) = Ps”, and

o st5” where Vys” = {P4”,Rd5"”, S5}, Root(Vys™) = Pg”.

These five partitions are abstracted into five abstract nodes P,, P,"”, Ps P,/” and

Ps? respectively. The abstract nodes form an abstract tree which represents an

abstraction of the concrete reduction tree.

Ground Level Abstract Level

P

=Z__
!
0’
/
Vi
rd
_-
— e o mE Em Em o e =
S~
~
~
\\A
\
\
\
_\
~=p
\
\
\

\
% ! // // Ve
| ’ .
] / -
{ ! / ’ P
| ! / // /’/
\ I ; -
i 1 /s _-
I\ ! -
/-
I\ ! e
\ / e
\\~\ _ ”’,’ //
- %
\\\\\\ 7
______________ <z
-

Figure 23: Abstraction of a Reduction Tree for Collaborative Problem Solving

From the example presented above, we can define the abstraction of a reasoning tree

for collaborative problem solving based on the common Definition 3.12. This is a special
68

type of abstraction where concrete sub-trees are abstracted into abstract nodes of the
abstract tree. The sub-trees are defined to have the problem nodes as their roots. The
definition of this abstraction is formally presented as follows:

Definition 3.14 (Tree Abstraction for Collaboration Problem Solving): We define

the abstraction for collaborative problem solving of a reasoning tree at ground level ¢ =

@, 0, (ground tree) to be the tree at abstract level t, = @, 0.) (abstract tree) is the

abstraction for collaboration problem solving, if the Partition, will contain sub-trees

having problem nodes as roots (V' st € Partition, Root(st) € 2,) and the abstraction

function is a bijective complete abstraction function a. Partition; — V.
3.4. Abstraction of Reasoning Trees for Tutoring

The abstraction of a reasoning tree for tutoring purpose is different from that for
collaborative problem solving presented above. The purpose of this type of abstraction is
to present the problem solving strategies that are used to reduce the top problem to the
simplest problems in the reasoning tree.

The abstraction of a reasoning tree results in an abstract reasoning tree. The abstract
reasoning tree is simpler to view quantitatively and more organized semantically. Each
node of the abstract reasoning tree is the abstraction of a set of related nodes of the
concrete reasoning tree. Figure 24 shows a concrete reasoning tree on the left panel and
the corresponding abstract reasoning tree on the right panel. The former has more than
1700 nodes and the latter has only over 130 nodes which is a 92.5% reduction in number
of nodes. Furthermore, the content of an abstract node — a node of the abstract reasoning

tree — is problem solving strategy oriented. For example, the yellow node in the abstract

69

reasoning tree describes the strategy “Reduce the hypothesis to simpler hypothesis”™

which is essentially the principle of the problem reduction paradigm. This yellow node is

the abstraction of a set of 54 nodes bordered by the broken blue line. The set of concrete

reasoning nodes include different types of reasoning nodes (such as problem nodes,

reduction nodes) and different hypotheses (such as “Assess whether Al Qaeda has reason

to use the nuclear weapon” and the opposite one “Assess whether Al Qaeda has reason

not to use nuclear weapons, assuming that it has them.”) The hypotheses are further

reduced to simpler ones, according to the content of the abstract yellow node of the

abstract reasoning tree.

Figure 24: Concrete Reasoning Tree and Its Abstraction for Tutoring

70

g 2 0
L : i i s 1 O
O .0 9 ¢ ‘ L_U
i P U i i 3[P i IS Tlll]] e freeeneees (] -
9 i %0 1 |~ O e - o 09
0 a gm 4 1 178 ! i 11 G [
0 I I ”U[U]‘ S0 oy 0 o i u (A @)
l | [N I s B q EINNIEE i
N S N Y U [N A R
' gt opornap Fo ﬂl a9 [“JJ['H”HF'[I”U“]” L] . "
° | oné]u]wo“w, ! e e a0 0 0
| 0 u] U [[l 00 uu 0 umumuuuuu A) :'E]]HHH ﬂ” ﬂj UE'U?E[]I]UjIJ m oo l .
0 0 00 Oﬁf"'O]J \\°°\°OJ°«’>\‘ 0 0 Ufﬂvo\] 0 0 00090 00 00 D]] o]
TR TR T uuumuuuuummﬁ’u """ Toge PeeT 100E 0 0 1 09 DO 0w 090200001) -
oot 0] LDOUIOHO O]OF]WOO]O“O O 0 0 \IIJ[] 0 [][]O 0 0 0 0 0 ” q" ﬂ 00 0 0 \0 D D
1.5 Feepe s | 18 Abstract]
0] 0 WI9 o CNmmDYMUIAS 090909 0 muu;]mmm Ppgovp o) dpwmeoei 0o m
01287 E100 i B monchso [0 | 9f 9] 9] 12 gneor 2k o | Reasoning \O) ?@:1?,\
[u]uu[mu]]]]]H i 1 0]]]]]u]]]m]u]]m]m]]u] N O O O 0000 mpummmEo 8 wn e 9))
oo <90 ‘FJ [i e 999000000 orapomN 7 o 71705 Tree UUJUHUHMUM
D Q0000009 0999 00 00 (mmRm B Akl L -
skl Lo e Concrete [l2kcionepoieroio n miy [Abstiact Reduction Nodes =20 |J000000 0
-gef'l:?twa N;def 504101 g uummmmmmmmmnmummmm I W | - Abstract Solution Nodes = 46 0]
= EEUEl) LD =0 Reasonlng 11 [II\”II g [PI L] - Abstract Synthesis Nodes = 29
- Synthesis Nodes = 401 Total Nodes = 136
- Total Nodes = 1758 Tree () 10 WomD Wi i o ~ —x 2

3.4.1. Abstract Problem

The abstract reasoning tree organizes the problem solving strategies in such a way
that the tree itself becomes an explicit elucidation of the problem solving methods based
on the problem-reduction/solution-synthesis paradigm. An abstract problem node of the
abstract reasoning tree represents an abstract problem. The root of the abstract tree is an
abstract problem node which specifies the most general problem to solve such as “Assess
a hypothesis”. The most general problem is also reduced further using the problem
reduction paradigm. The reductions in the abstract reasoning tree correspond to those of
the concrete reasoning tree. For instance, the abstract problem “Assess a hypothesis”™
which corresponds to the first problem (root) of the reasoning tree “Assess whether Al
Qaeda has nuclear weapons®, is reduced to the more specific problem “Assess a
hypothesis through evidence analysis which corresponds to the problem “Assess whether
Al Qaeda has desire to obtain nuclear weapons* in the concrete reasoning tree.

Let us consider the two problems in the reasoning tree:

e “Assess to what extent the piece of evidence EVD-Dawn-MirOI1-0la favors the
hypothesis that Al Qaeda considers self defense as a reason to obtain nuclear
weapons” and

o “Assess to what extent the piece of evidence EVD-Glazov0l-Olc favors the
hypothesis that Al Qaeda considers the use of nuclear weapons in a spectacular
operation as a reason to obtain nuclear weapons”.

The two problems use two different pieces of evidences to assess two different

hypotheses. The former uses the piece of evidence “EVD-Dawn-Mir0I-0la” to judge its

71

support of the hypothesis “A/ Qaeda considers self defense as a reason to obtain nuclear
weapons”. The latter assesses how supportive the piece of evidence “EVD-Glazov0i-
0lc” is for the hypothesis “Al Qaeda considers the use of nuclear weapons in a
spectacular operation as a reason to obtain nuclear weapons”. The abstract problem of
these two problems can be defined as “Assess to what extend the piece of evidence favors
the hypothesis”, as illustrated in Figure 25. In essence, an abstract problem is the
abstraction of all the concrete problems that are solved by using the same abstract
problem solving strategy. There is no limit to the number of concrete problems
corresponding to a given abstract problem. The abstract problem therefore can reduce a

large number of problems in the reasoning tree.

Azsess a hypathesis.

=]
Succesively reduce the task of asseszing the hypothesis to tagks of azsessing simpler and simpler
hypothesis, untl these tasks either hawve known zolutions or need ta be solved thraugh evidence analysis

=

‘ Azsess a hypothesis through evidence analysis. |

=

Consider the evidence that favors it and the evidence that rejects it

B Abstract Level: 1

Abstract problem

Azzess the evidence that favors the hypothesis. /|

=] ! |
[Find pieces of evidence that may have relevancy for assesing tle hypothesis.]
= !
Aszess to what extent the piece of evidence favors the hypothesis
= !
[The informatﬁvided by the piece of evidej\d the extent to which it iz believable. }
Fl]] T =
Azzess to what extent the piece of Assess bo what extent the piece of
evidence EVD-Reuters-01-01c evidence EVD-FP-Glazov(1-01c
farvors the hypothesis that &1 Daeda favors the hypothesis that AlQaeda |
conziders self defense as a reason Omm_“"e use of nuclear 4
to obtain nuclear weapons. weapons in spectacular operations
as areason to obtain nuclear
WEADONS.

Two concrete problems

Figure 25: Abstract Problem

72

3.4.2. Abstract Reduction
The abstract reduction focuses on the problem solving strategies. Each abstract
reduction is a reasoning strategy that reduces an abstract problem to its abstract sub-
problems. The concrete components of an abstract reduction are the reductions that use
the same problem solving strategy.
Let us consider the abstract problem
e “Assess a hypothesis” and its abstract sub-problem
o “Assess a hypothesis through evidence analysis”™
which correspond to the top problem of a concrete reasoning tree
o “Assess whether Al Qaeda has nuclear weapons” and its sub-problems
o “Assess whether Al Qaeda considers deterrence as a reason to obtain nuclear
weapons.”
o “Assess whether Al Qaeda considers self-defense as a reason to obtain
nuclear weapons.”
o “Assess whether Al Qaeda considers the use of nuclear weapons in
spectacular operations as a reason to obtain nuclear weapons.”
o Andsoon...
Between the top problem and the sub-problems listed above, there is a sub-tree which

successively reduces the first problem to different sub-problems, as indicated in Figure

26.

73

B

Agsess whether Al Daeda has nuclear weapons.

=l

A:Charactenistics associated with possession of nuclear weapons and curent evidence that is has
nuclear weapons.

Q:what factars should | consider to determine whether Al Daeda has nuclear weapons? ‘

| : e

Assess whether Al Baeda has nuclear weapons based on the Assess whether there is curent evidence that &1 Baeda has nuclear
characteristics associated with the possession of nuclsar weapons, WESpONS,

a

Q:What are the characteristics associated with possession of nuclear weapons?
AReasons, desire, and ability to obtain nuclear weapons.

=1

Agzess whether Al Qaeds has
reasons to obtain nuclear
weapons,

Asgsess whether Al Qaeds has desire
to obtain nuclear weapons.

Assess whether A Qaeda has the
ahbility to abtain nuclear weapons

a :

Q:Which are the reasons for 4 Daeda to obtain nuclear weapons?
A:Deterrence, self defense, spectacular attack, establishment of power base. ideclogy.

Assess whether &1 D aeda Assess whether Al Daeds Agsess whether Al Daeda considers Azsess whether Al Daeds corsiders Azsess whether Al Qaeds
considers detenence as a considers self defense as a the use of nuclear weapons in the establishment of a power base considers an ideclogy as a
reason to obtain nuclear teason to obtain nuclear spectacular operations s a reason as areason to ohtain nuclear teason to obtain nuclear
WEaADONS. WESPONS, to obtain nuclear weapons. Weapons, Weapons.

Figure 26: Top Level of a Concrete Reasoning Tree

In other words, there is a sub-tree that plays the role of a reduction strategy that
makes it possible for the first problem to be reduced to simpler sub-problems. That sub-
tree in the concrete reasoning tree can be abstracted to an abstract reduction “Reduce the
hypothesis to simpler hypothesis.”

A reduction is always associated with a problem and its direct or indirect sub-
problems, because it indicates how a problem is reduced to several sub-problems. An
abstract reduction therefore can abstract a large sub-tree of a concrete reasoning tree
whose root is the problem and leaves are sub-problems that are mentioned above. For
instance, the yellow abstract reduction in the right panel of Figure 27, which states
“Reduce the hypothesis to simpler hypotheses” abstracts several yellow sub-trees in the

left panel.

74

The abstract reasoning tree represents an abstract way to solve a problem in the

problem reduction paradigm.

Complete Reasoning Tree Abstract Level #1 ﬂ
| EL x |
Assess hypothesis. |
B '
O (nmm hepothesis to sinphe: hypotheses.] ‘
0) — _
H D :| =3 hypothesis thiough evidence analysis | Azzazs hppotk
: = C —
0) () -)
T C l'.f ence that favors it and the evidence that disfavors it
” |:| I:I I] R U L hypothesis. Azzess the evidence that disfavors the hypc |
O [] H ﬂ bt Favoring the hypothesis. |

NN BRI

Concrete
Reductions lf'\l A A n
in yellong W Lo ” ” W Il

¢

[mmst mim =i] [] <] <

Figure 27: Abstract Reduction and Its Concretions

3.4.3. Abstract Solution

In the problem reduction paradigm, a problem is reduced to simpler sub-problems
until the sub-problems have known solutions. Then the synthesis process starts to
combine the solutions of the sub-problems to get the synthesized solution of the initial
problem. Due to the synthesis process, each problem in the reasoning tree has an
associated solution, either a direct solution or a synthesized one. Figure 20 shows a
synthesis process whose color is cyan which starts from the solutions at the bottom such
as “The objectivity of Osama Bin Laden with respect to the information provided in

Dawn-Mir01-02c is almost certain” and climbs up the tree to synthesize the solution of

75

the original problem “The credibility of Osama Bin Laden with respect to the information
provided in Dawn-Mir01-02c is an even chance.”

The abstract solution is the abstraction of the solutions of all the problems that are
solved using the same reasoning strategy. The abstract solution is associated with an
abstract problem. Thus the abstract solution of an abstract problem is in fact the
abstraction of all the solutions of the concrete problems of that abstract problem. Figure
28 shows several abstract problems and their abstract solutions (represented as cyan
sticky notes attached to the abstract problems). For example, the abstract problem:

e Assess to what extent the piece of evidence favors the hypothesis.

Has the following abstract solution:

o Assessed support of hypothesis from the piece of evidence.

| Abstract Solution

LAssess to what extent the piece of evidence favaors the hppothesis.

Aggeszed support of hypothesis from the piece of evidence.

Abstract Symme infomd)

If either the support of the hypothesis from the information in the piece of evidence is

lows or the believability of the information is low, then the overall support provided by
Assess_ ta what extent the Eiec_:e aof evid the piece of evidence iz low. Therefore we estimate the overall support of the hypathesis from plece of evidenceNelievable_ ‘
agsuming that we belisve the information the piece of evidence as the minimum between the support of the hypothesis from the N\

evidence. information in the piece of evidence and the believability of the inf

Azzeszed support of the hypoth :
piece of evidence. KJ:] d believability of the nf tion provided by the piece of evidence. yl
ail

Lo

Figure 28: Abstract Solutions and Abstract Synthesis

3.4.4. Abstract Synthesis
In the problem reduction process, the abstract reductions are the bridges connecting
abstract problems to their abstract sub-problems. Similarly, in the solution synthesis
process, the abstract syntheses connect the abstract sub-solutions to their abstract

synthesized solution. An abstract synthesis abstracts the concrete syntheses from the

76

concrete reasoning tree. While an abstract solution is associated with an abstract problem,
the abstract synthesis is associated with an abstract reduction. Thus the abstract solutions
and abstract syntheses depend on the corresponding abstract problems and abstract
reductions.

The abstract syntheses provide the guidance of how to synthesize the abstract
solutions. There are multiple ways to synthesize the abstract solutions. It is up to the
subject matter expert who teaches the agent to specify what strategy to be applied. Figure
28 illustrates a way to synthesize an abstract solution from abstract sub-solutions.

3.4.5. Abstract Reasoning Tree

The abstraction of a concrete reasoning tree is essentially the abstractions of its
problem nodes, reduction nodes, solution nodes and synthesis nodes. The abstractions of
these reasoning tree components are abstract problem nodes, abstract reduction nodes,
abstract solution nodes and abstract synthesis nodes respectively. The abstract tree shows
the problem solving strategies that are repeatedly used in the concrete reasoning tree.
These strategies are the contents of the abstract reduction nodes.

Each abstraction corresponds to one or several concretions. These concretions are the
components of the concrete reasoning tree. The many-to-one relationship from the
concrete reasoning tree components to their abstract tree components makes the resulting
abstract reasoning tree much smaller. The abstract reasoning tree is a semantic
representation of the different types of reasoning strategies used in the concrete reasoning

tree. Figure 24 shows a concrete reasoning tree and the corresponding abstract tree. The

77

simplicity of the abstract tree in terms of the number of nodes can be seen in the
comparison between the numbers of nodes of the two trees.

Qualitatively, the abstract reasoning tree is a hierarchical organization of the problem
solving strategies to solve the problems. For instance, an abstract problem “Assess to
what extent the piece of evidence favors the hypothesis” is solved by reducing it to
simpler abstract problems by using the reasoning:

e Consider the relevance and the believability of the piece of evidence.

That strategy leads to simpler abstract problems:

e Assess to what extent the piece of evidence favors the hypothesis, assuming that

the piece of evidence is believable.

o Assess the believability of the piece of evidence.

Each abstract reduction in the abstract tree provides a guideline for how to solve a
problem. In other words, the whole abstract tree is a large recipe of problem solving
strategies. As in the concrete reasoning tree, each abstract reduction step is associated
with an abstract synthesis step. An abstract synthesis step contains several abstract sub-
solutions, an abstract synthesis and a synthesized abstract solution. The abstract synthesis
indicates how to compose abstract sub-solutions into an abstract solution. To illustrate an
abstract synthesis, let us consider the solutions of the two simpler abstract problems
above. They are

o Assessed support of the hypothesis from the information in the piece of evidence.

o Assessed believability of the information provided by the piece of evidence.

The abstract synthesis is

78

o [f either the support of the hypothesis from the information in the piece of
evidence is low or the believability of the information is low, then the overall
support provided by the piece of evidence is low. Therefore we estimate the
overall support of the hypothesis from the piece of evidence as the minimum
between the support of the hypothesis from the information in the piece of
evidence and the believability of the information.

And that allows us to obtain the assessed support of hypothesis from the piece of

evidence.

Our proposed abstraction process of the reduction tree begins by grouping the similar
problem nodes in a concrete reasoning tree into an abstract problem node. Consider the
sub-tree in Figure 19 and the sub-tree in Figure 29. They have the same structures and
similar problem nodes, reduction nodes and solution nodes. Both sub-trees can be

abstracted into the abstract reduction reasoning tree as shown in Figure 30.

79

P7

Assess the extent to which one can believe Treverton G as the
source of EVD-FP-Glazov01-01c

p
Q: What factors determine the extent to which a source of piece of evidence can be trust:

A: The competency and the credibility of the source
L

8 Assess the credibility of Treverton G as Po

the source of EVD-FP-Glazov01-01c

Assess the competency of Treverton
the source of EVD-FP-Glazov01-01c

Q: What factors determine the credibility of the source of EVD-FP-Glazov01-01c! Rd

A: The veracity, objectivity, and observational sensitivity of Treverton G because
EVD-FP-Glazov01-01c is testimonial evidence based upon direct observation.

(Q: What is the veracity of Treverton\
G with respect to the information
provided in EVD-FP-Glazov01-01c?

\A: an even chance.

.

reverton G with respect to the
information provided in EVD-FP-
Glazov01-01c?
A: almost certain.

The veracity of Treverton G with K
respect to the information provided in
EVD-FP-Glazov01-01c is an even
chance

&

>

——T

& \A: almost certain. /

. P * P - o P
Assess the veracity of Treverton G }ssess the obijectivity of Treverton ! /&ssess the observational sensitivit: 1
with respect to the information —T with respect to the information of Treverton G with respect to the
provided in EVD-FP-Glazov01-01¢c provided in EVD-FP-Glazov01-01c information provided in EVD-FP-

Glazov01-01c

T — T

! N\ | /7

L / Rd : What is the objectivity of Rd Rd

Q: What is the observational
sensitivity of Treverton G with
respect to the information provided
in EVD-FP-Glazov01-01¢c?

)ne objectivity of Treverton G with Ss
respect to the information provided in
EVD-FP-Glazov01-01c is almost

certain

T
he observational sensitivity of
Treverton G with respect to the
information provided in EVD-FP-
Glazov01-01c is almost certain

C

Figure 29: Reduction Sub-tree

Assess the believability of
the source of the piece of

avidence

the believability of the source of the piece of evidence depends on source’s competency, veracity, objectivity and

observational sensitivity

Rd,

Assess the competency of thd
source with respect to the
information provided in the
piece of evidence

Ssess the veracity of the
source with respect to the
information provided in the
piece of evidence

Assess the objectivity of the
source with respect to the
information provided in the
piece of evidence

Assess the observational
sensitivity of the source with
respect to the information
provided in the piece of
evidence

Assess the veracity of the
source with respect to the
information provided in the

niara nf avidanca

The obtained veracity of the
source of the piece of evidence

Assess the obijectivity of the
source with respect to the
information provided in the
piece of evidence

Assess the observatioi
sensitivity of the source wi
respect to the information
provided in the piece of

evidence

| m | ;
Y !)
: S4 H S, H
The obtained objectivity of th The obtained observatio

source of the piece of evidence

sensitivity of the source with
respect to the information

provided in the piece of
evidence

Figure 30: Abstract Reduction Sub-tree

80

Figure 31 displays the abstraction process of the two sub-trees. We will discuss first

how the problem nodes are abstracted. The problem node PI(O) “Assess the extent to which

one can believe Osama Bin Laden as the source of EVD-Dawn-MirQ1-02¢” and Pz(o)

“Assess the extent to which one can believe Treverton G as the source of EVD-FP-

Glazov01-01c” of the sub-trees at ground level (superscripted as (0)) are abstracted into

abstract problem node Pl(l) “Assess the believability of the source of the piece of

evidence” of the sub-tree at abstract level (superscripted as (1)).

Figure 31: Abstraction of Reduction Trees for Tutoring

Similarly, the abstraction of the solution nodes at one abstract level to abstract
solution nodes at the next higher level is called solution abstraction. Figure 30 shows the
abstraction of solution node “The observational sensitivity of Osama bin Laden with

respect to the information provided in EVD-Dawn-MirQ1-02c is almost certain” and the

81

solution node “The observational sensitivity of Treverton G with respect to the
information provided in EVD-FP-Glazov01-0lc is almost certain” to abstract solution
node “The obtained observational sensitivity of the source with respect to the information
provided in the piece of evidence.”

The abstraction of the reductions is more complex. In this case, the sub-trees from
reasoning tree at ground level are abstracted into an abstract reduction node at the
abstract level. As seen in Figure 31, the two sub-trees rooted in reduction node Rd,” and
Rds"” and bordered by broken blue lines are abstracted into the abstract reduction node
Rd,"”. The reduction abstraction involves the abstraction of sub-trees.

To be able to define an abstraction for tutoring, we need to define the partition of
reduction tree for tutoring purpose.

Definition 3.15 (Partition of Reduction Tree for Tutoring): A partition of a

reduction tree ¢ = (¥, 0,) Partition, = Py, U Rdy, U Sy where Py, is a set of problem sub-
trees Py, = {st; = ({Pe P}, &), i=1,n}, Rdy is a set of reduction sub-trees Rdy; = {st; |
Root(st) € &4, j=1,m}, and Sy is a set of solution sub-trees Sy, = {stx = ({Se S}, O),

k=1,1}. Tt has the following properties:
[a] There is only one problem sub-tree that contains the root of the ground tree. 3! st
€ Py such that Root(t) € V.
[b] Each problem sub-tree except the root sub-tree has as parent a reduction sub-tree.

Vst € Py, st ¢ Root(Partition,), Parent(st) € Rd.

82

[c] Each reduction sub-tree has as parent a problem sub-tree. Vst € Rdy, Parent(st) €
P,
[d] Each solution sub-tree has as parent a reduction sub-tree. Vst € S, Parent(st) €
Rd.m
From Definition 3.15, a definition of the abstraction for tutoring is formed based on
the abstraction of different types of sub-trees as its basic components. The definition is an
extension of the common abstraction function defined in Definition 3.12. This abstraction
governs how a tree is abstracted for tutoring purposes.

Definition 3.16 (Abstraction for Tutoring): The abstraction of a reasoning tree at

ground level t = (7, 0,) (ground tree) to the reasoning tree at abstract level t, = @, O1)

(abstract tree) is named abstraction for tutoring, if there is a partition for tutoring

Partition; = Py U Rd,, U S and an abstraction function o, Partition; — Vt, U {J} such

o, (st), Vste P,
that o4(st) = { &y, (st), Vst € Rd, where
o, (st), Vste S,

* ap: Py — P, is a surjective function, i.e, VP, € P, st € Py such that ap(st) =

Py, opis called problem node abstraction function.

® Ory Rdy — R, is a surjective function, i.e, VRd,, € &4, 7 st € Rdy such that

ORa(st) = Rd,,. orqis called reduction node abstraction function.

o o5 Sy — S, 1s a surjective function, i.e, VS, € S, st € Sy such that og(st) =

Si. 0s1s called solution node abstraction function.m

83

Remark:

[a] A problem sub-tree cannot have more than one abstraction. Vp;, p;> € P, p1 # p2,

v’ (p) N o' (py) = @

[b] A reduction sub-tree cannot have more than one abstraction. Vrd;, rd; € Ry, rd;
£ rds, Opa (rd) O org (rd2) = &

[c] A solution sub-tree cannot have more than one abstraction. Vs;, s; € Si, 57 # 52,
OKS_I(S1) M Ots‘l(s;) =

The problem node abstraction functions corresponding to the abstractions in Figure

31 are:

o st pnpry, st ppripry} —2— P

{st” ypaypayy, s ps sy} —2—> P

{Sl‘m)z[mum}], St(o)t[PIO\{PIO}]} — 5 p,@

{St(o)t[P5\{P5}], Sl‘(o)z[Pm{Pu}]} —z 5 pY

{: Sl‘(o)z[%\{%}], st qPI2PIZ) ——> ps
The reduction node abstraction functions corresponding to the abstractions in Figure

31 are:
o st ranmazy, st rasirary} —2<—> Rd,”
° {Sl‘m) t[Rd3|{Rd3}]> st” [[Rdg‘{RdX}]} LT TREEN Rdg(])
o { St(O)t[Rd4\{Rd4}], st(o),[Rdg‘ (RA9}]) —% SR d;?

L { st t[RA5|{Rd5}]> st t[Rd]O\{Rd]O}]} %Rdf])
84

The solution node abstraction functions corresponding to the abstractions in Figure 31

are:
i { St(o)t[S]\{S]}], Sl‘(o)z[s4\{s4}]} S SI(])
o {5t sagsay, st yssigssy} —=—> S)Y

o {5t yssssyy, st soyspt —=2—> S5

Lemma 3.2 (Lower Bound of Abstraction for Tutoring): The lower bound of the
abstraction of a reduction tree is the reduction tree itself.

Proof: An abstraction o(st): Partition, — V,, reduces a sub-tree of a reduction tree
into a node of an abstract reduction tree. If Partition, is a singleton partition then the
abstraction o4(st) does not reduce the number of nodes at all. Furthermore, according to
Definition 3.12 b, the parent-child relationships and sibling relations of the reduction tree
are preserved. Therefore for a singleton partition Partition,, the abstract reduction tree is
as same as the reduction tree.m

Lemma 3.3 (Upper Bound of Abstraction for Tutoring): The upper bound of
abstraction of a non-singleton reduction tree is an abstract reduction tree which has two
nodes: an abstract problem node as root and an abstract reduction node as leaf.

Proof: Because Partition, is, in general, a set of sub-trees (not always singleton sub-
tree), the abstraction tends to makes the number of nodes of the abstract reduction tree
smaller than that of the concrete reduction tree. The smallest number of nodes that a tree
can have is one. Assume that an upper bound of the abstraction is a single node tree. That

implies the domain Partition, of the abstraction ¢ is a partition that has only one sub-tree

85

which is the reduction tree itself and the co-domain 2, has only one abstract problem

node because it is the abstraction of the root of the reduction tree. Based on the Definition

3.15 and Definition 3.16, &; = {ap: Py — Pt and Py, = {st; = ({Pe P,}, ©), i=1,n} and
reduction tree contains the reduction nodes {Rd € 2,} as well which contradicts the

assumption.

