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Multiple Sclerosis (MS) is an incapacitating neurological illness, where changes 

in gene expression play a crucial role. Affecting nearly two million people worldwide, 

MS is the most common acquired neurological disorder of young adults just after 

physical trauma. Up to now, an understanding of the complex molecular mechanism of 

MS, which is vital to develop effective therapies, has remained elusive. Most of the 

studies that have been conducted to address this problem have used microarray 

technology, which does not reflect the high variability of protein expression. The primary 

goal of this work was to analyze the molecular interactions and possible sequence 

variants underlying the pathogenesis of Multiple Sclerosis (MS) by utilizing RNA-Seq 

expression data, which is also capable of catching the high variability in protein 

expression associated with MS pathology. Results from this study will deliver a better 

understanding of the complex molecular mechanisms underlying MS and, hopefully, 

provide a groundwork for effective therapeutics. At the end of the study I ended up with a 

list of candidate genes, among them Transcriptions Factors, and Single Nucleotide 

Polymorphisms with potential implications in MS. Future studies will need to incorporate 
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more metadata and biological replicates in the analysis.  Experimental validation will also 

required. 
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CHAPTER ONE: INTRODUCTION 

Multiple Sclerosis 

Multiple Sclerosis (MS) is an immune-mediated inflammatory disorder damaging 

fatty myelin sheaths around the axons of the Central Nervous System (CNS) leading to a 

broad spectrum of clinical signs and symptoms.1 MS is the second most common 

acquired neurological disorder of young adults, with physical trauma being the most 

common. The illness demonstrations a range of severity, fluctuating from an 

asymptomatic pathological process to severe disabling illness. The clinical presentation 

involves two forms, relapsing disease in which distinct attacks with clinical stability in 

between, or progressive condition in which gradual worsening of neurological deficits.  

Many factors are believed to contribute to the source of MS, including genetic 

susceptibility and environmental factors. MS affects mainly young people between the 

ages of 15 and 50 years, with a peak onset at about age 30. There is a substantial gender 

preference; most MS patients (70-75%) are women.2 

The incidence and prevalence of MS vary throughout the world. MS affects 

nearly two million people worldwide with evident variability in geographic distribution.3 

Near the equator, typically in tropical regions, there is low risk, while MS risk north and 

south of the equator increases with higher latitudes, in both northern and southern 

hemispheres.4 
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Though the pathogenesis of MS is ill-understood, evidence suggests that both 

genetic and environmental components play essential roles in disease development, both 

independently and interactively.4 The role of genetics in MS and its interaction with 

environmental causes have been extensively studied. Environmental factors have 

historically been thought to be necessary to disease risk. The geographical distribution 

and familial aggregation of MS have often been credited to the rule of infectious agents, 

but there is no consensus regarding this theory.5 A Canadian study examined a 

population-based sample of 15,000 individuals with MS using standardized, personally 

administered questionnaires to identify adoptees and those who had adopted relatives. 

The rate of MS among first-degree, non-biological relatives living with the index case 

was no higher than the expected rate from the Canadian population prevalence data and 

was significantly less than the rate for biological relatives. These findings support the 

hypothesis that the familial aggregation of MS is genetically determined rather than 

environmentally determined.5,6 A significant contributor to the genetic risk is the major 

histocompatibility complex (MHC) antigen.7 

Several reports showing familial aggregation of the disorder, high concordance 

rates between twins, and more significant risk among relatives of patients with MS are 

supporting the contribution of genetics to MS. People with MS have a 5–26% chance of 

having one or more affected relatives,5,6 which is a much higher chance than one would 

expect for a disease with no genetic component. Furthermore, the relative risk of MS for 

identical twins, if one is affected, is approximately 200 to 300 times greater than that of 
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the general population.6,8 Lastly, the first-degree relatives of MS patients have a 2–5% 

risk of also developing the disease.8 

Evidence suggests that transcription factors play a role in the pathogenesis of MS 

and other autoimmune diseases.9 For example, it has previously been observed that 

members of the NF-kappaB, STAT, AP-1, and E2F families,10 IRF-1,11 IRF-2,12 IRF-5,13 

IRF-8, 11 CREB,14 PPARgamma and PPARalpha,15,16 SP1,13 SP3,17 RORC,18 NR4A2, 

TCF2,19 ETS-1,20 and FOXP321 may be implicated in MS and its disease subtypes.  

Previous studies identified several alleles in immune function as heritable risk 

factors for MS. Genetic complexity, primarily related to Human Leukocyte Antigens 

(HLA) of the MHC and, to a lesser extent, non-MHC-related genes, plays a significant 

role in influencing disease susceptibility, phenotypic expression CD4 T cells, which have 

leading rule in MS pathogenesis22, experience profound changes in gene expression 

during the initial hours after activation. Co-stimulation via the CD28 receptor is essential 

for the effective activation of naive T cells.23 Pre-clinical studies showed that the 

transcription factor is highly induced in a CD28-dependent manner upon T cell activation 

and is involved in essential CD4 effector T cell functions, participating in the regulation 

of several T cell activation pathways, together with a large group of CD28-regulated 

genes.24 Furthermore, Levels of blood monocytes secreting IL-6 and IL-12 were higher in 

patients with untreated MS and other neurological diseases compared to healthy 

controls.25 MS patients' blood monocytes also displayed elevated mean fluorescence 

intensity for the co-stimulatory molecule CD86, and MS patients with longer disease 
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duration (>10 years) and higher disease severity had higher percentages of CD80 

expressing monocytes compared to patients with short duration or lower severity.25  

 

Moleuclar Approaches applied to study MS:  Microarrays and RNA-Seq Technology 

Since its launch, RNA-Seq has been compared to microarray technology as a 

means of generating transcriptome information. Both follow a parallel path to answering 

a biological question. Nevertheless, there are a few key advantages of RNA-Seq 

technology.26 First, using microarray technology limits the researcher in spotting 

transcripts that linked to existing genomic sequencing information. RNA-Seq 

experiments, instead, work well for examining both known transcripts and explore new 

ones.26 Second, RNA-seq delivers a low background signal because DNA sequences can 

be unambiguously mapped to unique regions of the genome. As a result, noise in the 

experiment is effortlessly eliminated during analysis. Hybridization issues seen with 

microarrays, such as cross-hybridization or non-ideal hybridization kinetics, are also 

removed in RNA-Seq experiments, which offers another signal-to-noise advantage.26 

Finally, RNA-seq can quantify a broad dynamic range of expression levels, with absolute 

rather than relative values.26 
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CHAPTER TWO: TRANSCRIPTOMIC ANALYSIS OF MULTIPLE SCLEROSIS 

MONOCYTES BY RNA-SEQUENCING 

Abstract 

Multiple Sclerosis (MS) is an inflammatory disorder associated with immune 

abnormalities in the central nervous system, including the presence of many monocytes 

in MS lesions.  Despite contributing to morbidity in neurological disorders, the molecular 

mechanisms of MS continue to remain poorly understood. This study aimed to 

investigate specific transcriptome changes occurring in monocytes of patients with MS 

compared to Healthy Controls (HC) patients to improve diagnosis and possible treatment 

of affected subjects. Unlike other studies, which use microarray technology, the 

transcriptome of all participants was studied by Ribonucleic Acid sequencing (RNA-

Seq).  The advantage of RNA-Seq is that it does not report high variability of protein 

expression, as seen with microarray studies. Data analysis revealed that 6120 genes were 

significantly altered between the two groups (16% up-regulated and 17% down-regulated 

in MS group compared to healthy controls). The KEGG hsa04062 Chemokine signaling 

pathway was the most significant up-regulated pathway in the functional scoring analysis. 

We offered candidate genes and pathways with potential implications in MS. Results 

from this study will provide the groundwork for the new therapy development of MS. 
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Background 

Multiple Sclerosis 

Multiple Sclerosis (MS) is an immune-mediated inflammatory disorder damaging 

fatty myelin sheaths around the axons of the Central Nervous System (CNS) leading to a 

broad spectrum of clinical signs and symptoms.1 MS is the second most common 

acquired neurological disorder of young adults, with physical trauma being the most 

common. The illness demonstrations a range of severity, fluctuating from an 

asymptomatic pathological process to severe disabling illness. The clinical presentation 

involves two forms, relapsing disease in which distinct attacks with clinical stability in 

between, or progressive condition in which gradual worsening of neurological deficits.  

Many factors are believed to contribute to the source of MS, including genetic 

susceptibility and environmental factors. MS affects mainly young people between the 

ages of 15 and 50 years, with a peak onset at about age 30. There is a substantial gender 

preference; most MS patients (70-75%) are women.2 

The incidence and prevalence of MS vary throughout the world. MS affects 

nearly two million people worldwide with evident variability in geographic distribution.3 

Near the equator, typically in tropical regions, there is low risk, while MS risk north and 

south of the equator increases with higher latitudes, in both northern and southern 

hemispheres.4 

Though the pathogenesis of MS is ill-understood, evidence suggests that both 

genetic and environmental components play essential roles in disease development, both 

independently and interactively.4 The rule of genetics in MS and its interaction with 
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environmental causes are presently extensively studied. MS is a disease with evident 

geographic variability in both prevalence and incidence. The role of environmental 

factors has historically been thought to be necessary. The geographical distribution and 

familial aggregation of MS have often been credited to the rule of infectious agents, but 

there is no consensus regarding this theory.5 A Canadian study examined a population-

based sample of 15,000 individuals with MS using standardized, personally administered 

questionnaires to identify adoptees and those who had adopted relatives. The rate of MS 

among first-degree, non-biological relatives living with the index case was no higher than 

the expected rate from the Canadian population prevalence data and was significantly less 

than the rate for biological relatives. These findings support the hypothesis that the 

familial aggregation of MS is genetically determined rather than environmentally 

determined.5,6 A significant contributor to the genetic risk is the major histocompatibility 

complex (MHC) antigen.7 

Several reports showing familial aggregation of the disorder, high concordance 

rates between twins, and more significant risk among relatives of patients with MS are 

supporting the contribution of genetics to MS. People with MS have a 5–26% chance of 

having one or more affected relatives,5,6 which is a much higher chance than one would 

expect for a disease with no genetic component. Furthermore, the relative risk of MS for 

identical twins, if one is affected, is approximately 200 to 300 times greater than that of 

the general population.6,8 Lastly, the first-degree relatives of MS patients have a 2–5% 

risk of also developing the disease.8  
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Previous studies identified several alleles as heritable risk factors for MS. Genetic 

complexity, primarily related to Human Leukocyte Antigens (HLA) of the MHC and, to a 

lesser extent, non-MHC-related genes, plays a significant role in influencing disease 

susceptibility, phenotypic expression CD4 T cells, which have leading rule in MS 

pathogenesis22, experience profound changes in gene expression during the initial hours 

after activation. Co-stimulation via the CD28 receptor is essential for the effective 

activation of naive T cells.23 Pre-clinical studies showed that the transcription factor is 

highly induced in a CD28-dependent manner upon T cell activation and is involved in 

essential CD4 effector T cell functions, participating in the regulation of several T cell 

activation pathways, together with a large group of CD28-regulated genes.24 

Furthermore, Levels of blood monocytes secreting IL-6 and IL-12 were higher in patients 

with untreated MS and other neurological diseases compared to healthy controls.25 MS 

patients blood monocytes also displayed elevated mean fluorescence intensity for the co-

stimulatory molecule CD86, and MS patients with longer disease duration (>10 years) 

and higher disease severity had higher percentages of CD80 expressing monocytes 

compared to patients with short duration or lower severity.25 

RNA-Seq Technology 

Since its launch, RNA-Seq has been compared to microarray technology as a 

means of generating transcriptome information. Both follow a parallel path to answering 

a biological question. Nevertheless, there are a few key advantages of RNA-Seq 

technology.26 First, using microarray technology limits the researcher in spotting 

transcripts that linked to existing genomic sequencing information. RNA-Seq 
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experiments, instead, work well for examining both known transcripts and explore new 

ones.26 Second, RNA-seq delivers a low background signal because DNA sequences can 

be unambiguously mapped to unique regions of the genome. As a result, noise in the 

experiment is effortlessly eliminated during analysis. Hybridization issues seen with 

microarrays, such as cross-hybridization or non-ideal hybridization kinetics, are also 

removed in RNA-Seq experiments, which offers another signal-to-noise advantage.26 

Finally, RNA-seq can quantify a broad dynamic range of expression levels, with absolute 

rather than relative values.26  

Gene Set Analysis 

Methods such as high-throughput sequencing and gene/protein profiling have 

altered research by permitting wide-ranging monitoring of a biological system. 27 

Regardless of the technology used, analysis of high-throughput data typically yields a list 

of differentially expressed genes or proteins, which fails to provide mechanistic insights 

into the underlying biology of the studied condition. One approach to reduces the 

complexity of analysis has been to simplify interpretation by long grouping lists of 

individual genes into smaller sets of related genes or proteins using a large number of 

knowledge bases to help with this task.27 Investigating high-throughput molecular 

measurements at the functional level is very appealing for two reasons. First, grouping 

thousands of genes, proteins, and other biological molecules by the pathways they are 

involved in reducing the complexity to just several hundred pathways for the experiment. 

