
 1

Evolutionary Computation and Structural Design: a Survey of the State of the Art*

Rafal Kicinger1

Civil, Environmental and Infrastructure Engineering Department,
George Mason University, Fairfax, VA 22030, USA

Tomasz Arciszewski
Civil, Environmental and Infrastructure Engineering Department,

George Mason University, Fairfax, VA 22030, USA

Kenneth De Jong
Computer Science Department,

 George Mason University, Fairfax, VA 22030, USA

Abstract
Evolutionary computation is emerging as a new engineering computational paradigm, which may
significantly change the present structural design practice. For this reason, an extensive study of
evolutionary computation in the context of structural design has been conducted in the Information
Technology and Engineering School at George Mason University and its results are reported here. First, a
general introduction to evolutionary computation is presented and recent developments in this field are
briefly described. Next, the field of evolutionary design is introduced and its relevance to structural
design is explained. Further, the issue of creativity/novelty is discussed and possible ways of achieving it
during a structural design process are suggested. Current research progress in building engineering
systems’ representations, one of the key issues in evolutionary design, is subsequently discussed. Next,
recent developments in constraint-handling methods in evolutionary optimization are reported. Further,
the rapidly growing field of evolutionary multiobjective optimization is presented and briefly described.
An emerging subfield of coevolutionary design is subsequently introduced and its current advancements
reported. Next, a comprehensive review of the applications of evolutionary computation in structural
design is provided and chronologically classified. Finally, a summary of the current research status and a
discussion on the most promising paths of future research are also presented.

Keywords
Evolutionary computation, Structural design, Conceptual design, Multiobjective analysis, Optimization,
Constraints, Computer aided design

1. Introduction
The new Millennium witnesses the emergence of Information Technology as the driving force behind the
progress in civil engineering, particularly in the area of computation as related to design. The growing
sophistication of computer programs, their availability, increased speed of computations and their ever-
decreasing costs have already had a significant impact on civil engineering, and that can be considered a
paradigm change.

Up to very recently, computers in structural design were used mostly for the analytical purposes in the
detailed design stages. Nowadays, their role is becoming more and more versatile. They are being
applied to all stages of the design process, from the generation of design concepts (design topologies, or
layouts), through preliminary design (design shape specification), and finally in the detailed design
process (sizing of structural members). That requires a new intellectual and computational framework to
fully benefit from the progress in Information Technology. Among computational paradigms,
evolutionary computation (EC) is now recognized as particularly appropriate for various traditional and
novel computational applications in structural engineering.

The major objective of this paper is to present a comprehensive survey of the recent developments of
evolutionary-based methods in structural engineering as well as to provide their historical context. Also,

1 Corresponding author: E-mail: rkicinge@gmu.edu, Phone: (+1)703-993-1658, Fax: (+1)703-993-1521

*Citation:
Kicinger, R., Arciszewski, T., and De Jong, K. A. (2005). "Evolutionary computation and structural
design: a survey of the state of the art." Computers & Structures, 83(23-24), 1943-1978.

 2

a unified picture of evolutionary computation proposed by one of the authors [1] is discussed together
with a discussion of the state-of-the-art (SOTA) in the EC research areas that are particularly relevant to
structural design. Further, a summary of the current research status and a discussion on the most
promising paths of future research is presented.

There are several other literature reviews on evolutionary techniques in structural engineering [2-7]
but they are all too narrow, i.e. they either consider only a particular species of evolutionary algorithm
(e.g. genetic algorithms), or focus on applications for a specific stage of a design process, e.g. conceptual
design. None of these surveys attempts to provide as comprehensive and unified view of EC in structural
engineering as it is intended in this paper. This survey provides a relatively complete picture of the
research that has been done in the past and that is currently under way. It should become a useful
reference for both newcomers as well as researchers already working in this field.

A significant effort was made to gather, analyze, and appropriately describe research developments in
this field since its roots dating back to mid 1970’s. It is, however, impossible to provide an exhaustive
literature review discussing every piece of work that has been done over the years. Thus, the authors had
to arbitrarily select the most representative work known to them (particularly, in the case of very prolific
researchers). It is also possible that equally important and stimulating research unknown to the authors
was unintentionally omitted.

The survey is structured in the following way. First, a general introduction to evolutionary
computation is presented in section 2 and recent developments in this field are briefly described. Section
3 describes the field of evolutionary design and discusses its relevance to structural engineering. In this
section, the issue of creativity/novelty is discussed and possible ways of achieving it during a structural
design process are suggested. Section 4 contains an overview of recent developments in building
engineering systems’ representations, one of the key issues in evolutionary design particularly when
creativity/novelty is sought. Since almost every structural design problem involves some kind of
constraints, section 5 reports SOTA in constraint-handling methods used in evolutionary optimization. It
is also common that a given structural design problem has multiple and often conflicting objectives.
Section 6 discusses recent developments in the rapidly growing field of evolutionary multiobjective
optimization. Section 7 provides an overview of the emerging subfield of coevolutionary design and
discusses its potential for structural design. Section 8 contains a comprehensive literature review of the
applications of evolutionary computation in structural design. A summary of the major applications since
mid 1980’s is provided in a chronological order and classified with respect to application domain, and
major EC characteristics. Finally, a discussion on the current research status and most promising paths of
future research is presented in section 9.

2. Evolutionary Computation
Evolutionary Computation (EC) is a modern search technique which uses computational models of
processes of evolution and selection. Concepts and mechanisms of Darwinian [8] evolution and natural
selection are encoded in evolutionary algorithms (EAs) and used to solve problems in many fields of
engineering and science.

Strong resemblance to biological processes as well as their initial applications for modeling complex
adaptive systems [9] influenced the terminology used by EC researchers. It borrows a lot from genetics,
evolutionary theory and cellular biology. Thus, a candidate solution to a problem is called an individual
while an entire set (or more accurately a superset) of current solutions is called a population. For some
problem domains, a population may be broken into several subpopulations. The actual representation
(encoding) of an individual is called its genome or chromosome. Each genome consists of a sequence of
genes, i.e. attributes that describe an individual. A value of a gene is called an allele. When individual
solutions are modified to produce new candidate solutions they are said to be breeding and the new
candidate solution is called an offspring or a child. During the evaluation of a candidate solution, it
receives a grade called fitness, which indicates the quality of the solution in the context of a given
problem. When the current population is replaced by offspring, the new population is called a new
generation. Finally, the entire process of searching for an optimal solution is called evolution [10].

2.1 Evolutionary Algorithms

Evolutionary algorithms are a family of population-based search algorithms that simulate the evolution of
individual structures by interrelated processes of selection, reproduction, and variation. There is a variety
of EAs that have been proposed and studied. They all share a common set of underlying assumptions but
differ in the breeding strategy to be used and representation on which EAs operate.

 3

Historically, three major EAs have been developed: Evolution Strategies (ES) [11,12], Evolutionary
Programming (EP) [13], and Genetic Algorithms (GAs) [9]. These algorithms have been mostly used to
evolve solutions to parameterized problem domains. On the other hand, the fourth major EA developed
more recently, Genetic Programming (GP) [14], has been used to evolve actual computer programs to
solve a number of computational tasks [10]. There are also many hybrid models incorporating various
features of the above paradigms, including the CHC algorithm [15], the structured GA [16], the breeder
GA [17], the messy GA [18], and many others.

From the engineering point of view, EC can be understood as a search and optimization process in
which a population of solutions undergoes a process of gradual changes. This process depends on the
fitness (a formal measure of perceived performance) of the individual solutions as defined by the
environment (objective function).
A canonical EA consists of the following steps:

1. Initialize the population
2. Evaluate all members of the population
While the termination condition is not satisfied
{

3. Select individual(s) in the population to be parent(s)
4. Create new individuals by applying the variation operators to the copies of parent(s)
5. Evaluate new individuals
6. Replace some/all of the individuals in the current population with the new individuals

}
Before an actual evolutionary process begins, an initial population of individuals (solutions) is created.

Traditionally, the initial population is created randomly but several other initialization techniques have
also been used (e.g. starting from a set of previously known or arbitrarily assumed solutions). Next, each
individual in the initial population is evaluated and assigned a fitness value.

Using the fitness scores, the selection mechanism chooses a subset of the current population as parents
to create new individuals. When the selection mechanism uses bias toward individuals with better fitness,
the created offspring will, more likely, have higher fitness. Once the set of parents has been selected, the
new individuals are created by copying them and applying variation operators.

There are several commonly used selection strategies within EC community. Fitness-proportional
selection [9] normalizes the fitness values of all individuals in the population and assigns these
normalized values as probabilities that their respective individuals will be selected. Ranked selection
works by first ranking all individuals in the population by their fitness, and use these ranks, rather than
actual fitness values, to determine selection probabilities of the individuals. A common form of ranked
selection is a linear ranking [19,20] where individuals are first sorted in an increasing order according to
their fitness values. Each individual is then selected with a probability based on some linear function of
its sorted rank. Another popular selection strategy is a tournament selection. In this strategy, a pool of n
individuals is picked at random from the population. Each of the individuals in the pool is selected
independently and it might be the case that the same individual will be selected multiple times. Next, an
individual from the pool with highest fitness value is selected to form the new population. This procedure
is repeated as many times as necessary to create either an entirely new population or a subset of it. The
pool size is a parameter that controls the magnitude of the selection pressure. Finally, the truncation
selection chooses only a certain proportion of the best individuals in the population. This strategy is most
popular within the ES community, where it is used in two basic flavors: (μ, λ) and (μ+λ) [21]. In the
former case, the selection operates on the offspring population only, whereas in the latter case it selects
individuals from a joint population of both parents and offspring.

The two most popular variation operators are mutation and recombination. Mutation acts on a single
individual and works by applying some variation to one or more genes in the individual’s chromosome
(similar to a variation operator used in other search mechanisms like hill climbing or simulated
annealing). Recombination, on the other hand, operates on multiple individuals (usually two) and
combines parts of these individuals to create new ones.

The newly created individuals are evaluated and assigned fitness values. Then, either all or only a
subset of the current population is replaced by these new individuals. If the entire population is replaced
by the new individuals then the algorithm is called generational EA. On the other hand, if only a subset
of the original population is replaced then the algorithm is called a steady-state EA. Steps 3-6 of the
canonical EA defined earlier are performed until an assumed stopping criterion is met, which is usually
defined as an arbitrary number of generations or fitness function evaluations.

 4

2.2 Evolutionary Computation and Engineering Design

This basic evolutionary process described above is called a ‘simple evolutionary algorithm’ in a sense that
it contains the minimal set of features necessary to be a Darwinian evolutionary system. These simple
EAs have surprisingly useful properties, primarily related to solving difficult global optimization
problems. They perform well when applied to problems with nonlinear, stochastic, temporal, or chaotic
components, where traditional optimization techniques, like gradient descent, hill climbing, and purely
random search, are generally unsatisfactory. It is in this context that much of the work on engineering
applications has taken place historically: using simple EAs for design optimization.
The three main issues in applying EAs to an engineering design problem are:

1. Selecting an appropriate representation for engineering designs.
2. Defining efficient genetic operators.
3. Providing an adequate evaluation function for estimating the “fitness” of generated solutions

(points in the search space).
An appropriate representation of an engineering system is one of the most crucial elements of

evolutionary design. This issue is particularly important when creativity/novelty of designs produced in
evolutionary processes is one of the major goals. The process of creating an efficient and adequate
representation of an engineering system for evolutionary design is complicated and involves elements of
both science and art. One has to take into account not only important aspects of understanding traditional
modeling of an engineering system, but also relevant computational issues that include search efficiency,
scalability, and mapping between a search space (genotypic space) and a space of actual designs
(phenotypic space). A more detailed discussion of EA representations is presented in section 4.

Appropriate choice and implementation of genetic operators, i.e. mutation and recombination
opreators, and careful tuning of their rates is an important issue as it can have a big impact on the success
of EAs and has therefore been a subject of both theoretical [22] as well as experimental investigations
[23-25]. Any particular implementation of a mutation or recombination operator is representation
dependent. Thus, for example GAs with binary string representations use the bit-flip mutation and 1-, or
2-point crossover, while ES with real-valued vectors use the Gaussian mutation and a recombination
operator that swaps/averages parents’ alleles. Genetic operators are primary sources of exploration in
EAs. On the other hand, selection mechanisms provide EAs with exploitative power. Thus, by properly
defining and controlling the variation mechanisms (genetic operators), one can achieve a higher level goal
of finding “an effective balance between further exploration of unexplored regions of the search space
and exploiting the regions already explored.” [1].

Another important issue in successful application of EAs is to choose an adequate fitness evaluation
function for a problem domain. Evaluation functions provide EAs with feedback about the fitness of each
individual in the population. EAs use this feedback to bias the search process in order to improve the
population’s average fitness. Naturally, the details of a particular fitness function are problem specific.

Table 1 provides a description of all commonly used EAs in terms of decisions that are made during
an implementation of a particular EA. It is a modified table initially proposed in [6]. The particular
decisions are summarized in terms of attributes and their values. Using this characterization, it is then
straightforward to describe a given EA, e.g. a GA or ES, and its relationship to other EAs [6].

2.3 Advanced Evolutionary Algorithms

Various modern trends in EC relax some of the assumptions found in the canonical EAs. For example, in
multiobjective EAs, a requirement of a single fitness value determining the quality of an individual is
replaced by several independent fitness criteria. Another assumption of using a single evolving
population is relaxed in parallel, or distributed, EAs as well as in coevolutionary algorithms (CEAs). In a
fairly popular model of a parallel EA, called the island-model EA [26], evolution occurs in multiple
parallel subpopulations evolving independently with occasional ‘migrations’ of some individuals among
subpopulations. CEAs typically use multiple subpopulations but additionally modify another
fundamental assumption, namely that individuals are no longer evaluated independently of one another.
Two common models of CEAs include cooperative CEAs [27], where the fitness of an individual is
assessed through ‘cooperation’ with individuals from other subpopulations, and competitive CEAs [28],
where the fitness of an individual is determined by its competition against individuals from other
populations. Coevolutionary EAs are discussed in more detail in section 7.

Next section presents a subfield of EC, called evolutionary design, which is directly related to
engineering design problems. It also discusses the issues of creativity and emergence in engineering
design processes.

 5

Table 1: Attributes describing commonly used EA implementations.

Attribute Values No. Attribute
1 2 3 4 5

Encoding Binary Real-
valued

Graph-
based

Compu-
ter code Other

1
Solution

repre-
sentation Length Fixed Variable

Mechanism Random
generation

Selection
from a

group of
known

solutions

User
defined 2

Popula-
tion

initializa-
tion

Population size 1 Fixed Variable

3 Parent selection mechanism Truncation Ranking
Fitness
propor-
tional

Tourna-
ment Uniform

Type Bit-flip Gaussian Subtree User
defined

Mutation
Rate 0 Fixed Adaptive Random

Type N-point Swap Uniform Subtree User
defined

4 Variation
mecha-
nism

Crossover
Rate 0 Fixed Adaptive Random

5 Survival selection mechanism Truncation Ranking
Fitness
propor-
tional

Tourna-
ment Uniform

3. Evolutionary Design and Creativity
Evolutionary design is a branch of EC that integrates ideas from computer science (evolutionary
algorithms), engineering (design science) and evolutionary biology (natural selection) to solve
engineering design problems [29]. Four major categories of problems considered by evolutionary design
include evolutionary design optimization, creative evolutionary design, evolutionary art, and evolutionary
artificial life forms.

Common attributes shared by evolutionary techniques, which are relevant to engineering design
processes include [30]:

• little, if any, a priori knowledge of the search environment
• excellent search capabilities due to efficient sampling of the design search space
• ability to avoid local optima
• ability to handle high dimensionality
• robustness across a wide range of problem classes
• provision of multiple good solutions
• ability to locate the region of the global optimum solution

Research on evolutionary computation in engineering design has a relatively long history. It was
initiated in Europe in the early seventies by Rechenberg [31] in the areas of fluid mechanics, pipe design
and structural engineering. Early applications of EC in structural engineering [32,33] used ES which
evolved from structural optimization approaches in the early 1960’s. Further significant progress in this
area has taken place mainly during the last fifteen years. In the United States, Goldberg [34,35] did the
first application of GAs, which emerged from the machine learning community, in engineering
optimization in the area of complex gas pipeline systems. Just about the same time, in the late 80’s and
early 90’s, many researchers started applying this new optimization method to a large spectrum of
engineering design problems. Current state-of-the-art reviews are provided in [6,30,36-45].

3.1 Creative Design

Evolutionary design optimization and creative evolutionary design are the two categories of evolutionary
design that are particularly relevant to civil and structural engineering applications. From a
computational point of view, the dividing line between the two categories is not sharp and is mostly

 6

related to the potential for achieving novelty/creativity during the processes of generating design concepts
as well as properties that novel/creative designs need to possess. For Gero [46] creativity in design “is
not simply concerned with the introduction of something new into a design, although that appears to be a
necessary condition for any process that claims to be labeled creative. Rather, the introduction of
‘something new’ should lead to a result that is unexpected (as well as being valuable).” Gero concludes
that an evolutionary design process is creative when it explores not only values of attributes (decision
variables) within individual design spaces but also evolves the number of these attributes, i.e. when
changes in the representation space occur. Similarly, Boden [47] suggests that achieving creativity is
only possible by going beyond the bounds of a representation, and by finding a design that could not have
been defined by that representation. The same concept was explored by Arciszewski and co-workers in
the context of Inferential Design Theory [48] and constructive induction [49]. A detailed discussion of
commonly used representations in evolutionary design, including generative representations supporting
creative design processes can be found in section 4.

Less restrictive definition of creativity in design was given by Rosenman [50]. He suggested that the
distinguishing feature of all creative evolutionary design systems is the ability to generate entirely new
designs starting from little or almost no knowledge (for example when starting with random initial
conditions), and being guided throughout the evolutionary process only by performance criteria.

3.2 Evolutionary Design and the Theory of Inventive Problem Solving (TRIZ)

Creativity in evolutionary design can also be analyzed from a broader perspective, namely based on the
theory of inventive problem solving (TRIZ) introduced by Altshuller [51,52]. Altshuller discovered that
the evolution of engineering systems is not a random process, but it is governed by a class of paradigms.
These paradigms can be subsequently used to develop a system considering its technical evolution, i.e. by
determining and implementing innovations. Altshuller introduced five levels of innovation in the context
of an engineering design problem [49]:

A. Selection
“A design concept is selected from a group/class of known concepts in a given engineering
domain.”
This level of innovation corresponds to an EA using only selection operation and that is initialized
with a population of known design solutions, rather than randomly generated ones.
B. Modification
“A design concept is produced as a combination and/or modification of known design concepts from
a given domain. The modification process can be performed either deterministically or using a
random generation process.”
This paradigm is equivalent to an EA searching for an optimal solution in a parameterized
representation space of a class of engineering designs. Rosenman’s definition of creativity in
design is most closely related to this paradigm and hence it becomes obvious that his prerequisites of
creativity are fairly weak when compared to Altshuller’s innovation taxonomy.
C. Innovation
“A design concept is produced as a combination of known concepts from a given domain and other
domains.”
This paradigm can be best represented as the island model EA where various populations of designs
evolve independently and occasionally exchange some individuals through a migration process. The
migrations can model injection of knowledge from other domains to a particular engineering
domain.
D. Invention
“A design concept is produced as a combination of known concepts from a given domain and new
concepts based on a new technology, which have been recently introduced.”
EA can achieve this level when it evolves not only the values of attributes but also the
attributes themselves [53]. In other words, it can use various transformation operators [49] for a
representation space including attribute addition (introduce new attributes/genes to the
representation space), attribute elimination (removing unimportant attributes), attribute abstraction
(combining attributes into larger units, or components, and subsequently exploring the component
based representation [54]), and attribute construction (creating new attributes by a simple or
complex transformation of the initial attributes). This level of innovation is most closely related to

 7

Gero’s definition of creativity in design as well as changes in the representation space introduced in
the constructive induction process [49].
E. Discovery
“A design concept is produced as a combination of known concepts from a given domain and new
concepts based on new scientific principles.”
This highest level of innovation in Altshuller’s taxonomy can most likely be achieved by
evolutionary design processes. However, special types of representations, namely the generative
representations [55] (described in section 4), seem to be necessary to accomplish it. Generative
representations use compact representations (genotypes) of existing design knowledge and mappings
that translate these representations to actual designs (phenotypes). The mappings can reuse elements
of the representations during the process of translation. Thus, the compact representations can be
thought of as storing existing knowledge on a given engineering domain, whereas mappings
correspond to new scientific principles that can transform the known concepts to new, and possibly
creative, design concepts. The mappings are usually simple programs that take the compact
representations as input and produce the actual design concepts as output. Despite their simplicity,
they can generate designs that can be defined as creative [56]. Recently, Wolfram [57] suggested
that all scientific principles and natural processes can be modeled in terms of simple programs that
can nevertheless produce complex behavior. EAs using generative representations will search
both the space of compact representations and the space of simple transformation programs
(scientific principles) and will generate creative design concepts.

The first two paradigms, i.e. selection and modification, can only produce routine designs. In both
cases, no changes occur in the representation space [49]. The last three paradigms, i.e. innovation,
invention and discovery, can generate novel/creative designs. In all these cases, changes in the
representation space do occur [49].

3.3 Emergence

Emergence is an important property which is closely related to creativity in design. Gero [58] defines
emergence as “a process of making features explicit, that were previously only implicit.” He also
suggests that emergence plays an important role in introducing new attributes to the representation space
[46]. Emergence can also be easily recognized through the visual examination of representations of
structures, for example of structural patterns of steel structural systems in tall buildings [59].

The notion of an emergent concept generation has also been introduced by Arciszewski et al. [49] as a
part of a constructive induction process that was originally proposed in the field of machine learning. An
emergent design concept is defined as a constructed attribute (representing an unknown design concept)
whose introduction may simplify and improve effectiveness or quality of a design process. A constructed
attribute is derived from the initial attributes by an application of constructive induction operators. It is
usually more abstract than the attributes from which it was derived.

