
PUBLIC KEY CRYPTOGRAPHY USING HARDWARE/SOFTWARE CO-DESIGN
FOR THE INTERNET OF THINGS

by

Ahmad Salman
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University
In Partial fulfillment of

The Requirements for the Degree
of

Doctor of Philosophy
Electrical and Computer Engineering

Committee:

Dr. Jens-Peter Kaps, Dissertation Director

Dr. Kris Gaj, Committee Member

Dr. Houman Homayoun, Committee Member

Dr. Angelos Stavrou, Committee Member

Dr. Monson H. Hayes, Department Chair

Dr. Kenneth Ball, Dean, The Volgenau
School of Engineering

Date: Summer Semester 2017
George Mason University
Fairfax, VA

Public Key Cryptography Using Hardware/Software Co-design for The Internet Of Things

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Ahmad Salman
Master of Science

George Mason University, 2011
Bachelor of Science

Arab Academy for Science and Technology, 2002

Director: Dr. Jens-Peter Kaps, Professor
Department of Electrical and Computer Engineering

Summer Semester 2017
George Mason University

Fairfax, VA

Copyright c© 2017 by Ahmad Salman
All Rights Reserved

ii

Dedication

I dedicate this dissertation to the soul of my father, Ali Salman, and to my mother, Fatma
Mahmoud. My father has always been the most influential person in my life. He taught me
the importance of knowledge and science and to aim for the sky. I learned from my mother
to be strong, kind, fair and never to give up. I also would like to dedicate this dissertation
to my brother and sisters, Akram, Hadeel and Mona Salman for their continues support
and love. You are the greatest family one can ask for. Last but not least, I dedicate this
dissertation to my mentor Mahmoud Almahdy who taught me how to think logically and
be a better person. Thank you all for all your unconditional love and support, it has been,
without a doubt, a key factor to my success.

iii

Acknowledgments

It’s a known fact that a research work will have many people instrumental in reaching
its successful completion. First, I would like to thank God Almighty for any achievement
and success he has graced me with in this life. Second, I would like to sincerely thank my
advisor, Dr. Jens-Peter Kaps. I cannot thank him enough for his patience, support and
guidance during the course of my studies. He is the reason I fell in love with cryptography
and its applications and he is also the reason for choosing a career path in the academic field.
Third, I would like to thank Dr. Kris Gaj for his guidance, support and most importantly
for teaching me to pay attentions to details and aim for perfection. Finally, I would like
to thank my colleagues at the Cryptographic Engineering Research Group (CERG). Most
notable are my partners in crime: Marcin Rogawski, Ekawat Homsirikamol (even if his
codes are hard to maintain), Panasayya Yalla, and Rajesh Velegalati. Without their help
and support I would probably still be doing my masters now. I was very fortunate to
work alongside the members of CERG who were constructive, supportive, and provided an
excellent atmosphere for research. My time with them will always be cherished.

iv

Table of Contents

Page

List of Tables . viii

List of Figures . x

Abstract . xii

1 Introduction . 1

1.1 Motivation . 1

2 Background . 6

2.1 Overview . 6

2.2 Introduction to Pairings . 7

2.3 Pairing Parameters . 8

2.3.1 Finite Fields . 8

2.3.2 Embedding Degree . 8

2.3.3 Elliptic Curves . 9

2.3.4 Pairing Types . 9

2.4 Pairing Computations and Optimizations 11

2.5 Pairing Implementations . 12

3 Previous Work . 16

3.1 Resource-Constrained Devices . 16

3.2 Software Implementations . 17

3.3 Hardware Implementations . 19

3.4 Hardware/Software Co-Design Implementations 20

3.5 Summary . 22

4 Contributions . 24

5 Methodology . 25

5.1 Choosing Pairing Parameters . 25

5.1.1 Barreto-Naehrig Elliptic Curves . 25

5.1.2 Optimal-Ate Pairing . 25

5.1.3 Coordinate System and Counter Measures 26

5.2 Building the Design . 29

v

5.2.1 Partitioning the Design . 30

5.3 Hardware Implementations . 30

5.3.1 Montgomery Multiplier . 30

5.3.2 Adder/Subtractor . 30

5.4 ECC Multiplier . 31

5.5 Software Implementations . 32

5.6 Power Measurements . 32

6 Hardware Software Co-Design . 33

6.1 Overview . 33

6.2 Processing System (PS) . 33

6.2.1 ZYNQ7 Processing System . 33

6.2.2 Processor System Reset . 34

6.3 AXI Interconnects . 34

6.4 Programmable Logic (PL) . 35

6.4.1 Input FIFO . 35

6.4.2 Output FIFO . 36

6.4.3 AXI Direct Memory Access (DMA) 36

6.4.4 AXI Timer . 36

6.4.5 Concat . 36

7 Hardware Implementations . 37

7.1 Montgomery Multiplication . 37

7.2 High-Speed Montgomery Multiplier . 39

7.3 Lightweight Montgomery Multiplier . 40

7.4 Modular Adder/Subtractor (MAS) . 42

8 ECC Multiplier . 47

8.1 Background . 47

8.2 Proposed Design . 48

8.2.1 Scheduler . 51

8.2.2 Memory and Memory Controller . 52

8.2.3 Modular Adder-Subtracter (MAS) 55

8.2.4 Modular Montgomery Multiplier (MMM) 55

8.3 Implementations . 56

8.3.1 Implementation Decisions . 56

9 Software Implementation . 58

vi

10 Power Measurements . 60

11 Results . 69

11.1 Overview . 69

11.2 ECC Multiplier Results . 69

11.3 Pairing Hardware/Software Co-Design Results 73

11.3.1 Power Measurements and Energy Consumption 74

12 Conclusions and Future Work . 83

vii

List of Tables

Table Page

2.1 Pairing Parameters . 10

2.2 FPGA Results . 14

2.3 Microcontroller Results . 15

5.1 Comparison Between ECC Coordinate Systems 27

7.1 Number of Clock Cycles T required to complete one Montgomery Multipli-

cation using Architecture 2 . 40

7.2 Number of Clock Cycles T Required to Complete one Montgomery Multipli-

cation Using for a Given n . 41

7.3 Multiplexer Settings in Subtraction Mode 42

8.1 Encoding of the field size and the corresponding values of the parameter R

used in Montgomery multiplication . 50

8.2 Interface Signals . 50

8.3 Unprotected Point Addition Algorithm and The Corresponding ROM Entries 53

8.4 Unprotected Point Doubling Algorithm and The Corresponding ROM Entries 53

8.5 Protected Point Addition Algorithm and The Corresponding ROM Entries 54

8.6 Protected Point Doubling Algorithm and The Corresponding ROM Entries 54

8.7 Memory Structure . 55

11.1 FPGA Families Used For Our Implementations 70

11.2 Latency and Throughput for a Given Field and Width for High-Speed . . . 71

11.3 Latency and Throughput for a Given Field and Number of PE Units for Our

Lightweight Design . 72

11.4 Implementation Results of Protected High-Speed Design 77

11.5 Implementation Results of Protected Lightweight Designs 78

11.6 Implementation Results of Unprotected High-Speed Designs on ASICs . . . 79

11.7 Implementation Results of Protected High-Speed Designs on ASICs 79

11.8 Implementation Results of Unprotected Lightweight Designs on ASICs . . . 79

11.9 Implementation Results of Protected Lightweight Designs on ASICs 79

viii

11.10Comparison of the High-Speed Design . 80

11.11Comparison of Lightweight Results . 80

11.12High-speed Power Estimates Using Xilinx Xpower Analyzer and Libero SoC 81

11.13Lightweight Power Estimates Using Xilinx Xpower Analyzer and Libero SoC 81

11.14Implementation Results of the Montgomery Multiplier on Zynq-7020 Xilinx

FPGA . 81

11.15Performance of the Hardware/Software Co-design and the Software Imple-

mentation Pairing Operations . 81

11.16Power Measurements and Energy Results for Various Field Sizes 82

ix

List of Figures

Figure Page

1.1 Cryptography Services Provided using Pairings 3

1.2 Boneh-Franklin Identity-Based Encryption 4

2.1 Pairings Computation Hierarchy . 11

3.1 Implementation of PBC . 18

3.2 Illustration of a Sensor Node using a Hardware/Software Model 22

5.1 Partitioning of Hardware and Software . 31

6.1 Simplified View for the Pairings Hardware/Software Co-design 34

6.2 Block Diagram for the Pairings Hardware/Software Co-design 35

7.1 Montgomery Multiplication According to Architecture 2 43

7.2 High-Speed Design Supporting Different Field Sizes 44

7.3 Reading and Formating of X . 44

7.4 Montgomery Multiplication According to Architecture 1 45

7.5 Main Computational Unit . 46

7.6 Inside the PE Unit of the Lightweight Design 46

7.7 Modular Adder/Subtractor (MAS) Module 46

8.1 Top Level Architecture . 49

8.2 Operation Flow Chart . 51

8.3 Example of how the 9 MSB Bits are Stored 56

10.1 FOBOS Components and Events . 61

10.2 Power Trace for the 160-bit Montgomery Multiplier Measured at Clock Fre-

quency of 5-MHz . 62

10.3 Power Trace for the 160-bit Montgomery Multiplier Measured at Clock Fre-

quency of 10-MHz . 63

10.4 Power Trace for the 160-bit Montgomery Multiplier Measured at Clock Fre-

quency of 20-MHz . 64

10.5 Power Trace for the 256-bit Montgomery Multiplier Measured at Clock Fre-

quency of 5-MHz . 65

x

10.6 Power Trace for the 256-bit Montgomery Multiplier Measured at Clock Fre-

quency of 10-MHz . 66

10.7 Power Trace for the 256-bit Montgomery Multiplier Measured at Clock Fre-

quency of 20-MHz . 67

11.1 Average power (mW) shown on vertical axis) for multipliers with field sizes

of 160-bit (left) and 256-bit (right). PEs are shown on horizontal axis. Tri-

angles represent a frequency of 5 MHz; Diamonds represent 10 MHz; Circles

represent 20 MHz . 76

xi

Abstract

PUBLIC KEY CRYPTOGRAPHY USING HARDWARE/SOFTWARE CO-DESIGN FOR
THE INTERNET OF THINGS

Ahmad Salman, PhD

George Mason University, 2017

Dissertation Director: Dr. Jens-Peter Kaps

Embedded electronic devices and sensors are playing a major role in bridging the gap

between the physical world and the virtual world. Billions of devices such as smartphones,

smart watches, wearables, medical implants, and Wireless Sensor Nodes (WSN) are con-

sidered building blocks in making ”The Internet Of Things” (IoT) a reality. Such devices

often carry sensitive data and are used in critical applications, making it essential to create

a secure environment to protect the data they gather at rest and in transit. With these

devices being limited in their power, energy, area, and memory, choosing a suitable cryp-

tographic system to provide the necessary security services becomes a challenge. Pairing

Based Cryptography (PBC) is among the leading candidates to bringing Public-Key Cryp-

tography (PKC) to lightweight devices as it provides services that traditional PKC systems

lack. For example, PBC enables a non-interactive key agreement in which two parties can

agree on a joint secret key without ever exchanging any information through either public

or private channels. It also allows for new users to be added to the communication scheme

at any given time and compromising one users node does not require additional steps, such

as revoking the compromised keys, to protect the rest of the network.

For these reasons and more, the area of creating lightweight implementations for different

building blocks of PBC in software and hardware is an active research area and a hot

topic among the cryptographic community. In this research, we will study bilinear pairings

and their lightweight implementations in software, hardware, and hardware/software co-

design in efforts to create a design that is efficient, flexible, and lightweight. We will also

study the effect of adding countermeasures to side-channel attacks on area usage and power

consumption. Finally, we will perform measurements on the power and energy consumption

of the implemented designs. Our goal is to exploit the benefits of using PBC over classical

public key for applications running on resource constraint devices. The work will be divided

into two main phases. The first phase will focus on the selection of pairing parameters

(finite field, elliptic curve, embedding degree) that provide an acceptable security level while

meeting efficiency requirements for resource constraint devices. The second phase will focus

on designing an efficient hardware accelerator for computationally intensive operations in

pairing-based cryptography to achieve acceptable speed while minimizing area and power

consumption.

Chapter 1: Introduction

1.1 Motivation

The Internet of Things (IoT) describes a network consisting of objects and living things that

gather data to transfer among its many members without the necessity of human-to-human

or human-to-machine interaction. Billions of devices such as smart phones, tablets, and

wearables with different sensors gather and share information on a very large scale which

keeps on expanding every day. Applications such as forest fire detection by monitoring

combustion gases and preemptive fire conditions, creating a smart grid where energy con-

sumption can be monitored and managed, and more are examples of what the IoT can do

to create a smarter and safer world.

With such applications, the data gathered and shared is highly sensitive and needs to

be protected at rest and in transition to prevent it from falling into the wrong hands. For

such networks, with large numbers of existing nodes and the constant addition of new ones,

conventional cryptographic algorithms either fall short of providing the required security

services or do not provide them at acceptable costs.

Currently security of resource-constrained devices is provided through symmetric key

cryptography, which uses small key sizes, making computations faster, and does not require

much memory to execute. The problem with symmetric key cryptography is that session

keys need to be embedded in each node at initial implementation, making these keys vul-

nerable to possible attacks. Furthermore, additional computations need to be performed by

different nodes to insure the synchronization of the session key used by multiple nodes at a

time. While operations like authentication and encryption can be efficiently performed us-

ing symmetric key algorithms, other important operations such as digital signatures are not

1

possible with such a scheme since all communicating nodes share the same session key. Pub-

lic Key Cryptography (PKC) provides a solution to the noted issues, but it has a problem

of its own. It requires a lot of communication between different parties for key agreement

and establishment resulting in an increase of power and energy consumption and it is also

vulnerable to classic attacks like the man-in-the-middle attack. A solution to the issues

raised by Public Key Cryptography can be addressed using Identity Based Cryptography

(IBC).

IBC has shown a great potential for solving the key management problem through

a non-complicated and cheap solution that does not require key certificates, Certificate

Revocation Lists (CRLs), or Public Key Infrastructure (PKI) [1],[2]. Although the need

for an Identity-Based Encryption scheme was raised during the early 80’s [3], it has only

been practical through Pairing-Based Cryptography (PBC) almost two decades later [4],[5].

Unlike classical public key crypto-systems, PBC has the ability to establish protocols that do

not require key agreement communications prior to establishing a communication channel

between two parties.

As can be seen in Figure 1.1a, a common key can be calculated by Alice and Bob

without the need to communicate any information publicly or through a secure connection.

This is known as the non-interactive key agreement protocol, made possible and practical

through PBC [6]. In such a protocol, Alice and Bob need only to know the unique ID of

one another, which can be known in advance, and their own private keys, which are issued

to each of them prior to any communications from a trusted authority. The protocol can

easily be extended at any point in time to include more communicating parties without

changing the infrastructure. Also, if any user’s key is compromised, this will only affect the

communications of this user and none of the communications between other users in the

scheme.

This scheme is not limited to the key agreement protocol; it can also include other

cryptography and security services such as confidentiality and non-repudiation by adding

an encryption algorithm and a pairing-based signature algorithm as shown in Figure 1.1b.

2

H
1

PBC

KA

PBC

KA

1

P P
ID(Bob)

S
ID(Alice) ID(Alice)

= sP
ID(Alice)

S
ID(Bob)

= sP
ID(Bob)

ID(Bob)AB

ID(Bob)

ID(Bob)AB

AB

AB

AB

AB

Alice Bob

H

ID(Bob) ID(Alice)

K = H (e(P ,S))
s

ID(Bob)

ID(Bob)

ID(Bob)

2

2

22

2

2

K = H (e(P ,sP))
ID(Alice)

ID(Alice)
K = H (e(P ,P))

s

K = H (e(P ,S))
ID(Alice)

K = H (e(P ,S))
ID(Alice)

ID(Alice)

ID(Alice)
K = H (e(P ,S))

(a) authenticated identity-based non-interactive
key agreement

PBC

ID(Alice)
P

1

ID(Alice)

AB
K

PBC

Bob

S = sP
ID(Alice) ID(Alice)

valid/
invalid

M, SGN (M) M

M

LEK
AB

K
AB

(M, SGN (M))

Alice

LELE

A

A

SGN SGN

H

A
M, SGN (M)

(b) exchange of signed and encrypted messages us-
ing pairing-based short signatures

Figure 1.1: Cryptography Services Provided using Pairings

Another important property that PBC provides is the ability to create encrypted mes-

sages that can only be decrypted within a given time period. As shown in Figure 1.2, a

public key for user Bob is derived from his unique ID and the desired period of communi-

cation. Only when Bob receives a secure email in a given period, a simple authenticated

and confidential connection to the Trusted Authority (implemented, for example, as a TLS-

protected server) enables him to receive a private key necessary to access all secret messages

directed to him during the aforementioned period.

Through this scheme, if a key is lost, it can be regenerated by the trusted authority to

match the user and the time of the message they received and want to decrypt. IBE also

supports further protection of the data by giving the option to only decrypt messages at a

certain date and time and make an encrypted message unreadable after a specified period.

IBE has been standardized by IEEE [7] and is being used commercially [8], proving to be

more cost efficient than public-key crypto-systems.

IBE and other protocols based on pairings such as one-round tripartite key agreement [9]

and secret handshake [10], make pairing-based cryptography a promising new alternative to

3

H
1

ID(Bob)

Alice S
ID(Bob)

ID(Bob)

TA
P

P
ID(Bob)

P
TA

PBC ENC PBC DECM M
C

TA

S
ID(Bob)

Bob

TA

r
C = (U,V) = (rP, M + H (e(P ,P))ID(Bob)2

P r

Figure 1.2: Boneh-Franklin Identity-Based Encryption

classical public key for many reasons. One reason is the energy saving it offers on key agree-

ment, making it an appealing choice for resource-constrained devices like Wireless Sensor

Nodes (WSNs), for instance, where the majority of energy (above 90%) is spent on estab-

lishing communication and transmitting data rather than on performing calculations [11].

Since no interaction between two sensor nodes is required ahead of time, they can establish a

common secret key without ever exchanging any data or keys. Combining this scheme with

the protocol from Figure:1.1b using a lightweight encryption cipher and a pairing-based

BLS short signature scheme to minimized the signature length [5] would provide all the

security services needed by WSNs while saving on energy consumption, which is the main

concern for these devices.

In this dissertation, we will focus on researching the effectiveness of IBC based on

pairing transformations for resource-constrained devices and try to answer some of the

questions about the practicality of a hardware/software co-design solution over the current

4

software solutions used in commercial resource-constrained devices. We will try to answer

the following question:

“Can the recent advances in Pairing-Based Cryptography and FPGA devices equipped

with embedded microprocessors be used to develop a hardware/software co-design imple-

mentation of Public Key Cryptography for Wireless Sensor Nodes that can outperform

the currently used software implementations on micro-controllers, in terms of throughput,

while maintaining the flexibility of software’s memory usage, low power and low energy

consumption?”

5

Chapter 2: Background

2.1 Overview

Asymmetric public key cryptography is essential for different applications that require secure

communication between different parties in a network. Classical public key algorithms like

RSA and ECC have long been used and proven to be secure. But, as mentioned before,

they lack the ability to address some issues that have surfaced over the years since the start

of the modern era of cryptography. IBC has shown the potential to tackle these issues and

promises more features that are essential for the age of the Internet of Things.

The main advantages of IBC can be summarized in the following points

• No certificates are required (A recipient’s public key is derived from their identity by

a trusted authority).

• No pre-enrollment needed in order to communicate with other parties in a network.

• No preparation is required on the part of the recipient to receive an encrypted message.

Which is a big advantage for resource constrained devices.

• Enables postdating of messages for future decryption.

• Keys have a time stamp and expire, requiring no additional steps to revoke them

(unlike in a traditional public key system where keys must be revoked if compromised).

Pairing Based Cryptography (PBC) is a good example of IBC. The fact that certain

types of pairings can be defined over elliptic curves made them more appealing to the crypto-

graphic community, as ECC has been in use for a while and many efficient implementations

for them exist in software and hardware alike. But what is pairing and how does it work?

