

Abstraction of Reasoning For
Problem Solving and Tutoring Assistants

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Vu Le
Master of Science

George Mason University, 1999

Co-Director: Gheorghe Tecuci, Professor,
Department of Computer Science

Co-Director: Mihai Boicu, Assistant Professor,
Department of Applied Information Technology

Spring Semester 2008
George Mason University

Fairfax, VA

iii

Copyright 2008 Vu Le
All Rights Reserved

iv

TABLE OF CONTENTS

Page

LIST OF TABLES …………………………………………………..………………..vi
LIST OF FIGURES ...………………………………………………………………...vii
LIST OF ABBREVIATIONS/SYMBOLS …………………………………..………….x
ABSTRACT ..………………………………………………………………………..xiii
1. INTRODUCTION ...1

1.1. Knowledge-Based Agents ..1
1.2. Expert Systems...3
1.3. Machine Learning and Learning Agent Shells ..5
1.4. Intelligent Tutoring Systems...11
1.5. Sample Application Area: Intelligence Analysis ...15
1.6. Dissertation Overview..15

2. RESEARCH PROBLEM ..17
2.1. Problem Definition...17
2.2. Related Research..20

2.2.1. Abstraction Related Research ...20
2.2.2. ITS Related Research ...31

3. ABSTRACTION OF REASONING TREES ..48
3.1. Reasoning Tree ..49

3.1.1 Problem-Reduction/Solution-Synthesis Paradigm...................................52
3.1.2 Question-Answering Based Problem-Reduction54
3.1.3 Reduction and Synthesis Process ..57

3.2. Abstraction of a Tree..65
3.3. Abstraction of Reasoning Trees for Collaborative Problem Solving............67
3.4. Abstraction of Reasoning Trees for Tutoring..69

3.4.1. Abstract Problem..71
3.4.2. Abstract Reduction...73
3.4.3. Abstract Solution..75
3.4.4. Abstract Synthesis ..76
3.4.5. Abstract Reasoning Tree ..77
3.4.6 Abstraction Mapping ..87
3.4.7 Algorithm for Generation of Abstract Reduction Trees...........................96
3.4.8 Complexity Analysis of Generation of Abstract Reduction Trees..........103

4. ABSTRACTION-BASED COLLABORATIVE PROBLEM SOLVING......................................106
4.1. Abstraction-Based Table of Contents ...106
4.2. Optimization of the Reasoning Tree Display ..110
4.3. Evaluation of Abstraction for Collaborative Problem Solving...................111

v

5. ABSTRACTION-BASED TUTORING..113
5.1. Lesson Design and Generation ...113

5.1.1 Abstraction-Based Lesson Design ..114
5.1.2 Lesson Script and Its Language ..124
5.1.3 Lesson Generation..129
5.1.4 Lesson Generation Algorithm...139
5.1.5 Complexity Analysis of the Lesson Generation Process........................144
5.1.6 Generality of Abstraction-Based Lesson Generation.............................148
5.1.7 User Interface...152
5.1.8 Evaluation of Lesson Generation ..160

5.2. Learning and Generation of Test Questions ..164
5.2.1 Learning of Test Questions...165
5.2.2 Generation of Test Questions..171
5.2.3 Complexity Analysis ..174
5.2.4 Evaluation of Test Generation ..175

6. LEARNING AND TUTORING AGENT SHELL (LTAS)...177
6.1. From Expert System Shells to Learning and Tutoring Agent Shells177
6.2. Architecture of the Learning and Tutoring Agent Shell180

6.2.1 Pedagogical Knowledge ...181
6.2.2 Knowledge Management ..192
6.2.3 Authoring Module ..194
6.2.4 Tutoring Module ..197
6.2.5 Student Module ..201

6.3. Methodology for Building Tutoring Systems..202
7. CONTRIBUTIONS AND FUTURE RESEARCH..205

7.1. Summary of Contributions ...205
7.2. Future Research Directions ..208

APPENDIX A: ABSTRACTION-BASED LESSON EMULATION (ABLE)................................210
APPENDIX B: LESSON SCRIPTS IN XML ..212
REFERENCE..215

vi

LIST OF TABLES

Table Page
TABLE 1: A QUESTION-ANSWERING BASED REDUCTION STEP...54
TABLE 2: ASSOCIATE ABSTRACTION RULE..97
TABLE 3: GET ABSTRACTION RULE...98
TABLE 4: GENERATION OF ABSTRACT REDUCTION TREE...99
TABLE 5: ABSTRACT PROBLEM SOLVING STRATEGY GENERATION ALGORITHM.............139
TABLE 6: CONCRETE COMPONENT RETRIEVAL..140
TABLE 7: SEARCH INSTANTIATIONS ..141
TABLE 8: LESSON EXAMPLE GENERATION ALGORITHM...142
TABLE 9: INSTANTIATED REDUCTION RULE IN INTELLIGENCE ANALYSIS SCENARIO.......150
TABLE 10: INSTANTIATED REDUCTION RULE IN CRIME SCENE INVESTIGATION SCENARIO150
TABLE 11: ABSTRACT RULE CORRESPONDING TO THE RULE INSTANCE IN TABLE 2........151
TABLE 12: ALGORITHM OF TEST QUESTION GENERATION ...171
TABLE 13: THE ABLE SCRIPTING LANGUAGE ..210
TABLE 14: LIFECYCLE FEATURE...211
TABLE 15: ORDER AND DURATION COMPUTATION ..211
TABLE 16: LESSON ANNOTATION SCRIPT IN XML...212
TABLE 17: LESSON DEFINITION SCRIPT IN XML..212
TABLE 18: LESSON TITLE SCRIPT IN XML ..212
TABLE 19: LESSON OBJECTIVE SCRIPT IN XML...213
TABLE 20: LESSON PROBLEM COMPONENT SCRIP IN XML ..213
TABLE 21: LESSON REDUCTION SCRIPT IN XML ...213
TABLE 22: THE LESSON SOLUTION SCRIPT IN XML...214
TABLE 23: THE LESSON SYNTHESIS SCRIPT IN XML ...214

vii

LIST OF FIGURES

Figure Page
FIGURE 1: INTELLIGENT LEARNER, ASSISTANT AND TUTOR...2
FIGURE 2: EXPERT SYSTEM DEVELOPMENT...4
FIGURE 3: LEARNING AGENT SHELL ARCHITECTURE...8
FIGURE 4: GENERAL ARCHITECTURE OF AN INTELLIGENT TUTORING SYSTEM..................11
FIGURE 5: PROCESSES FACILITATED BY THE PROPOSED APPROACH TO ABSTRACTION18
FIGURE 6: TD, TC AND TI ABSTRACTIONS ...24
FIGURE 7: FOUR LEVELS OF REPRESENTING AND REASONING ABOUT THE WORLD – FROM

(ZUCKER, 2003) ...27
FIGURE 8: KNOWLEDGE ABSTRACTION AND REPRESENTATION - FROM (MUSTIÈRE ET AL.,

2000) ...28
FIGURE 9: APPLICATION OF PERCEPTION-BASED ABSTRACTION IN CARTOGRAPHY - FROM

(ZUCKER, 2003) ...30
FIGURE 10: THE SUBTRACT KNOWLEDGE FUNCTION - FROM (BLESSING, 1997)34
FIGURE 11: THE INTERFACE OF A COGNITIVE TUTOR - FROM (MATSUDA, 2005 A)36
FIGURE 12: INITIAL QUESTION, ONE SCAFFOLD, AND INCORRECT ANSWER IN ASSISTMENT

BUILDER - FROM (TURNER, 2005) ...40
FIGURE 13: A SCENE FROM A DIAG APPLICATION TO OIL BURNER - FROM (EUGENIO,

2005) ...42
FIGURE 14: AUTHORING INTERFACE FOR SPECIFYING FAULT EFFECTS - FROM (TOWNE,

1997) ...44
FIGURE 15: CTAT - FROM (KOEDINGER ET AL., 2003) ..46
FIGURE 16: A SIMPLE TREE..50
FIGURE 17: PROBLEM-REDUCTION/SOLUTION-SYNTHESIS PARADIGM53
FIGURE 18: REDUCTION RULE ..56
FIGURE 19: HYPOTHESIS ANALYSIS THROUGH PROBLEM REDUCTION59
FIGURE 20: HYPOTHESIS ANALYSIS THROUGH SOLUTION SYNTHESIS...............................60
FIGURE 21: REDUCTION REASONING STEP...64
FIGURE 22: PARTITION OF A REDUCTION TREE..67
FIGURE 23: ABSTRACTION OF A REDUCTION TREE FOR COLLABORATIVE PROBLEM

SOLVING ..68
FIGURE 24: CONCRETE REASONING TREE AND ITS ABSTRACTION FOR TUTORING70
FIGURE 25: ABSTRACT PROBLEM..72
FIGURE 26: TOP LEVEL OF A CONCRETE REASONING TREE..74
FIGURE 27: ABSTRACT REDUCTION AND ITS CONCRETIONS...75
FIGURE 28: ABSTRACT SOLUTIONS AND ABSTRACT SYNTHESIS76
FIGURE 29: REDUCTION SUB-TREE..80

viii

FIGURE 30: ABSTRACT REDUCTION SUB-TREE ..80
FIGURE 31: ABSTRACTION OF REDUCTION TREES FOR TUTORING81
FIGURE 32: THE RELATION BETWEEN REDUCTION TREE AND ITS ABSTRACT REDUCTION

TREE ..90
FIGURE 33: ABSTRACTION OF REASONING TREE AS TABLE OF CONTENTS107
FIGURE 34: AN EXPANDED FRAGMENT OF TOC ..108
FIGURE 35: ABSTRACT AND CONCRETE REDUCTION AND SYNTHESIS TREE....................110
FIGURE 36: OPTIMIZATION OF THE DISPLAY OF A LARGE REASONING TREE111
FIGURE 37: EVALUATION OF ABSTRACTION FOR COLLABORATIVE PROBLEM SOLVING...112
FIGURE 38: LESSON SECTIONS ..117
FIGURE 39: ABSTRACT NODE AND ITS CONCRETIONS ..119
FIGURE 40: EXAMPLES ILLUSTRATING THE ABSTRACT REDUCTION IN FIGURE 38...........121
FIGURE 41: DESCRIPTION OF A PIECE OF EVIDENCE...122
FIGURE 42: LESSON’S ABSTRACT SYNTHESES AND THEIR CONCRETIONS........................123
FIGURE 43: TOP-DOWN TUTORING STRATEGY ...127
FIGURE 44: BOTTOM-UP TUTORING STRATEGY ...127
FIGURE 45: VARIATION OF THE DEPTH-FIRST STRATEGY...128
FIGURE 46: LESSON TOC ..130
FIGURE 47: AN EXAMPLE OF ANNOTATION ...131
FIGURE 48: LESSON DEFINITIONS..133
FIGURE 49: LESSON TITLE AND LESSON OBJECTIVE ..134
FIGURE 50: LESSON’S EXAMPLES GENERATED FOR A LESSON’S SECTION.......................136
FIGURE 51: LESSON TEXT PANEL..138
FIGURE 52: REDUCTION RULE ..149
FIGURE 53: THE INTERFACE OF THE LESSON EDITOR ...153
FIGURE 54: THE INTERFACE OF THE DEFINITION EDITOR ...154
FIGURE 55: THE INTERFACE OF THE ORDER SETTING MODULE155
FIGURE 56: PREVIEW OF A DESIGNED LESSON...157
FIGURE 57: LESSON’S TABLE OF CONTENTS PANEL...158
FIGURE 58: SAMPLE LESSON CONTENT ...159
FIGURE 59: EVALUATION OF GENERATED LESSONS...162
FIGURE 60: EVALUATION OF TUTORING ..164
FIGURE 61: TEST EXAMPLE FOR KNOWLEDGE LEVEL ..166
FIGURE 62: TEST EXAMPLE FOR COMPREHENSION LEVEL..167
FIGURE 63: TEST EXAMPLE FOR ANALYSIS LEVEL ..168
FIGURE 64: EXPLANATIONS CONSTRUCTION ...169
FIGURE 65: A REDUCTION RULE...170
FIGURE 66: A GENERATED TEST QUESTION ..173
FIGURE 67: A GENERATED CONSTRUCTION TEST QUESTION ...174
FIGURE 68: EVALUATION OF THE TEST AGENT ..176
FIGURE 69: KNOWLEDGE ENGINEERING WITH DISCIPLE LEARNING AGENT - FROM (BOICU,

2002) ...179
FIGURE 70: ARCHITECTURE OF THE DISCIPLE LEARNING AND TUTORING AGENT SHELL.181
FIGURE 71: LESSON INTERFACE..185

ix

FIGURE 72: TABLE OF CONTENTS..186
FIGURE 73: SAMPLE GLOSSARY..187
FIGURE 74: PRESENTATION OF THE VERACITY CONCEPT ...188
FIGURE 75: REASONING STEP FROM A TEST QUESTION..190
FIGURE 76: INTERFACE OF THE ABSTRACTION EDITOR ..193
FIGURE 77: WIDGET TOOLBAR FOR LESSON DESIGN..195
FIGURE 78: INTERFACE OF THE TEST EDITOR...197
FIGURE 79: LESSON INTERFACE..199
FIGURE 80: TEST GENERATION INTERFACE ...201
FIGURE 81: METHODOLOGY FOR BUILDING A TUTORING SYSTEM..................................204

x

LIST OF ABBREVIATIONS/SYMBOLS

?O1, ?O2,…, ?N1,… - variables in problems, reductions or solutions

∀ - for all

∃ - there is at least one

!∃ - there is only one

tV - set of vertices

tδ - argument function of the tree t

()ttt δ,V= - tree with finite vertices set tV and argument function tδ

vt(x) – the valence of x in tree t

st = (Vst, δst)- sub-tree with finite vertices set Vst and argument function δst

N(t) – natural notation of a tree t

Pt – the set of problem nodes in tree t

Rdt – the set of reduction nodes in tree t

St – the set of solution nodes in tree t

Root(t) – the root of the tree t

Leaves(t) – the leaves of the tree t

tPδ - problem node argument function

xi

tSδ - solution node argument function

tRdδ - reduction node argument function

SN – the sub-node

Partitiont – partition of tree t, a set of sub-trees of tree t

t(i)- a tree at abstract level i

αt(st) – abstraction function of a sub-tree of a tree t

αP(st) – problem node abstraction function of a sub-tree st

αRd(st) – reduction node abstraction function of a sub-tree st

αS(st) – solution node abstraction function of a sub-tree st

PCΛ – set of problem classes of abstraction mapping Λ

SCΛ – set of solution classes of abstraction mapping Λ

RdRΛ – set of reduction rules of abstraction mapping Λ

rRdRΛ – set of root reduction rules of abstraction mapping Λ

APCΛ – set of abstract problem classes of abstraction mapping Λ

ASCΛ – set of abstract solution classes of abstract mapping Λ

ARdRΛ – set of abstract reduction rules of abstract mapping Λ

Λ(σ) – abstraction mapping of a class σ ∈ PCΛ ∪ SCΛ ∪ RdRΛ

ΛP(σ) – problem abstraction mapping of a problem class σ

ΛS(σ) – solution abstraction mapping of a solution class σ

xii

ΛRd(σ) – reduction abstraction mapping of a reduction rule σ

ΛrRd(σ) – root reduction abstraction mapping of a reduction rule σ

ABSTRACT

ABSTRACTION OF REASONING FOR PROBLEM SOLVING AND TUTORING
ASSISTANTS

Vu Le, PhD

George Mason University, 2008

Dissertation Directors: Dr. Gheorghe Tecuci and Dr. Mihai Boicu

This dissertation presents an approach to the abstraction of the reasoning of a

knowledge-based agent that facilitates human-agent collaboration in complex problem

solving and decision-making and the development of systems for tutoring expert problem

solving to non-experts.

Effective human-agent collaboration requires an ability of the user to easily

understand the complex reasoning generated by the agent. The methods presented in this

dissertation allow the partition of a complex reasoning tree into meaningful and

manageable sub-trees, the abstraction of individual sub-trees, and the automatic

generation of an abstract tree that plays the role of a table of contents for the display,

understanding and navigation of the concrete tree.

Abstraction of reasoning is also very important for teaching complex problem-solving

to non-experts. This dissertation presents a set of integrated methods that allow the

abstraction of complex reasoning trees to define abstract problem solving strategies for

tutoring, the rapid development of lesson scripts for teaching these strategies to non-

experts, and the automatic generation of domain-specific lessons. These methods are

augmented with ones for learning and context-sensitive generation of omission,

modification, and construction test questions, to assess a student’s problem solving

knowledge.

The developed methods have been implemented as an extension of the Disciple

learning agent shell and have led to the development of the concept of learning and

tutoring agent shell. This is a general tool for building a new type of intelligent assistants

that can learn complex problem solving expertise directly from human experts, support

human experts in problem solving and decision making, and teach their problem solving

expertise to non-experts. The developed learning and tutoring shell has been used to build

a prototype tutoring system in the intelligence analysis domain which has been used and

evaluated in courses at the US Army War College and George Mason University.

1

1. Introduction

1.1. Knowledge-Based Agents

An important goal of Artificial Intelligence is to develop knowledge-based agents that

represent the subject matter expertise of human experts in particular domains, such as

engineering design, emergency response planning, intelligence analysis, medical

diagnosis and treatment, etc. These agents could act as “interactive, user-adaptive

problem solving aids that understand what they do, accept goals being set as input rather

than instructions or deduce such goals, and, once these goals are identified, aim at solving

them independently from their user” (Kaschek, 2006).

A knowledge-based agent may be used by a subject matter expert as a decision-

making assistant, or by a non-expert user as an expert system, or by a student as a

tutoring system. In the words of Edward Feigenbaum (1993), “Rarely does a technology

arise that offers such a wide range of important benefits of this magnitude. Yet as the

technology moved through the phase of early adoption to general industry adoption, the

response has been cautious, slow, and ‘linear’ (rather than exponential).”

There are several explanations of this situation. One is the difficulty of acquiring and

representing the subject matter expertise of human experts (Buchanan and Wilkins,

1993). Knowledge acquisition for tutoring purposes, which also involves building lessons

and exercises, is even more difficult (Murray, 1999). Anderson (1992) estimated that “it

2

takes at least 100 hours to do the development that corresponds to an hour of instruction

for a student.” Other difficulties are related to the actual use of such systems. Solving

complex, real-world problems involves reasoning trees with thousands or tens of

thousands of reasoning steps. A user must be able to understand and work with this

complex reasoning if he or she is to use the system as a decision-making assistant.

Similarly, a student has to be able to learn from such a complex reasoning.

A general objective of this PhD dissertation is to investigate how abstraction of

reasoning may advance the state of the art in the development and use of knowledge-

based agents. In particular, we investigate the development of a specific type of

intelligent assistant (see Figure 1) that can:

• learn complex problem solving expertise directly from human experts;

• support human experts in complex problem solving and decision making;

• teach their complex problem solving expertise to non-experts.

Figure 1: Intelligent Learner, Assistant and Tutor

Agent
KB

teach

teachesAgent
KB

Agent KBcollaborate

Agent
KB

Agent
KB

teach

teachesAgent
KB

Agent KBcollaborate

3

For this type of agents, we investigate how abstraction of complex reasoning, viewed

as a type of simplification that removes less important details, may facilitate human-agent

collaboration in complex problem solving and decision-making, teaching complex

problem-solving to non-experts, and rapid development of intelligent tutoring systems for

complex problem solving.

This dissertation builds upon three areas, Expert Systems, Machine Learning, and

Intelligent Tutoring Systems, which are briefly reviewed in the following sections.

1.2. Expert Systems

An expert system is a knowledge-based system which represents the human expertise

in some specialized area and uses that knowledge to solve problems in that area. The

expert system behaves as a human expert during the problem solving process to find

solutions to problems and present the appropriate explanations of the problem solving

process.

The input problems for an expert system are usually complex and difficult enough to

require significant human expertise for their solutions (Feigenbaum, 1982). These

problems demand a substantial body of knowledge with different levels of uncertainty

(Waltz, 1983).

The main modules of an expert system are the knowledge base and the inference

engine. The knowledge base stores the knowledge of a certain expertise domain, acquired

by the knowledge engineer from a given subject matter expert, and encoded in production

rules, heuristics, facts, etc. The inference engine implements a general method for solving

4

problems by using the knowledge from the knowledge base. A main architectural

principle in the development of an expert system is the separation between the inference

engine and the knowledge base (Davis, 1982), as shown in Figure 2. These two modules

are usually built separately so that the same inference engine can potentially be used with

different knowledge bases. Apart from reusing the inference engine (Whitley, 1990), this

makes the knowledge in knowledge base more easily identifiable, more explicit and more

accessible.

Figure 2: Expert System Development

The communication between the subject matter expert and the expert system is a

difficult issue. Each side speaks a different language and the common understanding is

usually vague. The knowledge engineer has to interact with the subject matter expert to

understand how a problem is to be solved, then uses some representation to encode the

expert’s knowledge into the system. This process is time consuming, difficult and error

prone, being well known as the knowledge acquisition bottleneck (Buchanan and

Wilkins, 1993).

Expert System

Inference
Engine

Knowledge
Base

Subject Matter
Expert

Knowledge
Engineer

Dialog Representation

Result

5

Due to the separation between the inference engine and the knowledge base, a generic

inference engine can be developed and used with different knowledge bases to create

expert systems for different purposes. This approach, Expert System Shell, revolutionizes

the way the expert systems are built. The expert system shell contains a generic inference

engine and an empty knowledge base with a pre-defined knowledge representation. Now

the developers of the expert systems are no longer concerned with building the problem

solving engine. Building an expert system reduces to building a knowledge base

following a pre-defined syntax. In addition, most shells provide useful utilities that can

do some additional tasks such as knowledge base integrity checking and debugging

(Whitley, 1990).

A critical characteristic of expert systems that are used as decision-support assistants

is the ability to make very clear their reasoning process. For very complex problems,

however, the reasoning trees are very large, making their browsing and understanding

difficult. This problem can be alleviated by abstracting the reasoning process, as

proposed in this PhD dissertation. This allows the user of an expert system to both get a

general understanding of the reasoning strategy (at an abstract level) and investigate the

details of the reasoning (when needed).

1.3. Machine Learning and Learning Agent Shells

The knowledge acquisition bottleneck plagues the development of expert systems.

One approach to alleviate this problem is to automatically acquire domain knowledge

through learning. Knowledge acquisition can be based on several Machine Learning

strategies (Tecuci, 1998):

6

• Empirical inductive learning from examples learns the definition of a concept

from a set of positive and negative examples. The inductive process generates the

generalized description for that concept (Mitchell, 1978).

• Explanation-based learning learns by observing a single example to improve

system’s performance. However, this technique requires complete and correct

knowledge of the domain under study (Mitchell, 1997).

• Analogical learning learns by transferring knowledge from a source entity to a

target entity (Winston, 1980).

• Abductive learning hypothesizes the causes of observed effects (Josephson et al.,

1987).

• Conceptual clustering classifies a set of objects into concepts and learns the

descriptions of these concepts (Kodratoff and Tecuci, 1988; Fisher, 1987).

• Quantitative discovery discovers quantitative laws that relate to the values of

variables characterizing objects (Langley et al., 1987).

• Reinforcement learning learns by using the feedback on an agent’s performance

from the environment (Sutton, 1988).

• Genetic algorithms learn by evolving a population of individuals over a sequence

of generations (DeJong, 2006).

• Neural networks learn by evolving a network of connected nodes which simulates

the brain’s dendrites and axons (Rumelhart and McClelland, 1986).

7

• Multistrategy learning integrates complementary machine learning approaches to

solve learning problems that are beyond the capabilities of the integrated methods

(Michalski and Tecuci, 1994).

A significant advance in the use of machine learning for knowledge acquisition was

the development of the concept of learning agent shell (LAS), as an extension and

generalization of the concept of expert system shell (Tecuci, 1998). A learning agent

shell is a tool for building expert systems. It contains a general problem solving engine, a

learning engine and a generic knowledge base structured into object ontology and a set of

rules (see Figure 3).

The main purpose of the learning agent shell is to enable rapid development of the

knowledge base, directly by the subject matter experts, with limited assistance from the

knowledge engineers. A specific type of learning agent shell which was used as an

experimentation platform for this dissertation research is the Disciple shell (Tecuci et al.,

1998; Boicu, M., 2004). It consists of:

• A problem solving component based on problem reduction. This component

includes a modeling agent that helps the user to express his/her contributions to

the problem solving process, a mixed-initiative (step-by-step) problem solving

agent, and an autonomous problem solving agent.

• A learning component for acquiring and refining the knowledge of the agent,

allowing a wide range of operations, from ontology import and user definition of

knowledge base elements (through the use of editors and browsers), to ontology

learning and rule learning.

8

• A knowledge base manager which controls the access and the updates to the

knowledge base. Each module of Disciple can access the knowledge base only

through the functions of the knowledge base manager.

• A domain-independent, graphical user interface.

Figure 3: Learning Agent Shell Architecture

Building an agent for a specific application consists of customizing the shell for that

application and developing the domain knowledge base. The learning engine (which uses

various learning strategies, such as learning from examples, from explanations, and by

analogy) facilitates the building of the knowledge base by subject matter experts. It

reduces the involvement of the knowledge engineers who otherwise would play a very

important role in acquiring knowledge from the expert and encoding it in the knowledge

base. This leads to a significant speed-up of the process of building a knowledge-based

system.

The methodology to build an end-to-end knowledge-based agent with a Disciple shell

is the following one (Tecuci et al., 1999):

Interface
Learning

Problem
Solving Domain KB

ontology+rule

9

• Specification of the problem: The subject matter expert and the knowledge

engineer usually accomplish this step to identify the types of problems to be

solved by the system.

• Modeling the problem solving process as problem reduction: The expert and the

knowledge engineer work together to model the problem solving process as

problem reduction and, in the process, define: a) an informal description of the

agent’s problems, b) instances and concepts are defined, and (3) conceptual

problem reduction trees to guide the training of the agent by the subject matter

expert.

• Developing the customized agent: Add auxiliary components (as needed) such as

graphical viewer for a reasoning tree, special report generation capabilities, etc.

• Importing and developing the ontology: There are many available ontologies that

can be imported partially. The imported ontology is then extended by using the

different tools for different knowledge elements, such as feature editor, problem

editor, object editor, etc.

• Training the agent for its domain-specific problems: During this step, the expert

teaches the agent to solve problems in a cooperative, step-by-step problem solving

scenario. The expert defines an initial problem and asks the agent to reduce it. The

agent will try different methods to reduce the current problem. If the solution was

defined or modified by the expert, then it represents an initial example for

learning a new reduction rule. To learn the rule, the agent will first try to find an

10

explanation of why the reduction is correct. Then the example and the explanation

are generalized to a rule which becomes part of the agent’s knowledge base.

• Testing and using the agent: The agent is tested with additional problems. The

agent will solve the problems alone. The solutions are then inspected by the

expert. If the agent generated wrong solutions then the expert will identify the

errors and will help the agent to fix them.

An important characteristic of a Disciple-type learning agent shell is that it allows the

subject matter expert to teach the agent in a very natural way, similar to how the expert

would teach a student. As a consequence, the reasoning of the agent will be very natural,

similar to that of the expert who has taught it. This will facilitate the understanding of the

agent’s reasoning by an end-user. But it also opens a significant opportunity with respect

to tutoring, which is exploited by our dissertation research. It may make possible for such

an agent to teach students in a way that is similar to how it was taught by the subject

matter expert. This is important for two different reasons. First, a new user of the agent

should become familiar with how the agent solves problems, if the user is to use the agent

for decision-support. Second, teaching expert problem solving strategies is an important

application area and easily building such tutoring systems would have a significant

economic impact.

 As discussed in Chapter 6, we have developed the concept of learning and

tutoring agent shell, as an extension of the concept of learning agent shell. A learning and

tutoring agent shell allows rapid development of intelligent tutoring systems for problem

solving knowledge.

11

1.4. Intelligent Tutoring Systems

Intelligent tutoring systems (ITS) emulate the human tutors in teaching the students.

Unlike the computer-based training (CBT) or computer-aided instruction (CAI) systems

(Carbonell, 1970) which drive the students inflexibly following predefined scripts, an ITS

focuses on individualized curriculum that suits the student’s need. In order to do that, the

ITS needs: 1) the representation of the domain knowledge which is handled by the expert

module; 2) the tutoring knowledge which is stored in the tutoring module; and 3) the

knowledge of the student’s capability and progress which is stored in the student module

(Polson and Richardson, 1988). These three modules constitute the backbone of the

tutoring system. The other modules such as the user interface play supportive roles in

preparing and constructing the curriculum customized to the student ability as shown in

Figure 4 (Polson and Richardson, 1988).

Figure 4: General Architecture of an Intelligent Tutoring System

The expert module contains the domain knowledge and has the problem solving

capability necessary for the subjects that the tutoring system is designed for. Acquiring

Expert Module

Tutoring
Module

Student
Module

User Interface

12

the expert knowledge is both time consuming and difficult. For instance, Anderson

(1998) estimated that for the applications to programming and mathematics, over 50% of

the effort goes into encoding the domain knowledge (Anderson, 1998).

There are several models that are typically used by the expert module. The black box

model encapsulates the domain knowledge and delivers the output based on the given

input without explanations of why the problem is solved that way (Anderson, 1998). This

type of behavior can be used to judge the correctness of student’s performance while

executing the same tasks. A typical example of the use of a black box model in a tutoring

system is SOPHIE (Brown et al., 1982) which teaches students how to troubleshoot

faulty electronic circuits. An alternative model is based on expert systems and is widely

used in teaching the expert knowledge (Anderson, 1998). A classic and well-known

tutoring system which teaches students how to diagnose the bacterial infection is

GUIDON (Clancey, 1987). GUIDON is based on the MYCIN expert system and

generates explanations of how the results have been obtained. Yet another type of expert

model is the cognitive model. This model simulates the “human problem solving in a

domain in which the knowledge is decomposed into meaningful, human-like components

and deployed in a human-like manner.” (Anderson, 1998). A typical example of this type

is the LISP Tutor (Anderson and Reiser, 1985) which teaches the students how to

program in LISP. Because the cognitive systems simulate the human problem solving

knowledge, the understanding of different types of knowledge that need to be tutored is

useful. There are 3 levels of knowledge: procedural, declarative and qualitative. The

procedural knowledge relates to how a task is performed (Anderson, 1998). The LISP

tutor is a cognitive tutoring system which uses procedural knowledge. The declarative

13

knowledge is a set of facts appropriately organized to be reasoned with. The tutoring

systems which use the declarative knowledge are designed to teach the students the basic

principles and facts of the domain and how to reason with them in general (Anderson,

1998). An example of this type of tutoring system is SCHOLAR which teaches the

students the South American geography (Carbonell, 1970). Qualitative knowledge is “any

kind of knowledge that does not always allow a correct and consistent match between the

represented objects and the real world, but can nevertheless be used to get approximate

characterizations of the behavior of the modeled domain” (Furnkranz, 1992). This type of

knowledge therefore underlies the human capability of simulation and reasoning. Thus it

is essential in the troubleshooting process. SOPHIE (Brown et al., 1982) uses this type of

knowledge as well to teach a student how to troubleshoot a faulty circuit.

The student module (see Figure 4) evaluates the student’s performance to determine

his/her knowledge of the domain and reasoning skills (Ong and Ramachandran, 2000).

The student model built and maintained by this module uses that understanding to help

the student in many ways. It can advance the student to a higher level if it is determined

that the student succeeded in answering most of the questions or seemed to master the

presented topics. The tutoring system can give explanations to the student based on the

concepts and definitions that have been previously presented to the student and are

recorded in the student model. Or the system can give some advice during runtime when

the student model can “feel” that the student does not know how to proceed further based

on his/her suboptimal performance or misconceptions (Digangi, A. S., et al., 1999).

14

There are 3 types of student models: overlay model, differential model and

perturbation model (Smith, 1998; Tsinakos and Margaritis, 2000). In the overlay model

the student’s knowledge is a subset of the expert’s knowledge. The student knowledge

will expand when more knowledge is acquired and eventually becomes the expert

knowledge. The differential model is an extension of the overlay model where it focuses

on two types of learner knowledge: the knowledge that the student must have, and the

knowledge the student is not exposed to. The student knowledge may never be the expert

knowledge and is limited by the knowledge that the student is not supposed to be exposed

to. Neither the overlay model nor the differential model supports the correction of the

faulty knowledge of the student. The perturbation model is an overlay model with such

faulty knowledge which is called “bug library” (Tsinakos and Margaritis, 2000).

The student performance is evaluated by the student model. This model keeps track of

student progress. The tutoring module interacts with the student module to define the

curriculum which is appropriate, based on the student’s capability. This module must

possess at least the following three characteristics (Halff, 1988):

• It should control the generation of the curriculum (which is the selection and

sequencing of the material to be presented).

• It should be able to answer the questions posted by the student during the tutoring

process.

• It should have a mechanism to determine when the student needs help and what

type of help the student should receive.

The tutoring module can define different tutoring strategies to deal with different

student skills. For the beginner, the tutoring module can guide the student with step-by-

15

step procedures. For the advanced student, it can decide to have the student work on

her/his own unless the student needs help. In other words, the tutoring module adapts to

the student performance and skill to ensure the effective learning.

In our dissertation research we have developed an abstraction-based approach for

tutoring expert problem solving knowledge, as discussed in Chapter 4.

1.5. Sample Application Area: Intelligence Analysis

The purpose of intelligence analysis is to analyze available partial and uncertain

information in order to estimate the likelihood of one possible outcome, given the many

possibilities in a particular scenario. An intelligence analyst has to solve complex

problems such as

• Assess whether Location-A is a training base for terrorist operations.

• Assess whether Agent-B has nuclear weapons.

• Assess whether Agent-C is pursuing nuclear energy for peaceful purposes.