3.4 Integrated Design

Most applications of evolutionary methods in civil and structural engineering were focused on a detailed
design stage of a design process, where the objective was to find the optimal configuration of attribute
values for a previously selected and parameterized design concept. Thus, only routine design concepts
could be generated, even though they were optimized with respect to some objective. An overview of the
SOTA in evolutionary design applications in civil and structural engineering can be found in section 8.

There has also been some work in applying evolutionary design methods at the conceptual stage of an
engineering design process, where the emphasis is put on the generation of novel and original design
concepts, and not on finding the globally best solution in terms of numerical values in the context of a
specific design concept. Gero and Schnier [60] worked on the evolution of a design knowledge
representation, using genetic algorithms and Rosenman and Gero [53] used genetic engineering to evolve
architectural floor plans. Arciszewski et al. [61] used evolutionary computation to produce creative
designs. Bentley [62] developed a generic evolutionary design system, which was able to evolve a range
of various designs from scratch. The system performed evolutionary design with an emphasis on the
evolution of creative design concepts rather than their optimization.

The concept of integrated design utilizing various forms of evolutionary computation at each stage of
a design process as well as incorporating designer’s knowledge and intuition within the search and
exploration process has been pioneered by Parmee [42,63]. In the mid-90’s, research was initiated on the
utility of evolutionary/adaptive search within the generic domain of an engineering design process as a

 8

whole. Parmee, following Pahl and Beitz [64], distinguishes three major stages of an engineering design
process: conceptual design, embodiment design, and detailed design. He considers conceptual design as
“a search across an ill-defined space of possible solutions using fuzzy objective functions and vague
concepts of the structure of the final solution.” Embodiment design operates with a selected (during the
conceptual design stage) initial design configuration and aims to further specify the subsets forming the
whole system. Design decisions at this stage are made based on both qualitative and quantitative criteria
which usually are difficult to be formally defined using mathematical models and hence difficult to
include in a scalar objective (fitness) function. Finally, at a detailed design stage, design decisions are
made based on solely quantitative criteria which are well described by mathematical models, even though
they may be computationally expensive and may require complex analysis techniques. Contrary to
traditional and simplified definitions of engineering design process which assume little or no interaction
between the stages [64], Parmee argues that considerable overlaps exist among the three stages and they
should be taken into account in the integrated design model. He suggests that a model of a design
optimization process should be considered to “represent a long-term, highly complex process
commencing with high-risk conceptual/whole-system design and continuing through the uncertainties of
embodiment/preliminary design to the more deterministic, relatively low-risk stages of detailed design
and the eventual realization of an optimal engineering solution.”

The objective of Parmee’s integrated design was to develop co-operative frameworks involving a
number of evolutionary/adaptive computing techniques and integrate them with each stage of the
engineering design process. During this research, various forms of evolutionary computation were
considered in the context of integrated design, including Structured Genetic Algorithms [16], GAANT
Algorithms [65], and Ant Colony Algorithms [66,67] as well as constraint satisfaction [68]. Next,
Parmee investigated evolutionary computation in the context of searching “whole-system design
hierarchy” described by both nominal and numerical attributes [69], and he applied it to designing
hydropower systems [70]. Later, Vekeria and Parmee [71] proposed the use of evolutionary computation
in conceptual design of structural systems, including the determination of the topology of their members.
Recently, he has been focused on the “innovative conceptual design” in the context of variable mutation
cluster-oriented Genetic Algorithms (vmCOGAs) and successfully used them in the area of aerospace
engineering [72].

4. Evolutionary Design Representations
Representations in engineering design incorporate both representation of an artifact being designed as
well as representation of a design process, i.e. a process by which the design is completed. The line
distinguishing artifact representation and design process representation is often blurred. Building a
representation of an artifact is similar to the process of its numerical/mathematical modeling in
engineering science. It is, however, significantly broader because it encompasses much more knowledge
than can be set into mathematical formulas and their numerical realizations. Generally, a representation
of a designed artifact should describe its function, form, intent, legal requirements, etc. Advances in
computer science, and evolutionary computation in particular, made it possible to use symbolic
representations to describe objects, attributes, relationships, concepts, etc. Thus, it is now possible to
capture more abstract and conceptual design knowledge [73].

A representation of an engineering design is as a computational description of an engineering system
(that usually does not yet exist) expressed in terms of attributes [49]. In the most straightforward EC
representation, each gene corresponds to an attribute and represents a dimension of the search space.
Each such dimension can have an appropriate set of values (discrete or continuous) that a feature
represented by this dimension can take on. In the simplest case, these representations use binary genes
denoting the presence, or absence, of a feature. In such representations each individual consists of a fixed-
length binary string of genes, or a genotype, representing some subset of a given set of features. Often, in
complex engineering applications, multi-valued attributes are more natural to use [6].

A representation space for an engineering design is a multidimensional space spanned over attributes
that are used to describe an engineering design [49]. Attributes can be symbolic (when they take values
from an unordered or partially ordered set) or numerical (when they take numerical values representing
quantities or measurements). Symbolic attributes that take values from an unordered set are called
nominal attributes; when they take values from a partially ordered set, they are called structured. Design
concepts are typically described in terms of symbolic attributes. Numerical attributes are used for a
detailed description of a design.

A design concept is understood as a description of a future engineering system, actual or abstract, in
terms of a feasible combination of symbolic attributes and their values. After a conceptual design process

 9

is completed, a given design concept is used next in the detailed design process to produce a detailed
design. A detailed design is understood here as a detailed description of a future engineering system in
terms of both symbolic and numerical attributes (dimensions, weights, etc.) [49].

4.1 Optimality vs. Creativity

A choice of a particular representation of an engineering system for an evolutionary design process is
highly influenced by the designer’s goal, i.e. whether the emphasis is on optimality in terms of numerical
values in the context of a specific design concept, or on generation of creative design concepts. When the
focus is on finding an optimal design, designers’ attention is usually restricted to a particular concept or at
most several concepts of existing designs. In this case, design representations usually take a form of
parameterizations of an engineering system, or its parts. The parameters are then encoded as genes and
their alleles are evolved using evolutionary algorithms in order to find the best design that maximizes (or
minimizes) given objective(s). Thus, for strictly engineering optimization problems, representations
should be direct (i.e. they should encode possible solutions) and parameterized (allowing only for slight
variations). Traditional representations frequently used in engineering optimizations problems, like
binary representations, integer representations, and real-valued representations can be included in this
category. Additionally, representations used in optimization problems usually incorporate domain
knowledge, to smaller or larger extent, in order to make the search more efficient.

Creative evolutionary design requires, however, more general and usually more complex
representations. Representations that have been used in creative design are diverse but nevertheless share
some similarities. Typically, phenotype representations are quite general and thus capable of representing
large numbers of alternative shapes, forms, or morphologies (forms together with structures) [29]. They
range from direct representations, as in voxel-based representations [74] or array-based representations
[75,76], to highly indirect representations, i.e. representations that do not encode solutions but rather rules
on how to build these solutions. The most popular examples of indirect representations are grammars
[77], trees [78,79], shape grammars [80-83], graphs and matroids [84], cellular automata [85,86], L-
systems [55,87,88], and embryogenies [56].

4.2 Selecting Appropriate Design Representations

Gen and Cheng [41] discuss five major requirements for designing good representations (genotype-
phenotype mappings) for evolutionary design problems:

A. “Non-redundancy”
“The mapping between encodings and solutions should be 1-to-1.”
There should be a unique pairing of each element of a genotypic space with a corresponding
element of a phenotypic space. Out of all three possible cases, the 1-to-n mapping should be
particularly avoided because it corresponds to multiple phenotypic representations of the same
genome. In this case, an additional procedure would have to be employed to determine the
actual phenotype.
B. “Legality”
“Any permutation or combination of an encoding corresponds to a solution.”
It is important to distinguish between two basic concepts: infeasibility of a solution and its
illegality. Infeasible solution means that a phenotype decoded from a genotype lies outside of a
feasible region (defined by the constraints) in the phenotypic space. Illegal solution means that a
genotype does not represent any phenotype for a given problem. The implicit significance of the
legality requirement is that it implies that standard genetic operators can be easily applied to a
representation satisfying this requirement.
C. “Completeness”
“Any solution has a corresponding encoding.”
This requirement guarantees that any phenotype has a corresponding genotype, and hence it is
accessible to genetic search.
D. “Lamarckian property”
“The meaning of alleles for a gene is not context dependent.”
This requirement “concerns the issue of whether or not one chromosome can pass on its merits
[learned traits] to future populations through common genetic operators” [89]. If the meaning of
alleles for a gene is interpreted in a context-dependent manner, as in the non-Lamarckian case,

 10

the offspring usually inherit nothing from parents. Generally, the representation should have the
Lamarckian property so that offspring can inherit goodness from parents.
E. “Causality” (also known as Continuity)
“Small variations on the genotype space due to mutation imply small variations in the phenotype
space.”
This requirement focuses on the preservation of neighborhood structures. The appropriate
choice of genotype-phenotype mapping in combination with the genetic operators is important
for a successful evolutionary search process [90]. For a successful introduction of new
information by an operator, the operator should preserve the neighborhood structure in the
corresponding phenotype space. Search processes that preserve the neighborhood structure are
said to exhibit strong causality.

4.3 Taxonomy of Representations

Representations used in evolutionary design have been classified with respect to many different criteria.
Table 2 presents a compilation of classification schemes in which attributes and their values correspond to
various categorizations of evolutionary design representations proposed by several researchers [1,55,91].

Table 2: A classification of EA representations.

No. Attribute Attribute Values
1 EA level Genotypic Phenotypic
2 Structure Linear Nonlinear
3 Length Fixed Variable
4 Change during evolution Static Dynamic
5 Encoding scheme Direct Indirect
6 Accuracy of solution specification Parameterization Open-ended
7 Ability to reuse encoding Non-generative Generative

8 Genotype-phenotype
correspondence Explicit Implicit

One of the most important representational issues is the choice between a genotypic and phenotypic

representation. This issue has some important consequences not only for EC in general but also for
evolutionary design. When one decides to use a genotypic representation (as it is the case in the
canonical GAs) then an appropriate genotype-phenotype mapping has to be constructed, hopefully
satisfying all five major requirements stated earlier. A particular attention has to be paid to satisfy the
causality requirement. The lack of correlation between variation at the genotype level and variation at the
phenotype level can cause serious problems [1]. When a genotypic representation is used, mutation and
recombination operate at the genotypic level while the fitness evaluation and selection are performed at
the phenotypic level. One of the advantages of using genotypic representations is the ability to reuse
standard genetic operators for multiple problem domains.

Alternatively, one can just use phenotype level encodings (as it is the case in the canonical ES) to both
explore and exploit a design space. The significant advantage of this approach is that no mapping
between genotype and phenotype is necessary and hence all five requirements stated earlier are
automatically satisfied. One can focus on achieving useful exploration only at the phenotypic level. The
disadvantage of phenotypic representations is that the genetic operators become problem dependent and
have to be carefully crafted for each individual problem domain [1]. Phenotypic encodings have been
widely used within the ES community and applied to many engineering optimization problems.

A structure of an evolutionary design encoding is another relevant criterion. Generally,
representations can be divided into linear and nonlinear. A linear representation can be thought of as a 1-
dimensional representation usually in a form of a string (binary, real-valued, integer-valued), list, etc.
Nonlinear representations, on the other hand, have 2-, or higher- dimensional structure, e.g. trees, arrays,
etc.

Another distinguishing property of evolutionary design representations is their length. They can be
divided into two groups: fixed-length and variable-length representations. The length of a genome is
constant during an entire evolutionary process when fixed-length encodings are used. It is not the case
with variable-length representations where an individual can be represented by a genome that changes its

 11

length every generation. Consequently, a population may consist of individuals whose genomes have
different lengths. Fixed-length representations have been widely used in evolutionary design
optimization while variable-length representations have been applied to creative evolutionary design [36].

Depending on whether, or not, the representation can change during an evolutionary design process,
one can divide representations into static and dynamic. This is a more general classification than the one
based on a change of the length of a genome because it considers not only a time-dependent change of the
length of a genome but also time-dependent changes made to its structure.

Direct representations encode essentially actual design concepts, while indirect representations encode
rules on how to construct these concepts. Again, direct representations are used mostly for evolutionary
design optimization and indirect encodings for evolving creative design concepts [55].

In the case when the topology of a design is established in advance and specified in sufficient detail,
i.e. it is parameterized; the representation is called a parameterization. On the other hand, when the
topology of a design is changeable then the representation is called open-ended.

Representations that can reuse some parts of an encoded design during the phenotype construction
phase from a genotype are called generative. Generative representations are always indirect. Non-
generative representations can not reuse elements of the encoding. They can be either direct or indirect.
Generative representations offer several advantages when compared to non-generative ones. Their ability
to reuse elements of an encoded design improves the search efficiency in large design spaces as well as
scalability by capturing design dependencies [55].

Depending on the nature of the relationship between the elements of a genotype and the elements of
the generated phenotype, generative representations can be further classified as implicit or explicit.
Implicit representations consist of a set of simple rules (e.g. cellular automata) that implicitly specify a
design property, e.g. its shape, through an iterative construction process. Explicit representations are like
procedural programs for constructing designs in an explicit manner.

Recently, there have been several attempts to coevolve representations of engineering systems during
the evolutionary process. This corresponds to the process in which a learning system adapts its own
representation. De Jong and Oates [92] proposed a coevolutionary approach to representation
development where building blocks and their assemblies are coevolved. Also, Gero and Schnier [60]
worked on the evolution of the design knowledge representation, using genetic algorithms, in the context
of case–based design. Such evolution is often necessary to produce inventive designs.

4.4 Traditional Design Representations

The majority of evolutionary design applications in structural engineering reported in the literature used
relatively straightforward representations consisting of either binary strings or real-valued vectors. Thus,
it is important to be aware of the strengths and weaknesses of both common approaches to represent
engineering systems.

Binary representations are standard representations for canonical GAs. The most straightforward and
at the same time most common approach involves binary strings of fixed length. This type of
representation is best suited for problem domains where solutions can be naturally represented as binary
vectors, e.g. in some combinatorial optimization problems. In engineering design this type of
representations has been widely used in structural topology optimization, e.g. in the ground structure
approach [93].

When a problem domain cannot be defined in terms of binary vectors, then a mapping from the binary
space (genotypic space) to the domain space (phenotypic space) is necessary. Using this principle, binary
string representations have been applied to continuous parameter optimization problems [94]. In this
case, a mapping between binary strings and real-valued parameters had to be specified. This approach
has been widely used in many engineering design applications. Its advantage is that the standard GA
operators (e.g. the bit-flip mutation, and one-, or two-point crossover) can be used. There are, however,
some important drawbacks of this approach, too. Michalewicz [94] argues that it is not appropriate
because the problem space the GA is operating in is fundamentally different than that of the originally
defined problem. Thus, search and optimization are conducted in a different space than the original one.
Hence, the optimal results obtained in the binary search space might in fact not be optimal for the original
problem. The genotype-phenotype mapping also introduces some additional nonlinearity to the objective
function, and hence it may happen that the modified problem is more difficult to solve than the original
one. Bäck [95] points out another serious drawback of mappings from continuous to binary spaces. The
mappings impose some granularity (resolution) and hence not all the points in the original continuous
space can be expressed as binary vectors. So, it is possible that the optimal solution will not be found
simply because it is not represented in the binary search space.

 12

Another important problem with binary representations is related to the fact that one of the five major
requirements on genotype-phenotype mappings, namely causality or continuity requirement, does not
hold. In other words small changes in the binary space correspond to large changes in the real-valued
parameter values and vice-versa. A frequently employed solution in this case is to use Gray encoding
scheme [95].

Real-valued representation spaces have been traditionally used by ES researchers to solve complex
continuous parameter optimization problems. Historically, they have been applied to engineering design
problems, specifically to various fine tuned optimization problems. In ES, real-valued representations
have traditionally been used as phenotypic representations, where no mapping between a genotype and a
phenotype is necessary. Thus, the drawbacks associated with the mappings are eliminated in this case.
There are, however, two major problems with real-valued representations that are somehow related. First,
real-valued encodings allow for representation of only very specific problem domains, and that usually
corresponds to fine-tuned optimization problems. As such, they are not applicable for creative design
problems as it was discussed earlier. The second problem is that not every design problem can be
expressed as a real-valued vector. There are many design problems, conceptual design problems being a
good example of, that involve some symbolic or qualitative variables which cannot be encoded as real-
valued parameters.

As stated earlier, representations are one of the three key elements in a successful implementation of
evolutionary design. Throughout the years, enormous amount of experimental work has been devoted to
studying various types of evolutionary representations. Despite this fact, very little is known theoretically
about their influence on the performance of an EA. Initial framework for evolutionary representation
theory has been recently proposed by Rothlauf [96], but it is just the beginning of research on this
important topic in EC.

5. Constraint-Handling Methods in Evolutionary Design
The vast majority of engineering design problems involves constraints of some kind. Thus, appropriate
methods of handling constraints are extremely important for any optimization/search mechanism
exploring designs spaces. Evolutionary algorithms, on the other hand, are unconstrained optimization
procedures and hence it is necessary to somehow incorporate constraints into them. This section reviews
the SOTA in constraint-handling methods in the context of evolutionary design. It also provides
references to actual applications in structural engineering.

Coello Coello [97] classifies constraint-handling methods used with EAs into the following five
major groups:

1. Penalty functions
2. Special representations and operators
3. Repair algorithms
4. Separation of objectives and constraints
5. Hybrid methods

5.1 Penalty Functions

Penalty functions have traditionally been the most common way of handling constraints incorporated in
EAs [35,98]. This method was initially proposed in the early 1940’s in the context of traditional
mathematical optimization by Courant [99] and later extended by the operation research (OR) community
in the 1960’s [100,101]. In the 1980’s, penalty functions have been adopted by EC researchers to solve
constrained optimization problems [35,102] and since then have become the most popular, albeit not best
as it has been shown in several studies [103], method of handling constraints. Penalty functions
effectively transform a constrained design problem into an unconstrained one by augmenting the
objective function with a penalty term whose value determines the amount of constraint violation present
in a particular solution [97]. Contrary to classical optimization methods which use penalty functions of
two kinds (i.e. exterior and interior), evolutionary design focused almost exclusively on exterior penalty
functions because they do not require initial feasible solution to start with.

Various types of penalty functions have been proposed and studied. A general classification of the
most commonly used types of penalty functions is presented below [97]:

1. Static penalty functions which remain constant during an entire evolutionary process
[102,104].

 13

2. Dynamic penalty functions which change throughout an evolutionary run (usually increase
over time) [105].

3. Annealing penalty functions which use techniques based on simulated annealing [106].
4. Adaptive penalty functions which change according to feedback received from the search

process [107-111].
5. Coevolutionary penalty functions in which solutions are evolved in one population and

penalty factors evolve in another population [112].
6. Death penalty functions which immediately reject infeasible solutions [113].

One of the major challenges in any application of penalty functions concerns achieving an appropriate
balance of the penalty value. Large penalty values discourage EAs from exploring infeasible regions and
the search is quickly moved inside the feasible region. On the other hand, low penalty values do not
prohibit EAs from searching infeasible regions most of the time. As a result of these findings, several EC
researchers proposed the ‘minimum penalty rule’ which states that “penalty should be kept as low as
possible, just above the limit below which infeasible solutions are optimal” [97]. The problem with this
formulation, especially for structural design applications, is that usually the constraints are not expressed
in an algebraic form but instead as outcomes produced by structural analysis packages. Hence, an exact
location of the boundaries between feasible and infeasible regions cannot be specified.

Methods of designing/configuring penalty functions for EC applications have been studied in
Richardson et al. [103]. They offer several guidelines/heuristics that can be used to make evolutionary
search in constrained design spaces more efficient:

• “Penalties which are functions of the distance from the feasible region are better than those
which are merely functions of the number of violated constraints.

• For a problem having few constraints, and few solutions, penalties which are solely
functions of the number of violated constraints are not likely to find solutions

• Good penalty functions can be constructed from two quantities, the maximum distance and
the expected distance to the feasible region.

• Penalties should be close to the expected distance to the feasible region, but should not
frequently fall below it. The more accurate the penalty, the better the solutions will be
found. When penalty often underestimates this distance, then the search may not find a
solution.”

A number of applications showed, however, that there are many difficulties associated with penalty
functions [103], including, for example, a problem of defining good penalty factors. Thus, over the years,
alternative approaches to handling constraints have been proposed by EC researchers.

5.2 Other Methods

Alternative attempts to handle constraints in evolutionary design include the development of special
representations that simplify the shape of the search space and special genetic operators that preserve
feasibility of generated solutions during the evolutionary run. Examples of applications of these methods
include Bean’s [114] ‘random keys encodings’, Davidor’s [115] ‘analogous crossover,’ Michalewicz’s
[94] GENOCOP, and Kowalczyk’s [116] constraint consistent GAs. Schoenauer and Michalewicz [117]
proposed a method that restricts the search to the boundary of a feasible region. It is based on a heuristic
that in many cases the global solution lies on the boundary of a feasible region. In this method, the search
mechanism crosses the feasibility boundary back and forth and special genetic operators are used to
restrict the variation to the boundary of the feasible region [118]. The last set of methods in this category
uses decoders [119]. In this case, chromosomes encode instructions on how to construct feasible
solutions [120]. Each decoder imposes a mapping between a feasible solution and a decoded solution
[120,121]. Koziel and Michalewicz [120] reported that decoders provided much better results than any
other constraint-handling method on a representative set of test problems. They seem to be a very
promising area of research in structural design because they can be used with problems of any
dimensionality and do not require the objective function given in an algebraic form [97].

Repair algorithms are particularly well-suited for combinatorial optimization problems [122]. They
are particularly efficient when the cost of transformation of an infeasible solution into a feasible one is
low [97]. They have been applied to many optimization problems [123-126]. An interesting aspect of
repair algorithms is whether, or not, a repaired individual should replace the original infeasible individual
in the population. The spectrum of possible choices ranges from no replacement (repaired individuals are
used only for evaluation and the original individuals remain in the population) [123,127] to the full

 14

replacement (all infeasible individuals are replaced with the repaired ones) [128]. Also, some
intermediate approaches have been suggested where original infeasible solutions are replaced with some
probability by the repaired solutions [129]. In structural design, repair algorithms have been used e.g. in
[130] to repair design concepts of steel structural systems in tall buildings not satisfying the symmetry
requirement.

