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Abstract 
Evolutionary computation is emerging as a new engineering computational paradigm, which may 
significantly change the present structural design practice.  For this reason, an extensive study of 
evolutionary computation in the context of structural design has been conducted in the Information 
Technology and Engineering School at George Mason University and its results are reported here.  First, a 
general introduction to evolutionary computation is presented and recent developments in this field are 
briefly described.  Next, the field of evolutionary design is introduced and its relevance to structural 
design is explained.  Further, the issue of creativity/novelty is discussed and possible ways of achieving it 
during a structural design process are suggested.  Current research progress in building engineering 
systems’ representations, one of the key issues in evolutionary design, is subsequently discussed.  Next, 
recent developments in constraint-handling methods in evolutionary optimization are reported.  Further, 
the rapidly growing field of evolutionary multiobjective optimization is presented and briefly described.  
An emerging subfield of coevolutionary design is subsequently introduced and its current advancements 
reported.  Next, a comprehensive review of the applications of evolutionary computation in structural 
design is provided and chronologically classified.  Finally, a summary of the current research status and a 
discussion on the most promising paths of future research are also presented. 
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1. Introduction 
The new Millennium witnesses the emergence of Information Technology as the driving force behind the 
progress in civil engineering, particularly in the area of computation as related to design.  The growing 
sophistication of computer programs, their availability, increased speed of computations and their ever-
decreasing costs have already had a significant impact on civil engineering, and that can be considered a 
paradigm change.   

Up to very recently, computers in structural design were used mostly for the analytical purposes in the 
detailed design stages.  Nowadays, their role is becoming more and more versatile.  They are being 
applied to all stages of the design process, from the generation of design concepts (design topologies, or 
layouts), through preliminary design (design shape specification), and finally in the detailed design 
process (sizing of structural members).  That requires a new intellectual and computational framework to 
fully benefit from the progress in Information Technology.  Among computational paradigms, 
evolutionary computation (EC) is now recognized as particularly appropriate for various traditional and 
novel computational applications in structural engineering.   

The major objective of this paper is to present a comprehensive survey of the recent developments of 
evolutionary-based methods in structural engineering as well as to provide their historical context.  Also, 
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a unified picture of evolutionary computation proposed by one of the authors [1] is discussed together 
with a discussion of the state-of-the-art (SOTA) in the EC research areas that are particularly relevant to 
structural design.  Further, a summary of the current research status and a discussion on the most 
promising paths of future research is presented. 

There are several other literature reviews on evolutionary techniques in structural engineering [2-7] 
but they are all too narrow, i.e. they either consider only a particular species of evolutionary algorithm 
(e.g. genetic algorithms), or focus on applications for a specific stage of a design process, e.g. conceptual 
design.  None of these surveys attempts to provide as comprehensive and unified view of EC in structural 
engineering as it is intended in this paper.  This survey provides a relatively complete picture of the 
research that has been done in the past and that is currently under way.  It should become a useful 
reference for both newcomers as well as researchers already working in this field.   

A significant effort was made to gather, analyze, and appropriately describe research developments in 
this field since its roots dating back to mid 1970’s.  It is, however, impossible to provide an exhaustive 
literature review discussing every piece of work that has been done over the years.  Thus, the authors had 
to arbitrarily select the most representative work known to them (particularly, in the case of very prolific 
researchers).   It is also possible that equally important and stimulating research unknown to the authors 
was unintentionally omitted. 

The survey is structured in the following way.  First, a general introduction to evolutionary 
computation is presented in section 2 and recent developments in this field are briefly described.  Section 
3 describes the field of evolutionary design and discusses its relevance to structural engineering.  In this 
section, the issue of creativity/novelty is discussed and possible ways of achieving it during a structural 
design process are suggested.  Section 4 contains an overview of recent developments in building 
engineering systems’ representations, one of the key issues in evolutionary design particularly when 
creativity/novelty is sought.  Since almost every structural design problem involves some kind of 
constraints, section 5 reports SOTA in constraint-handling methods used in evolutionary optimization.  It 
is also common that a given structural design problem has multiple and often conflicting objectives.  
Section 6 discusses recent developments in the rapidly growing field of evolutionary multiobjective 
optimization.  Section 7 provides an overview of the emerging subfield of coevolutionary design and 
discusses its potential for structural design.  Section 8 contains a comprehensive literature review of the 
applications of evolutionary computation in structural design.  A summary of the major applications since 
mid 1980’s is provided in a chronological order and classified with respect to application domain, and 
major EC characteristics.  Finally, a discussion on the current research status and most promising paths of 
future research is presented in section 9. 

2. Evolutionary Computation 
Evolutionary Computation (EC) is a modern search technique which uses computational models of 
processes of evolution and selection.  Concepts and mechanisms of Darwinian [8] evolution and natural 
selection are encoded in evolutionary algorithms (EAs) and used to solve problems in many fields of 
engineering and science.   

Strong resemblance to biological processes as well as their initial applications for modeling complex 
adaptive systems [9] influenced the terminology used by EC researchers.  It borrows a lot from genetics, 
evolutionary theory and cellular biology.  Thus, a candidate solution to a problem is called an individual 
while an entire set (or more accurately a superset) of current solutions is called a population.  For some 
problem domains, a population may be broken into several subpopulations.  The actual representation 
(encoding) of an individual is called its genome or chromosome.   Each genome consists of a sequence of 
genes, i.e. attributes that describe an individual.  A value of a gene is called an allele.  When individual 
solutions are modified to produce new candidate solutions they are said to be breeding and the new 
candidate solution is called an offspring or a child.  During the evaluation of a candidate solution, it 
receives a grade called fitness, which indicates the quality of the solution in the context of a given 
problem.  When the current population is replaced by offspring, the new population is called a new 
generation.  Finally, the entire process of searching for an optimal solution is called evolution [10]. 

2.1 Evolutionary Algorithms 

Evolutionary algorithms are a family of population-based search algorithms that simulate the evolution of 
individual structures by interrelated processes of selection, reproduction, and variation.  There is a variety 
of EAs that have been proposed and studied.  They all share a common set of underlying assumptions but 
differ in the breeding strategy to be used and representation on which EAs operate. 
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Historically, three major EAs have been developed: Evolution Strategies (ES) [11,12], Evolutionary 
Programming (EP) [13], and Genetic Algorithms (GAs) [9].  These algorithms have been mostly used to 
evolve solutions to parameterized problem domains. On the other hand, the fourth major EA developed 
more recently, Genetic Programming (GP) [14], has been  used to  evolve actual computer programs to 
solve a number of computational tasks [10].  There are also many hybrid models incorporating various 
features of the above paradigms, including the CHC algorithm [15], the structured GA [16],  the breeder 
GA [17], the messy GA [18], and many others. 

From the engineering point of view, EC can be understood as a search and optimization process in 
which a population of solutions undergoes a process of gradual changes.  This process depends on the 
fitness (a formal measure of perceived performance) of the individual solutions as defined by the 
environment (objective function).   
A canonical EA consists of the following steps: 

1. Initialize the population 
2. Evaluate all members of the population 
While the termination condition is not satisfied  
{ 

3. Select individual(s) in the population to be parent(s) 
4. Create new individuals by applying the variation operators to the copies of parent(s) 
5. Evaluate new individuals 
6. Replace some/all of the individuals in the current population with the new individuals 

} 
Before an actual evolutionary process begins, an initial population of individuals (solutions) is created.  

Traditionally, the initial population is created randomly but several other initialization techniques have 
also been used (e.g. starting from a set of previously known or arbitrarily assumed solutions).  Next, each 
individual in the initial population is evaluated and assigned a fitness value.   

Using the fitness scores, the selection mechanism chooses a subset of the current population as parents 
to create new individuals.  When the selection mechanism uses bias toward individuals with better fitness, 
the created offspring will, more likely, have higher fitness.  Once the set of parents has been selected, the 
new individuals are created by copying them and applying variation operators.   

There are several commonly used selection strategies within EC community. Fitness-proportional 
selection [9] normalizes the fitness values of all individuals in the population and assigns these 
normalized values as probabilities that their respective individuals will be selected.  Ranked selection 
works by first ranking all individuals in the population by their fitness, and use these ranks, rather than 
actual fitness values, to determine selection probabilities of the individuals.  A common form of ranked 
selection is a linear ranking [19,20] where individuals are first sorted in an increasing order according to 
their fitness values.  Each individual is then selected with a probability based on some linear function of 
its sorted rank. Another popular selection strategy is a tournament selection.  In this strategy, a pool of n 
individuals is picked at random from the population.  Each of the individuals in the pool is selected 
independently and it might be the case that the same individual will be selected multiple times.  Next, an 
individual from the pool with highest fitness value is selected to form the new population.  This procedure 
is repeated as many times as necessary to create either an entirely new population or a subset of it.  The 
pool size is a parameter that controls the magnitude of the selection pressure.  Finally, the truncation 
selection chooses only a certain proportion of the best individuals in the population.  This strategy is most 
popular within the ES community, where it is used in two basic flavors: (μ, λ) and (μ+λ) [21].  In the 
former case, the selection operates on the offspring population only, whereas in the latter case it selects 
individuals from a joint population of both parents and offspring. 

The two most popular variation operators are mutation and recombination.  Mutation acts on a single 
individual and works by applying some variation to one or more genes in the individual’s chromosome 
(similar to a variation operator used in other search mechanisms like hill climbing or simulated 
annealing).  Recombination, on the other hand, operates on multiple individuals (usually two) and 
combines parts of these individuals to create new ones.  