Solving such problems involve analyzing large amounts of uncertain, incomplete

and/or incorrect information in the form of pieces of evidence whose relevance and

believability have to be evaluated and correlated. They result in large reasoning trees of

thousands or even tens of thousands of reasoning steps.

Therefore, this application domain is very appropriate for demonstrating and testing

the abstraction-based methods proposed in this dissertation

1.6. Dissertation Overview

The rest of this dissertation is organized as follows. Chapter 2 presents the research

problem addressed along with other related research. Chapter 3 presents the developed

16

theory for abstracting a complex reasoning tree generated by a knowledge-based agent, in

order to facilitate human-agent collaborative problem solving, and tutoring expert

problem solving to non-experts. Chapter 4 presents the abstraction-based methods

developed to facilitate a human’s browsing and understanding of a complex reasoning

tree generated by an agent. The methods were also evaluated. Then, Chapter 5 presents

the application of our theory of abstraction to the tutoring of expert problem solving

strategies. It describes a set of integrated methods that allow the abstraction of complex

reasoning trees to define abstract problem solving strategies for tutoring, the rapid

development of lesson scripts for teaching these strategies to non-experts, and the

automatic generation of domain-specific lessons. It also describes the developed methods

for learning and context-sensitive generation of omission, modification, and construction

test questions, to assess a student’s problem solving knowledge. It also includes the

evaluation of these methods. Chapter 6 presents the concept of learning and tutoring

agent shell, the architecture of the prototype shell developed, and the methodology of

building a learning and tutoring agent with such a shell. Chapter 7 concludes this

dissertation with a summary of my research contributions and some of the most

promising directions for future research. The dissertation also includes several

Appendices with more details on several aspects presented in the dissertation.

17

2. Research Problem

2.1. Problem Definition

Research progress in Artificial Intelligence has led to the development of knowledge-

based agents that can solve complex real-world problems requiring large amounts of

human subject matter expertise. In principle, such an agent can be used by a subject

matter expert as a decision-making assistant, or by a non-expert user as an expert system,

or by a student as a tutoring system.

A critical requirement for such a knowledge-based agent is the transparency of its

reasoning process. To accept a decision suggested by an agent, its user has to be able to

easily understand how that decision has been reached. Similarly, to teach a student, the

reasoning of the agent has to be natural and easily understood. This requirement becomes

increasingly difficult to be achieved when the reasoning trees generated by the agent are

very complex, with thousands of reasoning steps. This also makes it very difficult, not

only to teach a student, but also to build the necessary tutoring knowledge.

Abstraction of complex reasoning, viewed as a type of simplification that removes

less important details, may be the key to both facilitate human-agent collaboration and

teach students complex problem-solving.

Consequently, the problem addressed by this dissertation research is to develop an

approach to the abstraction of complex reasoning processes that facilitates:

18

- human-agent collaboration in complex problem solving and decision-making;

- rapid development of intelligent tutoring systems for complex problem solving;

- teaching complex problem-solving to non-experts.

Figure 5 shows the three main processes that are addressed by the researched

approach to abstraction: human-agent collaboration, instructor authoring of tutoring

knowledge, and agent teaching of a student.

Figure 5: Processes Facilitated by the Proposed Approach to Abstraction

A fourth process, related to those from Figure 5, is that of knowledge acquisition

from a subject matter expert. This process is critical because it is the knowledge acquired

from the subject matter expert that is used in problem solving, and it is this knowledge

that has to be taught to a student.

One of the most advanced and successful approaches to knowledge acquisition is to

use a learning agent that can be taught directly by a subject matter expert how to reason

and solve problems, as illustrated by the family of Disciple systems (Tecuci et al., 1998;

Agent KBcollaborate
User

AgentKB
Student

teach
Instructor

author

Agent KBcollaborate
User

AgentKB AgentKB
Student

teach
Instructor

author

19

Boicu 2002). One advantage of this knowledge acquisition approach to the research

problem we are investigating is that the reasoning of the agent is already natural, as it

emulates the reasoning used by the expert when teaching the agent. Thus our efforts can

concentrate on how abstraction can deal with the complexity of the reasoning trees, and

not with reformulating this reasoning to make it more natural. Moreover, the agent might

be able to teach a student similarly to how it was taught by the subject matter expert.

This creates the opportunity to develop a new type of intelligent assistant that

integrates the three complementary capabilities shown in Figure 1:

• can learn complex problem solving expertise directly from human experts;

• can support human experts in complex problem solving and decision making;

• can teach their complex problem solving expertise to non-experts.

The addressed research problem includes:

• the development of a theory of the abstraction of complex reasoning processes for

collaborative problem solving and tutoring;

• the development of methods for abstracting concrete reasoning trees to facilitate

collaborative problem solving;

• the development of methods for abstracting concrete reasoning trees to facilitate

the tutoring of expert problem solving strategies;

• the development of abstraction-based methods for authoring lessons to teach

students;

• the development of methods to teach the agent to generate test questions;

20

• the development of the concept of learning and tutoring agent shell as a powerful

tool for building learning, problem solving and tutoring agents for complex

application domains.

The next section discusses the related research, pointing to existing limitations that

are addressed by our work.

2.2. Related Research

There are two major issues presented in this dissertation. One is the abstraction

theories and the other is the intelligent tutoring systems. The two will be discussed in

details in Section 2.2.1 and Section 2.2.2 respectively.

2.2.1. Abstraction Related Research

Abstraction has been widely used in human perception, reasoning and problem

solving. Its benefit has motivated the Artificial Intelligence theorists and practitioners to

capture the underlying principles and characteristics of abstraction and apply them to

building intelligent systems that can reason and solve problems. The theories of

abstraction were needed for three reasons: to understand different abstraction approaches

that have been used in the past, to justify the need to use abstraction in terms of

computational complexity, and to construct the intended abstractions automatically

(Zucker, 2003).

There are several existing theories of abstractions. In essence, they can be classified

into four categories (Zucker, 2003): abstraction as predicate mapping (Plaisted, 1981),

(Tenenberg, 1987), abstraction as mapping between formal systems (Giunchiglia and

Walsh, 1992), abstraction as semantic mapping of interpretation models (Giordana and

21

Saitta, 1990), (Nayak and Levy, 1995), and perception-based abstraction (Saitta and

Zucker, 1998). We will present the frameworks for each of the categories and find the

relations between them and our abstraction of reasoning presented in Chapter 3.

Abstraction as Predicate Mapping

Abstraction as predicate mapping is the class of abstractions that maps a set of

predicates in one first-order language to those of another language f: P1 → P2 where P1 is

a set of predicates of language L1, and P2 is a set of predicates of language L2. The

mapping f is not a one-to-one relationship. It is possible that more than one predicate pi ∈

P1 can be mapped to the same predicate pj ∈ P2. The mapping f then can be extended to

map the literals in L1 to those in L2 (Tenenberg, 1987).

The predicate mappings are in fact the subclass of abstraction mapping defined in

(Plaisted, 1981), quoted by Tenneberg (1987).

Definition 1.1 (Abstraction Mapping – Plaisted, 1981): “An abstraction is an

association of a set f(C) of clauses with each clause C such that f has the following

properties:

[1] If clause C3 is a resolvent of C1 and C2 and D3 ∈ f(C3), then there exist D1 ∈ f(C1)

and D2 ∈ f(C2) such that some resolvent of D1 and D2 subsumes D3.

[2] f(∅) = {∅}.

[3] If C1 subsumes C2, then for every abstraction D2 of C2 there is an abstraction D1 of

C1 such that Dl subsumes D2.” ■

If f is a mapping with these properties, then we call f an abstraction mapping of

clauses. The set of clauses C is called original theory and f(C) is called abstract theory.

22

The mapping however could lead to undesirable false proof - discovered in (Plaisted,

1981), as quoted by Zucker (2003). To solve this problem Tenneberg proposed the

Restricted Predicate Mappings. The restriction interprets an abstract predicate of the

abstract theory as the union of the predicates from the original theory that are mapped to

it (Tenneberg, 1987).

This type of abstraction however is not applicable to our abstraction of reasoning due

to the fact that it does not take into account the reason why the abstraction is justified,

i.e., the semantics of the abstraction.

Abstraction as Mapping between Formal Systems

Giunchiglia and Walsh (1992) defines a formal system Σ as a triple (Λ, ∆, Ω) where

Λ is the language, ∆ is the deductive engine of the system Σ and Ω is the set of axioms.

Definition 1.2 (Formal System Abstraction – Giunchiglia and Walsh, 1992): “An

abstraction, written as f: Σ1 => Σ2 is a pair of formal systems (Σ1, Σ2) with language Λ1

and Λ2 respectively, and an effective total function fΛ: Λ1 → Λ2. “■

Σ1 is called “ground space” and Σ2 “abstract space”, the effective total function fΛ is

an abstraction. The function fΛ is called “total” because all the well-formed formulas

(wff) of the system Σ1 are mapped to Σ2.

According to Giunchiglia and Walsh (1992), there are three types of abstraction:

theorem increasing (TI), theorem decreasing (TD), and theorem complete (TC). They are

defined as follows:

Definition 1.3 (T* Abstraction – Giunchiglia and Walsh, 1992): “An abstraction f:

Σ1 => Σ2 is called

23

• TC abstraction iff, for any wff α, α ∈ TH(Σ1) iff fΛ(α) ∈ TH(Σ2).

• TD abstraction iff, for any wff α, if fΛ(α) ∈ TH(Σ2) then α ∈ TH(Σ1).

• TI abstraction iff, for any wff α, if α ∈ TH(Σ1) then fΛ(α) ∈ TH(Σ2)”

where TH(Σ1) is the set of theorems of Σ1 and TH(Σ2) is the set of theorems of Σ2. T*

abstraction is either of the types. ■

In TC abstraction, all members of TH(Σ1) are mapped to all members of TH(Σ2), as

shown in middle of Figure 6. In TD abstraction, only a subset of TH(Σ1) is mapped to the

members of TH(Σ2) as shown in top part of Figure 6. An example of such abstraction is

the dropping axioms and/or inference rules. TD abstraction is therefore called weak

abstraction, because not all members of TH(Σ1) are mapped to TH(Σ2). Oppositely, the TI

abstraction maps all members of TH(Σ1) to a subset of TH(Σ2) (bottom part of Figure 6).

TI abstraction is preferable in problem solving because all the ground problems can have

solutions once their abstract problems are solvable (Giunchiglia and Walsh, 1992). An

example of TI abstraction is Abstrips which builds STRIPS plan (Giunchiglia and Walsh,

1992). Abstrips’s operators together with pre-condition apply to the current state to

generate new states. The TI abstraction can be applied to it. For example, the operator for

climbing an object with a condition of being climbable

at(z, x, s) Λ climbable(y, z, s) → at(z, x, climb(y, z, s))

can be abstracted to

at(z, x, s) → at(z, x, climb(y, z, s))

with the condition of climbable being dropped.

24

This theory is useful in terms of classification of different types of abstractions. This

theory of abstraction, however, is just a syntactic abstraction that does not take into

account the semantics of the abstraction. Therefore, it is not qualified as our desirable

theory of abstraction of reasoning where the underlying justification is too important to

ignore.

Figure 6: TD, TC and TI Abstractions

Abstraction as Mapping between Models

What we have presented so far is the syntactic abstraction. This type of abstraction

does not take into account the underlying justifications that lead to the abstraction

TC abstraction

TI abstraction
TH(Σ1) TH(Σ2)

TH(Σ1) TH(Σ2)

TD abstraction
TH(Σ1) TH(Σ2)

25

(Zucker, 2003). Nayak and Levy (1995) proposes the theory of semantic abstraction. This

theory defines the abstraction on the model level rather than the predicate level as the

syntactic approaches. The semantic abstraction consists of two steps: the first step is to

abstract the intended domain model and the second step is to construct the abstract

formulae to capture the abstracted domain model. The abstract formulae are indeed the

justification of the syntactic abstraction of the first step.

Nayak and Levy (1995) base their abstraction theory on the model which is defined as

“an interpretation, I, is a model of a set of sentences, Σ, (denoted I |= Σ) if and only if I

satisfies each sentence in the set” (Nayak and Levy, 1995).

Definition 1.4 (Model Increasing Abstractions – Nayak and Levy, 1995): “Let

Tbase and Tabs be sets of sentences in languages Lbase and Labs, respectively. Let π:

Interpretations(Tbase) → Interpretations(Tabs) be an abstraction mapping. Tabs is a model

increasing abstraction of Tbase, with respect to π, if for every model Mbase of Tbase, π(Mbase)

is a model of Tabs.”

One important notion that Nayak and Levy (1995) propose is the simplifying

assumption. This notion can be used to prevent false proofs and can be used to evaluate

the usefulness of the abstraction by the assessment of the reliability of the simplifying

assumption (Zucker, 2003). Let us consider two railroad cars that are linked by a linkage.

The linkage is modeled as a spring with a very large sprint constant, i.e., the spring is

very stiff. The simplifying assumption sets the linkage as infinitive which makes the two

railroad cars become one single rigid body. According to Nayak and Levy (1995),

viewing abstraction as a combination of MI abstraction and simplifying assumption has

26

two advantages: one is that the simplifying assumption is made explicit and therefore it is

very useful in reasoning or modeling. The other advantage is the MI abstraction admits

false proof only when the simplifying assumption is inappropriate.

The theory of semantic abstraction now is equipped with the semantic underlying

justification. It constructs the abstract formulae as the justification of the syntactic

abstraction. The theory is based on models instead of on predicates as the other two. With

these two properties, the theory of semantic abstraction can be a starting point in our

formulation of abstraction of reasoning. The reasoning that is embedded in intelligent

assistants is the product of a multi-step process from modeling the expert knowledge to

learning the reasoning rules. We expect to have a theory that can capture such a

complicated process. The next theory of abstraction comes closer to what we anticipate.

Perception-Based Abstraction

Perception-based abstraction was developed based on the observation that the

conceptualization of a domain involves at least four different levels. They are perception,

structure, language, and theory levels (Zucker, 2003). The concrete level is the world W

where the concrete objects exist. The objects are perceived by the observer through

his/her physical sensors. The perception P(W) is what the observers “feels” about the

world, not the world per se. The perception is the internal representation of the perceived

world. The perception however decays over time; the memorization of the perception into

a structure S must be implemented to preserve the perception. The structure is the

external representation of the perceived world. So far P(W) and S exist with respect to

the observer only. To be able to reason about the perceived world, there must be a

27

language L to communicate with other agents. Now the perceived world can be described

intensionally. Finally, the theory T is established to embed the properties and the

knowledge of the world (Saitta and Zucker, 1998). Figure 7 shows the four level model

with the general background knowledge providing inputs at all levels. Saitta and Zucker

(1998) define R = < P(W), S, L, T > as a Reasoning Context.

Figure 7: Four Levels of Representing and Reasoning about the World – from
(Zucker, 2003)

28

The abstraction process starts from the perception level and propagates through all the

levels. Figure 8 displays the models of abstraction that occur on the four levels. For each

level, there is a corresponding abstraction operator. Specifically, Pa = ω(Pg(W)), Sa =

σ(Sg), La = λ(Lg) and Ta = τ(Tg).

Sa=σ(Sg)Sg=M(Pg(W))

Pg(W) Pa=ω(Pg(W))

W

Lg=D(Sg) La=λ(Sg)

Tg=F(Lg) Ta=τ(Tg)

A

ω

σ

λ

τ

Figure 8: Knowledge Abstraction and Representation - from (Mustière et al., 2000)

Figure 9 presents an example of perception-based abstraction in cartography. This

example concerns two aspects: the modeling of the knowledge acquisition of the map

design process and partial automation of the process named cartographic generalization

29

(Zucker, 2003). The horizontal axis shows the abstraction process and vertical one shows

the reformulation process.

As for the modeling process, the world W is perceived by aerial photographs or

satellite images Pg(W). The abstraction occurs at the perception level to map the captured

images with appropriate resolutions Pa = ω(Pg(W)) (step 1 in Figure 9). Step 2 involves

the expert – photogrammetrist - who extracts a Digital Landscape Model (DLM) that

contains the coordinates of all the objects in the images. This is the process of

determining Sg = M(Pg(W)). This step involves the abstraction and reformulation of an

image to have it structured in some recognizable form and associated with categories

such as road, building, rivers, etc - Sa = σ(Sg). In the third step, a language L is selected to

assign symbols to map objects, such as houses, roads, etc. Lg = D(Sg). The abstraction of

the language level is not applied in the modeling process, but it will be used in the

cartographic generalization process. Finally, the theory level is achieved by the use of

maps in different areas, such as space and landscape analysis, direction guidance, or

geographic theory, Tg = T(Lg) (Zucker, 2003).

With regard to the cartographic generalization process, the abstraction involves

repetitive scaling, reorganization of the map objects, and arrangement of different levels

of details, La = λ(Lg). The basic operations that the expert uses in this process are the

applications of transformation algorithms to the GDB (Zucker, 2003).

30

Figure 9: Application of Perception-Based Abstraction in Cartography - from
(Zucker, 2003)

This view of abstraction is appropriate to what we have been doing in our research.

At the first level, the expert knowledge is acquired and modeled. At the second level, the

knowledge is structured into knowledge base components such as problem classes,

reduction rules, solution classes and so on. At the third level, the knowledge components

are the set of symbols and the operators are defined upon the symbols to construct an

instantiated reasoning tree. At each level, there is a corresponding abstraction, but we are

31

interested of the abstraction of reasoning trees, i.e., the abstraction at the third level.

Chapter 3 presents a formal definition of the abstraction of the reasoning trees.

2.2.2. ITS Related Research

The rapid development of an intelligent tutoring system (ITS) has been an important

research area. Developing an ITS is notoriously costly and time consuming. In addition to

that, the ITS development requires high skills in programming and cognitive science.

Therefore it is hard for teachers who do not have experience or skills in computer science

to develop such systems. The ITS authoring systems are intended to provide tools that

can ease the process of developing an ITS. Murray (2003) classified the authoring

systems into seven types:

• Curriculum sequencing and planning authoring which focuses on organizing

instructional units into a hierarchy of courses, lessons, presentations. Each

instructional unit typically has an instructional objective. The content of the

tutoring system built by this type usually consists of canned texts and graphics,

which is applicable for computer-based learning. The limit of this type of

authoring systems is the shallow skill representation (Murray, 2003).

• Tutoring strategies authoring which presents diverse tutoring strategies. This type

of systems is similar to the curriculum sequencing authoring above in the sense

that the content consists of canned texts and graphics. However, it has

sophisticated tutoring strategies and “meta-strategies” that select the appropriate

tutoring strategies in a given situation. The weakness of this category is also the

shallow skill representation (Murray, 2003).

32

• Simulation-based learning authoring which builds a simulation system for

tutoring purposes. The expert knowledge in the systems belonging to this category

consists of the component locations and operational scripts. The performance

monitor and feedback are straightforward such as “You should have checked the

safety valve as your next step.” The most difficult task in building the tutoring

system of this category is building the device simulation. The limits of this type of

authoring systems are limited instructional strategies and limited student model

(Murray, 2003).

• Expert systems authoring which uses rule-based expert system to construct the

tutoring systems. The expert systems provide relatively deep domain knowledge

and can solve problems. Such systems not only teach but can also help students

when stuck to continue next steps or to complete the solution for the entire

problem. The weaknesses of this type of authoring systems are the difficulty of

building the expert systems, limited to procedural and problem solving expertise

and limited instructional strategies (Murray, 2003).

• Multiple-knowledge types authoring treats knowledge into different types: facts,

concepts and procedures. The tutoring systems built by this type of authoring

system tend to treat the knowledge differently. The limits are relatively simple

facts, concepts and procedures. It is also limited by the predefined tutoring

strategies (Murray, 2003).

• Special purpose authoring specializes in particular tasks or domains. The authors

are usually given the templates to fill them in. The examples of how to fill in the

33

blank are given to help the author doing the task. Once the tutor is built by using

this type of authoring system, it is only used for that particular task. The limits of

this type of systems are each tool is confined in specific type of tutor and the

inflexibility of representation and pedagogical knowledge (Murray, 2003).

• Intelligent/adaptive hypermedia authoring which builds the web-based tutoring

systems. These systems have limited interactivity and student model. These

systems are constrained by the bandwidth (Murray, 2003).

In this dissertation, we focus only on the expert system type of authoring tools.

Compared to other types of systems, authoring an expert system is particularly complex

and time-consuming task (Murray, 1999). Due to that reason, there are only a few such

systems available for evaluation or usage. Among them are Demonst8 (Blessing, 1997),

Simulated Students (Matsuda et al., 2005), Assistment Builder (Turner et al., 2007),

DIAG (Eugenio, 2005) and CTAT (Aleven et al., 2006). We will review them in

following subsections to identify their strengths and weaknesses as compared to our new

approach.

Demonstr8

One approach to rapid development of a cognitive tutoring system is using the

programming by demonstration technique. The basic idea behind this approach is that the

demonstrations of how to solve particular problems from the creator are generalized to

become the rules for teaching the students how to solve that problem. Demonstr8 is the

authoring tutoring system that employs that technique (Murray, 1999). The author can

create different tutoring systems by using the provided toolkit to create the user interface

34

for each system. The higher-order working memory elements (WME) must be defined for

that particular interface. Each interface can be associated with multiple WMEs. Each

WME can be responsible for a particular feature such as name, number of columns in a

subtraction interface, etc. The WME can be created by grouping several interface

components or by building the table of values. The most important WME is the problem

WME which semantically describes a problem. In the subtraction problem, the WME

problem is a table of values, as shown in Figure 10.

Figure 10: The Subtract Knowledge Function - from (Blessing, 1997)

Once the WMEs associated with the desired user interfaces are constructed, the

author can demonstrate the skill to be tutored, and have Demonstr8 induces the

underlying production rules (Blessing, 1997). The author first creates an example by

using the newly built interface. Then he/she starts solving the problem. This can be done

35

in two ways: either the author interacts directly with the Knowledge Function, or he/she

enters input and output values. The system will induce the production rules based on the

WMEs.

Demonstr8 is useful in creating a simple tutoring system to teach simple problems in

arithmetic or algebra, but it is difficult to deal with more complex problems. The reason

is the system totally relies on the WMEs which are constructed from the interface toolkit.

It is difficult to define and solve complex problems by merely manipulating the interface

elements. Another reason is that Demonstr8 induces simple production rules from a

single example (Jarvis, 2004). That makes it hard to have the production rules cover a

broad set of examples, and tends to make them overly general. It also causes the problem

for rule refinement, the important process in learning agent. The rule refinement requires

the production rules are able to be modified either manually or automatically to cover the

exceptions or new conditions. As Matsuda (2005) pointed out, Demonstr8 hard codes

pre-defined predicate symbols to specify conditions to fire the rules; hence it is difficult

to add conditions or exceptions to these rules. My research is based on a Learning Agent

Shell (Tecuci, 1998) which facilitates the knowledge acquisition and refinement. The

research also presents a new approach that overcomes the difficulty to deal with complex

problems by using the abstraction of reasoning to construct the tutoring lessons for

complex domains (see Section 5.1.1).

Simulated Student

Another authoring system named Simulated Student (Matsuda et al., 2005 a), a

machine learning agent, is using the programming by demonstration technique. Simulated

36

Student observes the author’s demonstrations of solving a task and induces a set of

production rules that replicate the author’s performance.

The instructor starts the content construction by building the desired GUI for the

Cognitive Tutor using the system’s toolkit. The instructor then specifies all the necessary

predicate symbols and operator symbols which will be represented in production rules.

The operator symbol represents the function which takes parameters as input and

produces a single value. The predicate symbol functions as a test for a specific feature.

All the symbols are task-dependent and have to be crafted carefully to produce the

desired results. Once all the symbols are defined, the instructor presents a few

demonstrations by solving a certain numbers of problems. The demonstrations are fed

into the Simulated Student and generalized into production rules. The production rules

are then loaded back into the Cognitive Tutor with the GUI components. The resulted

production rules are tested by trying to solve different problems. Some erroneous rules

may be generated and will be corrected by the tutors either by using the GUI component

or by modifying the rules directly. Figure 11 illustrates the interface of the Cognitive

Tutor.

Figure 11: The Interface of a Cognitive Tutor - from (Matsuda, 2005 a)

37

The production rules define a way to manipulate objects such as buttons, text fields,

etc. A production rule consists of three main components: working memory element path,

feature tests (the left hand side), and a set of operators (the right hand side) (Matsuda et

al., 2005 b). The working memory element (WME) path is the sequence of WMEs from

the problem to the current WME. Each WME is associated with a GUI element, so the

sequence of GUI elements in solving a problem is captured in the WME path.

The Simulated Student is easy to use when building the small and simple tutoring

systems. The learning agent learns the production rules from the demonstrations. This

system, however, is plagued by the limitation of the available GUI elements to capture

the complex actions during the demonstration. Furthermore, the number of demonstrated

problems required to induce the production rules are high. Matsuda et al. (2006) stated

that solving ten problems generated nine production rules for algebra equation solving.

Therefore to solve a real world problem, there must have been a larger number of

problems to be used for demonstration. The other drawback of this system is the machine

learning techniques being used in the system. Simulated System uses only the inductive

generation which is limited compared to multi-strategies learning mentioned in Section

1.3. The rule revision is also simple, only the manual refinements are available either by

GUI manipulation or directly on the production rules. This type of refinement limits the

agent to apply the revision to similar production rules in the system. Matsuda et al.

(2007) acknowledged that having training on twenty problems, the correctness of the

production rules were just 82% which is a slow progress. So far the Simulated Student

38

has been tested only on some simple domains such as algebra equation solving, long

division, multi-column multiplication, fraction addition, chemistry and Tic-Tac-Toe

(Matsuda et al., 2007). In other words, it is almost impossible to build an intelligent

tutoring system for complex domains such as planning using Simulated Student.

My research is able to overcome the problems presented above. Based on its learning

capability, the tutoring system is able to acquire expert knowledge to solve complex

problems. Using the abstraction of reasoning facilitates the process of building the

curriculums that cover the strategies that has been used in problem solving, even in a

complex domain such as Intelligence Analysis (see Section 5.1).

Assistment Builder

The purpose of the Assistment Builder is to help the teacher who has little or no

computer science and cognitive psychological background to build a cognitive tutoring

system in a relatively short time (Turner et al., 2005). The system is built based on the

state graphs which are finite graphs with arcs representing the student’s actions and nodes

representing the states of the problem’s interface. The student’s actions change the states

of the system which are stored in the state graph. The state graph models the expected

behaviors in problem solving, and can predict behaviors as well as provide feedback on

them. The instructional scaffolding – a technique to promote learning at different levels,

providing sufficient supports at first and reduce them gradually when the students

develop their own cognitive or learning skill - is implemented in the system and used to

provide the appropriate questions or feedback for students at different levels.

39

The Assistment Builder builds cognitive tutoring systems over the web. The system

implements different tutoring strategies, the scaffolding strategy being one of them. The

underlying content representation, the XML schema, defines the problem. The problem

consists of an interface definition and a behavior definition, plus some metadata such as

problem id and comments (Turner, 2005). The interface definition includes a set of

selected widgets, images and texts to present to the students. The behavior definition is

the state graph with all the transitions between the nodes. One important type of interface

elements is the answerable element. This element is able to capture the student’s actions

and pass them onto the behavior component in the system. The student’s actions then are

analyzed against the state graph which represents the expected behaviors. The difference

between the expected behavior and student behavior is used to provide appropriate

actions.

The behavior acts as the tutoring logic of a problem. It interprets the student’s actions

which are translated into high-level actions before passing them to the behavior

component. Depending on the action and tutoring strategies, different messages can be

invoked such as hints, explanations via buggy messages or even scaffolds. If a student’s

answer is correct, then the problem’s state transitions to a new state. Otherwise, the

student’s actions are mapped to the tutoring strategies and no state transition takes place.

One can use the Assistment Builder to rapidly build a simple tutoring system for a

particular problem. There are five types of interface elements that are used to build the

content: radio buttons, pull-down menus, checkboxes, text-fields, and algebra text fields

that automatically evaluate mathematical expressions. The content builder can assign

40

only two states to each question in the state graph. An arc that connects the two states

allows the student to be moved to the next state if the answer is correct. Along with the

interface elements, messages are added to provide the scaffolding questions, hints and

feedback. Figure 12 presents a snapshot of a lesson preparation interface.

Figure 12: Initial Question, One Scaffold, and Incorrect Answer in Assistment

Builder - from (Turner, 2005)

The Assistment Builder is deployed in several schools. Its domains are usually from

mathematics such as algebra, geometry. Due to the limit of using simple interface

components - radio buttons, pull-down menus, checkboxes, text fields and algebra text

fields to evaluate mathematical expressions - to generate the problem, the system is only

able to construct a simple pseudo-tutor (Turner et al., 2005). The state graphs for each

41

question have only binary values and therefore cannot represent complex reasoning. The

Assistment Builder does not have a capability to learn rules, and thus cannot construct the

tutoring system for problems other than the ones that have been developed specifically by

the instructor. In other words, the system does not learn from one problem to generate

other problems. Therefore it requires a lot of effort from the instructor who designs the

lessons.

The Learning and Tutoring Agent Shell concept (LTAS) that is part of my

contribution can learn from the instructor how to generate lessons automatically and

adaptively from the content of the knowledge base. That capability can ease the burden of

the instructor who designed the lessons (see Section 5.1.2). Furthermore, the tutoring

system is constructed based on the abstraction of a complex reasoning tree that is

appropriate for complex domains.

DIAG

Diagnostic Instruction and Guidance (DIAG) is an authoring system that uses

graphical models to build interactive user interfaces and the lessons. The tutoring systems

built with DIAG – also called DIAG applications - are specialized in troubleshooting

complex systems, such as heating or circuitry, as shown in Figure 13.

42

Figure 13: A Scene from a DIAG Application to Oil Burner - from (Eugenio, 2005)

The DIAG application presents a set of scenarios of faulty systems to the students.

The student has to figure out the defective components by testing the indicators and

inferring what components are not working. Once the problem is identified, the student

has to fix the system by using the graphical model. The set of scenarios is presented in a

sequence ordered by level of difficulty. The student can ask for help via the Consult

menu and the system will generate a context-sensitive hint (Eugenio, 2002).

43

The main feature of DIAG is the automatic generation of the diagnostic instructions.

The steps to author a new diagnostic ITS are (Towne, 1997):

• Create a graphical model of the target system (to be diagnosed) and establish its

modes of operation. The graphical model is developed such that it responds to the

user’s actions and to the failures that are introduced during the troubleshooting

exercises. This is structured in a hierarchy fashion of subsystems. This structure

allows user to go down to different levels of details. The modes of operation are

set by using different combination of switch settings.

• Define the replaceable units (RU) with names, replacement times, and their

reliabilities.

• Define the faults in a pool. Specify what impacts the faults can have on the system

and provide these statements to the student at the end of the exercises. The details

of the statement can vary from simple facts to complex technical details.

• Specify an exercise by selecting a fault from the pool, writing a statement for the

beginning of the exercise, setting up the mode that the system is initially in, and

setting the time limit to troubleshoot the problem. The author can provide

multiple exercises for each fault.

• Produce the symptom data that support the diagnostic reasoning process. DIAG

first generates a provisional set of fault effect statements. It does this by

simulating each fault and recording the frequency of the various outcomes. The

author then refines these statements to reflect his or her own view. Figure 14

44

illustrates the symptom specifications when a faulty RU occurs. The author can

indicate visual symptoms such as the alarm goes off when the fault happens.

Figure 14: Authoring Interface for Specifying Fault Effects - from (Towne, 1997)

DIAG teaches a student to diagnose faulty systems using clarifications and a highly

interactive graphical model. Such a system is useful in occupational training. The

problem with this approach is, however, that for each type of the system, a graphical

model must be defined with details of faulty statements. No learning capability is

45

implemented in this approach to save time for lesson preparation. That drawback is

addressed in this dissertation (see Section 5.1).

CTAT

Cognitive Tutor Authoring Tools (CTAT) is a tool suite for rapid development of

ITSs. CTAT has two types of tutors: example-tracing tutors – also named Pseudo Tutor -

which can be constructed without programming but require problem specific authoring,

and cognitive tutors which, on the contrary, require AI programming to build a cognitive

model but can be used across a range of problems from the same domain. In this research

we review the cognitive tutors which can be compared to our approach.

CTAT is based on the ACT-R cognitive theory (Anderson, 1993). This system

involves creating a cognitive model of a student’s problem solving by using production

rules that governs the misconceptions and the different reasoning strategies that a student

may use. CTAT consists of the set of tools presented in Figure 15 (Koedinger et al.,

2003) such as:

• GUI Builder builds the student interface where the student interacts with the tutor.

The author uses the tool to build the user interface by dragging-and-dropping the

interface widgets on the canvas.

• Behavior Recorder records the solution paths of a given problem demonstrated by

the author. It has three main functions. First, it builds the Behavior Graph which

captures the correct or the incorrect demonstrated behavior. Second, it builds the

example-tracing function which belongs to the first type of the tutor that CTAT

authors. Third, it supports planning and testing of the cognitive model.

46

• Working Memory Editor inspects and modifies the contents of the cognitive

model.

• Production Rule Editor generalizes the production rules based on the

demonstration given by the author.

• Cognitive Model Visualizer debugs the production rules.

Figure 15: CTAT - from (Koedinger et al., 2003)

The production rule model plays an important role in constructing a Cognitive Tutor.

It handles general categories of problems in a specific domain. The module consists of a

specification of the objects in “working memory” representing the initial state of the

47

problem and a set of production rules to transit the objects from one state to the other

until the solution of the problem is reached. The development of the production rules is

supported by Production Rule Editor which uses the user-guided generalization process.

The generalization process starts by the author entering the concrete production rule, and

then the editor generalizes the rule by replacing the constants by the variables and adding

list matching patterns (Koedinger et al., 2003).

CTAT is quickly generating the Pseudo Tutors which tutor only specific problems.