Another group of constraint-handling techniques can be broadly categorized as methods based on
separation of constraints and objectives [97]. Most representative techniques in this category include:

1. Competitive coevolution in which potential solutions (possibly infeasible) are evolved in one
population and constraints are contained (but not evolved) in another population [131].
Individuals representing potential solutions have high fitness when they satisfy a large
number of constraints from the other population. On the other hand, an individual
representing a constraint has high fitness if this constraint is violated by many potential
solutions.

2. Superiority of feasible points which assumes that all feasible solutions are better than
infeasible ones [132,133].

3. Behavioral memory that uses a special technique of ordering constraints in which the
algorithm proceeds by sequentially satisfying the constraints imposed on the problem [134].

4. Multiobjective optimization methods in which an original single-objective problem is
transformed into a multiobjective one by treating all constraints in the original problem as
objectives in the transformed problem [135-139]. A discussion on evolutionary
multiobjective techniques is presented in section 6.

Finally, the last category of constraint-handling methods includes hybrid methods in which EAs are
combined with other methods to solve constrained problems. In this category, several interesting methods
were proposed, including:

1. Lagrangian multipliers in which a hybrid EA is formed by integration of a penalty function
method with mathematical programming methods including the primal-dual method and
augmented Lagrangian function [140] that guarantees the generation of feasible solutions
during the search [141,142].

2. Fuzzy logic in which an EA is combined with fuzzy logic. In this method the original
constraints are replaced by fuzzy constraints to allow a higher degree of tolerance for
violating constraints that may occur close to the boundary of the feasible region [143,144].

3. Immune system models which have been initially proposed to maintain diversity in multi-
modal optimization problems [145,146] and later extended to solve constrained optimization
problems [147-149].

4. Cultural algorithms which have been initially used to model cultural evolution [150] and
later applied to numerical optimization problems involving constraints [151,152].

5. Ant colony algorithms inspired by colonies of real ants and initially proposed for solving
combinatorial optimization problems [67,153] and subsequently extended to constrained
optimization problems [66,154].

Excellent state-of-the-art reviews presenting theoretical and practical aspects of constraint-handling
methods in evolutionary computation can be found in [38,97,98,155,156].

6. Multiobjective Evolutionary Design
Evolutionary multiobjective optimization (EMOO) is one of the most active research subfields within the
EC community nowadays. EMOO methods are also highly relevant to engineering design problems
because they were designed to handle multiple conflicting objectives which usually occur in real-world
design problems. This section introduces the SOTA in evolutionary multiobjective optimization and
presents recent developments in applications of these techniques to structural design problems.

There are two major goals of multiobjective optimization. First, one wants to find a large number of
Pareto-optimal [157] solutions to a given problem. Second, the solutions to the problem should be widely
differentiated [158]. Classical search and optimization methods (like weighted sum method [159] or ε-
constraint method [160]) are not efficient for multiobjective problems because most of them cannot find
multiple solutions in a single run, and even multiple runs do not guarantee finding different optimal
solutions. On the other hand, EAs are well-suited to solve these kinds of problems because they are

 15

population-based and this property allows them to find an entire set of Pareto-optimal solutions in a single
run. Additionally, they are significantly more robust, compared to the classical methods, particularly
when issues like the shape or continuity of the Pareto front are a matter of concern [161].

Initial research on using evolutionary methods for solving multiobjective problems was conducted by
Rosenberg [162]. He suggested, but did not implement, a genetic search method involving multiple
biochemical properties and objectives of a population of single-celled organisms. The first actual
implementation was conducted by Schaffer [163]. In his dissertation, he proposed and successfully
applied the vector evaluated genetic algorithm (VEGA) to multiclass pattern discrimination tasks in
machine learning. Next significant progress in the field came with Goldberg’s [35] non-dominated
sorting procedure. Since that time, many researchers have developed various versions of multiobjective
optimization algorithms. The most popular approaches reported in the literature include [158,161,164]:

1. Aggregating functions in which multiple objectives are combined into a single one using
addition, multiplication, or any other combination of arithmetic operations [165]. Frequently,
the weighted sum approach is adopted in which the objectives are multiplied by weighting
coefficients representing the relative importance of the objectives [166,167]. The major
drawbacks of this method include difficulties in determining the appropriate weights and the
fact that improper Pareto solutions may be generated in the presence of non-convex search
spaces regardless of the weights used [161].

2. Vector evaluated genetic algorithm (VEGA) proposed by Schaffer [168]. It handles multiple
objectives by modifying the survival selection mechanism of the simple GA. Several
variations of the original VEGA have been proposed and applied to various problems,
including a groundwater pollution containment problem [169], and conceptual design of
airframes [170].

3. Target vector approaches in which targets or goals have to be defined by a decision maker
for each objective [161]. This group of approaches includes goal programming [171], goal
attainment [172], and min-max approach. This last method, the weighted min-max, has been
used by Haleja and Lin [173] to optimize a 10-bar plane truss in which weight and
displacement were to be minimized, and by Coello Coello and Christiansen to optimize I-
beams [174] and truss designs [175].

4. Multi objective genetic algorithm (MOGA) proposed by Fonseca and Fleming [176]. It
defines a rank of an individual based on the number of individuals in the current population
by which it is dominated. MOGA has been used in many engineering design applications
including for example a gas turbine controller [177] and supersonic wings [178,179].
Grierson and Khajehpour applied a variation of MOGA (called MGA) to conceptual design
of office buildings [180].

5. Non-dominated sorting genetic algorithm (NSGA) defined by Srinivas and Deb [181] and
based on Goldberg’s [35] notion of non-dominated sorting with a niche and speciation
method. An improved version of this algorithm, called NSGA-II [182], equipped with
elitisms and parameter-free sharing approach has been recently applied to a topological
optimum design problem by Hamda et al. [183]. In their approach, both the mass and the
maximum displacement of a cantilever plate were minimized. Deb and Goel [184] used a
hybrid approach, NSGA-II and a hill climber, to solve several engineering shape optimization
problems.

6. Niched Pareto genetic algorithm (NPGA) proposed by Horn and Nafpliotis [185]. It uses a
tournament selection scheme based on Pareto dominance.

7. Strength Pareto evolutionary algorithms (SPEA) proposed by Zitzler and Thiele [186] which
integrates ideas from various existing evolutionary multiobjective optimization methods and
adds some new elements to the evolutionary multiobjective algorithm.

Comprehensive surveys of various evolutionary multiobjective optimization methods, including
detailed discussion on their strengths and weaknesses, can be found in [40,156,158,161,164,187].

7. Coevolutionary Design
Another important branch in evolutionary computation research that has recently received significant
research attention is coevolution. The authors refer to coevolution as a phenomenon occurring when two
or more populations (some researchers also include in this category single population models)
simultaneously evolve and where no objective fitness function exists but rather individual’s fitness is a
subjective function of its interactions with individuals from coevolving populations [188,189]. Biological

 16

coevolution encountered in many natural processes has been an inspiration for a class of coevolutionary
algorithms. Initial ideas of modeling coevolutionary behavior were formulated by Maynard Smith [190]
and Axelrod [191,192]. The competitive approach to coevolution has been since widely used in many
game-theoretic models that arise in various disciplines, including economics, decision sciences, social
sciences, etc. Initial ideas were further extended by Hillis [193], Paredis [131,194], and others and
resulted in a new optimization procedure called a coevolutionary genetic algorithm (CGA). Competitive
coevolutionary models are especially suitable for problem domains where it is difficult to explicitly
formulate an objective fitness function, for example in AI game-playing strategies, etc. Paredis [131]
applied competitive coevolutionary algorithms to constrained optimization problems. Recently, they have
been used e.g. to coevolve cellular automata and the training cases for the majority classification problem
[195].

Potter and De Jong [196] proposed another approach to coevolution, namely a cooperative
coevolutionary model. The motivation for this model comes from problem domains where explicit
notions of modularity have to be introduced [197]. This model also provides appropriate framework for
evolving solutions in the form of co-adapted subcomponents, and hence is of crucial importance for many
engineering design problems. Usually, complex engineering design problems are decomposed into
simpler problems and solved independently. This works fine for problem domains where the principle of
superposition can be applied, i.e. for problems that can be linearly decomposed. That is no longer the
case, however, for complex designs where nonlinear interactions take place among the subcomponents
and make interacting members highly dependent on one another. For these domains cooperative
coevolutionary model is more suitable because it allows for an explicit subcomponent co-adaptation.
Potter and De Jong [27] proposed a cooperative coevolutionary architecture for evolving co-adapted
subcomponents and defined a cooperative coevolutionary evolutionary algorithm (CCEA). This
architecture has been subsequently analyzed from the evolutionary dynamics perspective [188,198] as
well as from the perspective of collaboration methods that have been used [188,199].

In general, coevolutionary design processes can be defined by 7 major attributes shown in Table 3.
They describe ways in which coevolutionary systems can be set up [188]. The attributes include the
payoff quality, methods of fitness assignment, methods of interaction, update timing, problem
decomposition, spatial topology, and population structure.

Table 3: Coevolutionary architectures described in terms of attributes [188]

No. Attribute Attribute Values

1 Payoff quality Cooperative Competitive Non-
competitive

2 Methods of fitness
assignment Implicit Explicit

3 Methods of
interaction Sample size Selective bias Credit

assignment

4 Update timing Sequential Parallel

5 Problem
decomposition

Partitioning
methods

Temporal
decomposition

6 Spatial topology Spatial
embedding

Non-spatial
embedding

7 Population structure Single Multiple

Coevolutionary models have been applied to several engineering design problems, particularly in

architectural design. Maher and Poon [200] suggested that it is often the case in a design process that
requirements are reconsidered when a design solution is offered. Maher [201] introduced the idea of
coevolutionary design, where requirements and solutions evolve separately. Maher and co-workers
[200,202-207] have been working on coevolutionary design in which two interrelated evolutionary
processes occur. The first one is the evolution of design solutions while the second one is the evolution
of requirements. In this case, the fitness function evolves with the requirements and it is different (local)
at various stages of the coevolutionary design process. Also, the fitness function is used to identify the

 17

surviving solutions, but its convergence simply means that there is no progress in the evolution since
no new and better solutions are being produced.

The only work known to the authors which uses cooperative coevolutionary algorithms in structural
optimization was conducted by Nair and Keane [208]. They used CCEAs to optimize cross-sections of
members of planar truss systems (single objective weight minimization problem). The optimized truss
systems were decomposed and coevolved in separate populations.

8. Evolutionary Computation in Structural Engineering
The history of evolutionary computation in structural engineering can be traced back to the mid 1970’s
and early 1980’s [32,33,102]. The vast majority of, if not all, early papers discussing EC applied to
structural engineering were focused on structural optimization problems. Strong emphasis on various
aspects of structural optimization remained the major focus of research in this field until now with
relatively few exceptions which mostly addressed the issues of creativity in structural design and more
sophisticated ways of representing structural systems [209].

Emergence of EC in structural optimization was a consequence of encountered problems and
deficiencies of formal methods, including mathematical programming and the optimality criteria method
[210], when applied to more complicated structural design domains. Formal structural optimization
methods based on the assumption of continuity worked well on relatively well-formed problems in which
the structural configuration of members was assumed and fixed during an optimization process while the
task was to find the optimal sizing (dimensions) of members’ satisfying at the same time imposed design
requirements and constraints. The simple generalization of this problem by allowing variations of a
system’s configuration greatly increased the complexity of the optimization task and rendered many
traditional methods inadequate. This issue became a starting point for a development of two major
approaches to structural optimization that exist today: enhanced formal methods and heuristic methods.

8.1 Structural Design Problems

The problems addressed by structural optimization can be divided into three major categories:
• Topology (layout) Optimization also known as Topological Optimum Design (TOD) –

looking for an optimal material layout of an engineering system
• Shape Optimization (SO) – seeking optimal contour, or shape, of a structural system whose

topology is fixed
• Sizing Optimization – searching for optimal cross-sections, or dimensions, of elements of a

structural system whose topology and shape is fixed
A structural design problem in each of the categories can be further classified as a continuum or

discrete optimization problem. Figure 1, a modified version of a figure presented in [211], shows the three
categories of structural optimization for continuum design problems while Figure 2 shows the same
categories for discrete problems. The three categories are closely related to three major stages of
engineering design process described earlier, i.e. TOD is conducted in the conceptual design stage, SO in
the embodiment design stage, and finally sizing optimization is performed in the detailed design stage.
As stated earlier, the three categories of structural optimization problems have been addressed by both
formal optimization methods and heuristic methods.

Formal methods have been most successful when applied to sizing optimization problems which are
usually well-defined in terms of mathematical models. Mathematical programming methods [212] and
optimality criteria method [210] have been efficiently applied to solve these problems. Heuristic
methods, including GAs, have also been applied to structural sizing problems [213,214]. On the other
hand, TOD problems, located on the other end of the structural complexity spectrum, have been most
successfully approached using heuristic methods, including simulated annealing [215] and EAs [76,216-
218]. Structural shape optimization has been a kind of middle ground where both formal and heuristic
methods are used and complement one another.

 18

Figure 1: Topology, shape, and sizing optimization for continuum structural design problems

Figure 2: Topology, shape, and sizing optimization for discrete structural design problems

8.2 Topological Optimum Design

TOD has been an area of significant research efforts for the last forty years. Initial investigations in the
late 1970’s and early 1980’s were conducted using formal methods. Generally, TOD problems can be
divided into two major groups: continuum TOD and discrete TOD. In the continuum TOD, the design
domain is discretized into small, rectangular elements (rectangular grid) where each element contains
material or void. Formal methods addressing this problem include the homogenization method [219] in
which each element in a grid contains composite material of continuously-variable density in [0,1] and
orientation. Xie and Steven [220] proposed Evolutionary Structural Optimization (ESO) method which
follows the concept of removing lightly stressed elements. The name of this method is confusing because
the method is not based on EC principles but rather evolution is understood in a more general context as a
process of gradual removal of inefficient material from a structure. The EC approach to the continuum
TOD problem based on GAs has been developed by Sandgren et al. [221] and Jensen [217]. In their
approach, a GA determines the optimal layout of material and void in a cantilever plate (represented as a
bit array) such that the structure’s weight is minimized subject to displacement and/or stress constraints.
This work has been subsequently extended by Chapman et al. [218] to optimize finely-discretized design
domains and to obtain families of highly fit designs. Recently, more advanced forms of representations
for continuum TOD problems have been proposed, including Voronoi-based representations [222,223],
which are based on concepts of Voronoi diagrams studied in computational geometry, and IFS
representations based on fractal theory [209]. Also, Hamda et al. [183] considered a continuum TOD as
an evolutionary multiobjective optimization problem.

 19

Discrete TOD problems consist in determining the optimal element connectivity from a finite, albeit
large, number of possible connections [224]. Two major problem domains addressed in early research in
this area include truss structures and frame structures. An initial problem formulation in the context of
linear programming using the ground structure approach was proposed by Dorn et al. [93]. While
traditional linear programming methods proved to be successful in finding optimal topologies for small
problems, they were rendered inadequate when the size of the problems considered was scaled up
(increase in the number of design variables or the number of grid points in the ground structure approach).
The discontinuous nature of this design problem was another reason for inefficiency of formal methods.
Initial applications of GAs to optimize topology of discrete-member trusses were conducted by Shankar
and Hajela [225], Hajela et al. [226], Grierson and Pak [227], and Hajela and Lee [216]. Bramlette and
Bouchard [228] used EC to three-dimensional structures in the context of aircraft design. Koumousis &
Georgiou [229] applied GAs to the topological optimization of steel truss structures. Bohnenberger et al.
[230] applied GAs to optimize topologies of truss structures in pylons. Rajan [231] applied GAs to
optimize topology, shape and member sizing of truss structures. Nakanishi and Nakagiri [232,233] used
GAs to solve 2D topology optimization problems for both frames and panel structures. Rajeev and
Krishnamoorthy [234] used variable-length string representations to optimize truss structures. Murawski
et al. [235] and Kicinger et al. [130] applied ES to optimize topology of steel structural systems in tall
buildings. Soh and Yang [236] introduced GP-based approach to TOD of truss structures. In a
subsequent work [237], they proposed a GP-based methodology for the automated optimum design of
structures. Recently, Azid et al. [238] applied a GA with real-valued representations to optimize
topologies of three-dimensional trusses.

SOTA reviews of current research in formal methods for TOD problems can be found in Rozvany et
al. [239], Bendsoe and Sigmund [240], and Xie and Steven [241] whereas recent research developments
in applications of EC to TOD problems can be found in [5].

8.3 Shape Optimization

Shape optimization maintains a fixed topology of structural designs but changes their shape or node
locations. Similar to the TOD case, shape optimization problems can be divided into two major groups:
continuum SO and discrete SO. Continuum SO addresses shape optimization problems in the context of
2D or 3D continuum structures. Traditionally, in continuum SO, “a shape is defined by the oriented
boundary curves [2D structures] or boundary surfaces [3D structures] of the body … and the optimal form
of these boundaries is computed” [240]. Formal methods for solving continuum SO problems are well-
established and extensive literature is available [242-244]. Sensitivity analysis for shape optimization
problems is discussed in [245] and application of homogenization method to this problem is offered in
[246]. ESO, introduced earlier, has also been used in shape optimization [220]. Evolutionary computation
methods have also been applied to solve continuum SO problems. Research on shape optimization of
structural members has been conducted by Jenkins [247,248], Richards and Sheppard [249], and Watabe
and Okino [250]. Kita and Tanie [251,252] and Annicchiarico and Cerrolaza [253,254] used GAs to
optimize the shape of continuum 2D structures through B-spline functions. A GA was used to find
optimal locations of knots of B-spline functions. Wibowo and Besari [255] applied GAs to optimize
shapes of oval axially symmetric shells. Annicchiarico and Cerrolaza [256] applied GAs to shape
optimization of 3D finite element models. Woon et al. [257] investigated alternative encodings of GAs for
continuum SO using the actual coordinates of boundary nodes.

Discrete SO methods conduct shape optimization through variations in geometry of discrete truss and
frame structures introduced through changes in locations of nodes [258,259]. Various mathematical
programming methods have been applied to discrete SO problems, including linear, nonlinear, and
dynamic programming [224]. In the case of shape optimization of truss structures, discrete TOD methods
using the ground structure have been extended to include optimization of the nodal point locations for a
given number and connectivity of nodal points [240]. Initial applications of EC methods to discrete SO
problems have been conducted by Grierson and Pak [227,260] in the context of truss structures. Soh and
Yang [261] applied fuzzy controlled GAs to optimize the shape of planar and spatial truss structures.
Bohnenberger et al. [230] applied GAs to optimize shapes of truss structures in pylons. Keane and Brown
[262] used GAs to optimize the shape of a satellite boom with respect to its vibration performance.

SOTA reviews in traditional mathematical approaches to continuum shape optimization problems are
presented in [263,264]. Recent developments in formal methods for discrete SO problems can be found
in [240,265]. Recent developments in applications of GAs to design of steel structures are described in
[2].

 20

8.4 Sizing Optimization

Sizing optimization problems involve finding optimal cross-sections, or dimensions, of elements of a
structural system whose topology and shape is fixed. It is the easiest of the three structural optimization
problems discussed earlier and relatively well-understood. Research on formal methods of solving these
kinds of problems has a long history and extensive literature is available on this topic [266]. First
applications of EC to structural optimization problems involved sizing optimization. Lawo and Thierauf
[33] used ES to optimize members of a planar six-story frame subjected to earthquake loading. Goldberg
and Samtani [102] applied a GA to optimize cross-sections of members of a 10-bar plane truss. Hajela
[267,268] investigated cross-section optimization of discrete member trusses using GAs. Deb [269]
applied GAs to optimize designs of welded beams. Jenkins [270] proposed a GA-based design
environment to optimize plane frame structures. Rajeev and Krishnamoorthy [234] applied GAs to
optimize cross-sections of generalized trusses. Recently, Jarmai et al. [271] applied genetic algorithms to
design welded I-section frames and compared their performance with other nonlinear optimization
algorithms operating in a constrained representation space.

8.5 Historical Perspective

A summary of major applications of EC in structural design since its beginning in the mid 1970’s is
provided in a chronological order in Table 4. The applications are classified with respect to the
application domain, and major EC characteristics, including the representation type, the evolutionary
algorithm used, the fitness function, and methods of handling constraints. A chronological classification
of the EC applications in structural design clearly shows three major periods in the development of the
field:

1. Period of early explorations (1986-1995)
During this initial stage, simple evolutionary algorithms (mainly, if not exclusively ES and GAs,
sometimes combined with other traditional optimization methods) were applied to relatively
simple structural engineering problems (sizing optimization of simple 2D engineering systems).
Researchers focused on using standard design representations, i.e. binary strings and real-valued
vectors, single objective fitness functions (usually the minimization of weight) and fairly
traditional constraint-handling methods involving various variations of the penalty functions (see
section 5.1).

2. Period of exploration & exploitation (1996-2000)
This period can be best characterized as a period of exploring alternative choices for various
components of the evolutionary algorithms and improving the process of optimization of more
complex design problems. Researchers explored various kinds of representations of engineering
systems, including Voronoi-based representations and integer-based representations. Significant
research efforts were also focused on tuning the genetic operators to particular problems, e.g. by
adapting mutation and crossover rates during the evolutionary design processes. Initial
exploration of alternative constraint-handling methods has also been conducted and included e.g.
immune networks, behavioral memory, and fuzzy logic. Several multiobjective approaches to
structural design problems have been reported as well.

3. Period of rapid growth (2001-present)
Currently, evolutionary computation is a fully recognized structural optimization paradigm and
is frequently used not only by researchers but also by practitioners. Nowadays, research efforts
are focused on solving much more complex structural design problems and on studying more
advanced evolutionary models, including parallel EAs, multiobjective optimization, and
variable-length representations, in the context of structural design. Also, initial exploration of
the potential of using coevolutionary models is being conducted.

Thus, the field of evolutionary design is far from maturity and there is still a lot to be done. A discussion
of the most promising research paths for the future is described in the next section.