6

In the following section we will shed some light on pairings and their parameters, but we

will not go into too much details regarding the mathematics behind them. More details

about the topic can be learned from [12].

2.2 Introduction to Pairings

Bilinear pairing is a transformation e of the form

e: G1 x G2 → GT

G1 and G2 are disjoint cyclic subgroups of the same prime order r defined in the elliptic

curve E and the full extension of finite field F of size q (E(Fqk)). GT , known as the target

group, is a subgroup of the same prime order r and GT are groups of prime order defined

in the multiplicative group of the full extension field noted as F ∗
qk

.Where k is known as the

embedding degree, which we will discuss shortly.

Assume that P and Q are two points on elliptic curve E that belong to groups G1 and

G2 respectively. Also assuming that a and b are scalars that belong to Z, one way to show

the bilinearity of e is as follows

e([a]P, [b]Q) = e(P, [b]Q)a = e([a]P,Q)b = e(P,Q)ab = e([b]P, [a]Q)

In Figure 1.1a two parties, Alice and Bob, would like to communicate with each other

secretly. The first step is to calculate a common secret key KAB to use for encrypting

information. If Alice knows the value of SID(Alice) secretly and Bob knows the value

of SID(Bob) secretly and everything else from the figure’s parameters(i.e. Alice’s pub-

lic ID PID(Alice), Bob’s public ID PID(Bob), pairing algorithm e, and hash algorithm H)

is public known information, then Alice and Bob can both calculate the same KAB =

H2(e(PID(Bob), SID(Alice))) = H2(e(PID(Alice), SID(Bob))). This is known as non-interactive

key-agreement, which is one of the features that is offered by pairings.

7

2.3 Pairing Parameters

For an efficient and secure PBC, there are a number of parameters that need to be consid-

ered. In this section, we will take a look at these parameters.

2.3.1 Finite Fields

A finite field, F , is a group of prime characteristic with defined ring structure on which the

operations of addition, subtraction, multiplication and inversion aree defined. The numbers

of elements in a finite field is determined by the field order, which is based on a prime

number or a power of a prime. Elliptic curves are groups which are defined over fields.

Galois Fields (GF) are at the base of ECC operations and protocols. There are two main

types of fields that are used in cryptographic applications:

• Prime Fields GF (p) : Where operations over these type of fields are performed modulo

a prime number p.

• Binary Fields GF (2): Where operations over these fields are done modulo an irre-

ducible polynomial F (g).

Other types of fields such as prime extension fields GF (Pm) can theoretically be used

for cryptographic applications, but implementations for curves defined over them have not

been very promising [13].

2.3.2 Embedding Degree

The embedding degree, k, is defined as the minimum number such that r|qk−1. The choice

of the embedding degree is largely dependent on the type of the curve used. Embedding

degree is important because it dictates the achievable security level on a particular curve.

It should be large enough to ensure security yet small enough to allow for efficient field

operation.

8

2.3.3 Elliptic Curves

Elliptic curves are generally classified as either Weirestrass form or non-Weierstrass form

curves. Both form of curves have an additional property of being either a supersingular

curve or an ordinary curve.

• Supersingular curves: Over prime field, an elliptic curve E is called supersingular if

the number of points on the curve #E(Fq) = q + 1. Supersingular curves are special

because they are equipped with their own distortion map φ that takes a point on

E(Fq) to a point on E(Fqk), where k is the embedding degree. The embedding degree

for supersingular curves is limited to values 2, 4, or 6 which limits the choices for such

curves.

• Ordinary curves: Ordinary curves are curves that do not satisfy the condition for

supersingular curves. Their advantage over supersingular curves is that the embedding

degree can have any value, increasing the choices for these type of curves.

2.3.4 Pairing Types

Pairings are classified into different types according to the functionalities and properties that

they can achieve within a protocol. There are currently four different types of pairings [14]

[15]

• Type 1: In this type, the curve used is supersingular and G1 = G2. This is the only

type where supersingular curves are used.

• Type 2: WhereG1 6= G2 but there is an efficiently computable homomorphism φ:G1 →

G2.

• Type 3: Where G1 6= G2 and there is no efficiently computable homomorphism be-

tween G1 and G2

• Type 4: In this type, the hashing of some point to G2 is possible but not very efficient.

It is rarely used and is only required for secure hashing.

9

Other pairing parameters such as pairing functions (ate, tate, etc.) and special curves (BN

curves, Twisted curves etc.) are often chosen based on a combination of choices between

the other parameters discussed above. Table 2.1 summarizes the pairing parameters.

Table 2.1: Pairing Parameters

Property/Parameter Choices

Security Level 80, 128, 192, 256

Type of Pairing Type 1, Type 2, Type 3, Type 4

Pairing Algorithm
Eta , Tate, Ate, Optimized Ate, Twisted Ate,

Optimal Ate, Xate, Weil

Finite Field Prime

Class of Elliptic Curve Supersingular, Ordinary

Embedding degree 2 <= k <= 50

Elliptic Curve Model

Weierstrass Affine, Projective
Short Weierstrass Jacobian, Jacobian with a4=0, Jacobian

with a4=-3, Modified Jacobian, Projec-
tive, Projective with a4=0, Projective
with a4=-3, W12 with a6=0, XYZZ,
XYZZ with a4=-3, XZ

Barreto-Naehrig Affine, Homogeneous projective
/Coordinates Doubling-oriented

Doche/Icart/Kohel
Standard

Tripling-oriented
Doche/Icart/Kohel

Standard

Edwards Inverted, Projective, YZ with square
d,Squared YZ with square d

Twisted Edwards Extended (a=-1), Extended, Inverted,
Projective

Montgomery XZ
Selmer Affine, Projective

Degree of Twist Divisor of k, e.g., 2, 4, 6, etc.

Special Primes Pseudo-Mersenne, Generalized Mersenne, Solinas

10

2.4 Pairing Computations and Optimizations

Like ECC, pairing computations include curve operations, group operations, and field oper-

ations as shown in Figure 2.1. Unlike traditional public key schemes, such as RSA and ECC,

they are typically more computationally intensive. For instance, the number of clock cycles

necessary to perform basic pairing operations, required by majority of PBC protocols, on a

modern 32-bit processor, such as ARM Cortex-A9, at the security level of 128-bits, which

is equivalent to the security level of AES with a 128-bit key, easily exceeds 10 million [16].

Point Addition Point Doubling

Group Operations

Multiplication Squaring

Extension Field Operations

Scalar Multiplication Pairing

Modular

Squaring

Modular

Addition

Modular

SubtractionMultiplication

Modular

Multiplication Squaring Addition Subtraction

Curve Operations Bilinear Operations

Field Operations

Long Integer Operations

Cryptographic Schemes Cryptographic Schemes

Elliptic Curve Pairing−based

Figure 2.1: Pairings Computation Hierarchy

There are different types of pairing and they can be defined on multiple elliptic curves

11

variants over different fields. The formula for computation of a given pairing function

depends on the selected underlying parameters as presented in the previous section. In

1985, Miller introduced the first practical method to calculate Weil and Tate pairings. The

general algorithm can compute the pairings in an iterative fashion.

The Weil and Tate pairings were independently introduced in cryptography by Menezes,

Okamoto and Vanstone [17], and Frey and Rück [18] as a tool to attack the discrete log-

arithm problem on some classes of elliptic curves defined over finite fields. The discovery

of constructive properties by Mitsunari et. al. [19], Sakai et. al. [6] and Joux [9] were the

beginning of a growing number of protocols based on bilinear pairings such as identity-based

encryption [4], short signature [5], and efficient broadcast encryption [20], among others.

Other optimizations made to the Miller algorithm or the final exponentiation resulted

in different types of pairings that are more efficient but limited in choices in terms of the

curves, fields, and other options. Pairings like Eta (ηT), which was proposed by Barreto et

al. [21], and their reversed pairing version, Ate, which were introduced by Hess et al. [22]

are good examples for pairings that uses an optimized version of Miller’s loop.

2.5 Pairing Implementations

Multiple software libraries supporting the implementation of PBC on general-purpose micro-

processors and microcontrollers have been developed [23], [24], [25], [26]. Recently, several

papers reported high-speed software implementations that compute 128-bit secure pairings

using various Intel and AMD processors, as well as ARM processors with the NEON archi-

tecture extension [27], [28], [29], [30]. These efforts reduced the time required to compute

pairing at the 128-bit security level, using the current-generation general-purpose proces-

sors, to below 0.5 ms.

The development of hardware and mixed software/hardware implementations over prime

fields, at the same security level, has been lagging behind. One of the reasons was that pair-

ings over binary and ternary fields on supersingular curves were initially naturally considered

12

better suited for hardware implementations. Unfortunately, recent advances in solving the

discrete-logarithm problem in multiplicative groups of small-characteristic fields have raised

serious concerns about the security of such parameter choices. The fastest reported FPGA-

based hardware implementations of pairing algorithms over prime fields are summarized in

Table 2.2. The implementations based on stand-alone or embedded microcontrollers are

listed in Table 2.3.

13

T
ab

le
2.

2:
F

P
G

A
R

es
u

lt
s

P
u

b
li
c
a
ti

o
n

C
u

rv
e

T
y
p

e
S

e
c
u

ri
ty

P
a
ir

in
g

T
y
p

e
F

P
G

A
R

e
so

u
rc

e
U

ti
li
z
a
ti

o
n

L
a
te

n
c
y

S
h
ya

m
et

a
l.

,
2
01

4
[3

1]
O

rd
in

ar
y

12
8

T
at

e
V

ir
te

x
-4

2
3K

S
li

ce
s,

3
6

D
S

P
s

0
.0

2

C
u

ev
a
s-

F
a
rf

an
et

al
.,

20
1
3

[3
2]

O
rd

in
ar

y
12

8
η
T

V
ir

te
x
-6

16
K

S
li

ce
s

0
.2

8

G
h

os
h

et
a
l.

,
2
01

3
[3

3
]

O
rd

in
ar

y
12

6
O

p
ti

m
al

A
te

V
ir

te
x
-6

5.
2
K

S
li

ce
s,

14
4

D
S

P
s

0
.3

7

G
h

os
h

et
a
l.

,
2
01

3
[3

4
]

O
rd

in
ar

y
12

8
O

p
ti

m
al

A
te

V
ir

te
x
-6

23
K

S
li

ce
s

0
.5

6

R
og

aw
sk

i,
20

1
3

[1
3]

S
u

p
er

si
n

gu
la

r
12

0
T

at
e

S
tr

at
ix

V
13

7K
A

L
U

T
s,

3
36

D
S

P
s

0
.5

6

C
h

eu
n

g
et

al
.,

20
1
1

[3
5]

O
rd

in
ar

y
12

6
O

p
ti

m
al

A
te

V
ir

te
x
-6

7
.0

K
S

li
ce

s,
3
2

D
S

P
s

0
.5

7

R
og

aw
sk

i,
20

1
3

[1
3]

S
u

p
er

si
n

gu
la

r
12

8
T

at
e

S
tr

at
ix

V
12

0K
A

L
U

T
s,

2
88

D
S

P
s

0
.7

6

R
og

aw
sk

i,
20

1
3

[1
3]

S
u

p
er

si
n

gu
la

r
12

8
T

at
e

S
tr

at
ix

IV
14

4K
A

L
U

T
s,

6
72

D
S

P
s

0
.8

8

R
og

aw
sk

i,
20

1
3

[1
3]

S
u

p
er

si
n

gu
la

r
12

0
T

at
e

V
ir

te
x
-6

59
K

S
li

ce
s,

30
0

D
S

P
s

1
.0

5

C
h

eu
n

g,
20

1
1

[3
5]

O
rd

in
ar

y
12

6
O

p
ti

m
al

A
te

S
tr

at
ix

II
I

4.
2
K

A
L

U
T

s,
72

D
S

P
s

1
.0

7

F
a
n

,
20

1
1

[3
6
]

O
rd

in
ar

y
12

8
O

p
ti

m
al

A
te

V
ir

te
x
-6

4
.0

K
S

li
ce

s,
4
2

D
S

P
s

1
.1

7

R
og

aw
sk

i,
20

1
3

[1
3]

S
u

p
er

si
n

gu
la

r
12

8
T

at
e

V
ir

te
x
-6

73
K

S
li

ce
s,

35
2

D
S

P
s

1
.3

6

F
a
n

,
20

1
1

[3
6
]

O
rd

in
ar

y
12

8
A

te
V

ir
te

x
-6

4
.0

K
S

li
ce

s,
4
2

D
S

P
s

1
.6

0

C
h

eu
n

g,
20

1
1

[3
5]

O
rd

in
ar

y
12

8
O

p
ti

m
al

A
te

C
y
cl

on
e

II
4.

2
K

A
L

U
T

s,
72

D
S

P
s

1
.9

3

14

T
ab

le
2.

3:
M

ic
ro

co
n
tr

ol
le

r
R

es
u

lt
s

S
o
u

rc
e

P
la

tf
o
rm

/
S

e
c
u

ri
ty

C
u

rv
e

P
a
ir

in
g

R
A

M
R

O
M

T
im

e
C

lk
F
re

q
.

T
im

e
E

x
te

n
si

o
n

le
v
e
l

M
o
d

e
l

T
y
p

e
[B

y
te

s]
[B

y
te

s]
[K

C
y
c
le

s]
[M

H
z
]

[s
e
c
]

S
n

ch
ez

,
2
01

3
[3

7
]

C
o
rt

ex
-A

15
/N

E
O

N
12

7
B

N
O

p
ti

m
al

A
te

5
,8

3
8

17
00

0.
0
03

4

G
re

w
a
l,

2
0
13

[1
6]

C
or

te
x
-A

9
12

7
B

N
O

p
ti

m
al

A
te

11
,8

8
6

12
00

0
.0

1
0

S
n

ch
ez

,
2
01

3
[3

7
]

C
o
rt

ex
-A

15
12

7
B

N
O

p
ti

m
al

A
te

13
,6

1
8

14
00

0
.0

1
0

U
n
te

rl
u

g
g
ae

r,
2
01

3
[3

8]
C

or
te

x
-M

0+
/M

A
C

-1
12

7
B

N
O

p
ti

m
al

A
te

2,
8
20

9
,4

9
6

20
,5

3
6

10
2.

0
5

G
o
u

v
a,

20
1
2

[3
9]

M
S

P
43

0
/M

P
Y

32
12

7
B

N
O

p
ti

m
al

A
te

6,
5
00

3
4,

4
00

47
,7

3
6

8
5.

9
7

A
ca

r,
2
0
13

[4
0
]

C
or

te
x
-A

9
12

7
B

N
O

p
ti

m
al

A
te

51
,0

1
0

10
00

0.
0
5

G
o
u

v
a,

20
1
2

[3
9]

M
S

P
43

0
12

7
B

N
O

p
ti

m
al

A
te

6,
5
00

3
5,

2
00

67
,6

8
8

8
8.

4
6

G
o
u

v
a,

20
0
9

[4
1]

M
S

P
43

0
12

7
B

N
O

p
ti

m
al

A
te

6,
5
00

3
6,

0
00

79
,4

4
0

8
9.

9
3

G
o
u

v
a,

20
0
9

[4
1]

M
S

P
43

0
12

8
B

N
O

p
ti

m
al

A
te

4,
7
00

3
6,

2
00

11
7,

5
98

8
1
4.

7
0

U
n
te

rl
u

g
g
ae

r,
2
01

3
[3

8]
C

or
te

x
-M

0+
/M

A
C

-1
79

B
N

O
p

ti
m

al
A

te
1,

8
48

8
,3

0
8

8
,7

8
9

10
0.

8
8

G
o
u

v
a,

20
0
9

[4
1]

M
S

P
43

0
70

B
N

T
at

e
2,

3
00

2
8,

9
00

40
,8

6
9

8
5.

1
1

S
zc

ze
ch

ow
ia

k
,

2
00

8
[4

2
]

A
T

M
eg

a
80

M
N

T
A

te
2,

5
00

7
1,

9
00

13
2,

3
73

7
.3

8
1
7.

9
3

S
zc

ze
ch

ow
ia

k
,

2
00

9
[4

3
]

A
T

M
eg

a
80

M
N

T
T

at
e

33
90

60
90

0
54

,8
0
0

7
.3

8
7.

4
3

S
zc

ze
ch

ow
ia

k
,

2
00

9
[4

3
]

M
S

P
43

0
80

M
N

T
T

at
e

33
90

34
88

0
37

,7
3
9

8
.1

9
4.

6
1

S
zc

ze
ch

ow
ia

k
,

2
00

9
[4

3
]

A
R

M
P

X
A

27
x

80
M

N
T

T
at

e
37

50
44

40
0

8
,0

5
5

13
0.

6
2

15

Chapter 3: Previous Work

In this chapter we will cover the work related to different lightweight implementations

of ECC, IBC, and PBC that target resource-constrained devices. We will also highlight

the previous work in the area of implementations of cryptographic functions, and their

components, for resource-constrained devices specifically those that target FPGA platforms.

The word “node” and the word “mote” are used interchangeably in this chapter and the

remainder of the document.

3.1 Resource-Constrained Devices

Resource-constrained devices play a major role in the IoT as they are widely used in applica-

tions from different fields such as military, agriculture, medical, transportation, and others.

Due to the fact that some of the data that is being collected and transmitted by the nodes

is sensitive, security of such data has become of the utmost importance. The problem with

providing security services to these devices is their resource-limited nature making classical

or full implementations of cryptographic algorithms and functions a challenging task.

Symmetric key cryptography is the current standard for providing services like encryp-

tion and authentication to resource-constrained devices because the secure key sizes for

symmetric key cryptosystems is relatively small when compared to asymmetric systems.

Also because popular symmetric key algorithms like Data Encryption Standared (DES),

Advance Encryption Standard (AES) and other less popular block and stream ciphers have

been implemented in different sizes, on multiple platforms proving them to be suitable for

lightweight devices without consuming much power or energy [44]. They have limitations

along with classical PKC when it comes to implementing them on resource-constrained

devices as discussed in the previous chapter.

16

3.2 Software Implementations

A number of studies were done to develop PKC for resource-constrained devices. In [45],

El-Dafrawy et al. use RSA for encryption and Diffie-Hellman ECC to establish key agree-

ment and show through simulation that the protocol is feasible to run on current nodes but

no actual implementations were made. Rif-Pous et al. [11] perform a comprehensive perfor-

mance analysis of different cryptographic functions on hand-held devices to determine their

effect on energy and power consumption. They found that for symmetric ciphers, AES was

the best in terms of energy consumption and running time compared to DES and 3DES.

For asymmetric ciphers, ECC was more promising than RSA, and DSA was the worst. For

hash functions, MD5 had the best performance but has some security concerns [46]. For

digital signatures, RSA-1024 had the best performance in terms of signing and verifying

when compared to ECDSA-112 and DSA-112, but they both performed better than RSA

in the signature generation. Pairing-based signatures are more time efficient when working

with medium and large files. The authors of [11] concluded that more time is consumed

in protocol completion, hence, more energy consumption and that the computation time of

the crypto functions are not the problem when it comes to cost. In [47] using full-sized PKC

on 8-bit sensors has been shown to be feasible. The authors show that an implementation

of a 160-bit modular multiplier that is optimized for speed can speed up computationally

intensive curve operations and prime field arithmetic necessary for ECC scheme on 8-bit

micro-controller.

Daehee et al [48] proposed an efficient and scalable public key infrastructure for wireless

sensor networks through heterogeneous sensor networks. Their scheme is based on efficient

certificate management using ECC and (k,n) threshold. Their approach presents a variation

on traditional ECC implementations and it is also resilient against node capture attacks.

Software libraries like TinyECC and TinyPK [49] optimized for TinyOS helped speed-up

the implementation curve operations on 8-bit microcontrollers.

17

PBC has shown to be very suitable for IBC schemes [50]. But, similar to other ellip-

tic curve based systems, they require computationally intensive calculations such as field

arithmetic and elliptic curve operations on top of pairing operations as shown in Figure:3.1.

Such operations are not cheap and directly affect power and energy consumption.

Application

Pairing Scheme

(e.g. Tate, Ate, XAte ... etc.)