Second, identifying active pathways that differ between the two conditions can have 

more explanatory power than a simple list of different genes or proteins.28 We can divide 
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knowledge base-driven pathway analysis into three classes: over-representation analysis 

(ORA), functional class scoring (FCS), and Pathway topology (PT)-based methods.29 

Comparatively, topological methods have shown better performance in the simulation 

scenarios with non-overlapping pathways. However, they were not conclusively better in 

other situations suggesting that a simple gene set approach might be enough to detect an 

enriched pathway under realistic circumstances.29 Out of popular gene set analysis 

methods, Applicable Gene-set Enrichment (GAGE) showed significantly improved 

results when compared to the two other commonly used GSA methods of GSEA and 

PAGE, in terms of consistency across repeated studies/experiments, sensitivity and 

specificity, when applied on two lung cancer data sets.30 

Rationale 

Though several advances have been made in the treatment of MS, there is still no 

known cure. Understanding the complex molecular mechanism of MS is crucial to 

develop effective therapies, and many studies have been conducted to address this 

problem, but most of them used microarray expression analysis, which does not consider 

the high variability of protein expression and de novo transcriptome discovery. Also, 

most of the studies have been conducted on CD4 and CD8 adaptive immunity cells, but 

not so much to discover the role of innate immunity role, especially monocytes. In this 

study, RNA-Seq expression data and state of the art analysis tools will be used to conduct 

the analysis between treatment naïve Multiple Sclerosis patients and then identify the 

change in comparison with the healthy controls using peripheral blood monocytes RNA-

Seq expression level. RNA-Seq is superior in detecting low abundance transcripts, 



11 

 

differentiating biologically critical isoforms, and allowing the identification of genetic 

variants compared to the microarray platform. Results from this study will provide the 

groundwork for the new therapy development of MS. 

 

Methods 

Raw RNA-Seq expression data from human monocytes for both treatment naïve 

MS patients and healthy controls (HC) were aligned to a reference human genome 

sedquence, counted, and then analyzed statistically to look for the highest expressed 

genes list in MS across cell types. After that, the biochemical pathways involved in MS 

were investigated by functional pathway enrichment analysis using the differential 

expression data and knowledge-based databases. 

RNA-Seq data 

We obtained the raw expression files (FASTQ format) for both treatment naïve 

MS patients and HC from the ArrayExpress31 database (Accession code: E-GEOD-

77598). These datasets are based on the Illumina HiScanSQ platform. Samples are 

obtained from 7 biological replicates (3 HC and 4 MS patients). Each biological replicate 

is divided into three technical replicates taken from the same sample.According to the 

source study, the total RNA in the samples was isolated from purified monocytes using 

the Qiagen RNeasy minikit (Qiagen, Hilden, Germany) according to the manufacturer's 

instructions. Then enriched the samples for mRNA using the Ambion polyA purist kit 

(ThermoFisher Scientific, Waltham, MA) according to the manufacturer's instructions. 

Libraries for sequencing were prepared by the Australian Genome Research Facility 

(AGRF) from 200 ng mRNA, with the mRNA from each ligated with a unique multiplex 
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tag. Libraries were then pooled and divided across three lanes of the Illumina HiSeq 

sequencer (Illumina San Diego, CA), sequenced with 100 bp single-end reads.32 

 

 

Table 1. RNA-seq samples information, which includes the condition, RNA-seq sample run ID (SRR#), and Gene 

expression omnibus33 sample ID (GSM). 

ID Run Condition GSM1 

1 SRR3146470 N GSM2054988 

2 SRR3146469 N GSM2054988 

3 SRR3146468 N GSM2054988 

4 SRR3146473 N GSM2054989 

5 SRR3146472 N GSM2054989 

6 SRR3146471 N GSM2054989 

7 SRR3146476 N GSM2054990 

8 SRR3146475 N GSM2054990 

9 SRR3146474 N GSM2054990 

10 SRR3146479 MS GSM2054991 

11 SRR3146478 MS GSM2054991 

12 SRR3146477 MS GSM2054991 

13 SRR3146482 MS GSM2054992 

14 SRR3146481 MS GSM2054992 

15 SRR3146480 MS GSM2054992 

16 SRR3146485 MS GSM2054993 

17 SRR3146484 MS GSM2054993 

18 SRR3146483 MS GSM2054993 

19 SRR3146488 MS GSM2054994 

20 SRR3146487 MS GSM2054994 

21 SRR3146486 MS GSM2054994 
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22 SRR3146491 MS GSM2054995 

23 SRR3146490 MS GSM2054995 

24 SRR3146489 MS GSM2054995 

1 Gene expression omnibus 

 

 

RNA-Seq data analysis 

We performed the quality control on raw reads using the FastQC34 tool (Version 

0.11.7) for each sample. Raw reads refinement, and clipping have been performed using 

Trimmomatic35 (Version 0.36). We mapped high-quality reads to a reference human 

genome (GRCh38/hg38) and a human reference transcriptome (Ensembl v70) from the 

Ensembl36 genome database using STAR37 Aligner (Version 2.4.0.1). Unique mapped 

reads have used to quantify gene expression in each sample. We estimated gene 

expression as reads counts after filtering, and normalization of raw reads counts using 

Rsubread38 and DEseq239 R packages as well as differential expression analysis between 

MS and HC samples. Multiple testing correction has been performed using Benjamini-

Hochberg40. Genes with adjusted p-values less than alpha of 0.05 were considered 

differentially expressed. Clustering, principal component analysis of the significant gene 

list will be conducted using the same package. 

Gene ontology and pathway analysis 

Functional pathway enrichment analysis was conducted to recognize the 

differentially expressed genes enriched biochemical pathways that were performed using 

edgeR,41,42 GAGE,30, and goseq43 R packages. We used Gene sets obtained from the 
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Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database and Geno 

Ontology (GO) database. 

  

 

 

Figure 1. RNA-Seq time course and downstream analysis.44 The analysis started with assessing the quality of the raw 

FASTAQ files that have been generated by the sequencing machine using FastQC34 tool; the data are then processed 

using Trimmomatic35 tool. We aligned the processed data to the reference genome (GRCh38/hg38)) and then, the 

specific features have been counted using Rsubread38 and DEseq239 R packages as differential expression analysis 

between MS and HC samples. Clustering, principal component analysis of significant genes have been conducted using 

the same R package. Functional pathway enrichment analysis was performed using the GAGE30 R package. 
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Results 

Transcriptome analysis of monocytes 

Changes occurring in the transcriptome of monocytes in MS patients were 

compared to HC by RNA-Seq technology. Globally, RNA-Seq produced paired-end 

reads with enough quality and read coverage per sample to perform reliable gene 

expression analysis.45 We analyzed the expression levels of protein-coding and non-

coding genes for all samples. Count sum for all samples is showing a strong correlation 

with sample size factor (Fig. 2.A). The quality analysis confirmed consistency in reads 

quality between all samples. Multidimensional scaling analysis confirmed high 

correlation and reproducibility among individual samples of each group (Fig 2.B). 

Principal component analysis (PCA) and Hierarchical Clustering revealed that the two 

different groups, MS patients and healthy controls, significantly differed after data 

normalization using three different normalization methods, log transformation, rlog 

transformation (RLD), and Variance Stabilizing Transformation (VSD) (Fig. 3 and Fig. 

4). As a general observation, there were significant differences between the two groups' 

transcriptomes; an attempt was made to identify genes with differential expression that 

were potentially associated with disease etiology. The results of rlog and VST are 

showing a clearer separation between healthy controls and MS patients in both HC and 

PCA. 
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Figure  2 (A) Correlation between count sum and sample size factor. For each sample, the size factor of the sample was 

calculated using the median of the ratios of observed counts and then plotted against the total sum count for the same 

sample.46 (B) Box plots of non-normalized raw reads (log2(count+1)) per sample vs. log2 normalized reads count per 

sample. 
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Figure 3. Hierarchal clustering of all samples showing the difference in clustering between the different methods. The 

methods are the non-normalized raw count(A), the log-transformed count (B), the regularized logarithm transformation 

(rlog) (C), and variance stabilizing transformations (VST) (D). Both transformations produce transformed data on the 

normalized log2 scale to library size. The results of the rlog and VST are showing a clear separation between healthy 

controls and MS patients. 
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Figure 4. Principal Component Analysis (PCA) plot of first and second principal components of all samples showing 

the difference in clustering between the different methods. The methods are the non-normalized raw count (A), the log-

transformed count (B), the regularized logarithm transformation (rlog) (C), and variance stabilizing transformations 

(VST) (D).  Both transformations produce transformed data on the normalized log2 scale to library size. The results of 

rlog and VST are showing better segregation of different batches of the same patient. 

 

 

 

Significant alteration in the protein-coding transcriptome between the two groups 

The initial determination for each sample was the expression level of all loci 

(Ensembl Homo sapiens.GRCh38.89), then the focus turned to the identification of 

Differentially Expressed Genes (DEGs) between the two groups. Data analysis revealed 

6120 DEGs in the two groups (16% up-regulated and 17% down-regulated in MS group 

compared to healthy controls). We showed the DEGs expression value as log2 fold 
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changes (calculated as diseased/healthy samples). Over the mean of normalized counts in 

the MA plot (Fig. 5. A) and as y-axis 1-posterior probability in log10 scale and on the x-

axis log10FC (fold change calculated as diseased/healthy samples) in volcano plots (Fig. 

5. B). 

 

 

 

 

Figure 5. (A) MA plot shows the log2 fold changes over the mean of normalized counts for all the samples, which 

visualizes the differences between measurements taken in two samples. We plotted the 6120 genes that were 

Differentially Expressed (DEGs) between the two groups in red. The plots show the log2 fold changes from the 

treatment over the mean of normalized counts, i.e., the average of counts normalized by size factors. (B) Volcano plot 

reporting on the y-axis 1-P (posterior probability) in log10 scale and on the x-axis log10FC (fold change calculated as 

disease/healthy samples). We showed genes identified as significantly differentially expressed (PP > 0.95) as red dots, 

orange of log2FC>1, green if both. 

 

 

 

Tables 2-4 show the top 10 Differentially Expressed Genes (DEGs) based on p. Adjusted 

value, top 10 down-regulated genes based on expression fold change, and top 10 up-

regulated genes based on expression fold change .the plot of the highest significant gene 

(RPS4Y1) is showing a different clear pattern of expression between MS and healthy 

controls for all samples (Fig. 6). 
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Table 2. Top 10 Differentially Expressed Genes (DEGs) based on p. Adjusted value. 

Gene Estimate p.adjusted Symbol 

ENSG00000129824 -10.0254 0 RPS4Y1 

ENSG00000229807 9.822781 1.20E-298 XIST 

ENSG00000067048 -9.87465 7.09E-247 DDX3Y 

ENSG00000012817 -9.94745 1.07E-131 KDM5D 

ENSG00000198692 -10.4063 2.71E-65 EIF1AY 

ENSG00000131002 -10.2602 7.45E-64 TXLNGY 

ENSG00000183878 -10.0315 7.63E-63 UTY 

ENSG00000147050 0.929966 1.01E-61 KDM6A 

ENSG00000099725 -9.80276 1.68E-59 PRKY 

ENSG00000067646 -9.78947 6.66E-57 ZFY 

 

 

 
Table 3. Top 10 down-regulated genes based on expression fold change. 

Gene Estimate p.adjusted Symbol 

ENSG00000078114 -10.9123 0.000669 NEBL 

ENSG00000198692 -10.4063 2.71E-65 EIF1AY 

ENSG00000131002 -10.2602 7.45E-64 TXLNGY 

ENSG00000183878 -10.0315 7.63E-63 UTY 

ENSG00000129824 -10.0254 0 RPS4Y1 

ENSG00000012817 -9.94745 1.07E-131 KDM5D 

ENSG00000067048 -9.87465 7.09E-247 DDX3Y 

ENSG00000099725 -9.80276 1.68E-59 PRKY 

ENSG00000067646 -9.78947 6.66E-57 ZFY 

ENSG00000114374 -9.40127 9.34E-52 USP9Y 

 

 

 
Table 4. Top 10 up-regulated genes based on expression fold change. 

Gene Estimate p.adjusted Symbol 

ENSG00000229807 9.822781 1.20E-298 XIST 
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ENSG00000204644 8.655077 1.28E-10 ZFP57 

ENSG00000184292 7.38083 0.000631 TACSTD2 

ENSG00000213058 7.071241 0.000108 AL365357.1 

ENSG00000270641 5.826036 4.06E-14 TSIX 

ENSG00000283445 5.644727 0.0043 AL136985.3 

ENSG00000004939 5.21146 0.053432 SLC4A1 

ENSG00000254521 4.761434 7.51E-13 SIGLEC12 

ENSG00000198010 4.63521 0.060525 DLGAP2 

ENSG00000237604 4.541081 5.08E-06 AP001056.1 
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Figure 6. Plot for the normalized count for the top gene based on p.adjusted value (RPS4Y1). Each dot represents a 

sample HC or MS pool of participants. The plot is clearly showing the upregulated pattern in the healthy controls and 

downregulated pattern in MS of the gene expression. 

 

 

 

Gene ontology and KEGG pathway analysis of DEGs 

Functional pathway enrichment analysis has been performed using the GAGE30 R 

package using information obtained from the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway database and Geno Ontology (GO) database. We first 

analyzed the top KEGG pathways. Pathways “NOD-like receptor signaling pathway,”  

“Chemokine signaling pathway,” “Jak-STAT signaling pathway,” Toll-like receptor 

signaling pathway,” and “Endocytosis” were up-regulated. Pathways “Ribosome,” “Taste 

transduction,” “Steroid biosynthesis,“ “Oxidative phosphorylation,” “Metabolism of 

xenobiotics by cytochrome P450”, and “Calcium signaling pathway” were down-

regulated in MS samples compared to healthy controls (Table 5-6). Then, the Gene 
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Ontology database has been analyzed for three structured networks: biological process 

(BP), molecular function (MF), and cellular component (CC) (Table 7-8). All the top 10 

hits of gene ontology analysis of the biological process are involved in body immunity. 

