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ABSTRACT 
 
 

ABSTRACTION OF REASONING FOR PROBLEM SOLVING AND TUTORING 
ASSISTANTS 
 
Vu Le, PhD 
 
George Mason University, 2008 
 
Dissertation Directors: Dr. Gheorghe Tecuci and Dr. Mihai Boicu 
 
 

This dissertation presents an approach to the abstraction of the reasoning of a 

knowledge-based agent that facilitates human-agent collaboration in complex problem 

solving and decision-making and the development of systems for tutoring expert problem 

solving to non-experts. 

Effective human-agent collaboration requires an ability of the user to easily 

understand the complex reasoning generated by the agent. The methods presented in this 

dissertation allow the partition of a complex reasoning tree into meaningful and 

manageable sub-trees, the abstraction of individual sub-trees, and the automatic 

generation of an abstract tree that plays the role of a table of contents for the display, 

understanding and navigation of the concrete tree. 

Abstraction of reasoning is also very important for teaching complex problem-solving 

to non-experts. This dissertation presents a set of integrated methods that allow the  

abstraction of complex reasoning trees to define abstract problem solving strategies for 



    

 

tutoring, the rapid development of lesson scripts for teaching these strategies to non-

experts, and the automatic generation of domain-specific lessons. These methods are 

augmented with ones for learning and context-sensitive generation of omission, 

modification, and construction test questions, to assess a student’s problem solving 

knowledge. 

The developed methods have been implemented as an extension of the Disciple 

learning agent shell and have led to the development of the concept of learning and 

tutoring agent shell. This is a general tool for building a new type of intelligent assistants 

that can learn complex problem solving expertise directly from human experts, support 

human experts in problem solving and decision making, and teach their problem solving 

expertise to non-experts. The developed learning and tutoring shell has been used to build 

a prototype tutoring system in the intelligence analysis domain which has been used and 

evaluated in courses at the US Army War College and George Mason University. 
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1. Introduction 

 
 

1.1. Knowledge-Based Agents 

An important goal of Artificial Intelligence is to develop knowledge-based agents that 

represent the subject matter expertise of human experts in particular domains, such as 

engineering design, emergency response planning, intelligence analysis, medical 

diagnosis and treatment, etc. These agents could act as “interactive, user-adaptive 

problem solving aids that understand what they do, accept goals being set as input rather 

than instructions or deduce such goals, and, once these goals are identified, aim at solving 

them independently from their user” (Kaschek, 2006).  

A knowledge-based agent may be used by a subject matter expert as a decision-

making assistant, or by a non-expert user as an expert system, or by a student as a 

tutoring system. In the words of Edward Feigenbaum (1993), “Rarely does a technology 

arise that offers such a wide range of important benefits of this magnitude. Yet as the 

technology moved through the phase of early adoption to general industry adoption, the 

response has been cautious, slow, and ‘linear’ (rather than exponential).”  

There are several explanations of this situation. One is the difficulty of acquiring and 

representing the subject matter expertise of human experts (Buchanan and Wilkins, 

1993). Knowledge acquisition for tutoring purposes, which also involves building lessons 

and exercises, is even more difficult (Murray, 1999). Anderson (1992) estimated that “it 
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takes at least 100 hours to do the development that corresponds to an hour of instruction 

for a student.” Other difficulties are related to the actual use of such systems. Solving 

complex, real-world problems involves reasoning trees with thousands or tens of 

thousands of reasoning steps. A user must be able to understand and work with this 

complex reasoning if he or she is to use the system as a decision-making assistant. 

Similarly, a student has to be able to learn from such a complex reasoning. 

A general objective of this PhD dissertation is to investigate how abstraction of 

reasoning may advance the state of the art in the development and use of knowledge-

based agents. In particular, we investigate the development of a specific type of 

intelligent assistant (see Figure 1) that can: 

• learn complex problem solving expertise directly from human experts; 

• support human experts in complex problem solving and decision making; 

• teach their complex problem solving expertise to non-experts. 

 

 

Figure 1: Intelligent Learner, Assistant and Tutor 
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For this type of agents, we investigate how abstraction of complex reasoning, viewed 

as a type of simplification that removes less important details, may facilitate human-agent 

collaboration in complex problem solving and decision-making, teaching complex 

problem-solving to non-experts, and rapid development of intelligent tutoring systems for 

complex problem solving. 

This dissertation builds upon three areas, Expert Systems, Machine Learning, and 

Intelligent Tutoring Systems, which are briefly reviewed in the following sections. 

1.2. Expert Systems 

An expert system is a knowledge-based system which represents the human expertise 

in some specialized area and uses that knowledge to solve problems in that area. The 

expert system behaves as a human expert during the problem solving process to find 

solutions to problems and present the appropriate explanations of the problem solving 

process. 

The input problems for an expert system are usually complex and difficult enough to 

require significant human expertise for their solutions (Feigenbaum, 1982). These 

problems demand a substantial body of knowledge with different levels of uncertainty 

(Waltz, 1983).  

The main modules of an expert system are the knowledge base and the inference 

engine. The knowledge base stores the knowledge of a certain expertise domain, acquired 

by the knowledge engineer from a given subject matter expert, and encoded in production 

rules, heuristics, facts, etc. The inference engine implements a general method for solving 
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problems by using the knowledge from the knowledge base. A main architectural 

principle in the development of an expert system is the separation between the inference 

engine and the knowledge base (Davis, 1982), as shown in Figure 2. These two modules 

are usually built separately so that the same inference engine can potentially be used with 

different knowledge bases. Apart from reusing the inference engine (Whitley, 1990), this 

makes the knowledge in knowledge base more easily identifiable, more explicit and more 

accessible. 

 

Figure 2: Expert System Development 

 

The communication between the subject matter expert and the expert system is a 

difficult issue. Each side speaks a different language and the common understanding is 

usually vague. The knowledge engineer has to interact with the subject matter expert to 

understand how a problem is to be solved, then uses some representation to encode the 

expert’s knowledge into the system. This process is time consuming, difficult and error 

prone, being well known as the knowledge acquisition bottleneck (Buchanan and 

Wilkins, 1993). 
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Due to the separation between the inference engine and the knowledge base, a generic 

inference engine can be developed and used with different knowledge bases to create 

expert systems for different purposes. This approach, Expert System Shell, revolutionizes 

the way the expert systems are built. The expert system shell contains a generic inference 

engine and an empty knowledge base with a pre-defined knowledge representation. Now 

the developers of the expert systems are no longer concerned with building the problem 

solving engine. Building an expert system reduces to building a knowledge base 

following a pre-defined syntax. In addition, most shells provide useful utilities that can 

do some additional tasks such as knowledge base integrity checking and debugging 

(Whitley, 1990). 

A critical characteristic of expert systems that are used as decision-support assistants 

is the ability to make very clear their reasoning process. For very complex problems, 

however, the reasoning trees are very large, making their browsing and understanding 

difficult. This problem can be alleviated by abstracting the reasoning process, as 

proposed in this PhD dissertation. This allows the user of an expert system to both get a 

general understanding of the reasoning strategy (at an abstract level) and investigate the 

details of the reasoning (when needed). 

1.3. Machine Learning and Learning Agent Shells 

The knowledge acquisition bottleneck plagues the development of expert systems. 

One approach to alleviate this problem is to automatically acquire domain knowledge 

through learning. Knowledge acquisition can be based on several Machine Learning 

strategies (Tecuci, 1998): 
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• Empirical inductive learning from examples learns the definition of a concept 

from a set of positive and negative examples. The inductive process generates the 

generalized description for that concept (Mitchell, 1978).  

• Explanation-based learning learns by observing a single example to improve 

system’s performance. However, this technique requires complete and correct 

knowledge of the domain under study (Mitchell, 1997). 

• Analogical learning learns by transferring knowledge from a source entity to a 

target entity (Winston, 1980). 

• Abductive learning hypothesizes the causes of observed effects (Josephson et al., 

1987). 

• Conceptual clustering classifies a set of objects into concepts and learns the 

descriptions of these concepts (Kodratoff and Tecuci, 1988; Fisher, 1987). 

• Quantitative discovery discovers quantitative laws that relate to the values of 

variables characterizing objects (Langley et al., 1987). 

• Reinforcement learning learns by using the feedback on an agent’s performance 

from the environment (Sutton, 1988). 

• Genetic algorithms learn by evolving a population of individuals over a sequence 

of generations (DeJong, 2006). 

• Neural networks learn by evolving a network of connected nodes which simulates 

the brain’s dendrites and axons (Rumelhart and McClelland, 1986). 
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• Multistrategy learning integrates complementary machine learning approaches to 

solve learning problems that are beyond the capabilities of the integrated methods 

(Michalski and Tecuci, 1994). 

A significant advance in the use of machine learning for knowledge acquisition was 

the development of the concept of learning agent shell (LAS), as an extension and 

generalization of the concept of expert system shell (Tecuci, 1998). A learning agent 

shell is a tool for building expert systems. It contains a general problem solving engine, a 

learning engine and a generic knowledge base structured into object ontology and a set of 

rules (see Figure 3).  

The main purpose of the learning agent shell is to enable rapid development of the 

knowledge base, directly by the subject matter experts, with limited assistance from the 

knowledge engineers. A specific type of learning agent shell which was used as an 

experimentation platform for this dissertation research is the Disciple shell (Tecuci et al., 

1998; Boicu, M., 2004). It consists of: 

• A problem solving component based on problem reduction. This component 

includes a modeling agent that helps the user to express his/her contributions to 

the problem solving process, a mixed-initiative (step-by-step) problem solving 

agent, and an autonomous problem solving agent.  

• A learning component for acquiring and refining the knowledge of the agent, 

allowing a wide range of operations, from ontology import and user definition of 

knowledge base elements (through the use of editors and browsers), to ontology 

learning and rule learning.   



    

8 

• A knowledge base manager which controls the access and the updates to the 

knowledge base. Each module of Disciple can access the knowledge base only 

through the functions of the knowledge base manager.  

• A domain-independent, graphical user interface.  

 

 
Figure 3: Learning Agent Shell Architecture 

 

Building an agent for a specific application consists of customizing the shell for that 

application and developing the domain knowledge base. The learning engine (which uses 

various learning strategies, such as learning from examples, from explanations, and by 

analogy) facilitates the building of the knowledge base by subject matter experts. It 

reduces the involvement of the knowledge engineers who otherwise would play a very 

important role in acquiring knowledge from the expert and encoding it in the knowledge 

base. This leads to a significant speed-up of the process of building a knowledge-based 

system.  

The methodology to build an end-to-end knowledge-based agent with a Disciple shell 

is the following one (Tecuci et al., 1999):  

Interface
Learning

Problem
Solving Domain KB 

ontology+rule 
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• Specification of the problem: The subject matter expert and the knowledge 

engineer usually accomplish this step to identify the types of problems to be 

solved by the system. 

• Modeling the problem solving process as problem reduction: The expert and the 

knowledge engineer work together to model the problem solving process as 

problem reduction and, in the process, define: a) an informal description of the 

agent’s problems, b) instances and concepts are defined, and (3) conceptual 

problem reduction trees to guide the training of the agent by the subject matter 

expert. 

• Developing the customized agent: Add auxiliary components (as needed) such as 

graphical viewer for a reasoning tree, special report generation capabilities, etc. 

• Importing and developing the ontology: There are many available ontologies that 

can be imported partially. The imported ontology is then extended by using the 

different tools for different knowledge elements, such as feature editor, problem 

editor, object editor, etc. 

• Training the agent for its domain-specific problems: During this step, the expert 

teaches the agent to solve problems in a cooperative, step-by-step problem solving 

scenario. The expert defines an initial problem and asks the agent to reduce it. The 

agent will try different methods to reduce the current problem. If the solution was 

defined or modified by the expert, then it represents an initial example for 

learning a new reduction rule. To learn the rule, the agent will first try to find an 
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explanation of why the reduction is correct. Then the example and the explanation 

are generalized to a rule which becomes part of the agent’s knowledge base. 

• Testing and using the agent: The agent is tested with additional problems. The 

agent will solve the problems alone. The solutions are then inspected by the 

expert. If the agent generated wrong solutions then the expert will identify the 

errors and will help the agent to fix them. 

An important characteristic of a Disciple-type learning agent shell is that it allows the 

subject matter expert to teach the agent in a very natural way, similar to how the expert 

would teach a student. As a consequence, the reasoning of the agent will be very natural, 

similar to that of the expert who has taught it. This will facilitate the understanding of the 

agent’s reasoning by an end-user. But it also opens a significant opportunity with respect 

to tutoring, which is exploited by our dissertation research. It may make possible for such 

an agent to teach students in a way that is similar to how it was taught by the subject 

matter expert. This is important for two different reasons. First, a new user of the agent 

should become familiar with how the agent solves problems, if the user is to use the agent 

for decision-support. Second, teaching expert problem solving strategies is an important 

application area and easily building such tutoring systems would have a significant 

economic impact.  

 As discussed in Chapter 6, we have developed the concept of learning and 

tutoring agent shell, as an extension of the concept of learning agent shell. A learning and 

tutoring agent shell allows rapid development of intelligent tutoring systems for problem 

solving knowledge. 
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1.4. Intelligent Tutoring Systems 

Intelligent tutoring systems (ITS) emulate the human tutors in teaching the students. 

Unlike the computer-based training (CBT) or computer-aided instruction (CAI) systems 

(Carbonell, 1970) which drive the students inflexibly following predefined scripts, an ITS 

focuses on individualized curriculum that suits the student’s need. In order to do that, the 

ITS needs: 1) the representation of the domain knowledge which is handled by the expert 

module; 2) the tutoring knowledge which is stored in the tutoring module; and 3) the 

knowledge of the student’s capability and progress which is stored in the student module 

(Polson and Richardson, 1988). These three modules constitute the backbone of the 

tutoring system. The other modules such as the user interface play supportive roles in 

preparing and constructing the curriculum customized to the student ability as shown in 

Figure 4 (Polson and Richardson, 1988). 

 

 
Figure 4: General Architecture of an Intelligent Tutoring System 

 

The expert module contains the domain knowledge and has the problem solving 

capability necessary for the subjects that the tutoring system is designed for. Acquiring 

Expert Module

Tutoring 
Module 

Student 
Module 

User Interface



    

12 

the expert knowledge is both time consuming and difficult. For instance, Anderson 

(1998) estimated that for the applications to programming and mathematics, over 50% of 

the effort goes into encoding the domain knowledge (Anderson, 1998).  

There are several models that are typically used by the expert module. The black box 

model encapsulates the domain knowledge and delivers the output based on the given 

input without explanations of why the problem is solved that way (Anderson, 1998). This 

type of behavior can be used to judge the correctness of student’s performance while 

executing the same tasks. A typical example of the use of a black box model in a tutoring 

system is SOPHIE (Brown et al., 1982) which teaches students how to troubleshoot 

faulty electronic circuits. An alternative model is based on expert systems and is widely 

used in teaching the expert knowledge (Anderson, 1998). A classic and well-known 

tutoring system which teaches students how to diagnose the bacterial infection is 

GUIDON (Clancey, 1987). GUIDON is based on the MYCIN expert system and 

generates explanations of how the results have been obtained. Yet another type of expert 

model is the cognitive model. This model simulates the “human problem solving in a 

domain in which the knowledge is decomposed into meaningful, human-like components 

and deployed in a human-like manner.” (Anderson, 1998). A typical example of this type 

is the LISP Tutor (Anderson and Reiser, 1985) which teaches the students how to 

program in LISP. Because the cognitive systems simulate the human problem solving 

knowledge, the understanding of different types of knowledge that need to be tutored is 

useful. There are 3 levels of knowledge: procedural, declarative and qualitative. The 

procedural knowledge relates to how a task is performed (Anderson, 1998). The LISP 

tutor is a cognitive tutoring system which uses procedural knowledge. The declarative 
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knowledge is a set of facts appropriately organized to be reasoned with. The tutoring 

systems which use the declarative knowledge are designed to teach the students the basic 

principles and facts of the domain and how to reason with them in general (Anderson, 

1998). An example of this type of tutoring system is SCHOLAR which teaches the 

students the South American geography (Carbonell, 1970). Qualitative knowledge is “any 

kind of knowledge that does not always allow a correct and consistent match between the 

represented objects and the real world, but can nevertheless be used to get approximate 

characterizations of the behavior of the modeled domain” (Furnkranz, 1992). This type of 

knowledge therefore underlies the human capability of simulation and reasoning. Thus it 

is essential in the troubleshooting process. SOPHIE (Brown et al., 1982) uses this type of 

knowledge as well to teach a student how to troubleshoot a faulty circuit. 

The student module (see Figure 4) evaluates the student’s performance to determine 

his/her knowledge of the domain and reasoning skills (Ong and Ramachandran, 2000). 

The student model built and maintained by this module uses that understanding to help 

the student in many ways. It can advance the student to a higher level if it is determined 

that the student succeeded in answering most of the questions or seemed to master the 

presented topics. The tutoring system can give explanations to the student based on the 

concepts and definitions that have been previously presented to the student and are 

recorded in the student model. Or the system can give some advice during runtime when 

the student model can “feel” that the student does not know how to proceed further based 

on his/her suboptimal performance or misconceptions (Digangi, A. S., et al., 1999). 
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There are 3 types of student models: overlay model, differential model and 

perturbation model (Smith, 1998; Tsinakos and Margaritis, 2000). In the overlay model 

the student’s knowledge is a subset of the expert’s knowledge. The student knowledge 

will expand when more knowledge is acquired and eventually becomes the expert 

knowledge. The differential model is an extension of the overlay model where it focuses 

on two types of learner knowledge: the knowledge that the student must have, and the 

knowledge the student is not exposed to. The student knowledge may never be the expert 

knowledge and is limited by the knowledge that the student is not supposed to be exposed 

to. Neither the overlay model nor the differential model supports the correction of the 

faulty knowledge of the student. The perturbation model is an overlay model with such 

faulty knowledge which is called “bug library” (Tsinakos and Margaritis, 2000). 

The student performance is evaluated by the student model. This model keeps track of 

student progress. The tutoring module interacts with the student module to define the 

curriculum which is appropriate, based on the student’s capability. This module must 

possess at least the following three characteristics (Halff, 1988): 

• It should control the generation of the curriculum (which is the selection and 

sequencing of the material to be presented). 

• It should be able to answer the questions posted by the student during the tutoring 

process. 

• It should have a mechanism to determine when the student needs help and what 

type of help the student should receive. 

The tutoring module can define different tutoring strategies to deal with different 

student skills. For the beginner, the tutoring module can guide the student with step-by-
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step procedures. For the advanced student, it can decide to have the student work on 

her/his own unless the student needs help. In other words, the tutoring module adapts to 

the student performance and skill to ensure the effective learning.  

In our dissertation research we have developed an abstraction-based approach for 

tutoring expert problem solving knowledge, as discussed in Chapter 4. 

1.5. Sample Application Area: Intelligence Analysis 

The purpose of intelligence analysis is to analyze available partial and uncertain 

information in order to estimate the likelihood of one possible outcome, given the many 

possibilities in a particular scenario. An intelligence analyst has to solve complex 

problems such as  

• Assess whether Location-A is a training base for terrorist operations. 

• Assess whether Agent-B has nuclear weapons. 

• Assess whether Agent-C is pursuing nuclear energy for peaceful purposes. 

Solving such problems involve analyzing large amounts of uncertain, incomplete 

and/or incorrect information in the form of pieces of evidence whose relevance and 

believability have to be evaluated and correlated. They result in large reasoning trees of 

thousands or even tens of thousands of reasoning steps.  

Therefore, this application domain is very appropriate for demonstrating and testing 

the abstraction-based methods proposed in this dissertation 

1.6. Dissertation Overview 

The rest of this dissertation is organized as follows. Chapter 2 presents the research 

problem addressed along with other related research. Chapter 3 presents the developed 
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theory for abstracting a complex reasoning tree generated by a knowledge-based agent, in 

order to facilitate human-agent collaborative problem solving, and tutoring expert 

problem solving to non-experts. Chapter 4 presents the abstraction-based methods 

developed to facilitate a human’s browsing and understanding of a complex reasoning 

tree generated by an agent. The methods were also evaluated. Then, Chapter 5 presents 

the application of our theory of abstraction to the tutoring of expert problem solving 

strategies. It describes a set of integrated methods that allow the abstraction of complex 

reasoning trees to define abstract problem solving strategies for tutoring, the rapid 

development of lesson scripts for teaching these strategies to non-experts, and the 

automatic generation of domain-specific lessons. It also describes the developed methods 

for learning and context-sensitive generation of omission, modification, and construction 

test questions, to assess a student’s problem solving knowledge. It also includes the 

evaluation of these methods. Chapter 6 presents the concept of learning and tutoring 

agent shell, the architecture of the prototype shell developed, and the methodology of 

building a learning and tutoring agent with such a shell. Chapter 7 concludes this 

dissertation with a summary of my research contributions and some of the most 

promising directions for future research. The dissertation also includes several 

Appendices with more details on several aspects presented in the dissertation.  
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2. Research Problem 

 

2.1. Problem Definition 

Research progress in Artificial Intelligence has led to the development of knowledge-

based agents that can solve complex real-world problems requiring large amounts of 

human subject matter expertise. In principle, such an agent can be used by a subject 

matter expert as a decision-making assistant, or by a non-expert user as an expert system, 

or by a student as a tutoring system.  

A critical requirement for such a knowledge-based agent is the transparency of its 

reasoning process. To accept a decision suggested by an agent, its user has to be able to 

easily understand how that decision has been reached. Similarly, to teach a student, the 

reasoning of the agent has to be natural and easily understood. This requirement becomes 

increasingly difficult to be achieved when the reasoning trees generated by the agent are 

very complex, with thousands of reasoning steps. This also makes it very difficult, not 

only to teach a student, but also to build the necessary tutoring knowledge. 

Abstraction of complex reasoning, viewed as a type of simplification that removes 

less important details, may be the key to both facilitate human-agent collaboration and 

teach students complex problem-solving.  

Consequently, the problem addressed by this dissertation research is to develop an 

approach to the abstraction of complex reasoning processes that facilitates: 
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- human-agent collaboration in complex problem solving and decision-making; 

- rapid development of intelligent tutoring systems for complex problem solving; 

- teaching complex problem-solving to non-experts. 

Figure 5 shows the three main processes that are addressed by the researched 

approach to abstraction: human-agent collaboration, instructor authoring of tutoring 

knowledge, and agent teaching of a student.  

 

Figure 5: Processes Facilitated by the Proposed Approach to Abstraction 

 

A fourth process, related to those from Figure 5, is that of knowledge acquisition 

from a subject matter expert. This process is critical because it is the knowledge acquired 

from the subject matter expert that is used in problem solving, and it is this knowledge 

that has to be taught to a student.  

One of the most advanced and successful approaches to knowledge acquisition is to 

use a learning agent that can be taught directly by a subject matter expert how to reason 

and solve problems, as illustrated by the family of Disciple systems (Tecuci et al., 1998; 
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Boicu 2002). One advantage of this knowledge acquisition approach to the research 

problem we are investigating is that the reasoning of the agent is already natural, as it 

emulates the reasoning used by the expert when teaching the agent. Thus our efforts can 

concentrate on how abstraction can deal with the complexity of the reasoning trees, and 

not with reformulating this reasoning to make it more natural. Moreover, the agent might 

be able to teach a student similarly to how it was taught by the subject matter expert.  

This creates the opportunity to develop a new type of intelligent assistant that 

integrates the three complementary capabilities shown in Figure 1: 

• can learn complex problem solving expertise directly from human experts; 

• can support human experts in complex problem solving and decision making; 

• can teach their complex problem solving expertise to non-experts. 

The addressed research problem includes: 

• the development of a theory of the abstraction of complex reasoning processes for 

collaborative problem solving and tutoring; 

• the development of methods for abstracting concrete reasoning trees to facilitate 

collaborative problem solving; 

• the development of methods for abstracting concrete reasoning trees to facilitate 

the tutoring of expert problem solving strategies; 

• the development of abstraction-based methods for authoring lessons to teach 

students; 

• the development of methods to teach the agent to generate test questions; 
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• the development of the concept of learning and tutoring agent shell as a powerful 

tool for building learning, problem solving and tutoring agents for complex 

application domains. 

The next section discusses the related research, pointing to existing limitations that 

are addressed by our work. 

2.2. Related Research 

There are two major issues presented in this dissertation. One is the abstraction 

theories and the other is the intelligent tutoring systems. The two will be discussed in 

details in Section 2.2.1 and Section 2.2.2 respectively.  

2.2.1. Abstraction Related Research 

Abstraction has been widely used in human perception, reasoning and problem 

solving. Its benefit has motivated the Artificial Intelligence theorists and practitioners to 

capture the underlying principles and characteristics of abstraction and apply them to 

building intelligent systems that can reason and solve problems. The theories of 

abstraction were needed for three reasons: to understand different abstraction approaches 

that have been used in the past, to justify the need to use abstraction in terms of 

computational complexity, and to construct the intended abstractions automatically 

(Zucker, 2003).  

There are several existing theories of abstractions. In essence, they can be classified 

into four categories (Zucker, 2003): abstraction as predicate mapping (Plaisted, 1981), 

(Tenenberg, 1987), abstraction as mapping between formal systems (Giunchiglia and 

Walsh, 1992), abstraction as semantic mapping of interpretation models (Giordana and 
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Saitta, 1990), (Nayak and Levy, 1995), and perception-based abstraction (Saitta and 

Zucker, 1998). We will present the frameworks for each of the categories and find the 

relations between them and our abstraction of reasoning presented in Chapter 3. 

Abstraction as Predicate Mapping 

Abstraction as predicate mapping is the class of abstractions that maps a set of 

predicates in one first-order language to those of another language f: P1 → P2 where P1 is 

a set of predicates of language L1, and P2 is a set of predicates of language L2. The 

mapping f is not a one-to-one relationship. It is possible that more than one predicate pi ∈ 

P1 can be mapped to the same predicate pj ∈ P2. The mapping f then can be extended to 

map the literals in L1 to those in L2 (Tenenberg, 1987). 

The predicate mappings are in fact the subclass of abstraction mapping defined in 

(Plaisted, 1981), quoted by Tenneberg (1987).  

Definition 1.1 (Abstraction Mapping – Plaisted, 1981): “An abstraction is an 

association of a set f(C) of clauses with each clause C such that f has the following 

properties: 

[1] If clause C3 is a resolvent of C1 and C2 and D3 ∈ f(C3), then there exist D1 ∈ f(C1)  

and D2 ∈ f(C2)  such that some resolvent of D1 and D2 subsumes D3. 

[2] f(∅) = {∅}.  

[3] If C1 subsumes C2, then for every abstraction D2 of C2 there is an abstraction D1 of 

C1 such that Dl subsumes D2.” ■ 

If f is a mapping with these properties, then we call f an abstraction mapping of 

clauses. The set of clauses C is called original theory and f(C) is called abstract theory. 
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The mapping however could lead to undesirable false proof - discovered in (Plaisted, 

1981), as quoted by Zucker (2003). To solve this problem Tenneberg proposed the 

Restricted Predicate Mappings. The restriction interprets an abstract predicate of the 

abstract theory as the union of the predicates from the original theory that are mapped to 

it (Tenneberg, 1987).  

This type of abstraction however is not applicable to our abstraction of reasoning due 

to the fact that it does not take into account the reason why the abstraction is justified, 

i.e., the semantics of the abstraction. 

Abstraction as Mapping between Formal Systems 

Giunchiglia and Walsh (1992) defines a formal system Σ as a triple (Λ, ∆, Ω) where 

Λ is the language, ∆ is the deductive engine of the system Σ and Ω is the set of axioms.  

Definition 1.2 (Formal System Abstraction – Giunchiglia and Walsh, 1992): “An 

abstraction, written as f: Σ1 => Σ2 is a pair of formal systems (Σ1, Σ2) with language Λ1 

and Λ2 respectively, and an effective total function fΛ: Λ1 → Λ2. “■ 

Σ1 is called “ground space” and Σ2  “abstract space”, the effective total function fΛ is 

an abstraction. The function fΛ is called “total” because all the well-formed formulas 

(wff) of the system Σ1 are mapped to Σ2. 

According to Giunchiglia and Walsh (1992), there are three types of abstraction: 

theorem increasing (TI), theorem decreasing (TD), and theorem complete (TC). They are 

defined as follows: 

Definition 1.3 (T* Abstraction – Giunchiglia and Walsh, 1992): “An abstraction f: 

Σ1 => Σ2 is called  
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• TC abstraction iff, for any wff α, α ∈ TH(Σ1) iff fΛ(α) ∈ TH(Σ2). 

• TD abstraction iff, for any wff α, if fΛ(α) ∈ TH(Σ2) then α ∈ TH(Σ1). 