Elliptic Curve Operations

(e.g. Doubling & Addition) (e.g. Multiplication & Squaring)

Finite Field Arithmetic

(e.g. Multiplication & Inversion)

Extension Field Arithmetic

Figure 3.1: Implementation of PBC

Oliveira et al. [51] introduced one of the first pairing implementations that target

resource-limited devices. TinyTate is a library that performs Tate pairing computations

18

on TinyOS. They implemented their library on 8-bit Atmel 7.3MHZ microcontroller show-

ing that the computational time is feasible on resource-limited devices but require more

than 30 seconds [52]. Other software libraries aiming to speed up pairing calculations on

TinyOS such as TinyPairing [53] show good potential in terms of resource usage and speed

compared to other PKC libraries such as TinySec and TinyECC [49].

Other optimizations for software implementations include tailoring the design for a spe-

cific platform. Gouvêa and Lopéz [41] showed that a noticeable speedup was achieved in the

computations for BN and MNT curves by implementing pairings and point multiplication

operations for WSNs using the MSP430 microcontroller as the target platform. The results

show potential for an 80-bits level of security. Shirase et al. [54] use a block combination

method to reduce the multiplication cost and assembly optimizations for squaring, reduc-

tion, and inversion to generate ηT pairing calculations fast over GF (2239). The results

show a considerable speed up when compared to TinyPK, TinyTate, and TinyPBC with

the satisfaction of using a larger ROM [54].

3.3 Hardware Implementations

The use of hardware accelerators to speed up computationally intensive cryptographic func-

tions on resource-limited devices has been studied before. Kodali et al. [55] implemented the

Sunar-Koc multiplier on sensor node with a Virtex-6 FPGA and 8-bit processor. They cre-

ated the implementations with three different key lengths (173-bits, 194-bits and 233-bits)

and show that they are suitable for WSNs.

Stelte [56] shows that a hardware implementation of a WSN that uses PKC to achieve

security is not only faster and more reliable than software implementations, but is also

more power and energy efficient. Ahmed et al. [57] introduce an implementation of a

hardware accelerator for 160-bit curve operations over prime fields on a Spartan 3AN FPGA,

optimized for speed and low area. They use a Montgomery Multiplier to perform the

modular multiplication and squaring. The use of a 32-bit block size makes the area slightly

19

larger (equivalent to 40K gates) but it also increases the overall speed (0.39s for one 160-bit

point multiplication).

Partial Reconfiguration (PR) is a technique that has been utilized for a while on Xilinx

FPGA devices [58]. PR allows for part of the FPGA to be reprogrammed while the remain-

ing portion of the device is running, allowing the system to be online and uninterrupted

during the reprogramming of the device. Peter et al. [59] showed a method to perform ECC

on WSNs efficiently in hardware using Partial Reconfiguration. They created a hard-wired

reduction unit that is fast and small. They also create variations to the reduction circuit in

order to support five different curve sizes and use Partial Reconfiguration to switch between

these circuits as needed. The design was implemented on a Spartan-3 FPGA.

3.4 Hardware/Software Co-Design Implementations

From the aforementioned work, it can be shown that software implementations allow for

more flexibility as a large number of cryptographic libraries optimized for resource limited

devices are available. These libraries give a designer a number of choices when selecting

security services that can be suitable for the target platform when designing for resource-

constrained devices. On the other hand, hardware accelerators have proven to achieve

much higher speeds than software implementations while maintaining a balanced power

and energy consumption.

For this reason, researchers have investigated the use of a hardware/software co-design

to build secure WSNs. Merrett et al. [60] proposed an embedded system structure based

on a basic simple stack model (OSI-BRM). This model is composed of hardware that makes

up the sensor node along with an interface layer to allow for interfacing between software

and hardware while hiding most of the complexity of the physical layer. The implemented

hardware/software co-design model allows for intelligent sensing, energy management, and

communication, with the ability to add other functionality to the node without the need to

implement a new design to accommodate the new functionalities.

20

Wójcikowski et al. [61] presents a sensor network using dedicated hardware, to collect

traffic data, interfaced with software algorithms, to perform analysis and processing on the

collected data. The hardware/software co-design has been realized as a relatively low-power

device with low hardware and software resource usage. The sensor network node has been

practically realized in two versions: FPGA and ASIC. The two models are compared to

one another showing lower power consumption in the ASIC core compared to that of the

FPGA mode. The overall power consumption of the entire node, for both models does not

have much variations.

[56] introduces a hardware (FPGA) solution that uses a soft IP core to replace the

microcontroller on a WSN. Although the authors show that it is better to use an FPGA

hardware solution, which is more power/energy efficient, more reliable, faster, and easier to

extend, they argue that the HW/SW solution provides more compatibility to existing node

architectures, as TinyOS can run on the buit-in soft IP core with little overhead.

The hardware portion of the design is used for computationally intensive operations (PK

crypto) to provide speed while maintaining low power consumption as shown in Figure 3.2.

The platform used for the design is ACTEL IGLOO AGL0600 with OpenMSP430 as the

soft IP core.

In the work of Issad et al. [62], the authors built three different models of Montgomery

Multiplication used in RSA calculations. The first is a pure software Montgomery Multiplier

(MM), which acts as the backbone for the RSA exponentiation calculation. The second is

an implementation that dedicates a hardware accelerator to the MM execution. The final

version is a hardware/software co-design of two parallel MMs implemented within a custom

IP, connected to a microblaze processor. Local memories are used close to the arithmetic

units to minimize the communication link influence. The hardware/software solution shows

good results, with 1024-bit multiplication requiring 22.25ms while only using 1848 slices.

In [63], the authors explore the benefits of using a hardware accelerator for computa-

tionally intensive operations in ECC through four different implementations. Two imple-

mentations support field operations and the other two support curve operations. They use

21

Data RAM

Secure
Mode
Switch

Sensor

Transmitter

Data
Compression

Crypto

Core

Filter
Packet

Prefiltering I/O Interface

SPI

Program
Counter

Flash
Program
Memory

General
Purpose
Registers

ALU

Data Bus

Data RAM

Secure

Sensor Node

Decoder

Instruction

Register

Instruction

FPGA
Micro−Controller (soft−CPU)

Figure 3.2: Illustration of a Sensor Node using a Hardware/Software Model

a Virtex-5 chip for the hardware and the software is implemented on a 8051 microcon-

troller. Both platforms are interfaced with a XRAM for operation scheduling and holding

of intermediate values. They use a NIST prime field curve P-256 and their best achieved

result was a maximum frequency of 40 MH-z for their first design, using 2010 slices. They

also evaluate their designs against side-channel attacks and show the vulnerabilities and

strengths of each design.

3.5 Summary

To summarize the previous work section, it appears that most of the efforts to implement

public key encryption on the IoT’s resource-constrained devices were targeting software plat-

forms. Software implementations of pairings showed their feasibility for resource-constrained

devices while solving many aspects of key management problems. However,they require a

22

lot of time to perform pairing operations resulting in high energy consumption. Hardware

accelerators used to perform computationally intensive calculations related to cryptographic

algorithms have also been shown to improve speed while maintaining fairly low power and

energy consumption make them another suitable solution for resource-constrained devices.

However, they do not have the flexibility of software implementations on the protocol level

and parameter selection. Hardware/Software co-design implementations have the potential

of being an optimal implementation for resource-constrained devices. Hardware/Software

co-design combines the software flexibility with the speed of the hardware. Although imple-

mentations for resource-constrained devices and public key services in hardware/software

co-design models exist, the area of pairings has not yet been explored in such implementa-

tions.

23

Chapter 4: Contributions

Our main goal is to investigate the impact of using pairing-based cryptography to perform

public-key operations for resource-constrained devices on performance and power and energy

consumption.

The following considerations are to be taken into account when designing cryptographic

functions for resource-constrained devices

• Minimize area and memory usage to decrease power consumption

• Minimize computational time to decrease energy consumption

• Increase flexibility to increase efficiency on different platforms

• Enable reduction of protocol overhead to decrease energy consumption

To insure that we fulfill the above requirements, we divided the research into the fol-

lowing phases:

Phase I: Identify the computationally intensive operations in pairings and the underling elliptic

curve operations which consume most of the running time and dynamic power. We

also select pairing and curve parameters in this phase.

Phase II: Implement the hardware components identified in phase I and test them in crypto-

graphic applications.

Phase III: Build hardware/software co-designs for the chosen pairing and curve parameters and

perform power and energy measurements. We also evaluate the results and compare

them to a software solution with the same parameters.

24

Chapter 5: Methodology

5.1 Choosing Pairing Parameters

5.1.1 Barreto-Naehrig Elliptic Curves

Almost any elliptic curve can be used to to implement pairing-based protocols. For such

implementations to be practical, so called “pairing-friendly” curves are to be used. Pairing-

friendly curves are characterized by the embedding degree k. For an elliptic curve E(Fq)

to be pairing-friendly, k should be large enough to provide security against Discrete Loga-

rithmic Problem (DLP) attacks over the extension field curve E(Fqk) and at the same time

be small enough to make computations in this field feasible and practical. Barreto and

Narhrig [64] introduced a method to generate pairing-friendly elliptic curves which support

pairings over prime fields with embedding degree k = 12 known as BN-curves. Not only are

BN-curves computationally efficient in software and hardware, but they are also secure for

160-bit field sizes which is the recommended key size for PBC for lightweight applications

such as sensor nodes. They are also capable of implementing all pairing protocols. For

these reasons we chose BN-curves to implement pairing functions in our hardware/software

co-design using BN-158 [39] and BN-254 [65] curves to provide 80-bit and 128-bit levels of

security respectively.

5.1.2 Optimal-Ate Pairing

Pairing implementations are performed using Miller’s algorithm with different optimizations

depending on the type of pairing used to minimize computation time. Many other techniques

have been suggested for optimizing the computation of pairings. One of the most common

techniques is to shorten the numbers of iterations of Miller’s loop. Ate pairing offers a

25

shorter version of the main loop by reducing the numbers of additions and it is further

optimized as optimal-Ate pairing.

Ate pairing, e(Q,P), over BN-curves can be defined as follows:

e: G1 x G2 → GT : E(Fp12) x E(Fp)→ F ∗p12

Where G1, G2 and GT have the same prime group order n. G2 and GT are members of

the same subgroups of E(Fp12) and F ∗p12 , respectively.

Parameter x determines the security level in BN-curves. The computations of p and n

are performed according to the following formulas:

p(x) = 36x4 + 36x3 + 24x2 + 6x+ 1

n(x) = 36x4 + 36x3 + 18x2 + 6x+ 1

Additionally, G2 can be represented by the preimage of the twisting isomorphism using

the BN-curve’s sextic twist E′. This makes G2’s elements more compressed and computa-

tions more efficient. The Ate pairing can be redefined as:

e: G1 x G2 → GT : E(Fp12) x E′(Fp2)→ F ∗p12

This allows for the hierarchy of the operations to be as follows:

Fp → Fp2 → Fp4 → Fp12

Finally, the computation of Ate pairing requires a final exponentiation (p12 − 1)/n in

Fp12 which is very costly. However, the exponent can be calculated in two steps, an easy

step (p6 − 1)(p2 + 1) and a hard step (p4 − p2 + 1)/n and both can be efficiently computed

in polynomial time. We used the optimal-Ate pairing defined by [66] and apply most of the

optimizations adapted by [67].

5.1.3 Coordinate System and Counter Measures

Choosing an efficient coordinate system is essential to ensure fast computations of the field

arithmetic operations such as scalar multiplication, point doubling, and point addition.

There are different ways to represent a point on an elliptic curve. Affine coordinates rep-

resent points in 2-coordinate system (x, y). The issue with this coordinate system is that

26

Table 5.1: Comparison Between ECC Coordinate Systems

Point Addition Point Doubling
Coordinates #Muls #Adds #Invs #Muls #Adds #Invs

A + A =A 3 8 1 4 5 1

P + A =A 13 7 0 N/A

P + P =P 16 7 0 12 4 0

MJ+MJ =MJ 14 7 0 8 14 0

A→Affine; P→Projective; MJ→Modified Jacobian

the calculations of both point addition and point doubling operations require division op-

erations which are very costly for large operands. For this reason, projective coordinate

representations of points are preferred to perform ECC calculations. Projective coordinates

use either 3-coordinate or 4-coordinate systems to represent points on an elliptic curve.

Field operations do not require division operations when points are represented in pro-

jective coordinates (X,Y, Z) or modified Jacobian coordinates (X,Y, Z, aZ4) except once

when converting back to affine coordinates. Modified Jacobian coordinates are 4-coordinate

projective coordinates which uses the 4th coordinate (aZ4) to compute the point doubling

operation faster than 3-coordinate projective coordinates. A summary of the required num-

ber of operations to perform point doubling and point addition operations is shown in

Table 5.1.

The general way to calculate the scalar multiplication is by using the Double-and-Add

Algorithm 1. The downside to this method is that it makes the design vulnerable and

prone to Simple Power Analysis (SPA) [68]. SPA is preformed through observing the power

consumption of one single execution of a cryptographic algorithm. The main loop in Al-

gorithm 1 will execute either a point doubling operation, if the processed bit is 0, or a

point doubling followed by a point addition, if the processed bit is 1. Using SPA to observe

the change in power consumption in each iteration of the main loop will result in the re-

construction of the scalar k making the design insecure. To prevent such attack, different

approaches can be taken such as using the Double-and-Add-Always algorithm [69] or the

27

Montgomery Ladder Algorithm 2.

Meloni [70] explains how point addition can be accelerated if both points P and Q share

the same Z coordinate. In order to make sure that both points maintain a common Z (co-

Z), he introduced the addition with update (ZADDU) formula. He showed how to calculate

the scalar multiplication using the Fibonacci-and-add algorithm. Goundar et al. [71] showed

that with the new co-Z addition formula, point subtraction comes for free and explained

that point doubling can be expressed as point addition followed by point subtraction as

Q = P + Q, R = P −Q, P = R + Q . The first step can be calculated using ZADDU

and the last two steps can be expressed using the add with conjugate (ZADDC) formula.

Using these two formulas in addition to a single use of a double-with-update (DBLU)

formula to initialize P , the Montgomery Ladder algorithm can be efficiently calculated using

Algorithm 3. We use this algorithm in our cores to calculate the scalar multiplication. The

modular multiplication and modular addition steps required to calculate ZADDU, ZADDC,

and DBLU can be found in [71].

Algorithm 1 Calculating the Scalar Multiplication Operation Using Double-and-Add Al-
gorithm

Require: Prime p ∈ E(Fq), P = (x, y), where x, y ∈ GF (p)

k ∈ Z, 0 < k < #E, k = (kl−1, kl−2, . . . , k0)2, kl−1 = 1
Ensure: Q = (x′, y′)
Q = P
for i = l − 2 downto 0 do
Q = 2Q
if ki = 1 then
Q = Q+ P

return Q

Coron [69] described a few methods to prevent DPA attacks. His first method, the

Randomization of the Private Exponent, calculates Q = k′P instead of Q = kP where

k′ = k + d · #E, d is a small random number (20-bit) and #E = hn is the total number

of points on the curve E. Based on the fact that multiplying a point P on a curve E with

28

Algorithm 2 Calculating the Scalar Multiplication Operation Using Montgomery Ladder
Algorithm

Require: Prime p ∈ E(Fq), P = (x, y), where x, y ∈ GF (p)

k ∈ Z, 0 < k < #E, k = (kl−1, kl−2, . . . , k0)2, kl−1 = 1
Ensure: Q = (x′, y′)
Q = P
P = 2Q
for i = l − 2 downto 0 do

if ki = 1 then
Q = Q+ P
P = 2P

else
P = P +Q
Q = 2Q

return Q

Algorithm 3 The Montgomery Ladder Algorithm with co-Z addition formulae

Require: Prime p ∈ E(Fq), P = (X,Y, Z),

where X,Y, Z ∈ GF (p), k ∈ Z, 0 < k < #E,
k = (kl−1, kl−2, . . . , k0)2, kl−1 = 1

Ensure: Q = (X ′, Y ′, Z)
P,Q = DBLU(P)
for i = l − 2 downto 0 do

if ki = 1 then
Q,P = ZADDC(P,Q)
P,Q = ZADDU(Q,P)

else
P,Q = ZADDC(Q,P)
Q,P = ZADDU(P,Q)

return Q

the total number of points on this curve #E will result in O, the result of k′P = kP = Q.

Changing the value of k each time the scalar multiplication performed using this method

will make the DPA [72] attack infeasible.

5.2 Building the Design

Our goal is to build a design which is lightweight, fast, and efficient in its power and energy

consumption. This is why we chose to build our design as a hardware/software co-design.

29

5.2.1 Partitioning the Design

To maintain flexibility, the high level operations of the pairing such as protocols and schedul-

ing of operations are being handled on the software side. On the hardware side we perform

computationally intensive field operations such as multiplication, squaring and inversion.

Figure 5.1 shows the operations required to perform pairing computations and how different

parts are split between the hardware and the software.These operations can all be performed

using a Montgomery multiplier which we explain in Chapter 7. Finally we chose to perform

the field addition and subtraction operations on the software side. The reason for this is

that we predicted that the number of clock cycles to perform a field addition or subtraction

operation on an adder implemented in hardware and on that of the microprocessor’s ALU

unit will not have much of a difference. However, we did create a modular adder/subtractor

module in hardware to test our theory and see if this module can be more power or energy

efficient.

5.3 Hardware Implementations

5.3.1 Montgomery Multiplier

We built a scalable Montgomery multiplier which supports multiple fields and uses a variable

number of Processing Element (PE) units to perform one Montgomery multiplication. We

implemented two different architectures of the multiplier one which is suitable for high-

speed operations and another which is suitable for lightweight. Both designs do not use

special processing units found on FPGAs such as DSP units, to make them suitable for

ASIC implementations as well. The details of our Montgomery multipliers are discussed in

Chapter 7

5.3.2 Adder/Subtractor

As mentioned, we built a hardware adder/subtractor unit to see if it can provide better

performance in computing pairing protocols than performing addition and subtraction in

30

Point Addition Point Doubling

Group Operations

Multiplication Squaring

Extension Field Operations

Scalar Multiplication Pairing

Modular

Squaring

Modular

Addition

Modular

SubtractionMultiplication

Modular

Multiplication Squaring Addition Subtraction

Curve Operations Bilinear Operations

Field Operations

Long Integer Operations

Cryptographic Schemes Cryptographic Schemes

Elliptic Curve Pairing−based

Software

Hardware

Figure 5.1: Partitioning of Hardware and Software

software. We wanted the adder/subtractor to be efficient in terms of area while maintaining

acceptable throughput/area values hence we designed the adder/subtractor to perform the

operation word by word without storing operands or results internally. The design details

of the adder are mentioned in Chapter 7.

5.4 ECC Multiplier

To make sure that our identified hardware modules are suitable for public key algorithms and

their computational requirements, we wanted to test them in a computationally intensive

cryptographic application. ECC is both a public key cipher and computationally intensive

specially the calculation of the scalar multiplication operation. This is why we use our

31

Montgomery multipliers and our adder/subtractor designs as the basic building blocks for

building an ECC multiplier. The ECC multiplier supports five different field sizes without

using any special optimizations which limits the design to certain curves and primes. We

wanted to make sure that our basic units can perform well with any curve and prime

values. We implemented two versions of the ECC multiplier, one which is suitable for high-

speed applications and another which is suitable for lightweight. We also performed timing

and area measurements as well as power and energy simulations. The ECC multiplier’s

architecture and its components are explained in more details in Chapter 8.

5.5 Software Implementations

Our software implementation handles the high-level pairing operations. We tested the im-

plementation by calculating optimal-Ate pairing and performing the IBE protocol. IBE is

performed using Boneh-Franklin mechanism which includes two computationally intensive

functions, key encapsulation and key decapsulation. We also include the counter measures

against side-channel attacks in the software. More details about the software implementa-

tion are mentioned in Chapter 9.

5.6 Power Measurements

Power measurements for the hardware modules were performed using the Flexible Open-

source workBench fOr Side-channel analysis (FOBOS). FOBOS is a free and open tool

used primarily to measure resistance to power analysis side-channel attack (SCA), and

leverages low-cost hardware, such as the Diligent Nexys 2 and Xilinx Spartan 3E FPGA

Starter Board [73]. A complete description of FOBOS capabilities is available at [74].