The top process based on the percentage of hits is “response to the virus,” which could 

support that a viral infection may cause MS or It could be merely an antiviral innate 

immune response that happened for common viruses (Fig 8). The top percentage of hits 

in the Gene ontology analysis of the cellular component domain is in the T-cell receptor 

complex (Fig 9). This finding supports the role of T-cell involvement in the pathogenesis 

of MS. 

 

 

Table 5. KEGG up-regulated pathways.  

Pathway p.geomean stat.mean p.val q.val set.size 

hsa04062 Chemokine signaling 
pathway 

0.001935 2.915741 0.001935 0.299956 138 

hsa04621 NOD-like receptor signaling 
pathway 

0.006438 2.550422 0.006438 0.331475 54 

hsa04630 Jak-STAT signaling pathway 0.007987 2.441364 0.007987 0.331475 93 

hsa04620 Toll-like receptor signaling 
pathway 

0.008554 2.422561 0.008554 0.331475 81 

hsa04380 Osteoclast differentiation 0.010767 2.318791 0.010767 0.333775 115 

hsa04144 Endocytosis 0.013813 2.215594 0.013813 0.356834 169 

 

 

 
Table 6. KEGG down-regulated pathways. 

Pathway p.geomean stat.mean p.val q.val set.size 

hsa03010 Ribosome 0.0312 -1.87988 0.0312 0.998065 85 

hsa04742 Taste transduction 0.29141 -0.55355 0.29141 0.998065 22 
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hsa00100 Steroid biosynthesis 0.297133 -0.54069 0.297133 0.998065 17 

hsa00190 Oxidative phosphorylation 0.307036 -0.50543 0.307036 0.998065 119 

hsa00980 Metabolism of xenobiotics by 
cytochrome P450 

0.329629 -0.44433 0.329629 0.998065 21 

hsa04020 Calcium signaling pathway 0.344394 -0.40108 0.344394 0.998065 101 

 

 

 
Table 7. Gene Ontology up-regulated components. 

Pathway p.geomean stat.mean p.val q.val set.size 

GO:0045087 innate immune response 9.95E-12 6.80052 
9.95E-

12 
3.60E-

08 
432 

GO:0051707 response to other organism 1.17E-08 5.638913 
1.17E-

08 
1.88E-

05 
425 

GO:0009607 response to biotic stimulus 1.56E-08 5.584864 
1.56E-

08 
1.88E-

05 
444 

GO:0019221 cytokine-mediated signaling 
pathway 

6.32E-08 5.359285 
6.32E-

08 
5.71E-

05 
275 

GO:0071345 cellular response to cytokine 
stimulus 

1.46E-07 5.184146 
1.46E-

07 
9.74E-

05 
330 

GO:0002252 immune effector process 1.62E-07 5.159235 
1.62E-

07 
9.74E-

05 
365 

 

 

 
 

 

Table 8. Gene Ontology down-regulated components. 

Pathway p.geomean stat.mean p.val q.val set.size 

GO:0006613 cotranslational protein 
targeting to membrane 

0.037396 -1.79273 0.037396 1 106 

GO:0006415 translational termination 0.037718 -1.79137 0.037718 1 90 

GO:0045047 protein targeting to ER 0.037901 -1.78649 0.037901 1 106 

GO:0072599 establishment of protein 
localization to endoplasmic reticulum 

0.037901 -1.78649 0.037901 1 106 

GO:0006614 SRP-dependent cotranslational 
protein targeting to membrane 

0.038243 -1.78256 0.038243 1 104 

GO:0006414 translational elongation 0.039528 -1.76709 0.039528 1 104 
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Figure 7. The enriched hsa04062 Chemokine signaling pathway. The red color means up-regulated expression, green 

means down-regulated expression; the gray means no expression information in the list. 
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Figure 8. Gene ontology analysis of the biological process, operations, or sets of molecular events with a defined 

beginning and end, pertinent to the functioning of integrated living units: cells, tissues, organs, and organisms. All the 

top 10 hits are involved in processes involved in body immunity. The top process based on the percentage of hits is 

“response to the virus,” which could support that a viral infection may cause MS.47  
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Figure 9. Gene ontology analysis of the cellular component domain, including parts of a cell or its extracellular 

environment.  
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Figure 10. Gene ontology analysis of molecular function domain, the elemental activities of a gene product at the 

molecular level, such as binding or catalysis.  

 

 

 

Discussion 

The main findings of the present study were: 1) The identification of specific 

changes occurring in the transcriptome of MS patients compared to healthy subjects. In 

particular, the bioinformatic analysis revealed significant alteration of the Chemokine 

signaling pathway, Jak-STAT signaling pathway, Toll-like receptor signaling pathway, 

NOD-like receptor signaling pathway. 2) The identification of specific changes occurring 

in the transcriptome of MS patients compared to healthy subjects not previously linked to 

MS. In particular, Osteoclast differentiation and Endocytosis. 3) The identification of 

some genes, which previous studies have not reported them, had an association with MS 

(RPS4Y1, XIST, DDX3Y, KDM5D, EIF1AY, and TXLNGY). 4) The number of the top 
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ten DEGs based on p.adjusted value is first to be linked directly to MS (RPS4Y1, 

XIST, KDM5D, KDM6A, TXLNGY, UTY, PRKY ). 5) the number of the top ten 

DEGs based on p.adjusted value that are involved in gene regulation (RPS4Y1, XIST, 

DDX3Y, KDM5D, KDM6A, EIF1AY, ZFY). 

Monocytes are a conserved subset of white blood cells that originate from 

myeloid progenitors in the bone marrow, which represents 10% of all white blood 

cells in humans48. Monocytes are rapidly recruited to tissues during infection and 

inflammation, where they differentiate into macrophages or dendritic cells (DC).49 

They also play a crucial role in the maintenance of homeostasis. While monocytes 

are essential for removing invading bacteria, viruses, fungi, and protozoans, they can 

also have adverse effects on the pathogenesis of inflammatory and degenerative 

diseases. 

RPS4Y1 gene codes for 40S ribosomal protein S4, Y isoform 1, which join the 

larger 60 S subunit to catalyze protein synthesis. RPS4Y, a Y-linked gene in the human, 

encodes ribosomal protein S4. 50 A homologous locus on the human X chromosome, 

RPS4X, lies close to the X-inactivation center but fails to undergo X inactivation. 50 The 

downregulation RPS4Y1 gene expression, but not RPS4X gene expression, could be 

explained by escaping from activation by RPS4X.51 On the Y chromosome, RPS4Y maps 

to a 90-kb segment that has been implicated in Turner syndrome,50 but it has to be that 

the low RPS4Y1 gene expression affecting the function or the expression of other 

effective protein forms is the case since the number of monocytes are within normal 

ranges for girls affected by Turner Syndrome.52 XIST, first discovered by searching 
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cDNA libraries for clones in the 1980s and 1990s, is dysregulated in some cancers and is 

correlated with tumor progression and poor prognosis. Recently, XIST is reported to be 

up-regulated in rat spinal cord injury (a neurological disease) model, and XIST 

knockdown has a noticeable protective effect on the recovery of spinal cord injury by 

suppressing apoptosis.53 XIST, Up-regulated in MS patients compared to healthy 

controls, is an RNA gene on the X chromosome of placental mammals that acts as a 

major effector of the X inactivation process. Similar results have been found in the 

SJL mouse strain (used to model the sexual dimorphism observed in MS). 54 Both 

males and females in the study had up-regulated XIST expression ( LogFC-female= 

3.837, LogFC-male= 3.544).54 ATP-dependent RNA helicase DDX3Y is an enzyme that 

in humans is encoded by the DDX3Y gene.55 DDX3Y  encodes a class I MHC-restricted 

H-Y antigen.56 Rosinski et al. found that an HLAB*2705 HY antigen encoded by 

DDX3Y was recognized by a CD8 -positive cytotoxic lymphocyte (CTL) clone isolated 

from a male who had received a hematopoietic cell graft from his HLA-identical sister. 56 

This may imply affected antigen presentation in MS patient presentation since the 

DDX3Y is down-regulated. In a study conducted by Lutterotti et al., DDX3Y found to be 

down-regulated in MS patient comparing to healthy controls ( LogFC= –2.454, p-value= 

0.14760), 57 which is consistent with our finding  ( LogFC= -9.87465, p.adjusted= 7.09E-

247). Like XIST, DDX3Y found to be affected in the SJL mouse strain. 54 Both males 

and females in the study had down-regulated DDX3Y expression (LogFC-female= –

11.042, LogFC-male= –9.345). Both KDM5D and KDM6A, which are involved in 

histone modification via lysine demethylation, are showing activity suggesting 
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transcriptional activation. 58 KDM6A, activator, is showing a slight upregulation 

(LogFC=0.929966, p. adjusted=1.01E-61) while KDM5D, repressor, is showing an 

almost 10 folds downregulation (LogFC=-9.94745, p. adjusted=1.07E-131). Target gene 

regulation by histone Lysine methylation is a dynamic process that modulates 

inflammatory responses in the development of a variety of autoimmune diseases, 

including MS. 59 EIF1AY is an EIF1AX  Y-linked homolog, which is an essential 

translation initiation factor and may function in stabilizing the binding of the initiator 

Met-tRNA to 40S ribosomal subunits. 55 EIF1AY gene is down-regulated in MS 

(LogFC=-10.4063, p. adjusted=2.71E-65), which could be one of the factors affecting the 

RPS4Y1 gene expression level.  RPS4Y1 is found to be down-regulated in MS patients 

comparing to healthy controls in the same study conducted by Lutterotti et al., ( LogFC= 

–1.695, p-value= 0.09977). 57 UTY gene encodes Histone demethylase UTY, which is a 

protein containing tetratricopeptide repeats, which are thought to be involved in protein-

protein interactions. 60 This protein is a minor histocompatibility antigen which may 

induce graft rejection of male stem cell grafts. 60 UTY involvement may explain the 

contribution of the major histocompatibility complex (MHC) antigen in MS genetic risk 

.7 ZFY gene is a zinc finger-containing protein that may function as a transcription factor. 

61 ZFY is down-regulated in microarray gene expression, and B-lymphocytes of siblings 

with multiple sclerosis (MS) were compared to healthy controls. 19 

Two of the top six KEGG up-regulated pathways (“Jak-STAT signaling 

pathway,” and “Toll-like receptor signaling pathway”), and one of the bottom six down-

regulated pathways (“Calcium signaling pathway”) found in the previous study. 62 (“Jak-
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STAT signaling pathway,” “Toll-like receptor signaling pathway,” “Ribosome,” and 

“Taste transduction”) Found to be enriched in another study. 63 The top up-regulated 

pathway in the KEGG enrichment analysis is supported by many experimental studies, as 

many members of the CCL and CXCL families of chemokines are found to play a role in 

the pathogenesis of MS. 64–68 The nucleotide-binding oligomerization domain-like 

receptors, represented as hsa04621 NOD-like receptor signaling pathway in KEGG, are 

playing a vital role in the regulation of innate immune response, which explains the up-

regulated pattern in monocytes (as part of the innate immune response in the body) and 

clear role on innate immunity in MS pathogenesis. 69 NOD-like receptors are intracellular 

sensors of pathogen-associated molecular pattern that enter the cell via phagocytosis and 

Damage-associated molecular pattern that is associated with cell stress. 70 The up-

regulation of the hsa04144 Endocytosis pathway may emphasize the role of innate 

immunity in the pathogenesis since both hsa04144 Endocytosis, and hsa04621 NOD-like 

receptor signaling pathway is up-regulated at the same time. The JAK/STAT pathway is 

one of the most critical signal transduction systems utilized by cells of the innate and 

adaptive immune systems to initiate and regulate immune responses. 71 Abnormal 

activation of this pathway promotes dysregulation of innate and adaptive immunity, 

including activation of pathogenic Th1 and Th17 cells, activation of macrophages, 

neutrophils, and DCs, and excessive production of proinflammatory cytokines, all of 

which contribute to the pathogenesis of MS. 72–74 The up-regulated  hsa04630 Jak-STAT 

signaling pathway is consistent with the experimental findings on this matter. There is 

even a remarkable advance in the development of specific JAK inhibitors that show great 
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promise in the treatment of autoimmune diseases. 75  Studies to date suggest that Toll-like 

receptors (TLRs), which activate MyD88-dependent signaling, contribute to the 

development of MS, whereas MyD88-independent pathways may mitigate disease 

severity. 76 

Conclusions 

The present findings revealed a specific expression pattern of protein-coding in 

MS. The knowledge of an expression network signature may offer valuable insights into 

the complex pathogenesis of MS; it may also provide potential targets for therapeutic 

intervention. All the novel changes in DEGs could be responsible for altered immune 

response in MS. However, many of these factors play critical roles in protein synthesis, 

genome methylation, and cell regulation, as well as in other human diseases. We offered 

an original list of novel candidate genes with potential implications in MS.  

For future studies, incorporating more samples, including detailed metadata (age, 

sex, ethnicity…etc.) to control for the variation of gene expression, is needed. More 

biological replicates are required to find DEGs with the minuscule difference between the 

groups.  
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CHAPTER THREE: REGULATORY NETWORK OF BOTH INNATE AND 

ADAPTIVE IMMUNITY IN MULTIPLE SCLEROSIS 

Abstract 

Despite Multiple Sclerosis (MS) contributing to morbidity in neurological 

disorders, the molecular mechanisms of MS continue to remain poorly understood, and 

biomarkers have yet to be identified. Although there are recognized important cellular 

and transcriptomic differences between MS samples and healthy controls samples, a 

systematic overview of the differences between the regulatory processes has not been 

conducted. This study aimed to investigate Transcription Factors (TF) that play an 

important role in MS complex molecular pathogenesis by a message-passing network 

model and specific expression change using co-expression and differential networks for 

both adaptive and innate immunity cells. Unlike previous studies, we used Ribonucleic 

Acid Sequencing (RNA-Seq) instead of microarray technology, which does not reflect 

the high variability of protein expression, to generate transcriptome information. We 

found that both innate and adaptive immunity share nine out of the top ten upregulated 

transcription factors, which indicates similar epigenomic control over both systems.  