Let us assume we have an abstraction function o (st): Partition, — V,, defined as
follows:

({5t iprootiroons}) = Pr”’ where Pr'” is root of the abstract reduction tree.

d(l)

aRd({St(O)jt[Rd]‘{V[j}] | i=1n, j=1,m}) =R where {St(o)jt[Rd]‘{V[j}] | i=1n, j=1,m} is the

rest of the reduction tree from root and Rd”

is the only abstract reduction node of the
abstract tree. Such abstraction yields an abstract reduction tree that has only two abstract
nodes: one is the abstract problem node as root and the other is the abstract reduction
node. This abstract reduction tree satisfies the properties of Definition 3.15 and
Definition 3.16. Therefore the upper bound of an abstraction for tutoring of a non-
singleton reduction tree is a two node abstract tree.m

Remark: Any reduction tree can have different levels of abstractions for tutoring.
Their complexity will be in between the upper bound and the lower bound of the

abstraction. In other words, there are different ways to tutor the domain knowledge based

on an abstract reasoning tree of that domain.

86

3.4.6 Abstraction Mapping

Once the abstraction of a reasoning tree is built within the stated constraints, the
abstraction operations are learned by generalization to become abstraction mapping. The
generalization of the abstraction operations is a two-step process. The first step is the
generalization of the concrete components and of the abstract component of an
abstraction function (top two blocks of Figure 32). The second step is the construction of
the abstraction mapping for the abstraction function based on the generalizations (bottom
two blocks of Figure 32).

The generalization of the concrete components of an abstraction function is a
complex process. In essence, generalization is a process that transforms an expression
into a more general expression. It may be done by applying generalization rules, such as
replacing a constant with a variable, a concept with more general one, a number with an
interval, and so on (Tecuci, 1998). A problem node is generalized to a problem class, a
reduction node is generalized to a reduction rule and a solution node is generalized to a
solution class. For example, in Figure 19, the problem node P,”

e “Assess the extent to which one can believe Osama Bin Laden as the source of

EVD-Dawn-Mir01-02c”
is generalized to the problem class

o ‘“Assess the extent to which one can believe ?01 as the source of 702"

by replacing the constant Osama Bin Laden with the variable ?01 and the constant EVD-

Dawn-Mir01-02¢ with the variable 702.

The solution node S3(0)

87

e “The observational sensitivity of Osama bin Laden with respect to the information
provided in EVD-Dawn-Mir(Q1-02c is almost certain”
is generalized to the solution class
e “The observational sensitivity of ?O1 with respect to the information provided in
202 is ?811.”
The reduction node Rd,"”
o “Q: What factors determine the extent to which a source of piece of evidence can
be trusted? A: The competency and the credibility of the source”
is generalized to the reduction rule
e “If assess the extent to which one can believe ?O1 as the source of ?02 then
assess the competence of ?0O1 as the source of 702 and assess the credibility of
201 as the source of 702.”

Similarly, the generalization of an abstract problem node is an abstract problem class,
the generalization of an abstract reduction node is an abstract reduction class, and the
generalization of an abstract solution node is an abstract solution class. For example, the
abstract problem node P, is generalized to the abstract problem class “Assess the
believability of the source of the piece of evidence.”

The second step of the generalization of the abstraction operations consists in creating
an abstraction mapping that links the concrete classes of the concrete components to the
abstract classes of the abstract components. For example, one instance of the abstraction
mapping can be stated as follows: “If a concrete class is Assess the extent to which one

can believe ?01 as the source of 702 where ?01 is the source and 7?02 is the piece of

88

evidence then that class can be mapped to an abstract class Assess the believability of the
source of the piece of evidence.”

As recalled from the Definition 3.16, the domain of the abstraction function for
tutoring is the partitions of the reasoning tree. For the problem node abstraction function
and the solution node abstraction function, the domain is the single partitions as defined
in Definition 3.9. The single partitions contain the single sub-trees, so there is no concept
of root node and non-root node in single sub-trees. However, the domains of reduction
node abstraction functions are not singleton partitions. As a matter of fact, the role of root
nodes in the sub-trees is important in the abstraction. It guides how a reduction occurs.
Therefore, when we build the abstraction mapping, the root nodes of the reduction sub-
trees have to be taken into account.

Figure 32 presents the relation between the reduction tree and its abstract reduction
tree. In this figure, the concrete reduction tree is abstracted to the abstract reduction tree.
The reduction tree is the instantiation of the problem classes, reduction rules, and solution
classes from the knowledge base. The abstract reduction tree generates from abstract
problem classes, abstract reduction classes and abstract solution classes. The abstract
classes are, in turn, generated from the problem classes, solution classes and reduction
rules of the knowledge base of the existing reduction tree via the abstraction mapping.
The abstraction mapping is saved and restored to generate an abstract reduction tree
given a concrete reduction tree. The abstraction mapping, in fact, governs how a

reduction tree should be abstracted.

&9

abstracted to

Reduction Tree » Abstract Reduction Tree
A Al
1! !
[o
Vo "
generalization-of | I Instantiation-of generates | ! generated-from
1 [} |
D o
Vo i
- !
1 I 1 1
1 | 1!
' 4 1 4
Problem Classes Abstract Problem Classes
Reduction Rules | ____ a p_s_t_rg_qt_e_q_t_g__’ Abstract Reduction Classes
Solution Classes (base on at.)str)actlon Abstract Solution Classes
mapping

Figure 32: The Relation between Reduction Tree and Its Abstract Reduction Tree

Definition 3.17 (Reduction Abstraction Mapping): Given a set of problem classes

P, at ground level, a set of solution classes S¢, at ground level, and a set of reduction

rules A&, at ground level, the abstraction mapping A is defined as follows:

(o) ,oe?e,
(o) ,oese
w(0) o€ 2R,

w(0) o€ =R

P
N

A

A
Alo) =

(0)=1 1

A

Where:

o Ap(c): PCr— #PC where 4P, is a set of abstract problem classes at abstract

level, indicates that for each problem class selected from the ground level there is

a corresponding abstract problem class at the abstract level. A,(0) is named

90

problem abstraction mapping which is surjective (similar to the problem node

abstraction function ap).

o As(0): SCr— #SC, where 4S5, is a set of abstract solution classes at abstract

level, indicates that for each solution class selected from the ground level there is
a corresponding abstract solution class at the abstract level. As(o) is named
solution abstraction mapping which is surjective (similar to the solution node
abstraction function as).

o Api(0): RAR, — #RA(C, where #R4A(4 is a set of abstract reduction classes at

abstract level, indicates that for each reduction rule that is not the root of its sub-
tree selected from the ground level there is at least a corresponding abstract
reduction class at the abstract level. Agys(0) is named reduction abstraction
mapping which is surjective (similar to the reduction node abstraction function
OCRd).

o Api(0): 2RAR, — ARAC, where »RAR, C RAR,, »RAR, is a set of root

reduction class and #Z4(, is a set of abstract reduction classes at abstract level,

indicates that for each reduction rule that is root of its sub-tree selected from the
ground level there is a corresponding abstract reduction class at the abstract level.
Ayra(0) 1s named root reduction abstraction rule which is surjective (similar to
the reduction node abstraction function o).

The abstraction mapping must satisfy the following properties:

91

[a] A problem class cannot have more than one abstraction. VPC € 2@, 3! APC €

AP\ such that Ap(PC) = APC. That makes the problem abstraction mapping a

function.
[b] A reduction rule that is root of its sub-tree cannot have more than one abstraction.

VrRdR € »RAR), ! ARAC € #RA(E\ such that A,ry(rRdR) = ARAC. That makes

the root reduction abstraction mapping a function.

[c] A solution class cannot have more than one abstraction. VSC € S¢@,, 3! ASC €

AS(C such that Ag(SC) = ASC. That makes the solution abstraction map a

function.m
Theorem 3.4 (Existence and Uniqueness of Abstract Reduction Tree): Given a set

of problem classes 2¢, a set of solution classes S¢, a set of reduction rules 4% and an

abstraction mapping A defined for the previous classes, there is a construction method
such that for each reduction tree generated at the ground level there is one and only one
corresponding abstract reduction tree constructed based on the abstraction mapping.

Proof: The proof contains two parts. First, we need to prove that given an abstraction
mapping, for each reduction tree at ground level we can construct an abstract reduction
tree. Second, we prove that the newly constructed abstraction tree is unique, given the
reduction tree and the abstraction mapping.

Part 1: Existence.

Given the classes at the ground level and an abstraction mapping A(c), we need to

show that we can develop a construction method that will generate a unique abstract tree
92

for any reasoning tree at the ground level. Let us consider a reasoning tree t generated at

the ground level. The tree ¢ was generated based on the problem classes PC € 2¢,

solution classes SC € S¢, and reduction rules RdR € 4R,

First we will partition the reduction tree ¢ into sub-trees. The sub-trees are built based

on their root nodes.

We define the set of abstracted root nodes as being all the nodes in the reasoning tree

t that are generated based on problem classes from 2¢,, solution classes from S¢, or

root reduction rules from @#&\: RootNodes = {P € 2| P is instantiation of PC € P@\}

U {S € S S is instantiation of SC € S@x} U {rRd; € R4 rRd is instantiation of 7RdR €

AR} .

From the set of root nodes, we build the sub-trees:

singleton sub-trees for the problem nodes that are in the RootNodes set.

STp= {st; = ({P}L,A) | P € RootNodes N P}

singleton sub-trees for the solution nodes that are in the RootNodes set.

STs= {st; = ({S},A) | S € RootNodes N S}

sub-trees for the reduction nodes, with the root node 7Rd in RootNodes, and also
containing all the reduction nodes Rd; that are generated based on reduction rules
RdR; that have the same abstract reduction class ARdJC as that of the reduction

rule 7RdR on which the root node rRd is generated, (ie.,

93

A, (FRAR)= ARAC = A, ,(RdR,)Vi) and there is no other root node in the sub-
tree.
STra = {st sub-tree of t | Vss N RootNodes = {Root(st)}, Root(st) € RootNodes M

4, Root(st) is instantiation of rRAR, and A, (rRAR)= ARAC = A, (RdR,) for

any reduction rule RdR; for which there is an instantiation node Rd; in st}

One may notice that the problem nodes that are located between the selected
reductions are also added to those sub-trees. Having constructed the previous sub-trees,
there will remain some concrete reasoning nodes that are not included in the sub-trees.
These nodes do not have abstraction.

Next, we construct the abstract tree, by specifying the abstraction function. The
construction method is given below.

Given the partitioned reasoning tree we will construct the abstract tree as its
abstraction as follows: from the root of the reasoning tree, go top-down and left-right,
taking the sub-trees one by one. For the current sub-tree st, we consider the root R =
Root(st). As stated, the nodes of the reasoning tree were generated by instantiating
corresponding problem classes, reduction rules or solution classes. Let us consider RC as
being the corresponding class for the root R (if R is problem node, RC is a problem class;
if R is solution node, RC is a solution class and if R is a reduction node, RC is a reduction
rule). If there is an abstraction mapping defined for RC based on properties [a], [b], [c] of
Definition 3.17, then for each RC there is a unique abstraction mapping. We apply the

abstraction mapping to the class and obtain an abstract class ARC (an abstract problem

94

class for a problem class, an abstract solution class for a solution class, and an abstract
reduction class for a reduction rule).

At this point, we will either use an existing instantiation of ARC already created in the
abstract sub-tree or we will create a new instantiation. If there is a left sibling at the
current location in the abstract tree of the same ARC we will reuse that instantiation
(abstract node). If not, then we create the abstract node AN as instantiation of the abstract

class ARC. This abstract node is the abstraction of the sub-tree st, i.e., o(st) - AN where

AN €, . For each abstract node 4N, link it to another abstract node AN’ as its parent,

where AN’ is the abstraction of the parent sub-tree of the current sub-tree in the concrete
reasoning tree — to preserve the parent-child relationship.

If there is no abstraction mapping defined, this sub-tree will not be abstracted, i.e.,
oi(st) = A.

The process will continue until all the sub-trees in the partition will be considered. At
the end of this process we obtain the abstract tree and the abstraction function ¢.

Part 2: Uniqueness.

Let us assume that there are two abstract trees #,; and #,», constructed based on the
same abstraction mapping applied to one concrete reasoning tree £. We will traverse the
two abstract trees from the root in the top-down, left-right manner, to find the first
different nodes.

Let us assume that the first different nodes are the abstract problem nodes P, in the

first tree and P, in the second tree.

95

Because they need to be different (except an instantiation isomorphism) the nodes
need to be generated by different abstract problem classes PC;,, and PC,,. Due to the
property [a] of Definition 3.17, there must be a problem class PC, abstracted to PCy,, and
a problem class PC, abstracted to PC,,. Because of the fact that PC, # PCx, and
property [a], then PC;, # PC,. Based on the previous construction method, and the
conservation of parent-child relationship we must have two different sibling nodes P,
and P, in the reasoning tree instantiating PC;, and PC,,. Let us assume Py, is the left
sibling of P,,.

Because of the construction method, we must have in the second abstract tree a left
sibling of P, corresponding to P;;: P’;,,. Moreover this must be also in the first abstract
tree (because we considered the first place where the abstract trees are different). This
means that in the first abstract tree we will have P’j;, left sibling of P, and both of them
are instantiations of the same class PCy,,. This contradicts the construction method which
will reuse the P;,, and not create another instantiation.

If the first different nodes are abstract solution nodes or abstract reduction nodes a
similar contradiction is obtained.m

3.4.7 Algorithm for Generation of Abstract Reduction Trees

Based on Definition 3.17 and Theorem 3.5, there is a construction method that maps a
concrete reduction tree to a unique abstract reduction tree. In the implementation of the
construction method, it would be efficient to treat the abstraction mapping as a set of
abstraction rules, each of which is a pair of a concrete class and its corresponding abstract

class. In other words, there are three types of abstraction rules, listed as follows:

96

e Problem abstraction rule: (problem class, abstract problem class), storing the

mapping Ap(PC) = APC, where PC € P, and APC € #P{,. The set of all

problem abstraction rules are a representation of A, .

e Reduction abstraction rule: (reduction rule, abstract reduction class), storing the

mapping Ars(RdR) = ARAC, where RdR € AR, and ARIC € #&4(. The set of

all reduction abstraction rules are a representation of A , .

e Solution abstraction rule: (solution class, abstract solution class), storing the

mapping As(SC) = ASC, where SC € S¢€, and ASC € #S{4. The set of all

solution abstraction rules are a representation of A .

In general, an abstraction rule (concrete class CC, abstract class AC) will associate a
concrete class with its corresponding abstract class. With the abstraction rules, the task of
abstracting a reduction reasoning tree can be done automatically. Table 2 presents the
algorithm of associating the abstraction rules to the reduction nodes of the concrete
reduction tree. Table 3 presents the retrieval of the associated abstraction rule from a
reduction node of a concrete reduction tree. Table 4 presents the algorithm of generation

of the abstract reduction tree given the concrete reduction tree and a set of abstraction

rules.
Table 2: Associate Abstraction Rule
Given:
e AbstRules - the set of all the abstraction rules
Return:

97

® nonc

AssociateAbstractionRule(AbstRules)

1. for each AbstRule = (CC, AC) from AbstRules do
2. associate AbstRule to CC

3. end for

end AssociateAbstractionRule

The algorithm does not return any but creates a link between a concrete class and the
abstraction rule, if any. For a given reasoning tree, each node has an associated concrete
class (e.g. problem class, reduction rule). Therefore, each node will be indirectly

associated with an abstraction rule, if any.

Table 3: Get Abstraction Rule

Given:
e Node - a node to search for its abstraction rule
Return:
e NodeAbstRule - abstraction rule associated with given node Node — NULL if
none

GetAbstractionRule(Node)
if Node is problem node then

ProblemClass « retrieve the problem class of Node

return the associated abstraction rule of the ProblemClass or NULL if none
else if Node is solution node then

SolutionClass «— retrieve the solution class of Node

return the associated abstraction rule of the SolutionClass or NULL if none
else if Node is reduction node then

ReductionRule « retrieve the reduction rule of Node

return the associated abstraction rule of the ReductionRule or NULL if none
10. end if
end GetAbstractionRule

ARSI RO S e

98

The algorithm in Table 3 retrieves the abstraction rule associated with a node in the
reasoning tree, if any. The node can be problem node, reduction node or solution node.
For any node, it retrieved the class which generated that node and the abstraction rule

associated with it, if any.

Table 4: Generation of Abstract Reduction Tree

Given:

® t- concrete reasoning tree

e AbstRules - a set of abstraction rules
Return:

e ta- the abstract reduction tree

GenerateAbstractReductionTree(t, AbstRules)

1. AssociateAbstractionRules(AbstRules)

2. Queue «— O nodes in the tree waiting to be abstracted
3. FoundFlag « false

4. add root of tree t to Queue

5. while Queue is not empty do

6 Node « pop a node from queue

7 NodeAbstRule < GetAbstractionRule(node)

8 if Node is problem node then

9. AbstProblemClass «— retrieve abstract problem class from NodeAbstRule

10. ParentNode « get parent of Node

1. if ParentNode is not null then

12. FoundFlag = false

13. AbstParentNode «— get abstract node from ParentNode

14. if AbstProblemClass is null and Node’s children have abstractions then

15. add Node to AbstParentNode concrete components

16. Set AbstParentNode as abstraction of Node

17. else

18. AbstChildrenNodes «— get children of AbstParentNode

19. for each AbstChildNode of AbstChildrenNodes do

20. AbstChildNodeClass «— retrieve abstract class from
AbstChildNode

21. if AbstChildNodeClass = AbstProblemClass then

22. add Node to AbstChildNode’s concrete components

23. set AbstChildNode as abstraction of Node

24. FoundFlag = true

99

25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.

50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.

end if
end for
end if
if FoundFlag is false then
APN <« create abstract problem node from AbstProblemClass
add Node to APN’s concrete components
set APN as abstraction of Node
link APN to AbstParentNode as its parent
end if
else ParentNode is null
APN <« create abstract problem node from AbstProblemClass
add Node to the list of concrete components of APN
set APN as abstraction of Node
add APN to Vta and set APN as Root of ta
end if
else if Node is reduction node then
AbstReductionClass «— retrieve abstract reduction class from NodeAbstRule
ParentNode « get parent of Node
if ParentNode is not null then
AbstParentNode «— get abstract node from ParentNode
FoundFlag = false
if AbstReductionClass is not null then
AbstChildrenNodes «— get children of AbstParentNode
for each AbstChildNode of AbstChildrenNodes do
AbstChildNodeClass «— retrieve abstract class from
AbstChildNode
if AbstChildNodeClass = AbstReductionClass then
add Node to AbstChildNode’s concrete components
set AbstChildNode as abstraction of Node
FoundFlag = true
end if
end for
end if
if FoundFlag is false then
ARN <« create abstract reduction node from AbstReductionClass
add Node to ARN concrete components
set ARN as abstraction of Node
link ARN to AbstParentNode as parent
end if
end if
else if node is solution node then
AbstSolutionClass «— retrieve abstract solution class from NodeAbstRule
ParentNode « get parent of Node
FoundFlag = false

100

68.
69.
70.
71.
72.
73.

74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
&4.
85.
86.
87.
88.
&9.
90.
91.
92.

if ParentNode is not null then
AbstParentNode «— get abstract node from ParentNode
if AbstSolutionClass is not null then
AbstChildrenNodes «— get children of AbstParentNode
for each AbstChildNode of AbstChildrenNodes do
AbstChildNodeClass «— retrieve abstract class from
AbstChildNode
if AbstChildNodeClass = AbstSolutionClass then
add Node to AbstChildNode’s concrete components
set AbstChildNode as abstraction of Node
FoundFlag = true
end if
end for
end if
if FoundFlag is false then
ASN « create abstract solution node from AbstSolutionClass
add Node to ASN’s concrete components
set ASN as abstraction of Node
link ASN to AbstParentNode as parent
end if
end if
end if
if Node has abstraction or at least one of Node’s children has abstraction then
Children « get children of Node
add Children to Queue
end if

93. end while
94. return ta
end GenerateAbstractReductionTree

a concrete reduction reasoning tree and a set of abstraction rules. The algorithm starts by
associating the abstraction rules to the reasoning nodes of the concrete reasoning tree
(line 1). Then it uses breadth-first search to enumerate all the nodes in the concrete
reasoning tree. Line 5 starts the breadth-first search. For each node of the concrete
reasoning tree, the associated abstraction rule NodeAbstRule is retrieved at line 7. The

algorithm distinguishes three different types of nodes: problem node, reduction node and

Table 4 provides the algorithm to generate the abstract reduction reasoning tree given

101

solution node. For the problem node, the abstract problem class AbstProblemClass is
retrieved given its abstraction rule NodeAbstRule (line 9). The problem node Node is
tested if it is a root or not, based on its reduction parent node ParentNode (lines 10 and
11). A root does not have a parent and is taken care of at line 34. Line 11 presents the
case where the problem node Node is not the root. Line 13 presents the case where the
AbstProblemClass is null but some of its children have abstractions, which means the
Node does not have its own abstraction but implicitly abstracted to its parent’s
abstraction (abstract reduction node). In this case it is added to the concrete component
list of its abstraction of its parent (lines 14-16). Lines 18 and 19 retrieve the children
AbstChildrenNodes of the abstraction of the parent of the problem node AbstParentNode.
Each child AbstChildNode is supposedly an abstract problem node or an abstract solution
node. Lines 19 to 25 are the FOR loops to enumerate all children. Their abstract problem
classes or solution classes AbstChildNodeClass are, in turn, compared against the
abstract problem class AbstProblemClass of the problem node Node. If
AbstChildNodeClass retrieved from the child problem node AbstChildNode is the same
as the abstract problem class AbstProblemClass (line 21), then the problem node Node is
added as one of the concrete components of the child abstract problem node
AbstChildNode (line 22). The flag FoundFlag is set to true (line 24) to indicate that an
abstract problem node AbstChildNode in the abstract reasoning tree was found. If no
appropriate abstract problem node was found (line 28) then a new abstract problem node
APN is created from the abstract problem class AbstProblemClass (line 29). The problem

node Node is added to the concrete component list of APN (line 30). APN is linked to its

102

parent AbstParentNode (line 32). If the problem node is the root of the concrete
reasoning tree (line 34), the abstract problem node APN which is created based on the
abstract problem class AbstProblemClass (line 35) is also the root of the abstract tree.
The concrete component of the newly created abstract problem node APN is the root
Node itself (line 37).

In case of Node as reduction node, lines 40 to 63 present the similar algorithm to find
an existing abstract reduction node or make a new abstract reduction node in the abstract
reduction tree. Similarly, lines 64 to 88 present the algorithm to find an existing abstract
solution node or make a new abstract solution node in abstract reduction tree. The only
difference between the algorithm for abstraction of problem nodes and the other types of
nodes is the problem node may have an implicit abstraction which is the abstract
reduction node. In this case, that problem node is located in the reduction sub-tree — the
sub-tree whose root and leaves are reductions.

Line 89 indicates that if Node and its children do not have the abstraction then there is
no need to go down further; because there cannot be any abstraction below the Node; it
would violate the parent child relationship, if there were.

3.4.8 Complexity Analysis of Generation of Abstract Reduction Trees

According to Cormen (1997), the cost of traversing a tree RT =(V,J,) using the

breadth-first strategy is O(N, + N 5) where N, = {7 is number of nodes in the tree and

N, = 0] is number of edges in the tree. The algorithm uses the breadth-first search to

enumerate all nodes of the concrete reasoning tree. Therefore there are N, WHILE loops

103

(line 6) and enumeration of them costs O(N ,+N 5) = O(N, + N, — 1) = O(N,). Each

WHILE loop consists of a sequence of statements which abstract the current node in the
loop. There are three types of nodes, so there are three corresponding conditions (line 8
for problem node, line 40 for reduction node and line 64 for solution node). For each type
of node, there are similar operations in sequence such as:

[a] retrieve the class of the current node, which is the concrete class,

[b] retrieve the associated abstraction rule for that concrete class,

[c] abstract the concrete class to the abstract class,

[d] build an abstract node out of the abstract class,

[e] link the abstract node to the existing abstract reduction tree.

For a problem node, there is one exception:

[f] For the root node of the concrete reasoning tree, there is no need to link the
abstract node to the abstract tree, because the abstract tree does not exist at that
time, and the abstract node becomes the root of the abstract tree.

[g] get all direct children and add to the queue (if needed)

From the specifications given above, we can compute the complexity of the algorithm
of generation of the abstract reduction tree. First of all, we want to compute the
complexity of AssociateAbstractionRule. The algorithm contains one FOR loop which
enumerate all the abstraction rules. Let N, be the number of abstraction rules, the
algorithm will cost O(N,,).

Next we compute the complexity of GetAbstractionRule. This method calls the

statements that cost O(1). Therefore, the complexity of GetAbstractionRule is O(1).

104

Now we compute the complexity of GenerateAbstractReductionTree. For each
WHILE loop (line 5), all statements (see [a] to [g]) cost a constant O(1). In other words,
N, WHILE loops cost O(N,). The whole algorithm thus costs O(N,,) + O(N,) which is

linear with number of abstraction rule and linear with number of reasoning nodes.

105

4. Abstraction-Based Collaborative Problem Solving

Based on the definition of abstraction of a reasoning tree for collaborative problem
solving (see Section 3.3), we have developed a new approach to facilitate the problem of
viewing and understanding a very large reasoning tree. The approach is called
Abstraction-Based Table of Contents. The table of contents (TOC) is, in fact, the abstract
reasoning tree of a concrete reasoning tree. The user who wants to view the complex tree
can browse it by navigating the abstract tree.

4.1. Abstraction-Based Table of Contents

Figure 33 shows the TOC of the large tree displayed on the left hand side panel of
Figure 24. In Figure 33, the right hand side panel displays the smaller sub-tree presenting
the logic that reduces a main problem “Assess whether Al Qaeda has nuclear weapons”
to its main sub-problems such as

o “Assess whether Al Qaeda considers deterrence as a reason to obtain nuclear

weapons”

o “Assess whether Al Qaeda considers the use of nuclear weapons in spectacular

operations as a reason to obtain nuclear weapons” and so on
The first level of the abstract subtree in the TOC, which is shown on the left-hand
side of Figure 33, is the abstraction of the concrete tree shown in the right hand side of

Figure 33. From the user’s point of view, the top of the tree in the TOC corresponds to

106

the top node in the concrete tree, and the sub-nodes in the TOC correspond to the leaf

nodes of the concrete tree (as indicated by the arrows from the figure). Moreover, the

names of the leaf nodes in the concrete tree (such as those shown above) are abstracted

into the names of the sub-nodes in the TOC (e.g. “Self defense as reason”, “Spectacular

operations as reason’’ and so on).

ToC
—A —

Reduction of a problem to its main sub-
A

sess whether Al Qaeda
3 nuclear weapons

[# Deterrence as a reason
- Self defense as a reason
_ Spectacular operations
. asarsason

! Establishment of a

| power base as a reason
#- Ideology as a reason
Desire to obtain nuclear
i weapons

Ability to obtain nuclear
i weapons

| Credible Al Qaeda
claims to have nuclear

i weapons

Reasons why Al Qaeda
. has not used nuclear

that

=

a
> Assess whether A1 Daeda has nuclear weapons. ‘

=

ACharacteristics associated with possession of nuclear weapans and cument evidencs that is has

Q:what Factors should | consider to detemine whether Al Daeda has nuclear weapons?
nuclesr weanons.

Assess whether Al Qaeda has nuclear weapons based on the
characteristics associated with the possession of nuckear weapons.

‘ Assess whether there is current evidence that 4 Qaeds has nuclear

=

to obtain nuclear weapons.

Assess whether 4| Qaeda makes

Aissess whether Al Qaeda has the
ahility to obtain nuclear weapons. credible claims to have nuclear
p weapons

weapons
B
lat are the characteristies associated with possession of nuclear weapons? G:what current evidence can be considered?
“Jsons, desite. and abilty to abtain nuclear weapons, ACredible claims to have nuclear weapons, reasans of why they have nat been used, the beiiefs of others
\ - Weanons
b has Assass whether Al (asda has desie Asssss whether Al (zeda had

Assess whether other countries

reasans ot ta use auclear
weapons, assuming that it has

within the global commurity belie:

that &l Gaeds has nuclear

leat weagons?
\lishment of power bass, ideology

i weapons,
i it has them

Belief of other countries
that Al Qaeda has

{ nuclear weapons

Possession of
&

non-nuclear WD

\)

Abstract

them,

weapons,

considers
iin
& reason

#Assess whether Al Dseda considers
the establishment of @ power base
a5 a reason to obtain nuclear
weapors

Aissess whether Al Baeda
considers an ideclogy as a

reazon to obtain nuclear
weapons.

~
Detailed tree

Figure 33: Abstraction of Reasoning Tree as Table of Contents

The leaves of the sub-tree on the right hand side panel of Figure 33 are also the roots

of sub-trees in the TOC, as illustrated in Figure 34. This figure presents a fragment of

abstraction-based TOC. It shows an abstract tree of the reasoning tree generated by the

agent. We can see the top problem is Assess whether Al Qaeda has nuclear weapons and

107

sub-problems are Deterrence as a reason, self-defense as a reason. Each of the sub-
problems is assessed by favoring and disfavoring evidences. Each evidence is assessed by
the relevance, believability of the reporter and the source and so on. When the user clicks

on the node, the right hand side shows a reasoning tree for that particular problem to

explain the logic of reduction.

