
EXTERNAL LABELING AS A FRAMEWORK FOR ACCESS CONTROL

by

Thomas H. Rozenbroek

A Dissertation

Submitted to the

Graduate FacuIty

of

George Mason University

in Partial Fulfillment of

The Requirements for the Degree

of

Doctor of Philosophy

Information Technology

Committee:

r '
~KV -/:f1:6 Dr. Edgar Sibley, Dissertation Director

l,j I
'~f~, ~ J " D Al d I . C . M bLf~~ ~V? r. exan er ~eVIS, ommlttee em er

~~!~:~. , ,,' () I·" l.., . T' • •
~;....,_\,1.VV"VVC CUi /t'- ,.~.(/ ._. Dr. Dummda Vv IJesekera, CommIttee Member

"'"'1 --~-' y\ /

'~~c.\.v""\£v·",(~t\",'t Dr. Sanjeev Setia, Committee Member
J

~ Dr. Daniel Menasce, Senior Associate Dean
7'
~ Dr. Lloyd J. Griffiths, Dean, Volgenau School of

Engmeenng

/',1,,1 ' ~~
Date: i"./'-! /,.::>l.. Spring Semester 2012

George Mason University
Fairfax, VA

External Labeling as a Framework for Access Control

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Thomas H. Rozenbroek
Master of Science

Naval Postgraduate School, 2012
Master of Science

Strayer University, 1996
Bachelor of Engineering

Stevens Institute of Technology, 1983

Director: Edgar Sibley, University Professor
Department of Information and Software Engineering

Spring Semester 2012
George Mason University

Fairfax, VA

ii

Copyright: 2012 Rozenbroek

All Rights Reserved

iii

DEDICATION	

This dissertation is dedicated to my loving wife, Elizabeth. Her understanding, patience,
and unwavering support allowed me to complete these studies. With my love always.

iv

ACKNOWLEDGEMENTS	

I wish to acknowledge and thank the many people, who were critical to completing my
dissertation.

First, I would like to thank my dissertation director, Dr. Edgar Sibley, and committee
members, Dr. Alexander Levis, Dr. Duminda Wijesekera, and Dr. Sanjeev Setia.
Gentlemen, thank you for your direction, support, suggestions and guidance. Without
your involvement, I would have been lost.

Second, I would like to thank the facility and staff at George Mason University. You
added greatly to my time at GMU.

Finally, I would like to thank my family. Your support, tolerance, and patience during
my studies were critical to my completing these studies.

Thank you one and all.

v

TABLE	OF	CONTENTS	

 Page
List of Tables ... viii
List of Figures .. ix
List of Abbreviations and Symbols... xii
Abstract .. xiv
1.Introduction .. 1
2.Background/History ... 7
3.Security Controls that External Labels can Provide .. 12

3.1. Introduction .. 12
3.2. Simple Access Control ... 13

3.2.1. Host Based Solutions .. 13
3.2.2. Cross Domain Solutions .. 14

3.3. Information Aggregation .. 14
3.3.1. Introduction ... 14
3.3.2. Concatenated Aggregation .. 16
3.3.3. Cumulative Aggregation ... 17

3.4. Aggregation Avoidance .. 20
3.4.1. Introduction ... 20
3.4.2. Informational “Critical Mass” Avoidance ... 21
3.4.3. Chinese Wall Security Problem .. 23

4.Requirements for a Label Based Security .. 25
4.1. Introduction .. 25
4.2. Object Integrity ... 25
4.3. Strong Linkage ... 27
4.4. Separation of Label and Object .. 29
4.5. Object Security Labels.. 30

4.5.1. Introduction ... 30
4.5.2. XML Labels for Security and Management .. 31
4.5.3. Multi-Valued Labels ... 34

4.6. User and System Labels ... 35
4.6.1. Introduction ... 35
4.6.2. XML Labels for Security and Management .. 37
4.6.3. Multi-Valued Labels ... 42

4.7. Labeling Algebra .. 43
4.7.1. Introduction ... 43
4.7.2. Access to Labeled Objects .. 43
4.7.3. Simple Access Rules for Object Labels .. 45

vi

4.8. Reference Monitors .. 52
4.8.1. Introduction ... 52
4.8.2. Detailed Discussion ... 55

4.9. Network Framework ... 60
4.9.1. Introduction ... 60
4.9.2. Network Topologies .. 63
4.9.3. Network Proxies .. 66
4.9.4. Transfer Nodes .. 74
4.9.5. Request Proxies ... 77

4.10. Interoperability ... 80
4.10.1. Introduction ... 80
4.10.2. GOSAC-N System Architecture .. 81
4.10.3. GOSAC-N System Functionality .. 83
4.10.4. Comparison to Object Labeling ... 84
4.10.5. Summary .. 86

4.11. Cost Effectiveness .. 87
4.11.1. Introduction ... 87
4.11.2. Test Results.. 88

5.Extended Usage of Object Labels .. 91
5.1. Introduction .. 91
5.2. Information Aggregation .. 92

5.2.1. Introduction ... 92
5.2.2. Concatenated Aggregation .. 98
5.2.3. Cumulative Aggregation ... 103

5.3. Complex Aggregation... 106
5.3.1. Introduction ... 106
5.3.2. Aggregation (“Critical Mass”) Avoidance .. 106
5.3.3. Chinese Wall Problems (Control of Resources dynamically) 114

6.Conclusion/Follow Up ... 119
Appendix A - Labelling Framework .. 124

Introduction ... 124
Objects .. 125

Introduction ... 125
Native Objects ... 126
Information Object .. 127
Request Objects .. 127
Labeled Objects .. 128

Labels .. 129
Introduction ... 129
Object Labels .. 130
User Labels ... 132
System Labels ... 133
Labeled Request Objects ... 133

Appendix B - Secure File Format .. 137

vii

Introduction ... 137
Internal Structure of a Secure File Format Object .. 140
Strong Interaction between Wrappers ... 144
Strong Bonding ... 150

Appendix C - Hash Collision Analysis .. 154
Introduction ... 154
Probability of a Hash Collision Analysis .. 154
Analysis of the Number of Labeled Objects that can be supported 157

Appendix D - Types of Labels Supported .. 161
Introduction ... 161
Types of Labels ... 163

Hierarchical Labels ... 164
Categorical Labels .. 167
Conditional Labels .. 168
Informational Labels ... 173

Appendix E - Example Problems that can be solved with Labeled Objects 175
Introduction ... 175
Simple Security Clearance Access .. 175
Simple Aggregation .. 180
Automatic Declassification of a Document .. 185

Appendix F - Label Based Access Control Demonstration System 191
Appendix H – Secure File Format RFC (Draft) .. 227
References ... 252

viii

LIST	OF	TABLES	

Table Page
Table 1 - Possible Values for {Type} --- 33
Table 2 - Possible Values for {Type} --- 40
Table 3 - Possible Results from Labeling Algebra Operation -------------------------------- 46
Table 4 - Possible Values for the {Type} tag in a Rule --------------------------------------- 49
Table 5 - Operations for Hierarchal Labels --- 50
Table 6 - Category Label Operators --- 52
Table 7 – Comparison of Functionality between GOSAC-N and Object Labeling ------- 86
Table 8 – Aggregation Rates --- 89
Table 9 - Possible Values for the Type field in an Aggregation description --------------- 97
Table 10 - Possible Values for {Form} --- 98
Table 11 - Possible Values for {Condition} -- 99
Table 12 - Probability of Hash Collision -- 157
Table 13 - Possible Values for {Type} -- 162
Table 14 - Possible mapping of U. S. Gov’t Classifications to FIPS 188 values. ------- 166
Table 15 - Possible Conditional Operators --- 171
Table 16 - Access Results for Simple Acces Control --------------------------------------- 180

ix

	LIST	OF	FIGURES	

Figure Page
Figure 1- A Type 1 Wrappered Object -- 27
Figure 2 - XML Representation of an Object Label --- 32
Figure 3 - Sample XML Object Label --- 34
Figure 4 - Intermediate System Labeling --- 37
Figure 5 - XML Representation of a User Label --- 39
Figure 6 - XML Representation of a User/System Label ------------------------------------- 42
Figure 7 - XML Representation of an Access Rule --- 47
Figure 8 - XML Representation of a Hierarchical Access Rule ----------------------------- 49
Figure 9 - XML Representation of a Categorical Label -------------------------------------- 51
Figure 10 - (Figure 1. Reference Monitor)[32] --- 54
Figure 11 - The Reference Monitor -- 55
Figure 12 - Decomposed Reference Monitor --- 56
Figure 13 - Sequence Diagram for Decomposed Reference Monitor ----------------------- 57
Figure 14 - Updated Reference Monitor -- 63
Figure 15 - Notional Corporate Network. --- 64
Figure 16 - Sequence Diagram for Weak Association -- 68
Figure 17 - Sequence Diagram for Strong Association --------------------------------------- 70
Figure 18 - Notional Placement of Network Proxies to form a Controlled Network------ 72
Figure 19 - Sample Network with Transfer Nodes -- 75
Figure 20 - DMZ Transaction for a Known User -- 78
Figure 21- DMZ Transaction for a Unknown User -- 80
Figure 22 – (Figure 2. ABAC/PBAC Architectural Components) -------------------------- 83
Figure 23 – Data Rate for Wrappering Objects\ --- 89
Figure 24 – Average Time to Aggregate multiple objects ------------------------------------ 90
Figure 25 - An aggregated object using Simple Aggregation -------------------------------- 93
Figure 26 - Configuration of an Aggregator and Reference Monitor ----------------------- 94
Figure 27 - Aggregated Secure File Format Headers -- 96
Figure 28 - XML Representation of an Aggregation Instruction ---------------------------- 96
Figure 29 - XML Representation of a Concatenated Aggregation Rule -------------------- 98
Figure 30- Ambigious Precedence --- 101
Figure 31- XML Representation of a Cululative Aggregation Rule ----------------------- 105
Figure 32 - Critical Mass Avoidance -- 109
Figure 33 - Sequence Diagram for Critical Mass Avoidance ------------------------------ 110
Figure 34 - Critical Mass Avoidance for Time Release ------------------------------------- 113
Figure 35 - Sequence Diagram for Timed Critical Mass Avoidance ---------------------- 114

x

Figure 36 - Sequence Diagram for Returning an Object ------------------------------------ 117
Figure 37 - Objects and Labels --- 125
Figure 38- Native Object -- 126
Figure 39- Information Object --- 127
Figure 40- Request Object -- 128
Figure 41 - Basic Label Representation -- 130
Figure 42 - Representation of a Labeled Object --- 131
Figure 43 - General Representation of a Labeled Object ----------------------------------- 131
Figure 44 - User Security Label --- 133
Figure 45- System Security Label --- 133
Figure 46 - Request Object with a User Label attached ------------------------------------- 134
Figure 47 - Request Object with a User and System Label attached ---------------------- 135
Figure 48 - Generic Request Object with a User Label attached -------------------------- 136
Figure 49 - Generic Request Object with a System Label Attached ---------------------- 136
Figure 50 - Secure File Format object layout--- 141
Figure 51- Format of a Secure File Format Wrapper -- 143
Figure 52- Secure File Format Wrapper Linkage -- 147
Figure 53- Secure File Formatted Object with Multiple Objects -------------------------- 148
Figure 54- Separation of a Protected Secure Files Format Object ------------------------- 149
Figure 55 - Relationship between fields in different SFF Wrappers ---------------------- 150
Figure 56 - XML representation of a Security Label -- 161
Figure 57 - XML Representation of a Hierarchical Label ---------------------------------- 164
Figure 58- Classification Precedence -- 165
Figure 59 - XML Representation of a Category Label with Multiple Values ------------ 167
Figure 60 - XML Representation of a Category Label with Multiple Values ------------ 168
Figure 61 - XML Representation of Conditional Label ------------------------------------- 169
Figure 62 - Formal Model of a Conditional Label --- 170
Figure 63 - Traditional Representation of a Conditional Label ---------------------------- 170
Figure 64- Genrel Format of a Conditional tag -- 171
Figure 65 - XML Representation of a Conditional Label that declassifies its object after a

given date --- 172
Figure 66 - XML Representation of an Informational Label ------------------------------- 173
Figure 67 – Sample Rule for Simple Access Control --------------------------------------- 176
Figure 68- Sample Object Lables for Document_0001 ------------------------------------- 176
Figure 69- Sample Object Lables for Document_0002 ------------------------------------- 177
Figure 70- Sample Object Lables for Document_0003 ------------------------------------- 177
Figure 71 - Sample User Labels for User_0001-- 178
Figure 72 - Sample User Labels for User_0002-- 178
Figure 73 - Sample User Labels for User_0003-- 178
Figure 74 - Sample System Labels for System_0001 --------------------------------------- 179
Figure 75 - Sample System Labels for System_0002 --------------------------------------- 179
Figure 76 – Sample Rule for Simple Aggregation --- 181
Figure 77- Sample Object Lables for Simple Access Control------------------------------ 182
Figure 78- Sample Object Lables for Simple Access Control------------------------------ 183

xi

Figure 79- Sample Object Lables for Simple Access Control------------------------------ 184
Figure 80- Sample Object Lables for an Aggregated Object ------------------------------- 185
Figure 81 – Sample Rule for Simple Access Control --------------------------------------- 186
Figure 82- Sample Object Lables with a single Conditional Case ------------------------- 188
Figure 83- Sample Object Lables with Multiple Conditional Cases ---------------------- 189

xii

LIST	OF	ABBREVIATIONS	AND	SYMBOLS	

Abbreviation /
Symbol

Definition

∧ ሺܣ, ,ܤ … ሻ Logically ‘AND’ all elements
∨ ሺܣ, ,ܤ … ሻ Logically ‘OR’ all elements
∩ ሺܣ, ܤ … ሻ The Intersection of any element that is common to every set
∪ ሺܣ, …,ܤ ሻ The Union of all elements contained in every set

¬(A) Negates A
ABAC Attribute Based Access Control
ACL Access Control List
CND Computer Network Defense
DDN Defense Data Network
DoD Department of Defense
DoDD Department of Defense Directive
DoDI Department of Defense Instruction
DoE Department of Energy
FIPS Federal Information Processing Standard
FTP File Transfer Protocol
GOSAC-N Government Open Source Access Control - Navy
HIPAA Health Insurance Portability and Accountability Act
I&A Identification and Authentication
IAC Information Assurance Control
IETF Internet Engineering Task Force
IP Internet Protocol
ISOC Internet Society
IT Information Technology
MAC Mandatory Access Control
NIST National Institute of Standards and Technology
NNPI Naval Nuclear Propulsion Information
NO_FORN No Foreign Access
NSA National Security Agency
PBAC Policy Based Access Control
PII Personnel Identifying Information
RBAC Role Based Access Control
RFC Request For Comment

xiii

RI Reference Implementation
SFF Secure File Format
SP 800 Special Publications 800 (series)
TCP Transmission Control Protocol
UML Unified Modeling Language
W3C World Wide Web Consortium
XML Extensible Markup Language

ABSTRACT	

EXTERNAL LABELING AS A FRAMEWORK FOR MANAGING OBJECTS

Thomas H. Rozenbroek, Ph.D.

George Mason University, 2012

Dissertation Director: Dr. Edgar H. Sibley

With the ever increasing volume of data existing on and passing through on-line

resources together with a growing number of legitimate users of that information and

potential adversaries, the need for better security and safeguards is immediate and

critical. Currently, most of the security and safeguards afforded on-line information are

provided externally by the infrastructure and are based on security information that is

also maintained by that infrastructure. As the infrastructure increases in size and

interconnection, the more insecure the movement of information throughout the

infrastructure becomes. The interconnection of different infrastructures means that there

is a need for greater need for coordination between the infrastructures. Unfortunately,

this is not always possible.

An alternative to strict reliance on the infrastructure is to include security attributes along

with the objects that need to be secured. It is possible to improve the security of this

information by attaching the external security labels to these objects. These external

xv

labels, which contain the required security information, are transferred as an integral part

of the object’s migration throughout the infrastructure. This dissertation presents a

framework for using external labels that will provide better safeguards for securing

information. This framework is object based and as such is applicable to anything,

virtual or real-world, that can be represented or treated as ‘an object’. It discusses how

each entity within the infrastructure must be labeled to support the increase in security as

well as provide the framework for assessing the user and system labels against those of

the information objects.

This dissertation presents and details the key features of the labeling solutions and

explains the reasons why each of the features is necessary for the labeling framework to

secure objects. The framework is based on securely attaching labels to the objects, while

still allowing for the separation of the labels from the object. This separation must take

place without the lessening the security afforded the objects. The second feature of the

framework is the treatment of the object labels, themselves. The framework applies

labels to the objects being protected, the users requesting access to the objects, and the

end user and intermediate systems handling the objects. This provides for better

management of the environment and therefore greater security for the objects. The final

key feature of the framework is abstract nature of the objects and their labels. This

framework places no limitation on either the objects being secured or the content of the

labels. Any information that can be treated as an object can be handled by this

framework. Also, any rules that can be modeled can be supported by the framework.

This framework as proposed by this dissertation includes several types of labels that can

xvi

be used to secure objects. This types of labels presented can be easily extended to meet

the unique needs of the infrastructure without lessening the framework, itself.

 Additionally, this dissertation extends the use of labels to address security problems

beyond simple access control. It demonstrates how object labeling can be used to secure

multiple objects in a confederated manner, rather than as individual objects. Information

is no longer being processed in small collections, but rather as large collections of

information gathered from numerous sources. This framework is able to be managed

these large collections in an effective manner. Further extensions include using labels to

handle data aggregation and the avoidance of sensitivity escalation. Having access to

larger collections increases the risk that too much information can be collocated or

accessed at the same time. This dissertation presents tools and techniques for using the

framework to minimize and control how information is aggregated in order to reduce

these risks. Also, the framework can be used to insure that information aggregates don’t

result in the creation of information set which are “more” sensitive than the original

information.

1

1. INTRODUCTION	

The Study of Security as it relates to information assurance and system/network security

is a large, complex, and ever changing field. While the security field is changing, there

are several constants that form the foundation for all work in this field. Harris details the

“Security Triad” [1]; in it, each leg of this triad represents a focus area for security;

Confidentiality, Integrity, and Availability. The U. S. Department of Defense adds two

additional legs, authentication and non-repudiation to these three. DoD Directive 3600.1

[2] defines “Information Assurance” as:

Measures that protect and defend information and information systems by
ensuring their availability, integrity, authentication, confidentiality, and
non-repudiation. This includes providing for restoration of information
systems by incorporating protection, detection, and reaction capabilities.
Note: CND provides operational direction and guidance through global
network operations and defense for employment of IA in response to a
CND alert or specific threat.1

In one way or another, every security solution is implemented to provide one or more of

these areas of concern.

Unfortunately, traditional use of external metadata as object tags or labels does not lend

itself to autonomous security. The reasons for this are numerous, but are most often

1 [2] Section E2.1.14 pg 13

2

related to the weak linkage between the object labels and the objects to which they are

"attached”. This linkage is considered “weak” because it can be easily broken. Once the

links are broken, the integrity of the link is destroyed. With the integrity of the link

destroyed, the external metadata is of no use for security operations. For example,

transporting an object between two hosting environments can cause the link between

object and its label to be broken simply because one or more elements of the metadata

have different ontology in the two hosting environments or they may not be captured at

all.

In a homogenous processing environment2, the linkage between an object and its external

metadata can be more easily maintained, but only as a deliberate action on the part of the

transport mechanism and only if the metadata values that are passed as part of the

transport mechanism have the same meaning in both processing environments. For

example, in the Linux/Unix operating systems, users are tracking using a User ID or UID,

which is typically denoted by an unsigned integer. Each unique user on the system is

assigned a different UID value.[3] If the user has different UIDs on the different systems

or if the same UID on different systems is assigned to different users, then the transport

mechanism must account for this and change the UID as part of the transport process.

Some transport mechanisms, such as the File Transfer Protocol or FTP[4], perform these

actions; other transport mechanisms do not.

2 A local area network with host systems all using the same version of the same operating systems and
using the same version of the operating systems based transport mechanism is an example of a homogenous
processing environment.

3

 In the case of a heterogeneous processing environment3, the integrity and security of

these linkages is strained even further. This is due to difference in how the different

processing environments handle these external attributes. In an extremely diverse (and

therefore heterogeneous processing) hosting environment, such as the Internet or a cloud

computing facility, the integrity of the links is considerably harder to maintained.

My framework avoids many of the security problems that heterogeneous environments

create by abstracting the objects and object labels. This eliminates the reliance on the

underlying infrastructure for many attributes and features. I have investigated object

labels, their association to the objects to which they are attached, and the security

requirements for using object labels to provide security. I present a solution for binding

security labels to the objects. One of the goals of my research is to present a working

framework that can be used to implement object security based exclusively on the object

labels. This removes the dependence on operating system level file attributes.

After a labeling framework has been presented, I extended to use of object labels to allow

then to address the securing of multiple labeled objects. Securing of multiple labeled

objects introduces additional challenges and issues that need to be addressed. Examples

of these challenges include the aggregation of information, and escalation of sensitivity

and escalation avoidance.

3 A local area network with host systems running different operating systems is an example of a
heterogeneous processing environment.

4

As part of my dissertation, I have presented a framework for implementing label based

security as part of the existing infrastructure. My framework differs from many secure

labeling solutions, like Trusted Solaris or SELinux, in that it can be hosted as part of

existing operating environments. My framework is tolerant of the infrastructure not

being completely “label aware” or secure. It further supports infrastructures with

different levels of trust.

In cyberspace, the use of metadata tags is ubiquitous. File system attributes, such as

creation date, owner, group, and permissions, are external metadata that are used to

describe characteristics of or rules for gaining access to the file with which they are

associated. These attributes form the foundation by which operating systems control

access to the system objects. A key limitation of this approach is the inflexibility, which

is imposed by using these operating system level controls. The approach that my

framework takes is to implement labeling of information objects, implement labeling and

user and system objects and establish the rules by which users are granted access to the

objects. By defining the rules for access in this manner, the framework can be tailored to

meet the needs of the infrastructure. A second key feature of my approach is my

framework is not constrained by the type or format of information being protected or by a

pre-established set of label attributes. My framework will protect any type of information

and any number of information types concurrently. Additionally, the data that is carried

by the object labels is not pre-determined, rather it is established when the framework is

implemented. The framework abstracts both objects and object labels to permit greater

flexibility.

5

With a security framework developed that is based exclusively on object labels, I studied

two extensions. The first of these extensions focuses on the security of objects when

taken as a collective. I present how object labels can be used to control and protect

aggregation of data objects. The second extension includes time and history in managing

the security of objects.

Data aggregation is the basis for creating information. The value of facts and single

pieces of data is greatly increased if they can be collected and considered as a whole.

This will lead to situations where the amount of collected data needs to be considered in

totality. I have included a section on information aggregation and how labels should be

used to insure that the aggregated information is properly secured. For example, if

information with different level of classification is being aggregated, the resulting object

should be labeled so as to account for the classification of each object in the aggregate.

In the second extension, I have considered how history and time should be considered

when securing objects. I have shown that controlling when information should be

released can account for the time since last object was accessed. Also, I have shown how

labels can be used to make access decisions that take into account the information that the

user already has. This permits user knowledge and “Chinese wall security problems” to

be addressed is a secured manner.

It is also important to outline what is not covered in my dissertation. It does not

attempting to offer a universal or “One Size Fits All” solution for object security. The

range of problems and different requirements for security make that impractical.

6

Additionally, my dissertation includes sample sets of labels and modeling to demonstrate

and clarify the work being presented. Neither the models nor the pseudo-code should be

considered to be production ready. Rather that they should serve as aids in visualizing

and verifying the models presented as well as the guides for developing production

solutions to specific problems

7

2. BACKGROUND/HISTORY	

Over the last 40 years, there has been much discussion about how security labels could be

used to protect information. Published works by Denning [5], Bell and La Padula [6],

Biba [7], and Brewer and Nash [8] as well as publications by the U. S. Department of

Defense [9] [10] and the Internet Engineering Task Force [11] [12] have all discussed

labeling and proposed abstract and theoretical applications for labels. However, there are

very few practical implementations that make use of labels as a security mechanism. In

fact, a Defence R&D Canada – Ottawa report [13], published in 2005, states:

“Although some research and development has been conducted into
security labeling over the past thirty years, much of it as part of
MultiLevel Security (MLS) initiatives, there is currently little commercial
support for security labels and trusted binding mechanism.”4

This report goes on to state that:

“Furthermore, no security labeling standard or trusted binding
mechanism has emerged as a de-facto standard suitable for a variety of
object classes.”5

Much of the reason for the lack of standardization in this area could be due to the lack of

need for any. When labeling was being discussed by Denning, Biba, and others in the

4 [13] Pg iii
5 [13] Pg iii

8

1970s, there was no global computer network. Computing was mainframe based and the

requirement to share information between two or more computers was almost non-

existent.

It was not until the early 1980s, the first computer networks began to appear. However,

their ubiquity and openness was far from what it is today. RFC 1296 [14] states that in

August of 1981, there were 213 network connected hosts for the entire Internet.6 The

DDN Directory [15], published in 1984, included a network diagram that only requires

the back of the front cover to clearly depicts the all of the military, commercial, and

academic sites that composed the entire ARPAnet/MILnet. A section of this directory

enumerates all 371 registered hosts. By Jan 1992, that number had risen to only 727,000

[14]. Of these, 243,020 addresses were assigned to educational institution. The focus at

this time was not on security, but rather on the exchange of information. In 1988, Comer

wrote:

“To appreciate internet technology, think of how it affects research.
Imagine for a minute the effects of interconnecting all the computers used
by scientists. Any scientist would be able to exchange data resulting from
an experiment with any other scientist. It would be possible to establish
national data centers to collect data from natural phenomena and make
the data available to all scientists. Computer services and programs
available at one location could be used by scientists at other locations. As
a result, the speed with which scientific investigations proceed would
increase. In short, the changes would be dramatic.”7

6 At this time, this “global” network was referred to as the “Defense Data Network” (DDN). Over the
years, it has gone through several name changes. It has also been known as the “APRAnet” and “MILnet.”
7 [16] pg 1-2

9

Throughout the rest of his book, “Internetworking with TCP/IP” [16], Comer discusses

protocols for exchanging information as well as other communications concerns, but does

not discuss security. In fact, the word, ‘security’, does not appear in the book’s index.