 

Background 

Multiple Sclerosis 

Multiple Sclerosis (MS) is an immune-mediated inflammatory disease in which 

the fatty myelin sheaths around the axons of the Central Nervous System (CNS) are 

damaged, leading to demyelination and scarring as well as a broad spectrum of signs and 
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symptoms.1 MS is the second most common acquired neurological disorder of young 

adults, with physical trauma being the most common. The disease shows a spectrum of 

severity, ranging from an asymptomatic pathological process to severe disabling illness. 

The clinical presentation involves two forms, relapsing disorder in which distinct attacks 

with clinical stability in between, or progressive condition in which gradual worsening of 

neurological deficits.  

Numerous factors are thought to contribute to the cause of MS, including genetic 

susceptibility and environmental factors. MS affects mainly young people between the 

ages of 15 and 50 years, with a peak onset at about age 30. There is a substantial gender 

preference; most MS patients (70-75%) are women.2 

The incidence and prevalence of MS vary throughout the world. MS affects 

nearly two million people worldwide with evident variability in geographic distribution.3 

Recognized low, medium, and high-risk zones have been identified. Near the equator, 

typically in tropical regions, there is low risk, while MS risk north and south of the 

equator increases with higher latitudes, in both northern and southern hemispheres.4 

Although the pathogenesis of MS is poorly understood, evidence suggests that 

both genetic and environmental components play essential roles in disease development, 

both independently and interactively.4 The rule of genetics in MS and its interaction with 

environmental triggers are currently extensively studied. MS is a disease with evident 

geographic variability in both prevalence and incidence. The role of environmental 

factors has historically been thought to be necessary. The geographical distribution and 

familial aggregation of MS have often been ascribed to the rule of infectious agents, but 
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there is no consensus regarding this theory,5 A Canadian study examined a population-

based sample of 15,000 individuals with MS using standardized, personally administered 

questionnaires to identify adoptees or those who had adopted relatives. The frequency of 

MS among first-degree, non-biological relatives living with the index case was no higher 

than the expected rate from the Canadian population prevalence data and was 

significantly less than the rate for biological relatives. These findings support the 

hypothesis that the familial aggregation of MS is genetically determined rather than 

environmentally determined.5,6 A significant contributor to the genetic risk is the major 

histocompatibility complex (MHC) antigen.7 

The contribution of genetics to MS is supported by many reports showing familial 

aggregation of the disease, high concordance rates among twins, and increased risk 

among relatives of patients with MS. People with MS have a 5–26% chance of having 

one or more affected relatives, which is a much higher chance than one would expect for 

a disease with no genetic component. 5,6 Furthermore, the relative risk of MS for identical 

twins, if one is affected, is approximately 200 to 300 times greater than that of the general 

population.6,8 Finally, the first-degree relatives of MS patients have a 2–5% risk of also 

developing the disease.8 

Several alleles have been identified as heritable risk factors for MS. Genetic 

complexity, primarily related to human leukocyte antigens (HLA) of the MHC and, to a 

lesser extent, non-MHC-related genes, plays a significant role in influencing disease 

susceptibility, phenotypic expression CD4 T cells, which have central role in MS 

pathogenesis, 22 experience profound changes in gene expression during the initial hours 
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after activation. Co-stimulation via the CD28 receptor is required for the effective 

activation of naive T cells. 23 From pre-clinical studies, it is known that the transcription 

factor is highly induced in a CD28-dependent manner upon T cell activation and is 

involved in essential CD4 effector T cell functions, participating in the transcriptional 

regulation of several T cell activation pathways, including a large group of CD28-

regulated genes. 24 Furthermore, Levels of blood monocytes secreting IL-6 and IL-12 

were higher in patients with untreated MS and other neurological diseases compared to 

healthy controls, and MS patients blood monocytes also displayed elevated mean 

fluorescence intensity for the co-stimulatory molecule CD86, and MS patients with 

longer disease duration (>10 years) and higher disease severity had higher percentages of 

CD80 expressing monocytes compared to patients with short duration or lower severity.25 

Evidence suggests that transcription factors are playing a role in the pathogenesis 

of MS and other autoimmune diseases.9 For example, it has previously been observed 

that members of the NF-kappaB, STAT, AP-1, and E2F families,10 IRF-1,11 IRF-2,12 IRF-

5,13 IRF-8, 11 CREB,14 PPARgamma and PPARalpha,15,16 SP1,13 SP3,17 RORC,18 

NR4A2, TCF2,19 ETS-1,20 and FOXP321 may be implicated in MS and its disease 

subtypes.  

RNA-Seq Technology 

Since its launch, RNA-Seq has been compared to microarray technology as a 

means of generating transcriptome information.26 Both follow a parallel path to 

answering a biological question. Nevertheless, there are a few key advantages of RNA-

Seq technology. First, using microarray technology limits the researcher in detecting 
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transcripts that correspond to existing genomic sequencing information. RNA-Seq 

experiments, on the other hand, work well for investigating both known transcripts and 

explore new ones.26 Second, RNA-seq delivers a low background signal, which is 

because DNA sequences can be unambiguously mapped to unique regions of the genome. 

As a result, noise in the experiment is effortlessly eliminated during analysis. 

Hybridization issues seen with microarrays, such as cross-hybridization or non-ideal 

hybridization kinetics, are also removed in RNA-Seq experiments that offer another 

signal-to-noise advantage.26 Lastly, RNA-seq can quantify a broad dynamic range of 

expression levels, with absolute rather than relative values.26  

Passing attributes between Network for Data Assimilation 

Understanding the structure of gene regulation in both healthy and diseased states 

in different cell types has the potential to help interpret the differential expression results 

and to reveal critical regulatory differences. Transcriptional regulation involves several 

distinct mechanisms that must work together to respond to internal or external stimuli.77 

Though the existence of transcription factor binding sites (TFBS) in the promoter or 

enhancer regions can suggest how that gene is controlled, not all TFBS are functionally 

relevant or active. Likewise, the binding of a single TF alone may not be enough to 

recruit RNA polymerase, and several TFs may interact to promote or diminish regulatory 

potential.77 

PANDA (Passing Attributes between Networks for Data Assimilation) is an 

approach that integrates multiple types of genomic data to infer the network of 

interactions between TFs and their target genes.78 In contrast to other network 
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reconstruction approaches, PANDA searches for consistency across multiple sources of 

information to build a holistic regulatory model. The core of the PANDA algorithm is a 

message-passing approach in which regulatory processes are modeled as a 

communication process between “transmitters” (TFs) and “receivers” (target genes). For 

communication to occur, both transmitters and receivers play an active role: TFs are 

responsible for regulating genes, and the target genes must be available to be regulated. 

PANDA starts with a TF/target gene prior regulatory network consisting of potential 

routes for communication, which is built by mapping TFs motifs to the genome. PANDA 

integrates this prior network with protein-protein interaction (PPI) and gene expression 

data, using it to model TF cooperativity and gene co-expression, respectively. Based on 

this information, it then iteratively estimates the most likely routes of communication 

through the regulatory network. 

Co-expression and differential networks 

Co-expression networks are reassembled from gene expression data by pairwise 

correlation metrics.79 Changed co-expression patterns of genes between two conditions 

(healthy vs. diseased) are called differential co-expression, which represent significant 

potential to identify gene clusters affected by condition change.80 The creation of 

differential co-expression networks and their topological analysis, provide us valuable 

information on the alterations in biological systems in response to environmental and 

biological perturbations, such as disease formation and gene mutation.81,82 In many 

studies, differential co-expression networks were used to identify disease-associated gene 
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modules in human diseases, including obesity,83 tumor-associated macrophages,84 and 

breast cancer.85 

Rationale 

A significant research effort has been made to understand the mechanisms of MS 

pathogenesis and to identify diagnostic and prognostic targets. However, disease-specific 

and effective biomarkers were still not available. Understanding the complex molecular 

mechanism of MS, including the role of TFs and the gene clusters, is crucial to develop 

effective therapies. This work aims to uncover TFs that potentially dysregulate many 

genes and the altered co-expression pattern in MS using both innate and adaptive immune 

cells. Ultimately, our goal is to piece together relationships and infer a network of TFs 

and gene modules that are implicated in MS as inferred from the differential expression 

and co-expression of several hundreds of genes. The results could be a ground for further 

investigation of involved epigenomics systems. The integration of biological data (gene 

and transcript information) provides valuable insights on the clarification of the disease 

mechanisms and identification of molecular signatures of human diseases. 

 

Methods 

We focused on pointing out TFs and the gene clusters that play an important role 

in MS complex molecular pathogenesis from cells that represent both of human’s innate 

immunity (Monocytes cells) and adaptive immunity (CD4, CD8, and B cells). 
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Figure  11 . Analysis workflow for monocytes cells (A) and lymphoblast cells (CD4, CD8, and  B cells) (B). in both 

workflows, RNA-seq data from both healthy controls and treatment naïve MS patients have been analyzed to produce 

two differential co-expression networks and two TF bipartite networks. For each workflow, bipartite TF networks have 

been compared to point out up-regulated TFs. We conducted further analysis of gene expression data in each workflow 

(PCA, Hierarchical clustering). 

 

 

 

RNA-Seq data 

We obtained the raw expression files (FASTQ format) of Monocytes cells 

(representing innate immunity) for both treatment naïve MS patients, from the 

ArrayExpress31 database (Accession code: E-GEOD-77598). These datasets are based on 

the Illumina HiScanSQ platform. A total of 24 samples (9 for HC and 15 for MS patients) 

was used in the analysis (Table 1). According to the source study, the total RNA in the 

samples was isolated from purified monocytes using the Qiagen RNeasy minikit (Qiagen, 

Hilden, Germany) according to the manufacturer's instructions. Then enriched the 

samples for mRNA using the Ambion polyA purist kit (ThermoFisher Scientific, 

Waltham, MA) according to the manufacturer's instructions. Libraries for sequencing 

were prepared by the Australian Genome Research Facility (AGRF) from 200ng mRNA, 

with the mRNA from each ligated with a unique multiplex tag. Libraries were then 

pooled and divided across three lanes of the Illumina HiSeq sequencer (Illumina San 

Diego, CA), sequenced with 100bp single-end reads.32 

We obtained the raw expression files (FASTQ format) of CD4, CD8, and B cells 

(representing adaptive immunity), for both treatment naïve MS patients and HC, from 

ArrayExpress31 database (Accession code: E-GEOD-60424). A total of 16 samples ( 8 for 

HC and 8 for MS patients) was used in the analysis (Table 9-10). CD4, CD8, and B cells 

were obtained from the same source blood sample in both patient and healthy controls. At 
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the time of blood draw, an aliquot of whole blood was collected into a Tempus tube 

(Invitrogen), while the remainder of the primary fresh blood sample was processed to 

highly pure populations of neutrophils, monocytes, B cells, CD4 T cells, and CD8 T 

cells. RNA was extracted from each of these cell subsets and processed into RNA 

sequencing libraries (Illumina TruSeq). Sequencing libraries were analyzed on an 

Illumina HiScan.86  Further analysis will be conducted, including monocytes and 

neutrophils from the same patient and HC. 

 

Table 9. RNA-seq samples information for MS patients, which includes the condition, RNA-seq sample run ID 

(SRR#), and cell type. 

ID Run Cell type 

1 SRR1551097 B 

2 SRR1551035 B 

3 SRR1550994 B 

4 SRR1551098 CD4 

5 SRR1551036 CD4 

6 SRR1550995 CD4 

7 SRR1551099 CD8 

8 SRR1551037 CD8 

 

 

 

Table 10. RNA-seq samples information for healthy controls, which includes the condition, RNA-seq sample run ID 

(SRR#), and cell type. 

ID Run Cell type 

9 SRR1551097 B 

10 SRR1551035 B 

11 SRR1550994 B 

12 SRR1551098 CD4 

13 SRR1551036 CD4 

14 SRR1550995 CD4 

15 SRR1551099 CD8 
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16 SRR1551037 CD8 

   

 

 

RNA-Seq data analysis 

The quality control on raw reads has been performed using the FastQC34 tool 

(Version 0.11.7) for each sample. Raw reads refinement, and clipping have been 

performed using Trimmomatic35 (Version 0.36). High-quality reads have been mapped to 

the reference human genome (GRCh38/hg38) and the human reference transcriptome 

(Ensembl v70) from the Ensembl36 genome database using STAR37 Aligner (Version 

2.4.0.1). Unique mapped reads have been used to quantify gene expression in each 

sample. Gene expression, as reads counts, have been estimated after filtering and 

normalization of raw reads counts using Rsubread38 and DEseq239 R packages as well as 

differential expression analysis between MS and HC samples. Multiple testing correction 

has been performed using Benjamini-Hochberg40. Genes with adjusted p-values less than 

alpha of 0.05 were considered differentially expressed. Clustering, Principal Component 

Analysis (PCA) of the significant gene list were conducted using the same package. 
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Figure 12. RNA-Seq time course and downstream analysis.44 

 

 

 

PANDA analysis 

We constructed gene regulatory networks using the PANDA78 R package 

(pandaR) to point out Transcription Factors (TFs) of interest. PANDA starts with a prior 

regulatory network inferred by mapping TF binding sites to the genome, integrates 

Protein-Protein Interaction (PPI), and gene expression data to refine the network structure 

iteratively and assumes a final consensus regulatory network (Fig. 13). In the regulatory 

networks estimated by PANDA, each edge connects a TF to a target gene, and the edge 

weight indicates the strength of the inferred regulatory relationship. The idea here is to 

start with a prior list of human transcription factors list. Then, the TF has been integrated 

with the differential expression data that have been generated. We ended up with four 
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genome-wide, condition-specific regulatory networks for innate (Monocytes) and 

adaptive (CD4. CD8, and B cells). 