We perform measurements for the complete hardware/software co-design using the current

sensor on the Xilinx Zedboard. Power measurements for the software implementation was

performed separately to compare its power consumption with the hardware/software co-

design implementation.

32

Chapter 6: Hardware Software Co-Design

6.1 Overview

We use the Zynq-7020 All-Programmable System on Chip (SoC) as the platform for our

hardware/software co-design. The simplified block diagram for our design is shown in

Figure 6.1. The software part of the design, written in C, runs on the ARM Cortex-A9

processor located inside the Processing System (PS). The AXI interconnect modules handle

the transfer of data between the PS and Programmable Logic (PL). Data is transferred

between PS and PL using the AXI stream protocol, and a Direct Memory Access (DMA)

IP is used to convert the stream data into memory mapped data. Two custom FIFOs are

used to transfer data from DMA to the custom IP - the Modular Montgomery Multiplier

(MMM), which performs multiplication, and sends the result back to the PS system. The

Concat IP is used to handle interrupts to the PS, and the AXI Timer module is used to

calculate the execution time for hardware and software.

Except for the MMM custom IP, which we explain in detail in Chapter 7, we explain

the IPs in this block diagram in a little more detail in the following sections.

6.2 Processing System (PS)

6.2.1 ZYNQ7 Processing System

The ZYNQ7 processing system contains two ARM Cortex-A9 processor cores, and related

logic. The HP (High Performance) ports are used for communication between PS and PL.

The input data to be multiplied is sent to the MMM core, located in PL. After computations

are performed, an interrupt is generated, and the result is transferred back to the ARM

core.

33

Memory_Interconnect

AXI_Interconnect

RST_System

ZYNQ7_Processing_System

RESET0_N

ext_reset_in

S_AXI_HP0

IRQ_F2P

M_AXI_GP0

M00_AXI
M_AXI_MM2S

M_AXI_S2MM

mm2s_introut

s2mm_introut

M_AXIS_MM2S

S_AXIS_S2MM

AXI_DMA

S−AXI_Lite

AXI_Timer

Concat

In0

In1

dout

S_AXI_LITE

M00_AXI

M01_AXI
S00_AXI

M02_AXI

M03_AXI

AXI_Stream_to_FIFO

FIFO_to_AXI_Stream

Input_Stream

FIFO_Out

FIFO_In

FIFO_Out

Output Stream

Control_Bus
S_AXI_Lite

MMM

FIFO_In

S00_AXI

S01_AXI

Processing System (PS) Programmable Logic (PL)Interconnects

Figure 6.1: Simplified View for the Pairings Hardware/Software Co-design

6.2.2 Processor System Reset

The System Reset (RS) issues the external reset to the PS and PL systems. The signal is

active low and is an asynchronous reset.

6.3 AXI Interconnects

Two AXI Interconnect IPs take care of the data transmission between PS and PL using the

memory mapped mode AXI Full. They provide smooth communication between different

modules in the system by automating the connection process between the modules.

34

axi_mem_intercon

AXI Interconnect

S00_AXI

M00_AXI

S01_AXI

ACLK

ARESETN[0:0]

S00_ACLK

S00_ARESETN[0:0]

M00_ACLK

M00_ARESETN[0:0]

S01_ACLK

S01_ARESETN[0:0]

S_AXIS_to_FWFT_FIFO_0

S_AXIS_to_FWFT_FIFO_v1.0 (Pre-Production)

S00_AXIS

fifo_dout[31:0]fifo_read

fifo_emptys00_axis_aclk

s00_axis_aresetn

FWFT_FIFO_to_M_AXIS_0

FWFT_FIFO_to_M_AXIS_v2.0 (Pre-Production)

S00_AXI

M00_AXIS

fifo_din[31:0]

fifo_write

fifo_full
s00_axi_aclk

s00_axi_aresetn

m00_axis_aclk

m00_axis_aresetn

mmm_0

mmm_v1.0 (Pre-Production)

S00_AXI
s_fifo_read

s_fifo_empty

s_fifo_data[31:0]

m_fifo_write

m_fifo_full

m_fifo_data[31:0]

debug_x[39:0]

debug_y[39:0]

debug_z[39:0]

debug_z_temp[39:0]

s00_axi_aclk

s00_axi_aresetn

DDR
xlconcat_0

Concat

In0[0:0]

In1[0:0]
dout[1:0] FIXED_IO

processing_system7_0

ZYNQ7 Processing System

DDR

FIXED_IO

S_AXI_HP0_FIFO_CTRL

M_AXI_GP0

S_AXI_HP0

M_AXI_GP0_ACLK

S_AXI_HP0_ACLK

IRQ_F2P[1:0]

FCLK_CLK0

FCLK_RESET0_N

axi_dma_0

AXI Direct Memory Access

S_AXI_LITE
M_AXI_MM2S

M_AXI_S2MM

M_AXIS_MM2S
S_AXIS_S2MM

s_axi_lite_aclk

m_axi_mm2s_aclk

m_axi_s2mm_aclk

axi_resetn

mm2s_prmry_reset_out_n

s2mm_prmry_reset_out_n

mm2s_introut

s2mm_introut

axi_timer_0

AXI Timer

S_AXI

capturetrig0

capturetrig1

generateout0

generateout1

pwm0

interrupt

freeze

s_axi_aclk

s_axi_aresetn

rst_processing_system7_0_50M

Processor System Reset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

processing_system7_0_axi_periph

AXI Interconnect

S00_AXI

M00_AXI

M01_AXI

M02_AXI

M03_AXI

ACLK

ARESETN[0:0]

S00_ACLK

S00_ARESETN[0:0]

M00_ACLK

M00_ARESETN[0:0]

M01_ACLK

M01_ARESETN[0:0]

M02_ACLK

M02_ARESETN[0:0]

M03_ACLK

M03_ARESETN[0:0]

Figure 6.2: Block Diagram for the Pairings Hardware/Software Co-design

6.4 Programmable Logic (PL)

The PL is comprised of the custom IP which performs the Montgomery multiplication as

well as the supporting modules which we describe in this section.

6.4.1 Input FIFO

The input FIFO, S AXIS to FWFT FIFO 0, has a Slave AXI Stream (S AXIS) interface

which allows it to read data directly from the DMA. It writes data to the MMM core

through its First Word Fall Through (FWFT) FIFO interface. Its read and write clock

domains are independent. More about the Input FIFO as well as the Output FIFO can be

found in [75].

35

6.4.2 Output FIFO

Similar to the Input FIFO, the output FIFO, FWFT FIFO to M AXIS 0, has independent

clock domains. However, it has an AXI Lite interface to configure the transfer length and

start delay information. Transfer length indicates the number of output words to be sent

using the AXI Stream interface. Start delay lets the user to specify the delay, in clock

cycles, before this module starts transferring the output data back to the processor.

6.4.3 AXI Direct Memory Access (DMA)

AXI DMA is a native IP to VIVADO found in the Xilinx IP catalog [76], and converts the

stream transaction protocol to the memory mapped protocol. As a result, it allows the

hardware accelerator to read from and write to the DDR memory. The operation of this

module is fully configurable from software, and frees the ARM processor to perform other

tasks.

6.4.4 AXI Timer

AXI Timer is also a standard unit available in the Xilinx IP catalog [77]. It is capable

of performing execution time measurements for software and hardware implementations of

various functions, with the accuracy of a single clock cycle of a system clock (by default:

10 ns).

6.4.5 Concat

The Concat module is used to concatenate two input signals and produce a single output,

active when any of the two inputs is active. In the circuit from Figure 6.2, it is used to

create an interrupt to PS, active when either an input transfer or an output transfer is

completed by AXI DMA.

36

Chapter 7: Hardware Implementations

As stated before, one of our goals were to identify the computationally intensive operations

required by parings and compute them using hardware accelerators. These operations can

be broken down into field operations which are modular multiplication, squaring, inversion,

and addition and subtraction. The first three operations can be performed using a modular

multiplier and a modular adder/subtractor is needed for addition and subtraction opera-

tions. In this chapter we will describe the hardware components which we built to be used

in our hardware/software co-design.

7.1 Montgomery Multiplication

Introduced by Peter Montgomery in 1985[78], the Montgomery Multiplication (MM) algo-

rithm which multiplies two numbers X, Y is defined according to the following formula:

MM(X,Y) = S = XY R−1 mod M

where R = 2n, and M is an integer in the range 2n−1 < M < 2n−1 and the GCD(R,M) =

1. In order to calculate Z = XY mod M , we first need to convert X and Y into Montgomery

domain using the following formulas:

X ′ = MM(R2, X) = XR2R−1 mod M = XR mod M

Y ′ = MM(R2, Y) = Y R2R−1 mod M = Y R mod M

We can calculate the result image S as follows:

Z ′ = MM(X ′, Y ′) = X ′Y ′R−1 mod M

= XR Y R R−1 mod M

= XY R mod M = ZR mod M

To convert the result back to the integer domain from Montgomery domain, the following

formula is used:

37

MM(1, Z ′) = 1 ZR R−1 mod M = Z mod M = Z

The main advantage of using Montgomery multiplication is that it does not require

costly division operations to perform modular reduction. Tenca and Koç [79] introduced a

word-based algorithm for Montgomery multiplication, called Multiple-Word Radix-2 Mont-

gomery Multiplication (MWR2MM), as well as a scalable hardware architecture capable

of performing the multiplication operation using a variable number of Processing Element

(PE) units. The algorithm for (MWR2MM) is shown as Algorithm 4.

Algorithm 4 Multiple-Word Radix-2 Montgomery Multiplication Algorithm [79]

Require: odd M,n = blog2Mc + 1, word size w, e = dn+1
w e, X =

∑n−1
i=0 xi · 2i, Y =∑e−1

j=0 Y
(j) · 2w·j , M =

∑e−1
j=0M

(j) · 2w·j , with 0 ≤ X,Y < M

Ensure: Z =
∑e−1

j=0 S
(j) · 2w·j = MP(X,Y,M) ≡ X · Y · 2−n (mod M), 0 ≤ Z < 2M

1: S = 0
2: for i = 0 to n− 1 do

3: qi = (xi · Y (0)
0)⊕ S(0)

0

4: (C(1), S(0)) = xi · Y (0) + qi ·M (0) + S(0)

5: for j = 1 to e do

6: (C(j+1), S(j)) = C(j) + xi · Y (j) + qi ·M (j) + S(j)

7: S(j−1) = (S
(j)
0 , S

(j−1)
w−1...1)

8: S(e) = (0, S
(e)
w−1...1)

9: return Z = S

Huang et al. [80] proposed two architectures, upon which we based our multiplier im-

plementations, to optimize the original MWR2MM algorithm to process n-bit precision

multiplication in approximately n clock cycles by precomputing intermediate S values. the

algorithm from [80] to calculate the Montgomery multiplication is shown in Algorithm 5.

Our design uses architecture 2 to implement a high-speed Montgomery multiplier and ar-

chitecture 1 to implement a lightweight one. Both architectures 1 and 2 are explained in

Section 7.3 and Section 7.2 respectively.

38

Algorithm 5 Detailed Algorithm to Calculate (MMWR2) According to [80]

Require: xi, Y
(0),M(0), S

(1)
0 , S

(0)
w−1...1

Ensure: qi, C
(1), S

(0)
w−1...1

1: if j = 0 then

2: qi = (xi · Y (0)
0)⊕ S

(0)
1

3: C(0) = 0
4: if j < e− 1 then

5: (CO(j+1), SO
(j)
w−1, S

(j)
w−2...0) = (1, S

(j)
w−1...1) + C(j) + xi · Y (j) + qi ·M (j)

6: (CE(j+1), SE
(j)
w−1, S

(j)
w−2...0) = (0, S

(j)
w−1...1) + C(j) + xi · Y (j) + qi ·M (j)

7: if S
(j+1)
0 = 1 then

8: C(j+1) = CO(j+1)

9: S
(j)
w−1...1 = (SO

(j)
w−1, S

(j)
w−2...1)

10: else
11: C(j+1) = CE(j+1)

12: S
(j)
w−1...1 = (SE

(j)
w−1, S

(j)
w−2...1)

13: else

14: (C(e), S(e−1)) = (C(e), S
(e−1)
w−1...1) + C(e−1) + xi · Y (e−1) + qi ·M (e−1)

Task
E

Task
D

Task
F

7.2 High-Speed Montgomery Multiplier

Architecture 2 consists of p PEs forming a computation chain. Each PE works on computing

a specific word of the final Montgomery multiplication result S (i.e. PE#j computes S(j)).

The maximum number of PEs in the design is the same as the number of words, e, of the

operands which can be calculated according to the following formula e =
⌈
n
w

⌉
where n is

the operand size and w is the word size. For our design to support all target field sizes, n

needs to be of the same size as the maximum supported size (521-bit). In order to achieve

maximum throughput, we utilized the maximum number of PEs by choosing p = e =33, 17,

and 9 for w = 16, 32, and 64 respectively. The PEs are defined by the task they perform (D,

E, or F). PE#0 is used for task D calculations while PE#(e-1) is used to perform task F.

The remaining PEs (PE#1 . . . PE#(e− 2)) calculate task E. Operand Y and the modulus

M are scanned word-by-word and are fixed for a given PE while operand X is scanned

bit-by-bit as shown in Figure 7.1 . It can also be noticed that this architecture requires

T = n+ (e− 1) clock cycles to finish one Montgomery multiplication. Reducing w by half

for a given n does not affect T by much as shown in Table 7.1.

39

Table 7.1: Number of Clock Cycles T required to complete one Montgomery Multiplication
using Architecture 2

number of clock cycles (T)
Operand size(n) w = 16 w = 32 w = 64

192− bit 203 197 194

224− bit 237 230 227

256− bit 271 263 259

256− bit 407 395 389

256− bit 553 537 529

To support all 5 field sizes within a single design of architecture 2, we created a new

PE (E/F) capable of performing both tasks E and F. The new PE is placed at positions er

where r = 1, 2, 3, and 4 as shown in Figure 7.2. This way, if the field is less than 521-bit,

the E/F sel signal for the corresponding PE#(er − 1) is set to function as type F. For

example if n = 256 then PE#(e3− 1) is set to function as type F (last PE) while if n = 384

or 521, it will function as a type E.

7.3 Lightweight Montgomery Multiplier

The Montgomery multiplier consists of p PEs forming a computation chain. Each PE can

perform tasks D, E, and F shown in Algorithm 5 . The maximum number of PEs in the

design is the same as the number of words, e, of the operands which can be calculated

according to the following formula e =
⌈
n
w

⌉
where n is the operand size and w is the word

size. In order to reduce area, we limit p to be 2, 4, or 8 regardless of the size of n and

fixed w to 16-bit. This limited number of PEs requires us to store the intermediate values

of S in a queue Q as described in [80]. The size of Q = e − p and the number of clock

cycles T is now calculated asT = n+
⌈
n
p

⌉
· (e− p) + p+ 1. The architecture scans operand

Y and modulus M word-by-word while operand X is read bit-by-bit. The value of X is

fixed for a PE until it is multiplied by every word of Y and all the words of the result S

40

Table 7.2: Number of Clock Cycles T Required to Complete one Montgomery Multiplication
Using for a Given n

number of clock cycles (T)
Operand size(n) p = 2 p = 4 p = 8

192− bit 3171 1589 801

224− bit 3699 1853 933

256− bit 4227 2117 1065

384− bit 6339 3173 1593

521− bit 8615 4325 2180

Size of queue(Q) in words 31 29 25

are produced from PE#p as shown in Figure 7.4. Reducing the size of p by half leads to

a penalty ' 2T , a slight increase in the size of Q, and reduces the area of PEs by half.

Table 7.2 summarizes the relation between the number of PEs used and the time needed to

compute one multiplication and the size of the queue for different field sizes.

In order to minimize the internal storage of the design, X, Y , and M are called from

memory one word at a time. X is updated every w clock cycles while Y and M are updated

every clock cycle. The maximum number of words available for processing at a given clock

cycle are 1 word of X and p words of Y and M . In order to supply the correct bit of X to

its corresponding PE, the X word is stored in four 4-bit registers with the enable signals

for these registers controlled by the shift register sregE that has variable shifts as shown

in Figure 7.3.

Y and M are passed from one PE to the next one clock cycle at a time and the inter-

mediate Ss are stored in Q. The values in Q are shifted using variable shifts controlled by

2-to-1 multiplexers depending on the size of n as shown in Figure 7.5.

Finally, the internal structure of the PE capable of performing Tasks D, E, and F is

shown in Figure 7.6. The PE is set for a specific task through the internal 2-to-1 multiplex-

ers.

41

Table 7.3: Multiplexer Settings in Subtraction Mode

Word first last Cin

W0 1 0 1

W1 . . .We−2 0 0 CW

We−1 0 1 CW (sign)

7.4 Modular Adder/Subtractor (MAS)

When creating the MAS unit, we kept in mind that the data transfer between the hardware

and software, in a hardware/software co-design, would be in word-size. Similarly, the storage

of operands and partial results is also in word-size memory leaving no space for the sign

bit. To solve this problem, we created our MAS unit as shown in Figure 7.7.

All words of operands A and B are expanded by 1-bit (w + 1). When performing a

subtraction operation on e(we−1 . . . w0) words, operand B is inverted and the Cin is set to

’1’ by setting the add/subtract and first select inputs to be ’1’ for word w0 which makes

the addition operation equivalent to a subtraction in 2’s complement. For all subsequent

words until word we−2 first is set to ’0’ making Cout from the previous word addition go in

as Cin to the current word addition. For word we−1, last is set to ’1’ to provide the sign bit.

If the addition operation results in a positive result, then the result C is sent to memory

w-bits per clock cycle. If the result is negative, then operand B is recalled from memory

as operand A and the modulus M is added as operand B. This puts the value back in the

positive domain which is then sent back to memory same way as in the first case. Table 7.3

summarizes the setting for the Multiplexer input signals in case of subtraction.