• TI abstraction iff, for any wff α, if α ∈ TH(Σ1) then fΛ(α) ∈ TH(Σ2)” 

where TH(Σ1) is the set of theorems of Σ1 and TH(Σ2) is the set of theorems of Σ2. T* 

abstraction is either of the types. ■ 

In TC abstraction, all members of TH(Σ1) are mapped to all members of TH(Σ2), as 

shown in middle of Figure 6. In TD abstraction, only a subset of TH(Σ1) is mapped to the 

members of TH(Σ2) as shown in top part of Figure 6. An example of such abstraction is 

the dropping axioms and/or inference rules. TD abstraction is therefore called weak 

abstraction, because not all members of TH(Σ1) are mapped to TH(Σ2). Oppositely, the TI 

abstraction maps all members of TH(Σ1) to a subset of TH(Σ2) (bottom part of Figure 6). 

TI abstraction is preferable in problem solving because all the ground problems can have 

solutions once their abstract problems are solvable (Giunchiglia and Walsh, 1992). An 

example of TI abstraction is Abstrips which builds STRIPS plan (Giunchiglia and Walsh, 

1992). Abstrips’s operators together with pre-condition apply to the current state to 

generate new states. The TI abstraction can be applied to it. For example, the operator for 

climbing an object with a condition of being climbable  

at(z, x, s) Λ climbable(y, z, s) → at(z, x, climb(y, z, s)) 

can be abstracted to  

at(z, x, s) → at(z, x, climb(y, z, s)) 

with the condition of climbable being dropped. 
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This theory is useful in terms of classification of different types of abstractions. This 

theory of abstraction, however, is just a syntactic abstraction that does not take into 

account the semantics of the abstraction. Therefore, it is not qualified as our desirable 

theory of abstraction of reasoning where the underlying justification is too important to 

ignore.  

 

Figure 6: TD, TC and TI Abstractions 

 

Abstraction as Mapping between Models 

What we have presented so far is the syntactic abstraction. This type of abstraction 

does not take into account the underlying justifications that lead to the abstraction 
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(Zucker, 2003). Nayak and Levy (1995) proposes the theory of semantic abstraction. This 

theory defines the abstraction on the model level rather than the predicate level as the 

syntactic approaches. The semantic abstraction consists of two steps: the first step is to 

abstract the intended domain model and the second step is to construct the abstract 

formulae to capture the abstracted domain model. The abstract formulae are indeed the 

justification of the syntactic abstraction of the first step.  

Nayak and Levy (1995) base their abstraction theory on the model which is defined as 

“an interpretation, I, is a model of a set of sentences, Σ, (denoted I |= Σ) if and only if I 

satisfies each sentence in the set” (Nayak and Levy, 1995). 

Definition 1.4 (Model Increasing Abstractions – Nayak and Levy, 1995): “Let 

Tbase and Tabs be sets of sentences in languages Lbase and Labs, respectively. Let π: 

Interpretations(Tbase) → Interpretations(Tabs) be an abstraction mapping. Tabs is a model 

increasing abstraction of Tbase, with respect to π, if for every model Mbase of Tbase, π(Mbase) 

is a model of Tabs.” 

One important notion that Nayak and Levy (1995) propose is the simplifying 

assumption. This notion can be used to prevent false proofs and can be used to evaluate 

the usefulness of the abstraction by the assessment of the reliability of the simplifying 

assumption (Zucker, 2003). Let us consider two railroad cars that are linked by a linkage. 

The linkage is modeled as a spring with a very large sprint constant, i.e., the spring is 

very stiff. The simplifying assumption sets the linkage as infinitive which makes the two 

railroad cars become one single rigid body. According to Nayak and Levy (1995), 

viewing abstraction as a combination of MI abstraction and simplifying assumption has 
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two advantages: one is that the simplifying assumption is made explicit and therefore it is 

very useful in reasoning or modeling. The other advantage is the MI abstraction admits 

false proof only when the simplifying assumption is inappropriate. 

The theory of semantic abstraction now is equipped with the semantic underlying 

justification. It constructs the abstract formulae as the justification of the syntactic 

abstraction. The theory is based on models instead of on predicates as the other two. With 

these two properties, the theory of semantic abstraction can be a starting point in our 

formulation of abstraction of reasoning. The reasoning that is embedded in intelligent 

assistants is the product of a multi-step process from modeling the expert knowledge to 

learning the reasoning rules. We expect to have a theory that can capture such a 

complicated process. The next theory of abstraction comes closer to what we anticipate. 

Perception-Based Abstraction 

Perception-based abstraction was developed based on the observation that the 

conceptualization of a domain involves at least four different levels. They are perception, 

structure, language, and theory levels (Zucker, 2003). The concrete level is the world W 

where the concrete objects exist. The objects are perceived by the observer through 

his/her physical sensors. The perception P(W) is what the observers “feels” about the 

world, not the world per se. The perception is the internal representation of the perceived 

world. The perception however decays over time; the memorization of the perception into 

a structure S must be implemented to preserve the perception. The structure is the 

external representation of the perceived world. So far P(W) and S exist with respect to 

the observer only. To be able to reason about the perceived world, there must be a 
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language L to communicate with other agents. Now the perceived world can be described 

intensionally. Finally, the theory T is established to embed the properties and the 

knowledge of the world (Saitta and Zucker, 1998). Figure 7 shows the four level model 

with the general background knowledge providing inputs at all levels.  Saitta and Zucker 

(1998) define R = < P(W), S, L, T > as a Reasoning Context. 

 

 

Figure 7: Four Levels of Representing and Reasoning about the World – from 
(Zucker, 2003) 
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The abstraction process starts from the perception level and propagates through all the 

levels. Figure 8 displays the models of abstraction that occur on the four levels. For each 

level, there is a corresponding abstraction operator. Specifically, Pa = ω(Pg(W)), Sa = 

σ(Sg), La = λ(Lg) and Ta = τ(Tg). 

 

Sa=σ(Sg)Sg=M(Pg(W))

Pg(W) Pa=ω(Pg(W))

W

Lg=D(Sg) La=λ(Sg)

Tg=F(Lg) Ta=τ(Tg)

A

ω

σ

λ

τ

 

Figure 8: Knowledge Abstraction and Representation - from (Mustière et al., 2000) 

 

Figure 9 presents an example of perception-based abstraction in cartography. This 

example concerns two aspects: the modeling of the knowledge acquisition of the map 

design process and partial automation of the process named cartographic generalization 
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(Zucker, 2003). The horizontal axis shows the abstraction process and vertical one shows 

the reformulation process.  

As for the modeling process, the world W is perceived by aerial photographs or 

satellite images Pg(W). The abstraction occurs at the perception level to map the captured 

images with appropriate resolutions Pa = ω(Pg(W)) (step 1 in Figure 9). Step 2 involves 

the expert – photogrammetrist - who extracts a Digital Landscape Model (DLM) that 

contains the coordinates of all the objects in the images. This is the process of 

determining Sg = M(Pg(W)). This step involves the abstraction and reformulation of an 

image to have it structured in some recognizable form and associated with categories 

such as road, building, rivers, etc - Sa = σ(Sg). In the third step, a language L is selected to 

assign symbols to map objects, such as houses, roads, etc. Lg = D(Sg). The abstraction of 

the language level is not applied in the modeling process, but it will be used in the 

cartographic generalization process. Finally, the theory level is achieved by the use of 

maps in different areas, such as space and landscape analysis, direction guidance, or 

geographic theory, Tg = T(Lg) (Zucker, 2003).  

With regard to the cartographic generalization process, the abstraction involves 

repetitive scaling, reorganization of the map objects, and arrangement of different levels 

of details, La = λ(Lg). The basic operations that the expert uses in this process are the 

applications of transformation algorithms to the GDB (Zucker, 2003). 
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Figure 9: Application of Perception-Based Abstraction in Cartography - from 
(Zucker, 2003) 

 

This view of abstraction is appropriate to what we have been doing in our research. 

At the first level, the expert knowledge is acquired and modeled. At the second level, the 

knowledge is structured into knowledge base components such as problem classes, 

reduction rules, solution classes and so on. At the third level, the knowledge components 

are the set of symbols and the operators are defined upon the symbols to construct an 

instantiated reasoning tree. At each level, there is a corresponding abstraction, but we are 
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interested of the abstraction of reasoning trees, i.e., the abstraction at the third level. 

Chapter 3 presents a formal definition of the abstraction of the reasoning trees. 

2.2.2. ITS Related Research 

The rapid development of an intelligent tutoring system (ITS) has been an important 

research area. Developing an ITS is notoriously costly and time consuming. In addition to 

that, the ITS development requires high skills in programming and cognitive science. 

Therefore it is hard for teachers who do not have experience or skills in computer science 

to develop such systems.  The ITS authoring systems are intended to provide tools that 

can ease the process of developing an ITS. Murray (2003) classified the authoring 

systems into seven types:  

• Curriculum sequencing and planning authoring which focuses on organizing 

instructional units into a hierarchy of courses, lessons, presentations. Each 

instructional unit typically has an instructional objective. The content of the 

tutoring system built by this type usually consists of canned texts and graphics, 

which is applicable for computer-based learning. The limit of this type of 

authoring systems is the shallow skill representation (Murray, 2003). 

• Tutoring strategies authoring which presents diverse tutoring strategies. This type 

of systems is similar to the curriculum sequencing authoring above in the sense 

that the content consists of canned texts and graphics. However, it has 

sophisticated tutoring strategies and “meta-strategies” that select the appropriate 

tutoring strategies in a given situation. The weakness of this category is also the 

shallow skill representation (Murray, 2003). 
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• Simulation-based learning authoring which builds a simulation system for 

tutoring purposes. The expert knowledge in the systems belonging to this category 

consists of the component locations and operational scripts. The performance 

monitor and feedback are straightforward such as “You should have checked the 

safety valve as your next step.” The most difficult task in building the tutoring 

system of this category is building the device simulation. The limits of this type of 

authoring systems are limited instructional strategies and limited student model 

(Murray, 2003). 

• Expert systems authoring which uses rule-based expert system to construct the 

tutoring systems. The expert systems provide relatively deep domain knowledge 

and can solve problems. Such systems not only teach but can also help students 

when stuck to continue next steps or to complete the solution for the entire 

problem. The weaknesses of this type of authoring systems are the difficulty of 

building the expert systems, limited to procedural and problem solving expertise 

and limited instructional strategies (Murray, 2003). 

• Multiple-knowledge types authoring treats knowledge into different types: facts, 

concepts and procedures. The tutoring systems built by this type of authoring 

system tend to treat the knowledge differently. The limits are relatively simple 

facts, concepts and procedures. It is also limited by the predefined tutoring 

strategies (Murray, 2003). 

• Special purpose authoring specializes in particular tasks or domains. The authors 

are usually given the templates to fill them in. The examples of how to fill in the 
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blank are given to help the author doing the task. Once the tutor is built by using 

this type of authoring system, it is only used for that particular task. The limits of 

this type of systems are each tool is confined in specific type of tutor and the 

inflexibility of representation and pedagogical knowledge (Murray, 2003). 

• Intelligent/adaptive hypermedia authoring which builds the web-based tutoring 

systems. These systems have limited interactivity and student model. These 

systems are constrained by the bandwidth (Murray, 2003). 

In this dissertation, we focus only on the expert system type of authoring tools. 

Compared to other types of systems, authoring an expert system is particularly complex 

and time-consuming task (Murray, 1999). Due to that reason, there are only a few such 

systems available for evaluation or usage. Among them are Demonst8 (Blessing, 1997), 

Simulated Students (Matsuda et al., 2005), Assistment Builder (Turner et al., 2007), 

DIAG (Eugenio, 2005) and CTAT (Aleven et al., 2006). We will review them in 

following subsections to identify their strengths and weaknesses as compared to our new 

approach. 

Demonstr8 

One approach to rapid development of a cognitive tutoring system is using the 

programming by demonstration technique. The basic idea behind this approach is that the 

demonstrations of how to solve particular problems from the creator are generalized to 

become the rules for teaching the students how to solve that problem. Demonstr8 is the 

authoring tutoring system that employs that technique (Murray, 1999). The author can 

create different tutoring systems by using the provided toolkit to create the user interface 
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for each system. The higher-order working memory elements (WME) must be defined for 

that particular interface. Each interface can be associated with multiple WMEs. Each 

WME can be responsible for a particular feature such as name, number of columns in a 

subtraction interface, etc. The WME can be created by grouping several interface 

components or by building the table of values. The most important WME is the problem 

WME which semantically describes a problem. In the subtraction problem, the WME 

problem is a table of values, as shown in Figure 10. 

 

 
Figure 10: The Subtract Knowledge Function - from (Blessing, 1997) 

 

Once the WMEs associated with the desired user interfaces are constructed, the 

author can demonstrate the skill to be tutored, and have Demonstr8 induces the 

underlying production rules (Blessing, 1997). The author first creates an example by 

using the newly built interface. Then he/she starts solving the problem. This can be done 
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in two ways: either the author interacts directly with the Knowledge Function, or he/she 

enters input and output values. The system will induce the production rules based on the 

WMEs. 

Demonstr8 is useful in creating a simple tutoring system to teach simple problems in 

arithmetic or algebra, but it is difficult to deal with more complex problems. The reason 

is the system totally relies on the WMEs which are constructed from the interface toolkit. 

It is difficult to define and solve complex problems by merely manipulating the interface 

elements. Another reason is that Demonstr8 induces simple production rules from a 

single example (Jarvis, 2004). That makes it hard to have the production rules cover a 

broad set of examples, and tends to make them overly general. It also causes the problem 

for rule refinement, the important process in learning agent. The rule refinement requires 

the production rules are able to be modified either manually or automatically to cover the 

exceptions or new conditions. As Matsuda (2005) pointed out, Demonstr8 hard codes 

pre-defined predicate symbols to specify conditions to fire the rules; hence it is difficult 

to add conditions or exceptions to these rules. My research is based on a Learning Agent 

Shell (Tecuci, 1998) which facilitates the knowledge acquisition and refinement. The 

research also presents a new approach that overcomes the difficulty to deal with complex 

problems by using the abstraction of reasoning to construct the tutoring lessons for 

complex domains (see Section 5.1.1). 

Simulated Student 

Another authoring system named Simulated Student (Matsuda et al., 2005 a), a 

machine learning agent, is using the programming by demonstration technique. Simulated 
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Student observes the author’s demonstrations of solving a task and induces a set of 

production rules that replicate the author’s performance.  

The instructor starts the content construction by building the desired GUI for the 

Cognitive Tutor using the system’s toolkit. The instructor then specifies all the necessary 

predicate symbols and operator symbols which will be represented in production rules. 

The operator symbol represents the function which takes parameters as input and 

produces a single value. The predicate symbol functions as a test for a specific feature. 

All the symbols are task-dependent and have to be crafted carefully to produce the 

desired results. Once all the symbols are defined, the instructor presents a few 

demonstrations by solving a certain numbers of problems. The demonstrations are fed 

into the Simulated Student and generalized into production rules. The production rules 

are then loaded back into the Cognitive Tutor with the GUI components. The resulted 

production rules are tested by trying to solve different problems. Some erroneous rules 

may be generated and will be corrected by the tutors either by using the GUI component 

or by modifying the rules directly. Figure 11 illustrates the interface of the Cognitive 

Tutor. 

 
Figure 11: The Interface of a Cognitive Tutor - from (Matsuda, 2005 a) 
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The production rules define a way to manipulate objects such as buttons, text fields, 

etc. A production rule consists of three main components: working memory element path, 

feature tests (the left hand side), and a set of operators (the right hand side) (Matsuda et 

al., 2005 b). The working memory element (WME) path is the sequence of WMEs from 

the problem to the current WME. Each WME is associated with a GUI element, so the 

sequence of GUI elements in solving a problem is captured in the WME path. 

The Simulated Student is easy to use when building the small and simple tutoring 

systems. The learning agent learns the production rules from the demonstrations. This 

system, however, is plagued by the limitation of the available GUI elements to capture 

the complex actions during the demonstration. Furthermore, the number of demonstrated 

problems required to induce the production rules are high. Matsuda et al. (2006) stated 

that solving ten problems generated nine production rules for algebra equation solving. 

Therefore to solve a real world problem, there must have been a larger number of 

problems to be used for demonstration. The other drawback of this system is the machine 

learning techniques being used in the system. Simulated System uses only the inductive 

generation which is limited compared to multi-strategies learning mentioned in Section 

1.3. The rule revision is also simple, only the manual refinements are available either by 

GUI manipulation or directly on the production rules. This type of refinement limits the 

agent to apply the revision to similar production rules in the system. Matsuda et al. 

(2007) acknowledged that having training on twenty problems, the correctness of the 

production rules were just 82% which is a slow progress. So far the Simulated Student 
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has been tested only on some simple domains such as algebra equation solving, long 

division, multi-column multiplication, fraction addition, chemistry and Tic-Tac-Toe 

(Matsuda et al., 2007). In other words, it is almost impossible to build an intelligent 

tutoring system for complex domains such as planning using Simulated Student. 

My research is able to overcome the problems presented above. Based on its learning 

capability, the tutoring system is able to acquire expert knowledge to solve complex 

problems. Using the abstraction of reasoning facilitates the process of building the 

curriculums that cover the strategies that has been used in problem solving, even in a 

complex domain such as Intelligence Analysis (see Section 5.1). 

Assistment Builder 

The purpose of the Assistment Builder is to help the teacher who has little or no 

computer science and cognitive psychological background to build a cognitive tutoring 

system in a relatively short time (Turner et al., 2005). The system is built based on the 

state graphs which are finite graphs with arcs representing the student’s actions and nodes 

representing the states of the problem’s interface. The student’s actions change the states 

of the system which are stored in the state graph. The state graph models the expected 

behaviors in problem solving, and can predict behaviors as well as provide feedback on 

them. The instructional scaffolding – a technique to promote learning at different levels, 

providing sufficient supports at first and reduce them gradually when the students 

develop their own cognitive or learning skill - is implemented in the system and used to 

provide the appropriate questions or feedback for students at different levels. 
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The Assistment Builder builds cognitive tutoring systems over the web. The system 

implements different tutoring strategies, the scaffolding strategy being one of them. The 

underlying content representation, the XML schema, defines the problem. The problem 

consists of an interface definition and a behavior definition, plus some metadata such as 

problem id and comments (Turner, 2005). The interface definition includes a set of 

selected widgets, images and texts to present to the students. The behavior definition is 

the state graph with all the transitions between the nodes. One important type of interface 

elements is the answerable element. This element is able to capture the student’s actions 

and pass them onto the behavior component in the system. The student’s actions then are 

analyzed against the state graph which represents the expected behaviors. The difference 

between the expected behavior and student behavior is used to provide appropriate 

actions.  

The behavior acts as the tutoring logic of a problem. It interprets the student’s actions 

which are translated into high-level actions before passing them to the behavior 

component. Depending on the action and tutoring strategies, different messages can be 

invoked such as hints, explanations via buggy messages or even scaffolds. If a student’s 

answer is correct, then the problem’s state transitions to a new state. Otherwise, the 

student’s actions are mapped to the tutoring strategies and no state transition takes place. 

One can use the Assistment Builder to rapidly build a simple tutoring system for a 

particular problem. There are five types of interface elements that are used to build the 

content: radio buttons, pull-down menus, checkboxes, text-fields, and algebra text fields 

that automatically evaluate mathematical expressions. The content builder can assign 
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only two states to each question in the state graph. An arc that connects the two states 

allows the student to be moved to the next state if the answer is correct. Along with the 

interface elements, messages are added to provide the scaffolding questions, hints and 

feedback. Figure 12 presents a snapshot of a lesson preparation interface. 

 

 
Figure 12: Initial Question, One Scaffold, and Incorrect Answer in Assistment 

Builder - from (Turner, 2005) 
 

The Assistment Builder is deployed in several schools. Its domains are usually from 

mathematics such as algebra, geometry. Due to the limit of using simple interface 

components - radio buttons, pull-down menus, checkboxes, text fields and algebra text 

fields to evaluate mathematical expressions - to generate the problem, the system is only 

able to construct a simple pseudo-tutor (Turner et al., 2005). The state graphs for each 
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question have only binary values and therefore cannot represent complex reasoning. The 

Assistment Builder does not have a capability to learn rules, and thus cannot construct the 

tutoring system for problems other than the ones that have been developed specifically by 

the instructor. In other words, the system does not learn from one problem to generate 

other problems. Therefore it requires a lot of effort from the instructor who designs the 

lessons. 

The Learning and Tutoring Agent Shell concept (LTAS) that is part of my 

contribution can learn from the instructor how to generate lessons automatically and 

adaptively from the content of the knowledge base. That capability can ease the burden of 

the instructor who designed the lessons (see Section 5.1.2). Furthermore, the tutoring 

system is constructed based on the abstraction of a complex reasoning tree that is 

appropriate for complex domains. 

DIAG 

Diagnostic Instruction and Guidance (DIAG) is an authoring system that uses 

graphical models to build interactive user interfaces and the lessons. The tutoring systems 

built with DIAG – also called DIAG applications - are specialized in troubleshooting 

complex systems, such as heating or circuitry, as shown in Figure 13.  
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Figure 13: A Scene from a DIAG Application to Oil Burner - from (Eugenio, 2005) 

 

The DIAG application presents a set of scenarios of faulty systems to the students. 

The student has to figure out the defective components by testing the indicators and 

inferring what components are not working. Once the problem is identified, the student 

has to fix the system by using the graphical model. The set of scenarios is presented in a 

sequence ordered by level of difficulty. The student can ask for help via the Consult 

menu and the system will generate a context-sensitive hint (Eugenio, 2002). 
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The main feature of DIAG is the automatic generation of the diagnostic instructions. 

The steps to author a new diagnostic ITS are (Towne, 1997): 

• Create a graphical model of the target system (to be diagnosed) and establish its 

modes of operation. The graphical model is developed such that it responds to the 

user’s actions and to the failures that are introduced during the troubleshooting 

exercises. This is structured in a hierarchy fashion of subsystems. This structure 

allows user to go down to different levels of details. The modes of operation are 

set by using different combination of switch settings. 

• Define the replaceable units (RU) with names, replacement times, and their 

reliabilities. 

• Define the faults in a pool. Specify what impacts the faults can have on the system 

and provide these statements to the student at the end of the exercises. The details 

of the statement can vary from simple facts to complex technical details. 

• Specify an exercise by selecting a fault from the pool, writing a statement for the 

beginning of the exercise, setting up the mode that the system is initially in, and 

setting the time limit to troubleshoot the problem. The author can provide 

multiple exercises for each fault. 

• Produce the symptom data that support the diagnostic reasoning process. DIAG 

first generates a provisional set of fault effect statements. It does this by 

simulating each fault and recording the frequency of the various outcomes. The 

author then refines these statements to reflect his or her own view. Figure 14 
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illustrates the symptom specifications when a faulty RU occurs. The author can 

indicate visual symptoms such as the alarm goes off when the fault happens. 

 

 
Figure 14: Authoring Interface for Specifying Fault Effects - from (Towne, 1997) 

 

DIAG teaches a student to diagnose faulty systems using clarifications and a highly 

interactive graphical model. Such a system is useful in occupational training. The 

problem with this approach is, however, that for each type of the system, a graphical 

model must be defined with details of faulty statements. No learning capability is 
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implemented in this approach to save time for lesson preparation. That drawback is 

addressed in this dissertation (see Section 5.1).  

CTAT 

Cognitive Tutor Authoring Tools (CTAT) is a tool suite for rapid development of 

ITSs. CTAT has two types of tutors: example-tracing tutors – also named Pseudo Tutor - 

which can be constructed without programming but require problem specific authoring, 

and cognitive tutors which, on the contrary, require AI programming to build a cognitive 

model but can be used across a range of problems from the same domain. In this research 

we review the cognitive tutors which can be compared to our approach. 

CTAT is based on the ACT-R cognitive theory (Anderson, 1993). This system 

involves creating a cognitive model of a student’s problem solving by using production 

rules that governs the misconceptions and the different reasoning strategies that a student 

may use. CTAT consists of the set of tools presented in Figure 15 (Koedinger et al., 

2003) such as:  

• GUI Builder builds the student interface where the student interacts with the tutor. 

The author uses the tool to build the user interface by dragging-and-dropping the 

interface widgets on the canvas.  

• Behavior Recorder records the solution paths of a given problem demonstrated by 

the author. It has three main functions. First, it builds the Behavior Graph which 

captures the correct or the incorrect demonstrated behavior. Second, it builds the 

example-tracing function which belongs to the first type of the tutor that CTAT 

authors. Third, it supports planning and testing of the cognitive model. 
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• Working Memory Editor inspects and modifies the contents of the cognitive 

model. 

• Production Rule Editor generalizes the production rules based on the 

demonstration given by the author. 

• Cognitive Model Visualizer debugs the production rules. 

 

 

Figure 15: CTAT - from (Koedinger et al., 2003) 

 

The production rule model plays an important role in constructing a Cognitive Tutor. 

It handles general categories of problems in a specific domain. The module consists of a 

specification of the objects in “working memory” representing the initial state of the 
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problem and a set of production rules to transit the objects from one state to the other 

until the solution of the problem is reached. The development of the production rules is 

supported by Production Rule Editor which uses the user-guided generalization process. 

The generalization process starts by the author entering the concrete production rule, and 

then the editor generalizes the rule by replacing the constants by the variables and adding 

list matching patterns (Koedinger et al., 2003). 

CTAT is quickly generating the Pseudo Tutors which tutor only specific problems. 

Cognitive Tutors is more interesting in which it can cover similar problems in the same 

domain, but writing the production rules for CTAT is a time consuming process due to no 

help from the tool. The author must know Jess – the Java Expert System Shell – and write 

Jess by hand. Koedinger (2004) stated that it took roughly 200 hour development of 

Cognitive Tutor for one hour of instruction. CTAT does not have the capability of rule 

refinement. The production rules once written can not be refined unless the author has to 

modify the code by himself/herself. 

The problem with the CTAT production rules is addressed in our Learning and 

Tutoring Agent Shell which allows the instructor to build the lessons without writing a 

single line of code. The shell generates the lesson scripts that underlie the lesson 

structures designed by the instructor and uses the scripts to construct the lessons 

automatically (see Section 5.1.3). 
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3. Abstraction of Reasoning Trees 

 

For real world domains, the formalization of the reasoning process for a given 

problem is very complex and involves thousands (or even hundred of thousands) of 

specific reasoning steps. It is very difficult to fully review, understand and verify 

completely such huge reasoning trees. This section describes an innovative approach of 

using an abstraction of the reasoning trees in order to significantly simplifying their 

browsing and understanding. 

For instance, the problem “Assess whether Al Qaeda has nuclear weapons” from the 

Intelligence Analysis domain has a reasoning tree of over 1700 nodes. A large tree is hard 

to be rendered intelligibly on a computer display and therefore hard to comprehend. An 

abstraction of such a large reasoning tree would help facilitate its browsing and 

understanding by a user. In addition, a reasoning tree can be partitioned into several sub-

trees, based on the corresponding abstract problem solving strategies involved. The 

abstraction of the reasoning tree in that sense can help identify the abstract reasoning 

strategies that the expert had used in teaching the agent. Those learned strategies can be 

reused in solving problems or teaching the students how to solve similar problems. The 

subsequent sections will explain in detail the methodology of the abstraction of the 

reasoning tree and its application for problem solving and tutoring assistants. 
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3.1. Reasoning Tree 

A reasoning tree is a special type of tree. Therefore, before defining it, we should take 

a look at the definition of a tree, as stated by Meyers (1971): 

Definition 3.1 (Tree): A tree is a pair t = (Vt, δt) where Vt is a finite set of vertices of t 

and δt(x): Vt → Vt* is the argument function1 of t, δt(x) represents the sequence of 

children of the vertex x∈ Vt satisfying the following axioms: 

[a] A vertex x cannot be a child of itself and cannot have same child twice: 

( )xx tt δ,V∈∀  is a (possibly empty) sequence, without repetitions, of elements of 

{ }xt \V  

[b] There is only one root vertex, which has no parent:  there is one and only one 

point tr V∈ (called the root of t) such that for no tx V∈  is r an argument of x in t. 

Formally: ( )xrxr ttt δ∈∈∃∈∃ ,!,! VV . 

[c] Each node has at most one parent: for yxyx t ≠∈∀ ,, V  then δt(x) and δt(y) have 

no elements in common.  