Assess whether Al Qaeda has rmuclear weapons: [iely
Deterrence as a reason; on even chance
EI Self defense as a reason; om even chance
G- Favoring evidence: an even chonce
EVD-Feuters-01-0lc: uniikealy
E EVD-Diawen-Wir01-01c: an even chance

''''' Felevance almost cerfain

EI Beliewability: an even chance

E Reporter Harmnid Wlir: aimost coviain

- Competence: alwost cariain

- Credibility: afmost certain H
LAssess the credibility of Ozama bin Laden as the zoue of EVD-Dawn-Mir01-0 . |

= SDMCE (Osarna bin Laden: cm aven cha The credibiity of Osama bin Laden as the source of EYD-Dawnedin)-01c is a0 even

chance.

Q:what fach
A:The weracity, objectivity, and observational sensitivity of sama bin Laden because EYD-Dawreti01-1c

is testimonial evidence based upon direct observation.

Competence aimost coriain

8- Credibility: on even -:'hcmcel—}

Veracity; an even chance

Objectivity: cirost cevtain

- Observational sensitivity: clmos

- Disfavoring evidence: no avidence

Assess the veracity of Osama bin
Laden with rezpect ta the infarmation
provided in EVD-Dawn-kil-01c.

Assess the objectivity of Dsama bin
Laden with respect to the

information provided in
EVD-Davn-Miln -01c

Assess the obeervational
sensitivity of Osama bin Laden
with respect to the information
provided in EVD-Dawn-bil1-07c.

Tespect to the information provided in
EVD-Dawrebin -0 is a0 even
chance.

The veracity of Osama bin Laden with h

The ohijectivity of Osama hin Laden
with respect to the information
pravided in EVD-Diawn-Mird1-01c iz
almast certain,

The ohservational sensitivity of
Ozama bin Laden with respect to

the information provided in EYD-
DawarMinDl -0 s 2lmost certain

Figure 34: An Expanded Fragment of TOC

This type of abstraction is context dependent where the content of the abstract node is
dependent on the context where it is located. For instance, the TOC item “Favoring

evidence” implicitly indicates the evidence to support the hypothesis “Self defense as a

reason” which is its parent TOC item.

108

Given the abstract tree as TOC, the browsing of the large reasoning tree becomes
easier. Viewing the TOC gives the user the summary of the content of the concrete
reasoning tree at different levels of abstraction. The higher level is presented first and the
drill down of the TOC item gives more detailed information. For example, Figure 34
presents the drill-down of the “Self defense as a reason” node which is “Favoring
evidence” and “Disfavoring evidence”. The “Favoring evidence” has two evidence
pieces, “EVD-Reuters01-0lc” and “EVD-Dawn-MirQI-0lc”. Each of the supporting
evidence’s characteristics such as “Relevance” and “Believability” are also presented.
By clicking on a TOC item one can view the corresponding concrete reduction sub-tree.

The abstraction of reasoning tree for interactive problem solving also supports the
synthesis process. Figure 35 presents the synthesis view of Figure 33. The solutions are
abstracted in the TOC together with their reduction counterparts. For instance, the node
“Assess whether Al Qaeda considers an ideology as a reason to obtain nuclear
weapons” and its solution “It is likely that Al Qaeda considers an ideology as a reason to

obtain nuclear weapons” are abstracted to “Ideology as reason: likely.”

109

Problem: Solution
AL

Reduction and Synthesis Tree
> N

Glossary | TOC

lAssess whether Al Qaeda has nuclear weapons

- Deterrence as reason: a1 2van clia
2~ Favoring evidence: & ave S
- EVD-Dawn-Mir01-02c: a1 2ve

+- Disfavoring evidence:

=

~ Self defense as reason: ar even chdice

i

- Spectacular operations as reason: cni0st coria

- Establishment of power base as reason a/niost cai i

=

Ideology as reason: iz

&

Desire to obtain nuclear weapans: afsug chiarics

=

Ability to obtain nuclear weapans: @1 2ve .
. Credible Al Qaeda claims to have nuclear weapons:

| Reasons why Al Qaeda has not used nuclear weapons
assuming it has them: almost corre

Belief of other countries that Al Qaeda has nuclear

weapons: /ikz

=

5~ Passession of non-nuclear WWD: alnost cartai
B Passession of chemical weapons: /0
= Favoring evidence: aimost ceria
#+ EVD-CNN-Robertson(1-01: /ikz
#+ EVD-FP-Glazov01-02c: aimost ceriai
- EVD-NYT-Miller01-02: o

- Disfavoring evidence: no evidance

- Possession of biological weapons: alyiost cort

k - Possession of radiological weapons: [ike

J

4RaasuningHiErarchv Reasaning Step | Graphical Viewer | Report
‘ =

Assess whether A1 Qaeda has nuclear weapons.
= Itiz likely that Al Qaeda has nuclear weapons.

@:What factors should | consider to deteming whether Al Qaeda has ruclear weapons?
#:Characteristics associated with possession of nuclear weapons and curent evidence that is has

{ ruclear weapons.

B

€]

Aissess the possibility that A1 Qaeda has nuclear weapons based on the:
characteristics associated with the possession of nuclear weapans.

Assess the cunent evidence that Al Gaeda has nuclear weapons.

Based on the cunent evidence, it is likely that A1 Qaeda has nuclear

Based on its reason, desire, and ability to obtain nuclear weapons, it is
likely that Al Baeda has nuclesr weapans.
Qwh,

#:Reasons, desie, and ability to obtain nuclesr weapons

pj WEapans.

Assess whether A1 Dasda has
reazans bo obtain nuclear
wespans.

Itis almost ce.t=in that Al 0 aeda
has 12asons o obtar o cleat
weapons

Assess whether Al Daeda has desie
to obtain puclear weapons,
Itis an even chance that 41 Daeda has
desire to obtain nuclear weapons.

has the 2
Weapons.

ver base, ideciogy

Assess whether &l Basda has the
abilty to obtain ucleal weapons

Itis an even chance that Al Qaeda

filty to abtain nuclear

Assess whether & Baeda considers
the use of nuclear weapons in
spectacular operations as a reason
to abtain nuclear weapons.

Assess whether Al 4. da considers
the establishment of & powe, Sase
as a reason bo obtain nuclear
weapans. 1

teason to obtai
weapans.

Assess whether Al Qaeds
considers an ideclogy a3 &

in PLClear

—

53 Itis almost certain that 4l Qaeda
considers the uss of nuclear weapons
in spectacular aperatians s a reasan
to obtain nuclear weapons.

It aimast cettain that A Daeda
considers the establishment of a
power base as a reasan to obtain
nuiclear wespons

Weapans.

Itis likely that Al Qaeda
considers an ideclogy as a
reason to obtain nuclear

Abstract

Detailed tree

Figure 35: Abstract and Concrete Reduction and Synthesis Tree

4.2.

Even with the help of abstraction, the display of a reasoning tree on a small screen is
difficult (Nguyen et al., 2000). We have therefore developed a technique to optimize this
display, as illustrated in Figure 36. The left-hand side picture in Figure 36 displays a
reasoning tree with a navigator showing the small part of the tree which is visible. The
tree by itself is compactly displayed, but the view port at different locations is still
spacious. In other words, the density of the tree is not evenly distributed. The right-hand
side picture shows an optimized view which can display 150% more nodes in the same

view port. This allows more nodes to be viewed in the same view port by reducing the

Optimization of the Reasoning Tree Display

white space between nodes while still preserving the characteristic of a hierarchical tree.

110

Before Optimization After Optimization

Figure 36: Optimization of the Display of a Large Reasoning Tree

4.3. Evaluation of Abstraction for Collaborative Problem Solving

In Fall 2006 and Spring 2007 we performed two experimentations with using the
abstraction-based TOC. One was in the course CS681-2006 Designing Expert Systems at
George Mason University and the other was in the course MAAI-2007 Military
Application of Artificial Intelligence at the US Army War College. Both used the same
abstraction-based TOC to browse and modify a large reasoning tree. At the end of the
class, they were asked to agree or disagree on some certain statements. A sample of the
students’ subjective evaluations is presented in Figure 37. With one exception, all the
students agreed or strongly agreed that the abstraction-based TOC facilitates the

browsing and understanding of the reasoning trees.

111

students

b B CS681-06
9 students = MAAI-07
8 8

——{ TOC s easy to 7+ Itis easy to learn how to
64+ understand 6 1 browse the reasoning
5 5 | tree using TOC
4 4
3 — 3
2

0]

=

m ik

[]

|

strongly disagree disagree neutral agree strongly agree strongly disagree disagree neutral agree strongly agree
students

9

8 students

71— Itis easy to browse the TOC is adequate to

6 +—reasoning tree using TOC 6 —| represent an abstraction of

5 5 the reasoning tree

4 - 4

3 | 3

2 1 2

| L]] . E

0 T T T 0 - -
strongly disagree disagree neutral agree strongly agree strongly disagree disagree neutral agree strongly agree

Figure 37: Evaluation of Abstraction for Collaborative Problem Solving

112

5. Abstraction-Based Tutoring

The intelligent tutoring systems (ITS) are valuable educational tools. They are used to
assist the teachers in teaching as well as to support students in learning. These tools,
however, are not widely available because the process of building them is very complex
and time-consuming. This chapter presents several methods that facilitate the process of
developing systems for tutoring expert problem solving. First we present an abstraction-
based approach to lesson design and generation. Then we present several methods for
learning and generation of exercises to test the students.

5.1. Lesson Design and Generation

Lesson creation is one of the most difficult and time consuming tasks in developing
intelligent tutoring systems. Anderson estimated that “it takes at least 100 hours to do the
development that corresponds to an hour of instruction for a student” (Anderson, 1992).
According to Aleven and Rose (2004) “A recent estimate puts development time at 200
hours per hour of instruction”. This activity puts a difficult burden on the instructor who
designs and builds the lessons. The more complex the domain, the harder and longer it
takes to build the curriculum for the tutoring system. GUIDON (Clancey, 1987), a classic
tutoring system based on an expert system, took a subject matter expert and a full-time
knowledge engineer six years to make it work. The enormous labor that is required to

build the lessons for a tutoring system is one of the reasons the ITSs have not been

113

widely developed and used, in spite of their obvious benefits. We have developed a new,
abstraction-based, approach to teach expert problem solving to students. The
corresponding abstraction-based lesson design and generation methods reduce the
complexity and time for building the curriculum. They not only reduce the time to develop
the tutoring system, but also generate the lessons automatically.

The abstraction-based lesson design and generation process uses the abstraction of the
reasoning trees of the application domain as the resource to build the lessons. An abstract
reasoning tree is much smaller than its corresponding concrete reasoning tree and consists
of precisely those abstract concepts and reasoning strategies that need to be learned by a
student. This makes the task of the instructor who has to build the lessons out of the tree
much easier. The detailed description of the abstraction of a reasoning tree for tutoring is
presented in Chapter 3. Once the abstract lessons are built from the abstract tree, the
examples for the lessons are generated automatically by concretizing the abstract
components of the tree. The concretization of the abstract tree allows the reuse of the
abstract lessons for different domain knowledge bases. Another feature of the abstraction-
based lessons is the assured consistency between the expert’s knowledge from the
system’s knowledge base and the knowledge used in constructing the curriculum to teach
expert problem solving to the students.

5.1.1 Abstraction-Based Lesson Design

An abstract reasoning tree is a representation of some of the problem solving

strategies used by a subject matter expert. Capturing that knowledge systematically and

presenting it pedagogically is required in order to develop a tutoring system that can

114

teach the students the expert knowledge to solve problems in a particular domain. The
way the tutoring system teaches the student is also similar to how it was taught by the
expert because the reasoning tree is the representation of how the expert has taught the
system in the first place. The abstract reasoning tree serves as a guide to construct the
lessons. As mentioned in Chapter 3, the abstract reasoning tree (which includes the
abstract reduction tree and the abstract synthesis tree) consists of hierarchies of four types
of abstract nodes: abstract problem nodes, abstract reduction nodes, abstract solution
nodes and abstract synthesis nodes.

A lesson can be defined to cover a part of an abstract reasoning tree. In general, a
lesson teaches a strategy to solve a particular type of problem. Therefore the lesson is
associated with an abstract problem node. This association constitutes a one-to-one
mapping between the knowledge learned from the expert and the knowledge to be taught
by the tutoring system. In order to solve a problem, the problem reduction paradigm
guides the system to successively reduce that problem to simpler and simpler problems.
That reduction strategy must be captured in a lesson. Depending on the complexity of the
problem, the sequence of the reductions needed to solve the problem can be short or long.
The lesson that teaches how to solve that type of problem must present the necessary
reasoning steps. Each reasoning step may correspond to a lesson as a lesson section.
Therefore a lesson can contain one or more lesson sections, depending on the complexity
of the problem at hand. The relations among the lesson sections can vary. They can be

sibling relations, cousin relations or parent-children relations. Thus, the lesson can be

115

used to represent and teach the knowledge that reduces a problem to simpler sub-
problems via multiple reasoning steps.

To illustrate the lesson design process, we will use the abstract reasoning tree from
Figure 38. The top level problem is successively reduced to simpler problems, as follows:

We need to

o Assess the believability of the reporter of the piece of evidence.
The believability of the reporter of a piece of evidence is determined by the reporter’s
competency and credibility.

Therefore we need to

o Assess the competency of the reporter of the piece of evidence.

o Assess the credibility of the reporter of the piece of evidence.
The credibility of the reporter of a piece of evidence depends on reporter’s veracity,
objectivity, and observational sensitivity.

Therefore, to assess reporter’s credibility we need to:

e Assess the veracity of the reporter of the piece of evidence.

o Assess the objectivity of the reporter of the piece of evidence.

o Assess the observational sensitivity of the reporter of the piece of evidence.

116

-

-
-

- T ~

-, ~
, ’ The believability of the reporter of a piece of evidence is determined by the reporter’s competency and N \
/ credibility. \
________ \
! : = = C T T T == - 1
' = r ~7--
A \J Aszess the competency of the reparter of the pieceobedidence. ‘ Aszsess the credibility of the reporter of the piece of evidence. 7 S~a -
, ~
= - — ~
RS Pid ; - e
S s _- ~
S~ - , 4 (The credibility of the reparter of a piece of evidence dependes on reporter'iverasitf, objectivity, and observational sensitivity.) S \
kT = \
. TAE——_— == . . !
\ Asse_ss the ven_ac:itg of the reparter of Assess _the ob'ect!vitg of the reporter Aszzess the observatiorjal sensitivity /
\ N the piece of evidence. of the piece of evidence. of the reporter of the piece of Vi
~ evidence. 7
~ -

-~ -

Figure 38: Lesson Sections

A lesson that teaches how to assess the believability of the reporter can be defined
based on these two reductions. As a result, a two-section lesson is defined. The first
section covers the first reasoning step and the second section covers the other one. The
two sections share one problem, as depicted by the blue-border problem in Figure 38. The
shared problems are required to link the sections together to ensure the continuity of the
lesson’s flow.

The lesson designer or instructor uses the abstract reasoning tree as guidance in
designing the lessons of a curriculum. Once the instructor has decided what sections to
include in a lesson and how they are linked together, he or she can elaborate more on how
to teach that lesson to the students. Showing the entire lesson to the student is not always
desirable because it can be confusing and misleading. A long lesson which has multiple
sections needs to be shown one part at a time and follows some natural logic. The lesson
sections can be presented in multiple ways: breadth-first, depth-first, a combination of

breadth-first and depth-first, or any way that the instructor deems fit to the student’s

117

knowledge or to his/her own taste. The breadth-first strategy introduces the problem in a
broad way that helps the student appreciate the big picture before going into details. On
the contrary, a depth-first strategy may help train the students the capability to focus on
one particular problem and narrow down the problem to find the suitable solutions.

A lesson is not complete without the examples to illustrate the points being taught at
an abstract level. Using the abstract reasoning tree, the instructor is able to avoid the
burden of creating the examples for the lessons. As described in detail in Section 3.3, the
abstract reasoning tree consists of hierarchical abstract nodes. Each abstract node is an
abstraction of a set of concrete reasoning nodes in a concrete reasoning tree, as shown in
Figure 39. The concrete reasoning nodes are illustrations of the abstract node. Therefore,
the concrete reasoning nodes are the sources of the examples for the lessons built upon

abstract node.

118

‘ Abstract Reasoning
Tree

.................. Concrete Reasoning f 0

dl
(o)) e]

U .
"""" U U[]][UU UB O O
il 4 S
OU UU@)) o 0

DDHHHD

Figure 39: Abstract Node and Its Concretions

For instance, the following abstract problem (see Figure 38)

o Assess the believability of the reporter of the piece of evidence.

is an abstraction of the following concrete problems:

U 00

INEY Y R A g

mﬂﬂ]ﬂﬂ]ﬂ]ﬂﬂ DD

LD 0w,

e Assess the extent to which one can believe Hamid Mir as the reporter of EVD-

DawnMir-01-02.

e Assess the extent to which one can believe Glazov J. as the reporter of EVD-FP-

Glazov01-01.

EVD-DawnMir-01-02 is a fragment of an article by Hamid Mir, published in the Dawn

magazine. EVD-FP-Glazov0I-01 is a fragment of an article by Glazov J, published in the

Front Page magazine.

119

The abstract reduction
The believability of the reporter of a piece of evidence is determined by the
reporter’s competency and credibility.
is the abstraction of the concrete reductions:
What factors determine the extent to which Hamid Mir a reporter EVD-DawnMir-
01-02 can be trusted?
The competency and the credibility of Hamid Mir.
and
What factors determine the extent to which Glazov J. a reporter of EVD-FP-
Glazov01-01 can be trusted?
The competency and the credibility of Glazov J.
The abstract sub-problem
e Assess the competency of the reporter of the piece of evidence.
is the abstraction of the concrete sub-problems:
e Assess the competency of Hamid Mir as the reporter of EVD-DawnMir-01-02.
e Assess the competency of Glazov J. as the reporter of EVD-FP-Glazov01-01
and so on. Therefore, the lesson will have a set of examples, two of which are shown in

Figure 40.

120

| Assess the extent to which one can believe

Harmid ir as the reparter of EVD -0 awn-bdir01-02, ‘

[Q:What factors determine the extent to which a reporter of a piece of evidence can be tusted?

A:The competency and the credibility of the reporter.

EVD-Dawn-mird1-02.

Azzess the competency of Hamid Mir a5 the reporter of

Azzess the credibilty of Hamid Mir as the reporter of
EVD-Dawn-dir0] -0z

A:The veracity, objectivity, and observational sensitivity of the reparter.

O hat factors determine the credibility of a reporter of a piece of evidence? }

-- LT e Y

Aszess the veracity of Hamid Mir as
the reporter of EYD-D avin-Mird1-02.

Aszzess the objectivity of Hamid Mir

az the reporter of
EYD-D aven-in01 -02.

Aszess the observational sensitivity
of Hamid Mir as the reporter of
EVD-Dawn-Minl1-02,

‘ Aszzess the extent to which one can believe Glazov J as the reporter of EVD-FP-Glazov0l-01. ‘

A:The competency and the credibility of the reporter.

[D:What factors determine the extent to which a reporter of a piece of evidence can be trusted?

|

EWD-FP-Glazowid-01.

Azzess the competency of Glazow J a3 the reparter of

Aszzess the credibility of Glazay J as the repaorter of
EVD-FP-Glazov0l-01.

AT he veracity, objectivity, and obzervational zengitivity of the reporter.

A:w'hat factors determing the credibility of a reparter of a piece of evidence? }

.. R

Agzzess the veraciy of Glazov J as
the reporter of
EWD-FP-Glazow01-01.

Aszess the objectivity of Glazow
as the reparter of
EYD-FP-Glazow01-01.

Agzess the obgervational sensitivity
of Glazov J as the reparter of
EWD-FP-Glazowvl1-01.

Figure 40: Examples Illustrating the Abstract Reduction in Figure 38

The lesson designer may also enhance the lesson with hyperlinks (as shown in Figure
40) that connect to the knowledge base to provide descriptions of important concepts and
instances. These descriptions are generated automatically from the system’s knowledge
base. They provide an unintrusively help to the students. For example, Figure 41 shows

the description of EVD-FP-Glazov0l.

121

RAMD Inteligence Analyst Greg Treverton, suggested that "'S-11
waz shocking, but a repeat would be lesz 20, 5o there may be an
ncentive for kemornsts ko look to the next level of "stun’ valug"
| slthough Kir. Treverton appeared doubtiul that nuclear weapons
| vrould be of much uze other than that, mainly becauze of the
{ready avalability of comventional meanz of temar.
{from the document EVD-FP-Glazov(1:
I-Ttle:m', J. (2003, August 18], Symposium: Diagnosing al-tasda,
Front Page llagazine
hittp: /S 1and. arg/newis/nevislinks/fp. himl

Figure 41: Description of a Piece of Evidence

What we have discussed so far is the reduction part of the problem reduction /
solution synthesis paradigm. The other half is the synthesis process to find the solution of
the original problem. According to this problem solving paradigm, the synthesis follows
from bottom up: the solutions of the sub-problems are successively composed upward
into the solutions of their parent problems. Similar to the reduction examples, the
synthesis examples of the abstract syntheses are obtained from the corresponding
concrete reasoning trees. Figure 42 shows a two-panel window. The upper panel shows
the lesson’s abstract synthesis steps (as green sticky notes) and the lower panel shows the

corresponding concrete synthesis steps.

122

LAssess the believabiliy of the reporter of the piece of evidence,

The beliewability of

Aszzessed believability of the reporter of the piece of
evidence.
credibility.

ey

= etency and
can estimate the beli
Assess the com

To be believable, the reporter of a piece of evidence has to be both competent and credible. Therefore one
bility of the report
and credibility.

az the minimum of the reporter's competency

IdENCe.
0L
TI—M Aszzessed Cledihllil_v of the reporker.

TFie credionty of the reporterof s piece of evidence dependes on reporter’s veracity, abjectivity, and
obzervational sensitivity.

Aszzessed competency of the reporter.

A reporter for which any of the three factors has a very low value is not credble. Therefore one can
estimate the credibility of the reporter as the minimum of veracity, objectivity, and
Assesst ghservational sensitivity.
the piece —

Azzeszed veracity of the

it
T X ™ "
. evidence.
Aszseszed objectivity of the
reporter of the piece of evidence. reporter of the piece of evidence.

Azsessed observational

sensitivity of the reporter of the
piece of evidence.
Hamid Mir and EVD-Dawn-Mir01-02

Nex

Select Example:

Assess the extent to which one can believe Hamid Mir as the reporter of EVD-D awn-kir01-02. |

Itiz almost certain that Hamid Mir iz believable as the reporter of EVD-D awn-Mir01-02,

Q:what factors determine the extent to which a reporter of a piece of evidence can be tusted?
A:The competency and the credibility of the reporter.

Azsess the competency of Hamid Mir a5 the reporter of
EYD-Dawn-tird 02,

Azsess the credibility of Hamid Mir as the reporter of
EYD-Davwn-bird 02,

The competency of Hamid Mir as the reporter of EVD-D awn- h

Mir01-02 is almaost certain.

The credibiity of Hamid Mir as the reparter of EVD-Dawn-
/Zt Mir01-02 is almaost certain.

- - ce?
LA:The veracity, abjectivity, and observational senzitivity of the reporter.

Azsess the veracity of Hamid Mir as
the reporter of EVD-D awn-Mird1-02.

Aszsess the objectivity of Hamid Mir
as the reporter of

Azsess the obzervational sensitivity
of Hamid Mir az the reporter of
EVD-Dawr-bdir01-02,

EVD-Dawn-tind1-02,

The veracity of Hamid Mir as the

reporter of EVD-Dawn-kir01-02 is
almost certain.

The objectivity of Hamid Mir az the

reporter of EVD-Dawn-tir01-02 iz
almost certain.

The obzervational sensitivity of

Hamid Mir az the reparter of EVD-
Dravan-ir1-02 iz almost certain.

Figure 42: Lesson’s Abstract Syntheses and their Concretions

An abstract synthesis teaches the student how to combine the solutions of some sub-

problems to obtain the solution of their parent problem:

Let us consider the following solutions:

e Assessed veracity of reporter of the piece of evidence.

Assessed objectivity of the reporter of the piece of evidence.

Assessed observational sensitivity of the reporter of the piece of evidence.

123

A reporter for which any of the three factors has a very low value is not credible.

Therefore one can estimate the credibility of the reporter as the minimum of

veracity, objectivity, and observational sensitivity.
We thus obtain the:

o Assessed credibility of the reporter.
Similarly with the reduction part, the system can automatically generate concrete
examples of the abstract synthesis process, as illustrated in the bottom part of Figure 42.

The abstraction-based lesson design is important in the sense that it partitions an
abstract reasoning tree into multiple segments. Each segment conveys a separate topic
and is captured into a separate lesson. Different ordered collections of lessons reflect
different ways the lesson designer may direct the transfer of problem solving knowledge
to the students, the goal being to find the most pedagogical way.

5.1.2 Lesson Script and Its Language

A lesson contains the lesson header and multiple sections. The lesson header includes
the lesson’s title and objectives. The lesson’s objectives are the summary of what the
lesson tries to convey and how the information can be used. Each section teaches a
strategy to solve a particular problem. In other words, each section contains one abstract
problem, one reduction strategy and its abstract sub-problems derived by the reduction. In
addition to the reduction strategy, the synthesis strategy is taught as well. Therefore a
lesson section also contains an abstract synthesis, abstract solutions of the abstract sub-
problems and the synthesized abstract solution of the abstract problem. Both reduction

examples and synthesis examples are added to illustrate the topic being taught. The

124

lesson section may also contain annotations and descriptions. These are optional
components used to introduce certain components or for explanation purposes. Last but
not least, the lesson also includes the long and short descriptions for certain concepts to
enhance the understanding of the lesson content. All the descriptions are shown to the
students upon request and unintrusively.

Once the lesson design phase is completed, the system automatically generates the
lesson script whose content is based on the design. Each lesson has a lesson script. The
entire curriculum consists of multiple ordered lessons. Abstraction-based lesson
generation relies on the lesson scripts to build the lessons when they are needed. The
lesson script is managed through the Abstraction-Based Lesson Emulation (ABLE)
scripting language. ABLE allows the instructor to design and build the abstraction-based
lessons in a very flexible manner. In fact, the instructor does not have to write a single
line of ABLE to build the lesson script. The graphical interface helps him/her to generate
the lesson script underlined by ABLE. ABLE is described in Appendix A

Each token of the lesson has an optional feature, named LifeCycle, which indicates
the display timing of that token. The feature allows the lesson components to be
displayed in different orders and with different durations. The grammar of this feature is
presented in the Table 14. In LifeCycle, the two components Order and Duration indicate
when and for how long to display a component on the screen. They are dynamically
computed based on the current configuration of the lesson components.

The relative values of Order and Duration serve two purposes. First of all, the

relative orders allow the lesson components to be easily added and deleted without

125

significantly affecting the orders and durations of the rest of the components. For
instance, if Objective’s Duration depends on the Problem’s Order and the Problem is
deleted for some reason, then the Objective’s Duration will relies on the component
Token i that is displayed right before Problem, i.e. Objective’s Duration = before(Token,)
where Problem’s Order = after(Token;). The other purpose that the relative values serve
is to maintain the integrity of the orders and durations of the lesson components when the
abstract reasoning tree is realized in different scenarios. Different scenarios may result in
different abstract reasoning trees. No matter the configuration of the abstract reasoning
tree, the lesson components that are hosted by that abstract tree can connect to each other
by using the relative values of orders and durations. This characteristic is suitable for
applying the same lesson script to different scenarios. More on this issue is discussed in
the Lesson Generation section.

The LifeCycle feature is also used in implementing the tutoring strategies. A lesson
can be a large hierarchical collection of sections. The displaying of the whole lesson at
one time may become confusing and hard to understand. The instructor can design the
displaying order of the lesson components in several ways, to emphasize the focal points
of the lesson. For example, in Figure 38, a lesson with two sections is presented. The
instructor may wish to introduce first the top reduction (as in Figure 43), or the bottom

reduction (as in Figure 44)

126

Assess the beievabi oftherepate of he Jiece o' evderce

Assassthe belvabiityofthe epoter of the pisce of evidence.