42

S
(0)

S
(0)

S
(1)

Y
(0)

S
(0)

S
(1)

S
(0)

S
(1)

S
(7)

S
(8)

S
(0)

S
(1)

S
(7)

S
(8)

S
(1)

S
(7)

S
(8)

x
0

S
(7)

S
(8)

S
(8)

w=64

n=521

e=9

p=9

x
1

x
7

x
8

x
520

Task E

Task D

Task F

Y
(1)

S
(7)

e
−

1
 c

lk

Y
(7)

Y
(8)

n
 c

lk

t

PE#7

PE#0

PE#1

PE#8

Figure 7.1: Montgomery Multiplication According to Architecture 2

43

(e−1)−bit SREG X

3
e =

w

256
4

e =
w

384
1

e =
192

w 2
e =

224

w 5
e =

w

521

S
(e −2)r

S
(e −1)

0
r

i−(e −2)r

i−(e −2)r

E
PE#

(e −2)rM

S
(e −1)r

S
(e)

0
r

i−(e −1)r

S
(e +1)

0
r

S
(e)r

i−(e)r

E
PE#

E
PE#

S
0

5(e −1)

i−(e −2)5

S
(e −2)5

i−(e −2)5

(e −1)rM

i−(e −1)r

(e)rM

(e −1)rYr(e −2)
Y

ri−e

F
PE#

i−(e −1)5

i−(e −1)5

S 5(e −1)

(e −2)5M
(e −1)5M

(e −2)5Y
(e)rY

(e −1)5Y

(e −1)5C
(e +1)rC

(e)rC
(e −1)rC

S
(0)

q
i

X
i

q
i−1

X
i−1

S
(1)

C
(2)

C
(1)

M
(1)

Y
(1)

Y
(0)

M
(0)

S
0

(1)
S

0

(2)

(e−1)−bit SREG q

w = 16, 32 or 64

q

X
E/F_sel

PE#
E/F

X

q

X

q

X

q q

X

e −2r e −1r
e r e −25 e −150 1

PE#
E

PE#
D

Figure 7.2: High-Speed Design Supporting Different Field Sizes

000

xw−1xw−p+1

01

xw−p

wX(j)
x2p+2

xw−p+2

xp+2

x2

x3p−1

xp−1

x2p−1

x2p+1

xp+1

x1

x2p

xp

x0

0 0 0 0

enenenen

xi+2
xi+p−1xi+1xi

192

w
A= − p

224

w
B= − p

256

w
C= − p

384

w
D= − p

521

w
E= − p

A B C D

sreg E

enenenen

load

Figure 7.3: Reading and Formating of X

44

S
(1)

S
(1)

S
(2)

S
(1)

S
(2)

S
(0)

S
(0)

S
(0)

S
(1)

S
(2)

S
(1)

S
(2)

S
(1)

S
(2)

S
(0)

S
(0)

S
(0)

x
1

x
3

x
5

x
0

x
2

x
4

Y
(0)

Y
(1)

Y
(2)

Y
(0)

Y
(1)

Y
(2)

Y
(0)

Y
(1)

Y
(2)

S
(0)

S
(1)

S
(2)

S
(2)

S
(1)

S
(0)

w=2

n=6

e=3

p=2

S
(1)

S
(2)

S
(0)

2

1

3

4

8

9

5

6

7

t

10

S
(2)

Q#1

Task E

Task D

Task F

PE#0

PE#1

Figure 7.4: Montgomery Multiplication According to Architecture 1

45

M(j)

Y(j)

re
g

re
g

01 0 0

re
g

0

10

A B C D

sreg E

18

0

1

s
re

g
 9

re
g 0

1

s
re

g
 8

re
g

s
re

g
 2

re
g0

1

0

1

0

1

0

15
S(j)

18

s
re

g
 2

s
re

g
9
−

p

18

18

xi xi+1 xi+2 xi+p−1

PE#0 PE#1 PE#2

F D DF DF DF

0

PE#
p−1

same as previous diagram

Figure 7.5: Main Computational Unit

0
0

0

1

0

1

0
0

w

Y(j)

M(j)

Xi

w

w

w

10

w−1
w−1

F
F

e
n

w−1

w−1

w+1

w

0

w−2

2
w−1

w−1

0

w−2

2

0

1

0

1 2

S(j)

S(j)

S(j)

S(j+1)

w

w+1
w−1

1

0

w−2

S(j)(e)C

q
i

01

2

w+2

S(j)

0

0

0

mode F

1
re

g

mode D

C

0

Figure 7.6: Inside the PE Unit of the Lightweight Design

0

w−1
1

0 0

w−1

0

w
w

w

F
F 1

0

0

w−1

0

w−1

0

w

w
w

B

lastadd/subtract 10

0

w
w

B>A

C

first

sign

A

Figure 7.7: Modular Adder/Subtractor (MAS) Module

46

Chapter 8: ECC Multiplier

8.1 Background

An elliptic curve E over GF(p) is a set of points fulfilling the equation of the curve. When

points are represented in affine coordinates (x, y), the equation of the curve is given in the

Weierstrass form:
y2 = x3 + ax+ b,

where a and b are parameters of the curve, belonging to GF(p). Two points of the curve,

P and Q, can be added together resulting in the third point P = P + Q. This operation

is known as “point addition”. A single point, P , can be doubled, giving P = 2P . This

operation is known as “point doubling”. Scalar multiplication kP is defined as kP =

P + P + · · · + P , where k is a natural number, and P appears on the right side of the

equation k times. Scalar multiplication is performed using repetitive point addition and

point doubling operations as shown in Algorithm 1. Point addition and point doubling

operations using affine coordinates representation can be performed as follows:

Let P = (x1, y1) and Q = (x2, y2) then the new point P = P + Q = (x3, y3) would be

calculated according to the following equations:

x3 = λ2 − x1 − x2, y3 = λ(x1 − x3)− y1

where

λ =
(y2 − y1)

(x2 − x1)

Let P = (x1, y1) then the new point P = 2P = (x3, y3) would be calculated according to

47

the following equations:

x3 = λ2 − 2x1, y3 = λ(x1 − x3)− y1

where

λ =
(3x2

1 + a)

(2y1)

A base point of the curve E, denoted as G = (Gx, Gy), is a generator of a subgroup of

E, of the prime order n, consisting of all points of the form, iG, including a special point,

called point at infinity, denoted as O, which serves as a natural element for point addition.

For the base point G, nG = O. The number of points on the curve is hn, for some integer

h, known as the cofactor, which is not divisible by n.

FIPS PUB 186-4 [81], defines the elliptic curve equation over prime fields as

E : y2 = x3 − 3x+ b,

fixing the value of the coefficient a to −3 ≡ p− 3 for efficiency optimization purposes. The

standard also recommends that the value of the cofactor h should be as small as possible

and fixes it to the value of h = 1 for prime fields. Lastly, the standard recommends specific

values of the prime p for each of the five recommended field sizes.

8.2 Proposed Design

We used a modular approach which is divided into four main units: Scheduler, Memory

Controller (Mem Ctrl), Modular Adder Subtracter (MAS) and Modular Montgomery Mul-

tiplier (MMM) and a FIFO interface (see Figure 8.1) to supply inputs and read back the

output data.

External memory is used to store intermediate results during the calculation of the scalar

multiplication. The memory is interfaced to the processor through the Mem Ctrl unit. The

48

MMM

W

MAS

W

ECC

busy

Scheduler

Mem_Ctrl

di_valid

di_data

di_ready

start

init_field

init_curve

do_data

do_valid

do_ready

RAM1 RAM2

rstclk

Figure 8.1: Top Level Architecture

top level is similar for both high-speed and lightweight designs except for the connection

between the MMM and MAS units which is absent from the lightweight design which we

explain in Section 8.3.

Signals used to communicate between external control modules and the ECC processor

are shown in Table 8.2. There are three main modes of operations described below

Field Initialization: In this mode, the core initializes field parameters required to

perform the scalar multiplication operation. Field initialization starts by asserting init field

and supplying the Encode value corresponding to the desired field size as shown in Table 8.1.

The IP core then receives the field parameters p and R2 mod p, where the value of R is

dependent on the field size, as shown in Table 8.1. This mode is only required at the very

beginning of operation (e.g., after reset) and whenever the operating field GF(p) changes.

Curve Initialization: In this mode the processor initializes curve parameters required

49

to perform the scalar multiplication operation. It starts by asserting init curve then receiv-

ing the curve parameter a. This mode is only required at the very beginning of operation

and whenever an elliptic curve changes.

Computation: In this mode, the IP Core performs the scalar multiplication operation,

kP . It begins by asserting start then receiving inputs Px, Py and k. Once the computation

is performed, the resulting values Qx and Qy are written to the output.

Table 8.1: Encoding of the field size and the corresponding values of the parameter R used
in Montgomery multiplication

Field Size Encode (w-bits) R

192-bit 00..000 2192

224-bit 00..001 2224

256-bit 00..010 2256

384-bit 00..011 2384

521-bit 00..100 2521

Table 8.2: Interface Signals

Group Signal I/O Description

Global
clk in Clock signal
rstn in Asynchronous reset active low

Control
start in Start computation

init field in Update field parameters (see Table 8.1)
init curve in Update curve parameters

Status busy out Core busy

Data In
di data in Input data bus
di valid in Input is available
di ready out Ready to accept input

Data out
do data out Output data bus
do valid out Output is available
do ready in Ready to accept output

50

8.2.1 Scheduler

The scheduler is the main controller unit of the ECC processor, which is composed of four

high-level states: Normal to Montgomery Conversion, Scalar Multiplication, Projective to

Affine Conversion, and Montgomery to Normal Conversion. as shown in Figure 8.2. Each

Start

Conversion
Normal to Montgomery

Conversion
Projective to Affine

Conversion
Montgomery to Normal

Outputs

Scalar Multiplication

Figure 8.2: Operation Flow Chart

state has its own controller making the design modular. A start signal triggers a state to be-

gin operation and hands control back to the scheduler by returning a done signal. The Scalar

Multiplication state has two different versions, one which uses the unprotected double-and-

add algorithm to compute kP and the other uses the Montgomery ladder method to prevent

51

SPA attacks during the calculation of kP . The remaining states are identical in both pro-

tected and unprotected versions of the ECC processor.

Our protected design makes use of Algorithm 3 to perform the point addition and

point doubling operations. The processor uses an instruction ROM to implement the point

doubling and point addition algorithms. The ROM is composed of 27-bit instructions broken

down as follows

• 12-bit for multiplier operands (4-bit each).

• 12-bit for adder operands (4-bit each).

• 2-bit to select multiply, add, or both.

• 1-bit to select between addition and subtraction.

The unprotected version uses the algorithm from [82] to perform the point addition and

doubling operations.

The algorithms and their corresponding ROM instructions for both protected and un-

protected versions are shown in Tables 8.3, 8.4, 8.5, and 8.6.

8.2.2 Memory and Memory Controller

Our designs require 17 operands, including temporary values, to be stored with the maxi-

mum size of 521-bit each. For that, we use two memories, Memory-1 (16x512 bits) to store

14 operands and Memory-2 (4x512 bits) to store 3 operands. The remaining 512-bits in

each memory are used to store and pack the remaining 9 MSB bits of the 521-bit operands

when using 64-bit word size. The Mem Ctrl handles the sorting of these bits by converting

a virtual address issued from the scheduler to a physical address where operands can be

read or written. Figure 8.3 shows an example of how operand X q, which has an index of

5 according to the memory map, is stored in memory.

52

Table 8.3: Unprotected Point Addition Algorithm and The Corresponding ROM Entries

Algorithm 3(a) [82] Control ROM: Q = P +Q

Require: P1 = (x, y, 1, a), P = (xR,yR,1,a), Q = (X q,Y q,Z q,aZ qˆ4)
P2 = (X2, Y2, Z2, aZ

4
2) Multiplier Adder

Ensure: P1 + P2 = P3 = (X3, Y3, Z3, aZ
4
3) Res OP1 OP2 Res OP1 OP2 Ops

1: T1 ← Z2
2 T 1 Z q Z q mul

2: T2 ← xT1 T 2 xR T 1 mul
3: T1 ← T1Z2 T3 ← X2 − T2 T 1 T 1 Z q T 3 X q T 2 mulsub
4: T1 ← yT1 T 1 yR T 1 mul
5: T4 ← T 2

3 T5 ← Y2 − T1 T 4 T 3 T 3 T 5 Y q T 1 mulsub
6: T2 ← T2T4 T 2 T 2 T 4 mul
7: T4 ← T4T3 T6 ← 2T2 T 4 T 4 T 3 T 6 T 2 T 2 muladd
8: Z3 ← Z2T3 T6 ← T4 + T6 Z q Z q T 3 T 6 T 4 T 6 muladd
9: T3 ← T 2

5 T 3 T 5 T 5 mul
10: T1 ← T1T4 X3 ← T3 − T6 T 1 T 1 T 4 X q T 3 T 6 mulsub
11: aZ4

3 ← Z2
3 T2 ← T2 −X3 aZ qˆ4 Z q Z q T 2 T 2 X q mulsub

12: T3 ← T5T2 T3 T 5 T 2 mul
13: aZ4

3 ← (aZ4
3)2 Y3 ← T3 − T1 aZ qˆ4 aZ qˆ4 aZ qˆ4 Y q T 3 T 1 mulsub

14: aZ4
3 ← a(aZ4

3) aZ qˆ4 aR aZ qˆ4 mul

Table 8.4: Unprotected Point Doubling Algorithm and The Corresponding ROM Entries

Algorithm 3(b) [82] Control ROM: Q = 2Q

Q = (X q,Y q,Z q,aZ qˆ4)

Require: P1 = (X1, Y1, Z1, aZ
4
1), Multiplier Adder

Ensure: 2P1 = P3 = (X3, Y3, Z3, aZ
4
4) Res OP1 OP2 Res OP1 OP2 Ops

1: T1 ← Y 2
1 T2 ← 2X1 T 1 Y q Y q T 2 X q X q muladd

2: T3 ← T 2
1 T2 ← 2T2 T 3 T 1 T 1 T 2 T 2 T 2 muladd

3: T1 ← T2T1 T3 ← 2T3 T 1 T 2 T 1 T 3 T 3 T 3 muladd
4: T2 ← X2

1 T3 ← 2T3 T 2 X q X q T 3 T 3 T 3 muladd
5: T4 ← Y1Z1 T3 ← 2T3 T 4 Y q Z q T 3 T 3 T 3 muladd
6: T5 ← T3(aZ4

1) T6 ← 2T2 T 5 T 3 aZ qˆ4 T 6 T 2 T 2 muladd
7: T2 ← T6 + T2 T 2 T 6 T 2 add
8: T2 ← T2 + (aZ4

1) T 2 T 2 aZ qˆ4 add
9: T6 ← T 2

2 Z3 ← 2T4 T 6 T 2 T 2 Z q T 4 T 4 muladd
10: T4 ← 2T1 T 4 T 1 T 1 add
11: X3 ← T6 − T4 X q T 6 T 4 sub
12: T1 ← T1 −X3 T 1 goodT 1 X q sub
13: T2 ← T2T1 aZ4

3 ← 2T5 T 2 T 2 T 1 aZ qˆ4 T 5 T 5 muladd
14: Y3 ← T2 − T3 Y q T 2 T 3 sub

53

Table 8.5: Protected Point Addition Algorithm and The Corresponding ROM Entries

Algorithm 13 [71] Control ROM: Q,P = P +Q

Require: P1 = (X1, Y1, Z), P = (X p,Y p,Z), Q = (X q,Y q,Z)
P2 = (X2, Y2, Z) Multiplier Adder

Ensure: P1 + P2 = P3 = (X3, Y3, Z3) ∼ P1 Res OP1 OP2 Res OP1 OP2 Ops

1 : T1 ← X1 −X2 T 1 X p X q sub
2 : T2 ← T 2

1 T3 ← Y1 − Y2 T 2 T 1 T 1 T 3 Y p Y q mulsub
3 : Z3 ← ZT1 T4 ← Y1 + Y2 Z Z T 1 T 4 Y p Y q muladd
4 : T1 ← X1T2 T 1 X p T 2 mul
5 : X2 ← X2T2 X q X q T 2 mul
6 : Y2 ← T 2

4 T5 ← T1 −X2 Y q T 4 T 4 T 5 T 1 X q mulsub
7 : T2 ← T 2

3 Y2 ← Y2 − T1 T 2 T 3 T 3 Y q Y q T 1 mulsub
8 : T5 ← Y1T5 T2 ← T2 − T1 T 5 Y p T 5 T 2 T 2 T 1 mulsub
9 : X3 ← Y2 −X2 X p Y q X q sub
10: X2 ← T2 −X2 X q T 2 X q sub
11: Y2 ← T1 −X2 Y q T 1 X q sub
12: T2 ← T3Y2 T1 ← T1 −X3 T 2 T 3 Y q T 1 T 1 X p mulsub
13: T3 ← T4T1 Y2 ← T2 − T5 T 3 T 4 T 1 Y q T 2 T 5 mulsub
14: Y3 ← T3 − T5 Y p T 3 T 5 sub

Table 8.6: Protected Point Doubling Algorithm and The Corresponding ROM Entries

Algorithm 12 [71] Control ROM: P,Q = Q+ P

Require: P1 = (X1, Y1, Z), P = (X p,Y p,Z), Q = (X q,Y q,Z)
P2 = (X2, Y2, Z) Multiplier Adder

Ensure: P2 + P1 = P3 = (X3, Y3, Z3) ∼ P2 Res OP1 OP2 Res OP1 OP2 Ops

1 : T1 ← X1 −X2 T 1 X p X q sub
2 : T2 ← T 2

1 T3 ← Y1 − Y2 T 2 T 1 T 1 T 3 Y p Y q mulsub
3 : Z3 ← ZT1 Z Z T 1 mul
4 : T1 ← X2T2 T 1 X q T 2 mul
5 : X1 ← X2T2 X p X p T 2 mul
6 : T4 ← T 2

3 T5 ← X1 − T1 T 4 T 3 T 3 T 5 X p T 1 mulsub
7 : Y1 ← Y1T5 T4 ← T4 −X1 Y p Y p T 5 T 4 T 4 X p mulsub
8 : X3 ← T4 − T1 X q T 4 T 1 sub
9 : Y2 ← X1 −X3 Y q X p X q sub
10: Y2 ← T3Y2 Y q T 3 Y q mul
11: Y3 ← Y2 − Y1 Y q Y q Y p sub

54

Table 8.7: Memory Structure

Nr RAM idx Unprotected Protected

0 0 0 Rˆ2 mod M Rˆ2 mod M
1 0 1 a aZ pˆ4
2 0 2 x X p
3 0 3 y Y p
4 0 4 R Z p
5 0 5 X q X q
6 0 6 Y q Y q
7 0 7 Z q Z q
8 0 8 aZ qˆ4 aZ qˆ4
9 0 9 T 1 T 1

10 0 10 T 2 T 2
11 0 11 T 3 T 3
12 0 12 T 4 a
13 0 13 T 5
14 0 14 T 6
15 0 15 MSB521(0-14) MSB521(0-12)
16 1 0 M M
17 1 1 M-2 M-2
18 1 2 K K
19 1 3 MSB521(16-18) MSB521(16-18)

8.2.3 Modular Adder-Subtracter (MAS)

All supported field sizes, with the exception of 521 are divisible by 16 and 32. Storing them

in word-size memory does not leave space for the sign bit. To solve this problem, we created

our MAS unit as described in Section 7.4.

8.2.4 Modular Montgomery Multiplier (MMM)

We use the algorithm from [80] to calculate the Modular Montgomery Multiplication in

our MMM module. Our design uses architectures 1 and 2 for both the lightweight and

high-speed implementations respectively which are explained in detail in the next section.

The calculations for task D, E, and F are described in [80].

55

w

X_q

0101100
0101011
0101010
0101001
0101000
Address
Virtual

X_q

010100

w

010101
010110
010111

MSB0

011101
011110
011111

011100
Address
Physical

01

w
Address
Physical

MSB

MSB

RAM
idx

X_q

101

Figure 8.3: Example of how the 9 MSB Bits are Stored

8.3 Implementations

In this section we describe the decisions we made to separate our high-speed and lightweight

designs and other choices.

8.3.1 Implementation Decisions

NIST special curves are those whose coefficients and underlying field have been selected

to optimize the efficiency of the elliptic curve operations while NIST special primes are

of a special type (called generalized Mersenne numbers) for which modular multiplication

can be carried out more efficiently than for general primes. Our designs are generalized

for all GF (p) curves for a specified field size and not limited to NIST curves. We did not

include binary fields GF (2m) as recent improvements in attacking discrete logarithms over

small-characteristic fields raised security concerns about them. These concerns apply only

to pairings for the time being but our goal is to use the hardware modules for a hardware/-

software co-design implementation. Our design utilizes external memory in order to support

ASIC implementations, easy mapping to embedded memories on FPGAs, and unified high-

speed and lightweight storage requirements. We used projective coordinate representation

with Co-Z arithmetic which calculates the Montgomery Ladder faster compared to other

56

coordinate systems.

Our designs support all 5 NIST field sizes and are not limited to special primes as these

primes might be patent restricted. We are not making use of special FPGA features such

as DSP units to make the designs also suitable for ASICs.

The high-speed design uses different word sizes (16, 32, and 64) and redundant repre-

sentation to achieve high throughput. The lightweight design uses a variable number of

PEs (2, 4, or 8) to increase flexibility while maintaining a low area. For the high-speed

design we used Carry-Save Adders (CSA) inside the PEs and save the result in redundant

format which is then sent to the MAS unit to be added to get the final Montgomery Mul-

tiplication result. This way we can free the multiplier faster to start the next Montgomery

multiplication operation which increases the throughput. In lightweight, the PEs use Carry

Propagate Adders (CPA) and the result is saved in non-redundant format which does not

require a final addition operation hence there is no direct connection between MMM and

MAS modules.To protect against DPA, we chose to randomize the scalar k using the “Ran-

domization of the Private Exponent” method from [69]. This provides the needed security

without adding to the overhead of the scalar multiplication calculation as the randomiza-

tion factor can be calculated through software in advance and it only needs to be updated

whenever the curve parameters are changed.