[d] There is only a single path from a node x to the root r:  !,∃∈∀ tx V sequence S = 

xk…x2x1 such that x1 = x, xk = r, xi ∈  δt(xi+1), 1 ≤ i <k. ■ 

 Notation:  If x has n children then δt(x) is defined as δt(x) = x1x2…xn, in this case, xi is 

called the ith argument of x in t (i.e. the ith children); if x has no child then δt(x) = λ , 

where λ  represents the empty sequence. 
                                                
1 The argument function of a vertex x is in fact the edge that links x with its n children nxxx ...21  
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Definition 3.2 (Valence): For any node tx V∈ , we define vt(x)∈Z - the valence of x 

in t – to be the length of δt(x) (i.e., the number of children of x in t). A vertex tx V∈  is 

called an “endpoint” (leave) of t if and only if ( ) 0=xvt  or δt(x) = λ , and a “node” of t if 

and only if ( ) 0>xvt .■ (Meyers, 1971). 

Example of a tree: Figure 16 presents a simple tree which has only six nodes. The 

tree is denoted as follows: t = (Vt, δt) where  Vt = {a,b,c,d,e,f}, δt(x) = {a→bc, b→de 

,c→f, d→λ , e→λ , f→λ }, specifically, δt (a) = bc, δt (b) = de, δt (c) = f, δt(d) = λ , 

δt(e) = λ  and  δt (f) = λ . 

 

 

Figure 16: A Simple Tree 

 

Meyers (1971) also defines the sub-tree as follows:  

b

a

c

d e f
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Definition 3.3 (Sub-tree): Given a tree ( )ttt δ,V= , and ( )ststst ',' δV= , st is a sub-

tree, denoted as st ∈ t  if and only if tst VV ⊂' and ( )xx stst ',' δV∈∀  is obtained from 

the sequence ( )xtδ  with all elements of Vt \ V’st deleted. ■ (Meyers, 1971). 

Definition 3.4 (Singleton Sub-tree): A singleton sub-tree is a sub-tree that has only 

one node.  

The following definition introduces the natural notation of a tree, which is a 

refinement of the isotone notation developed by (Meyers, 1971): 

Definition 3.5 (Natural Notation of a Tree): Let t = (Vt, δt) be a tree. A natural 

notation of t is a sequence ( )*Z(t) t ×∈ VN  that satisfies the following properties: 

[a] A natural notation is a sequence of the vertices powered by their 

valences: ( ) nv
n

vv xxxt ...21
21=N , where xi ∈  Vt, vi = vt(x)∈Z is the valence of xi for i = 

1,..,n. 

[b] The parent appears before its children: tyx V∈∀ , , if ( )xy tδ∈  then ( )xvtx  

precedes ( )yvty  in ( )tN . This property enforces the prefix notation.2 

[c] The children appear from left to right in the sequence: tzyx V∈∀ ,, , if y and z are 

the ith and jth arguments of δt(x) and j=i+1 (i.e. y is the left sibling of z) then ( )yvty  is the 

left sibling of ( )zvtz  in N(t). This property enforces the order of the children from left to 

right.■ 

                                                
2 Prefix notation presents the parent before the children 
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As an example, the natural notation N(t) of the tree in Figure 16 is N(t) = a2b2c1d0e0f0.  

Lemma 3.1: For a given tree t there is a unique natural notation N(t). 

The reasoning tree structure utilizes the problem-reduction/solution-synthesis 

paradigm. A brief overview of this paradigm is presented in the next section. 

3.1.1 Problem-Reduction/Solution-Synthesis Paradigm 

A general problem solving paradigm is the problem-reduction/solution-synthesis 

paradigm – this paradigm is also known as “divide and conquer” or “problem 

decomposition” (Durham, 2000; Powel and Schmidt, 1998; Tecuci, 1998). In this 

paradigm, which is illustrated in Figure 17, a complex problem is successively reduced to 

simpler problems via the reduction operators. The reduction continues until elementary 

problems are reached for which there are known solutions. Then the synthesis process 

begins to synthesize all the solutions successively from the simplest problems upwards 

via the synthesis operators, until a solution is found for the original problem.  
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Figure 17: Problem-Reduction/Solution-Synthesis Paradigm 

 

In the illustration from Figure 17, the solution of problem P1 is obtained by reducing 

that problem into n simpler problems P11… P1n, via the reduction operators ROi. Each 

problem then is reduced into simpler problems. For instance, P11 is reduced to P111… 

P11m. P1n is not reduced further because it has its solution S1n. Once the solutions 

S111…S11m of the sub-problems P111…P11m are obtained, the synthesis starts by combining 

S111…S11m into the solution S11 of problem P11 via the synthesis operators SOj. The 

process continues until the final solution S1 of original problem P1 is found. 

This paradigm has been successfully applied in a wide variety of problems such as 

course of action critiquing (Tecuci et al., 2001), intelligence analysis (Tecuci et al., 

2005), planning (Sebastia et al., 2006), requirements engineering (Maiden and Sutcliffe, 

1996), to name a few. As demonstrated in (Barr et al., 1998) the problem reduction 
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P111 P11mS111 S11m
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P11 S11
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representation of the problem solving process is equivalent with the state-space search 

representation, and most of the problems can be represented using the state-space 

representation. 

3.1.2 Question-Answering Based Problem-Reduction 

In order to facilitate the knowledge acquisition and problem solving processes, the 

problem reduction paradigm was refined by introducing a question and an answer to 

guide each reduction. The question considers relevant aspects of the problem to be 

reduced and the answer suggests how to reduce it (Bowman et al., 2001), as shown in 

Table 1.  

 

Table 1: A Question-Answering Based Reduction Step 

• Assess the credibility of Osama Bin Laden as the source of EVD-Dawn-Mir01-02c. 

• Q: What factors determine the credibility of Osama Bin Laden as the source of EVD-

Danw-Mir01-02c? 

A: The veracity, objectivity and observational sensitivity of Osama Bin Laden 

because EVD-Dawn-Mir01-02c is testimonial evidence based upon the direct 

observation. 

• Therefore one has to: 

o Assess the veracity of Osama Bin Laden with respect to the information provided 

in EVD-Dawn-Mir01-02c. 

o Assess the objectivity of Osama Bin Laden with respect to the information 

provided in EVD-Dawn-Mir01-02c. 
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o Assess the observational sensitivity of Osama Bin Laden with respect to the 

information provided in EVD-Dawn-Mir01-02c. 

 

In this question-answering based problem-reduction paradigm, an application domain 

is modeled based on the following main types of knowledge elements: objects (concepts 

and instances), features and facts, problems, solutions, examples, explanations and rules 

(Tecuci et al. 1999).  

• Concepts represent sets of individuals. An example of the concept is “evidence”. 

• Instances are the instantiations of concepts in a specific scenario. For example, an 

instance of evidence in Intelligence Analysis is “EVD-Dawn-Mir01-02c3”. 

• Objects represent individuals or set of individuals in the application domain that 

are organized hierarchically in an ontology. An object can be a concept or an 

instance.  

• Features are to describe further the objects, problems and other features. Each 

feature has a domain and a range. The domain of a feature is the set of objects that 

can have that feature and the range is the set of possible values of that feature. 

The features are hierarchically organized. An example of a feature is “has as 

description” whose domain is “evidence” and range is “any string”. 

                                                
3 EVD-Dawn-Mir01-02c is a fragment of an article by Hamid Mir, published in Dawn, a Pakistani 
magazine. 
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• Facts are features with specific values. An example of fact is “EVD-Dawn-Mir01-

02c has as description ‘We have chemical and nuclear weapons as a deterrent 

and if America used them against us we reserve the right to use them.” 

• Problems represent anything that the agent attempts to solve. An example of a 

problem is:  

• Assess the credibility of ?O1 as the source of ?O2 ( ?O1 and ?O2 are variables 

that can be instantiated to a person and an evidence, respectively).  

• A problem with instantiated variables is called an instantiated problem. The 

problem that is illustrated in the top part of Figure 18 is a part of a problem 

reduction rule. 

 

 

Figure 18: Reduction Rule 
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• Solutions are associated with the problems. An example of a solution is “The 

credibility of Osama Bin Laden as the source of EVD-Dawn-Mir01-02c is an even 

chance”. 

• Examples are the instances of problem reduction and solution synthesis steps. An 

example can be negative or positive. A negative example represents an incorrect 

problem reduction step and a positive example represents a correct problem 

reduction step. A positive example of problem reduction step is the one from 

Table 1.   

• Explanation is the justification of why a problem reduction step or a solution 

synthesis steps is correct or incorrect. An explanation is expressed as a set of 

facts, called explanation pieces. The explanation pieces for the problem reduction 

example in Table 1 are: 

o EVD-Dawn-Mir01-02c is testimonial evidence based upon direct observation. 

o EVD-Dawn-Mir01-02c is a testimony by Osama Bin Laden. 

o Osama Bin Laden is a terrorist. 

• Rules are generalizations of problem reduction or solution synthesis steps. For 

instance, Figure 18 shows the rule which is a generalization of the problem 

reduction step in Table 1. As with a general problem, a rule can be instantiated to 

different reduction steps.  

3.1.3 Reduction and Synthesis Process 

During problem solving, a reasoning tree is created by using the knowledge elements 

described in the previous section. This tree is “a natural and explicit representation of the 
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thread of logic of the analyst, as if he or she would be thinking aloud” (Tecuci et al., 

2005). The reasoning tree hierarchically represents the discrete steps in the problem 

solving process based on the problem reduction paradigm. The root of the tree indicates 

the problem to be solved. The tree is basically composed of successive sequences of 

problem – reduction – sub-problems, which are represented by corresponding sequences 

of problem nodes - reduction nodes – sub-problem nodes. The reasoning tree consists of 

instantiated problems and instantiated reduction rules or reduction examples. Therefore 

the reasoning tree represents an instantiated reasoning process. 

The Figure 19 illustrates a fragment of an instantiated reasoning tree for assessing the 

credibility of Osama Bin Laden as the source of testimonial evidence EVD-Dawn-Mir01-

02c. (a statement made by Osama bin Laden in an interview). The reasoning tree leads to 

the assessing of three main components of the credibility. A solution for each of them is 

found. Then these solutions are composed, from bottom up, as illustrated in Figure 19 

and Figure 20. 
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Figure 19: Hypothesis Analysis through Problem Reduction 

 

The solution of a problem is obtained from the synthesis of the solutions of its sub-

problems. The synthesis starts from the assessed veracity, objectivity and observational 

sensitivity of Osama bin Laden (i.e. an even chance, almost certain and almost certain, 

respectively). The process goes upward until the solution of the top problem is found 

(which is the assessed believability of Bin Laden). The synthesis of the solutions is based 

on certain synthesis rules acquired from a subject matter expert. In the example from 

Figure 20, the credibility of Osama bin Laden (i.e. “an even chance”) is obtained as the 

minimum of his veracity, objectivity and observational sensitivity (i.e. “an even 

chance”). Similarly, the believability of Bin Laden as the source of EVD-Dawn-Mir01-
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02c is obtained as “an even chance”, the minimum between his competence and his 

credibility4. 

 

 

Figure 20: Hypothesis Analysis through Solution Synthesis 

 

Due to the fact that the reduction and synthesis processes are synchronized, Figure 20 

also indicates the correlation between the reduction process and the synthesis process. 

Each problem in the tree (cyan rectangle) is associated with a synthesized solution (light 

green rectangle). The question/answer pair from a reduction step (round cyan rectangle) 

is associated with a synthesis from a synthesis step which synthesizes the sub-solutions to 

a solution (sub-solution is a solution of a sub-problem).  

                                                
4 The synthesis of the solutions can be performed through different strategies as indicated by the expert 
who teaches the agent.  
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From what we presented above, a reasoning tree in the problem reduction/solution 

synthesis paradigm can be seen as consisting of two isomorphic trees: the reduction tree 

and the synthesis tree. The reduction tree shows how the top-level problem is reduced to 

simpler sub-problems until the elementary solutions are found for the simplest problems. 

The synthesis tree shows how the elementary solutions are composed to the solution of 

the original problem. Because they are isomorphic to each other, we will provide only the 

definitions for a reduction tree. The definitions for a synthesis tree are similar to those for 

a reduction tree. 

A reduction tree t is formally defined as follows:  

Definition 3.6 (Reduction Reasoning Tree): A tree t = (Vt, δt) is a reduction 

reasoning tree – a.k.a. reduction tree - if the following properties are satisfied: 

[a] There are three types of reasoning nodes named problem nodes, reduction nodes 

and solution nodes. We denote the reasoning nodes as follows: 

• Pt is the set of problem nodes in the tree t.  

• Rdt is the set of reduction nodes in the tree t. 

• St is the set of solution nodes in the tree t. 

By definition, Vt = Pt ∪Rdt ∪St. A vertex v∈ Vt is also called reasoning node or 

simply node. 

[b] The root is a problem node: Root(t) ∈ Pt. It represents the top level problem. 
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[c] The reasoning nodes are connected together by the argument function δt(x) which 

is defined using the following functions: δtP represents the connection from a problem 

node to its reduction children nodes, and δtRd represents the connection from a reduction 

node to its problem or solution children nodes.  

( )
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( )
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Where: 

• δtP: Pt → Rdt* indicates that a problem node can be either a leaf of a tree or can 

be further reduced to reduction nodes.  

• δtRd: Rdt → [Pt ∪St]+ indicates that a reduction node can be reduced further to 

problem nodes and/or solution nodes.  

• δt(x)= λ for x ∈ St: indicates that the solution node is the leaf of the reasoning 

tree.■ 

Notations:  

• If there are more than one tree, the superscript (i) is used where 0 ≤ i ≤ n for trees 

and their components. For example, a list of n trees are denoted as t(0) = 

( ) ( )( )00 , tt δV , t(1) = ( ) ( )( )11 , tt δV ,…, t(n) = ( ) ( )( )n
t

n
t δ,V . 

• A tree t with root r can be notated as tr. 

• A tree t with root r and leaves {n1,n2,…,n3} can be notated as t[r|{n1,n2,…n3}]. 



    

63 

• A node x1 which is the parent of node x2 is denoted as x1 = Parent(x2). 

Remark: The root of a sub-tree st of a tree t is not necessary a problem node, it can 

be any type of node. 

A reduction reasoning step consists of a problem, a question/answer pair and one or 

several sub-problems, as shown in Table 1. Similarly, a synthesis reasoning step consists 

of a set of sub-solutions, a question/answer pair and a solution synthesized from the sub-

solutions. The association between a reduction step and its counterpart synthesis step is a 

one-to-one relationship. The reduction and synthesis reasoning steps can partition a tree 

into several smaller sub-trees which are as functional as the original tree.  For instance, 

Figure 20 shows a tree which is by itself a sub-tree of a larger reasoning tree. This sub-

tree contains five reduction reasoning steps and five corresponding synthesis reasoning 

steps. The sub-trees are trees themselves. This observation is the foundation of the 

operations of the reasoning tree abstraction.  

Definition 3.7 (Reduction Reasoning Step): A reduction reasoning step in a 

reasoning tree t, is a sub-tree rs = (Vrs, δrs) of t, satisfying the following properties: 

[a] The root node of the reduction step is a problem node, named the problem node of 

the reduction step, and denoted with Prs ∈ Pt. 

[b] The reduction step must contain only one reduction node, child of the reasoning 

step problem node, named the reduction of the reasoning step, and denoted with 

Rdrs∈ Rdt : Rdrs ∈ δtP(Prs). 
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[c] The reduction step will contain all the children of the reasoning step reduction 

node, named sub-nodes of the reduction step and denoted with SN(i)rs, i=1,n: 

δtRd(Rdrs)=SN(1)rs SN(2)rs .. SN(n)rs. A sub-node can be a sub-problem node or a 

solution node. 

[d] There are no other nodes in a reasoning step:  Vrs={ Prs, Rdrs, SN(1)rs, SN(2)rs, ... 

SN(n)rs}.■ 

Example (Reduction Reasoning Step) Figure 21 shows an example of a reduction 

reasoning step. Its formalization is: 

Vrs={P0, R0, P1, P2, P3} 

δrs(x) = {P0→R0, R0→P1P2P3,  P1→λ , P2→λ ,P3→λ }. 

 

 

Figure 21: Reduction Reasoning Step 

 

Until now, the definitions of the tree in general and reasoning tree in particular have 

been presented thoroughly. Next we will present the abstraction of a tree. This will be the 

foundation of two types of abstraction that are applied to collaborative problem solving 

and to tutoring.  

Problem P0 

Sub-Problem P1 Sub-Problem P2 

Reduction R0
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According to Giunchiglia and Walsh (1992), the abstraction is “the process of 

mapping a representation of a problem, called the “ground” representation, onto a new 

representation, called the “abstract” representation” (Giunchiglia and Walsh, 1992). In 

this dissertation we focus on the abstraction of the reduction tree. Based on Giunchiglia 

definition, we will use the term reduction tree at “ground level” as the initial (concrete) 

reduction tree and reduction tree at “abstract level” as the abstracted reduction tree. 

Reduction tree is a specific representation of tree (see Definition 3.6). It is possible to 

have numerous ways to abstract a reduction tree; each type of abstraction will result in 

different abstract reduction tree. We will consider two types of abstractions that are 

suitable for our considered representations. Both types share a common definition of 

abstraction as presented below. 

3.2. Abstraction of a Tree 

Definition 3.8 (Partition): A partition of tree t, Partitiont is a set of sub-trees st of 

tree t for which ∀x ∈ Vt , ∃! st ∈ Partitiont such that x ∈ Vst. 

Definition 3.9 (Singleton Partition): A singleton partition is a partition that has only 

singleton sub-trees. 

Definition 3.10 (Root of Partition): A sub-tree str is a root of a partition 

Root(Partitiont) = str, if and only if str ∈ Partitiont and Root(t) ∈ Vst. 

Definition 3.11 (Parent Sub-tree): A sub-tree st1 is a parent sub-tree of sub-tree st2 

st1 = Parent(st2) if and only if ∃x ∈ Vst1, Root(st2) ∈ δt(x).  

Definition 3.12 (Tree Abstraction): We define the abstraction of a tree at ground 

level t = (Vt, δt) (ground tree) to be the tree at abstract level ta = (Vta, δta) (abstract tree), 
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if there is a partition of t Partitiont and an abstraction function α such that α: Partitiont → 

Vta ∪ {λ}. The abstraction function α satisfies the following properties: 

[a] The abstraction of the root of the ground tree must be the root of the abstract tree. 

For the root sub-tree str = Root(Partitiont), α(str) = Root(ta).  

[b] The parent-child relationships of nodes of the ground tree are preserved in the 

abstract tree. If st1, st2 ∈ Partitiont such that st1 is the parent sub-tree of st2 then 

• if α(st1) ≠ λ then α(st2) ∈ δta(α(st1)) or α(st2) = λ 

• if α(st1) = λ then α(st2) = λ 

[c] The sibling relations of the nodes of the ground tree are partially preserved in the 

abstract tree, i.e., ∀v1, v2 ∈ Vta, v1 is left sibling of v2 if and only if ∃st1 ∈ 

Partitiont such that v1 = α(st1) and ∀st2 ∈ Partitiont, v2 = α(st2), st1 is left sibling 

of st2. 

[d] Any abstract node is the abstraction of at least one concrete sub-tree. ∀x ∈ Vta, ∃st 

∈ Partitiont, α(st) = x. ■ 

Definition 3.13 (Complete Abstraction): An abstraction is called complete 

abstraction if and only if all the sub-trees of the ground tree t have abstractions in the 

abstract tree ta. ∀st ∈ Partitiont, α(st) ≠ λ. 

In the next two sections, we will focus on two different types of abstraction of 

reasoning trees that are suitable for two different purposes: collaborative problem solving 

and tutoring problem solving strategies. We will introduce the concepts of the two 

abstractions and then will provide the detailed definitions for both of them. 
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3.3. Abstraction of Reasoning Trees for Collaborative Problem Solving 

As mentioned above, a very large reasoning tree is difficult to view and understand. 

An abstraction of complex reasoning tree that partitions the complex tree into meaningful 

and manageable sub-trees is desirable. Once the tree is partitioned into smaller but 

manageable sub-trees, the browsing of the concrete tree now is facilitated by its abstract 

tree. Figure 22 shows how a complex tree can be partitioned, abstracted and presented as 

table of contents. 

 

 

Figure 22: Partition of a Reduction Tree 

 

In order to abstract a reasoning tree for collaborative problem solving, the tree must 

be partitioned into several distinct sub-trees. Each sub-tree is abstracted into an abstract 

node in abstract reasoning tree. Consider the example in Figure 23, where a fragment of a 

concrete reasoning tree is partitioned into five sub-trees:  
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• st3
(0) where Vst3

(0) = {P4
(0),Rd3

(0),S1
(0)}, Root(Vst3

(0)) = P4
(0), 

• st4
(0) where Vst4

(0) = {P5
(0),Rd4

(0),S2
(0)}, Root(Vst4

(0)) = P5
(0), and 

• st5
(0) where Vst5

(0) = {P6
(0),Rd5

(0),S3
(0)}, Root(Vst5

(0)) = P6
(0). 

These five partitions are abstracted into five abstract nodes P1
(1), P2

(1), P3
(1), P4

(1) and 

P5
(1) respectively. The abstract nodes form an abstract tree which represents an 

abstraction of the concrete reduction tree. 

 

 

Figure 23: Abstraction of a Reduction Tree for Collaborative Problem Solving 

 

From the example presented above, we can define the abstraction of a reasoning tree 

for collaborative problem solving based on the common Definition 3.12. This is a special 
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type of abstraction where concrete sub-trees are abstracted into abstract nodes of the 

abstract tree. The sub-trees are defined to have the problem nodes as their roots. The 

definition of this abstraction is formally presented as follows: 

Definition 3.14 (Tree Abstraction for Collaboration Problem Solving): We define 

the abstraction for collaborative problem solving of a reasoning tree at ground level t = 

(Vt, δt) (ground tree) to be the tree at abstract level ta = (Vta, δta) (abstract tree) is the 

abstraction for collaboration problem solving, if the Partitiont will contain sub-trees 

having problem nodes as roots (∀ st ∈ Partitiont, Root(st) ∈ Pt ) and the abstraction 

function is a bijective complete abstraction function α: Partitiont → Vta. 

3.4. Abstraction of Reasoning Trees for Tutoring 

The abstraction of a reasoning tree for tutoring purpose is different from that for 

collaborative problem solving presented above. The purpose of this type of abstraction is 

to present the problem solving strategies that are used to reduce the top problem to the 

simplest problems in the reasoning tree.  

The abstraction of a reasoning tree results in an abstract reasoning tree. The abstract 

reasoning tree is simpler to view quantitatively and more organized semantically. Each 

node of the abstract reasoning tree is the abstraction of a set of related nodes of the 

concrete reasoning tree. Figure 24 shows a concrete reasoning tree on the left panel and 

the corresponding abstract reasoning tree on the right panel. The former has more than 

1700 nodes and the latter has only over 130 nodes which is a 92.5% reduction in number 

of nodes. Furthermore, the content of an abstract node – a node of the abstract reasoning 

tree – is problem solving strategy oriented. For example, the yellow node in the abstract 
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reasoning tree describes the strategy “Reduce the hypothesis to simpler hypothesis” 

which is essentially the principle of the problem reduction paradigm. This yellow node is 

the abstraction of a set of 54 nodes bordered by the broken blue line. The set of concrete 

reasoning nodes include different types of reasoning nodes (such as problem nodes, 

reduction nodes) and different hypotheses (such as “Assess whether Al Qaeda has reason 

to use the nuclear weapon” and the opposite one “Assess whether Al Qaeda has reason 

not to use nuclear weapons, assuming that it has them.”) The hypotheses are further 

reduced to simpler ones, according to the content of the abstract yellow node of the 

abstract reasoning tree. 

 

 

Figure 24: Concrete Reasoning Tree and Its Abstraction for Tutoring 
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3.4.1. Abstract Problem 

The abstract reasoning tree organizes the problem solving strategies in such a way 

that the tree itself becomes an explicit elucidation of the problem solving methods based 

on the problem-reduction/solution-synthesis paradigm. An abstract problem node of the 

abstract reasoning tree represents an abstract problem. The root of the abstract tree is an 

abstract problem node which specifies the most general problem to solve such as “Assess 

a hypothesis”. The most general problem is also reduced further using the problem 

reduction paradigm. The reductions in the abstract reasoning tree correspond to those of 

the concrete reasoning tree. For instance, the abstract problem “Assess a hypothesis” 

which corresponds to the first problem (root) of the reasoning tree “Assess whether Al 

Qaeda has nuclear weapons“, is reduced to the more specific problem “Assess a 

hypothesis through evidence analysis which corresponds to the problem “Assess whether 

Al Qaeda has desire to obtain nuclear weapons“ in the concrete reasoning tree.  

Let us consider the two problems in the reasoning tree:  

• “Assess to what extent the piece of evidence EVD-Dawn-Mir01-01a favors the 

hypothesis that Al Qaeda considers self defense as a reason to obtain nuclear 

weapons” and 

• “Assess to what extent the piece of evidence EVD-Glazov01-01c favors the 

hypothesis that Al Qaeda considers the use of nuclear weapons in a spectacular 

operation as a reason to obtain nuclear weapons”.  

The two problems use two different pieces of evidences to assess two different 

hypotheses. The former uses the piece of evidence “EVD-Dawn-Mir01-01a” to judge its 
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support of the hypothesis “Al Qaeda considers self defense as a reason to obtain nuclear 

weapons”. The latter assesses how supportive the piece of evidence “EVD-Glazov01-

01c” is for the hypothesis “Al Qaeda considers the use of nuclear weapons in a 

spectacular operation as a reason to obtain nuclear weapons”. The abstract problem of 

these two problems can be defined as “Assess to what extend the piece of evidence favors 

the hypothesis”, as illustrated in Figure 25. In essence, an abstract problem is the 

abstraction of all the concrete problems that are solved by using the same abstract 

problem solving strategy. There is no limit to the number of concrete problems 

corresponding to a given abstract problem. The abstract problem therefore can reduce a 

large number of problems in the reasoning tree. 

 

 

Figure 25: Abstract Problem 

Two concrete problems 

Abstract problem
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3.4.2. Abstract Reduction 

The abstract reduction focuses on the problem solving strategies. Each abstract 

reduction is a reasoning strategy that reduces an abstract problem to its abstract sub-

problems. The concrete components of an abstract reduction are the reductions that use 

the same problem solving strategy.  

Let us consider the abstract problem  

• “Assess a hypothesis” and its abstract sub-problem  

o “Assess a hypothesis through evidence analysis”  

which correspond to the top problem of a concrete reasoning tree  

• “Assess whether Al Qaeda has nuclear weapons” and its sub-problems  

o “Assess whether Al Qaeda considers deterrence as a reason to obtain nuclear 

weapons.” 

o “Assess whether Al Qaeda considers self-defense as a reason to obtain 

nuclear weapons.” 

o “Assess whether Al Qaeda considers the use of nuclear weapons in 

spectacular operations as a reason to obtain nuclear weapons.” 

o And so on… 

Between the top problem and the sub-problems listed above, there is a sub-tree which 

successively reduces the first problem to different sub-problems, as indicated in Figure 

26. 
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Figure 26: Top Level of a Concrete Reasoning Tree 

 

In other words, there is a sub-tree that plays the role of a reduction strategy that 

makes it possible for the first problem to be reduced to simpler sub-problems. That sub-

tree in the concrete reasoning tree can be abstracted to an abstract reduction “Reduce the 

hypothesis to simpler hypothesis.”  

A reduction is always associated with a problem and its direct or indirect sub-

problems, because it indicates how a problem is reduced to several sub-problems. An 

abstract reduction therefore can abstract a large sub-tree of a concrete reasoning tree 

whose root is the problem and leaves are sub-problems that are mentioned above. For 

instance, the yellow abstract reduction in the right panel of Figure 27, which states 

“Reduce the hypothesis to simpler hypotheses” abstracts several yellow sub-trees in the 

left panel. 
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The abstract reasoning tree represents an abstract way to solve a problem in the 

problem reduction paradigm. 

 

Figure 27: Abstract Reduction and Its Concretions 

 
3.4.3. Abstract Solution 

In the problem reduction paradigm, a problem is reduced to simpler sub-problems 

until the sub-problems have known solutions. Then the synthesis process starts to 

combine the solutions of the sub-problems to get the synthesized solution of the initial 

problem. Due to the synthesis process, each problem in the reasoning tree has an 

associated solution, either a direct solution or a synthesized one. Figure 20 shows a 

synthesis process whose color is cyan which starts from the solutions at the bottom such 

as “The objectivity of Osama Bin Laden with respect to the information provided in 

Dawn-Mir01-02c is almost certain” and climbs up the tree to synthesize the solution of 



    

76 

the original problem “The credibility of Osama Bin Laden with respect to the information 

provided in Dawn-Mir01-02c is an even chance.” 

The abstract solution is the abstraction of the solutions of all the problems that are 

solved using the same reasoning strategy. The abstract solution is associated with an 

abstract problem. Thus the abstract solution of an abstract problem is in fact the 

abstraction of all the solutions of the concrete problems of that abstract problem. Figure 

28 shows several abstract problems and their abstract solutions (represented as cyan 

sticky notes attached to the abstract problems). For example, the abstract problem:  

• Assess to what extent the piece of evidence favors the hypothesis. 