—>

(The belevabily o he loter o a piece of evidence s detemnined by the repone's competency and)

The believablly ofherepones ofapice of evicknce s etemined by b eperte’s cempetericy and
oredhily.

el

ssess he ety oftherepoten ofthe pizce of evidence,

asstss he comoetency o e iepcterof e pece ofeidence,

Assess the competency of e repoter of s isceof sidence

Asstss he rechily of herepoter of e piece of evidence

(Thc ity ofthe eooter o & iece of evidznce cependes onrepoter' yeci. shectvly and okservalinal sy, >

Asess the yeachy o e repoter of hasess the cheotv ofthe epater | | Asiesshe oheervalioal senlvy|
the piece of eidence, f thepieceof gidence of e epertercf the pice of

e,

Figure 43: Top-down Tutoring Strategy

hssessthe belevatill of s rapoterof the piece o eidence,

T believabllycf the eporer o iz of evidence isdetemined by e reporers conpetency and
cedbity

—

Assessthe competency ofthe pater of e pice of evidence

Aeess e creciall ofte repore of the pece of evidence

Aeess e creciall ofte repore of the pece of evidence
T

<Wenrej\t\hl olthe rpore of & iz of evidence depences on tepartes veachy, obestiety, and otsevefvea senfiy > <Wenrej\t\hl olthe rpore of & iz of evidence depences on tepartes veachy, obestiety, and otsevefvea senfiy >
Assessthe vercty of he repoter ol Assess e otpettyof herepote | | Assess he observatonl sensiiy Assessthe vercty of he repoter ol Assess e otpettyof herepote | | Assess he observatonl sensiiy
the e of eidence o e piece o evidrce, ofthe repcte o the pieceof the e of eidence o e piece o evidrce, ofthe repcte o the pieceof
evidence. evidence.

Figure 44: Bottom-up Tutoring Strategy

In short, there are various ways to arrange the display of a problem reduction process,
to fit one’s preferences. The tutoring system, however, has a default configuration for
presenting the lesson to relieve the burden off the lesson designer. The default
configuration is a variation of the depth-first strategy. The first reduction will be
presented with all its sub-problems or solutions, and then the reduction of the left-most

child, and so on, as shown in Figure 45.

127

=

Azzess the credibility of the
tangible evidence:

&

=

=

Azzess the credibility of the
tangible evidence:

&

Far a piece of evidence which iz tangible evidence the credibility
factors are itz accuracy and its authenticity,

=]

=

Azzesz the accuracy of tapes
found by Robertzon in
Afghanistan.

The tutoring strategy also involves the ordering of the abstract problem solving

Aszzess the authenticity of the
tangible evidence.

=

Azzess the credibility of the
tangible evidence:

&

Y gul

Far a piece of evidence which iz tangible evidence the credibility
factors are itz accuracy and its authenticity,

=]

Azzesz the accuracy of tapes
found by Robertzon in
Afghanistan.

Aszzess the authenticity of the
tangible evidence.

=

Aszsess the accuracy of tangible
evidence

The accuracy of tangible
evidence iz L_a

=
Far a piece of evidence which iz tangible evidence the credibility
factors are itz accuracy and its authenticity,

=]

=

Afghanistan.

Azzesz the accuracy of tapes
found by Robertzon in

Aszzess the authenticity of the
tangible evidence.

=

Aszsess the accuracy of tangible

evidence

tangible evidence.

=l
J [Azzess the authenticity of

evidence iz L_a

The accuracy of tangible

The authenticity of tangible
evidence iz L_a

128

Figure 45: Variation of the Depth-First Strategy

strategies and their examples. By default, the abstract strategies are presented, and are
then illustrated with concrete examples. This strategy reinforces the learning by using the
examples as the illustrations of what has been taught. The order however can be changed
to reflect the reverse order, i.e., the examples displayed first and the abstract strategies
next. This approach presents first the examples and then the abstract problem solving

strategy illustrated by them. Or the tutoring designer can mix abstract fragments with

examples. In essence, the order and mix of the abstract fragments and their examples can
be modified by using the LifeCycle feature mentioned above.
5.1.3 Lesson Generation

The lesson generation process starts by invoking the script loader to load the XML
files of the lesson scripts into the memory, in the order indicated by their indices. The
curriculum is then created by executing the scripts in the corresponding order. The
sequence of generated lessons is held together by the lessons’ pre-requisites and post-
requisites which are built based on the indexed lesson scripts. The lesson scripts are
themselves linked to each other via the abstract problem references. The starting abstract
problem reference of one script must be the ending abstract problem reference of another
script. This makes the latter the pre-requisite of the former, and the former the post-
requisite of the latter. These links are loaded to become the pre-requisites and post-
requisites of the lessons.

Once the sequence of the lessons is laid out, the system splits the set of lessons into 3
groups:

e the previous lessons group, which have already been presented to the students;

e the proposed lesson, which is the lesson to be delivered next, and

e the next lessons group.

This classification is based on the information from the student’s model which holds
information about the student progress, as will be described in the Student Module

section.

129

The organization of the lessons in the curriculum reflect the chaining and logical
sequencing of content strategy (Dabbagh, 2007), where the lessons and their contents
follow the hierarchical problem reduction/solution synthesis paradigm.

5.1.3.1 Table of Contents Generation

Each lesson teaches a strategy to reduce a problem to simpler sub-problems and to
synthesize the solutions of simple sub-problems into the solution of the problem.
Accordingly, the table of contents of each lesson has two main sections: the reduction
section and the synthesis section. Figure 46 shows a typical table of contents. It was
generated for the lesson addressing the “Believability of the reporter of a piece of
evidence” and has entries for the individual sections (e.g. “Components of believability”)

and illustrations (e.g. “Reduction examples”).

Pelievabiliry of the reparker of a piece of evidence. |
: Components of believability
Credibility
Reduction examples
Synthesis of credibility
Synthesis of believability
Synthasis axamples

Figure 46: Lesson TOC

5.1.3.2 Lesson Content Generation
There are three types of lesson components: lesson decorative components, lesson

header components and lesson section components.

130

The lesson decorative components are classified into two types: lesson annotations (to
annotate a lesson components) and lesson definitions (to define the definitions for some
terms).

The lesson annotation clarifies a lesson component with more explanations. Table 16
in Appendix B shows an XML script of Annotation. The annotation life cycle is by
default very short - one step. The life cycle however can be expanded to serve some
purposes. This component can be attached to any type of nodes except the decorative
nodes themselves, i.e., there is not annotation of an annotation. The lesson designer is
responsible for defining the content. Figure 47 shows an annotation that introduces a

problem solving task, and some popup options.

Annotation: Let uz consider the problem:
Edit

Delete
Turn Audio OFF

Figure 47: An Example of Annotation

The lesson definitions are another type of lesson decorative. There are two types of
definitions that are built into the system, brief definitions and detailed definitions. The
brief definitions are used as tool tips for lesson components and for quick access. The
longer definitions define the terms in details and with examples for illustration. The
lesson designer does not have to specify the terms to be described or does not have to
think about the descriptions. The terms are the concepts and instances which come with

the ontology. All the definitions are loaded from the ontology as well. This feature
131

relieves the lesson designer of the burden to provide the necessary definitions of the new
concepts introduced in various lessons. Not only the system inserts the definitions
automatically, it also allows the designer to customize the lesson definitions by selecting
some of the terms to be inserted. Table 17 shows an XML script of Definition. The lesson
definitions are displayed in two phases. The first phase displays the brief descriptions of
the terms. The second phase shows the full descriptions if the “click here” hyperlink is
invoked (see Figure 48). The full descriptions can be very large to cover a full-blown
lesson about the term. In Figure 48, the full description is a lesson about evidence with

supporting stories.

132

Aszzess bo what extent the piece of evidence favors the hypothesis.

The defnibons of the: term:
+ piece of evidence: An evidence iz anything used to prove the existence or
nonexistence of a fact

Foi more details, click heie

An evidence iz any testimony, records, documents, material objectz, or other things uzed to prove the existence or nonexistence of a fact.

Evidence:
by David

i+
£

Evidence does not have an easy definition. Chaford £ ronar will lead you in a circle and eventually bring you back to the word "evidence”. One major
trouble iz that, in terms of itz substance or content, evidence has a near infinite varisty. We know of three disciplines in which perzonz drawing conclusions must be
prepared to evaluate evidence of nearly every conceivable substance or content. The disciplines are: inteligence analysis, law. and history [it iz poszible that we
have overlooked some otherz]. But we can recognize quite a small number of recurrent and distinguizhable forms of evidence regardless of itz substance or content.
‘we will mention theze various forms of evidence as we proceed.

There are some very interesting problems azzociated with the term gvidence in intelligence analysiz. Some persons in inteligence analysiz and elzewhere believe that
the term evidence only applies in the figld of law and refers to whatever iz produced at trial by the parties in contention. Evidence scholarz in the field of law have
noticed this themzehves and have scoffed at the idea that evidence iz only encountered in law. They agree that evidence iz encountered in ary context in which
concluzions are being reached. Many analysts prefer the uge of the terms data or items of information instead of the term evidence, But thiz can be very migleading.
Ay datum or item of information only becomes evidence when itz relevance to hypotheses being considered can be established by a defensible argument. For
example, your car license plate number iz a datum on record by yowr state's depatment of motaor vehicles, But you would have a very difficult time showing how this
datum iz relevant to any hypothesiz you are considering concerming events in lrag. Here we have a datum or item of information that will never become evidence in
thiz inference conceming lrag. Someone would zay; "Wouwr car licenze number iz totally irelevant to our pregent inferences". What iz true of courze iz that a datum or
item of information may be totally imelevant in one context but relevant in another. IF you were suspected of committing a crime, your car licenze number might be
quite relevant.

On occazion the term fact iz uzed instead of the term evidence; thiz can alzo be very mizleading. ‘we often hear someone zay: | want the facts before | draw any
concluzion”. The problem iz: “What fact is thiz perzon talking about? What we must do is to distinguish between evidence for an event and the event itzelf We
obtain evidence of zome zort and can regard thiz evidence as factual since we are obzerving it with one of our own zenzez. But what the evidence tellz uz we will
have zome uncertainty about; we cannat always regard what the evidence says as being factual. For example, we all hear M ary teling us that it was John wha ran
into her car lazt night. “we regard Mary's report az a fact since we all just heard what zhe zaid. But whether John was the perzon who ran into IMary's car last night we
cannot regard as factual without aszessing IMary's credibility. Perthaps she wazs mistaken or being untiuthful. In mast cazes in inteligence analysiz we will have
zome uncertainty about what iz reported in the evidence that was obtained.

There are five basic kinds of evidence [Schum, 2001] and we have lizted four of them: tangible evidence, two kindz of testimonial evidence, and
authoritative records [alzo callzd accepted Facts] But we can alzo zay that missing evidence can be evidence itzelf when we explore various reazonzs
why we cannot obtain evidence we expect to obtain. In zome cazes there may be innocent explanations for our failure to find evidence: we are looking in the wrong
places: the evidence never existed; or it was lost or destroyed. But anather possibility iz not 20 innocent; someone or some group is keeping the evidence from us.
Thiz would entitle uz to infer that the perzon or group denying uz access to thiz evidence was engaged in denial or deception efforts against us.

Two st

Story I:

Here iz an analyst who reads in the Washington Post about some cesium-137 that haz gone mizzing from a company in Baltimare, MD. Thiz comparny makes devices
fior zterilizing medical equipment of varous sortz and uzes radioactive maternialz such az cesium-137. The analyst alzo knows that cezium-137 could alzo be an
ingradient in a dirty bomb. So, the analyst decides to take this item of information as evidence in an initial chain of reazoning she constructs. She argues as follows:

Figure 48: Lesson Definitions

There are two types of lesson header components: lesson title and lesson objective.

They are special components because there is only one lesson title and at most one lesson

objective in each lesson.

133

The lesson title is the start of a lesson which summaries the lesson content (see Figure

49). Table 18 shows an example of lesson title script.

Lesson: Believability of the reporter of a piece of evidence.

Objectives: Learm how to azzezs the believability of the reporter of a piece of evidence

Figure 49: Lesson Title and Lesson Objective

The lesson objective is an optional complement of the lesson title. Its function is to
emphasize the purpose of the lesson (see Figure 49). Table 19 shows an example of the
lesson objective script.

Figure 38 shows a hierarchical set of /esson section components. There are lesson
problems and lesson reductions. In that figure, the lesson section components contain
information about problems and reductions respectively.

The lesson problem is the lesson component that links to the abstract problem in the
abstract reasoning tree. The lesson problem covers the problem that will be reduced to
simpler sub-problems in the reduction process. Table 20 shows a sample of lesson
problem script in the XML format. When the lesson problem is constructed, its examples
are also formed, by reference to the abstract reasoning tree.

The lesson reduction is the lesson component that links to the abstract reduction in
the abstract reasoning tree. The lesson reduction teaches the problem solving strategy that

reduces a particular problem to some simpler sub-problems or results. Table 21 shows a

134

sample of lesson reduction script XML. The link to an abstract reduction in the abstract
reasoning tree serves as a bridge to load the concrete reasoning from the concrete
reasoning tree to become the reduction examples.

After each lesson section, there usually are some examples that illustrate the lesson
learned. For the reduction process there are reduction examples, and for the synthesis
process there are synthesis examples. The examples are generated automatically by the
system based on the abstract reasoning tree.

The process of generating the reduction examples is described as following. The
abstract reasoning tree is built from the concrete reasoning tree. Each abstract node in the
abstract reasoning tree is the abstraction of one or several concrete nodes in the concrete
reasoning tree. As detailed in Chapter 3, there are three types of abstract reduction nodes:
abstract problem nodes, abstract reduction nodes and abstract solution nodes. An abstract
problem node is the abstraction of a set of problem nodes in the concrete reasoning tree.
An abstract solution node is the abstraction of a set of elementary solution nodes in the
concrete reasoning tree. An abstract reduction node is more complex being an abstraction
of both problems nodes and reduction nodes in the concrete reasoning tree.

A reduction process in the abstract reasoning tree is captured in an abstract sub-tree
that contains an abstract problem node, an abstract reduction node and a set of either
abstract solution nodes or abstract problem nodes. Therefore that abstract sub-tree is, in
fact, the abstraction of a sub-tree of a concrete reasoning tree. A lesson that is based on
an abstract sub-tree is going to use the concretion of the abstract sub-tree as an example.

Figure 40 shows two generated reduction examples for the lesson in Figure 38.

135

We use Figure 31 and Figure 50 to show how the lesson section is built from the
abstract tree. The right hand side of Figure 50 shows a lesson section which was
constructed from the abstract reasoning tree in Figure 31. The dimmed nodes are not
included in the lesson section. The lesson section thus contains the lesson’s problem LP;,
the lesson’s reduction LRI, and the lesson’s sub-problems LP,, LP; LP,, and LPs. The
abstract nodes in the lesson sections are the abstraction of the two sub-trees that are
bordered by the broken blue lines on the left hand side of Figure 50. These two sub-trees
are retrieved automatically during the lesson generation to be used as examples for the

lesson section.

Figure 50: Lesson’s Examples Generated for a Lesson’s Section

Lesson solution is the lesson component that links to the abstract solution in the
abstract reasoning tree. The lesson solution teaches how a solution is obtained. Table 22
presents a sample of the lesson solution script in the XML format. Figure 42 shows a sub-

tree with a set of lesson solutions.

136

Lesson synthesis is a component of the synthesis process. The synthesis process is
guided by the lesson synthesis which instructs the students how to compose the available
solutions into the solution of a more complex problem. An example of lesson synthesis
script in the XML format is shown in Table 23. An example of generated lesson
syntheses is shown in the top part of Figure 42. In this figure, the lesson syntheses are
differentiated from the lesson solutions by lighter green.

Figure 42 shows a snapshot of the synthesis process and the synthesis examples. The
synthesis examples are generated automatically as their counterparts, the reduction
examples. In the concrete reasoning tree, each problem node is associated with a solution
node; each reduction node is associated with a synthesis node. The synthesis examples
are then presented correspondingly to the reduction examples.

5.1.3.3 Lesson Text Generation

The lesson’s text is, in essence, the text version of the lesson’s content and it is

generated from the content of the lesson’s components. Figure 51 shows part of the

lesson text in a text panel. This is the text which is spoken when the voice is enabled.

137

[esson

Lesson:
B elievvability of the reporter of a piece of evidence.

Let us consider the task to:
Azzezs the believability of the reporter of the piece of evidence.

The believability of the reparter of a piece of evidence iz determined by the
reparter's competency and credibility.

Therefore we have to perform the following two tasks:
Azzezs the competency of the reporter of the piece of evidence.

Azzezsz the credibility of the reporter of the piece of evidence.

Azzezzed competency of the reparter.
Let us consider:

Azzezzed credibility of the reparter.

To be believable, the reporter of a piece of evidence has to be both competent
and credible. Therefore one can eztimate the belewvability of the reporter az
the minimum of the reporter’'s competency and credibility.

we have obtained the:
Azzezzed behevability of the reporter of the piece of evidence.

The credibility of the reporter of a piece of evidence dependes on reporter's
veracity, objectivity, and obzervational senzitiviby.

we therefore have to:
Azzessz the veracity of the reporter of the piece of evidence.

Azzezs the objectivity of the reporter of the piece of evidence.
Azzezs the obzervational zenzitrvity of the reporter of the piece of evidence.

Example:
Hamid Iir and EVD-D aven-1ir01-02

Let us consider the following solutions:
Azzezzed veracity of the reporter of the piece of evidence.
Azzezzed objectivity of the reporter of the piece of evidence.

Azzezzed observational sensitivity of the reporter of the piece of evidence.

A reparter for which any of the three factarz haz a veny low value iz not credible.
Therefore one can estimate the credibility of the reparter az the minimum of
veracity. objectivity, and observational sensitivity.

Example::

Audia

Figure 51: Lesson Text Panel

138

5.1.4 Lesson Generation Algorithm
There are two phases in lesson generation: abstract problem solving strategy
generation and example generation.
5.1.4.1 Abstract Problem Solving Strategy Generation

The abstract problem solving strategy generation algorithm is described as follows:

Table 5: Abstract Problem Solving Strategy Generation Algorithm

Given:

o LSL - list of lesson scripts
Return:

e GLL - list of generated lessons

AbstractProblemSolvingStrategyGeneration(LSL)
l. GLL« O
2. for each lesson script LS € LSL do

3. create lesson title

4. create lesson objective (if any)

5. create lesson definition for lesson title (if any)
6. create lesson annotation for lesson title (if any)
7. for each lesson section LSec € LSecL € LS do
8. if lesson problem LP is not created then

9. create lesson problem LP

10. create lesson annotation for LP (if any)
1. create lesson definition for LP (if any)
12. create lesson solution LS for LP

13. end if

14. create lesson reduction LR

15. create lesson annotation for LR (if any)

16. create lesson definition for LR (if any)

17. create lesson synthesis LS for LR

18. for each sub-problem LP; € LSec do

19. create lesson problem LP;

20. create lesson annotation for LP; (if any)
21. create lesson definition for LP; (if any)
22. create lesson solution LS; for LP;

23. end for

139

24. end for

25. build lesson GL from lesson components above
26. add GL to GLL
27. end for

28. return GLL
end AbstractProblemSolvingStrategyGeneration

The algorithm shows how the abstract problem solving strategies are generated from
the lesson scripts. Each lesson script generates a corresponding lesson which tutors the
abstract problem solving strategy.

5.1.4.2 Example Generation
Note: according to Cormen (1997), the complexity of breadth-first traversing of a tree

RT =(V,8)) is the same with complexity of depth-first one, which is O(N, + N 5) =
O(N, + N, — 1) = O(N,) where N, is number of vertices and N is number of edges. The

semantics of breadth-first search however is more meaningful in the problem reduction
paradigm where a node is broken down into sub-nodes. Traversing the tree using the
bread-first strategy makes more sense than using the depth-first strategy.

Table 6 describes the process of retrieving the concrete components from an abstract

component. This process is frequently used in lesson example generation.

Table 6: Concrete Component Retrieval

Given:
e ARL - a set of abstraction rules
e AbstC - an abstract component which is abstract problem class, abstract
reduction class, abstract solution class or abstract synthesis class.
Return:
e CCs - a set of concrete components which are problem classes if abstract
component is abstract problem class, reduction rules if abstract component is

140

abstract reduction class, solution classes if abstract component is abstract
solution class, synthesis rules if abstract component is abstract synthesis class.
RetrieveConcreteComponents(ARL, AbstC)

1. CCs - list of concrete components

2. CCs«— U

3. for each abstraction rule AR = (CC, AC) € ARL do
4. if AbstC = AC then

5. add CC to CCS

6 end if

7. end for

8. return CCs

end RetrieveConcreteComponents

Table 7 describes the process of searching for the instantiations of a problem class, a
solution class or a reduction rule. The instantiation of a problem class (or instantiated
problem) is represented by a problem node in concrete reasoning tree. Similarly for the
other types of statements, the instantiation of a solution class (instantiated solution) is
represented by a solution node in concrete reasoning tree; the instantiation of a reduction
rule (instantiated reduction rule) is represented by a reduction node in concrete reasoning

tree.

Table 7: Search Instantiations

Given:
o C—aclass, which is a problem class or a solution class or a reduction rule
e RT - the reasoning tree
Return:
o ICs - list of instantiated classes which are problem nodes or solution nodes or
reduction nodes

SearchlInstantiation(RT, C)
1. ICs«—J
2. Queue «— I

141

3. add root of RT to Queue
4. while Queue is not empty do
5. Node « pop a node from Queue

6. Children « get children of Node
7. add Children to queue

8. retrieve a class C’ from Node

9. if C’ = C then

10. add Node to ICs

11. end if

12. end while
13. return ICs
return SearchInstantiation

The search of instantiations of a class, i.e., problem class, solution class or reduction
rule starts from the root of a concrete reasoning tree (line 3). The algorithm uses breadth-
first search (lines 4 to 7). For each node, a class is extracted from the node (line 8). To be
specific, the problem class is retrieved from the problem node, the solution class is from
the solution node, and the reduction rule is from the reduction node. Each of the classes
C’ is compared against the class C as argument (line 9). If they are the same, then add
that node into the returned list (line 9 to line 11). The algorithm searches the entire tree,
because there is no guarantee that the target node is not near the bottom of the tree.

Table 8 shows the lesson example generation algorithm.

Table 8: Lesson Example Generation Algorithm

Given:

e RT - areasoning tree

e ARs - a set of abstraction rules

e GLs - a set of generated lessons
Return:

e GEs - a set of generated lesson examples

142

LessonExampleGeneration(RT, ARs, GEs)

1.

IPs <& - IPs is a set of instantiated problem nodes

2. ISPs « & - ISPs is a set of instantiated sub-problem nodes

3. IRs « @ - IRs is a set of instantiated reduction nodes

4.

5. for each generated lesson GL € GLs do

6. for each lesson section LSec € GL do

7. extract the abstract problem class AP from lesson problem LP in LSec

8. set of problem classes PCs «— RetrieveConcreteComponents(ARs, AP)

0. for each problem class PC € PCs do

10. IPs < SearchlInstantiation(RT, PC)

1. end for

12. extract the abstract reduction class AR from lesson reduction LR in LSec

13. set of reduction rules RdRs < RetrieveConcreteComponents(ARs, AR)

14. for each reduction rule RdR € RdRs do

15. IRs « SearchlInstantiation(RT, RdR)

16. end for

17. for each lesson sub-problem LSP € LPsin LSec

18. extract the abstract problem class AP’ from lesson sub-problem LSP

19. set of problem classes PC’s < RetrieveConcreteComponents(ARs, AP’)

20. for each problem class PC’e PC’s do

21. temp <« SearchInstantiation(RT, PC’)

22. add temp to ISPs

23. end for

24. end for

25. Connect each IP in IPs to its child IR in IRs which in turn connects to its
children in ISPs.

26. end for

217. add the examples to GEs

28. end for

29. return GEs
end LessonExampleGeneration

Lesson example generation is based on the generated lessons. The FOR loop on line 5

enumerates all generated lessons. For each lesson, the lesson sections are examined (line

6). For each lesson section, the abstract problem class is retrieved based on the reference

to it from the lesson problem (line 7). From the abstract problem class and abstraction

rules, a list of concrete problem classes is retrieved (line 8). The problem classes are then

143

used to retrieve instantiated problem nodes from the concrete reasoning tree (line 9, line
10). Similarly the abstract reduction class is obtained from the lesson reduction (lines 12).
And the concrete reduction rules are obtained from the reduction abstraction rules (line
13). Line 14 and line 15 shows how the instantiated reduction rules which are reduction
nodes are retrieved from the concrete reasoning tree. From the lesson sub-problems, the
sub-problem nodes are also obtained. Three sets of problem nodes, reduction nodes and
sub-problem nodes are linked together to become the examples for the lesson section. An
enumeration of all lesson sections in one generated lesson also links all the examples for
lesson sections together to become larger examples to illustrate the generated lesson.
5.1.5 Complexity Analysis of the Lesson Generation Process

The complexity of lesson generation is computed based on the two algorithms,
described in Table 5 and Table 8, abstract problem solving strategy generation and lesson
example generation.

5.1.5.1 Complexity of Abstract Problem Solving Strategy Generation

The algorithm of abstract problem solving strategy generation in Table 5 depends
only on the lesson scripts. Let N be the number of lesson scripts; each with maximum N,
lesson sections. Each lesson section has one lesson problem, one lesson reduction and at
most Ny, lesson sub-problems. For each computation of a reduction process, there must
be at most one counterpart of the synthesis process, i.e., the lesson problem versus lesson
solution, lesson reduction versus lesson synthesis.

First, we compute the second FOR loop of generating the lesson sections (line 7 of

Table 5). Each lesson section has:

144

One lesson problem plus at most one lesson annotation and one lesson definition.
The lesson problem can be generated before if this section is not the first section.
It means that the lesson problem of this section can be the lesson sub-problem of
the previous lesson section. Each computation for generating a lesson problem is
a constant O(1), similar to that of lesson annotation and lesson definition. Each
lesson problem has at most one lesson solution which also costs a constant O(1).
In other words, each lesson problem plus its lesson decorations and its synthesis
counterpart cost a constant O(1).

One lesson reduction plus at most one lesson annotation and one lesson definition
and one synthesis counterpart — lesson synthesis. Similar to the lesson problem
they also cost a constant O(1).

A third FOR loop (innermost FOR loop at line 17) for generating the lesson sub-
problems plus at most one lesson annotation and one lesson definition for each
lesson sub-problem and their lesson solutions of synthesis process. Similar to the
lesson problem, each lesson sub-problem and its lesson decorations plus its lesson

solution cost O(1). Therefore the third FOR loop costs O(Nsuz).

Thus the second FOR loop costs O(N,)(O(1) + O(1) + O(Nss)) = O(NgNsus)

including the third FOR loop.

The first FOR loop (outermost for loop at line 2) is of the loop of N, lesson scripts.

Each lesson script consist of one lesson title, at most one lesson objective, at most one
lesson annotation and at most one lesson definition plus the second for loop. As we

discussed above, all the lesson header components are similar to the lesson decorations,

145

they cost a constant O(1). Hence, the first FOR loop costs O(N,)(O(1) + O(NuNsus)) =
O(N;NgNsu) including the second and third FOR loops. From the abstract tree point of
view, NNyNgp 1s linear with number of abstract nodes of the reasoning tree N,.
Therefore, the algorithm performs in O(NeNsNsup) = O(Nan).
5.1.5.2 Complexity of Examples Generation

The algorithm of lesson example generation in Table 8 depends on the algorithm in
Table 7 for retrieving the instantiations of a knowledge component from the reasoning
tree and the algorithm in Table 6 for retrieving the concrete components corresponding to

an abstract component.

As shown by Cormen (1997), the cost of traversing a tree = (Vl,ﬁl) using either
breadth-first or depth-first strategy is O(N ,+N 5) where N, is number of nodes in the
tree and N, is number of edges in the tree. Therefore the cost of searching for the
instantiations of a knowledge component in SearchInstantiation algorithm is O(N, + N 5).

Once the traverse of the tree is finished, the map between a class and its instantiated
classes are established to reduce the time for later searches. In other words, searching for

the instantiations of all necessary classes cost only O(N, + N;) = O(N,) because N, = N;s

+ 1, no matter how many times the search is called.

The algorithm of retrieving the concrete components from an abstract component
(RetrieveConcreteComponents algorithm) consists of a loop of abstraction rules, each of
which compare its abstract component against the searched one. If they are equal, the list

of concrete components of that abstract rule is returned. The comparison operation costs a

146

constant O(1). Worst case scenario enumerates all the abstraction rules which costs
O(N,)*0O(l) = O(N,) where N, is the number of abstraction rules. As similar to the
Searchlnstantiation algorithm, a map between the concrete classes and their abstract
classes are established to reduce the time for later searches. In other words, retrieving
concrete components from an abstract component takes only O(N,,), no matter how many
times the method is invoked.