57

Chapter 9: Software Implementation

The software portion of the design handles high-level protocol and pairing operations. We

use the framework from [67] with a few modifications of our own. The main modification

was to use a scalable word-based Montgomery multiplier from [79] instead of the Mont-

gomery multiplier methods used in the framework to perform prime field multiplication

operations. The reason for this is to prevent both the hardware/software co-design and

the software implementations from gaining performance improvements in result of using

different Montgomery multiplier architectures. This way we can keep the comparison be-

tween both implementations fair as Multiple-Word Radix-2 Montgomery Multiplication

(MWR2MM), is shown as Algorithm 4.

Countermeasures against side-channel attacks are also included in the software. To

protect against SPA attacks, we use Montgomery ladder. To protect against first order

DPA attacks, we use the Randomized Projective Coordinated (RPC) method described by

Coron [69]. In this method, we take advantage of the fact that projective coordinates are

not unique since:

(X,Y, Z) = (λX, λY, λZ) for any λ 6= 0 and λ ∈ Fp.

Point P = (X,Y, Z) is randomized using the above method before the execution of any

scalar multiplication operation.

The drivers for the MMM unit as well as the supporting IPs were generated by VIVADO.

We use the AXI TIMER to measure the time for calculating Montgomery multiplication,

optimal-ate pairing and IBE in hardware and software. We initialize the timer at the

beginning of the application, then we start it before the procedure we want to calculate the

latency for starts. We stop it right after the procedure is completed. Using this method, we

can easily compare the latencies of the hardware/software co-design to that of the software

58

implementation since the AXI TIMER’s frequency will not change based on the PL or the

PS frequencies.

59

Chapter 10: Power Measurements

As mentioned in Section 5.6, we use Fobos to perform power measurements. FOBOS is

an open-source framework for conducting side-channel attacks on FPGAs which supports

multiple FPGA devices and includes all necessary software to run DPA attacks. In its first

version, FOBOS supports power analysis of implementations on FPGAs. FOBOS includes

all necessary software to control the device under test (DUT), trigger the oscilloscope,

obtain the measurements and analyze them using several power analysis techniques. The

components of FOBOS are build in a modular fashion so that it can easily be adapted for

new FPGA boards, oscilloscopes, and attack techniques.

We make use of FOBOS data acquisition and software capabilities to perform power

measurements. The hardware multiplier, to which we wanted to measure power, is imple-

mented on the DUT board. The PC provides the input data (i.e. operands to be multiplied)

to the control board which in turn sends them to the DUT and signals the multiplier to start

computations when input data is transfered. The controller also triggers the oscilloscope to

start measuring the voltage change during the multiplier’s operation. Once computation is

complete, the trace is transfered from the oscilloscope to the PC to perform data analysis

and power measurements. The results of the multiplication operation are also verified and

compared against the expected results for the given test vectors. The general procedure

described here is shown in Figure 10.1.

We implemented our Montgomery multiplier for different number of PEs and with dif-

ferent operating clock frequencies to get comprehensive power model for our design. We

also ran 10 traces per implemented design and averaged the power measures. The imple-

mentations were performed for both supported field sizes (160-bit and 256-bit). On top of

this, we performed the measurements using three different clock frequencies (5, 10 and 20

MHz) The traces are shown in Figures 10.2, 10.3, 10.4, 10.5, 10.6, and 10.7

60

DUT Control

Power

INA225

Trigger

16

16

Data_in

Start

Done

Data_out

D
a
ta

(U
S

B
)

Traces

Voltage proportional to I

Python
Script

Output

Output
Expected

�
�
�
�

VCC

R S

VCore

Core

Figure 10.1: FOBOS Components and Events

The formulas used for power measurements are discussed in Chapter 11 but we show

the python script which we added to the FOBOS software in order to calculate power

consumption in 10.1.

Listing 10.1: Fragments of the code used to measure power

1 #This script takes raw power traces and calculates the max and mean power for raw untruncated traces

and sample-wise truncated traces

2 import math

3 import numpy as np

4 import matplotlib as mpl

5 mpl.use(’Agg’)

6 import matplotlib.pyplot as plt

7 import argparse

8

9 # Get values from XXBX and FOBOS test bench

61

(a) p = 2 steps

(b) p = 4 steps

(c) p = 8 steps

Figure 10.2: Power Trace for the 160-bit Montgomery Multiplier Measured at Clock Fre-
quency of 5-MHz 62

(a) p = 2 steps

(b) p = 4 steps

(c) p = 8 steps

Figure 10.3: Power Trace for the 160-bit Montgomery Multiplier Measured at Clock Fre-
quency of 10-MHz 63

(a) p = 2 steps

(b) p = 4 steps

(c) p = 8 steps

Figure 10.4: Power Trace for the 160-bit Montgomery Multiplier Measured at Clock Fre-
quency of 20-MHz 64

(a) p = 2 steps

(b) p = 4 steps

(c) p = 8 steps

Figure 10.5: Power Trace for the 256-bit Montgomery Multiplier Measured at Clock Fre-
quency of 5-MHz 65

(a) p = 2 steps

(b) p = 4 steps

(c) p = 8 steps

Figure 10.6: Power Trace for the 256-bit Montgomery Multiplier Measured at Clock Fre-
quency of 10-MHz 66

(a) p = 2 steps

(b) p = 4 steps

(c) p = 8 steps

Figure 10.7: Power Trace for the 256-bit Montgomery Multiplier Measured at Clock Fre-
quency of 20-MHz 67

10 # set Vcc voltage of DUT

11 Vcc = 1.20

12 # set gain on XXBX chip

13 Gain = 100

14 # set resistor value (ohms)

15 R = 1

16

17 # compute power in watts = Vcc * Vs/Gain/R

18 def computePower(Vs):

19 return Vcc*(Vs/Gain/R)

20

21 # imported from read_traces()

22 def adjustSampleSize(sampleLength, dataArray):

23 #print "\tAdjusting Sample Size to ->" + str(sampleLength)

24 temp = dataArray.shape

25 newDataArray = dataArray

26 arrLen = temp[0]

27 #print "Array Length --> " + str(arrLen)

28 if (arrLen == sampleLength):

29

30 return dataArray

31

32 elif (arrLen > sampleLength):

33

34 diff = arrLen-sampleLength

35 for count in range(0,diff):

36 newDataArray = np.delete(newDataArray, -1, 0)

37 return newDataArray

38

39 elif (arrLen < sampleLength):

40

41 diff = sampleLength-arrLen

42 for count in range (0,diff):

43 newDataArray = np.append(newDataArray,0)

44 return newDataArray

68

Chapter 11: Results

11.1 Overview

In this chapter we present our results and findings. It is divided into two main parts. The

first part includes the results for the ECC scalar multiplier core which we used to test the

performance of the hardware accelerators and simulate the power consumption. We also

wanted to make sure that our scalable multiplier can handle different operand sizes (i.e.

can support multiple field sizes). Finally we wanted to test the performance of the ECC

cores with and without the protection of counter measures against side channel attacks.

The second part includes the results for the pairing hardware/software co-design and

actual power and energy measurements for the hardware accelerator.

11.2 ECC Multiplier Results

We implemented two different ECC processors, one suitable for high-speed applications and

the other targets lightweight devices. We also created high-speed and lightweight versions

of the ECC processor which use the fast, but also vulnerable to SPA, Double-and-Add

algorithm and Modified Jacobean coordinates. The second version uses Montgomery ladder

and Co-Z arithmetic for projective coordinates. We compare our protected ECC processor’s

latencies to faster unprotected implementations. Our test setup was as follows

• Embedded memories are used only for “external RAM”.

• All implementations are coded in VHDL and do not use any other embedded resources.

• Implemented using Xilinx ISE 14.7, Quartus Prime 16.0 and Libero SoC 11.7

• Optimized using ATHENa [83].

69

Table 11.1: FPGA Families Used For Our Implementations

Xilinx Altera

Family Technology Family Technology

Spartan-6 45 nm
Virtex-6 40 nm Stratix IV 40 nm
Artix-7 28 nm Cyclone V 28 nm
Virtex-7 28 nm Stratix V 28 nm
Zynq-7000 28 nm

• All results reported are Post-Place & Route.

The latencies for different field sizes supported by the ECC processor are listed in

Tables 11.2 and 11.3 for high-speed and lightweight designs respectively. The latency is

defined as the number of clock cycles required between the rising edge and the falling edge

of the busy output. Thus, it includes only the time spent in actual computation of the

scalar multiplication excluding the field and curve initialization phases. Since the latency

depends on a particular value of the scalar k, we also assume that k is of the same size as

the operating field and has equal number of 1’s and 0’s in its binary representation. Since

the latency includes also the time spent for receiving inputs Px, Py and k, and sending out

outputs Qx and Qy, the assumption is made that these transmission do not include any

stall cycles. This means that the di valid and do ready inputs are high during the entire

periods when the respective transmissions take place.

All latency values shown in Table 11.2 have been determined using simulations for each

word size w = 64, 32, or 16 for the high-speed designs and the values shown in Table 11.3

have been determined using simulations for each number of PEs p = 2, 4, or 8 for the

lightweight. The throughput is calculated in terms of the number of operations (scalar

multiplications) per second, assuming a hypothetical clock frequency of 100 MHz.

The results show that the overhead of using Montgomery Ladder with co-Z addition

formulas is very low. This is because ZADDU and ZADDC algorithms are faster than other

projective coordinates point doubling and point addition algorithms.

70

Table 11.2: Latency and Throughput for a Given Field and Width for High-Speed

Field size
Latency in clock cycles TP in Op/sec

Size of word (W) at f=100 MHz
W=64 W=32 W=16 W=64 W=32 W=16

U
n

p
ro

te
c
te

d 192-bit 766,476 868,229 1,071,735 130 115 93
224-bit 1,045,978 1,164,717 1,431,804 96 86 70
256-bit 1,296,709 1,462,177 1,793,113 77 68 56
384-bit 2,910,581 3,263,447 3,969,182 34 31 25
521-bit 5,398,490 6,017,514 7,255,754 19 17 14

Average 2,283,646 2,555,216 3,104,317 71 63 52

P
ro

te
c
te

d

192-bit 824,212 939,969 1,171,483 121 106 85
224-bit 1,125,214 1,260,229 1,564,664 89 79 64
256-bit 1,395,369 1,584,853 1,963,821 72 63 51
384-bit 3,123,729 3,528,699 4,338,639 32 28 23
521-bit 5,791,134 6,502,510 7,925,454 17 15 13

Average 2,451,932 2,763,252 3,392,812 66 59 47

TP→ Throughput; Op→ Operations; f → Frequency

Implementation results for the high-speed design on different families are summarized

in Table 11.4. The best performance on all target devices in terms of throughput and

throughput/area ratio was recorded for w = 32 which is the middle value of our supported

widths. The only exception to this is the Virtex-7 implementation where w = 16 has the

best throughput/area ratio. The throughput when w = 64 is better than when w = 16

except for Stratix-IV device. While the throughput/area ratio when w = 16 is better

than when w = 64 except for the Zynq implementation. For the lightweight, The best

performance was also consistent across all target devices and it was recorded for p = 8 as

can be seen in Table 11.14. The number of PEs is directly proportional with the throughput

and throughput/area ratio.

Tables 11.6 and 11.8 show results for ASIC implementations for high-speed and lightweight

respectively. We implemented the designs on 90nm technology and the area is counted in

terms of NAND2x1 gates. The design area reported does not include size of memories and

the results are after synthesis. The results are consistent with the the FPGA findings in

that the best performance is when w = 32 for high-speed and when p = 8 for lightweight.

71

Table 11.3: Latency and Throughput for a Given Field and Number of PE Units for Our
Lightweight Design

Field size
Latency in clock cycles TP in Op/sec

Number of PE units (#PE) at f=100 MHz
#PE=8 #PE=4 #PE=2 #PE=8 #PE=4 #PE=2

U
n

p
ro

te
c
te

d 192-bit 1,477,451 2,400,451 4,265,951 68 42 23
224-bit 2,212,011 3,684,471 6,652,161 45 27 15
256-bit 3,073,655 5,213,351 9,518,015 33 19 11
384-bit 9,453,251 16,857,851 31,705,751 11 6 3
521-bit 22,890,391 41,810,938 79,687,348 4 2 1

Average 7,821,351 13,993,412 26,365,845 32 19 11

P
ro

te
c
te

d

192-bit 1,576,957 2,557,883 4,540,489 63 39 22
224-bit 2,358,523 3,922,551 7,074,793 42 25 14
256-bit 3,279,973 5,555,813 10,134,373 30 18 10
384-bit 10,057,513 17,916,721 33,676,213 10 6 3
521-bit 24,313,723 44,374,347 84,533,037 4 2 1

Average 8,317,338 14,865,465 27,991,781 30 18 10

TP→ Throughput; Op→ Operations; f → Frequency

It was not easy to compare our results to other published work in the area as not

too many designs support multiple field sizes in the same ECC processor and the ones

that do, are mostly limited to NIST primes with special optimizations applied making

direct comparison not very accurate. As shown in Table 11.10, we chose the designs that

target the Virtex-5, Virtex-6, and Virtex-7 families and compared them to our Virtex-

7 implementations. The closest design to compare our design to is the work from [84].

It should be noticed that their design is more than twice as large as ours, they use two

Montgomery multiplier units, use special DSP units and multipliers and they use the fast

and SPA vulnerable, Double-and-Add algorithm. The design from [85] is almost ten times

as large as ours with 128 BRAMs used compared only 4 in our work. Their design achieves

high throughput but the throughput/area ratio is only slightly higher than our design. The

work in [86] only reports results for GF(p) 192-bit and 256-bit, their design is more than

twice as large as ours. The Throughput/area ratio for their 192-bit design is has a better

performance than ours while the 256-bit implementation is worse which indicates that as

72

the field size increases in their design the size gets larger and the performance will drop

even more. Other results such as [87], [88], [89], [90], [91], and [92] are implemented on

families with different technology and therefore cannot be compared to our design.

We compare our lightweight design with p = 8 design to other implementations in

Table 11.11. The best performance is reported in [93] with a throughput/area ratio that

is almost six times ours but the design uses special DSP units and as many as 24 BRAMs

compared to only 2 in our design for the external memories. The rest of the reported results

are out performed by our design when compared in terms of throughput/area ratio.

We performed power simulations on our designs using Xilinx Xpower Analyzer tool and

the results are reported in Tables 11.12 and 11.13. The power simulations were performed

over 5 samples per field and the average static and dynamic power for the total number of

samples is taken for w = 16, 32 and 64 in case of high-speed and for #PE = 2, 4, and 8 in

case of lightweight. The simulations were performed over a clock frequency of 100 MHz.The

IGLOO2 power results are the post implementation estimates reported by Libero SoC tool.

The results show that as w increases, in case of the high-speed designs, the dynamic

power increases and vice-versa. Same thing applies for the lightweight design as the dynamic

power consumption is directly proportional to the #PE. Virtex-6 and Spartan-6 were the

exceptions to that. The former reported a very high static power which might have affected

the results and the latter reported higher dynamic power when w = 16 than that when

w = 32.

11.3 Pairing Hardware/Software Co-Design Results

We implemented our design using VIVADO 2015.1 design suite on a Zedboard equipped

with Zynq-7020 FPGA chip. The frequency for the IPs in the PL is set to 100 MHz while

the PS Cortex-A9 processor operates at its maximum frequency of 667 MHz. We built two

versions of the custom IP MMM; one supports 160-bit field size operands, and the other

256-bit ones to be used as hardware accelerators for BN-158 and BN-254 Fp operations,

respectively. Each version of the multiplier was implemented using 2, 4 and 8 PEs in order

73

to compare the performance for different area sizes. We implemented both versions of the

MMM as standalone modules using VIVADO; the results can be found in Table 11.14. The

maximum achievable frequency for all the designs was the same. This is because the critical

path of the design is the PE unit, and the delay is dependent on the word size, which is

fixed for all designs. The best performance in both designs in terms of throughput/area

ratio was for p = 8.

Table 11.15 represents the time needed to calculate one optimal-Ate pairing using the

MMM as a hardware accelerator and in software. For the 160-bit implementation, us-

ing MMM in the hardware/software co-design improves the performance over the software

implementation by 2.02x, 1.59x and 1.12x for p = 8, 4 and 2, respectively. For 256-bit im-

plementations, the improvements over the software implementation were 2.34x, 1.89x and

1.38x for p = 8, 4 and 2, respectively. We also calculated the computational time for key

encapsulation and decapsulation functions in the Boneh-Franklin IBE. We performed the

calculations for p = 4. The improvements for the key encapsulation mechanism were 1.5x

and 1.9x for BN-158 and BN-254 respectively. The improvements for the decapsulation

functions were 1.6x and 1.7x for BN-158 and BN-254 respectively.

The implementation can be further improved by using the maximum number of PEs, e,

but this will result in area increases and higher power consumption.

11.3.1 Power Measurements and Energy Consumption

Average power is computed during multiplier operation at various frequencies (i.e., 5, 10,

and 20 MHz), various numbers of PE (i.e., 2, 4, and 8), and for field sizes of 160 and

256 bits. Power is measured using the Flexible Open-source workBench fOr Side-channel

analysis (FOBOS).

To measure power, the multiplier is instantiated in the FOBOS DUT board (Spartan

3E FPGA). Voltage is measured across a shunt resistor during computation of multiple test

vectors. It is then amplified, captured by the oscilloscope, and retained for off-line analysis.

A Python script is used to compute average power using the formula Vcc*Vs*R/Gain, where

74

Vcc is FPGA voltage, Vs is measured voltage from oscilloscope, R is shunt resistance, and

Gain is INA225 amplifier gain in V/V . Energy-per-bit (nJ/bit) is computed using the

formula

E(nJ/bit) =
(Power(mJs) ∗ cycles/multiplication)

(Freq(MHz) ∗ Field size(bits))
(11.1)

Results of power and energy consumption for 160 bits and 256 bits are shown in Ta-

ble 11.16. Measured power for both field sizes are additionally shown in Figure 11.1. The

results show that there is a near linear increase in power corresponding to increasing PE.

Additionally, the increased power consumption in the 256 bit field compared to the 160 bit

field is 8% (5 MHz), 12% (10MHz), and 20% (20 MHz), respectively; and the increased

energy consumption of the 256 bit field compared to the 160 bit field is 70% (5 MHz), 77%

(10 MHz), and 90% (20 MHz), respectively.

The energy efficiency of a large number of PEs (e.g. 8) is in all cases better than for a

small number of PEs (e.g., 2). For example, in the 160 bit field, the energy usage of the 8

PE multipliers decreases by 70% compared to the 2 PE multipliers; and in the 256 bit field,

the energy usage of 8 PE multipliers is 72% less than that of the 2 PE multipliers.