 Has the following abstract solution:  

• Assessed support of hypothesis from the piece of evidence. 

 

Figure 28: Abstract Solutions and Abstract Synthesis 

 
3.4.4. Abstract Synthesis 

In the problem reduction process, the abstract reductions are the bridges connecting 

abstract problems to their abstract sub-problems. Similarly, in the solution synthesis 

process, the abstract syntheses connect the abstract sub-solutions to their abstract 

synthesized solution. An abstract synthesis abstracts the concrete syntheses from the 

Abstract Solution 

Abstract Synthesis 
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concrete reasoning tree. While an abstract solution is associated with an abstract problem, 

the abstract synthesis is associated with an abstract reduction. Thus the abstract solutions 

and abstract syntheses depend on the corresponding abstract problems and abstract 

reductions.  

The abstract syntheses provide the guidance of how to synthesize the abstract 

solutions. There are multiple ways to synthesize the abstract solutions. It is up to the 

subject matter expert who teaches the agent to specify what strategy to be applied. Figure 

28 illustrates a way to synthesize an abstract solution from abstract sub-solutions. 

3.4.5. Abstract Reasoning Tree 

The abstraction of a concrete reasoning tree is essentially the abstractions of its 

problem nodes, reduction nodes, solution nodes and synthesis nodes. The abstractions of 

these reasoning tree components are abstract problem nodes, abstract reduction nodes, 

abstract solution nodes and abstract synthesis nodes respectively. The abstract tree shows 

the problem solving strategies that are repeatedly used in the concrete reasoning tree. 

These strategies are the contents of the abstract reduction nodes. 

Each abstraction corresponds to one or several concretions. These concretions are the 

components of the concrete reasoning tree. The many-to-one relationship from the 

concrete reasoning tree components to their abstract tree components makes the resulting 

abstract reasoning tree much smaller. The abstract reasoning tree is a semantic 

representation of the different types of reasoning strategies used in the concrete reasoning 

tree. Figure 24 shows a concrete reasoning tree and the corresponding abstract tree. The 
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simplicity of the abstract tree in terms of the number of nodes can be seen in the 

comparison between the numbers of nodes of the two trees. 

Qualitatively, the abstract reasoning tree is a hierarchical organization of the problem 

solving strategies to solve the problems. For instance, an abstract problem “Assess to 

what extent the piece of evidence favors the hypothesis” is solved by reducing it to 

simpler abstract problems by using the reasoning:  

• Consider the relevance and the believability of the piece of evidence.  

That strategy leads to simpler abstract problems: 

• Assess to what extent the piece of evidence favors the hypothesis, assuming that 

the piece of evidence is believable. 

• Assess the believability of the piece of evidence. 

Each abstract reduction in the abstract tree provides a guideline for how to solve a 

problem. In other words, the whole abstract tree is a large recipe of problem solving 

strategies. As in the concrete reasoning tree, each abstract reduction step is associated 

with an abstract synthesis step. An abstract synthesis step contains several abstract sub-

solutions, an abstract synthesis and a synthesized abstract solution. The abstract synthesis 

indicates how to compose abstract sub-solutions into an abstract solution. To illustrate an 

abstract synthesis, let us consider the solutions of the two simpler abstract problems 

above. They are 

• Assessed support of the hypothesis from the information in the piece of evidence. 

• Assessed believability of the information provided by the piece of evidence. 

The abstract synthesis is 
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• If either the support of the hypothesis from the information in the piece of 

evidence is low or the believability of the information is low, then the overall 

support provided by the piece of evidence is low. Therefore we estimate the 

overall support of the hypothesis from the piece of evidence as the minimum 

between the support of the hypothesis from the information in the piece of 

evidence and the believability of the information. 

And that allows us to obtain the assessed support of hypothesis from the piece of 

evidence. 

Our proposed abstraction process of the reduction tree begins by grouping the similar 

problem nodes in a concrete reasoning tree into an abstract problem node. Consider the 

sub-tree in Figure 19 and the sub-tree in Figure 29. They have the same structures and 

similar problem nodes, reduction nodes and solution nodes. Both sub-trees can be 

abstracted into the abstract reduction reasoning tree as shown in Figure 30. 
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Figure 29: Reduction Sub-tree 

 
 
 

 
Figure 30: Abstract Reduction Sub-tree 
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Figure 31 displays the abstraction process of the two sub-trees. We will discuss first 

how the problem nodes are abstracted. The problem node ( )0
1P “Assess the extent to which 

one can believe Osama Bin Laden as the source of EVD-Dawn-Mir01-02c” and  ( )0
2P  

“Assess the extent to which one can believe Treverton G as the source of EVD-FP-

Glazov01-01c” of the sub-trees at ground level (superscripted as (0)) are abstracted into 

abstract problem node ( )1
1P  “Assess the believability of the source of the piece of 

evidence” of the sub-tree at abstract level (superscripted as (1)).  

 

 
Figure 31: Abstraction of Reduction Trees for Tutoring 
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solution node “The observational sensitivity of Treverton G with respect to the 

information provided in EVD-FP-Glazov01-01c is almost certain” to abstract solution 

node “The obtained observational sensitivity of the source with respect to the information 

provided in the piece of evidence.” 

The abstraction of the reductions is more complex. In this case, the sub-trees from 

reasoning tree at ground level are abstracted into an abstract reduction node at the 

abstract level. As seen in Figure 31, the two sub-trees rooted in reduction node Rd1
(0) and 

Rd6
(0) and bordered by broken blue lines are abstracted into the abstract reduction node 

Rd1
(1). The reduction abstraction involves the abstraction of sub-trees. 

To be able to define an abstraction for tutoring, we need to define the partition of 

reduction tree for tutoring purpose.  

Definition 3.15 (Partition of Reduction Tree for Tutoring): A partition of a 

reduction tree t = (Vt, δt) Partitiont = Pst ∪ Rdst ∪ Sst where Pst is a set of problem sub-

trees Pst = {sti = ({P∈ Pt}, ∅), i=1,n}, Rdst is a set of reduction sub-trees Rdst = {stj | 

Root(st) ∈ Rdt, j=1,m}, and Sst is a set of solution sub-trees Sst = {stk = ({S∈ St}, ∅), 

k=1,l}. It has the following properties: 

[a] There is only one problem sub-tree that contains the root of the ground tree. ∃! st 

∈ Pst such that Root(t) ∈ Vst. 

[b] Each problem sub-tree except the root sub-tree has as parent a reduction sub-tree. 

∀st ∈ Pst, st ⊄ Root(Partitiont), Parent(st) ∈ Rdst.  
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[c] Each reduction sub-tree has as parent a problem sub-tree. ∀st ∈ Rdst,  Parent(st) ∈ 

Pst. 

[d] Each solution sub-tree has as parent a reduction sub-tree. ∀st ∈ Sst, Parent(st) ∈ 

Rdst.■ 

From Definition 3.15, a definition of the abstraction for tutoring is formed based on 

the abstraction of different types of sub-trees as its basic components. The definition is an 

extension of the common abstraction function defined in Definition 3.12. This abstraction 

governs how a tree is abstracted for tutoring purposes. 

Definition 3.16 (Abstraction for Tutoring): The abstraction of a reasoning tree at 

ground level t = (Vt, δt) (ground tree) to the reasoning tree at abstract level ta = (Vta, δta) 

(abstract tree) is named abstraction for tutoring, if there is a partition for tutoring 

Partitiont = Pst ∪ Rdst ∪ Sst and an abstraction function αt: Partitiont → Vta ∪ {λ} such 

that αt(st) = 








∈∀
∈∀
∈∀

stS

stRd

stP

Sstst
Rdstst
Pstst
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),(

α
α

α
  where 

• αP: Pst → Pta is a surjective function, i.e, ∀Pta ∈ Pta, ∃ st ∈ Pst such that αP(st) = 

Pta. αP is called problem node abstraction function.  

• αRd: Rdst → Rdta is a surjective function, i.e, ∀Rdta ∈ Rdta, ∃ st ∈ Rdst such that 

αRd(st) = Rdta. αRd is called reduction node abstraction function. 

• αS: Sst → Sta is a surjective function, i.e, ∀Sta ∈ Sta, ∃ st ∈ Sst such that αS(st) = 

Sta. αS is called solution node abstraction function.■ 
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Remark: 

[a] A problem sub-tree cannot have more than one abstraction. ∀p1, p2 ∈ Pta, p1 ≠ p2, 

αP
-1(p1) ∩ αP

-1(p2) = ∅. 

[b] A reduction sub-tree cannot have more than one abstraction. ∀rd1, rd2 ∈ Rdta, rd1 

≠ rd2, αRd
-1(rd1) ∩ αRd

-1(rd2) = ∅. 

[c] A solution sub-tree cannot have more than one abstraction. ∀s1, s2 ∈ Sta, s1 ≠ s2, 

αS
-1(s1) ∩ αS

-1(s2) = ∅. 

The problem node abstraction functions corresponding to the abstractions in Figure 

31 are:  

• {st(0)
t[P1|{P1}], st(0)

t[P7|{P7}]} → Pα  P1
(1) 

• {st(0)
t[P2|{P2}], st(0)

t[P8|{P8}]} → Pα  P2
(1) 

• {st(0)
t[P4|{P4}], st(0)

t[P10|{P10}]} → Pα  P3
(1) 

• {st(0)
t[P5|{P5}], st(0)

t[P11|{P11}]} → Pα  P4
(1) 

• {st(0)
t[P6|{P6}], st(0)

t[P12|{P12}]} → Pα  P5
(1) 

The reduction node abstraction functions corresponding to the abstractions in Figure 

31 are:  

• {st(0)
t[Rd1|{Rd2}], st(0)

t[Rd6|{Rd7}]} → Rdα  Rd1
(1) 

• {st(0)
t[Rd3|{Rd3}], st(0)

t[Rd8|{Rd8}]} → Rdα  Rd2
(1) 

• {st(0)
t[Rd4|{Rd4}], st(0)

t[Rd9|{Rd9}]} → Rdα Rd3
(1) 

• {st(0)
t[Rd5|{Rd5}], st(0)

t[Rd10|{Rd10}]} → Rdα Rd4
(1) 
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The solution node abstraction functions corresponding to the abstractions in Figure 31 

are:  

• {st(0)
t[S1|{S1}], st(0)

t[S4|{S4}]} → Sα  S1
(1) 

• {st(0)
t[S2|{S2}], st(0)

t[S5|{S5}]} → Sα  S2
(1) 

• {st(0)
t[S3|{S3}], st(0)

t[S6|{S6}]} → Sα  S3
(1) 

Lemma 3.2 (Lower Bound of Abstraction for Tutoring): The lower bound of the 

abstraction of a reduction tree is the reduction tree itself. 

Proof: An abstraction αt(st): Partitiont → Vta reduces a sub-tree of a reduction tree 

into a node of an abstract reduction tree. If Partitiont  is a singleton partition then the 

abstraction αt(st) does not reduce the number of nodes at all. Furthermore, according to 

Definition 3.12 b, the parent-child relationships and sibling relations of the reduction tree 

are preserved. Therefore for a singleton partition Partitiont, the abstract reduction tree is 

as same as the reduction tree.■ 

Lemma 3.3 (Upper Bound of Abstraction for Tutoring): The upper bound of 

abstraction of a non-singleton reduction tree is an abstract reduction tree which has two 

nodes: an abstract problem node as root and an abstract reduction node as leaf. 

Proof: Because Partitiont is, in general, a set of sub-trees (not always singleton sub-

tree), the abstraction tends to makes the number of nodes of the abstract reduction tree 

smaller than that of the concrete reduction tree. The smallest number of nodes that a tree 

can have is one. Assume that an upper bound of the abstraction is a single node tree. That 

implies the domain Partitiont of the abstraction αt is a partition that has only one sub-tree 
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which is the reduction tree itself and the co-domain Pta has only one abstract problem 

node because it is the abstraction of the root of the reduction tree. Based on the Definition 

3.15 and Definition 3.16, αt = {αP: Pst → Pta} and Pst = {sti = ({P∈ Pt}, ∅), i=1,n} and 

reduction tree contains the reduction nodes {Rd ∈ Pt} as well which contradicts the 

assumption. 

Let us assume we have an abstraction function αt(st): Partitiont → Vta defined as 

follows: 

αP({st(0)
t[root|{root}]}) = Pr(1)  where Pr(1) is root of the abstract reduction tree. 

αRd({st(0)
it[Rd1|{Vtj}] | i=1,n, j=1,m}) = Rd(1) where {st(0)

it[Rd1|{Vtj}] | i=1,n, j=1,m} is the 

rest of the reduction tree from root and Rd(1) is the only abstract reduction node of the 

abstract tree. Such abstraction yields an abstract reduction tree that has only two abstract 

nodes: one is the abstract problem node as root and the other is the abstract reduction 

node. This abstract reduction tree satisfies the properties of Definition 3.15 and 

Definition 3.16. Therefore the upper bound of an abstraction for tutoring of a non-

singleton reduction tree is a two node abstract tree.■ 

Remark: Any reduction tree can have different levels of abstractions for tutoring. 

Their complexity will be in between the upper bound and the lower bound of the 

abstraction. In other words, there are different ways to tutor the domain knowledge based 

on an abstract reasoning tree of that domain. 
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3.4.6 Abstraction Mapping 

Once the abstraction of a reasoning tree is built within the stated constraints, the 

abstraction operations are learned by generalization to become abstraction mapping. The 

generalization of the abstraction operations is a two-step process. The first step is the 

generalization of the concrete components and of the abstract component of an 

abstraction function (top two blocks of Figure 32). The second step is the construction of 

the abstraction mapping for the abstraction function based on the generalizations (bottom 

two blocks of Figure 32). 

The generalization of the concrete components of an abstraction function is a 

complex process. In essence, generalization is a process that transforms an expression 

into a more general expression. It may be done by applying generalization rules, such as 

replacing a constant with a variable, a concept with more general one, a number with an 

interval, and so on (Tecuci, 1998). A problem node is generalized to a problem class, a 

reduction node is generalized to a reduction rule and a solution node is generalized to a 

solution class. For example, in Figure 19, the problem node P1
(0)  

• “Assess the extent to which one can believe Osama Bin Laden as the source of 

EVD-Dawn-Mir01-02c”  

is generalized to the problem class  

• “Assess the extent to which one can believe ?O1 as the source of ?O2”   

by replacing the constant Osama Bin Laden with the variable ?O1 and the constant EVD-

Dawn-Mir01-02c with the variable ?O2. 

The solution node S3
(0)  
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• “The observational sensitivity of Osama bin Laden with respect to the information 

provided in EVD-Dawn-Mir01-02c is almost certain”  

is generalized to the solution class  

• “The observational sensitivity of ?O1 with respect to the information provided in 

?O2 is ?SI1.” 

The reduction node Rd1
(0) 

• “Q: What factors determine the extent to which a source of piece of evidence can 

be trusted? A: The competency and the credibility of the source”  

is generalized to the reduction rule  

• “If assess the extent to which one can believe ?O1 as the source of ?O2 then 

assess the competence of ?O1 as the source of ?O2 and assess the credibility of 

?O1 as the source of ?O2.” 

Similarly, the generalization of an abstract problem node is an abstract problem class, 

the generalization of an abstract reduction node is an abstract reduction class, and the 

generalization of an abstract solution node is an abstract solution class. For example, the 

abstract problem node P1
(1) is generalized to the abstract problem class “Assess the 

believability of the source of the piece of evidence.” 

The second step of the generalization of the abstraction operations consists in creating 

an abstraction mapping that links the concrete classes of the concrete components to the 

abstract classes of the abstract components. For example, one instance of the abstraction 

mapping can be stated as follows: “If a concrete class is Assess the extent to which one 

can believe ?O1 as the source of ?O2 where ?O1 is the source and ?O2 is the piece of 
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evidence then that class can be mapped to an abstract class Assess the believability of the 

source of the piece of evidence.”  

As recalled from the Definition 3.16, the domain of the abstraction function for 

tutoring is the partitions of the reasoning tree. For the problem node abstraction function 

and the solution node abstraction function, the domain is the single partitions as defined 

in Definition 3.9. The single partitions contain the single sub-trees, so there is no concept 

of root node and non-root node in single sub-trees. However, the domains of reduction 

node abstraction functions are not singleton partitions. As a matter of fact, the role of root 

nodes in the sub-trees is important in the abstraction. It guides how a reduction occurs. 

Therefore, when we build the abstraction mapping, the root nodes of the reduction sub-

trees have to be taken into account. 

Figure 32 presents the relation between the reduction tree and its abstract reduction 

tree. In this figure, the concrete reduction tree is abstracted to the abstract reduction tree. 

The reduction tree is the instantiation of the problem classes, reduction rules, and solution 

classes from the knowledge base. The abstract reduction tree generates from abstract 

problem classes, abstract reduction classes and abstract solution classes. The abstract 

classes are, in turn, generated from the problem classes, solution classes and reduction 

rules of the knowledge base of the existing reduction tree via the abstraction mapping. 

The abstraction mapping is saved and restored to generate an abstract reduction tree 

given a concrete reduction tree. The abstraction mapping, in fact, governs how a 

reduction tree should be abstracted. 
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Figure 32: The Relation between Reduction Tree and Its Abstract Reduction Tree 
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problem abstraction mapping which is surjective (similar to the problem node 

abstraction function αP).  

• ΛS(σ): SCΛ → ASCΛ where ASCΛ is a set of abstract solution classes at abstract 

level, indicates that for each solution class selected from the ground level there is 

a corresponding abstract solution class at the abstract level. ΛS(σ) is named 

solution abstraction mapping which is surjective (similar to the solution node 

abstraction function αS). 

• ΛRd(σ): RdRΛ → ARdCΛ where ARdC Λ is a set of abstract reduction classes at 

abstract level, indicates that for each reduction rule that is not the root of its sub-

tree selected from the ground level there is at least a corresponding abstract 

reduction class at the abstract level. ΛRd(σ) is named reduction abstraction 

mapping which is surjective (similar to the reduction node abstraction function 

αRd). 

• ΛrRd(σ): rRdRΛ → ARdCΛ where rRdRΛ ⊂ RdRΛ,  rRdRΛ is a set of root 

reduction class and ARdCΛ  is a set of abstract reduction classes at abstract level, 

indicates that for each reduction rule that is root of its sub-tree selected from the 

ground level there is a corresponding abstract reduction class at the abstract level. 

ΛrRd(σ) is named root reduction abstraction rule which is surjective (similar to 

the reduction node abstraction function αRd). 

The abstraction mapping must satisfy the following properties: 
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[a] A problem class cannot have more than one abstraction. ∀PC ∈ PCΛ, ∃! APC ∈ 

APCΛ such that ΛP(PC) = APC. That makes the problem abstraction mapping a 

function. 

[b] A reduction rule that is root of its sub-tree cannot have more than one abstraction. 

∀rRdR ∈ rRdRΛ, ∃! ARdC ∈ ARdCΛ such that ΛrRd(rRdR) = ARdC. That makes 

the root reduction abstraction mapping a function. 

[c] A solution class cannot have more than one abstraction. ∀SC ∈ SCΛ, ∃! ASC ∈ 

ASCΛ such that ΛS(SC) = ASC. That makes the solution abstraction map a 

function.■ 

Theorem 3.4 (Existence and Uniqueness of Abstract Reduction Tree): Given a set 

of problem classes PC, a set of solution classes SC, a set of reduction rules RdR and an 

abstraction mapping Λ defined for the previous classes, there is a construction method 

such that for each reduction tree generated at the ground level there is one and only one 

corresponding abstract reduction tree constructed based on the abstraction mapping. 

Proof: The proof contains two parts. First, we need to prove that given an abstraction 

mapping, for each reduction tree at ground level we can construct an abstract reduction 

tree. Second, we prove that the newly constructed abstraction tree is unique, given the 

reduction tree and the abstraction mapping. 

Part 1: Existence. 

Given the classes at the ground level and an abstraction mapping Λ(σ), we need to 

show that we can develop a construction method that will generate a unique abstract tree 
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for any reasoning tree at the ground level. Let us consider a reasoning tree t generated at 

the ground level. The tree t was generated based on the problem classes PC ∈ PC, 

solution classes SC ∈ SC, and reduction rules RdR ∈ RdR. 

First we will partition the reduction tree t into sub-trees. The sub-trees are built based 

on their root nodes.  

We define the set of abstracted root nodes as being all the nodes in the reasoning tree 

t that are generated based on problem classes from PCΛ, solution classes from SCΛ, or 

root reduction rules from RdRΛ: RootNodes = {P ∈ Pt| P is instantiation of PC ∈ PCΛ} 

∪ {S ∈ St| S is instantiation of SC ∈ SCΛ} ∪ {rRdi ∈ Rdt| rRd is instantiation of rRdR ∈ 

rRdRΛ}.  

From the set of root nodes, we build the sub-trees:  

• singleton sub-trees for the problem nodes that are in the RootNodes set.  

STP = {sti = ({P},λ) | P ∈ RootNodes ∩ Pt} 

• singleton sub-trees for the solution nodes that are in the RootNodes set.  

STS = {stj = ({S},λ) | S ∈ RootNodes ∩ St} 

• sub-trees for the reduction nodes, with the root node rRd in RootNodes, and also 

containing all the reduction nodes Rdi that are generated based on reduction rules 

RdRi that have the same abstract reduction class ARdC as that of the reduction 

rule rRdR on which the root node rRd is generated, (i.e., 
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( ) iRdRARdCrRdR iRdrRd ∀Λ==Λ )( ) and there is no other root node in the sub-

tree. 

STRd = {st sub-tree of t | Vst ∩ RootNodes = {Root(st)}, Root(st) ∈ RootNodes ∩ 

Rdt, Root(st) is instantiation of rRdR, and ( ) )( iRdrRd RdRARdCrRdR Λ==Λ  for 

any  reduction rule RdRi for which there is an instantiation node Rdi in st} 

One may notice that the problem nodes that are located between the selected 

reductions are also added to those sub-trees. Having constructed the previous sub-trees, 

there will remain some concrete reasoning nodes that are not included in the sub-trees. 

These nodes do not have abstraction. 

Next, we construct the abstract tree, by specifying the abstraction function. The 

construction method is given below.  

Given the partitioned reasoning tree we will construct the abstract tree as its 

abstraction as follows: from the root of the reasoning tree, go top-down and left-right, 

taking the sub-trees one by one. For the current sub-tree st, we consider the root R = 

Root(st). As stated, the nodes of the reasoning tree were generated by instantiating 

corresponding problem classes, reduction rules or solution classes. Let us consider RC as 

being the corresponding class for the root R (if R is problem node, RC is a problem class; 

if R is solution node, RC is a solution class and if R is a reduction node, RC is a reduction 

rule). If there is an abstraction mapping defined for RC based on properties [a], [b], [c] of 

Definition 3.17, then for each RC there is a unique abstraction mapping. We apply the 

abstraction mapping to the class and obtain an abstract class ARC (an abstract problem 
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class for a problem class, an abstract solution class for a solution class, and an abstract 

reduction class for a reduction rule).  

At this point, we will either use an existing instantiation of ARC already created in the 

abstract sub-tree or we will create a new instantiation. If there is a left sibling at the 

current location in the abstract tree of the same ARC we will reuse that instantiation 

(abstract node). If not, then we create the abstract node AN as instantiation of the abstract 

class ARC. This abstract node is the abstraction of the sub-tree st, i.e., αt(st) =  AN where 

AN ∈ Vta . For each abstract node AN, link it to another abstract node AN’ as its parent, 

where AN’ is the abstraction of the parent sub-tree of the current sub-tree in the concrete 

reasoning tree – to preserve the parent-child relationship.  

If there is no abstraction mapping defined, this sub-tree will not be abstracted, i.e., 

αt(st) = λ. 

The process will continue until all the sub-trees in the partition will be considered. At 

the end of this process we obtain the abstract tree and the abstraction function αt. 

Part 2: Uniqueness. 

Let us assume that there are two abstract trees ta1 and ta2, constructed based on the 

same abstraction mapping applied to one concrete reasoning tree t. We will traverse the 

two abstract trees from the root in the top-down, left-right manner, to find the first 

different nodes.  

Let us assume that the first different nodes are the abstract problem nodes P1ta in the 

first tree and P2ta in the second tree. 
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Because they need to be different (except an instantiation isomorphism) the nodes 

need to be generated by different abstract problem classes PC1ta and PC2ta. Due to the 

property [a] of Definition 3.17, there must be a problem class PC1t abstracted to PC1ta and 

a problem class PC2t abstracted to PC2ta. Because of the fact that PC1ta ≠ PC2ta and 

property [a], then PC1t ≠ PC2t. Based on the previous construction method, and the 

conservation of parent-child relationship we must have two different sibling nodes P1t 

and P2t in the reasoning tree instantiating PC1t and PC2t. Let us assume P1t is the left 

sibling of P2t.  

Because of the construction method, we must have in the second abstract tree a left 

sibling of P2ta corresponding to P1t: P’1ta. Moreover this must be also in the first abstract 

tree (because we considered the first place where the abstract trees are different). This 

means that in the first abstract tree we will have P’1ta left sibling of P1ta and both of them 

are instantiations of the same class PC1ta. This contradicts the construction method which 

will reuse the P1ta and not create another instantiation. 

If the first different nodes are abstract solution nodes or abstract reduction nodes a 

similar contradiction is obtained.■ 

3.4.7 Algorithm for Generation of Abstract Reduction Trees  

Based on Definition 3.17 and Theorem 3.5, there is a construction method that maps a 

concrete reduction tree to a unique abstract reduction tree. In the implementation of the 

construction method, it would be efficient to treat the abstraction mapping as a set of 

abstraction rules, each of which is a pair of a concrete class and its corresponding abstract 

class. In other words, there are three types of abstraction rules, listed as follows: 
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• Problem abstraction rule: (problem class, abstract problem class), storing the 

mapping ΛP(PC) = APC, where PC ∈ PCΛ and APC ∈ APCΛ. The set of all 

problem abstraction rules are a representation of PΛ . 

• Reduction abstraction rule: (reduction rule, abstract reduction class), storing the 

mapping ΛRd(RdR) = ARdC, where RdR ∈ RdRΛ and ARdC ∈ ARdCΛ. The set of 

all reduction abstraction rules are a representation of RdΛ . 

• Solution abstraction rule: (solution class, abstract solution class), storing the 

mapping ΛS(SC) = ASC, where SC ∈ SCΛ and ASC ∈ ASCΛ. The set of all 

solution abstraction rules are a representation of SΛ . 

In general, an abstraction rule (concrete class CC, abstract class AC) will associate a 

concrete class with its corresponding abstract class. With the abstraction rules, the task of 

abstracting a reduction reasoning tree can be done automatically. Table 2 presents the 

algorithm of associating the abstraction rules to the reduction nodes of the concrete 

reduction tree. Table 3 presents the retrieval of the associated abstraction rule from a 

reduction node of a concrete reduction tree. Table 4 presents the algorithm of generation 

of the abstract reduction tree given the concrete reduction tree and a set of abstraction 

rules.  

 

Table 2: Associate Abstraction Rule 

Given: 
• AbstRules - the set of all the abstraction rules 

Return: 
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• none  
 
AssociateAbstractionRule(AbstRules) 
1. for each AbstRule = (CC, AC) from AbstRules do 
2. associate AbstRule to CC 
3. end for 
end AssociateAbstractionRule 

 

The algorithm does not return any but creates a link between a concrete class and the 

abstraction rule, if any. For a given reasoning tree, each node has an associated concrete 

class (e.g. problem class, reduction rule). Therefore, each node will be indirectly 

associated with an abstraction rule, if any. 

 

Table 3: Get Abstraction Rule 

Given:  
• Node - a node to search for its abstraction rule 

Return: 
• NodeAbstRule - abstraction rule associated with given node Node – NULL if 

none 
 
GetAbstractionRule(Node) 
1. if Node is problem node then 
2. ProblemClass ← retrieve the problem class of Node 
3. return the associated abstraction rule of the ProblemClass or NULL if none  
4. else if Node is solution node then 
5. SolutionClass ← retrieve the solution class of Node 
6. return the associated abstraction rule of the SolutionClass or NULL if none 
7. else if Node is reduction node then 
8. ReductionRule ← retrieve the reduction rule of Node 
9. return the associated abstraction rule of the ReductionRule or NULL if none 
10. end if 
end GetAbstractionRule 
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The algorithm in Table 3 retrieves the abstraction rule associated with a node in the 

reasoning tree, if any. The node can be problem node, reduction node or solution node. 

For any node, it retrieved the class which generated that node and the abstraction rule 

associated with it, if any.  