The focus was exclusively on exchanging information.

During this same time period, several network specifications [12] [17] were published

that did include provision for including security labels or tags as part of the network

traffic. However, the standards for network traffic didn’t include provisions for securing

the traffic. This means that all of network traffic was transmitted using plaintext without

the use of encryption. The lack of protections, such as encryption, meant that any

safeguards that these labels and tags would have provided could be easily circumvented.

The use of ‘Network Sniffers’8 can provide a complete transcript of any communication

traffic being exchanged. It would not be until safeguards, like encryption, were

incorporated into network communications that using security tags and labels would have

had any value as a security mechanism.

A second reason for the lack of available products and support is the diversity of

information types that would need to be supported by a single solution. And while there

are some commercial and open-source products that utilize labeling, the value provided

8 Network Sniffers are dedicated hardware devices or programs loaded on computers that are designed to
capture, decompose, analyze, and display network traffic. Numerous commercial and open source
offerings are available. Additionally, many operating systems provide the functionality to capture, store
and display network traffic without additional software.

10

by the use of security labels can only be realized by the use of those products,

exclusively.

In the physical world, the need to protect information from unauthorized disclosure is

older than this country. Evidence of the use of various techniques to protect information

can be found throughout antiquity. Coded message, discovered in the tombs of Egyptian

nobility and ciphers used by Roman armies under Caesar are just two examples of how

information has been protected throughout history.[18] From its formation, this country

has had the requirement to protect information from unintended parties. This country’s

founders clearly recognized the need to protect information both on the battlefield and in

the conduct of government. George Washington was known to “label” communications

as a means of protecting it from disclosure. [19] Additionally, the Constitution of the

United States includes provisions to permit the withholding records and correspondence

from the public disclosure.9

While the need for secrecy has been recognized for all of this country’s history, it would

not be until the First World War that the first formal system of classifying information

was put in place. [20] Under this system, there were 3 levels of classification. Since this

time, this country’s classification systems have under gone numerous changes. In fact,

there has not always been one single set of rules for classify information or even a single

classification hierarchy. Within the U. S. federal government, different departments in

9 U. S. Constitution Article I Section 5

11

the executive branch have had different classification systems. Today, the U. S.

government has a single set of classification levels and rules for determining what should

be given a specific level. Executive Order 12958 [21] was originally signed by President

Clinton in 1995, and was amended by President Bush with the signing of Executive

Orders 13292 [22] in 2003. There are 3 levels of classification: TOP SECRET,

SECRET, and CONFIDENTIAL. Any information not deemed critical enough to

warrant a CONFIDENTIAL or higher classification is considered UNCLASSIFIED.

This is not to say that the unauthorized release of unclassified information does not have

a negative impact on the nation’s security, it does.

In addition to the hierarchical classification structure detailed by Executive Order 12958

et al, there are additional sets of labels generally referred to as “Categories” that can be

applied to objects. While Categories are not hierarchical in nature, they are used to limit

access to information. Examples of category labels include, but are not limited to: PII10,

HIPAA11, NNPI12, NO_FORN13, etc. Conditions detailed by both the Classification

Levels (or simply Levels) and Category labels must be satisfied in order that access to the

information to be granted.

10 Personally Identifiable Information (PII)

11 Used to identify information protected from disclosure by the Health Insurance Portability and
Accountability Act (HIPAA)

12 Used to identify Navy Nuclear Propulsion Information (NNPI)

13 Used to identify information that needs to be protected from disclosure to non-United States citizens
(NO_FORN)

12

3. SECURITY	CONTROLS	THAT	EXTERNAL	LABELS	CAN	PROVIDE	

3.1. Introduction	

My dissertation considers security problems that can be addressed by using external

security labels. These problems can be assigned to one of three groups; Simple Access

Control, Information Aggregation, and Aggregation Avoidance. Each group, while

making use of object labeling to provide security to the object, does so in a different

manner. Also, it is worth noting that simply applying labels to objects does not increase

their security. The application of security labels to object must be done in conjunction

with rules for interpreting those labels, as well as processing elements within the

infrastructure.

At this point, it is helpful to have a good understanding of the different types of objects

and labels that are presented. Appendix A - Labelling Framework is a primer on how

objects and object labels are related and represented in my dissertation.

For each of the three groups, Appendix E - Example Problems that can be solved with

Labeled Objects discusses example problems that can be addressed by using object labels

and the supporting framework. Additionally, Appendix F - Label Based Access Control

Demonstration System details a demonstration system that implements several of the

concepts that are presented in this dissertation.

13

3.2. Simple	Access	Control	

Confidentiality is one of the three key attributes for information security solutions. It

focuses on insuring that access to information is granted only to those individuals and

processes that are authorized to have access and denying access to those that do not.

Simple Access Control, uses object labels to provide “simple” access control for the

object. This type of usage is in line with the DoD safeguards for protecting classified

documents [23] [24], or the National Security Agency’s (NSA) “Rainbow Series”

publications.14 In general, simple access control focuses on each object, individually.

There is no consideration given to any other objects in the system. Traditional access

control mechanisms provided by a computing environment also follow this model.

(Access to a file or process is based solely on the attributes of the each file or process and

the permissions of the user making the request.)

3.2.1. Host	Based	Solutions	

In an object label centric security environment, security information about the object is

carried by the labels connected to the object. Security information about the user and the

14 The Rainbow Series discusses more than just system and information integrity and confidentiality.
Topics, like covert channels, are also discussed. However, they are outside of the scope of my research.

14

user’s system are carried by a second set of labels that are associated with that user and

system and connected to any request for access that the user makes or is made on the

user’s behalf. The User/System labels are compared against the labels that are attached

to the object and based on a set of access rules, the user is granted access to the object, if

the rules are satisfied. If the access rules are not satisfied, then access to the object is

denied.

3.2.2. Cross	Domain	Solutions	

Cross Domain Solutions represent a network level implementation of simple access

control, rather than a host or system based version of simple access control. They aren’t

co-located on the system with the information management system, but are placed at

strategic locations throughout the infrastructure. Usually, they act as gateway or firewalls

between two networks with vastly different security postures and act as ‘checkpoints’

through which the object must pass.

3.3. Information	Aggregation	

3.3.1. Introduction	

One of the key benefits of the Internet and computers in general is their inherent ability to

collect, store, process, and present a large volume of information from multiple sources.

By having a large volume of information available to a computer user, the aggregation of

15

information is inevitable. Object labeling and the use of an associated framework can

provide greater control over the aggregation of information.

Dictionary.com defines an aggregation as:

 “a group or mass of distinct or varied things, persons, etc” [25]

When applied to information, it can be viewed as the collecting of information from one

or more data sources with the expectation that the aggregated information has a value

equal to or greater than the information, if considered as individual entities.

Information Aggregation, uses object labels and external processing to create new labels

that reflect the security characteristics of the aggregation of the original objects. The

security attributes of this new aggregated object are carried by additional object labels

that are attached to the aggregated object. The actual values of the new security attributes

are calculated by an external process, and are based on the attribute values of the original

object labels. Rather than determining whether access to the object should be granted,

the primary focus of this group is on re-labeling the collections of objects as a whole.

Once a new aggregated object has been created, the new object label is used to determine

if access should be granted. Because the creation of an aggregated object and

determining if access to the aggregated object should be granted are separate activities, I

address the problem of accessing an aggregated object as two problems. The first is the

creation of the aggregated object with new aggregation labels and the second is an access

control based on the aggregation labels. The first problem is discussed here. The second

16

problem becomes a case of applying simple access control using the aggregated labels

and that has been previously discussed.

An additional advantage of keeping the creation of aggregated labels separate from the

access control is these two operations can be conducted at different times or by different

systems.

When considering information aggregation, there are two different types of aggregation

that can take place. These involve either

Concatenated Aggregation; or
Cumulative Aggregation.

3.3.2. Concatenated	Aggregation	

Concatenated Aggregation is the simpler form of aggregation. For this type of

aggregation, there is no increase in security level or lowering of the integrity level as a

result of aggregating multiple data objects. For Concatenated Aggregation, the labels that

are created are simply a concatenation or superset of all of the labels of the individual

data objects. Once concatenated, set theory is applied to produce an aggregated label that

reflects the concatenated values. A well documented example of Concatenated

Aggregation can be seen in how DoD 5200.1-PH DoD Guide to Marking Classified

Documents [23] handled document labeling.

While DoD 5200.1-PH only discusses classified documents, the guidance that it provides

can be equally applied to other forms of Concatenated Aggregation. When the

17

classification level of the individual objects is aggregated, then the resulting label

represents the highest classification of any object in the collection.15 If the measures of

integrity of the information in an object is carried by an object label are being

concatenated, then the aggregated label for integrity would carried the lowest integrity for

any information in the aggregated object.16

3.3.3. Cumulative	Aggregation	

Cumulative Aggregation refers to the aggregation of information that produces a result

that may carry a higher level of classification. Quist, who refers to aggregation as

“compilation”, states:

A compilation [aggregation] of many different items of information
classified at one level (e.g., Confidential) should be classified at a higher
level (e.g., Secret) if the total damage caused by the unauthorized release
of all of the items of information would equal or exceed the damage
caused by the release of one item of information classified at that higher
level.17

This type of aggregation has been associated with “Mosaic Theory” and “Compilation

Theory” Whichever theory is applied, the ramification of this type of aggregation are far

reaching. From the requirement to protect the information differently to the rules for

public release, this type of aggregation represents a challenge to the information

15 This is in keeping with the labeling work done by Bell and La Padula
16 This is in keeping with the labeling work done by Biba
17 [26]Pg 15

18

assurance community. In many cases, a collection of objects can’t simply be treated as

individuals, but rather must be viewed as a whole.

As a practical matter, the rules for determining are what point does the classification level

change is very poorly defined. In fact, a May 2005 Department of Energy (DoE)

communiqué [27] goes so far as to state that:

 “Compilations do not usually have a basis in guidance and are, therefore,
more difficult to determine.” 18

and goes on to state:

“Compilation, on the other hand, consists of unclassified facts that by
selection, arrangement, or completeness of the information add sufficient
value to merit classification. Compilations may involve information over
a period of time and, hence, require greater effort to identify the classified
information”19

This assessment reverses an assessment made by Quist[26]. Quist presented the

argument that aggregation (compilation) of unclassified information would have no

impact in its classification level. His paper offered this discussion:

“Let us assume that the damage caused by the release of an item of
Confidential information would a “1” on a arbitrary scale of damage.
(For Secret and Top Secret information, the damage value would be
greater.) The release of an unclassified item of information would cause
no (zero) damage to our national security (by the definition of what
constitutes classified information). Therefore, no matter how many items
of unclassified information are compiled (added together), the sum of the

18 [27] Pg 1
19 [27] Pg 4

19

damages caused by their release would still be zero and the compilation
should not be classified.”20

Perhaps the biggest change to have occurred between the publication of Quest’s work and

the DoE communiqué is an acknowledgement that the inappropriate release of

unclassified information can still be damaging to national security. The introduction and

use of categories, such as “For Official Use Only”, “Restricted Data”, and “Controlled

Unclassified Information” reflect the importance of some types of unclassified

information and the need to insure its protection.

However, the labeling of unclassified information does not address the problem of

information aggregation. Beyond the labeling of the information, rules for determining

how much unclassified information must aggregated before a classified object is created

need to be established. Finally, there needs to be a framework within which the rules can

be applied to the information in the labels. The formulation of the rules for assessing the

security classifications is not presented as part of this dissertation, but the framework for

processing these rules is.

20 [26] Pg 5

20

3.4. Aggregation	Avoidance	

3.4.1. Introduction	

For simple access control, the execution of the rules for granting access to an object will

always return the same result. For many problems, this is sufficient. However, as the

volume of information that is available on-line increases, the need to insure that

information consumers do not amass too much information too quickly also increases.

Aggregation Avoidance, uses object labels and external processing to actively regulate or

limit access to collections of labeled objects. While the Simple Access Control group’s

use of object labels also focuses on regulating or limiting access, Aggregation Avoidance

adds a “history” element to the processing. It is intended to make access decisions based

not just on the object’s labels, but takes into account the prior object access operations

that have been performed. This history, which may extend over a wide range of times

based on the security requirements of the protected objects, is intended to regulate the

release of information. Aggregation Avoidance builds on the work done for Information

Aggregation.

 Two problems in aggregation avoidance are presented as part of my dissertation.

21

3.4.2. Informational	“Critical	Mass”	Avoidance	

As introduced as part of the Cumulative Aggregation, it is possible for the label values of

an aggregated object to be different than that of any of the individual objects from which

the aggregate is composed. While it is desirable to be able to label the aggregated object

with a new and accurate security label, there is also a need to prevent the creation of

aggregated objects with higher label values.21 The need for this can be found in

Executive Orders, and DoD polices/directives. All of which mandate that

classified/sensitive information be subject to more stringent protections to insure that

unauthorized release of this information does not occur. For DoD IT systems, the current

guidance from DoDI 8500.2[28] prescribes a different set of information assurance

controls (IACs) for classified and unclassified systems. Additionally, as part of the

certification and accreditation process, each system’s accreditation includes a statement

concerning the level and type of information that the system can process. Processing

information with a security level higher than that for which the system is accredited is

considered a security breach or “spillage”. A spillage is said to have occurred if even a

single classified document or object has been transferred inappropriately.

A second type of security breach results from too much information being hosted on a

single system. In this case, none of the individual information objects are classified high

enough to violates the system’s accreditation statement. However, when considered in

21 In the case of document classification, this would mean a higher classification level.

22

the aggregate, their aggregated security level exceeds that for which the system is

accredited and a spillage has occurred. Quist [29] presents a case where the operational

readiness of an individual military unit is unclassified, however when collected and

aggregated together, the result (a single statement of operational readiness for the entire

U. S. military) is a TOP SECRET document. If the system hosting these readiness

reports was not cleared for TOP SECRET, then a security breach has occurred. Clearly,

there is a requirement to insure that too much information (informational “critical mass”)

is not collected in a single location.

The U.S. Nuclear Regulatory Commission (NRC) defines “Critical Mass” as:

 “The smallest mass of fissionable material that will support a self-
sustaining chain reaction.” [30]

Applying the same principle in terms of Information Assurance, one can define

“Informational Critical Mass” as the minimum amount of aggregated information

required to change the level of security classification or sensitivity of the entire set of

information. For example, the current U. S. classification system, there would be 3

Informational Critical Mass Values. There is one when aggregated UNCLASSIFIED

information becomes CONFIDENTIAL, one when aggregated CONFIDENTIAL

information becomes SECRET, and finally one when aggregated SECRET information

becomes TOP SECRET. Beyond the U. S. Classification system, informational critical

mass can occur in any information system that stores information.

23

 Being able to execute the rules for information aggregation before the information

objects are co-located can prevent informational critical mass from being reached. The

preemptive prevention of too much information being co-located prevents security

breaches and spillages from occurring.

3.4.3. Chinese	Wall	Security	Problem	

A special case of informational critical mass avoidance is the “Chinese Wall Security

Problem.” Brewer and Nash [8] define the Chinese Wall Security Problem in the context

of a consulting firm that is supporting two competitors. When an employee of the

consulting firm is working with the information about one of the competitors, the

employee’s access to information about and from all of the firm’s competitors must be

prevented. If the employee is no longer working with the firm’s information, then any of

the information for its competitors is now available to that employee. Once the employee

begins working on a new company’s information, a new set of limitation on the

information available to that analyst are now in effect. Chinese Wall Security problems

become increasingly complex when suppliers and supporting organization become part of

the analysis.22 Using object labels as a security mechanism within the framework

22 For example in the automotive industry, a parts supplier may provide “spark plugs” to two or more
automobile manufacturer. Access to information about the spark plug provider must be included in for all
automobile manufacturers that use that spark plug. However, the information about spark plugs must be
limited to that automobile manufacturer being analyzed. In the case, when the spark plug supplier is the
subject of the analysis, information about all of the spark plugs using by all of the automobile
manufacturers can be made available to the analysis.

24

developed for my dissertation can address the security needs created by Chinese wall

security problems.

A further element of this problem, employee memory, can be addressed. When original

discussed, having information for multiple competitors simultaneously was a violation of

the policy. However, an employee could return the first company’s information and

immediately have access to the second company’s information. This violated the “spirit”

of separating competitor’s information. This framework can enforce a minimum time

between accessing competitor’s information, thus giving the employee time to forget

what they already know.

25

4. REQUIREMENTS	FOR	A	LABEL	BASED	SECURITY	

4.1. Introduction	

The focus of my dissertation is on securing information by using object labels. In order

for object labels to be used for the securing of objects, several key requirements must be

satisfied. These requirements are:

Object Integrity;
Strong Linkage;
Separation of the Label from the Object;
Object Security Labels;
User and System Security Labels;
Labeling Algebra;
Reference Monitors;
Network Framework; and
Interoperable;
 and Cost Effective.

4.2. Object	Integrity	

The first condition for which any security solution must provide is the integrity of the

object being protected. The U. S. Department of Defense (DoD) and the National

Institute of Standards and Technology (NIST) identify the integrity of information as

being a key component of security. DoDI 8500.2 [28] and NIST Special Publication 800-

53 [31], both contains security controls that focus on insuring integrity. Other guidance

26

and directives including DoDD 8500.01E [32] and DoDD 8570 [33] mandate compliance

with those controls. If the security solution does not preserve the integrity of the object,

then the solution has automatically failed.

This does not mean that as part of the process of securing an object or information that

the object or information can’t be altered or changed. Many solutions used to secure

information do just that. But rather that for any operation performed on an object, there

must a reciprocal operation, which returns the object to its original state. For a security

solution, this means that all performed operations must be mathematically valid and

reversible. An example of this is encryption. Information is routinely encrypted to

protect it from unauthorized exposure. The process involves taking the original message,

called “plaintext”, and encrypting to produce “ciphertext”. The encryption process

makes use of a mathematically validated process and one or more encryption keys.

When access to the original plaintext is required, the ciphertext is decrypted to reproduce

the original plaintext. If this decryption process were not possible then encryption would

be an unacceptable solution for protecting information.

For my dissertation, this requirement is directed more towards preventing alteration of

information from occurring. Appendix B - Secure File Format discusses the Secure File

Format (SFF) and how it can be used to address many of the requirements for this thesis.

With regards to Object Integrity, Secure File Format defines a technique for

“wrappering” the object to be protected by to creating a “Type 1” SSF object. From an

integrity perspective, wrappering the object in this manner, removes any issues related to

27

the original format of the object allows any solution that makes use of the Secure File

Format to treat all objects identically. Figure 1 depicts how a Type 1 wrappered object is

represented

O(n,m)

L(m,0)
Type 1 Wrapper

Mandatory
Header

Optional
Header

(Secure Hash
Of Payload)

Payload Tariler

Figure 1- A Type 1 Wrappered Object

4.3. Strong	Linkage	

The second condition that must be satisfied for object labeling to be useful as a security

mechanism is being able to ‘strongly link’ a label containing security information to an

object. It is this attachment that forms the basis of trust that the label is applicable to that

object, and that no alterations to either the object or its label have occurred. Mager [13]

clarifies the role and value of binding by expressing that:

“A security label can be deemed trusted if it is bound or linked to the
object, such that this binding can later be validated by a third party. This
binding is defined as a trusted process of inseparably associating one or

28

more data items that can be validated by another party. The trusted
process s typically accomplished using cryptographic techniques.”23

For my dissertation, ‘strong linkage’ is intended to mean that the label and its object are

bound in such a way that any change to either the object or its label negates the validity

of the attachment between the two. The rationale behind this requirement is based on

preventing a label that is less restrictive from being attached to an object needing greater

security. For example, if a label that asserts that the attached object is CONFIDENTIAL

could be attached to a SECRET object without being detected, then any request from a

user with a CONFIDENTIAL clearance would be honored and a SECRET object would

be released inappropriately.

In order to address this requirement, features of the Secure File Format work done by

Rozenbroek [34] will be employed. One of the key features of the Secure File Format is

the ability to strongly associate one or more objects with a security label. The objects are

stored in the payload field and are cryptographically hashed. The generated hash value or

message digest is then included in the security label. The security label, which includes

the security attributes and the message digest for the payload are also cryptographically

hashed. This forms a second message digest, which is insures the integrity (strong

linkage) between the security information and the object(s) in the payload. Secure File

Format discusses how Secure File Format uses cryptographic hashing to provide the

strong linkage.

23 [13] pg9, Section 2.6.3

29

4.4. Separation	of	Label	and	Object	

The third property that needs to be addressed is the ability to separate the security label

from its object without loss of the validity of their bond. Being able to separate the label

from its object provides my framework with several features that greatly improve security

as well as reduce the impact that labeling has on the infrastructure.

First, by working with just the labels and not the entire objects (labels and labeled

object), only the label need be exposed while the access control decision and/or

aggregation are being processed. This greatly improves the security of the object and its

information because it is only after the determination of whether to grant access has been

made that the object is accessed. The ability to make the access determinations before

starting to work with the object has different effects based on how the labels are being

processed.

In the case where the simple access control is being implemented, the labeled object is

only exposed after the access control decision has been reached and access to the object

has been granted. In the cases where the aggregation would produce an unacceptable

object, the labeled objects would never be accessed and the aggregation would not be

created. For information distributed across the infrastructure, this would mean that none

of the information would be transferred to a common location. In the case where the

requested operation would cause a critical mass threshold to be exceeded, the operation

would be disallowed. It is only when accessing the object or operation is deemed

appropriate or necessary that the labeled object is engaged or the operation is allowed.

30

Second, by working with just the labels, the amount of data that needs to be processed is

greatly reduced. This will lessen the impact that the framework would have on the

infrastructure.

An additional benefit to being able to engaging the security labels independently of the

object is being able to process the entire communication path before exposing the object.

In larger or distributed infrastructures, this means allowing the labels to be processed by

every network security checkpoint in the infrastructure before releasing information.

4.5. Object	Security	Labels	

4.5.1. Introduction	

So far, security labels have been discussed in a very abstract manner; there has been no

discussion on the format of a label or what information that can be conveyed via security

labels.

The first requirement for defining the format and designing the content of the security

label is to decide on a lexicon for the labels. As part of the specification for a Secure File

Format object, Rozenbroek defined several types of wrappers, which include an XML

object that is to be used for either a Security Header or other management information or

instructions. Since the Secure File Format approach for binding management and

31

security labels to objects is being used as part of my dissertation, the use of XML is

appropriate.

XML, or the Extensible Markup Language [35], is a standard lexicon for defining

formats for the storage and exchange of information. It is widely accepted and there are

numerous applications that make use of XML for both exchanging information and the

management of configuration and system data. In addition to using XML for object and

user/system security labels, XML is used for defining the rules for granting access as well

as building rules for complex labels and aggregates.

4.5.2. XML	Labels	for	Security	and	Management	

The specification for the Extensible Markup Language is controlled by the World Wide

Web24 (W3C) and defines a rich and powerful environment for storing and exchanging

information. One key feature that distinguishes XML from other markup languages like

HTML [36] is the separation of data from presentation. In HTML, the defined tags are

used primarily for formatting the presentation of the information. These tags are

embedded in the document. In the case of XML, there is a very small set of pre-defined

tags. The tag set for any given XML document is defined for that document and are

tailored to meet the needs. My dissertation defines several different XML formats that

will be used to provide object security.

24 http://www.w3c.org

32

Figure 2 shows the basic XML representation of an object label.

<Object_Label>
 <Object_ID>{Object_ID}</Object_ID>
 <Label>
 <Name>{Name}</Name>
 <Type>{Type}</Type>
 <Value>{Value}</Value>
 </Label>
 …
 <Label>
 <Name>{Name}</Name>
 <Type>{Type}</Type>
 <Value>{Value}</Value>
 </Label>
</Object_Label>

Figure 2 - XML Representation of an Object Label

The <Object_ID>{Object_ID}</Object_ID> tag is used to convey an object

identification value. This field is not used for determining if access to the object should

be provided, but rather for identifying the object to the processing system. For detailed

information about the object, an informational label should be used.

In addition to the elements defined here, well-formatted XML comments (<!--

{Comments} -->) can be included at any point in the label that is allowed by the XML

specification. When the label is being processed, the embedded comments are ignored by

a process making use of the labels.

33

The <Label>{Label Information}</Label> tag is used to denote those elements that form

each individual label. Depending on the security requirements, there will be one or more

<Label> tags for each <Object_Label>.

The <Name>{Name}</Name> tag specifies a unique name for the label being defined.

With the exception of informational labels, for each named label specified by an access

rule, there must be a corresponding label defined for each user and for each system. If

there either the user or system label lacks a corresponding named label then any

comparison operation fails and access to the object is denied.

The <Type>{Type}</Type> tag defines what type of label is being represented. Types of

Labels Supported describes in detail the format and purpose of each of the different types

of tag. Table 1 details the four values that are defined for {Type}.

Table 1 - Possible Values for {Type}

{Type} Value Type of Label
HIER Defines a Hierarchal Label
CATE Defines a Category Label
COND Defines an Conditional Label
INFO Defines a Informational Label

The <Value>{Value}</Value> tag defines the value for the label. The nature of this field

is determined by the {Type} field value and is discussed in more detailed in Types of

Labels Supported.

34

4.5.3. Multi‐Valued	Labels	

While being able to attach a single label to an object increases the security, there are

numerous cases where being able to attach a combination of label types is valuable.

Figure 3 indicates how labels with multiple named values are structured. Within any

given label, there are no restrictions on the number and type of labels that can be stored.

For example, a label attached to an information object may include a classification label

and an integrity label. This is the case, where two hierarchical labels would be used to

address a “Bell-LaPadula” type security requirement and a “Biba” type integrity

requirement simultaneously. All of the conditions defined by the labels are available for

determining access to the object.

For this example, a typical label would resemble:

<Object_Label>
 <Object_ID>Protected_Object</Object_ID>
 <Label>
 <Name>Classification</Name>
 <Type>HIER</Type>
 <Value>SECRET</Value>
 </Label>
 <Label>
 <Name>Integrity</Name>
 <Type>HIER</Type>
 <Value>HIGH</Value>
 </Label>
</Object_Label>

Figure 3 - Sample XML Object Label

35

In this case, the object, Protected_Object carries a label, Classification, which is set to

SECRET and a second label, Integrity, which is set to HIGH.