In Table 8, the second FOR loop (line 6) is the loop of lesson sections. Each lesson
section contains one lesson problem, one lesson reduction and a loop of lesson sub-
problems. Each lesson problem, lesson sub-problem and lesson reduction retrieves a set
of concrete components via RetrieveConcreteComponents which cost O(N,,). As stated
above, no matter how many times the method is invoked, the cost is only O(N,,). Each
concrete component (a problem class, a solution class or a reduction rule) retrieves a set
of its instantiations (a set of problem nodes, a set of solution nodes, or a set of reduction
nodes in concrete reasoning tree, respectively) that costs O(N,). As stated above, no
matter how many times the method is invoked, the cost is only O(N,). In other words, the
operation of a lesson component (problem or reduction or sub-problem) retrieving its
own instantiations costs O(N,) + O(N,). Because the lesson section has one lesson
problem, one lesson reduction and a loop of lesson sub-problems, the complexity of the
whole lesson section is O(N,) + O(Ngup) + O(N,) = O(Nyp + Na + N,) where Ny 18
maximum number of lesson sub-problems per lesson section.

Let Ny be the number of generated lessons, and Ny, be the maximum number of

sections in each lesson, the algorithm in Table 8 costs O(Ngl x Nst X Nys) + O(Ng) +

147

O(N,) = O(NgNs Ngp + N + N,). From the abstract reasoning tree point of view,
NgiNgNyup 18 linear with number of abstract nodes of the abstract tree N,,. In other words,
the algorithm in Table 8 costs O(Ny + Nuy + Nyy).
5.1.5.3 Complexity of Lesson Generation

The complexity of lesson generation equals the complexity of abstract problem
solving strategy generation plus the complexity of lesson examples generation. The
complexity of the former costs O(N,,). The complexity of lesson examples generation is
O(Ny + Nay + N,). Over all, the complexity of lesson generation is:

O(Nan) + O(Ny + Ngw + N,) = O(Ngy+ Nay + Ny).
5.1.6 Generality of Abstraction-Based Lesson Generation

The abstraction-based lesson generation is based on the abstract reasoning tree. As
discussed above, the lesson section components are linked to the abstract nodes of the
tree. Each abstract node is the abstraction of a number of reasoning nodes in concrete
reasoning trees. An abstract problem node is an abstraction of concrete problem nodes.
An abstract solution node is an abstraction of concrete elementary solution nodes. An
abstract reduction node is an abstraction of concrete sub-tree consisting of problem nodes
and reduction nodes. The concrete reasoning trees are generated by the problem solving
engine which applies general reduction and synthesis rules to solve a given problem in
the context of a given scenario.

Figure 52 shows an example of an IF-THEN reduction rule which was learned from a
subject matter expert. This reduction rule can be instantiated in different scenarios of the

same domain, as illustrated in the following. One such scenario is Intelligence Analysis

148

where intelligent analysts assess pieces of evidence that favors or disfavors the
hypotheses under study. A similar scenario is Crime Scene Investigation where police

officers investigate various crimes.

IF: Assess the credibility of 707 as the reporter of 702

Q: ||What factors determitie the credibility of a reporter of a piece of evidence?

A: || The veracity, objectivity, and observational sensitivity of the reporter.

MAIN CONDITION

Var Lower Bound Upper Bound

201 {author) {actor)

202 || (non-elementary piece of evidence) |(piece of evidence)

Asgsess the veracity of 707 as the reporter of 702,

THEN: || Assess the objectivity of 70J as the reporter of 702

Assess the observational sensitivity of ?0J as the reporter of 702,

Figure 52: Reduction Rule

In the first scenario, the reduction rule can be instantiated as shown in Table 9. This
rule questions the credibility of Hamid Mir, a reporter of Dawn Magazine who wrote an
article about Bin Laden who was quoted as saying “We have chemical and nuclear

weapons as a deterrent and if America used them against us we reserve the right to use

them."

149

Table 9: Instantiated Reduction Rule in Intelligence Analysis Scenario

INSTANTIATED REDUCTION RULE

IF: Assess the credibility of Hamid Mir as the reporter of EVD-Dawn-Mir01-02.
Q: What factors determine the credibility of a reporter of a piece of evidence?
A: The veracity, objectivity, and observational sensitivity of the reporter.
THEN:
Assess the veracity of Hamid Mir as the reporter of EVD-Dawn-Mir(1-02.
Assess the objectivity of Hamid Mir as the reporter of EVD-Dawn-Mir(1-02.
Assess the observational sensitivity of Hamid Mir as the reporter of EVD-Dawn-Mir(01-
02.

In the second scenario the rule can be instantiated as shown in Table 10. In this
scenario, the police officer Connolly reported that Sacco committed the robbery and

shooting in South Braintree on April 15, 1920 [Schum, 1994].

Table 10: Instantiated Reduction Rule in Crime Scene Investigation Scenario

INSTANTIATED REDUCTION RULE

IF: Assess the credibility of Connolly as the reporter of a testimony under oath.
Q: What factors determine the credibility of a reporter of a piece of evidence?
A: The competency, veracity, objectivity, and observational sensitivity of the
reporter.
THEN:
Assess the veracity of Connolly as the reporter of a testimony under oath.

Assess the objectivity of Connolly as the reporter of a testimony under oath.

150

Assess the observational sensitivity of Connolly as the reporter of a testimony under

oath.

Let us now assume that an abstract reduction rule and the corresponding abstract
problems are built from the instantiated reduction rule in the first scenario, as shown in
Table 11. The lesson that is built from the abstract rule/reasoning in Table 11 can be used
both in the Intelligence Analysis scenario and in the Crime Scene Investigation scenario,

with examples generated automatically in each scenario.

Table 11: Abstract Rule Corresponding to the Rule Instance in Table 2

ABSTRACT RULE

IF: Assess the credibility of a reporter of a piece of evidence.
Q: What factors determine the credibility of a reporter of a piece of evidence?
A: The veracity, objectivity, and observational sensitivity of the reporter.
THEN:
Assess the veracity of a reporter of a piece of evidence.
Assess the objectivity of a reporter of a piece of evidence.

Assess the observational sensitivity of a reporter of a piece of evidence

There are two dimensions of generality of our approach to lesson design and
generation. The first regards the automatic generation of lesson examples for different
scenarios in the same domain, with no authoring or customization needed from the

instructor. The second regards the ability to apply the same abstract lesson to different

151

knowledge bases. The first dimension expresses the capability to capture the essence of
reasoning behind the problem solving approaches and to apply that knowledge into
different problems of different scenarios in the same domain. The second dimension
emphasizes the reusability of the abstraction-based lesson. The other side effect of this
capability is the automatic lesson generation from a knowledge base. If we already have a
lesson built for one knowledge base then the system can automatically generate other
lessons for other knowledge bases as long as they all rely on the same abstract problem
solving strategies.
5.1.7 User Interface

The lesson construction process has two phases: lesson design and lesson generation.
The lesson design targets the instructor who designs the lesson. The lesson generation is
mostly for the students who learn the problem solving expertise from the tutoring system.
Each of them has its own user interface.

5.1.7.1 Lesson Design User Interface

The lesson designer uses the lesson editor to design the lesson. The lesson editor has
two panels, as illustrated in Figure 53. The left-hand side panel displays a part of the
abstract reasoning tree whose root is the abstract problem associated with the lesson to be
designed. The right-hand side panel is the panel where the designer places the lesson
components and manipulates them. On its right margin is the widget toolbar with several

widgets to build the lesson components.

152

Lesson Planning %]

Lesson: Believabiity of the reporter of a piece of evidence. |

S [Obioctives: Laan e o s by o e s o apiocsof e |

‘ | | | ‘ Annatation: Let us consider the task to: ‘

. : Assess the believabillty of the repoiter of the pisce of evidence ‘ 5
L‘] Assessed believability of the reporter of the piece of

: evidence,

P U The beliewability of the reporter of

: - s credibilly.
To be believable, the reporter of a pisce of evidence has to be both competent and credible. Therefore onef
7| can estimats the believability of the reporter s the minimum of the isporter's competency
: : - Annotatid and credibility.
Assess the competency of the Assess the credibilty of the ieporter of
the pisce of evidence. -
E=
sessed credibility of the
the reporter. repater
he reporter of a piece . obiectivity, and
observalional sensitiv

eparter of the piece of evidence,

& tepoter for which any of the thres factars has a very low valus is not credibls. Thersfore one can
estimate the credibility of the reparter as the minimum of veracity, abjectivity, and
ebservatianal sensitivity.

Reduction Example

Assess the veracity of the reporter of | | Assess the chisctivity of the reparier Assess the abservational sensitivit ion Example |
the piece of evidence, of the piece of eviderce. of the reparter of the pizce of

oo Compasition Example |
Assessed veracity of the Assessed objectivity of the e
reparte of the piece of evidence ieparter of the piece of evidence Assessed observational
sensilivily of the reporte of the
piece of evidence.

Figure 53: The Interface of the Lesson Editor

When the lesson editor is invoked, the right hand-side panel always has the lesson
title, the lesson objective and the lesson problem to be presented in the lesson. The left-
hand side panel contains the tree whose root already has a lesson problem created by
default. The nodes which are used in the lesson components are highlighted in red, as
seen in Figure 53. The designer can drag an abstract reduction to create a lesson section.
Each lesson section contains a reduction example node and a synthesis example node.
These two example nodes are just placeholders. They will be automatically generated
later when the lesson is generated.

Figure 77 shows the widget toolbar. The objective button creates a lesson objective.
This type of node has a constraint: there is only one lesson objective in a lesson.

Therefore if the objective exists then selecting that button will not yield another lesson

153

objective. The definition button creates a definition for a specific lesson component (each
lesson component which is not a decorative may include one definition). The definition
token is editable. It allows the lesson designer to select one or several terms to be defined.
The terms to be defined are generated based on the content of the lesson component
which the definition is for.

Figure 54 shows the interface of the definition editor. In this editor there are two
terms to be defined, piece of evidence and credibility. By default, all are selected, but the
designer can change this by un-checking some terms and saving the change. Only the

checked terms are presented in the lesson.

£ Defintion Editor

Terms to define: uncheck the unwanted kerms

piece of evidence

credibility
[Save ” Zancel]

Figure 54: The Interface of the Definition Editor

The next button is the annotation button, a decorative component for the creation of
the lesson’s annotations. This type of component is to clarify or introduce some phrases
before another component. All the decorative components have an option to turn off the
voice when being generated. The synthesis button generates the lesson’s synthesis
component for any lesson section components. Each lesson component in the lesson
editor is generated by default. One may right-click on each component to modify the

content and the text to be displayed in the table of contents of the tutoring system.

154

The order setting button allows the designer to specify when components should be
displayed and for how long, as order-duration pairs associated with each lesson
component, as illustrated in Figure 55. In this figure, the lesson’s title and objective are
displayed at the same time and at first. The lesson title lasts until the end of the lesson,
whereas the lesson objective stays only one step due to its duration value being 1. The
next component to be displayed is the lesson’s problem which lasts until the end of the
lesson because its duration is -1. The lesson’s reduction appears next, then the lesson’s

sub-problem. The synthesis example is displayed last.

[|1] Lesson: Believability of the reporter of a piece of evidence. |

: ©)

1 '1|] Objectives: Leamn how to aszess the believability of the reporter of a piece of evidence ‘

i f

Iy '1|] Annotation: Let us conzider the task to: ‘

[21]Assess the beliewability of the reparter of the piece of evidence. |

[?;'1]\ssessed believability of the reporter of the piece of
J evidence.

= Lt .=

[3-1] The beligwability of the reporter of
credibility.

3

o be believable, the reparter of a piece of evidence has to be both competent and credible. Therefore one
can estimate the believability of the reporter az the minimumn of the reporter’s competency
and credibility.

[16.1]

1] Annotatis

151 ssess the competency of the
reporter of the piece of evidence.

(51]Assess the credibility of the reporter o

the piece of evidence.

[15.1].ssessed competency of
| the reparter.

2.0 ged

Exampl |

[14.1].ssessed credibility of the

K reporter.
he reporter of a piece ol

L2 n|] Composition Example ‘

. objectivity, and

|. obzervational senzitivity.

3.1

observational sensitivity.

reporter for which any of the three factors has a very low value iz not credible. Therefore one can
[estimate the credibility of the reporter az the minimum of veracity. objectivity, and

[8.-1]Assess the weracity of the reporter of
the piece of evidence.

81]Assess the objectivity of the reporter

of the piece of evidence.

[8"1]Assess the observational zenzitivit

[3.1] Reduction Example |

of the reporter of the piece of

na-].ssessed veracity of the

[1.1]

zzeszed objechivity of the

idence.

[18.1];
|

omposition Example

21 1 ssessed observational

| reporter of the piece of evidence.

reparter of the piece of evidence.

sensitivity of the reporter of the
piece of evidence.

Figure 55: The Interface of the Order Setting Module

155

This feature is very important in the lesson design process, allowing the
customization of the lessons. Each tutoring strategy is different based on the student’s
knowledge, the domain, the content of the lesson and the designer’s teaching style.

The last button in the tool bar is the preview button which displays the lesson’s
components based on their order and duration. The lesson designer can stop the automatic
display to navigate back and forth at his/her own pace. This preview panel can visualize
the lesson in the tutoring system, allowing the lesson designer to see the current status of
the lesson based on its settings. The designer can go back to the setting order mode to
modify the configuration and the order and then preview again to view the effect of the

new changes. Figure 56 shows the preview panel.

156

Lesson Planning

[|1 I esson: Beliewvability of the reporter of a piece of evidence.

[2"|1]Assess the beliewability of the reporter of the piece of evidence.

B"”The believability of the reporter of a piece of evidence is determined by the reporter’s competency and credibility,)

[5": Lassess the competency of the reparter of the piece of evidence.

[5": lssess the credibility of the reparter of the piece of evidence,

[E"”The credibility of the reporter of a piece of evidence dependes on reporter's veracity, objectivity, and observational sensitivity.)

[8":].-’-‘-.ssess the: veracity of the reporter of the piece of evidence,

[E":].-’-‘-.ssess the: objectivity of the reporter of the piece of evidence.

[E":].-’-‘-.ssess the obzervational sensitivity of the reporter of the piece of evidence.

[9'1|] Reduction Example

Figure 56: Preview of a Designed Lesson

5.1.7.2 Lesson Generation User Interface
The lesson generation user interface is for the students who take the lessons. The
lesson has three components, table of contents, lesson content and lesson text, each with
its panel. The table of contents panel contains three sub-panels: previous lessons, current
lesson and next lessons (see Figure 57). The previous lessons panel displays all the
previously presented lessons. Their tables of contents are accessible for a quick review.
The table of contents of the current lesson is displayed fully. The next lessons panel does

157

not allow the view of the tables of contents. Once the current lesson is finished, it is
moved up to the previous lessons panel and the next lesson in the next lessons panel is
moved to the current lesson panel (if there is a next lesson). The next and previous

lessons link to the current lesson via the post-requisites and pre-requisites of the lessons.

Lessans | Glossary

Table of Content

Previous | essons
E_';'_] Hypathesis suppart fram piece of evidence,

Proposed Lesson
Believabiliby of the reporter of a piece of evidence.
Companents of belizvability
Credibility
Reduction examples
Synthesis af credibility
Synthesis af believability
Synthesis examples

MNext Lessons
Belizvability of the source of a piece of evidence.
Credibility of tangible evidence,

Figure 57: Lesson’s Table of Contents Panel

The lesson content panel contains two sub-panels, the abstract panel and the example
panel, as illustrated in Figure 58. The lesson example panel is minimized during the
lesson display until there is an example to show. The abstract panel displays the abstract
problem solving strategy being taught. It follows the order setting to present the lesson
components. The lesson’s example component is displayed in the lower panel. The

student can browse the available generated examples by clicking on the navigational

158

labels “Next” and “Previous,” or by selecting a certain example from the “Select
Example” combo box. The student controls the display of the lesson with the navigation
buttons at the bottom panel: the next button will advance one step, the previous button

will go back one step and the stop button will stop whatever is currently displayed.

Figure 58: Sample Lesson Content

Lesson’s text is generated automatically based on the content of the lesson. Each
lesson component will produce a text version of its content. The collection of all lesson

component texts forms the text version of the current lesson. The text of the current
159

A~
Lesson: Believability of the reporter of a piece of evidence.
| Azsess the believability of the reparter of the piece of evidence. ‘
The beliewability of the reporter of a piece of evidence iz determined by the reporter’s competency and
credibility.
‘ Agsess the competency of the reporter of the pisce of evidence. ‘ ‘ Assess the credibility of the reporter of the pisce of evidence. ‘
(The credibility of the reporter of a piece of evidence dependes on reporter's veracity, objectivity, and obzervational sengitivity.)
v
<
Illustrations: Nexd Select Example: |Hamid Mir and EVD-Dawn-Mir01-02 v

~

‘ Aszzess the extent to which one can believe Hamid ki az the reporter of EVD-D avwn-kird1-02, ‘

!
O:what factors determine the extent to which a reporter of a piece of evidence can be trusted?
A:The competency and the credibility of the reparter.
Azszess the competency of Hamid Mir as the reporter of Azsess the credibility of Hamid Mir as the reporter of
EVD-D w01 -02, EVD-Drawn-bdi]-02.
[w'hat factors determine the credibility of a reporter of a piece of evidence?
A:The veracity, objectivity, and observational sensitivity of the reporter.
Agzess the veracity of Hamid Mir az Azzess the objectivity of Harnid Mir Azsess the obzervational sensitivity
the reporter of EVD-Dawn-bind1-02, as the reporter of of Hamid Mir as the reporter of
EVD-D w0l -02, EVD-Dawn-tind1-02.
v
< b

component is highlighted blue. By default the audio is turned on but the student can turn
off that option. Figure 51 shows a part of the text of the current lesson.
5.1.8 Evaluation of Lesson Generation

The research is implemented as an extension of the Disciple agent development
environment. The Disciple learning agent shell uses a multi-strategy approach for
developing intelligent agents where an expert can teach the agent how to solve domain-
specific problems. Disciple has proved to be successful in developing learning agents that
can learn as apprentices. Such agents can use their learning capability to learn how to
generate lessons and exercises.

Disciple provides the basic framework to develop the tutoring systems. Disciple has a
workspace manager who manages and provides the public interfaces to integrate its
components altogether. The abstraction-based tutoring systems which are built with the
Disciple learning agent shell take advantage of that facility to ease the process of
developing their necessary components which work together with the Disciple
components. Disciple also provides the infrastructure for the tutoring systems, such as the
knowledge base module and the learning module.

As mentioned earlier, the new approach speeds up the process of building the tutoring
systems partly due to the rapid knowledge acquisition capability that Disciple has. This
capability not only reduces the time it takes to acquire the domain knowledge, but it is
also used by the tutoring system to simplify the acquisition of pedagogical knowledge.

Therefore Disciple is an essential component in achieving rapid development of a

160

tutoring system. The domain that was used in the experimentation for our work is
Intelligence Analysis.

In Spring 2006 we had an opportunity to evaluate the tutoring system with the
students of the course “Military Application of Artificial Intelligence” (MAAI-2006) at
US Army War College (USAWC). The students were either experienced intelligence
analysts or users of intelligence. We have repeated this evaluation with the students in the
GMU course “CS 681 Designing Expert Systems.” As opposed to the Army War College
students, none of the GMU students had significant prior knowledge of intelligence
analysis.

After using the tutoring system, the students evaluated various aspects of it by
expressing their disagreement or agreement with certain statements, on a five point scale
(strongly disagree, disagree, neutral, agree, and strongly agree). Figure shows a sample of
these subjective evaluation results. 7 of the 12 USAWC students agreed that the tutoring
system helped them to learn the addressed topic and 11 of them agreed that the examples
facilitate the understanding of the presented topic, as shown in the left-hand side of
Figure 59. The right-hand side of Figure 59 shows the evaluation of the same aspects by
the GMU students. All 15 students agreed that the tutoring system helps to learn the
addressed topic. Also, 14 of the 15 GMU students agreed or strongly agreed that the
examples facilitate the understanding of the presented topic.

In this evaluation, we can see that background knowledge plays an important role in
the perceived usefulness of a tutoring system. The GMU students were not familiar with

the domain at all, while the USAWC students were very familiar. Therefore, the tutoring

161

system therefore seemed more valuable to the GMU students than to the USAWC
students. It is however very encouraging that even the USAWC students considered the

tutoring system useful.

The examples facilitate the understanding of the The examples facilitate the understanding of the
presented topic students presented topic
students
12
12
10
10
mCS681-06
8 8
B VAAO5|
6 6
4 4
) 2
0 : : ‘ T T 0 i i j j
strongly disagree disagree neutral agree strongly agree strongly disagree disagree neutral agree strongly agree

students The tutoring system helps r'ne to learn the The tutoring agent helps me to learn
addressed topic student

9 the addressed topic

9

81 8

; - 7 N

6 ‘

O MAAL-06 ‘
51 5

‘ [mcse81
47 4 ‘
] ‘
2 2 ‘
' ﬂ | ‘
0 T T 0 T
strongly disagree disagree neutral agree strongly agree strongly disagre neutr agre strongly

Figure 59: Evaluation of Generated Lessons

Figure 60 presents a different type of evaluation performed with the GMU students,

which is based on the Kirkpatrick test model (Kirkpatrick, 1998). We have surveyed the

162

students, both before and after they have used the tutoring system, on how much
knowledge they thought they had about specific intelligence analysis topics tutored by the
system. In addition, at the end of the class, the students were tested to objectively
evaluate their learned knowledge. The first five charts of Figure 60 compares the
students’ perception of their intelligence analysis knowledge (on several basic topics)
before using the tutoring system (in blue), and after using the system (in red). The charts
show clearly a very significant improvement in the tutored topics: hypothesis assessment,
information content and credibility, credibility of reported evidence, credibility of the
reporter, and credibility of tangible evidence.

The last figure of Figure 60 presents the objective evaluation of CS 681 students. At
the end of the class, the students took the tests generated by the test agent (see Section
5.2). The tests focus on the understanding of the Intelligence Analysis domain. The agent
graded the students based on the correct answers. The lowest score was 71, and the
highest was 100. Out of 15 students, six scored from 70 to 79, three scored from 80 to 89
and six scored over 90. According to top charts of Figure 60, there were some students
who did not know any thing about this domain, and some how could score at least 70
points. Therefore this evaluation suggests that our experimental tutoring system is a

valuable tool to enhance a student’s knowledge.

163

O Subjective Prior Knowledge

studen| B Subjective Post Knowledge
S:Ljdents students 10— m Obj(:ctive Test-Based Evjuation
| Hypothesis] [Information conter .| Credibitity of
X y reported evidence

7 through evidence 7

6 analysis o 6

5 4 5

4 4 4

3 —— 3

2 —— 2 — —

HH —— — — 1 —

o . . . 0

None Verylow Low Medium High Very high None Verylow Low Medium High Very high Non Very Lo Mediu Hig Very

Credibility of the

reporter of a piece Credibility of

tangible evidence

| Grades of Generated Tests

students of evidence students
9 9
8 g students
7 7 R
6 6 ¢
5 5 £
4 & 4
3 I 3
2 e I
17 — f —]
N N .

None Verylow Low Medium High Very high None Verylow Low Medium High Very high 50- 60-69 70-79 80- 90-100

Figure 60: Evaluation of Tutoring

5.2. Learning and Generation of Test Questions
In general, the test questions are categorized into six levels of cognition, known as the
Bloom’s Taxonomy (Bloom, 1956). They correspond to different levels of understanding,
as explained below with examples from the problem reduction/solution synthesis

paradigm.

e Knowledge level: the ability to recall data or information such as a problem

reduction rule.

o Comprehension level: the ability to understand the meaning of instructions or

problems, for instance, to recognize an error in the reduction of a problem.

164

e Application level: the ability to apply a concept to a new situation, for example, to

apply a learned reduction strategy to solve a new problem.

e Analysis level: the ability to distinguish between facts and inferences and to
decompose the material into components, such as being able to reconstruct the

reduction step that is applicable to a certain problem.

e Synthesis level: the ability to combine components into a whole, for example, to

synthesize a final solution of a problem from elementary solutions.

e Evaluation level: the ability to make judgments about the values of ideas or
materials, such as being able to judge if some new reduction steps are logically

sound.

The tests can be developed to measure the level of a student’s understanding, based
on the Bloom Taxonomy. In this dissertation we focus only on some of the levels, such

as, knowledge, comprehension and analysis.

5.2.1 Learning of Test Questions
We have developed learning methods that allow an instructional designer to teach an
agent how to construct test questions. Our methods are based on the problem reduction
rules that have been previously learned by the agent. They consist in extending these
rules with additional components, to transform them into test questions rules. The rules
are then applied in appropriate settings to generate specific test questions. The designer
selects an example of a problem reduction rule and transforms it into a test for the

knowledge, comprehension or analysis level, as discussed below.

165

To test the knowledge level, the designer drops one or several sub-problems in a
reasoning step to produce a deliberately wrong reasoning step. Figure 61 shows one of
the examples for such omission test. In this example, the first sub-problem of assessing
the degree to which a piece of evidence favors a hypothesis was dropped. The reasoning
step becomes incomplete and that would alert the student who learned it by heart and
encounters it during the testing period. During the testing period, the question and answer

1s not shown, to make the test more difficult.

Agsess to what extent the piece of evidence EVD-Dawn-Mir01-02c favors the hypothesis that &1 (aeda
congiders deterrence as a reason to obtain nuclear weapans,

3: What factars determing how a piece of evidence favars a hypothesis?
Atz relevance and believability.

..

Aszzess the extent to which EVD -Dawn-tMir01-02c iz believable.

\ dropped sub-problem
Figure 61: Test Example for Knowledge Level

Figure 62 shows a modified reasoning step where the instructional designer
deliberately altered the meaning of one of the sub-problems. In particular, the assessment
of the believability was replaced with the assessment of the authenticity. This type of test
question which is named modification test requires the students to have deeper

knowledge about the subject compared to the knowledge level tests.

166

Assess to what extent the piece of evidence EVD-Dawn-Mil1-02¢ favors the hypothesis that &1 Daeda
considers detenence as & reazon to obtain nuclzar weapaons,

3: What factore determing how a piece of evidence favorz a hypothesiz?
A Itz relevance and believability,

Assess the authenticity of EVD-Dawn-Mir01-02c

Azzess towhat extent EVD -Dawn-Mir01-02c favars the hypothess
that &l Daeda conziders deterrence ag a reazon to obtain nuclear
weapons, azsuming that EVD-Dawn-Mirl1-02¢ iz believable.

modified subtask>

Figure 62: Test Example for Comprehension Level

Another type of test question that is more challenging than the above two is the
construction test. The designer defines several sub-problems which may be unrelated or
incorrectly related to the correct sub-problems of a problem. The test question will
present a problem and a list of potential sub-problems, including the correct and the
incorrect ones. The student must select the correct sub-problems. This type of test
requires the student to analyze the sub-problems to build up a correct reasoning step.
Figure 63 illustrates the design of a construction test. It shows the extra deliberately
“wrong” sub-problems: assessing the availability, the accuracy and the relevancy of a
piece of evidence. Those three together with the original two sub-problems will make a

pool of sub-problems to select from.

167

Agzezs bo what extent the piece of evidence EWD-D avn-Mir01-02c fawars the hypothesis that Al 0aeda
considers deterrence as a reason to obtain nuclear weapons.

3: "What factors determine how a piece of evidence favors a hypothesis?
A |tz relevance and believability.

..

Agzzess to what estent EVD-Dawn-Mird1-02c favors the hypaothesis Agzzess the extent to which EVD-D avwn-Mir01-02c iz believable. |
that &l Qaeda considers deterence az a reazon to obtain nuclaar
wieapohs, azzuming that EVD -0 awn-Mird1-02c i beliewable.

added subtasks "
< >
Make Construction Test Owverwrite Default Assessment: Correct Incorreck Incomplste
s
Agzess the extent ta which EVD- Agzess the extent to which EVD- Agzess the extent to which EVD-
Dawn-Mirll-02c iz availability. Dawn-inll-02c is accurate. D awn-tir01-02c iz relesvant.
w
< >

Figure 63: Test Example for Analysis Level

No matter what type of test question the designer plans to build, a set of explanations
and a hint must be constructed in parallel with the content of the test. Figure 64 shows a
panel where the explanations are created by the designer. There are three explanations for
three types of the answers: correct, incorrect, and incomplete. The explanations are
displayed once the answer is given. The hint, on the contrary, is given before answering
the test question and by request only. Notice that the explanations and the hint correspond
to the particular test example being built. That is, they are very specific, containing the
instances (such as EVD-Dawn01-02c) from the example. The example, however,
corresponds itself to a previously learned rule. This rule will be extended with
generalizations of the explanations and the hint, obtained by replacing the contained

instances with the corresponding rule variables, as discussed in the following.