Cognitive Tutors is more interesting in which it can cover similar problems in the same

domain, but writing the production rules for CTAT is a time consuming process due to no

help from the tool. The author must know Jess – the Java Expert System Shell – and write

Jess by hand. Koedinger (2004) stated that it took roughly 200 hour development of

Cognitive Tutor for one hour of instruction. CTAT does not have the capability of rule

refinement. The production rules once written can not be refined unless the author has to

modify the code by himself/herself.

The problem with the CTAT production rules is addressed in our Learning and

Tutoring Agent Shell which allows the instructor to build the lessons without writing a

single line of code. The shell generates the lesson scripts that underlie the lesson

structures designed by the instructor and uses the scripts to construct the lessons

automatically (see Section 5.1.3).

48

3. Abstraction of Reasoning Trees

For real world domains, the formalization of the reasoning process for a given

problem is very complex and involves thousands (or even hundred of thousands) of

specific reasoning steps. It is very difficult to fully review, understand and verify

completely such huge reasoning trees. This section describes an innovative approach of

using an abstraction of the reasoning trees in order to significantly simplifying their

browsing and understanding.

For instance, the problem “Assess whether Al Qaeda has nuclear weapons” from the

Intelligence Analysis domain has a reasoning tree of over 1700 nodes. A large tree is hard

to be rendered intelligibly on a computer display and therefore hard to comprehend. An

abstraction of such a large reasoning tree would help facilitate its browsing and

understanding by a user. In addition, a reasoning tree can be partitioned into several sub-

trees, based on the corresponding abstract problem solving strategies involved. The

abstraction of the reasoning tree in that sense can help identify the abstract reasoning

strategies that the expert had used in teaching the agent. Those learned strategies can be

reused in solving problems or teaching the students how to solve similar problems. The

subsequent sections will explain in detail the methodology of the abstraction of the

reasoning tree and its application for problem solving and tutoring assistants.

49

3.1. Reasoning Tree

A reasoning tree is a special type of tree. Therefore, before defining it, we should take

a look at the definition of a tree, as stated by Meyers (1971):

Definition 3.1 (Tree): A tree is a pair t = (Vt, δt) where Vt is a finite set of vertices of t

and δt(x): Vt → Vt* is the argument function1 of t, δt(x) represents the sequence of

children of the vertex x∈ Vt satisfying the following axioms:

[a] A vertex x cannot be a child of itself and cannot have same child twice:

()xx tt δ,V∈∀ is a (possibly empty) sequence, without repetitions, of elements of

{ }xt \V

[b] There is only one root vertex, which has no parent: there is one and only one

point tr V∈ (called the root of t) such that for no tx V∈ is r an argument of x in t.

Formally: ()xrxr ttt δ∈∈∃∈∃ ,!,! VV .

[c] Each node has at most one parent: for yxyx t ≠∈∀ ,, V then δt(x) and δt(y) have

no elements in common.

[d] There is only a single path from a node x to the root r: !,∃∈∀ tx V sequence S =

xk…x2x1 such that x1 = x, xk = r, xi ∈ δt(xi+1), 1 ≤ i <k. ■

 Notation: If x has n children then δt(x) is defined as δt(x) = x1x2…xn, in this case, xi is

called the ith argument of x in t (i.e. the ith children); if x has no child then δt(x) = λ ,

where λ represents the empty sequence.

1 The argument function of a vertex x is in fact the edge that links x with its n children nxxx ...21

50

Definition 3.2 (Valence): For any node tx V∈ , we define vt(x)∈Z - the valence of x

in t – to be the length of δt(x) (i.e., the number of children of x in t). A vertex tx V∈ is

called an “endpoint” (leave) of t if and only if () 0=xvt or δt(x) = λ , and a “node” of t if

and only if () 0>xvt .■ (Meyers, 1971).

Example of a tree: Figure 16 presents a simple tree which has only six nodes. The

tree is denoted as follows: t = (Vt, δt) where Vt = {a,b,c,d,e,f}, δt(x) = {a→bc, b→de

,c→f, d→λ , e→λ , f→λ }, specifically, δt (a) = bc, δt (b) = de, δt (c) = f, δt(d) = λ ,

δt(e) = λ and δt (f) = λ .

Figure 16: A Simple Tree

Meyers (1971) also defines the sub-tree as follows:

b

a

c

d e f

51

Definition 3.3 (Sub-tree): Given a tree ()ttt δ,V= , and ()ststst ',' δV= , st is a sub-

tree, denoted as st ∈ t if and only if tst VV ⊂' and ()xx stst ',' δV∈∀ is obtained from

the sequence ()xtδ with all elements of Vt \ V’st deleted. ■ (Meyers, 1971).

Definition 3.4 (Singleton Sub-tree): A singleton sub-tree is a sub-tree that has only

one node.

The following definition introduces the natural notation of a tree, which is a

refinement of the isotone notation developed by (Meyers, 1971):

Definition 3.5 (Natural Notation of a Tree): Let t = (Vt, δt) be a tree. A natural

notation of t is a sequence ()*Z(t) t ×∈ VN that satisfies the following properties:

[a] A natural notation is a sequence of the vertices powered by their

valences: () nv
n

vv xxxt ...21
21=N , where xi ∈ Vt, vi = vt(x)∈Z is the valence of xi for i =

1,..,n.

[b] The parent appears before its children: tyx V∈∀ , , if ()xy tδ∈ then ()xvtx

precedes ()yvty in ()tN . This property enforces the prefix notation.2

[c] The children appear from left to right in the sequence: tzyx V∈∀ ,, , if y and z are

the ith and jth arguments of δt(x) and j=i+1 (i.e. y is the left sibling of z) then ()yvty is the

left sibling of ()zvtz in N(t). This property enforces the order of the children from left to

right.■

2 Prefix notation presents the parent before the children

52

As an example, the natural notation N(t) of the tree in Figure 16 is N(t) = a2b2c1d0e0f0.

Lemma 3.1: For a given tree t there is a unique natural notation N(t).

The reasoning tree structure utilizes the problem-reduction/solution-synthesis

paradigm. A brief overview of this paradigm is presented in the next section.

3.1.1 Problem-Reduction/Solution-Synthesis Paradigm

A general problem solving paradigm is the problem-reduction/solution-synthesis

paradigm – this paradigm is also known as “divide and conquer” or “problem

decomposition” (Durham, 2000; Powel and Schmidt, 1998; Tecuci, 1998). In this

paradigm, which is illustrated in Figure 17, a complex problem is successively reduced to

simpler problems via the reduction operators. The reduction continues until elementary

problems are reached for which there are known solutions. Then the synthesis process

begins to synthesize all the solutions successively from the simplest problems upwards

via the synthesis operators, until a solution is found for the original problem.

53

Figure 17: Problem-Reduction/Solution-Synthesis Paradigm

In the illustration from Figure 17, the solution of problem P1 is obtained by reducing

that problem into n simpler problems P11… P1n, via the reduction operators ROi. Each

problem then is reduced into simpler problems. For instance, P11 is reduced to P111…

P11m. P1n is not reduced further because it has its solution S1n. Once the solutions

S111…S11m of the sub-problems P111…P11m are obtained, the synthesis starts by combining

S111…S11m into the solution S11 of problem P11 via the synthesis operators SOj. The

process continues until the final solution S1 of original problem P1 is found.

This paradigm has been successfully applied in a wide variety of problems such as

course of action critiquing (Tecuci et al., 2001), intelligence analysis (Tecuci et al.,

2005), planning (Sebastia et al., 2006), requirements engineering (Maiden and Sutcliffe,

1996), to name a few. As demonstrated in (Barr et al., 1998) the problem reduction

P1

P1n

P111 P11mS111 S11m

S1n

S1

P11 S11

ROi

SOj

54

representation of the problem solving process is equivalent with the state-space search

representation, and most of the problems can be represented using the state-space

representation.

3.1.2 Question-Answering Based Problem-Reduction

In order to facilitate the knowledge acquisition and problem solving processes, the

problem reduction paradigm was refined by introducing a question and an answer to

guide each reduction. The question considers relevant aspects of the problem to be

reduced and the answer suggests how to reduce it (Bowman et al., 2001), as shown in

Table 1.

Table 1: A Question-Answering Based Reduction Step

• Assess the credibility of Osama Bin Laden as the source of EVD-Dawn-Mir01-02c.

• Q: What factors determine the credibility of Osama Bin Laden as the source of EVD-

Danw-Mir01-02c?

A: The veracity, objectivity and observational sensitivity of Osama Bin Laden

because EVD-Dawn-Mir01-02c is testimonial evidence based upon the direct

observation.

• Therefore one has to:

o Assess the veracity of Osama Bin Laden with respect to the information provided

in EVD-Dawn-Mir01-02c.

o Assess the objectivity of Osama Bin Laden with respect to the information

provided in EVD-Dawn-Mir01-02c.

55

o Assess the observational sensitivity of Osama Bin Laden with respect to the

information provided in EVD-Dawn-Mir01-02c.

In this question-answering based problem-reduction paradigm, an application domain

is modeled based on the following main types of knowledge elements: objects (concepts

and instances), features and facts, problems, solutions, examples, explanations and rules

(Tecuci et al. 1999).

• Concepts represent sets of individuals. An example of the concept is “evidence”.

• Instances are the instantiations of concepts in a specific scenario. For example, an

instance of evidence in Intelligence Analysis is “EVD-Dawn-Mir01-02c3”.

• Objects represent individuals or set of individuals in the application domain that

are organized hierarchically in an ontology. An object can be a concept or an

instance.

• Features are to describe further the objects, problems and other features. Each

feature has a domain and a range. The domain of a feature is the set of objects that

can have that feature and the range is the set of possible values of that feature.

The features are hierarchically organized. An example of a feature is “has as

description” whose domain is “evidence” and range is “any string”.

3 EVD-Dawn-Mir01-02c is a fragment of an article by Hamid Mir, published in Dawn, a Pakistani
magazine.

56

• Facts are features with specific values. An example of fact is “EVD-Dawn-Mir01-

02c has as description ‘We have chemical and nuclear weapons as a deterrent

and if America used them against us we reserve the right to use them.”

• Problems represent anything that the agent attempts to solve. An example of a

problem is:

• Assess the credibility of ?O1 as the source of ?O2 (?O1 and ?O2 are variables

that can be instantiated to a person and an evidence, respectively).

• A problem with instantiated variables is called an instantiated problem. The

problem that is illustrated in the top part of Figure 18 is a part of a problem

reduction rule.

Figure 18: Reduction Rule

57

• Solutions are associated with the problems. An example of a solution is “The

credibility of Osama Bin Laden as the source of EVD-Dawn-Mir01-02c is an even

chance”.

• Examples are the instances of problem reduction and solution synthesis steps. An

example can be negative or positive. A negative example represents an incorrect

problem reduction step and a positive example represents a correct problem

reduction step. A positive example of problem reduction step is the one from

Table 1.

• Explanation is the justification of why a problem reduction step or a solution

synthesis steps is correct or incorrect. An explanation is expressed as a set of

facts, called explanation pieces. The explanation pieces for the problem reduction

example in Table 1 are:

o EVD-Dawn-Mir01-02c is testimonial evidence based upon direct observation.

o EVD-Dawn-Mir01-02c is a testimony by Osama Bin Laden.

o Osama Bin Laden is a terrorist.

• Rules are generalizations of problem reduction or solution synthesis steps. For

instance, Figure 18 shows the rule which is a generalization of the problem

reduction step in Table 1. As with a general problem, a rule can be instantiated to

different reduction steps.

3.1.3 Reduction and Synthesis Process

During problem solving, a reasoning tree is created by using the knowledge elements

described in the previous section. This tree is “a natural and explicit representation of the

58

thread of logic of the analyst, as if he or she would be thinking aloud” (Tecuci et al.,

2005). The reasoning tree hierarchically represents the discrete steps in the problem

solving process based on the problem reduction paradigm. The root of the tree indicates

the problem to be solved. The tree is basically composed of successive sequences of

problem – reduction – sub-problems, which are represented by corresponding sequences

of problem nodes - reduction nodes – sub-problem nodes. The reasoning tree consists of

instantiated problems and instantiated reduction rules or reduction examples. Therefore

the reasoning tree represents an instantiated reasoning process.

The Figure 19 illustrates a fragment of an instantiated reasoning tree for assessing the

credibility of Osama Bin Laden as the source of testimonial evidence EVD-Dawn-Mir01-

02c. (a statement made by Osama bin Laden in an interview). The reasoning tree leads to

the assessing of three main components of the credibility. A solution for each of them is

found. Then these solutions are composed, from bottom up, as illustrated in Figure 19

and Figure 20.

59

Figure 19: Hypothesis Analysis through Problem Reduction

The solution of a problem is obtained from the synthesis of the solutions of its sub-

problems. The synthesis starts from the assessed veracity, objectivity and observational

sensitivity of Osama bin Laden (i.e. an even chance, almost certain and almost certain,

respectively). The process goes upward until the solution of the top problem is found

(which is the assessed believability of Bin Laden). The synthesis of the solutions is based

on certain synthesis rules acquired from a subject matter expert. In the example from

Figure 20, the credibility of Osama bin Laden (i.e. “an even chance”) is obtained as the

minimum of his veracity, objectivity and observational sensitivity (i.e. “an even

chance”). Similarly, the believability of Bin Laden as the source of EVD-Dawn-Mir01-

Assess the extent to which one can believe Osama bin Laden as
the source of EVD-Dawn-Mir01-02c

Q: What factors determine the extent to which a source of piece of evidence can be trusted?
A: The competency and the credibility of the source

Assess the competency of Osama bin Laden
as the source of EVD-Dawn-Mir01-02c

Assess the credibility of Osama bin Laden as
the source of EVD-Dawn-Mir01-02c

Assess the veracity of Osama bin
Laden with respect to the information
provided in EVD-Dawn-Mir01-02c

Assess the observational sensitivity
of Osama bin Laden with respect to
the information provided in EVD-
Dawn-Mir01-02c

Assess the objectivity of Osama bin
Laden with respect to the information
provided in EVD-Dawn-Mir01-02c

Q: What factors determine the credibility of the source of EVD-Dawn-Mir01-02c?
A: The veracity, objectivity, and observational sensitivity of Osama bin Laden because
EVD-Dawn-Mir01-02c is testimonial evidence based upon direct observation.

Q: What is the veracity of Osama
bin Laden with respect to the
information provided in EVD-Dawn-
Mir01-02c?
A: an even chance.

Q: What is the objectivity of Osama
bin Laden with respect to the
information provided in EVD-Dawn-
Mir01-02c?
A: almost certain.

Q: What is the observational
sensitivity of Osama bin Laden with
respect to the information provided
in EVD-Dawn-Mir01-02c?
A: almost certain.

The veracity of Osama bin Laden
with respect to the information
provided in EVD-Dawn-Mir01-02c is
an even chance

The objectivity of Osama bin Laden
with respect to the information
provided in EVD-Dawn-Mir01-02c is
almost certain

The observational sensitivity of
Osama bin Laden with respect to the
information provided in EVD-Dawn-
Mir01-02c is almost certain

P1

P2 P3

P4 P5 P6

Rd

Rd2

Rd3 Rd4 Rd5

S1 S2 S3

Reduction Process

60

02c is obtained as “an even chance”, the minimum between his competence and his

credibility4.

Figure 20: Hypothesis Analysis through Solution Synthesis

Due to the fact that the reduction and synthesis processes are synchronized, Figure 20

also indicates the correlation between the reduction process and the synthesis process.

Each problem in the tree (cyan rectangle) is associated with a synthesized solution (light

green rectangle). The question/answer pair from a reduction step (round cyan rectangle)

is associated with a synthesis from a synthesis step which synthesizes the sub-solutions to

a solution (sub-solution is a solution of a sub-problem).

4 The synthesis of the solutions can be performed through different strategies as indicated by the expert
who teaches the agent.

Assess the extent to which one can believe Osama bin Laden at the
source of EVD-Dawn-Mir01-02c

Q: What factors determine the extent to which a source of piece of evidence can be trusted?
A: The competency and the credibility of the source

Assess the competency of Osama bin Laden as
the source of EVD-Dawn-Mir01-02c

Assess the credibility of Osama bin Laden as
the source of EVD-Dawn-Mir01-02c

Assess the veracity of Osama bin Laden
with respect to the information provided in
EVD-Dawn-Mir01-02c

Assess the observational sensitivity of
Osama bin Laden with respect to the
information provided in EVD-Dawn-Mir01-
02c

Assess the objectivity of Osama bin Laden
with respect to the information provided in
EVD-Dawn-Mir01-02c

Q: What factors determine the credibility of the source of EVD-Dawn-Mir01-02c?
A: The veracity, objectivity, and observational sensitivity of Osama bin Laden
because EVD-Dawn-Mir01-02c is testimonial evidence based upon direct
observation

Q: What is the veracity of Osama bin
Laden with respect to the information
provided in EVD-Dawn-Mir01-02c?
A: an even chance

Q: What is the objectivity of Osama bin
Laden with respect to the information
provided in EVD-Dawn-Mir01-02c?
A: almost certain

Q: What is the observational sensitivity
of Osama bin Laden with respect to the
information provided in EVD-Dawn-
Mir01-02c?
A: almost certain

The veracity of Osama bin Laden with
respect to the information provided in
EVD-Dawn-Mir01-02c is an even
chance

The objectivity of Osama bin Laden
with respect to the information
provided in EVD-Dawn-Mir01-02c is
almost certain

The observational sensitivity of Osama
bin Laden with respect to the
information provided in EVD-Dawn-
Mir01-02c is almost certain

Synthesis Process

The observational sensitivity of Osama
bin Laden with respect to the
information provided in EVD-Dawn-
Mir01-02c is almost certain

The objectivity of Osama bin Laden
with respect to the information
provided in EVD-Dawn-Mir01-02c is
almost certain

The veracity of Osama bin Laden with
respect to the information provided in
EVD-Dawn-Mir01-02c is an even
chance

The observational sensitivity of Osama
bin Laden with respect to the
information provided in EVD-Dawn-
Mir01-02c is almost certain

The objectivity of Osama bin Laden
with respect to the information
provided in EVD-Dawn-Mir01-02c is
almost certain

The veracity of Osama bin Laden with
respect to the information provided in
EVD-Dawn-Mir01-02c is an even
chance

The credibility of Osama bin Laden as the source of EVD-Dawn-Mir01-
02c is an even chance

The credibility of Osama bin Laden as the
source of EVD-Dawn-Mir01-02c is an even
chance

The competence of Osama bin Laden as the
source of EVD-Dawn-Mir01-02c is almost
certain

It is an even chance that Osama bin Laden is believable as the source of EVD-Dawn-
Mir01-02c

It is an even chance that Osama bin Laden is believable as the source of EVD-Dawn-
Mir01-02c

SS2SS1

SS4 SS5

SS6

Sy2Sy1

Sy4

Sy5

ES1 ES2 ES3

SS3

Sy3

61

From what we presented above, a reasoning tree in the problem reduction/solution

synthesis paradigm can be seen as consisting of two isomorphic trees: the reduction tree

and the synthesis tree. The reduction tree shows how the top-level problem is reduced to

simpler sub-problems until the elementary solutions are found for the simplest problems.

The synthesis tree shows how the elementary solutions are composed to the solution of

the original problem. Because they are isomorphic to each other, we will provide only the

definitions for a reduction tree. The definitions for a synthesis tree are similar to those for

a reduction tree.

A reduction tree t is formally defined as follows:

Definition 3.6 (Reduction Reasoning Tree): A tree t = (Vt, δt) is a reduction

reasoning tree – a.k.a. reduction tree - if the following properties are satisfied:

[a] There are three types of reasoning nodes named problem nodes, reduction nodes

and solution nodes. We denote the reasoning nodes as follows:

• Pt is the set of problem nodes in the tree t.

• Rdt is the set of reduction nodes in the tree t.

• St is the set of solution nodes in the tree t.

By definition, Vt = Pt ∪Rdt ∪St. A vertex v∈ Vt is also called reasoning node or

simply node.

[b] The root is a problem node: Root(t) ∈ Pt. It represents the top level problem.

62

[c] The reasoning nodes are connected together by the argument function δt(x) which

is defined using the following functions: δtP represents the connection from a problem

node to its reduction children nodes, and δtRd represents the connection from a reduction

node to its problem or solution children nodes.

()
()
()

∈
∈
∈

=

t

t
S
Rd

t
P

x
xx
xx

x tRd

tP

t

,
,
,

λ
δ
δ

δ

Where:

• δtP: Pt → Rdt* indicates that a problem node can be either a leaf of a tree or can

be further reduced to reduction nodes.

• δtRd: Rdt → [Pt ∪St]+ indicates that a reduction node can be reduced further to

problem nodes and/or solution nodes.

• δt(x)= λ for x ∈ St: indicates that the solution node is the leaf of the reasoning

tree.■

Notations:

• If there are more than one tree, the superscript (i) is used where 0 ≤ i ≤ n for trees

and their components. For example, a list of n trees are denoted as t(0) =

() ()()00 , tt δV , t(1) = () ()()11 , tt δV ,…, t(n) = () ()()n
t

n
t δ,V .

• A tree t with root r can be notated as tr.

• A tree t with root r and leaves {n1,n2,…,n3} can be notated as t[r|{n1,n2,…n3}].

63

• A node x1 which is the parent of node x2 is denoted as x1 = Parent(x2).

Remark: The root of a sub-tree st of a tree t is not necessary a problem node, it can

be any type of node.

A reduction reasoning step consists of a problem, a question/answer pair and one or

several sub-problems, as shown in Table 1. Similarly, a synthesis reasoning step consists

of a set of sub-solutions, a question/answer pair and a solution synthesized from the sub-

solutions. The association between a reduction step and its counterpart synthesis step is a

one-to-one relationship. The reduction and synthesis reasoning steps can partition a tree

into several smaller sub-trees which are as functional as the original tree. For instance,

Figure 20 shows a tree which is by itself a sub-tree of a larger reasoning tree. This sub-

tree contains five reduction reasoning steps and five corresponding synthesis reasoning

steps. The sub-trees are trees themselves. This observation is the foundation of the

operations of the reasoning tree abstraction.

Definition 3.7 (Reduction Reasoning Step): A reduction reasoning step in a

reasoning tree t, is a sub-tree rs = (Vrs, δrs) of t, satisfying the following properties:

[a] The root node of the reduction step is a problem node, named the problem node of

the reduction step, and denoted with Prs ∈ Pt.

[b] The reduction step must contain only one reduction node, child of the reasoning

step problem node, named the reduction of the reasoning step, and denoted with

Rdrs∈ Rdt : Rdrs ∈ δtP(Prs).

64

[c] The reduction step will contain all the children of the reasoning step reduction

node, named sub-nodes of the reduction step and denoted with SN(i)rs, i=1,n:

δtRd(Rdrs)=SN(1)rs SN(2)rs .. SN(n)rs. A sub-node can be a sub-problem node or a

solution node.

[d] There are no other nodes in a reasoning step: Vrs={ Prs, Rdrs, SN(1)rs, SN(2)rs, ...

SN(n)rs}.■

Example (Reduction Reasoning Step) Figure 21 shows an example of a reduction

reasoning step. Its formalization is:

Vrs={P0, R0, P1, P2, P3}

δrs(x) = {P0→R0, R0→P1P2P3, P1→λ , P2→λ ,P3→λ }.

Figure 21: Reduction Reasoning Step

Until now, the definitions of the tree in general and reasoning tree in particular have

been presented thoroughly. Next we will present the abstraction of a tree. This will be the

foundation of two types of abstraction that are applied to collaborative problem solving

and to tutoring.

Problem P0

Sub-Problem P1 Sub-Problem P2

Reduction R0

Sub-Problem P3

65

According to Giunchiglia and Walsh (1992), the abstraction is “the process of

mapping a representation of a problem, called the “ground” representation, onto a new

representation, called the “abstract” representation” (Giunchiglia and Walsh, 1992). In

this dissertation we focus on the abstraction of the reduction tree. Based on Giunchiglia

definition, we will use the term reduction tree at “ground level” as the initial (concrete)

reduction tree and reduction tree at “abstract level” as the abstracted reduction tree.

Reduction tree is a specific representation of tree (see Definition 3.6). It is possible to

have numerous ways to abstract a reduction tree; each type of abstraction will result in

different abstract reduction tree. We will consider two types of abstractions that are

suitable for our considered representations. Both types share a common definition of

abstraction as presented below.

3.2. Abstraction of a Tree

Definition 3.8 (Partition): A partition of tree t, Partitiont is a set of sub-trees st of

tree t for which ∀x ∈ Vt , ∃! st ∈ Partitiont such that x ∈ Vst.

Definition 3.9 (Singleton Partition): A singleton partition is a partition that has only

singleton sub-trees.

Definition 3.10 (Root of Partition): A sub-tree str is a root of a partition

Root(Partitiont) = str, if and only if str ∈ Partitiont and Root(t) ∈ Vst.

Definition 3.11 (Parent Sub-tree): A sub-tree st1 is a parent sub-tree of sub-tree st2

st1 = Parent(st2) if and only if ∃x ∈ Vst1, Root(st2) ∈ δt(x).

Definition 3.12 (Tree Abstraction): We define the abstraction of a tree at ground

level t = (Vt, δt) (ground tree) to be the tree at abstract level ta = (Vta, δta) (abstract tree),

66

if there is a partition of t Partitiont and an abstraction function α such that α: Partitiont →

Vta ∪ {λ}. The abstraction function α satisfies the following properties:

[a] The abstraction of the root of the ground tree must be the root of the abstract tree.

For the root sub-tree str = Root(Partitiont), α(str) = Root(ta).

[b] The parent-child relationships of nodes of the ground tree are preserved in the

abstract tree. If st1, st2 ∈ Partitiont such that st1 is the parent sub-tree of st2 then

• if α(st1) ≠ λ then α(st2) ∈ δta(α(st1)) or α(st2) = λ

• if α(st1) = λ then α(st2) = λ

[c] The sibling relations of the nodes of the ground tree are partially preserved in the

abstract tree, i.e., ∀v1, v2 ∈ Vta, v1 is left sibling of v2 if and only if ∃st1 ∈

Partitiont such that v1 = α(st1) and ∀st2 ∈ Partitiont, v2 = α(st2), st1 is left sibling

of st2.

[d] Any abstract node is the abstraction of at least one concrete sub-tree. ∀x ∈ Vta, ∃st

∈ Partitiont, α(st) = x. ■

Definition 3.13 (Complete Abstraction): An abstraction is called complete

abstraction if and only if all the sub-trees of the ground tree t have abstractions in the

abstract tree ta. ∀st ∈ Partitiont, α(st) ≠ λ.

In the next two sections, we will focus on two different types of abstraction of

reasoning trees that are suitable for two different purposes: collaborative problem solving

and tutoring problem solving strategies. We will introduce the concepts of the two

abstractions and then will provide the detailed definitions for both of them.

67

3.3. Abstraction of Reasoning Trees for Collaborative Problem Solving

As mentioned above, a very large reasoning tree is difficult to view and understand.

An abstraction of complex reasoning tree that partitions the complex tree into meaningful

and manageable sub-trees is desirable. Once the tree is partitioned into smaller but

manageable sub-trees, the browsing of the concrete tree now is facilitated by its abstract

tree. Figure 22 shows how a complex tree can be partitioned, abstracted and presented as

table of contents.

Figure 22: Partition of a Reduction Tree

In order to abstract a reasoning tree for collaborative problem solving, the tree must

be partitioned into several distinct sub-trees. Each sub-tree is abstracted into an abstract

node in abstract reasoning tree. Consider the example in Figure 23, where a fragment of a

concrete reasoning tree is partitioned into five sub-trees:

• st1
(0)

 where Vst1
(0) = {P1

(0),Rd1
(0),P3

(0),Rd2
(0)}, Root(Vst1

(0)) = P1
(0),

• st2
(0) where Vst2

(0) = {P2
(0)}, Root(Vst2

(0)) = P2
(0),

68

• st3
(0) where Vst3

(0) = {P4
(0),Rd3

(0),S1
(0)}, Root(Vst3

(0)) = P4
(0),

• st4
(0) where Vst4

(0) = {P5
(0),Rd4

(0),S2
(0)}, Root(Vst4

(0)) = P5
(0), and

• st5
(0) where Vst5

(0) = {P6
(0),Rd5

(0),S3
(0)}, Root(Vst5

(0)) = P6
(0).

These five partitions are abstracted into five abstract nodes P1
(1), P2

(1), P3
(1), P4

(1) and

P5
(1) respectively. The abstract nodes form an abstract tree which represents an

abstraction of the concrete reduction tree.

Figure 23: Abstraction of a Reduction Tree for Collaborative Problem Solving

From the example presented above, we can define the abstraction of a reasoning tree

for collaborative problem solving based on the common Definition 3.12. This is a special

P1
P4P2 P3 P5

P1

P3 P2
Rd1

Rd2

S3

P6P5 P4
Rd5Rd4 Rd3

S2 S1

Ground Level Abstract Level

69

type of abstraction where concrete sub-trees are abstracted into abstract nodes of the

abstract tree. The sub-trees are defined to have the problem nodes as their roots. The

definition of this abstraction is formally presented as follows:

Definition 3.14 (Tree Abstraction for Collaboration Problem Solving): We define

the abstraction for collaborative problem solving of a reasoning tree at ground level t =

(Vt, δt) (ground tree) to be the tree at abstract level ta = (Vta, δta) (abstract tree) is the

abstraction for collaboration problem solving, if the Partitiont will contain sub-trees

having problem nodes as roots (∀ st ∈ Partitiont, Root(st) ∈ Pt) and the abstraction

function is a bijective complete abstraction function α: Partitiont → Vta.

3.4. Abstraction of Reasoning Trees for Tutoring

The abstraction of a reasoning tree for tutoring purpose is different from that for

collaborative problem solving presented above. The purpose of this type of abstraction is

to present the problem solving strategies that are used to reduce the top problem to the

simplest problems in the reasoning tree.

The abstraction of a reasoning tree results in an abstract reasoning tree. The abstract

reasoning tree is simpler to view quantitatively and more organized semantically. Each

node of the abstract reasoning tree is the abstraction of a set of related nodes of the

concrete reasoning tree. Figure 24 shows a concrete reasoning tree on the left panel and

the corresponding abstract reasoning tree on the right panel. The former has more than

1700 nodes and the latter has only over 130 nodes which is a 92.5% reduction in number

of nodes. Furthermore, the content of an abstract node – a node of the abstract reasoning

tree – is problem solving strategy oriented. For example, the yellow node in the abstract

70

reasoning tree describes the strategy “Reduce the hypothesis to simpler hypothesis”

which is essentially the principle of the problem reduction paradigm. This yellow node is

the abstraction of a set of 54 nodes bordered by the broken blue line. The set of concrete

reasoning nodes include different types of reasoning nodes (such as problem nodes,

reduction nodes) and different hypotheses (such as “Assess whether Al Qaeda has reason

to use the nuclear weapon” and the opposite one “Assess whether Al Qaeda has reason

not to use nuclear weapons, assuming that it has them.”) The hypotheses are further

reduced to simpler ones, according to the content of the abstract yellow node of the

abstract reasoning tree.

Figure 24: Concrete Reasoning Tree and Its Abstraction for Tutoring

- Problem Nodes = 355
- Reduction Nodes = 401
- Solution Nodes = 601
- Synthesis Nodes = 401
- Total Nodes = 1758

- Abstract Task Nodes = 27
- Abstract Reduction Nodes = 22
- Abstract Solution Nodes = 40
- Abstract Synthesis Nodes = 22
- Total Nodes = 111

- Abstract Task Nodes = 27
- Abstract Reduction Nodes = 22
- Abstract Solution Nodes = 40
- Abstract Synthesis Nodes = 22
- Total Nodes = 111

- Abstract Problem Nodes = 32
- Abstract Reduction Nodes = 29
- Abstract Solution Nodes = 46
- Abstract Synthesis Nodes = 29
- Total Nodes = 136

Abstract
Reasoning

Tree

Abstract
Reasoning

Tree

Abstract
Reasoning

Tree

Concrete
Reasoning

Tree

71

3.4.1. Abstract Problem

The abstract reasoning tree organizes the problem solving strategies in such a way

that the tree itself becomes an explicit elucidation of the problem solving methods based

on the problem-reduction/solution-synthesis paradigm. An abstract problem node of the

abstract reasoning tree represents an abstract problem. The root of the abstract tree is an

abstract problem node which specifies the most general problem to solve such as “Assess

a hypothesis”. The most general problem is also reduced further using the problem

reduction paradigm. The reductions in the abstract reasoning tree correspond to those of

the concrete reasoning tree. For instance, the abstract problem “Assess a hypothesis”

which corresponds to the first problem (root) of the reasoning tree “Assess whether Al

Qaeda has nuclear weapons“, is reduced to the more specific problem “Assess a

hypothesis through evidence analysis which corresponds to the problem “Assess whether

Al Qaeda has desire to obtain nuclear weapons“ in the concrete reasoning tree.

Let us consider the two problems in the reasoning tree:

• “Assess to what extent the piece of evidence EVD-Dawn-Mir01-01a favors the

hypothesis that Al Qaeda considers self defense as a reason to obtain nuclear

weapons” and

• “Assess to what extent the piece of evidence EVD-Glazov01-01c favors the

hypothesis that Al Qaeda considers the use of nuclear weapons in a spectacular

operation as a reason to obtain nuclear weapons”.

The two problems use two different pieces of evidences to assess two different

hypotheses. The former uses the piece of evidence “EVD-Dawn-Mir01-01a” to judge its

72

support of the hypothesis “Al Qaeda considers self defense as a reason to obtain nuclear

weapons”. The latter assesses how supportive the piece of evidence “EVD-Glazov01-

01c” is for the hypothesis “Al Qaeda considers the use of nuclear weapons in a

spectacular operation as a reason to obtain nuclear weapons”. The abstract problem of

these two problems can be defined as “Assess to what extend the piece of evidence favors

the hypothesis”, as illustrated in Figure 25. In essence, an abstract problem is the

abstraction of all the concrete problems that are solved by using the same abstract

problem solving strategy. There is no limit to the number of concrete problems

corresponding to a given abstract problem. The abstract problem therefore can reduce a

large number of problems in the reasoning tree.