4.6. User	and	System	Labels	

4.6.1. Introduction	

The second type of labels that required as those that will be associated with the user and

the user’s system. These labels convey security information about the user, their system,

and any intermediate systems invoked with labeled communications. It is important to

note that a user can either be an end-user (human being) or a computer process. From a

label security perspective, there is no difference between the two. As with object labels,

the Extensible Markup Language is used to capture and transport both user and system

labels.

The separation of user and system labels is a key feature of this approach. It allows for

simplification of implementation by permitting the qualities of the user to be considered

independently of the computer systems being employed. For example, a user may have a

SECRET clearance and therefore access to information labeled as “SECRET” or lower.

However, access to this information must be granted only when the request is made from

a system that is also approved for SECRET or higher information. If the request was

made from a system not approved for SECRET information, then the request must be

denied, despite the fact that the request was made by a user with a SECRET (or higher)

36

clearance. Without this separation of users and systems, a unique set of labels would

need to be created and maintained for each user/system combination.

A further reason for using system labels in addition to user labels is that their use allows

network topology to be taken into account. If only a single set of user/system labels were

being consideration, it would preclude the inclusion of the qualities of the transport path

in making access decisions. Because the user and each system are considered separately,

it is possible to account for the network path that the object traverses. For example, an

end-user has a laptop computer that is allowed to store PII25 information. If the user

wants to send an email containing Privacy Act information to her supervisor (also using a

host cleared for Privacy Act information), then she will need to use an email server that is

approved (e.g. labeled) to handle Privacy Act information as well. Even though both the

employee and her supervisor are using approved host machines, the use of a properly

labeled intermediate host (the email server) is required to properly safeguard the

transmitted information. Figure 4 shows the topology of this example.

25 PII – Personnel Identifying Information. The Privacy Act of 1974 [37] as amended is the U. S. federal
status that establishes the criteria for what is considered PII, what safeguards must be in place for is
protection, and the penalties for not doing so.

37

Figure 4 - Intermediate System Labeling

Because every system involved with the information exchange was labeled, their abilities

to properly handle the information were taken into consideration. If the user and system

were labeled with a single label, inclusion of the email server would have been more

difficult.

4.6.2. XML	Labels	for	Security	and	Management	

The specification for the Extensible Markup Language (XML) [35] is controlled by the

World Wide Web Consortium (W3C)26 and defines a rich and powerful environment for

26 http://www.w3c.org

38

exchanging information. One key feature that distinguishes XML from other markup

languages like HTML [36] is the separation of data from presentation. In HTML, the

defined tags are used primarily for formatting the presentation of the information. These

tags are embedded in the content of the document. HTML tags are usually used as a

means to control presentation more than organizing information. By contrast, XML does

not consider the format of presentation, but used XML tags to provide semantics to the

information in the document. How a document is displayed, if it is displayed at all, is

controlled by an external mechanism. With XML, there is a very small set of pre-defined

tags. The tag set for any given XML document is defined for that document and are

tailored to meet the document’s needs.

Because user and system labels will be compared against object labels, their syntax must

track very closely. Figure 5 shows the XML representation for both the user and system

label.

39

<User_Label|System_Label>
 <User_ID>{User_ID}</User_ID>
 <Label>
 <Name>{Name}</Name>
 <Type>{Type}</Type>
 <Value>{Value}</Value>
 </Label>
 …
 <Label>
 <Name>{Name}</Name>
 <Type>{Type}</Type>
 <Value>{Value}</Value>
 </Label>
</User_Label|System_Label>

Figure 5 - XML Representation of a User Label

The <User_ID>{User_ID}</User_ID> tag is used to convey a user identification value.

This field is not used for determining if the access to the requested object should be

granted. Instead, it conveys information that is intended to make the infrastructure easier

to manage. The information in this tag should be used for activities such as auditing. For

more detailed information about the user, an informational type label should be used.

The <System_ID>{System_ID}</System_ID> tag is used to convey a system

identification value. This field is not used for determining if access to the object should

be granted. Like the User_ID tag, it should be used for activities, such as auditing. For

detailed information about the system, an informational type label should be used.

In addition to the elements defined here, well-formatted XML comments (<!--

{Comments} --> can be included at any point in the label that is allowed by the XML

40

specification. When the label is being processed, the embedded comments are ignored by

a process making use of the labels.

The <Name>{Name}</Name> tag defines a unique name for the label being defined.

The {Name} value defined is the label is used as part of the comparison with the object

label to determine if access should be granted. The user and system label names used are

required to track with the object label names. One note, it is permissible for a user and/or

system label set to have additional named labels. This will allow for a more complete

description of the user and their systems. In the case, where there are additional user and

system labels, only those labels identified by the access rules are used. The additional

user and system labels are ignored.

The <Type>{Type}</Type> tag defines what type of label is being represented.

Appendix D - Types of Labels Supported describes in detail the format and purpose of

each of the different types of tag. Table 2 details the four values that are defined for

{Type}.

Table 2 - Possible Values for {Type}

{Type} Value Type of Label
HIER Defines a Hierarchal Label
CATE Defines a Category Label
COND Defines an Conditional Label
INFO Defines a Informational Label

41

The <Value>{Value}</Value> tag defines the value for the label. The nature of this field

is determined by the {Type} field value and will be discussed in more detailed in

Appendix D - Types of Labels Supported.

In general, User and System labels are combined to form a single User/System_Label for

processing purposes. When this is done, a new “User/System_Label” is created by

collecting all elements that are common to both the User and System labels. The new

label represents the intersection of values for each named label. For example, if a User

has a SECRET clearance and the System has a CONFIDENTIAL clearance, then

User/System_Label is assigned a CONFIDENTIAL clearance. (The workstation is

lacking a SECRET clearance.) If a User is a member of the groups {A}, {C}, {D}, and

{E} and the System is a member of groups {A}, {B}, and {D}, then User/System is a

member of groups {A}, and {D}. (The user is not part of groups {B}. The system is not

part of groups {C} and {E}.) In general, the User/System_Label is not created or stored

outside the application involved with the access determination process. Formally, this

can be expressed as:

௜݈ܾ݁ܽܮ_݉݁ݐݏݕܵ/ݎ݁ݏܷ 	≡	∩ ൫ܷ݈ܾ݁ܽܮ_ݎ݁ݏ, 	௝൯௜݈ܾ݁ܽܮ_݉݁ݐݏݕܵ

Where i – is the index of the label being generated
j- is the index of the system being considered

In a large or geographical dispersed infrastructure, the task of maintaining user and

system labels may be excessive and expensive. To account for this, user and system

labels can be provided by the user/system locally or by a trusted third party infrastructure,

42

such as PKI [38] or LDAP [39] [40] [41]. In either case, user and system labels must be

supplied in the prescribed formats. The use of third party infrastructures does allow for

the user and system labels to be realm specific.

4.6.3. Multi‐Valued	Labels	

As with object labels, a single user/system label may contain one or more named labels.

The syntax for User/System_Label is:

<User/System_Label>
 <Object_ID>Combined_User_System_ID</Object_ID>
 <Label>
 <Name>Classification</Name>
 <Type>HIER</Type>
 <Value>Confidential</Value>
 </Label>
 …
 <Label>
 <Name>Groups</Name>
 <Type>CATE</Type>
 <Value>A</Value>
 <Value>D</Value>
 </Label>
</User/System_Label>

Figure 6 - XML Representation of a User/System Label

43

4.7. Labeling	Algebra	

4.7.1. Introduction	

Thus far, the XML schemas for expressing conditions encapsulated by labels that are

bound to objects have been presented. In this section, the second component, the

Labeling Algebra for processing the labels is presented. Labeling Algebra is the logic

that is used to determine if access to the labeled object should be granted based on the

object’s own labels and those of the user and systems.

Access to the secured objects is granted if conditions detailed by the attached object

labels have been met by the user and systems labels. In general, this can be represented

by this statement;

When compared against the object’s labels, if the user and systems labels
satisfy the conditions defined by the access rules for the object then access
to the labeled object is granted, otherwise access is denied.

The process for determination of whether the rules have been satisfied is discussed in the

following sections.

4.7.2. Access	to	Labeled	Objects	

In order to be granted access to an object, a set of access rules must be successfully

satisfied. This can modeled formally as:

44

ሺݏ݈݁ݑܴ_ݏݏ݁ܿܿܣሻ ⇔ 	ܵܵܧܥܥܣ_ܶܰܣܴܩ	

The rules for gaining access to an object are captures as one or more tests. If any one of

these tests is TRUE, then access is granted. The access rules can be formally modeled as:

∨ ሺܶ݁ݐݏ௜ሻ௜ୀଵ,௠ ⇔ 	ݏ݈݁ݑܴ_ݏݏ݁ܿܿܣ

Where m is the number of test that is part of the Access_Rules

For each test, there are one or more rules that are evaluated. All of the rules must be

satisfied for the Test return a “TRUE”. Tests are formally modeled as:

∧ ൫ܴ݈ݑ ௝݁൯௝ୀଵ,௡ሺ௜ሻ ⇔ 	௜ݐݏ݁ܶ	

Where n(i) is the number of rules that are part of the ith Test

For each rule, a comparison between an object label and a user/system label is performed.

If the comparison operator yields a positive result then the Rule returns a “TRUE”. Rules

are formally modeled as:

,௝݈ܾ݁ܽܮ_ݐ௝൫ܱܾ݆݁ܿݎ݋ݐܽݎ݁݌ܱ ௝൯݈ܾ݁ܽܮ_݉݁ݐݏݕܵ/ݎ݁ݏܷ ݈ݑܴ	⇔ ௝݁	

Where Operatorj is the operator used to evaluate the jth Rule

At this point, access to a labeled object has been decomposed formally into a collection

of simple operations based on individual labels. Assessment of these operations yields

TRUE/FALSE values for the each label’s rule.

45

The rules are collected and assessed to produce the results for a test. If all of the rules

return TRUE values, then the result of the test is TRUE.

The rules are collected and assessed to produce the results for the access rules. If any of

the rules returns a TRUE value then the results for access rules is TRUE.

If the access rules are TRUE, then Access is Granted.

The logic used to capture this hierarchy is XML-based and is designed to align with the

information carried by the object, user and system labels.

4.7.3. Simple	Access	Rules	for	Object	Labels	

Introduction

The simple access rules for granting access to labeled objects are those operations that are

executed against a single type of object label. Because each type of label conveys the

object security metadata differently, the algebra for label evaluation must be tailored to

the type of label being evaluated. However, the processing of the different labels of

labels will ultimately yield results that are common. For access to labeled objects, the

two possible results of a label evaluation are shown in Table 3.

46

Table 3 - Possible Results from Labeling Algebra Operation

Result Value Result Condition
GRANT Permission to perform the requested operation on the labeled object is

granted
DENY Permission to perform the requested operation on the labeled object is

denied

Because each test produces a single Boolean result, controlling access to objects is a

matter of defining tests based on need and then processing the results with Boolean

algebra. Figure 7 shows the structure of an Access Rule file.

47

<Access_Rules>
 <Test>
 <Testname>{Testname}</Testname>
 <Rule>
 <Name>{Name}</Name>
 <Type>{Type}</Type>
 <Operator>{Operator}</Operator>
 </Rule>
 …
 <Rule>
 <Name>{Name}</Name>
 <Type>{Type}</Type>
 <Operator>{Operator}</Operator>
 </Rule>
 </Test>
 …
 <Test>
 <Testname>{Testname}</Testname>
 <Rule>
 <Name>{Name}</Name>
 <Type>{Type}</Type>
 <Operator>{Operator}</Operator>
 </Rule>
 …
 <Rule>
 <Name>{Name}</Name>
 <Type>{Type}</Type>
 <Operator>{Operator}</Operator>
 </Rule>
 </Test>
</Access_Rules>

Figure 7 - XML Representation of an Access Rule

Figure 7 shows that <Access_Rules> are composed of one or more test, each of which

contains one or more rules.

The <Test>{Test}</Test> tags are used to delineate each of the tests.

48

The <Rule>{Rule}</Rule> tag is used to delineate each of the rules that must be satisfied

for the test return a TRUE result.

If all of the rules in a test are TRUE, then the test is assessed as TRUE. If any of the

Rules fails to produce a TRUE result, then the test is assessed as FALSE. Each rule is

used to assess a different tag, but every rule returns the same two results; TRUE or

FALSE. This allows for tests to be tailored to the type of label being evaluated.

The test’s results are then collected and assessed. If one or more of the tests has been

assessed as TRUE, then the Access_Rules are also TRUE and access to the object is

granted. If none of the tests is assessed as being TRUE, then the Access_Rules is

assessed as FALSE and access to the object is denied.

The <Name>{Name}</Name> tag is used to designate the name of the rule. The

<Name> tag is also used to associate the rule with which labels in the object and

user/system labels will be used for the rule assessment.

The <Type>{Type}</Type> tag is used to designate which set of operators will be

invoked when processing the rule. There are 2 values for {Type} that are defined. Table

4 defines these values and how they should be processed.

49

Table 4 - Possible Values for the {Type} tag in a Rule

{Type} Value Processing Rules
HIER Process the Rule using the hierarchical rules
CATE Process the Rule using the categorical rules

The <Operator>{Operator}</Operator> tag is used to identify which operator is used

along with the object and user/system labels in assessing the rule. The possible

{Operator} values are determined by the {Type} tag.

Hierarchical Rules

For assessment of hierarchical labels, the each rule identifies the name of the label values

under consideration, the type of labels being considered, and the operator used. Figure 8

shows the format of a Rule used to evaluate a hierarchical label.

<Rule>
 <Name>{Name}</Name>
 <Type>HIER</Type>
 <Operator>{Operator}</Operator>
</Rule>

Figure 8 - XML Representation of a Hierarchical Access Rule

The <Name>{Name}</Name> tag identifies the object and user/system labels that are to

be assessed using the <Operator> tag.

50

The <Type>{Type}</Type> is always set to “HEIR”. This denotes the type of labels

being evaluation and the potential operator that can be used.

The <Operator>{Operator}</Operator> tag is used to identify the operation that will be

used to assess the user/system label against the object label. If the Operator is satisfied

then that Rule returns a “TRUE”. Otherwise, a “FALSE” is returned. There are six

operations that have been identified for use with hierarchical labels. Table 5 shows these

operations.

Table 5 - Operations for Hierarchal Labels

Operation Language Syntax
(EQ) Equals ሺܷ݈ܾ݁ܽܮ_݉݁ݐݕܵ/ݎ݁ݏ ൌ ሻ݈ܾ݁ܽܮ_ݐ݆ܾܱܿ݁ ↔ TRUE
(GT) Greater Than ሺܷ݈ܾ݁ܽܮ_݉݁ݐݕܵ/ݎ݁ݏ ൐ ሻ݈ܾ݁ܽܮ_ݐ݆ܾܱܿ݁ ↔ ܧܷܴܶ
(GE) Greater Than or

Equal
ሺܷ݈ܾ݁ܽܮ_݉݁ݐݕܵ/ݎ݁ݏ ൒ ሻ݈ܾ݁ܽܮ_ݐ݆ܾܱܿ݁ ↔ ܧܷܴܶ

(LT) Less Than ሺܷ݈ܾ݁ܽܮ_݉݁ݐݕܵ/ݎ݁ݏ ൏ ሻ݈ܾ݁ܽܮ_ݐ݆ܾܱܿ݁ ↔ ܧܷܴܶ
(LE) Less Than or

Equal
ሺܷ݈ܾ݁ܽܮ_݉݁ݐݕܵ/ݎ݁ݏ ൑ ሻ݈ܾ݁ܽܮ_ݐ݆ܾܱܿ݁ ↔ ܧܷܴܶ

(NE) Not Equal ሺܷ݈ܾ݁ܽܮ_݉݁ݐݕܵ/ݎ݁ݏ ് ሻ݈ܾ݁ܽܮ_ݐ݆ܾܱܿ݁ ↔ ܧܷܴܶ

Categorical Rules

For assessing categorical labels, there is no concept of hierarchy. Instead, categorical

labels embrace the concept of inclusive in a group. Figure 9 shows the format of a Rule

used to evaluate a categorical label.

51

<Rule>
 <Name>{Name}</Name>
 <Type>CATE</Type>
 <Operator>{Operator}</Operator>
</Rule>

Figure 9 - XML Representation of a Categorical Label

The <Name>{Name}</Name> tag identifies the object and user/system tags that are to be

assessed using the <Operator> tag.

The <Type>CATE</Type> denotes that this rule is applicable to a categorical label and

that both the object and user/system labels must be defined as categorical labels. If either

the object or user/system label is not categorical, then the Rule is set to FALSE.

The <Operator>{Operator}</Operator> tag is used to identify the operation that will be

used to assess the user/system label against the object label. If the Operator is satisfied

then that Rule returns a “ TRUE”. Otherwise, a “FALSE” is returned. For simple

categorical labels, there are two cases to consider. In the first case, the user and system

labels contain at least one of the values associated with the object. In the second case, the

user and system must contain all of the label values associated with the object.

52

Table 6 - Category Label Operators

Operator Description
ANY Each set of User and Systems labels must include at least one of the

categories identified by the Object labels
ALL Each set of User and Systems labels must include all of the categories

identified by the Object labels

4.8. Reference	Monitors	

4.8.1. Introduction	

Beyond simply labeling objects and having an algebra for processing the object labels,

there needs to be applications for managing the security of the objects. These

applications will make use of the security labels and labeling algebra to decide if the

labeled object should be released. As the security labels are external to the labeled object

and can be removed without any loss of integrity or security, they can be processed in

advance of the labeled object being exposed.

RFC 1457 [42] states:

 “In general, security labeling by itself does not provide sufficient data
security; it must be complemented by other security mechanisms.”27

27[42] pg 1

53

While this statement is almost self-evident, it establishes the need for external

infrastructure mechanism that work with an object’s security labels, the user and system

labels, and the rules for access, in order to provide the complete security mechanism.

The DoD 5200.28 [9], sometimes referred to as the “Orange Book”, mandates the use of

a “Reference Monitor” as a means of controlling access to system objects at the “B3”

level. The Reference Monitor concept was originally proposed by J. Anderson in an Air

Force Study[43]. As documented by the Orange Book, the Reference Monitor “enforces

the authorized access relationships between subjects and objects of a system"28
.

Reference Models or “Security Kernels” as they are often called, are used to implement

access policies with a system. In most cases, Reference Monitors are used to enforce

Mandatory Access Controls (MACs). Mandatory Access Control is defined as:

A means of restricting access to objects based on the sensitivity (as
represented by a label) of the information contained in the objects and the
formal authorization (i.e. clearance) of the subjects to access information
of such sensitivity.[45]

What is important to take from this definition is that information about the objects and

subjects29 is represented as labels and that it is only the information in the labels is used

to determine access. Many of the models used in the development of Reference Monitors

are based on the work done by Bell and La Padula.[46] Figure 10 is a reprint of Figure 1

28 [44] Section 6.1
29 For my dissertation, subjects refer to users and systems.

54

from Ames, Gasser, and Schell’s paper on Security Kernels. It shows the role of the

Reference Monitor in controlling a subject’s access to objects.

Figure 10 - (Figure 1. Reference Monitor)[32]

Figure 11 shows the how labels and rules are used in my dissertation’s interpretation of

the Reference Monitor. Subjects are replaced by users and systems with their security

information carried by the user/system labels. Objects, the information being protected,

are still present and their information is carried by the object labels.

55

Reference
Monitor

Object
Labels

User
Labels

Grant/Deny
Access

Decision

Access Rules &
Trusted Attributes

Figure 11 - The Reference Monitor

In order for a Reference Monitor to be effective, its placement is critical. Ames, Gasser,

and Schell state “that all access to information must be mediated by the kernel [Reference

Monitor]”[46]. If users are able to circumvent the Reference Monitor, then it is

ineffective as a security mechanism.

4.8.2. Detailed	Discussion	

For a Reference Monitor to be of value for controlling access to object, it must interact

with other components in the infrastructure. Figure 12 shows the interconnection

between it and other elements of the infrastructure as well as the internal structure of the

Reference Monitor. Beyond the elements shown, the Reference Monitor may interact

with some form of auditing system. For the purposes of clarity, these are not included

56

because they are not integral to the Reference Monitor’s operation. For my dissertation,

the Reference Monitor is being divided into three parts.

Trusted Server

Application Server
Reference

Monitor

Access
Processor

Release
Mechanism

Release Object

Security Lbl

Request
Processor

Access
Rules

Released
Object

Object w/ Labels
to Be Released

Request for
Information

Object
Label

Information
Request
W/ Label

Trusted
Attributes

Figure 12 - Decomposed Reference Monitor

There are two external components with which the Reference Monitor will interact as

part of the label based access control process. The two external components are the

“Trusted Server” and the “Application Server.” The three internal components of the

Reference Monitor are the “Request Processor“, the “Access Processor“, and the

57

“Release Mechanism.” Figure 13 shows the sequence of activities associated with the

Reference Monitor’s internal components and the external components with which it

interacts.

Requester Req Proc Application Server Acc Proc Rel Mech

Info Req w/ Lbl

Reg for Info

Obj Lbl

Sec Lbl

Released Object

Trusted Srvr

Reqt Access Rules

Ret'n Access Rules

Req't Trusted Values

Ret'n Trusted Values

Rel Obj

Object

Figure 13 - Sequence Diagram for Decomposed Reference Monitor

The “Trusted Server”, which was originally called the “Reference Monitor Database”, is

an external mechanism that will provide the Reference Monitor with rules that will be

used. These rules are critical to the operations of the Reference Monitor and safeguards

will need to be taken to insure that they are always available and have not been modified

58

without proper authorization. The second function of the Trusted Server is to provide

“Trusted Attributes” securely. Trusted Attributes is that information that is required to

process conditional labels. Because Trusted Attributes are used as part of the access

process, the integrity is as important as the access rules. For example, if an object’s label

provides for automatic declassification after a given date, then providing the Reference

Monitor with an inaccurate date may allow a classified document to be released

prematurely as unclassified. This represents a data spillage.

The “Application Server” is the second external mechanism that interacts with the

Reference Monitor. My dissertation does not discuss the Application Server with much

detail. The Reference Monitor expects to have limited interaction with Application

Server, so the internal workings of this server are not greatly affected by the Reference

Monitor. However, the Application Server must be isolated from any interaction except

that which has been vetted by the Reference Monitor. The interaction between the

Reference Monitor and Application Server will be discussed as part of the Reference

Monitor discussion.

The first part of the Reference Monitor to be discussed is the Request Processor. The

Request Processor acts as the front-end to the Reference Monitor. It interacts with the

user requesting an object by receiving the labeled request object. The request processor

is responsible for removing the external object labels and generating the request object

that will be processed by the application server. The type of service being requested will

determine the type of server that will be used. As the use of object labels should not alter

59

the content of the original object, conventional service providers, such as web servers,

file servers and database servers, can be used. The request processor’s second

responsibility is to separate the security labels from the request object and provide them

to the Access Controller. It makes a copy of the user/system label. It passes the original

labeled object onto the Application Server and provides the user/system label to Access

Processor. For every request for information that the Application Server receives, it

return both a labeled object and a copy of the object’s label. The object’s label is

provided to the Access Controller as part of the process for making access control

decision. The labeled object is provided to the Release Mechanism.

The second part of the Reference Monitor is the “Access Controller”. The Access

Processor is the central security component in the Reference Monitor. It is responsible

for assembling all of the information required to make access decisions. If any

conditional operations are required, the Access Controller resolved the conditional

operations to create the new object and user/system labels that will be used in the

determination. Once the required information has been collected and/or pre-processed,

the Access Processor processed the information in order to determine if access to the

object should be granted or denied. Beyond making this critical decision, the access

controller is not involved with any of the processing needed to fulfill the request. The

access decision is then communicated with the “Release Mechanism.”

The final part of the Reference Monitor is the “Release Mechanism”. The Release

Mechanism is responsible for executing the Access Controller’s decision. If the “Grant

60

Access” result is provided, then the Release Mechanism releases the Application Server’s

results back to the requestor.30 If the “Deny Access” result is provided, the Release

Mechanism results in an access denied message and terminates the session.

4.9. Network	Framework	

4.9.1. Introduction	

It is worth restating that at the time that security models, such as Bell-LaPadula and Biba

were developed, the major computing resources were mainframe computers with very

little connectivity. Therefore, there was little need to consider the infrastructure upon

which the information was hosted. By virtue of the information having been loaded, the

hardware is authorized to have access to that information. Since then, the typical

computing environment has changed dramatically. Today the majority of computing

resources are not centrally located and operating in a standalone environment; they are

interconnected via local area networks to form a network of connected computing

resources, ranging from personnel computers, smartphones, and netbooks on the lower

end to large mainframes, and supercomputers on the upper end. These local area

networks are connected to larger networks. All of which are connected to create a

30 As with the Access Controller, the Release Mechanism may be required to perform ancillary operations,
such as adding additional wrappers containing audit trail and other security information. This is not part of
this discussion and does not affect the work presented.

61

network of networks, collectively called “the Internet”. Currently estimates place the

total number of Internet users at just over 2 Billion31 with just over 818 Million Internet

connected devices32. Because of this shift in computing paradigm, security labels must

be applied, not just to users, but to any infrastructure components over which the

information object may travel. One key feature that the Internet does provide is

consistency at the network protocol level. Unlike computing environments which are

highly heterogeneous, the protocols used to exchange information over the Internet are

more homogeneous across the network. Much of the credit for this consistency can be

attributed to the Internet Engineering Task Force (IETF)33 and the publication of

“Requests for Comments” or RFC. RFCs are used to specify the protocols that are used

for information exchange in an Internet environment. They are implementation

independent and as such remove much of the complexity. Each RFC is written to address

a single topic. By keeping this “as small as possible” approach to defining standards, the

Internet has been able to adapt to changes and mature to meet the changing needs of its

world-wide community. However, while the underlying protocols and standards are

common throughout the Internet, the level of trust, access and security associated with

different parts of the Internet varies greatly.

31 Internet World Stats (http://www.internetworldstats.com) states the total number of Internet users at
2,095,006,005 as of March 31,2011[47]
32 The Internet Systems Consortium (http://www.isc.org) states the total number of hosts advertised in the
DNS at 818,374,269 as of Jan 2011[48]. This number does not account for the any hosts that don’t have a
DNS registration, such are private network protected by NATing firewalls, which would only present a
small number of registered addresses.
33 http://www.ietf.org

62

While the use of Reference Monitors, which front-end application servers, may be

sufficient for an intranet environment, especially those were all of the systems are

considered to be equally secure and able to handle any information that is present on the

intranet. It does not scale to an extranet or Internet environment. For the larger and more

heterogeneous network environments, a tiered system of Reference Monitors is required.