We generated one PANDA regulatory network for each group (innate and 

adaptive immunity) using default parameters (a hamming distance of 0.001 and the 

update parameter α of 0.1): HC and MS patients. For each network, the same TF/target 

gene prior regulatory network has been used. To generate the TF/target gene regulatory 

prior, Transcriptional Regulatory Relationships Unraveled by Sentence-based Text 

mining (TRRUST v2) transcription factors list will be used.87 TRRUST is a manually 

curated database of human and mouse transcriptional regulatory networks. Version 2 of 

TRRUST contains 8,444 and 6,552 TF-target regulatory relationships of 800 human TFs. 

They have been derived from 11,237 PubMed articles, which describe small-scale 

experimental studies of transcriptional regulations. 

For each group, the TF/target gene prior and the sample group gene expression 

data have been used. The TF/target gene edge weights emerging from PANDA were then 

used to compare networks between the two conditions. For pairs of networks, the TF out-

degree, defined as the sum of edge weights from that TF, and the gene in-degree, defined 

as the sum of all incoming edge weights, a gene received from all expressed TFs in the 

network have been compared.  
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Construction of co-expression and differential networks in diseased and healthy states 

We constructed four co-expression networks based on gene expression profiles of 

both innate and adaptive immunity (as represented monocytes cells and CD4, CD8, and B 

Figure 13. Outline of the PANDA approach for regulatory network inference integrating three data types.77 (A) A 

conceptual illustration showing the generalized framework for the message-passing procedure. (B) An illustration of how 

the message-passing procedure is applied in assimilating data that represents several various components of biological 

regulation. The networks are initialized from sequence motif data, physical protein interactions, and co-expression, 

respectively. The method iteratively passes messages within and among networks to emphasize agreement regarding the 

TF-gene regulatory relationships occurring within a system. At each time step regulatory (W), co-regulatory (C), and 

protein-cooperativity (P) networks are updated by passing information between the regulatory network, that reflects 

potential paths for regulation in the biological system, and the data-specific networks, that reflect “static” pair-wise 

information shared between gene products and TFs. At convergence, the method provides harmonized expression and 

interaction modules specific to a biological condition of interest, as well as the output regulatory network controlling those 

modules in each condition. 
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cells respectively) in HC and MS patients. The expression data were log-transformed 

before conducting the analysis using the limma88 R package. We computed the Pearson 

correlation coefficient (PCC) of the expression profiles between every pair of genes in 

the same group. 

We created two differential networks for both innate and adaptive immunity (as 

represented monocytes cells and CD4, CD8, and B cells). In each network, we compared 

the HC vs. MS networks (healthy network used as reference). The idea is to cancel out 

common shared nodes and edges between HC and MS networks in both innate and 

adaptive immunity. Differential network analysis has been conducted using the 

Cytoscape89 Diffany90 plugin.  

Local and global topological features of networks and their modules were 

represented by several metrics, including degree, betweenness connectivity, network 

density, and clustering coefficient, and were determined via NetworkAnalyzer91 and 

Cytohubba92 plugins of Cytoscape (Version 3.7.1). 

The differential networks were analyzed using the Cytoscape MCODE93 plugin to 

find network modules. Ranking of modules was based on MCODE scores (i.e., average 

connectivity). 

Cytoscape CytoMCS94 plugin has been used to compute the maximum common 

edge subgraph between the two differential networks (innate and adaptive immunity) to 

point out conserved nodes. The networks have been treated as undirected networks with 

20% perturbation and no edge exception.  
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The list of the conserved nodes has been used to conduct pathway enrichment 

analyses of gene sets through the Cytoscape ClueGo95 plugin using KEGG96 and 

Reactome97 as the data sources. P-values were determined through a 2-sided 

hypergeometric test and adjusted via Bonferroni’s method. A threshold of adjusted p-

value < 0.05 was used to determine the statistical significance of enrichment results.  

 

Results 

Transcriptome analysis of Monocytes cells 

RNA-Seq produced paired-end reads with enough quality and read coverage per 

sample to perform reliable gene expression analysis. The expression levels of protein-

coding and non-coding genes have been analyzed for all samples. Count sum for all 

samples is showing a strong correlation with sample size factor (Fig. 2A). The quality 

analysis confirmed consistency in reads quality between all samples. Multidimensional 

scaling analysis confirmed high correlation and reproducibility among individual samples 

of each group (Fig. 2B). 

PCA and Hierarchical Clustering revealed that the two different groups, MS 

patients and healthy controls, significantly differed after data normalization using three 

different normalization methods, log transformation, rlog transformation (RLD), and 

Variance Stabilizing Transformation (VSD) (Fig. 3 and Fig. 4). 
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Transcriptome analysis of CD4, CD8, B, Monocytes, and Neutrophils cells 

The expression levels of protein-coding and non-coding genes have been analyzed 

for all samples. Log-transformed counts density plots are showing a clear different 

distribution pattern for Neutrophils and Monocytes cells compared to CD4, CD8, B cells 

(Fig. 14A). The distribution of CD4, CD8, and B cells are almost identical after removing 

neutrophils and monocytes cells samples (Fig. 14B, 14C). 

 

 

 

 

Figure  14 . Log-transformed counts density plots for CD4, CD8, B, monocytes, and neutrophils cells (A),  CD4, 

CD8, B, and monocytes cells (B),  CD4, CD8, and B cells only (C). The plots are showing the almost equal 

distribution for CD4, CD8, and B cells.  
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PCA and Hierarchical Clustering revealed that the cell lines, in both MS patients 

and HC, significantly differed after data normalization using two different normalization 

methods, rlog transformation (RLD), and Variance Stabilizing Transformation (VSD). 

We found that CD4, CD8, and B cells are grouped in one cluster, and monocytes and 

neutrophils are grouped in another cluster (Fig. 15 and Fig. 17). PCA analysis revealed a 

very close expression pattern of CD4 and CD8 cells. CD4, CD8, and B cells tend to 

group tightly after RLD and VSD transformation (Fig. 16 and Fig. 18). Monocytes and 

Neutrophils cells tend to group, which is consistent with the clustering results. PCA and 

Hierarchal clustering of all MS patients and HC samples are showing that cell lines from 

the two different conditions and the same cell line tend to cluster together, which indicate 

a slight change in the expression pattern between MS patients and HC samples (Fig. 19 

and Fig. 20). 

Differential expression between MS patients and HC samples revealed 18, 0, 40, 

10, 18 DEGs for CD4, CD8, B, Neutrophils, and Monocytes cells, respectively. 

SLC2A14 gene is the only gene shared by all cell lines (Fig. 21).  
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Figure 15. Hierarchal clustering of all MS patients’ samples showing the difference in clustering between the 

different methods. The methods are the non-normalized raw count(A), the regularized logarithm transformation (rlog) 

(B), and variance stabilizing transformations (VST) (C). Both transformations produce transformed data on the log2 

scale normalized to library size. The results of rlog and VST, showing the clustering of the same cell line. 
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Figure 16. Principal Component Analysis (PCA) of all MS patients’ samples showing the difference in clustering 

between the different methods. The methods are the non-normalized raw count (A), the regularized logarithm 

transformation (rlog) (B), and variance stabilizing transformations (VST) (C).  Both transformations produce 

transformed data on the log2 scale normalized o library size. The results of the rlog and VST are showing better 

segregation of different cell lines. Also, it is showing a similar expression pattern of CD4, CD8 cells. 
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Figure 17. Hierarchal clustering of all healthy controls’ samples showing the difference in clustering between the 

different methods. The methods are the non-normalized raw count(A), the regularized logarithm transformation (rlog) 

(B), and variance stabilizing transformations (VST) (C). Both transformations produce transformed data on the log2 

scale normalized to library size. The results of rlog and VST showing the clustering of monocytes and neutrophils cells 

in one group (representing innate immunity), and CD4, CD8, and B cells in another group (representing adaptive 

immunity). 
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Figure 18. Principal Component Analysis (PCA) of all healthy control samples showing the difference in 

clustering between the different methods. The methods are the non-normalized raw count (A), the regularized 

logarithm transformation (rlog) (B), and variance stabilizing transformations (VST) (C).  Both transformations produce 

transformed data on the log2 scale normalized to library size. The results of rlog and VST are showing better 

segregation of different cell lines and control for the variability between different samples. Also, it is showing a similar 

expression pattern of CD4, CD8 cells. 
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Figure 19. The hierarchal clustering of all MS patients and healthy control samples are showing the difference in 

clustering between the different methods. The methods are the non-normalized raw count( A), the regularized 

logarithm transformation (rlog) (B), and variance stabilizing transformations (VST) (C). Both transformations produce 

transformed data on the log2 scale normalized to library size. The results of rlog and VST showing clustering of the 

same cell line for both MS patients and healthy controls samples. Cell lines from the two different conditions and the 

same cell line tend to cluster together.  
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Figure 20. Principal Component Analysis (PCA) of all MS patients and healthy control samples are showing the 

difference in clustering between the different methods. The methods are the non-normalized raw count (A), the 

regularized logarithm transformation (rlog) (B), and variance stabilizing transformations (VST) (C).  Both 

transformations produce transformed data on the log2 scale normalized to library size. The results of rlog and VST are 

showing better segregation of different cell lines and control for the variability between different samples. Also, it is 
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showing a similar expression pattern of the Cell lines from the two different conditions, and the same cell line tends to 

cluster together.  

 

 

 

 

 
Figure 21. Venn diagram of the intersection of the DEGs (MS vs. healthy controls) for each cell line. All cell lines 

share the SLC2A14 gene in their DEGs list. 

 

 

 

Cell line and condition-specific gene regulatory networks  

We used PANDA to estimate gene regulatory networks in innate immunity 

(represented by Monocytes cells) and adaptive immunity (represented by CD4, CD8, and 

B cells) in each condition (MS patients and HC). For each network, we started with the 

same TF/target gene prior regulatory network but used the cell-specific gene expression 

data, which resulted in four gene regulatory networks where each edge connects a TF to a 

target gene, and the associated edge weight indicates the strength of the inferred 

regulatory relationship in that cell. These networks can inform us about the genome-wide 
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regulation of the cell lines and condition analyzed as we compare 795TFs, 8,427 

regulatory links, and more than 20,000 target genes.  

In both innate and adaptive immunity, we computed the difference between 

the “out-degree” (sum of edge weights from that TF) in the MS patients’ samples 

and HC samples. Innate and adaptive immunity networks shared nine out of the 

top ten regulated TF. We found the “SP1” is the top regulated TF in both 

networks. Innate and adaptive immunity networks shared CDKN1A, MYC, and 

NFKB1 genes in the top ten most targeted genes. We found that the CDKN1A 

gene as the most targeted gene in both networks. 

 

 

 

 
Figure 22. Z-score comparison between MS patients’ samples and healthy controls samples in using monocytes 

cells network (A) and CD4, Cd8, and B cells network (B).  
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Figure 23. Transcription factors differentially targeting genes in MS patients and healthy controls samples. (A) 

Illustration of the TF out-degree difference between MS samples and healthy controls. Positive values indicate higher 

targeting in cell lines, and negative values indicate higher targeting in tissues. (B) TFs with the most considerable 

difference in out-degree comparing MS-vs-healthy controls in monocytes cells. (C) TFs with the most considerable 

difference in out-degree comparing MS-vs-healthy controls in CD4, CD8, and B cells. 
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Table 11. Top transcription factors out-degree (Monocytes) 

TF Official name Out-degree 

SP1 Sp1 transcription factor 1955.49 

NFKB1 nuclear factor kappa B subunit 1 1179.83 

RELA RELA proto-oncogene, NF-kB subunit 1114.88 

TP53 Tumor protein p53 764.90 

E2F1 E2F transcription factor 1 642.59 

STAT3 signal transducer and activator of transcription 3 606.50 

MYC MYC proto-oncogene, bHLH transcription factor 577.16 

JUN Jun proto-oncogene, AP-1 transcription factor 430.42 

YY1 YY1 transcription factor 414.42 

SPI1 spleen focus forming virus (SFFV) proviral integration oncogene 366.34 

 

 

 
Table 12. Bottom transcription factors out-degree (Monocytes) 

TF Official name Out-degree 

SOX10 SRY-box 10 -2235.26 

NFE2L1 nuclear factor, erythroid 2 like 1 -1186.21 

RB1 RB transcriptional corepressor 1 -1008.43 

TFDP1 transcription factor Dp-1 -743.19 

DNMT3L DNA methyltransferase 3 like -659.38 

MTA1 metastasis associated 1 -561.14 

SREBF2 sterol regulatory element binding transcription factor 2 -537.02 

WWP1 WW domain-containing E3 ubiquitin protein ligase 1 -406.12 

IRF8 interferon regulatory factor 8 -405.93 

SRCAP Snf2 related CREBBP activator protein -370.70 

 

 

 
Table 13. Top transcription factors out-degree (CD4, CD8, and B cells). 

TF Official name Out-degree 

SP1 Sp1 transcription factor 2292.12 

NFKB1 nuclear factor kappa B subunit 1 1118.04 

RELA RELA proto-oncogene, NF-kB subunit 1062.90 

TP53 Tumor protein p53 817.97 

E2F1 E2F transcription factor 1 751.56 

STAT3 signal transducer and activator of transcription 3 585.48 

MYC MYC proto-oncogene, bHLH transcription factor 575.99 

YY1 YY1 transcription factor 439.75 

JUN Jun proto-oncogene, AP-1 transcription factor 436.58 

HIF1A hypoxia inducible factor 1 subunit alpha 395.18 
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Table 14. Bottom transcription factors out-degree (CD4, CD8, and B cells). 