9. Discussion and Conclusions
The field of evolutionary design continues to rapidly grow and develop in many exciting new directions.
In this section, the authors summarize several of the most promising areas of new research. They can be
grouped into the following five classes:

 21

A. Integrated structural design support tools

As the size and complexity of structural problems in the field of evolutionary design continues to
increase, there are several scaling-up issues that need to be addressed, including computation time
and parallel architectures. Computation time in evolutionary design mostly depends on evaluation
of the fitness of generated designs (frequently 90-95%, or more, of computation time). In the past,
when computational costs were high, researchers developed a variety of techniques to minimize
the computational effort. One of the most popular techniques involved separation of the stages of
conceptual, preliminary, and detailed design, and developing separate tools for each stage [6].
Nowadays, however, the cost of computation continues to decrease and this trend is likely to
persist in the future. Also, parallel computer architectures are now readily available. Considering
the fact that EAs have a natural mapping onto parallel architectures, it is the authors’ belief that
computational costs should not be the primary factor in developing new integrated evolutionary-
based structural design support tools. These tools will treat all the stages of a design process as
phases of a single integrated design process. Research efforts in this direction are led by Parmee
and co-workers [42].

B. Open-ended representations

A appropriate representation of an engineering system is one of the key issues in any structural
design application. Today, it becomes even more important because the increased complexity of
considered design problems raises some difficult internal EA issues on how to best represent and
evolve complex designs [6]. Another motivation comes from the fact that there is an emerging
trend to apply evolutionary design techniques not only to strictly optimization tasks but rather this
technique is being gradually more and more useful in finding novel design concepts. Both issues
lead to open-ended representations (see section 4) which don’t encode entire designs but rather
rules on how to construct these designs [272,273]. Representations of this type are also inspired
by the processes occurring in nature, where we observe evolution manipulating the genetic plans
for complex objects rather than the objects themselves. The organisms are then built from the
plans via a developmental process called morphogenesis.

C. Alternative constraint-handling methods

Almost every structural design problem involves some kind of constraints. Up to very recently,
various variations of penalty functions were virtually the only method of handling constraints. On
the other hand, a number of applications showed that there are many difficulties associated with
this approach when applied to highly constrained optimization problems. Studies focused on
estimating a true potential of alternative constraint-handling methods (discussed in section 5)
constitute another promising area for future research of vital importance to structural design.

D. Multiobjective structural design

Structural design problems are inherently multiobjective and often involve a relatively large
number of conflicting criteria. So far, research in evolutionary structural design concentrated
almost exclusively, with few notable exceptions, on single objective problems. At the same time,
the field of evolutionary multiobjective optimization provides new and efficient methods,
described in section 6, of solving these types of problems. Multiobjective structural design may
become one of the most promising areas of research in structural design, particularly when not a
single optimal design solution is sought but rather a set of alternative optimal designs.

E. Coevolutionary structural design

Coevolutionary design is an emerging area of research with many unanswered questions. There is
a lot to be done to understand the true potential of this paradigm in structural design. Initial
findings coming from evolutionary computation community suggest that coevolutionary models
might be particularly suitable for complex design spaces that can be relatively well decomposed
and when the major goal is not the optimality of design solutions in a global sense, but rather their
robustness (design for reliability) [188]. As stated earlier, very little has been done in this area and
it is potentially one of the most promising paths of future research.

Evolutionary computation is becoming a computational paradigm that is increasingly attractive for
civil engineers. This phenomenon is a part of the ongoing Information Technology Revolution and is
directly related to the changing nature of the use of computers from the exclusive applications in the

 22

analysis to their holistic use in design, including conceptual design, integrated design, etc. Research on
evolutionary computation in structural design is now fully recognized research activity and reported in the
leading journals in this area, including:

• Journal of Computing in Civil Engineering
• Journal of Structural Engineering
• Computers & Structures
• Advances in Engineering Software
• Structural and Multidisciplinary Optimization
• Engineering Optimization
• AI in Engineering Design

Also, research findings considering evolutionary computation in structural design are regularly presented
during several respected international conferences and workshops:

• International Conference on Adaptive Computing in Design and Manufacture (ACDM)
• World Congress of Structural and Multidisciplinary Optimization (WCSMO)
• ASME Conference On Design
• AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference

(SDM)
• Genetic and Evolutionary Computation Conference (GECCO)
• International Workshop on Information Technology in Civil Engineering (ASCE)
• International Workshop of the European Group for Intelligent Computing in Engineering

(EG-ICE)
After years of research, the field of evolutionary computation in structural design has generated

significant amount of both theoretical and empirical knowledge, which justifies the transfer of knowledge,
technologies and tools from the academia to the practicing structural designers. Finally, there is a chance
to close the existing gap between the needs of designers and the evolutionary design scholars.

Evolutionary design is a fascinating interdisciplinary research area, where concepts from computer
science, heuristics, design and inventive engineering and structural engineering are integrated and
transformed in the process. In this way, a new understanding of structural design emerges in the tradition
of synesthesia proposed by Leonardo DaVinci and still continued by creative scholars and practitioners.

10. References
[1] De Jong, K. A. (to appear). Evolutionary computation: a unified approach. Cambridge, MA:

MIT Press.
[2] Pezeshk, S. (2002). State of the art on the use of genetic algorithms in design of steel structures.

In S. Burns (Ed.), Recent Advances in Optimal Structural Design. Reston, VA: American
Society of Civil Engineers

[3] Grierson, D. E., & Khajehpour, S. (2002). Conceptual design optimization of engineering
structures. In S. Burns (Ed.), Recent advances in optimal structural design. Reston, VA:
American Society of Civil Engineers, 81-95.

[4] Cheng, F. Y. (2002). Multiobjective optimum design of seismic-resistant structures. In S. Burns
(Ed.), Recent advances in optimal structural design. Reston, VA: American Society of Civil
Engineers, 241-255.

[5] Hajela, P., & Vittal, S. (2000). Evolutionary computing and topology optimization: a state of the
art assessment. In Proceedings of the NATO Advanced Research Workshop on Topology
Optimization, Budapest, Hungary.

[6] Arciszewski, T., & De Jong, K. A. (2001). Evolutionary computation in civil engineering:
research frontiers. In B. H. V. Topping (Ed.), Proceedings of the Eight International Conference
on Civil and Structural Engineering Computing, Eisenstadt, Vienna, Austria.

[7] Shaw, D., Miles, J. C., & Gray, A. (2003). Genetic programming within civil engineering: a
review. In O. Ciftcioglu & E. Dado (Eds.), Proceedings of the 10th International Workshop of
the European Group for Intelligent Computing in Engineering (EG-ICE), Delft, The Netherlands,
29-39.

[8] Darwin, C. (1859). The origin of species by means of natural selection. London: J. Murray.
[9] Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor, Michigan:

University of Michigan Press.

 23

[10] Luke, S. (2000). Issues in scaling genetic programming: breeding strategies, tree generation,
and code bloat. Ph.D. Dissertation, Department of Computer Science, University of Maryland,
College Park, Maryland.

[11] Rechenberg, I. (1965). Cybernetic solution path of an experimental problem (Vol. Library
Translation 1122). Farnborough, UK: Royal Aircraft Establishment.

[12] Schwefel, H.-P. (1965). Kybernetische Evolution als Strategie der experimentelen Forschung in
der Stromungstechnik. Master's thesis, Hermann Föttinger Institute for Hydrodynamics,
Technical University of Berlin.

[13] Fogel, L. J., Owens, A. J., & Walsh, M. J. (1966). Artificial Intelligence through simulated
evolution. Chichester, UK: John Wiley.

[14] Koza, J. R. (1992). Genetic programming : on the programming of computers by means of
natural selection. Cambridge, Mass.: MIT Press.

[15] Eshelman, L. J. (1991). The CHC adaptive search algorithm: how to have safe search when
engaging in nontraditional genetic recombination. In G. J. E. Rawlins (Ed.), Proceedings of the
Second Workshop on Foundations of Genetic Algorithms, Vail, CO, USA, 265--283.

[16] Dasgupta, D., & MacGregor, D. (1991). A structured genetic algorithm (No. IKBS-2-91):
University of Strathclyde, UK.

[17] Mühlenbein, H., & Schlierkamp-Voosen, D. (1993). Predictive models for the breeder genetic
algorithms. Continuous parameter optimization. Evolutionary Computation, 1(1), 25 - 49.

[18] Goldberg, D. E., Korb, B., & Deb, K. (1989). Messy genetic algorithms: motivation, analysis,
and first results. Complex Systems, 3(5), 493-530.

[19] Whitley, L. D. (1989). The GENITOR algorithm and selection pressure: why ranked-based
allocation of reproductive trials is best. In J. D. Schaffer (Ed.), Proceedings of the Third
International Conference on Genetic Algorithms (ICGA'89), Fairfax, VA, USA, 239–255.

[20] Grefenstette, J. J., & Baker, J. E. (1989). How genetic algorithms work: a critical look at implicit
parallelism. In J. D. Schaffer (Ed.), Proceedings of the Third International Conference on
Genetic Algorithms (ICGA'89), Fairfax, VA, USA, 20-27.

[21] Schwefel, H.-P. (1977). Numerische Optimierung von Computer-modellen mittels der
Evolutionsstrategie. Basel: Birkhaeuser Verlag.

[22] Spears, W. M. (2000). Evolutionary algorithms: the role of mutation and recombination. Berlin ;
New York: Springer.

[23] Fogarty, T. C. (1989). Varying the probability of mutation in genetic algorithm. In J. D. Schaffer
(Ed.), Proceedings of the Third International Conference on Genetic Algorithms (ICGA'89),
Fairfax, VA, USA, 104-109.

[24] Fairley, A. (1991). Comparison of methods of choosing the crossover point in the genetic
crossover operation (Technical Report). Liverpool, UK: University of Liverpool.

[25] Schaffer, J. D., & Eshelman, L. J. (1991). On crossover as an evolutionarily viable strategy. In
R. K. Belew & L. B. Booker (Eds.), Proceedings of the Fourth International Conference on
Genetic Algorithms (ICGA'91), San Diego, CA, USA, 61-68.

[26] Cohoon, J. P., Hegde, S. U., Martin, W. N., & Richards, D. S. (1987). Punctuated equilibria: a
parallel genetic algorithm. In J. J. Grefenstette (Ed.), Proceedings of the Second International
Conference on Genetic Algorithms (ICGA'87), Cambridge, MA, USA, 148–154.

[27] Potter, M. A., & De Jong, K. A. (2000). Cooperative coevolution: an architecture for evolving
coadapted subcomponents. Evolutionary Computation, 8(1), 1-29.

[28] Angeline, P. J., & Pollack, J. B. (1993). Competitive environments evolve better solutions for
complex tasks. In S. Forrest (Ed.), Proceedings of the Fifth International Conference on Genetic
Algorithms (ICGA'93), Urbana-Champaign, IL, USA, 264–270.

[29] Bentley, P. J. (1999). An introduction to evolutionary design by computers. In P. J. Bentley
(Ed.), Evolutionary Design by Computers. San Francisco, CA: Morgan Kaufmann Publishers

[30] Parmee, I. C. (1999). Exploring the design potential of evolutionary search, exploration and
optimisation. In P. J. Bentley (Ed.), Evolutionary Design by Computers. London: Academic
Press Ltd.

[31] Rechenberg, I. (1973). Evolutionsstrategie; Optimierung technischer Systeme nach Prinzipien
der biologischen Evolution. Stuttgart-Bad Cannstatt: Frommann-Holzboog.

[32] Hoeffler, A., Leysner, U., & Weidermann, J. (1973). Optimization of the layout of trusses
combining strategies based on Mitchel's theorem and on biological principles of evolution. In
Proceedings of the 2nd Symposium on Structural Optimization, Milan, Italy.

 24

[33] Lawo, M., & Thierauf, G. (1982). Optimal design for dynamic stochastic loading: a solution by
random search. In Optimization in Structural Design. University of Siegen: Bibl. Inst.
Mannheim, 346-352.

[34] Goldberg, D. E. (1987). Computer-aided gas pipeline operation using genetic algorithms and rule
learning, part I: Genetic algorithm in pipeline optimization. Engineering with Computers, 47-58.

[35] Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning.
Reading, Mass.: Addison-Wesley Pub. Co.

[36] Bentley, P. J. (Ed.). (1999). Evolutionary design by computers. San Francisco, CA: Morgan
Kaufmann Publishers.

[37] Bentley, P. J., & Corne, D. W. (Eds.). (2002). Creative evolutionary systems. San Francisco, CA:
Morgan Kaufmann Publishers.

[38] Dasgupta, D., & Michalewicz, Z. (Eds.). (1997). Evolutionary algorithms in engineering
applications. Berlin, Heidelberg: Springer-Verlag.

[39] Cvetkovic, D., & Parmee, I. C. (1999). Genetic algorithms based systems for conceptual
engineering design. In U. Lindemann, H. Birkhofer, H. Meerkamm & S. Vajna (Eds.),
Proceedings of the 12th International Conference on Engineering Design ICED'99, München,
Germany, 1035-1038.

[40] Coello Coello, C. A., Van Veldhuizen, D. A., & Lamont, G. B. (2002). Evolutionary algorithms
for solving multi-objective problems. New York: Kluwer Academic.

[41] Gen, M., & Cheng, R. (2000). Genetic algorithms and engineering optimization. New York:
Wiley.

[42] Parmee, I. C. (2001). Evolutionary and adaptive computing in engineering design. London, New
York: Springer.

[43] Gen, M., & Cheng, R. (1997). Genetic algorithms and engineering design. New York: Wiley.
[44] Parmee, I. C. (Ed.). (2002). Adaptive computing in design and manufacture V. London, New

York: Springer-Verlag.
[45] Chawdhry, P., Roy, R., & Pant, R. (Eds.). (1998). Soft computing in engineering design and

manufacturing. London ; New York: Springer.
[46] Gero, J. S. (1996). Computers and creative design. In M. Tan & R. Teh (Eds.), The Global

Design Studio: National University of Singapore, 11-19.
[47] Boden, M. A. (1992). The creative mind: myths and mechanisms. New York: Basic Books.
[48] Arciszewski, T., & Michalski, R. S. (1984). Inferential design theory. In J. S. Gero & F.

Sudweeks (Eds.), Proceedings of the Third International Conference on Artificial Intelligence in
Design, Lausanne, Switzerland, 295-309.

[49] Arciszewski, T., Michalski, R. S., & Wnek, J. (1995). Constructive induction: the key to design
creativity. In J. S. Gero & M. L. Maher (Eds.), Preprints of the Third International Round-Table
Conference on Computational Models of Creative Design. Heron Island, Queensland, Australia,
397-426.

[50] Rosenman, M. (1997). The generation of form using evolutionary approach. In D. Dasgupta & Z.
Michalewicz (Eds.), Evolutionary algorithms in engineering applications. Berlin New York:
Springer, 69-86.

[51] Altshuller, G. (1969). Algorithm of invention. Moscow: Moskowskij Raboczij Publishing
House.

[52] Altshuller, G. (1999). The innovation algorithm: TRIZ, systematic innovation and technical
creativity: Technical Innovation Center.

[53] Rosenman, M., & Gero, J. S. (1999). Evolving designs by generating useful complex gene
structures. In P. J. Bentley (Ed.), Evolutionary design by computers. San Francisco, CA: Morgan
Kaufmann Publishers

[54] Bentley, P. J. (2000). Exploring component-based representations. In I. C. Parmee (Ed.),
Proceedings of the Fourth International Conference on Adaptive Computing in Design and
Manufacture (ACDM'2000), University of Plymouth, UK, 161-172.

[55] Hornby, G. S. (2003). Generative representations for evolutionary design automation. Ph.D.
Dissertation, Department of Computer Science, Brandeis University, Waltham, MA, USA.

[56] Bentley, P. J., & Kumar, S. (1999). Three ways to grow designs: a comparison of embryogenies
for an evolutionary design problem. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V.
Honavar, M. J. Jakiela & R. E. Smith (Eds.), Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO'99), Orlando, Florida, USA, 35-43.

[57] Wolfram, S. (2002). A new kind of science. Champaign, IL: Wolfram Media.

 25

[58] Gero, J. S. (1992). Creativity, emergence and evolution in design. Preprints Computational
Models of Creative Design, 1-28.

[59] Kicinger, R., De Jong, K. A., & Arciszewski, T. (2002). Long term versus short term
evolutionary design. In M. Schnellenbach-Held & H. Denk (Eds.), Advances in Intelligent
Computing in Engineering. Proceedings of the 9th International Workshop of the European
Group for Intelligent Computing in Engineering. Darmstadt, Germany: VDI Verlag, 184-195.

[60] Gero, J. S., & Schnier, T. (1995). Evolving representations of design cases and their use in
creative design. In J. S. Gero, M. L. Maher & F. Sudweeks (Eds.), Preprints Computational
Models of Creative Design. Syndey, Australia: Key Center of Design Computing, University of
Sydney, 343-368.

[61] Arciszewski, T., De Jong, K. A., & Vyas, H. (1999). Inventive design in structural engineering:
evolutionary computation approach. In B. Kumar & B. H. V. Topping (Eds.), Proceedings of the
Fifth International Conference on the Applications of AI to Civil and Structural Engineering,
Oxford, England, 1-9.

[62] Bentley, P. J. (1999). From coffee tables to hospitals: generic evolutionary design. In P. J.
Bentley (Ed.), Evolutionary design by computers. San Francisco, CA: Morgan Kaufmann
Publishers

[63] Parmee, I. C. (1995). Diverse evolutionary search for preliminary whole system design. In
Proceedings of the 4th International Conference on AI in Civil and Structural Engineering,
Cambridge University.

[64] Pahl, G., & Beitz, W. (1996). Engineering design: a systematic approach. New York: Springer
Verlag.

[65] Parmee, I. C. (1996). The maintenance of search diversity for effective design space
decomposition using cluster-oriented genetic algorithms (COGAs) and multi-agent strategies
(GAANT). In Proceedings of the Adaptive Computing in Engineering Design and Control,
University of Plymouth, UK.

[66] Bilchev, G., & Parmee, I. C. (1995). The ant colony metaphor for searching continuous design
spaces. In T. C. Fogarty (Ed.), Proceedings of the Evolutionary Computing, Sheffield, UK, 25-
39.

[67] Colorni, A., Dorigo, M., & Maniezzo, V. (1992). An investigation of some properties of the ant
algorithm. In R. Männer & B. Manderick (Eds.), Proceedings of the Second International
Conference on Parallel Problem Solving from Nature (PPSN-II), Brussels, Belgium, 515-526.

[68] Michalewicz, Z., Dasgupta, D., Le Riche, R. G., & Schoenauer, M. (1996). Evolutionary
algorithms for constrained engineering problems. Computers and Industrial Engineering
Journal, 30(4), 851-830.

[69] Parmee, I. C. (Ed.). (1998). Adaptive computing in design and manufacture : the integration of
evolutionary and adaptive computing technologies with product/system design and realisation.
London; New York: Springer-Verlag.

[70] Parmee, I. C. (1998). Genetic algorithms, and hydropower system design. Computer-Aided Civil
and Infrastructure Engineering, 13(1), 31-41.

[71] Vekeria, H. D., & Parmee, I. C. (1996). The use of a co-operative multi-level CHC GA for
structual shape optimisation. In Proceedings of the Fourth European Congress on Intelligent
Techniques and Soft Computing, Aachen, Germany.

[72] Bonham, C. R., & Parmee, I. C. (1999). Improving the performance of cluster oriented genetic
algorithms (COGAs). In Proceedings of the Congress on Evolutionary Computation (CEC'1999),
Washington, DC, USA, 554-561.

[73] Dym, C. L. (1994). Engineering design: a synthesis of views. New York, NY: Cambridge
University Press.

[74] Baron, P., Fisher, R., Mill, F., Sherlock, A., & Tuson, A. (1997). A voxel-based representation
for the evolutionary shape optimization of a simplified beam: a case-study of a problem-centered
approach to genetic operator design. In Proceedings of the 2nd On-line World Conference on
Soft Computing in Engineering Design and Manufacturing (WSC2).

[75] Kane, C., & Schoenauer, M. (1995). Genetic operators for two-dimensional shape optimization.
In J.-M. Alliot, E. Lutton, E. Ronald, M. Schoenauer & D. Snyers (Eds.), Artificial Evolution
(Vol. Lecture Notes in Computer Science 1063): Springer Verlag

[76] Kane, C., & Schoenauer, M. (1996). Topological optimum design using genetic algorithms.
Control and Cybernetics, 25(5), 1059-1088.

 26

[77] Roston, G. P. (1994). A genetic methodology for configuration design. Ph.D. Dissertation,
Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA.

[78] Funes, P., & Pollack, J. B. (1999). Computer evolution of buildable objects. In P. J. Bentley
(Ed.), Evolutionary design by computers. San Francisco, CA: Morgan Kaufmann Publishers

[79] Bentley, P. J. (1996). Generic evolutionary design of solid objects using a genetic algorithm.
Ph.D. Dissertation, Division of Computing and Control Systems, Department of Engineering,
University of Huddersfield, Queensgate, Huddersfield, UK.

[80] Shea, K., Cagan, J., & Fenves, S. J. (1997). A shape annealing approach to optimal truss design
with dynamic grouping of members. Journal of Mechanical Design, 119, 388-394.

[81] Schmidt, L. C., & Cagan, J. (1998). Optimal configuration design: an integrated approach using
grammars. Journal of Mechanical Design, 120(1), 2-9.

[82] Grabska, E. (1993). Graphs and designing. In H. J. Schneider & H. Ehrig (Eds.), Proceedings of
the International Workshop on Graph Transformations in Computer Science, Dagstuhl Castle,
Germany, 188-202.

[83] Stiny, G. (1980). Introduction to shape and shape grammars. Environment and Planning B:
Planning and Design, 7(3), 343-351.

[84] Shai, O. (2001). Combinatorial representations in structural analysis. Journal of Computing in
Civil Engineering, 15(3), 193-207.

[85] Frazer, J. (1995). An evolutionary architecture. London: Architectural Association Publications.
[86] Hajela, P., & Kim, B. (1999). GA based learning in cellular automata models for structural

analysis. In Proceedings of the 3rd World Congress on Structural and Multidisciplinary
Optimization, Niagara Falls, NY.