The newly created individuals are evaluated and assigned fitness values.  Then, either all or only a 
subset of the current population is replaced by these new individuals.  If the entire population is replaced 
by the new individuals then the algorithm is called generational EA.  On the other hand, if only a subset 
of the original population is replaced then the algorithm is called a steady-state EA.  Steps 3-6 of the 
canonical EA defined earlier are performed until an assumed stopping criterion is met, which is usually 
defined as an arbitrary number of generations or fitness function evaluations. 
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2.2 Evolutionary Computation and Engineering Design 

This basic evolutionary process described above is called a ‘simple evolutionary algorithm’ in a sense that 
it contains the minimal set of features necessary to be a Darwinian evolutionary system.  These simple 
EAs have surprisingly useful properties, primarily related to solving difficult global optimization 
problems.  They perform well when applied to problems with nonlinear, stochastic, temporal, or chaotic 
components, where traditional optimization techniques, like gradient descent, hill climbing, and purely 
random search, are generally unsatisfactory.  It is in this context that much of the work on engineering 
applications has taken place historically: using simple EAs for design optimization. 
The three main issues in applying EAs to an engineering design problem are:  

1. Selecting an appropriate representation for engineering designs.  
2. Defining efficient genetic operators. 
3. Providing an adequate evaluation function for estimating the “fitness” of generated solutions 

(points in the search space). 
An appropriate representation of an engineering system is one of the most crucial elements of 

evolutionary design.  This issue is particularly important when creativity/novelty of designs produced in 
evolutionary processes is one of the major goals.  The process of creating an efficient and adequate 
representation of an engineering system for evolutionary design is complicated and involves elements of 
both science and art.  One has to take into account not only important aspects of understanding traditional 
modeling of an engineering system, but also relevant computational issues that include search efficiency, 
scalability, and mapping between a search space (genotypic space) and a space of actual designs 
(phenotypic space).  A more detailed discussion of EA representations is presented in section 4. 

Appropriate choice and implementation of genetic operators, i.e. mutation and recombination 
opreators, and careful tuning of their rates is an important issue as it can have a big impact on the success 
of EAs and has therefore been a subject of both theoretical [22] as well as experimental investigations 
[23-25].  Any particular implementation of a mutation or recombination operator is representation 
dependent.  Thus, for example GAs with binary string representations use the bit-flip mutation and 1-, or 
2-point crossover, while ES with real-valued vectors use the Gaussian mutation and a recombination 
operator that swaps/averages parents’ alleles.  Genetic operators are primary sources of exploration in 
EAs.  On the other hand, selection mechanisms provide EAs with exploitative power.  Thus, by properly 
defining and controlling the variation mechanisms (genetic operators), one can achieve a higher level goal 
of finding “an effective balance between further exploration of unexplored regions of the search space 
and exploiting the regions already explored.” [1]. 

Another important issue in successful application of EAs is to choose an adequate fitness evaluation 
function for a problem domain.  Evaluation functions provide EAs with feedback about the fitness of each 
individual in the population. EAs use this feedback to bias the search process in order to improve the 
population’s average fitness.  Naturally, the details of a particular fitness function are problem specific. 

Table 1 provides a description of all commonly used EAs in terms of decisions that are made during 
an implementation of a particular EA.  It is a modified table initially proposed in [6].  The particular 
decisions are summarized in terms of attributes and their values. Using this characterization, it is then 
straightforward to describe a given EA, e.g. a GA or ES, and its relationship to other EAs [6]. 

2.3 Advanced Evolutionary Algorithms 

Various modern trends in EC relax some of the assumptions found in the canonical EAs.  For example, in 
multiobjective EAs, a requirement of a single fitness value determining the quality of an individual is 
replaced by several independent fitness criteria.  Another assumption of using a single evolving 
population is relaxed in parallel, or distributed, EAs as well as in coevolutionary algorithms (CEAs).  In a 
fairly popular model of a parallel EA, called the island-model EA [26], evolution occurs in multiple 
parallel subpopulations evolving independently with occasional ‘migrations’ of some individuals among 
subpopulations.  CEAs typically use multiple subpopulations but additionally modify another 
fundamental assumption, namely that individuals are no longer evaluated independently of one another.  
Two common models of CEAs include cooperative CEAs [27], where the fitness of an individual is 
assessed through ‘cooperation’ with individuals from other subpopulations, and competitive CEAs [28], 
where the fitness of an individual is determined by its competition against individuals from other 
populations.  Coevolutionary EAs are discussed in more detail in section 7. 

Next section presents a subfield of EC, called evolutionary design, which is directly related to 
engineering design problems.  It also discusses the issues of creativity and emergence in engineering 
design processes. 
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Table 1: Attributes describing commonly used EA implementations. 

Attribute Values No. Attribute 
1 2 3 4 5 

Encoding Binary Real-
valued 

Graph-
based 

Compu-
ter code Other 

1 
Solution 

repre-
sentation Length Fixed Variable    

Mechanism Random 
generation 

Selection 
from  a 

group of 
known 

solutions 

User 
defined   2 

Popula-
tion 

initializa-
tion 

Population size 1 Fixed Variable   

3 Parent selection mechanism Truncation Ranking 
Fitness 
propor-
tional 

Tourna-
ment Uniform 

Type Bit-flip Gaussian Subtree User 
defined  

Mutation 
Rate 0 Fixed Adaptive Random  

Type N-point Swap Uniform Subtree User 
defined 

4 Variation 
mecha-
nism 

Crossover 
Rate 0 Fixed Adaptive Random  

5 Survival selection mechanism Truncation Ranking 
Fitness 
propor-
tional 

Tourna-
ment Uniform 

3. Evolutionary Design and Creativity 
Evolutionary design is a branch of EC that integrates ideas from computer science (evolutionary 
algorithms), engineering (design science) and evolutionary biology (natural selection) to solve 
engineering design problems [29].  Four major categories of problems considered by evolutionary design 
include evolutionary design optimization, creative evolutionary design, evolutionary art, and evolutionary 
artificial life forms. 

Common attributes shared by evolutionary techniques, which are relevant to engineering design 
processes include [30]: 

• little, if any, a priori knowledge of the search environment 
• excellent search capabilities due to efficient sampling of the design search space 
• ability to avoid local optima 
• ability to handle high dimensionality 
• robustness across a wide range of problem classes 
• provision of multiple good solutions 
• ability to locate the region of the global optimum solution 

Research on evolutionary computation in engineering design has a relatively long history.  It was 
initiated in Europe in the early seventies by Rechenberg [31] in the areas of fluid mechanics, pipe design 
and structural engineering.  Early applications of EC in structural engineering [32,33] used ES which 
evolved from structural optimization approaches in the early 1960’s.  Further significant progress in this 
area has taken place mainly during the last fifteen years.  In the United States, Goldberg [34,35] did the 
first application of GAs, which emerged from the machine learning community, in engineering 
optimization in the area of complex gas pipeline systems.  Just about the same time, in the late 80’s and 
early 90’s, many researchers started applying this new optimization method to a large spectrum of 
engineering design problems.  Current state-of-the-art reviews are provided in [6,30,36-45].   

3.1 Creative Design 

Evolutionary design optimization and creative evolutionary design are the two categories of evolutionary 
design that are particularly relevant to civil and structural engineering applications.  From a 
computational point of view, the dividing line between the two categories is not sharp and is mostly 
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related to the potential for achieving novelty/creativity during the processes of generating design concepts 
as well as properties that novel/creative designs need to possess.  For Gero [46] creativity in design “is 
not simply concerned with the introduction of something new into a design, although that appears to be a 
necessary condition for any process that claims to be labeled creative.  Rather, the introduction of 
‘something new’ should lead to a result that is unexpected (as well as being valuable).”  Gero concludes 
that an evolutionary design process is creative when it explores not only values of attributes (decision 
variables) within individual design spaces but also evolves the number of these attributes, i.e. when 
changes in the representation space occur.  Similarly, Boden [47] suggests that achieving creativity is 
only possible by going beyond the bounds of a representation, and by finding a design that could not have 
been defined by that representation. The same concept was explored by Arciszewski and co-workers in 
the context of Inferential Design Theory [48] and constructive induction [49].  A detailed discussion of 
commonly used representations in evolutionary design, including generative representations supporting 
creative design processes can be found in section 4.   

Less restrictive definition of creativity in design was given by Rosenman [50].  He suggested that the 
distinguishing feature of all creative evolutionary design systems is the ability to generate entirely new 
designs starting from little or almost no knowledge (for example when starting with random initial 
conditions), and being guided throughout the evolutionary process only by performance criteria. 