 

Table 4: Generation of Abstract Reduction Tree 

Given: 
• t - concrete reasoning tree 
• AbstRules - a set of abstraction rules 

Return: 
• ta - the abstract reduction tree 

 
GenerateAbstractReductionTree(t, AbstRules) 
1. AssociateAbstractionRules(AbstRules) 
2. Queue ← ∅  nodes in the tree waiting to be abstracted 
3. FoundFlag ← false 
4. add root of tree t to Queue 
5. while Queue is not empty do                    
6. Node ← pop a node from queue 
7. NodeAbstRule ← GetAbstractionRule(node) 
8. if Node is problem node then                       
9. AbstProblemClass ← retrieve abstract problem class from NodeAbstRule 
10. ParentNode ← get parent of Node 
11. if ParentNode is not null then 
12. FoundFlag = false 
13. AbstParentNode ← get abstract node from ParentNode 
14. if AbstProblemClass is null and Node’s children have abstractions then 
15. add Node to AbstParentNode concrete components 
16. Set AbstParentNode as abstraction of Node 
17. else 
18. AbstChildrenNodes ← get children of AbstParentNode 
19. for each AbstChildNode of AbstChildrenNodes do 
20. AbstChildNodeClass ← retrieve abstract class from 

AbstChildNode 
21. if AbstChildNodeClass = AbstProblemClass then 
22. add Node to AbstChildNode’s concrete components 
23. set AbstChildNode as abstraction of Node 
24. FoundFlag = true 
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25. end if 
26. end for 
27. end if 
28. if FoundFlag is false then 
29. APN ← create abstract problem node from AbstProblemClass 
30. add Node to APN’s concrete components 
31. set APN as abstraction of Node 
32. link APN to AbstParentNode as its parent 
33. end if 
34. else                         ParentNode is null  
35. APN ← create abstract problem node from AbstProblemClass 
36. add Node to the list of concrete components of APN 
37. set APN as abstraction of Node 
38. add APN to Vta and set APN as Root of ta 
39. end if 
40. else if Node is reduction node then 
41. AbstReductionClass ← retrieve abstract reduction class from NodeAbstRule 
42. ParentNode ← get parent of Node 
43. if ParentNode is not null then 
44. AbstParentNode ← get abstract node from ParentNode 
45. FoundFlag = false 
46. if AbstReductionClass is not null then 
47. AbstChildrenNodes ← get children of AbstParentNode 
48. for each AbstChildNode of AbstChildrenNodes do 
49. AbstChildNodeClass ← retrieve abstract class from 

AbstChildNode 
50. if AbstChildNodeClass = AbstReductionClass then 
51. add Node to AbstChildNode’s concrete components 
52. set AbstChildNode as abstraction of Node 
53. FoundFlag = true 
54. end if 
55. end for 
56. end if 
57. if FoundFlag is false then 
58. ARN ← create abstract reduction node from AbstReductionClass 
59. add Node to ARN concrete components 
60. set ARN as abstraction of Node 
61. link ARN to AbstParentNode as parent 
62. end if 
63. end if 
64. else if  node is solution node then 
65. AbstSolutionClass ← retrieve abstract solution class from NodeAbstRule 
66. ParentNode ← get parent of Node 
67. FoundFlag = false 
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68. if ParentNode is not null then 
69. AbstParentNode ← get abstract node from ParentNode 
70. if AbstSolutionClass is not null then 
71. AbstChildrenNodes ← get children of AbstParentNode 
72. for each AbstChildNode of AbstChildrenNodes do 
73. AbstChildNodeClass ← retrieve abstract class from 

AbstChildNode 
74. if AbstChildNodeClass = AbstSolutionClass then 
75. add Node to AbstChildNode’s concrete components 
76. set AbstChildNode as abstraction of Node 
77. FoundFlag = true 
78. end if 
79. end for 
80. end if 
81. if FoundFlag is false then 
82. ASN ← create abstract solution node from AbstSolutionClass 
83. add Node to ASN’s concrete components 
84. set ASN as abstraction of Node 
85. link ASN to AbstParentNode as parent 
86. end if 
87. end if 
88. end if 
89. if Node has abstraction or at least one of Node’s children has abstraction then 
90. Children  ← get children of Node  
91.      add Children to Queue 
92. end if 
93. end while 
94. return ta 
end GenerateAbstractReductionTree 

 

Table 4 provides the algorithm to generate the abstract reduction reasoning tree given 

a concrete reduction reasoning tree and a set of abstraction rules. The algorithm starts by 

associating the abstraction rules to the reasoning nodes of the concrete reasoning tree 

(line 1). Then it uses breadth-first search to enumerate all the nodes in the concrete 

reasoning tree. Line 5 starts the breadth-first search. For each node of the concrete 

reasoning tree, the associated abstraction rule NodeAbstRule is retrieved at line 7. The 

algorithm distinguishes three different types of nodes: problem node, reduction node and 
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solution node. For the problem node, the abstract problem class AbstProblemClass is 

retrieved given its abstraction rule NodeAbstRule (line 9). The problem node Node is 

tested if it is a root or not, based on its reduction parent node ParentNode (lines 10 and 

11). A root does not have a parent and is taken care of at line 34. Line 11 presents the 

case where the problem node Node is not the root. Line 13 presents the case where the 

AbstProblemClass is null but some of its children have abstractions, which means the 

Node does not have its own abstraction but implicitly abstracted to its parent’s 

abstraction (abstract reduction node). In this case it is added to the concrete component 

list of its abstraction of its parent (lines 14-16). Lines 18 and 19 retrieve the children 

AbstChildrenNodes of the abstraction of the parent of the problem node AbstParentNode. 

Each child AbstChildNode is supposedly an abstract problem node or an abstract solution 

node. Lines 19 to 25 are the FOR loops to enumerate all children. Their abstract problem 

classes or solution classes AbstChildNodeClass are, in turn, compared against the 

abstract problem class AbstProblemClass of the problem node Node. If 

AbstChildNodeClass retrieved from the child problem node AbstChildNode is the same 

as the abstract problem class AbstProblemClass (line 21), then the problem node Node is 

added as one of the concrete components of the child abstract problem node 

AbstChildNode (line 22). The flag FoundFlag is set to true (line 24) to indicate that an 

abstract problem node AbstChildNode in the abstract reasoning tree was found. If no 

appropriate abstract problem node was found (line 28) then a new abstract problem node 

APN is created from the abstract problem class AbstProblemClass (line 29). The problem 

node Node is added to the concrete component list of APN (line 30). APN is linked to its 
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parent AbstParentNode (line 32). If the problem node is the root of the concrete 

reasoning tree (line 34), the abstract problem node APN which is created based on the 

abstract problem class AbstProblemClass (line 35) is also the root of the abstract tree. 

The concrete component of the newly created abstract problem node APN is the root 

Node itself (line 37). 

In case of Node as reduction node, lines 40 to 63 present the similar algorithm to find 

an existing abstract reduction node or make a new abstract reduction node in the abstract 

reduction tree. Similarly, lines 64 to 88 present the algorithm to find an existing abstract 

solution node or make a new abstract solution node in abstract reduction tree. The only 

difference between the algorithm for abstraction of problem nodes and the other types of 

nodes is the problem node may have an implicit abstraction which is the abstract 

reduction node. In this case, that problem node is located in the reduction sub-tree – the 

sub-tree whose root and leaves are reductions. 

Line 89 indicates that if Node and its children do not have the abstraction then there is 

no need to go down further; because there cannot be any abstraction below the Node; it 

would violate the parent child relationship, if there were. 

3.4.8 Complexity Analysis of Generation of Abstract Reduction Trees 

According to Cormen (1997), the cost of traversing a tree ( )tVRT δ,=  using the 

breadth-first strategy is ( )δNNO V +  where VN  = |Vt| is number of nodes in the tree and 

δN  = |δt| is number of edges in the tree. The algorithm uses the breadth-first search to 

enumerate all nodes of the concrete reasoning tree. Therefore there are Nv WHILE loops 
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(line 6) and enumeration of them costs ( )δNNO V +  = O(Nv + Nv – 1) = O(Nv). Each 

WHILE loop consists of a sequence of statements which abstract the current node in the 

loop. There are three types of nodes, so there are three corresponding conditions (line 8 

for problem node, line 40 for reduction node and line 64 for solution node). For each type 

of node, there are similar operations in sequence such as:  

 [a] retrieve the class of the current node, which is the concrete class, 

[b] retrieve the associated abstraction rule for that concrete class, 

[c] abstract the concrete class to the abstract class,  

[d] build an abstract node out of the abstract class,  

[e] link the abstract node to the existing abstract reduction tree.  

For a problem node, there is one exception: 

[f] For the root node of the concrete reasoning tree, there is no need to link the 

abstract node to the abstract tree, because the abstract tree does not exist at that 

time, and the abstract node becomes the root of the abstract tree. 

[g] get all direct children and add to the queue (if needed) 

From the specifications given above, we can compute the complexity of the algorithm 

of generation of the abstract reduction tree. First of all, we want to compute the 

complexity of AssociateAbstractionRule. The algorithm contains one FOR loop which 

enumerate all the abstraction rules. Let Nar be the number of abstraction rules, the 

algorithm will cost O(Nar). 

Next we compute the complexity of GetAbstractionRule. This method calls the 

statements that cost O(1). Therefore, the complexity of GetAbstractionRule is O(1). 
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Now we compute the complexity of GenerateAbstractReductionTree. For each 

WHILE loop (line 5), all statements (see [a] to [g]) cost a constant O(1). In other words, 

Nv WHILE loops cost O(Nv). The whole algorithm thus costs O(Nar) + O(Nv) which is 

linear with number of abstraction rule and linear with number of reasoning nodes. 
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4. Abstraction-Based Collaborative Problem Solving 

 

Based on the definition of abstraction of a reasoning tree for collaborative problem 

solving (see Section 3.3), we have developed a new approach to facilitate the problem of 

viewing and understanding a very large reasoning tree. The approach is called 

Abstraction-Based Table of Contents. The table of contents (TOC) is, in fact, the abstract 

reasoning tree of a concrete reasoning tree. The user who wants to view the complex tree 

can browse it by navigating the abstract tree. 

4.1. Abstraction-Based Table of Contents 

Figure 33 shows the TOC of the large tree displayed on the left hand side panel of 

Figure 24. In Figure 33, the right hand side panel displays the smaller sub-tree presenting 

the logic that reduces a main problem “Assess whether Al Qaeda has nuclear weapons” 

to its main sub-problems such as  

• “Assess whether Al Qaeda considers deterrence as a reason to obtain nuclear 

weapons”  

• “Assess whether Al Qaeda considers the use of nuclear weapons in spectacular 

operations as a reason to obtain nuclear weapons” and so on 

 The first level of the abstract subtree in the TOC, which is shown on the left-hand 

side of Figure 33, is the abstraction of the concrete tree shown in the right hand side of 

Figure 33. From the user’s point of view, the top of the tree in the TOC corresponds to 
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the top node in the concrete tree, and the sub-nodes in the TOC correspond to the leaf 

nodes of the concrete tree (as indicated by the arrows from the figure). Moreover, the 

names of the leaf nodes in the concrete tree (such as those shown above) are abstracted 

into the names of the sub-nodes in the TOC (e.g. “Self defense as reason”, “Spectacular 

operations as reason” and so on).  

 

 

Figure 33: Abstraction of Reasoning Tree as Table of Contents 

 

The leaves of the sub-tree on the right hand side panel of Figure 33 are also the roots 

of sub-trees in the TOC, as illustrated in Figure 34. This figure presents a fragment of 

abstraction-based TOC. It shows an abstract tree of the reasoning tree generated by the 

agent. We can see the top problem is Assess whether Al Qaeda has nuclear weapons and 

TOC Reduction of a problem to its main sub-

 

Abstract Detailed tree
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sub-problems are Deterrence as a reason, self-defense as a reason. Each of the sub-

problems is assessed by favoring and disfavoring evidences. Each evidence is assessed by 

the relevance, believability of the reporter and the source and so on. When the user clicks 

on the node, the right hand side shows a reasoning tree for that particular problem to 

explain the logic of reduction. 

 

Figure 34: An Expanded Fragment of TOC 

 

This type of abstraction is context dependent where the content of the abstract node is 

dependent on the context where it is located. For instance, the TOC item “Favoring 

evidence” implicitly indicates the evidence to support the hypothesis “Self defense as a 

reason” which is its parent TOC item.  
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Given the abstract tree as TOC, the browsing of the large reasoning tree becomes 

easier. Viewing the TOC gives the user the summary of the content of the concrete 

reasoning tree at different levels of abstraction. The higher level is presented first and the 

drill down of the TOC item gives more detailed information. For example, Figure 34 

presents the drill-down of the “Self defense as a reason” node which is ”Favoring 

evidence” and “Disfavoring evidence”. The “Favoring evidence” has two evidence 

pieces, “EVD-Reuters01-01c” and “EVD-Dawn-Mir01-01c”. Each of the supporting 

evidence’s characteristics such as “Relevance” and “Believability” are also presented.  

By clicking on a TOC item one can view the corresponding concrete reduction sub-tree.  

The abstraction of reasoning tree for interactive problem solving also supports the 

synthesis process. Figure 35 presents the synthesis view of Figure 33. The solutions are 

abstracted in the TOC together with their reduction counterparts. For instance, the node 

“Assess whether Al Qaeda considers an ideology as a reason to obtain nuclear 

weapons” and its solution “It is likely that Al Qaeda considers an ideology as a reason to 

obtain nuclear weapons” are abstracted to “Ideology as reason: likely.” 
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Figure 35: Abstract and Concrete Reduction and Synthesis Tree 

 
4.2. Optimization of the Reasoning Tree Display 

Even with the help of abstraction, the display of a reasoning tree on a small screen is 

difficult (Nguyen et al., 2000). We have therefore developed a technique to optimize this 

display, as illustrated in Figure 36. The left-hand side picture in Figure 36 displays a 

reasoning tree with a navigator showing the small part of the tree which is visible. The 

tree by itself is compactly displayed, but the view port at different locations is still 

spacious. In other words, the density of the tree is not evenly distributed. The right-hand 

side picture shows an optimized view which can display 150% more nodes in the same 

view port. This allows more nodes to be viewed in the same view port by reducing the 

white space between nodes while still preserving the characteristic of a hierarchical tree. 

 
Problem: Solution Reduction and Synthesis Tree

Abstract Detailed tree
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Before Optimization After Optimization  

Figure 36: Optimization of the Display of a Large Reasoning Tree 

 
4.3. Evaluation of Abstraction for Collaborative Problem Solving 

In Fall 2006 and Spring 2007 we performed two experimentations with using the 

abstraction-based TOC. One was in the course CS681-2006 Designing Expert Systems at 

George Mason University and the other was in the course MAAI-2007 Military 

Application of Artificial Intelligence at the US Army War College. Both used the same 

abstraction-based TOC to browse and modify a large reasoning tree. At the end of the 

class, they were asked to agree or disagree on some certain statements. A sample of the 

students’ subjective evaluations is presented in Figure 37. With one exception, all the 

students agreed or strongly agreed that the abstraction-based TOC facilitates the 

browsing and understanding of the reasoning trees.  
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Figure 37: Evaluation of Abstraction for Collaborative Problem Solving 
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5. Abstraction-Based Tutoring  

 

The intelligent tutoring systems (ITS) are valuable educational tools. They are used to 

assist the teachers in teaching as well as to support students in learning. These tools, 

however, are not widely available because the process of building them is very complex 

and time-consuming. This chapter presents several methods that facilitate the process of 

developing systems for tutoring expert problem solving. First we present an abstraction-

based approach to lesson design and generation. Then we present several methods for 

learning and generation of exercises to test the students. 

5.1. Lesson Design and Generation 

Lesson creation is one of the most difficult and time consuming tasks in developing 

intelligent tutoring systems. Anderson estimated that “it takes at least 100 hours to do the 

development that corresponds to an hour of instruction for a student” (Anderson, 1992). 

According to Aleven and Rose (2004) “A recent estimate puts development time at 200 

hours per hour of instruction”. This activity puts a difficult burden on the instructor who 

designs and builds the lessons. The more complex the domain, the harder and longer it 

takes to build the curriculum for the tutoring system. GUIDON (Clancey, 1987), a classic 

tutoring system based on an expert system, took a subject matter expert and a full-time 

knowledge engineer six years to make it work. The enormous labor that is required to 

build the lessons for a tutoring system is one of the reasons the ITSs have not been 
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widely developed and used, in spite of their obvious benefits. We have developed a new, 

abstraction-based, approach to teach expert problem solving to students. The 

corresponding abstraction-based lesson design and generation methods reduce the 

complexity and time for building the curriculum. They not only reduce the time to develop 

the tutoring system, but also generate the lessons automatically. 

The abstraction-based lesson design and generation process uses the abstraction of the 

reasoning trees of the application domain as the resource to build the lessons. An abstract 

reasoning tree is much smaller than its corresponding concrete reasoning tree and consists 

of precisely those abstract concepts and reasoning strategies that need to be learned by a 

student. This makes the task of the instructor who has to build the lessons out of the tree 

much easier. The detailed description of the abstraction of a reasoning tree for tutoring is 

presented in Chapter 3. Once the abstract lessons are built from the abstract tree, the 

examples for the lessons are generated automatically by concretizing the abstract 

components of the tree. The concretization of the abstract tree allows the reuse of the 

abstract lessons for different domain knowledge bases. Another feature of the abstraction-

based lessons is the assured consistency between the expert’s knowledge from the 

system’s knowledge base and the knowledge used in constructing the curriculum to teach 

expert problem solving to the students. 

5.1.1 Abstraction-Based Lesson Design 

An abstract reasoning tree is a representation of some of the problem solving 

strategies used by a subject matter expert. Capturing that knowledge systematically and 

presenting it pedagogically is required in order to develop a tutoring system that can 
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teach the students the expert knowledge to solve problems in a particular domain. The 

way the tutoring system teaches the student is also similar to how it was taught by the 

expert because the reasoning tree is the representation of how the expert has taught the 

system in the first place. The abstract reasoning tree serves as a guide to construct the 

lessons. As mentioned in Chapter 3, the abstract reasoning tree (which includes the 

abstract reduction tree and the abstract synthesis tree) consists of hierarchies of four types 

of abstract nodes: abstract problem nodes, abstract reduction nodes, abstract solution 

nodes and abstract synthesis nodes. 

A lesson can be defined to cover a part of an abstract reasoning tree. In general, a 

lesson teaches a strategy to solve a particular type of problem. Therefore the lesson is 

associated with an abstract problem node. This association constitutes a one-to-one 

mapping between the knowledge learned from the expert and the knowledge to be taught 

by the tutoring system. In order to solve a problem, the problem reduction paradigm 

guides the system to successively reduce that problem to simpler and simpler problems. 

That reduction strategy must be captured in a lesson. Depending on the complexity of the 

problem, the sequence of the reductions needed to solve the problem can be short or long. 

The lesson that teaches how to solve that type of problem must present the necessary 

reasoning steps. Each reasoning step may correspond to a lesson as a lesson section. 

Therefore a lesson can contain one or more lesson sections, depending on the complexity 

of the problem at hand. The relations among the lesson sections can vary. They can be 

sibling relations, cousin relations or parent-children relations. Thus, the lesson can be 
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used to represent and teach the knowledge that reduces a problem to simpler sub-

problems via multiple reasoning steps.  

To illustrate the lesson design process, we will use the abstract reasoning tree from 

Figure 38. The top level problem is successively reduced to simpler problems, as follows:  

We need to 

• Assess the believability of the reporter of the piece of evidence. 

The believability of the reporter of a piece of evidence is determined by the reporter’s 

competency and credibility. 

Therefore we need to 

• Assess the competency of the reporter of the piece of evidence. 

• Assess the credibility of the reporter of the piece of evidence. 

The credibility of the reporter of a piece of evidence depends on reporter’s veracity, 

objectivity, and observational sensitivity. 

Therefore, to assess reporter’s credibility we need to: 

• Assess the veracity of the reporter of the piece of evidence. 

• Assess the objectivity of the reporter of the piece of evidence. 

• Assess the observational sensitivity of the reporter of the piece of evidence. 
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Figure 38: Lesson Sections 

 

A lesson that teaches how to assess the believability of the reporter can be defined 

based on these two reductions. As a result, a two-section lesson is defined. The first 

section covers the first reasoning step and the second section covers the other one. The 

two sections share one problem, as depicted by the blue-border problem in Figure 38. The 

shared problems are required to link the sections together to ensure the continuity of the 

lesson’s flow. 

The lesson designer or instructor uses the abstract reasoning tree as guidance in 

designing the lessons of a curriculum. Once the instructor has decided what sections to 

include in a lesson and how they are linked together, he or she can elaborate more on how 

to teach that lesson to the students. Showing the entire lesson to the student is not always 

desirable because it can be confusing and misleading. A long lesson which has multiple 

sections needs to be shown one part at a time and follows some natural logic. The lesson 

sections can be presented in multiple ways: breadth-first, depth-first, a combination of 

breadth-first and depth-first, or any way that the instructor deems fit to the student’s 
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knowledge or to his/her own taste. The breadth-first strategy introduces the problem in a 

broad way that helps the student appreciate the big picture before going into details. On 

the contrary, a depth-first strategy may help train the students the capability to focus on 

one particular problem and narrow down the problem to find the suitable solutions. 

A lesson is not complete without the examples to illustrate the points being taught at 

an abstract level. Using the abstract reasoning tree, the instructor is able to avoid the 

burden of creating the examples for the lessons. As described in detail in Section 3.3, the 

abstract reasoning tree consists of hierarchical abstract nodes. Each abstract node is an 

abstraction of a set of concrete reasoning nodes in a concrete reasoning tree, as shown in 

Figure 39. The concrete reasoning nodes are illustrations of the abstract node. Therefore, 

the concrete reasoning nodes are the sources of the examples for the lessons built upon 

abstract node. 
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Figure 39: Abstract Node and Its Concretions 

 

For instance, the following abstract problem (see Figure 38) 

• Assess the believability of the reporter of the piece of evidence. 

is an abstraction of the following concrete problems: 

• Assess the extent to which one can believe Hamid Mir as the reporter of EVD-

DawnMir-01-02. 

• Assess the extent to which one can believe Glazov J. as the reporter of EVD-FP-

Glazov01-01. 

EVD-DawnMir-01-02 is a fragment of an article by Hamid Mir, published in the Dawn 

magazine. EVD-FP-Glazov01-01 is a fragment of an article by Glazov J, published in the 

Front Page magazine. 
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The abstract reduction  

The believability of the reporter of a piece of evidence is determined by the 

reporter’s competency and credibility. 

is the abstraction of the concrete reductions: 

What factors determine the extent to which Hamid Mir a reporter EVD-DawnMir-

01-02 can be trusted? 

The competency and the credibility of Hamid Mir. 

and 

What factors determine the extent to which Glazov J. a reporter of EVD-FP-

Glazov01-01 can be trusted? 

The competency and the credibility of Glazov J. 

The abstract sub-problem 

• Assess the competency of the reporter of the piece of evidence. 

is the abstraction of the concrete sub-problems: 

• Assess the competency of Hamid Mir as the reporter of EVD-DawnMir-01-02. 

• Assess the competency of Glazov J. as the reporter of EVD-FP-Glazov01-01 

and so on. Therefore, the lesson will have a set of examples, two of which are shown in 

Figure 40. 
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Figure 40: Examples Illustrating the Abstract Reduction in Figure 38 

 

The lesson designer may also enhance the lesson with hyperlinks (as shown in Figure 

40) that connect to the knowledge base to provide descriptions of important concepts and 

instances. These descriptions are generated automatically from the system’s knowledge 

base. They provide an unintrusively help to the students. For example, Figure 41 shows 

the description of EVD-FP-Glazov01. 
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Figure 41: Description of a Piece of Evidence 

 

What we have discussed so far is the reduction part of the problem reduction / 

solution synthesis paradigm. The other half is the synthesis process to find the solution of 

the original problem. According to this problem solving paradigm, the synthesis follows 

from bottom up: the solutions of the sub-problems are successively composed upward 

into the solutions of their parent problems. Similar to the reduction examples, the 

synthesis examples of the abstract syntheses are obtained from the corresponding 

concrete reasoning trees. Figure 42 shows a two-panel window. The upper panel shows 

the lesson’s abstract synthesis steps (as green sticky notes) and the lower panel shows the 

corresponding concrete synthesis steps.  
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Figure 42: Lesson’s Abstract Syntheses and their Concretions 

 

An abstract synthesis teaches the student how to combine the solutions of some sub-

problems to obtain the solution of their parent problem: 

 Let us consider the following solutions: 

•  Assessed veracity of reporter of the piece of evidence. 

• Assessed objectivity of the reporter of the piece of evidence. 

• Assessed observational sensitivity of the reporter of the piece of evidence. 
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 A reporter for which any of the three factors has a very low value is not credible. 

Therefore one can estimate the credibility of the reporter as the minimum of 

veracity, objectivity, and observational sensitivity. 

We thus obtain the: 

• Assessed credibility of the reporter. 

Similarly with the reduction part, the system can automatically generate concrete 

examples of the abstract synthesis process, as illustrated in the bottom part of Figure 42. 

The abstraction-based lesson design is important in the sense that it partitions an 

abstract reasoning tree into multiple segments. Each segment conveys a separate topic 

and is captured into a separate lesson. Different ordered collections of lessons reflect 

different ways the lesson designer may direct the transfer of problem solving knowledge 

to the students, the goal being to find the most pedagogical way. 

5.1.2 Lesson Script and Its Language 

A lesson contains the lesson header and multiple sections. The lesson header includes 

the lesson’s title and objectives. The lesson’s objectives are the summary of what the 

lesson tries to convey and how the information can be used. Each section teaches a 

strategy to solve a particular problem. In other words, each section contains one abstract 

problem, one reduction strategy and its abstract sub-problems derived by the reduction. In 

addition to the reduction strategy, the synthesis strategy is taught as well. Therefore a 

lesson section also contains an abstract synthesis, abstract solutions of the abstract sub-

problems and the synthesized abstract solution of the abstract problem. Both reduction 

examples and synthesis examples are added to illustrate the topic being taught. The 
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lesson section may also contain annotations and descriptions. These are optional 

components used to introduce certain components or for explanation purposes. Last but 

not least, the lesson also includes the long and short descriptions for certain concepts to 

enhance the understanding of the lesson content. All the descriptions are shown to the 

students upon request and unintrusively.  

Once the lesson design phase is completed, the system automatically generates the 

lesson script whose content is based on the design. Each lesson has a lesson script. The 

entire curriculum consists of multiple ordered lessons. Abstraction-based lesson 

generation relies on the lesson scripts to build the lessons when they are needed. The 

lesson script is managed through the Abstraction-Based Lesson Emulation (ABLE) 

scripting language. ABLE allows the instructor to design and build the abstraction-based 

lessons in a very flexible manner. In fact, the instructor does not have to write a single 

line of ABLE to build the lesson script. The graphical interface helps him/her to generate 

the lesson script underlined by ABLE. ABLE is described in Appendix A 

Each token of the lesson has an optional feature, named LifeCycle, which indicates 

the display timing of that token. The feature allows the lesson components to be 

displayed in different orders and with different durations. The grammar of this feature is 

presented in the Table 14. In LifeCycle, the two components Order and Duration indicate 

when and for how long to display a component on the screen. They are dynamically 

computed based on the current configuration of the lesson components.  

The relative values of Order and Duration serve two purposes. First of all, the 

relative orders allow the lesson components to be easily added and deleted without 
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significantly affecting the orders and durations of the rest of the components. For 

instance, if Objective’s Duration depends on the Problem’s Order and the Problem is 

deleted for some reason, then the Objective’s Duration will relies on the component 

Token i that is displayed right before Problem, i.e. Objective’s Duration = before(Tokeni) 

where Problem’s Order = after(Tokeni). The other purpose that the relative values serve 

is to maintain the integrity of the orders and durations of the lesson components when the 

abstract reasoning tree is realized in different scenarios. Different scenarios may result in 

different abstract reasoning trees. No matter the configuration of the abstract reasoning 

tree, the lesson components that are hosted by that abstract tree can connect to each other 

by using the relative values of orders and durations. This characteristic is suitable for 

applying the same lesson script to different scenarios. More on this issue is discussed in 

the Lesson Generation section. 