Using Reference Monitors in this manner offers greater flexibility and allows more

complicated networking environments to be realized. A key requirement for the

Reference Monitors within a given infrastructure is the need to work together. The

National Computer Security Center’s Trusted Network Interpretation [10], sometimes

known as the “Red Book”, describes the all of the Reference Monitors in a network as a

single abstract concept as the “Network Reference Monitor”. The Network Reference

Monitor controls which users are granted access to which objects. As with a single

Reference Monitor, all requests for labeled information must be routed through one or

more of the Reference Monitors in the network, in order for the Network Reference

Monitor concept to work properly.

An additional consideration for securing objects in a network environment is the systems

that compose the network. The need to control access to information is based as much on

the system as the user of the system. Figure 14 shows a Reference Monitor, updated to

reflect the need to include the hardware systems. An example of why the need to

consider the hardware as well as the user is the user with a TOP SECRET clearance

attempting to read a SECRET document. If the user is working at a workstation that has

been approved to handle SECRET (or TOP SECRET) information, then that user will be

63

granted access to the information. If the same user with the same clearance were to

attempt to read the same SECRET document from their home computer, which has not

been cleared to read SECRET document, that same request would be denied.

Reference
Monitor

Object
Labels

User
Labels

Grant/Deny
Access

Decision

Access
Rules

System
Labels

Figure 14 - Updated Reference Monitor

4.9.2. Network	Topologies	

As networks increase in size, they become increasingly more segregated. Most

organizations will subdivide their networks to match the business functions supported by

the hosts on that segment of the network as well as the need to afford some portions of

the network greater security. A typical corporate network may include subnetworks for

engineering, finance, human resources, and sales. Additionally, the organization may

host its “public presence” on an external network segment called a “DMZ”. The DMZ

64

will host web servers and other resources that the organization wants to make available to

customers and other parties outside of the company, while providing additional security

to the internal corporate network. Figure 15 shows a notional corporate network.

Sales
Subnetwork

Human Resources
Subnetwork

Finance
Subnetwork

Engineering
Subnetwork

DMZ

The Internet

Corporate
Firewall

Corporate Backbone

Finanace
Firewall

Human Resoruce
Firewall

Sales
Firewall

Engineering
Firewall

Figure 15 - Notional Corporate Network.

65

Between each of the subnetworks and the corporate backbone is a router or firewall as

well as other network security appliances.34 The role of the firewalls and routers is to

control access to the subnetwork and thus the information on the subnetwork, while still

providing the needed conductivity. For example, the engineers on the engineering

subnetwork need access to the Internet in order to download software updates, check on-

line engineering journals, and conduct research, but the organization needs to prevent the

corporate engineering information from being accessed from outside the engineering

department. One of the major shortcomings of this approach is that it requires the

firewalls to be aware of when it is acceptable to release information and when it is not.

Firewalls can be configured to control the type of network traffic that can traverse the

firewall. They can control to which hosts that traffic can be sent or received. However,

while a firewall can determine if a given type of traffic is considered acceptable, they are

very limited in determining if acceptable traffic types35 are transporting information that

should not be released. Some of the new firewalls are able to perform “deep packet

inspection.” However, this inspection is resource intensive and can’t understand the

meaning of what is being exchanged. Object labels can provide the necessary

“understanding” about the information being passed without the need to analyze every

34 These appliances may include Intrusion Detection Systems (IDS), network traffic monitors, virus
scanners, and other network level hardware and software components designed to improve the security of
the network.
35 Acceptable traffic types may include web traffic, email, streaming media, database queries, etc. Each of
these acceptable traffic types is controlled by enabling or disabling pre-assigned TCP and UDP ports at the
firewall. Controlling which hosts can send and receive what type of traffic is manage by determining
which network addresses can accept what type of traffic.

66

byte of information in the packet. By upgrading the firewalls and router so that they are

label aware controlling access to information objects can be realized at the object level.

4.9.3. Network	Proxies	

When a Reference Monitor is able to include object labels in its decision making process,

it is called a “Network Proxy” and operates in one of two configurations; Transfer Nodes

and Request Proxies. The concept of Network Proxies is discussed in RFC 1457[42]. In

this RFC, Network Proxies are presented as either end-user systems or intermediate

systems. The key idea being that security based on labeling must account for the network

topology, not just the user. Unfortunately, it does not detail the use of labels as a means

of doing much more than network traffic control.

While Reference Monitors are used to protect information and are installed between the

information and the user, Network Proxies are installed on the system hosting the

information and are installed throughout the network to control the transport of labeled

objects between different parts of the network or infrastructure. For the notional

corporate network, shown in Figure 15, each of the subnetworks would have a Network

Proxy installed on each of the Firewalls as well as any network connected information

source that is using labels to secure information. Because of this, a request for

information will be handled by more than one Network Proxy.

67

A key feature of Network Proxies is that they establish associations between themselves,

other Network Proxies, Information Providers36, and the end user hosts. These

associations are the basis for determining how information will be passed between the

different parts of the communication path. There are two types of associations: weak or

strong. If the association allows the information to be transferred between nodes in the

communication path before the end-to-end connectivity has been established, then the

association is weak. If the end-to-end connectivity is confirmed before any information

is transferred, then the association is strong.

In a weak association, it is not necessary for all of the associations in the network path to

be verified before a labeled object is transferred. Before each transfer, the object label of

the response object is compared against the user/system labels to insure that the object is

not inappropriately released. At each transfer in the process, the connection of the next

transfer is tested. If the next association is acceptable, then the labeled object is

forwarded to the next Network Proxy. Figure 16 shows the sequence of exchanges that

transpire when weak association is used.

36 Information Providers are Reference Monitors that are front-ending the system that is providing the
information.

68

User N/W PX 1 N/W PX 2 N/W PR 3 Info Prov Info Store

Reqt (U/S)

Reqt(U/S/NP1)

Reqt(U/S/NP2/NP2)

Reqt(U/S/NP1/NP2/NP3)

Reqt

Resp

Resp(Obj_Lbl)

Resp(Obj_Lbl)

Resp(Obj_Lbl)

Resp(Obj_Lbl)

Figure 16 - Sequence Diagram for Weak Association

In a weak association, the user submits a request, along with the request, their user label

and system label are sent. The first Network Proxy forwards the request adding their

system label to the request. This is repeated for all Network Proxies, until the request

reaches the information provider. At the information provider, the request is processed

and the attached user/system label is evaluated. If the user/system label is acceptable,

then the labeled object is generated and returned to the last Network Proxy. The last

Network Proxy then forwards the labeled object back to the next Network Proxy in the

chain. This is repeated until the labeled object is returned to the user. The advantage of

weak association is that it is better able to support low-bandwidth or intermittent network

69

connections. The disadvantage is that it can leave a labeled object stranded on an

intermediate Network Proxy.

In a strong association, the entire network path is validated. For this to happen, each

connection in the communications path is assessed and all must be considered acceptable

before the labeled object is released by the Information Provider. Only after the complete

network path has been validated is the transfer of the labeled object initiated. Figure 17

shows the sequence of exchanges that transpire when strong association is used.

70

User N/W PX 1 N/W PX 2 N/W PR 3 Info Prov Info Store

Reqt (U/S)

Reqt(U/S/NP1)

Reqt(U/S/NP2/NP2)

Reqt(U/S/NP1/NP2/NP3)

Reqt

Resp(Obj_Lbl)

Check(Obj_Lbl)

Check(Obj_Lbl)

Check(Obj_Lbl)

Check(Obj_Lbl)

Ack(Obj_Lbl)

Ack(Obj_Lbl)

Ack(Obj_Lbl)

Ack(Obj_Lbl)

Resp(Obj_Lbl)

Resp(Obj_Lbl)

Resp(Obj_Lbl)

Resp(Obj_Lbl)

Figure 17 - Sequence Diagram for Strong Association

In a strong association, the user submits a request, along with the request, their user label

and system label are sent. The first Network Proxy forwards the request adding their

system label to the request. This is repeated for all Network Proxies until the request

reaches the Information Provider. At the Information Provider, the request is processed

and the attached user/system label is evaluated. If the user/system label is acceptable,

71

then the labeled object is generated. The object’s label is then attached to a “Check Path”

object and the labeled Check Path object is then returned to the last Network Proxy. The

last Network Proxy evaluates the response object’s label against the user/system label. If

the user/system label is acceptable, then the Network Proxy forwards the Check Path

object back to the next Network Proxy in the chain. This is repeated until the Check Path

object is returned to the user’s system. At the Network Proxy on the user’s system, the

Check Path object is acknowledged and sent back to the Information Provider through the

chain of Network Proxies. Once the acknowledgement is received by the Information

Provider, the original labeled object is submitted into the chain. The advantage of using

strong association is that the communication channel is confirmed before the labeled

object is placed on the network. The disadvantage is that the response time is greater and

the quality of the network is a factor.

The choice of association to be used will depend on the network topology, the robustness

of the network connections as well as the criticality and sensitivity of the information

being requested. Larger networks with less robust connections will favor weak

associations. Stronger associations are preferred when the information is more critical

and/or highly sensitive.

One network security feature that Network Proxies facilitate is security within the

network, versus security between endpoints. With Network Proxies, a network

environment can be partitioned based on the level and control and security that each

partition network affords. Figure 18 shows how Network Proxies can be deployed to

72

form an infrastructure that allows for control of information throughout the entire

network, not just at the Information Provider and End User system.

Unsecured
Realm

Secured
Realm

Highly
Secured
Ream

Secure
Network

Publc
Network

Private
Network

Highly
Secure Data

Proxy

Proxy

Secured W/S

Trusted W/S

Untrusted W/S

Secure Data

Unsecure Data

Figure 18 - Notional Placement of Network Proxies to form a Controlled Network

73

A key component of creating an infrastructure using Network Proxies is insuring that

Network Proxies can identify themselves and validate that other Network Proxies and

Information Providers are legitimate. For smaller collections of Network Proxies, static

lists maintained locally on each proxy are a viable administration tool. As the collections

grow larger and more geographically dispersed, alternative mechanisms must be

incorporated. There are numerous mechanisms that are already available. These include

centralized server solutions such as Kerberos [49], centralized infrastructure solutions

such as Public Key Identification (PKI)[38] [50], and decentralized solutions such as

openPGP [51].

There are two varieties of Network Proxy; Transfer Nodes and Request Proxies

A Transfer Node is used to transfer the labeled object between two other nodes in the

network. As it is a store and forward location or “queue” in the network, it serves as a

point at which decisions, about how the object being transferred, are made. Transfer

Nodes are used should be used when the security posture of the infrastructure changes

greatly, but there is still a common understanding of the meanings of the object labels.

Request Proxies differ from Transfer Nodes in that a Transfer Node simply forwards the

labeled object onto the next node; a Request Proxy is used as an entry point into the

labeling infrastructure for request from users or systems that are not label aware or there

is a major change in the use of labels and/or rules. They work by accepting a request

from either a known or unknown user. They then create an appropriate set of user labels

for that user. In the case of a known user, a third party infrastructure tools, such as an

74

LDAP server, can be used to provide the user label. For an unknown user, a simple

default label is used. For large networks that are broken up into regions with vastly

different security characteristics, request proxies can be used as gatekeepers or Cross

Domain Solutions at the boundaries. It is worth noting that if within a region there are

label aware resources, then a Transfer Node should be used at the interconnection.

Otherwise, every host in the network region will be treated identically.

4.9.4. Transfer	Nodes	

Transfer Nodes are used to transfer labeled objects between the end user and the ultimate

destination, the information request server or Network Proxy. They allow a large

network environment, such as the Internet, to be broken into smaller regions or segments.

By compartmentizing a network with transfer nodes, the migration of information objects

can be controlled based exclusively on the external labels. Figure 19 shows a sample

network.

75

Private Corp N/W

Internet

TN_4 TN_5

Application
Server

IP_1TN_1EU_1 TN_2

TN_6EU_2 TN_7

Highly Secure

Secure

Unsecure

Unlabeled

TN_3

Figure 19 - Sample Network with Transfer Nodes

In Figure 19, there are 7 transfer nodes, identified as TN_1 through TN_7. Additionally,

there are 2 End User (EU_1 and EU_2), an Information Provider (IP_1), and the

Application Server. Finally, there are 8 associations that are depicted. The association

between RM_1 and the Application Server, shown in blue, is an unlabeled object

transfer; it is included for completeness, but does not require an association to be

established for information exchange.

In the first example, the end user has requested an information transfer that requires a

highly secured connection for the information transfer. The green associations indicate

connections that are highly secure and can support this request. They show that by

76

transferring the request and information objects via the private corporation network, it is

possible to create associations end-to-end that are secure enough to support the

information transfer. Because a highly secure connection can’t be established between

TN_2 and TN_3, or TN_3 and IP_1, the Internet based connection is not a viable path for

this transfer.

Because only an unsecure association can be between TN_2 and TN_3, any connection

that makes use of this network path can’t be used. In the real world, this might represent

the transfer of classified information via the Internet. In this example, the yellow

associations indicate that some types of “restricted” information can be sent via the

Internet, but the end user request exceeds that level of security.

In a second example, end user, EU_2, is requesting information that requires only a

secure connection. Because either highly secure connections (EU_2 to TN_6) or secure

connections (TN_6 to TN_7 and TN_7 to TN_3) can be established this network path can

support the requested information transfer and the transfer is allowed. In this example,

the second secure connection (TN_7 and TN_3) may have been enabled by the use of

encryption on the Internet portion of the network path.

In either of these examples, the association could have been either weak or strong. For a

strong association, four separate connections, EU_1 to TN_1, TN_1 to TN_4, TN_4 to

_TN_5 and TN_5 to RM_1 or EU_2 to TN_6, TN_6 to TN_7, TN_7 to TN_3 and TN_3

to RM_1) would need to be established before the information was transferred.

77

If a weak association was being established, then the information transfer would have

begun once the first association was established. In the case of the first example, this

would mean that the information would have been sent from EU_1 to TN_1 and then

from TN_1 to TN_2. It is only when the association between TN_2 and TN_3 could not

be established that the connection was aborted. Weak associations carry the added

responsibility for purging the information request that was stranded at node TN_2.

4.9.5. Request	Proxies	

The second type of Network Proxy is the Request Proxy. The Request Proxy is an “entry

point” into the label based framework; it permits users and systems that are not label

aware to make use of information that is secured by the framework. Figure 15 and Figure

18 shows notional networks. The first figure shows a corporate network, the second

shows a larger network. In both cases, portions of the network can be treated as a single

user or system. For example, any user of a resource in the corporate DMZ should not

have the same level of access to resources behind the corporate firewall. Because of this,

extending the labeling framework out into the DMZ provides no greater security. A

request proxy can be installed as part of the corporate firewall. This extends the label

based framework without incurring the cost of “labeling” every user and every system

that the DMZ supports.

However, users of resources in the corporate DMZ may or may not be a known user. An

unknown user would be someone, who does not have a predetermined relationship with

78

the corporation. This might be someone using the corporate web server to comparison

shop. A known user has a predetermined relationship with the corporate. An online

shopper, who has bought from the company in the past, is an example of a known user.

Figure 20 shows the sequence diagram for a known user session.

User Web Server I&A SrvrRequest Proxy Transfer Node Info Prvdr

Login

Check User

User Ok

Reqt for Info

Labelled Reqt

Labelled Reqt

Labeled Resp

Labelled Resp

Unlabeled Response

User Resp

Disp Screen

User Reqt

Reqt User Info

Resp User Info

Figure 20 - DMZ Transaction for a Known User

The known user would log onto the corporate web server. Once their identity is

confirmed, the known user could request their account information (or any other

79

transaction requiring access to the sales database). The web server would forward the

request to the Request Proxy, which is part of the corporate firewall. The request proxy

would create a user label based on the user’s login and a generic system label. The

generic system label would reflect the fact that the web server in the DMZ was

forwarding the request. At this point, regular labeled transaction can be executed. The

labeled request would be forwarded to the Transfer Node in the Sales Firewall. The

request would be evaluated and if approved then forwarded to the Information Provider

in front of the sales database.

For an unknown user, Figure 21 shows the transactions. For this case, there is no initial

interaction with the Identification and Authentication (I&A) server to validate the user.

Instead, the web server begins by presenting those resources that are available to an

unknown user. When a request for additional information is made that requires access to

labeled information, the web server submits a ‘Reqt for Info’. This request includes an

indication that the user is unknown. (This is either clearly indicated or inferred by the

absence of a valid User ID.) For an unknown user, both a generic system label and a

generic user label are returned by the I&A server. After that, the forward and request

process would be identical. The key feature of the Request Proxy is that extends the use

of labels to users and systems that are not label aware. By doing so, my label based

framework is able to treat this larger community without the need for special security

practices.

80

User Web Server I&A SrvrRequest Proxy Transfer Node Info Prvdr

Login

Check User

User Ok

Reqt for Info

Labelled Reqt

Labelled Reqt

Labeled Resp

Labelled Resp

Unlabeled Response

User Resp

Disp Screen

User Reqt

Reqt User Info

Resp User Info

Figure 21- DMZ Transaction for a Unknown User

4.10. 	Interoperability	

4.10.1. Introduction	

This section presents a discussion on how this object labeling framework can be

integrated with external access control solutions to form a more complete access control

solution. For this discussion, the Government Open Source Access Control – Navy

(GOSAC-N) system was selected as a representative external solution. GOSAC-N is an

81

open source access control system that is maintained by Technica Corporation37 and

posted to the U. S. Government’s Forge.mil38 website. The GOSAC-N system is

available as a reference implementation (RI) that demonstrates a “navy” website support

three communities of interest (COIs) and how GOSAC-N is able to limit the content

returned to the user based on user and object attributes. In the case of GOSAC-N, neither

the user attributes nor the object attributes are conveyed with the request or object.

Instead, they are maintained as part of the system infrastructure. The key focus of

GOSAC-N is the policy management for access control determination.

4.10.2. GOSAC‐N	System	Architecture	

The GOSAC-N system is designed to enforce access control by making access control

decision based on the user identification and a pre-established set of rules for the object

being protected. Unlike traditional access control systems that rely on statics technology,

such as Role Based Access Control (RBAC) or Access Control Lists (ACLs), GOSAC-N

relies on newer technologies for implementing access control policies. These new

technologies, which include Attribute Based Access Control (ABAC) and Policy Based

Access Control (PBAC), are intended to permit a system make access control

determination more dynamically. Figure 22 shows the GOSAC-N system architecture.

37 http://www.technicacorp.com
38 http://www.forge.mil

82

The GOSAC-N architecture is defined in detail in the GOSAC-N: Technica PBAC

Reference Implementation [52]. For this discussion, there are two components of

interest. The first is the Policy Enforcement Point (PEP) and the second is the Policy

Decision Service (PDS) perform the equivalent functions to that of the Reference

Monitors in the Object Labeling Framework.

The Policy Enforcement Point has the responsibility for enforcing the decisions that are

made by the Policy Decision Service. It serves both as the point of presence for the user

making requests of the system and also as the source for the system’s response. When

compared against the Object Labeling Framework, its functions are performed by the

Request Processor and the Release Mechanism. Unlike the Request Processor and the

Release Mechanism, the PEP is highly tailored to support the type of information being

processed.

The Policy Decision Service has the responsibility for making the access control

determinations. In this manner, it functions much like the Access Processor in the Object

Label Framework. Unlike the Access Control Processor, none of the information that is

used in making the determination is provided by either the labels associated with the

object being requested or the initial query from the user. While user attributes are used in

making access determination, they are based on information that is not provided as part

of the query, but rather by the infrastructure.

83

Figure 22 – (Figure 2. ABAC/PBAC Architectural Components)39

4.10.3. GOSAC‐N	System	Functionality	

As GOSAC-N is an access control system, its primary function is to control access to the

information that it is protecting. Additionally, it is intended to address to overcome some

of the shortcoming of the more traditional access control systems. GOSAC-N is intended

39 [52]Section 2.1 pg 4

84

to support a shift in paradigm from “need-to-know” to “need-to-share” and to eliminate

“the stovepipes created by traditional access control methodologies”40

To implement this new paradigm, GOSAC-N replaced the traditional technology (RBAC

and ACLs) for access control with newer technology (ABAC and PBAC). In so doing,

GOSAC-N is able to allow for decision making at the time that the request for an object

is made, rather than in advance of that request. It also allows for more responsive

management of the user communities. In a traditional ACL based systems, users were

added and removed from lists. These lists detailed who would have access to the

information controlled by that list. If there was a change to the policy for that

information, then the list would need to be updated manually. With ABAC/PBAC, users

would be given attributes and based on policies, access to the object would be

determined. Changes to either the user’s attributes or the policy would be reflected by

access control decisions that were based on either. Entire user communities could be

granted access by changing a single policy and the scope of information that a user would

have access to could be modified with a single attribute change.

4.10.4. Comparison	to	Object	Labeling	

Table 7 details the difference between GOSAC-N and the Object Labeling Framework.

In summary, GOSAC-N focuses less on the infrastructure and the use of access control in

40 [53]Section 2, pg 2

85

a confederated environment. It is intended to address the need to improve how access

control decisions are executed based on a new paradigm. The Object Labeling

Framework does not develop as complete a toolset for executing access control decisions,

but rather focuses on developing a confederated framework that can be deployed

throughout an infrastructure to manage the distribution of and access to information.

An additional distinction between the two is how security metadata is handled. GOSAC-

N relies on centrally managed user and object attributes that are provided to the PDS at

the time that access is requested. This information is used to make access control

decisions that are based on each request as a separate action. The Object Labeling

Framework is based on the user and object attributes being transported throughout the

framework and provide to the Reference Monitor in conjunction with the query.

Additionally, the Object Labeling Framework provides the construction of aggregates

that can utilized when the access control decision is required or stored to provide a

reference for future decision.

86

Table 7 – Comparison of Functionality between GOSAC-N and Object Labeling

Functionality GOSAC-N Object Labeling
Distributed
Architecture

No provisions for multiple
PEPs

The use of Network Proxy
allows for a distributed
architecture

User and
System
Identification

User/System I&A are not
provided as part of the query
(PKI login is supported)

User and System information is
included as part of each query
object

Object
Metadata

There are no provisions for
object metadata

External object metadata is an
integral part of the Object
Labeling Framework

Aggregation No provision for support
object aggregation

Object Labeling supports
aggregation

Aggregation
Avoidance

No provision for support of
aggregation avoidance

Object Labeling supports
Aggregation Avoidance

History of
Access

No provisions for maintaining
a history of access

Object Labeling Framework
details how a history of access
can be supported.

Reusability Each GOSAC-N PEP is “very
resource specific” and must
be tailored to the resources
being protected.

Object Labeling is intended to
abstract information to a
common object format. Reuse
should not require tailoring

Multiple
Object
Support

GOSAC-N focuses on
information as discrete
objects

Object Labeling allows for
support of multiple objects
through aggregation

4.10.5. Summary	

In summary, both GOSAC-N and the Object Labeling Framework extend the bound of

access control solutions that are available to the community. While there is some overlap

in architectural functionality, this overlap provides for interfaces, where the two efforts

could leverage the work being done by the other.

87

4.11. Cost	Effectiveness	

4.11.1. Introduction	

Appendix F - Label Based Access Control Demonstration System contains a copy of the

test plan for the reference implementation for the Object Labeling Framework.

This test plan details the test methodologies used to affirm that object and user labeling

can be used as the basis for an access control system. Additionally, the report documents

the results that show that this technology is viable as an access control tool. Finally, the

report includes a cost assessment that shows that the functionality that was demonstrated

by the system can be realized by a system that is cost effective. In summary, the

reference implementation was able to support 10,000 access control requests in under

26.6 seconds. Similar levels of performance were observed for the creation and labeling

of information as well as object aggregation.

The reference implementation used for testing was designed to demonstrate that object

labeling could be used for access control; that an acceptable level of performance could

be obtained; and that the system used for these tests could be acquired economically. The

reference implementation’s performance can be greatly improved through the use of

software development practices commonly in use today. Many of the test results reflect a

“startup” cost in time associated with the initial execution of the processes. These times

could be reduced if persistent processes were used, rather than the creation and startup of

each process, each time it was executed.

88

4.11.2. Test	Results	

Figure 23 shows the rate at which the system was able to create Type 1 SFF objects from

raw information. From the chart, it can be seen that the system is able to handle a wide

range of file sizes effectively. From the data, it appears that the “knee” in the curve only

appears for file size above 2,000,000 bytes.

For object aggregation, the systems performance is equally good. Table 8 shows the

results from the aggregation tests. What this data reveals is that the performance begins

to taper off when more than 16 objects are in an aggregate. However, the performance

when aggregating 64 objects is still 90% of that when aggregating 16 objects. One

feature that Figure 24 reveals is that the average time to perform an aggregation is still

less than 150 milliseconds for an aggregate with 64 objects. When coupled with the 2.5

millisecond time for making an access control decision, the total “real” time required to

make an access control decision for dynamically created aggregates is still approximately

150 milliseconds.41

41 Much of the time associated with creating an aggregation appears to be independent of the size of the
aggregate and most like represents the processing time required to initial the aggregation process.
Reduction of this time should be possible through the use of a persistent aggregation processor.

89

Figure 23 – Data Rate for Wrappering Objects\

Table 8 – Aggregation Rates

Data Rate
sha1 sha256 sha384 sha512

2 15.82 15.82 15.71 15.72
4 30.89 30.83 30.82 30.90
8 61.33 61.25 61.41 61.33
16 120.77 120.49 120.86 120.81
32 223.30 223.26 223.38 222.87
64 432.00 431.29 431.49 431.80

1

10

100

1000

10000

100000

1000000

10000000

100000000

1 10 100 1000 10000 100000 100000010000000

sha1

sha256

sha384

sha512

90

Figure 24 – Average Time to Aggregate multiple objects

0.125

0.13

0.135

0.14

0.145

0.15

0 10 20 30 40 50 60 70

sha1

sha256

sha384

sha512

91

5. EXTENDED	USAGE	OF	OBJECT	LABELS	

5.1. Introduction	

Thus far, object labels have been used as a means to grant or deny access to information.