Figure 25: Abstract Problem

Two concrete problems

Abstract problem

73

3.4.2. Abstract Reduction

The abstract reduction focuses on the problem solving strategies. Each abstract

reduction is a reasoning strategy that reduces an abstract problem to its abstract sub-

problems. The concrete components of an abstract reduction are the reductions that use

the same problem solving strategy.

Let us consider the abstract problem

• “Assess a hypothesis” and its abstract sub-problem

o “Assess a hypothesis through evidence analysis”

which correspond to the top problem of a concrete reasoning tree

• “Assess whether Al Qaeda has nuclear weapons” and its sub-problems

o “Assess whether Al Qaeda considers deterrence as a reason to obtain nuclear

weapons.”

o “Assess whether Al Qaeda considers self-defense as a reason to obtain

nuclear weapons.”

o “Assess whether Al Qaeda considers the use of nuclear weapons in

spectacular operations as a reason to obtain nuclear weapons.”

o And so on…

Between the top problem and the sub-problems listed above, there is a sub-tree which

successively reduces the first problem to different sub-problems, as indicated in Figure

26.

74

Figure 26: Top Level of a Concrete Reasoning Tree

In other words, there is a sub-tree that plays the role of a reduction strategy that

makes it possible for the first problem to be reduced to simpler sub-problems. That sub-

tree in the concrete reasoning tree can be abstracted to an abstract reduction “Reduce the

hypothesis to simpler hypothesis.”

A reduction is always associated with a problem and its direct or indirect sub-

problems, because it indicates how a problem is reduced to several sub-problems. An

abstract reduction therefore can abstract a large sub-tree of a concrete reasoning tree

whose root is the problem and leaves are sub-problems that are mentioned above. For

instance, the yellow abstract reduction in the right panel of Figure 27, which states

“Reduce the hypothesis to simpler hypotheses” abstracts several yellow sub-trees in the

left panel.

75

The abstract reasoning tree represents an abstract way to solve a problem in the

problem reduction paradigm.

Figure 27: Abstract Reduction and Its Concretions

3.4.3. Abstract Solution

In the problem reduction paradigm, a problem is reduced to simpler sub-problems

until the sub-problems have known solutions. Then the synthesis process starts to

combine the solutions of the sub-problems to get the synthesized solution of the initial

problem. Due to the synthesis process, each problem in the reasoning tree has an

associated solution, either a direct solution or a synthesized one. Figure 20 shows a

synthesis process whose color is cyan which starts from the solutions at the bottom such

as “The objectivity of Osama Bin Laden with respect to the information provided in

Dawn-Mir01-02c is almost certain” and climbs up the tree to synthesize the solution of

76

the original problem “The credibility of Osama Bin Laden with respect to the information

provided in Dawn-Mir01-02c is an even chance.”

The abstract solution is the abstraction of the solutions of all the problems that are

solved using the same reasoning strategy. The abstract solution is associated with an

abstract problem. Thus the abstract solution of an abstract problem is in fact the

abstraction of all the solutions of the concrete problems of that abstract problem. Figure

28 shows several abstract problems and their abstract solutions (represented as cyan

sticky notes attached to the abstract problems). For example, the abstract problem:

• Assess to what extent the piece of evidence favors the hypothesis.

 Has the following abstract solution:

• Assessed support of hypothesis from the piece of evidence.

Figure 28: Abstract Solutions and Abstract Synthesis

3.4.4. Abstract Synthesis

In the problem reduction process, the abstract reductions are the bridges connecting

abstract problems to their abstract sub-problems. Similarly, in the solution synthesis

process, the abstract syntheses connect the abstract sub-solutions to their abstract

synthesized solution. An abstract synthesis abstracts the concrete syntheses from the

Abstract Solution

Abstract Synthesis

77

concrete reasoning tree. While an abstract solution is associated with an abstract problem,

the abstract synthesis is associated with an abstract reduction. Thus the abstract solutions

and abstract syntheses depend on the corresponding abstract problems and abstract

reductions.

The abstract syntheses provide the guidance of how to synthesize the abstract

solutions. There are multiple ways to synthesize the abstract solutions. It is up to the

subject matter expert who teaches the agent to specify what strategy to be applied. Figure

28 illustrates a way to synthesize an abstract solution from abstract sub-solutions.

3.4.5. Abstract Reasoning Tree

The abstraction of a concrete reasoning tree is essentially the abstractions of its

problem nodes, reduction nodes, solution nodes and synthesis nodes. The abstractions of

these reasoning tree components are abstract problem nodes, abstract reduction nodes,

abstract solution nodes and abstract synthesis nodes respectively. The abstract tree shows

the problem solving strategies that are repeatedly used in the concrete reasoning tree.

These strategies are the contents of the abstract reduction nodes.

Each abstraction corresponds to one or several concretions. These concretions are the

components of the concrete reasoning tree. The many-to-one relationship from the

concrete reasoning tree components to their abstract tree components makes the resulting

abstract reasoning tree much smaller. The abstract reasoning tree is a semantic

representation of the different types of reasoning strategies used in the concrete reasoning

tree. Figure 24 shows a concrete reasoning tree and the corresponding abstract tree. The

78

simplicity of the abstract tree in terms of the number of nodes can be seen in the

comparison between the numbers of nodes of the two trees.

Qualitatively, the abstract reasoning tree is a hierarchical organization of the problem

solving strategies to solve the problems. For instance, an abstract problem “Assess to

what extent the piece of evidence favors the hypothesis” is solved by reducing it to

simpler abstract problems by using the reasoning:

• Consider the relevance and the believability of the piece of evidence.

That strategy leads to simpler abstract problems:

• Assess to what extent the piece of evidence favors the hypothesis, assuming that

the piece of evidence is believable.

• Assess the believability of the piece of evidence.

Each abstract reduction in the abstract tree provides a guideline for how to solve a

problem. In other words, the whole abstract tree is a large recipe of problem solving

strategies. As in the concrete reasoning tree, each abstract reduction step is associated

with an abstract synthesis step. An abstract synthesis step contains several abstract sub-

solutions, an abstract synthesis and a synthesized abstract solution. The abstract synthesis

indicates how to compose abstract sub-solutions into an abstract solution. To illustrate an

abstract synthesis, let us consider the solutions of the two simpler abstract problems

above. They are

• Assessed support of the hypothesis from the information in the piece of evidence.

• Assessed believability of the information provided by the piece of evidence.

The abstract synthesis is

79

• If either the support of the hypothesis from the information in the piece of

evidence is low or the believability of the information is low, then the overall

support provided by the piece of evidence is low. Therefore we estimate the

overall support of the hypothesis from the piece of evidence as the minimum

between the support of the hypothesis from the information in the piece of

evidence and the believability of the information.

And that allows us to obtain the assessed support of hypothesis from the piece of

evidence.

Our proposed abstraction process of the reduction tree begins by grouping the similar

problem nodes in a concrete reasoning tree into an abstract problem node. Consider the

sub-tree in Figure 19 and the sub-tree in Figure 29. They have the same structures and

similar problem nodes, reduction nodes and solution nodes. Both sub-trees can be

abstracted into the abstract reduction reasoning tree as shown in Figure 30.

80

Figure 29: Reduction Sub-tree

Figure 30: Abstract Reduction Sub-tree

Assess the veracity of the
source with respect to the
information provided in the
piece of evidence

Assess the objectivity of the
source with respect to the
information provided in the
piece of evidence

Assess the observational
sensitivity of the source with
respect to the information
provided in the piece of
evidence

Assess the believability of
the source of the piece of
evidence

The obtained objectivity of the
source of the piece of evidence

The obtained observational
sensitivity of the source with
respect to the information
provided in the piece of
evidence

the believability of the source of the piece of evidence depends on source’s competency, veracity, objectivity and
observational sensitivity

Assess the competency of the
source with respect to the
information provided in the
piece of evidence

Assess the veracity of the
source with respect to the
information provided in the
piece of evidence

Assess the objectivity of the
source with respect to the
information provided in the
piece of evidence

Assess the observational
sensitivity of the source with
respect to the information
provided in the piece of
evidence

The obtained veracity of the
source of the piece of evidence

P1

Rd1

P2 P3 P4 P5

Rd2 Rd3 Rd4

S1 S2 S3

Assess the extent to which one can believe Treverton G as the
source of EVD-FP-Glazov01-01c

Q: What factors determine the extent to which a source of piece of evidence can be trusted?
A: The competency and the credibility of the source

Assess the competency of Treverton G as
the source of EVD-FP-Glazov01-01c

Assess the credibility of Treverton G as
the source of EVD-FP-Glazov01-01c

Assess the veracity of Treverton G
with respect to the information
provided in EVD-FP-Glazov01-01c

Assess the observational sensitivity
of Treverton G with respect to the
information provided in EVD-FP-
Glazov01-01c

Assess the objectivity of Treverton G
with respect to the information
provided in EVD-FP-Glazov01-01c

Q: What factors determine the credibility of the source of EVD-FP-Glazov01-01c?
A: The veracity, objectivity, and observational sensitivity of Treverton G because
EVD-FP-Glazov01-01c is testimonial evidence based upon direct observation.

Q: What is the veracity of Treverton
G with respect to the information
provided in EVD-FP-Glazov01-01c?
A: an even chance.

Q: What is the objectivity of
Treverton G with respect to the
information provided in EVD-FP-
Glazov01-01c?
A: almost certain.

Q: What is the observational
sensitivity of Treverton G with
respect to the information provided
in EVD-FP-Glazov01-01c?
A: almost certain.

The veracity of Treverton G with
respect to the information provided in
EVD-FP-Glazov01-01c is an even
chance

The objectivity of Treverton G with
respect to the information provided in
EVD-FP-Glazov01-01c is almost
certain

The observational sensitivity of
Treverton G with respect to the
information provided in EVD-FP-
Glazov01-01c is almost certain

P7

P8 P9

P1 P1 P1

Rd

Rd

Rd Rd Rd

S4 S5 S6

81

Figure 31 displays the abstraction process of the two sub-trees. We will discuss first

how the problem nodes are abstracted. The problem node ()0
1P “Assess the extent to which

one can believe Osama Bin Laden as the source of EVD-Dawn-Mir01-02c” and ()0
2P

“Assess the extent to which one can believe Treverton G as the source of EVD-FP-

Glazov01-01c” of the sub-trees at ground level (superscripted as (0)) are abstracted into

abstract problem node ()1
1P “Assess the believability of the source of the piece of

evidence” of the sub-tree at abstract level (superscripted as (1)).

Figure 31: Abstraction of Reduction Trees for Tutoring

Similarly, the abstraction of the solution nodes at one abstract level to abstract

solution nodes at the next higher level is called solution abstraction. Figure 30 shows the

abstraction of solution node “The observational sensitivity of Osama bin Laden with

respect to the information provided in EVD-Dawn-Mir01-02c is almost certain” and the

P1

P4 P2

Rd1

P3 P5

Rd3 Rd2 Rd4

S2 S1 S3

P1

P3 P2

Rd1

Rd2

S3

P6 P5 P4

Rd5 Rd4 Rd3

S2 S1

P7

P9 P8

Rd6

Rd7

S6

P12 P11 P10

Rd10 Rd9Rd8

S5 S4

Ground Level Abstract Level

82

solution node “The observational sensitivity of Treverton G with respect to the

information provided in EVD-FP-Glazov01-01c is almost certain” to abstract solution

node “The obtained observational sensitivity of the source with respect to the information

provided in the piece of evidence.”

The abstraction of the reductions is more complex. In this case, the sub-trees from

reasoning tree at ground level are abstracted into an abstract reduction node at the

abstract level. As seen in Figure 31, the two sub-trees rooted in reduction node Rd1
(0) and

Rd6
(0) and bordered by broken blue lines are abstracted into the abstract reduction node

Rd1
(1). The reduction abstraction involves the abstraction of sub-trees.

To be able to define an abstraction for tutoring, we need to define the partition of

reduction tree for tutoring purpose.

Definition 3.15 (Partition of Reduction Tree for Tutoring): A partition of a

reduction tree t = (Vt, δt) Partitiont = Pst ∪ Rdst ∪ Sst where Pst is a set of problem sub-

trees Pst = {sti = ({P∈ Pt}, ∅), i=1,n}, Rdst is a set of reduction sub-trees Rdst = {stj |

Root(st) ∈ Rdt, j=1,m}, and Sst is a set of solution sub-trees Sst = {stk = ({S∈ St}, ∅),

k=1,l}. It has the following properties:

[a] There is only one problem sub-tree that contains the root of the ground tree. ∃! st

∈ Pst such that Root(t) ∈ Vst.

[b] Each problem sub-tree except the root sub-tree has as parent a reduction sub-tree.

∀st ∈ Pst, st ⊄ Root(Partitiont), Parent(st) ∈ Rdst.

83

[c] Each reduction sub-tree has as parent a problem sub-tree. ∀st ∈ Rdst, Parent(st) ∈

Pst.

[d] Each solution sub-tree has as parent a reduction sub-tree. ∀st ∈ Sst, Parent(st) ∈

Rdst.■

From Definition 3.15, a definition of the abstraction for tutoring is formed based on

the abstraction of different types of sub-trees as its basic components. The definition is an

extension of the common abstraction function defined in Definition 3.12. This abstraction

governs how a tree is abstracted for tutoring purposes.

Definition 3.16 (Abstraction for Tutoring): The abstraction of a reasoning tree at

ground level t = (Vt, δt) (ground tree) to the reasoning tree at abstract level ta = (Vta, δta)

(abstract tree) is named abstraction for tutoring, if there is a partition for tutoring

Partitiont = Pst ∪ Rdst ∪ Sst and an abstraction function αt: Partitiont → Vta ∪ {λ} such

that αt(st) =

∈∀
∈∀
∈∀

stS

stRd

stP

Sstst
Rdstst
Pstst

),(
),(
),(

α
α

α
 where

• αP: Pst → Pta is a surjective function, i.e, ∀Pta ∈ Pta, ∃ st ∈ Pst such that αP(st) =

Pta. αP is called problem node abstraction function.

• αRd: Rdst → Rdta is a surjective function, i.e, ∀Rdta ∈ Rdta, ∃ st ∈ Rdst such that

αRd(st) = Rdta. αRd is called reduction node abstraction function.

• αS: Sst → Sta is a surjective function, i.e, ∀Sta ∈ Sta, ∃ st ∈ Sst such that αS(st) =

Sta. αS is called solution node abstraction function.■

84

Remark:

[a] A problem sub-tree cannot have more than one abstraction. ∀p1, p2 ∈ Pta, p1 ≠ p2,

αP
-1(p1) ∩ αP

-1(p2) = ∅.

[b] A reduction sub-tree cannot have more than one abstraction. ∀rd1, rd2 ∈ Rdta, rd1

≠ rd2, αRd
-1(rd1) ∩ αRd

-1(rd2) = ∅.

[c] A solution sub-tree cannot have more than one abstraction. ∀s1, s2 ∈ Sta, s1 ≠ s2,

αS
-1(s1) ∩ αS

-1(s2) = ∅.

The problem node abstraction functions corresponding to the abstractions in Figure

31 are:

• {st(0)
t[P1|{P1}], st(0)

t[P7|{P7}]} → Pα P1
(1)

• {st(0)
t[P2|{P2}], st(0)

t[P8|{P8}]} → Pα P2
(1)

• {st(0)
t[P4|{P4}], st(0)

t[P10|{P10}]} → Pα P3
(1)

• {st(0)
t[P5|{P5}], st(0)

t[P11|{P11}]} → Pα P4
(1)

• {st(0)
t[P6|{P6}], st(0)

t[P12|{P12}]} → Pα P5
(1)

The reduction node abstraction functions corresponding to the abstractions in Figure

31 are:

• {st(0)
t[Rd1|{Rd2}], st(0)

t[Rd6|{Rd7}]} → Rdα Rd1
(1)

• {st(0)
t[Rd3|{Rd3}], st(0)

t[Rd8|{Rd8}]} → Rdα Rd2
(1)

• {st(0)
t[Rd4|{Rd4}], st(0)

t[Rd9|{Rd9}]} → Rdα Rd3
(1)

• {st(0)
t[Rd5|{Rd5}], st(0)

t[Rd10|{Rd10}]} → Rdα Rd4
(1)

85

The solution node abstraction functions corresponding to the abstractions in Figure 31

are:

• {st(0)
t[S1|{S1}], st(0)

t[S4|{S4}]} → Sα S1
(1)

• {st(0)
t[S2|{S2}], st(0)

t[S5|{S5}]} → Sα S2
(1)

• {st(0)
t[S3|{S3}], st(0)

t[S6|{S6}]} → Sα S3
(1)

Lemma 3.2 (Lower Bound of Abstraction for Tutoring): The lower bound of the

abstraction of a reduction tree is the reduction tree itself.

Proof: An abstraction αt(st): Partitiont → Vta reduces a sub-tree of a reduction tree

into a node of an abstract reduction tree. If Partitiont is a singleton partition then the

abstraction αt(st) does not reduce the number of nodes at all. Furthermore, according to

Definition 3.12 b, the parent-child relationships and sibling relations of the reduction tree

are preserved. Therefore for a singleton partition Partitiont, the abstract reduction tree is

as same as the reduction tree.■

Lemma 3.3 (Upper Bound of Abstraction for Tutoring): The upper bound of

abstraction of a non-singleton reduction tree is an abstract reduction tree which has two

nodes: an abstract problem node as root and an abstract reduction node as leaf.

Proof: Because Partitiont is, in general, a set of sub-trees (not always singleton sub-

tree), the abstraction tends to makes the number of nodes of the abstract reduction tree

smaller than that of the concrete reduction tree. The smallest number of nodes that a tree

can have is one. Assume that an upper bound of the abstraction is a single node tree. That

implies the domain Partitiont of the abstraction αt is a partition that has only one sub-tree

86

which is the reduction tree itself and the co-domain Pta has only one abstract problem

node because it is the abstraction of the root of the reduction tree. Based on the Definition

3.15 and Definition 3.16, αt = {αP: Pst → Pta} and Pst = {sti = ({P∈ Pt}, ∅), i=1,n} and

reduction tree contains the reduction nodes {Rd ∈ Pt} as well which contradicts the

assumption.

Let us assume we have an abstraction function αt(st): Partitiont → Vta defined as

follows:

αP({st(0)
t[root|{root}]}) = Pr(1) where Pr(1) is root of the abstract reduction tree.

αRd({st(0)
it[Rd1|{Vtj}] | i=1,n, j=1,m}) = Rd(1) where {st(0)

it[Rd1|{Vtj}] | i=1,n, j=1,m} is the

rest of the reduction tree from root and Rd(1) is the only abstract reduction node of the

abstract tree. Such abstraction yields an abstract reduction tree that has only two abstract

nodes: one is the abstract problem node as root and the other is the abstract reduction

node. This abstract reduction tree satisfies the properties of Definition 3.15 and

Definition 3.16. Therefore the upper bound of an abstraction for tutoring of a non-

singleton reduction tree is a two node abstract tree.■

Remark: Any reduction tree can have different levels of abstractions for tutoring.

Their complexity will be in between the upper bound and the lower bound of the

abstraction. In other words, there are different ways to tutor the domain knowledge based

on an abstract reasoning tree of that domain.

87

3.4.6 Abstraction Mapping

Once the abstraction of a reasoning tree is built within the stated constraints, the

abstraction operations are learned by generalization to become abstraction mapping. The

generalization of the abstraction operations is a two-step process. The first step is the

generalization of the concrete components and of the abstract component of an

abstraction function (top two blocks of Figure 32). The second step is the construction of

the abstraction mapping for the abstraction function based on the generalizations (bottom

two blocks of Figure 32).

The generalization of the concrete components of an abstraction function is a

complex process. In essence, generalization is a process that transforms an expression

into a more general expression. It may be done by applying generalization rules, such as

replacing a constant with a variable, a concept with more general one, a number with an

interval, and so on (Tecuci, 1998). A problem node is generalized to a problem class, a

reduction node is generalized to a reduction rule and a solution node is generalized to a

solution class. For example, in Figure 19, the problem node P1
(0)

• “Assess the extent to which one can believe Osama Bin Laden as the source of

EVD-Dawn-Mir01-02c”

is generalized to the problem class

• “Assess the extent to which one can believe ?O1 as the source of ?O2”

by replacing the constant Osama Bin Laden with the variable ?O1 and the constant EVD-

Dawn-Mir01-02c with the variable ?O2.

The solution node S3
(0)

88

• “The observational sensitivity of Osama bin Laden with respect to the information

provided in EVD-Dawn-Mir01-02c is almost certain”

is generalized to the solution class

• “The observational sensitivity of ?O1 with respect to the information provided in

?O2 is ?SI1.”

The reduction node Rd1
(0)

• “Q: What factors determine the extent to which a source of piece of evidence can

be trusted? A: The competency and the credibility of the source”

is generalized to the reduction rule

• “If assess the extent to which one can believe ?O1 as the source of ?O2 then

assess the competence of ?O1 as the source of ?O2 and assess the credibility of

?O1 as the source of ?O2.”

Similarly, the generalization of an abstract problem node is an abstract problem class,

the generalization of an abstract reduction node is an abstract reduction class, and the

generalization of an abstract solution node is an abstract solution class. For example, the

abstract problem node P1
(1) is generalized to the abstract problem class “Assess the

believability of the source of the piece of evidence.”

The second step of the generalization of the abstraction operations consists in creating

an abstraction mapping that links the concrete classes of the concrete components to the

abstract classes of the abstract components. For example, one instance of the abstraction

mapping can be stated as follows: “If a concrete class is Assess the extent to which one

can believe ?O1 as the source of ?O2 where ?O1 is the source and ?O2 is the piece of

89

evidence then that class can be mapped to an abstract class Assess the believability of the

source of the piece of evidence.”

As recalled from the Definition 3.16, the domain of the abstraction function for

tutoring is the partitions of the reasoning tree. For the problem node abstraction function

and the solution node abstraction function, the domain is the single partitions as defined

in Definition 3.9. The single partitions contain the single sub-trees, so there is no concept

of root node and non-root node in single sub-trees. However, the domains of reduction

node abstraction functions are not singleton partitions. As a matter of fact, the role of root

nodes in the sub-trees is important in the abstraction. It guides how a reduction occurs.

Therefore, when we build the abstraction mapping, the root nodes of the reduction sub-

trees have to be taken into account.

Figure 32 presents the relation between the reduction tree and its abstract reduction

tree. In this figure, the concrete reduction tree is abstracted to the abstract reduction tree.

The reduction tree is the instantiation of the problem classes, reduction rules, and solution

classes from the knowledge base. The abstract reduction tree generates from abstract

problem classes, abstract reduction classes and abstract solution classes. The abstract

classes are, in turn, generated from the problem classes, solution classes and reduction

rules of the knowledge base of the existing reduction tree via the abstraction mapping.

The abstraction mapping is saved and restored to generate an abstract reduction tree

given a concrete reduction tree. The abstraction mapping, in fact, governs how a

reduction tree should be abstracted.

90

Figure 32: The Relation between Reduction Tree and Its Abstract Reduction Tree

Definition 3.17 (Reduction Abstraction Mapping): Given a set of problem classes

PCΛ at ground level, a set of solution classes SCΛ at ground level, and a set of reduction

rules RdRΛ at ground level, the abstraction mapping Λ is defined as follows:

()

()
()
()
()

∈Λ
∈Λ
∈Λ
∈Λ

=Λ

trRd

tRd

tS

tP

RdR
RdR
SC
PC

σσ
σσ
σσ
σσ

σ

,
,
,
,

Where:

• ΛP(σ): PCΛ → APCΛ where APCΛ is a set of abstract problem classes at abstract

level, indicates that for each problem class selected from the ground level there is

a corresponding abstract problem class at the abstract level. Λp(σ) is named

Reduction Tree Abstract Reduction Treeabstracted to

Problem Classes
Reduction Rules
Solution Classes

Abstract Problem Classes
Abstract Reduction Classes
Abstract Solution Classes

Instantiation-of generates generalization-of generated-from

abstracted to
(base on abstraction

mapping)

91

problem abstraction mapping which is surjective (similar to the problem node

abstraction function αP).

• ΛS(σ): SCΛ → ASCΛ where ASCΛ is a set of abstract solution classes at abstract

level, indicates that for each solution class selected from the ground level there is

a corresponding abstract solution class at the abstract level. ΛS(σ) is named

solution abstraction mapping which is surjective (similar to the solution node

abstraction function αS).

• ΛRd(σ): RdRΛ → ARdCΛ where ARdC Λ is a set of abstract reduction classes at

abstract level, indicates that for each reduction rule that is not the root of its sub-

tree selected from the ground level there is at least a corresponding abstract

reduction class at the abstract level. ΛRd(σ) is named reduction abstraction

mapping which is surjective (similar to the reduction node abstraction function

αRd).

• ΛrRd(σ): rRdRΛ → ARdCΛ where rRdRΛ ⊂ RdRΛ, rRdRΛ is a set of root

reduction class and ARdCΛ is a set of abstract reduction classes at abstract level,

indicates that for each reduction rule that is root of its sub-tree selected from the

ground level there is a corresponding abstract reduction class at the abstract level.

ΛrRd(σ) is named root reduction abstraction rule which is surjective (similar to

the reduction node abstraction function αRd).

The abstraction mapping must satisfy the following properties:

92

[a] A problem class cannot have more than one abstraction. ∀PC ∈ PCΛ, ∃! APC ∈

APCΛ such that ΛP(PC) = APC. That makes the problem abstraction mapping a

function.

[b] A reduction rule that is root of its sub-tree cannot have more than one abstraction.

∀rRdR ∈ rRdRΛ, ∃! ARdC ∈ ARdCΛ such that ΛrRd(rRdR) = ARdC. That makes

the root reduction abstraction mapping a function.

[c] A solution class cannot have more than one abstraction. ∀SC ∈ SCΛ, ∃! ASC ∈

ASCΛ such that ΛS(SC) = ASC. That makes the solution abstraction map a

function.■

Theorem 3.4 (Existence and Uniqueness of Abstract Reduction Tree): Given a set

of problem classes PC, a set of solution classes SC, a set of reduction rules RdR and an

abstraction mapping Λ defined for the previous classes, there is a construction method

such that for each reduction tree generated at the ground level there is one and only one

corresponding abstract reduction tree constructed based on the abstraction mapping.

Proof: The proof contains two parts. First, we need to prove that given an abstraction

mapping, for each reduction tree at ground level we can construct an abstract reduction

tree. Second, we prove that the newly constructed abstraction tree is unique, given the

reduction tree and the abstraction mapping.

Part 1: Existence.

Given the classes at the ground level and an abstraction mapping Λ(σ), we need to

show that we can develop a construction method that will generate a unique abstract tree

93

for any reasoning tree at the ground level. Let us consider a reasoning tree t generated at

the ground level. The tree t was generated based on the problem classes PC ∈ PC,

solution classes SC ∈ SC, and reduction rules RdR ∈ RdR.

First we will partition the reduction tree t into sub-trees. The sub-trees are built based

on their root nodes.

We define the set of abstracted root nodes as being all the nodes in the reasoning tree

t that are generated based on problem classes from PCΛ, solution classes from SCΛ, or

root reduction rules from RdRΛ: RootNodes = {P ∈ Pt| P is instantiation of PC ∈ PCΛ}

∪ {S ∈ St| S is instantiation of SC ∈ SCΛ} ∪ {rRdi ∈ Rdt| rRd is instantiation of rRdR ∈

rRdRΛ}.

From the set of root nodes, we build the sub-trees:

• singleton sub-trees for the problem nodes that are in the RootNodes set.

STP = {sti = ({P},λ) | P ∈ RootNodes ∩ Pt}

• singleton sub-trees for the solution nodes that are in the RootNodes set.

STS = {stj = ({S},λ) | S ∈ RootNodes ∩ St}

• sub-trees for the reduction nodes, with the root node rRd in RootNodes, and also

containing all the reduction nodes Rdi that are generated based on reduction rules

RdRi that have the same abstract reduction class ARdC as that of the reduction

rule rRdR on which the root node rRd is generated, (i.e.,

94

() iRdRARdCrRdR iRdrRd ∀Λ==Λ)() and there is no other root node in the sub-

tree.

STRd = {st sub-tree of t | Vst ∩ RootNodes = {Root(st)}, Root(st) ∈ RootNodes ∩

Rdt, Root(st) is instantiation of rRdR, and ())(iRdrRd RdRARdCrRdR Λ==Λ for

any reduction rule RdRi for which there is an instantiation node Rdi in st}

One may notice that the problem nodes that are located between the selected

reductions are also added to those sub-trees. Having constructed the previous sub-trees,

there will remain some concrete reasoning nodes that are not included in the sub-trees.

These nodes do not have abstraction.

Next, we construct the abstract tree, by specifying the abstraction function. The

construction method is given below.

Given the partitioned reasoning tree we will construct the abstract tree as its

abstraction as follows: from the root of the reasoning tree, go top-down and left-right,

taking the sub-trees one by one. For the current sub-tree st, we consider the root R =

Root(st). As stated, the nodes of the reasoning tree were generated by instantiating

corresponding problem classes, reduction rules or solution classes. Let us consider RC as

being the corresponding class for the root R (if R is problem node, RC is a problem class;

if R is solution node, RC is a solution class and if R is a reduction node, RC is a reduction

rule). If there is an abstraction mapping defined for RC based on properties [a], [b], [c] of

Definition 3.17, then for each RC there is a unique abstraction mapping. We apply the

abstraction mapping to the class and obtain an abstract class ARC (an abstract problem

95

class for a problem class, an abstract solution class for a solution class, and an abstract

reduction class for a reduction rule).

At this point, we will either use an existing instantiation of ARC already created in the

abstract sub-tree or we will create a new instantiation. If there is a left sibling at the

current location in the abstract tree of the same ARC we will reuse that instantiation

(abstract node). If not, then we create the abstract node AN as instantiation of the abstract

class ARC. This abstract node is the abstraction of the sub-tree st, i.e., αt(st) = AN where

AN ∈ Vta . For each abstract node AN, link it to another abstract node AN’ as its parent,

where AN’ is the abstraction of the parent sub-tree of the current sub-tree in the concrete

reasoning tree – to preserve the parent-child relationship.

If there is no abstraction mapping defined, this sub-tree will not be abstracted, i.e.,

αt(st) = λ.

The process will continue until all the sub-trees in the partition will be considered. At

the end of this process we obtain the abstract tree and the abstraction function αt.

Part 2: Uniqueness.

Let us assume that there are two abstract trees ta1 and ta2, constructed based on the

same abstraction mapping applied to one concrete reasoning tree t. We will traverse the

two abstract trees from the root in the top-down, left-right manner, to find the first

different nodes.

Let us assume that the first different nodes are the abstract problem nodes P1ta in the

first tree and P2ta in the second tree.

96

Because they need to be different (except an instantiation isomorphism) the nodes

need to be generated by different abstract problem classes PC1ta and PC2ta. Due to the

property [a] of Definition 3.17, there must be a problem class PC1t abstracted to PC1ta and

a problem class PC2t abstracted to PC2ta. Because of the fact that PC1ta ≠ PC2ta and

property [a], then PC1t ≠ PC2t. Based on the previous construction method, and the

conservation of parent-child relationship we must have two different sibling nodes P1t

and P2t in the reasoning tree instantiating PC1t and PC2t. Let us assume P1t is the left

sibling of P2t.

Because of the construction method, we must have in the second abstract tree a left

sibling of P2ta corresponding to P1t: P’1ta. Moreover this must be also in the first abstract

tree (because we considered the first place where the abstract trees are different). This

means that in the first abstract tree we will have P’1ta left sibling of P1ta and both of them

are instantiations of the same class PC1ta. This contradicts the construction method which

will reuse the P1ta and not create another instantiation.

If the first different nodes are abstract solution nodes or abstract reduction nodes a

similar contradiction is obtained.■

3.4.7 Algorithm for Generation of Abstract Reduction Trees

Based on Definition 3.17 and Theorem 3.5, there is a construction method that maps a

concrete reduction tree to a unique abstract reduction tree. In the implementation of the

construction method, it would be efficient to treat the abstraction mapping as a set of

abstraction rules, each of which is a pair of a concrete class and its corresponding abstract

class. In other words, there are three types of abstraction rules, listed as follows:

97

• Problem abstraction rule: (problem class, abstract problem class), storing the

mapping ΛP(PC) = APC, where PC ∈ PCΛ and APC ∈ APCΛ. The set of all

problem abstraction rules are a representation of PΛ .

• Reduction abstraction rule: (reduction rule, abstract reduction class), storing the

mapping ΛRd(RdR) = ARdC, where RdR ∈ RdRΛ and ARdC ∈ ARdCΛ. The set of

all reduction abstraction rules are a representation of RdΛ .

• Solution abstraction rule: (solution class, abstract solution class), storing the

mapping ΛS(SC) = ASC, where SC ∈ SCΛ and ASC ∈ ASCΛ. The set of all

solution abstraction rules are a representation of SΛ .

In general, an abstraction rule (concrete class CC, abstract class AC) will associate a

concrete class with its corresponding abstract class. With the abstraction rules, the task of

abstracting a reduction reasoning tree can be done automatically. Table 2 presents the

algorithm of associating the abstraction rules to the reduction nodes of the concrete

reduction tree. Table 3 presents the retrieval of the associated abstraction rule from a

reduction node of a concrete reduction tree. Table 4 presents the algorithm of generation

of the abstract reduction tree given the concrete reduction tree and a set of abstraction

rules.