3.2 Evolutionary Design and the Theory of Inventive Problem Solving (TRIZ) 

Creativity in evolutionary design can also be analyzed from a broader perspective, namely based on the 
theory of inventive problem solving (TRIZ) introduced by Altshuller [51,52].  Altshuller discovered that 
the evolution of engineering systems is not a random process, but it is governed by a class of paradigms. 
These paradigms can be subsequently used to develop a system considering its technical evolution, i.e. by 
determining and implementing innovations.  Altshuller introduced five levels of innovation in the context 
of an engineering design problem [49]: 

A. Selection 
“A design concept is selected from a group/class of known concepts in a given engineering 
domain.”   
This level of innovation corresponds to an EA using only selection operation and that is initialized 
with a population of known design solutions, rather than randomly generated ones. 
B. Modification 
“A design concept is produced as a combination and/or modification of known design concepts from 
a given domain.  The modification process can be performed either deterministically or using a 
random generation process.”   
This paradigm is equivalent to an EA searching for an optimal solution in a parameterized 
representation space of a class of engineering designs.  Rosenman’s definition of creativity in 
design is most closely related to this paradigm and hence it becomes obvious that his prerequisites of 
creativity are fairly weak when compared to Altshuller’s innovation taxonomy. 
C. Innovation 
“A design concept is produced as a combination of known concepts from a given domain and other 
domains.” 
This paradigm can be best represented as the island model EA where various populations of designs 
evolve independently and occasionally exchange some individuals through a migration process.  The 
migrations can model injection of knowledge from other domains to a particular engineering 
domain. 
D. Invention 
“A design concept is produced as a combination of known concepts from a given domain and new 
concepts based on a new technology, which have been recently introduced.”   
EA can achieve this level when it evolves not only the values of attributes but also the 
attributes themselves [53].  In other words, it can use various transformation operators [49] for a 
representation space including attribute addition (introduce new attributes/genes to the 
representation space), attribute elimination (removing unimportant attributes), attribute abstraction 
(combining attributes into larger units, or components, and subsequently exploring the component 
based representation [54]), and attribute construction (creating new attributes by a simple or 
complex transformation of the initial attributes).  This level of innovation is most closely related to 
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Gero’s definition of creativity in design as well as changes in the representation space introduced in 
the constructive induction process [49]. 
E. Discovery 
“A design concept is produced as a combination of known concepts from a given domain and new 
concepts based on new scientific principles.”  
This highest level of innovation in Altshuller’s taxonomy can most likely be achieved by 
evolutionary design processes.  However, special types of representations, namely the generative 
representations [55] (described in section 4), seem to be necessary to accomplish it.  Generative 
representations use compact representations (genotypes) of existing design knowledge and mappings 
that translate these representations to actual designs (phenotypes).  The mappings can reuse elements 
of the representations during the process of translation.  Thus, the compact representations can be 
thought of as storing existing knowledge on a given engineering domain, whereas mappings 
correspond to new scientific principles that can transform the known concepts to new, and possibly 
creative, design concepts.  The mappings are usually simple programs that take the compact 
representations as input and produce the actual design concepts as output.  Despite their simplicity, 
they can generate designs that can be defined as creative [56].  Recently, Wolfram [57] suggested 
that all scientific principles and natural processes can be modeled in terms of simple programs that 
can nevertheless produce complex behavior.  EAs using generative representations will search 
both the space of compact representations and the space of simple transformation programs 
(scientific principles) and will generate creative design concepts. 

The first two paradigms, i.e. selection and modification, can only produce routine designs. In both 
cases, no changes occur in the representation space [49].  The last three paradigms, i.e. innovation, 
invention and discovery, can generate novel/creative designs. In all these cases, changes in the 
representation space do occur [49].  

3.3 Emergence 

Emergence is an important property which is closely related to creativity in design.  Gero [58] defines 
emergence as “a process of making features explicit, that were previously only implicit.”  He also 
suggests that emergence plays an important role in introducing new attributes to the representation space 
[46].  Emergence can also be easily recognized through the visual examination of representations of 
structures, for example of structural patterns of steel structural systems in tall buildings [59].    

The notion of an emergent concept generation has also been introduced by Arciszewski et al. [49] as a 
part of a constructive induction process that was originally proposed in the field of machine learning.  An 
emergent design concept is defined as a constructed attribute (representing an unknown design concept) 
whose introduction may simplify and improve effectiveness or quality of a design process.  A constructed 
attribute is derived from the initial attributes by an application of constructive induction operators.  It is 
usually more abstract than the attributes from which it was derived. 

3.4 Integrated Design 

Most applications of evolutionary methods in civil and structural engineering were focused on a detailed 
design stage of a design process, where the objective was to find the optimal configuration of attribute 
values for a previously selected and parameterized design concept.  Thus, only routine design concepts 
could be generated, even though they were optimized with respect to some objective.  An overview of the 
SOTA in evolutionary design applications in civil and structural engineering can be found in section 8. 

There has also been some work in applying evolutionary design methods at the conceptual stage of an 
engineering design process, where the emphasis is put on the generation of novel and original design 
concepts, and not on finding the globally best solution in terms of numerical values in the context of a 
specific design concept.  Gero and Schnier  [60] worked on the evolution of a design knowledge 
representation, using genetic algorithms and Rosenman and Gero [53] used genetic engineering to evolve 
architectural floor plans.  Arciszewski et al. [61] used evolutionary computation to produce creative 
designs.  Bentley [62] developed a generic evolutionary design system, which was able to evolve a range 
of various designs from scratch.  The system performed evolutionary design with an emphasis on the 
evolution of creative design concepts rather than their optimization.   

The concept of integrated design utilizing various forms of evolutionary computation at each stage of 
a design process as well as incorporating designer’s knowledge and intuition within the search and 
exploration process has been pioneered by Parmee [42,63].  In the mid-90’s, research was initiated on the 
utility of evolutionary/adaptive search within the generic domain of an engineering design process as a 
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whole.  Parmee, following Pahl and Beitz [64], distinguishes three major stages of an engineering design 
process: conceptual design, embodiment design, and detailed design.  He considers conceptual design as 
“a search across an ill-defined space of possible solutions using fuzzy objective functions and vague 
concepts of the structure of the final solution.”  Embodiment design operates with a selected (during the 
conceptual design stage) initial design configuration and aims to further specify the subsets forming the 
whole system.  Design decisions at this stage are made based on both qualitative and quantitative criteria 
which usually are difficult to be formally defined using mathematical models and hence difficult to 
include in a scalar objective (fitness) function.  Finally, at a detailed design stage, design decisions are 
made based on solely quantitative criteria which are well described by mathematical models, even though 
they may be computationally expensive and may require complex analysis techniques.  Contrary to 
traditional and simplified definitions of engineering design process which assume little or no interaction 
between the stages [64], Parmee argues that considerable overlaps exist among the three stages and they 
should be taken into account in the integrated design model.  He suggests that a model of a design 
optimization process should be considered to “represent a long-term, highly complex process 
commencing with high-risk conceptual/whole-system design and continuing through the uncertainties of 
embodiment/preliminary design to the more deterministic, relatively low-risk stages of detailed design 
and the eventual realization of an optimal engineering solution.”   

The objective of Parmee’s integrated design was to develop co-operative frameworks involving a 
number of evolutionary/adaptive computing techniques and integrate them with each stage of the 
engineering design process.  During this research, various forms of evolutionary computation were 
considered in the context of integrated design, including Structured Genetic Algorithms [16], GAANT 
Algorithms [65], and Ant Colony Algorithms [66,67] as well as constraint satisfaction [68].  Next, 
Parmee investigated evolutionary computation in the context of searching “whole-system design 
hierarchy” described by both nominal and numerical attributes [69], and he applied it to designing 
hydropower systems [70].  Later, Vekeria and Parmee [71] proposed the use of evolutionary computation 
in conceptual design of structural systems, including the determination of the topology of their members.  
Recently, he has been focused on the “innovative conceptual design” in the context of variable mutation 
cluster-oriented Genetic Algorithms (vmCOGAs) and successfully used them in the area of aerospace 
engineering [72]. 

4. Evolutionary Design Representations 
Representations in engineering design incorporate both representation of an artifact being designed as 
well as representation of a design process, i.e. a process by which the design is completed.  The line 
distinguishing artifact representation and design process representation is often blurred.  Building a 
representation of an artifact is similar to the process of its numerical/mathematical modeling in 
engineering science.  It is, however, significantly broader because it encompasses much more knowledge 
than can be set into mathematical formulas and their numerical realizations.  Generally, a representation 
of a designed artifact should describe its function, form, intent, legal requirements, etc.  Advances in 
computer science, and evolutionary computation in particular, made it possible to use symbolic 
representations to describe objects, attributes, relationships, concepts, etc.  Thus, it is now possible to 
capture more abstract and conceptual design knowledge [73]. 

A representation of an engineering design is as a computational description of an engineering system 
(that usually does not yet exist) expressed in terms of attributes [49].  In the most straightforward EC 
representation, each gene corresponds to an attribute and represents a dimension of the search space.  
Each such dimension can have an appropriate set of values (discrete or continuous) that a feature 
represented by this dimension can take on.  In the simplest case, these representations use binary genes 
denoting the presence, or absence, of a feature. In such representations each individual consists of a fixed-
length binary string of genes, or a genotype, representing some subset of a given set of features.  Often, in 
complex engineering applications, multi-valued attributes are more natural to use [6].   

A representation space for an engineering design is a multidimensional space spanned over attributes 
that are used to describe an engineering design [49].  Attributes can be symbolic (when they take values 
from an unordered or partially ordered set) or numerical (when they take numerical values representing 
quantities or measurements).  Symbolic attributes that take values from an unordered set are called 
nominal attributes; when they take values from a partially ordered set, they are called structured.  Design 
concepts are typically described in terms of symbolic attributes.  Numerical attributes are used for a 
detailed description of a design. 

A design concept is understood as a description of a future engineering system, actual or abstract, in 
terms of a feasible combination of symbolic attributes and their values.  After a conceptual design process 
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is completed, a given design concept is used next in the detailed design process to produce a detailed 
design.  A detailed design is understood here as a detailed description of a future engineering system in 
terms of both symbolic and numerical attributes (dimensions, weights, etc.) [49]. 