[87] Coates, P. (1997). Using genetic programming and L-systems to explore 3D design worlds. In R.
Junge (Ed.), Proceedings of the CAAD Futures '97, Munich, Germany.

[88] Jacob, C. (1994). Genetic L-system programming. In Y. Davidor, H.-P. Schwefel & R. Männer
(Eds.), Proceedings of the Third International Conference on Parallel Problem Solving from
Nature (PPSN-III), Jerusalem, Israel, 334-343.

[89] Cheng, R., Gen, M., & Tsujimura, Y. (1996). A tutorial survey of job-shop scheduling problems
using genetic algorithms: I. Representation. Computers and Industrial Engineering, 30(4), 983-
997.

[90] Sendhoff, B., Kreutz, M., & Seelen, W. v. (1997). A condition for the genotype-phenotype
mapping: causality. In T. Bäck (Ed.), Proceedings of the Seventh International Conference on
Genetic Algorithms (ICGA'97), East Lansing, MI, USA, 354-361.

[91] Popovici, E. (2003). The bleeding edge of inventive design (Computer Science Technical
Report). Fairfax, VA: George Mason University.

[92] De Jong, E. D., & Oates, T. (2002). A coevolutionary approach to representation development.
In E. D. De Jong & T. Oates (Eds.), Proceedings of the ICML-2002 Workshop on Development
of Representations, The University of New South Wales, Sydney, Australia.

[93] Dorn, W. C., Gomory, R. E., & Greenberg, H. J. (1964). Automatic design of optimal structures.
Journal de Mecanique, 3, 25-52.

[94] Michalewicz, Z. (1996). Genetic algorithms + data structures = evolution programs (3rd rev.
and extended ed.). Berlin ; New York: Springer-Verlag.

[95] Bäck, T. (1996). Evolutionary algorithms in theory and practice: evolution strategies,
evolutionary programming, genetic algorithms. Oxford, New York: Oxford University Press.

[96] Rothlauf, F. (2002). Representations for genetic and evolutionary algorithms. Heidelberg New
York: Physica-Verlag.

[97] Coello Coello, C. A. (2002). Theoretical and numerical constraint-handling techniques used with
evolutionary algorithms: a survey of the state of the art. Computer Methods in Applied
Mechanics and Engineering, 191, 1245-1287.

[98] Michalewicz, Z. (1995). A survey of constraint handling techniques in evolutionary computation
methods. In Proceedings of the 4th Annual Conference on Evolutionary Programming,
Cambridge, MA, 135-155.

[99] Courant, R. (1943). Variational methods for the solution of problems of equilibrium and
vibrations. Bulletin of American Mathematical Society, 49, 1-23.

[100] Caroll, C. W. (1961). The created response surface technique for optimizing nonlinear restrained
systems. Operations Research, 9, 169-184.

[101] Fiacco, A. V., & McCormick, G. P. (1968). Extensions to SUMT for nonlinear programming:
equality constraints and extrapolation. Management Science, 12(11), 816-828.

 27

[102] Goldberg, D. E., & Samtani, M. (1986). Engineering optimization via genetic algorithm. In
Proceedings of the Ninth Conference on Electronic Computation, University of Alabama,
Birmingham, 471-482.

[103] Richardson, J. T., Palmer, M. R., Liepins, G. E., & Hilliard, M. R. (1989). Some guidelines for
genetic algorithms with penalty functions. In J. D. Schaffer (Ed.), Proceedings of the Third
International Conference on Genetic Algorithms (ICGA'89), Fairfax, VA, USA, 191-197.

[104] Carlson, S. E. (1995). A general method for handling constraints in genetic algorithms. In
Proceedings of the Second Annual Joint Conference on Information Science, 663-667.

[105] Joines, J. A., & Houck, C. R. (1994). On the use of non-stationary penalty functions to solve
nonlinear constrained optimization problems with GA's. In Z. Michalewicz, J. D. Schaffer, H.-P.
Schwefel, D. B. Fogel & H. Kitano (Eds.), Proceedings of the First IEEE International
Conference on Evolutionary Computation (ICEC'94), Orlando, FL, USA, 579-584.

[106] Michalewicz, Z., & Attia, N. F. (1994). Evolutionary optimization of constrained problems. In
A. V. Sebald & L. J. Fogel (Eds.), Proceedings of the Third Annual Conference on Evolutionary
Programming, San Diego, CA, USA, 98-108.

[107] Bean, J. C., & Hadj-Alouane, A. B. (1992). A dual genetic algorithm for bounded integer
programs (Technical Report No. TR 92-53): Department of Industrial and Operations
Engineering, University of Michingan.

[108] Hadj-Alouane, A. B., & Bean, J. C. (1997). A genetic algorithm for the multiple-choice integer
program. Operations Research, 45, 92-101.

[109] Smith, A. E., & Tate, D. M. (1993). Genetic optimization using a penalty function. In S. Forrest
(Ed.), Proceedings of the Fifth International Conference on Genetic Algorithms (ICGA'93),
Urbana-Champaign, IL, USA, 499-503.

[110] Rasheed, K. (1998). An adaptive penalty approach for constrained genetic-algorithm
optimization. In J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H.
Garzon, D. E. Goldberg, H. Iba & R. L. Riolo (Eds.), Proceedings of the Third Annual Genetic
Programming Conference, Madison, Wisconsin, USA, 584-590.

[111] Nanakorn, P., & Meesomklin, K. (2001). An adaptive penalty function in genetic algorithms for
structural design optimization. Computers & Structures, 79(29-30), 2527-2539.

[112] Coello Coello, C. A. (2000). Use of a self-adaptive penalty approach for engineering
optimization problems. Computers in Industry, 41(2), 113-127.

[113] Schwefel, H.-P. (1981). Numerical optimization of computer models. Chichester, UK: John
Wiley & Sons.

[114] Bean, J. C. (1994). Genetics and random keys for sequencing and optimization. ORSA Journal
on Computing, 6, 154-160.

[115] Davidor, Y. (1989). Analogous crossover. In J. D. Schaffer (Ed.), Proceedings of the Third
International Conference On Genetic Algorithms (ICGA'89), Fairfax, VA, USA, 98-103.

[116] Kowalczyk, R. (1997). Constraint consistent genetic algorithms. In Proceedings of the Fourth
IEEE International Conference on Evolutionary Computation (ICEC'97), Indianapolis, USA, 343
-348.

[117] Schoenauer, M., & Michalewicz, Z. (1996). Evolutionary computation at the edge of feasibility.
In H.-M. Voigt, W. Ebeling, I. Rechenberg & H.-P. Schwefel (Eds.), Proceedings of the Fourth
International Conference on Parallel Problem Solving from Nature (PPSN-IV), Berlin, Germany,
245-254.

[118] Schoenauer, M., & Michalewicz, Z. (1997). Boundary operators for constrained parameter
optimization problems. In T. Bäck (Ed.), Proceedings of the Seventh International Conference on
Genetic Algorithms (ICGA'97), East Lansing, MI, USA, 320-329.

[119] Michalewicz, Z. (2000). Decoders. In T. Bäck, D. B. Fogel & Z. Michalewicz (Eds.),
Evolutionary computation 2: advanced algorithms and operators (Vol. 2). Bristol and
Philadelphia: Institute of Physics Publishing, 49-55.

[120] Koziel, S., & Michalewicz, Z. (1999). Evolutionary algorithms, homomorphous mappings, and
constrained parameter optimization. Evolutionary Computation, 7(1), 19-44.

[121] Kim, D. G. (1998). Riemann mapping based constraint handling for evolutionary search. In
Proceedings of the 1998 ACM Symposium on Applied Computing, Atlanta, GA, USA, 379-385.

[122] Michalewicz, Z. (2000). Repair algorithms. In T. Bäck, D. B. Fogel & Z. Michalewicz (Eds.),
Evolutionary computation 2: advanced algorithms and operators (Vol. 2). Bristol and
Philadelphia: Institute of Physics Publishing, 56-61.

 28

[123] Liepins, G. E., & Vose, M. D. (1990). Representational issues in genetic optimization. Journal of
Experimental and Theoretical Artificial Intelligence, 2, 101-115.

[124] Mühlenbein, H. (1992). Parallel genetic algorithms in combinatorial optimization: new
developments in their interfaces. In O. Balci, R. Sharda & S. A. Zenios (Eds.), Computer Science
and Operations Research. New York: Pergamon Press, 441-456.

[125] Tate, D. M., & Smith, A. E. (1995). A genetic approach to the quadratic assignment problem.
Computers and Operations Research, 22(1), 73-78.

[126] Michalewicz, Z., & Nazhiyath, G. (1995). Genocop III: a co-evolutionary algorithm for
numerical optimization problems with nonlinear constraints. In D. B. Fogel (Ed.), Proceedings
of the Second IEEE International Conference on Evolutionary Computation (ICEC'95), Perth,
Australia, 647-651.

[127] Liepins, G. E., & Potter, W. D. (1991). A genetic algorithm approach to multiple-fault diagnosis.
In L. Davis (Ed.), Handbook of genetic Algorithms. New York: Van Nostrand Reinhold, 237-
250.

[128] Nakano, R., & Yamada, T. (1991). Conventional genetic algorithm for job shop problems. In R.
K. Belew & L. B. Booker (Eds.), Proceedings of the Fourth International Conference on Genetic
Algorithms (ICGA'91), San Diego, CA, USA, 474-479.

[129] Orvosh, D., & Davis, L. (1994). Using a genetic algorithm to optimize problems with feasibility
constraints. In Z. Michalewicz, J. D. Schaffer, H.-P. Schwefel, D. B. Fogel & H. Kitano (Eds.),
Proceedings of the First IEEE International Conference on Evolutionary Computation
(ICEC'94), Orlando, FL, USA, 548 -553.

[130] Kicinger, R., Arciszewski, T., & De Jong, K. A. (2003). Evolutionary designing of steel
structures in tall buildings. Journal of Computing in Civil Engineering(tentatively approved).

[131] Paredis, J. (1994). Co-evolutionary constraints satisfaction. In Y. Davidor, H.-P. Schwefel & R.
Männer (Eds.), Proceedings of the Third International Conference on Parallel Problem Solving
from Nature (PPSN-III), Jerusalem, Israel, 46-55.

[132] Powell, D. J., & Skolnick, M. M. (1993). Using genetic algorithms in engineering design
optimization with non-linear constraints. In S. Forrest (Ed.), Proceedings of the Fifth
International Conference on Genetic Algorithms (ICGA'93), Urbana-Champaign, IL, USA, 424-
431.

[133] Deb, K. (2000). An efficient constraint handling method for genetic algorithms. Computer
Methods in Applied Mechanics and Engineering, 186(2-4), 311-338.

[134] Schoenauer, M., & Xanthakis, S. (1993). Constrained GA optimization. In S. Forrest (Ed.),
Proceedings of the Fifth International Conference on Genetic Algorithms (ICGA'93), Urbana-
Champaign, IL, USA, 573-580.

[135] Surry, P. D., Radcliffe, N. J., & Boyd, I. D. (1995). A multi-objective approach to constrained
optimization of gas supply networks: the COMOGA method. In T. C. Fogarty (Ed.), Proceedings
of the AISB-95 Workshop on Evolutionary Computing, Sheffield, UK, 166-180.

[136] Surry, P. D., & Radcliffe, N. J. (1997). The COMOGA method: constrained optimisation by
multi-objective genetic algorithms. Control and Cybernetics, 26(3).

[137] Parmee, I. C., & Purchase, G. (1994). The development of a directed genetic search technique
for heavily constrained design spaces. In I. C. Parmee (Ed.), Proceedings of the First
International Conference on Adaptive Computing in Engineering Design and Control, Plymouth,
UK, 97-102.

[138] Coello Coello, C. A. (2000). Treating constraints as objectives for single-objective evolutionary
optimization. Engineering Optimization, 32(3), 275-308.

[139] Coello Coello, C. A. (2000). Constraint-handling using an evolutionary multiobjective
optimization technique. Civil Engineering and Environmental Systems, 17, 319-346.

[140] Adeli, H., & Cheng, N. T. (1994). Augmented Lagrangian genetic algorithm for structural
optimization. Journal of Structural Engineering, 7(3), 104-118.

[141] Myung, H., Kim, J.-H., & Fogel, D. B. (1995). Preliminary investigation into a two-stage
method of evolutionary optimization on constrained problems. In J. R. McDonnell, R. G.
Reynolds & D. B. Fogel (Eds.), Proceedings of the Fourth Annual Conference on Evolutionary
Programming, Cambridge, MA, USA, 449-463.

[142] Kim, J.-H., & Myung, H. (1997). Evolutionary programming techniques for constrained
optimization problems. IEEE Transactions on Evolutionary Computation, 1(2), 129 -140.

 29

[143] Le, T. V. (1995). A fuzzy evolutionary approach to constrained optimization problems. In
Proceedings of the Second IEEE International Conference on Evolutionary Computation
(ICEC'95), Perth, Australia, 274-278.

[144] Le, T. V. (1996). A fuzzy evolutionary approach to constrained optimisation problems. In T.
Fukuda & T. Furuhashi (Eds.), Proceedings of the Third IEEE International Conference on
Evolutionary Computation (ICEC'96), Nagoya, Japan, 274-278.

[145] Forrest, S., & Perelson, A. S. (1990). Genetic algorithms and the immune system. In H.-P.
Schwefel & R. Männer (Eds.), Proceedings of the First International Conference on Parallel
Problem Solving from Nature (PPSN-I), Dortmund, Germany, 320-325.

[146] Smith, R. E., Forrest, S., & Perelson, A. S. (1993). Searching for diverse, cooperative
populations with genetic algorithms. Evolutionary Computation, 1(2), 127-149.

[147] Hajela, P., & Lee, J. (1996). Constrained genetic search via schema adaptation. An immune
network solution. Structural Optimization, 12(1), 11-15.

[148] Hajela, P., & Lee, J. (1995). Constrained genetic search via schema adaptation. An immune
network solution. In N. Olhoff & G. I. N. Rozvany (Eds.), Proceedings of the First World
Congress of Structural and Multidisciplinary Optimization (WCSMO-1), Goslar, Germany, 915-
920.

[149] Yoo, J., & Hajela, P. (1999). Immune network simulations in multicriterion design. Structural
and Multidisciplinary Optimization, 18(2-3), 85-94.

[150] Reynolds, R. G. (1994). An introduction to cultural algorithms. In A. V. Sebald & L. J. Fogel
(Eds.), Proceedings of the Third Annual Conference on Evolutionary Programming, Singapore,
131-139.

[151] Reynolds, R. G., Michalewicz, Z., & Cavaretta, M. J. (1995). Using cultural algorithms for
constraint handling in Genocop. In J. R. McDonnell, R. G. Reynolds & D. B. Fogel (Eds.),
Proceedings of the Fourth Annual Conference on Evolutionary Programming, Cambridge, MA,
USA, 289-305.

[152] Chung, C.-J., & Reynolds, R. G. (1996). A testbed for solving optimization problems using
cultural algorithms. In L. J. Fogel, P. J. Angeline & T. Bäck (Eds.), Proceedings of the Fifth
Annual Conference on Evolutionary Programming, San Diego, CA, USA.

[153] Colorni, A., Dorigo, M., & Maniezzo, V. (1991). Distributed optimization by ant colonies. In
Proceedings of the First European Conference on Artificial Life (ECAL'91), Paris, France.

[154] Bilchev, G., & Parmee, I. C. (1996). Constrained and multi-modal optimisation with an ant
colony search model. In I. C. Parmee & M. J. Denham (Eds.), Proceedings of the Second
International Conference on Adaptive Computing in Engineering Design and Control, Plymouth,
UK.

[155] Michalewicz, Z., & Schoenauer, M. (1996). Evolutionary algorithms for constrained parameter
optimization problems. Evolutionary Computation, 4(1), 1-32.

[156] Coello Coello, C. A. (1999). A comprehensive survey of evolutionary-based multi-objective
optimization techniques. Knowledge and Information Systems, 1(3), 269-308.

[157] Pareto, V. (1896). Cours D'Economie Politique (Vol. I and II). Lausanne: F. Rouge.
[158] Deb, K. (1999). Evolutionary algorithms for multi-criterion optimization in engineering design.

In K. Miettinen, M. M. Makela, P. Neittaanmaki & J. Periaux (Eds.), Evolutionary algorithms in
engineering and computer science : recent advances in genetic algorithms, evolution strategies,
evolutionary programming, genetic programming, and industrial applications. Chichester; New
York: John Wiley & Sons

[159] Chankong, V., & Haimes, Y. Y. (1983). Multiobjective decision making: theory and
methodology. New York: North Holland.

[160] Haimes, Y. Y., Lasdon, L. S., & Wismer, D. A. (1971). On a bicriterion formulation of the
problems of integrated system identification and system optimization. IEEE Transactions on
Systems, Man, and Cybernetics, 1(3), 296-297.

[161] Coello Coello, C. A. (2000). An updated survey of GA-based multiobjective optimization
techniques. ACM Computing Surveys, 32(2), 109-143.

[162] Rosenberg, R. S. (1967). Simulation of genetic populations with biochemical properties. Ph.D.
DissertationUniversity of Michigan, Ann Harbor, Michigan.

[163] Schaffer, J. D. (1984). Some experiments in machine learning using vector evaluated genetic
algorithms. Ph.D. DissertationVanderbilt University, Nashville, TN.

[164] Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. Chichester, New
York: John Wiley & Sons.

 30

[165] Syswerda, G., & Palmucci, J. (1991). The application of genetic algorithms to resource
scheduling. In R. K. Belew & L. B. Booker (Eds.), Proceedings of the Fourth International
Conference on Genetic Algorithms (ICGA'91), San Diego, CA, USA, 502-508.

[166] Yang, X., & Gen, M. (1994). Evolution program for bicriteria transportation problem. In M.
Gen & T. Kobayashi (Eds.), Proceedings of the 16th International Conference on Computers and
Industrial Engineering, Ashikaga, Japan, 451-454.

[167] Jakob, W., Gorges-Schleuter, M., & Blume, C. (1992). Application of genetic algorithms to task
planning and learning. In R. Männer & B. Manderick (Eds.), Proceedings of the Second
International Conference on Parallel Problem Solving from Nature (PPSN-II), Brussels,
Belgium, 293-302.

[168] Schaffer, J. D. (1985). Multiple objective optimization with vector evaluated genetic algorithms.
In J. J. Grefenstette (Ed.), Proceedings of the First International Conference on Genetic
Algorithms (ICGA'85), Pittsburgh, PA, USA, 93-100.

[169] Ritzel, B. J., Eheart, J. W., & Ranjithan, S. (1994). Using genetic algorithms to solve a multiple
objective groundwater pollution containment problem. Water Resources Research, 30(5), 1589-
1603.

[170] Cvetkovic, D., Parmee, I. C., & Webb, E. (1998). Multi-objective optimisation and preliminary
airframe design. In I. C. Parmee (Ed.), The Integration of Evolutionary and Adaptive Computing
Technologies with Product/System Design and Realisation. Plymouth, UK: Springer-Verlag,
255-267.

[171] Charnes, A., & Cooper, W. W. (1961). Management models and industrial applications of linear
programming. New York: John Wiley.

[172] Chen, Y. L., & Liu, C. C. (1994). Multiobjective VAR planning using the goal-attainment
method. IEE Proceedings on Generation, Transmission and Distribution, 141(3), 227-232.

[173] Hajela, P., & Lin, C.-Y. (1992). Genetic search strategies in multicriterion optimal design.
Structural Optimization(4), 99-107.

[174] Coello Coello, C. A., & Christiansen, A. D. (1998). Two new GA-based methods for
multiobjective optimization. Civil Engineering Systems, 15(3), 207-243.

[175] Coello Coello, C. A., & Christiansen, A. D. (2000). Multiobjective optimization of trusses using
genetic algorithms. Computers & Structures, 75(6), 647-660.

[176] Fonseca, C. M., & Fleming, P. J. (1993). Genetic algorithms for multi-objective optimization:
formulation, discussion, and generalization. In S. Forrest (Ed.), Proceedings of the Fifth
International Conference on Genetic Algorithms (ICGA'93), Urbana-Champaign, IL, USA, 416-
423.

[177] Chipperfield, A. J., & Fleming, P. J. (1995). Gas turbine engine controller design using
multiobjective genetic algorithms. In A. M. S. Zalzala (Ed.), Proceedings of the First IEE/IEEE
International Conference on Genetic Algorithms in Engineering Systems: Innovations and
Applications (GALESIA'95), Halifax Hall, University of Sheffield, UK.

[178] Obayashi, S. (1998). Pareto genetic algorithm for aerodynamic design using the Navier-Stokes
equations. In D. Quagliarella, J. Periaux, C. Poloni & G. Winter (Eds.), Genetic algorithms and
evolution strategies in engineering and computer science: recent advances and industrial
applications. Chichester, England: John Wiley & Sons, 245-266.

[179] Obayashi, S. (2002). Pareto solutions of multipoint design of supersonic wings using
evolutionary algorithms. In I. C. Parmee (Ed.), Adaptive Computing in Design and Manufacture
V. London: Springer-Verlag, 3-16.

[180] Grierson, D. E., & Khajehpour, S. (2002). Method for conceptual design applied to office
buildings. Journal of Computing in Civil Engineering, 16(2), 83-103.

[181] Srinivas, N., & Deb, K. (1994). Multiobjective optimization using nondominated sorting in
genetic algorithms. Evolutionary Computation, 2(3), 221-248.

[182] Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000). Fast elitist non-dominated sorting
genetic algorithm for multi-objective optimization: NSGA-II. In M. Schoenauer, K. Deb, G.
Rudolph, X. Yao, E. Lutton, J. J. Merelo Guervós & H.-P. Schwefel (Eds.), Proceedings of the
Sixth International Conference on Parallel Problem Solving from Nature (PPSN-VI), Paris,
France, 849-858.

[183] Hamda, H., Roudenko, O., & Schoenauer, M. (2002). Multi-objective evolutionary topological
optimum design. In I. C. Parmee (Ed.), Proceedings of the Fifth International Conference on
Adaptive Computing Design and Manufacture (ACDM 2002), University of Exeter, Devon, UK,
121-132.