Table 2: Associate Abstraction Rule

Given:
• AbstRules - the set of all the abstraction rules

Return:

98

• none

AssociateAbstractionRule(AbstRules)
1. for each AbstRule = (CC, AC) from AbstRules do
2. associate AbstRule to CC
3. end for
end AssociateAbstractionRule

The algorithm does not return any but creates a link between a concrete class and the

abstraction rule, if any. For a given reasoning tree, each node has an associated concrete

class (e.g. problem class, reduction rule). Therefore, each node will be indirectly

associated with an abstraction rule, if any.

Table 3: Get Abstraction Rule

Given:
• Node - a node to search for its abstraction rule

Return:
• NodeAbstRule - abstraction rule associated with given node Node – NULL if

none

GetAbstractionRule(Node)
1. if Node is problem node then
2. ProblemClass ← retrieve the problem class of Node
3. return the associated abstraction rule of the ProblemClass or NULL if none
4. else if Node is solution node then
5. SolutionClass ← retrieve the solution class of Node
6. return the associated abstraction rule of the SolutionClass or NULL if none
7. else if Node is reduction node then
8. ReductionRule ← retrieve the reduction rule of Node
9. return the associated abstraction rule of the ReductionRule or NULL if none
10. end if
end GetAbstractionRule

99

The algorithm in Table 3 retrieves the abstraction rule associated with a node in the

reasoning tree, if any. The node can be problem node, reduction node or solution node.

For any node, it retrieved the class which generated that node and the abstraction rule

associated with it, if any.

Table 4: Generation of Abstract Reduction Tree

Given:
• t - concrete reasoning tree
• AbstRules - a set of abstraction rules

Return:
• ta - the abstract reduction tree

GenerateAbstractReductionTree(t, AbstRules)
1. AssociateAbstractionRules(AbstRules)
2. Queue ← ∅ nodes in the tree waiting to be abstracted
3. FoundFlag ← false
4. add root of tree t to Queue
5. while Queue is not empty do
6. Node ← pop a node from queue
7. NodeAbstRule ← GetAbstractionRule(node)
8. if Node is problem node then
9. AbstProblemClass ← retrieve abstract problem class from NodeAbstRule
10. ParentNode ← get parent of Node
11. if ParentNode is not null then
12. FoundFlag = false
13. AbstParentNode ← get abstract node from ParentNode
14. if AbstProblemClass is null and Node’s children have abstractions then
15. add Node to AbstParentNode concrete components
16. Set AbstParentNode as abstraction of Node
17. else
18. AbstChildrenNodes ← get children of AbstParentNode
19. for each AbstChildNode of AbstChildrenNodes do
20. AbstChildNodeClass ← retrieve abstract class from

AbstChildNode
21. if AbstChildNodeClass = AbstProblemClass then
22. add Node to AbstChildNode’s concrete components
23. set AbstChildNode as abstraction of Node
24. FoundFlag = true

100

25. end if
26. end for
27. end if
28. if FoundFlag is false then
29. APN ← create abstract problem node from AbstProblemClass
30. add Node to APN’s concrete components
31. set APN as abstraction of Node
32. link APN to AbstParentNode as its parent
33. end if
34. else ParentNode is null
35. APN ← create abstract problem node from AbstProblemClass
36. add Node to the list of concrete components of APN
37. set APN as abstraction of Node
38. add APN to Vta and set APN as Root of ta
39. end if
40. else if Node is reduction node then
41. AbstReductionClass ← retrieve abstract reduction class from NodeAbstRule
42. ParentNode ← get parent of Node
43. if ParentNode is not null then
44. AbstParentNode ← get abstract node from ParentNode
45. FoundFlag = false
46. if AbstReductionClass is not null then
47. AbstChildrenNodes ← get children of AbstParentNode
48. for each AbstChildNode of AbstChildrenNodes do
49. AbstChildNodeClass ← retrieve abstract class from

AbstChildNode
50. if AbstChildNodeClass = AbstReductionClass then
51. add Node to AbstChildNode’s concrete components
52. set AbstChildNode as abstraction of Node
53. FoundFlag = true
54. end if
55. end for
56. end if
57. if FoundFlag is false then
58. ARN ← create abstract reduction node from AbstReductionClass
59. add Node to ARN concrete components
60. set ARN as abstraction of Node
61. link ARN to AbstParentNode as parent
62. end if
63. end if
64. else if node is solution node then
65. AbstSolutionClass ← retrieve abstract solution class from NodeAbstRule
66. ParentNode ← get parent of Node
67. FoundFlag = false

101

68. if ParentNode is not null then
69. AbstParentNode ← get abstract node from ParentNode
70. if AbstSolutionClass is not null then
71. AbstChildrenNodes ← get children of AbstParentNode
72. for each AbstChildNode of AbstChildrenNodes do
73. AbstChildNodeClass ← retrieve abstract class from

AbstChildNode
74. if AbstChildNodeClass = AbstSolutionClass then
75. add Node to AbstChildNode’s concrete components
76. set AbstChildNode as abstraction of Node
77. FoundFlag = true
78. end if
79. end for
80. end if
81. if FoundFlag is false then
82. ASN ← create abstract solution node from AbstSolutionClass
83. add Node to ASN’s concrete components
84. set ASN as abstraction of Node
85. link ASN to AbstParentNode as parent
86. end if
87. end if
88. end if
89. if Node has abstraction or at least one of Node’s children has abstraction then
90. Children ← get children of Node
91. add Children to Queue
92. end if
93. end while
94. return ta
end GenerateAbstractReductionTree

Table 4 provides the algorithm to generate the abstract reduction reasoning tree given

a concrete reduction reasoning tree and a set of abstraction rules. The algorithm starts by

associating the abstraction rules to the reasoning nodes of the concrete reasoning tree

(line 1). Then it uses breadth-first search to enumerate all the nodes in the concrete

reasoning tree. Line 5 starts the breadth-first search. For each node of the concrete

reasoning tree, the associated abstraction rule NodeAbstRule is retrieved at line 7. The

algorithm distinguishes three different types of nodes: problem node, reduction node and

102

solution node. For the problem node, the abstract problem class AbstProblemClass is

retrieved given its abstraction rule NodeAbstRule (line 9). The problem node Node is

tested if it is a root or not, based on its reduction parent node ParentNode (lines 10 and

11). A root does not have a parent and is taken care of at line 34. Line 11 presents the

case where the problem node Node is not the root. Line 13 presents the case where the

AbstProblemClass is null but some of its children have abstractions, which means the

Node does not have its own abstraction but implicitly abstracted to its parent’s

abstraction (abstract reduction node). In this case it is added to the concrete component

list of its abstraction of its parent (lines 14-16). Lines 18 and 19 retrieve the children

AbstChildrenNodes of the abstraction of the parent of the problem node AbstParentNode.

Each child AbstChildNode is supposedly an abstract problem node or an abstract solution

node. Lines 19 to 25 are the FOR loops to enumerate all children. Their abstract problem

classes or solution classes AbstChildNodeClass are, in turn, compared against the

abstract problem class AbstProblemClass of the problem node Node. If

AbstChildNodeClass retrieved from the child problem node AbstChildNode is the same

as the abstract problem class AbstProblemClass (line 21), then the problem node Node is

added as one of the concrete components of the child abstract problem node

AbstChildNode (line 22). The flag FoundFlag is set to true (line 24) to indicate that an

abstract problem node AbstChildNode in the abstract reasoning tree was found. If no

appropriate abstract problem node was found (line 28) then a new abstract problem node

APN is created from the abstract problem class AbstProblemClass (line 29). The problem

node Node is added to the concrete component list of APN (line 30). APN is linked to its

103

parent AbstParentNode (line 32). If the problem node is the root of the concrete

reasoning tree (line 34), the abstract problem node APN which is created based on the

abstract problem class AbstProblemClass (line 35) is also the root of the abstract tree.

The concrete component of the newly created abstract problem node APN is the root

Node itself (line 37).

In case of Node as reduction node, lines 40 to 63 present the similar algorithm to find

an existing abstract reduction node or make a new abstract reduction node in the abstract

reduction tree. Similarly, lines 64 to 88 present the algorithm to find an existing abstract

solution node or make a new abstract solution node in abstract reduction tree. The only

difference between the algorithm for abstraction of problem nodes and the other types of

nodes is the problem node may have an implicit abstraction which is the abstract

reduction node. In this case, that problem node is located in the reduction sub-tree – the

sub-tree whose root and leaves are reductions.

Line 89 indicates that if Node and its children do not have the abstraction then there is

no need to go down further; because there cannot be any abstraction below the Node; it

would violate the parent child relationship, if there were.

3.4.8 Complexity Analysis of Generation of Abstract Reduction Trees

According to Cormen (1997), the cost of traversing a tree ()tVRT δ,= using the

breadth-first strategy is ()δNNO V + where VN = |Vt| is number of nodes in the tree and

δN = |δt| is number of edges in the tree. The algorithm uses the breadth-first search to

enumerate all nodes of the concrete reasoning tree. Therefore there are Nv WHILE loops

104

(line 6) and enumeration of them costs ()δNNO V + = O(Nv + Nv – 1) = O(Nv). Each

WHILE loop consists of a sequence of statements which abstract the current node in the

loop. There are three types of nodes, so there are three corresponding conditions (line 8

for problem node, line 40 for reduction node and line 64 for solution node). For each type

of node, there are similar operations in sequence such as:

 [a] retrieve the class of the current node, which is the concrete class,

[b] retrieve the associated abstraction rule for that concrete class,

[c] abstract the concrete class to the abstract class,

[d] build an abstract node out of the abstract class,

[e] link the abstract node to the existing abstract reduction tree.

For a problem node, there is one exception:

[f] For the root node of the concrete reasoning tree, there is no need to link the

abstract node to the abstract tree, because the abstract tree does not exist at that

time, and the abstract node becomes the root of the abstract tree.

[g] get all direct children and add to the queue (if needed)

From the specifications given above, we can compute the complexity of the algorithm

of generation of the abstract reduction tree. First of all, we want to compute the

complexity of AssociateAbstractionRule. The algorithm contains one FOR loop which

enumerate all the abstraction rules. Let Nar be the number of abstraction rules, the

algorithm will cost O(Nar).

Next we compute the complexity of GetAbstractionRule. This method calls the

statements that cost O(1). Therefore, the complexity of GetAbstractionRule is O(1).

105

Now we compute the complexity of GenerateAbstractReductionTree. For each

WHILE loop (line 5), all statements (see [a] to [g]) cost a constant O(1). In other words,

Nv WHILE loops cost O(Nv). The whole algorithm thus costs O(Nar) + O(Nv) which is

linear with number of abstraction rule and linear with number of reasoning nodes.

106

4. Abstraction-Based Collaborative Problem Solving

Based on the definition of abstraction of a reasoning tree for collaborative problem

solving (see Section 3.3), we have developed a new approach to facilitate the problem of

viewing and understanding a very large reasoning tree. The approach is called

Abstraction-Based Table of Contents. The table of contents (TOC) is, in fact, the abstract

reasoning tree of a concrete reasoning tree. The user who wants to view the complex tree

can browse it by navigating the abstract tree.

4.1. Abstraction-Based Table of Contents

Figure 33 shows the TOC of the large tree displayed on the left hand side panel of

Figure 24. In Figure 33, the right hand side panel displays the smaller sub-tree presenting

the logic that reduces a main problem “Assess whether Al Qaeda has nuclear weapons”

to its main sub-problems such as

• “Assess whether Al Qaeda considers deterrence as a reason to obtain nuclear

weapons”

• “Assess whether Al Qaeda considers the use of nuclear weapons in spectacular

operations as a reason to obtain nuclear weapons” and so on

 The first level of the abstract subtree in the TOC, which is shown on the left-hand

side of Figure 33, is the abstraction of the concrete tree shown in the right hand side of

Figure 33. From the user’s point of view, the top of the tree in the TOC corresponds to

107

the top node in the concrete tree, and the sub-nodes in the TOC correspond to the leaf

nodes of the concrete tree (as indicated by the arrows from the figure). Moreover, the

names of the leaf nodes in the concrete tree (such as those shown above) are abstracted

into the names of the sub-nodes in the TOC (e.g. “Self defense as reason”, “Spectacular

operations as reason” and so on).

Figure 33: Abstraction of Reasoning Tree as Table of Contents

The leaves of the sub-tree on the right hand side panel of Figure 33 are also the roots

of sub-trees in the TOC, as illustrated in Figure 34. This figure presents a fragment of

abstraction-based TOC. It shows an abstract tree of the reasoning tree generated by the

agent. We can see the top problem is Assess whether Al Qaeda has nuclear weapons and

TOC Reduction of a problem to its main sub-

Abstract Detailed tree

108

sub-problems are Deterrence as a reason, self-defense as a reason. Each of the sub-

problems is assessed by favoring and disfavoring evidences. Each evidence is assessed by

the relevance, believability of the reporter and the source and so on. When the user clicks

on the node, the right hand side shows a reasoning tree for that particular problem to

explain the logic of reduction.

Figure 34: An Expanded Fragment of TOC

This type of abstraction is context dependent where the content of the abstract node is

dependent on the context where it is located. For instance, the TOC item “Favoring

evidence” implicitly indicates the evidence to support the hypothesis “Self defense as a

reason” which is its parent TOC item.

109

Given the abstract tree as TOC, the browsing of the large reasoning tree becomes

easier. Viewing the TOC gives the user the summary of the content of the concrete

reasoning tree at different levels of abstraction. The higher level is presented first and the

drill down of the TOC item gives more detailed information. For example, Figure 34

presents the drill-down of the “Self defense as a reason” node which is ”Favoring

evidence” and “Disfavoring evidence”. The “Favoring evidence” has two evidence

pieces, “EVD-Reuters01-01c” and “EVD-Dawn-Mir01-01c”. Each of the supporting

evidence’s characteristics such as “Relevance” and “Believability” are also presented.

By clicking on a TOC item one can view the corresponding concrete reduction sub-tree.

The abstraction of reasoning tree for interactive problem solving also supports the

synthesis process. Figure 35 presents the synthesis view of Figure 33. The solutions are

abstracted in the TOC together with their reduction counterparts. For instance, the node

“Assess whether Al Qaeda considers an ideology as a reason to obtain nuclear

weapons” and its solution “It is likely that Al Qaeda considers an ideology as a reason to

obtain nuclear weapons” are abstracted to “Ideology as reason: likely.”

110

Figure 35: Abstract and Concrete Reduction and Synthesis Tree

4.2. Optimization of the Reasoning Tree Display

Even with the help of abstraction, the display of a reasoning tree on a small screen is

difficult (Nguyen et al., 2000). We have therefore developed a technique to optimize this

display, as illustrated in Figure 36. The left-hand side picture in Figure 36 displays a

reasoning tree with a navigator showing the small part of the tree which is visible. The

tree by itself is compactly displayed, but the view port at different locations is still

spacious. In other words, the density of the tree is not evenly distributed. The right-hand

side picture shows an optimized view which can display 150% more nodes in the same

view port. This allows more nodes to be viewed in the same view port by reducing the

white space between nodes while still preserving the characteristic of a hierarchical tree.

Problem: Solution Reduction and Synthesis Tree

Abstract Detailed tree

111

Before Optimization After Optimization

Figure 36: Optimization of the Display of a Large Reasoning Tree

4.3. Evaluation of Abstraction for Collaborative Problem Solving

In Fall 2006 and Spring 2007 we performed two experimentations with using the

abstraction-based TOC. One was in the course CS681-2006 Designing Expert Systems at

George Mason University and the other was in the course MAAI-2007 Military

Application of Artificial Intelligence at the US Army War College. Both used the same

abstraction-based TOC to browse and modify a large reasoning tree. At the end of the

class, they were asked to agree or disagree on some certain statements. A sample of the

students’ subjective evaluations is presented in Figure 37. With one exception, all the

students agreed or strongly agreed that the abstraction-based TOC facilitates the

browsing and understanding of the reasoning trees.

112

Figure 37: Evaluation of Abstraction for Collaborative Problem Solving

112112

0

1

2

3

4

5

6

7

8

9

10

strongly disagree disagree neutral agree strongly agree

students

TOC is easy to
understand

strongly disagree disagree neutral agree strongly agree

 CS681-06
MAAI-07

0

1

2

3

4

5

6

7

8

students

It is easy to learn how to
browse the reasoning

tree using TOC

0

1

2

3

4

5

6

7

8

9

strongly disagree disagree neutral agree strongly agree

students

It is easy to browse the
reasoning tree using TOC

strongly disagree disagree neutral agree strongly agree

students

0

1

2

3

4

5

6

TOC is adequate to
represent an abstraction of

the reasoning tree

113

5. Abstraction-Based Tutoring

The intelligent tutoring systems (ITS) are valuable educational tools. They are used to

assist the teachers in teaching as well as to support students in learning. These tools,

however, are not widely available because the process of building them is very complex

and time-consuming. This chapter presents several methods that facilitate the process of

developing systems for tutoring expert problem solving. First we present an abstraction-

based approach to lesson design and generation. Then we present several methods for

learning and generation of exercises to test the students.

5.1. Lesson Design and Generation

Lesson creation is one of the most difficult and time consuming tasks in developing

intelligent tutoring systems. Anderson estimated that “it takes at least 100 hours to do the

development that corresponds to an hour of instruction for a student” (Anderson, 1992).

According to Aleven and Rose (2004) “A recent estimate puts development time at 200

hours per hour of instruction”. This activity puts a difficult burden on the instructor who

designs and builds the lessons. The more complex the domain, the harder and longer it

takes to build the curriculum for the tutoring system. GUIDON (Clancey, 1987), a classic

tutoring system based on an expert system, took a subject matter expert and a full-time

knowledge engineer six years to make it work. The enormous labor that is required to

build the lessons for a tutoring system is one of the reasons the ITSs have not been

114

widely developed and used, in spite of their obvious benefits. We have developed a new,

abstraction-based, approach to teach expert problem solving to students. The

corresponding abstraction-based lesson design and generation methods reduce the

complexity and time for building the curriculum. They not only reduce the time to develop

the tutoring system, but also generate the lessons automatically.

The abstraction-based lesson design and generation process uses the abstraction of the

reasoning trees of the application domain as the resource to build the lessons. An abstract

reasoning tree is much smaller than its corresponding concrete reasoning tree and consists

of precisely those abstract concepts and reasoning strategies that need to be learned by a

student. This makes the task of the instructor who has to build the lessons out of the tree

much easier. The detailed description of the abstraction of a reasoning tree for tutoring is

presented in Chapter 3. Once the abstract lessons are built from the abstract tree, the

examples for the lessons are generated automatically by concretizing the abstract

components of the tree. The concretization of the abstract tree allows the reuse of the

abstract lessons for different domain knowledge bases. Another feature of the abstraction-

based lessons is the assured consistency between the expert’s knowledge from the

system’s knowledge base and the knowledge used in constructing the curriculum to teach

expert problem solving to the students.

5.1.1 Abstraction-Based Lesson Design

An abstract reasoning tree is a representation of some of the problem solving

strategies used by a subject matter expert. Capturing that knowledge systematically and

presenting it pedagogically is required in order to develop a tutoring system that can

115

teach the students the expert knowledge to solve problems in a particular domain. The

way the tutoring system teaches the student is also similar to how it was taught by the

expert because the reasoning tree is the representation of how the expert has taught the

system in the first place. The abstract reasoning tree serves as a guide to construct the

lessons. As mentioned in Chapter 3, the abstract reasoning tree (which includes the

abstract reduction tree and the abstract synthesis tree) consists of hierarchies of four types

of abstract nodes: abstract problem nodes, abstract reduction nodes, abstract solution

nodes and abstract synthesis nodes.

A lesson can be defined to cover a part of an abstract reasoning tree. In general, a

lesson teaches a strategy to solve a particular type of problem. Therefore the lesson is

associated with an abstract problem node. This association constitutes a one-to-one

mapping between the knowledge learned from the expert and the knowledge to be taught

by the tutoring system. In order to solve a problem, the problem reduction paradigm

guides the system to successively reduce that problem to simpler and simpler problems.

That reduction strategy must be captured in a lesson. Depending on the complexity of the

problem, the sequence of the reductions needed to solve the problem can be short or long.

The lesson that teaches how to solve that type of problem must present the necessary

reasoning steps. Each reasoning step may correspond to a lesson as a lesson section.

Therefore a lesson can contain one or more lesson sections, depending on the complexity

of the problem at hand. The relations among the lesson sections can vary. They can be

sibling relations, cousin relations or parent-children relations. Thus, the lesson can be

116

used to represent and teach the knowledge that reduces a problem to simpler sub-

problems via multiple reasoning steps.

To illustrate the lesson design process, we will use the abstract reasoning tree from

Figure 38. The top level problem is successively reduced to simpler problems, as follows:

We need to

• Assess the believability of the reporter of the piece of evidence.

The believability of the reporter of a piece of evidence is determined by the reporter’s

competency and credibility.

Therefore we need to

• Assess the competency of the reporter of the piece of evidence.

• Assess the credibility of the reporter of the piece of evidence.

The credibility of the reporter of a piece of evidence depends on reporter’s veracity,

objectivity, and observational sensitivity.

Therefore, to assess reporter’s credibility we need to:

• Assess the veracity of the reporter of the piece of evidence.

• Assess the objectivity of the reporter of the piece of evidence.

• Assess the observational sensitivity of the reporter of the piece of evidence.

117

Figure 38: Lesson Sections

A lesson that teaches how to assess the believability of the reporter can be defined

based on these two reductions. As a result, a two-section lesson is defined. The first

section covers the first reasoning step and the second section covers the other one. The

two sections share one problem, as depicted by the blue-border problem in Figure 38. The

shared problems are required to link the sections together to ensure the continuity of the

lesson’s flow.

The lesson designer or instructor uses the abstract reasoning tree as guidance in

designing the lessons of a curriculum. Once the instructor has decided what sections to

include in a lesson and how they are linked together, he or she can elaborate more on how

to teach that lesson to the students. Showing the entire lesson to the student is not always

desirable because it can be confusing and misleading. A long lesson which has multiple

sections needs to be shown one part at a time and follows some natural logic. The lesson

sections can be presented in multiple ways: breadth-first, depth-first, a combination of

breadth-first and depth-first, or any way that the instructor deems fit to the student’s

118

knowledge or to his/her own taste. The breadth-first strategy introduces the problem in a

broad way that helps the student appreciate the big picture before going into details. On

the contrary, a depth-first strategy may help train the students the capability to focus on

one particular problem and narrow down the problem to find the suitable solutions.

A lesson is not complete without the examples to illustrate the points being taught at

an abstract level. Using the abstract reasoning tree, the instructor is able to avoid the

burden of creating the examples for the lessons. As described in detail in Section 3.3, the

abstract reasoning tree consists of hierarchical abstract nodes. Each abstract node is an

abstraction of a set of concrete reasoning nodes in a concrete reasoning tree, as shown in

Figure 39. The concrete reasoning nodes are illustrations of the abstract node. Therefore,

the concrete reasoning nodes are the sources of the examples for the lessons built upon

abstract node.

119

Reasoning Tree

ART
Concrete Reasoning

Tree

Abstract Reasoning
Tree

Figure 39: Abstract Node and Its Concretions

For instance, the following abstract problem (see Figure 38)

• Assess the believability of the reporter of the piece of evidence.

is an abstraction of the following concrete problems:

• Assess the extent to which one can believe Hamid Mir as the reporter of EVD-

DawnMir-01-02.

• Assess the extent to which one can believe Glazov J. as the reporter of EVD-FP-

Glazov01-01.

EVD-DawnMir-01-02 is a fragment of an article by Hamid Mir, published in the Dawn

magazine. EVD-FP-Glazov01-01 is a fragment of an article by Glazov J, published in the

Front Page magazine.

120

The abstract reduction

The believability of the reporter of a piece of evidence is determined by the

reporter’s competency and credibility.

is the abstraction of the concrete reductions:

What factors determine the extent to which Hamid Mir a reporter EVD-DawnMir-

01-02 can be trusted?

The competency and the credibility of Hamid Mir.

and

What factors determine the extent to which Glazov J. a reporter of EVD-FP-

Glazov01-01 can be trusted?

The competency and the credibility of Glazov J.

The abstract sub-problem

• Assess the competency of the reporter of the piece of evidence.

is the abstraction of the concrete sub-problems:

• Assess the competency of Hamid Mir as the reporter of EVD-DawnMir-01-02.

• Assess the competency of Glazov J. as the reporter of EVD-FP-Glazov01-01

and so on. Therefore, the lesson will have a set of examples, two of which are shown in

Figure 40.

121

Figure 40: Examples Illustrating the Abstract Reduction in Figure 38

The lesson designer may also enhance the lesson with hyperlinks (as shown in Figure

40) that connect to the knowledge base to provide descriptions of important concepts and

instances. These descriptions are generated automatically from the system’s knowledge

base. They provide an unintrusively help to the students. For example, Figure 41 shows

the description of EVD-FP-Glazov01.

122

Figure 41: Description of a Piece of Evidence

What we have discussed so far is the reduction part of the problem reduction /

solution synthesis paradigm. The other half is the synthesis process to find the solution of

the original problem. According to this problem solving paradigm, the synthesis follows

from bottom up: the solutions of the sub-problems are successively composed upward

into the solutions of their parent problems. Similar to the reduction examples, the

synthesis examples of the abstract syntheses are obtained from the corresponding

concrete reasoning trees. Figure 42 shows a two-panel window. The upper panel shows

the lesson’s abstract synthesis steps (as green sticky notes) and the lower panel shows the

corresponding concrete synthesis steps.

123

Figure 42: Lesson’s Abstract Syntheses and their Concretions

An abstract synthesis teaches the student how to combine the solutions of some sub-

problems to obtain the solution of their parent problem:

 Let us consider the following solutions:

• Assessed veracity of reporter of the piece of evidence.

• Assessed objectivity of the reporter of the piece of evidence.

• Assessed observational sensitivity of the reporter of the piece of evidence.

124

 A reporter for which any of the three factors has a very low value is not credible.

Therefore one can estimate the credibility of the reporter as the minimum of

veracity, objectivity, and observational sensitivity.

We thus obtain the:

• Assessed credibility of the reporter.

Similarly with the reduction part, the system can automatically generate concrete

examples of the abstract synthesis process, as illustrated in the bottom part of Figure 42.

The abstraction-based lesson design is important in the sense that it partitions an

abstract reasoning tree into multiple segments. Each segment conveys a separate topic

and is captured into a separate lesson. Different ordered collections of lessons reflect

different ways the lesson designer may direct the transfer of problem solving knowledge

to the students, the goal being to find the most pedagogical way.

5.1.2 Lesson Script and Its Language

A lesson contains the lesson header and multiple sections. The lesson header includes

the lesson’s title and objectives. The lesson’s objectives are the summary of what the

lesson tries to convey and how the information can be used. Each section teaches a

strategy to solve a particular problem. In other words, each section contains one abstract

problem, one reduction strategy and its abstract sub-problems derived by the reduction. In

addition to the reduction strategy, the synthesis strategy is taught as well. Therefore a

lesson section also contains an abstract synthesis, abstract solutions of the abstract sub-

problems and the synthesized abstract solution of the abstract problem. Both reduction

examples and synthesis examples are added to illustrate the topic being taught. The

125

lesson section may also contain annotations and descriptions. These are optional

components used to introduce certain components or for explanation purposes. Last but

not least, the lesson also includes the long and short descriptions for certain concepts to

enhance the understanding of the lesson content. All the descriptions are shown to the

students upon request and unintrusively.

Once the lesson design phase is completed, the system automatically generates the

lesson script whose content is based on the design. Each lesson has a lesson script. The

entire curriculum consists of multiple ordered lessons. Abstraction-based lesson

generation relies on the lesson scripts to build the lessons when they are needed. The

lesson script is managed through the Abstraction-Based Lesson Emulation (ABLE)

scripting language. ABLE allows the instructor to design and build the abstraction-based

lessons in a very flexible manner. In fact, the instructor does not have to write a single

line of ABLE to build the lesson script. The graphical interface helps him/her to generate

the lesson script underlined by ABLE. ABLE is described in Appendix A

Each token of the lesson has an optional feature, named LifeCycle, which indicates

the display timing of that token. The feature allows the lesson components to be

displayed in different orders and with different durations. The grammar of this feature is

presented in the Table 14. In LifeCycle, the two components Order and Duration indicate

when and for how long to display a component on the screen. They are dynamically

computed based on the current configuration of the lesson components.

The relative values of Order and Duration serve two purposes. First of all, the

relative orders allow the lesson components to be easily added and deleted without

126

significantly affecting the orders and durations of the rest of the components. For

instance, if Objective’s Duration depends on the Problem’s Order and the Problem is

deleted for some reason, then the Objective’s Duration will relies on the component

Token i that is displayed right before Problem, i.e. Objective’s Duration = before(Tokeni)

where Problem’s Order = after(Tokeni). The other purpose that the relative values serve

is to maintain the integrity of the orders and durations of the lesson components when the

abstract reasoning tree is realized in different scenarios. Different scenarios may result in

different abstract reasoning trees. No matter the configuration of the abstract reasoning

tree, the lesson components that are hosted by that abstract tree can connect to each other

by using the relative values of orders and durations. This characteristic is suitable for

applying the same lesson script to different scenarios. More on this issue is discussed in

the Lesson Generation section.

The LifeCycle feature is also used in implementing the tutoring strategies. A lesson

can be a large hierarchical collection of sections. The displaying of the whole lesson at

one time may become confusing and hard to understand. The instructor can design the

displaying order of the lesson components in several ways, to emphasize the focal points

of the lesson. For example, in Figure 38, a lesson with two sections is presented. The

instructor may wish to introduce first the top reduction (as in Figure 43), or the bottom

reduction (as in Figure 44)

127

Figure 43: Top-down Tutoring Strategy

Figure 44: Bottom-up Tutoring Strategy

In short, there are various ways to arrange the display of a problem reduction process,

to fit one’s preferences. The tutoring system, however, has a default configuration for

presenting the lesson to relieve the burden off the lesson designer. The default

configuration is a variation of the depth-first strategy. The first reduction will be

presented with all its sub-problems or solutions, and then the reduction of the left-most

child, and so on, as shown in Figure 45.

128

Figure 45: Variation of the Depth-First Strategy

The tutoring strategy also involves the ordering of the abstract problem solving

strategies and their examples. By default, the abstract strategies are presented, and are

then illustrated with concrete examples. This strategy reinforces the learning by using the

examples as the illustrations of what has been taught. The order however can be changed

to reflect the reverse order, i.e., the examples displayed first and the abstract strategies

next. This approach presents first the examples and then the abstract problem solving

strategy illustrated by them. Or the tutoring designer can mix abstract fragments with

1 2

3

129

examples. In essence, the order and mix of the abstract fragments and their examples can

be modified by using the LifeCycle feature mentioned above.

5.1.3 Lesson Generation

The lesson generation process starts by invoking the script loader to load the XML

files of the lesson scripts into the memory, in the order indicated by their indices. The

curriculum is then created by executing the scripts in the corresponding order. The

sequence of generated lessons is held together by the lessons’ pre-requisites and post-

requisites which are built based on the indexed lesson scripts. The lesson scripts are

themselves linked to each other via the abstract problem references. The starting abstract

problem reference of one script must be the ending abstract problem reference of another

script. This makes the latter the pre-requisite of the former, and the former the post-

requisite of the latter. These links are loaded to become the pre-requisites and post-

requisites of the lessons.

Once the sequence of the lessons is laid out, the system splits the set of lessons into 3

groups:

• the previous lessons group, which have already been presented to the students;

• the proposed lesson, which is the lesson to be delivered next, and

• the next lessons group.

This classification is based on the information from the student’s model which holds

information about the student progress, as will be described in the Student Module

section.

130

The organization of the lessons in the curriculum reflect the chaining and logical

sequencing of content strategy (Dabbagh, 2007), where the lessons and their contents

follow the hierarchical problem reduction/solution synthesis paradigm.

5.1.3.1 Table of Contents Generation

Each lesson teaches a strategy to reduce a problem to simpler sub-problems and to

synthesize the solutions of simple sub-problems into the solution of the problem.

Accordingly, the table of contents of each lesson has two main sections: the reduction

section and the synthesis section. Figure 46 shows a typical table of contents. It was

generated for the lesson addressing the “Believability of the reporter of a piece of

evidence” and has entries for the individual sections (e.g. “Components of believability”)

and illustrations (e.g. “Reduction examples”).

Figure 46: Lesson TOC

5.1.3.2 Lesson Content Generation

There are three types of lesson components: lesson decorative components, lesson

header components and lesson section components.

131

The lesson decorative components are classified into two types: lesson annotations (to

annotate a lesson components) and lesson definitions (to define the definitions for some

terms).

The lesson annotation clarifies a lesson component with more explanations. Table 16

in Appendix B shows an XML script of Annotation. The annotation life cycle is by

default very short - one step. The life cycle however can be expanded to serve some

purposes. This component can be attached to any type of nodes except the decorative

nodes themselves, i.e., there is not annotation of an annotation. The lesson designer is

responsible for defining the content. Figure 47 shows an annotation that introduces a

problem solving task, and some popup options.

Figure 47: An Example of Annotation

The lesson definitions are another type of lesson decorative. There are two types of

definitions that are built into the system, brief definitions and detailed definitions. The

brief definitions are used as tool tips for lesson components and for quick access. The

longer definitions define the terms in details and with examples for illustration. The

lesson designer does not have to specify the terms to be described or does not have to

think about the descriptions. The terms are the concepts and instances which come with

the ontology. All the definitions are loaded from the ontology as well. This feature

132

relieves the lesson designer of the burden to provide the necessary definitions of the new

concepts introduced in various lessons. Not only the system inserts the definitions

automatically, it also allows the designer to customize the lesson definitions by selecting

some of the terms to be inserted. Table 17 shows an XML script of Definition. The lesson

definitions are displayed in two phases. The first phase displays the brief descriptions of

the terms. The second phase shows the full descriptions if the “click here” hyperlink is

invoked (see Figure 48). The full descriptions can be very large to cover a full-blown

lesson about the term. In Figure 48, the full description is a lesson about evidence with

supporting stories.