The LifeCycle feature is also used in implementing the tutoring strategies. A lesson 

can be a large hierarchical collection of sections. The displaying of the whole lesson at 

one time may become confusing and hard to understand. The instructor can design the 

displaying order of the lesson components in several ways, to emphasize the focal points 

of the lesson. For example, in Figure 38, a lesson with two sections is presented. The 

instructor may wish to introduce first the top reduction (as in Figure 43), or the bottom 

reduction (as in Figure 44) 
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Figure 43: Top-down Tutoring Strategy 

 

 

Figure 44: Bottom-up Tutoring Strategy 

 

In short, there are various ways to arrange the display of a problem reduction process, 

to fit one’s preferences. The tutoring system, however, has a default configuration for 

presenting the lesson to relieve the burden off the lesson designer. The default 

configuration is a variation of the depth-first strategy. The first reduction will be 

presented with all its sub-problems or solutions, and then the reduction of the left-most 

child, and so on, as shown in Figure 45. 
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Figure 45: Variation of the Depth-First Strategy 

 

The tutoring strategy also involves the ordering of the abstract problem solving 

strategies and their examples. By default, the abstract strategies are presented, and are 

then illustrated with concrete examples. This strategy reinforces the learning by using the 

examples as the illustrations of what has been taught. The order however can be changed 

to reflect the reverse order, i.e., the examples displayed first and the abstract strategies 

next. This approach presents first the examples and then the abstract problem solving 

strategy illustrated by them. Or the tutoring designer can mix abstract fragments with 

1 2

3
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examples. In essence, the order and mix of the abstract fragments and their examples can 

be modified by using the LifeCycle feature mentioned above. 

5.1.3 Lesson Generation 

The lesson generation process starts by invoking the script loader to load the XML 

files of the lesson scripts into the memory, in the order indicated by their indices. The 

curriculum is then created by executing the scripts in the corresponding order. The 

sequence of generated lessons is held together by the lessons’ pre-requisites and post-

requisites which are built based on the indexed lesson scripts. The lesson scripts are 

themselves linked to each other via the abstract problem references. The starting abstract 

problem reference of one script must be the ending abstract problem reference of another 

script. This makes the latter the pre-requisite of the former, and the former the post-

requisite of the latter. These links are loaded to become the pre-requisites and post-

requisites of the lessons.  

Once the sequence of the lessons is laid out, the system splits the set of lessons into 3 

groups: 

• the previous lessons group, which have already been presented to the students; 

• the proposed lesson, which is the lesson to be delivered next, and 

• the next lessons group.  

This classification is based on the information from the student’s model which holds 

information about the student progress, as will be described in the Student Module 

section.  
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The organization of the lessons in the curriculum reflect the chaining and logical 

sequencing of content strategy (Dabbagh, 2007), where the lessons and their contents 

follow the hierarchical problem reduction/solution synthesis paradigm.  

5.1.3.1 Table of Contents Generation 

Each lesson teaches a strategy to reduce a problem to simpler sub-problems and to 

synthesize the solutions of simple sub-problems into the solution of the problem. 

Accordingly, the table of contents of each lesson has two main sections: the reduction 

section and the synthesis section. Figure 46 shows a typical table of contents. It was 

generated for the lesson addressing the “Believability of the reporter of a piece of 

evidence” and has entries for the individual sections (e.g. “Components of believability”) 

and illustrations (e.g. “Reduction examples”). 

 

 

Figure 46:  Lesson TOC 

 
5.1.3.2 Lesson Content Generation 

There are three types of lesson components: lesson decorative components, lesson 

header components and lesson section components. 



    

131 

The lesson decorative components are classified into two types: lesson annotations (to 

annotate a lesson components) and lesson definitions (to define the definitions for some 

terms). 

The lesson annotation clarifies a lesson component with more explanations. Table 16 

in Appendix B shows an XML script of Annotation. The annotation life cycle is by 

default very short - one step. The life cycle however can be expanded to serve some 

purposes. This component can be attached to any type of nodes except the decorative 

nodes themselves, i.e., there is not annotation of an annotation. The lesson designer is 

responsible for defining the content. Figure 47 shows an annotation that introduces a 

problem solving task, and some popup options. 

 

 

Figure 47: An Example of Annotation 

 

The lesson definitions are another type of lesson decorative. There are two types of 

definitions that are built into the system, brief definitions and detailed definitions. The 

brief definitions are used as tool tips for lesson components and for quick access. The 

longer definitions define the terms in details and with examples for illustration. The 

lesson designer does not have to specify the terms to be described or does not have to 

think about the descriptions. The terms are the concepts and instances which come with 

the ontology. All the definitions are loaded from the ontology as well. This feature 
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relieves the lesson designer of the burden to provide the necessary definitions of the new 

concepts introduced in various lessons. Not only the system inserts the definitions 

automatically, it also allows the designer to customize the lesson definitions by selecting 

some of the terms to be inserted. Table 17 shows an XML script of Definition. The lesson 

definitions are displayed in two phases. The first phase displays the brief descriptions of 

the terms. The second phase shows the full descriptions if the “click here” hyperlink is 

invoked (see Figure 48). The full descriptions can be very large to cover a full-blown 

lesson about the term. In Figure 48, the full description is a lesson about evidence with 

supporting stories.  
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Figure 48: Lesson Definitions 

 

There are two types of lesson header components: lesson title and lesson objective. 

They are special components because there is only one lesson title and at most one lesson 

objective in each lesson.  
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The lesson title is the start of a lesson which summaries the lesson content (see Figure 

49). Table 18 shows an example of lesson title script.  

 

 

Figure 49: Lesson Title and Lesson Objective 

 

The lesson objective is an optional complement of the lesson title. Its function is to 

emphasize the purpose of the lesson (see Figure 49). Table 19 shows an example of the 

lesson objective script.  

Figure 38 shows a hierarchical set of lesson section components. There are lesson 

problems and lesson reductions. In that figure, the lesson section components contain 

information about problems and reductions respectively. 

The lesson problem is the lesson component that links to the abstract problem in the 

abstract reasoning tree. The lesson problem covers the problem that will be reduced to 

simpler sub-problems in the reduction process. Table 20 shows a sample of lesson 

problem script in the XML format. When the lesson problem is constructed, its examples 

are also formed, by reference to the abstract reasoning tree. 

The lesson reduction is the lesson component that links to the abstract reduction in 

the abstract reasoning tree. The lesson reduction teaches the problem solving strategy that 

reduces a particular problem to some simpler sub-problems or results. Table 21 shows a 
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sample of lesson reduction script XML. The link to an abstract reduction in the abstract 

reasoning tree serves as a bridge to load the concrete reasoning from the concrete 

reasoning tree to become the reduction examples. 

After each lesson section, there usually are some examples that illustrate the lesson 

learned. For the reduction process there are reduction examples, and for the synthesis 

process there are synthesis examples. The examples are generated automatically by the 

system based on the abstract reasoning tree.  

The process of generating the reduction examples is described as following. The 

abstract reasoning tree is built from the concrete reasoning tree. Each abstract node in the 

abstract reasoning tree is the abstraction of one or several concrete nodes in the concrete 

reasoning tree. As detailed in Chapter 3, there are three types of abstract reduction nodes: 

abstract problem nodes, abstract reduction nodes and abstract solution nodes. An abstract 

problem node is the abstraction of a set of problem nodes in the concrete reasoning tree. 

An abstract solution node is the abstraction of a set of elementary solution nodes in the 

concrete reasoning tree. An abstract reduction node is more complex being an abstraction 

of both problems nodes and reduction nodes in the concrete reasoning tree.   

A reduction process in the abstract reasoning tree is captured in an abstract sub-tree 

that contains an abstract problem node, an abstract reduction node and a set of either 

abstract solution nodes or abstract problem nodes. Therefore that abstract sub-tree is, in 

fact, the abstraction of a sub-tree of a concrete reasoning tree. A lesson that is based on 

an abstract sub-tree is going to use the concretion of the abstract sub-tree as an example. 

Figure 40 shows two generated reduction examples for the lesson in Figure 38. 
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We use Figure 31 and Figure 50 to show how the lesson section is built from the 

abstract tree. The right hand side of Figure 50 shows a lesson section which was 

constructed from the abstract reasoning tree in Figure 31. The dimmed nodes are not 

included in the lesson section. The lesson section thus contains the lesson’s problem LP1, 

the lesson’s reduction LR1, and the lesson’s sub-problems LP2, LP3, LP4, and LP5. The 

abstract nodes in the lesson sections are the abstraction of the two sub-trees that are 

bordered by the broken blue lines on the left hand side of Figure 50. These two sub-trees 

are retrieved automatically during the lesson generation to be used as examples for the 

lesson section. 

 

 

Figure 50: Lesson’s Examples Generated for a Lesson’s Section 

 

Lesson solution is the lesson component that links to the abstract solution in the 

abstract reasoning tree. The lesson solution teaches how a solution is obtained. Table 22 

presents a sample of the lesson solution script in the XML format. Figure 42 shows a sub-

tree with a set of lesson solutions. 
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Lesson synthesis is a component of the synthesis process. The synthesis process is 

guided by the lesson synthesis which instructs the students how to compose the available 

solutions into the solution of a more complex problem. An example of lesson synthesis 

script in the XML format is shown in Table 23. An example of generated lesson 

syntheses is shown in the top part of Figure 42. In this figure, the lesson syntheses are 

differentiated from the lesson solutions by lighter green. 

Figure 42 shows a snapshot of the synthesis process and the synthesis examples. The 

synthesis examples are generated automatically as their counterparts, the reduction 

examples. In the concrete reasoning tree, each problem node is associated with a solution 

node; each reduction node is associated with a synthesis node. The synthesis examples 

are then presented correspondingly to the reduction examples. 

5.1.3.3 Lesson Text Generation 

The lesson’s text is, in essence, the text version of the lesson’s content and it is 

generated from the content of the lesson’s components. Figure 51 shows part of the 

lesson text in a text panel. This is the text which is spoken when the voice is enabled. 
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Figure 51: Lesson Text Panel 
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5.1.4 Lesson Generation Algorithm 

There are two phases in lesson generation: abstract problem solving strategy 

generation and example generation.  

5.1.4.1 Abstract Problem Solving Strategy Generation 

The abstract problem solving strategy generation algorithm is described as follows: 

 

Table 5: Abstract Problem Solving Strategy Generation Algorithm 

Given:  
• LSL - list of lesson scripts 

Return: 
• GLL - list of generated lessons 

 
AbstractProblemSolvingStrategyGeneration( LSL ) 
1. GLL ← ∅ 
2. for each lesson script LS ∈  LSL do                                       
3. create lesson title                                                 
4. create lesson objective (if any)  
5. create lesson definition for lesson title (if any) 
6. create lesson annotation for lesson title (if any) 
7. for each lesson section LSec ∈  LSecL ∈ LS do             
8. if lesson problem LP is not created then          
9. create lesson problem LP                             
10. create lesson annotation for LP  (if any)            
11. create lesson definition for LP  (if any)  
12. create lesson solution LS for LP 
13. end if 
14. create lesson reduction LR  
15. create lesson annotation for LR  (if any) 
16. create lesson definition for LR  (if any)   
17. create lesson synthesis LS for LR 
18. for each sub-problem LPi ∈ LSec do 
19. create lesson problem LPi 
20. create lesson annotation for LPi  (if any) 
21. create lesson definition for LPi  (if any)   
22. create lesson solution LSi for LPi 
23. end for 
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24. end for 
25. build lesson GL from lesson components above 
26. add GL to GLL 
27. end for 
28. return GLL 
end AbstractProblemSolvingStrategyGeneration 

 

The algorithm shows how the abstract problem solving strategies are generated from 

the lesson scripts. Each lesson script generates a corresponding lesson which tutors the 

abstract problem solving strategy. 

5.1.4.2 Example Generation 

Note: according to Cormen (1997), the complexity of breadth-first traversing of a tree 

( )tVRT δ,=  is the same with complexity of depth-first one, which is ( )δNNO V +   = 

O(Nv + Nv – 1) = O(Nv) where VN  is number of vertices and δN  is number of edges. The 

semantics of breadth-first search however is more meaningful in the problem reduction 

paradigm where a node is broken down into sub-nodes. Traversing the tree using the 

bread-first strategy makes more sense than using the depth-first strategy. 

Table 6 describes the process of retrieving the concrete components from an abstract 

component. This process is frequently used in lesson example generation. 

 

Table 6: Concrete Component Retrieval 

Given: 
• ARL - a set of abstraction rules 
• AbstC - an abstract component which is abstract problem class, abstract 

reduction class, abstract solution class or abstract synthesis class. 
Return: 

• CCs - a set of concrete components which are problem classes if abstract 
component is abstract problem class, reduction rules if abstract component is 
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abstract reduction class, solution classes if abstract component is abstract 
solution class, synthesis rules if abstract component is abstract synthesis class. 

RetrieveConcreteComponents( ARL, AbstC ) 
1. CCs – list of concrete components 
2. CCs ← ∅ 
3. for each abstraction rule AR = (CC, AC) ∈  ARL do 
4. if AbstC = AC then 
5. add CC to CCS 
6. end if 
7. end for 
8. return CCs 
end RetrieveConcreteComponents 

 

Table 7 describes the process of searching for the instantiations of a problem class, a 

solution class or a reduction rule. The instantiation of a problem class (or instantiated 

problem) is represented by a problem node in concrete reasoning tree. Similarly for the 

other types of statements, the instantiation of a solution class (instantiated solution) is 

represented by a solution node in concrete reasoning tree; the instantiation of a reduction 

rule (instantiated reduction rule) is represented by a reduction node in concrete reasoning 

tree. 

 

Table 7: Search Instantiations 

Given: 
• C – a class, which is a problem class or a solution class or a reduction rule 
• RT - the reasoning tree 

Return: 
• ICs - list of instantiated classes which are problem nodes or solution nodes or 

reduction nodes 
 
SearchInstantiation(RT, C) 
1. ICs ← ∅ 
2. Queue ← ∅ 

 



    

142 

3. add root of RT to Queue 
4. while Queue is not empty do                    
5. Node ← pop a node from Queue 
6. Children  ← get children of Node 
7. add Children to queue 
8. retrieve a class C’ from Node 
9. if C’ = C then       
10. add Node to ICs 
11. end if 
12. end while 
13. return ICs 
return SearchInstantiation 
 

 
The search of instantiations of a class, i.e., problem class, solution class or reduction 

rule starts from the root of a concrete reasoning tree (line 3). The algorithm uses breadth-

first search (lines 4 to 7). For each node, a class is extracted from the node (line 8). To be 

specific, the problem class is retrieved from the problem node, the solution class is from 

the solution node, and the reduction rule is from the reduction node. Each of the classes 

C’ is compared against the class C as argument (line 9). If they are the same, then add 

that node into the returned list (line 9 to line 11). The algorithm searches the entire tree, 

because there is no guarantee that the target node is not near the bottom of the tree. 

Table 8 shows the lesson example generation algorithm. 

 

Table 8: Lesson Example Generation Algorithm 

Given:  
• RT - a reasoning tree 
• ARs - a set of abstraction rules 
• GLs - a set of generated lessons 

Return: 
• GEs - a set of generated lesson examples 
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LessonExampleGeneration(RT, ARs, GEs) 
1. IPs ←∅   - IPs is a set of  instantiated problem nodes 

2. ISPs ← ∅ - ISPs is a set of instantiated sub-problem nodes 

3. IRs ← ∅ - IRs is a set of instantiated reduction nodes 
4.  
5. for each generated lesson GL ∈  GLs do 

6. for each lesson section LSec ∈ GL do  
7. extract the abstract problem class AP from lesson problem LP in LSec 
8. set of problem classes PCs ← RetrieveConcreteComponents(ARs, AP)  
9. for each problem class PC ∈  PCs do 
10. IPs ← SearchInstantiation(RT, PC)            
11. end for  
12. extract the abstract reduction class AR  from lesson reduction LR in LSec 
13. set of reduction rules RdRs ← RetrieveConcreteComponents(ARs, AR) 
14. for each reduction rule RdR ∈  RdRs do 
15. IRs ← SearchInstantiation(RT, RdR)       
16. end for                          
17. for each lesson sub-problem LSP ∈  LPs in LSec 
18. extract the abstract problem class AP’ from lesson sub-problem LSP 
19. set of problem classes PC’s ← RetrieveConcreteComponents(ARs, AP’) 
20. for each problem class PC’∈  PC’s do 
21. temp ← SearchInstantiation(RT, PC’)     
22. add temp to ISPs                      
23. end for 
24. end for 
25. Connect each IP in IPs to its child IR in IRs which in turn connects to its 

children in ISPs. 
26. end for 
27. add the examples to GEs 
28. end for 
29. return GEs 
end LessonExampleGeneration 

 

Lesson example generation is based on the generated lessons. The FOR loop on line 5 

enumerates all generated lessons. For each lesson, the lesson sections are examined (line 

6). For each lesson section, the abstract problem class is retrieved based on the reference 

to it from the lesson problem (line 7). From the abstract problem class and abstraction 

rules, a list of concrete problem classes is retrieved (line 8). The problem classes are then 
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used to retrieve instantiated problem nodes from the concrete reasoning tree (line 9, line 

10). Similarly the abstract reduction class is obtained from the lesson reduction (lines 12).  

And the concrete reduction rules are obtained from the reduction abstraction rules (line 

13). Line 14 and line 15 shows how the instantiated reduction rules which are reduction 

nodes are retrieved from the concrete reasoning tree. From the lesson sub-problems, the 

sub-problem nodes are also obtained. Three sets of problem nodes, reduction nodes and 

sub-problem nodes are linked together to become the examples for the lesson section. An 

enumeration of all lesson sections in one generated lesson also links all the examples for 

lesson sections together to become larger examples to illustrate the generated lesson. 

5.1.5 Complexity Analysis of the Lesson Generation Process 

The complexity of lesson generation is computed based on the two algorithms, 

described in Table 5 and Table 8, abstract problem solving strategy generation and lesson 

example generation.  

5.1.5.1 Complexity of Abstract Problem Solving Strategy Generation 

The algorithm of abstract problem solving strategy generation in Table 5 depends 

only on the lesson scripts. Let Ns be the number of lesson scripts; each with maximum Nst 

lesson sections. Each lesson section has one lesson problem, one lesson reduction and at 

most Nsub lesson sub-problems. For each computation of a reduction process, there must 

be at most one counterpart of the synthesis process, i.e., the lesson problem versus lesson 

solution, lesson reduction versus lesson synthesis.  

First, we compute the second FOR loop of generating the lesson sections (line 7 of 

Table 5). Each lesson section has:  



    

145 

• One lesson problem plus at most one lesson annotation and one lesson definition. 

The lesson problem can be generated before if this section is not the first section. 

It means that the lesson problem of this section can be the lesson sub-problem of 

the previous lesson section. Each computation for generating a lesson problem is 

a constant O(1), similar to that of lesson annotation and lesson definition. Each 

lesson problem has at most one lesson solution which also costs a constant O(1). 

In other words, each lesson problem plus its lesson decorations and its synthesis 

counterpart cost a constant O(1). 

• One lesson reduction plus at most one lesson annotation and one lesson definition 

and one synthesis counterpart – lesson synthesis. Similar to the lesson problem 

they also cost a constant O(1). 

• A third FOR loop (innermost FOR loop at line 17) for generating the lesson sub-

problems plus at most one lesson annotation and one lesson definition for each 

lesson sub-problem and their lesson solutions of synthesis process. Similar to the 

lesson problem, each lesson sub-problem and its lesson decorations plus its lesson 

solution cost O(1). Therefore the third FOR loop costs O(Nsub). 

Thus the second FOR loop costs O(Nst)(O(1) + O(1) + O(Nsub)) = O(NstNsub) 

including the third FOR loop. 

The first FOR loop (outermost for loop at line 2) is of the loop of Ns lesson scripts. 

Each lesson script consist of one lesson title, at most one lesson objective, at most one 

lesson annotation and at most one lesson definition plus the second for loop. As we 

discussed above, all the lesson header components are similar to the lesson decorations, 
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they cost a constant O(1). Hence, the first FOR loop costs O(Ns)(O(1) + O(NstNsub)) = 

O(NsNstNsub) including the second and third FOR loops. From the abstract tree point of 

view, NsNstNsub is linear with number of abstract nodes of the reasoning tree Nan.  

Therefore, the algorithm performs in O(NsNstNsub) = O(Nan). 

5.1.5.2 Complexity of Examples Generation 

The algorithm of lesson example generation in Table 8 depends on the algorithm in 

Table 7 for retrieving the instantiations of a knowledge component from the reasoning 

tree and the algorithm in Table 6 for retrieving the concrete components corresponding to 

an abstract component.  

As shown by Cormen (1997), the cost of traversing a tree ( )ttVt δ,=  using either 

breadth-first or depth-first strategy is ( )δNNO V +  where VN  is number of nodes in the 

tree and δN  is number of edges in the tree. Therefore the cost of searching for the 

instantiations of a knowledge component in SearchInstantiation algorithm is ( )δNNO V + . 

Once the traverse of the tree is finished, the map between a class and its instantiated 

classes are established to reduce the time for later searches. In other words, searching for 

the instantiations of all necessary classes cost only ( )δNNO V +  = O(Nv) because Nv = Nδ 

+ 1, no matter how many times the search is called.  

The algorithm of retrieving the concrete components from an abstract component 

(RetrieveConcreteComponents algorithm) consists of a loop of abstraction rules, each of 

which compare its abstract component against the searched one. If they are equal, the list 

of concrete components of that abstract rule is returned. The comparison operation costs a 
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constant O(1). Worst case scenario enumerates all the abstraction rules which costs 

O(Nar)*O(1) = O(Nar) where Nar is the number of abstraction rules. As similar to the 

SearchInstantiation algorithm, a map between the concrete classes and their abstract 

classes are established to reduce the time for later searches. In other words, retrieving 

concrete components from an abstract component takes only O(Nar), no matter how many 

times the method is invoked. 

In Table 8, the second FOR loop (line 6) is the loop of lesson sections. Each lesson 

section contains one lesson problem, one lesson reduction and a loop of lesson sub-

problems. Each lesson problem, lesson sub-problem and lesson reduction retrieves a set 

of concrete components via RetrieveConcreteComponents which cost O(Nar). As stated 

above, no matter how many times the method is invoked, the cost is only O(Nar). Each 

concrete component (a problem class, a solution class or a reduction rule) retrieves a set 

of its instantiations (a set of problem nodes, a set of solution nodes, or a set of reduction 

nodes in concrete reasoning tree, respectively) that costs O(Nv). As stated above, no 

matter how many times the method is invoked, the cost is only O(Nv). In other words, the 

operation of a lesson component (problem or reduction or sub-problem) retrieving its 

own instantiations costs O(Nar) + O(Nv). Because the lesson section has one lesson 

problem, one lesson reduction and a loop of lesson sub-problems, the complexity of the 

whole lesson section is O(Nar) + O(Nsub) + O(Nv) = O(Nsub + Nar + Nv) where Nsub is 

maximum number of lesson sub-problems per lesson section. 

Let Ngl be the number of generated lessons, and Nst be the maximum number of 

sections in each lesson, the algorithm in Table 8 costs O(Ngl × Nst × Nsub) + O(Nar) + 
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O(Nv) = O(NglNst Nsub + Nar + Nv). From the abstract reasoning tree point of view, 

NglNstNsub is linear with number of abstract nodes of the abstract tree Nan. In other words, 

the algorithm in Table 8 costs O(Nar + Nan + Nv). 

5.1.5.3 Complexity of Lesson Generation 

The complexity of lesson generation equals the complexity of abstract problem 

solving strategy generation plus the complexity of lesson examples generation. The 

complexity of the former costs O(Nan). The complexity of lesson examples generation is 

O(Nar + Nan + Nv). Over all, the complexity of lesson generation is:  

O(Nan) + O(Nar + Nan + Nv) = O(Nar + Nan  + Nv). 

5.1.6 Generality of Abstraction-Based Lesson Generation 

The abstraction-based lesson generation is based on the abstract reasoning tree. As 

discussed above, the lesson section components are linked to the abstract nodes of the 

tree. Each abstract node is the abstraction of a number of reasoning nodes in concrete 

reasoning trees. An abstract problem node is an abstraction of concrete problem nodes. 

An abstract solution node is an abstraction of concrete elementary solution nodes. An 

abstract reduction node is an abstraction of concrete sub-tree consisting of problem nodes 

and reduction nodes. The concrete reasoning trees are generated by the problem solving 

engine which applies general reduction and synthesis rules to solve a given problem in 

the context of a given scenario.  

Figure 52 shows an example of an IF-THEN reduction rule which was learned from a 

subject matter expert. This reduction rule can be instantiated in different scenarios of the 

same domain, as illustrated in the following. One such scenario is Intelligence Analysis 
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where intelligent analysts assess pieces of evidence that favors or disfavors the 

hypotheses under study. A similar scenario is Crime Scene Investigation where police 

officers investigate various crimes.  

 

 

Figure 52: Reduction Rule 

 

In the first scenario, the reduction rule can be instantiated as shown in Table 9. This 

rule questions the credibility of Hamid Mir, a reporter of Dawn Magazine who wrote an 

article about Bin Laden who was quoted as saying “We have chemical and nuclear 

weapons as a deterrent and if America used them against us we reserve the right to use 

them."  
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Table 9: Instantiated Reduction Rule in Intelligence Analysis Scenario 

INSTANTIATED REDUCTION RULE  

IF: Assess the credibility of Hamid Mir as the reporter of EVD-Dawn-Mir01-02.  

Q: What factors determine the credibility of a reporter of a piece of evidence?  

A: The veracity, objectivity, and observational sensitivity of the reporter.  

THEN:  

  Assess the veracity of Hamid Mir as the reporter of EVD-Dawn-Mir01-02.  

  Assess the objectivity of Hamid Mir as the reporter of EVD-Dawn-Mir01-02.  

  Assess the observational sensitivity of Hamid Mir as the reporter of EVD-Dawn-Mir01-

02. 

 

In the second scenario the rule can be instantiated as shown in Table 10. In this 

scenario, the police officer Connolly reported that Sacco committed the robbery and 

shooting in South Braintree on April 15, 1920 [Schum, 1994]. 

 

Table 10: Instantiated Reduction Rule in Crime Scene Investigation Scenario 

INSTANTIATED REDUCTION RULE  

IF: Assess the credibility of Connolly as the reporter of a testimony under oath.  

Q: What factors determine the credibility of a reporter of a piece of evidence?  

A: The competency, veracity, objectivity, and observational sensitivity of the 

reporter.  

THEN:  

  Assess the veracity of Connolly as the reporter of a testimony under oath.  

  Assess the objectivity of Connolly as the reporter of a testimony under oath.  
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  Assess the observational sensitivity of Connolly as the reporter of a testimony under 

oath. 

 

Let us now assume that an abstract reduction rule and the corresponding abstract 

problems are built from the instantiated reduction rule in the first scenario, as shown in 

Table 11. The lesson that is built from the abstract rule/reasoning in Table 11 can be used 

both in the Intelligence Analysis scenario and in the Crime Scene Investigation scenario, 

with examples generated automatically in each scenario.  

 

Table 11: Abstract Rule Corresponding to the Rule Instance in Table 2 

ABSTRACT RULE 

IF: Assess the credibility of a reporter of a piece of evidence.  

Q: What factors determine the credibility of a reporter of a piece of evidence?  

A: The veracity, objectivity, and observational sensitivity of the reporter.  

THEN:  

Assess the veracity of a reporter of a piece of evidence.  

Assess the objectivity of a reporter of a piece of evidence.  

  Assess the observational sensitivity of a reporter of  a piece of evidence 

 

There are two dimensions of generality of our approach to lesson design and 

generation. The first regards the automatic generation of lesson examples for different 

scenarios in the same domain, with no authoring or customization needed from the 

instructor. The second regards the ability to apply the same abstract lesson to different 
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knowledge bases. The first dimension expresses the capability to capture the essence of 

reasoning behind the problem solving approaches and to apply that knowledge into 

different problems of different scenarios in the same domain. The second dimension 

emphasizes the reusability of the abstraction-based lesson. The other side effect of this 

capability is the automatic lesson generation from a knowledge base. If we already have a 

lesson built for one knowledge base then the system can automatically generate other 

lessons for other knowledge bases as long as they all rely on the same abstract problem 

solving strategies. 

5.1.7 User Interface 

The lesson construction process has two phases: lesson design and lesson generation. 

The lesson design targets the instructor who designs the lesson. The lesson generation is 

mostly for the students who learn the problem solving expertise from the tutoring system. 

Each of them has its own user interface. 

5.1.7.1 Lesson Design User Interface 

The lesson designer uses the lesson editor to design the lesson. The lesson editor has 

two panels, as illustrated in Figure 53. The left-hand side panel displays a part of the 

abstract reasoning tree whose root is the abstract problem associated with the lesson to be 

designed. The right-hand side panel is the panel where the designer places the lesson 

components and manipulates them. On its right margin is the widget toolbar with several 

widgets to build the lesson components.  
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Figure 53: The Interface of the Lesson Editor 

 

When the lesson editor is invoked, the right hand-side panel always has the lesson 

title, the lesson objective and the lesson problem to be presented in the lesson. The left-

hand side panel contains the tree whose root already has a lesson problem created by 

default. The nodes which are used in the lesson components are highlighted in red, as 

seen in Figure 53. The designer can drag an abstract reduction to create a lesson section. 