This information is contained in individual objects and the labels are evaluated on a one

by one basis. By deploying Information Providers and Network Proxies throughout a

network infrastructure, it is possible to secure the information that has been distributed

across the network. However, as the volume of information that is immediately available

because of the infrastructure increases, so does the need to expand the range of control of

access to that information. Beyond evaluating object labels singularly, it is possible to

provide that greater object security by using object labels. By working with multiple

object labels concurrently, a wider range of security problems can be addressed. I have

extended the work done thus far to address some of the problems associated with

aggregation.

The first of these extensions is to consider two or more objects as a collection of objects.

This is referred to as “Information Aggregation”. Information Aggregation considers the

effects of grouping two or more objects together to form a single compound object.

Because it does not consider time or past history, the aggregated labels can be evaluated

and stored for future use.

92

The second extension is “Complex Aggregation”. Complex Aggregation considers time

or past history as a factor in determining access. For these types of controls, it is not just

about preventing an unauthorized user from gaining access to information, but insuring

that an authorized user is prevented from acquiring too much information too quickly.

One additional requirement for employing Complex Aggregation is the need to establish

a mechanism for securely maintaining the history of object use.

5.2. Information	Aggregation	

5.2.1. Introduction	

“Information Aggregation” refers to the process of creating and applying additional

labels that convey the information carried in the labels associated with the individual

objects. The additional aggregated labels are constructed to maintain labeling

information that is derived from the objects being aggregated. This construction is done

by an external process called an Aggregator. Figure 25 shows how aggregated labels are

formed.

93

O(a,x)

L(a,x)

O(b,y)

L(b,y)

O(c,z)

L(c,z)

O(a,x)

L(a,x)

O(b,y)

L(b,y)

O(c,z)

L(c,z)

L(a,x+1)

Aggregator

Aggregation
Rules

L(a,x+1)

Label Storage

Figure 25 - An aggregated object using Simple Aggregation

The Aggregator collects the labels for the objects to be aggregated and constructs the new

object label. This new label can either be applied to the new aggregated object for

immediate processing or the aggregated label can be created and loaded to a data store.

In the cases, where the aggregated object is to be used for immediately release to the user,

it is used as the input to the Reference Monitor. Once the new object is returned to the

Reference Monitor, the Reference Monitor treats the aggregated object using the simple

access control rules. The key feature is that the construction of the aggregated object and

determining access to the aggregated object are two separate activities. Figure 26 shows

how this would be constructed.

94

Reference
Monitor

Determine
Access

Release
Mechanism

Release Object

L(n,m,k)

O(n,m)

Object
Request

User/Sys
Sec Label

User/System
Security

Label

Request
Processor

Request
Processor

Access
Rules

O(
a,x
)

L(a
,x)

O(
b,y
)

L(b
,y)

O(c
,z)

L(c
,z)

O(
a,x
)

L(a
,x)

O(
b,y
)

L(b
,y)

O(c
,z)

L(c
,z)

L(a,x+1)

Aggregator

Aggregati
on

Rules

Figure 26 - Configuration of an Aggregator and Reference Monitor

Being able to store an aggregated label for future use introduces the requirement for a

new set of tools for the management of information beyond the securing of the object.

While I don’t discuss the use of object labels as a tool for content management and

configuration control, a properly designed object store would be able to leverage this

functionality. A starting point for this work would be Rozenbroek and Sibley’s work on

escrow servers [54] [34] as a configuration management tool. Because the secure hash

field in the aggregated label is cryptographically linked to each of the hashes for

aggregated objects, only the aggregated label needs to be stored for future use. If the data

95

store is able to associate each labeled object with its secure hash value, then the “chain of

hashes” can be used to reconstruct the aggregated objects without having to store the

aggregated object as separate entity.

Figure 27 shows how Secure File Format would associate each of the hashes of included

objects would be secured. For the creation of aggregated headers, a Secure File Format

Type 6 header is employed.

Payload 1

T
yp

e
0

6
V

 0
2

-0
5

M
a

nd
at

o
ry

 H
dr

S
e

cu
re

 H
as

h

P
ay

lo
a

d
1

th
ru

 N

T
ra

ile
r

X
M

L:
 O

bj
 M

et
a

da
ta

N
o

o
f P

a
yl

oa
d

s

P
ay

lo
a

d
1

 S
iz

e
P

ay
lo

ad
 1

 H
as

h
 V

e
r

P
ay

lo
a

d
1

 S
e

cu
re

 H
as

e

T
yp

e
 0

3
 V

 0
2-

05

M
an

d
at

o
ry

 H
d

r

S
ec

ur
e

H
a

sh

P
a

yl
o

ad

T
ra

ile
r

X
M

L:
 O

bj

M
e

ta
d

at
a

H
a

sh
 V

er

S
e

cu
re

 H
as

h
 o

f
P

a
yl

o
ad

th
ru

P
a

yl
o

ad
 N

 S
iz

e
P

a
yl

oa
d

 N
 H

as
h

V
er

P
ay

lo
ad

 N
 S

ec
u

re
 H

a
se

th
ru

P
a

yl
o

ad
 N

96

Figure 27 - Aggregated Secure File Format Headers

There are two forms of simple aggregation; “Concatenated Aggregation” and

“Cumulative Aggregation”. Each aggregates information from the individual object

labels based on how the aggregate will be used. The rules for executing an aggregation

are stored as an XML object. The general format of which is shown in Figure 28. The

format of “Processing Rules” is determined by the form of aggregation being applied and

the type of label being aggregated. One key feature of aggregation is that each field in

the object label is treated separately. Therefore, it is possible to aggregate one or more

fields using Concatenated Aggregation and use Cumulative Aggregation on the

remainder.

<Aggregate>
 <Label>
 <Name>{Name}</Name>
 <Type>{Type}</Type>
 <Form>{Form}</Form>
 {Processing Rules}
 </Label>
 …
 <Label>
 …
 </Label>
</Aggregate>

Figure 28 - XML Representation of an Aggregation Instruction

The <Label> and </Label> tags are used to denote the beginning and end of rules for

each of the fields in the label. When aggregating an object labels, there must be one set

97

of <Label>…</Label> tags for each field in the label. If there are fields for which there

are not aggregation rules, then the aggregation fails and a new aggregated label is not

created. However, it is acceptable to have aggregation rules for which there are no

corresponding label fields. In these cases, no additional fields are created.

The <Name>{Name}</Name> tags are used to denote the name of the field upon which

the aggregation is being performed.

The <Type>{Type}/<Type> tag is used to denote the type of field being aggregated.

Table 9 shows the possible values for this tag.

Table 9 - Possible Values for the Type field in an Aggregation description

Type Value Description
HIER Used to denote a hierarchical value
CATE Used to denote a categorical value

For the fields in the object label that have been defined as conditional, the conditional

logic is executed to produce either a hierarchical or categorical type field.

The <Form>{Form}</Form> tag is used to denote the form of aggregation that is being

performed. Table 10 shows the possible values for this tag.

98

Table 10 - Possible Values for {Form}

Form Value Description
CONCAT Denotes that Concatenated Aggregation should be performed
CUMULA Denotes that Cumulative Aggregation should be performed

5.2.2. Concatenated	Aggregation	

For Concatenated Aggregation, the object labels are processed to create a new aggregated

object label. The key feature of this type of aggregation is that the aggregated label

values are generated using simple set theory principles. Figure 29 show the XML

representation of a concatenated aggregation rule.

<Label>
 <Name>{Name}</Name>
 <Type>{Type}</Type>
 <Form>CONCAT</Form>
 <Condition>{Condition}</Condition>
</Label>

Figure 29 - XML Representation of a Concatenated Aggregation Rule

The <Form>{Form}</Form> tag is always set to “CONCAT” denoting that this is a

Concatenated Aggregation.

99

The <Condition>{Condition}</Condition> tags will take on one of four values. The

possible values are determined by the {Type} tag value. Table 11 shows what values are

possible for each {Type} value.

Table 11 - Possible Values for {Condition}

Type Value Condition
Value

Description

HIER MAX Set the value of the aggregated label to that of the label
with the largest label value or most precedence of the
labels of the objects being aggregated

HIER MIN Set the value of the aggregated label to that of the label
with the smallest label value or least precedence of the
labels of the objects being aggregated

CATE AND Collects only those category values that are common to
every label of the aggregated objects

CATE OR Collect the category values from ALL of the labels of
the aggregated objects

{Condition} set to MAX

When the {Condition} is set to “MAX”, then the aggregator collects all of the label

values for the {Name} fields. Once collected, they would be sorted and placed in order.

Next, the one with the largest value or greatest presence is selected and it will be used to

create the aggregated label value. This can be expressed as:

100

Laggregate	ൌ	maxሼL0,	L1,	…	,	Lnሽ	

This type of aggregation could be used to label a compound document composed of

sections at different classification level. For example, if an information request was

made that returned several documents with different classification levels. This type of

aggregation would be used to create the document that was marked in accordance with

DoD-5200.1-PH.[23] The aggregated label would be the overall classification of the

constructed document. This type of aggregation would be in compliance with a Bell-

LaPadula style action. Creation of the new document would not release any information

at a lower level of protection.

One point that needs to be stressed is that when the largest value or greatest precedence

can’t be determined, the aggregation will fail and the aggregated object label will not be

created. Figure 30 shows a lattice that may result in cases, where precedence can’t be

determined. For example, if the objects with labels, L(2,1), L(2,2), and L(3,2) are being

aggregated, it is not possible to determine what the resulting concatenated aggregation

should be. While it is clear that L(3,2) has precedence over L(2,2), it is not possible to

determine if L(2,2) or L(3,2) has greater precedence. In this case, an aggregated object

label will not be created.

101

L(4,1)

L(1,1)

L(2,3)

L(2,2)

L(2,1)

L(3,2)L(3,1)

Figure 30- Ambigious Precedence

{Condition} set to MIN

When the {Condition} is set to “MIN”, then the aggregator collects all of the label values

for the {Name} fields. Once collected, they would be sorted and placed in order. Next,

the one with the smallest value or least presence is selected and it will be used to create

the aggregated label value. This can be expressed as:

Laggrgate	ൌ	minሼL0,	L1,	…	,	Lnሽ	

This type of aggregation could be used to label a compound document composed of

section with different levels of integrity. For example, if several sources of information

were collected to create a report, that final reported (the aggregated product) would only

carry the integrity assessment of the most unreliable piece of information in the report.

102

This type of aggregation would be in compliance with a Biba style action. Creation of

the new document would not upgrade any of the information to a higher level of integrity

As with a “MAX” condition, if the smallest value or least precedence can’t be

determined, then the aggregation will fail and the aggregated object label will not be

created.

{Condition} set to AND

When the {Condition} is set to “AND”, then the aggregator collects all of the label

values for the {Name} fields. For this type of aggregation, the aggregated label contains

only those values that are common to all of the object labels being aggregated. This can

be expressed as:

Laggregate	ൌ	∩ ሺ	L0,	L1,	…	,	Lnሻ	

This type of aggregation could be used to label a compound document with only those

labels that will allow access to all of the component objects. For example, a company

labels its engineering projects so that only members of the project and engineering

management have access to the objects. If the status reports for two or more engineering

projects were aggregated, then only those employees that were identified as “engineering

management” would be granted access to the aggregate object.

{Condition} set to OR

103

When the {Condition} is set to “OR”, then the aggregator collects all of the label values

for the {Name} fields. For this type of aggregation, the aggregated label contains any of

the values that are found in the object labels being aggregated. This can be expressed as:

Laggregate	ൌ	∪ ሺ	L0,	L1,	…	,	Lnሻ	

This type of aggregation could be used to label a compound document with any of the

labels that would permit access to all of the component objects. For example, if two

companies are collaborating on a joint venture, then an employee with a “company” label

value for either company would be granted access to that aggregated object.

5.2.3. Cumulative	Aggregation		

There are situations when simply concatenating the labels of the original label values

does not provide enough protection for the new larger object. In these cases, aggregating

individual objects generates a new larger object with label values that are not reflective of

the value of the information that the new object contains.

For example, Quist[29] discusses the aggregation of location information concerning

missile silos. Taken separately, each silo’s location is unclassified. However, if the

location of enough U. S. missile silos is collected in a single report, then that report

becomes classified. As more location information is included, the level of classification

increases. Ultimately, the report contains enough critical information that is warrants a

TOP SECRET classification. From this example, it is easy to see that there are at three

104

points in the aggregation at which the classification level changes (UNCLASSIFIED to

CONFIDENTIAL, CONFIDENTIAL to SECRET, SECRET to TOP SECRET). This

can be expressed as:

௔௚௚௥௘௚௔௧௘ܮ ൌ ൞

ܰ ൒ ்ܶௌ, ܶܧܴܥܧܵ	ܱܲܶ
ܰ ൒ ௌܶ, ܶܧܴܥܧܵ

ܰ ൒ ஼ܶ, ܮܣܫܶܰܧܦܫܨܱܰܥ
ܰ ൏ ஼ܶ, ܦܧܫܨܫܵܵܣܮܥܷܰ

Where Tts = the number of silo locations needed to produce a TOP SECRET
result,

 Ts = the number of silo locations needed to produce a SECRET result
 Tc = the number of silo locations needed to produce a

CONFIDENTIAL result

For Cumulative Aggregation, the object labels are again processed to create a new

aggregated object label. Unlike Concatenated Aggregation, Cumulative Aggregation

attempts to account for the fact that aggregation may produce a result that is greater than

the sum of its parts.

One issue that needs to be restated, I was unable to find a much literature on how this is

being handled today. Much of what I found identifies this as problem, but clear guidance

or rules for implementing Cumulative Aggregation was lacking. In presenting a

framework for performing this type of aggregation, I hope to foster future research.

The following shows the XML representation of a Cumulative Aggregation rule:

105

<Label>
 <Name>{Name}</Name>
 <Type>{Type}</Type>
 <Form>CUMULA</Form>
 <Case>
 <Condition>{݊݋݅ݐ݅݀݊݋ܥଵ}</Condition>
 <Value>{ܸ݈ܽ݁ݑଵ}</Value>
 </Case>
 …
 <Case>
 <Condition>{݊݋݅ݐ݅݀݊݋ܥଵ}</Condition>
 <Value>{ܸ݈ܽ݁ݑଵ}</Value>
 </Case>
</Label>

Figure 31- XML Representation of a Cululative Aggregation Rule

The <Form>{Form}</Form> tag is always set to “CUMULA” denoting that this is a

Concatenated Aggregation.

The <Condition>{Condition}</Condition> tags are used to identify under what

conditions the {Name} label will take on {Value}.

The <Value>{Value}</Value> tags are used to identify the value that the {Name} label

will assume, if the {Condition} is met.

In the case of Biba type integrity problem, the logic would allow for the integrity of the

aggregated object to be increased, if there were enough elements supporting the same

assertion.

106

5.3. Complex	Aggregation	

5.3.1. Introduction	

One of the main reasons for having a system for classifying information is so that

information can be afforded an appropriate level of protection. Beyond being a security

issue, there is a cost element behind this logic. There are numerous examples of

safeguards being required in order adequately protecting information. In general, the

more security that is required to protect something, the greater the cost. One of the ways

to reduce cost is to not have information that requires the greater degree of protection.

Security label can be used to avoid creating aggregations of information that would

require the greater degrees of protection.

5.3.2. Aggregation	(“Critical	Mass”)	Avoidance	

One of the features presented thus far is the ability to upgrade the security of an

aggregation of labeled objects based on a pre-defined security rule. That same logic can

be applied in reverse. Instead of increasing the security classification, when

informational critical mass has been reached, security labels can be used to prevent

information critical mass from being reached by limiting the amount of labeled

information that is collected in a single place.

107

One of the key attributes of object labeling in this framework is that they can be separated

from their objects without any loss of integrity. Because of the strong linkage between

the object and its label, the label can be processed without the object being involved.

Earlier in my dissertation, it has been shown that this allows grant/deny access decision

to be made before the object is exposed. For critical mass avoidance, a similar logic can

be implemented. In this case, the aggregated security label can be created and evaluated

before the individual objects are aggregated.

For critical mass avoidance, there are two implementations that were considered. The

first implementation deals with the creation of individual objects that should not exceed a

predetermined rating. The second implementation deals with preventing too much

information from being released too quickly.

Figure 32 shows the components involved with a release process that avoids the release

of information that has exceeded a critical mass values. In this case, a label aggregator is

used to create the aggregated label that would have been created by the aggregator, if it

has been executed. (In a real world implementation, the label aggregation function and

the object aggregation functions would be performed by a common software component.)

The Label Aggregator outputs an aggregated object label. This label is compared against

the Critical Mass Levels to determine if aggregating these objects would produce a

prohibited object. If the Critical Mass Levels would not be reached by the aggregation,

then the aggregation is executed and the aggregated object is created. This object is them

returned to the requester for external consumption and the new aggregated label is written

108

to the Label Store for future use. Figure 33 shows the sequence diagram for these

operations.

109

L(a,x) L(b,y) L(c,z)

Label Aggregator

Aggregation
Rules

L(a,x+1)

O(a,x)

L(a,x)

O(b,y)

L(b,y)

O(c,z)

L(c,z)

O(a,x)

L(a,x)

O(b,y)

L(b,y)

O(c,z)

L(c,z)

L(a,x+1)

Aggregator

Aggregation
Rules

L(a,x+1)

Label Storage

L(a,x+1)
Less than

CML
Critical Mass Levels (CML)

If true, then execute

Figure 32 - Critical Mass Avoidance

110

Requester Controller Obj StoreLbl Aggregator CML Detect Aggregator

Reqt for Obj

Aggregate Labels

Reqt Labels

Retn Labels

Aggregated Label

CML Assessment

Build Aggregated Object

Aggregated Label

Aggreated Labeled Object

Reqt Lbl Objects

Retn Lbl Objects

Agg Lbl Obj

Figure 33 - Sequence Diagram for Critical Mass Avoidance

In the second case, a new aggregated object is not created. Instead, this case is used to

track the information that has already been released. The external requesting process can

be considered as the aggregated object. The goal of Critical Mass Avoidance in this case

is to limit the amount of information that is being released. This allows for some

information to be released, while insuring that too much information is not acquired too

quickly.

A key addition to the new Aggregator is memory. In order to prevent Critical Mass from

being reached, the aggregation process must keep track of which objects have previously

been provided to the end user. Unlike the case for Cumulative Aggregation where no

111

effort is expended to prevent the creation of aggregated objects with higher

classification42, the enhanced system requests that the labels be provided to the

aggregator without their objects. The Aggregator processes the labels and determines if

the aggregated object that would be created should be classified at the higher level. If the

proposed object exceeds the classification threshold, then the information request is

denied. In the case where all of the information is already resident in a single location,

the extra processing may be considered unwarranted. However for a network connected

environment where the request for information, which is distributed over more than one

system or location, being able to avoid the collection of too much information can be

very valuable. If the aggregation process is incorporated into the input processing for a

data warehouse or other information storage system, then it can be used to insure that the

data warehouse does not violate its accreditation.

Figure 34 shows the configuration of the system that would be used. In this

configuration, a new Label Storage component is added. This Label Storage element is

used to provide the object labels for objects that have already been released.43 These

labels along those of the new objects being requested (or loaded) are used by the Label

Aggregator to create a new aggregated label. As with the Critical Mass Avoidance

process, this label is compared against the Critical Mass Levels to determine if the new

42 In the case of a single system that is hosting enough information to create an aggregated object with a
higher classification, it is assumed that that system is already approved for the higher level of classification.
43 If the aggregation process is part of the input process for a data warehouse, then the Label Storage is used
to track the labels of the objects that are already being stored in the warehouse.

112

request can be completed. If the new label’s values don’t exceed the Critical Mass

Levels, then the release process is allowed to execute. The new object and its labels are

provided, along with the labels of the objects previously released by the Aggregator. The

Aggregator creates a new aggregated label that is loaded into the Label Storage system

for future reference. Figure 35 shows the sequence diagram for these operations.

113

L(a,x)
New Label

L(b,y)
(Previously
Released)

L(c,z)
(Previously
Released)

Label Aggregator

Aggregation
Rules

L(a,x+1)

O(a,x)

L(a,x) L(b,y) L(c,z)

O(a,x)

L(a,x)

L(a,x+1)

Aggregator

Aggregation
Rules

L(a,x+1)

Label Storage

L(a,x+1)
Less than

CML
Critical Mass Levels (CML)

If true, then execute

Label Storage

L(a,x)

Figure 34 - Critical Mass Avoidance for Time Release

114

Requester Controller Obj StoreLbl Aggregator CML Detect Aggregator

Reqt for Obj

Aggregate Labels

Reqt Old Labels

Retn Old Labels

Aggregated Label

CML Assessment

Build Aggregated Object

Aggregated Label

New Labeled Object

Reqt Lbl Objects

Retn Lbl Objects

New Lbl Obj

Reqt New Labels

Retn New Labels

New Obj Label

Aggregated Obj Lbl

Agg Obj Lbl

Figure 35 - Sequence Diagram for Timed Critical Mass Avoidance

5.3.3. Chinese	Wall	Problems	(Control	of	Resources	dynamically)	

The Chinese wall security policy is one of the models used to model how information is

controlled. The goal of this model is to prevent a user from having access to too much

information concurrently. Brewer and Nash[8] present the example of three companies, a

bank, Bank A, and two oil companies, Oil Company A and Oil Company B. In this case,

115

the end user can have access Bank A’s information without restriction and either Oil

Company A’s or Oil Company B’s information, but not both concurrently. The Chinese

wall security policy presents the concept of “conflict of interest” classes. The bank

would be a member of one conflict of interest class and the oil companies are members of

a different conflict of interest class. In the context of object labeling, conflict of interest

classes can be modeled as different category labels. Each company name would be

represented as a category value.

The Chinese wall problem can be viewed as a special type of informational critical mass

avoidance problem. For Chinese wall problems, the critical mass level is reached when

the second object is requested. The end user can have at most one object in each ‘conflict

of interest’ class. In this dissertation’s framework, conflict of interest classes are

captured using category labels. If a second object from a conflict of interest class is

requested, then that request will be denied. One possible extension to the Chinese wall

problem is “returning information”.

If one considers the case of an analyst working for a consulting firm, it is quite possible

that the consulting firm may have two or more clients in the same conflict of interest

class and that an analyst for the firm may be working on more than one account. In order

for the end user, the analyst, to gain access to the second company’s information, a

second object, the first company’s information must “returned”. This increases the

complexity of the security solution because it will need to track only which end users

have been provide with objects, but also which objects the end user has returned.

116

In order to address this extension to the Chinese wall security problem, one final

enhancement to the timed critical mass avoidance aggregator and the Reference Monitor

connected to it is required. The Label Storage subsystem must be enhanced and

connected to the Reference Monitor. This is done to allow the Information Provider to

update the Label Store to indicate that label objects have been returned to it. The concept

of returning an object is analogous to returning a book or report to a library. However,

because the original object was not purged from the Information Provider, there is no

actual need to transfer the object from the end user workstation back to the Information

Provider. An object is considered returned when the object manager on the end user

workstation asserts that the released labeled object has been deleted. Figure 36 shows the

sequence diagram for returning an object.

117

Obj Mgr Info ProviderUser Local Storage Lbl Store

Retn Obj

Delete Obj

Confirm Del Op

Return Object

Rel Obj

Confrm Rel

Confirm Return

Ack Obj Ret

Figure 36 - Sequence Diagram for Returning an Object

In the sequence diagram, the User returns the object by instructing the local Object

Manager that she is finished using it and it can be returned. The Object Manager

acknowledges the request to return the object. It then deletes the object from the Local

Storage system. The local storage system is a storage solution on the end user

workstation that is managed by the Object Manager. The key attribute is that it is not

accessible to the user except through the Object Manager. After the Local Storage

confirms that the object has been deleted, the Object Manager issues a Return Object

request to the Information Processor. This request can be made directly to the

Information Provider or via a Network Proxy. The Information Provider releases the

object from the Label Storage. The Label Storage confirms that the object has been

released and the Information Provider then confirms that the object has been returned.

118

One additional feature of this approach is that the user can still be barred from gaining

access to objects in the conflict of interest class after an object has been returned.

Because access to the objects in the conflict of interest class is being managed by the

object labels, any of the techniques previously discussed are available as part of this

solution. One reason for delaying access to a second company’s information is to

provide for enough time that analyst forgets what she knows about the first company.

Additionally, this prevents the analyst from hopping back and forth between two

company’s information thus defeating the security system. If there is a two week delay

between the return of information and access to new information, the analyst’s ability to

work concurrently with two sets of information in the same conflict of interest class is

eliminated.

119

6. CONCLUSION/FOLLOW	UP	

The use of external security labels that are strongly attached to the object that they protect

is a departure from the traditional methods by which security is implemented. Traditional

methods do make use of external metadata, but this metadata is not tightly coupled with

the files/objects being protected. Additionally, much of that metadata is not transferred

with the object as it is transported over a network.

In my dissertation, an alternative to this approach has been presented. It includes a

method for strongly binding the external security metadata to the object and transporting

that metadata along with the object throughout its lifecycle. Additionally, it was shown

that the external security labels containing that metadata do not need to be conjoined with

the object that it is protecting. In can be separated from the objects, processed, and

reattached with no loss in integrity of the label or the security of the object. In fact, being

able to separate the labels from the objects increases the object’s security, because only

the labels needed to be exposed in order to make access decisions for the object. Only

after the decision to grant access to the object has been made is the object access or

transferred.

With the establishment of a language for creating object labels, user and system labels, a

set of rules for access the objects based on these labels, a framework for their use was

120

presented. This framework is able to the labels and rules, not just for a single source of

information, but rather can be implemented on a wide area basis. Additionally, the

Object Labeling Framework includes provisions of addressing users and systems that are

not label aware. This framework was realized by a reference implementation. Beyond

demonstrating that the developed framework could be used for as an access control

system, the cost analysis that was performed on the reference implementation confirmed

that the system that would support the documented results was cost effective.

With my labeling framework development complete, I extend the language behind simple

access control to address the problems of aggregation. Using the same XML

representation, I have shown the same framework, with some extension, can support the

creation of aggregations of labeled objects. Because these aggregates are also labeled

objects with formatted security metadata, access to them is not different than for other

labeled objects. The creation of aggregated objects can be done in real-time or in

advance of any request. The reference implementation demonstrated that aggregation in

real-time does not introduce an excessively delay is processing a request. While not

investigated as part of my thesis, the use of aggregation labels as a tool for document

release management warrants further investigation. A second research area that having

labeled object should encourage is cumulative information aggregation. My framework

provides the framework and language for creating and implementing these aggregations.