TF Official name Out-degree 

SOX2 SRY-box 2 -2215.93 

NFIB nuclear factor I B -1123.83 

RBL2 RB transcriptional corepressor like 2 -1090.67 

TLE3 
TLE family member 3, transcriptional 

corepressor 
-881.151 

DRAP1 DR1 associated protein 1 -817.04 

SRY sex-determining region Y -576.246 

MYB 
MYB proto-oncogene, transcription 

factor 
-496.599 

ISL1 ISL LIM homeobox 1 -469.87 

XRCC5 X-ray repair cross complementing 5 -432.734 

HIC1 HIC ZBTB transcriptional repressor 1 -393.455 

 

 

 
Table 15. Top gene in-degree (Monocytes) 

Gene In-degree 

CDKN1A 1246.00580 

MYC 714.38921 

VEGFA 466.69242 

TP53 312.35393 

NFKB1 296.50460 

PTGS2 270.49655 

FOS 239.13365 

JUN 219.95652 

CXCL8 206.26191 

BAX 188.60459 

 

 

 
Table 16.  Bottom gene in-degree (Monocytes). 

Gene In-degree 

CDK11B -1217.215663 

MSL1 -742.510158 

UBE2S -481.080514 

TMEM71 -410.146107 

BCAS3 -387.696784 

NCOR1 -306.443161 

PSMB5 -278.203498 

FDPS -241.057809 

ITGAL -221.848187 

CTSB -207.097773 
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Table 17. Top gene in-degree (CD4, Cd8, and B cells) 

Gene In-degree 

CDKN1A 1264.518 

MYC 773.7342 

BCL2 376.0229 

NFKB1 277.7002 

FOS 256.5789 

JUN 244.3791 

IL6 229.9209 

CDKN1B 202.8026 

HIF1A 178.9729 

BAX 163.3572 

 

 

 

 
Table 18. Bottom gene in-degree (CD4, Cd8, and B cells) 

Gene In-degree 

CDK5R1 -1270.14 

MX1 -777.258 

BCL2A1 -377.505 

NEAT1 -276.821 

FCGRT -264.801 

ITGAV -247.321 

IKBKE -230.162 

MCL1 -169.049 

BBC3 -164.432 

RDX -162.263 
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Figure 24.Characteristics of differential networks (MS vs. healthy controls) and belonging modules in innate and 

adaptive immunity. (A) Topological properties of the differential -expression network in Monocytes samples. (B) 

Topological properties of the differential -expression network in CD4, CD8, B cell samples. (C) Top four Differentially 

expressed modules of Monocytes. (d) Top four Differentially expressed modules of CD4, CD8, B cell samples. 

 

 

 

Innate and adaptive immunity differential networks 

Possible correlations between RNA-Seq expression profiles of innate immunity 

(represented by Monocytes expression) and adaptive immunity (represented by CD4, 

Cd8, and B cells expression) in both MS patients and healthy controls were identified 

employing Pearson correlation coefficients (PCCs), which resulted in four co-

expression networks: innate immunity in MS patients, innate immunity in HC, 

adaptive immunity in MS patients, and adaptive immunity in HC.  

Two differential networks, for innate and adaptive immunity, were constructed 

using the co-expression network (MS patients vs. HC) using HC co-expression 

networks as a reference. Innate immunity differential network consisted of 14872 links 

between 4850 genes (Fig. 24A), whereas the adaptive immunity differential expression 

network consisted of 6755 links between 2008 genes (Fig. 24B). Though the number 
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of genes exhibiting differential expression pattern was almost two-fold higher in 

Innate immunity, the density (0.003) and the clustering coefficient (0.291) were higher 

in adaptive immunity when compared to those in innate immunity (0.001and 0.231, 

respectively). Innate and adaptive immunity did not share mutual gene hubs. 

We computed the maximum common edge subgraph between the two differential 

networks (innate and adaptive immunity) to point out conserved nodes between the two 

networks. The analysis yielded 1230 conserved nodes between innate and adaptive 

immunity networks.  The list of the conserved nodes has been used to conduct pathway 

enrichment analyses of gene sets using KEGG96 and Reactome97 as the data sources. 

The result is shown in (Fig. 25). 

 

 

 

 

Figure  25 . The distribution of the conserved genes into KEGG and Reactome pathways. P-values were 

determined through a 2-sided hypergeometric test and adjusted via Bonferroni’s method. A threshold of adjusted p-

value < 0.05 was used to determine the statistical significance of enrichment results. 
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Discussion 

The precise roles of innate and adaptive immunity in MS are still unclear. One 

crucial question is whether cell types (Monocytes and CD4, CD8, and B cells) reflect the 

regulatory processes of their primary system (innate and adaptive immunity). By studying 

gene expression and gene regulatory networks, we were able to uncover patterns of 

transcriptional regulation that differentiate healthy and diseased states. To the best of our 

knowledge, this is the first study that compares the differences in regulatory networks 

between innate and adaptive immunity in MS. 

In comparing innate immunity (represented by Monocytes cells) and adaptive 

immunity (represented by CD4, CD8, and B cells) gene expression, we found that cells of 

innate immunity (Neutrophils and Monocytes) have a different expression distribution 

pattern compared to cells of adaptive immunity (CD4, CD8, and B cells), which have 

almost identical distribution pattern (Fig. 14). PCA and Hierarchical Clustering showed a 

clear grouping of adaptive immune cells in both HC and MS states, which indicated a 

close pattern of expression of three cell types (CD4, CD8, and B cells) in MS states 

(Figures 15-18).  PCA and Hierarchal clustering of all samples, from MS patients and 

HC, showed that cell lines from the two different conditions tend to cluster together, 

which indicates a slight change in the expression pattern in MS to the HC (Figures 19-

20).  

We found that SLC2A14 is the only gene shared by all cell lines (Fig. 21). 

SLC2A14 is a member of the glucose transport family (GLUT), which is a highly 

conserved integral membrane protein. 98 Shaghaghi et al. found that three alleles, 
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rs2889504-T, rs10846086-G, and rs10846086-G, in the SLC2A14 gene are associated 

with increased odds of inflammatory bowel disease. 99 Shulman et al. showed that the 

rs10845990 variant of SLC2A14 is associated with neurofibrillary tangles formation in 

the Drosophila model relevant to Alzheimer's disease. 100 The highly expressed SLC2A14 

gene may indicate an increase in prefoliation activity in the blood cells and directly 

causative to MS since SLC2A14 is significantly expressed in blood cells compared to 

other tissues. 101 

We found that both systems share nine out of the top ten upregulated TFs (Fig. 

23), which indicates similar TFs control over both systems. We found that the top five 

TFs involved in cell differentiation, cell growth, immune responses, response to DNA 

damage, cell cycle, and chromatin remodeling. SP1 helps with chromatin remodeling and 

plays a role in a variety of other processes such as cell growth, apoptosis, differentiation, 

and immune and DNA damage responses. 102 SP1 activation is associated with 

cytomegalovirus (CMV) infection, which supports the CMV infection role in MS and the 

association between past CMV infection with MS risk. 103–105 NF-κB regulates multiple 

aspects of innate and adaptive immune functions and serves as a pivotal mediator of 

inflammatory responses besides playing a critical role in regulating the survival, 

activation, and differentiation of innate immune cells and inflammatory T cells. 106 NF-

κB1 or NF-κB2 is bound to REL, RELA, RELB to form the NF-κB complex, which 

explains the upregulated RELA. 107 Inappropriate activation of NF-κB has been linked to 

inflammatory events associated with autoimmune arthritis, asthma, lung fibrosis, 

glomerulonephritis, and atherosclerosis. 108 Bonneti et al. found that NF-κB and c-jun 
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transcription factors are activated in MS lesions. 109 NF-κB1 activation has been linked to 

the CMV virus as well as the hepatitis B virus (HBV), the hepatitis C virus (HCV), the 

EBV, and the influenza virus. 110 DeMeritt et al. found that virus-mediated NF-κB 

activation, through the dysregulation of the IκB kinases complex, plays a primary role in 

the initiation of the CMV gene cascade. 111 P53 responds to diverse cellular stresses to 

regulate target genes that induce cell cycle arrest, apoptosis, senescence, DNA repair, or 

changes in metabolism. 112 The increased expression of P53 could be secondary to 

oligodendrocyte injury in MS and increased apoptotic activity in the central nervous 

system. 113 The E2F1 transcription factor can promote proliferation or apoptosis when 

activated. 114 Iglesias et al. showed that E2f1-deficient mice manifested only mild 

disability upon induction of Experimental Autoimmune Encephalomyelitis (EAE), which 

is the MS model in mics. 115 Also, they showed that Peripheral Blood Mononuclear Cells 

(PBMCs) from Avonex-treated patients had lower expression of E2F targets. 115  

 

Conclusions 

The present findings revealed specific expression patterns of protein-coding and 

upregulated TFs in MS in both innate and adaptive immunity. The knowledge of an 

expression network signature may offer valuable insights into the complex pathogenesis 

of MS; it may also provide potential targets for therapeutic intervention. All the novel 

changes in gene networks and TFs could be responsible for altered immune response in 

MS. However, many of these factors, play critical roles in cell differentiation, cell 

growth, immune responses, response to DNA damage, cell cycle, and chromatin 
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remodeling as well as in other human diseases, an original list of novel TFs and gene 

networks with potential implications in MS innate and adaptive immunity is offered.  

For future studies, incorporating more metadata (age, sex, ethnicity…etc.) to 

control for the variation of gene expression is needed. More biological replicates are 

required to find DEGs with the minuscule difference between the groups. The top TFs list 

of the study must be validated using CHIP-Sequencing. Also, the association between 

CMV infection and MS must be explored using serological studies.  
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CHAPTER FOUR: MAPPING EQTLS WITH RNA-SEQ REVEALS NOVEL 

SUSCEPTIBILITY GENES IN MULTIPLE SCLEROSIS 

Abstract 

Even though Multiple Sclerosis (MS) is identified to be a partially heritable 

autoimmune disease, the molecular mechanisms of MS continue to remain poorly 

understood. While there are recognized genetics risk factors between MS patients and 

healthy controls, an overview of the differences between various tissues has not been 

conducted. RNA-sequencing (RNA-Seq) is a powerful technique for the spotting of 

genetic variants that affect gene expression levels. This study aimed to investigate 

functionally effective single nucleotide polymorphisms (SNPs) that are unique to MS 

using RNA-Seq based expression quantitative trait loci (eQTL) analysis in both whole 

blood and brain tissue. 116 gene-SNP pairs have an FDR < 2.0e-20, which are in 

chromosomes 1, 2, 5, 7, 17, and X have been found in the brain dataset. We offered 

candidate SNPs with potential implications in MS. Results from this study will provide 

the groundwork for the new therapy development of MS. 

 

 

Background 

Multiple Sclerosis 

Multiple Sclerosis (MS) is an immune-mediated inflammatory disease in which 

the fatty myelin sheaths around the axons of the Central Nervous System (CNS) are 

damaged, leading to demyelination and scarring as well as a broad spectrum of signs and 
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symptoms.1 MS is the second most common acquired neurological disorder of young 

adults, with physical trauma being the most common. The disease shows a spectrum of 

severity, ranging from an asymptomatic pathological process to mild symptoms to severe 

disabling illness. The clinical presentation involves two forms, relapsing disorder in 

which distinct attacks with clinical stability in between, or progressive condition in which 

gradual worsening of neurological deficits.  