Each lesson section contains a reduction example node and a synthesis example node. 

These two example nodes are just placeholders. They will be automatically generated 

later when the lesson is generated.  

Figure 77 shows the widget toolbar. The objective button creates a lesson objective. 

This type of node has a constraint: there is only one lesson objective in a lesson. 

Therefore if the objective exists then selecting that button will not yield another lesson 
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objective. The definition button creates a definition for a specific lesson component (each 

lesson component which is not a decorative may include one definition). The definition 

token is editable. It allows the lesson designer to select one or several terms to be defined. 

The terms to be defined are generated based on the content of the lesson component 

which the definition is for.  

Figure 54 shows the interface of the definition editor. In this editor there are two 

terms to be defined, piece of evidence and credibility. By default, all are selected, but the 

designer can change this by un-checking some terms and saving the change. Only the 

checked terms are presented in the lesson. 

 

 
Figure 54: The Interface of the Definition Editor 

 

The next button is the annotation button, a decorative component for the creation of 

the lesson’s annotations. This type of component is to clarify or introduce some phrases 

before another component. All the decorative components have an option to turn off the 

voice when being generated. The synthesis button generates the lesson’s synthesis 

component for any lesson section components. Each lesson component in the lesson 

editor is generated by default. One may right-click on each component to modify the 

content and the text to be displayed in the table of contents of the tutoring system. 
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The order setting button allows the designer to specify when components should be 

displayed and for how long, as order-duration pairs associated with each lesson 

component, as illustrated in Figure 55. In this figure, the lesson’s title and objective are 

displayed at the same time and at first. The lesson title lasts until the end of the lesson, 

whereas the lesson objective stays only one step due to its duration value being 1. The 

next component to be displayed is the lesson’s problem which lasts until the end of the 

lesson because its duration is -1. The lesson’s reduction appears next, then the lesson’s 

sub-problem. The synthesis example is displayed last.  

 

 

Figure 55: The Interface of the Order Setting Module 
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This feature is very important in the lesson design process, allowing the 

customization of the lessons. Each tutoring strategy is different based on the student’s 

knowledge, the domain, the content of the lesson and the designer’s teaching style.  

The last button in the tool bar is the preview button which displays the lesson’s 

components based on their order and duration. The lesson designer can stop the automatic 

display to navigate back and forth at his/her own pace. This preview panel can visualize 

the lesson in the tutoring system, allowing the lesson designer to see the current status of 

the lesson based on its settings. The designer can go back to the setting order mode to 

modify the configuration and the order and then preview again to view the effect of the 

new changes. Figure 56 shows the preview panel. 
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Figure 56: Preview of a Designed Lesson 

 
5.1.7.2 Lesson Generation User Interface 

The lesson generation user interface is for the students who take the lessons. The 

lesson has three components, table of contents, lesson content and lesson text, each with 

its panel. The table of contents panel contains three sub-panels: previous lessons, current 

lesson and next lessons (see Figure 57). The previous lessons panel displays all the 

previously presented lessons. Their tables of contents are accessible for a quick review. 

The table of contents of the current lesson is displayed fully. The next lessons panel does 
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not allow the view of the tables of contents. Once the current lesson is finished, it is 

moved up to the previous lessons panel and the next lesson in the next lessons panel is 

moved to the current lesson panel (if there is a next lesson). The next and previous 

lessons link to the current lesson via the post-requisites and pre-requisites of the lessons.  

 

 

Figure 57: Lesson’s Table of Contents Panel 

 

The lesson content panel contains two sub-panels, the abstract panel and the example 

panel, as illustrated in Figure 58. The lesson example panel is minimized during the 

lesson display until there is an example to show. The abstract panel displays the abstract 

problem solving strategy being taught. It follows the order setting to present the lesson 

components. The lesson’s example component is displayed in the lower panel. The 

student can browse the available generated examples by clicking on the navigational 
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labels “Next” and ”Previous,” or by selecting a certain example from the “Select 

Example” combo box. The student controls the display of the lesson with the navigation 

buttons at the bottom panel: the next button will advance one step, the previous button 

will go back one step and the stop button will stop whatever is currently displayed.  

 

 
Figure 58: Sample Lesson Content 

 

Lesson’s text is generated automatically based on the content of the lesson. Each 

lesson component will produce a text version of its content. The collection of all lesson 

component texts forms the text version of the current lesson. The text of the current 
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component is highlighted blue. By default the audio is turned on but the student can turn 

off that option. Figure 51 shows a part of the text of the current lesson. 

5.1.8 Evaluation of Lesson Generation 

The research is implemented as an extension of the Disciple agent development 

environment. The Disciple learning agent shell uses a multi-strategy approach for 

developing intelligent agents where an expert can teach the agent how to solve domain-

specific problems. Disciple has proved to be successful in developing learning agents that 

can learn as apprentices. Such agents can use their learning capability to learn how to 

generate lessons and exercises. 

Disciple provides the basic framework to develop the tutoring systems. Disciple has a 

workspace manager who manages and provides the public interfaces to integrate its 

components altogether. The abstraction-based tutoring systems which are built with the 

Disciple learning agent shell take advantage of that facility to ease the process of 

developing their necessary components which work together with the Disciple 

components. Disciple also provides the infrastructure for the tutoring systems, such as the 

knowledge base module and the learning module. 

As mentioned earlier, the new approach speeds up the process of building the tutoring 

systems partly due to the rapid knowledge acquisition capability that Disciple has. This 

capability not only reduces the time it takes to acquire the domain knowledge, but it is 

also used by the tutoring system to simplify the acquisition of pedagogical knowledge. 

Therefore Disciple is an essential component in achieving rapid development of a 
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tutoring system. The domain that was used in the experimentation for our work is 

Intelligence Analysis. 

In Spring 2006 we had an opportunity to evaluate the tutoring system with the 

students of the course “Military Application of Artificial Intelligence” (MAAI-2006) at 

US Army War College (USAWC). The students were either experienced intelligence 

analysts or users of intelligence. We have repeated this evaluation with the students in the 

GMU course “CS 681 Designing Expert Systems.” As opposed to the Army War College 

students, none of the GMU students had significant prior knowledge of intelligence 

analysis. 

After using the tutoring system, the students evaluated various aspects of it by 

expressing their disagreement or agreement with certain statements, on a five point scale 

(strongly disagree, disagree, neutral, agree, and strongly agree). Figure shows a sample of 

these subjective evaluation results. 7 of the 12 USAWC students agreed that the tutoring 

system helped them to learn the addressed topic and 11 of them agreed that the examples 

facilitate the understanding of the presented topic, as shown in the left-hand side of 

Figure 59. The right-hand side of Figure 59 shows the evaluation of the same aspects by 

the GMU students. All 15 students agreed that the tutoring system helps to learn the 

addressed topic. Also, 14 of the 15 GMU students agreed or strongly agreed that the 

examples facilitate the understanding of the presented topic.  

In this evaluation, we can see that background knowledge plays an important role in 

the perceived usefulness of a tutoring system. The GMU students were not familiar with 

the domain at all, while the USAWC students were very familiar. Therefore, the tutoring 
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system therefore seemed more valuable to the GMU students than to the USAWC 

students. It is however very encouraging that even the USAWC students considered the 

tutoring system useful. 

 

  

Figure 59: Evaluation of Generated Lessons 

 

Figure 60 presents a different type of evaluation performed with the GMU students, 

which is based on the Kirkpatrick test model (Kirkpatrick, 1998). We have surveyed the 
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students, both before and after they have used the tutoring system, on how much 

knowledge they thought they had about specific intelligence analysis topics tutored by the 

system. In addition, at the end of the class, the students were tested to objectively 

evaluate their learned knowledge. The first five charts of Figure 60 compares the 

students’ perception of their intelligence analysis knowledge (on several basic topics) 

before using the tutoring system (in blue), and after using the system (in red). The charts 

show clearly a very significant improvement in the tutored topics: hypothesis assessment, 

information content and credibility, credibility of reported evidence, credibility of the 

reporter, and credibility of tangible evidence.  

The last figure of Figure 60 presents the objective evaluation of CS 681 students. At 

the end of the class, the students took the tests generated by the test agent (see Section 

5.2). The tests focus on the understanding of the Intelligence Analysis domain. The agent 

graded the students based on the correct answers. The lowest score was 71, and the 

highest was 100. Out of 15 students, six scored from 70 to 79, three scored from 80 to 89 

and six scored over 90. According to top charts of Figure 60, there were some students 

who did not know any thing about this domain, and some how could score at least 70 

points. Therefore this evaluation suggests that our experimental tutoring system is a 

valuable tool to enhance a student’s knowledge. 
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Figure 60: Evaluation of Tutoring 

 
5.2. Learning and Generation of Test Questions 

In general, the test questions are categorized into six levels of cognition, known as the 

Bloom’s Taxonomy (Bloom, 1956). They correspond to different levels of understanding, 

as explained below with examples from the problem reduction/solution synthesis 

paradigm. 

• Knowledge level: the ability to recall data or information such as a problem 

reduction rule. 

• Comprehension level: the ability to understand the meaning of instructions or 

problems, for instance, to recognize an error in the reduction of a problem. 
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• Application level: the ability to apply a concept to a new situation, for example, to 

apply a learned reduction strategy to solve a new problem. 

• Analysis level: the ability to distinguish between facts and inferences and to 

decompose the material into components, such as being able to reconstruct the 

reduction step that is applicable to a certain problem. 

• Synthesis level: the ability to combine components into a whole, for example, to 

synthesize a final solution of a problem from elementary solutions. 

• Evaluation level: the ability to make judgments about the values of ideas or 

materials, such as being able to judge if some new reduction steps are logically 

sound. 

The tests can be developed to measure the level of a student’s understanding, based 

on the Bloom Taxonomy. In this dissertation we focus only on some of the levels, such 

as, knowledge, comprehension and analysis.  

5.2.1 Learning of Test Questions 

We have developed learning methods that allow an instructional designer to teach an 

agent how to construct test questions. Our methods are based on the problem reduction 

rules that have been previously learned by the agent. They consist in extending these 

rules with additional components, to transform them into test questions rules. The rules 

are then applied in appropriate settings to generate specific test questions. The designer 

selects an example of a problem reduction rule and transforms it into a test for the 

knowledge, comprehension or analysis level, as discussed below. 
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To test the knowledge level, the designer drops one or several sub-problems in a 

reasoning step to produce a deliberately wrong reasoning step. Figure 61 shows one of 

the examples for such omission test. In this example, the first sub-problem of assessing 

the degree to which a piece of evidence favors a hypothesis was dropped. The reasoning 

step becomes incomplete and that would alert the student who learned it by heart and 

encounters it during the testing period. During the testing period, the question and answer 

is not shown, to make the test more difficult. 

 

 
Figure 61: Test Example for Knowledge Level 

 

Figure 62 shows a modified reasoning step where the instructional designer 

deliberately altered the meaning of one of the sub-problems. In particular, the assessment 

of the believability was replaced with the assessment of the authenticity. This type of test 

question which is named modification test requires the students to have deeper 

knowledge about the subject compared to the knowledge level tests. 

dropped sub-problem 
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Figure 62: Test Example for Comprehension Level 

 

Another type of test question that is more challenging than the above two is the 

construction test. The designer defines several sub-problems which may be unrelated or 

incorrectly related to the correct sub-problems of a problem. The test question will 

present a problem and a list of potential sub-problems, including the correct and the 

incorrect ones. The student must select the correct sub-problems. This type of test 

requires the student to analyze the sub-problems to build up a correct reasoning step. 

Figure 63 illustrates the design of a construction test. It shows the extra deliberately 

“wrong” sub-problems: assessing the availability, the accuracy and the relevancy of a 

piece of evidence. Those three together with the original two sub-problems will make a 

pool of sub-problems to select from. 

modified subtask



    

168 

 

Figure 63: Test Example for Analysis Level 

 

No matter what type of test question the designer plans to build, a set of explanations 

and a hint must be constructed in parallel with the content of the test. Figure 64 shows a 

panel where the explanations are created by the designer. There are three explanations for 

three types of the answers: correct, incorrect, and incomplete. The explanations are 

displayed once the answer is given. The hint, on the contrary, is given before answering 

the test question and by request only. Notice that the explanations and the hint correspond 

to the particular test example being built. That is, they are very specific, containing the 

instances (such as EVD-Dawn01-02c) from the example. The example, however, 

corresponds itself to a previously learned rule. This rule will be extended with 

generalizations of the explanations and the hint, obtained by replacing the contained 

instances with the corresponding rule variables, as discussed in the following. 

added subtasks 
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Figure 64: Explanations Construction 

 

Once an example of the test question is provided, the task now is to learn how to 

generate similar tests in future. Learning by test examples is processed in a sequence of 

steps:  
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• Receive a reduction rule to learn a test rule based on it. When the instructional 

designer plans to create a test example, s/he usually goes through a list of 

available reduction rules and picks out the desired one. The reduction rule 

corresponding to the above examples is shown in Figure 65. 

•  

 

Figure 65: A Reduction Rule 

 

• Construct a test rule based on the reduction rule and the modifications and 

extensions of one of its examples. A test rule basically contains a reference to the 

reduction rule and a list of extensions. The extensions include the test category 

(i.e. omission, modification, or construction), the category-related information 

and the generalizations of the explanations and hint. For the omission test, the 
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related information is the reference to the dropped sub-problems. For the 

modification test, it is the old and the new contents of the modified sub-problems. 

For the construction test, it is the extra sub-problems that were entered during the 

construction of the test question example. The explanations and hint are the same 

for all types of test. They are generalized to be applicable to different scenarios. 

5.2.2 Generation of Test Questions 

With a set of test rules available in the tutoring knowledge base, the agent can 

generate numerous test questions to present to the students who already took the related 

lessons. Indeed, each test question is based on a reduction rule, and for each instance of 

the rule in a knowledge base, there is a corresponding test question. Consequently, a lot 

of different test questions can be generated from a single test rule if the domain 

knowledge is rich. The Table 12 presents the algorithm for generating test questions. 

 
Table 12: Algorithm of Test Question Generation 

Given: 
• TRs - set of test rules 
• RT - a reasoning tree 

Return: 
• GTQs - list of generated test questions 

 
TestQuestionGeneration (TRs, RT) 
1. for each test rule TR ∈ TRs do 
2. RdR ← retrieve reduction rule from TR 
3. List of instantiations of reduction rule IRdRs ← SearchInstantiation(RT, RdR)   
4. for each IRdR ∈ IRdRs do 
5. if TR  is omission test then 
6. GTQ ← drop the sub-problem node(s) of IRdR specified in TR 
7. else if TR is modification test then 
8. GTQ ← modify the content of the sub-problem node(s) of IRdR specified 

in TR 
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9. else if TR  is construction test then 
10. GTQ ← create a pool of sub-problem nodes from the sub-problem node(s) 

of IRdR plus added sub-problem node(s) specified in TR 
11. end if 
12. add GTQ to GTQs 
13. end for 
14. end for 
15. return GTQs 
end TestQuestionGeneration 
 

 

From a list of generated test questions, a sort procedure is initiated based on sorting 

criteria: random distribution or an ordering of the test questions in context. The random 

distribution generates the test questions in the random order each time the test agent 

starts. That makes the tests more versatile and interesting: the student cannot tell what 

test will be next. No test session will be the same for all students, even for the same 

student. For the ordering of the test questions in context, the tests are arranged in such a 

way that they are presented from the top down to the bottom of the reasoning tree. This 

type of distribution helps student to recall the learned knowledge by following the 

context.  

The two types of distribution are suitable for two types of test mode: self-test and 

assessment test. In the self-test mode, the students are tested to reinforce their learned 

knowledge rather than to assess of their knowledge. The students are able to go back to 

the lesson corresponding to the test, via the “Go To Lesson” option, to review the lesson. 

In the assessment mode, the students do not have access to the lessons. In other words, 

they do not have the “cheat sheets” with them. 
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Figure 66 shows a generated test question which is based on the test rule learned from 

the test example in Figure 62. The test question displays an incorrect reasoning in which 

one sub-problem is modified. Note that the question and answer are omitted. The student 

will have to indicate whether the reasoning step displayed is correct, incomplete or 

incorrect. Each selection is followed by a context-sensitive explanation. A hint is always 

available to help the student in case s/he needs. Glossary is also provided for clarification 

of various terms. Once the answer is chosen, the system will grade it and report back both 

this grade and the cumulative grade (which corresponds to all the test questions 

answered). 

 

 

Figure 66: A Generated Test Question 
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Figure 67 illustrates a construction test question where the student has to select the 

correct sub-problems (shown at the bottom left of Figure 67) of a given problem (shown 

at the top left of Figure 67).  Such selection can evaluate the student’s understanding of 

the subject. Therefore the grading for this type of test is strict: only selecting all the 

correct sub-problems is considered as correct answer, otherwise it is either incorrect if 

one or more incorrect sub-problems are chosen, or incomplete if not enough correct ones 

are selected. 

 

 
Figure 67: A Generated Construction Test Question 

 
5.2.3 Complexity Analysis 

 The test generation algorithm is in the one from Table 12. In this algorithm, each 

operation on the instantiated sub-problems to create a GTQ costs a constant O(1) (line 6, 

line 8 and line 10). Therefore the inner FOR loop on line 4 which enumerates a list of Nir 
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reduction instantiation IRdR ∈  IRdRs is NirO(1) = O(Nir). The outer loop (line 1) 

depends on Ntr the number of test rules TRs. In other words, the entire outer loop costs 

O(Ntr × Nir) = O(Ngt) where Ngt is number of generated test questions. Besides, the search 

of all instantiations of a reduction Ri in reasoning tree ( )tVRT δ,=  costs O(Nv + Nδ) = 

O(Nv + Nv -1) = O(Nv) where Nv is number of nodes in reasoning tree and δN  number of 

edges that connect all the nodes together. After all, the complexity of the test question 

generation based on the algorithm presented in Table 12 is  

 O(Ngt + Nv). 

5.2.4 Evaluation of Test Generation 

Two versions of the test generation agent were tested by students at the US Army 

War College in Spring 2006, and students at George Mason University in Fall 2006. 

Figure 68 shows a sample of the subjective evaluations by these students. The assessment 

of “The exercises are challenging” is important because it suggests the value of the test 

questions. In Spring 2006, only 7 of the 12 students agreed that the exercises were 

challenging. The evaluation result was better in Fall 2007 where 1 out of 12 students 

strongly agreed and 10 students agreed that the test questions were challenging. 

The agreement or disagreement with the statement “The exercises improve the 

understanding of the presented topics” assessed the overall usefulness of the tests. In 

Spring 2006, 7 out of the 12 students agreed and 5 were neutral. The result was better in 

Fall 2006 where 2 out of 15 students strongly agreed and 8 agreed with the above 

statement. Overall, the novice analysts gave better assessment than the expert analysts 

did. That was expected because the experts were very familiar with the domain. 
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Figure 68: Evaluation of the Test Agent 
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6. Learning and Tutoring Agent Shell (LTAS) 

 

6.1. From Expert System Shells to Learning and Tutoring Agent Shells 

Since the first expert systems were developed (during 1970s) and commercially used 

(during 1980s), the idea of constructing a generic shell that can facilitate the process of 

building expert systems came up as a natural way of evolving the methodology of 

developing these systems. This is because the cost of building an expert system is very 

high and often unaffordable. Moreover, the time it takes to build a useful expert system is 

very long and the dynamics of some domains will require frequent knowledge 

maintenance. As discussed in Section 1.2, the expert system shell simplifies the process 

of constructing an expert system. The main principle of the shell is re-usability of the 

inference engine and the associated tools such as editors, knowledge base checkers, etc 

(Whitley, 1990). An expert system shell may be regarded as an expert system with an 

empty domain knowledge base that has a pre-defined knowledge representation. Now the 

problem of building an expert system reduces to building a knowledge base that can be 

plugged into the shell. The knowledge base must be built following the required syntax 

and other constraints. The expert system shell thus alleviates some burdens from the task 

of building an expert system and shortens the construction time (Whitley, 1990). 

However, even with the help of an expert system shell, the task of building an expert 

system remains a very difficult one. The difficult task that still remains is building the 
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knowledge base. The knowledge base needs to represent the expertise of a subject matter 

expert which has to be encoded in such a way that a computer can understand and 

process. The procedure, described in Figure 2, of acquiring the knowledge from the 

expert and encoding it into the knowledge base is time consuming and error prone. The 

expert usually does not have enough computer science background to encode his/her 

knowledge, so the need of involving a knowledge engineer to transform the raw expert 

knowledge into a formal representation is necessary. However, the knowledge that is 

elicited from the expert is not always clear and straightforward because of the use of 

commonsense in communication. Unfortunately, commonsense knowledge is very hard 

to encode and is easily mistreated. A back-and-forth communication between the 

knowledge engineer and the subject matter expert needs to frequently occur to avoid 

mistakes. This is the well-known knowledge acquisition bottleneck problem as mentioned 

in Section 1.2 (Buchanan and Wilkins, 1993). 

To alleviate the knowledge acquisition bottleneck, a learning component is integrated 

into an expert system shell (Tecuci, 1998). Such a system (shown in Figure 3) is called a 

Learning Agent Shell (LAS) and is implemented in a family of Disciple shells (Boicu, M. 

et al., 2002). In Disciple, the process of building the knowledge base is a mixed-initiative 

one between the expert and the learning agent, with limited assistance from a knowledge 

engineer. The top part of Figure 69 shows the traditional way to build a knowledge base 

in which the subject matter expert works closely with the knowledge engineer throughout 

the whole process. The knowledge engineer has to model the reasoning process of the 

subject matter expert, making explicit the way the subject matter expert solves problems. 
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Then the knowledge engineer develops the object ontology. He or she also needs to 

define general problem solving rules and to debug them (Tecuci, 1998). 

 

 

Figure 69: Knowledge Engineering with Disciple Learning Agent - from (Boicu, 
2002) 

 

With the introduction of the learning agent, the expert now works mostly with the 

agent and that reduces a lot of errors, uncertainties and processing time. As shown in 

Figure 69, each activity from the top part is replaced with an equivalent activity that is 

either entirely performed by the subject matter expert (SME) and the agent (Agent), or 

requires some assistance from the knowledge engineer (KE). The knowledge engineer 

needs to model the reasoning process of the subject matter expert and to instruct the 

expert how to make explicit his/her reasoning. The knowledge engineer also needs to 

develop an initial object ontology. After that, however, the subject matter expert can 

collaborate with the agent to develop problem solving examples and their explanations, to 

extend the ontology, to learn problem solving rules, and to refine the rules (Tecuci, 

1998).  



    

180 

Maintenance of the knowledge base traditionally involves the communication 

between the expert and the knowledge engineer to ensure the stored knowledge is always 

consistent and up to date. That process is changed with the introduction of a learning 

agent, as shown in Figure 68. The agent is now the only partner that works closely with 

the expert to maintain the integrity of the whole knowledge base (Boicu, C. et al., 2005).  

With the evolution from the expert system shell to the learning agent shell, it seems 

natural to have it evolved further to broaden its applicability. One such development is 

adding the capability to tutor the expert knowledge which is already acquired when 

building the knowledge base. Being able to rapidly acquire expertise in a certain domain 

and to rapidly construct a curriculum to teach this knowledge pedagogically is the main 

goal of the Learning and Tutoring Agent Shell (LTAS) concept. 

LTAS can alleviate some of the difficult problems that are encountered when building 

intelligent tutoring systems. They include the difficult and time-consuming acquisition of 

the expert’s knowledge, the complexity of building a curriculum to teach the expertise 

pedagogically, and the challenges of customizing the lessons for different student skills in 

various circumstances. If the tutoring system would be easier to build, there would be 

available for a wider set of domains at different levels. As a consequence, such systems 

would have a significant positive impact on the education in schools, as well as in the 

continuous education of the professionals. 

6.2. Architecture of the Learning and Tutoring Agent Shell 

An LTAS is an extension of a Learning Agent Shell (LAS) with tutoring related 

capabilities, as shown in Figure 70. These additional modules include the pedagogical 
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knowledge base, the knowledge management module, the tutoring module, the authoring 

module and the student module. They are tightly integrated with the existing modules. 

For example, the pedagogical knowledge base couples with the learning engine to learn 

the teaching knowledge from the teacher. The domain knowledge base is used with the 

tutoring engine to provide rich and dynamic examples and exercises. 

 

 

Figure 70: Architecture of the Disciple Learning and Tutoring Agent Shell 

 
6.2.1 Pedagogical Knowledge 

The pedagogical knowledge includes two types of knowledge: pre-defined knowledge 

(which is stored in the pedagogical knowledge base) and generated knowledge. The pre-

defined knowledge is the knowledge that is created by the instructor and the system, and 

is used to generate the generated knowledge. The pre-defined knowledge consists of 
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abstraction rules, lesson scripts, and test rules. The generated knowledge include: the 

abstract reasoning tree, the generated lessons, table of contents, glossary, specific test 

questions together with explanations and hints.  

6.2.1.1 Pre-defined Knowledge 

Abstract Knowledge 

As presented in Chapter 3, the abstraction of reasoning is constructed for several 

purposes, one of them being tutoring. The abstract knowledge that is preserved for 

tutoring purpose consists of the abstract problem solving strategies employed by the 

subject matter expert. The abstract problem solving strategies have several components: 

• abstract problems that describe the kinds of problems to be solved; 

• abstract reductions that reduce the abstract problems to one or several simpler 

abstract sub-problems; 

• abstract solutions which are the solutions of the abstract problems;  

• abstract syntheses that compose the abstract solutions of the simpler abstract sub-

problems at one level into the abstract solutions of the abstract problems at the 

next higher level;  

• abstraction rules that govern the abstraction operations.  

Lesson Script 

The lesson scripts are created by lesson script engine during the lesson design (see 

Section 6.2.3). The lesson scripts are represented in the ABLE scripting language (see 

Appendix A). A lesson script consists of a lesson header and several lesson sections. The 

lesson header includes the lesson title, optional lesson objectives, lesson annotation and 
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lesson definitions. Each lesson section presents an abstract problem solving strategy 

which, in essence, reduces an abstract problem to several simpler abstract sub-problems. 

Each lesson component has a pair of numbers that indicate the order when it will be 

displayed and for how long it will last during the tutoring session. More details on the 

lesson scripts are provided in Section 5.1.2. 

Test Question Rule 

A test question rule includes a reduction rule from the domain knowledge base and a 

list of generalized components. The components include the test type - omission, 

modified or construction, the type-related information, explanations and hint (see Section 

5.2.1). Depending on the type of test question, the type-related information differs. For an 

omission test, they are the sub-problems that were dropped. For a modified test, they are 

the old and new contents of the modified sub-problems. And for a construction test, they 

are the extra sub-problems that were entered during the test question learning. 

6.2.1.2 Generated Knowledge 

Abstract Reasoning Tree 

The abstract reasoning tree is constructed from the abstract knowledge in the 

pedagogical knowledge base. The abstraction rules govern how an abstract reasoning tree 

is built from a concrete reasoning tree. An abstract reasoning tree is a representation of 

the abstract problem solving strategies that are used to solve a problem. The abstract 

reasoning tree is described in detail in Chapter 3.  
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Lessons 

The lessons contain two parts, the abstract problem solving strategies to be taught, 

and the examples that illustrate these strategies. They are illustrated in Figure 71. The top 

part of the figure shows the strategy to assess a piece of evidence that favors the 

hypothesis. The bottom part shows an example of assessing the evidence EVD-Dawn-

Mir01-02c that favors the hypothesis that Al Qaeda considers the deterrence as a reason 

to obtain the nuclear weapons. The abstract strategies are constructed from the abstract 

components of an abstract reasoning tree by the instructor, as discussed in Section 5.1.1. 

The examples are generated from the knowledge base by using the abstraction rules that 

link the abstract components in an abstract strategy section to their concrete components 

in the concrete reasoning tree. These links allow the tutoring module to retrieve the 

examples corresponding to the abstract strategy which is being taught. More details of 

example generation are presented in Section 5.1.3. The process of lesson generation 

highlights the interaction between the pedagogical knowledge (the abstract problem 

solving strategies and their examples) and the domain knowledge (the concrete reasoning 

tree). Together they can produce many lessons with various examples, provided that the 

domain knowledge base is rich enough. Moreover, the same abstract reasoning strategies 

might be exemplified with scenarios in different application domain, e.g. assessing 

tangible evidence may be useful in counter-terrorism, law enforcement, practice of law, 

and even in scientific discovery. The lessons are generated automatically from the lesson 

scripts, as described in Section 5.1.2. 
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Figure 71: Lesson Interface 

 
Table of Contents 

The table of contents helps navigating the organized set of lessons. This type of 

knowledge is almost automatically generated by the system based on the content of 

lessons and the connections between them. Figure 72 illustrates a table of contents which 

contains three parts: the current lesson, the learned lessons and the next available lessons. 