The next step would be to develop the actual rules based on business practices.

121

 The final area, I discuss is the use of my framework to avoid creating aggregations of

labeled objects that would create security problems. This includes the collection of too

many objects in a single locations and the collection of too many object too quickly.

With the ever increasing accessibility provided by the Internet, these functionalities offer

a means of “metering” access to information. Examples of this type control include a

solution to the Chinese wall security problem based on object labels.

Looking forward, there are several areas of research that should be considered.

As previously stated, object labeling should be considered as a tool for document release

management. Aggregation should be usable to create documentation that is based on

smaller documents that are managed and concatenated at the time of publication.

Studies in the area of Cumulative Aggregation should also benefit from having a

framework for realizing aggregation rules. Part of the problem with writing this

dissertation was a lack of published work on aggregation from a security perspective.

There is a great deal of research on aggregating information from an information

management perspective, but almost nothing on security. This area of information

management is not unlike the Internet in the 1980s and early 1990s, it is focused on

functionality, not security. The Object Labeling Framework supports aggregation,

extending this framework to capture metadata about the aggregation process should

facilitate the research in business practices for cumulative aggregation

122

The next logical step is to construct a working implementation of the framework and

assess its use in real-world networks. This would include not just the design and coding

of Network Proxies, Aggregators, and interfaces to information source for production

use. The current reference implementation was coded using PHP running on an Apache

web server. Both the use of a scripting language and the hosting within a full-blown web

server has incurred a processing overhead that could be reduced. The use of a compiled

programming language, such as JAVA, that contains native support for file system and

network connections would reduce this overhead, thus improving performance.

Additionally, the use of persistence should reduce the response times by eliminating

startup times. It should focus on the creation of standard for labeling objects and for

writing the rules to govern access.

This dissertation focused on object labeling for distributed access control. It would

permit access control to be realized not just on the edges of the cloud, but throughout the

cloud, itself. A future area of study should consider the incorporation of GOSAC-N type

functionalities that would supplement the access control rules discussed herein.

I believe that my framework can be implemented with not too much effort, it represents a

major first step towards improving the security of information in large heterogeneous

network environments. However, additional work will need to be done on the rules for

accessing information objects and the business rules for complex problems, such as

aggregation and aggregation avoidance. Key to this work will be the leveraging of

123

existing technologies, like GOSAC-N, SecureXML[55], XACML as well as

enhancement to the products presented in this dissertation.

124

APPENDIX	A	‐	 LABELLING	FRAMEWORK	

Introduction	

In order to make use of security labels, a common syntax and clearly defined set of rules

for representing labels must be defined. In the following sections, the syntax and rules

for handling objects and object labels are presented. In the first section, objects will be

discussed, followed in the second section by a separate discussion on the labels that will

be attached to the objects. The key distinction between “what is an object” and “what is a

label” is that an object is what needs to be protected or described and a label is that entity

is used for protection of or to describe the object. Figure 37 shows the relationship

between the different types of objects being addressed in my dissertation.

125

Objects

LabelsNative_Objects

Information_Objects Request_Objects Object_Labels
User/

System_Labels

Figure 37 - Objects and Labels

Objects	

Introduction	

Objects are those items to which labels will be added to provide protection. In the real

world, an object is anything to which an external set of information can be added to

provide information about that object. Real world examples of objects include letters and

packages, sent via the postal services and documents to which protective covers and

routing sheets can be applied. In cyberspace, examples of objects include emails, file

system entries (files, directories, pipes, etc), responses to queries, web pages, and

transactions. In general, anything that can be encapsulated and whose contents can be

selectively hidden can be considered to be an object.

126

For my dissertation, the exact contents of an object are not important. Instead the focus

will be on how the object is used.

Native	Objects	

A native object represents the information being protected by security labels. For any

object that is going to be protected by external labels, it can be represented by a box with

an object designation in the box. Figure 38 shows how an unlabeled or “native“ object

can be represented. An object in its ‘native’ for can be anything that can be represented

or modeled as an object. For example, the individual files in a directory structure are

objects. Additional examples include entries in a database, objects that are transported

over an Internet connection, and uniquely identifiable fields in an XML data stream.

Each object can be uniquely identified by “N(n,m)“. The first index, n, is used to

designate the nth object and any labels that are associated with that object. The second

index, m, is used to indicate the “order” of the object. The order of the object refers to

the number of labels that have been attached to the object. If m equals 0 then the object

is native. If m is greater than or equal to 1 then the object contains 1 or more security

labels as well as the object.

N(n,m)

Figure 38- Native Object

127

Information	Object	

The first class of native objects is the “information objects.” Information objects are used

by a system or system component to provide information in an objectized form.

Information Objects are represented by a box with a unique identifier, “O(n,m)”. Figure

39 shows how an information object is presented.

O(n,m)

Figure 39- Information Object

Request	Objects	

The second class of native objects is “request objects”. Request objects are used by the

user/system to request information, the response to the request is returned as a labeled

information object. Like other native objects, they are labeled by the information

systems as a means of transferring security metadata about the request. The attached

labels will carry information about the user making the request and infrastructure over

which the request object traverses. Figure 40 shows a request object.

128

R(n,m)

Figure 40- Request Object

Request object are distinguished from other native objects in that the security labels that

are applied to them document the security attributes of the user making the request and

network path (systems traversed) used to deliver the request object to the system that will

process the request. Rather the security associated with them is determined by the user

and systems involved in making the request. In the cases where the request object needs

to be protected, an object label should be applied prior to having other labels applied.

Labeled	Objects	

As the name implies, a labeled object is any object to which one or more labels has been

applied. As detailed earlier, a labeled object is one for which the value of m is greater

than or equal to 1. The depiction of a labeled object is identical to that of either a native

or request object.44

44 A second depiction for labeled objects will be presented as part of the introduction of object labels.
Either depiction is acceptable.

129

Labels	

Introduction	

Labels are the core mechanism for conveying security information about objects. They

are external to the objects that they are designed to protect. NIST’s FIPS 188 [56]

defines the role of security labels as follows:

“Security labels convey information used by protocol entities to determine
how to handle data communicated between open systems. Information on
a security label can be used to control access, specify protective measures,
and determine additional handling restrictions required by a
communications security policy.”45

 The use of an external mechanism, such as labels, to secure and manage objects must

adhere to certain principles in order to have value as a means of providing security to

object.

First, any information that is secured using object labels must be able to be restored to its

original condition. The rationale behind this principle goes back to the basic information

security requirement for data integrity. NIST Special Publication 800-33 defined data

integrity as “the property that data has not been altered in an unauthorized manner”46.

Adding additional information, externally to the original data must not alter the original

data. If adding the object labels does is allowed to alter the original information in a non-

45 [56] pg 1

46 [57] pg 21

130

recoverable manner, then an “unauthorized” alteration has occurred and the object label

has failed to protect the original object.

Second, any labels attached to an object must be able to be separated and reattached

without any loss of linkage between the label and its object. Additionally, any processing

performed with the label while separated from the object must not invalidate the integrity

of the label or weaken the security, it is provides to the object. One of the key goals of

using labels to secure object is protecting the object until after the appropriateness of its

release has been determined. If the object must be exposed along with the object label in

order to determine if the object can be exposed, then the use of object labels is invalid.

Object	Labels	

For any label that is used to protect an object, either native or labeled, it can be

represented by a box with a label designation in the box. Figure 41 shows how a label

can be represented. A label can carries 2 indexes. The first variable, ‘n’, indicates to

which object the label is applicable. The second index, m, indicates the level or tier at

which the label is applied. Lower values of m indicate that the label is closer to the

object.

L(n,m)

Figure 41 - Basic Label Representation

131

Because an object can be labeled numerous times, this second index is important for

uniquely identifying which tier of labels is being discussed. Figure 42 shows the

relationship between a tier 0 labeled object and a tier 1 object.

O(n,0)
R(n,0)

O(n,1)
R(n,1)

L(n,0)

Figure 42 - Representation of a Labeled Object

Figure 43 shows the more general relationship between object and labels at different tiers.

O(n,m)
R(n.m)

O(n,m+1)
R(n.m+1)

L(n,m)

Figure 43 - General Representation of a Labeled Object

132

In general, a labeled object is not a native object to which a single label has been applied.

While the use of single label is applicable for many problems, the use of a security

framework that allows for the use of multiple layers of labeling is more desirable.

User	Labels	

Just as request objects are a class of native object, User Labels are a class of object labels.

User labels are used to convey the security attributes of the user that has made the

request. It is worth noting that a user is not limited to the end-user (human) making the

ultimate request, rather a user is any end-user or application that is making a request. The

treatment of applications as end-users is important in that it allows for greater

information control. By treating applications in this manner, control of the information

can be executed on any element of the network over which the information would be

carried. Examples of applications would include end-user applications, such as word

processors and spreadsheets, as well as network/server components, such as proxies

(including Cross Domain Solutions), web servers, middleware applications, search

engines, and database servers. Their inclusion permits security to be implemented not

just on the “edges” of the network, but also within the network, itself. Since there is no

difference between an end-user and an application, end-users, automated applications,

and proxies can all be modeled in a common manner. Figure 44 shows how a user label

is represented.

133

U(n,m)

Figure 44 - User Security Label

System	Labels	

A second type of label that is applied to request objects is the system label. System labels

like user labels convey security attributes. For system labels, the attributes are applicable

to the system from which the request is being made. Figure 45 shows how system labels

are represented.

S(n,m)

Figure 45- System Security Label

Labeled	Request	Objects	

Request object are a class of native objects and as such follow the same rules as native

objects for labeling. The key difference is that both user and system labels will normally

be applied to request objects. Because there are two different types of labels that can be

applied to a request object, the application of the labels is slightly different.

134

For non-request object, the security labels are added and the indexing incremented as the

number of labels increases. For request objects, the order in which labels are added

becomes somewhat more important.

In general, the first label added to a request object is the user label. This label conveys

the security attributes of the user and may be used to identify and authenticate the user.

Figure 46 depicts the request object with a user label attached. The same tiering

convention is used. With the first (user) label applied the request object can be

referenced as R(n,1).

R(n,0)

R(n,1)

U(n,0)

Figure 46 - Request Object with a User Label attached

After the user label is applied, the security label for the system that hosted the user is

added. As the request object is transported from intermediate system to intermediate

system, each of these systems appends its security label to the request object. For each

intermediate system that handles the labeled request object, an additional system label is

added. Figure 47 depicts how an object is represented, when a user and system are

attached. It is worth noting that in this case, the resulting labeled object is denoted

135

R(n,2). This is to denote that the request object is carrying two labels, despite the fact

that the first system label was added.

S(n,0) S(n,0)

R(n,2)

U(n,0)

R(n,1)

R(n,0)

Figure 47 - Request Object with a User and System Label attached

Figure 48 shows the more general representation of an object after a user label has been

applied.

136

U(n,m)

R(n,m+1)

R(n,m)

Figure 48 - Generic Request Object with a User Label attached

Figure 49 shows the more general representation of an object after a system label has

been applied.

Figure 49 - Generic Request Object with a System Label Attached

137

APPENDIX	B	‐	 SECURE	FILE	FORMAT	

Introduction	

In An Architecture for Managing Access to and Permission for Multiple Versions of

Objects in a Distributed Environment [34], I introduced the “Secure File Format”47 and

offer a structure for building multi-tiered labeled objects. The design objectives for

Secure File Format included:

Development of a securable means for transferring information over
unsecured environments;

Provide an operating system agnostic framework for handling information
that can be treated as objects;

Be able to work with information in any format; and
Allow for additional controls and information (such as audit entries and

digital signatures), in the form of external labels to incorporated into
the object over its lifecycle.

Because Secure File Format meets these objectives, which some of which are

requirements of my dissertation’s framework, it was chosen as the foundation for much

of the work. Secure File Format offers a simple structured framework for defining

external labels that could be used to manage the objects to which they were attached.

This framework is lightweight and expandable. Three key features of the Secure File

Format framework are:

47 I’m currently updating a RFC for submission to the IETF for consideration as an Internet standard. As
this version has not been submitted, a copy is included as an appendix in my dissertation.

138

that is treats all “secured data files” without regard to their content or
format;

 the use of multiple types of labels, each with a defined function; and
 the use of a single format for all header types.

I decided on this approach rather than trying to create a single label format that would

address all of the management and security needs of the labeled object for several

reasons.

As stated, one of the design requirements for Secure File Format was to be agnostic of

the contents of the information being labeled. This is important for several reasons.

First, it allows for any type of object to be protected by the addition of one or more

external wrappers without having to alter the object’s contents. (Encryption is not

considered altering the contents of the object, as it neither adds nor removes any

information from the object. An encrypted information object can be returned to its

original state by the use of decryption.) Second, the contents and format of the object

have no affect on the external security mechanism.

By using separate defined header for each management/security operation, expanding the

Secure File Format to support additional functionality can be accomplished without

having to change any existing headers. The inclusion of a version number in each header

allows for new version of existing headers to be added, again without changing existing

versions of the header. For example, adding new hash sizes to the header supporting the

Secure Hash Algorithms (SHA) was done without changing the headers supporting the

139

smaller hash sizes.48 Any software making use of the shorter hash sizes was unaffected

by the inclusion of the new hash size.

By treating management/security operations on an individual basis, the order in which

they are applied and processed is based on the task which that wrapper supports. This

means that externally labeled information that conforms to the Secure File Format

standard can easily be introduced into a more diverse set of environments than labeling

schemes that assert a pre-defined order for their application. This flexibility allows

labeled information object to be a more viable means of managing and securing

information.

One of the design objectives of Secure File Format was the ability to augment an existing

object with new labels throughout its lifecycle. Smaller lightweight headers or

“wrappers” support this functionality more easily. Existing wrappers don’t need to be

changed, altered or re-applied as the wrapped object is augmented with new information.

If previously attached headers contain “signoff” or “release authority” that make use of

digital signatures and secure hashes, then the integrity of these signoff is not affected by

the addition of new wrappers.

48 In an earlier version of the Secure File Format RFC, only message digest sizes of 160 and 256 bits were
defined. Additional digest sizes of 384 and 512 bits were added later. Their inclusion in the Secure File
Format standard required only that version 04h and 05h be added to the secure hashing algorithm. For
fielded applications that are currently using versions 01h, 02h, and 03h of the secure hashing algorithm and
don’t have a need for the larger message digests, no changes or alterations are required.

140

Finally, having a single format for all headers, the design and construction of tools for

working with the headers could be greatly simplified. (This will be discussed in more

detail later in this section.)

A second reason for using Secure File Format is that Secure File Format defines a

mechanism by which labels (in the form of wrappers) are securely ‘attached’ to objects.

This secure attachment is done, while still allowing the labels to be utilized by external

applications after being separated from the wrappered objects. This feature is critical

because it allows the information in the labels to be processed without the object being

required. For access control purposes, this means that the decisions concerning access to

the object or objects can be made without exposing the protected object, until after access

to the object has been granted. In addition to access control decisions, independent

processing of the information in the labels contained in the wrappers can be used for

network congestion management, metering of information release, as well as business

process decisions, such as limiting access to resources based on subscription levels.

Internal	Structure	of	a	Secure	File	Format	Object	

As stated, a key functionality associated with Secure File Format is the ability to add new

layers of functionality by including additional labels. In Secure File Format terminology,

this is referred to as adding additional wrappers. A wrapper consists of a header that pre-

pended to the object and an optional trailer. This functionality is a critical component in

preparing the security labels associated with users and systems as well as processing

141

aggregation. Figure 50 shows the general layout of a Secure File Format object including

the relationship between headers, trailers and wrappers.

Secured
Data File

Header n

Header 1

Trailer n

Trailer 1

Headers
2 thru n-1

Trailers
2 thru n-1

Wrapper n
Wrapper 2

thru n-1
Wrapper 1

Figure 50 - Secure File Format object layout49

The final functionality that Secure File Format offers is a defined mechanism for

grouping multiple objects together to form a single aggregated object. This single

49 [34] Figure 1

142

aggregated object will carries one or more additional labels that provide the security and

management information for the entire object. The information in this new label is either

in addition to the information contained in the individual object labels or was calculated

based on the information contained in the individual labels. An example, where

additional information is applied, would be when this functionality is used to concatenate

a directory structure into a single Secure File Format object, each file or object would

have its own label with metadata (filename, owner, groups, size, creation date, etc) about

that object. The “group” label would contain information that was common to all of the

individual objects. This might include the directory path, and directory permissions.

The case when the information in the new “group” label is based on the information in

the object labels is discussed in much greater detail and is one of the pillars of the

material that I present. Beyond this single label, additional wrappers or tiers of labels can

be added to provide for additional security.

Within each wrapper, Secure File Format defines a common format for all wrapper types.

This format, depicted in Figure 51, contains 4 fields that are common to every Secure

File Format wrapper and payload. The fields are the:

The Mandatory Header;
The Optional Header;
The Payload; and
The Trailer.

143

Mandatory
Header

Optional
Header

Payload Trailer

Figure 51- Format of a Secure File Format Wrapper50

The Mandatory Header is used to define the format of the rest of the header and has a

structure that is identical in every type of wrapper. This header’s function is to define the

format wrapper type, the wrapper version, and the size of the three remaining fields.

The Optional Header follows immediately after the Mandatory Header. This header is

used to carry information about the payload and should be considered informational, the

external object label that is being applied the object carried in the payload. The actual

format of this header varies based on what information or label, it is supporting. The

order and placement of the fields in this header are defined by the “Type” field that is

carried in the Mandatory Header.

The Payload follows immediately after the Optional Header; its starting location is

determined by the “Hdr Size” field in the Mandatory Header. The Payload contains the

object that is being secured or managed by the information contained in the Optional

Header. With exception of the inner most wrapper (always a Type 01h wrapper), the

Payload is another Secure File Format object. This is done to simplify the development

of tools for constructing and processing of Secure File Format object and the information

50 [34] Figure 2

144

contained therein. Processing of a Secure File Format object is executed by recursively

“unwrapping” the file until the native file is exposed. The mandatory use of a Type 01h

wrapper on the native file allows for all future processing to be performed on objects that

follow the same wrapper structure.

The Trailer follows immediately after the Payload; its starting location is determined by

adding the “Hdr Size” and the “Payload Size” fields in the Mandatory Header. The

Trailer is responsible for providing any information required secure the rest of the header

fields and Payload.

Strong	Interaction	between	Wrappers	

Secure File Format strongly attached wrappers (containing labels) to the underlying

objects (carried in the Payload) through the use of secure hashes. The defined hashes

identified for use by the Secure File Format include the Secure Hash Algorithms (SHA)

[58]. Secure File Format allows for different length SHA hashes to be generated based

on the need for security. The use of secure hashes for strongly attaching labels to objects

is ideal for several reasons.

First, a hash value, called a ‘message digest’, is mathematically related to the object that

has been hashed. Any changes to the object being hashed will produce a new message

digest. Beyond this, the contents of the original files can’t be derived the produced hash.

145

Second, the number of possible message digest values, called the space, is exceptionally

large. For SHA, there are currently four message digest sizes that are defined. The

smallest of these is 160 bits; the largest is 512 bits. This equates to a space of 2160 and

2512 possible values, respectively. Within a space this large, the probability that two

objects will produce the same message digest is exceptional small. Hash Collision

Analysis details a hash collision analysis for different number of unique objects against

different message digest spaces. Hash Collision Analysis also conservatively estimates

the number of possible objects that would need to be hashed in a very large network

environment. This analysis supports the use of hashes as a means to bind labels to

labeled objects. An additional benefit for using hashes to secure objects is that the

message digests can be used as a unique object identifier.

In the rare cases when a hash collision occurs, altering the padding to generate a new

message digest can be executed without affecting the payload or the validity of the

message used to secure it.

Within the Optional Header fields, the message digest for the header of the next lower

wrapper is stored. This message digest is identical to the message digest stored in the

next lower wrapper and thus provides the strong linkage. For the innermost wrapper, the

message digest is the message digest of the object being secured. Integrity for each

wrapper is maintained by the message digest for that wrapper. This insures that message

digests for the lower wrapper or the access labels can’t be changed without being

detected. It also insures that the object (lower wrapper) being protected remains

146

unchanged as well. Should the lower wrapper change, then the linkage is broken because

the new wrapper will have a different hash. These message digests would be carried as

“informational” labels.51 No access decisions would be based on informational labels or

their contents, but they are an integral part of the label. Figure 52 shows how two Secure

File Format tiers are strongly linked. Because each wrapper carries enough information

to connect it to the object that it protects internally, it can be removed from the object

without fear of breaking the linkage. It can also be “reattached” securely to the object in

the future.

51 Informational Labels are used to convey information as part of the object label.

147

O(n,0)
<obj(N,0)_hash = {VALUE}>

L(n,0)
<Lable(n,0)_hash={VALUE}>
<payload_hash = {VALUE}>

L(n,1)
<Lable(n,1)_hash={VALUE}>
<payload_hash = {VALUE}>

<payload_hash> = <Label_(n,0)_hash>

<payload_hash> = <Obj_(n,0)_hash>

Figure 52- Secure File Format Wrapper Linkage

In my Secure File Format draft RFC, I include provisions for protecting multiple objects

using under a single wrapper or security label. To do this, the hashes for each of the

objects to be protected are included in the optional header. As in the case, where a single

hash is carried in the optional header field, the chain of hashes provides linkage between

the wrappers. Figure 53 shows how multiple objects can be protected in this matter.

148

R(0,0) R(1,0) R(n2,0)

L(1,0)

L(2,0)

L(1,0)

L(2,0)

L(2,0)

Figure 53- Secure File Formatted Object with Multiple Objects

An additional feature that this approach provides is the ability to separate objects without

breaking the security of the entire object structure. Figure 54 shows how a Secure File

Format protecting a single object from a collection would be presented. The overall

labeled object (far left) can be decomposed into the L(0,2) security label and the L(0,1)

header and secured object. At this point, the L(0,1) labeled object still contains all of the

native objects and their header. After the next decomposition, only the desired object R

(1, 0) is still wrappered by L(0, 1). For separation of labeled object, the higher order

labels, L(0, 1) and higher, are not altered. This is required in order maintain the chain of

hashes that are securing the objects. If the extra payload message digests were removed

from the L(0, 1), then its hash would be changed and the chain of hashes would be

broken. The removal of the unwanted objects does not break the chain of hashes at the

higher level, L(0,2) because L(0,1) has not been altered.

149

L(0,2)

L(0,1)
<Label(0,1)_hash={VALUE}>

<payload(0)_hash = {VALUE}>
<payload(1)_hash = {VALUE}>
<payload(2)_hash = {VALUE}>

L(0,2)
<Lable(0,2)_hash={VALUE}>
<payload_hash = {VALUE}>

<payload_hash> = <Label(0,1)_hash>

R(1,0)
<Label(1,0)_hash = {VALUE}>

<payload_hash={VALUE}>

L(0,1)
<Label(0,1)_hash={VALUE}>

<payload(0)_hash = {VALUE}>
<payload(1)_hash = {VALUE}>
<payload(2)_hash = {VALUE}>

L(0,2)
<Lable(0,2)_hash={VALUE}>
<payload_hash = {VALUE}>

<payload_hash> = <Label_(0,1)_hash>

<payload_hash(1)> = <Label(1,0)_hash>

Figure 54- Separation of a Protected Secure Files Format Object

Figure 55 provides an alternative representation of the interrelationships between the

fields in different wrappers.

150

T
yp

e
 0

1
 V

 0
2-

05

M
an

d
at

o
ry

 H
d

r

S
ec

ur
e

 H
a

sh

P
a

yl
o

ad

T
ra

ile
r

T
yp

e
0

3
V

 0
2

-0
5

M
an

da
to

ry
 H

dr

S
e

cu
re

 H
as

h

P
ay

lo
a

d

T
ra

ile
r

X
M

L:
 O

bj

M
et

a
da

ta

H
as

h
 V

e
r

S
ec

ur
e

H
a

sh
 o

f
P

ay
lo

a
d

T
yp

e
0

3
V

 0
2

-0
5

M
a

nd
at

o
ry

 H
dr

S
e

cu
re

 H
as

h

P
ay

lo
a

d

T
ra

ile
r

X
M

L
: O

b
j

M
et

ad
a

ta

H
a

sh
 V

e
r

S
ec

ur
e

 H
as

h
of

P

ay
lo

a
d

Figure 55 - Relationship between fields in different SFF Wrappers

Strong	Bonding	

Borrowing from the notations presented in “Modelling and Analysis of Security

Protocols” [59], a Secure File Format wrapper can be modeled as:

151

Wn	ൌ	ሾܪܯ௡ 	 ∙ ௡ܪܱ	 	 ∙ ௡ܮܲ	 	 ∙ 	 ௡ܶሿ	 ሾB.1ሿ	

Where ௡ܹ - the nth wrapper in the Secure File Format Object
௡ܪܯ െ Mandatory Header for Wrapper n,
௡ܪܱ െ Optional Header for Wrapper n,
௡ܮܲ െ Payload for Wrapper n (PL1 is the object being secured or managed

 ௡ܶ െ Trailer for Wrapper n

OHn can be further decomposed as;

OHn	ൌ	ሾܪܤ௡ 	 ∙ ௡ିଵܦܯ	 	 ∙ 	௡ሿܪܣ	 ሾB.2ሿ	

Where BHn – the portion of the Optional Header before the hash (message
digest)

MDn-1 – the message digest of the Optional Header fields of the Payload
(MD1 is the message digest for the object being protected)

AHn – the portion of the Optional Header after the hash (message digest)

In the fields before the message digest, the security and management information placed.

This is done in the form of an XML object. Because of this, BHn can be decomposed to:

BHn	ൌ	ሾܵܣܪ௅ሺሾܮܤܮ௡ 	 ∙ ௡ܮܣ	 	 ∙ ௡ିଵܦܯ	 	 ∙ ௡ሿሻܪܣ	 	 ∙ ௡ܮܤܮ	 	 ∙ 	௡ሿܮܣ	 ሾB.3ሿ	

Where 	ܵܣܪ௅ሺܺሻ – indicates the Secure Hash Algorithm with message digest
length L has been performed on X

LBLn – the security or management data attached by that wrapper
ALn – the remainder of the Optional Header between LBLn and MDn-1

MDn is message digest for the most of the fields in the Optional Header
of the Payload and can be written as:

MDn	ൌܵܣܪ௅ሺሾܮܤܮ௡ 	 ∙ ௡ܮܣ	 	 ∙ ௡ିଵܦܯ	 	 ∙ 	௡ሿሻܪܣ	 ሾB.4ሿ	

The fields ALn and AHn are included in the message digest for the Optional Header.