75

2 4 8

10
20

30

2 4 8
PE

Po
we

r (
m

W
)

Field size: 160 bits Field size: 256 bits

Figure 11.1: Average power (mW) shown on vertical axis) for multipliers with field sizes of
160-bit (left) and 256-bit (right). PEs are shown on horizontal axis. Triangles represent a
frequency of 5 MHz; Diamonds represent 10 MHz; Circles represent 20 MHz

76

Table 11.4: Implementation Results of Protected High-Speed Design

Xilinx FPGAs

Width Slices LUTs FFs BRAMs
Avg. Latency f TP TP/Area

[Clock cycles] [MHz] [Op
sec] [Op

Slices·sec]

Virtex7:xc7vx485tffg1761-3

64 1,269 3,036 4,678 8 2,451,931 184 75 0.059
32 1,227 2,681 4,572 4 2,763,252 214 77 0.063
16 996 3,144 4,606 2 3,392,812 243 72 0.072

Virtex6:xc6vlx240tff1156-3

64 1,316 3,041 4,678 8 2,451,931 175 71 0.054
32 1,110 2,886 4,572 4 2,763,252 212 77 0.069
16 1,174 2,840 4,606 2 3,392,812 239 70 0.060

Zynq:xc7z020clg484-3

64 1,135 3,072 4,678 8 2,451,931 130 53 0.047
32 1,172 2,720 4,572 4 2,763,252 168 61 0.052
16 1,224 2,765 4,606 2 3,392,812 178 52 0.043

Altera FPGAs

Width ALMs ALUTs FFs MBits
Avg. Latency f TP TP/Area

[Clock cycles] [MHz] [Op
sec] [Op

ALMs·sec]

Stratix V:5SGXEA7K2F40C3

64 2,998 5,660 5,383 20,480 2,451,931 173 70 0.023
32 2,766 5,076 5,113 20,480 2,763,252 212 76 0.028
16 2,629 4,841 5,084 20,480 3,392,812 237 70 0.026

Stratix IV:EP4SE530H35C4

64 4,312 3,936 4,687 20,480 2,451,931 134 55 0.013
32 3,731 4,076 4,582 20,480 2,763,252 176 64 0.017
16 3,681 4,031 4,617 20,480 3,392,812 191 56 0.015

Actel FPGAs

Width LEs 4LUTs FFs RAM
Avg. Latency f TP TP/Area

[Clock cycles] [MHz] [Op
sec] [Op

LEs·sec]

IGLOO2:M2GL010TS-1FG484

64 7,846 6,737 5,226 16 2,451,931 75 30 0.004
32 7,017 6,007 4,962 12 2,763,252 84 30 0.004
16 6,839 5,927 4,926 10 3,392,812 93 27 0.004

77

Table 11.5: Implementation Results of Protected Lightweight Designs

Xilinx FPGAs

of PEs Slices LUTs FFs BRAMs
Avg. Latency f TP TP/Area

[Clock cycles] [MHz] [Op
sec] [Op

Slices·sec]

Zynq:xc7z020clg484-3

8 469 1,697 1,169 2 8,317,338 179 21 0.046
4 407 1,353 1,015 2 14,865,465 182 12 0.030
2 318 1,118 939 2 27,991,781 164 6 0.020

Artix:xc7a100tcsg324-3

8 527 1,675 1,169 2 8,317,338 186 22 0.042
4 466 1,310 1,015 2 14,865,465 187 13 0.027
2 312 1,135 939 2 27,991,781 187 7 0.021

Spartan6:xc7vx485tffg1761-3

8 466 1,758 1,178 2 8,317,338 152 18 0.039
4 371 1,360 1,024 2 14,865,465 143 10 0.026
2 325 1,166 948 2 27,991,781 155 6 0.017

Altera FPGAs

of PEs ALMs ALUTs FFs MBits
Avg. Latency f TP TP/Area

[Clock cycles] [MHz] [Op
sec] [Op

Slices·sec]

Stratix V:5SGXEA7K2F40C3

8 883 1,501 1,222 20,480 8,317,338 224 27 0.030
4 676 1,162 746 20,810 14,865,465 216 14 0.021
2 588 961 647 20,480 27,991,781 224 8 0.014

Cyclone V:5CEBA4F23C7

8 858 1,517 937 20,786 8,317,338 121 14 0.017
4 680 1,162 692 20,875 14,865,465 122 8 0.012
2 588 961 571 20,912 27,991,781 119 4 0.007

Stratix IV:EP4SE530H35C4

8 1,007 1,554 974 20,480 8,317,338 182 22 0.022
4 835 1,216 785 20,480 14,865,465 181 12 0.015
2 899 933 952 20,480 27,991,781 185 7 0.009

Actel FPGAs

of PEs LEs 4LUTs FFs RAM
Avg. Latency f TP TP/Area

[Clock cycles] [MHz] [Op
sec] [Op

LEs·sec]

IGLOO2-M2GL005S:1FG484

8 3,205 2,835 1,491 10 2,451,931 94 11 0.004
4 2,753 2,385 1,341 10 2,763,252 81 5 0.002
2 2,522 2,079 1,269 10 3,392,812 97 3 0.001

78

Table 11.6: Implementation Results of Unprotected High-Speed Designs on ASICs

Width
Area Avg. Latency f TP TP/Area

GEs [Clock cycles] [MHz] [Op
sec] [Op

GEs·sec]

64 57,669 2,198,857 246 112.029 0.0019
32 52,468 2,386,935 284 119.019 0.0023
16 50,602 2,770,886 307 110.705 0.0022

Table 11.7: Implementation Results of Protected High-Speed Designs on ASICs

Width
Area Avg. Latency f TP TP/Area

GEs [Clock cycles] [MHz] [Op
sec] [Op

GEs·sec]

64 4,583 3,874,368 259 66.694 0.0015
32 53,032 4,175,648 288 69.015 0.0013
16 51,290 5,202,156 307 58.966 0.0011

Table 11.8: Implementation Results of Unprotected Lightweight Designs on ASICs

of Area Avg. Latency f TP TP/Area

PEs GEs [Clock cycles] [MHz] [Op
sec] [Op

GEs·sec]

8 17,382 7,242,001 198 27 0.0016
4 13,544 16,625,805 208 13 0.0009
2 11,584 43,124,791 195 5 0.0004

Table 11.9: Implementation Results of Protected Lightweight Designs on ASICs

of Area Avg. Latency f TP TP/Area

PEs GEs [Clock cycles] [MHz] [Op
sec] [Op

GEs·sec]

8 12,696 13,273,732 301 23 0.0018
4 6,402 23,832,507 307 13 0.0020
2 6,402 44,998,584 306 7 0.0011

79

Table 11.10: Comparison of the High-Speed Design

Work Device
Curve

SlicesLUTsDSPsBRAMs
f TPTP/Area

Size Type [MHz] [Op
sec

] [Op
LUTs·sec]

TW[W=32] VX-7

192 GF (p)

1,227 2,681 0 4 214

247 0.090
224 GF (p) 187 0.069
256 GF (p) 146 0.054

(Protected) 384 GF (p) 67 0.024
521 GF (p) 37 0.013

TW[W=64] VX-7

192 GF (p)

1,269 3,036 0 8 184

239 0.078
224 GF (p) 177 0.058
256 GF (p) 142 0.046

(Protected) 384 GF (p) 63 0.020
521 GF (p) 35 0.011

[84][W=32] VX-7

192 GF (p)

N/A 6,816 20 N/A N/A

3,260 0.478
256 GF (p) 1,510 0.221
384 GF (p) 551 0.080

(Unprotected) 521 GF (p) 231 0.033
[84][W=64] VX-7 384 GF (p) N/A 8,273 64 N/A N/A 759 0.091
(Unprotected) 521 GF (p) 320 0.038

[85] VX-6

192 p-192

11,200 32,900 289 128 100

3,334 0.101
224 p-224 2,858 0.086
256 p-256 2,500 0.075

(N/A) 384 p-384 848 0.025
521 p-521 625 0.018

[93] VX-5 256 p-256 81 212 8 22 172 91 0.429

[94] VX-5
192 GF (p) N/A 6,100 N/A N/A 97 488 0.080
256 GF (p) N/A 7,800 N/A N/A 82 248 0.031

TW→This Work; VX→ Virtex;
GF (p)→ any prime for a given size; p-xxx → NIST prime only

Table 11.11: Comparison of Lightweight Results

Work Device
Curve

SlicesLUTsDSPsBRAMs
f TPTP/Area

Size Type [MHz] [Op
sec] [Op

Slices·sec]

TW[#PEs=8] SN-6

192 GF (p)

481 1,513 0 2 165

156 0.325
224 GF (p) 100 0.207
256 GF (p) 67 0.139
384 GF (p) 20 0.041
521 GF (p) 7 0.015

[95] SN-6 256 p− 256 221 630 1 3N/AN/A N/A

[93]
SN-6 256 p− 256 72 193 8 24 156 12 1.139
VX-5 256 p− 256 81 212 8 22 172 11 1.123

[96]
VX-2 Pro 224 p− 224 773 N/A 11 3 210 8 0.158
VX-2 Pro 256 p− 256 773 N/A 41 3 210 10 0.129

[97] VX-2 Pro 256 GF (p) 1694 N/A 21 9 108 30 0.020

TW→This Work; VX→ Virtex; SN→ Spartan; 1 → Multipliers;
GF (p)→ any prime for a given size; p-xxx → NIST prime only

80

Table 11.12: High-speed Power Estimates Using Xilinx Xpower Analyzer and Libero SoC

Family
Avail. Pstatic [mW] Pdynamic [mW] Ptotal [mW]
LUTs W=64 W=32 W=16 W=64 W=32 W=16 W=64 W=32 W=16

Virtex7 303,600 241 241 241 52 36 30 293 278 271

Virtex6 150,720 3,424 3,423 3,423 86 45 54 3,510 3,468 3,477

Zynq 53,200 100 100 100 51 40 31 164 140 144

Artix7 63,400 82 82 82 47 40 39 129 122 121

Spartan6 9,112 20 20 20 36 24 26 56 44 46

IGLOO2 12,084 13 12 11 1 1 0.3 14 13 11

Table 11.13: Lightweight Power Estimates Using Xilinx Xpower Analyzer and Libero SoC

Family
Avail. Pstatic [mW] Pdynamic [mW] Ptotal [mW]
LUTsPE=8PE=4PE=2PE=8PE=4PE=2PE=8PE=4PE=2

Zynq 53,200 100 100 100 31 18 12 131 118 112
Artix7 63,400 82 82 82 39 22 17 121 104 99

Spartan6 9,112 20 20 20 19 8 6 29 28 26
IGLOO2 6,060 11 12 11 1 0.4 1 12 12 12

Table 11.14: Implementation Results of the Montgomery Multiplier on Zynq-7020 Xilinx
FPGA

of PEs Slices LUTs FFs
Latency f TP TP/Area

[Clk cycles] [MHz] [Million Op
sec] [Thousand Op

Slices·sec]

Field Size = 160-bit

8 534 1,539 1,086 209 324 1.55 2.90
4 401 1,131 931 405 324 0.80 1.99
2 337 989 854 803 324 0.40 1.19

Field Size = 256-bit

8 598 1,958 1,101 521 324 0.62 1.04
4 434 1,427 950 1,029 324 0.31 0.72
2 358 1,258 817 2,051 324 0.15 0.44

PE→ Processing Element

Table 11.15: Performance of the Hardware/Software Co-design and the Software Implemen-
tation Pairing Operations

Field Size
Pairing time IBE time

[ms] in HW [ms] in SW [ms]
PE=8 PE=4 PE=2 SW Encap Decap Encap Decap

BN-158 57 72 103 115 207 92 318 150
BN-256 134 166 226 314 636 275 1209 468

PE→ Processing Element

81

Table 11.16: Power Measurements and Energy Results for Various Field Sizes

Frequency 5 MHz 10 MHz 20 MHz

Cycles / Power Energy Power Energy Power Energy
PE Mult (mW) (nJ/bit) (mW) (nJ/bit) (mW) (nJ/bit)

Field Size = 160-bit

2 803 14.9 15.0 17.4 8.7 22.3 5.6
4 405 15.6 7.9 18.7 4.7 25.2 3.2
8 209 16.2 4.2 20.0 2.6 27.7 1.8

Field Size = 256-bit

2 2051 16.5 26.4 20.4 16.3 28.2 11.3
4 1029 16.5 13.3 20.2 8.1 30.3 6.1
8 521 17.3 7.0 22.1 4.5 31.6 3.2

82

Chapter 12: Conclusions and Future Work

We presented a lightweight hardware/software co-design solution for pairing-based cryp-

tography. We used a scalable Montgomery multiplier as a hardware accelerator for field

multiplication operations required to perform PBC protocols. We implemented different

versions of the hardware Montgomery multiplier which uses variable PE units (2, 4, and 8)

and supports 80-bit and 128-bit security levels. We tested two different architectures of the

multiplier comprehensively in an ECC scalar multiplier and got good results for different

operand sizes. We added countermeasures to our designs to protect against SPA and DPA.

For the pairing implementation, we used the Zynq-7020 FPGA as the target platform

for the hardware/software co-design. The software implementation was tested on ARM

Cortex-A9. We tested our design with optimal Ate-pairing and IBE computations over

BN-158 and BN-254 curves. The results show improvements of more than 200% in terms

of latency for some functions when compared to the software implementation. We also

performed power and energy measurements for the Montgomery multiplier and show that

it has a low power and energy consumption.

For future work, we want to include an adder as part of the hardware accelerator and see

if this can further improve the latency and throughput/area. Additionally, We want to test

a different multiplier which can make use of DSP units from the FPGA. We will extend the

target devices for our implementations and power measurements to include IGLOO2 FPGA

and MSP430 micrcontroller. Finally, we want to compare our design to the performance of

a software implementation on MSP430 and MSP432 microcontrollers.

83

Bibliography

[1] L. Martin, Introduction to Identity-Based Encryption, 1st ed. Artech House, January
2008.

[2] S. Chatterjee and P. Sarkar, Identity-Based Encryption, 1st ed. Springer US, 2011.

[3] A. Shamir, “Identity-based cryptosystems and signature schemes,” in Advances in
Cryptology, ser. Lecture Notes in Computer Science, G. Blakley and D. Chaum, Eds.
Springer Berlin Heidelberg, 1985, vol. 196, pp. 47–53.

[4] D. Boneh and M. Franklin, “Identity-based encryption from the weil pairing,” in Ad-
vances in Cryptology - CRYPTO 2001, ser. Lecture Notes in Computer Science (LNCS),
vol. 2139. Springer-Verlag, 2001, pp. 213–229.

[5] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil pairing,” Journal
of Cryptology, vol. 17, no. 4, pp. 297–319, Sep 2004.

[6] R. Sakai, K. Ohgishi, and M. Kasahara, “Cryptosystems based on pairing,” in Sympo-
sium on Cryptography and Information Security, 2000.

[7] IEEE, “for Public Key Cryptography: Identity Based Key Agreement Scheme (IBKAS)
,” IEEE Std. P1363.3-2008, pp. 1–9, 2008.

[8] HP, “HP Security Voltage,” https://www.voltage.com/technology/data-encryption/
identity-based-encryption/.

[9] A. Joux, “A one round protocol for tripartite Diffie-Hellman,” in Algorithmic Number
Theory: 4th International Symposium, ser. Lecture Notes in Computer Science (LNCS),
vol. 1838. Springer-Verlag, 2000, pp. 385–394.

[10] G. Ateniese and B. de Medeiros, “Identity-based chameleon hash and applications,”
in Financial Cryptography, ser. Lecture Notes in Computer Science, A. Juels, Ed.
Springer Berlin Heidelberg, 2004, vol. 3110, pp. 164–180.

[11] H. Rif-Pous and J. Herrera-Joancomart, “Computational and energy costs of
cryptographic algorithms on handheld devices,” Future Internet, vol. 3, no. 1, pp.
31–48, 2011. [Online]. Available: http://www.mdpi.com/1999-5903/3/1/31

[12] C. Costello, Pairings for Beginners, 2014.

[13] M. Rogawski, “Development and Benchmarking of New Hardware Architectures for
Emerging Cryptographic Transformations,” Ph.D. dissertation, George Mason Univer-
sity, July 2013.

84

https://www.voltage.com/technology/data-encryption/identity-based-encryption/
https://www.voltage.com/technology/data-encryption/identity-based-encryption/
http://www.mdpi.com/1999-5903/3/1/31

[14] S. D. Galbraith, K. G. Paterson, and N. P. Smart, “Pairings for cryptographers,”
Discrete Applied Mathematics, vol. 156, no. 16, pp. 3113 – 3121, 2008, applications of
Algebra to Cryptography. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0166218X08000449

[15] H. Shacham, “New paradigms in signature schemes,” Ph.D. dissertation, Stanford Uni-
versity, December 2005.

[16] G. Grewal, R. Azarderakhsh, P. Longa, S. Hu, and D. Jao, Efficient Implementation
of Bilinear Pairings on ARM Processors. Springer, 2013, pp. 149–165.

[17] A. Menezes, T. Okamoto, and A. Vanstone, “Reducing elliptic curve logarithms to a
finite field,” IEEE Transactions on Information Theory, vol. 39, no. 5, pp. 1639–1645,
Sep 1993.

[18] G. Frey and H.-G. Rück, “A remark concerning m-divisibility and the discrete loga-
rithm in the divisor class group of curves,” Mathematics of Computation, vol. 62, pp.
865–874, 1994.

[19] S. Mitsunari, R. Sakai, and M. Kasahara, “A new traitor tracing,” IEICE Transations
on Fundamentals, p. 481484, 2002.

[20] D. Boneh, C. Gentry, and B. Waters, “Collusion resistant broadcast encryption with
short ciphertexts and private keys,” in Advances in Cryptology - CRYPTO, 2005, p.
258275.

[21] P. S. L. M. Barreto, S. D. Galbraith, C. O. hÉigeartaigh, and M. Scott, “Efficient pair-
ing computation on supersingular abelian varieties,” Designs, Codes and Cryptography,
2007.

[22] F. Hess, N. Smart, and F. Vercauteren, “Optimised versions of the ate and twisted ate
pairings,” IEEE Trans- action on Information Theory, pp. 4595–4602, Oct. 2006.

[23] D. F. Aranha and C. P. L. Gouvêa, “RELIC is an Efficient LIbrary for Cryptography,”
http://code.google.com/p/relic-toolkit/.

[24] C. Chuengsatiansup, M. Naehrig, P. Ribarski, and P. Schwabe, “Panda: Pairings and
arithmetic,” in Pairing-Based Cryptography Pairing 2013, ser. Lecture Notes in Com-
puter Science, Z. Cao and F. Zhang, Eds. Springer International Publishing, 2014,
vol. 8365, pp. 229–250.

[25] Certivox, “MIRACL, Crypto Library for Hyper-Performance,” https://www.certivox.
com/miracl/.

[26] B. Lynn, “PCB Library, The Pairing-Based Cryptography Library,” http://crypto.
stanford.edu/pbc/.

[27] C. Arne, T. Lange, M. Naehrig, and C. Ritzenthaler, “Faster computation
of the tate pairing,” Journal of Number Theory, vol. 131, no. 5, pp.
842 – 857, 2011, elliptic Curve Cryptography. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0022314X10001757

85

http://www.sciencedirect.com/science/article/pii/S0166218X08000449
http://www.sciencedirect.com/science/article/pii/S0166218X08000449
http://code.google.com/p/relic-toolkit/
https://www.certivox.com/miracl/
https://www.certivox.com/miracl/
http://crypto.stanford.edu/pbc/
http://crypto.stanford.edu/pbc/
http://www.sciencedirect.com/science/article/pii/S0022314X10001757
http://www.sciencedirect.com/science/article/pii/S0022314X10001757

[28] J.-L. Beuchat, J. Gonzlez-Daz, S. Mitsunari, E. Okamoto, F. Rodrguez-Henrquez, and
T. Teruya, “High-speed software implementation of the optimal ate pairing over bar-
retonaehrig curves,” in Pairing-Based Cryptography - Pairing 2010, ser. Lecture Notes
in Computer Science, M. Joye, A. Miyaji, and A. Otsuka, Eds. Springer Berlin Hei-
delberg, 2010, vol. 6487, pp. 21–39.

[29] D. HANKERSON, A. MENEZES, and M. SCOTT, Identity-Based Cryptography. IOS
Press, 2009, ch. Chapter 12: Software Implementation of Pairings, pp. 188–205.

[30] M. Naehrig, R. Niederhagen, and P. Schwabe, “New software speed records for
cryptographic pairings,” in Proceedings of the First International Conference on
Progress in Cryptology: Cryptology and Information Security in Latin America, ser.
LATINCRYPT’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 109–123. [Online].
Available: http://dl.acm.org/citation.cfm?id=1884265.1884275

[31] V. Shyam and D. Sujatha, “Fpga implementation of an efficient and highly secure
cryptoprocessor over barreto-naehrig curves,” in Green Computing Communication and
Electrical Engineering (ICGCCEE), 2014 International Conference on, March 2014,
pp. 1–5.

[32] E. Cuevas-Farfan, M. Morales-Sandoval, R. Cumplido, C. Feregrino-Uribe, and
I. Algredo-Badillo, “A programmable fpga-based cryptoprocessor for bilinear pair-
ings over f2m,” in Reconfigurable and Communication-Centric Systems-on-Chip (Re-
CoSoC), 2013 8th International Workshop on, July 2013, pp. 1–8.