 31

[184] Deb, K., & Goel, T. (2001). A hybrid multi-objective evolutionary approach to engineering
shape design. In E. Zitzler, K. Deb, L. Thiele, C. A. Coello Coello & D. W. Corne (Eds.),
Proceedings of the First International Conference on Evolutionary Multi-Criterion Optimization
(EMO'2001), Zurich, Switzerland, 385-399.

[185] Horn, J., & Nafpliotis, N. (1993). Multiobjective optimization using the niched Pareto genetic
algorithm (Technical Report No. IlliGAl Report 93005). Urbana, Illinois, USA: University of
Illinois at Urbana-Champaign.

[186] Zitzler, E., & Thiele, L. (1998). An evolutionary algorithm for multi-objective optimization: the
strength Pareto approach (No. Technical Report 43). Zurich, Switzerland: Computer
Engineering and Communication Networks Laboratory, Swiss Federal Institute of Technology.

[187] Van Veldhuizen, D. A., & Lamont, G. B. (1998). Multi-onjective evolutionary algorithm
research: a history and analysis (No. TR-98-03). Wright-Patterson AFB, Ohio: Department of
Electrical and Computer Engineering, Air Force Institute of Technology.

[188] Wiegand, R. P. (2003). An analysis of cooperative coevolutionary algorithms. Ph.D.
Dissertation, Department of Computer Science, George Mason University, Fairfax, VA, USA.

[189] Rosin, C. D., & Belew, R. K. (1996). New methods for competitive coevolution (Technical
Report No. CS96-491). San Diego, CA: Department of Computer Science and Engineering,
University of California.

[190] Maynard Smith, J. (1982). Evolution and the theory of games: Cambridge University Press.
[191] Axelrod, R. M. (1984). The evolution of cooperation. New York: Basic Books.
[192] Axelrod, R. M. (1987). Evolving new strategies: the evolution of strategies in the iterated

prisoner's dilemma. In L. Davis (Ed.), Genetic Algorithms and Simulated Annealing. San Mateo,
CA: Morgan Kaufmann Publishers, 32-41.

[193] Hillis, W. D. (1991). Co-evolving parasites improve simulated evolution as an optimization
procedure. In C. G. Langton, C. Taylor, J. D. Farmer & S. Rasmussen (Eds.), Artificial Life II
(Vol. X). Santa Fe Institute Studies in the Sciences of Complexity, New Mexico, USA: Addison-
Wesley, 313-324.

[194] Paredis, J. (1995). Artificial coevolution, explorations in artifical life. In AI Expert Presents:
Miller Freeman Inc.

[195] Pagie, L., & Mitchell, M. (2002). A comparison of evolutionary and coevolutionary search.
International Journal of Computational Intelligence and Applications, 2(1), 53-69.

[196] Potter, M. A., & De Jong, K. A. (1994). A cooperative coevolutionary approach to function
optimization. In Y. Davidor, H.-P. Schwefel & R. Männer (Eds.), Proceedings of the Third
International Conference on Parallel Problem Solving from Nature (PPSN-III), Jerusalem, Israel,
249-257.

[197] Potter, M. A. (1997). The design and analysis of a computational model of cooperative
coevolution. Ph.D. dissertation, Computer Science Department, George Mason University,
Fairfax, VA.

[198] Luke, S., & Wiegand, R. P. (2002). When coevolutionary algorithms exhibit evolutionary
dynamics. In A. Barry (Ed.), Proceedings of the Workshop on Understanding Coevolution:
Theory and Analysis of Coevolutionary Algorithms (GECCO 2002), New York, 236-241.

[199] Wiegand, R. P., Liles, W. C., & De Jong, K. A. (2001). An empirical analysis of collaboration
methods in cooperative coevolutionary algorithms. In L. Spector & E. D. Goodman (Eds.),
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), San
Francisco, CA, 1235-1242.

[200] Maher, M. L., & Poon, J. (1996). Modelling design exploration as co-evolution. Microcomputers
in Civil Engineering, 11(3), 195-210.

[201] Maher, M. L. (1994). Creative design using a genetic algorithm. Computing in Civil
Engineering, 2014-2021.

[202] Maher, M. L., & Poon, J. (1995). Evolving a fitness landscape for design exploration. In
Proceedings of the International Conference on Evolutionary Computation, Perth, Australia.

[203] Maher, M. L., Poon, J., & Boulanger, S. (1996). Formalising design exploration as co-evolution:
a combined gene approach. In J. S. Gero & F. Sudweeks (Eds.), Advances in Formal Design
Methods for CAD: Chapman & Hall, 1-28.

[204] Maher, M. L., & Wu, P. X. (1998). Creativity through co-evolutionary design. In J. S. Gero, M.
L. Maher & F. Sudweeks (Eds.), Preprints of Computational Models of Creative Design.
Sydney, Australia: Key Center of Design Computing, 244-259.

 32

[205] Poon, J., & Maher, M. L. (1996). Emergent behaviour in co-evolutionary design. In J. S. Gero
(Ed.), Artificial Intelligence in Design '96: Kluwer Academic Press

[206] Poon, J., & Maher, M. L. (1996). Co-evolution and emergence in design. In Proceedings of the
Workshop on Evolutionary Systems in Design AID'96.

[207] Poon, J., & Maher, M. L. (1997). Co-evolution and emergence in design. Artificial Intelligence
in Engineering, 11(3), 319-327.

[208] Nair, P. B., & Keane, A. J. (2002). Coevolutionary architecture for distributed optimization of
complex coupled systems. AIAA Journal, 40(7), 1434-1443.

[209] Hamda, H., Jouve, F., Lutton, E., Schoenauer, M., & Sebag, M. (2002). Compact unstructured
representations for evolutionary topological optimum design. Applied Intelligence, 16, 139-155.

[210] Berke, L., & Khot, N. S. (1987). Structural optimization using optimality criteria. In C. A. Mota
Soares (Ed.), Computer Aided Optimal Design: Structural and Mechanical System. Berlin:
Springer-Verlag, 235-269.

[211] Jakiela, M. J., Chapman, C. D., Duda, J., Adewuya, A., & Saitou, K. (2000). Continuum
structural topology design with genetic algorithms. Computer Methods in Applied Mechanics
and Engineering, 186, 339-356.

[212] Schmit, L. A. (1981). Structural synthesis- its genesis and development. AAAI Journal, 19(10),
1249-1263.

[213] Lin, C.-Y., & Hajela, P. (1993). Genetic search strategies in large scale optimization. In
Proceedings of the 34th AIAA/ASCE/ASME/AHS Structural Dynamics and Material
Conference, La Jolla, CA, 2437-2447.

[214] Schoenauer, M., & Wu, Z. (1993). Discrete optimal design of structures by genetic algorithms.
In B. e. al. (Ed.), Proceedings of the Conference Nationale sur le Calcul de Structures, Hermes,
833-842.

[215] Anagnostou, G., Ronquist, E., & Patera, A. (1992). A computational procedure for part design.
Computer Methods in Applied Mechanics and Engineering, 97, 33-48.

[216] Hajela, P., & Lee, E. (1995). Genetic algorithms in truss topological optimization. Journal of
Solids and Structures, 32(22), 3341-3357.

[217] Jensen, E. D. (1992). Topological structural design using genetic algorithms. Ph.D.
DissertationPurdue University, Lafayette, IN.

[218] Chapman, C. D., Saitou, K., & Jakiela, M. J. (1994). Genetic algorithm as an approach to
configuration and topology design. Journal of Mechanical Design, 116, 1005-1012.

[219] Bendsoe, M. P., & Kikuchi, N. (1988). Generating optimal topologies in structural design using
a homogenization method. Computer Methods in Applied Mechanics and Engineering, 71, 197-
224.

[220] Xie, Y. M., & Steven, G. P. (1992). Shape and layout optimization via an evolutionary
procedure. In Proceedings of the International Conference on Computational Engineering
Science, Hong Kong University of Science and Technology, Hong Kong.

[221] Sandgren, E., Jensen, E. D., & Welton, J. (1990). Topological design of structural components
using genetic optimization methods. In Sensitivity Analysis and Optimization with Numerical
Methods, AMD-vol. 115, Proceedings of the Winter Annual Meeting of the American Society of
Mechanical Engineers. Dallas, TX, 31-43.

[222] Periaux, J., & Winter, G. (Eds.). (1995). Genetic algorithms in engineering and computer
science. Chichester, UK: John Wiley.

[223] Schoenauer, M. (1996). Shape representations and evolution schemes. In L. J. Fogel, P. J.
Angeline & T. Bäck (Eds.), Proceedings of the Fifth Annual Conference on Evolutionary
Programming, San Diego, CA, USA.

[224] Topping, B. H. V. (1983). Shape optimization of skeletal structures: a review. Journal of
Structural Engineering, 109, 1933-1951.

[225] Shankar, N., & Hajela, P. (1991). Heuristics driven strategies for near-optimal structural
topology development. In B. H. V. Topping (Ed.), Artificial Intelligence and Structural
Engineering. Oxford, UK: Civil-Comp Press, 219-226.

[226] Hajela, P., Lee, E., & Lin, C.-Y. (1993). Genetic algorithms in structural topology optimization.
In M. P. Bendsoe & C. A. Mota Soares (Eds.), Topology Design of Structures, 117-133.

[227] Grierson, D. E., & Pak, W. (1993). Discrete optimal design using a genetic algorithm. In M. P.
Bendsoe & C. A. Mota Soares (Eds.), Topology Design of Structures. Dordrecht, The
Netherlands: Kluwer Academic Publishers, 89-102.

 33

[228] Bramlette, M. F., & Bouchard, E. E. (1991). Genetic algorithms in parametric design of aircraft.
In L. Davis (Ed.), Handbook of Genetic Algorithms. New York: Van Nostrand Reinhold, 109-
123.

[229] Koumousis, V. K., & Georgiou, P. G. (1994). Genetic algorithms in discrete optimization of
steel truss roofs. Journal of Computing in Civil Engineering, 8(3), 309-325.

[230] Bohnenberger, O., Hesser, J., & Männer, R. (1995). Automatic design of truss structures using
evolutionary algorithms. In Proceedings of the Second IEEE International Conference on
Evolutionary Computation (ICEC'95), Perth, Australia, 143-149.

[231] Rajan, S. D. (1995). Sizing, shape, and topology design optimization of trusses using genetic
algorithm. Journal of Structural Engineering, 121, 1480-1487.

[232] Nakanishi, Y., & Nakagiri, S. (1996). Optimization of frame topology using boundary cycle and
genetic algorithms. JSME International Journal, Series A, 39, 279-285.

[233] Nakanishi, Y., & Nakagiri, S. (1997). Structural optimization under topological constraint
represented by homology groups. JSME International Journal, Series A, 40, 219-227.

[234] Rajeev, S., & Krishnamoorthy, C. S. (1997). Genetic algorithms-based methodologies for design
optimization of trusses. Journal of Structural Engineering, 123(3), 350-358.

[235] Murawski, K., Arciszewski, T., & De Jong, K. A. (2001). Evolutionary computation in structural
design. Journal of Engineering with Computers, 16, 275-286.

[236] Soh, C. K., & Yang, Y. (2001). Genetic programming-based approach for structural
optimization. Journal of Computing in Civil Engineering, 31, 31-37.

[237] Yang, Y., & Soh, C. K. (2002). Automated optimum design of structures using genetic
programming. Computers & Structures, 80(18-19), 1537-1546.

[238] Azid, I. A., Kwan, A. S. K., & Seetharamm, K. N. (2002). An evolutionary approach for layout
optimization of a three-dimensional truss. Structural and Multidisciplinary Optimization, 24(4),
333–337.

[239] Rozvany, G. I. N., Bendsoe, M. P., & Kirsch, U. (1995). Layout optimization of structures.
Applied Mechanics Reviews, 48(2), 41-120.

[240] Bendsoe, M. P., & Sigmund, O. (2002). Topology optimization: theory, methods and
applications: Springer-Verlag.

[241] Xie, Y. M., & Steven, G. P. (1997). Evolutionary structural optimization. Berlin Heidelberg
New York: Springer-Verlag.

[242] Pironneau, O. (1984). Optimal shape design for elliptic systems: Springer-Verlag.
[243] Bennet, J. A., & Botkin, M. E. (Eds.). (1986). The optimum shape: automated structural design.

New York, London: Plenum Press.
[244] Haslinger, J., & Neittaanmaki, P. (1996). Finite element approximation for optimal shape design

material and topology design. Chichester, UK: John Wiley & Sons.
[245] Sokolowski, J., & Zolesio, J.-P. (1992). Introduction to shape optimization. Shape sensitivity

analysis: Springer-Verlag.
[246] Allaire, G., Bonnetier, E., Francfort, G., & Jouve, F. (1997). Shape optimization by the

homogenization method. Nuemerische Mathematik, 76, 27-68.
[247] Jenkins, W. M. (1991). Towards structural optimization via the genetic algorithm. Computers &

Structures, 40(5), 1321-1327.
[248] Jenkins, W. M. (1991). Structural optimization with the genetic algorithm. Structural Engineer,

69(24), 418-422.
[249] Richards, R., & Sheppard, S. D. (1992). Learning classifier systems in design optimization. In

Proceedings of the 1992 Design Theory and Methodology Conference, Scottsdale, Arizona, 179-
186.

[250] Watabe, H., & Okino, N. (1993). A study of genetic shape design. In S. Forrest (Ed.),
Proceedings of the Fifth International Conference on Genetic Algorithms (ICGA'93), Urbana-
Champaign, IL, USA, 445-451.

[251] Kita, E., & Tanie, H. (1998). GA-based topology optimization of continuum structures. In G. P.
Steven, O. M. Querin, H. Guan & Y. M. Xie (Eds.), Structural Optimization (Proceedings of the
Australasian Conference on Structural Optimization). Victoria: Oxbridge Press, 87-94.

[252] Kita, E., & Tanie, H. (1999). Topology and shape optimization of continuum structures using
GA and BEM. Structural Optimization, 17(2/3), 130-139.

[253] Annicchiarico, W., & Cerrolaza, M. (1999). Finite elements, genetic algorithms and B-splines: a
combined technique for shape optimization. Finite Elements in Analysis and Design, 33, 125-
141.

 34

[254] Cerrolaza, M., & Annicchiarico, W. (1999). Genetic algorithms in shape optimization: finite and
boundary element applications. In K. Miettinen, M. M. Makela, P. Neittaanmaki & J. Periaux
(Eds.), Evolutionary algorithms in engineering and computer science. Chichester, England: John
Wiley & Sons

[255] Wibowo, F. X. N., & Besari, M. S. (1998). Genetic algorithms in shape optimization of oval
axially symmetrical shells. In G. P. Steven, O. M. Querin, H. Guan & Y. M. Xie (Eds.),
Structural Optimization (Proceedings of the Australasian Conference on Structural
Optimization). Victoria: Oxbridge Press, 103-111.

[256] Annicchiarico, W., & Cerrolaza, M. (2001). Structural shape optimization 3D finite-element
models based on genetic algorithms and geometric modeling. Finite Elements in Analysis and
Design, 37(5), 403-415.

[257] Woon, S. Y., Querin, O. M., & Steven, G. P. (2001). Structural application of a shape
optimization method based on a genetic algorithm. Structural and Multidisciplinary
Optimization, 22(1), 57–64.

[258] Pedersen, P. (1987). Optimal joint positions for space structures. Journal of Structural
Engineering, 99(10), 2459-2477.

[259] Vanderplaats, G. N. (1975). Design of structures for optimum geometry (No. TMX-62-462):
NASA.

[260] Grierson, D. E., & Pak, W. (1993). Optimal sizing, geometrical and topological design using a
genetic algorithm. Structural Optimization, 6, 151-159.

[261] Soh, C. K., & Yang, J. (1996). Fuzzy controlled genetic algorithm search for shape optimization.
Journal of Computing in Civil Engineering, 10(2), 143-150.

[262] Keane, A. J., & Brown, S. M. (1996). The design of a satellite boom with enhanced vibration
performance using genetic algorithm techniques. In I. C. Parmee (Ed.), Proceedings of the
Conference on Adaptive Computing in Engineering Design and Control 96, Plymouth, UK, 107-
113.

[263] Kawohl, B., Pironneau, O., Tartar, L., & Zolesio, J.-P. (Eds.). (2000). Optimal shape design.
Berlin New York Heidelberg: Springer-Verlag.

[264] Allaire, G., & Henrot, A. (2001). On some recent advances in shape optimization. Comptes
Rendus de l Academie des Sciences Series IIB Mechanics, 329(5), 383-396.

[265] Nishino, F., & Duggal, R. (1990). Shape optimum design of trusses under multiple loading.
Journal of Solids and Structures, 19, 17-27.

[266] Arora, J. S. (1989). Introduction to optimum design: McGraw Hill.
[267] Hajela, P. (1990). Genetic search - an approach to the nonconvex optimization problem. AIAA

Journal, 26, 1205-1212.
[268] Hajela, P. (1992). Genetic algorithms in automated structural synthesis. In B. H. V. Topping

(Ed.), Optimization and Artificial Intelligence in Civil and Structural Engineering (Vol. 1):
Kluwer Academic Press

[269] Deb, K. (1991). Optimal design of a welded beam via genetic algorithms. AIAA Journal, 29,
2013-2015.

[270] Jenkins, W. M. (1992). Plane frame optimum design environment based on genetic algorithm.
Journal of Structural Engineering, 118(11), 3103-3112.

[271] Jarmai, K., Snyman, J. A., Farkas, J., & Gondos, G. (2003). Optimal design of a welded I-section
frame using four conceptually different optimization algorithms. Structural and
Multidisciplinary Optimization, 25, 54–61.

[272] Kicinger, R., Arciszewski, T., & De Jong, K. A. (2004). Morphogenic evolutionary design:
cellular automata representations in topological structural design. In I. C. Parmee (Ed.), Adaptive
Computing in Design and Manufacture VI. London, UK: Springer-Verlag, 25-38.

[273] Kicinger, R., Arciszewski, T., & De Jong, K. A. (2004). Morphogenesis and structural design:
cellular automata representations of steel structures in tall buildings. In Proceedings of the
Congress on Evolutionary Computation (CEC'2004), Portland, Oregon, 411-418.

[274] Rajeev, S., & Krishnamoorthy, C. S. (1992). Discrete optimization of structures using genetic
algorithms. Journal of Structural Engineering, 118(5), 1233-1250.

[275] Sandgren, E., & Jensen, E. D. (1992). Automotive structural design employing a genetic
optimization algorithm. In Proceedings of the SAE International Congress and Exposition,
Detroit, Michigan, SAE Technical Paper #920772.

[276] Adeli, H., & Cheng, N. T. (1993). Integrated genetic algorithm for optimization of space
structures. Journal of Aerospace Engineering, 6(4), 315-328.

 35

[277] Chapman, C. D., Saitou, K., & Jakiela, M. J. (1993). Genetic algorithms as an approach to
configuration and topology design. In Proceedings of the ASME 19th Design Automation
Conference: Advances in Design Automation, New York, 485-498.

[278] Sakamoto, J., & Oda, J. (1993). Technique for optimal layout design for truss structures using
genetic algorithms. In Proceedings of the 34th AIAA/ASCE/ASME/AHS Structural Dynamics
and Material Conference AIAA/ASME Adaptive Structures Forum, New York, NY, 2402-2408.

[279] Coello Coello, C. A., Rudnick, M., & Christiansen, A. D. (1994). Using genetic algorithms for
optimal design of trusses. In Proceedings of the Sixth International Conference on Tools with
Artificial Intelligence (ICTAI '94), New Orleans, Louisiana, USA, 88-94.

[280] Keane, A. J. (1994). Experiences with optimizers in structural design. In I. C. Parmee (Ed.),
Proceedings of the First International Conference on Adaptive Computing in Engineering Design
and Control, Plymouth, UK, 14-27.

[281] Ohsaki, M. (1995). Genetic algorithms for topology optimization of trusses. Computers &
Structures, 57(2), 219-225.

[282] Ramasamy, J. V., & Rajasekaran, S. (1996). Artificial neural network and genetic algorithm for
the design optimizaton of industrial roofs – a comparison. Computers & Structures, 58(4), 747-
755.

[283] Cheng, F. Y., & Li, D. (1997). Multi-objective optimization design with Pareto genetic
algorithm. Journal of Structural Engineering, 123(9), 1252-1261.

[284] Parmee, I. C., Vekeria, H. D., & Bilchev, G. (1997). The role of evolutionary and adaptive
search during whole system, constrained and detailed design optimization. Engineering
Optimization, 29, 151-176.

[285] Yang, J., & Soh, C. K. (1997). Structural optimization by genetic algorithms with tournament
selection. Journal of Computing in Civil Engineering, 11(3), 195-200.

[286] Jenkins, W. M. (1997). On the application of natural algorithms to structural design
optimization. Engineering structures, 19(4), 302-308.

[287] de Barros Leite, J. P., & Topping, B. H. V. (1998). Improved genetic operators for structural
engineering optimization. Advances in Engineering Software, 29(7-9), 529-562.

[288] Camp, C. V., Pezeshk, S., & Cao, G. (1998). Optimized design of two-dimensional structures
using a genetic algorithm. Journal of Structural Engineering, 124(5), 551-559.

[289] Chen, S.-Y., & Rajan, S. D. (1998). Improving the efficiency of genetic algorithms for frame
designs. Engineering Optimization, 30, 281-307.

[290] Nair, P. B., Keane, A. J., & Shimpi, R. P. (1998). Combining approximation concepts with
genetic algorithm-based structural optimization procedures. In Proceedings of the 39th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference,
Long Beach, CA, 1741-1751.

[291] Ohmori, H., & Kito, N. (1998). Structural optimization of truss topology by genetic algorithms.
Journal of Theoretical and Applied Mechanics, 47, 331-340.

[292] Hajela, P., Lee, E., & Cho, H. K. (1998). Genetic algorithms in topologic design of grillage
structures. Computer-Aided Civil and Infrastructure Engineering, 13(1), 13-22.

[293] Soh, C. K., & Yang, J. (1998). Optimal layout of bridge trusses by genetic algorithms.
Computer-Aided Civil and Infrastructure Engineering, 13(4), 247-254.