However, they don’t factor into the use of external labels to secure the payload, but their

inclusion allows for the integrity of their content to be assured.

152

In the cases, where the payload contains multiple wrappered objects, the MDn-1 field is

replaced by a concatenation of all of the message digests from the wrappers in the

payload.52 This means that MDn-1 can be generalized without any loss of integrity to:

MDn‐1	ൌ		ൣܦܯ௡ିଵ,ଵ ∙ ௡ିଵ,ଶܦܯ ∙ ௡ିଵ,ଷܦܯ ∙ …	∙ 	௡ିଵ,௠൧ܦܯ ሾB.5ሿ	

Where MDn-1,i – the message digest of the ith wrappered object in the Payload
that contains m wrappered objects in total.

Therefore MDn can be written as:

MDn	ൌܵܣܪ௅൫ൣܮܤܮ௡ ∙ ௡ܮܣ ∙ ௡ିଵ,ଵܦܯൣ ∙ ௡ିଵ,ଶܦܯ ∙ ௡ିଵ,ଷܦܯ ∙ …	∙ ௡ିଵ,௠൧ܦܯ ∙ 	௡൧൯ܪܣ ሾB.6ሿ	

This equation shows that any change to either the security/management information

(LBLn) or the message digest(s) of the objects being protected (MDn-1.i) will result in

change to MDn. Any change in the message digest would indicate that either the label or

the message digests of the objects in the payload have been altered. Changes in a

message digests of an object in the payload is an indication that either its labels or the

message digest of a lower wrapper have been altered. This process is recursive and will

continue until the message digests of the protected object as used.

A second property shown by this equation is a lack of dependence on the payload in

calculating and maintaining the message digests for the payload. It is only when the

wrapper is being applied to the object that the payload and wrapper must be treated

52 The Secure File Format mandates that the first wrapper applied to an object must be a Type 1 wrapper.
This mandate insures that a message digest unique to that object has been calculated.

153

collectively. Once the wrapper has been created, the payload can be separated from the

wrapper without any loss of integrity or security.

154

APPENDIX	C	‐	 HASH	COLLISION	ANALYSIS	

Introduction	

This appendix contains two investigations. The first deals with assessing the probability

of a hash collision for a different size message digests and number of objects being

hashed. The second investigates the number of objects that would need to being hashed

based on the environment, where labeling is being used.

Probability	of	a	Hash	Collision	Analysis	

In order for cryptographic hashes to have any value as a means of associating security

labels with objects, the probability that two objects or labels will generate the same

message digest must be exceptional small. When two different objects produce the same

message digest, a “hash collision” is said to have occurred. Should a hash collision

occur, the system must be able to respond with a secondary association mechanism.

What follows is the analysis to determine the probability that two objects or labels will

produce a collision. This analysis is a modification of the “General Birthday Problem.”

[60] Instead of the days in a year being the space of possible values, the possible

message digests, S, are used. N denotes the number of objects that must be uniquely

155

hashed in the hash space. Phc(N, S) is defined as the probability that a collision will occur

for N objects when the message digest can be one of S possible values. This is

represented as:

PhcሺN,Sሻ	ൌ	1	–	QhcሺN,Sሻ		 ሾC.1ሿ	

Where Qhc(N,S) – the probability that a collision will not occur

QhcሺN,Sሻ	ൌ	1	*	ሺሺܵ െ 1ሻ ܵ⁄ ሻ ∗	ሺሺܵ െ 2ሻ ܵ⁄ ሻ ∗ 	ሺሺܵ െ 3ሻ ܵ⁄ ሻ ∗ … ∗	൫൫ܵ െ ሺܰ െ 1ሻ൯ ܵ⁄ ൯	ሾC.2ሿ	

This can be rewritten as:

QhcሺN,Sሻ	ൌ	1	*		ሺ1 െ	1 ܵ⁄ ሻ ∗ ሺ1 െ	2 ܵ⁄ ሻ ∗ ሺ1 െ	2 ܵ⁄ ሻ ∗ …∗ ሺ1 െ	ሺܰ െ 1ሻ ܵ⁄ ሻ		 ሾC.3ሿ	

Recalling that the Taylor Series expansion for ݁௫ is:

݁௫ ൌ 1 ൅ ݔ ൅	௫
మ

ଶ!
൅	௫

య

ଷ!
൅	௫

ర

ସ!
൅ 	…		 ሾC.4ሿ	

And can be simplified for small values of x to:

݁௫ ൎ	1	൅	x		 ሾC.5ሿ	

Substituting [C.5] into [C.3],

QhcሺN,Sሻ	ൌ	1	*	݁ିଵ ௌ⁄ ∗ ݁ିଶ ௌ⁄ ∗ ݁ିଷ ௌ⁄ ∗ … ݁ିሺேିଵሻ ௌ⁄ 		 ሾC.6ሿ	

This can be simplified to:

156

QhcሺN,Sሻ	ൌ	݁ିேሺேିଵሻ ଶ∗ௌ⁄ 		 ሾC.7ሿ	

For large values of N, this can be simplified to:

QhcሺN,Sሻ	ൌ	݁ିே
మ ଶ∗ௌ⁄ 		 ሾC.8ሿ	

Substituting back into [C.1]

PhcሺN,Sሻ	ൌ	1	–	݁ିே
మ ଶ∗ௌ⁄ 		 ሾC.9ሿ	

Table 12 shows the value for Phc(N,S) for different values of N and S. The values for S

were chosen to correspond to the hash space associated with different versions of the

Secure Hash Algorithm (SHA) [58].

157

Table 12 - Probability of Hash Collision

P(n,s) as a function of n and s
 Space (s)

SHA-1 SHA-256 SHA-384 SHA-512
2ଵ଺଴ 2ଶହ଺ 2ଷ଼ସ 2ହଵଶ

Number of
Entries (n) 1.462E+48 1.158E+77 3.94E+115 1.34E+154
1E+18 3.421E-13 0 0 0
1E+21 3.421E-07 0 0 0
1E+24 0.2897327 0 0 0
1E+33 1 4.318E-12 0 0
1E+36 1 4.318E-06 0 0
1E+39 1 0.9866746 0 0
1E+51 1 1 1.266E-14 0
1E+54 1 1 1.269E-08 0
1E+57 1 1 0.0126095 0
1E+72 1 1 1 3.729E-11
1E+75 1 1 1 3.729E-05
1E+78 1 1 1 1

Analysis	of	the	Number	of	Labeled	Objects	that	can	be	supported	

A quick review of Table 12 shows that using available hashing solutions that large

numbers of labels can generated with a very low probability of a hash collision.

However, additional analysis is required to determine how large an environment can be

supported for a given message digest size.

Equation [C.9] can be rewritten as:

158

1	‐	PhcሺN,Sሻ	ൌ	݁ିே
మ ଶ∗ௌ⁄ 		 ሾC.10ሿ	

Using the Taylor Series Approximation from [C.5]

݁ି௉௛௖ሺே,ௌሻ		ൌ	݁ିே
మ ଶ∗ௌ⁄ 		 ሾC.11ሿ	

Taking the natural Log of [C.11]

‐	PhcሺN,Sሻ	ൌ	െܰଶ 2 ∗ ܵ⁄ 		 ሾC.12ሿ	

Solving [C.12] for N yields:

N	ൌ	ඥ2 ∗ ௛ܲ௖ሺܰ, ܵሻ ∗ ܵ		 ሾC.13ሿ	

It is now possible to determine N, given that the size of the message digest and the

acceptable probability of a hash collision are known.

Solving [C.12] for S yields:

S	ൌ	ܰଶ ሺ2 ∗ ௛ܲ௖ሺܰ, ܵሻሻ	⁄ 		 ሾC.14ሿ	

It is now possible to determine how many objects can be supported for a message digest

of a given size, given number of the labels per object and an acceptable probability that a

hash collision are known.

At this point in order to prove the viability of using message digest to associate labels

with labeled objects, I made several assumptions about the network environment where

message digests would be used.

159

The first assumption was that this system would be used for an “Internet” sized network.

This is a worst case assumption, as the current Internet is the largest networking

environment. Currently, the number of Internet addressable hosts is bound by the IPv4

32-bit address fields in the IP header.[61] Under the emerging IPv6 standard [62],

address fields will be 128-bits in size. For my analysis, I set the number of hosts in the

network at 2128 hosts.

The second assumption was that each object in the system, no more than 232 labels would

be required. This value takes into account not only the labeling of objects, but also the

use of labels as each user’s request traverses the network. This large value should reduce

the risk of “replay” style attacks.

The third assumption was an acceptable level of risk of a hash collision. I chose a value

of 1 in 240 as an acceptable level. In English, this equates to “the probability that the

message digests generated by two random objects is less than one is a trillion (1012).

Equation [C.14] show the relationship between the number of host, the number of labels

per object and the number of labeled objects per host

N	ൌ	 ௛ܰ௢௦௧௦ 	∗ 	 ௢ܰ௕௝/௛௢௦௧ 	∗ 	 ௟ܰ௕௟/௢௕௝			 ሾC.15ሿ	

Substituting [C.15] into [C.13] and solving for ௢ܰ௕௝/௛௢௦௧ yields

160

௢ܰ௕௝/௛௢௦௧	ൌ	
ඥଶ∗௉೓೎ሺே,ௌሻ∗ௌ

ே೓೚ೞ೟ೞ	∗	ே೗್೗/೚್ೕ
		 ሾC.16ሿ	

Applying values for ௛ܲ௖ሺܰ, ܵሻ, S, ௛ܰ௢௦௧௦ , and 	 ௟ܰ௕௟/௢௕௝ , yields

௢ܰ௕௝/௛௢௦௧ =
√ଶ∗ଶభమ∗ଶయఴర

ଶభమఴ∗ଶయమ
 ൌ √2଻଻ ൎ 3.89	 ∗ 	10ଵଵ objects per host

Thus with a message digest size of 384 bits, it is possible to use message digests to

associate objects labels with objects in an Internet size network with an acceptable small

probability of a hash collision.

161

APPENDIX	D	‐	 TYPES	OF	LABELS	SUPPORTED	

Introduction	

As previously stated, my dissertation is not trying to define a “one size fits all” security

solution based on object labels. But rather, it presents the tools and concepts that can be

used to build label based frameworks that are tailored to the needs of the community.

For both object and user/system labels, there is a common format for labels that can be

bound to an object. The syntax for each element in an object or user/system labels53 is:

<Security_Label>
 <Security_ID>{Security_ID}</Security_ID>
 <Label>
 <Name>{Name}</Name>
 <Type>{Type}</Type>
 <Value>{Value}</Value>
 </Label>
 …
 <Label>
 <Name>{Name}</Name>
 <Type>{Type}</Type>
 <Value>{Value}</Value>
 </Label>
</Security_Label>

Figure 56 - XML representation of a Security Label

53 The term “Security” will be used to represent either “Object” or “User/System”

162

The Security_Label is composed of a Security_ID tag and one or more <Labels>

The <Security_ID>{Security_ID}</Security_ID> tag defines the name of the Security

Label. It should contain the message digest of the object to which it is attached.

However, this is not a mandatory requirement as the strong bonding between the

Security_Label and the secured object is insured with cryptographic hashes.

The <Label>{Label Information}</Label> tags contain the information that will be used

by the Reference Monitor to determine if access is Granted. The <Label> tag defines the

name of the label using the <Name>{Name}</Name> tag, the type of tag that the label

returns using the <Type>{Type}</Type> tag, and the value assigned by the tag using a

combination of <Value>{Value}</Value> tag.

The <Type>{Type}</Type> tag defines what type of label is being represented. Table 13

details the four values that are defined for {Type} in my dissertation. This list is not

exhaustive and should be expanded over time, if the use of external labels becomes a

common practice in the security realm.

Table 13 - Possible Values for {Type}

{Type} Value Type of Label
HIER Defines a Hierarchal Label
CATE Defines a Category Label
COND Defines an Conditional Label
INFO Defines a Informational Label

163

Each of these type values will be discussed in detail in the following paragraphs.

The <Value>{Value}</Value> tag defines the value for the label. The nature of this field

is determined by the {Type} field value and will be discussed in more detailed for

each defined {Type} value.

Types	of	Labels	

NIST’s FIPS 188 [56] (and others) defines labels as being either “hierarchical” or

“categorical”. My dissertation builds on this work and adds additional labeling types.

These additional labeling types are “conditional” and “informational”. When attached to

either a native or labeled object54, a label is used to convey some information about the

object. A key feature about labeling an object is that the information conveyed by the

label is external to the object and that the use of the label does not require that the object

is be accessed as part of using the label. The ability to work with labels independently of

the object is a key point and required to address the requirement that the object and label

can be separated without any loss of security. However, it does impose requirements on

labeling. These requirements include:

That the label can be treated as an object;
That there is a strong linkage between the label and its object;
That this linkage is not altered by separating the label from its object; and

54 A Secure File Format Type 1 object is considered a native object. Any other Secure File Format Type
object is considered a labeled object.

164

That neither the label nor the object can be altered without destroying this
linkage.

Each of the different types of labels is further detailed in the following sections.

Hierarchical	Labels	

These labels are used to define a quality or characteristic of the object being labeled that

hierarchical in nature. The information carried by a hierarchical label can be either

discrete or linear. In both case, the general format of a hierarchical label is:

<Label>
 <Name>{Name}</Name>
 <Type>HIER</Type>
 <Value>{Value}</Value>
</Label>

Figure 57 - XML Representation of a Hierarchical Label

The <Name> field carries the name of the label and is used to link the label value with

the access rules against which it will be evaluated.

For a hierarchical label, the <Type> field is assigned a value of “HIER”.

These <Value> field will contain either a discrete or linear value.

For discrete values, there is a defined order that determines the precedence for evaluating

the label value. Discrete values can be either numeric or alphanumeric. In the case of

165

numeric values, the precedence is automatically established; a higher value has higher

precedence. In the case of alphanumeric values, the order of precedence must be defined

and understood by all parties. An example of this is the U. S. Government classification

system enacted by Executive Order 12958[21]. Under this system, there are four levels

of classification which form a linear lattice. This lattice is shown in Figure 58.

TOP SECRET

SECRET

CONFIDENTIAL

UNCLASSIFIED

Figure 58- Classification Precedence

Figure 58 shows that TOP SECRET has a higher precedence than SECRET, SECRET

has a higher precedence than CONFIDENTIAL, and CONFIDENTIAL has a higher

precedence than UNCLASSIFIED. Without a common understanding, the order of these

words does not implicitly carry the underlying precedence.

In a FIPS 188 label environment, the hierarchical labels are represented by an integer

value between 0 and 255. For a FIPS 188 label, the precedence is implied. 0 is lower

than 1, 1 is lower than 2, up through 254 which is lower than 255. It is a trivial matter to

implement the U. S. Government classification systems using FIPS 188 labels. All that is

166

required is for the classification levels to be mapped to an integer value, such that the

value used to represent ‘TOP SECRET’ is greater than the value used to represent

‘SECRET’. The ‘SECRET’ value must be greater than the ‘CONFIDENTIAL’ value and

the ‘CONFIDENTIAL’ values must be greater than the ‘UNCLASSIFIED’ value. Table

14 shows one possible mapping that supports the U. S. Government classification system

using FIPS 188 formatted labels.

Table 14 - Possible mapping of U. S. Gov’t Classifications to FIPS 188 values.

Classification Level FIPS 188 Value
TOP SECRET 128
SECRET 96
CONFIDENTIAL 64
UNCLASSIFIED 32

For DoD classification system (a discrete alphanumeric label), the label can be written as:

൏Value൐ሼTOP	SECRET	|	SECRET	|	CONFIDENTIAL	|UNCLASSIFIEDሽ൏/Value൐	

For FIPS 188 labels (a discrete numeric label), the label can be written as:

൏Value൐ሼI	is	an	integer	and	0൏ൌ	I	൏ൌ	255ሽ൏/Value൐	

For linear values, only properly formatted numeric values are allowed. This

automatically establishes the order of precedence, larger numeric values have higher

precedence. Linear values are when the information being carried by the label is not a

167

discrete value. An example of linear or non-discrete information that could be carried by

this type of security label is time. In the Unix/Linux/Posix operating systems, time is

measured as the number of seconds since the EPOCH (00:00:00 UTC, January 1, 1970)55.

For a liner label, the general form is:

<Value>{R is a real number and RLowest Possible Value <= R <= RLargest Possible Value}</Value>

Categorical	Labels	

These labels are used to define a quality or characteristic of the object being labeled that

is not hierarchical in nature. The information carried by a category label does not include

the concept of precedence; all label values are of equal ranking. The general form of a

category label is:

<Label>
 <Name>{Name}</Name>
 <Type>CATE</Type>
 <Value>{ܸ݈ܽ݁ݑଵ}</Value>
 …
 <Value>{ܸ݈ܽ݁ݑே}</Value>
</Label>

Figure 59 - XML Representation of a Category Label with Multiple Values

An example of categorical labels is a list of possible payment options for a retailer. The

retailer might accept cash, credit cards or debit cards as payment for goods. Possible

55 [63] Pg 484

168

payment options (categories) would include cash, credit cards, checks, and debit cards.

For a customer payment, a single value for the payment label would be applied to the

payment object. While for the vendor, the acceptable payment type label might have

multiple values.

For the acceptable payment type, the value of label would be represented as:

<Label>
 <Name>Acceptable_Payment</Name>
 <Type>CATE</Type>
 <Value>Cash</Value>
 <Value>Credit_Card</Value>
 <Value>Debit_Card</Value>
</Label>

Figure 60 - XML Representation of a Category Label with Multiple Values

When considering category labels, there are two ways to assess how the labels will be

processed. The first is where possessing any of the values of Ci is consider sufficient and

the second where all values of Ci must be met. This will be discussed in detail under the

labeling algebra for categorical labels.

Conditional	Labels	

A third type of label, not identified by FIPS 188, is the conditional label. Conditional

labels differ from hierarchical and categorical labels in that their value is static or pre-

determined, but rather is calculated at the time that the label is processed. The resulting

169

label can be either a hierarchical or categorical. Determination of the label’s value is

based either on other fields within the label as well as external attributes that are provided

to the Reference Monitor. Because the label values used for determining access are

controlled by these external attributes, safeguards must be in place to insure that they are

not compromised.

<Label>
 <Name>{Name}</Name>
 <Type>COND</Type>
 <Result>{Type}</Result>
 <Case>
 <Condition>DEFAULT</Condition>
 <Value>{Default Value}</Value>
 </Case>
 <Case>
 <Condition>{݊݋݅ݐ݅݀݊݋ܥଵ}</Condition>
 <Value>{ܸ݈ܽ݁ݑଵ}</Value>
 </Case>
 …
 <Case>
 <Condition>{݊݋݅ݐ݅݀݊݋ܥேሽ ൏/Condition>
 <Value>{ܸ݈ܽ݁ݑேሽ</Value>
 </Case>
</Label>

Figure 61 - XML Representation of Conditional Label

The <Result>{Type}</Result> identifies the format of the value that is returned.

Possible values for the result type are either “HIER” or “CATE” For a conditional label,

there is a default label value and one or more conditional values. Any information that is

170

required to determine which conditions has been satisfied must be available to the

Reference Monitor at time when access is being requested.

The <Case>…</Case> is used to designate a single condition and the result if that

condition is satisfied. The first case statement is always the “DEFAULT” condition.

This case is always invoked, and if any of the subsequent cases is application then the

“DEFAULT” value is replaced. Figure 62 and Figure 63 depicts the Conditional Label

formally and as a traditional logic statement.

൓ሺ൫ሺ݀݊݋ܥଵ ⇔ ଵሻ݁ݑ݈ܸܽ ⇒ ൓ሺ݀݊݋ܥଶ ⇔ ଶሻ൯݁ݑ݈ܸܽ ⇒ ൓ሺ݀݊݋ܥଷ ⇔ ଷሻሻ݁ݑ݈ܸܽ

⇔ 		஽௘௙௔௨௟௧݁ݑ݈ܸܽ

Figure 62 - Formal Model of a Conditional Label

Label_Value	ൌ

ە
ۖ
۔

ۖ
ۓ
஽௘௙௔௨௟௧݁ݑ݈ܸܽ	ݐ݈ݑ݂ܽ݁ܦ
ଵ݊݋݅ݐ݅݀݊݋ܥ ଵ݁ݑ݈ܸܽ
ଶ݁ݑ݈ܸܽ		ଶ݊݋݅ݐ݅݀݊݋ܥ

…
ே݁ݑܸ݈ܽ	ே݊݋݅ݐ݅݀݊݋ܥ

	

Figure 63 - Traditional Representation of a Conditional Label

171

The <Condition>{Condition}</Condition> tag is used to define the condition that must

be satisfied for the <Value>{Value}</Value to be taken on by {Name}. The general

format for the {Condition} statement is shown in Figure 64.

,ଵ݈ܾ݁ܽ݅ݎሺܸܽݎ݋ݐܽݎ݁݌ܱ ,ଶ݈ܾ݁ܽ݅ݎܸܽ … , ௡ሻ݈ܾ݁ܽ݅ݎܸܽ

Figure 64- Genrel Format of a Conditional tag

The possible Operator values are listed in Table 15.

Table 15 - Possible Conditional Operators

Operation Language Syntax
(EQ) Equals ሺܸ݈ܾܽ݁ܽ݅ݎଵ ൌ Variableଶሻ ↔ ܧܷܴܶ
(GT) Greater Than ሺܸ݈ܾܽ݁ܽ݅ݎଵ ൐ Variableଶሻ ↔ TRUE
(GE) Greater Than or

Equal
ሺܸ݈ܾܽ݁ܽ݅ݎଵ ൒ Variableଶሻ ↔ TRUE

(LT) Less Than ሺܸ݈ܾܽ݁ܽ݅ݎଵ ൏ Variableଶሻ ↔ TRUE
(LE) Less Than or

Equal
ሺܸ݈ܾܽ݁ܽ݅ݎଵ ൑ Variableଶሻ ↔ TRUE

(NE) Not Equal ሺܸ݈ܾܽ݁ܽ݅ݎଵ ് Variableଶሻ ↔ TRUE

An example of conditional labeling is the automatic declassification of a document after a

given date. The default value would be the higher classification and the conditional value

would be the lower classification with a date value after which this lower classification

value would be applicable. This would be denoted as:

172

Classification =൝
Default		Higher	Classiϐication	Value

Time	 ൐ൌ Value	Classiϐication	Lower		ܧܶܣܦ	
	

The label would be represented as:

<Label>
 <Name>CLASSIFICATION</Name>
 <Type>COND</Type>
 <Result>HIER</Result>
 <Case>
 <Condition>DEFAULT</Condition>
 <Value>SECRET</Value>
 </Case>
 <Case>
 <Condition>(GT)(${DATE_TIME},”Future_Date)”)</Condition>
 <Value>UNCLASSIFIED</Value>
 </Case>
</Label>

Figure 65 - XML Representation of a Conditional Label that declassifies its object after a
given date

For this example, any attempts to access this object prior to the Future_Date
would require the requester to have a SECRET clearance. Any request make after
the Future_Date would not be subject to this restriction. The ${DATE_TIME}
value would be provide to the Reference Monitor or Network Proxy when access
to the object is being requested from a Trusted Server.

173

Informational	Labels	

<Label>
 <Name>INFO</Name>
 <Type>INFO</Type>
 <Security_Tag>
 <Name>INFO</Name>
 <Value>INFO</Value>
 </Security_Tag>
 <Security_Tag>
 <Name>INFO</Name>
 <Value>INFO</Value>
 </Security_Tag>
 <Value>{Non-access related information}</Value>
</Label>

Figure 66 - XML Representation of an Informational Label

The final type of labels that can be carried by object labels is informational labels. As the

name implies these labels carry static information about the object. This information can

be divided into two categories; Security and General. Securing information is attributes

about the object that are available to the Access Processor for evaluating conditional

labels. They are stored in the <Value>{Value}/<Value> tag in an XML format. Figure

66 shows how <Security_Tag> tag. An information label can contain any number of

<Security_Tag> tags. When these values are being used, the can be accessed by name.

The naming convention is “INFO:{Security Tab Name. These labels can also carry

general information that will be used by search engines and external applications.

General Information that would typically be conveyed by this type of label would include

searchable keywords and tags, audit logs and history, the filename of the native object,

the creation/ modification date of the native object, the owner and group memberships of

174

the native object, and other metadata about the native object. These labels would most

often be used to load the native object into a local file system or database. Additionally,

this information could be used by navigational systems, such as web servers or search

engines. Having this information externally accessible increases the security of the

protected objects, as the objects don’t need to be exposed before the access determination

is made. This will be discussed further later in my dissertation.

175

APPENDIX	E	‐	 EXAMPLE	PROBLEMS	THAT	CAN	BE	SOLVED	WITH	

LABELED	OBJECTS	

Introduction	

In this appendix, I present some examples of the use of object labels to address some

security problems. The examples that will be presented are:

Simple Security Clearance Access;
Simple Aggregation; and
Automatic Declassification of a document;

For each of the examples, one or more sample labels for the objects, users, and systems

along with the rules for evaluating the labels.

Simple	Security	Clearance	Access	

For simple security clearance access, access to the labeled object is based on the user and

system’s clearance labels when compared against the object’s classification label. The

rule for this type of access control is shown is Figure 67.

176

<Access_Rules>
 <Test>
 <Testname>Simple_Access_Control</Testname>
 <Rule>
 <Name>Classification</Name>
 <Type>HIER</Type>
 <Operator>(GE)</Operator>
 </Rule>

</Access_Rules>

Figure 67 – Sample Rule for Simple Access Control

There are three objects that are considered. The first object is classified as SECRET, the

second object is classified as TOP SECRET, and the third object is UNCLASSIFIED.

Figure 68, Figure 69, and Figure 70 show the XML label for each document,

respectively.