133

Figure 48: Lesson Definitions

There are two types of lesson header components: lesson title and lesson objective.

They are special components because there is only one lesson title and at most one lesson

objective in each lesson.

134

The lesson title is the start of a lesson which summaries the lesson content (see Figure

49). Table 18 shows an example of lesson title script.

Figure 49: Lesson Title and Lesson Objective

The lesson objective is an optional complement of the lesson title. Its function is to

emphasize the purpose of the lesson (see Figure 49). Table 19 shows an example of the

lesson objective script.

Figure 38 shows a hierarchical set of lesson section components. There are lesson

problems and lesson reductions. In that figure, the lesson section components contain

information about problems and reductions respectively.

The lesson problem is the lesson component that links to the abstract problem in the

abstract reasoning tree. The lesson problem covers the problem that will be reduced to

simpler sub-problems in the reduction process. Table 20 shows a sample of lesson

problem script in the XML format. When the lesson problem is constructed, its examples

are also formed, by reference to the abstract reasoning tree.

The lesson reduction is the lesson component that links to the abstract reduction in

the abstract reasoning tree. The lesson reduction teaches the problem solving strategy that

reduces a particular problem to some simpler sub-problems or results. Table 21 shows a

135

sample of lesson reduction script XML. The link to an abstract reduction in the abstract

reasoning tree serves as a bridge to load the concrete reasoning from the concrete

reasoning tree to become the reduction examples.

After each lesson section, there usually are some examples that illustrate the lesson

learned. For the reduction process there are reduction examples, and for the synthesis

process there are synthesis examples. The examples are generated automatically by the

system based on the abstract reasoning tree.

The process of generating the reduction examples is described as following. The

abstract reasoning tree is built from the concrete reasoning tree. Each abstract node in the

abstract reasoning tree is the abstraction of one or several concrete nodes in the concrete

reasoning tree. As detailed in Chapter 3, there are three types of abstract reduction nodes:

abstract problem nodes, abstract reduction nodes and abstract solution nodes. An abstract

problem node is the abstraction of a set of problem nodes in the concrete reasoning tree.

An abstract solution node is the abstraction of a set of elementary solution nodes in the

concrete reasoning tree. An abstract reduction node is more complex being an abstraction

of both problems nodes and reduction nodes in the concrete reasoning tree.

A reduction process in the abstract reasoning tree is captured in an abstract sub-tree

that contains an abstract problem node, an abstract reduction node and a set of either

abstract solution nodes or abstract problem nodes. Therefore that abstract sub-tree is, in

fact, the abstraction of a sub-tree of a concrete reasoning tree. A lesson that is based on

an abstract sub-tree is going to use the concretion of the abstract sub-tree as an example.

Figure 40 shows two generated reduction examples for the lesson in Figure 38.

136

We use Figure 31 and Figure 50 to show how the lesson section is built from the

abstract tree. The right hand side of Figure 50 shows a lesson section which was

constructed from the abstract reasoning tree in Figure 31. The dimmed nodes are not

included in the lesson section. The lesson section thus contains the lesson’s problem LP1,

the lesson’s reduction LR1, and the lesson’s sub-problems LP2, LP3, LP4, and LP5. The

abstract nodes in the lesson sections are the abstraction of the two sub-trees that are

bordered by the broken blue lines on the left hand side of Figure 50. These two sub-trees

are retrieved automatically during the lesson generation to be used as examples for the

lesson section.

Figure 50: Lesson’s Examples Generated for a Lesson’s Section

Lesson solution is the lesson component that links to the abstract solution in the

abstract reasoning tree. The lesson solution teaches how a solution is obtained. Table 22

presents a sample of the lesson solution script in the XML format. Figure 42 shows a sub-

tree with a set of lesson solutions.

AP1

AP4AP2

AR1

AP3 AP5

AR3AR2 AR4

AS2AS1 AS3

P1

P3P2

R1

R2

S3

P6 P5P4

R5 R4R3

S2 S1

P9

P1P1

R6

R7

S7

P1P1

R10 R9R8

S6 S5

LP1

LR1

LP5LP4LP3 LP2

137

Lesson synthesis is a component of the synthesis process. The synthesis process is

guided by the lesson synthesis which instructs the students how to compose the available

solutions into the solution of a more complex problem. An example of lesson synthesis

script in the XML format is shown in Table 23. An example of generated lesson

syntheses is shown in the top part of Figure 42. In this figure, the lesson syntheses are

differentiated from the lesson solutions by lighter green.

Figure 42 shows a snapshot of the synthesis process and the synthesis examples. The

synthesis examples are generated automatically as their counterparts, the reduction

examples. In the concrete reasoning tree, each problem node is associated with a solution

node; each reduction node is associated with a synthesis node. The synthesis examples

are then presented correspondingly to the reduction examples.

5.1.3.3 Lesson Text Generation

The lesson’s text is, in essence, the text version of the lesson’s content and it is

generated from the content of the lesson’s components. Figure 51 shows part of the

lesson text in a text panel. This is the text which is spoken when the voice is enabled.

138

Figure 51: Lesson Text Panel

139

5.1.4 Lesson Generation Algorithm

There are two phases in lesson generation: abstract problem solving strategy

generation and example generation.

5.1.4.1 Abstract Problem Solving Strategy Generation

The abstract problem solving strategy generation algorithm is described as follows:

Table 5: Abstract Problem Solving Strategy Generation Algorithm

Given:
• LSL - list of lesson scripts

Return:
• GLL - list of generated lessons

AbstractProblemSolvingStrategyGeneration(LSL)
1. GLL ← ∅
2. for each lesson script LS ∈ LSL do
3. create lesson title
4. create lesson objective (if any)
5. create lesson definition for lesson title (if any)
6. create lesson annotation for lesson title (if any)
7. for each lesson section LSec ∈ LSecL ∈ LS do
8. if lesson problem LP is not created then
9. create lesson problem LP
10. create lesson annotation for LP (if any)
11. create lesson definition for LP (if any)
12. create lesson solution LS for LP
13. end if
14. create lesson reduction LR
15. create lesson annotation for LR (if any)
16. create lesson definition for LR (if any)
17. create lesson synthesis LS for LR
18. for each sub-problem LPi ∈ LSec do
19. create lesson problem LPi
20. create lesson annotation for LPi (if any)
21. create lesson definition for LPi (if any)
22. create lesson solution LSi for LPi
23. end for

140

24. end for
25. build lesson GL from lesson components above
26. add GL to GLL
27. end for
28. return GLL
end AbstractProblemSolvingStrategyGeneration

The algorithm shows how the abstract problem solving strategies are generated from

the lesson scripts. Each lesson script generates a corresponding lesson which tutors the

abstract problem solving strategy.

5.1.4.2 Example Generation

Note: according to Cormen (1997), the complexity of breadth-first traversing of a tree

()tVRT δ,= is the same with complexity of depth-first one, which is ()δNNO V + =

O(Nv + Nv – 1) = O(Nv) where VN is number of vertices and δN is number of edges. The

semantics of breadth-first search however is more meaningful in the problem reduction

paradigm where a node is broken down into sub-nodes. Traversing the tree using the

bread-first strategy makes more sense than using the depth-first strategy.

Table 6 describes the process of retrieving the concrete components from an abstract

component. This process is frequently used in lesson example generation.

Table 6: Concrete Component Retrieval

Given:
• ARL - a set of abstraction rules
• AbstC - an abstract component which is abstract problem class, abstract

reduction class, abstract solution class or abstract synthesis class.
Return:

• CCs - a set of concrete components which are problem classes if abstract
component is abstract problem class, reduction rules if abstract component is

141

abstract reduction class, solution classes if abstract component is abstract
solution class, synthesis rules if abstract component is abstract synthesis class.

RetrieveConcreteComponents(ARL, AbstC)
1. CCs – list of concrete components
2. CCs ← ∅
3. for each abstraction rule AR = (CC, AC) ∈ ARL do
4. if AbstC = AC then
5. add CC to CCS
6. end if
7. end for
8. return CCs
end RetrieveConcreteComponents

Table 7 describes the process of searching for the instantiations of a problem class, a

solution class or a reduction rule. The instantiation of a problem class (or instantiated

problem) is represented by a problem node in concrete reasoning tree. Similarly for the

other types of statements, the instantiation of a solution class (instantiated solution) is

represented by a solution node in concrete reasoning tree; the instantiation of a reduction

rule (instantiated reduction rule) is represented by a reduction node in concrete reasoning

tree.

Table 7: Search Instantiations

Given:
• C – a class, which is a problem class or a solution class or a reduction rule
• RT - the reasoning tree

Return:
• ICs - list of instantiated classes which are problem nodes or solution nodes or

reduction nodes

SearchInstantiation(RT, C)
1. ICs ← ∅
2. Queue ← ∅

142

3. add root of RT to Queue
4. while Queue is not empty do
5. Node ← pop a node from Queue
6. Children ← get children of Node
7. add Children to queue
8. retrieve a class C’ from Node
9. if C’ = C then
10. add Node to ICs
11. end if
12. end while
13. return ICs
return SearchInstantiation

The search of instantiations of a class, i.e., problem class, solution class or reduction

rule starts from the root of a concrete reasoning tree (line 3). The algorithm uses breadth-

first search (lines 4 to 7). For each node, a class is extracted from the node (line 8). To be

specific, the problem class is retrieved from the problem node, the solution class is from

the solution node, and the reduction rule is from the reduction node. Each of the classes

C’ is compared against the class C as argument (line 9). If they are the same, then add

that node into the returned list (line 9 to line 11). The algorithm searches the entire tree,

because there is no guarantee that the target node is not near the bottom of the tree.

Table 8 shows the lesson example generation algorithm.

Table 8: Lesson Example Generation Algorithm

Given:
• RT - a reasoning tree
• ARs - a set of abstraction rules
• GLs - a set of generated lessons

Return:
• GEs - a set of generated lesson examples

143

LessonExampleGeneration(RT, ARs, GEs)
1. IPs ←∅ - IPs is a set of instantiated problem nodes

2. ISPs ← ∅ - ISPs is a set of instantiated sub-problem nodes

3. IRs ← ∅ - IRs is a set of instantiated reduction nodes
4.
5. for each generated lesson GL ∈ GLs do

6. for each lesson section LSec ∈ GL do
7. extract the abstract problem class AP from lesson problem LP in LSec
8. set of problem classes PCs ← RetrieveConcreteComponents(ARs, AP)
9. for each problem class PC ∈ PCs do
10. IPs ← SearchInstantiation(RT, PC)
11. end for
12. extract the abstract reduction class AR from lesson reduction LR in LSec
13. set of reduction rules RdRs ← RetrieveConcreteComponents(ARs, AR)
14. for each reduction rule RdR ∈ RdRs do
15. IRs ← SearchInstantiation(RT, RdR)
16. end for
17. for each lesson sub-problem LSP ∈ LPs in LSec
18. extract the abstract problem class AP’ from lesson sub-problem LSP
19. set of problem classes PC’s ← RetrieveConcreteComponents(ARs, AP’)
20. for each problem class PC’∈ PC’s do
21. temp ← SearchInstantiation(RT, PC’)
22. add temp to ISPs
23. end for
24. end for
25. Connect each IP in IPs to its child IR in IRs which in turn connects to its

children in ISPs.
26. end for
27. add the examples to GEs
28. end for
29. return GEs
end LessonExampleGeneration

Lesson example generation is based on the generated lessons. The FOR loop on line 5

enumerates all generated lessons. For each lesson, the lesson sections are examined (line

6). For each lesson section, the abstract problem class is retrieved based on the reference

to it from the lesson problem (line 7). From the abstract problem class and abstraction

rules, a list of concrete problem classes is retrieved (line 8). The problem classes are then

144

used to retrieve instantiated problem nodes from the concrete reasoning tree (line 9, line

10). Similarly the abstract reduction class is obtained from the lesson reduction (lines 12).

And the concrete reduction rules are obtained from the reduction abstraction rules (line

13). Line 14 and line 15 shows how the instantiated reduction rules which are reduction

nodes are retrieved from the concrete reasoning tree. From the lesson sub-problems, the

sub-problem nodes are also obtained. Three sets of problem nodes, reduction nodes and

sub-problem nodes are linked together to become the examples for the lesson section. An

enumeration of all lesson sections in one generated lesson also links all the examples for

lesson sections together to become larger examples to illustrate the generated lesson.

5.1.5 Complexity Analysis of the Lesson Generation Process

The complexity of lesson generation is computed based on the two algorithms,

described in Table 5 and Table 8, abstract problem solving strategy generation and lesson

example generation.

5.1.5.1 Complexity of Abstract Problem Solving Strategy Generation

The algorithm of abstract problem solving strategy generation in Table 5 depends

only on the lesson scripts. Let Ns be the number of lesson scripts; each with maximum Nst

lesson sections. Each lesson section has one lesson problem, one lesson reduction and at

most Nsub lesson sub-problems. For each computation of a reduction process, there must

be at most one counterpart of the synthesis process, i.e., the lesson problem versus lesson

solution, lesson reduction versus lesson synthesis.

First, we compute the second FOR loop of generating the lesson sections (line 7 of

Table 5). Each lesson section has:

145

• One lesson problem plus at most one lesson annotation and one lesson definition.

The lesson problem can be generated before if this section is not the first section.

It means that the lesson problem of this section can be the lesson sub-problem of

the previous lesson section. Each computation for generating a lesson problem is

a constant O(1), similar to that of lesson annotation and lesson definition. Each

lesson problem has at most one lesson solution which also costs a constant O(1).

In other words, each lesson problem plus its lesson decorations and its synthesis

counterpart cost a constant O(1).

• One lesson reduction plus at most one lesson annotation and one lesson definition

and one synthesis counterpart – lesson synthesis. Similar to the lesson problem

they also cost a constant O(1).

• A third FOR loop (innermost FOR loop at line 17) for generating the lesson sub-

problems plus at most one lesson annotation and one lesson definition for each

lesson sub-problem and their lesson solutions of synthesis process. Similar to the

lesson problem, each lesson sub-problem and its lesson decorations plus its lesson

solution cost O(1). Therefore the third FOR loop costs O(Nsub).

Thus the second FOR loop costs O(Nst)(O(1) + O(1) + O(Nsub)) = O(NstNsub)

including the third FOR loop.

The first FOR loop (outermost for loop at line 2) is of the loop of Ns lesson scripts.

Each lesson script consist of one lesson title, at most one lesson objective, at most one

lesson annotation and at most one lesson definition plus the second for loop. As we

discussed above, all the lesson header components are similar to the lesson decorations,

146

they cost a constant O(1). Hence, the first FOR loop costs O(Ns)(O(1) + O(NstNsub)) =

O(NsNstNsub) including the second and third FOR loops. From the abstract tree point of

view, NsNstNsub is linear with number of abstract nodes of the reasoning tree Nan.

Therefore, the algorithm performs in O(NsNstNsub) = O(Nan).

5.1.5.2 Complexity of Examples Generation

The algorithm of lesson example generation in Table 8 depends on the algorithm in

Table 7 for retrieving the instantiations of a knowledge component from the reasoning

tree and the algorithm in Table 6 for retrieving the concrete components corresponding to

an abstract component.

As shown by Cormen (1997), the cost of traversing a tree ()ttVt δ,= using either

breadth-first or depth-first strategy is ()δNNO V + where VN is number of nodes in the

tree and δN is number of edges in the tree. Therefore the cost of searching for the

instantiations of a knowledge component in SearchInstantiation algorithm is ()δNNO V + .

Once the traverse of the tree is finished, the map between a class and its instantiated

classes are established to reduce the time for later searches. In other words, searching for

the instantiations of all necessary classes cost only ()δNNO V + = O(Nv) because Nv = Nδ

+ 1, no matter how many times the search is called.

The algorithm of retrieving the concrete components from an abstract component

(RetrieveConcreteComponents algorithm) consists of a loop of abstraction rules, each of

which compare its abstract component against the searched one. If they are equal, the list

of concrete components of that abstract rule is returned. The comparison operation costs a

147

constant O(1). Worst case scenario enumerates all the abstraction rules which costs

O(Nar)*O(1) = O(Nar) where Nar is the number of abstraction rules. As similar to the

SearchInstantiation algorithm, a map between the concrete classes and their abstract

classes are established to reduce the time for later searches. In other words, retrieving

concrete components from an abstract component takes only O(Nar), no matter how many

times the method is invoked.

In Table 8, the second FOR loop (line 6) is the loop of lesson sections. Each lesson

section contains one lesson problem, one lesson reduction and a loop of lesson sub-

problems. Each lesson problem, lesson sub-problem and lesson reduction retrieves a set

of concrete components via RetrieveConcreteComponents which cost O(Nar). As stated

above, no matter how many times the method is invoked, the cost is only O(Nar). Each

concrete component (a problem class, a solution class or a reduction rule) retrieves a set

of its instantiations (a set of problem nodes, a set of solution nodes, or a set of reduction

nodes in concrete reasoning tree, respectively) that costs O(Nv). As stated above, no

matter how many times the method is invoked, the cost is only O(Nv). In other words, the

operation of a lesson component (problem or reduction or sub-problem) retrieving its

own instantiations costs O(Nar) + O(Nv). Because the lesson section has one lesson

problem, one lesson reduction and a loop of lesson sub-problems, the complexity of the

whole lesson section is O(Nar) + O(Nsub) + O(Nv) = O(Nsub + Nar + Nv) where Nsub is

maximum number of lesson sub-problems per lesson section.

Let Ngl be the number of generated lessons, and Nst be the maximum number of

sections in each lesson, the algorithm in Table 8 costs O(Ngl × Nst × Nsub) + O(Nar) +

148

O(Nv) = O(NglNst Nsub + Nar + Nv). From the abstract reasoning tree point of view,

NglNstNsub is linear with number of abstract nodes of the abstract tree Nan. In other words,

the algorithm in Table 8 costs O(Nar + Nan + Nv).

5.1.5.3 Complexity of Lesson Generation

The complexity of lesson generation equals the complexity of abstract problem

solving strategy generation plus the complexity of lesson examples generation. The

complexity of the former costs O(Nan). The complexity of lesson examples generation is

O(Nar + Nan + Nv). Over all, the complexity of lesson generation is:

O(Nan) + O(Nar + Nan + Nv) = O(Nar + Nan + Nv).

5.1.6 Generality of Abstraction-Based Lesson Generation

The abstraction-based lesson generation is based on the abstract reasoning tree. As

discussed above, the lesson section components are linked to the abstract nodes of the

tree. Each abstract node is the abstraction of a number of reasoning nodes in concrete

reasoning trees. An abstract problem node is an abstraction of concrete problem nodes.

An abstract solution node is an abstraction of concrete elementary solution nodes. An

abstract reduction node is an abstraction of concrete sub-tree consisting of problem nodes

and reduction nodes. The concrete reasoning trees are generated by the problem solving

engine which applies general reduction and synthesis rules to solve a given problem in

the context of a given scenario.

Figure 52 shows an example of an IF-THEN reduction rule which was learned from a

subject matter expert. This reduction rule can be instantiated in different scenarios of the

same domain, as illustrated in the following. One such scenario is Intelligence Analysis

149

where intelligent analysts assess pieces of evidence that favors or disfavors the

hypotheses under study. A similar scenario is Crime Scene Investigation where police

officers investigate various crimes.

Figure 52: Reduction Rule

In the first scenario, the reduction rule can be instantiated as shown in Table 9. This

rule questions the credibility of Hamid Mir, a reporter of Dawn Magazine who wrote an

article about Bin Laden who was quoted as saying “We have chemical and nuclear

weapons as a deterrent and if America used them against us we reserve the right to use

them."

150

Table 9: Instantiated Reduction Rule in Intelligence Analysis Scenario

INSTANTIATED REDUCTION RULE

IF: Assess the credibility of Hamid Mir as the reporter of EVD-Dawn-Mir01-02.

Q: What factors determine the credibility of a reporter of a piece of evidence?

A: The veracity, objectivity, and observational sensitivity of the reporter.

THEN:

 Assess the veracity of Hamid Mir as the reporter of EVD-Dawn-Mir01-02.

 Assess the objectivity of Hamid Mir as the reporter of EVD-Dawn-Mir01-02.

 Assess the observational sensitivity of Hamid Mir as the reporter of EVD-Dawn-Mir01-

02.

In the second scenario the rule can be instantiated as shown in Table 10. In this

scenario, the police officer Connolly reported that Sacco committed the robbery and

shooting in South Braintree on April 15, 1920 [Schum, 1994].

Table 10: Instantiated Reduction Rule in Crime Scene Investigation Scenario

INSTANTIATED REDUCTION RULE

IF: Assess the credibility of Connolly as the reporter of a testimony under oath.

Q: What factors determine the credibility of a reporter of a piece of evidence?

A: The competency, veracity, objectivity, and observational sensitivity of the

reporter.

THEN:

 Assess the veracity of Connolly as the reporter of a testimony under oath.

 Assess the objectivity of Connolly as the reporter of a testimony under oath.

151

 Assess the observational sensitivity of Connolly as the reporter of a testimony under

oath.

Let us now assume that an abstract reduction rule and the corresponding abstract

problems are built from the instantiated reduction rule in the first scenario, as shown in

Table 11. The lesson that is built from the abstract rule/reasoning in Table 11 can be used

both in the Intelligence Analysis scenario and in the Crime Scene Investigation scenario,

with examples generated automatically in each scenario.

Table 11: Abstract Rule Corresponding to the Rule Instance in Table 2

ABSTRACT RULE

IF: Assess the credibility of a reporter of a piece of evidence.

Q: What factors determine the credibility of a reporter of a piece of evidence?

A: The veracity, objectivity, and observational sensitivity of the reporter.

THEN:

Assess the veracity of a reporter of a piece of evidence.

Assess the objectivity of a reporter of a piece of evidence.

 Assess the observational sensitivity of a reporter of a piece of evidence

There are two dimensions of generality of our approach to lesson design and

generation. The first regards the automatic generation of lesson examples for different

scenarios in the same domain, with no authoring or customization needed from the

instructor. The second regards the ability to apply the same abstract lesson to different

152

knowledge bases. The first dimension expresses the capability to capture the essence of

reasoning behind the problem solving approaches and to apply that knowledge into

different problems of different scenarios in the same domain. The second dimension

emphasizes the reusability of the abstraction-based lesson. The other side effect of this

capability is the automatic lesson generation from a knowledge base. If we already have a

lesson built for one knowledge base then the system can automatically generate other

lessons for other knowledge bases as long as they all rely on the same abstract problem

solving strategies.

5.1.7 User Interface

The lesson construction process has two phases: lesson design and lesson generation.

The lesson design targets the instructor who designs the lesson. The lesson generation is

mostly for the students who learn the problem solving expertise from the tutoring system.

Each of them has its own user interface.

5.1.7.1 Lesson Design User Interface

The lesson designer uses the lesson editor to design the lesson. The lesson editor has

two panels, as illustrated in Figure 53. The left-hand side panel displays a part of the

abstract reasoning tree whose root is the abstract problem associated with the lesson to be

designed. The right-hand side panel is the panel where the designer places the lesson

components and manipulates them. On its right margin is the widget toolbar with several

widgets to build the lesson components.

153

Figure 53: The Interface of the Lesson Editor

When the lesson editor is invoked, the right hand-side panel always has the lesson

title, the lesson objective and the lesson problem to be presented in the lesson. The left-

hand side panel contains the tree whose root already has a lesson problem created by

default. The nodes which are used in the lesson components are highlighted in red, as

seen in Figure 53. The designer can drag an abstract reduction to create a lesson section.

Each lesson section contains a reduction example node and a synthesis example node.

These two example nodes are just placeholders. They will be automatically generated

later when the lesson is generated.

Figure 77 shows the widget toolbar. The objective button creates a lesson objective.

This type of node has a constraint: there is only one lesson objective in a lesson.

Therefore if the objective exists then selecting that button will not yield another lesson

154

objective. The definition button creates a definition for a specific lesson component (each

lesson component which is not a decorative may include one definition). The definition

token is editable. It allows the lesson designer to select one or several terms to be defined.

The terms to be defined are generated based on the content of the lesson component

which the definition is for.

Figure 54 shows the interface of the definition editor. In this editor there are two

terms to be defined, piece of evidence and credibility. By default, all are selected, but the

designer can change this by un-checking some terms and saving the change. Only the

checked terms are presented in the lesson.

Figure 54: The Interface of the Definition Editor

The next button is the annotation button, a decorative component for the creation of

the lesson’s annotations. This type of component is to clarify or introduce some phrases

before another component. All the decorative components have an option to turn off the

voice when being generated. The synthesis button generates the lesson’s synthesis

component for any lesson section components. Each lesson component in the lesson

editor is generated by default. One may right-click on each component to modify the

content and the text to be displayed in the table of contents of the tutoring system.

155

The order setting button allows the designer to specify when components should be

displayed and for how long, as order-duration pairs associated with each lesson

component, as illustrated in Figure 55. In this figure, the lesson’s title and objective are

displayed at the same time and at first. The lesson title lasts until the end of the lesson,

whereas the lesson objective stays only one step due to its duration value being 1. The

next component to be displayed is the lesson’s problem which lasts until the end of the

lesson because its duration is -1. The lesson’s reduction appears next, then the lesson’s

sub-problem. The synthesis example is displayed last.

Figure 55: The Interface of the Order Setting Module

156

This feature is very important in the lesson design process, allowing the

customization of the lessons. Each tutoring strategy is different based on the student’s

knowledge, the domain, the content of the lesson and the designer’s teaching style.

The last button in the tool bar is the preview button which displays the lesson’s

components based on their order and duration. The lesson designer can stop the automatic

display to navigate back and forth at his/her own pace. This preview panel can visualize

the lesson in the tutoring system, allowing the lesson designer to see the current status of

the lesson based on its settings. The designer can go back to the setting order mode to

modify the configuration and the order and then preview again to view the effect of the

new changes. Figure 56 shows the preview panel.

157

Figure 56: Preview of a Designed Lesson

5.1.7.2 Lesson Generation User Interface

The lesson generation user interface is for the students who take the lessons. The

lesson has three components, table of contents, lesson content and lesson text, each with

its panel. The table of contents panel contains three sub-panels: previous lessons, current

lesson and next lessons (see Figure 57). The previous lessons panel displays all the

previously presented lessons. Their tables of contents are accessible for a quick review.

The table of contents of the current lesson is displayed fully. The next lessons panel does

158

not allow the view of the tables of contents. Once the current lesson is finished, it is

moved up to the previous lessons panel and the next lesson in the next lessons panel is

moved to the current lesson panel (if there is a next lesson). The next and previous

lessons link to the current lesson via the post-requisites and pre-requisites of the lessons.

Figure 57: Lesson’s Table of Contents Panel

The lesson content panel contains two sub-panels, the abstract panel and the example

panel, as illustrated in Figure 58. The lesson example panel is minimized during the

lesson display until there is an example to show. The abstract panel displays the abstract

problem solving strategy being taught. It follows the order setting to present the lesson

components. The lesson’s example component is displayed in the lower panel. The

student can browse the available generated examples by clicking on the navigational

159

labels “Next” and ”Previous,” or by selecting a certain example from the “Select

Example” combo box. The student controls the display of the lesson with the navigation

buttons at the bottom panel: the next button will advance one step, the previous button

will go back one step and the stop button will stop whatever is currently displayed.

Figure 58: Sample Lesson Content

Lesson’s text is generated automatically based on the content of the lesson. Each

lesson component will produce a text version of its content. The collection of all lesson

component texts forms the text version of the current lesson. The text of the current

160

component is highlighted blue. By default the audio is turned on but the student can turn

off that option. Figure 51 shows a part of the text of the current lesson.

5.1.8 Evaluation of Lesson Generation

The research is implemented as an extension of the Disciple agent development

environment. The Disciple learning agent shell uses a multi-strategy approach for

developing intelligent agents where an expert can teach the agent how to solve domain-

specific problems. Disciple has proved to be successful in developing learning agents that

can learn as apprentices. Such agents can use their learning capability to learn how to

generate lessons and exercises.

Disciple provides the basic framework to develop the tutoring systems. Disciple has a

workspace manager who manages and provides the public interfaces to integrate its

components altogether. The abstraction-based tutoring systems which are built with the

Disciple learning agent shell take advantage of that facility to ease the process of

developing their necessary components which work together with the Disciple

components. Disciple also provides the infrastructure for the tutoring systems, such as the

knowledge base module and the learning module.

As mentioned earlier, the new approach speeds up the process of building the tutoring

systems partly due to the rapid knowledge acquisition capability that Disciple has. This

capability not only reduces the time it takes to acquire the domain knowledge, but it is

also used by the tutoring system to simplify the acquisition of pedagogical knowledge.

Therefore Disciple is an essential component in achieving rapid development of a

161

tutoring system. The domain that was used in the experimentation for our work is

Intelligence Analysis.

In Spring 2006 we had an opportunity to evaluate the tutoring system with the

students of the course “Military Application of Artificial Intelligence” (MAAI-2006) at

US Army War College (USAWC). The students were either experienced intelligence

analysts or users of intelligence. We have repeated this evaluation with the students in the

GMU course “CS 681 Designing Expert Systems.” As opposed to the Army War College

students, none of the GMU students had significant prior knowledge of intelligence

analysis.

After using the tutoring system, the students evaluated various aspects of it by

expressing their disagreement or agreement with certain statements, on a five point scale

(strongly disagree, disagree, neutral, agree, and strongly agree). Figure shows a sample of

these subjective evaluation results. 7 of the 12 USAWC students agreed that the tutoring

system helped them to learn the addressed topic and 11 of them agreed that the examples

facilitate the understanding of the presented topic, as shown in the left-hand side of

Figure 59. The right-hand side of Figure 59 shows the evaluation of the same aspects by

the GMU students. All 15 students agreed that the tutoring system helps to learn the

addressed topic. Also, 14 of the 15 GMU students agreed or strongly agreed that the

examples facilitate the understanding of the presented topic.

In this evaluation, we can see that background knowledge plays an important role in

the perceived usefulness of a tutoring system. The GMU students were not familiar with

the domain at all, while the USAWC students were very familiar. Therefore, the tutoring

162

system therefore seemed more valuable to the GMU students than to the USAWC

students. It is however very encouraging that even the USAWC students considered the

tutoring system useful.

Figure 59: Evaluation of Generated Lessons

Figure 60 presents a different type of evaluation performed with the GMU students,

which is based on the Kirkpatrick test model (Kirkpatrick, 1998). We have surveyed the

The examples facilitate the understanding of the
presented topic

0

2

4

6

8

10

12

strongly disagree disagree neutral agree strongly agree

students

MAAI-06

The tutoring agent helps me to learn
the addressed topic

0

1

2

3

4

5

6

7

8

9

strongly
di

disagre neutr
l

agre strongly

student

CS681-
06

The examples facilitate the understanding of the
presented topic

0

2

4

6

8

10

12

strongly disagree disagree neutral agree strongly agree

students

CS681-06

The tutoring system helps me to learn the
addressed topic

0

1

2

3

4

5

6

7

8

9

strongly disagree disagree neutral agree strongly agree

students

MAAI-06

163

students, both before and after they have used the tutoring system, on how much

knowledge they thought they had about specific intelligence analysis topics tutored by the

system. In addition, at the end of the class, the students were tested to objectively

evaluate their learned knowledge. The first five charts of Figure 60 compares the

students’ perception of their intelligence analysis knowledge (on several basic topics)

before using the tutoring system (in blue), and after using the system (in red). The charts

show clearly a very significant improvement in the tutored topics: hypothesis assessment,

information content and credibility, credibility of reported evidence, credibility of the

reporter, and credibility of tangible evidence.

The last figure of Figure 60 presents the objective evaluation of CS 681 students. At

the end of the class, the students took the tests generated by the test agent (see Section

5.2). The tests focus on the understanding of the Intelligence Analysis domain. The agent

graded the students based on the correct answers. The lowest score was 71, and the

highest was 100. Out of 15 students, six scored from 70 to 79, three scored from 80 to 89

and six scored over 90. According to top charts of Figure 60, there were some students

who did not know any thing about this domain, and some how could score at least 70

points. Therefore this evaluation suggests that our experimental tutoring system is a

valuable tool to enhance a student’s knowledge.

164

Figure 60: Evaluation of Tutoring

5.2. Learning and Generation of Test Questions

In general, the test questions are categorized into six levels of cognition, known as the

Bloom’s Taxonomy (Bloom, 1956). They correspond to different levels of understanding,

as explained below with examples from the problem reduction/solution synthesis

paradigm.

• Knowledge level: the ability to recall data or information such as a problem

reduction rule.

• Comprehension level: the ability to understand the meaning of instructions or

problems, for instance, to recognize an error in the reduction of a problem.

0

1

2

3

4

5

6

7

8

9

None Very low Low Medium High Very high

students

 Credibility of the
reporter of a piece

of evidence

0

1

2

3

4

5

6

7

8

9

None Very low Low Medium High Very high

students

0

1

2

3

4

5

6

7

50- 60-69 70-79 80- 90-100

Grades of Generated Tests

0
None Very low Low Medium High Very high

students

1

2

3

4

5

6

7

8

9 Information content
and credibility

students

0

1

2

3

4

5

6

7

8

9

10

None Very low Low Medium High Very high

Hypothesis
assessment

through evidence
analysis

0

1

2

3

4

5

6

7

8

9

10

Non Very Lo Mediu Hig Very

students

Credibility of
reported evidence

 Subjective Prior Knowledge
Subjective Post Knowledge
Objective Test-Based EvaluationCS681-06

Credibility of
tangible evidence

students

165

• Application level: the ability to apply a concept to a new situation, for example, to

apply a learned reduction strategy to solve a new problem.