4.1 Optimality vs. Creativity 

A choice of a particular representation of an engineering system for an evolutionary design process is 
highly influenced by the designer’s goal, i.e. whether the emphasis is on optimality in terms of numerical 
values in the context of a specific design concept, or on generation of creative design concepts.  When the 
focus is on finding an optimal design, designers’ attention is usually restricted to a particular concept or at 
most several concepts of existing designs.  In this case, design representations usually take a form of 
parameterizations of an engineering system, or its parts.  The parameters are then encoded as genes and 
their alleles are evolved using evolutionary algorithms in order to find the best design that maximizes (or 
minimizes) given objective(s).  Thus, for strictly engineering optimization problems, representations 
should be direct (i.e. they should encode possible solutions) and parameterized (allowing only for slight 
variations).  Traditional representations frequently used in engineering optimizations problems, like 
binary representations, integer representations, and real-valued representations can be included in this 
category. Additionally, representations used in optimization problems usually incorporate domain 
knowledge, to smaller or larger extent, in order to make the search more efficient. 

Creative evolutionary design requires, however, more general and usually more complex 
representations.  Representations that have been used in creative design are diverse but nevertheless share 
some similarities.  Typically, phenotype representations are quite general and thus capable of representing 
large numbers of alternative shapes, forms, or morphologies (forms together with structures) [29].  They 
range from direct representations, as in voxel-based representations [74] or array-based representations 
[75,76], to highly indirect representations, i.e. representations that do not encode solutions but rather rules 
on how to build these solutions.  The most popular examples of indirect representations are grammars 
[77], trees [78,79], shape grammars [80-83], graphs and matroids [84], cellular automata [85,86], L-
systems [55,87,88], and embryogenies [56]. 

4.2 Selecting Appropriate Design Representations 

Gen and Cheng [41] discuss five major requirements for designing good representations (genotype-
phenotype mappings) for evolutionary design problems: 

A. “Non-redundancy” 
“The mapping between encodings and solutions should be 1-to-1.” 
There should be a unique pairing of each element of a genotypic space with a corresponding 
element of a phenotypic space.  Out of all three possible cases, the 1-to-n mapping should be 
particularly avoided because it corresponds to multiple phenotypic representations of the same 
genome.  In this case, an additional procedure would have to be employed to determine the 
actual phenotype. 
B. “Legality” 
“Any permutation or combination of an encoding corresponds to a solution.” 
It is important to distinguish between two basic concepts: infeasibility of a solution and its 
illegality.  Infeasible solution means that a phenotype decoded from a genotype lies outside of a 
feasible region (defined by the constraints) in the phenotypic space.  Illegal solution means that a 
genotype does not represent any phenotype for a given problem.  The implicit significance of the 
legality requirement is that it implies that standard genetic operators can be easily applied to a 
representation satisfying this requirement. 
C. “Completeness” 
“Any solution has a corresponding encoding.” 
This requirement guarantees that any phenotype has a corresponding genotype, and hence it is 
accessible to genetic search.    
D. “Lamarckian property” 
“The meaning of alleles for a gene is not context dependent.” 
This requirement “concerns the issue of whether or not one chromosome can pass on its merits 
[learned traits] to future populations through common genetic operators” [89].  If the meaning of 
alleles for a gene is interpreted in a context-dependent manner, as in the non-Lamarckian case, 
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the offspring usually inherit nothing from parents.  Generally, the representation should have the 
Lamarckian property so that offspring can inherit goodness from parents.   
E. “Causality” (also known as Continuity) 
“Small variations on the genotype space due to mutation imply small variations in the phenotype 
space.” 
This requirement focuses on the preservation of neighborhood structures.  The appropriate 
choice of genotype-phenotype mapping in combination with the genetic operators is important 
for a successful evolutionary search process [90].  For a successful introduction of new 
information by an operator, the operator should preserve the neighborhood structure in the 
corresponding phenotype space.  Search processes that preserve the neighborhood structure are 
said to exhibit strong causality.   

4.3 Taxonomy of Representations 

Representations used in evolutionary design have been classified with respect to many different criteria.  
Table 2 presents a compilation of classification schemes in which attributes and their values correspond to 
various categorizations of evolutionary design representations proposed by several researchers [1,55,91]. 

Table 2: A classification of EA representations. 

No. Attribute Attribute Values 
1 EA level Genotypic Phenotypic 
2 Structure Linear Nonlinear 
3 Length Fixed Variable 
4 Change during evolution Static Dynamic 
5 Encoding scheme Direct Indirect 
6 Accuracy of solution specification  Parameterization Open-ended 
7 Ability to reuse encoding Non-generative Generative 

8 Genotype-phenotype 
correspondence Explicit Implicit 

 
One of the most important representational issues is the choice between a genotypic and phenotypic 

representation.  This issue has some important consequences not only for EC in general but also for 
evolutionary design.  When one decides to use a genotypic representation (as it is the case in the 
canonical GAs) then an appropriate genotype-phenotype mapping has to be constructed, hopefully 
satisfying all five major requirements stated earlier.  A particular attention has to be paid to satisfy the 
causality requirement. The lack of correlation between variation at the genotype level and variation at the 
phenotype level can cause serious problems [1].  When a genotypic representation is used, mutation and 
recombination operate at the genotypic level while the fitness evaluation and selection are performed at 
the phenotypic level.  One of the advantages of using genotypic representations is the ability to reuse 
standard genetic operators for multiple problem domains.   

Alternatively, one can just use phenotype level encodings (as it is the case in the canonical ES) to both 
explore and exploit a design space.  The significant advantage of this approach is that no mapping 
between genotype and phenotype is necessary and hence all five requirements stated earlier are 
automatically satisfied.  One can focus on achieving useful exploration only at the phenotypic level.  The 
disadvantage of phenotypic representations is that the genetic operators become problem dependent and 
have to be carefully crafted for each individual problem domain [1].  Phenotypic encodings have been 
widely used within the ES community and applied to many engineering optimization problems. 

A structure of an evolutionary design encoding is another relevant criterion.  Generally, 
representations can be divided into linear and nonlinear.  A linear representation can be thought of as a 1-
dimensional representation usually in a form of a string (binary, real-valued, integer-valued), list, etc.  
Nonlinear representations, on the other hand, have 2-, or higher- dimensional structure, e.g. trees, arrays, 
etc. 

Another distinguishing property of evolutionary design representations is their length.  They can be 
divided into two groups: fixed-length and variable-length representations.  The length of a genome is 
constant during an entire evolutionary process when fixed-length encodings are used.  It is not the case 
with variable-length representations where an individual can be represented by a genome that changes its 
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length every generation.  Consequently, a population may consist of individuals whose genomes have 
different lengths.  Fixed-length representations have been widely used in evolutionary design 
optimization while variable-length representations have been applied to creative evolutionary design [36]. 

Depending on whether, or not, the representation can change during an evolutionary design process, 
one can divide representations into static and dynamic.  This is a more general classification than the one 
based on a change of the length of a genome because it considers not only a time-dependent change of the 
length of a genome but also time-dependent changes made to its structure. 

Direct representations encode essentially actual design concepts, while indirect representations encode 
rules on how to construct these concepts.  Again, direct representations are used mostly for evolutionary 
design optimization and indirect encodings for evolving creative design concepts [55]. 

In the case when the topology of a design is established in advance and specified in sufficient detail, 
i.e. it is parameterized; the representation is called a parameterization.  On the other hand, when the 
topology of a design is changeable then the representation is called open-ended.   

Representations that can reuse some parts of an encoded design during the phenotype construction 
phase from a genotype are called generative.  Generative representations are always indirect.  Non-
generative representations can not reuse elements of the encoding.  They can be either direct or indirect.  
Generative representations offer several advantages when compared to non-generative ones.  Their ability 
to reuse elements of an encoded design improves the search efficiency in large design spaces as well as 
scalability by capturing design dependencies [55].   

Depending on the nature of the relationship between the elements of a genotype and the elements of 
the generated phenotype, generative representations can be further classified as implicit or explicit.  
Implicit representations consist of a set of simple rules (e.g. cellular automata) that implicitly specify a 
design property, e.g. its shape, through an iterative construction process.  Explicit representations are like 
procedural programs for constructing designs in an explicit manner. 

Recently, there have been several attempts to coevolve representations of engineering systems during 
the evolutionary process.  This corresponds to the process in which a learning system adapts its own 
representation.  De Jong and Oates [92] proposed a coevolutionary approach to representation 
development where building blocks and their assemblies are coevolved. Also, Gero and Schnier [60] 
worked on the evolution of the design knowledge representation, using genetic algorithms, in the context 
of case–based design. Such evolution is often necessary to produce inventive designs. 

4.4 Traditional Design Representations 

The majority of evolutionary design applications in structural engineering reported in the literature used 
relatively straightforward representations consisting of either binary strings or real-valued vectors.  Thus, 
it is important to be aware of the strengths and weaknesses of both common approaches to represent 
engineering systems. 

Binary representations are standard representations for canonical GAs.  The most straightforward and 
at the same time most common approach involves binary strings of fixed length.  This type of 
representation is best suited for problem domains where solutions can be naturally represented as binary 
vectors, e.g. in some combinatorial optimization problems.  In engineering design this type of 
representations has been widely used in structural topology optimization, e.g. in the ground structure 
approach [93]. 