Numerous factors are thought to contribute to the cause of MS, including genetic 

susceptibility and environmental factors. MS affects mainly young people between the 

ages of 15 and 50 years, with a peak onset at about age 30. There is a substantial gender 

preference; most MS patients (70-75%) are women.2 

The incidence and prevalence of MS vary throughout the world. MS affects 

nearly two million people worldwide with evident variability in geographic distribution.3 

Recognized low, medium, and high-risk zones have been identified. Near the equator, 

typically in tropical regions, there is low risk, while MS risk north and south of the 

equator increases with higher latitudes, in both northern and southern hemispheres.4 

Although the pathogenesis of MS is poorly understood, evidence suggests that 

both genetic and environmental components play essential roles in disease development, 

both independently and interactively.4 The rule of genetics in MS and its interaction with 

environmental triggers are currently extensively studied. MS is a disease with evident 

geographic variability in both prevalence and incidence. The role of environmental 

factors has historically been thought to be necessary. The geographical distribution and 

familial aggregation of MS have often been ascribed to the rule of infectious agents, but 
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there is no consensus regarding this theory,5 A Canadian study examined a population-

based sample of 15,000 individuals with MS using standardized, personally administered 

questionnaires to identify adoptees or those who had adopted relatives. The frequency of 

MS among first-degree, non-biological relatives living with the index case was no higher 

than the expected rate from the Canadian population prevalence data and was 

significantly less than the rate for biological relatives. These findings support the 

hypothesis that the familial aggregation of MS is genetically determined rather than 

environmentally determined.5,6 A significant contributor to the genetic risk is the major 

histocompatibility complex (MHC) antigen.7 

The contribution of genetics to MS is supported by many reports showing familial 

aggregation of the disease, high concordance rates among twins, and increased risk 

among relatives of patients with MS. People with MS have a 5–26% chance of having 

one or more affected relatives, which is a much higher chance than one would expect for 

a disease with no genetic component. 5,6 Furthermore, the relative risk of MS for identical 

twins, if one is affected, is approximately 200 to 300 times greater than that of the general 

population.6,8 Finally, the first-degree relatives of MS patients have a 2–5% risk of also 

developing the disease.8 

Several alleles have been identified as heritable risk factors for MS. Genetic 

complexity, primarily related to human leukocyte antigens (HLA) of the MHC and, to a 

lesser extent, non-MHC-related genes, plays a significant role in influencing disease 

susceptibility, phenotypic expression CD4 T cells, which have central role in MS 

pathogenesis, 22 experience profound changes in gene expression during the initial hours 
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after activation. Co-stimulation via the CD28 receptor is required for the effective 

activation of naive T cells. 23 From pre-clinical studies, it is known that the transcription 

factor is highly induced in a CD28-dependent manner upon T cell activation and is 

involved in essential CD4 effector T cell functions, participating in the transcriptional 

regulation of several T cell activation pathways, including a large group of CD28-

regulated genes. 24 Furthermore, Levels of blood monocytes secreting IL-6 and IL-12 

were higher in patients with untreated MS and other neurological diseases compared to 

healthy controls, and MS patients blood monocytes also displayed elevated mean 

fluorescence intensity for the co-stimulatory molecule CD86, and MS patients with 

longer disease duration (>10 years) and higher disease severity had higher percentages of 

CD80 expressing monocytes compared to patients with short duration or lower severity.25  

Mapping QTLs with RNA-seq 

Genome Wide Association Studies (GWAS) have effectively identified many 

genetic loci that play a part in complex-disease susceptibility in humans.116 Abundant 

expression quantitative trait loci (eQTL) mapping studies have since been conducted to 

investigate diseases117–120, cell-types121–123, and response to several environmental 

stimuli.124 A great restraint on most of such investigations is the use of 3´-targeted 

microarrays to profile gene expression. Splicing events effect is not likely to be 

detected,125, which might explain the limited susceptibility loci localized to causal eQTL 

signals.126  

RNA-Seq has been compared to microarray technology as a means of generating 

transcriptome information since its launch.26 Both follow a parallel path to answering a 
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biological question. Nevertheless, there are a few key advantages of RNA-Seq 

technology, including exploring novel genes, lower noise, and a broad dynamic range of 

expression levels.26 RNA-Seq based eQTL mapping studies are started to arise127, which 

will significantly increase the likelihood of catching disease-associated eQTLs as per 

quantification of independent exon expression, as well as relative transcript abundance 

(novel isoforms).128–130 

Rationale 

Understanding the complex molecular mechanism of MS, including the role of 

functional SNPs, is crucial to develop effective therapies. This work aims to uncover 

SNPs that potentially dysregulate many genes and altered the expression pattern in MS 

using both whole blood and brain tissues. Ultimately, our goal is to investigate if SNPs 

have a different effect on the cell-specific model in MS. The results could be a ground for 

further investigating functional SNPs. Integration of biological data (DNA variations, and 

transcript information) provides valuable insights on the clarification of the disease 

mechanisms and identification of molecular signatures of human diseases. 

 

Methods 

We focused on pointing genetics variants and functional SNPs that play an 

important role in MS complex molecular pathogenesis from Monocytes cells and Whole 

Blood cells and brain cells samples. 
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RNA-Seq data 

We obtained the raw expression files (FASTQ format) of whole blood, for both 

treatment naïve MS patients and HC, from ArrayExpress31 database (Accession code E-

GEOD-66573). A total of 14 samples (8 for HC and 6 for MS patients) was used in the 

analysis (Table 20). We obtained the raw expression files  (FASTQ format) of brain 

samples, for both treatment naïve MS patients and HC, from Gene Expression 

Omnibus131 (Series GSE123496). A total of 50 samples of different brain regions 

obtained from 10 subjects (5 for HC and 5 for MS patients) was used in the analysis 

(Table 21). 

 

Table 19. Whole Blood RNA-seq samples information for MS patients and healthy controls , which includes the 

condition, RNA-seq sample run ID (SRR#), and cell type. 

ID Run Condition 

1 SRR1839791 N 

2 SRR1839794 N 

3 SRR1839799 N 

4 SRR1839800 N 

5 SRR1839801 N 

6 SRR1839802 N 

7 SRR1839803 N 

8 SRR1839804 N 

9 SRR1839792 MS 

10 SRR1839793 MS 

11 SRR1839795 MS 

12 SRR1839796 MS 

13 SRR1839797 MS 

14 SRR1839798 MS 

 

 
 

Table 20. Brain RNA-seq samples information for MS patients and healthy controls , which includes the condition, 

RNA-seq sample run ID (SRR#), and cell type. 

ID Run tissue condition 
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1 SRR8307929 corpus callosum MS 

2 SRR8307930 frontal cortex MS 

3 SRR8307931 parietal cortex MS 

4 SRR8307932 hippocampus MS 

5 SRR8307933 internal capsule MS 

6 SRR8307934 corpus callosum MS 

7 SRR8307935 frontal cortex MS 

8 SRR8307936 parietal cortex MS 

9 SRR8307937 hippocampus MS 

10 SRR8307938 internal capsule MS 

11 SRR8307939 corpus callosum MS 

12 SRR8307940 frontal cortex MS 

13 SRR8307941 parietal cortex MS 

14 SRR8307942 hippocampus MS 

15 SRR8307943 internal capsule MS 

16 SRR8307944 corpus callosum MS 

17 SRR8307945 frontal cortex MS 

18 SRR8307946 parietal cortex MS 

19 SRR8307947 hippocampus MS 

20 SRR8307948 internal capsule MS 

21 SRR8307949 corpus callosum MS 

22 SRR8307950 frontal cortex MS 

23 SRR8307951 parietal cortex MS 

24 SRR8307952 hippocampus MS 

25 SRR8307953 internal capsule MS 

26 SRR8307954 corpus callosum N 

27 SRR8307955 frontal cortex N 

28 SRR8307956 parietal cortex N 

29 SRR8307957 hippocampus N 

30 SRR8307958 internal capsule N 

31 SRR8307959 corpus callosum N 

32 SRR8307960 frontal cortex N 

33 SRR8307961 parietal cortex N 

34 SRR8307962 hippocampus N 

35 SRR8307963 internal capsule N 

36 SRR8307964 corpus callosum N 

37 SRR8307965 frontal cortex N 

38 SRR8307966 parietal cortex N 

39 SRR8307967 hippocampus N 

40 SRR8307968 internal capsule N 

41 SRR8307969 corpus callosum N 
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42 SRR8307970 frontal cortex N 

43 SRR8307971 parietal cortex N 

44 SRR8307972 hippocampus N 

45 SRR8307973 internal capsule N 

46 SRR8307974 corpus callosum N 

47 SRR8307975 frontal cortex N 

48 SRR8307976 parietal cortex N 

49 SRR8307977 hippocampus N 

50 SRR8307978 internal capsule N 

 

 

 

RNA-Seq data analysis 

The quality control on raw reads has been performed using the FastQC34 tool 

(Version 0.11.7) for each sample. Raw reads refinement, and clipping have been 

performed using Trimmomatic35 (Version 0.36). High-quality reads have been mapped to 

the reference human genome (GRCh38/hg38) and the human reference transcriptome 

(Ensembl v70) from the Ensembl36 genome database using STAR37 Aligner (Version 

2.4.0.1). Unique mapped reads have been used to quantify gene expression in each 

sample. Gene expression, as reads counts, have been estimated after filtering and 

normalization of raw reads counts using Rsubread38 and DEseq239 R packages as well as 

differential expression analysis between MS and HC samples. Multiple testing correction 

has been performed using Benjamini-Hochberg40. Genes with adjusted p-values less than 

alpha of 0.05 were considered differentially expressed. Clustering, Principal Component 

Analysis (PCA) of the significant gene list were conducted using the same package. 

Variant calling and processing pipeline 

GATK best practice132 workflow for single-nucleotide polymorphism (SNP) and 

insertion or deletion (Indel) calling on RNA-Seq has been followed to generate raw VCF 
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files. The human genome (GRCh38/hg38) from the Ensembl36 genome database has been 

used as a reference genome for all two datasets. We used bedtools133 intersect function to 

find the overlapped variants between samples that are having the same condition, to find 

variant calls unique to MS intersected samples compared to HC samples for both  Whole 

Blood and Brain datasets. SAMtools / BCFtools134 have been used to omit duplicated 

calls, and to filter variants. GATK best practice132 generic recommendations (QD < 2.0, 

Q < 40.0, FS > 60.0, SOR > 3.0, MQRankSum < 12.5, ReadPosRankSum < -8.0) have 

been used as filtering parameters. We used Ensembl database135 and Ensembl Variant 

Effect Predictor (VEP)136 server to annotate, generate summary statistics, and filter 

variants based in MAF. We used the eulerr137 tool to generate the Venn diagram.  

RNA-Seq based eQTL mapping 

The quality control on raw reads has been performed using the FastQC34 tool 

(Version 0.11.7) for each sample. Raw reads refinement, and clipping have been 

performed using Trimmomatic35 (Version 0.36). High-quality reads have been mapped to 

the reference human genome (Homo_sapiens.GRCh38.dna.primary_assembly) and the 

human reference transcriptome (Homo_sapiens.GRCh38.96) from Ensembl36 genome 

database using STAR37 Aligner (Version 2.4.0.1). Unique mapped reads have been used 

to quantify gene expression in each sample. Gene expression, as reads counts, have been 

estimated after filtering and normalization of raw reads counts using Rsubread38 and 

edgeR41 R packages. We used the gread138 R package to extract the common gene 

annotations (Ensembl ID), and positions form the reference transcriptome file. Picard 

tools139 (Version 2.21.1) has been used to sort the bam files. The SAMtools140 mpileup 
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function has been utilized to joint call variants of all samples. BCFtools134 has been used 

to report SNPs only from the joint called file. VariantAnnotation141 R package has been 

used to construct the SNP matrix. We used the MatrixEQTL142 R package for 

computational eQTL analysis. Each genotype variable has been treated as categorical, 

and we modeled its effect on gene expression with a linear regression model, assuming 

that the noise to be independent and identically distributed across samples. A gene-SNP 

pair is considered local if the distance between them is less than 1000000 base-pair. 

Dplyr143 and data.table144 R packages have been used for data manipulation. 
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Figure 26. RNA-Seq based eQTL analysis. The analysis started with assessing the quality of the raw FASTAQ files 

that have been generated by the sequencing machine using FastQC34 tool; the data are then processed using 

Trimmomatic35 tool. To create transcriptome information, High-quality reads have been mapped to the reference 

human genome and the human reference transcriptome from the Ensembl36 genome database using STAR37 Aligner 1-

pass mode. Gene expression, as reads counts, have been estimated after filtering and normalization of raw reads counts 

using Rsubread38 and edgeR41 R packages. To generate variants information, we used STAR37 Aligner 2-pass mode 

followed by Picard tools139 to sort the bam files and remove duplicates. The SAMtools140 mpileup function has been 

utilized to joint call variants of all samples. BCFtools134 has been used to report SNPs only from the joint called file. 

VariantAnnotation141 R package has been used to construct the SNP matrix. For the eQTL analysis, We used the 

MatrixEQTL142 R package for computational eQTL analysis. Each genotype variable has been treated as categorical, 

and we modeled it effect on gene expression with a linear regression model.  
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Results 

 

Unique variants by calling pipeline 

After the first filtration process (QD < 2.0, Q < 40.0, FS > 60.0, SOR > 3.0, 

MQRankSum < 12.5, ReadPosRankSum < -8.0), we ended up with 27827 variants( 

10.7% Novel / 89.3% known) for the brain dataset, and 27094 variants (44.3% Novel 

55.7% known) for the whole blood dataset. 914 variants found to be shared between the 

two datasets (Fig. 26). Variants located in intron and downstream gene regions were 

more prominent in both datasets, but the coding consequences differ drastically (Fig. 27). 

In the brain dataset, the coding predicted mainly to have no effect at all (59% 

synonymous variants) or a slight effect (39% missense variants). On the other hand, a 

high percentage of the variants in the blood dataset are predicted to have delirious effects 

(30% frameshift variants).  
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Figure 27. Venn diagram of the number of variants that satisfies the following conditions (QD < 2.0, Q < 40.0, 

FS > 60.0, SOR > 3.0, MQRankSum < 12.5, ReadPosRankSum < -8.0) in both data sets. 914 variants found to be 

shared by both. 
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Figure 28. Predicted location(all) and coding consequences of brain dataset variants (A), and whole blood 

dataset (B). variants located in intron and downstream gene regions were more prominent in both datasets. The coding 

consequences differ drastically between both datasets. 

 

 

eQTL analysis hits 

 In the brain dataset, 94943 gene-SNP pair found to be significant (FDR < 0.05). 

116 gene-SNP pair have an FDR < 2.0e-20, which are in chromosomes 1, 2, 5, 7, 17, and 

X. The top 20 pairs are included in table 21.  Both X:153669900_G/T and 

X:154420998_G/A are associated with ENSG00000126890 (HGNC: CTAG2). 

17:35574149_A/G, 17:35724277_G/A, 17:35743280_G/A are associated with 

ENSG00000261499 (HGNC: NPEPPS). 15 different SNPs are associated with 

ENSG00000263503 (HGNC: MAPK8IP1P2) (table 21).  
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 In blood samples, only three gene-SNP pair hits have an FDR <0.1. All were in 

chromosome 1. 1:89105409_T/G found to be associated with ENSG00000284734 

(HGNC: AC099063.4). 1:137159_T/C and 1:137159_T/C found to be associated with 

ENSG00000229344 (HGNC: MTCO2P12). 