168

Explanations

Explanation when "correct” answer is selected

The extent to which EVD-Dawn-Mird1-02c Favors the hypothesis depends
an the infarmation provided by EVD-Dawn-Mird1-02c and on the extent
ko which we believe this information. <br=Far instance, if
EVD-Dawn-Mir01-02c is nok very relevant to the hypothesis, then it will
not significantly Favar ik, even if the information provided would be true.
«hr=Similarly, if EVD-Dawn-Mir01-02c is very relevant, but we do naot
believe it, then it will nok significantly Favar the hypaothesis,

Explanation when "incorrect” answer is selected

The extent ko which EVD-Dawn-Mir01-02c favors the hypaothesis ™
depends only an the information pravided by EVD-Dawn-Mir01-02c

and on the extent to which we believe this information. <br=For
instance, if EVD-Dawn-Mir01-02c is nok very relevant ko the
hypathesis, then it will nok significantly Favar it, even if the
information provided would be true, <br =Similarly, i
EVD-Dawn-Mir01-02c is very relevant, but we do nok believe it, then it

will ok significantly Favar the hypothesis, W
Explanation when "incomplete"” answer is selected
The extent to which EVD-Dawn-Mir01-02c favors the hypothesis S

depends only on the information provided by EVD-Dawn-Mir01-02c
and on the extent to which we believe this infarmation. <br=For
instance, if EVD-Dawn-Mird1-02c is nok very relevant ta the
hypothesis, then it will not significantly Favor it, even if the
infarmation pravided waould be krue, <br =Similarly, iF
EVD-Dawn-Mir01-02c is very relevant, but we do not believe it, then it

will nok significantly Favar the hypothesis, ;
Hint
What Fackars determing the extent ko which a piece of evidence ~

favors a hypothesis? <br=Is it impartant For EVD-Dawn-Mir01-02c ko

be relevant to the hypothesis? <br = Is it important ko be believable?
«br=<hr> The relevance of a piece of evidence to a hypathesis

refers to how pertinent, connected, ar applicable the infarmation
provided by the piece of evidence is to the hypothesis, Itis a

measure of how well the piece of evidence satisfies the user's

information need with respect to the hypothesis, <br=<br= The »

Figure 64: Explanations Construction

Once an example of the test question is provided, the task now is to learn how to
generate similar tests in future. Learning by test examples is processed in a sequence of

steps:

169

Receive a reduction rule to learn a test rule based on it. When the instructional
designer plans to create a test example, s/he usually goes through a list of
available reduction rules and picks out the desired one. The reduction rule

corresponding to the above examples is shown in Figure 65.

DECOMPOSITION RULE DDR.00013 FORMAL DESCEIPTION

IF:

Assess to what extent the piece of evidence 707 favors the hypothesis that 702
considers deterrence as a reason to obtain nuclear weapons.

Q: ||What factors determine how a piece of evidence favors a hypothesis?

A: |Its relevance and believability.

MAIN CONDITION

Var Lower Bound Upper Bound

201 ||(elementary piece of evidence) ||(piece of evidence)

202 (terrorist group) {actor)

THEN: |2 reason to obtain nuclear weapons, assuming that 707 is believable

Aszsess to what extent 707 favors the hypothesis that 702 considers deterrence as

Assess the extent to which *OF 13 believahle,

Figure 65: A Reduction Rule

Construct a test rule based on the reduction rule and the modifications and
extensions of one of its examples. A test rule basically contains a reference to the
reduction rule and a list of extensions. The extensions include the test category
(i.e. omission, modification, or construction), the category-related information

and the generalizations of the explanations and hint. For the omission test, the
170

related information is the reference to the dropped sub-problems. For the
modification test, it is the old and the new contents of the modified sub-problems.
For the construction test, it is the extra sub-problems that were entered during the
construction of the test question example. The explanations and hint are the same

for all types of test. They are generalized to be applicable to different scenarios.

5.2.2 Generation of Test Questions

With a set of test rules available in the tutoring knowledge base, the agent can
generate numerous test questions to present to the students who already took the related
lessons. Indeed, each test question is based on a reduction rule, and for each instance of
the rule in a knowledge base, there is a corresponding test question. Consequently, a lot
of different test questions can be generated from a single test rule if the domain

knowledge is rich. The Table 12 presents the algorithm for generating test questions.

Table 12: Algorithm of Test Question Generation

Given:
e TRs - set of test rules
e RT - areasoning tree
Return:
o GTQs - list of generated test questions

TestQuestionGeneration (TRs, RT)

1. for each test rule TR € TRs do

2 RdR « retrieve reduction rule from TR

3 List of instantiations of reduction rule IRdRs «— SearchInstantiation(RT, RdR)

4 for each IRdR € IRdRs do

5. if TR is omission test then

6 GTQ <« drop the sub-problem node(s) of IRdR specified in TR

7 else if TR is modification test then

8 GTQ « modify the content of the sub-problem node(s) of IRdR specified
in TR

171

0. else if TR is construction test then

10. GTQ « create a pool of sub-problem nodes from the sub-problem node(s)
of IRdR plus added sub-problem node(s) specified in TR

1. end if

12. add GTQ to GTQs
13. end for
14. end for

15. return GTQs
end TestQuestionGeneration

From a list of generated test questions, a sort procedure is initiated based on sorting
criteria: random distribution or an ordering of the test questions in context. The random
distribution generates the test questions in the random order each time the test agent
starts. That makes the tests more versatile and interesting: the student cannot tell what
test will be next. No test session will be the same for all students, even for the same
student. For the ordering of the test questions in context, the tests are arranged in such a
way that they are presented from the top down to the bottom of the reasoning tree. This
type of distribution helps student to recall the learned knowledge by following the
context.

The two types of distribution are suitable for two types of test mode: self-test and
assessment test. In the self-test mode, the students are tested to reinforce their learned
knowledge rather than to assess of their knowledge. The students are able to go back to
the lesson corresponding to the test, via the “Go To Lesson’ option, to review the lesson.
In the assessment mode, the students do not have access to the lessons. In other words,

they do not have the “cheat sheets” with them.

172

Figure 66 shows a generated test question which is based on the test rule learned from
the test example in Figure 62. The test question displays an incorrect reasoning in which
one sub-problem is modified. Note that the question and answer are omitted. The student
will have to indicate whether the reasoning step displayed is correct, incomplete or
incorrect. Each selection is followed by a context-sensitive explanation. A hint is always
available to help the student in case s/he needs. Glossary is also provided for clarification
of various terms. Once the answer is chosen, the system will grade it and report back both
this grade and the cumulative grade (which corresponds to all the test questions

answered).

EEX
Systsm Ontology Rules Scenario Reasoning Solving Tutoring KB Reports Help ke
Fepositary|PNW-cwy-070809-001al Qaida Y [HEG
Tukoring Test |
Test

; 3 Question
Assess to what extent the piece of evidence EVD-D awn-tirll -02c favars the hypothesis that Al D seda ‘

considers deterrence as & reason ta obtain nuclear weapons, n .
_ Characterize the reasoning:

: @] Correct
Azsess to what extent EYD-Dawn-Mird1-02c favars the hypothesis
that Al Daeda considers deterrence as a rsason to obtain nuclear ’O/ Incomplete

weapons, assuring that EVD-Dawn il 02 is believable == e
Possible Answe(Hint Go Ta Lesson

Assess the authenticity of EVD-D awn-Mirl1-02c, |

Ar; :;:Sttanttlatl(l)n ~ 75 determine the extent to which a piece of evidence e |
O e test rule G T favors a hypothesis?
o back to related VP
I3 it important for EVD-Dawn-Mir01-02¢ to be relavant to the
lesson ='pruthes|5’?
J Do we need to consider its authenticity or something else?
Does it always make sense to consider the authenticity of a piece
. . %
Hint provide by ofievidencef —
request Glossary -
EVD-Dawn-Mir01-02c: TF tion: 5
. Al as deterrent
Description of the o t by ! 2
piece of evidence @ We e chel uclear we, dstarrent and if
| |America used them against us we reserve the right to use them
< 2 | EVD-Dawn-Mir01
3 > | Iir, H. (2001, November 10). Osama claims he has nukes: If US
uses MN-arms it will get same response. Dawn - Pakistan English -
Previous Test [MextTest | | Score: Total: Mewspaper
bt Hhanasns Amiam = 20010110 NitAnT b]

Figure 66: A Generated Test Question

173

Figure 67 illustrates a construction test question where the student has to select the
correct sub-problems (shown at the bottom left of Figure 67) of a given problem (shown
at the top left of Figure 67). Such selection can evaluate the student’s understanding of
the subject. Therefore the grading for this type of test is strict: only selecting all the
correct sub-problems is considered as correct answer, otherwise it is either incorrect if
one or more incorrect sub-problems are chosen, or incomplete if not enough correct ones

are selected.

CEX
System Ontology Rules Scenario Reasoning Solving Tutoring KB Reports Help [k'_}
}epnswtmywNw-cwv-umsng-nulm Qaida ~| a @ @
Tukoring Test |
Test
- - & Question
Asse_ss ta what extent the piece of evidence EVD-D awn-Mir01-02c favors the hypothesis that Al Dasds ‘
'COnSIdEIS detenence a5 a reason to obtain nuclear weapons. Reconstruct the reasoning. Select *Done* when finished
Q Done
A pool of subtasks for
selection Hint Go To Lesson
]
< ; b
\
~

Assess the extent ta which EVD-
Dawrebird1-02c is scourste.

DawrMill 026 is availsble.

Assess the extent to which EVD- ‘

Assess the extent ta which EVD-
Dawn-Mirll-02c is believable.

‘ = Glossary

EVD-Dawn-Mir01-02c: TF
d

1 e i
Assess to what extent EVD- Assess the estent to which EVD - &
Dawr-irl -02c favors the Dawn-dirl -02c is relevant i
Fypothesis that Al Qaeda used them agam—st’us we reﬁerve the right to use them

considers deterence as a reason fa ent EVD- - lMir0T:
to obtain nuclsar weapons, Iir, H. (2001, November 10). Osama claims he has nukes: If US uses
assuming that EVD-Dawn-tirl - N-arms it will get same response. Dawn - Pakistan English Newspaper
DZe is believable. http:ffwww. dawn.com/2001/11/10/top1.htm
e
£ >
Previous Test | Hext Tect [| Score: Total:

Figure 67: A Generated Construction Test Question

5.2.3 Complexity Analysis
The test generation algorithm is in the one from Table 12. In this algorithm, each
operation on the instantiated sub-problems to create a GTQ costs a constant O(7) (line 6,

line 8 and line 10). Therefore the inner FOR loop on line 4 which enumerates a list of V,,

174

reduction instantiation IRdAR € IRdRs is N;O(l) = O(N;). The outer loop (line 1)
depends on N the number of test rules TRs. In other words, the entire outer loop costs
O(N; X Niz) = O(Ng) where Ny, is number of generated test questions. Besides, the search

of all instantiations of a reduction R; in reasoning tree R7 = (V,é‘,) costs O(N, + Ny =

O(N, + N, -1) = O(N,) where N, is number of nodes in reasoning tree and N; number of

edges that connect all the nodes together. After all, the complexity of the test question
generation based on the algorithm presented in Table 12 is
O(Ny + N,).
5.2.4 Evaluation of Test Generation

Two versions of the test generation agent were tested by students at the US Army
War College in Spring 2006, and students at George Mason University in Fall 2006.
Figure 68 shows a sample of the subjective evaluations by these students. The assessment
of “The exercises are challenging” is important because it suggests the value of the test
questions. In Spring 2006, only 7 of the 12 students agreed that the exercises were
challenging. The evaluation result was better in Fall 2007 where 1 out of 12 students
strongly agreed and 10 students agreed that the test questions were challenging.

The agreement or disagreement with the statement “The exercises improve the
understanding of the presented topics” assessed the overall usefulness of the tests. In
Spring 2006, 7 out of the 12 students agreed and 5 were neutral. The result was better in
Fall 2006 where 2 out of 15 students strongly agreed and 8 agreed with the above
statement. Overall, the novice analysts gave better assessment than the expert analysts

did. That was expected because the experts were very familiar with the domain.

175

The exercises are challenging The exercies are challenging
students students
12 f E l 127 .)
| Expert analysts Novice analysts |
10 10
8 8
. . [Csa1-06]
4 4
| I |
; = : | . u B
strongly disagree disagree neutral agree strongly agree strongly disagree disagree neutral agree strongly agree
The exercises improve understanding of the presented The exercises improve the understanding of the
topics presented topics
'students students
9 9
8 8
7 7
6 6
5 5
4 4
3 3
2 2
1 1
0 B . n]
strongly disagree disagree neutral agree strongly agree strongly disagree disagree neutral agree strongly agree

Figure 68: Evaluation of the Test Agent

176

6. Learning and Tutoring Agent Shell (LTAS)

6.1. From Expert System Shells to Learning and Tutoring Agent Shells

Since the first expert systems were developed (during 1970s) and commercially used
(during 1980s), the idea of constructing a generic shell that can facilitate the process of
building expert systems came up as a natural way of evolving the methodology of
developing these systems. This is because the cost of building an expert system is very
high and often unaffordable. Moreover, the time it takes to build a useful expert system is
very long and the dynamics of some domains will require frequent knowledge
maintenance. As discussed in Section 1.2, the expert system shell simplifies the process
of constructing an expert system. The main principle of the shell is re-usability of the
inference engine and the associated tools such as editors, knowledge base checkers, etc
(Whitley, 1990). An expert system shell may be regarded as an expert system with an
empty domain knowledge base that has a pre-defined knowledge representation. Now the
problem of building an expert system reduces to building a knowledge base that can be
plugged into the shell. The knowledge base must be built following the required syntax
and other constraints. The expert system shell thus alleviates some burdens from the task
of building an expert system and shortens the construction time (Whitley, 1990).

However, even with the help of an expert system shell, the task of building an expert

system remains a very difficult one. The difficult task that still remains is building the

177

knowledge base. The knowledge base needs to represent the expertise of a subject matter
expert which has to be encoded in such a way that a computer can understand and
process. The procedure, described in Figure 2, of acquiring the knowledge from the
expert and encoding it into the knowledge base is time consuming and error prone. The
expert usually does not have enough computer science background to encode his/her
knowledge, so the need of involving a knowledge engineer to transform the raw expert
knowledge into a formal representation is necessary. However, the knowledge that is
elicited from the expert is not always clear and straightforward because of the use of
commonsense in communication. Unfortunately, commonsense knowledge is very hard
to encode and is easily mistreated. A back-and-forth communication between the
knowledge engineer and the subject matter expert needs to frequently occur to avoid
mistakes. This is the well-known knowledge acquisition bottleneck problem as mentioned
in Section 1.2 (Buchanan and Wilkins, 1993).

To alleviate the knowledge acquisition bottleneck, a learning component is integrated
into an expert system shell (Tecuci, 1998). Such a system (shown in Figure 3) is called a
Learning Agent Shell (LAS) and is implemented in a family of Disciple shells (Boicu, M.
et al., 2002). In Disciple, the process of building the knowledge base is a mixed-initiative
one between the expert and the learning agent, with limited assistance from a knowledge
engineer. The top part of Figure 69 shows the traditional way to build a knowledge base
in which the subject matter expert works closely with the knowledge engineer throughout
the whole process. The knowledge engineer has to model the reasoning process of the

subject matter expert, making explicit the way the subject matter expert solves problems.

178

Then the knowledge engineer develops the object ontology. He or she also needs to

define general problem solving rules and to debug them (Tecuci, 1998).

Define .
i Create
domain s
o o | @D

”ITradltlonally'l 1} | [(With Disciple] |,

X

Define Verify.and
rules update rules

y

Define Import and Define and

initial create initial explain ei::q:‘:s
model ontology examples P

Exten.d Specify Learr.1 Learn Explain Refine
domain : ontological B
model instances B rules critiques rules

gy

@ @&

Figure 69: Knowledge Engineering with Disciple Learning Agent - from (Boicu,
2002)

With the introduction of the learning agent, the expert now works mostly with the
agent and that reduces a lot of errors, uncertainties and processing time. As shown in
Figure 69, each activity from the top part is replaced with an equivalent activity that is
either entirely performed by the subject matter expert (SME) and the agent (Agent), or
requires some assistance from the knowledge engineer (KE). The knowledge engineer
needs to model the reasoning process of the subject matter expert and to instruct the
expert how to make explicit his/her reasoning. The knowledge engineer also needs to
develop an initial object ontology. After that, however, the subject matter expert can
collaborate with the agent to develop problem solving examples and their explanations, to
extend the ontology, to learn problem solving rules, and to refine the rules (Tecuci,

1998).

179

Maintenance of the knowledge base traditionally involves the communication
between the expert and the knowledge engineer to ensure the stored knowledge is always
consistent and up to date. That process is changed with the introduction of a learning
agent, as shown in Figure 68. The agent is now the only partner that works closely with
the expert to maintain the integrity of the whole knowledge base (Boicu, C. et al., 2005).

With the evolution from the expert system shell to the learning agent shell, it seems
natural to have it evolved further to broaden its applicability. One such development is
adding the capability to tutor the expert knowledge which is already acquired when
building the knowledge base. Being able to rapidly acquire expertise in a certain domain
and to rapidly construct a curriculum to teach this knowledge pedagogically is the main
goal of the Learning and Tutoring Agent Shell (LTAS) concept.

LTAS can alleviate some of the difficult problems that are encountered when building
intelligent tutoring systems. They include the difficult and time-consuming acquisition of
the expert’s knowledge, the complexity of building a curriculum to teach the expertise
pedagogically, and the challenges of customizing the lessons for different student skills in
various circumstances. If the tutoring system would be easier to build, there would be
available for a wider set of domains at different levels. As a consequence, such systems
would have a significant positive impact on the education in schools, as well as in the
continuous education of the professionals.

6.2. Architecture of the Learning and Tutoring Agent Shell
An LTAS is an extension of a Learning Agent Shell (LAS) with tutoring related

capabilities, as shown in Figure 70. These additional modules include the pedagogical

180

knowledge base, the knowledge management module, the tutoring module, the authoring
module and the student module. They are tightly integrated with the existing modules.
For example, the pedagogical knowledge base couples with the learning engine to learn
the teaching knowledge from the teacher. The domain knowledge base is used with the

tutoring engine to provide rich and dynamic examples and exercises.

T Ontoloav Elicitation. ¢ Disciple Learning Agent Shell ' Rule Learn i o and Refi ement I Aner T Tuterna
Ontology Elicitation, ' P g Ag 1 Rule Learning and Refinement Authoring " Tutoring
Learning and Refinement : Peosossssonscnonoooms f - T
! 1 Mixed-initiative, Multi-agent | 1 Task and Rule Learning ‘
1 [Framework ' Modules
Ontology Viewers 0 [T

1
andE‘ditors ‘" I. I I " II H Plausible Explanation ‘

Generation Modules
T

Rule Refinement Modules

N 1
N 1
| " 1
I Lesson Design 1| Lesson Generation \
A T Module |
| " 1
: '-esé"",s‘"ip' :: e] :
| nomne " Test Generation ||
| 1 Module |
N I
| I
|

Scenario Elicitation,
Script Editor
!

Rule Analysis Modules

Ontology Learning
and Refining
T

Control Wizards for
Rule Refinement
L

1

1

1

1

1

1

I m

1

1

1

:

i Ontology
H Graphical Browsers
1 T
1

I m

1

1

1

1

1

| H

1

1

1

1

1

I
S, \Knowledge Management

Pmmmmmmmmm ot Knowledge Management, i 0 1

! Knowledge Integration, i Verification and Validation :: Knowledge Repository 1l — R 1

I Import, and Export i i Management ' I K"o:d';cge K"';v:::ge |

: I :: I— :: g : : Management Management I

! 1 : ‘ Knowledge Base Validation ‘ : 1 1 |

] Foor oo Export Tools System Verification Modules s Knowledge Base Versioning | 1 |[& o ——— -
l@--@.---.ﬁ_-___HI____________W____“:d_k _______ == .----------.%’L"

S N -~ "7

Knowledge Base Management \

<~ T e

= 1

| ‘A’ ‘A’ ‘A’ |

! A A A !

, System knowledge base Domain knowledge base Pedagogical knowledge base

Figure 70: Architecture of the Disciple Learning and Tutoring Agent Shell

6.2.1 Pedagogical Knowledge
The pedagogical knowledge includes two types of knowledge: pre-defined knowledge
(which is stored in the pedagogical knowledge base) and generated knowledge. The pre-
defined knowledge is the knowledge that is created by the instructor and the system, and

is used to generate the generated knowledge. The pre-defined knowledge consists of

181

abstraction rules, lesson scripts, and test rules. The generated knowledge include: the
abstract reasoning tree, the generated lessons, table of contents, glossary, specific test
questions together with explanations and hints.
6.2.1.1 Pre-defined Knowledge
Abstract Knowledge

As presented in Chapter 3, the abstraction of reasoning is constructed for several
purposes, one of them being tutoring. The abstract knowledge that is preserved for
tutoring purpose consists of the abstract problem solving strategies employed by the
subject matter expert. The abstract problem solving strategies have several components:

e abstract problems that describe the kinds of problems to be solved;

e abstract reductions that reduce the abstract problems to one or several simpler
abstract sub-problems;

e abstract solutions which are the solutions of the abstract problems;

e abstract syntheses that compose the abstract solutions of the simpler abstract sub-
problems at one level into the abstract solutions of the abstract problems at the
next higher level;

e abstraction rules that govern the abstraction operations.

Lesson Script
The lesson scripts are created by lesson script engine during the lesson design (see
Section 6.2.3). The lesson scripts are represented in the ABLE scripting language (see
Appendix A). A lesson script consists of a lesson header and several lesson sections. The

lesson header includes the lesson title, optional lesson objectives, lesson annotation and

182

lesson definitions. Each lesson section presents an abstract problem solving strategy
which, in essence, reduces an abstract problem to several simpler abstract sub-problems.
Each lesson component has a pair of numbers that indicate the order when it will be
displayed and for how long it will last during the tutoring session. More details on the
lesson scripts are provided in Section 5.1.2.
Test Question Rule

A test question rule includes a reduction rule from the domain knowledge base and a
list of generalized components. The components include the test type - omission,
modified or construction, the type-related information, explanations and hint (see Section
5.2.1). Depending on the type of test question, the type-related information differs. For an
omission test, they are the sub-problems that were dropped. For a modified test, they are
the old and new contents of the modified sub-problems. And for a construction test, they
are the extra sub-problems that were entered during the test question learning.

6.2.1.2 Generated Knowledge
Abstract Reasoning Tree

The abstract reasoning tree is constructed from the abstract knowledge in the
pedagogical knowledge base. The abstraction rules govern how an abstract reasoning tree
is built from a concrete reasoning tree. An abstract reasoning tree is a representation of
the abstract problem solving strategies that are used to solve a problem. The abstract

reasoning tree is described in detail in Chapter 3.

183

Lessons

The lessons contain two parts, the abstract problem solving strategies to be taught,
and the examples that illustrate these strategies. They are illustrated in Figure 71. The top
part of the figure shows the strategy to assess a piece of evidence that favors the
hypothesis. The bottom part shows an example of assessing the evidence EVD-Dawn-
Mir01-02c that favors the hypothesis that Al Qaeda considers the deterrence as a reason
to obtain the nuclear weapons. The abstract strategies are constructed from the abstract
components of an abstract reasoning tree by the instructor, as discussed in Section 5.1.1.
The examples are generated from the knowledge base by using the abstraction rules that
link the abstract components in an abstract strategy section to their concrete components
in the concrete reasoning tree. These links allow the tutoring module to retrieve the
examples corresponding to the abstract strategy which is being taught. More details of
example generation are presented in Section 5.1.3. The process of lesson generation
highlights the interaction between the pedagogical knowledge (the abstract problem
solving strategies and their examples) and the domain knowledge (the concrete reasoning
tree). Together they can produce many lessons with various examples, provided that the
domain knowledge base is rich enough. Moreover, the same abstract reasoning strategies
might be exemplified with scenarios in different application domain, e.g. assessing
tangible evidence may be useful in counter-terrorism, law enforcement, practice of law,
and even in scientific discovery. The lessons are generated automatically from the lesson

scripts, as described in Section 5.1.2.

184

Tutoring

Lesson: Hypothesis support from pisce of svidence: |

-

Assess (o what extent the piecs of evidencs favars the hypothesis: |

Abstract Problem
Solving Strategies

(The information provided by the piece of evidence and the extent to which it is believable,)

Assess to what extent the pisce of evidence favars the hypothesis.

Brief Definition

assuming that we believe the information provided by the pice of
evidence,

Assess the extent to which the information provided by the pisce of evidence is believable, ‘

An evidence is anything used to prove

the existence or nonexistence of a
fact

[Tha piece of evidencs is bestimonial evidence obtained at second
an

)

Assess the believabiliy the source 01 ‘ ‘ ‘

the piece of evidance

Assess the believability the reporter of
the piece of evidence.

=
.().
mjuﬂralians: Next Select Example: EVD-Dawn-Mir01-Olc and Al Ozeda [
s
Azsess to what extent the pisce of evidence EVD-Dawn-irl1-01c favors the hypathesis that A1 0 aeda
has desire to obtain nuclear weapons.
‘ Example
Q:what factars determine how a pisce of evidence favers a hypathesis?
Atz relevance and belisvabilty.
Assess to what extent EVD-Dawn Mi01-0 ¢ favors the hypathesis that Assess the extent to which EVD-Dawnti01-01¢ is believable. ‘
2| Dzeda has desire to obtain nuclesr weapons, sssuming that EYD- T
Davr-Mirld1-01c is belieavhle.
Q:How was EVD-Davn-Mir01-01c obtained?
AEYD-Dawn-Mirl1-07c was obtained as testimonial evidence of Osama bin Laden cited in EVD-Davne
Mir01-01 by Hamid ki,
Assess the extent to which one can believe Hamid Mir as the reporter of Assess the extent to which one can believe Osama bin Laden as the
EVD-Dawn-Mirl1-01 source of EVD-Dawn-tir01-01c.
— ——— =
.().

Figure 71: Lesson Interface

Table of Contents

The table of contents helps navigating the organized set of lessons. This type of
knowledge is almost automatically generated by the system based on the content of
lessons and the connections between them. Figure 72 illustrates a table of contents which
contains three parts: the current lesson, the learned lessons and the next available lessons.
Each of the lessons teaches two types of processes: problem reduction and solution
synthesis, for a certain type of problem. The abstract part of the lesson is structured into
several sections and is illustrated by examples at the end. The table of contents captures
the structure of the lesson. For example, in Figure 72, the problem reduction process has

two sections “Components of believability” and “Credibility”. The reduction process is

185

then illustrated by “Reduction examples”. When a lesson is in the design mode, the
instructor does not have to specify the order of the lessons. The system sorts this order
out based on the links between the abstract components that the lessons contains. The
instructor however must explicitly define the structures of each process as described

above during the design process.

Lessans | Glossary

Table of Conteni

Previous Lessons
E Hypathesis suppart fram piece of evidence.

Proposed | esson

[zl ielievability of the reporter of a piece of evidence.
b Companents of believabi?&;

- Credibility problem reduction
----- Feduction examples

----- Synthesis of credibility

----- Synthesis of belieuabilit':.-'} solution synthesis
b Synthesis examples

MNext Lessons
Believability of the source of a piece of evidence.
Credibility of tangible evidence.

Figure 72: Table of Contents

Glossary
The glossary is generated automatically from the ontology of the system which is part
of the domain knowledge base (Barbulescu et al., 2003). The glossary is displayed in
alphabetical order. It provides brief definitions of the domain concepts (see Figure 71),

more complete definitions, or even detailed lessons (as illustrated in Figure 73 and Figure

186

74). In essence, the glossary supplies a means of enhancing the understanding of the

lessons.

Lessons | Glossary

L production 1-n-EVD-NYT -iller01-02

(>

----- radical |zlamic religious fundamentalist idealogy
----- radiological bombz 1-in-EVD-Time-K.arond1-01
----- ricin 1-in-EYD-FP-Glazowl -02c

----- zoUrce

----- gtatement 1-in-EVD W P-Allizon01-01

----- Sultan Bazhiruddin IMahmood

----- Sultan Bazhiruddin 1M ahmood-in-EYD -w/P-Khan01-01

----- tangible evidence

----- tapes found by Robertzon in Afghaniztan

----- terrarizt 1-in-EVD WP
----- testimonial evidence |
----- testimonial evidence |
----- testimonial evidence |
----- teztimonial evidence
----- testing 1-in-EWD-CHM
----- trainning 1-n-EYD-Tir
----- Treverton G

----- IUnited Statez

tangible evidence iz any maternial object uzed to prove the
existence or nonexiztence of a fact.

T angible refers to something that has physzical form, which can be
touched, zeen, weighted, measured, or apprehended by the
ZENZES.

Evamples of tangible evidence are charts, videotapes,
audiotapes, images, and documents.