When a problem domain cannot be defined in terms of binary vectors, then a mapping from the binary 
space (genotypic space) to the domain space (phenotypic space) is necessary.  Using this principle, binary 
string representations have been applied to continuous parameter optimization problems [94].  In this 
case, a mapping between binary strings and real-valued parameters had to be specified.  This approach 
has been widely used in many engineering design applications.  Its advantage is that the standard GA 
operators (e.g. the bit-flip mutation, and one-, or two-point crossover) can be used.  There are, however, 
some important drawbacks of this approach, too.  Michalewicz [94] argues that it is not appropriate 
because the problem space the GA is operating in is fundamentally different than that of the originally 
defined problem. Thus, search and optimization are conducted in a different space than the original one. 
Hence, the optimal results obtained in the binary search space might in fact not be optimal for the original 
problem.  The genotype-phenotype mapping also introduces some additional nonlinearity to the objective 
function, and hence it may happen that the modified problem is more difficult to solve than the original 
one.  Bäck [95] points out another serious drawback of mappings from continuous to binary spaces.  The 
mappings impose some granularity (resolution) and hence not all the points in the original continuous 
space can be expressed as binary vectors. So, it is possible that the optimal solution will not be found 
simply because it is not represented in the binary search space. 
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Another important problem with binary representations is related to the fact that one of the five major 
requirements on genotype-phenotype mappings, namely causality or continuity requirement, does not 
hold.  In other words small changes in the binary space correspond to large changes in the real-valued 
parameter values and vice-versa.  A frequently employed solution in this case is to use Gray encoding 
scheme [95]. 

Real-valued representation spaces have been traditionally used by ES researchers to solve complex 
continuous parameter optimization problems.  Historically, they have been applied to engineering design 
problems, specifically to various fine tuned optimization problems.  In ES, real-valued representations 
have traditionally been used as phenotypic representations, where no mapping between a genotype and a 
phenotype is necessary.  Thus, the drawbacks associated with the mappings are eliminated in this case.  
There are, however, two major problems with real-valued representations that are somehow related.  First, 
real-valued encodings allow for representation of only very specific problem domains, and that usually 
corresponds to fine-tuned optimization problems.  As such, they are not applicable for creative design 
problems as it was discussed earlier.  The second problem is that not every design problem can be 
expressed as a real-valued vector.  There are many design problems, conceptual design problems being a 
good example of, that involve some symbolic or qualitative variables which cannot be encoded as real-
valued parameters. 

As stated earlier, representations are one of the three key elements in a successful implementation of 
evolutionary design.  Throughout the years, enormous amount of experimental work has been devoted to 
studying various types of evolutionary representations.  Despite this fact, very little is known theoretically 
about their influence on the performance of an EA.  Initial framework for evolutionary representation 
theory has been recently proposed by Rothlauf [96], but it is just the beginning of research on this 
important topic in EC. 

5. Constraint-Handling Methods in Evolutionary Design 
The vast majority of engineering design problems involves constraints of some kind.  Thus, appropriate 
methods of handling constraints are extremely important for any optimization/search mechanism 
exploring designs spaces.  Evolutionary algorithms, on the other hand, are unconstrained optimization 
procedures and hence it is necessary to somehow incorporate constraints into them.  This section reviews 
the SOTA in constraint-handling methods in the context of evolutionary design.  It also provides 
references to actual applications in structural engineering. 

Coello Coello [97] classifies constraint-handling methods used with EAs into the following  five 
major groups: 

1. Penalty functions 
2. Special representations and operators 
3. Repair algorithms 
4. Separation of objectives and constraints 
5. Hybrid methods 

5.1 Penalty Functions 

Penalty functions have traditionally been the most common way of handling constraints incorporated in 
EAs [35,98].  This method was initially proposed in the early 1940’s in the context of traditional 
mathematical optimization by Courant [99] and later extended by the operation research (OR) community 
in the 1960’s [100,101].  In the 1980’s, penalty functions have been adopted by EC researchers to solve 
constrained optimization problems [35,102] and since then have become the most popular, albeit not best 
as it has been shown in several studies [103], method of handling constraints.  Penalty functions 
effectively transform a constrained design problem into an unconstrained one by augmenting the 
objective function with a penalty term whose value determines the amount of constraint violation present 
in a particular solution [97].  Contrary to classical optimization methods which use penalty functions of 
two kinds (i.e. exterior and interior), evolutionary design focused almost exclusively on exterior penalty 
functions because they do not require initial feasible solution to start with. 

Various types of penalty functions have been proposed and studied.  A general classification of the 
most commonly used types of penalty functions is presented below [97]: 

1. Static penalty functions which remain constant during an entire evolutionary process 
[102,104]. 
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2. Dynamic penalty functions which change throughout an evolutionary run (usually increase 
over time) [105]. 

3. Annealing penalty functions which use techniques based on simulated annealing [106]. 
4. Adaptive penalty functions which change according to feedback received from the search 

process [107-111]. 
5. Coevolutionary penalty functions in which solutions are evolved in one population and 

penalty factors evolve in another population [112]. 
6. Death penalty functions which immediately reject infeasible solutions [113]. 

One of the major challenges in any application of penalty functions concerns achieving an appropriate 
balance of the penalty value.  Large penalty values discourage EAs from exploring infeasible regions and 
the search is quickly moved inside the feasible region.  On the other hand, low penalty values do not 
prohibit EAs from searching infeasible regions most of the time.  As a result of these findings, several EC 
researchers proposed the ‘minimum penalty rule’ which states that “penalty should be kept as low as 
possible, just above the limit below which infeasible solutions are optimal” [97].  The problem with this 
formulation, especially for structural design applications, is that usually the constraints are not expressed 
in an algebraic form but instead as outcomes produced by structural analysis packages.  Hence, an exact 
location of the boundaries between feasible and infeasible regions cannot be specified. 

Methods of designing/configuring penalty functions for EC applications have been studied in 
Richardson et al. [103].  They offer several guidelines/heuristics that can be used to make evolutionary 
search in constrained design spaces more efficient: 

• “Penalties which are functions of the distance from the feasible region are better than those 
which are merely functions of the number of violated constraints. 

• For a problem having few constraints, and few solutions, penalties which are solely 
functions of the number of violated constraints are not likely to find solutions 

• Good penalty functions can be constructed from two quantities, the maximum distance and 
the expected distance to the feasible region. 

• Penalties should be close to the expected distance to the feasible region, but should not 
frequently fall below it.  The more accurate the penalty, the better the solutions will be 
found.  When penalty often underestimates this distance, then the search may not find a 
solution.” 

A number of applications showed, however, that there are many difficulties associated with penalty 
functions [103], including, for example, a problem of defining good penalty factors.  Thus, over the years, 
alternative approaches to handling constraints have been proposed by EC researchers.   

5.2 Other Methods 

Alternative attempts to handle constraints in evolutionary design include the development of special 
representations that simplify the shape of the search space and special genetic operators that preserve 
feasibility of generated solutions during the evolutionary run.  Examples of applications of these methods 
include Bean’s [114] ‘random keys encodings’, Davidor’s [115] ‘analogous crossover,’ Michalewicz’s 
[94] GENOCOP, and Kowalczyk’s [116] constraint consistent GAs.  Schoenauer and Michalewicz [117] 
proposed a method that restricts the search to the boundary of a feasible region.  It is based on a heuristic 
that in many cases the global solution lies on the boundary of a feasible region.  In this method, the search 
mechanism crosses the feasibility boundary back and forth and special genetic operators are used to 
restrict the variation to the boundary of the feasible region  [118].  The last set of methods in this category 
uses decoders [119].  In this case, chromosomes encode instructions on how to construct feasible 
solutions [120].  Each decoder imposes a mapping between a feasible solution and a decoded solution 
[120,121].  Koziel and Michalewicz [120] reported that decoders provided much better results than any 
other constraint-handling method on a representative set of  test problems. They seem to be a very 
promising area of research in structural design because they can be used with problems of any 
dimensionality and do not require the objective function given in an algebraic form [97]. 

Repair algorithms are particularly well-suited for combinatorial optimization problems [122].  They 
are particularly efficient when the cost of transformation of an infeasible solution into a feasible one is 
low [97].  They have been applied to many optimization problems [123-126].  An interesting aspect of 
repair algorithms is whether, or not, a repaired individual should replace the original infeasible individual 
in the population.  The spectrum of possible choices ranges from no replacement (repaired individuals are 
used only for evaluation and the original individuals remain in the population) [123,127] to the full 



 14

replacement (all infeasible individuals are replaced with the repaired ones) [128].  Also, some 
intermediate approaches have been suggested where original infeasible solutions are replaced with some 
probability by the repaired solutions [129].  In structural design, repair algorithms have been used e.g. in 
[130] to repair design concepts of steel structural systems in tall buildings not satisfying the symmetry 
requirement. 

Another group of constraint-handling techniques can be broadly categorized as methods based on 
separation of constraints and objectives [97].   Most representative techniques in this category include: 

1. Competitive coevolution in which potential solutions (possibly infeasible) are evolved in one 
population and constraints are contained (but not evolved) in another population [131].  
Individuals representing potential solutions have high fitness when they satisfy a large 
number of constraints from the other population.  On the other hand, an individual 
representing a constraint has high fitness if this constraint is violated by many potential 
solutions. 