[294] Shrestha, S. M., & Ghaboussi, J. (1998). Evolution of optimum structural shapes using genetic
algorithm. Journal of Structural Engineering, 124(11), 1331-1338.

[295] Topping, B. H. V., & de Barros Leite, J. P. (1998). Parallel genetic models for structural
optimization. Engineering Optimization, 31(1), 65-99.

[296] Pezeshk, S., Camp, C. V., & Chen, D. (2000). Design of framed structures by genetic
optimization. Journal of Structural Engineering, 126(3), 382-388.

[297] Greiner, D., Winter, G., & Emperador, J. M. (2001). Optimizing frame structures by different
strategies of genetic algorithms. Finite Elements in Analysis and Design, 37, 381-402.

[298] Hajela, P., & Kim, B. (2001). On the use of energy minimization for CA based analysis in
elasticity. Structural and Multidisciplinary Optimization, 23(1), 24-33.

[299] Deb, K., & Gulati, S. (2001). Design of truss-structures for minimum weight using genetic
algorithms. Finite Elements in Analysis and Design, 37(5), 447-465.

[300] Sarma, K. C., & Adeli, H. (2001). Bilevel parallel genetic algorithms for optimization of large
steel structures. Computer-Aided Civil and Infrastructure Engineering, 16, 295-304.

[301] Dimou, C. K., & Koumousis, V. K. (2003). Genetic algorithms in competitive environments.
Journal of Computing in Civil Engineering, 17(3), 142-149.

 36

[302] Pullmann, T., Skolicki, Z., Freischlad, M., Arciszewski, T., De Jong, K. A., & Schnellenbach-
Held, M. (2003). Structural design of reinforced concrete tall buildings: evolutionary
computation approach using fuzzy sets. In O. Ciftcioglu & E. Dado (Eds.), Proceedings of the
10th International Workshop of the European Group for Intelligent Computing in Engineering
(EG-ICE), Delft, The Netherlands.

[303] Kicinger, R., Arciszewski, T., & De Jong, K. A. (2004). Distributed evolutionary design: island-
model based optimization of steel skeleton structures in tall buildings. In K. Beucke, B.
Firmenich, D. Donath, R. Fruchter & K. Roddis (Eds.), Proceedings of the 10th International
Conference on Computing in Civil and Building Engineering (ICCCBE-X), Weimar, Germany,
190.

[304] Kicinger, R., & Arciszewski, T. (2004). Multiobjective evolutionary design of steel structures in
tall buildings. In Proceedings of the AIAA 1st Intelligent Systems Technical Conference,
Chicago, Illinois.

37

Ta
bl

e
4:

 C
hr

on
ol

og
ic

al
 c

la
ss

ifi
ca

tio
n

of
 a

pp
lic

at
io

ns
 o

f E
C

 in
 st

ru
ct

ur
al

 e
ng

in
ee

rin
g.

R
ef

er
en

ce

D
om

ai
n

Pr
ob

le
m

R

ep
re

se
n-

ta
tio

n
E

A
 u

se
d

Fi
tn

es
s

fu
nc

tio
n

C
on

st
ra

in
t-

ha
nd

lin
g

m
et

ho
d

C
om

m
en

ts

[3
2]

Sh

ap
e

op
tim

iz
at

io
n

Lo
ca

tio
ns

 o
f

jo
in

ts
 in

 tr
us

s
sy

st
em

s

Fi
xe

d-
le

ng
th

,
re

al
-v

al
ue

d
ve

ct
or

s

ES

Si
ng

le
 o

bj
ec

tiv
e,

 w
ei

gh
t

m
in

im
iz

at
io

n
N

/A

A
 h

yb
rid

op

tim
iz

at
io

n
st

ra
te

gy
 fo

rm
ed

by

 E
S

an
d

lin
ea

r
pr

og
ra

m
m

in
g

[3
3]

Si

zi
ng

op

tim
iz

at
io

n
Pl

an
ar

 fr
am

e
un

de
r

ea
rth

qu
ak

e
lo

ad
in

g

Fi
xe

d-
le

ng
th

,
re

al
-v

al
ue

d
ve

ct
or

s

ES

Si
ng

le
 o

bj
ec

tiv
e,

 w
ei

gh
t

m
in

im
iz

at
io

n
N

/A

[1
02

]
Si

zi
ng

op

tim
iz

at
io

n
C

ro
ss

-s
ec

tio
ns

in

 p
la

na
r t

ru
ss

sy

st
em

s

Fi
xe

d-
le

ng
th

,
bi

na
ry

 st
rin

gs

G
A

Si

ng
le

 o
bj

ec
tiv

e,
 w

ei
gh

t
m

in
im

iz
at

io
n

Pe
na

lty

fu
nc

tio
n

[2
67

]
Si

zi
ng

op

tim
iz

at
io

n
C

ro
ss

-s
ec

tio
ns

in

 p
la

na
r t

ru
ss

sy

st
em

s

Fi
xe

d-
le

ng
th

,
bi

na
ry

 st
rin

gs

G
A

Si

ng
le

 o
bj

ec
tiv

e,
 w

ei
gh

t
m

in
im

iz
at

io
n

N
/A

[2
21

]
C

on
tin

uu
m

TO

D

Pl
an

ar

ca
nt

ile
ve

r
pl

at
es

Fi
xe

d-
le

ng
th

,
2D

 b
in

ar
y

ar
ra

ys

(b
ita

rr
ay

s)

G
A

Si

ng
le

 o
bj

ec
tiv

e,
 w

ei
gh

t
m

in
im

iz
at

io
n

N
/A

[2
69

]
Si

zi
ng

op

tim
iz

at
io

n
W

el
de

d
be

am
s

Fi
xe

d-
le

ng
th

,
bi

na
ry

 st
rin

gs

G
A

Si

ng
le

 o
bj

ec
tiv

e,
 w

ei
gh

t
m

in
im

iz
at

io
n

N
/A

[2
47

] a
nd

 [2
48

]
C

on
tin

uu
m

 S
O

Sh

ap
e

of

st
ru

ct
ur

al

m
em

be
rs

Fi
xe

d-
le

ng
th

,
2D

 b
in

ar
y

ar
ra

ys

(b
ita

rr
ay

s)

G
A

Si

ng
le

 o
bj

ec
tiv

e,
 w

ei
gh

t
m

in
im

iz
at

io
n

Pe
na

lty

fu
nc

tio
n

[2
25

]
D

is
cr

et
e

TO
D

Pl

an
ar

 tr
us

s
sy

st
em

s
Fi

xe
d-

le
ng

th
,

bi
na

ry
 st

rin
gs

G

A

Si
ng

le
 o

bj
ec

tiv
e,

 w
ei

gh
t

m
in

im
iz

at
io

n
N

/A

[2
68

]
Si

zi
ng

op

tim
iz

at
io

n
C

ro
ss

-s
ec

tio
ns

in

 p
la

na
r t

ru
ss

sy

st
em

s

Fi
xe

d-
le

ng
th

,
bi

na
ry

 st
rin

gs

G
A

Si

ng
le

 o
bj

ec
tiv

e,
 w

ei
gh

t
m

in
im

iz
at

io
n

N
/A

38

[1
73

]
Si

zi
ng

op

tim
iz

at
io

n
Pl

an
ar

 tr
us

s
sy

st
em

s
Fi

xe
d-

le
ng

th
,

bi
na

ry
 st

rin
gs

G

A

M
ul

tio
bj

ec
tiv

e,
 m

in
-m

ax

ap
pr

oa
ch

N

/A

[2
17

]
C

on
tin

uu
m

TO

D

Pl
an

ar

ca
nt

ile
ve

r
pl

at
es

Fi
xe

d-
le

ng
th

,
2D

 b
in

ar
y

ar
ra

ys

(b
ita

rr
ay

s)

G
A

Si

ng
le

 o
bj

ec
tiv

e,
 w

ei
gh

t
m

in
im

iz
at

io
n

N
/A

[2
74

]
Si

zi
ng

op

tim
iz

at
io

n
C

ro
ss

-s
ec

tio
ns

in

 p
la

na
r t

ru
ss

sy

st
em

s

Fi
xe

d-
le

ng
th

,
bi

na
ry

 st
rin

gs

G
A

Si

ng
le

 o
bj

ec
tiv

e,
 w

ei
gh

t
m

in
im

iz
at

io
n

N
/A

[2
49

]
C

on
tin

uu
m

 S
O

Sh

ap
e

of

st
ru

ct
ur

al

m
em

be
rs

Fi
xe

d-
le

ng
th

,
bi

na
ry

 st
rin

gs

G
A

Si

ng
le

 o
bj

ec
tiv

e,
 w

ei
gh

t
m

in
im

iz
at

io
n

N
/A

[2
75

]
C

on
tin

uu
m

TO

D

Pl
an

ar

ca
nt

ile
ve

r
pl

at
es

Fi
xe

d-
le

ng
th

,
2D

 b
in

ar
y

ar
ra

ys

(b
ita

rr
ay

s)

G
A

Si

ng
le

 o
bj

ec
tiv

e,
 w

ei
gh

t
m

in
im

iz
at

io
n

N
/A

[2
76

]
Si

zi
ng

op

tim
iz

at
io

n
Sp

at
ia

l t
ru

ss

sy
st

em
s

Fi
xe

d-
le

ng
th

,
bi

na
ry

 st
rin

gs

G
A

Si

ng
le

 o
bj

ec
tiv

e,
 w

ei
gh

t
m

in
im

iz
at

io
n

Pe
na

lty

fu
nc

tio
n

[2
77

]
C

on
tin

uu
m

TO

D

Pl
an

ar

ca
nt

ile
ve

r
pl

at
es

Fi
xe

d-
le

ng
th

,
2D

 b
in

ar
y

ar
ra

ys

(b
ita

rr
ay

s)

G
A

Si

ng
le

 o
bj

ec
tiv

e,
 w

ei
gh

t
m

in
im

iz
at

io
n

N
/A

[2
13

]
Si

zi
ng

op

tim
iz

at
io

n
C

ro
ss

-s
ec

tio
ns

in

 p
la

na
r t

ru
ss

sy

st
em

s

Fi
xe

d-
le

ng
th

,
bi

na
ry

 st
rin

gs

G
A

Si

ng
le

 o
bj

ec
tiv

e,
 w

ei
gh

t
m

in
im

iz
at

io
n

N
/A

[2
26

]
D

is
cr

et
e

TO
D

Pl

an
ar

 tr
us

s
sy

st
em

s
Fi

xe
d-

le
ng

th
,

bi
na

ry
 st

rin
gs

G

A

Si
ng

le
 o

bj
ec

tiv
e,

 w
ei

gh
t

m
in

im
iz

at
io

n
Pe

na
lty

fu

nc
tio

n

[2
27

]
D

is
cr

et
e

TO
D

,
SO

, a
nd

 si
zi

ng

op
tim

iz
at

io
n

Pl
an

ar
 fr

am
e

sy
st

em
s

Fi
xe

d-
le

ng
th

bi

na
ry

 st
rin

gs

G
A

Si

ng
le

 o
bj

ec
tiv

e,
 w

ei
gh

t
m

in
im

iz
at

io
n

N
/A

[1
34

]
Si

zi
ng

op

tim
iz

at
io

n
Pl

an
ar

 tr
us

s
sy

st
em

s
Fi

xe
d-

le
ng

th
,

re
al

 v
al

ue
d

ve
ct

or
s

G
A

Si

ng
le

 o
bj

ec
tiv

e,
 w

ei
gh

t
m

in
im

iz
at

io
n

B
eh

av
io

ra
l

m
em

or
y

[2
50

]
C

on
tin

uu
m

 S
O

Sh

ap
e

of

st
ru

ct
ur

al

m
em

be
rs

Fi
xe

d-
le

ng
th

,
bi

na
ry

 st
rin

gs

G
A

Si

ng
le

 o
bj

ec
tiv

e,
 w

ei
gh

t
m

in
im

iz
at

io
n

N
/A

39

[2
78

]
D

is
cr

et
e

TO
D

an

d
si

zi
ng

op

tim
iz

at
io

n

Pl
an

ar
 tr

us
s

sy
st

em
s

Fi
xe

d-
le

ng
th

,
bi

na
ry

 st
rin

gs

G
A

 c
om

bi
ne

d
w

ith
 o

pt
im

al
ity

cr

ite
ria

 m
et

ho
d

Si
ng

le
 o

bj
ec

tiv
e,

 w
ei

gh
t

m
in

im
iz

at
io

n
N

/A

G
A

 o
pt

im
iz

ed
 th

e
la

yo
ut

 o
f t

he
 tr

us
s

an
d

op
tim

al
ity

cr

ite
ria

 m
et

ho
d

op
tim

iz
ed

 c
ro

ss
-

se
ct

io
ns

[1

40
]

Si
zi

ng

op
tim

iz
at

io
n

Sp
at

ia
l t

ru
ss

sy

st
em

s
Fi

xe
d-

le
ng

th

bi
na

ry
 st

rin
gs

G

A

Si
ng

le
 o

bj
ec

tiv
e,

 w
ei

gh
t

m
in

im
iz

at
io

n
Pe

na
lty

fu

nc
tio

n
an

d
au

gm
en

te
d

La
gr

an
gi

an

A
ug

m
en

te
d

La
gr

an
gi

an

tra
ns

fo
rm

s t
he

co

ns
tra

in
ed

pr

ob
le

m
 to

 a
n

un
co

ns
tra

in
ed

 o
ne

[2

18
]

C
on

tin
uu

m

TO
D

 a
nd

 S
O

Pl

an
ar

ca

nt
ile

ve
r

pl
at

e

Fi
xe

d-
le

ng
th

,
bi

na
ry

 st
rin

gs

G
A

Si

ng
le

 o
bj

ec
tiv

e,
 w

ei
gh

t
m

in
im

iz
at

io
n

Pe
na

lty

fu
nc

tio
n

[2
79

]
Si

zi
ng

op

tim
iz

at
io

n
Pl

an
ar

 a
nd

sp

at
ia

l t
ru

ss

sy
st

em
s

Fi
xe

d-
le

ng
th

,
bi

na
ry

 st
rin

gs

G
A

Si

ng
le

 o
bj

ec
tiv

e,
 w

ei
gh

t
m

in
im

iz
at

io
n

Pe
na

lty

fu
nc

tio
n

[2
29

]
D

is
cr

et
e

TO
D

an

d
SO

Pl

an
ar

 st
ee

l
tru

ss
 ro

of
s

Fi
xe

d-
le

ng
th

,
bi

na
ry

 st
rin

gs

G
A

 c
om

bi
ne

d
w

ith
 lo

gi
c

pr
og

ra
m

m
in

g

Si
ng

le
 o

bj
ec

tiv
e,

 w
ei

gh
t

m
in

im
iz

at
io

n
N

/A

[2
80

]
D

is
cr

et
e

SO

Pl
an

ar
 tr

us
s

sy
st

em

(s
at

el
lit

e
bo

om
)

Fi
xe

d-
le

ng
th

,
bi

na
ry

 st
rin

gs

G
A

Si

ng
le

 o
bj

ec
tiv

e,

m
in

im
iz

at
io

n
of

vi

br
at

io
n

Pe
na

lty

fu
nc

tio
n

[2
30

]
D

is
cr

et
e

TO
D

Py

lo
n

st
ru

ct
ur

es

Fi
xe

d-
le

ng
th

,
bi

na
ry

 st
rin

gs

G
A

 a
nd

 E
S

Si
ng

le
 o

bj
ec

tiv
e,

 w
ei

gh
t

m
in

im
iz

at
io

n
N

/A

G
A

 p
ro

du
ce

 o
nl

y
to

po
lo

gy
 a

nd
 E

S
fu

rth
er

 o
pt

im
iz

es

th
e

st
ru

ct
ur

es

[2
31

]
D

is
cr

et
e

TO
D

 ,
SO

 a
nd

 si
zi

ng

op
tim

iz
at

io
n

Sp
at

ia
l t

ru
ss

sy

st
em

s
Fi

xe
d-

le
ng

th
,

bi
na

ry
 st

rin
gs

G

A

Si
ng

le
 o

bj
ec

tiv
e,

 w
ei

gh
t

m
in

im
iz

at
io

n
Pe

na
lty

fu

nc
tio

n

[2
16

]
D

is
cr

et
e

TO
D

Pl

an
ar

 tr
us

s
sy

st
em

s
Fi

xe
d-

le
ng

th
,

bi
na

ry
 st

rin
gs

G

A

Si
ng

le
 o

bj
ec

tiv
e,

 w
ei

gh
t

m
in

im
iz

at
io

n
Pe

na
lty

fu

nc
tio

n
G

ro
un

d
st

ru
ct

ur
e

ap
pr

oa
ch

[2

81
]

D
is

cr
et

e
TO

D

Pl
an

ar
 tr

us
s

sy
st

em
s

Fi
xe

d-
le

ng
th

,
bi

na
ry

 st
rin

gs

G
A

Si

ng
le

 o
bj

ec
tiv

e,
 to

ta
l

co
st

Pe

na
lty

fu

nc
tio

n

40

[1
48

] a
nd

 [1
47

]
D

is
cr

et
e

TO
D

Pl

an
ar

 tr
us

s
sy

st
em

s
Fi

xe
d-

le
ng

th
,

bi
na

ry
 st

rin
gs

G

A

Si
ng

le
 o

bj
ec

tiv
e,

 w
ei

gh
t

m
in

im
iz

at
io

n
Im

m
un

e
ne

tw
or

k

[2
62

]
D

is
cr

et
e

SO

Sp
at

ia
l t

ru
ss

sy

st
em

s
(s

at
el

lit
e

bo
om

)

Fi
xe

d-
le

ng
th

,
bi

na
ry

 st
rin

gs

G
A

Si

ng
le

 o
bj

ec
tiv

e,

m
in

im
iz

at
io

n
of

vi

br
at

io
n

N
/A

[2
61

]
D

is
cr

et
e

SO

Pl
an

ar
 a

nd

sp
at

ia
l t

ru
ss

sy

st
em

s

Fi
xe

d-
le

ng
th

,
bi

na
ry

 st
rin

gs

G
A

 w
ith

 fu
zz

y
lo

gi
c

Si
ng

le
 o

bj
ec

tiv
e,

 w
ei

gh
t

m
in

im
iz

at
io

n
Fu

zz
y

lo
gi

c

[2
82

]
D

is
cr

et
e

TO
D

an

d
si

zi
ng

op

tim
iz

at
io

n

Pl
an

ar
 tr

us
s

sy
st

em
s

Fi
xe

d-
le

ng
th

,
bi

na
ry

 st
rin

gs

G
A

 c
om

bi
ne

d
w

ith
 n

eu
ra

l
ne

tw
or

k

Si
ng

le
 o

bj
ec

tiv
e,

 w
ei

gh
t

m
in

im
iz

at
io

n
Pe

na
lty

fu

nc
tio

n

[2
32

] a
nd

 [2
33

]
D

is
cr

et
e

TO
D

Pl

an
ar

 fr
am

e
an

d
pa

ne
l

st
ru

ct
ur

es

Fi
xe

d-
le

ng
th

,
bi

na
ry

 st
rin

gs

G
A

Si

ng
le

 o
bj

ec
tiv

e,
 w

ei
gh

t
m

in
im

iz
at

io
n

N
/A

[2
83

]
Si

zi
ng

op

tim
iz

at
io

n
Pl

an
ar

 tr
us

s
sy

st
em

s
Fi

xe
d-

le
ng

th
,

bi
na

ry
 st

rin
gs

Pa

re
to

 G
A

(M

O
G

A
)

M
ul

tio
bj

ec
tiv

e,
 w

ith
 2

 o
r

3
ob

je
ct

iv
es

Fu

zz
y

pe
na

lty

fu
nc

tio
n

[2
84

] a
nd

su

bs
eq

ue
nt

pa

pe
rs

D
is

cr
et

e
TO

D
,

SO
, a

nd
 si

zi
ng

op

tim
iz

at
io

n

V
ar

io
us

pr

ob
le

m
s

co
ns

id
er

ed

V
ar

io
us

en

co
di

ng
s

(b
in

ar
y,

 re
al

,
et

c.
)

V
ar

io
us

 k
in

ds
 o

f
EA

s (
G

A
, c

lu
st

er

or
ie

nt
ed

 G
A

s,
C

H
C

, V
EG

A
, E

S)

Si
ng

le
 a

nd

m
ul

tio
bj

ec
tiv

e
ap

pr
oa

ch
es

V
ar

io
us

co

ns
tra

in
t-

ha
nd

lin
g

m
et

ho
ds

Pr
op

os
ed

 th
e

“w
ho

le
 sy

st
em

de

si
gn

”
in

 w
hi

ch

va
rio

us
 E

A
s a

re

ap
pl

ie
d

at

di
ff

er
en

t s
ta

ge
s o

f
de

si
gn

 p
ro

ce
ss

[2

85
]