----- IInited Statez-in-EVD-

PPl W T e BN | (e B a

FP-Glazov01-01c

| P P N P
T

Figure 73: Sample Glossary

187

The veracity of an agent refers ta the degree to which that agent believes that the event reported by her actually occurred. veracity doss not mean that the agent iz | #
reporting a true fact. [t means that the agent belizves that it is trus.

eracity:
by D avid 5 chum, George ldazon Univerzity

“eracity iz an attiibute of the credibility or belisvability of human sources of infarmation wha repart on events they say they have observad. A synonym for this tarm iz
truthfulnesz. |z thiz human source being truthful in his repart of an event ar events of interest to us? In many past accounts of veracity it was zaid that a source iz
being truthful anly if the eventiz] he reported did actually ocour. But this account iz faulty because there are reazons other than untruthfulness that may imvolve a
human source's credibility; we will explore these other reazonz in a minute. ‘What matters az far az the veracity or truthfulnesz of a human zource iz concerned iz
whether thiz zource believes what he is reporting bo us. Thiz requires some explanation. If we believed the source was lying to us we would have to believe that he
hasz deliberately told us something that was contrary to what this source belisves to be true. Thiz source has sither made up a story about what to tell us, or this
zource was told what to tell ug by someone elge. In this second caze, the source may have no belief one way or the other about whether the events he reparts
occuned; he iz simply relaying to ug what otherz have said he should tell us. In sither caze, however, we have grounds for believing that we are being deceived by
thiz source. In zhart, untruthfulness and deception go hand in hand.

Here iz a zource who tellz us that he observed a certain event to have occuned. We later find out for sure that thiz event did not occur. Was this zource neceszarily
lying to us? The answer iz no, for the follawing reazons. This source may have belisved that this event occurred, but farmed this belisf on the basiz of what he
expected or wished to obzerve, regardless of what his zenzes told him. [n short, thiz source was not an objective obzerver. Lack of abjectivity iz something that
happens to all of us from time b time, Further, suppoze thiz source was both tuthful and objective. He has told us what he believes to have happened and he bazed
thiz belief on the baziz of zenzory evidence he recerved. But the question now iz how good waz thiz zenzony evidence? Perthaps thizs zource wasz simply mistaken
about what he obzerved, since hiz senzes were either wiong or were being mizled in some way. So, if a zource tellz uz about the occurence of an event that we
later discover did not ocour, this saurce was nat necessarily being untruthful.

But how do we tell whether a source iz being untruthful in what he now tellz ug? 'We cannot look inzside this person's head to see what thiz person really belisves
about the event thiz perzon has just reported to us. We now tell a story about a source to see what kindz of things we can dizcover that will bear upon what thiz
zource believes and whether he iz lying to us by teling uz something he does not believe. In the inteligence community a human source suspected of ling iz often
referred to as a "fabricator'.

A Stony about Veracity.

Suppoze we have 3 source code-named "Apple’ who gives uz the following report. Apple zays that on 23 July, 2007 at 1041 he zaw the dirver of the tuck. that
caried the explozive charge that was set off in Baghdad at the intersection of Ar Razhid and Al Thawra Streetz kiling 25 people and cauzing great damage. The
driver flad the scene soon befare the explosion occured. Apple identifies the driver as Abdul k1, who he zays iz a Sunni kuslim he knew from Apple's past military
zervice in Saddam Huszein's Republican Guards. How can we tell whether Apple belisves what he haz just told us?

1] Prior inconziztent statements.

Suppose we leamn from Iaj. Hakim 1., of the lragi police, that Apple told him, just after the incident. that it was Emir Z. who was the dirver of the truck. But Apple
now talls us that it was Abdul 14, Which repart that Apple has given is conect, if sither one is comect? Apple has told two different staries about the same event.
‘which story doss Apple believe, if he believes sither ona?

2] Apple's reputation for honesty.
Al i that Annls bas bold ral ol o Moo e A e fier]] B of Saddam's Doy bl an Cgede Buk ae leam o ofbar oo

Figure 74: Presentation of the Veracity Concept

Tutoring Strategies
During the design process, the instructor can also provide the tutoring strategies to
teach the lessons in different ways, in order to increase the effectiveness of tutoring
(Kukla et al., 2002). To be specific, the instructor can design the lesson to display the
abstract problem solving strategies in different orders, either bottom up or top down or
any other way considered most appropriate by the instructor. The tutoring strategies are
represented by the pair of numbers associated with each lesson component in the lesson

script. More details on the tutoring strategies are provided in Section 5.1.2.

188

What we have discussed so far in the generated knowledge section of the pedagogical
knowledge is the lesson module of tutoring module. The next topic is the pedagogical
knowledge for its test module. The test module is provided to measure the student’s
understanding of the learned subject. The pedagogical knowledge for the test module

consists of test questions, including explanations and hints.

Test Questions

A test question is generated from a test rule and is presented in the context of where
the reduction should have been in the reasoning tree. Figure 75 shows a reasoning step
from a test question in which one of the sub-problems was dropped. The reasoning step is
bordered red and located in a sub-tree as its context. The student must judge if the
presented reasoning step is correct, incorrect or incomplete. In this test question, the
student is asked if it is correct to assess the believability of the report fragment EVD-
TRC-Najm0I-0lc, where Najm S. cites Osama Bin Laden, by only assessing the
believability of Najm S. The correct answer must be “Incomplete” due to the fact that the
reasoning is missing a sub-problem which is the assessment of the believability of Osama

Bin Laden as the source of the information.

189

Aszess to what extent the piece of evidence EVD-TRC-Najm(1-0 ¢ favors the hypothesis that Al Qaeda
considers the radical lslamic refigious fundamentalist ideology as a reason to obtain nuclear weapons.

i "
(:what factors determine how a piece of evidence favors a hypothesis?
frlts relevance and bebevahdity.

fizsess to what extent EVD-TRCMam1-01 ¢ favors the hppothesis that I Aiszess the extent to which EVD-TRC-Majmi01-01 ¢ is believable. |
Al Qaeda considers radical Islamic refigious fundamentalist i asa :

reason to obtain nuclear weapons, assuming that EVD-TRC-Mam1-
Mcis belieavble.

| Assess the extent bo which one can believe Majm S as the reporter of EVD-TRC-Majm01-01. |

Figure 75: Reasoning Step from a Test Question

Hint

During the test, the student is provided with the relevant glossary (as discussed earlier
and) and with hints (they are associated with penalties in student’s assessment). The hints
are learned from the instructor during the test learning process. An example of specific
hint is:

“EVD-TRC-Najm01-01c was obtained as testimonial evidence of Osama bin Laden
cited in EVD-TRC-Najm01-01 by Najm S. Let us assume that Osama bin Laden is not
believable. Does this affect the believability of EVD-TRC-Najm01-01c?

The believability of some information refers to the degree to which that information is
considered to be true. Similarly, the believability of an agent refers to the degree to
which the information provided by that agent is considered to be true.

Belief is:

1: a state or habit of mind in which trust or confidence is placed in some person or

thing

2: something believed, especially: a tenet or body of tenets held by a group

190

3: conviction of the truth of some statement or the reality of some being or
phenomenon especially when based on examination of evidence.

Merriam-Webster's Online Dictionary, http.//www.m-w.com/dictionary/belief.

Explanation

The other type of information given when the student answers a test question is the
explanations. This type of knowledge is similar to the hints with a minor difference: the
explanations are given based on the student’s answer which may be correct, incorrect or
incomplete. Both the hints and the explanations are structured similarly. For instance, if
the student answers the reduction from Figure 75 is incorrect, then the received
explanation is:

“EVD-TRC-Najm01-01c was obtained as testimonial evidence of Osama bin Laden
cited in EVD-TRC-Najm01-01 by Najm S. Therefore its believability depends both on the
believability of the reporter (Najm S) and the believability of the source (Osama bin
Laden). For instance, if either Osama bin Laden is lying, or Najm S is distorting Osama
bin Laden’s testimony, then the information provided by EVD-TRC-Najm01-0lc is not
true.”

What is important for hints and explanations is that they are not defined for each
generated test, but they are learned from specific examples, and generated automatically,

as described in Section 5.2.

191

The system follows a scaffolding approach, where the test questions are presented in a
context from simple to complex (Dabbagh, 2007). This is achieved by following a
concrete reasoning tree from top to bottom.

6.2.2 Knowledge Management

The knowledge management is performed by two modules: Management of Abstract

Knowledge (MAK) and Management of Tutoring Knowledge (MTK).
Management of Abstract Knowledge

MAK is a module that handles the abstraction process of problem solving knowledge
in a particular domain. The product of that process is the abstract knowledge that is stored
in the pedagogical knowledge base, as described in Section 6.2.1. This module includes a
tool named Abstraction Editor (see Figure 76) to abstract the knowledge in the domain
knowledge base. The knowledge in the domain knowledge base generates a concrete
reasoning tree and the abstraction of that tree results in the abstract reasoning tree. The
Abstraction Editor allows the user to abstract a concrete reasoning tree into an abstract
tree through a drop-and-drag operator. The user selects one or several nodes in the
concrete tree (shown in the left part of Figure 75) to be abstracted into an abstract node in
the right panel. The editor is able to recognize the parent of the newly created abstract
node in the abstract tree (if this exists) to properly integrate the new abstract node into the
abstract tree. More details on the reasoning tree abstraction process are provided in
Section 3.3. As the abstract reasoning tree is built by using the editor, the MAK module

learns the corresponding abstraction rules which govern how reasoning trees are to be

192

abstracted in general. The abstraction rules are then stored in the pedagogical knowledge

base.

Complete Reasoning Tree Abstract Level #1

~

0o

I
d@

qm

D] O

~

< > < >

(=i i =] = 0] <« [» [>]

I3

Figure 76: Interface of the Abstraction Editor

Management of Tutoring Knowledge
Tutoring knowledge includes all the pedagogical knowledge except the abstract
knowledge. The tutoring knowledge is developed by the instructor, with the help of the
Authoring module which will be described in next sub-sections. The knowledge then is

stored in the pedagogical knowledge base. This knowledge is retrieved either by the

193

Authoring module for update or by the Tutoring module for lessons and tests generation.
The TKM module is responsible for managing the storing, updating and retrieval of the
tutoring knowledge.
6.2.3 Authoring Module

The Authoring module consists of three main sub-modules: lesson design, test
learning and lesson script engine. The lesson design module and test learning module are
used by the instructor. The lesson script engine converts the lesson components designed
by the instructor into corresponding lesson scripts.

Lesson Design Module

The lesson design module is used by the instructor to builds lessons from the abstract
tree, as illustrated in Figure 53. The Lesson Editor has two panels: the one on the left is
for the abstract tree and the other is for designing lessons. The process of designing
lessons is discussed at length in Section 5.1.1. In this section, we focus mostly on the
authoring part of the lesson design process. The instructor uses the available toolbox to
create the lesson components such as title, objectives, header, annotations, definitions,
examples, and so on. The tool also lets the instructor review how the lessons are going to
be displayed during the tutoring session. The outcome of the lesson design is the lesson
script which is saved in the pedagogical knowledge base. The tutoring module groups all
the lessons together to form the curriculum, based on the pre-requisites and post-
requisites automatically inferred from the abstract tree.

Figure 77 shows the widget toolbar which is a part of the Lesson Editor. The toolbar

has multiple widget buttons which simplify the task of creating lesson components.

194

Section 5.1.7.1 presents in detail the functionality of this widget toolbar. In short, the
instructor can design the lesson, configure the display order of each component and
preview the design. Once the instructor is satisfied with the lesson, the lesson script
engine generates the lesson scripts based on the current setting of the lessons and saves it

in the pedagogical knowledge base.

Selection I
Obijecti
jective >
Definition >
Annotation

|
Composition

—> | s

Animation Order *

Preview

vy

Figure 77: Widget Toolbar for Lesson Design

Lesson Script Engine
During the lesson design, the instructor builds the lessons by dragging and dropping
some lesson components from the widget toolbar shown in Figure 77 and configuring
them to achieve some particular tutoring effect. Once the lesson design is finished, the
lesson scripts are generated by the script engine. The engine scans all the lesson
components from the top down. For each of the lesson components, the engine captures

its properties, such as the order and duration values, its relationships with other lesson

195

components, its description, and characteristics (see Appendix B for detailed information
on the lesson script description). The lesson script engine then formats the obtained
information in the ABLE language (see Appendix A) to create the lesson scripts. The
scripts then are saved in the pedagogical knowledge base.
Test Learning Module
As presented in Section 5.2, the instructor teaches the system how to generate test
questions. The system learns test rules by generalizing the test examples designed by the
instructor. The instructor designs specific test questions by using the Test Editor shown in
Figure 78. The editor has a main panel that displays a reasoning step from the concrete
reasoning tree. This reasoning step serves as a test example. The instructor can
manipulate the sub-problems of the example in three different ways: modification of sub-
problems, dropping one or several of them, or adding deliberately wrong sub-problems.
Each of the modification creates a different type of test example. They are modification
test, omission test and construction test. In the right panel, the instructor defines the
explanations and the hint. By default, the right answer for an omission test is
“incomplete” and for a modification test is “incorrect”. However, the instructor can
overwrite that default value by making a different selection in the “Overwrite default
assessment” radio box. For example, in a modification test, the modified sub-problem
may be equivalent to the original one and test’s answer should be “correct” instead of

“Incorrect”.

196

Syskem Ontology Rules Scenario Reasoning Solving Tukoring KB Reports Help k']

repositary|PNW-cav-070803-00\Al Qaida ~| @ G)

Lesson Edtor | Rule Editor | Test Editor |

Test Bxample #1 based on Rule DDR.00013
B

Assess to what extent the piece of evidence EVD-Dawn-Mild1-02c favars the hypothesis that &1 Qaeda
considers deterence as a ieason to obtain nuclear weapons.

— The extent ta which EVD-Dawn-Mird1-02¢ Favors the hypothesis depends
' bath on the infarmation pravided by EVD-Dawn-Mir01-02¢ and on the
B et s s e extent ko which we believe this information. This case does not kake inko
A-‘ BN e T B accaunt the relevance of EVD-Dawn-Mir01-02c ta the hypothesis,

Even if EVD-Dawn-Mir01-02¢ is believable, if it is not too relevant to

e

the hypothesis, then EVD-Dawn-Mir01-02 will nat significantly Favor it.
Assess the extent to which EVD-Danr-Mird1-02c is EEaNERe

Explanation when "incorrect” answer is selected
The extent ta which EVD-Dawn-Mird1-02¢ Favors the hypothesis depends
bath on the infarmation pravided by EVD-Dawn-Mir01-02¢ and on the
extent ko which we believe this information. This case does not kake inko
account the relevance of EVD-Dawn-Mir01-02c ta the hypathesis,

Even if EVD-Dawn-Mir01-02c is believable, i it is not too relevant to
the hypathesis, then EVD-Dawn-Mir01-02c will not significantly Favor it.

AN

Dropped Sub-problem

Explanation when "incomplete® answer is selected |
The extent to which EVD-Dann-Mir01-02c Favors the hypathesis depends
both on the information provided by EVD-Dawn-Mir01-02¢ and on the
extent ko which we belizve this information. This casz does not kake inka
M d H f' d S b bl account khe relevance of EVD-Dawn-Mir01-02¢ ko the hypothesis.

O I I e u = p ro e m <br»Even if EVD-Dawn-Mir01-02c is believable, if it is not too relevant to

the hypothesis, than EVD-Dawn-Mir01-02¢ will not significantly Favor it.

Hint

2 : something believed; especially : a tenet or body of tenets

Add Sub-problems | | aAqq Explanations, |

<br3 : conviction of the truth of some statement or the reality of

same being or phenamenon especially when based on examination of

H i nt avidence
<br =Merriam-Webster's Online Dictionary,
< http: ffwew.m-w.com/dictionary /belief

Make Construction Test Overwrite Default Assessment: (O Corect (O Incorrect (3 Incomplete Reset S reia Rl Modify Rule Deletz Rule
Select Tests

<

Figure 78: Interface of the Test Editor

The procedure of generating the test rules is detailed in Section 5.2.1. In this section,
we just briefly summarize this process. The basic idea of learning the test rules is to
extend a previously learned domain rules with test-related components that are
appropriately generalization from specific examples provided by the instructor.

6.2.4 Tutoring Module

The tutoring module is responsible for generating lessons from lesson scripts and

exercises from the test rules. The generated lessons and exercises are then presented to

the students under the control of the Student Model.

197

Lesson Generation Module

Generating lessons based on existing domain knowledge base is done automatically,
as described in Section 5.1.3. All the generated lessons contain two main parts: the
abstract problem solving strategies and their examples.

The abstract strategies are generated from the lesson scripts (see Section 5.1.2). The
examples are generated based on the abstract reasoning tree and a concrete reasoning
tree. The example set is then displayed heuristically based on their relative similarity and
complexity. The examples to be displayed can also be selected by the user.

The generated lessons have two auxiliary components, table of contents and glossary,
both generated automatically.

The lesson window (Figure 79) provides several functions that can be used by a
student to follow a lesson, either by reading and/or by listening. There are three panels,
the one on the left is the table of content and glossary, the middle panel presents the
lesson’s content, and the right panel contains the automatically generated lesson’s text.
The middle panel also contains two sub-panels. The one on top is for the abstract problem

solving strategies and the bottom one for the examples.

198

Tutoring %]
-~ Lesson

Lesson: Belisvabiity of the reparter of = piece of evidence, Lesson:
Belizvabilty of the reparter of
a piece of evidence.

Lessons | Glossary

Table of Content

[Previous Lessons
] Hypothesis support from piece of evidence. ‘ ssess the believatility of the reporter of the piece of evidence. ‘

Let us consider the lask

to:

Assess the believability of the [
The belivabilly of the reparter of a pisce of svidence is determined by the repotter's competence and reparter of the pisce of
credbilly. evidence,

The belevabilty of the
reparter of a piece of
svidence is detemined by

Aissess the competence of the repoiter of the piece of evidence. ‘

Assess the credibility of the reporter of the piece of evidence. ‘

the reporter’s competence
and crediblity.

(The ciediblity of the reporter of a piece of evidence dependes on reporter's veracity, shiectivity, and observational sensiviy.)

Therefore we have to
perform the following
two tasks:

Assess the competence of
the repoiter of ths pisce of
evidence

Assess the veracity of the reporter of
the piece of evidence:

Assess the objectivity of the repoiter
of the piece of evidence.

Assess the observational sensiviy|
of the reporter of the piece of
evidence

Proposed Lesson
Believability of the reparter of 2 pisce of evidenca
Companents of believability

Credibility Assess the credibility of the

| [enoter of e pisce of

Synthasis of cradibility < ¥ evidence.
Synthesis of believabiity
Synthesis examples

Hiustrations: Next Select Example: |Hamid Mir and EVD-Dawn-Mir01-02 = | The credibilty of the reporter
of apiece of svidence
dependes on reporter's
weracily, cbiectivity. and
observational sensitiviy.

i3

Assess the extent to which one can believe Hamid Mir as the reporter of EWD -D awn-bir1-02. |

Q:twhat factors determine the believabilty of a repoiter of & piece of evidence? We therefore have to:
A:The competence and the credibility of the reporter. Assess the veracity of the
reparter of the piece of
evidence

Assess the objectivity of the
reparter of the piece of
evidence

E¥D-Dawn-till1-02. EVD-Diaparbird] 02,

Aissess the competence of Hamid Wi as the reporter of ‘

Aissess the credibility of Hamid Mir as the reporter of ‘

Q:what factors determine the ciedhbility of a reporter of a piece of evidence? Assess the observational
A:The veracity, obiectivity, and observational sensitivity of the reporter. sensitivity of the reporter of
n the piece of evidence.

< >

Next Lessons Assess the veracity of Hamid Mir as Bssess the objectivity of Hamid Mit Bssess the observational sensitivi E:’n’""d"f"‘ﬁ'and
Believabilty of the source of 3 piece of evidence. the reporter of EVD-Davn Hid1 02 s the reporter of of Hamid Mir & the reparter of EVD-Dawnd 0102
EYD-Dawn-il -02. EYD-Dawn-Mirl-02. : -

Credibility of tangble evidence

< b3 Audio

Figure 79: Lesson Interface

The table of contents is hidden by default but available on request. It has three sub-
panels: the top one is for the previously learned lessons, the middle one is for the current
lesson and the bottom panel is for the next available lessons. Each lesson has several
components, presented in two groups: reduction and synthesis. Each group has a set of
examples represented by “Reduction examples” or “Synthesis examples”. Once the
current lesson reaches the end, the next available lesson will replace the current lesson
which moves to the Previous Lessons panel. The glossary panel is also available when
the student needs it. Clicking on a hyperlink in the lesson will set the focus on the

glossary panel and display the full description of the selected term, as illustrated in Figure

199

73. Similarly, the lesson’s text is available on request only. The student can either read it
or listen to it. The text reflects what has been shown visually in the lesson panel. The
current line is colored blue and spoken. The text panel helps the students to follow the
lessons in a traditional way.

The lesson panel is the main focus of the lesson window. The abstract lesson panel
teaches the problem solving strategy that the teacher constructed in the design phase. The
lower panel illustrates it with a set of examples. The strategy is taught step by step. The
student has to click on next or previous buttons to move forward or backward. Each step
is spoken by default and can be turned off as an option.

Test Generation Module

The test generation module generates specific test questions by applying the learned
test rules. Figure 78 illustrates the test editor where the instructor defines a test question.
LTAS then learns the test question rule from this example, as described in Section
5.1.3.3. These rules are saved in pedagogical knowledge base.

Test-taking is illustrated in Figure 80. It has five sub-panes. The top left panel is to
display the test question and its context, the middle left is the pool of available sub-
problems for construction test. The top right panel is the location for answer,
explanations and hint. The bottom right panel is the glossary of terms used in the test
question. The bottom left is the navigational and assessment panel where the grade is
posted. There are two test-taking modes: self-test and assessment. The self-test mode lets

the student go back to the appropriate lesson for review. The latter mode does not allow

200

this. All the tests are generated automatically and are dynamically changed each time the

test starts. More details on this process are provided in Section 5.2.2.

B bisciple

System Ontokgy Rues Scenaio Reasonng Soiving Tutorng KB Reports Help
B Fepository\PHW-cwv-070809-001A1 Quida

[Turcring Test |

Test

= =)
ke

DB

Azress to what edent the piece of evidence EVD-CHN-Robestson 01 favaes the hypothesiz that &1
Baoda has chemecal weapons.

0wk factoes o how & plece of evid
Atz redevance and bebevabiity.

herit EVD-CHN Rlobertsonll 00 favors the Asvess the eddent ko which EVD-CHIN Robertsonll] 01 is bebevable.
Oaeda h a .

soeill] -0 i bebeavible.

1

| 0:How viat EVD-CHM Robertson1 01 cbianed?
AEVD-CHN 01 vt cEtaned
| e Aobertzon n Algharistan

of Nic Robeitzon sboul the Larghbie |

Aispass the exdert 1 which ore can bebeve Nic Flobeitoon s the | of the langbls
101

epoter of EVD-CHN-Fy

hspest

feward bey |

8|

Assess the sccurscy of tapes found by Flobert

Question

Characterize the reasoning:

© Correct
O Incomplete
O Incomrect

Hint Go To Lesson

tapas found by Fobartson in Afghanistan is a @l
tangible piece of evidence. Are accuracy and
authenticity appropriate credibility factors to
congider? |5 there amy othar factor that needs to
be considared for & tangible piece of evidance?

Consider the following definitions;

The accurasy of a piece of evidence represents
the ree to which it 15 close to the reality

| &

|

v

|~

Pravious Test || Mext Test | Score: Total:

™

-~

8| | fror

9
Depanding of the type of the piece of ewvdence, its
accuracy may be understood as
1. Conformity to fact,
2. Pracision; exacinass
3. The ability of & measurement to match the
actual value of the quantity being measurad
4. The quality of neamess 10 the truth or the true
valug; "he was baginning 1o doubt the accuracy of
his compass”; "the lawyar quastionad the truth of
my account® [syn: truth] [ant: inaccuracy]
5. (mathematics) The number of significant figures
given in & number; "the stomic clock enabled
scentists to measure ime with much greater
acturacy” sl

Glossary

|
tapes Tound by Robo_rl}_on in Af hanislan:{\ Tang

=

VD- antson]-

A large archive of al Caeda videotapes obtained by C
Afghanistan sheds new light on Osama bin Laden’s te
ngtwark, revesling images of chemical gas sxpenmen
dogs, [..] NN Sanior International Correspondant Ni
Fiobartson obtained the tapes from a source in Afgha
[.-.] Among the most frightening scenes in the collectic
tapes are those of testing of a poison gas on three dec
disturbing images show the dying moments of the
defansalass, enclased animals

on0T

3). Tapes Shed Mew Li

http:fwww. enn, com/20020US/08/1 Blerror. tape. mainfir

Figure 80: Test Generation Interface

6.2.5 Student Module

The student module contains information about the student, such as the lessons taken

and the failed tests. It determines which lessons belong to the list of previous lessons,

and the list of the next available lessons. It also controls the test generation process, by

only allowing the tests that are included in the presented lessons. One important aspect of

201

this module in monitoring the tests is providing remedial test questions that are similar to
the failed tests.

We have built a simplified student model in order to offer minimal support for the
other developed functionality. Further research is needed to develop and integrate a more
complex student model and to adapt the tutoring to it.

6.3. Methodology for Building Tutoring Systems

A learning and Tutoring Agent Shell (LTAS) allows the instructor to quickly develop
a tutoring system that can tutor expert problem solving knowledge in a particular domain.
Because the LTAS is build on top of a Learning Agent Shell (LAS), there are several
assumptions regarding the LAS modules:

e The domain knowledge base is already developed. The expert knowledge has

been acquired by LAS.

e The concrete reasoning trees are generated by the LAS for specific problems.

e The abstract reasoning tree is possibly partially constructed during the modeling
of the knowledge of the subject matter expert. In fact, part of the abstract
reasoning tree is constructed for human-agent collaboration in problem solving.

There are several steps that are required to be done in sequence (see Figure 81). First
of all, the instructor needs to construct the abstract reasoning tree, if one was not already
developed. The abstraction of a concrete reasoning tree requires the instructor to have
deep knowledge of the application domain. Therefore, the instructor is usually also the

subject matter expert. The purpose of the abstraction for tutoring is to uncover the

202

problem solving strategies used in solving problems, and to develop a hierarchical
structure of the abstract problem solving strategies.

In the second step the instructor designs the lesson by using the abstract reasoning
tree. The instructor can create a lesson based on any abstract problem. The lesson content
is automatically built based on the content of the selected abstract components that the
lesson is built upon. The instructor however can modify it, for instance, by selecting the
order in which its parts are presented to the students. When the lessons are saved, the
lesson scripts are generated accordingly and saved into the pedagogical knowledge base.

The last step is authoring the test questions by the instructor.

When a student uses the system to learn expert problem solving knowledge, the
lessons are generated dynamically, based on the current scenarios included in the domain
knowledge base. The student model captures the student progress to provide the

appropriate the lessons and test questions.

203

Abstract

Pedagogical
KB

Domain KB
build abstract

Lesson
Scripts

Generated
Tests

Figure 81: Methodology for Building a Tutoring System

204

7. Contributions and Future Research

This chapter concludes the dissertation with the summary of my contributions and the
most promising directions for future research.

7.1. Summary of Contributions

This dissertation research has advanced the state of the art in the area of knowledge-
based agents for expert problem solving.

The main contribution of my dissertation is the development of a theory for the
abstraction of reasoning that facilitates:

e human-agent collaboration in complex problem solving and decision-making;

e rapid development of intelligent tutoring systems for complex problem solving;

e teaching complex problem-solving to non-experts.

Abstraction has been previously used in different areas of Artificial Intelligence, such
as, Planning, Problem Solving, Constraint Satisfaction, Reasoning about Physical
Systems, to facilitate the search for solutions in large spaces. The general idea is to first
find an approximate solution in a reduced, abstract space, and then use it to guide the
search for the actual solution in the large concrete space. In our research we have not
investigated how to use abstraction to develop a reasoning tree that solves a problem.
Instead, we have investigated how to abstract a complex reasoning tree to facilitate its
understanding.

205

Effective human-agent collaboration in complex problem-solving and decision-
making requires an ability of the user to easily browse, understand, and modify complex
reasoning, with many thousands of reasoning steps. Our theory of abstraction of
reasoning for collaborative problem solving allows:

e the partition of a complex tree into meaningful and manageable sub-trees;

e the abstraction of individual sub-trees;

e the automatic generation of an abstract tree that plays the role of a table of

contents for the display, understanding and navigation of the concrete tree.

Abstraction of reasoning is also very important for teaching complex problem-solving
to non-experts. Although based on the same general theory, we have found that the
abstraction for tutoring is different from the abstraction for collaborative problem
solving. In the abstraction for problem solving, the emphasis is on easily identifying the
main sub-problems of a given problem, and their solutions. In the abstraction for tutoring,
however, the emphasis is on how to abstract the problem reduction and solution synthesis
processes, in order to identify the abstract strategies to be taught. Our theory of
abstraction of reasoning for tutoring allows:

e the definition of abstract problem solving strategies for tutoring;

e the rapid development of lesson scripts for teaching these strategies;

e the automatic generation of specific lessons corresponding to a particular

expertise domain.