2. Superiority of feasible points which assumes that all feasible solutions are better than 
infeasible ones [132,133]. 

3. Behavioral memory that uses a special technique of ordering constraints in which the 
algorithm proceeds by sequentially satisfying the constraints imposed on the problem [134]. 

4. Multiobjective optimization methods in which an original single-objective problem is 
transformed into a multiobjective one by treating all constraints in the original problem as 
objectives in the transformed problem [135-139].  A discussion on evolutionary 
multiobjective techniques is presented in section 6. 

Finally, the last category of constraint-handling methods includes hybrid methods in which EAs are 
combined with other methods to solve constrained problems.  In this category, several interesting methods 
were proposed, including: 

1. Lagrangian multipliers in which a hybrid EA is formed by integration of a penalty function 
method with mathematical programming methods including the primal-dual method and 
augmented Lagrangian function [140] that guarantees the generation of feasible solutions 
during the search [141,142]. 

2. Fuzzy logic in which an EA is combined with fuzzy logic.  In this method the original 
constraints are replaced by fuzzy constraints to allow a higher degree of tolerance for 
violating constraints that may occur close to the boundary of the feasible region [143,144]. 

3. Immune system models which have been initially proposed to maintain diversity in multi-
modal optimization problems [145,146] and later extended to solve constrained optimization 
problems [147-149]. 

4. Cultural algorithms which have been initially used to model cultural evolution [150] and 
later applied to numerical optimization problems involving constraints [151,152]. 

5. Ant colony algorithms inspired by colonies of real ants and initially proposed for solving 
combinatorial optimization problems [67,153] and subsequently extended to constrained 
optimization problems [66,154]. 

Excellent state-of-the-art reviews presenting theoretical and practical aspects of constraint-handling 
methods in evolutionary computation can be found in [38,97,98,155,156]. 

6. Multiobjective Evolutionary Design 
Evolutionary multiobjective optimization (EMOO) is one of the most active research subfields within the 
EC community nowadays.  EMOO methods are also highly relevant to engineering design problems 
because they were designed to handle multiple conflicting objectives which usually occur in real-world 
design problems.  This section introduces the SOTA in evolutionary multiobjective optimization and 
presents recent developments in applications of these techniques to structural design problems. 

There are two major goals of multiobjective optimization. First, one wants to find a large number of 
Pareto-optimal [157] solutions to a given problem.  Second, the solutions to the problem should be widely 
differentiated [158].  Classical search and optimization methods (like weighted sum method [159] or ε-
constraint method [160]) are not efficient for multiobjective problems because most of them cannot find 
multiple solutions in a single run, and even multiple runs do not guarantee finding different optimal 
solutions.  On the other hand, EAs are well-suited to solve these kinds of problems because they are 
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population-based and this property allows them to find an entire set of Pareto-optimal solutions in a single 
run.  Additionally, they are significantly more robust, compared to the classical methods, particularly 
when issues like the shape or continuity of the Pareto front are a matter of concern [161]. 

Initial research on using evolutionary methods for solving multiobjective problems was conducted by 
Rosenberg [162].  He suggested, but did not implement, a genetic search method involving multiple 
biochemical properties and objectives of a population of single-celled organisms.  The first actual 
implementation was conducted by Schaffer [163].  In his dissertation, he proposed and successfully 
applied the vector evaluated genetic algorithm (VEGA) to multiclass pattern discrimination tasks in 
machine learning.  Next significant progress in the field came with Goldberg’s [35] non-dominated 
sorting procedure.  Since that time, many researchers have developed various versions of multiobjective 
optimization algorithms.  The most popular approaches reported in the literature include [158,161,164]: 

1. Aggregating functions in which multiple objectives are combined into a single one using 
addition, multiplication, or any other combination of arithmetic operations [165].  Frequently, 
the weighted sum approach is adopted in which the objectives are multiplied by weighting 
coefficients representing the relative importance of the objectives [166,167].  The major 
drawbacks of this method include difficulties in determining the appropriate weights and the 
fact that improper Pareto solutions may be generated in the presence of non-convex search 
spaces regardless of the weights used [161]. 

2. Vector evaluated genetic algorithm (VEGA) proposed by Schaffer [168].  It handles multiple 
objectives by modifying the survival selection mechanism of the simple GA.  Several 
variations of the original VEGA have been proposed and applied to various problems, 
including a groundwater pollution containment problem [169], and conceptual design of 
airframes [170]. 

3. Target vector approaches in which targets or goals have to be defined by a decision maker 
for each objective [161].  This group of approaches includes goal programming [171], goal 
attainment [172], and min-max approach.  This last method, the weighted min-max, has been 
used by Haleja and Lin [173] to optimize a 10-bar plane truss in which weight and 
displacement were to be minimized, and by Coello Coello and Christiansen to optimize I-
beams [174] and truss designs [175]. 

4. Multi objective genetic algorithm (MOGA) proposed by Fonseca and Fleming [176].  It 
defines a rank of an individual based on the number of individuals in the current population 
by which it is dominated.  MOGA has been used in many engineering design applications 
including for example a gas turbine controller [177] and supersonic wings [178,179].  
Grierson and Khajehpour applied a variation of MOGA (called MGA) to conceptual design 
of office buildings [180]. 

5. Non-dominated sorting genetic algorithm (NSGA) defined by Srinivas and Deb [181] and 
based on Goldberg’s [35] notion of non-dominated sorting with a niche and speciation 
method.  An improved version of this algorithm, called NSGA-II [182], equipped with 
elitisms and parameter-free sharing approach has been recently applied to a topological 
optimum design problem by Hamda et al. [183].  In their approach, both the mass and the 
maximum displacement of a cantilever plate were minimized.  Deb and Goel [184] used a 
hybrid approach, NSGA-II and a hill climber, to solve several engineering shape optimization 
problems. 

6. Niched Pareto genetic algorithm (NPGA) proposed by Horn and Nafpliotis [185].  It uses a 
tournament selection scheme based on Pareto dominance.   

7. Strength Pareto evolutionary algorithms (SPEA) proposed by Zitzler and Thiele [186]  which 
integrates ideas from various existing evolutionary multiobjective optimization methods and 
adds some new elements to the evolutionary multiobjective algorithm.  

Comprehensive surveys of various evolutionary multiobjective optimization methods, including 
detailed discussion on their strengths and weaknesses, can be found in [40,156,158,161,164,187]. 

7. Coevolutionary Design 
Another important branch in evolutionary computation research that has recently received significant 
research attention is coevolution.  The authors refer to coevolution as a phenomenon occurring when two 
or more populations (some researchers also include in this category single population models) 
simultaneously evolve and where no objective fitness function exists but rather individual’s fitness is a 
subjective function of its interactions with individuals from coevolving populations [188,189].  Biological 
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coevolution encountered in many natural processes has been an inspiration for a class of coevolutionary 
algorithms.  Initial ideas of modeling coevolutionary behavior were formulated by Maynard Smith [190] 
and Axelrod  [191,192].  The competitive approach to coevolution has been since widely used in many 
game-theoretic models that arise in various disciplines, including economics, decision sciences, social 
sciences, etc. Initial ideas were further extended by Hillis [193], Paredis [131,194], and others and 
resulted in a new optimization procedure called a coevolutionary genetic algorithm (CGA).  Competitive 
coevolutionary models are especially suitable for problem domains where it is difficult to explicitly 
formulate an objective fitness function, for example in AI game-playing strategies, etc.  Paredis [131] 
applied competitive coevolutionary algorithms to constrained optimization problems.  Recently, they have 
been used e.g. to coevolve cellular automata and the training cases for the majority classification problem 
[195]. 

Potter and De Jong [196] proposed another approach to coevolution, namely a cooperative 
coevolutionary model.  The motivation for this model comes from problem domains where explicit 
notions of modularity have to be introduced [197].  This model also provides appropriate framework for 
evolving solutions in the form of co-adapted subcomponents, and hence is of crucial importance for many 
engineering design problems.  Usually, complex engineering design problems are decomposed into 
simpler problems and solved independently.  This works fine for problem domains where the principle of 
superposition can be applied, i.e. for problems that can be linearly decomposed.  That is no longer the 
case, however, for complex designs where nonlinear interactions take place among the subcomponents 
and make interacting members highly dependent on one another.  For these domains cooperative 
coevolutionary model is more suitable because it allows for an explicit subcomponent co-adaptation.  
Potter and De Jong [27] proposed a cooperative coevolutionary architecture for evolving co-adapted 
subcomponents and defined a cooperative coevolutionary evolutionary algorithm (CCEA).  This 
architecture has been subsequently analyzed from the evolutionary dynamics perspective [188,198] as 
well as from  the perspective of collaboration methods that have been used [188,199].  

In general, coevolutionary design processes can be defined by 7 major attributes shown in Table 3.  
They describe ways in which coevolutionary systems can be set up [188].  The attributes include the 
payoff quality, methods of fitness assignment, methods of interaction, update timing, problem 
decomposition, spatial topology, and population structure. 