Each of the lessons teaches two types of processes: problem reduction and solution 

synthesis, for a certain type of problem. The abstract part of the lesson is structured into 

several sections and is illustrated by examples at the end. The table of contents captures 

the structure of the lesson. For example, in Figure 72, the problem reduction process has 

two sections “Components of believability” and “Credibility”. The reduction process is 
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then illustrated by “Reduction examples”. When a lesson is in the design mode, the 

instructor does not have to specify the order of the lessons. The system sorts this order 

out based on the links between the abstract components that the lessons contains. The 

instructor however must explicitly define the structures of each process as described 

above during the design process. 

 

 

Figure 72: Table of Contents 

 
Glossary 

The glossary is generated automatically from the ontology of the system which is part 

of the domain knowledge base (Barbulescu et al., 2003). The glossary is displayed in 

alphabetical order. It provides brief definitions of the domain concepts (see Figure 71), 

more complete definitions, or even detailed lessons (as illustrated in Figure 73 and Figure 

problem reduction 

solution synthesis 
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74). In essence, the glossary supplies a means of enhancing the understanding of the 

lessons. 

 

 

Figure 73: Sample Glossary 
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Figure 74: Presentation of the Veracity Concept 

 
Tutoring Strategies 

During the design process, the instructor can also provide the tutoring strategies to 

teach the lessons in different ways, in order to increase the effectiveness of tutoring 

(Kukla et al., 2002). To be specific, the instructor can design the lesson to display the 

abstract problem solving strategies in different orders, either bottom up or top down or 

any other way considered most appropriate by the instructor. The tutoring strategies are 

represented by the pair of numbers associated with each lesson component in the lesson 

script. More details on the tutoring strategies are provided in Section 5.1.2.  
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What we have discussed so far in the generated knowledge section of the pedagogical 

knowledge is the lesson module of tutoring module. The next topic is the pedagogical 

knowledge for its test module. The test module is provided to measure the student’s 

understanding of the learned subject. The pedagogical knowledge for the test module 

consists of test questions, including explanations and hints.  

 

Test Questions 

A test question is generated from a test rule and is presented in the context of where 

the reduction should have been in the reasoning tree. Figure 75 shows a reasoning step 

from a test question in which one of the sub-problems was dropped. The reasoning step is 

bordered red and located in a sub-tree as its context. The student must judge if the 

presented reasoning step is correct, incorrect or incomplete. In this test question, the 

student is asked if it is correct to assess the believability of the report fragment EVD-

TRC-Najm01-01c, where Najm S. cites Osama Bin Laden, by only assessing the 

believability of Najm S. The correct answer must be “Incomplete” due to the fact that the 

reasoning is missing a sub-problem which is the assessment of the believability of Osama 

Bin Laden as the source of the information. 
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Figure 75: Reasoning Step from a Test Question 

 
Hint 

During the test, the student is provided with the relevant glossary (as discussed earlier 

and) and with hints (they are associated with penalties in student’s assessment). The hints 

are learned from the instructor during the test learning process. An example of specific 

hint is: 

“EVD-TRC-Najm01-01c was obtained as testimonial evidence of Osama bin Laden 

cited in EVD-TRC-Najm01-01 by Najm S. Let us assume that Osama bin Laden is not 

believable. Does this affect the believability of EVD-TRC-Najm01-01c?  

The believability of some information refers to the degree to which that information is 

considered to be true. Similarly, the believability of an agent refers to the degree to 

which the information provided by that agent is considered to be true.  

Belief is: 

1: a state or habit of mind in which trust or confidence is placed in some person or 

thing 

2: something believed; especially: a tenet or body of tenets held by a group 
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3: conviction of the truth of some statement or the reality of some being or 

phenomenon especially when based on examination of evidence.  

Merriam-Webster's Online Dictionary, http://www.m-w.com/dictionary/belief. “ 

 

Explanation 

The other type of information given when the student answers a test question is the 

explanations. This type of knowledge is similar to the hints with a minor difference: the 

explanations are given based on the student’s answer which may be correct, incorrect or 

incomplete. Both the hints and the explanations are structured similarly. For instance, if 

the student answers the reduction from Figure 75 is incorrect, then the received 

explanation is: 

“EVD-TRC-Najm01-01c was obtained as testimonial evidence of Osama bin Laden 

cited in EVD-TRC-Najm01-01 by Najm S. Therefore its believability depends both on the 

believability of the reporter (Najm S) and the believability of the source (Osama bin 

Laden). For instance, if either Osama bin Laden is lying, or Najm S is distorting Osama 

bin Laden’s testimony, then the information provided by EVD-TRC-Najm01-01c is not 

true.” 

What is important for hints and explanations is that they are not defined for each 

generated test, but they are learned from specific examples, and generated automatically, 

as described in Section 5.2. 
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The system follows a scaffolding approach, where the test questions are presented in a 

context from simple to complex (Dabbagh, 2007). This is achieved by following a 

concrete reasoning tree from top to bottom. 

6.2.2 Knowledge Management 

The knowledge management is performed by two modules: Management of Abstract 

Knowledge (MAK) and Management of Tutoring Knowledge (MTK).  

Management of Abstract Knowledge 

MAK is a module that handles the abstraction process of problem solving knowledge 

in a particular domain. The product of that process is the abstract knowledge that is stored 

in the pedagogical knowledge base, as described in Section 6.2.1. This module includes a 

tool named Abstraction Editor (see Figure 76) to abstract the knowledge in the domain 

knowledge base. The knowledge in the domain knowledge base generates a concrete 

reasoning tree and the abstraction of that tree results in the abstract reasoning tree. The 

Abstraction Editor allows the user to abstract a concrete reasoning tree into an abstract 

tree through a drop-and-drag operator. The user selects one or several nodes in the 

concrete tree (shown in the left part of Figure 75) to be abstracted into an abstract node in 

the right panel. The editor is able to recognize the parent of the newly created abstract 

node in the abstract tree (if this exists) to properly integrate the new abstract node into the 

abstract tree. More details on the reasoning tree abstraction process are provided in 

Section 3.3. As the abstract reasoning tree is built by using the editor, the MAK module 

learns the corresponding abstraction rules which govern how reasoning trees are to be 
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abstracted in general. The abstraction rules are then stored in the pedagogical knowledge 

base. 

 

 

Figure 76: Interface of the Abstraction Editor 

 

Management of Tutoring Knowledge 

Tutoring knowledge includes all the pedagogical knowledge except the abstract 

knowledge. The tutoring knowledge is developed by the instructor, with the help of the 

Authoring module which will be described in next sub-sections. The knowledge then is 

stored in the pedagogical knowledge base. This knowledge is retrieved either by the 
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Authoring module for update or by the Tutoring module for lessons and tests generation. 

The TKM module is responsible for managing the storing, updating and retrieval of the 

tutoring knowledge. 

6.2.3 Authoring Module 

The Authoring module consists of three main sub-modules: lesson design, test 

learning and lesson script engine. The lesson design module and test learning module are 

used by the instructor. The lesson script engine converts the lesson components designed 

by the instructor into corresponding lesson scripts. 

Lesson Design Module 

The lesson design module is used by the instructor to builds lessons from the abstract 

tree, as illustrated in Figure 53. The Lesson Editor has two panels: the one on the left is 

for the abstract tree and the other is for designing lessons. The process of designing 

lessons is discussed at length in Section 5.1.1. In this section, we focus mostly on the 

authoring part of the lesson design process. The instructor uses the available toolbox to 

create the lesson components such as title, objectives, header, annotations, definitions, 

examples, and so on. The tool also lets the instructor review how the lessons are going to 

be displayed during the tutoring session. The outcome of the lesson design is the lesson 

script which is saved in the pedagogical knowledge base. The tutoring module groups all 

the lessons together to form the curriculum, based on the pre-requisites and post-

requisites automatically inferred from the abstract tree. 

Figure 77 shows the widget toolbar which is a part of the Lesson Editor. The toolbar 

has multiple widget buttons which simplify the task of creating lesson components. 
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Section 5.1.7.1 presents in detail the functionality of this widget toolbar. In short, the 

instructor can design the lesson, configure the display order of each component and 

preview the design. Once the instructor is satisfied with the lesson, the lesson script 

engine generates the lesson scripts based on the current setting of the lessons and saves it 

in the pedagogical knowledge base.  

 

 

Figure 77: Widget Toolbar for Lesson Design 

 
Lesson Script Engine 

During the lesson design, the instructor builds the lessons by dragging and dropping 

some lesson components from the widget toolbar shown in Figure 77 and configuring 

them to achieve some particular tutoring effect. Once the lesson design is finished, the 

lesson scripts are generated by the script engine. The engine scans all the lesson 

components from the top down. For each of the lesson components, the engine captures 

its properties, such as the order and duration values, its relationships with other lesson 
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components, its description, and characteristics (see Appendix B for detailed information 

on the lesson script description). The lesson script engine then formats the obtained 

information in the ABLE language (see Appendix A) to create the lesson scripts. The 

scripts then are saved in the pedagogical knowledge base. 

Test Learning Module 

As presented in Section 5.2, the instructor teaches the system how to generate test 

questions. The system learns test rules by generalizing the test examples designed by the 

instructor. The instructor designs specific test questions by using the Test Editor shown in 

Figure 78. The editor has a main panel that displays a reasoning step from the concrete 

reasoning tree. This reasoning step serves as a test example. The instructor can 

manipulate the sub-problems of the example in three different ways: modification of sub-

problems, dropping one or several of them, or adding deliberately wrong sub-problems. 

Each of the modification creates a different type of test example. They are modification 

test, omission test and construction test. In the right panel, the instructor defines the 

explanations and the hint. By default, the right answer for an omission test is 

“incomplete” and for a modification test is “incorrect”. However, the instructor can 

overwrite that default value by making a different selection in the “Overwrite default 

assessment” radio box. For example, in a modification test, the modified sub-problem 

may be equivalent to the original one and test’s answer should be “correct” instead of 

“incorrect”. 
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Figure 78: Interface of the Test Editor 

 
The procedure of generating the test rules is detailed in Section 5.2.1. In this section, 

we just briefly summarize this process. The basic idea of learning the test rules is to 

extend a previously learned domain rules with test-related components that are 

appropriately generalization from specific examples provided by the instructor.  

6.2.4 Tutoring Module 

The tutoring module is responsible for generating lessons from lesson scripts and 

exercises from the test rules. The generated lessons and exercises are then presented to 

the students under the control of the Student Model.  
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Lesson Generation Module 

Generating lessons based on existing domain knowledge base is done automatically, 

as described in Section 5.1.3. All the generated lessons contain two main parts: the 

abstract problem solving strategies and their examples. 

The abstract strategies are generated from the lesson scripts (see Section 5.1.2). The 

examples are generated based on the abstract reasoning tree and a concrete reasoning 

tree. The example set is then displayed heuristically based on their relative similarity and 

complexity. The examples to be displayed can also be selected by the user.  

The generated lessons have two auxiliary components, table of contents and glossary, 

both generated automatically.  

The lesson window (Figure 79) provides several functions that can be used by a 

student to follow a lesson, either by reading and/or by listening. There are three panels, 

the one on the left is the table of content and glossary, the middle panel presents the 

lesson’s content, and the right panel contains the automatically generated lesson’s text. 

The middle panel also contains two sub-panels. The one on top is for the abstract problem 

solving strategies and the bottom one for the examples.  
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Figure 79: Lesson Interface 

 
The table of contents is hidden by default but available on request. It has three sub-

panels: the top one is for the previously learned lessons, the middle one is for the current 

lesson and the bottom panel is for the next available lessons. Each lesson has several 

components, presented in two groups: reduction and synthesis. Each group has a set of 

examples represented by “Reduction examples” or “Synthesis examples”. Once the 

current lesson reaches the end, the next available lesson will replace the current lesson 

which moves to the Previous Lessons panel. The glossary panel is also available when 

the student needs it. Clicking on a hyperlink in the lesson will set the focus on the 

glossary panel and display the full description of the selected term, as illustrated in Figure 
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73. Similarly, the lesson’s text is available on request only. The student can either read it 

or listen to it. The text reflects what has been shown visually in the lesson panel. The 

current line is colored blue and spoken. The text panel helps the students to follow the 

lessons in a traditional way. 

The lesson panel is the main focus of the lesson window. The abstract lesson panel 

teaches the problem solving strategy that the teacher constructed in the design phase. The 

lower panel illustrates it with a set of examples. The strategy is taught step by step. The 

student has to click on next or previous buttons to move forward or backward. Each step 

is spoken by default and can be turned off as an option. 

Test Generation Module 

The test generation module generates specific test questions by applying the learned 

test rules. Figure 78 illustrates the test editor where the instructor defines a test question. 

LTAS then learns the test question rule from this example, as described in Section 

5.1.3.3. These rules are saved in pedagogical knowledge base.  

Test-taking is illustrated in Figure 80. It has five sub-panes. The top left panel is to 

display the test question and its context, the middle left is the pool of available sub-

problems for construction test. The top right panel is the location for answer, 

explanations and hint. The bottom right panel is the glossary of terms used in the test 

question. The bottom left is the navigational and assessment panel where the grade is 

posted. There are two test-taking modes: self-test and assessment. The self-test mode lets 

the student go back to the appropriate lesson for review. The latter mode does not allow 
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this. All the tests are generated automatically and are dynamically changed each time the 

test starts. More details on this process are provided in Section 5.2.2. 

 

 

Figure 80: Test Generation Interface 

 
6.2.5 Student Module 

The student module contains information about the student, such as the lessons taken 

and the failed tests.  It determines which lessons belong to the list of previous lessons, 

and the list of the next available lessons. It also controls the test generation process, by 

only allowing the tests that are included in the presented lessons. One important aspect of 
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this module in monitoring the tests is providing remedial test questions that are similar to 

the failed tests. 

We have built a simplified student model in order to offer minimal support for the 

other developed functionality. Further research is needed to develop and integrate a more 

complex student model and to adapt the tutoring to it. 

6.3. Methodology for Building Tutoring Systems 

A learning and Tutoring Agent Shell (LTAS) allows the instructor to quickly develop 

a tutoring system that can tutor expert problem solving knowledge in a particular domain. 

Because the LTAS is build on top of a Learning Agent Shell (LAS), there are several 

assumptions regarding the LAS modules: 

• The domain knowledge base is already developed. The expert knowledge has 

been acquired by LAS. 

• The concrete reasoning trees are generated by the LAS for specific problems. 

• The abstract reasoning tree is possibly partially constructed during the modeling 

of the knowledge of the subject matter expert. In fact, part of the abstract 

reasoning tree is constructed for human-agent collaboration in problem solving. 

There are several steps that are required to be done in sequence (see Figure 81). First 

of all, the instructor needs to construct the abstract reasoning tree, if one was not already 

developed. The abstraction of a concrete reasoning tree requires the instructor to have 

deep knowledge of the application domain. Therefore, the instructor is usually also the 

subject matter expert. The purpose of the abstraction for tutoring is to uncover the 
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problem solving strategies used in solving problems, and to develop a hierarchical 

structure of the abstract problem solving strategies. 

In the second step the instructor designs the lesson by using the abstract reasoning 

tree. The instructor can create a lesson based on any abstract problem. The lesson content 

is automatically built based on the content of the selected abstract components that the 

lesson is built upon. The instructor however can modify it, for instance, by selecting the 

order in which its parts are presented to the students. When the lessons are saved, the 

lesson scripts are generated accordingly and saved into the pedagogical knowledge base. 

The last step is authoring the test questions by the instructor.  

When a student uses the system to learn expert problem solving knowledge, the 

lessons are generated dynamically, based on the current scenarios included in the domain 

knowledge base. The student model captures the student progress to provide the 

appropriate the lessons and test questions. 
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Figure 81: Methodology for Building a Tutoring System 
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7. Contributions and Future Research 

 

This chapter concludes the dissertation with the summary of my contributions and the 

most promising directions for future research. 

7.1. Summary of Contributions 

This dissertation research has advanced the state of the art in the area of knowledge-

based agents for expert problem solving. 

The main contribution of my dissertation is the development of a theory for the 

abstraction of reasoning that facilitates: 

• human-agent collaboration in complex problem solving and decision-making; 

• rapid development of intelligent tutoring systems for complex problem solving; 

• teaching complex problem-solving to non-experts. 

Abstraction has been previously used in different areas of Artificial Intelligence, such 

as, Planning, Problem Solving, Constraint Satisfaction, Reasoning about Physical 

Systems, to facilitate the search for solutions in large spaces. The general idea is to first 

find an approximate solution in a reduced, abstract space, and then use it to guide the 

search for the actual solution in the large concrete space. In our research we have not 

investigated how to use abstraction to develop a reasoning tree that solves a problem. 

Instead, we have investigated how to abstract a complex reasoning tree to facilitate its 

understanding.   
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Effective human-agent collaboration in complex problem-solving and decision-

making requires an ability of the user to easily browse, understand, and modify complex 

reasoning, with many thousands of reasoning steps. Our theory of abstraction of 

reasoning for collaborative problem solving allows: 

• the partition of a complex tree into meaningful and manageable sub-trees; 

• the abstraction of individual sub-trees; 

• the automatic generation of an abstract tree that plays the role of a table of 

contents for the display, understanding and navigation of the concrete tree. 

Abstraction of reasoning is also very important for teaching complex problem-solving 

to non-experts. Although based on the same general theory, we have found that the 

abstraction for tutoring is different from the abstraction for collaborative problem 

solving. In the abstraction for problem solving, the emphasis is on easily identifying the 

main sub-problems of a given problem, and their solutions. In the abstraction for tutoring, 

however, the emphasis is on how to abstract the problem reduction and solution synthesis 

processes, in order to identify the abstract strategies to be taught. Our theory of 

abstraction of reasoning for tutoring allows: 

• the definition of abstract problem solving strategies for tutoring; 

• the rapid development of lesson scripts for teaching these strategies; 

• the automatic generation of specific lessons corresponding to a particular 

expertise domain. 

Another major contribution of my dissertation is the development of methods 

deriving from our theory of abstraction, as indicated in the following. 
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We have developed a method for rapid authoring of lessons for tutoring problem 

solving in a complex domain. The lessons are organized around the abstract problem 

solving strategies to be taught. They present these strategies under the control of the 

student who may request definitions or detailed descriptions of the used concepts, as well 

as concrete examples of the application of these strategies. An important characteristic of 

these lessons is that they are automatically customized based on the content of  

the domain knowledge of the tutoring agent. In particular, a lesson will automatically 

teach only those cases of an abstract problem solving strategy that can be with the current 

domain knowledge base. Also, changing the domain knowledge base will automatically 

change the generated examples, without any change in the design of the lesson. The 

automation of example creation is a main factor in cutting down the time to build the 

lessons. Examples are essential parts of a lesson and their availability, number and 

diversity play an important role in making a lesson more interesting and understandable.  

We have developed methods for: 

• Learning different types of test questions by modifying and enhancing examples 

of problem reduction rules from the domain knowledge base. 

• Automatic generation of test questions in the context of a reasoning tree, together 

with hints and explanations. 

• Dynamic adaptation of the generated test questions to the lessons taken by a 

student, and an ability to invoke the lesson corresponding to a given test question. 

The types of test questions learned are: 
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• Omission test question (knowledge level questions where a student is asked to 

judge the completeness and correctness of a problem reduction that may omit 

some sub-problems). 

• Modification test question (comprehension level questions where a student is 

asked to judge the completeness and correctness of a problem reduction that may 

have some sub-problems modified). 

• Construction test question (analysis level questions where a student is asked to 

define the reduction of a given problem by selecting sub-problems from a given 

list. 

Finally, another major contribution is the development of: 

• The concept of “learning and tutoring agent shell” and the associated 

methodology for rapid development of an intelligent tutoring system. 

• An experimental learning and tutoring agent shell.  

• An experimental tutoring system for the domain of intelligence analysis which 

has been used by military officers at the Army War College and by students at 

George Mason University. 

7.2. Future Research Directions 

There are also various limitations of the obtained results that point to future research 

directions. 

The current methods for defining abstractions (both those for collaborative problem 

solving and those for tutoring) are to be considered methods for a knowledge engineer. 

They need to be further simplified to be used by a subject matter expert. 
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The lesson design methods could be extended to allow additional customization by an 

instructor. For instance, the current lessons have to first introduce an abstract strategy and 

then can illustrate it with examples. The instructor may wish to define lessons which first 

introduce examples of reasoning and then present their abstraction. 

Also the generated lessons should be made more interactive and engaging. In general, 

our research has focused on the artificial intelligence aspects of tutoring rather than the 

instructional design ones. Therefore, there are good opportunities for advancing this 

research by emphasizing more the instructional design and educational aspects which 

have only been developed to a limited extend. They include building fluency, drill and 

practice, and repetition where the same type of test questions are presented repeatedly to 

help student acquire fluency; chaining and logical sequencing of content where the lesson 

contents are presented in a hierarchical way of problem reduction/solution synthesis 

paradigm; and scaffolding where test questions are presented in a context from simple to 

complex (Dabbagh, 2007). A tutoring system is more effective if it includes instructional 

strategies for developing student’s creativity such as, self-directed learning, learning by 

discovery, hypothesis generation.  

The research on the abstraction of reasoning trees described in this dissertation can 

naturally be extended to enhance other capabilities of a knowledge-based agent. For 

example, the abstract reasoning patterns used in tutoring may guide the acquisition of 

related problem solving strategies from a subject matter expert. Also, one could 

investigate the generation of solutions and justifications at different levels of abstraction. 
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Appendix A: Abstraction-Based Lesson Emulation (ABLE) 
 

Table 13: The ABLE Scripting Language 

//Tokens 
Problem  ;The abstract problem 
Reduction  ;The abstract reduction (reduction process) 
Solution  ;The abstract solution 
Synthesis  ;The abstract synthesis (composition process) 
Title  ;The lesson title 
Objectives  ;The lesson objectives 
Annotation ;The annotation 
Description ;The definitions of the new terms 
//Examples 
ReductionExample ;The reduction example 
SynthesisExample  ;The synthesis example 
 
//Decorative Tokens 
Decorative := Annotation | Description | <empty>     ;Decorative tokens 
Decoratives := Decorative | Decoratives  ;List of decorative tokens 
DécorProblem := Problem Decoratives  ;Problem with decorative tokens 
DécorReduction := Reduction Decoratives ;Reduction with decorative tokens 
DécorSynthesis := Synthesis Decoratives  ;Synthesis with decorative tokens 
DécorSolution := Solution Decoratives  ;Solution with decorative tokens 
DécorTitle := Title Decoratives   ;Title with decorative tokens 
DécorObjectives := Objectives Decoratives ;Objectives with decorative tokens 
 
//Reduction and Synthesis Process 
Sub-problem := DécorProblem | DécorSolution | <empty> ;A sub-problem 
Sub-problems := Sub-problem | Sub-problems ;Set of sub-problems 
Solutions := DécorSolution Solutions | <empty> ;Set of solutions 
ReductionSet := DécorReduction Sub-problems ;A reduction set 
SynthesisSet := Solutions DécorSynthesis ;A synthesis set 
ReductionProcess := DécorProblem ReductonSet ;A reduction process 
SynthesisProcess := SynthesisSet DécorSolution ;A synthesis process 
 
//Reduction and Synthesis Examples 
ReductionExamples := ReductionExample ReductionExamples | <empty>  
CompositionExamples := CompositionExample CompositionExamples | <empty> 
//Lesson Section 
Section := ReductionProcess ReductionExamples |  
    SynthesisProcess CompositionExamples  
LessonSection := Section | <empty> 
LessonSections := LessonSection LessonSections 
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//Lesson Header 
LessonHeader := DécorTitle DécorObjectives 
//Lesson 
Lesson := LessonHeader LessonSections 
 

Table 14: LifeCycle Feature 

Token := Problem | Reduction | Solution | Synthesis |  
    Title | Objective | Annotation | Description | Test 
Order := 1 | after (Token)   ;When the component is displayed 
Duration := -1 | 0 | 1 | before (Token) ;How long the component is displayed 
LifeCycle := Order Duration | <empty> 
LifeCycles := LifeCycle LifeCycles 
TimingToken := Token LifeCycles 
 

Table 15: Order and Duration Computation 

OrderToken i  = 1: Token i is the first one to be displayed.  
OrderToken j = after(Token k) = OrderToken k + 1.  
Example:  
if OrderTitle = 1 and OrderObjective = after(Title)  
then OrderObjective = OrderTitle  + 1 = 2. 
 
DurationToken i = -1: Token i always appears on the screen 
DurationToken i = 0: Token i never appears on the screen 
DurationToken i = 1: Token i appears on the screen for one step. 
DurationToken i = before(Token j) = OrderToken j – OrderToken i  
Example: 
if OrderProblem =10,  OrderObjective =5 and DurationObjective = before(Problem) 
then DurationObjective = OrderProblem - OrderObjective = 10 – 5 = 5. 
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Appendix B: Lesson Scripts in XML 

 
Table 16: Lesson Annotation Script in XML  

<LessonAnnotation id="annotation_1" parent="title">  
    <LifeCycles>                 
        <LifeCycle> 
            <Order value=after(“title:0”) />    
            <Longevity value="1" /> 
        </LifeCycle> 
    </LifeCycles> 
    <Descriptions>  
        “Let us consider the problem:” 
    </Description>           
</LessonAnnotation> 
 

Table 17: Lesson Definition Script in XML  

<LessonDefinition id="definition_0" parent="problem_0"> 
    < LifeCycles> 
        < LifeCycle> 
            <Order value="problem_0:0" /> 
            <Duration value="1" /> 
        </ LifeCycle> 
    </ LifeCycles> 
    <Terms> 
        <Term name="piece of evidence" /> 
    </Terms> 
</LessonDefinition> 

 
Table 18: Lesson Title Script in XML  

<LessonTitle id="title"> 
    <LifeCycles> 
        <LifeCycle> 
            <Order value="1" /> 
            <Duration value="-1" /> 
        </LifeCycle> 
    </LifeCycles> 
    <Description> 
        Assess to what extent the piece of evidence supports the hypothesis 
    </Description> 
</LessonTitle> 
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Table 19: Lesson Objective Script in XML  

<LessonObjective id="objectives" parent="title"> 
    <LifeCycles> 
        <LifeCycle> 
            <Order value="1" /> 
            <Duration value="1" /> 
        </ LifeCycle> 
    </ LifeCycles> 
    <Description> 
        There are 2 objectives: &lt;p> Learn how to handle the piece of evidence. &lt;p> 
Learn how to assess the piece of evidence to support a hypothesis 
    </Description> 
</LessonObjective> 

 
Table 20: Lesson Problem Component Scrip in XML  

<LessonProblem id="problem_1" parent="annotation_2"> 
    <AbstractProblemReference kbPartName="LTA final" index="3" /> 
    <LifeCycles> 
        < LifeCycle> 
            <Order value=after("annotation_2:0") /> 
            <Duration value="-1" /> 
        </ LifeCycle> 
    </ LifeCycles> 
    <Description> 
        Assess to what extent piece of evidence supports the hypothesis, assuming that we 
believe the information provided by the piece of evidence 
    </Description> 
</LessonProblem> 

 
Table 21: Lesson Reduction Script in XML  

<LessonReduction id="reduction_0" parent="problem_0"> 
    <AbstractReductionReference kbPartName="LTA final" index="3" /> 
    <LifeCycles> 
        <LifeCycle> 
            <Order value="problem_0:0" /> 
            <Duration value=before("problem") /> 
        </LifeCycle> 
    </LifeCycles> 
    <Description> 
        The information provided by the piece of evidence and the extent to which it is 
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believable. 
    </Description> 
</LessonReduction> 

 
Table 22: The Lesson Solution Script in XML  

<LessonSolution id="solution_0" parent/host="reduction_0"> 
    <AbstractSolutionReference kbPartName="LTA final" index="1" /> 
    <LifeCycles> 
        < LifeCycle> 
            <Order value=after("reduction_0:0") /> 
            <Duration value="-1" /> 
        </ LifeCycle> 
    </ LifeCycles> 
    <Description> 
        Assessed believability of the reporter of the piece of evidence 
    </Description> 
</LessonSolution> 

 
Table 23: The Lesson Synthesis Script in XML  

<LessonSynthesis id="synthesis_2" host="reduction_0"> 
    <LifeCycles> 
        <LifeCycle> 
            <Order value="composition_1:0" /> 
            <Duration value="-1" /> 
        </LifeCycle> 
    </LifeCycles> 
    <Description> 
        Determine the likelihood of the hypothesis given the likelihood of the credibility of 
the piece of evidence. 
    </Description> 
</LessonSynthesis> 
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