D
is

cr
et

e
SO

Pl

an
ar

 tr
us

s
sy

st
em

s
Fi

xe
d-

le
ng

th
,

bi
na

ry
 st

rin
gs

G

A
 u

si
ng

to

ur
na

m
en

t
se

le
ct

io
n

Si
ng

le
 o

bj
ec

tiv
e,

 w
ei

gh
t

m
in

im
iz

at
io

n
N

/A

[2
34

]
D

is
cr

et
e

TO
D

,
SO

, a
nd

 si
zi

ng

op
tim

iz
at

io
n

Pl
an

ar
 tr

us
s

st
ru

ct
ur

es

V
ar

ia
bl

e-
le

ng
th

,
bi

na
ry

 st
rin

gs

G
A

Si

ng
le

 o
bj

ec
tiv

e,
 w

ei
gh

t
m

in
im

iz
at

io
n

N
/A

41

[2
86

]
D

is
cr

et
e

SO
 a

nd

si
zi

ng

op
tim

iz
at

io
n

Pl
an

ar

m
ul

tis
to

ry

fr
am

e
st

ru
ct

ur
e

w
ith

tru

ss
-

su
pp

or
te

d
ha

ng
er

s

Fi
xe

d-
le

ng
th

,
bi

na
ry

 st
rin

gs

G
A

Si

ng
le

 o
bj

ec
tiv

e,
 w

ei
gh

t
m

in
im

iz
at

io
n

Pe
na

lty

fu
nc

tio
n

A
da

pt
at

io
n

of

m
ut

at
io

n
an

d
cr

os
so

ve
r r

at
es

[2
87

]
D

is
cr

et
e

TO
D

an

d
si

zi
ng

op

tim
iz

at
io

n

W
el

de
d

be
am

,
pl

an
ar

 tr
us

s
sy

st
em

s,
an

d
pr

es
tre

ss
ed

 I-
se

ct
io

ns

Fi
xe

d-
le

ng
th

,
bi

na
ry

 st
rin

gs

G
A

Si

ng
le

 o
bj

ec
tiv

e,
 w

ei
gh

t
m

in
im

iz
at

io
n

Pe
na

lty

fu
nc

tio
n

V
ar

io
us

m

od
ifi

ca
tio

ns
 o

f
ge

ne
tic

 o
pe

ra
to

rs

[2
88

]
Si

zi
ng

op

tim
iz

at
io

n
Pl

an
ar

 tr
us

s
an

d
fr

am
e

st
ru

ct
ur

es

Fi
xe

d-
le

ng
th

,
bi

na
ry

 st
rin

gs

G
A

Si

ng
le

 o
bj

ec
tiv

e,
 v

ar
io

us

fit
ne

ss
 fu

nc
tio

ns

Pe
na

lty

fu
nc

tio
n

V
ar

io
us

 p
en

al
ty

fu

nc
tio

ns
 st

ud
ie

d

[2
89

]
D

is
cr

et
e

TO
D

,
SO

, a
nd

 si
zi

ng

op
tim

iz
at

io
n

Pl
an

ar
 fr

am
e

sy
st

em
s

Fi
xe

d-
le

ng
th

,
bi

na
ry

 st
rin

gs

G
A

Si

ng
le

 o
bj

ec
tiv

e,
 w

ei
gh

t
m

in
im

iz
at

io
n

A
da

pt
iv

e
pe

na
lty

fu

nc
tio

n

Sp
ec

ia
liz

ed
 o

ne
-

po
in

t c
ro

ss
ov

er

op
er

at
or

 u
si

ng
 so

-
ca

lle
d

as
so

ci
at

io
n

st
rin

g

[2
90

]
Si

zi
ng

op

tim
iz

at
io

n
Pl

an
ar

 tr
us

s
sy

st
em

N

/A

G
A

 c
om

bi
ne

d
w

ith

ap
pr

ox
im

at
io

n
m

od
el

s

Si
ng

le
 o

bj
ec

tiv
e,

 w
ei

gh
t

m
in

im
iz

at
io

n
Pe

na
lty

fu

nc
tio

n
A

da
pt

iv
e

se
le

ct
io

n
op

er
at

or

42

[2
91

]
D

is
cr

et
e

TO
D

Pl

an
ar

 a
nd

sp

at
ia

l t
ru

ss

sy
st

em
s

Fi
xe

d-
le

ng
th

,
bi

na
ry

 st
rin

gs

G
A

Si

ng
le

 o
bj

ec
tiv

e,
 w

ei
gh

t
m

in
im

iz
at

io
n

Pe
na

lty

fu
nc

tio
n

B
in

ar
y

re
pr

es
en

ta
tio

n
en

co
de

s t
ria

ng
le

s
ra

th
er

 th
an

 si
ng

le

st
ru

ct
ur

al

m
em

be
rs

[2
92

]
D

is
cr

et
e

TO
D

Pl

an
ar

 a
nd

sp

at
ia

l g
ril

la
ge

st

ru
ct

ur
es

Fi
xe

d-
le

ng
th

,
bi

na
ry

 st
rin

gs

G
A

Si

ng
le

 o
bj

ec
tiv

e,
 w

ei
gh

t
m

in
im

iz
at

io
n

Pe
na

lty

fu
nc

tio
n

Tw
o-

le
ve

l G
A

[2
93

]
D

is
cr

et
e

TO
D

,
SO

, a
nd

 si
zi

ng

op
tim

iz
at

io
n

Pl
an

ar
 b

rid
ge

tru

ss
es

Fi

xe
d-

le
ng

th
,

bi
na

ry
 st

rin
gs

G

A
 u

til
iz

in
g

do
m

ai
n

kn
ow

le
dg

e

Si
ng

le
 o

bj
ec

tiv
e,

 w
ei

gh
t

m
in

im
iz

at
io

n
Pe

na
lty

fu

nc
tio

n
D

om
ai

n
kn

ow
le

dg
e

en
co

de
d

in
 so

-
ca

lle
d

co
gn

iti
ve

to

po
lo

gi
c

pa
tte

rn
s

[2
94

]
D

is
cr

et
e

TO
D

Pl

an
ar

 tr
us

s
sy

st
em

s
Fi

xe
d-

le
ng

th
,

bi
na

ry
 st

rin
gs

G

A

Si
ng

le
 o

bj
ec

tiv
e,

 w
ei

gh
t

m
in

im
iz

at
io

n
N

/A

[2
95

]
Si

zi
ng

op

tim
iz

at
io

n
C

ab
le

-s
ta

ye
d

br
id

ge

Fi
xe

d-
le

ng
th

,
bi

na
ry

 st
rin

gs

Pa
ra

lle
l G

A

Si
ng

le
 o

bj
ec

tiv
e

N
/A

V

ar
io

us
 st

ra
te

gi
es

an

d
to

po
lo

gi
es

 o
f

pa
ra

lle
l G

A
s

di
sc

us
se

d

[2
55

]
C

on
tin

uu
m

 S
O

ov

al
 a

xi
al

ly

sy
m

m
et

ric

sh
el

ls

Fi
xe

d-
le

ng
th

,
bi

na
ry

 st
rin

gs

G
A

Si

ng
le

 o
bj

ec
tiv

e,
 w

ei
gh

t
m

in
im

iz
at

io
n

N
/A

43

[2
51

] a
nd

 [2
52

]
C

on
tin

uu
m

 S
O

Pl

an
ar

st

ru
ct

ur
es

Fi

xe
d-

le
ng

th
,

bi
na

ry
 st

rin
gs

G

A

Si
ng

le
 o

bj
ec

tiv
e,

 w
ei

gh
t

m
in

im
iz

at
io

n
N

/A

Sh
ap

e
de

fin
ed

 b
y

B
-s

pl
in

e
fu

nc
tio

ns

[2
53

]
C

on
tin

uu
m

 S
O

Pl

an
ar

st

ru
ct

ur
es

Fi

xe
d-

le
ng

th
,

bi
na

ry
 st

rin
gs

G

A

Si
ng

le
 o

bj
ec

tiv
e,

 w
ei

gh
t

m
in

im
iz

at
io

n
Pe

na
lty

fu

nc
tio

n
Sh

ap
e

de
fin

ed
 b

y
B

-s
pl

in
e

fu
nc

tio
ns

[8
6]

C

on
tin

uu
m

st

ru
ct

ur
al

el

as
tic

ity

an
al

ys
is

Pl
an

ar

st
ru

ct
ur

es

C
el

lu
la

r
au

to
m

at
a

G
A

Si

ng
le

 o
bj

ec
tiv

e,
 s

tra
in

en

er
gy

 m
in

im
iz

at
io

n
Pe

na
lty

fu

nc
tio

n

[1
75

]
Si

zi
ng

op

tim
iz

at
io

n
Pl

an
ar

 a
nd

sp

at
ia

l t
ru

ss

sy
st

em
s

Fi
xe

d-
le

ng
th

,
bi

na
ry

 st
rin

gs

G
A

 w
ith

 m
in

-m
ax

st

ra
te

gy

M
ul

tio
bj

ec
tiv

e,
 w

ei
gh

t,
di

sp
la

ce
m

en
t,

an
d

st
re

ss

m
in

im
iz

at
io

n

Pe
na

lty

fu
nc

tio
n

(d
ea

th

pe
na

lty
)

[2
96

]
Si

zi
ng

op

tim
iz

at
io

n
Pl

an
ar

 m
ul

ti-
st

or
y

fr
am

e
sy

st
em

s

Fi
xe

d-
le

ng
th

,
bi

na
ry

 st
rin

gs

G
A

Si

ng
le

 o
bj

ec
tiv

e,
 w

ei
gh

t
m

in
im

iz
at

io
n

Pe
na

lty

fu
nc

tio
ns

44

[6
]

D
is

cr
et

e
TO

D

an
d

si
zi

ng

op
tim

iz
at

io
n

St
ee

l s
ke

le
to

n
st

ru
ct

ur
es

 in

ta
ll

bu
ild

in
gs

Fi
xe

d-
le

ng
th

,
in

te
ge

r
en

co
di

ng
s

Pa
ra

lle
l u

ni
fie

d
EA

 (i
sl

an
d-

m
od

el

w
ith

 m
ig

ra
tio

ns
)

Si
ng

le
 o

bj
ec

tiv
e,

 w
ei

gh
t

m
in

im
iz

at
io

n
Pe

na
lty

fu

nc
tio

n
(d

ea
th

pe

na
lty

),
re

pa
ir

m
ec

ha
ni

sm
s

[2
57

]
C

on
tin

uu
m

 S
O

2D

 sp
an

ne
r

he
ad

 a
nd

fla

ng
e

w
eb

bi
ng

Fi
xe

d-
le

ng
th

,
bi

na
ry

 st
rin

gs

G
A

Si

ng
le

 o
bj

ec
tiv

e,
 w

ei
gh

t
an

d
 d

ef
le

ct
io

n
m

in
im

iz
at

io
n

N
on

e

[2
97

]
Si

zi
ng

op

tim
iz

at
io

n
Pl

an
ar

 fr
am

e
st

ru
ct

ur
es

Fi

xe
d

le
ng

th
,

bi
na

ry
 st

rin
gs

G

A
 a

nd
 C

H
C

 fo
r

si
ng

le
 o

bj
ec

tiv
e

op
tim

iz
at

io
n,

 a
nd

N

SG
A

 fo
r

m
ul

tio
bj

ec
tiv

e
op

tim
iz

at
io

n

Si
ng

le
 o

bj
ec

tiv
e

(w
ei

gh
t

m
in

im
iz

at
io

n)
, a

nd

m
ul

tio
bj

ec
tiv

e
(w

ei
gh

t
m

in
im

iz
at

io
n

an
d

nu
m

be
r o

f m
em

be
r

cr
os

s-
se

ct
io

ns

m
in

im
iz

at
io

n)

Pe
na

lty

fu
nc

tio
ns

[2
35

]
D

is
cr

et
e

TO
D

an

d
si

zi
ng

op

tim
iz

at
io

n

St
ee

l s
ke

le
to

n
st

ru
ct

ur
es

 in

ta
ll

bu
ild

in
gs

Fi
xe

d-
le

ng
th

,
in

te
ge

r
en

co
di

ng
s

ES

Si
ng

le
 o

bj
ec

tiv
e,

 w
ei

gh
t

m
in

im
iz

at
io

n
Pe

na
lty

fu

nc
tio

n
(d

ea
th

pe

na
lty

),
re

pa
ir

m
ec

ha
ni

sm
s

[2
56

]
C

on
tin

uu
m

 S
O

3D

 c
an

til
ev

er

pl
at

e
w

ith

ci
rc

ul
ar

 h
ol

e

Fi
xe

d-
le

ng
th

,
bi

na
ry

 st
rin

gs

G
A

Si

ng
le

 o
bj

ec
tiv

e,

m
in

im
iz

at
io

n
of

 v
ol

um
e

Pe
na

lty

fu
nc

tio
n

45

[2
98

]
C

on
tin

uu
m

st

ru
ct

ur
al

el

as
tic

ity

an
al

ys
is

Pl
an

ar

st
ru

ct
ur

es

B
in

ar
y

an
d

re
al

en

co
di

ng
s a

nd

ce
llu

la
r

au
to

m
at

a

G
A

Si

ng
le

 o
bj

ec
tiv

e,
 s

tra
in

en

er
gy

 m
in

im
iz

at
io

n
Pe

na
lty

fu

nc
tio

n

[1
11

]
Si

zi
ng

op

tim
iz

at
io

n
Pl

an
ar

 tr
us

s
sy

st
em

s a
nd

fr

am
e

Fi
xe

d-
le

ng
th

,
bi

na
ry

 st
rin

gs

G
A

Si

ng
le

 o
bj

ec
tiv

e,
 w

ei
gh

t
m

in
im

iz
at

io
n

A
da

pt
iv

e
pe

na
lty

fu

nc
tio

n

[2
99

]
D

is
cr

et
e

TO
D

 ,
SO

 a
nd

 si
zi

ng

op
tim

iz
at

io
n

Pl
an

ar
 a

nd

sp
at

ia
l t

ru
ss

sy

st
em

s

Fi
xe

d-
le

ng
th

,
re

al
 v

al
ue

d
ve

ct
or

s

G
A

Si

ng
le

 o
bj

ec
tiv

e,
 w

ei
gh

t
m

in
im

iz
at

io
n

Pe
na

lty

fu
nc

tio
n

[1
84

]
C

on
tin

uu
m

 S
O

Pl

an
ar

 p
la

te

st
ru

ct
ur

es

Fi
xe

d-
le

ng
th

,
bi

na
ry

 st
rin

gs

N
SG

A
-I

I
co

m
bi

ne
d

w
ith

hi

ll
cl

im
be

r

M
ul

tio
bj

ec
tiv

e,
 w

ei
gh

t
an

d
di

sp
la

ce
m

en
t

m
in

im
iz

at
io

n

[3
00

]
Si

zi
ng

op

tim
iz

at
io

n
Sp

at
ia

l
m

ul
tis

to
ry

fr

am
e

st
ru

ct
ur

es

Fi
xe

d-
le

ng
th

,
bi

na
ry

 st
rin

gs

Pa
ra

lle
l G

A
 w

ith

m
ig

ra
tio

ns

(is
la

nd
-m

od
el

)

Si
ng

le
 a

nd

m
ul

tio
bj

ec
tiv

e

B
i-l

ev
el

 G
A

: -

le
ve

l 1
 -

si
ng

le

ob
je

ct
iv

e
w

ei
gh

t
m

in
im

iz
at

io
n,

le

ve
l 2

 -
m

ul
tio

bj
ec

tiv
e

co
st

 o
pt

im
iz

at
io

n

[2
37

]
D

is
cr

et
e

TO
D

Pl

an
ar

 tr
us

s
sy

st
em

s
V

ar
ia

bl
e-

le
ng

th
,

pa
rs

e
tre

es

G
P

Si
ng

le
 o

bj
ec

tiv
e,

 w
ei

gh
t

m
in

im
iz

at
io

n
Pe

na
lty

fu

nc
tio

ns

46

[2
08

]
Si

zi
ng

op

tim
iz

at
io

n
Pl

an
ar

 tr
us

s
sy

st
em

s
Fi

xe
d-

le
ng

th
,

bi
na

ry
 st

rin
gs

C

oo
pe

ra
tiv

e
co

ev
ol

ut
io

na
ry

al

go
rit

hm

(C
C

EA
)

Si
ng

le
 o

bj
ec

tiv
e,

 w
ei

gh
t

m
in

im
iz

at
io

n
Pe

na
lty

fu

nc
tio

ns

[2
38

]
D

is
cr

et
e

TO
D

Pl

an
ar

 a
nd

sp

at
ia

l t
ru

ss

sy
st

em
s

Fi
xe

d-
le

ng
th

,
re

al
 v

al
ue

d
ve

ct
or

s

G
A

Si

ng
le

 o
bj

ec
tiv

e,
 w

ei
gh

t
m

in
im

iz
at

io
n

Pe
na

lty

fu
nc

tio
ns

[2
09

]
C

on
tin

uu
m

TO

D

Pl
an

ar
 a

nd

sp
at

ia
l

ca
nt

ile
ve

r
pl

at
es

V
ar

ia
bl

e-
le

ng
th

,
V

or
on

oi
-b

as
ed

,
an

d
fr

ac
ta

l-
ba

se
d

G
A

Si

ng
le

 o
bj

ec
tiv

e,
 w

ei
gh

t
m

in
im

iz
at

io
n

Pe
na

lty

fu
nc

tio
n

[1
83

]
C

on
tin

uu
m

TO

D

Pl
an

ar

ca
nt

ile
ve

r
pl

at
e

V
ar

ia
bl

e-
le

ng
th

,
V

or
on

oi
-b

as
ed

N

SG
A

-I
I

M
ul

tio
bj

ec
tiv

e,
 w

ei
gh

t
an

d
di

sp
la

ce
m

en
t

m
in

im
iz

at
io

n

[1
30

]
D

is
cr

et
e

TO
D

St

ee
l s

ke
le

to
n

st
ru

ct
ur

es
 in

ta

ll
bu

ild
in

gs

Fi
xe

d-
le

ng
th

,
in

te
ge

r
re

pr
es

en
ta

tio
ns

ES

Si
ng

le
 o

bj
ec

tiv
e,

 w
ei

gh
t

m
in

im
iz

at
io

n
Pe

na
lty

fu

nc
tio

n
(d

ea
th

pe

na
lty

),
re

pa
ir

m
ec

ha
ni

sm
s

[3
01

]
Si

zi
ng

op

tim
iz

at
io

n
Pl

an
ar

 tr
us

s
sy

st
em

s
Fi

xe
d-

le
ng

th
,

bi
na

ry
 st

rin
gs

Pa

ra
lle

l G
A

Si

ng
le

 o
bj

ec
tiv

e
fo

r
in

di
vi

du
al

s i
n

ea
ch

po

pu
la

tio
n

–
to

ta
l c

os
t

Pe
na

lty

fu
nc

tio
n

(c
oe

vo
lv

in
g

po
pu

la
tio

ns

w
ith

ou
t

m
ig

ra
tio

ns

co
m

pe
tin

g
fo

r
lim

ite
d

re
so

ur
ce

s)

47

[3
02

]
D

is
cr

et
e

TO
D

R

ei
nf

or
ce

d
co

nc
re

te
 ta

ll
bu

ild
in

gs

Fi
xe

d-
le

ng
th

,
in

te
ge

r s
tri

ng
s

U
ni

fie
d

EA
 a

nd

fu
zz

y
se

ts

Si
ng

le
 o

bj
ec

tiv
e,

to

ta
l c

os
t

Fu
zz

y
lo

gi
c

[2
72

]
D

is
cr

et
e

TO
D

an

d
Si

zi
ng

op

tim
iz

at
io

n

W
in

d
br

ac
in

g
sy

st
em

s
in

ta

ll
bu

ild
in

gs

G
en

er
at

iv
e

re
pr

es
en

ta
tio

ns

ba
se

d
on

ce

llu
la

r
au

to
m

at
a

(1
D

an

d
2D

)

ES

Si
ng

le
 o

bj
ec

tiv
e,

 t
he

to

ta
l w

ei
gh

t
Pe

na
lty

fu

nc
tio

n
(d

ea
th

pe

na
lty

),
re

pa
ir

m
ec

ha
ni

sm
s

[2
73

]
D

is
cr

et
e

TO
D

an

d
Si

zi
ng

op

tim
iz

at
io

n

St
ee

l
st

ru
ct

ur
al

sy

st
em

s i
n

ta
ll

bu
ild

in
gs

G
en

er
at

iv
e

re
pr

es
en

ta
tio

ns

ba
se

d
on

 1
D

ce

llu
la

r
au

to
m

at
a

ES

Si
ng

le
 o

bj
ec

tiv
e,

 t
he

to

ta
l w

ei
gh

t
Pe

na
lty

fu

nc
tio

n
(d

ea
th

pe

na
lty

),
re

pa
ir

m
ec

ha
ni

sm
s

[3
03

]
D

is
cr

et
e

TO
D

an

d
si

zi
ng

op

tim
iz

at
io

n

St
ee

l
st

ru
ct

ur
al

sy

st
em

s i
n

ta
ll

bu
ild

in
gs

Fi
xe

d-
le

ng
th

,
in

te
ge

r
re

pr
es

en
ta

tio
ns

D
is

tri
bu

te
d

EA

(is
la

nd
-m

od
el

)
Si

ng
le

 o
bj

ec
tiv

e,
 t

he

to
ta

l w
ei

gh
t

Pe
na

lty

fu
nc

tio
n

(d
ea

th

pe
na

lty
),

re
pa

ir
m

ec
ha

ni
sm

s

[3
04

]
D

is
cr

et
e

TO
D

an

d
si

zi
ng

op

tim
iz

at
io

n

St
ee

l
st

ru
ct

ur
al

sy

st
em

s i
n

ta
ll

bu
ild

in
gs

Fi
xe

d-
le

ng
th

,
in

te
ge

r
re

pr
es

en
ta

tio
ns

ES

M
ul

tio
bj

ec
tiv

e
(a

gg
re

ga
te

 fu
nc

tio
n)

, t
he

to

ta
l w

ei
gh

t a
nd

 th
e

m
ax

im
um

 h
or

iz
on

ta
l

di
sp

la
ce

m
en

t

Pe
na

lty

fu
nc

tio
n

(d
ea

th

pe
na

lty
),

re
pa

ir
m

ec
ha

ni
sm

s

	1. Introduction
	2. Evolutionary Computation
	2.1 Evolutionary Algorithms
	2.2 Evolutionary Computation and Engineering Design
	2.3 Advanced Evolutionary Algorithms

	3. Evolutionary Design and Creativity
	3.1 Creative Design
	3.2 Evolutionary Design and the Theory of Inventive Problem Solving (TRIZ)
	3.3 Emergence
	3.4 Integrated Design

	4. Evolutionary Design Representations
	4.1 Optimality vs. Creativity
	4.2 Selecting Appropriate Design Representations
	4.3 Taxonomy of Representations
	4.4 Traditional Design Representations

	5. Constraint-Handling Methods in Evolutionary Design
	5.1 Penalty Functions
	5.2 Other Methods

	6. Multiobjective Evolutionary Design
	7. Coevolutionary Design
	8. Evolutionary Computation in Structural Engineering
	8.1 Structural Design Problems
	8.2 Topological Optimum Design
	8.3 Shape Optimization
	8.4 Sizing Optimization
	8.5 Historical Perspective

	9. Discussion and Conclusions
	10. References