 

Table 3: Coevolutionary architectures described in terms of attributes [188] 

No. Attribute Attribute Values 

1 Payoff quality Cooperative Competitive Non-
competitive 

2 Methods of fitness 
assignment Implicit Explicit  

3 Methods of 
interaction Sample size Selective bias Credit 

assignment 

4 Update timing Sequential Parallel  

5 Problem 
decomposition 

Partitioning 
methods 

Temporal 
decomposition  

6 Spatial topology Spatial 
embedding 

Non-spatial 
embedding  

7 Population structure Single Multiple  

 
Coevolutionary models have been applied to several engineering design problems, particularly in 

architectural design.  Maher and Poon [200] suggested that it is often the case in a design process that 
requirements are reconsidered when a design solution is offered.  Maher [201] introduced the idea of 
coevolutionary design, where requirements and solutions evolve separately.  Maher and co-workers 
[200,202-207] have been working on coevolutionary design in which two interrelated evolutionary 
processes occur.  The first one is the evolution of design solutions while the second one is the evolution 
of requirements.  In this case, the fitness function evolves with the requirements and it is different (local) 
at various stages of the coevolutionary design process. Also, the fitness function is used to identify the 
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surviving solutions, but its convergence simply means that there is no progress in the evolution since 
no new and better solutions are being produced. 

The only work known to the authors which uses cooperative coevolutionary algorithms in structural 
optimization was conducted by Nair and Keane [208].  They used CCEAs to optimize cross-sections of 
members of planar truss systems (single objective weight minimization problem).  The optimized truss 
systems were decomposed and coevolved in separate populations.   

8. Evolutionary Computation in Structural Engineering 
The history of evolutionary computation in structural engineering can be traced back to the mid 1970’s 
and early 1980’s [32,33,102].  The vast majority of, if not all, early papers discussing EC applied to 
structural engineering were focused on structural optimization problems.  Strong emphasis on various 
aspects of structural optimization remained the major focus of research in this field until now with 
relatively few exceptions which mostly addressed the issues of creativity in structural design and more 
sophisticated ways of representing structural systems [209].  

Emergence of EC in structural optimization was a consequence of encountered problems and 
deficiencies of formal methods, including mathematical programming and the optimality criteria method 
[210], when applied to more complicated structural design domains.  Formal structural optimization 
methods based on the assumption of continuity worked well on relatively well-formed problems in which 
the structural configuration of members was assumed and fixed during an optimization process while the 
task was to find the optimal sizing (dimensions) of members’ satisfying at the same time imposed design 
requirements and constraints.  The simple generalization of this problem by allowing variations of a 
system’s configuration greatly increased the complexity of the optimization task and rendered many 
traditional methods inadequate.  This issue became a starting point for a development of two major 
approaches to structural optimization that exist today: enhanced formal methods and heuristic methods. 

8.1 Structural Design Problems 

The problems addressed by structural optimization can be divided into three major categories: 
• Topology (layout) Optimization also known as Topological Optimum Design (TOD) – 

looking for an optimal material layout of an engineering system 
• Shape Optimization (SO) – seeking optimal contour, or shape, of a structural system whose 

topology is fixed 
• Sizing Optimization – searching for optimal cross-sections, or dimensions, of elements of a 

structural system whose topology and shape is fixed 
A structural design problem in each of the categories can be further classified as a continuum or 

discrete optimization problem. Figure 1, a modified version of a figure presented in [211], shows the three 
categories of structural optimization for continuum design problems while Figure 2 shows the same 
categories for discrete problems.   The three categories are closely related to three major stages of 
engineering design process described earlier, i.e. TOD is conducted in the conceptual design stage, SO in 
the embodiment design stage, and finally sizing optimization is performed in the detailed design stage.  
As stated earlier, the three categories of structural optimization problems have been addressed by both 
formal optimization methods and heuristic methods.   

Formal methods have been most successful when applied to sizing optimization problems which are 
usually well-defined in terms of mathematical models.  Mathematical programming methods [212] and 
optimality criteria method [210] have been efficiently applied to solve these problems.  Heuristic 
methods, including GAs, have also been applied to structural sizing problems [213,214].  On the other 
hand, TOD problems, located on the other end of the structural complexity spectrum, have been most 
successfully approached using heuristic methods, including simulated annealing [215] and EAs [76,216-
218].  Structural shape optimization has been a kind of middle ground where both formal and heuristic 
methods are used and complement one another. 
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Figure 1: Topology, shape, and sizing optimization for continuum structural design problems 

 
Figure 2: Topology, shape, and sizing optimization for discrete structural design problems 

8.2 Topological Optimum Design 

TOD has been an area of significant research efforts for the last forty years.  Initial investigations in the 
late 1970’s and early 1980’s were conducted using formal methods. Generally, TOD problems can be 
divided into two major groups: continuum TOD and discrete TOD.  In the continuum TOD, the design 
domain is discretized into small, rectangular elements (rectangular grid) where each element contains 
material or void.  Formal methods addressing this problem include the homogenization method [219] in 
which each element in a grid contains composite material of continuously-variable density in [0,1] and 
orientation.  Xie and Steven [220] proposed Evolutionary Structural Optimization (ESO) method which 
follows the concept of removing lightly stressed elements.  The name of this method is confusing because 
the method is not based on EC principles but rather evolution is understood in a more general context as a 
process of gradual removal of inefficient material from a structure. The EC approach to the continuum 
TOD problem based on GAs has been developed by Sandgren et al. [221] and Jensen [217].  In their 
approach, a GA determines the optimal layout of material and void in a cantilever plate (represented as a 
bit array) such that the structure’s weight is minimized subject to displacement and/or stress constraints.  
This work has been subsequently extended by Chapman et al. [218] to optimize finely-discretized design 
domains and to obtain families of highly fit designs.  Recently, more advanced forms of representations 
for continuum TOD problems have been proposed, including Voronoi-based representations [222,223], 
which are based on concepts of Voronoi diagrams studied in computational geometry, and IFS 
representations based on fractal theory [209].  Also, Hamda et al. [183] considered a continuum TOD as 
an evolutionary multiobjective optimization problem. 
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Discrete TOD problems consist in determining the optimal element connectivity from a finite, albeit 
large, number of possible connections [224].  Two major problem domains addressed in early research in 
this area include truss structures and frame structures.  An initial problem formulation in the context of 
linear programming using the ground structure approach was proposed by Dorn et al. [93].  While 
traditional linear programming methods proved to be successful in finding optimal topologies for small 
problems, they were rendered inadequate when the size of the problems considered was scaled up 
(increase in the number of design variables or the number of grid points in the ground structure approach). 
The discontinuous nature of this design problem was another reason for inefficiency of formal methods.  
Initial applications of GAs to optimize topology of discrete-member trusses were conducted by Shankar 
and Hajela [225], Hajela et al. [226], Grierson and Pak [227], and Hajela and Lee [216].  Bramlette and 
Bouchard [228] used EC to three-dimensional structures in the context of aircraft design.  Koumousis & 
Georgiou [229] applied GAs to the topological optimization of steel truss structures.  Bohnenberger et al.  
[230]  applied GAs to optimize topologies of truss structures in pylons.  Rajan [231] applied GAs to 
optimize topology, shape and member sizing of truss structures.  Nakanishi and Nakagiri [232,233] used 
GAs to solve 2D topology optimization problems for both frames and panel structures.  Rajeev and 
Krishnamoorthy [234] used variable-length string representations to optimize truss structures.  Murawski 
et al. [235] and Kicinger et al. [130] applied ES to optimize topology of steel structural systems in tall 
buildings.  Soh and Yang [236] introduced GP-based approach to TOD of truss structures.  In a 
subsequent work [237], they proposed a GP-based methodology for the automated optimum design of 
structures.  Recently, Azid et al. [238] applied a GA with real-valued representations to optimize 
topologies of three-dimensional trusses. 

SOTA reviews of current research in formal methods for TOD problems can be found in Rozvany et 
al. [239], Bendsoe and Sigmund [240], and Xie and Steven [241] whereas recent research developments 
in applications of EC to TOD problems can be found in [5]. 

8.3 Shape Optimization 

Shape optimization maintains a fixed topology of structural designs but changes their shape or node 
locations.  Similar to the TOD case, shape optimization problems can be divided into two major groups: 
continuum SO and discrete SO.  Continuum SO addresses shape optimization problems in the context of 
2D or 3D continuum structures.  Traditionally, in continuum SO, “a shape is defined by the oriented 
boundary curves [2D structures] or boundary surfaces [3D structures] of the body … and the optimal form 
of these boundaries is computed” [240].  Formal methods for solving continuum SO problems are well-
established and extensive literature is available [242-244].  Sensitivity analysis for shape optimization 
problems is discussed in [245] and application of homogenization method to this problem is offered in 
[246].  ESO, introduced earlier, has also been used in shape optimization [220]. Evolutionary computation 
methods have also been applied to solve continuum SO problems.  Research on shape optimization of 
structural members has been conducted by Jenkins [247,248], Richards and Sheppard [249], and Watabe 
and Okino [250]. Kita and Tanie [251,252] and Annicchiarico and Cerrolaza [253,254] used GAs to 
optimize the shape of continuum 2D structures through B-spline functions.  A GA was used to find 
optimal locations of knots of B-spline functions.  Wibowo and Besari [255] applied GAs to optimize 
shapes of oval axially symmetric shells. Annicchiarico and Cerrolaza [256] applied GAs to shape 
optimization of 3D finite element models. Woon et al. [257] investigated alternative encodings of GAs for 
continuum SO using the actual coordinates of boundary nodes. 