• Analysis level: the ability to distinguish between facts and inferences and to

decompose the material into components, such as being able to reconstruct the

reduction step that is applicable to a certain problem.

• Synthesis level: the ability to combine components into a whole, for example, to

synthesize a final solution of a problem from elementary solutions.

• Evaluation level: the ability to make judgments about the values of ideas or

materials, such as being able to judge if some new reduction steps are logically

sound.

The tests can be developed to measure the level of a student’s understanding, based

on the Bloom Taxonomy. In this dissertation we focus only on some of the levels, such

as, knowledge, comprehension and analysis.

5.2.1 Learning of Test Questions

We have developed learning methods that allow an instructional designer to teach an

agent how to construct test questions. Our methods are based on the problem reduction

rules that have been previously learned by the agent. They consist in extending these

rules with additional components, to transform them into test questions rules. The rules

are then applied in appropriate settings to generate specific test questions. The designer

selects an example of a problem reduction rule and transforms it into a test for the

knowledge, comprehension or analysis level, as discussed below.

166

To test the knowledge level, the designer drops one or several sub-problems in a

reasoning step to produce a deliberately wrong reasoning step. Figure 61 shows one of

the examples for such omission test. In this example, the first sub-problem of assessing

the degree to which a piece of evidence favors a hypothesis was dropped. The reasoning

step becomes incomplete and that would alert the student who learned it by heart and

encounters it during the testing period. During the testing period, the question and answer

is not shown, to make the test more difficult.

Figure 61: Test Example for Knowledge Level

Figure 62 shows a modified reasoning step where the instructional designer

deliberately altered the meaning of one of the sub-problems. In particular, the assessment

of the believability was replaced with the assessment of the authenticity. This type of test

question which is named modification test requires the students to have deeper

knowledge about the subject compared to the knowledge level tests.

dropped sub-problem

167

Figure 62: Test Example for Comprehension Level

Another type of test question that is more challenging than the above two is the

construction test. The designer defines several sub-problems which may be unrelated or

incorrectly related to the correct sub-problems of a problem. The test question will

present a problem and a list of potential sub-problems, including the correct and the

incorrect ones. The student must select the correct sub-problems. This type of test

requires the student to analyze the sub-problems to build up a correct reasoning step.

Figure 63 illustrates the design of a construction test. It shows the extra deliberately

“wrong” sub-problems: assessing the availability, the accuracy and the relevancy of a

piece of evidence. Those three together with the original two sub-problems will make a

pool of sub-problems to select from.

modified subtask

168

Figure 63: Test Example for Analysis Level

No matter what type of test question the designer plans to build, a set of explanations

and a hint must be constructed in parallel with the content of the test. Figure 64 shows a

panel where the explanations are created by the designer. There are three explanations for

three types of the answers: correct, incorrect, and incomplete. The explanations are

displayed once the answer is given. The hint, on the contrary, is given before answering

the test question and by request only. Notice that the explanations and the hint correspond

to the particular test example being built. That is, they are very specific, containing the

instances (such as EVD-Dawn01-02c) from the example. The example, however,

corresponds itself to a previously learned rule. This rule will be extended with

generalizations of the explanations and the hint, obtained by replacing the contained

instances with the corresponding rule variables, as discussed in the following.

added subtasks

169

Figure 64: Explanations Construction

Once an example of the test question is provided, the task now is to learn how to

generate similar tests in future. Learning by test examples is processed in a sequence of

steps:

170

• Receive a reduction rule to learn a test rule based on it. When the instructional

designer plans to create a test example, s/he usually goes through a list of

available reduction rules and picks out the desired one. The reduction rule

corresponding to the above examples is shown in Figure 65.

•

Figure 65: A Reduction Rule

• Construct a test rule based on the reduction rule and the modifications and

extensions of one of its examples. A test rule basically contains a reference to the

reduction rule and a list of extensions. The extensions include the test category

(i.e. omission, modification, or construction), the category-related information

and the generalizations of the explanations and hint. For the omission test, the

171

related information is the reference to the dropped sub-problems. For the

modification test, it is the old and the new contents of the modified sub-problems.

For the construction test, it is the extra sub-problems that were entered during the

construction of the test question example. The explanations and hint are the same

for all types of test. They are generalized to be applicable to different scenarios.

5.2.2 Generation of Test Questions

With a set of test rules available in the tutoring knowledge base, the agent can

generate numerous test questions to present to the students who already took the related

lessons. Indeed, each test question is based on a reduction rule, and for each instance of

the rule in a knowledge base, there is a corresponding test question. Consequently, a lot

of different test questions can be generated from a single test rule if the domain

knowledge is rich. The Table 12 presents the algorithm for generating test questions.

Table 12: Algorithm of Test Question Generation

Given:
• TRs - set of test rules
• RT - a reasoning tree

Return:
• GTQs - list of generated test questions

TestQuestionGeneration (TRs, RT)
1. for each test rule TR ∈ TRs do
2. RdR ← retrieve reduction rule from TR
3. List of instantiations of reduction rule IRdRs ← SearchInstantiation(RT, RdR)
4. for each IRdR ∈ IRdRs do
5. if TR is omission test then
6. GTQ ← drop the sub-problem node(s) of IRdR specified in TR
7. else if TR is modification test then
8. GTQ ← modify the content of the sub-problem node(s) of IRdR specified

in TR

172

9. else if TR is construction test then
10. GTQ ← create a pool of sub-problem nodes from the sub-problem node(s)

of IRdR plus added sub-problem node(s) specified in TR
11. end if
12. add GTQ to GTQs
13. end for
14. end for
15. return GTQs
end TestQuestionGeneration

From a list of generated test questions, a sort procedure is initiated based on sorting

criteria: random distribution or an ordering of the test questions in context. The random

distribution generates the test questions in the random order each time the test agent

starts. That makes the tests more versatile and interesting: the student cannot tell what

test will be next. No test session will be the same for all students, even for the same

student. For the ordering of the test questions in context, the tests are arranged in such a

way that they are presented from the top down to the bottom of the reasoning tree. This

type of distribution helps student to recall the learned knowledge by following the

context.

The two types of distribution are suitable for two types of test mode: self-test and

assessment test. In the self-test mode, the students are tested to reinforce their learned

knowledge rather than to assess of their knowledge. The students are able to go back to

the lesson corresponding to the test, via the “Go To Lesson” option, to review the lesson.

In the assessment mode, the students do not have access to the lessons. In other words,

they do not have the “cheat sheets” with them.

173

Figure 66 shows a generated test question which is based on the test rule learned from

the test example in Figure 62. The test question displays an incorrect reasoning in which

one sub-problem is modified. Note that the question and answer are omitted. The student

will have to indicate whether the reasoning step displayed is correct, incomplete or

incorrect. Each selection is followed by a context-sensitive explanation. A hint is always

available to help the student in case s/he needs. Glossary is also provided for clarification

of various terms. Once the answer is chosen, the system will grade it and report back both

this grade and the cumulative grade (which corresponds to all the test questions

answered).

Figure 66: A Generated Test Question

An Instantiation
of the test rule

Hint provide by
request

Possible Answers

Description of the
piece of evidence

Go back to related
lesson

174

Figure 67 illustrates a construction test question where the student has to select the

correct sub-problems (shown at the bottom left of Figure 67) of a given problem (shown

at the top left of Figure 67). Such selection can evaluate the student’s understanding of

the subject. Therefore the grading for this type of test is strict: only selecting all the

correct sub-problems is considered as correct answer, otherwise it is either incorrect if

one or more incorrect sub-problems are chosen, or incomplete if not enough correct ones

are selected.

Figure 67: A Generated Construction Test Question

5.2.3 Complexity Analysis

 The test generation algorithm is in the one from Table 12. In this algorithm, each

operation on the instantiated sub-problems to create a GTQ costs a constant O(1) (line 6,

line 8 and line 10). Therefore the inner FOR loop on line 4 which enumerates a list of Nir

A pool of subtasks for
selection

175

reduction instantiation IRdR ∈ IRdRs is NirO(1) = O(Nir). The outer loop (line 1)

depends on Ntr the number of test rules TRs. In other words, the entire outer loop costs

O(Ntr × Nir) = O(Ngt) where Ngt is number of generated test questions. Besides, the search

of all instantiations of a reduction Ri in reasoning tree ()tVRT δ,= costs O(Nv + Nδ) =

O(Nv + Nv -1) = O(Nv) where Nv is number of nodes in reasoning tree and δN number of

edges that connect all the nodes together. After all, the complexity of the test question

generation based on the algorithm presented in Table 12 is

 O(Ngt + Nv).

5.2.4 Evaluation of Test Generation

Two versions of the test generation agent were tested by students at the US Army

War College in Spring 2006, and students at George Mason University in Fall 2006.

Figure 68 shows a sample of the subjective evaluations by these students. The assessment

of “The exercises are challenging” is important because it suggests the value of the test

questions. In Spring 2006, only 7 of the 12 students agreed that the exercises were

challenging. The evaluation result was better in Fall 2007 where 1 out of 12 students

strongly agreed and 10 students agreed that the test questions were challenging.

The agreement or disagreement with the statement “The exercises improve the

understanding of the presented topics” assessed the overall usefulness of the tests. In

Spring 2006, 7 out of the 12 students agreed and 5 were neutral. The result was better in

Fall 2006 where 2 out of 15 students strongly agreed and 8 agreed with the above

statement. Overall, the novice analysts gave better assessment than the expert analysts

did. That was expected because the experts were very familiar with the domain.

176

Figure 68: Evaluation of the Test Agent

The exercies are challenging

0

2

4

6

8

10

12

strongly disagree disagree neutral agree strongly agree

students

CS681-06

The exercises improve the understanding of the
presented topics

0

1

2

3

4

5

6

7

8

9

strongly disagree disagree neutral agree strongly agree

students

CS681-06

The exercises are challenging

0

2

4

6

8

10

12

strongly disagree disagree neutral agree strongly agree

students

MAAI-06

The exercises improve understanding of the presented
topics

0

1

2

3

4

5

6

7

8

9

strongly disagree disagree neutral agree strongly agree

students

MAAI-06

Expert analysts Novice analysts

177

6. Learning and Tutoring Agent Shell (LTAS)

6.1. From Expert System Shells to Learning and Tutoring Agent Shells

Since the first expert systems were developed (during 1970s) and commercially used

(during 1980s), the idea of constructing a generic shell that can facilitate the process of

building expert systems came up as a natural way of evolving the methodology of

developing these systems. This is because the cost of building an expert system is very

high and often unaffordable. Moreover, the time it takes to build a useful expert system is

very long and the dynamics of some domains will require frequent knowledge

maintenance. As discussed in Section 1.2, the expert system shell simplifies the process

of constructing an expert system. The main principle of the shell is re-usability of the

inference engine and the associated tools such as editors, knowledge base checkers, etc

(Whitley, 1990). An expert system shell may be regarded as an expert system with an

empty domain knowledge base that has a pre-defined knowledge representation. Now the

problem of building an expert system reduces to building a knowledge base that can be

plugged into the shell. The knowledge base must be built following the required syntax

and other constraints. The expert system shell thus alleviates some burdens from the task

of building an expert system and shortens the construction time (Whitley, 1990).

However, even with the help of an expert system shell, the task of building an expert

system remains a very difficult one. The difficult task that still remains is building the

178

knowledge base. The knowledge base needs to represent the expertise of a subject matter

expert which has to be encoded in such a way that a computer can understand and

process. The procedure, described in Figure 2, of acquiring the knowledge from the

expert and encoding it into the knowledge base is time consuming and error prone. The

expert usually does not have enough computer science background to encode his/her

knowledge, so the need of involving a knowledge engineer to transform the raw expert

knowledge into a formal representation is necessary. However, the knowledge that is

elicited from the expert is not always clear and straightforward because of the use of

commonsense in communication. Unfortunately, commonsense knowledge is very hard

to encode and is easily mistreated. A back-and-forth communication between the

knowledge engineer and the subject matter expert needs to frequently occur to avoid

mistakes. This is the well-known knowledge acquisition bottleneck problem as mentioned

in Section 1.2 (Buchanan and Wilkins, 1993).

To alleviate the knowledge acquisition bottleneck, a learning component is integrated

into an expert system shell (Tecuci, 1998). Such a system (shown in Figure 3) is called a

Learning Agent Shell (LAS) and is implemented in a family of Disciple shells (Boicu, M.

et al., 2002). In Disciple, the process of building the knowledge base is a mixed-initiative

one between the expert and the learning agent, with limited assistance from a knowledge

engineer. The top part of Figure 69 shows the traditional way to build a knowledge base

in which the subject matter expert works closely with the knowledge engineer throughout

the whole process. The knowledge engineer has to model the reasoning process of the

subject matter expert, making explicit the way the subject matter expert solves problems.

179

Then the knowledge engineer develops the object ontology. He or she also needs to

define general problem solving rules and to debug them (Tecuci, 1998).

Figure 69: Knowledge Engineering with Disciple Learning Agent - from (Boicu,
2002)

With the introduction of the learning agent, the expert now works mostly with the

agent and that reduces a lot of errors, uncertainties and processing time. As shown in

Figure 69, each activity from the top part is replaced with an equivalent activity that is

either entirely performed by the subject matter expert (SME) and the agent (Agent), or

requires some assistance from the knowledge engineer (KE). The knowledge engineer

needs to model the reasoning process of the subject matter expert and to instruct the

expert how to make explicit his/her reasoning. The knowledge engineer also needs to

develop an initial object ontology. After that, however, the subject matter expert can

collaborate with the agent to develop problem solving examples and their explanations, to

extend the ontology, to learn problem solving rules, and to refine the rules (Tecuci,

1998).

180

Maintenance of the knowledge base traditionally involves the communication

between the expert and the knowledge engineer to ensure the stored knowledge is always

consistent and up to date. That process is changed with the introduction of a learning

agent, as shown in Figure 68. The agent is now the only partner that works closely with

the expert to maintain the integrity of the whole knowledge base (Boicu, C. et al., 2005).

With the evolution from the expert system shell to the learning agent shell, it seems

natural to have it evolved further to broaden its applicability. One such development is

adding the capability to tutor the expert knowledge which is already acquired when

building the knowledge base. Being able to rapidly acquire expertise in a certain domain

and to rapidly construct a curriculum to teach this knowledge pedagogically is the main

goal of the Learning and Tutoring Agent Shell (LTAS) concept.

LTAS can alleviate some of the difficult problems that are encountered when building

intelligent tutoring systems. They include the difficult and time-consuming acquisition of

the expert’s knowledge, the complexity of building a curriculum to teach the expertise

pedagogically, and the challenges of customizing the lessons for different student skills in

various circumstances. If the tutoring system would be easier to build, there would be

available for a wider set of domains at different levels. As a consequence, such systems

would have a significant positive impact on the education in schools, as well as in the

continuous education of the professionals.

6.2. Architecture of the Learning and Tutoring Agent Shell

An LTAS is an extension of a Learning Agent Shell (LAS) with tutoring related

capabilities, as shown in Figure 70. These additional modules include the pedagogical

181

knowledge base, the knowledge management module, the tutoring module, the authoring

module and the student module. They are tightly integrated with the existing modules.

For example, the pedagogical knowledge base couples with the learning engine to learn

the teaching knowledge from the teacher. The domain knowledge base is used with the

tutoring engine to provide rich and dynamic examples and exercises.

Figure 70: Architecture of the Disciple Learning and Tutoring Agent Shell

6.2.1 Pedagogical Knowledge

The pedagogical knowledge includes two types of knowledge: pre-defined knowledge

(which is stored in the pedagogical knowledge base) and generated knowledge. The pre-

defined knowledge is the knowledge that is created by the instructor and the system, and

is used to generate the generated knowledge. The pre-defined knowledge consists of

Disciple Learning Agent ShellOntology Elicitation,
Learning and Refinement

Knowledge Management,
Verification and ValidationKnowledge Integration,

Import, and Export
Knowledge Repository

Management

Rule Learning and Refinement

Problem Solving

Mixed-initiative, Multi-agent
Framework

Ontology Learning
and Refining

Scenario Elicitation,
Script Editor

Ontology
Graphical Browsers

Ontology Viewers
and Editors

Import Tools Export Tools

Knowledge Integration Tools
Knowledge Management Module

System Verification Modules Knowledge Base Validation
Modules

Management of Distributed
Knowledge Repository

Knowledge Base Versioning

Rule Analysis Modules

Rule Refinement Modules

Plausible Explanation
Generation Modules

Task and Rule Learning
Modules

Control Wizards for
Rule RefinementAssumptions Modules

Problem Solving Modules

Multi-Agent
Framework

Mixed-Initiative
Reasoner

Task Agenda
Modules

Interaction Model
Learning and Refining

Disciple Learning Agent ShellOntology Elicitation,
Learning and Refinement

Knowledge Management,
Verification and ValidationKnowledge Integration,

Import, and Export
Knowledge Repository

Management

Rule Learning and Refinement

Problem Solving

Mixed-initiative, Multi-agent
Framework

Ontology Learning
and Refining

Scenario Elicitation,
Script Editor

Ontology
Graphical Browsers

Ontology Viewers
and Editors

Import Tools Export Tools

Knowledge Integration Tools
Knowledge Management Module

System Verification Modules Knowledge Base Validation
Modules

Management of Distributed
Knowledge Repository

Knowledge Base Versioning

Rule Analysis Modules

Rule Refinement Modules

Plausible Explanation
Generation Modules

Task and Rule Learning
Modules

Control Wizards for
Rule RefinementAssumptions Modules

Problem Solving Modules

Multi-Agent
Framework

Mixed-Initiative
Reasoner

Task Agenda
Modules

Interaction Model
Learning and Refining

Lesson Script
Engine

Test Learning

Authoring

Lesson Generation
Module

Test Generation
Module

Tutoring

Student Model

Abstract
Knowledge

Management
Knowledge Management

Pedagogical knowledge baseDomain knowledge base System knowledge base

Knowledge Base Management

Lesson Design

Tutoring

Knowledge
Management

182

abstraction rules, lesson scripts, and test rules. The generated knowledge include: the

abstract reasoning tree, the generated lessons, table of contents, glossary, specific test

questions together with explanations and hints.

6.2.1.1 Pre-defined Knowledge

Abstract Knowledge

As presented in Chapter 3, the abstraction of reasoning is constructed for several

purposes, one of them being tutoring. The abstract knowledge that is preserved for

tutoring purpose consists of the abstract problem solving strategies employed by the

subject matter expert. The abstract problem solving strategies have several components:

• abstract problems that describe the kinds of problems to be solved;

• abstract reductions that reduce the abstract problems to one or several simpler

abstract sub-problems;

• abstract solutions which are the solutions of the abstract problems;

• abstract syntheses that compose the abstract solutions of the simpler abstract sub-

problems at one level into the abstract solutions of the abstract problems at the

next higher level;

• abstraction rules that govern the abstraction operations.

Lesson Script

The lesson scripts are created by lesson script engine during the lesson design (see

Section 6.2.3). The lesson scripts are represented in the ABLE scripting language (see

Appendix A). A lesson script consists of a lesson header and several lesson sections. The

lesson header includes the lesson title, optional lesson objectives, lesson annotation and

183

lesson definitions. Each lesson section presents an abstract problem solving strategy

which, in essence, reduces an abstract problem to several simpler abstract sub-problems.

Each lesson component has a pair of numbers that indicate the order when it will be

displayed and for how long it will last during the tutoring session. More details on the

lesson scripts are provided in Section 5.1.2.

Test Question Rule

A test question rule includes a reduction rule from the domain knowledge base and a

list of generalized components. The components include the test type - omission,

modified or construction, the type-related information, explanations and hint (see Section

5.2.1). Depending on the type of test question, the type-related information differs. For an

omission test, they are the sub-problems that were dropped. For a modified test, they are

the old and new contents of the modified sub-problems. And for a construction test, they

are the extra sub-problems that were entered during the test question learning.

6.2.1.2 Generated Knowledge

Abstract Reasoning Tree

The abstract reasoning tree is constructed from the abstract knowledge in the

pedagogical knowledge base. The abstraction rules govern how an abstract reasoning tree

is built from a concrete reasoning tree. An abstract reasoning tree is a representation of

the abstract problem solving strategies that are used to solve a problem. The abstract

reasoning tree is described in detail in Chapter 3.

184

Lessons

The lessons contain two parts, the abstract problem solving strategies to be taught,

and the examples that illustrate these strategies. They are illustrated in Figure 71. The top

part of the figure shows the strategy to assess a piece of evidence that favors the

hypothesis. The bottom part shows an example of assessing the evidence EVD-Dawn-

Mir01-02c that favors the hypothesis that Al Qaeda considers the deterrence as a reason

to obtain the nuclear weapons. The abstract strategies are constructed from the abstract

components of an abstract reasoning tree by the instructor, as discussed in Section 5.1.1.

The examples are generated from the knowledge base by using the abstraction rules that

link the abstract components in an abstract strategy section to their concrete components

in the concrete reasoning tree. These links allow the tutoring module to retrieve the

examples corresponding to the abstract strategy which is being taught. More details of

example generation are presented in Section 5.1.3. The process of lesson generation

highlights the interaction between the pedagogical knowledge (the abstract problem

solving strategies and their examples) and the domain knowledge (the concrete reasoning

tree). Together they can produce many lessons with various examples, provided that the

domain knowledge base is rich enough. Moreover, the same abstract reasoning strategies

might be exemplified with scenarios in different application domain, e.g. assessing

tangible evidence may be useful in counter-terrorism, law enforcement, practice of law,

and even in scientific discovery. The lessons are generated automatically from the lesson

scripts, as described in Section 5.1.2.

185

Figure 71: Lesson Interface

Table of Contents

The table of contents helps navigating the organized set of lessons. This type of

knowledge is almost automatically generated by the system based on the content of

lessons and the connections between them. Figure 72 illustrates a table of contents which

contains three parts: the current lesson, the learned lessons and the next available lessons.

Each of the lessons teaches two types of processes: problem reduction and solution

synthesis, for a certain type of problem. The abstract part of the lesson is structured into

several sections and is illustrated by examples at the end. The table of contents captures

the structure of the lesson. For example, in Figure 72, the problem reduction process has

two sections “Components of believability” and “Credibility”. The reduction process is

Abstract Problem
Solving Strategies

Example

Brief Definition

186

then illustrated by “Reduction examples”. When a lesson is in the design mode, the

instructor does not have to specify the order of the lessons. The system sorts this order

out based on the links between the abstract components that the lessons contains. The

instructor however must explicitly define the structures of each process as described

above during the design process.

Figure 72: Table of Contents

Glossary

The glossary is generated automatically from the ontology of the system which is part

of the domain knowledge base (Barbulescu et al., 2003). The glossary is displayed in

alphabetical order. It provides brief definitions of the domain concepts (see Figure 71),

more complete definitions, or even detailed lessons (as illustrated in Figure 73 and Figure

problem reduction

solution synthesis

187

74). In essence, the glossary supplies a means of enhancing the understanding of the

lessons.

Figure 73: Sample Glossary

188

Figure 74: Presentation of the Veracity Concept

Tutoring Strategies

During the design process, the instructor can also provide the tutoring strategies to

teach the lessons in different ways, in order to increase the effectiveness of tutoring

(Kukla et al., 2002). To be specific, the instructor can design the lesson to display the

abstract problem solving strategies in different orders, either bottom up or top down or

any other way considered most appropriate by the instructor. The tutoring strategies are

represented by the pair of numbers associated with each lesson component in the lesson

script. More details on the tutoring strategies are provided in Section 5.1.2.

189

What we have discussed so far in the generated knowledge section of the pedagogical

knowledge is the lesson module of tutoring module. The next topic is the pedagogical

knowledge for its test module. The test module is provided to measure the student’s

understanding of the learned subject. The pedagogical knowledge for the test module

consists of test questions, including explanations and hints.

Test Questions

A test question is generated from a test rule and is presented in the context of where

the reduction should have been in the reasoning tree. Figure 75 shows a reasoning step

from a test question in which one of the sub-problems was dropped. The reasoning step is

bordered red and located in a sub-tree as its context. The student must judge if the

presented reasoning step is correct, incorrect or incomplete. In this test question, the

student is asked if it is correct to assess the believability of the report fragment EVD-

TRC-Najm01-01c, where Najm S. cites Osama Bin Laden, by only assessing the

believability of Najm S. The correct answer must be “Incomplete” due to the fact that the

reasoning is missing a sub-problem which is the assessment of the believability of Osama

Bin Laden as the source of the information.

190

Figure 75: Reasoning Step from a Test Question

Hint

During the test, the student is provided with the relevant glossary (as discussed earlier

and) and with hints (they are associated with penalties in student’s assessment). The hints

are learned from the instructor during the test learning process. An example of specific

hint is:

“EVD-TRC-Najm01-01c was obtained as testimonial evidence of Osama bin Laden

cited in EVD-TRC-Najm01-01 by Najm S. Let us assume that Osama bin Laden is not

believable. Does this affect the believability of EVD-TRC-Najm01-01c?

The believability of some information refers to the degree to which that information is

considered to be true. Similarly, the believability of an agent refers to the degree to

which the information provided by that agent is considered to be true.

Belief is:

1: a state or habit of mind in which trust or confidence is placed in some person or

thing

2: something believed; especially: a tenet or body of tenets held by a group

191

3: conviction of the truth of some statement or the reality of some being or

phenomenon especially when based on examination of evidence.

Merriam-Webster's Online Dictionary, http://www.m-w.com/dictionary/belief. “

Explanation

The other type of information given when the student answers a test question is the

explanations. This type of knowledge is similar to the hints with a minor difference: the

explanations are given based on the student’s answer which may be correct, incorrect or

incomplete. Both the hints and the explanations are structured similarly. For instance, if

the student answers the reduction from Figure 75 is incorrect, then the received

explanation is:

“EVD-TRC-Najm01-01c was obtained as testimonial evidence of Osama bin Laden

cited in EVD-TRC-Najm01-01 by Najm S. Therefore its believability depends both on the

believability of the reporter (Najm S) and the believability of the source (Osama bin

Laden). For instance, if either Osama bin Laden is lying, or Najm S is distorting Osama

bin Laden’s testimony, then the information provided by EVD-TRC-Najm01-01c is not

true.”

What is important for hints and explanations is that they are not defined for each

generated test, but they are learned from specific examples, and generated automatically,

as described in Section 5.2.

192

The system follows a scaffolding approach, where the test questions are presented in a

context from simple to complex (Dabbagh, 2007). This is achieved by following a

concrete reasoning tree from top to bottom.

6.2.2 Knowledge Management

The knowledge management is performed by two modules: Management of Abstract

Knowledge (MAK) and Management of Tutoring Knowledge (MTK).

Management of Abstract Knowledge

MAK is a module that handles the abstraction process of problem solving knowledge

in a particular domain. The product of that process is the abstract knowledge that is stored

in the pedagogical knowledge base, as described in Section 6.2.1. This module includes a

tool named Abstraction Editor (see Figure 76) to abstract the knowledge in the domain

knowledge base. The knowledge in the domain knowledge base generates a concrete

reasoning tree and the abstraction of that tree results in the abstract reasoning tree. The

Abstraction Editor allows the user to abstract a concrete reasoning tree into an abstract

tree through a drop-and-drag operator. The user selects one or several nodes in the

concrete tree (shown in the left part of Figure 75) to be abstracted into an abstract node in

the right panel. The editor is able to recognize the parent of the newly created abstract

node in the abstract tree (if this exists) to properly integrate the new abstract node into the

abstract tree. More details on the reasoning tree abstraction process are provided in

Section 3.3. As the abstract reasoning tree is built by using the editor, the MAK module

learns the corresponding abstraction rules which govern how reasoning trees are to be

193

abstracted in general. The abstraction rules are then stored in the pedagogical knowledge

base.

Figure 76: Interface of the Abstraction Editor

Management of Tutoring Knowledge

Tutoring knowledge includes all the pedagogical knowledge except the abstract

knowledge. The tutoring knowledge is developed by the instructor, with the help of the

Authoring module which will be described in next sub-sections. The knowledge then is

stored in the pedagogical knowledge base. This knowledge is retrieved either by the

194

Authoring module for update or by the Tutoring module for lessons and tests generation.

The TKM module is responsible for managing the storing, updating and retrieval of the

tutoring knowledge.

6.2.3 Authoring Module

The Authoring module consists of three main sub-modules: lesson design, test

learning and lesson script engine. The lesson design module and test learning module are

used by the instructor. The lesson script engine converts the lesson components designed

by the instructor into corresponding lesson scripts.

Lesson Design Module

The lesson design module is used by the instructor to builds lessons from the abstract

tree, as illustrated in Figure 53. The Lesson Editor has two panels: the one on the left is

for the abstract tree and the other is for designing lessons. The process of designing

lessons is discussed at length in Section 5.1.1. In this section, we focus mostly on the

authoring part of the lesson design process. The instructor uses the available toolbox to

create the lesson components such as title, objectives, header, annotations, definitions,

examples, and so on. The tool also lets the instructor review how the lessons are going to

be displayed during the tutoring session. The outcome of the lesson design is the lesson

script which is saved in the pedagogical knowledge base. The tutoring module groups all

the lessons together to form the curriculum, based on the pre-requisites and post-

requisites automatically inferred from the abstract tree.

Figure 77 shows the widget toolbar which is a part of the Lesson Editor. The toolbar

has multiple widget buttons which simplify the task of creating lesson components.

195

Section 5.1.7.1 presents in detail the functionality of this widget toolbar. In short, the

instructor can design the lesson, configure the display order of each component and

preview the design. Once the instructor is satisfied with the lesson, the lesson script

engine generates the lesson scripts based on the current setting of the lessons and saves it

in the pedagogical knowledge base.

Figure 77: Widget Toolbar for Lesson Design

Lesson Script Engine

During the lesson design, the instructor builds the lessons by dragging and dropping

some lesson components from the widget toolbar shown in Figure 77 and configuring

them to achieve some particular tutoring effect. Once the lesson design is finished, the

lesson scripts are generated by the script engine. The engine scans all the lesson

components from the top down. For each of the lesson components, the engine captures

its properties, such as the order and duration values, its relationships with other lesson

Selection

Objective

Definition

Annotation

Composition

Animation Order

Preview

196

components, its description, and characteristics (see Appendix B for detailed information

on the lesson script description). The lesson script engine then formats the obtained

information in the ABLE language (see Appendix A) to create the lesson scripts. The

scripts then are saved in the pedagogical knowledge base.

Test Learning Module

As presented in Section 5.2, the instructor teaches the system how to generate test

questions. The system learns test rules by generalizing the test examples designed by the

instructor. The instructor designs specific test questions by using the Test Editor shown in

Figure 78. The editor has a main panel that displays a reasoning step from the concrete

reasoning tree. This reasoning step serves as a test example. The instructor can

manipulate the sub-problems of the example in three different ways: modification of sub-

problems, dropping one or several of them, or adding deliberately wrong sub-problems.

Each of the modification creates a different type of test example. They are modification

test, omission test and construction test. In the right panel, the instructor defines the

explanations and the hint. By default, the right answer for an omission test is

“incomplete” and for a modification test is “incorrect”. However, the instructor can

overwrite that default value by making a different selection in the “Overwrite default

assessment” radio box. For example, in a modification test, the modified sub-problem

may be equivalent to the original one and test’s answer should be “correct” instead of

“incorrect”.

197

Figure 78: Interface of the Test Editor

The procedure of generating the test rules is detailed in Section 5.2.1. In this section,

we just briefly summarize this process. The basic idea of learning the test rules is to

extend a previously learned domain rules with test-related components that are

appropriately generalization from specific examples provided by the instructor.

6.2.4 Tutoring Module

The tutoring module is responsible for generating lessons from lesson scripts and

exercises from the test rules. The generated lessons and exercises are then presented to

the students under the control of the Student Model.

Add Sub-problems

Dropped Sub-problem

Modified Sub-problem

Add Explanations,
Hint

198

Lesson Generation Module

Generating lessons based on existing domain knowledge base is done automatically,

as described in Section 5.1.3. All the generated lessons contain two main parts: the

abstract problem solving strategies and their examples.

The abstract strategies are generated from the lesson scripts (see Section 5.1.2). The

examples are generated based on the abstract reasoning tree and a concrete reasoning

tree. The example set is then displayed heuristically based on their relative similarity and

complexity. The examples to be displayed can also be selected by the user.

The generated lessons have two auxiliary components, table of contents and glossary,

both generated automatically.

The lesson window (Figure 79) provides several functions that can be used by a

student to follow a lesson, either by reading and/or by listening. There are three panels,

the one on the left is the table of content and glossary, the middle panel presents the

lesson’s content, and the right panel contains the automatically generated lesson’s text.

The middle panel also contains two sub-panels. The one on top is for the abstract problem

solving strategies and the bottom one for the examples.

199

Figure 79: Lesson Interface

The table of contents is hidden by default but available on request. It has three sub-

panels: the top one is for the previously learned lessons, the middle one is for the current

lesson and the bottom panel is for the next available lessons. Each lesson has several

components, presented in two groups: reduction and synthesis. Each group has a set of

examples represented by “Reduction examples” or “Synthesis examples”. Once the

current lesson reaches the end, the next available lesson will replace the current lesson

which moves to the Previous Lessons panel. The glossary panel is also available when

the student needs it. Clicking on a hyperlink in the lesson will set the focus on the

glossary panel and display the full description of the selected term, as illustrated in Figure

200

73. Similarly, the lesson’s text is available on request only. The student can either read it

or listen to it. The text reflects what has been shown visually in the lesson panel. The

current line is colored blue and spoken. The text panel helps the students to follow the

lessons in a traditional way.

The lesson panel is the main focus of the lesson window. The abstract lesson panel

teaches the problem solving strategy that the teacher constructed in the design phase. The

lower panel illustrates it with a set of examples. The strategy is taught step by step. The

student has to click on next or previous buttons to move forward or backward. Each step

is spoken by default and can be turned off as an option.