Another major contribution of my dissertation is the development of methods

deriving from our theory of abstraction, as indicated in the following.

206

We have developed a method for rapid authoring of lessons for tutoring problem
solving in a complex domain. The lessons are organized around the abstract problem
solving strategies to be taught. They present these strategies under the control of the
student who may request definitions or detailed descriptions of the used concepts, as well
as concrete examples of the application of these strategies. An important characteristic of
these lessons is that they are automatically customized based on the content of
the domain knowledge of the tutoring agent. In particular, a lesson will automatically
teach only those cases of an abstract problem solving strategy that can be with the current
domain knowledge base. Also, changing the domain knowledge base will automatically
change the generated examples, without any change in the design of the lesson. The
automation of example creation is a main factor in cutting down the time to build the
lessons. Examples are essential parts of a lesson and their availability, number and
diversity play an important role in making a lesson more interesting and understandable.

We have developed methods for:

e Learning different types of test questions by modifying and enhancing examples

of problem reduction rules from the domain knowledge base.

e Automatic generation of test questions in the context of a reasoning tree, together

with hints and explanations.

e Dynamic adaptation of the generated test questions to the lessons taken by a

student, and an ability to invoke the lesson corresponding to a given test question.

The types of test questions learned are:

207

e Omission test question (knowledge level questions where a student is asked to
judge the completeness and correctness of a problem reduction that may omit
some sub-problems).

e Modification test question (comprehension level questions where a student is
asked to judge the completeness and correctness of a problem reduction that may
have some sub-problems modified).

e Construction test question (analysis level questions where a student is asked to
define the reduction of a given problem by selecting sub-problems from a given
list.

Finally, another major contribution is the development of:

e The concept of “learning and tutoring agent shell” and the associated
methodology for rapid development of an intelligent tutoring system.

e An experimental learning and tutoring agent shell.

e An experimental tutoring system for the domain of intelligence analysis which
has been used by military officers at the Army War College and by students at
George Mason University.

7.2. Future Research Directions

There are also various limitations of the obtained results that point to future research

directions.

The current methods for defining abstractions (both those for collaborative problem

solving and those for tutoring) are to be considered methods for a knowledge engineer.

They need to be further simplified to be used by a subject matter expert.

208

The lesson design methods could be extended to allow additional customization by an
instructor. For instance, the current lessons have to first introduce an abstract strategy and
then can illustrate it with examples. The instructor may wish to define lessons which first
introduce examples of reasoning and then present their abstraction.

Also the generated lessons should be made more interactive and engaging. In general,
our research has focused on the artificial intelligence aspects of tutoring rather than the
instructional design ones. Therefore, there are good opportunities for advancing this
research by emphasizing more the instructional design and educational aspects which
have only been developed to a limited extend. They include building fluency, drill and
practice, and repetition where the same type of test questions are presented repeatedly to
help student acquire fluency; chaining and logical sequencing of content where the lesson
contents are presented in a hierarchical way of problem reduction/solution synthesis
paradigm; and scaffolding where test questions are presented in a context from simple to
complex (Dabbagh, 2007). A tutoring system is more effective if it includes instructional
strategies for developing student’s creativity such as, self-directed learning, learning by
discovery, hypothesis generation.

The research on the abstraction of reasoning trees described in this dissertation can
naturally be extended to enhance other capabilities of a knowledge-based agent. For
example, the abstract reasoning patterns used in tutoring may guide the acquisition of
related problem solving strategies from a subject matter expert. Also, one could

investigate the generation of solutions and justifications at different levels of abstraction.

209

Appendix A: Abstraction-Based Lesson Emulation (ABLE)

Table 13: The ABLE Scripting Language

/ITokens

Problem ;The abstract problem

Reduction ;The abstract reduction (reduction process)
Solution ;The abstract solution

Synthesis ;The abstract synthesis (composition process)
Title ;The lesson title

Objectives ;The lesson objectives

Annotation ;The annotation

Description ;The definitions of the new terms

//Examples

ReductionExample ;The reduction example
SynthesisExample ;The synthesis example

//Decorative Tokens
Decorative := Annotation | Description | <empty> ;Decorative tokens

Decoratives := Decorative | Decoratives ;List of decorative tokens
DécorProblem := Problem Decoratives ;Problem with decorative tokens
DécorReduction := Reduction Decoratives ;Reduction with decorative tokens
DécorSynthesis := Synthesis Decoratives ;Synthesis with decorative tokens
DécorSolution := Solution Decoratives ;Solution with decorative tokens
DécorTitle := Title Decoratives ;Title with decorative tokens
DécorObjectives := Objectives Decoratives ;Objectives with decorative tokens

/IReduction and Synthesis Process

Sub-problem := DécorProblem | DécorSolution | <empty> ;4 sub-problem
Sub-problems := Sub-problem | Sub-problems ;Set of sub-problems
Solutions := DécorSolution Solutions | <empty> ;Set of solutions
ReductionSet := DécorReduction Sub-problems ;A4 reduction set
SynthesisSet := Solutions DécorSynthesis ;A synthesis set
ReductionProcess := DécorProblem ReductonSet ;4 reduction process
SynthesisProcess := SynthesisSet DécorSolution;4 synthesis process

//Reduction and Synthesis Examples
ReductionExamples := ReductionExample ReductionExamples | <empty>
CompositionExamples := CompositionExample CompositionExamples | <empty>
//Lesson Section
Section := ReductionProcess ReductionExamples |
SynthesisProcess CompositionExamples
LessonSection := Section | <empty>
LessonSections := LessonSection LessonSections

210

/ILesson Header

LessonHeader := DécorTitle DécorObjectives
/[Lesson

Lesson := LessonHeader LessonSections

Table 14: LifeCycle Feature

Token := Problem | Reduction | Solution | Synthesis |

Title | Objective | Annotation | Description | Test
Order := 1 | after (Token) ;When the component is displayed
Duration :=-1]0| 1 | before (Token) ;How long the component is displayed
LifeCycle := Order Duration | <empty>
LifeCycles := LifeCycle LifeCycles
TimingToken := Token LifeCycles

Table 15: Order and Duration Computation

Orderrokeni = 1: Token i is the first one to be displayed.
Orderroken j = after(Token i) = Orderrokenk + 1.
Example:

if Orderrige = 1 and Orderopjecive = after(Title)

then Orderopjcciive = Orderrige + 1 = 2.

Durationrokeni = -1: Token 1 always appears on the screen

Durationrokeni = 0: Token i never appears on the screen

Durationrokeni = 1: Token 1 appears on the screen for one step.
Durationroken i = before(Token ;) = Ordertoken j— Orderroken i

Example:

if Orderproplem =10, Orderopjeciive =5 and Durationgppjecive = before(Problem)
then Durationopjective = Orderproblem - Orderopjective= 10 — 5 = 5.

211

Appendix B: Lesson Scripts in XML

Table 16: Lesson Annotation Script in XML

<LessonAnnotation id="annotation 1" parent="title">
<LifeCycles>
<LifeCycle>
<Order value=after(“title:0”) />
<Longevity value="1" />
</LifeCycle>
</LifeCycles>
<Descriptions>
“Let us consider the problem:”
</Description>
</LessonAnnotation>

Table 17: Lesson Definition Script in XML

<LessonDefinition id="definition 0" parent="problem 0">
< LifeCycles>
< LifeCycle>
<Order value="problem 0:0" />
<Duration value="1" />
</ LifeCycle>
</ LifeCycles>
<Terms>
<Term name="piece of evidence" />
</Terms>
</LessonDefinition>

Table 18: Lesson Title Script in XML

<LessonTitle id="title">
<LifeCycles>
<LifeCycle>
<Order value="1" />
<Duration value="-1" />
</LifeCycle>
</LifeCycles>
<Description>

Assess to what extent the piece of evidence supports the hypothesis

</Description>
</LessonTitle>

212

Table 19: Lesson Objective Script in XML

<LessonObjective id="objectives" parent="title">
<LifeCycles>
<LifeCycle>
<Order value="1" />
<Duration value="1" />
</ LifeCycle>
</ LifeCycles>
<Description>
There are 2 objectives: <p> Learn how to handle the piece of evidence. <p>
Learn how to assess the piece of evidence to support a hypothesis
</Description>
</LessonObjective>

Table 20: Lesson Problem Component Scrip in XML

<LessonProblem id="problem 1" parent="annotation 2">
<AbstractProblemReference kbPartName="LTA final" index="3" />
<LifeCycles>
< LifeCycle>
<Order value=after("annotation 2:0") />
<Duration value="-1" />
</ LifeCycle>
</ LifeCycles>
<Description>
Assess to what extent piece of evidence supports the hypothesis, assuming that we
believe the information provided by the piece of evidence
</Description>
</LessonProblem>

Table 21: Lesson Reduction Script in XML

<LessonReduction id="reduction 0" parent="problem 0">
<AbstractReductionReference kbPartName="LTA final" index="3" />
<LifeCycles>
<LifeCycle>
<Order value="problem 0:0" />
<Duration value=before("problem") />
</LifeCycle>
</LifeCycles>
<Description>
The information provided by the piece of evidence and the extent to which it is

213

believable.
</Description>
</LessonReduction>

Table 22: The Lesson Solution Script in XML

<LessonSolution id="solution 0" parent/host="reduction 0">
<AbstractSolutionReference kbPartName="LTA final" index="1" />
<LifeCycles>
< LifeCycle>
<Order value=after("reduction 0:0") />
<Duration value="-1" />
</ LifeCycle>
</ LifeCycles>
<Description>
Assessed believability of the reporter of the piece of evidence
</Description>
</LessonSolution>

Table 23: The Lesson Synthesis Script in XML

<LessonSynthesis id="synthesis 2" host="reduction 0">
<LifeCycles>
<LifeCycle>
<Order value="composition 1:0" />
<Duration value="-1" />
</LifeCycle>
</LifeCycles>
<Description>
Determine the likelihood of the hypothesis given the likelihood of the credibility of
the piece of evidence.
</Description>
</LessonSynthesis>

214

REFERENCES

215

REFERENCES

Aleven, V., McLaren, B., Sewall, J., and Koedinger, K. The Cognitive Tutor
Authoring Tools (CTAT): Preliminary Evaluation of Efficiency Gains, in the
Proceedings of the 8th International Conference on Intelligent Tutoring Systems, Jhongli,
Taiwan, June 26-30, 2006.

Aleven, V., and Rose, C. P. Towards Easier Creation of Tutorial Dialogue Systems:
Integration of Authoring Environments for Tutoring and Dialogue Systems, in
Proceedings of the ITS Workshop on Tutorial Dialogue Systems, Alagoas, Brazil, 2004,
Springer.

Anderson, J.R. Intelligent Tutoring and High School Mathematics. in The second
International Conference on Intelligent Tutoring System, (Berlin, Germany, 1992),
Spring—Verlag.

Anderson, J.R. Rules of the Mind. Lawrence Erlbaum. 1993.

Anderson, J.R. The Expert Module. Martha C. Polson, J.J.R. ed. Foundations of
Intelligent Tutoring System, 1998, 21-53.

Anderson, J.R., Boyle, C. F., and Yost, G. The Geometry tutor. The Journal of
Mathematical Behavior. 5-20, 1986.

Anderson, J.R., and Reiser, B. J. The LISP tutor Byte, 1985, 159-175.

Barbulescu M., Balan G., Boicu M., and Tecuci G. Rapid Development of Large
Knowledge Bases in Proceedings of the 2003 IEEE International Conference on Systems,
Man & Cybernetics, Volume: 3, pp. 2169 - 2174, Washington D.C., October 5-8, 2003.

Barr, A., Cohen, P. R., and Feigenbaum, E. A. The Handbook of Artificial
Intelligence, Volume 1, 1998.

Blessing, S.B. A programming by demonstration authoring tool for model tracing
tutors. in Artificial Intelligence in Education, (1997), 233-261.

Bloom, B.S. Taxonomy of Educational Objectives, Handbook I: The Cognitive
Domain. David McKay Co Inc, New York, 1956.

216

Boicu, C., Tecuci, G., and Boicu, M. A Mixed-Initiative Approach to Rule
Refinement for Knowledge-Based Agents. in the AAAI-05 Fall Symposium on Mixed-
Initiative Problem-Solving Assistants, Arlington, VA, 2005, AAAL

Boicu, M. Modeling and Learning with Incomplete Knowledge, PhD Thesis in
Information Technology, Learning Agents Laboratory, School of Information Technology
and Engineering, George Mason University, 2002.

Boicu, M., Tecuci, G., Marcu, D., Stanescu, B., Boicu, C., Balan, C., Barbulescu, M.,
and Hao, X. Disciple-RKF/COG: Agent Teaching by Subject Matter Experts. in A4AAI-
1802, (2002), AAAL

Boicu, M., Tecuci, G., Stanescu, B., Marcu, D., Barbulescu, M., and Boicu, C. Design
Principle for Learning Agents in Proceedings of AAAI-2004 Workshop on Intelligent
Agent Architectures: Combining the Strengths of Software Engineering and Cognitive
Systems, July 26, San Jose, AAAI Press, Menlo Park, CA, 2004.

Bowman, M., Tecuci, G., and Ceruti, M. Application of Disciple to Decision Making
in Complex and Constrained Environments, in Proceedings of the 2001 IEEE Systems,
Man and Cybernetics Conference, October 2001.

Brown, J., Burton, R.R., and deKleer, J. Pedagogical, natural language and
knowledge engineering techniques in SOPHIE [, II, and III. Sleeman, D., Brown, J.S. ed.
Intelligent Tutoring Systems, Academic Press, New York, 1982, 227-282.

Buchanan, B. and Wilkins, D. (editors). Readings in Knowledge Acquisition and
Learning: Automating the Construction and Improvement of Expert Systems. Morgan

Kaufmann, San Mateo, CA, 1993.

Carbonell, J. Al in CAIL: An artificial intelligence approach to computer aided
instruction in /EEE Transactions on Man-Machine systems, (1970), 190-202.

Clancey, W.J. Dialog Management for Rule-Based Tutorials. in International Joint
Conference on Artificial Intelligence 6, (Tokyo, Japan, 1979), William Kurfmann, Inc.

Clancey, W.J. The Handbook of Artificial Intelligence, William Kaufmann, Inc, Los
Altos, CA, 1982.

Clancey, W.J. from GUIDON to NEOMYCIN and HERACLES in Twenty Short
Lessons: ORN Final Report 1979-1985, AI Magazine, August 1986, 40-60.

Clancey, W.J. Knowledge-Based Tutoring. MIT Press, Massachusetts, 1987.

217

Cormen, T., Leiserson, C., and Rivest, R. Introduction to Algorithms. McGraw Hill,
1997.

Dabbagh, N. The Instructional Design Knowledge Base. Retrieved 09-29-2007 from
Nada Dabbagh’s Homepage, George Mason University, Instructional Technology
Program. Website: http://classweb.gmu.edu/ndabbagh/Resources/IDKB/index.htm

Davis, R. Expert Systems: where Are We? And Where Do We Go From Here? A/
Magazine, 1982, 3-22.

DeJong, K. Evolutionary Computation: A Unified Approach. MIT Press, Cambridge,
MA, 2006.

Digangi, A. S., Jannasch-Pennell, A., Yu, H., C., and Mudiam, V. S. Curriculum-
based Measurement and Computer Based Assessment: Constructing an intelligent, web-

based evaluation tool. http:/www.creative-wisdom.com/pub/scip_cbm.html. November,
1999.

Durham S. 2000. Product-Centered Approach to Information Fusion, AFOSR Forum
on Information Fusion, Arlington, VA, 18-20 October, 2000.

Eugenio, B., Fossati, D., Yu, D., Haller, S., and Glass, M., Natural language
generation for intelligent tutoring systems: a case study in AIED 2005, July 2005.

Eugenio, B., Glass, M., and Trolio, M., The DIAG experiments: Natural Language
Generation for Intelligent Tutoring Systems. In INLG02, The Third International Natural
Language Generation Conference, 2002, pages 120--127.

Even, M., Brandle, S., Chang, R., Freedman, R., Glass, M., Lee, Y., Shim, L., Woo,
C., Zhang, Y., Zhou., Y., Michael, J., and Rovick., A., CIRCSIM-Tutor: An Intelligent
Tutoring System using Natural Language Dialogue, 12" Midwest AI and Cognitive
Science Conference, Oxford OH, 2001, 16-23.

Feigenbaum, E.A. Knowledge Engineering in the 1980’s, Dept. of Computer Science,
Stanford University, Stanford, CA, 1982.

Feigenbaum, E.A. Tiger in a Cage: The Applications of Knowledge-based Systems.
The Fifth Annual Conference on Innovative Applications of Artificial Intelligence. AAAI,
1993.

Fisher, D.H. Knowledge acquisition via incremental conceptual clustering. Machine
Learning 2: 139-172. 1987.

218

Furnkranz, J. The Role of Qualitative Knowledge in Machine Learning.
http://citeseer.ist.psu.edu/116655.html, 1992.

Giunchiglia, F. and Walsh, T. A Theory of Abstraction, Artificial Intelligence 56(2-3)
pp 323-390. 1992.

Halff, H.M. Curriculum and Instruction in Automated Tutors. Martha Polson, J.J.R.
ed. Foundations of Intelligent Tutoring System, 1988, 79-108.

Jarvis, M.P. Applying Machine Learning Techniques to Rule Generation in
Intelligent Tutoring Systems. Master thesis, Worcester Polytechnic Institute, 2004.

Josephson, J., Chandrasekaran, B., Smith, J.W., and Tanner, M.C., A Mechanism for
Forming Composite Explanatory Hypotheses. in /IEEE Trans. on Systems, Man and
Cybernetics, (1987), 445-454.

Kaschek, H. R., Intelligent Assistant Systems: Concepts, Techniques and
Technologies. Idea Group Publishing, 2006.

Kirkpatrick D., Evaluating Training Programs: The Four Levels. Second edition,
Berrett-Koehler Publishers, Inc. San Fransico, 1998.

Kodratoff Y., Tecuci, G., Learning Based on Conceptual Distance. in /EEE
Transactions on Pattern Analysis and Machine Intelligence, 1988, 897-909.

Koedinger, K. R., Aleven, V., and Heffernan, N. T. (2003). Toward a Rapid
Development Environment for Cognitive Tutors. In U. Hoppe, F. Verdejo, & J. Kay

(Eds.), Proceedings of the 11th International Conference on Artificial Intelligence in
Education, AI-ED 2003 (pp. 455-457). Amsterdam: IOS Press.

Koedinger, K. R., Aleven, V., Heffernan, N., McLaren, B. and Hockenberry, M.
Opening the Door to Non-Programmers: Authoring Intelligent Tutor Behavior by
Demonstration. in Intelligent Tutoring Systems 2004: 162-174.

Kukla, E., Nguyen, N., and Sobecki, J., The consensus-based tutoring strategy
selection in CAL systems. in World Transactions on Engineering and Technology
Education, Vol.1, No.1, 2002.

Langley, P., Simon, H.A., Bradshow, G.L., and Zytkow, J.M. Scientific Discovery:

Computational Explorations of the Creative Processes. MIT Press, Cambridge, MA,
1987.

219

Maiden, N.A.M., and Sutcliffe, A.G., A computational mechanism for parallel
problem decomposition during requirements engineering. in 8" International Workshop
on Software Specification and Design, (Schloss Velen, Germany), Pages 159-163, 1996.

Matsuda, N., Cohen, W. W., and Koedinger, K. R., An Intelligent Authoring System
with Programming by Demonstration. in Japan National Conference on Information and
Systems in Education., (2005).

Matsuda, N., Cohen, W. W., and Koedinger, K. R., Building Cognitive Tutors with
Programming by Demonstration. in International Conference on Inductive Logic
Programming, (2005), 41-46.

Matsuda, N., Cohen, W.W., Sewall, J., and Koedinger K.R. Applying Machine
Learning to Cognitive Modeling for Cognitive Tutors. Technical Report CMU-ML-06-
105 July 2006.

Matsuda, N., Cohen, W.W., Sewall, J., Lacerda, G., and Koedinger, K.R. Evaluating
a Simulated Student using Real Students Data for Training and Testing. in Proceedings of
the International Conference on User Modeling (Berlin, Germany), pp. 107-116. 2007.

Meyers, W., Linear Representation of Tree Structure - a Mathematical Theory of
Parenthesis-Free Notations. In Proceedings of the third annual ACM symposium on
Theory of computing, Shaker Heights, Ohio, pp: 50-62. 1971.

Michalski, R., and Tecuci, G. Machine Learning: A Multistrategy Approach. Morgan
Kaufmann, 1994.

Mitchell, T. Version Spaces: An Approach to Concept Learning, Stanford University,
1978.

Mitchell, T.M. Machine Learning. McGraw-Hill, 1997.

Murray, T., Authoring Intelligent Tutoring Systems: An Analysis of the State of The
Art. in International Journal of Artificial Intelligence in Education, (1999), 98-129.

Murray, T., Blessing, S., and Ainsworth, S., Authoring Tools for Advanced
Technology Learning Environments: Toward Cost-Effective Adaptive, Interactive and
Intelligent Educational Software, Kluwer Academic Publishers, Netherlands, 2003 493-
546.

Mustiere, S., Zucker, J. D., and Saitta, L. An abstraction-based Machine Learning

Approach to Cartographic Generalization. In Proceedings of the 9" International
Symposium on Spatial Data Handling, Beijing, 2000, pp 50-63.

220

Nayak, P. P., and Levy, A. Y. A semantic theory of abstraction. In Procedure of
Fourteenth International Joint Conference on Artificial Intelligence (IJCAI-95),
Montreal, Canada, 20-25 August 1995 (ed. A. Toshi), pp. 196-202.

Nguyen, D.T., Ho, B. T., and Shimodaira, H., A Visualization Tool for Interactive
Learning of Large Decision Trees. in 12th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI'00), (Vancouver, BC, Canada, 2000), IEEE.

Ong, J., and Ramachandran, S. Intelligent Tutoring Systems: The What and the How,
2000. http://www.learningcircuits.org/2000/feb2000/ong.htm

Plaisted, D. 1981 Theorem proving with abstraction. Artificial Intelligence. 16, 47—
108

Polson, M.C., and Richardson, J. J. Foundation of Intelligent Tutoring System.
Lawrence Erlbaum Associates, Inc., Hillsdale, NJ, 1988.

Powel G.M. and Schmidt C.F. 1988. A First-order Computational Model of Human
Operational Planning, CECOM-TR-01-8, US Army CECOM, Fort Monmouth, New
Jersey.

Roschelle, J. Learning in Interactive Environments: Prior Knowledge and New
Experience, 1995.

Rumelhart, D., and McClelland, J.L. Parallel Distributed Processing. MIT Press,
Cambridge, MA, 1986.

Russell, S., and Norvig, P. Artificial Intelligence A Modern Approach. Prentice Hall,
Upper Saddly River, NJ, 1995.

Saitta, L. and Zucker, J.D.. Semantic Abstraction for Concept Representation and
Learning. Symposium on Abstraction, Reformulation and Approximation (SARA9S),
Asilomar Conference Center, Pacific Grove, California. 1998.

Sebastia, L., Onaindia, E., and Marzal, E., Decomposition of planning problems. in 4/
Communications, Volume 19, Issue 1, Pages: 49-81. 2006

Smith, S. Tutorial on Intelligent Tutoring System, 1998.
http://www.cs.mdx.ac.uk/staffpages/serengul/Intelligent. Tutoring. System. Architectures.h
tm

Sutton, R. Learning to predict by the methods of temporal differences Machine
Learning, 1988, 9-44.

221

Tecuci, G., Building Intelligent Agents: An Apprenticeship Multistrategy Learning
Theory, Methodology, Tool and Case Studies. London, England: Academic Press, 1998.

Tecuci, G., Lecture Notes on “Knowledge Acquisition and Problem Solving”, CS
785, George Mason University, Fall 2001.

Tecuci, G., Boicu, M., Ayers, C., and Cammons, D. Personal cognitive assistants for
Military Intelligent Analysis: Mixed-Initiative Learning, Tutoring, and Problem Solving.
in First International Conference on Intelligence Analysis, (McLean, VA, 2005).

Tecuci, G., Boicu, M., Bowman, M., and Marcu, D. An Innovative Application from
the DARPA Knowledge Bases Programs: Rapid Development of a Course of Action
Critiquer Al Magazine, AAAI Press, 2001, 43-61.

Tecuci, G., Boicu, M., Bowman, M., Marcu, D., Shyr, P., and Cascaval, C, An
Experiment in Agent Teaching by Subject Matter Experts, in International Journal for
Human-Computer Studies, pp. 583-610, 2000.

Tecuci, G.; Boicu, M.; and Marcu, D., Learning Agents Teachable by Typical
Computer Users. In Procedure of the AAAI-2000 Workshop on New Research Problems
for Machine Learning, Austin, Texas, 2000.

Tecuci, G., Boicu, M., Marcu, D., Stanescu, B., Boicu, C., and Barbulescu, M. A
Learning Agent Shell for Building Knowledge-Based Agents. In the Technology
Demonstration Session of the 14th International Conference on Knowledge Engineering
and Knowledge Management, EKAW 2004, (Northamptonshire, UK, 2004), Whittlebury
Hall.

Tecuci, G. Boicu, M., Marcu, D., Stanescu, B., Boicu, C. and Comello, J. Training
and using Disciple agents: A case study in Military Center of Gravity Analysis Domain.
Al Magazine, 24.4, 2002, pp.51 - 68. AAAI Press, Menlo Park, California, 2002.

Tecuci, G., Boicu, M., Wright, K., Lee, S. W., Marcu, D., and Bowman, M., An
Integrated Shell and Methodology for Rapid Development of Knowledge-Based Agents.
in The Sixteenth National Conference on Artificial Intelligence (AAAI-99), (Orlando,
Florida, 1999), AAAI Press, Menlo Park, CA.

Tecuci, G., Wright, K., Lee, S.W., Boicu, M., Bowman, M., and Webster, D., A
Learning Agent Shell and Methodology for Developing Intelligent Agents. in The AAAI-
98 Workshop on Software Tools for Developing Agents, (Madison, Wisconsin, 1998),
AAAI Press, 37-46.

Tenenberg, J. 1987 Preserving consistency across abstraction mappings. In Procedure
of IJCAI-87, Milan, Italy, 1987 (ed. J. McDermott), pp. 1011-1014.

222

Tsinakos, A.A., and Margaritis, G. K., Student Models: The transit to Distance
Education, http://www.eurodl.org/materials/contrib/2000/tsinakos.html, 2000.

Towne, D., Approximate reasoning techniques for intelligent diagnostic instruction,
in International Journal of Artificial Intelligence in Education, 1997

Tucker, A., Applied Combinatorics, Third Edition. John Wiley & Sons, Inc., 1995.

Turner, T.E. The Assistment Builder: A tool for rapid tutor development Computer
Science, WORCESTER POLYTECHNIC INSTITUTE, 2005.

Turner, T.E., Lourence, A., Heffernan, N., Macasek, M., Nuzzo-Jones, G., and
Koedinger, K. The Assistment Builder: An Analysis of ITS Content Creation Lifecycle.
The 19" International FLAIRS Conference, Melbourne Beach, Florida, 2006.

Turner, T.E., Macasek, M. A., Nuzzo-Zones, G. , Heffernan, N. T., and Koedinger, K.
The Assistment Builder: A Rapid Development Tool for ITS. in the 12th Artificial
Intelligence In Education, (Amsterdam, 2005), 929-931.

Waltz, D. Artificial Intelligence: An assessment of the State of the art and
Recommendation for Future Direction A1 Magazine, 1983, 55-67.

Whitley, E.A. Embedding expert systems in semi-formal domains: Examining the
boundaries of the knowledge base. School of Economics and Political Science-290, 1990.

Winston, P. Learning and Reasoning by Analogy. Communication of the ACM, 23
(12). 689-703, 1980.

Zucker, and Jean-Daniel, A grounded theory of abstraction in artificial intelligence.

Philosophical Transactions of the Royal Society B: Biological Sciences, 2003 July 29;
358(1435): 1293-13009.

223

CURRICULUM VITAE

Vu Le received his Bachelor of Science in Computer Science from George Mason
University in 1997. He worked for Boeing Company as software engineer after
graduation. He continued to attend George Mason University graduate program in
Computer Science. He received his Master of Science in 1999. Vu Le was employed as
software engineer in Science Applications International Corporation (SAIC) in 1999. He
worked for Alphatech, Inc (now is BAE Systems) in 2004 as senior software engineer
and for Learning Agent Center at George Mason University in 2005 as research
instructor.

224