 

 

Table 21. Top 20 gene-SNP pair hits of brain samples (based on FDR corrected p-values). SNPs include the 

chromosome, the location of the variant in the chromosome. Test statistics were computed using a linear regression 

model. We used the Benjamini Hochberg method as a P-value adjustment method and to calculate the FDR. 

SNPs Ensembl gene ID Statistic p-value FDR 

X:153669900_G/T ENSG00000126890 1148.325 5.50E-40 1.42E-33 

X:154420998_G/A ENSG00000126890 756.4182 6.44E-36 6.96E-30 

17:35574149_A/G ENSG00000261499 731.8077 1.35E-35 6.96E-30 

17:35724277_G/A ENSG00000261499 731.8077 1.35E-35 6.96E-30 

17:35743280_G/A ENSG00000261499 731.8077 1.35E-35 6.96E-30 

17:45985549_G/T ENSG00000263503 621.2764 5.14E-34 2.21E-28 

17:45645823_G/A ENSG00000263503 595.7799 1.30E-33 3.49E-28 

17:46007310_C/T ENSG00000263503 595.7799 1.30E-33 3.49E-28 

17:45436075_C/T ENSG00000263503 587.6616 1.76E-33 3.49E-28 

17:46002673_T/G ENSG00000263503 573.0078 3.08E-33 3.49E-28 

17:45639519_A/G ENSG00000263503 566.1877 4.02E-33 3.49E-28 

17:46003698_A/G ENSG00000263503 566.1877 4.02E-33 3.49E-28 

17:45637652_T/C ENSG00000263503 561.0187 4.92E-33 3.49E-28 

17:45981350_G/T ENSG00000263503 559.6198 5.20E-33 3.49E-28 

17:46000342_G/T ENSG00000263503 557.7623 5.59E-33 3.49E-28 

17:45436185_C/G ENSG00000263503 557.6049 5.63E-33 3.49E-28 

17:45632049_C/T ENSG00000263503 555.6837 6.08E-33 3.49E-28 

17:45636559_A/G ENSG00000263503 555.6837 6.08E-33 3.49E-28 

17:45641777_A/G ENSG00000263503 555.6837 6.08E-33 3.49E-28 

17:45988535_C/T ENSG00000263503 555.6837 6.08E-33 3.49E-28 

 

 

 
Table 22. Top 3 gene-SNP pair hits of whole blood samples (based on FDR corrected p-values). SNPs include the 

chromosome, the location of the variant in the chromosome. Test statistics were computed using a linear regression 

model. We used the Benjamini Hochberg method as a P-value adjustment method and to calculate the FDR. 

SNPs Ensembl gene ID Statistic p-value FDR 
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1:89105409_T/G ENSG00000284734 -13.8902 2.55E-08 0.073374 

1:137159_T/C ENSG00000229344 13.42196 3.65E-08 0.073374 

1:137159_T/C ENSG00000198744 12.59958 7.04E-08 0.094289 

 

 

 

 

 
Figure 29. Manhattan plot SNP pair hits of brain samples. 

 

 

 

 

Discussion 

 

The precise effect of SNPs on cell-specific gene expression in MS is still unclear. 

This work aims to uncover SNPs that potentially dysregulate many genes and altered the 

expression pattern in MS using both whole blood and brain tissues. By studying the link 
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between gene expression and SNPs in different tissues, we were able to uncover patterns 

SNP-Gene links in MS. To the best of our knowledge, this is the first study that compares 

the differences in regulatory networks between innate and adaptive immunity in MS. 

In the brain dataset, 116 gene-SNP pair have an FDR < 2.0e-20, which are in 

chromosomes 1, 2, 5, 7, 17, and X. two specific variants on the X chromosome 

(X:153669900_G/T and X:154420998_G/A) found to be linked to changed expression of 

CTAG2 gene expression. This protein is expressed by many human cancers, but not by 

normal tissues, with the exception of testis and placenta.145 Zarour et al., found that the 

CTAG2 gene has an immunogenic role, and its products have the capability to stimulate 

T-helper 1 type CD4+ T cells. 146 This finding may support the role of CD4+ T cells in 

the pathogenesis of MS. 147 The CTA New York Esophageal Squamous Cell Carcinoma-

1 (NY-ESO-1) antigen, which is encoded by the gene CTGAG1B, is widely believed to 

be a good candidate target for immunotherapy and some promising results have been 

obtained in early phase I/II studies. 148 Immunotherapy targeting NY-ESO-1 could be 

tested in patients with MS. NPEPPS is a protein-coding gene, which codes for 

Puromycin-sensitive aminopeptidase. It could be identified in cortical and cerebellar 

neurons and its part of  Class I MHC mediated antigen processing and presentation and 

Innate Immune System pathways. 149  

In the blood dataset, only three gene-SNP pair hits have an FDR <0.1. This is 

mainly due to the limited number of samples used in the analysis. AC099063.4 is the 

Antisense RNA that controls the expression of the Guanylate Binding Protein 4 (GBP4) 

gene. 150 GBP4 is part of NOD-like receptor signaling pathway pathways, which are 
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involved in the pathogenesis of MS. 151 Berben et al. found that ubiquitin ligase Peli1 

knock-out experimental autoimmune encephalomyelitis mice had less inflammation in 

the central nervous system. 152 Several proteins related to the interferon signaling 

pathway were among the most upregulated in the Peli1 knock-out mice compared to the 

wild type, such as IFIT3, IRGM1, and the GTPases IIGP1, GBP2, and GBP4. 152 

 

Conclusions 

The present findings revealed a candidate SNPs that have functional implications 

in MS. The knowledge about the functional role of SNPs may offer valuable insights into 

the complex pathogenesis of MS; it may also provide potential targets for therapeutic 

intervention. Current immunotherapy, like the one targeting NY-ESO-1, could be used in 

a clinical-based study to see its effect on the course of MS. 

For future studies, incorporating more metadata (age, sex, ethnicity…etc.) to 

control for the variation of gene expression is needed. More biological replicates are 

required to have enough power to link the SNPs with expression patterns in the eQTL 

analysis.  
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CHAPTER FIVE: CONCLUSION AND FUTURE DIRECTION 

Conclusions 

This dissertation explored different computational methods, aimed to explore 

different genomic systems, for analyzing RNA-Seq expression data obtained from MS 

patients. The main goal is a better understanding of the complex molecular mechanism of 

MS and, hopefully, a groundwork for the new therapy development of MS. We ended up 

with candidates’ genes, TFs, and SNPs with potential implications in MS. 

One main drive of this dissertation is using RNA-Seq expression data to represent 

transcriptome change in all studies. We choose RNA-Seq expression data and not 

microarray, which another transcriptome information generator because  RNA-Seq has 

few important advantages. 26 First, using microarray technology limits the researcher in 

spotting transcripts that linked to existing genomic sequencing information. RNA-Seq 

experiments, instead, work well for examining both known transcripts and explore new 

ones.26 Second, RNA-seq delivers a low background signal because DNA sequences can 

be unambiguously mapped to unique regions of the genome. As a result, noise in the 

experiment is effortlessly eliminated during analysis. Hybridization issues seen with 

microarrays, such as cross-hybridization or non-ideal hybridization kinetics, are also 

removed in RNA-Seq experiments, which offers another signal-to-noise advantage.26 

Finally, RNA-seq can quantify a broad dynamic range of expression levels, with absolute 

rather than relative values.26 
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In the first study, we investigated specific transcriptome changes occurring in 

monocytes of patients with MS compared to Healthy Controls (HC) patients. Monocytes 

have been chosen because most of the previous transcriptome studies covered adaptive 

immunity cells (B, CD4, and CD8). Also, it has been experimentally proven that 

monocytes have a central role in MS pathogenesis. Yamasaki et al. found that Monocyte-

derived macrophages initiate demyelination at disease onset in the experimental 

autoimmune encephalomyelitis (EAE) model. 153 Data analysis revealed that 6120 genes 

were significantly altered between the two groups (16% up-regulated and 17% down-

regulated in MS group compared to healthy controls). The main findings of the study are: 

1) The identification of specific changes occurring in the transcriptome of MS patients 

compared to healthy subjects. In particular, the bioinformatic analysis revealed 

significant alteration of the Chemokine signaling pathway, Jak-STAT signaling pathway, 

Toll-like receptor signaling pathway, NOD-like receptor signaling pathway. The KEGG 

hsa04062 Chemokine signaling pathway was the most significant up-regulated pathway 

in the functional scoring analysis. ; 2) The identification of specific changes occurring in 

the transcriptome of MS patients compared to healthy subjects not previously linked to 

MS. In particular, Osteoclast differentiation and Endocytosis; 3) The identification of 

some genes, which previous studies have not reported them, had an association with MS 

(RPS4Y1, XIST, DDX3Y, KDM5D, EIF1AY, and TXLNGY). 4) The number of the top 

ten DEGs based on p.adjusted value is first to be linked directly to MS (RPS4Y1, XIST, 

KDM5D, KDM6A, TXLNGY, UTY, PRKY ). 5) the number of the top ten DEGs based 
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on p.adjusted value that are involved in gene regulation (RPS4Y1, XIST, DDX3Y, 

KDM5D, KDM6A, EIF1AY, ZFY). 

In the second study, we focused on the Transcription Factors (TFs) that are 

important in MS. experimental Evidence suggests that TFs are playing a role in the 

pathogenesis of MS and other autoimmune diseases. 9 the goal of this study is to infer 

upregulated TFs of both innate (Monocytes) and adaptive immunity (B, CD4, and CD8) 

in MS. We did that to Infer TFs networks from expression data and knowledge-based 

bipartite networks using a message-passing algorithm. 78 We found that both adaptive 

immunity and innate immunity share nine out of the top ten upregulated TFs  (SP1, 

NFKB1, RELA, TP53, E2F1, STAT3, MYC, JUN, YY1) Also, We found that the top 

five TFs involved in cell differentiation, cell growth, immune responses, response to 

DNA damage, cell cycle, and chromatin remodeling, all have been proven experimentally 

to be linked to MS.9,10,13 all these findings indicates similar TFs control over both 

systems. 

The third study was focused on investigating functionally effective single 

nucleotide polymorphisms (SNPs) that are unique to MS using RNA-Seq based 

expression quantitative trait loci (eQTL) analysis. The goal was to compare the WB and 

brain tissues, and to examine if SNPs have a different effect on the cell-specific model in 

MS. we found that brain dataset has 116 gene-SNP pair have, which have an FDR < 2.0e-

20, and are in chromosomes 1, 2, 5, 7, 17, and X. Genes included CTAG2, which has 

been found by Zarour et al. that it has an immunogenic role, and its products have the 

capability to stimulate T-helper 1 type CD4+ T cells and support the role of CD4+ T cells 
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in the pathogenesis of MS. 146,147 Also, CTA New York Esophageal Squamous Cell 

Carcinoma-1 (NY-ESO-1), which is encoded by the gene CTGAG1B, and widely 

believed to be a good candidate target for immunotherapy, and some promising results 

have been obtained in early phase I/II studies. 148 In the blood dataset, only three gene-

SNP pair hits have an FDR <0.1. This is mainly due to the limited number of samples 

used in the analysis. The genes included AC099063.4, which is the Antisense RNA that 

controls the expression of the Guanylate Binding Protein 4 (GBP4) gene. 150 GBP4 is part 

of NOD-like receptor signaling pathway pathways, which are involved in the 

pathogenesis of MS. 151 Berben et al. found that ubiquitin ligase Peli1 knock-out 

experimental autoimmune encephalomyelitis mice had less inflammation in the central 

nervous system. 152 Several proteins related to the interferon signaling pathway were 

among the most upregulated in the Peli1 knock-out mice compared to the wild type, such 

as IFIT3, IRGM1, and the GTPases IIGP1, GBP2, and GBP4. 152 

 

Future Direction  

For future studies, we need to incorporate more detailed metadata to control for 

the variation of gene expression between samples. Variables like age, sex, ethnicity have 

been experimentally proven to influence expression in different conditions. Viñuela et al. 

found evidence that up to 60% of age effects on transcription levels shared across tissues, 

and 47% of those on splicing. 154  Dillman et al. demonstrated that there are robust age-

related alterations in gene expression in the human brain and that genes encoding for 

neuronal synaptic function may be particularly sensitive to the aging process. 155 Gal-Oz 
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et al. detected a clear differential expression pattern of genes coding for competent of 

macrophages from three different tissues, which may explain the strong activation of 

innate immune pathways prior to pathogen invasion in females. 156 

More biological replicates in each arm (MS and healthy participants) are needed 

for future studies. For example, only four biological replicates have been used in each 

arm in the first study, which will identify  40%–60% of the significantly differentially 

expressed (SDE) genes. 157We need at least 20 biological replicates To achieve >85% for 

all SDE genes regardless of fold change. 157 

Experimental studies can be used to validate the results of all studies. reverse 

transcription-polymerase chain reaction/real-time polymerase chain reaction combined 

technique (qRT-PCR) is the method of choice to validate the top DEGs list of the first 

study. ). 158 G protein-coupled receptor kinase 2 (GRK2), a crucial part of the top 

upregulated KEGG pathway, found to be downregulated in Relapsing-remitting MS 

(RRMS) patients compared to stroke patients and healthy controls. 159 GRK levels can be 

assessed experimentally using cell cultures obtained from MS patients and healthy 

controls. 159 For the second study, Chromatin Immunoprecipitation Sequencing (CHIP-

Sequencing) can be used to validate the upregulated TFs in both innate and adaptive 

immunity. 160 Also, the association between CMV infection and MS may be explored 

using serological studies. 105 In the third study, Current immunotherapy, like the one 

targeting NY-ESO-1, could be used in a clinical-based study to see its effect on the 

course of MS. 
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