Test Generation Module

The test generation module generates specific test questions by applying the learned

test rules. Figure 78 illustrates the test editor where the instructor defines a test question.

LTAS then learns the test question rule from this example, as described in Section

5.1.3.3. These rules are saved in pedagogical knowledge base.

Test-taking is illustrated in Figure 80. It has five sub-panes. The top left panel is to

display the test question and its context, the middle left is the pool of available sub-

problems for construction test. The top right panel is the location for answer,

explanations and hint. The bottom right panel is the glossary of terms used in the test

question. The bottom left is the navigational and assessment panel where the grade is

posted. There are two test-taking modes: self-test and assessment. The self-test mode lets

the student go back to the appropriate lesson for review. The latter mode does not allow

201

this. All the tests are generated automatically and are dynamically changed each time the

test starts. More details on this process are provided in Section 5.2.2.

Figure 80: Test Generation Interface

6.2.5 Student Module

The student module contains information about the student, such as the lessons taken

and the failed tests. It determines which lessons belong to the list of previous lessons,

and the list of the next available lessons. It also controls the test generation process, by

only allowing the tests that are included in the presented lessons. One important aspect of

202

this module in monitoring the tests is providing remedial test questions that are similar to

the failed tests.

We have built a simplified student model in order to offer minimal support for the

other developed functionality. Further research is needed to develop and integrate a more

complex student model and to adapt the tutoring to it.

6.3. Methodology for Building Tutoring Systems

A learning and Tutoring Agent Shell (LTAS) allows the instructor to quickly develop

a tutoring system that can tutor expert problem solving knowledge in a particular domain.

Because the LTAS is build on top of a Learning Agent Shell (LAS), there are several

assumptions regarding the LAS modules:

• The domain knowledge base is already developed. The expert knowledge has

been acquired by LAS.

• The concrete reasoning trees are generated by the LAS for specific problems.

• The abstract reasoning tree is possibly partially constructed during the modeling

of the knowledge of the subject matter expert. In fact, part of the abstract

reasoning tree is constructed for human-agent collaboration in problem solving.

There are several steps that are required to be done in sequence (see Figure 81). First

of all, the instructor needs to construct the abstract reasoning tree, if one was not already

developed. The abstraction of a concrete reasoning tree requires the instructor to have

deep knowledge of the application domain. Therefore, the instructor is usually also the

subject matter expert. The purpose of the abstraction for tutoring is to uncover the

203

problem solving strategies used in solving problems, and to develop a hierarchical

structure of the abstract problem solving strategies.

In the second step the instructor designs the lesson by using the abstract reasoning

tree. The instructor can create a lesson based on any abstract problem. The lesson content

is automatically built based on the content of the selected abstract components that the

lesson is built upon. The instructor however can modify it, for instance, by selecting the

order in which its parts are presented to the students. When the lessons are saved, the

lesson scripts are generated accordingly and saved into the pedagogical knowledge base.

The last step is authoring the test questions by the instructor.

When a student uses the system to learn expert problem solving knowledge, the

lessons are generated dynamically, based on the current scenarios included in the domain

knowledge base. The student model captures the student progress to provide the

appropriate the lessons and test questions.

204

Figure 81: Methodology for Building a Tutoring System

205

7. Contributions and Future Research

This chapter concludes the dissertation with the summary of my contributions and the

most promising directions for future research.

7.1. Summary of Contributions

This dissertation research has advanced the state of the art in the area of knowledge-

based agents for expert problem solving.

The main contribution of my dissertation is the development of a theory for the

abstraction of reasoning that facilitates:

• human-agent collaboration in complex problem solving and decision-making;

• rapid development of intelligent tutoring systems for complex problem solving;

• teaching complex problem-solving to non-experts.

Abstraction has been previously used in different areas of Artificial Intelligence, such

as, Planning, Problem Solving, Constraint Satisfaction, Reasoning about Physical

Systems, to facilitate the search for solutions in large spaces. The general idea is to first

find an approximate solution in a reduced, abstract space, and then use it to guide the

search for the actual solution in the large concrete space. In our research we have not

investigated how to use abstraction to develop a reasoning tree that solves a problem.

Instead, we have investigated how to abstract a complex reasoning tree to facilitate its

understanding.

206

Effective human-agent collaboration in complex problem-solving and decision-

making requires an ability of the user to easily browse, understand, and modify complex

reasoning, with many thousands of reasoning steps. Our theory of abstraction of

reasoning for collaborative problem solving allows:

• the partition of a complex tree into meaningful and manageable sub-trees;

• the abstraction of individual sub-trees;

• the automatic generation of an abstract tree that plays the role of a table of

contents for the display, understanding and navigation of the concrete tree.

Abstraction of reasoning is also very important for teaching complex problem-solving

to non-experts. Although based on the same general theory, we have found that the

abstraction for tutoring is different from the abstraction for collaborative problem

solving. In the abstraction for problem solving, the emphasis is on easily identifying the

main sub-problems of a given problem, and their solutions. In the abstraction for tutoring,

however, the emphasis is on how to abstract the problem reduction and solution synthesis

processes, in order to identify the abstract strategies to be taught. Our theory of

abstraction of reasoning for tutoring allows:

• the definition of abstract problem solving strategies for tutoring;

• the rapid development of lesson scripts for teaching these strategies;

• the automatic generation of specific lessons corresponding to a particular

expertise domain.

Another major contribution of my dissertation is the development of methods

deriving from our theory of abstraction, as indicated in the following.

207

We have developed a method for rapid authoring of lessons for tutoring problem

solving in a complex domain. The lessons are organized around the abstract problem

solving strategies to be taught. They present these strategies under the control of the

student who may request definitions or detailed descriptions of the used concepts, as well

as concrete examples of the application of these strategies. An important characteristic of

these lessons is that they are automatically customized based on the content of

the domain knowledge of the tutoring agent. In particular, a lesson will automatically

teach only those cases of an abstract problem solving strategy that can be with the current

domain knowledge base. Also, changing the domain knowledge base will automatically

change the generated examples, without any change in the design of the lesson. The

automation of example creation is a main factor in cutting down the time to build the

lessons. Examples are essential parts of a lesson and their availability, number and

diversity play an important role in making a lesson more interesting and understandable.

We have developed methods for:

• Learning different types of test questions by modifying and enhancing examples

of problem reduction rules from the domain knowledge base.

• Automatic generation of test questions in the context of a reasoning tree, together

with hints and explanations.

• Dynamic adaptation of the generated test questions to the lessons taken by a

student, and an ability to invoke the lesson corresponding to a given test question.

The types of test questions learned are:

208

• Omission test question (knowledge level questions where a student is asked to

judge the completeness and correctness of a problem reduction that may omit

some sub-problems).

• Modification test question (comprehension level questions where a student is

asked to judge the completeness and correctness of a problem reduction that may

have some sub-problems modified).

• Construction test question (analysis level questions where a student is asked to

define the reduction of a given problem by selecting sub-problems from a given

list.

Finally, another major contribution is the development of:

• The concept of “learning and tutoring agent shell” and the associated

methodology for rapid development of an intelligent tutoring system.

• An experimental learning and tutoring agent shell.

• An experimental tutoring system for the domain of intelligence analysis which

has been used by military officers at the Army War College and by students at

George Mason University.

7.2. Future Research Directions

There are also various limitations of the obtained results that point to future research

directions.

The current methods for defining abstractions (both those for collaborative problem

solving and those for tutoring) are to be considered methods for a knowledge engineer.

They need to be further simplified to be used by a subject matter expert.

209

The lesson design methods could be extended to allow additional customization by an

instructor. For instance, the current lessons have to first introduce an abstract strategy and

then can illustrate it with examples. The instructor may wish to define lessons which first

introduce examples of reasoning and then present their abstraction.

Also the generated lessons should be made more interactive and engaging. In general,

our research has focused on the artificial intelligence aspects of tutoring rather than the

instructional design ones. Therefore, there are good opportunities for advancing this

research by emphasizing more the instructional design and educational aspects which

have only been developed to a limited extend. They include building fluency, drill and

practice, and repetition where the same type of test questions are presented repeatedly to

help student acquire fluency; chaining and logical sequencing of content where the lesson

contents are presented in a hierarchical way of problem reduction/solution synthesis

paradigm; and scaffolding where test questions are presented in a context from simple to

complex (Dabbagh, 2007). A tutoring system is more effective if it includes instructional

strategies for developing student’s creativity such as, self-directed learning, learning by

discovery, hypothesis generation.

The research on the abstraction of reasoning trees described in this dissertation can

naturally be extended to enhance other capabilities of a knowledge-based agent. For

example, the abstract reasoning patterns used in tutoring may guide the acquisition of

related problem solving strategies from a subject matter expert. Also, one could

investigate the generation of solutions and justifications at different levels of abstraction.

210

Appendix A: Abstraction-Based Lesson Emulation (ABLE)

Table 13: The ABLE Scripting Language

//Tokens
Problem ;The abstract problem
Reduction ;The abstract reduction (reduction process)
Solution ;The abstract solution
Synthesis ;The abstract synthesis (composition process)
Title ;The lesson title
Objectives ;The lesson objectives
Annotation ;The annotation
Description ;The definitions of the new terms
//Examples
ReductionExample ;The reduction example
SynthesisExample ;The synthesis example

//Decorative Tokens
Decorative := Annotation | Description | <empty> ;Decorative tokens
Decoratives := Decorative | Decoratives ;List of decorative tokens
DécorProblem := Problem Decoratives ;Problem with decorative tokens
DécorReduction := Reduction Decoratives ;Reduction with decorative tokens
DécorSynthesis := Synthesis Decoratives ;Synthesis with decorative tokens
DécorSolution := Solution Decoratives ;Solution with decorative tokens
DécorTitle := Title Decoratives ;Title with decorative tokens
DécorObjectives := Objectives Decoratives ;Objectives with decorative tokens

//Reduction and Synthesis Process
Sub-problem := DécorProblem | DécorSolution | <empty> ;A sub-problem
Sub-problems := Sub-problem | Sub-problems ;Set of sub-problems
Solutions := DécorSolution Solutions | <empty> ;Set of solutions
ReductionSet := DécorReduction Sub-problems ;A reduction set
SynthesisSet := Solutions DécorSynthesis ;A synthesis set
ReductionProcess := DécorProblem ReductonSet ;A reduction process
SynthesisProcess := SynthesisSet DécorSolution ;A synthesis process

//Reduction and Synthesis Examples
ReductionExamples := ReductionExample ReductionExamples | <empty>
CompositionExamples := CompositionExample CompositionExamples | <empty>
//Lesson Section
Section := ReductionProcess ReductionExamples |
 SynthesisProcess CompositionExamples
LessonSection := Section | <empty>
LessonSections := LessonSection LessonSections

211

//Lesson Header
LessonHeader := DécorTitle DécorObjectives
//Lesson
Lesson := LessonHeader LessonSections

Table 14: LifeCycle Feature

Token := Problem | Reduction | Solution | Synthesis |
 Title | Objective | Annotation | Description | Test
Order := 1 | after (Token) ;When the component is displayed
Duration := -1 | 0 | 1 | before (Token) ;How long the component is displayed
LifeCycle := Order Duration | <empty>
LifeCycles := LifeCycle LifeCycles
TimingToken := Token LifeCycles

Table 15: Order and Duration Computation

OrderToken i = 1: Token i is the first one to be displayed.
OrderToken j = after(Token k) = OrderToken k + 1.
Example:
if OrderTitle = 1 and OrderObjective = after(Title)
then OrderObjective = OrderTitle + 1 = 2.

DurationToken i = -1: Token i always appears on the screen
DurationToken i = 0: Token i never appears on the screen
DurationToken i = 1: Token i appears on the screen for one step.
DurationToken i = before(Token j) = OrderToken j – OrderToken i
Example:
if OrderProblem =10, OrderObjective =5 and DurationObjective = before(Problem)
then DurationObjective = OrderProblem - OrderObjective = 10 – 5 = 5.

212

Appendix B: Lesson Scripts in XML

Table 16: Lesson Annotation Script in XML

<LessonAnnotation id="annotation_1" parent="title">
 <LifeCycles>
 <LifeCycle>
 <Order value=after(“title:0”) />
 <Longevity value="1" />
 </LifeCycle>
 </LifeCycles>
 <Descriptions>
 “Let us consider the problem:”
 </Description>
</LessonAnnotation>

Table 17: Lesson Definition Script in XML

<LessonDefinition id="definition_0" parent="problem_0">
 < LifeCycles>
 < LifeCycle>
 <Order value="problem_0:0" />
 <Duration value="1" />
 </ LifeCycle>
 </ LifeCycles>
 <Terms>
 <Term name="piece of evidence" />
 </Terms>
</LessonDefinition>

Table 18: Lesson Title Script in XML

<LessonTitle id="title">
 <LifeCycles>
 <LifeCycle>
 <Order value="1" />
 <Duration value="-1" />
 </LifeCycle>
 </LifeCycles>
 <Description>
 Assess to what extent the piece of evidence supports the hypothesis
 </Description>
</LessonTitle>

213

Table 19: Lesson Objective Script in XML

<LessonObjective id="objectives" parent="title">
 <LifeCycles>
 <LifeCycle>
 <Order value="1" />
 <Duration value="1" />
 </ LifeCycle>
 </ LifeCycles>
 <Description>
 There are 2 objectives: <p> Learn how to handle the piece of evidence. <p>
Learn how to assess the piece of evidence to support a hypothesis
 </Description>
</LessonObjective>

Table 20: Lesson Problem Component Scrip in XML

<LessonProblem id="problem_1" parent="annotation_2">
 <AbstractProblemReference kbPartName="LTA final" index="3" />
 <LifeCycles>
 < LifeCycle>
 <Order value=after("annotation_2:0") />
 <Duration value="-1" />
 </ LifeCycle>
 </ LifeCycles>
 <Description>
 Assess to what extent piece of evidence supports the hypothesis, assuming that we
believe the information provided by the piece of evidence
 </Description>
</LessonProblem>

Table 21: Lesson Reduction Script in XML

<LessonReduction id="reduction_0" parent="problem_0">
 <AbstractReductionReference kbPartName="LTA final" index="3" />
 <LifeCycles>
 <LifeCycle>
 <Order value="problem_0:0" />
 <Duration value=before("problem") />
 </LifeCycle>
 </LifeCycles>
 <Description>
 The information provided by the piece of evidence and the extent to which it is

214

believable.
 </Description>
</LessonReduction>

Table 22: The Lesson Solution Script in XML

<LessonSolution id="solution_0" parent/host="reduction_0">
 <AbstractSolutionReference kbPartName="LTA final" index="1" />
 <LifeCycles>
 < LifeCycle>
 <Order value=after("reduction_0:0") />
 <Duration value="-1" />
 </ LifeCycle>
 </ LifeCycles>
 <Description>
 Assessed believability of the reporter of the piece of evidence
 </Description>
</LessonSolution>

Table 23: The Lesson Synthesis Script in XML

<LessonSynthesis id="synthesis_2" host="reduction_0">
 <LifeCycles>
 <LifeCycle>
 <Order value="composition_1:0" />
 <Duration value="-1" />
 </LifeCycle>
 </LifeCycles>
 <Description>
 Determine the likelihood of the hypothesis given the likelihood of the credibility of
the piece of evidence.
 </Description>
</LessonSynthesis>

215

REFERENCES

216

REFERENCES

Aleven, V., McLaren, B., Sewall, J., and Koedinger, K. The Cognitive Tutor
Authoring Tools (CTAT): Preliminary Evaluation of Efficiency Gains, in the
Proceedings of the 8th International Conference on Intelligent Tutoring Systems, Jhongli,
Taiwan, June 26-30, 2006.

Aleven, V., and Rose, C. P. Towards Easier Creation of Tutorial Dialogue Systems:

Integration of Authoring Environments for Tutoring and Dialogue Systems, in
Proceedings of the ITS Workshop on Tutorial Dialogue Systems, Alagoas, Brazil, 2004,
Springer.

Anderson, J.R. Intelligent Tutoring and High School Mathematics. in The second

International Conference on Intelligent Tutoring System, (Berlin, Germany, 1992),
Spring–Verlag.

Anderson, J.R. Rules of the Mind. Lawrence Erlbaum. 1993.

Anderson, J.R. The Expert Module. Martha C. Polson, J.J.R. ed. Foundations of
Intelligent Tutoring System, 1998, 21-53.

Anderson, J.R., Boyle, C. F., and Yost, G. The Geometry tutor. The Journal of
Mathematical Behavior. 5-20, 1986.

Anderson, J.R., and Reiser, B. J. The LISP tutor Byte, 1985, 159-175.

Barbulescu M., Balan G., Boicu M., and Tecuci G. Rapid Development of Large
Knowledge Bases in Proceedings of the 2003 IEEE International Conference on Systems,
Man & Cybernetics, Volume: 3, pp. 2169 - 2174, Washington D.C., October 5-8, 2003.

Barr, A., Cohen, P. R., and Feigenbaum, E. A. The Handbook of Artificial
Intelligence, Volume 1, 1998.

Blessing, S.B. A programming by demonstration authoring tool for model tracing

tutors. in Artificial Intelligence in Education, (1997), 233-261.

Bloom, B.S. Taxonomy of Educational Objectives, Handbook I: The Cognitive

Domain. David McKay Co Inc, New York, 1956.

217

Boicu, C., Tecuci, G., and Boicu, M. A Mixed-Initiative Approach to Rule
Refinement for Knowledge-Based Agents. in the AAAI-05 Fall Symposium on Mixed-
Initiative Problem-Solving Assistants, Arlington, VA, 2005, AAAI.

Boicu, M. Modeling and Learning with Incomplete Knowledge, PhD Thesis in

Information Technology, Learning Agents Laboratory, School of Information Technology
and Engineering, George Mason University, 2002.

Boicu, M., Tecuci, G., Marcu, D., Stanescu, B., Boicu, C., Balan, C., Barbulescu, M.,
and Hao, X. Disciple-RKF/COG: Agent Teaching by Subject Matter Experts. in AAAI-
IS02, (2002), AAAI.

Boicu, M., Tecuci, G., Stanescu, B., Marcu, D., Barbulescu, M., and Boicu, C. Design

Principle for Learning Agents in Proceedings of AAAI-2004 Workshop on Intelligent
Agent Architectures: Combining the Strengths of Software Engineering and Cognitive
Systems, July 26, San Jose, AAAI Press, Menlo Park, CA, 2004.

Bowman, M., Tecuci, G., and Ceruti, M. Application of Disciple to Decision Making
in Complex and Constrained Environments, in Proceedings of the 2001 IEEE Systems,
Man and Cybernetics Conference, October 2001.

Brown, J., Burton, R.R., and deKleer, J. Pedagogical, natural language and
knowledge engineering techniques in SOPHIE I, II, and III. Sleeman, D., Brown, J.S. ed.
Intelligent Tutoring Systems, Academic Press, New York, 1982, 227-282.

Buchanan, B. and Wilkins, D. (editors). Readings in Knowledge Acquisition and
Learning: Automating the Construction and Improvement of Expert Systems. Morgan
Kaufmann, San Mateo, CA, 1993.

Carbonell, J. AI in CAI: An artificial intelligence approach to computer aided

instruction in IEEE Transactions on Man-Machine systems, (1970), 190-202.

Clancey, W.J. Dialog Management for Rule-Based Tutorials. in International Joint

Conference on Artificial Intelligence 6, (Tokyo, Japan, 1979), William Kurfmann, Inc.

Clancey, W.J. The Handbook of Artificial Intelligence, William Kaufmann, Inc, Los
Altos, CA, 1982.

Clancey, W.J. from GUIDON to NEOMYCIN and HERACLES in Twenty Short

Lessons: ORN Final Report 1979-1985, AI Magazine, August 1986, 40-60.

Clancey, W.J. Knowledge-Based Tutoring. MIT Press, Massachusetts, 1987.

218

Cormen, T., Leiserson, C., and Rivest, R. Introduction to Algorithms. McGraw Hill,
1997.

Dabbagh, N. The Instructional Design Knowledge Base. Retrieved 09-29-2007 from

Nada Dabbagh’s Homepage, George Mason University, Instructional Technology
Program. Website: http://classweb.gmu.edu/ndabbagh/Resources/IDKB/index.htm

Davis, R. Expert Systems: where Are We? And Where Do We Go From Here? AI

Magazine, 1982, 3-22.

DeJong, K. Evolutionary Computation: A Unified Approach. MIT Press, Cambridge,
MA, 2006.

Digangi, A. S., Jannasch-Pennell, A., Yu, H., C., and Mudiam, V. S. Curriculum-
based Measurement and Computer Based Assessment: Constructing an intelligent, web-
based evaluation tool. http://www.creative-wisdom.com/pub/scip_cbm.html. November,
1999.

Durham S. 2000. Product-Centered Approach to Information Fusion, AFOSR Forum
on Information Fusion, Arlington, VA, 18-20 October, 2000.

Eugenio, B., Fossati, D., Yu, D., Haller, S., and Glass, M., Natural language

generation for intelligent tutoring systems: a case study in AIED 2005, July 2005.

Eugenio, B., Glass, M., and Trolio, M., The DIAG experiments: Natural Language

Generation for Intelligent Tutoring Systems. In INLG02, The Third International Natural
Language Generation Conference, 2002, pages 120--127.

Even, M., Brandle, S., Chang, R., Freedman, R., Glass, M., Lee, Y., Shim, L., Woo,

C., Zhang, Y., Zhou., Y., Michael, J., and Rovick., A., CIRCSIM-Tutor: An Intelligent
Tutoring System using Natural Language Dialogue, 12th Midwest AI and Cognitive
Science Conference, Oxford OH, 2001, 16-23.

Feigenbaum, E.A. Knowledge Engineering in the 1980’s, Dept. of Computer Science,

Stanford University, Stanford, CA, 1982.

Feigenbaum, E.A. Tiger in a Cage: The Applications of Knowledge-based Systems.

The Fifth Annual Conference on Innovative Applications of Artificial Intelligence. AAAI,
1993.

Fisher, D.H. Knowledge acquisition via incremental conceptual clustering. Machine
Learning 2: 139–172. 1987.

219

Furnkranz, J. The Role of Qualitative Knowledge in Machine Learning.
http://citeseer.ist.psu.edu/116655.html, 1992.

Giunchiglia, F. and Walsh, T. A Theory of Abstraction, Artificial Intelligence 56(2-3)

pp 323-390. 1992.

Halff, H.M. Curriculum and Instruction in Automated Tutors. Martha Polson, J.J.R.
ed. Foundations of Intelligent Tutoring System, 1988, 79-108.

Jarvis, M.P. Applying Machine Learning Techniques to Rule Generation in

Intelligent Tutoring Systems. Master thesis, Worcester Polytechnic Institute, 2004.

Josephson, J., Chandrasekaran, B., Smith, J.W., and Tanner, M.C., A Mechanism for
Forming Composite Explanatory Hypotheses. in IEEE Trans. on Systems, Man and
Cybernetics, (1987), 445-454.

Kaschek, H. R., Intelligent Assistant Systems: Concepts, Techniques and
Technologies. Idea Group Publishing, 2006.

Kirkpatrick D., Evaluating Training Programs: The Four Levels. Second edition,

Berrett-Koehler Publishers, Inc. San Fransico, 1998.

Kodratoff Y., Tecuci, G., Learning Based on Conceptual Distance. in IEEE

Transactions on Pattern Analysis and Machine Intelligence, 1988, 897-909.

Koedinger, K. R., Aleven, V., and Heffernan, N. T. (2003). Toward a Rapid

Development Environment for Cognitive Tutors. In U. Hoppe, F. Verdejo, & J. Kay
(Eds.), Proceedings of the 11th International Conference on Artificial Intelligence in
Education, AI-ED 2003 (pp. 455-457). Amsterdam: IOS Press.

Koedinger, K. R., Aleven, V., Heffernan, N., McLaren, B. and Hockenberry, M.
Opening the Door to Non-Programmers: Authoring Intelligent Tutor Behavior by
Demonstration. in Intelligent Tutoring Systems 2004: 162-174.

Kukla, E., Nguyen, N., and Sobecki, J., The consensus-based tutoring strategy

selection in CAL systems. in World Transactions on Engineering and Technology
Education, Vol.1, No.1, 2002.

Langley, P., Simon, H.A., Bradshow, G.L., and Zytkow, J.M. Scientific Discovery:
Computational Explorations of the Creative Processes. MIT Press, Cambridge, MA,
1987.

220

Maiden, N.A.M., and Sutcliffe, A.G., A computational mechanism for parallel
problem decomposition during requirements engineering. in 8th International Workshop
on Software Specification and Design, (Schloss Velen, Germany), Pages 159-163, 1996.

Matsuda, N., Cohen, W. W., and Koedinger, K. R., An Intelligent Authoring System

with Programming by Demonstration. in Japan National Conference on Information and
Systems in Education., (2005).

Matsuda, N., Cohen, W. W., and Koedinger, K. R., Building Cognitive Tutors with

Programming by Demonstration. in International Conference on Inductive Logic
Programming, (2005), 41-46.

Matsuda, N., Cohen, W.W., Sewall, J., and Koedinger K.R. Applying Machine

Learning to Cognitive Modeling for Cognitive Tutors. Technical Report CMU-ML-06-
105 July 2006.

Matsuda, N., Cohen, W.W., Sewall, J., Lacerda, G., and Koedinger, K.R. Evaluating

a Simulated Student using Real Students Data for Training and Testing. in Proceedings of
the International Conference on User Modeling (Berlin, Germany), pp. 107-116. 2007.

Meyers, W., Linear Representation of Tree Structure - a Mathematical Theory of

Parenthesis-Free Notations. In Proceedings of the third annual ACM symposium on
Theory of computing, Shaker Heights, Ohio, pp: 50-62. 1971.

Michalski, R., and Tecuci, G. Machine Learning: A Multistrategy Approach. Morgan

Kaufmann, 1994.

Mitchell, T. Version Spaces: An Approach to Concept Learning, Stanford University,
1978.

Mitchell, T.M. Machine Learning. McGraw-Hill, 1997.

Murray, T., Authoring Intelligent Tutoring Systems: An Analysis of the State of The

Art. in International Journal of Artificial Intelligence in Education, (1999), 98-129.

Murray, T., Blessing, S., and Ainsworth, S., Authoring Tools for Advanced

Technology Learning Environments: Toward Cost-Effective Adaptive, Interactive and
Intelligent Educational Software, Kluwer Academic Publishers, Netherlands, 2003 493-
546.

Mustière, S., Zucker, J. D., and Saitta, L. An abstraction-based Machine Learning

Approach to Cartographic Generalization. In Proceedings of the 9th International
Symposium on Spatial Data Handling, Beijing, 2000, pp 50-63.

221

Nayak, P. P., and Levy, A. Y. A semantic theory of abstraction. In Procedure of
Fourteenth International Joint Conference on Artificial Intelligence (IJCAI-95),
Montreal, Canada, 20–25 August 1995 (ed. A. Toshi), pp. 196–202.

Nguyen, D.T., Ho, B. T., and Shimodaira, H., A Visualization Tool for Interactive

Learning of Large Decision Trees. in 12th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI'00), (Vancouver, BC, Canada, 2000), IEEE.

Ong, J., and Ramachandran, S. Intelligent Tutoring Systems: The What and the How,
2000. http://www.learningcircuits.org/2000/feb2000/ong.htm

Plaisted, D. 1981 Theorem proving with abstraction. Artificial Intelligence. 16, 47–

108

Polson, M.C., and Richardson, J. J. Foundation of Intelligent Tutoring System.

Lawrence Erlbaum Associates, Inc., Hillsdale, NJ, 1988.

Powel G.M. and Schmidt C.F. 1988. A First-order Computational Model of Human

Operational Planning, CECOM-TR-01-8, US Army CECOM, Fort Monmouth, New
Jersey.

Roschelle, J. Learning in Interactive Environments: Prior Knowledge and New
Experience, 1995.

Rumelhart, D., and McClelland, J.L. Parallel Distributed Processing. MIT Press,

Cambridge, MA, 1986.

Russell, S., and Norvig, P. Artificial Intelligence A Modern Approach. Prentice Hall,

Upper Saddly River, NJ, 1995.

Saitta, L. and Zucker, J.D.. Semantic Abstraction for Concept Representation and

Learning. Symposium on Abstraction, Reformulation and Approximation (SARA98),
Asilomar Conference Center, Pacific Grove, California. 1998.

Sebastia, L., Onaindia, E., and Marzal, E., Decomposition of planning problems. in AI

Communications, Volume 19, Issue 1, Pages: 49-81. 2006

Smith, S. Tutorial on Intelligent Tutoring System, 1998.
http://www.cs.mdx.ac.uk/staffpages/serengul/Intelligent.Tutoring.System.Architectures.h
tm

Sutton, R. Learning to predict by the methods of temporal differences Machine

Learning, 1988, 9-44.

222

Tecuci, G., Building Intelligent Agents: An Apprenticeship Multistrategy Learning
Theory, Methodology, Tool and Case Studies. London, England: Academic Press, 1998.

Tecuci, G., Lecture Notes on “Knowledge Acquisition and Problem Solving”, CS

785, George Mason University, Fall 2001.

Tecuci, G., Boicu, M., Ayers, C., and Cammons, D. Personal cognitive assistants for

Military Intelligent Analysis: Mixed-Initiative Learning, Tutoring, and Problem Solving.
in First International Conference on Intelligence Analysis, (McLean, VA, 2005).

Tecuci, G., Boicu, M., Bowman, M., and Marcu, D. An Innovative Application from

the DARPA Knowledge Bases Programs: Rapid Development of a Course of Action
Critiquer AI Magazine, AAAI Press, 2001, 43-61.

Tecuci, G., Boicu, M., Bowman, M., Marcu, D., Shyr, P., and Cascaval, C, An

Experiment in Agent Teaching by Subject Matter Experts, in International Journal for
Human-Computer Studies, pp. 583-610, 2000.

Tecuci, G.; Boicu, M.; and Marcu, D., Learning Agents Teachable by Typical

Computer Users. In Procedure of the AAAI-2000 Workshop on New Research Problems
for Machine Learning, Austin, Texas, 2000.

Tecuci, G., Boicu, M., Marcu, D., Stanescu, B., Boicu, C., and Barbulescu, M. A

Learning Agent Shell for Building Knowledge-Based Agents. In the Technology
Demonstration Session of the 14th International Conference on Knowledge Engineering
and Knowledge Management, EKAW 2004, (Northamptonshire, UK, 2004), Whittlebury
Hall.

Tecuci, G. Boicu, M., Marcu, D., Stanescu, B., Boicu, C. and Comello, J. Training

and using Disciple agents: A case study in Military Center of Gravity Analysis Domain.
AI Magazine, 24.4, 2002, pp.51 - 68. AAAI Press, Menlo Park, California, 2002.

Tecuci, G., Boicu, M., Wright, K., Lee, S. W., Marcu, D., and Bowman, M., An

Integrated Shell and Methodology for Rapid Development of Knowledge-Based Agents.
in The Sixteenth National Conference on Artificial Intelligence (AAAI-99), (Orlando,
Florida, 1999), AAAI Press, Menlo Park, CA.

Tecuci, G., Wright, K., Lee, S.W., Boicu, M., Bowman, M., and Webster, D., A

Learning Agent Shell and Methodology for Developing Intelligent Agents. in The AAAI-
98 Workshop on Software Tools for Developing Agents, (Madison, Wisconsin, 1998),
AAAI Press, 37-46.

Tenenberg, J. 1987 Preserving consistency across abstraction mappings. In Procedure
of IJCAI-87, Milan, Italy, 1987 (ed. J. McDermott), pp. 1011–1014.

223

Tsinakos, A.A., and Margaritis, G. K., Student Models: The transit to Distance

Education, http://www.eurodl.org/materials/contrib/2000/tsinakos.html, 2000.

Towne, D., Approximate reasoning techniques for intelligent diagnostic instruction,

in International Journal of Artificial Intelligence in Education, 1997

Tucker, A., Applied Combinatorics, Third Edition. John Wiley & Sons, Inc., 1995.

Turner, T.E. The Assistment Builder: A tool for rapid tutor development Computer

Science, WORCESTER POLYTECHNIC INSTITUTE, 2005.

Turner, T.E., Lourence, A., Heffernan, N., Macasek, M., Nuzzo-Jones, G., and

Koedinger, K. The Assistment Builder: An Analysis of ITS Content Creation Lifecycle.
The 19th International FLAIRS Conference, Melbourne Beach, Florida, 2006.

Turner, T.E., Macasek, M. A., Nuzzo-Zones, G. , Heffernan, N. T., and Koedinger, K.

The Assistment Builder: A Rapid Development Tool for ITS. in the 12th Artificial
Intelligence In Education, (Amsterdam, 2005), 929-931.

Waltz, D. Artificial Intelligence: An assessment of the State of the art and

Recommendation for Future Direction AI Magazine, 1983, 55-67.

Whitley, E.A. Embedding expert systems in semi-formal domains: Examining the

boundaries of the knowledge base. School of Economics and Political Science-290, 1990.

Winston, P. Learning and Reasoning by Analogy. Communication of the ACM, 23
(12). 689-703, 1980.

Zucker, and Jean-Daniel, A grounded theory of abstraction in artificial intelligence.
Philosophical Transactions of the Royal Society B: Biological Sciences, 2003 July 29;
358(1435): 1293–1309.

224

CURRICULUM VITAE

Vu Le received his Bachelor of Science in Computer Science from George Mason
University in 1997. He worked for Boeing Company as software engineer after
graduation. He continued to attend George Mason University graduate program in
Computer Science. He received his Master of Science in 1999. Vu Le was employed as
software engineer in Science Applications International Corporation (SAIC) in 1999. He
worked for Alphatech, Inc (now is BAE Systems) in 2004 as senior software engineer
and for Learning Agent Center at George Mason University in 2005 as research
instructor.