Discrete SO methods conduct shape optimization through variations in geometry of discrete truss and 
frame structures introduced through changes in locations of nodes [258,259].  Various mathematical 
programming methods have been applied to discrete SO problems, including linear, nonlinear, and 
dynamic programming [224].  In the case of shape optimization of truss structures, discrete TOD methods 
using the ground structure have been extended to include optimization of the nodal point locations for a 
given number and connectivity of nodal points [240].  Initial applications of EC methods to discrete SO 
problems have been conducted by Grierson and Pak [227,260] in the context of truss structures.  Soh and 
Yang [261] applied fuzzy controlled GAs to optimize the shape of planar and spatial truss structures.  
Bohnenberger et al. [230] applied GAs to optimize shapes of truss structures in pylons.  Keane and Brown 
[262] used GAs to optimize the shape of a satellite boom with respect to its vibration performance.  

SOTA reviews in traditional mathematical approaches to continuum shape optimization problems are 
presented in [263,264].  Recent developments in formal methods for discrete SO problems can be found 
in [240,265].  Recent developments in applications of GAs to design of steel structures are described in 
[2]. 
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8.4 Sizing Optimization 

Sizing optimization problems involve finding optimal cross-sections, or dimensions, of elements of a 
structural system whose topology and shape is fixed.  It is the easiest of the three structural optimization 
problems discussed earlier and relatively well-understood.  Research on formal methods of solving these 
kinds of problems has a long history and extensive literature is available on this topic [266].  First 
applications of EC to structural optimization problems involved sizing optimization.  Lawo and Thierauf 
[33] used ES to optimize members of a planar six-story frame subjected to earthquake loading.  Goldberg 
and Samtani [102] applied a GA to optimize cross-sections of members of a 10-bar plane truss.  Hajela 
[267,268] investigated cross-section optimization of discrete member trusses using GAs.  Deb [269] 
applied GAs to optimize designs of welded beams.  Jenkins [270] proposed a GA-based design 
environment to optimize plane frame structures.  Rajeev and Krishnamoorthy [234] applied GAs to 
optimize cross-sections of generalized trusses.  Recently, Jarmai et al. [271] applied genetic algorithms to 
design welded I-section frames and compared their performance with other nonlinear optimization 
algorithms operating in a constrained representation space. 

8.5 Historical Perspective 

A summary of major applications of EC in structural design since its beginning in the mid 1970’s is 
provided in a chronological order in Table 4.  The applications are classified with respect to the 
application domain, and major EC characteristics, including the representation type, the evolutionary 
algorithm used, the fitness function, and methods of handling constraints.  A chronological classification 
of the EC applications in structural design clearly shows three major periods in the development of the 
field: 

1. Period of early explorations (1986-1995) 
During this initial stage, simple evolutionary algorithms (mainly, if not exclusively ES and GAs, 
sometimes combined with other traditional optimization methods) were applied to relatively 
simple structural engineering problems (sizing optimization of simple 2D engineering systems).  
Researchers focused on using standard design representations, i.e. binary strings and real-valued 
vectors, single objective fitness functions (usually the minimization of weight) and fairly 
traditional constraint-handling methods involving various variations of the penalty functions (see 
section 5.1). 

2. Period of exploration & exploitation (1996-2000) 
This period can be best characterized as a period of exploring alternative choices for various 
components of the evolutionary algorithms and improving the process of optimization of more 
complex design problems.  Researchers explored various kinds of representations of engineering 
systems, including Voronoi-based representations and integer-based representations.  Significant 
research efforts were also focused on tuning the genetic operators to particular problems, e.g. by 
adapting mutation and crossover rates during the evolutionary design processes.  Initial 
exploration of alternative constraint-handling methods has also been conducted and included e.g. 
immune networks, behavioral memory, and fuzzy logic.  Several multiobjective approaches to 
structural design problems have been reported as well. 

3. Period of rapid growth (2001-present) 
Currently, evolutionary computation is a fully recognized structural optimization paradigm and 
is frequently used not only by researchers but also by practitioners.  Nowadays, research efforts 
are focused on solving much more complex structural design problems and on studying more 
advanced evolutionary models, including parallel EAs, multiobjective optimization, and 
variable-length representations, in the context of structural design.  Also, initial exploration of 
the potential of using coevolutionary models is being conducted. 

Thus, the field of evolutionary design is far from maturity and there is still a lot to be done.  A discussion 
of the most promising research paths for the future is described in the next section. 

9. Discussion and Conclusions 
The field of evolutionary design continues to rapidly grow and develop in many exciting new directions.  
In this section, the authors summarize several of the most promising areas of new research.  They can be 
grouped into the following five classes: 
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A. Integrated structural design support tools 

As the size and complexity of structural problems in the field of evolutionary design continues to 
increase, there are several scaling-up issues that need to be addressed, including computation time 
and parallel architectures.  Computation time in evolutionary design mostly depends on evaluation 
of the fitness of generated designs (frequently 90-95%, or more, of computation time).  In the past, 
when computational costs were high, researchers developed a variety of techniques to minimize 
the computational effort.  One of the most popular techniques involved separation of the stages of 
conceptual, preliminary, and detailed design, and developing separate tools for each stage [6]. 
Nowadays, however, the cost of computation continues to decrease and this trend is likely to 
persist in the future.  Also, parallel computer architectures are now readily available.  Considering 
the fact that EAs have a natural mapping onto parallel architectures, it is the authors’ belief that 
computational costs should not be the primary factor in developing new integrated evolutionary-
based structural design support tools.  These tools will treat all the stages of a design process as 
phases of a single integrated design process.  Research efforts in this direction are led by Parmee 
and co-workers [42]. 

B. Open-ended representations 

A appropriate representation of an engineering system is one of the key issues in any structural 
design application.  Today, it becomes even more important because the increased complexity of 
considered design problems raises some difficult internal EA issues on how to best represent and 
evolve complex designs [6].  Another motivation comes from the fact that there is an emerging 
trend to apply evolutionary design techniques not only to strictly optimization tasks but rather this 
technique is being gradually more and more useful in finding novel design concepts.  Both issues 
lead to open-ended representations (see section 4) which don’t encode entire designs but rather 
rules on how to construct these designs [272,273].  Representations of this type are also inspired 
by the processes occurring in nature, where we observe evolution manipulating the genetic plans 
for complex objects rather than the objects themselves.  The organisms are then built from the 
plans via a developmental process called morphogenesis.   

C. Alternative constraint-handling methods 

Almost every structural design problem involves some kind of constraints.  Up to very recently, 
various variations of penalty functions were virtually the only method of handling constraints.  On 
the other hand, a number of applications showed that there are many difficulties associated with 
this approach when applied to highly constrained optimization problems.  Studies focused on 
estimating a true potential of alternative constraint-handling methods (discussed in section 5) 
constitute another promising area for future research of vital importance to structural design. 

D. Multiobjective structural design 

Structural design problems are inherently multiobjective and often involve a relatively large 
number of conflicting criteria.  So far, research in evolutionary structural design concentrated 
almost exclusively, with few notable exceptions, on single objective problems.  At the same time, 
the field of evolutionary multiobjective optimization provides new and efficient methods, 
described in section 6, of solving these types of problems.  Multiobjective structural design may 
become one of the most promising areas of research in structural design, particularly when not a 
single optimal design solution is sought but rather a set of alternative optimal designs. 

E. Coevolutionary structural design 

Coevolutionary design is an emerging area of research with many unanswered questions.  There is 
a lot to be done to understand the true potential of this paradigm in structural design.  Initial 
findings coming from evolutionary computation community suggest that coevolutionary models 
might be particularly suitable for complex design spaces that can be relatively well decomposed 
and when the major goal is not the optimality of design solutions in a global sense, but rather their 
robustness (design for reliability) [188].  As stated earlier, very little has been done in this area and 
it is potentially one of the most promising paths of future research. 

Evolutionary computation is becoming a computational paradigm that is increasingly attractive for 
civil engineers.  This phenomenon is a part of the ongoing Information Technology Revolution and is 
directly related to the changing nature of the use of computers from the exclusive applications in the 
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analysis to their holistic use in design, including conceptual design, integrated design, etc.  Research on 
evolutionary computation in structural design is now fully recognized research activity and reported in the 
leading journals in this area, including: 

• Journal of Computing in Civil Engineering 
• Journal of Structural Engineering 
• Computers & Structures 
• Advances in Engineering Software 
• Structural and Multidisciplinary Optimization 
• Engineering Optimization 
• AI in Engineering Design 

Also, research findings considering evolutionary computation in structural design are regularly presented 
during several respected international conferences and workshops: 

• International Conference on Adaptive Computing in Design and Manufacture (ACDM) 
• World Congress of Structural and Multidisciplinary Optimization (WCSMO) 
• ASME Conference On Design 
• AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 

(SDM) 
• Genetic and Evolutionary Computation Conference (GECCO) 
• International Workshop on Information Technology in Civil Engineering (ASCE) 
• International Workshop of the European Group for Intelligent Computing in Engineering 

(EG-ICE) 
After years of research, the field of evolutionary computation in structural design has generated 

significant amount of both theoretical and empirical knowledge, which justifies the transfer of knowledge, 
technologies and tools from the academia to the practicing structural designers. Finally, there is a chance 
to close the existing gap between the needs of designers and the evolutionary design scholars. 

Evolutionary design is a fascinating interdisciplinary research area, where concepts from computer 
science, heuristics, design and inventive engineering and structural engineering are integrated and 
transformed in the process. In this way, a new understanding of structural design emerges in the tradition 
of synesthesia proposed by Leonardo DaVinci and still continued by creative scholars and practitioners.  
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