[33] S. Ghosh, I. Verbauwhede, and D. Roychowdhury, “Core based architecture to speed up
optimal ate pairing on fpga platform,” in Pairing-Based Cryptography Pairing 2012,
ser. Lecture Notes in Computer Science, M. Abdalla and T. Lange, Eds. Springer
Berlin Heidelberg, 2013, vol. 7708, pp. 141–159.

[34] S. Ghosh, D. Mukhopadhyay, and D. Roychowdhury, “Secure dual-core cryptoprocessor
for pairings over barreto-naehrig curves on fpga platform,” Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, vol. 21, no. 3, pp. 434–442, March 2013.

[35] R. C. Cheung, S. Duquesne, J. Fan, N. Guillermin, I. Verbauwhede, and G. X. Yao,
“Fpga implementation of pairings using residue number system and lazy reduction,”
in Workshop on Cryptographic Hardware and Embedded SystemsCHES 2011, 2011.

[36] J. Fan, F. Vercauteren, and I. Verbauwhede, “Efficient hardware implementation of
fp-arithmetic for pairing-friendly curves,” Transaction on Computers, 2011.

[37] A. Snchez and F. Rodrguez-Henrquez, “Neon implementation of an attribute-based
encryption scheme,” in Applied Cryptography and Network Security, ser. Lecture Notes
in Computer Science, M. Jacobson, M. Locasto, P. Mohassel, and R. Safavi-Naini, Eds.
Springer Berlin Heidelberg, 2013, vol. 7954, pp. 322–338.

[38] T. Unterluggauer, “Hardware-software-codesign of side-channel evaluated identity-
based encryption,” Master Thesis, Graz University of Technology, Inffeldgasse 16a
8010 Graz, Austria, October 2013.

86

http://dl.acm.org/citation.cfm?id=1884265.1884275

[39] C. P. L. Gouvêa, L. B. Oliveira, and J. López, “Efficient software implementation
of public-key cryptography on sensor networks using the msp430x microcontroller,”
Journal of Cryptographic Engineering, vol. 2, no. 1, pp. 19–29, May 2012. [Online].
Available: https://doi.org/10.1007/s13389-012-0029-z

[40] T. Acar, K. Lauter, M. Naehrig, and D. Shumow, “Affine pairings on arm,” in Pairing-
Based Cryptography Pairing 2012, ser. Lecture Notes in Computer Science, M. Abdalla
and T. Lange, Eds. Springer Berlin Heidelberg, 2013, vol. 7708, pp. 203–209.

[41] C. Gouva and J. Lpez, “Software implementation of pairing-based cryptography on
sensor networks using the msp430 microcontroller,” in Progress in Cryptology - IN-
DOCRYPT 2009, ser. Lecture Notes in Computer Science. Springer, 2009, vol. 5922,
pp. 248–262.

[42] P. Szczechowiak, L. Oliveira, M. Scott, M. Collier, and R. Dahab, “Nanoecc: Test-
ing the limits of elliptic curve cryptography in sensor networks,” in Wireless Sensor
Networks, ser. Lecture Notes in Computer Science, R. Verdone, Ed. Springer Berlin
Heidelberg, 2008, vol. 4913, pp. 305–320.

[43] P. Szczechowiak, A. Kargl, M. Scott, and M. Collier, “On the application of pairing
based cryptography to wireless sensor networks,” in Proceedings of the Second ACM
Conference on Wireless Network Security, ser. WiSec ’09. New York, NY, USA: ACM,
2009, pp. 1–12. [Online]. Available: http://doi.acm.org/10.1145/1514274.1514276

[44] B. Min, R. Cheung, and Y. Han, “Fpga-based high-throughput and area-efficient archi-
tectures of the hummingbird cryptography,” in IECON 2011 - 37th Annual Conference
on IEEE Industrial Electronics Society, Nov 2011, pp. 3998–4002.

[45] M. Eldefrawy, M. Khan, and K. Alghathbar, “A key agreement algorithm with rekeying
for wireless sensor networks using public key cryptography,” in Anti-Counterfeiting
Security and Identification in Communication (ASID), 2010 International Conference
on, July 2010, pp. 1–6.

[46] K. Bhargavan and G. Leurent, “Transcript Collision Attacks: Breaking Authentication
in TLS, IKE, and SSH,” in Network and Distributed System Security Symposium
– NDSS 2016, San Diego, United States, Feb. 2016. [Online]. Available:
https://hal.inria.fr/hal-01244855

[47] L. Uhsadel, A. Poschmann, and C. Paar, “Enabling full-size public-key algorithms on 8-
bit sensor nodes,” in Security and Privacy in Ad-hoc and Sensor Networks, ser. Lecture
Notes in Computer Science, F. Stajano, C. Meadows, S. Capkun, and T. Moore, Eds.
Springer Berlin Heidelberg, 2007, vol. 4572, pp. 73–86.

[48] D. Kim and S. An, “Efficient and scalable public key infrastructure for wireless sen-
sor networks,” in Networks, Computers and Communications, The 2014 International
Symposium on. IEEE, 2014, pp. 1–5.

[49] X. Xiong, D. S. Wong, and X. Deng, “Tinypairing: A fast and lightweight pairing-based
cryptographic library for wireless sensor networks,” in Wireless Communications and
Networking Conference (WCNC), 2010 IEEE, April 2010, pp. 1–6.

87

https://doi.org/10.1007/s13389-012-0029-z
http://doi.acm.org/10.1145/1514274.1514276
https://hal.inria.fr/hal-01244855

[50] L. B. Oliveira and R. Dahab, “Pairing-based cryptography for sensor networks,” in
5th IEEE International Symposium on Network Computing and Applications, Cam-
bridge,MA,USA, July 2006, fast abstract.

[51] L. B. Oliveira, D. F. Aranha, E. Morais, F. Daguano, J. Lpez, and R. Dahab, “Tinytate:
Computing the tate pairing in resourceconstrained sensor nodes,” in In Proceedings
of the Sixth IEEE International Symposium on Network Computing and Applications
(NCA, 2007.

[52] L. B. Oliveira, D. F. Aranha, E. Morais, F. Daguano, J. Lo’pez, and
R. Dahab, “Tinytate: Identity-based encryption for sensor networks,” 2007, —-
leob@ic.unicamp.br 13542 received 23 Jan 2007, last revised 29 Jan 2007. [Online].
Available: http://eprint.iacr.org/2007/020

[53] X. Xiong, D. S. Wong, and X. Deng, “Tinypairing: Computing tate pairing on sensor
nodes with higher speed and less memory,” in Network Computing and Applications,
2009. NCA 2009. Eighth IEEE International Symposium on, July 2009, pp. 187–194.

[54] M. Shirase, Y. Miyazaki, T. Takagi, D. Han, and D. Choi, “Efficient implementation of
pairing-based cryptography on a sensor node,” IEICE, vol. 92-D, no. 5, pp. 909–917,
May 2009.

[55] R. Kodali, P. Gomatam, and L. Boppana, “Implementations of sunar-koc multiplier
using fpga platform and wsn node,” in TENCON 2013 - 2013 IEEE Region 10 Con-
ference (31194), Oct 2013, pp. 1–4.

[56] B. Stelte, “Toward development of high secure sensor network nodes using an fpga-
based architecture,” in Proceedings of the 6th International Wireless Communications
and Mobile Computing Conference, ser. IWCMC ’10. New York, NY, USA: ACM,
2010, pp. 539–543. [Online]. Available: http://doi.acm.org/10.1145/1815396.1815521

[57] M. Ahmed, S. Alam, N. Qureshi, and I. Baig, “Security for wsn based on elliptic curve
cryptography,” in Computer Networks and Information Technology (ICCNIT), 2011
International Conference on, July 2011, pp. 75–79.

[58] A. A. Salman, “IPSec implementation in embedded systems for partial reconfigurable
platforms,” Master’s Thesis, ECE Department, George Mason University, Fairfax, Vir-
ginia, USA, May 2011.

[59] S. Peter, O. Stecklina, J. Portilla, E. de la Torre, P. Langendoerfer, and T. Riesgo,
“Reconfiguring crypto hardware accelerators on wireless sensor nodes,” in Sensor, Mesh
and Ad Hoc Communications and Networks Workshops, 2009. SECON Workshops ’09.
6th Annual IEEE Communications Society Conference on, June 2009, pp. 1–3.

[60] G. V. Merrett, A. Weddell, N. Harris, B. Al-Hashimi, and N. White, “A structured
hardware/software architecture for embedded sensor nodes,” in Computer Communi-
cations and Networks, 2008. ICCCN ’08. Proceedings of 17th International Conference
on, Aug 2008, pp. 1–6.

88

http://eprint.iacr.org/2007/020
http://doi.acm.org/10.1145/1815396.1815521

[61] M. Wjcikowski, R. aglewski, B. Pankiewicz, M. Kosowski, and S. Szczepaski,
“Hardware-software implementation of a sensor network for city traffic monitoring
using the fpga- and asic-based sensor nodes,” Journal of Signal Processing Systems,
vol. 71, no. 1, pp. 57–73, 2013.

[62] M. ISSAD, B. BOUDRAA, M. ANANE, and N. ANANE, “Software/hardware
co-design of modular exponentiation for efficient rsa cryptosystem,” Journal of
Circuits, Systems and Computers, vol. 23, no. 03, p. 1450032, 2014. [Online].
Available: http://www.worldscientific.com/doi/abs/10.1142/S0218126614500327

[63] J. Balasch, B. Gierlichs, K. Jaurvinen, and I. Verbauwhede, “Hardware/software co-
design flavors of elliptic curve scalar multiplication,” in Electromagnetic Compatibility
(EMC), 2014 IEEE International Symposium on, Aug 2014, pp. 758–763.

[64] P. S. L. M. Barreto and M. Naehrig, Pairing-Friendly Elliptic Curves of Prime Order.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 319–331.

[65] Y. Nogami, M. Akane, Y. Sakemi, H. Kato, and Y. Morikawa, Integer Variable
χ–Based Ate Pairing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp.
178–191. [Online]. Available: https://doi.org/10.1007/978-3-540-85538-5 13

[66] F. Vercauteren, “Optimal pairings,” IEEE Transactions on Information Theory,
vol. 56, no. 1, pp. 455–461, Jan 2010.

[67] T. Unterluggauer and E. Wenger, Efficient Pairings and ECC for Embedded Systems,
ser. Lecture Notes in Computer Science. Springer, 2014, vol. 8731, pp. 298–315.

[68] P. C. Kocher, “Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems,” in Advances in Cryptology - CRYPTO 96, ser. Lecture Notes in Com-
puter Science (LNCS), vol. 1109. Berlin: Springer-Verlag, 1996, pp. 104–113.

[69] J.-S. Coron, “Resistance against differential power analysis for elliptic curve cryptosys-
tems,” in Workshop on Cryptographic Hardware and Embedded Systems (CHES 99),
ser. Lecture Notes in Computer Science, C. Paar and Ç. K. Koç, Eds., vol. 1717.
Heidelberg: Springer-Verlag, 1999, pp. 94–108.

[70] N. Meloni, New Point Addition Formulae for ECC Applications. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 189–201.

[71] R. R. Goundar, M. Joye, and A. Miyaji, “Co-z addition formulæ and binary ladders on
elliptic curves,” in Proceedings of the 12th International Conference on Cryptographic
Hardware and Embedded Systems, ser. CHES’10. Springer-Verlag, 2010, pp. 65–79.

[72] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Advances in Cryptology
- CRYPTO’99, ser. Lecture Notes in Computer Science (LNCS), vol. 1666. Berlin:
Springer Verlag, Aug 1999, pp. 388–397.

[73] R. Velegalati and J.-P. Kaps, “Towards a Flexible, Opensource BOard for Side-channel
analysis (FOBOS),” Cryptographic architectures embedded in reconfigurable devices,
CRYPTARCHI 2013, June 2013.

89

http://www.worldscientific.com/doi/abs/10.1142/S0218126614500327
https://doi.org/10.1007/978-3-540-85538-5_13

[74] CERG, “Cryptographic Engineering Research Group,” https://cryptography.gmu.
edu/.

[75] F. Farahmand, E. Homsirikamol, and K. Gaj, “A zynq-based testbed for the experi-
mental benchmarking of algorithms competing in cryptographic contests,” in 2016 In-
ternational Conference on ReConFigurable Computing and FPGAs (ReConFig), Nov
2016, pp. 1–7.

[76] Xilinx, AXI DMA, XILINX.

[77] ——, AXI Timer, XILINX.

[78] P. L. Montgomery, “Modular multiplication without trial division,” Mathematics of
Computation, vol. 44, no. 170, pp. 519–521, 1985.

[79] A. Tenca and Ç. K. Koç, “A scalable architecture for montgomery multiplication,” in
Workshop on Cryptographic Hardware and Embedded Systems (CHES 99), ser. Lecture
Notes in Computer Science, C. Paar and Ç. K. Koç, Eds., vol. 1717. Heidelberg:
Springer-Verlag, 1999, pp. 94–108.

[80] M. Huang, K. Gaj, and T. El-Ghazawi, “New hardware architectures for Montgomery
modular multiplication algorithm,” IEEE Transactions on Computers, vol. 60, no. 7,
pp. 923–936, July 2011.

[81] Digital Signature Standard (DSS), National Institute of Standards and Technology
(NIST), FIPS Publication 186-4, July 2013, http://nvlpubs.nist.gov/nistpubs/FIPS/
NIST.FIPS.186-4.pdf.

[82] S. B. Örs, L. Batina, B. Preneel, and J. Vandewalle, “Hardware implementation of an
elliptic curve processor over GF(p),” in IEEE International Conference on Application-
specific Systems, Architectures and Processors (ASAP 2010), 2003, pp. 433 – 443.

[83] K. Gaj, J.-P. Kaps, V. Amirineni, M. Rogawski, E. Homsirikamol, and B. Y. Brewster,
“ATHENa – automated tool for hardware evaluation: Toward fair and comprehensive
benchmarking of cryptographic hardware using FPGAs,” in 20th International Con-
ference on Field Programmable Logic and Applications - FPL 2010. IEEE, 2010, pp.
414–421, winner of the FPL Community Award.

[84] D. Amiet, A. Curiger, and P. Zbinden, “Flexible fpga-based architectures for curve
point multiplication over gf(p),” in 2016 Euromicro Conference on Digital System De-
sign (DSD), Aug 2016, pp. 107–114.

[85] H. Alrimeih and D. Rakhmatov, “Pipelined modular multiplier supporting multiple
standard prime fields,” in 2014 IEEE 25th International Conference on Application-
Specific Systems, Architectures and Processors, June 2014, pp. 48–56.

[86] B. Baldwin, R. Moloney, A. Byrne, G. McGuire, and W. P. Marnane, “A hardware
analysis of twisted edwards curves for an elliptic curve cryptosystem,” in 5th Interna-
tional Workshop on Applied Reconfigurable Computing (ARC), 2009.

90

https://cryptography.gmu.edu/
https://cryptography.gmu.edu/
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

[87] D. M. Schinianakis, A. P. Fournaris, H. E. Michail, A. P. Kakarountas, and
T. Stouraitis, “An rns implementation of an gf(p) elliptic curve point multiplier,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 56, no. 6, pp. 1202–1213,
June 2009.

[88] T. Güneysu and C. Paar, “Ultra high performance ecc over nist primes on commer-
cial fpgas,” in Cryptographic Hardware and Embedded Systems – CHES 2008: 10th
International Workshop, Washington, D.C., USA, August 10-13, 2008. Proceedings,
E. Oswald and P. Rohatgi, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp. 62–78.

[89] K. Ananyi, H. Alrimeih, and D. Rakhmatov, “Flexible hardware processor for elliptic
curve cryptography over nist prime fields,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 17, no. 8, pp. 1099–1112, Aug 2009.

[90] S. Ghosh, M. Alam, D. R. Chowdhury, and I. S. Gupta, “Parallel crypto-devices for
gf(p) elliptic curve multiplication resistant against side channel attacks,” Computers
& Electrical Engineering, vol. 35, no. 2, pp. 329 – 338, 2009, circuits and Systems for
Real-Time Security and Copyright Protection of Multimedia.

[91] P. Sasdrich and T. Güneysu, “Implementing curve25519 for side-channel–protected
elliptic curve cryptography,” ACM Trans. Reconfigurable Technol. Syst., vol. 9, no. 1,
pp. 3:1–3:15, Nov. 2015.

[92] C. J. McIvor and M. McLoone, “Hardware elliptic curve cryptographic processor over
gf(p),” in IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 2006.

[93] D. B. Roy, D. Mukhopadhyay, M. Izumi, and J. Takahashi, “Tile before multiplication:
An efficient strategy to optimize dsp multiplier for accelerating prime field ecc for nist
curves,” in Proceedings of the 51st Annual Design Automation Conference, ser. DAC
’14. New York, NY, USA: ACM, 2014, pp. 177:1–177:6.

[94] B. Baldwin, R. R. Goundar, M. Hamilton, and W. P. Marnane, “Co-z ecc scalar mul-
tiplications for hardware, software and hardware–software co-design on embedded sys-
tems,” Journal of Cryptographic Engineering, vol. 2, no. 4, pp. 221–240, 2012.

[95] B. Driessen, T. Güneysu, E. B. Kavun, O. Mischke, C. Paar, and T. Pöppelmann,
“Ipsecco: A lightweight and reconfigurable ipsec core,” in 2012 International Confer-
ence on Reconfigurable Computing and FPGAs, Dec 2012, pp. 1–7.

[96] M. Varchola, T. Güneysu, and O. Mischke, “Microecc: A lightweight reconfigurable
elliptic curve crypto-processor,” in 2011 International Conference on Reconfigurable
Computing and FPGAs, Nov 2011, pp. 204–210.

[97] J. Vliegen, N. Mentens, J. Genoe, A. Braeken, S. Kubera, A. Touhafi, and I. Ver-
bauwhede, “A compact fpga-based architecture for elliptic curve cryptography over
prime fields,” in ASAP 2010 - 21st IEEE International Conference on Application-
specific Systems, Architectures and Processors, July 2010, pp. 313–316.

91

Curriculum Vitae

Ahmad Salman graduated from Elnasr Boys School (EBS),Alexandria, Egypt, in 1997.
He received his Bachelor of Science from Arab Academy for Science and Technology (AAST),
Alexandria, Egypt, in 2002. He received his Master of Science in Computer Engineering
from George Mason University in 2011.

When he is not playing soccer, he performs research and other stuff in life. His favorite
team is Arsenal and he wishes that he can see them win the English Premier League one
more time before he dies.

92

	List of Tables
	List of Figures
	Abstract
	 Introduction
	Motivation

	 Background
	Overview
	Introduction to Pairings
	Pairing Parameters
	Finite Fields
	Embedding Degree
	Elliptic Curves
	Pairing Types

	Pairing Computations and Optimizations
	Pairing Implementations

	 Previous Work
	Resource-Constrained Devices
	Software Implementations
	Hardware Implementations
	Hardware/Software Co-Design Implementations
	Summary

	 Contributions
	 Methodology
	Choosing Pairing Parameters
	Barreto-Naehrig Elliptic Curves
	Optimal-Ate Pairing
	Coordinate System and Counter Measures

	Building the Design
	Partitioning the Design

	Hardware Implementations
	Montgomery Multiplier
	Adder/Subtractor

	ECC Multiplier
	Software Implementations
	Power Measurements

	 Hardware Software Co-Design
	Overview
	Processing System (PS)
	ZYNQ7 Processing System
	Processor System Reset

	AXI Interconnects
	Programmable Logic (PL)
	Input FIFO
	Output FIFO
	AXI Direct Memory Access (DMA)
	AXI Timer
	Concat

	 Hardware Implementations
	Montgomery Multiplication
	High-Speed Montgomery Multiplier
	Lightweight Montgomery Multiplier
	Modular Adder/Subtractor (MAS)

	 ECC Multiplier
	Background
	Proposed Design
	Scheduler
	Memory and Memory Controller
	Modular Adder-Subtracter (MAS)
	Modular Montgomery Multiplier (MMM)

	Implementations
	Implementation Decisions

	 Software Implementation

	 Power Measurements
	 Results
	Overview
	ECC Multiplier Results
	Pairing Hardware/Software Co-Design Results
	Power Measurements and Energy Consumption

	 Conclusions and Future Work