<Object_Label>
 <Object_ID>Document_001</Object_ID>
 <Label>
 <Name>Classification</Name>
 <Type>HIER</Type>
 <Value>SECRET</Value>
 </Label>

</Object_Label>

Figure 68- Sample Object Lables for Document_0001

177

<Object_Label>
 <Object_ID>Document_002</Object_ID>
 <Label>
 <Name>Classification</Name>
 <Type>HIER</Type>
 <Value>TOP_SECRET</Value>
 </Label>

</Object_Label>

Figure 69- Sample Object Lables for Document_0002

<Object_Label>
 <Object_ID>Document_003</Object_ID>
 <Label>
 <Name>Classification</Name>
 <Type>HIER</Type>
 <Value>UNCLASSIFIED</Value>
 </Label>

</Object_Label>

Figure 70- Sample Object Lables for Document_0003

There are three users that are considered. The first user has a TOP SECRET clearance,

the second user has a SECRET clearance, and the third user is not cleared to have access

to any classified information. Figure 71, Figure 72, and Figure 73 show the XML label

for each user, respectively.

178

<User_Label>
 <User_ID>USER_001</User_ID>
 <Label>
 <Name>Classification</Name>
 <Type>HEIR</Type>
 <Value>TOP_SECRET</Value>
 </Label>

</User_Label>

Figure 71 - Sample User Labels for User_0001

<User_Label>
 <User_ID>USER_002</User_ID>
 <Label>
 <Name>Classification</Name>
 <Type>HEIR</Type>
 <Value>SECRET</Value>
 </Label>

</User_Label>

Figure 72 - Sample User Labels for User_0002

<User_Label>
 <User_ID>USER_003</User_ID>
 <Label>
 <Name>Classification</Name>
 <Type>HEIR</Type>
 <Value>UNCLASSIFIED</Value>
 </Label>

</User_Label>

Figure 73 - Sample User Labels for User_0003

179

There are three users that are considered. The first user has a TOP SECRET clearance,

the second user has a SECRET clearance, and the third user is not cleared to have access

to any classified information. Figure 74 and Figure 75 show the XML label for each

system, respectively.

<System_Label>
 <User_ID>System_001</User_ID>
 <Label>
 <Name>Classification</Name>
 <Type>HEIR</Type>
 <Value>TOP_SECRET</Value>
 </Label>

</System_Label>

Figure 74 - Sample System Labels for System_0001

<System_Label>
 <User_ID>System_002</User_ID>
 <Label>
 <Name>Classification</Name>
 <Type>HEIR</Type>
 <Value>UNCLASSIFED</Value>
 </Label>

</System_Label>

Figure 75 - Sample System Labels for System_0002

180

Table 16 - Access Results for Simple Acces Control

(GE) System_001
(TOP SECRET)

System_002
(UNCLASSIFIED)

User_001
(TS)

User_002
(S)

User_003
(U)

User_001
(TS)

User_002
(S)

User_003
(U)

Doc_001
(S)

Access
Granted

Access
Granted

Access
Denied

Access
Denied

Access
Denied

Access
Denied

Doc_002
(TS)

Access
Granted

Access
Denied

Access
Denied

Access
Denied

Access
Denied

Access
Denied

Doc_003
(U)

Access
Granted

Access
Granted

Access
Granted

Access
Granted

Access
Granted

Access
Granted

Simple	Aggregation	

For Simple Aggregation, a new label is created that captures the labels of the objects that

are being aggregated. In this example, three labels are being aggregated to form a new

object. Figure 76 shows the rules for aggregation.

181

<Aggregate>
 <Label>
 <Name>Classification</Name>
 <Type>HIER</Type>
 <Form> CONCAT </Form>
 <Condition>MAX</Condition>
 </Label>
 <Label>
 <Name>Category</Name>
 <Type>CATE</Type>
 <Form>CONCAT</Form>
 <Condition>AND</Condition>
 </Label>
 <Label>
 <Name>Company</Name>
 <Type>CATE</Type>
 <Form>CONCAT</Form>
 <Condition>OR</Condition>
 </Label>

</Aggregate>

Figure 76 – Sample Rule for Simple Aggregation

Figure 76 shows that there are three rules for aggregation, one for each of the label fields

in the object label. The first rule deals with the aggregation of a hierarchical label. The

<Condition> tag asserts that the value with the highest precedence or greatest value

should be used to populate the resulting object label. The second and third rules deal

with the aggregation of category labels. The second rule asserts that only those values

that are common all of the object labels will be included in the resulting object label. The

third rule asserts that any value from any of the object labels should be included in the

182

resulting object label. Figure 77, Figure 78, and Figure 79 show the details the labels for

the three objects being aggregated.

<Object_Label>
 <Object_ID>Object_001</Object_ID>
 <Label>
 <Name>Classification</Name>
 <Type>HIER</Type>
 <Value>CONFIDENTIAL</Value>
 </Label>
 <Label>
 <Name>Category</Name>
 <Type>CATE</Type>
 <Value>ALPHA</Value>
 <Value>BETA</Value>
 <Value>GAMMA</Value>
 </Label>
 <Label>
 <Name>Company</Name>
 <Type>CATE</Type>
 <Value>ABC</Value>
 </Label>
</Object_Label>

Figure 77- Sample Object Lables for Simple Access Control

183

<Object_Label>
 <Object_ID>Object_002</Object_ID>
 <Label>
 <Name>Classification</Name>
 <Type>HIER</Type>
 <Value>SECRET</Value>
 </Label>
 <Label>
 <Name>Category</Name>
 <Type>CATE</Type>
 <Value>ALPHA</Value>
 <Value>BETA</Value>
 </Label>
 <Label>
 <Name>Company</Name>
 <Type>CATE</Type>
 <Value>DEF</Value>
 </Label>
</Object_Label>

Figure 78- Sample Object Lables for Simple Access Control

184

<Object_Label>
 <Object_ID>Object_003</Object_ID>
 <Label>
 <Name>Classification</Name>
 <Type>HIER</Type>
 <Value>UNCLASSIFIED</Value>
 </Label>
 <Label>
 <Name>Category</Name>
 <Type>CATE</Type>
 <Value>BETA</Value>
 <Value>GAMMA</Value>
 </Label>
 <Label>
 <Name>Company</Name>
 <Type>CATE</Type>
 <Value>DEF</Value>
 </Label>
</Object_Label>

Figure 79- Sample Object Lables for Simple Access Control

There are three classification values, one from each of the original objects. Because

“SECRET” has higher precedence that either “CONFIDENTIAL” or

“UNCLASSIFIED”, it is captured by the resulting label. The category label will contain

on “BETA” because it is the only value that is common to all three labels. The Company

label will contain both “ABC”, and “DEF” because each value is found in one or more of

the original labels.

Each of the label tags can be represented as a logic statement. For the Classification tag,

the statement would be:

MAX(CONFIDENTIAL, SECRET, UNCLASSIFIED) = SECRET

185

For the Category tag, the statement would be:

∩ ሺሼܣܪܲܮܣ, ,ܣܶܧܤ ,ሽܣܯܯܣܩ ሼܣܪܲܮܣ, ,ሽܣܶܧܤ ሼܣܶܧܤ, ሽሻܣܯܯܣܩ ൌ ܣܶܧܤ	

For the Company tag, the statement would be:

∪ ሺሼܥܤܣሽ, ሼܨܧܦሽ, ሼܨܧܦሽሻ ൌ ,ܥܤܣ	 ܨܧܦ

Figure 80 show the labels for the resulting object.

<Object_Label>
 <Object_ID>Resulting_Object</Object_ID>
 <Label>
 <Name>Classification</Name>
 <Type>HIER</Type>
 <Value>SECRET</Value>
 </Label>
 <Label>
 <Name>Category</Name>
 <Type>CATE</Type>
 <Value>BETA</Value>
 </Label>
 <Label>
 <Name>Company</Name>
 <Type>CATE</Type>
 <Value>ABC</Value>
 <Value>DEF</Value>
 </Label>
</Object_Label>

Figure 80- Sample Object Lables for an Aggregated Object

Automatic	Declassification	of	a	Document	

Several Executive Orders mandate that classified documents are declassified after a given

period of time unless certain conditions applied. Under these conditions, some types of

186

classified information can remain classified for extended periods of time. However for

the vast majority of information, declassification will occur at either 10 or 25 years after

the document was originally classified. Object labeling can provide for this automatic

declassification. Using object labels, automatic declassification can be execute without

additional relabeling.

For object label based labeling, the declassification rules are included in the object’s

label. Because these rules are included in the object’s label, the access rules are simple

and require that the classification (clearance) of the user/system is greater than or equal to

that of the object at the time of access. Figure 81 shows what the access rules would look

like.

<Access_Rules>
 <Test>

 <Testname>Object_Label_Based_Automatic_Declassification</Testname>
 <Rule>
 <Name>Classification</Name>
 <Type>HIER</Type>
 <Operator>(GE)</Operator>
 </Rule>
</Access_Rules>

Figure 81 – Sample Rule for Simple Access Control

187

Figure 82 shows the object label for an object that will be automatically declassified after

00:00 June 30 201556. For Document_001, the default classification level is SECRET.

After June 30, 2015, the default condition is not applicable and the classification is

UNCLASSIFIED. One issue to remember is structuring the conditional statements is the

need for external trusted attributes. In this case, the current date and time

${DATE_TIME} is provided by a trusted server.

If this server is unavailable or can’t provide a trusted date and time, then the conditional

statement can’t be evaluated. For this example, the document would remain SECRET. It

is usually desirable to deny a legitimate request for access, rather than grant an

illegitimate request for access.

If the default condition for the document was UNCLASSIFIED with the condition that

the document was SECRET before the June 30, 2015 declassification date, then not

having a trusted date and time would have resulted in the default condition being realized

before the declassification date and the document being prematurely released.

56 The exact format for specify features like dates and time is not defined, but should be inline with what is
otherwise available.

188

<Object_Label>
 <Object_ID>Document_001</Object_ID>
 <Label>
 <Name>Classification</Name>
 <Type>COND</Type>
 <Result>HIER</Result>
 <Case>
 <Condition>DEFAULT</Condition>
 <Value>SECRET</Value>
 </Case>
 <Case>
 <Condition>(GT)(${DATE_TIME},”20150630000”)</Condition>
 <Value>UNCLASSIFIED</Value>
 </Case>
 </Label>

</Object_Label>

Figure 82- Sample Object Lables with a single Conditional Case

Figure 83 shows an object label that includes two stages of declassification. The default

condition is SECRET. The document is reclassified as CONFIDENTIAL on August 15,

2016 and then later declassified on December 31, 2020.

The classification level of the document is set to SECRET. The conditional statements

are then evaluated until one is satisfied. Once a condition is met, then the processing of

conditions stop. For this example, the first conditional processed checks if the current

time and date is after when the document should be completely declassified. If this is

true, then the document’s label is set to UNCLASSIFIED and processing stops. If this is

not true, then the second conditional is evaluated. If the current time and date are past

when the document should be reclassified, then the document label is set to

189

CONFIDENTIAL. If neither of the conditional is satisfied, then the document’s label

remains as SECRET.

<Object_Label>
 <Object_ID>Document_002</Object_ID>
 <Label>
 <Name>Classification</Name>
 <Type>COND</Type>
 <Result>HIER</Result>
 <Case>
 <Condition>DEFAULT</Condition>
 <Value>SECRET</Value>
 </Case>
 <Case>
 <Condition>(GT)(${DATE_TIME},”202012310000”)</Condition>
 <Value>UNCLASSIFIED</Value>
 </Case>
 <Case>
 <Condition>(GT)(${DATE_TIME},”201608150000”)</Condition>
 <Value>CONFIDENTIAL</Value>
 </Case>
 </Label>

</Object_Label>

Figure 83- Sample Object Lables with Multiple Conditional Cases

A key point to remember is that conditionals only apply to the Label of which they are a

part. If a second <Label> tag were part of the object’s label, it would be unaffected by

any of the conditional cases in the Classification tag.

A similar set of labels can be applied to either user or system labels as well. In this way,

the user or system would be granted temporary access to a higher classification of

190

information. However, that access would automatically be removed after a given date or

once another condition has been satisfied.

191

APPENDIX	F	‐	 LABEL	BASED	ACCESS	CONTROL	DEMONSTRATION	

SYSTEM	

This appendix contains a copy of the Object Labeling System Reference Implementation

Test Plan. This test plan represents the testing that was performed on a developed system

that was developed to insure that the object labeling functionality that was presented in

this dissertation could be implemented in a cost effective manner.

In addition to documenting the reference implementation, there is a cost analysis. One of

the key tenets of this research is that object labeling can be implemented so as to be cost

effective. For the purposes of addressing this tenet, an equivalent server implementation

was defined and priced out. The results that are documented in this appendix can be

replicated on a server with a total cost of less than $2000.00

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

APPENDIX	H	–	SECURE	FILE	FORMAT	RFC	(DRAFT)	

This appendix contains a copy of the text of the Secure File Format RFC. At the time

that this dissertation was being written, it was also being rewritten to include additional

functionalities not covered in the original version, which was published at part of An

Architecture for Managing Access to and Permission for Multiple Versions of Objects in

a Distributed Environment [34].

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

REFERENCES	

253

REFERENCES	

[1] Harris, Shon, CISSP All-in-One Exam Guide, 5th ed. New York: McGraw-Hill
Books, 2010.

[2] ASD(P), “DoDD 3600.01 Information Operations.” [Online]. Available:
http://www.dtic.mil/whs/directives/corres/pdf/360001p.pdf. [Accessed: 02-Oct-
2011].

[3] R. Farrow, Unix System Security, First ed. Reading, Massachusetts: Addison-Wesley
Publishing Company, Inc, 1991.

[4] J. Postel and J. Reynolds, “RFC 959 - File Transfer Protocol (FTP).” [Online].
Available: http://www.ietf.org/rfc/rfc959.txt. [Accessed: 21-Nov-2011].

[5] Denning, Dorothy E., “A Lattice Model of Secure Information Flow.” [Online].
Available: http://www.cs.georgetown.edu/~denning/infosec/lattice76.pdf. [Accessed:
25-Jun-2011].

[6] Bell, D. E.; La Padula, L. J., “Secure Comptuer System: Unified Exposition and
Multics Interpretation,” Mar-1976. [Online]. Available:
http://csrc.nist.gov/publications/history/bell76.pdf. [Accessed: 23-Oct-2011].

[7] Biba, K.J., “Integrity Considerations for Secure Computer Systems,” Apr-1997.
[Online]. Available: http://www.dtic.mil/cgi-
bin/GetTRDoc?AD=ADA039324&Location=U2&doc=GetTRDoc.pdf. [Accessed:
16-Oct-2011].

[8] D. F. C. Brewer and M. J. Nash, “The Chinese Wall Security Policy.” [Online].
Available:
http://www.cs.purdue.edu/homes/ninghui/readings/AccessControl/brewer_nash_89.p
df. [Accessed: 31-Oct-2011].

[9] “DoD 5200.28-STD Department of Defense Trusted Computer System Evaluation
Criteria.” [Online]. Available: http://csrc.nist.gov/publications/history/dod85.pdf.
[Accessed: 29-Mar-2011].

[10] NCSC, “Trusted Network Interpretation,” 31-Jul-1987. [Online]. Available:
http://csrc.nist.gov/publications/secpubs/rainbow/tg005.txt. [Accessed: 24-Oct-2011].

254

[11] “RFC 1108 - U.S. Department of Defense Security Options for the Internet
Protocol.” [Online]. Available: http://tools.ietf.org/html/rfc1108. [Accessed: 26-Jun-
2011].

[12] “RFC 1038 - Draft revised IP security option.” [Online]. Available:
http://tools.ietf.org/html/rfc1038. [Accessed: 31-Oct-2011].

[13] Mager, Alan, “Investigation of Technologies and Techniques for Labelling
Information Objects to Support Access Management.” [Online]. Available:
http://pubs.drdc.gc.ca/PDFS/unc43/p524601.pdf. [Accessed: 25-Jun-2011].

[14] “RFC 1296 - Internet Growth (1981-1991).” [Online]. Available:
http://tools.ietf.org/html/rfc1296. [Accessed: 26-Jun-2011].

[15] Defense Communications Agency, DDN Directory. DDN Network Information
Center, 1984.

[16] Comer, Douglas, Internetworking with TCP/IP, First ed. Englewood Cliffs, New
Jersey: Prentice Hall, 1988.

[17] Defense Communications Agency, “MIL STD 1777,” in DDN Protocol Handbook,
vol. 1, 3 vols., Menlo Park, California: DDN Network Information Center, 1985.

[18] Kahn, David, The Codebreakers. New York: The MacMillan Company, 1967.

[19] “Security Classification of Information, volume 1 (Quist), Chapter Two.” [Online].
Available: http://www.fas.org/sgp/library/quist/chap_2.html. [Accessed: 26-Jun-
2011].

[20] “Security Classification of Information, volume 1 (Quist), Chapter One.” [Online].
Available: http://www.fas.org/sgp/library/quist/chap_1.html. [Accessed: 26-Jun-
2011].

[21] “Executive Order 12958 - Classified National Security Information,” 20-Apr-1995.
[Online]. Available:
http://www.dtic.mil/dtic/pdf/customer/STINFOdata/EO_12958.pdf. [Accessed: 20-
Oct-2011].

[22] G. W. Bush, “Executive Order 13292—Further Amendment to Executive Order
12958, as Amended, Classified National Security Information,” 28-Mar-2003.
[Online]. Available: http://edocket.access.gpo.gov/2003/pdf/03-7736.pdf. [Accessed:
21-Nov-2011].

255

[23] “DoD 5200.1-PH DoD Guide to Marking Classified Documents.” [Online].
Available: http://www.dtic.mil/dtic/pdf/customer/STINFOdata/DoD5200_1ph.pdf.
[Accessed: 28-Feb-2011].

[24] ASD(C4I), “DOD 5200.1-R Information Security Program,” Jan-1997. [Online].
Available: http://www.fas.org/irp/doddir/dod/5200-1r/. [Accessed: 26-Jun-2011].

[25] “Re aggregation | Define Re aggregation at Dictionary.com.” [Online]. Available:
http://dictionary.reference.com/browse/re+aggregation. [Accessed: 16-Oct-2011].

[26] Quist, Arvin S., “Classification of Compilations of Information,” Jun-1991.
[Online]. Available: http://www.fas.org/sgp/library/compilations.pdf. [Accessed: 26-
Jun-2011].

[27] DOE OCIO Director’s Office, “DOE OCIO May 2005 Comunique,” May-2005.
[Online]. Available:
http://www.hss.doe.gov/classification/news/CommuniQue200505.pdf. [Accessed:
16-Oct-2011].

[28] “DoDI 8500.2 Information Assurance (IA) Implementation.” [Online]. Available:
http://www.dtic.mil/whs/directives/corres/pdf/850002p.pdf. [Accessed: 14-Oct-
2011].

[29] “Security Classification of Information, volume 2 (Quist), Chapter Ten.” [Online].
Available: http://www.fas.org/sgp/library/quist2/chap_10.html. [Accessed: 26-Jun-
2011].

[30] “NRC: Glossary -- Critical mass.” [Online]. Available: http://www.nrc.gov/reading-
rm/basic-ref/glossary/critical-mass.html. [Accessed: 13-Jul-2011].

[31] JTF - Transformation Initiative, “NIST Special Publication 800-53 Rev 3 -
Recommended Security Controls for Federal Information Systems and
Organizations,” Aug-2009. [Online]. Available:
http://csrc.nist.gov/publications/nistpubs/800-53-Rev3/sp800-53-rev3-final_updated-
errata_05-01-2010.pdf. [Accessed: 20-Oct-2011].

[32] ASD(NII)/DoD CIO, “DoDD 8500.01E Information Assurance (IA).” [Online].
Available: http://www.dtic.mil/whs/directives/corres/pdf/850001p.pdf. [Accessed:
14-Oct-2011].

[33] ASD(NII)/DoD CIO, “DODD 8570.01 Information Assurance Training,
Certification, and Workforce Management,” 15-Aug-2004. [Online]. Available:
http://www.dtic.mil/whs/directives/corres/pdf/857001p.pdf. [Accessed: 14-Oct-
2011].

256

[34] Rozenbroek, Thomas, “An Architecture for Managing Access to and Permission for
Multiple Versions of Objects in a Distributed Environment: modeling and analysis,”
in Proceedings of the Twelfth International Conference on Telecommunications
Systems, Monterey, California, 2004.

[35] W3C, “Extensible Markup Language (XML) 1.0 (Fifth Edition).” [Online].
Available: http://www.w3.org/TR/xml/. [Accessed: 09-Mar-2011].

[36] “RFC 2616 - Hypertext Transfer Protocol -- HTTP/1.1.” [Online]. Available:
http://tools.ietf.org/html/rfc2616. [Accessed: 11-Mar-2011].

[37] “THE PRIVACY ACT OF 1974, 5 U.S.C. § 552a -- As Amended.” [Online].
Available: http://www.justice.gov/opcl/privstat.htm. [Accessed: 20-Oct-2011].

[38] Adams, C, “RFC 2510 - Internet X.509 Public Key Infrastrcture,” Mar-1999.
[Online]. Available: http://www.ietf.org/rfc/rfc2510.txt. [Accessed: 20-Oct-2011].

[39] “RFC 4510 - Lightweight Directory Access Protocol (LDAP): Technical
Specification Road Map.” [Online]. Available: http://tools.ietf.org/html/rfc4510.
[Accessed: 20-Oct-2011].

[40] Carter, Gerald, LDAP System Adminstration, First ed. Sebastopol, CA: O’Reilly &
Associates, Inc, 2003.

[41] Bovet, Danial P. & Cesati, Marco, Understanding the Linux Kernel. Sebastopol, CA:
O’Reilly Media, Inc, 2006.

[42] “RFC 1457 - Security Label Framework for the Internet.” [Online]. Available:
http://tools.ietf.org/html/rfc1457. [Accessed: 04-Mar-2011].

[43] Anderson, James P., “Computer Security Technology Planning Study ESD-TR-73-
51 Vol 1,” Oct-1972. [Online]. Available:
http://nob.cs.ucdavis.edu/history/papers/ande72a.pdf. [Accessed: 19-Oct-2011].

[44] ASD C3I, Department of Defense Trusted Computer Systems Evaluation Criteria.
U. S. Department of Defense, 1985.

[45] “NCSC-TG-004 [Aqua Book] Glossary of Computer Security Terms [Version 1,
10/21/88].” [Online]. Available: http://www.fas.org/irp/nsa/rainbow/tg004.htm.
[Accessed: 23-Oct-2011].

[46] Ames, Stanley R.; Gasser, Morrie; Schnell, Roger R., “Security Kernal Design and
Implementation: An Introduction,” 1983. [Online]. Available:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1654439. [Accessed: 23-
Oct-2011].

257

[47] “World Internet Usage Statistics News and World Population Stats.” [Online].
Available: http://www.internetworldstats.com/stats.htm. [Accessed: 24-Oct-2011].

[48] “Internet Systems Consortium | January, 2011 Domain Survey.” [Online]. Available:
http://ftp.isc.org/www/survey/reports/2011/01/. [Accessed: 24-Oct-2011].

[49] “RFC 4120 - The Kerberos Network Authentication Service (V5).” [Online].
Available: http://tools.ietf.org/html/rfc4120. [Accessed: 04-Mar-2011].

[50] “RFC 5280 - Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile.” [Online]. Available:
http://tools.ietf.org/html/rfc5280. [Accessed: 21-Nov-2011].

[51] “RFC 4880 - OpenPGP Message Format.” [Online]. Available:
http://tools.ietf.org/html/rfc4880. [Accessed: 04-Mar-2011].

[52] “GOSAC-N Whitepaper_v2.0_5.25.11.pdf.” [Online]. Available: http://www.gosac-
n.org/sites/default/files/GOSAC-N%20Whitepaper_v2.0_5.25.11.pdf. [Accessed: 08-
Dec-2011].

[53] “GOSAC-N System Architecture and Design,” Forge.mil. [Online]. Available:
https://software.forge.mil/sf/docman/do/downloadDocument/projects.gosac_n/docma
n.root.design/doc11323. [Accessed: 02-Mar-2012].

[54] T. Rozenbroek and E. H. Sibley, “An architecture for Propagating Modifications to
Mobile Polices,” in Proceedings of the Tenth International Conference on
Telecommunication Systems, Monterey, Cal, 2002.

[55] D. E. Eastlake and K. Niles, Secure XML. Boston, MA: Pearson Education, Inc,
2003.

[56] National Institute of Standards and Technology (NIST), “NIST FIPS Pub 188
Standard Security Label for Information Transfer,” 06-Sep-1994. [Online].
Available: http://csrc.nist.gov/publications/fips/fips188/fips188.pdf. [Accessed: 26-
Jun-2011].

[57] Gary Stoneburner, “NIST Special Publication 800-33 - Underlying Technical
Models for Information Technology Security.” [Online]. Available:
http://csrc.nist.gov/publications/nistpubs/800-33/sp800-33.pdf. [Accessed: 04-Apr-
2012].

[58] National Institute of Standards and Technology (NIST), “NIST FIPS PUB 180-3
Secure Hash Standard (SHS),” Oct-2008. [Online]. Available:
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf. [Accessed: 11-
Mar-2011].

258

[59] Ryan, Peter; Schneider, Steve, Modelling and Analysis of Security Protocols, First
ed. Great Britian: Pearson Education Limited, 2001.

[60] “JSTOR: The American Mathematical Monthly, Vol. 73, No. 4 (Apr., 1966), pp.
385-387.” [Online]. Available: http://www.jstor.org.mutex.gmu.edu/stable/2315408.
[Accessed: 16-Oct-2011].

[61] “RFC 791 - Internet Protocol.” [Online]. Available: http://tools.ietf.org/html/rfc791.
[Accessed: 21-Nov-2011].

[62] “RFC 2460 - Internet Protocol, Version 6 (IPv6) Specification.” [Online]. Available:
http://tools.ietf.org/html/rfc2460. [Accessed: 21-Nov-2011].

[63] Lewine, Donald, POSIX Programmer’s Guide. Sebastopol, CA: O’Reilly &
Associates, Inc, 1991.

259

CURRICULUM	VITAE	

Thomas H. Rozenbroek received her Bachelor of Engineering from Stevens Institute of
Technology in 1983. He received a Master of Science in Information Systems from
Strayer University in 1996 and a Master of Science in Systems Engineering from the
Naval Postgraduate School in 2012.

