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1. INTRODUCTION

Over the last few years, knowledge-based systems have clearly demonstrated the
potential for substantial impact in a number of diverse areas. The successful con-
struction of such knowledge-based systems has required that it be possible to encode
sufficient domain expertise within a machine manipulable form to support intelli-
gent problem solving behavior. A number of different approaches have been taken to
the problems of knowledge acquisition, knowledge representation, uncertainty prop-
agation and problem solving methodology. Choosing an architecture for a particular
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expert system application requires not only domain knowledge but, also, the ability to
match aspects of the problem domain with the characteristics of different competing
paradigms for knowledge-based systems [1].

In proposing an integrated approach to the construction of knowledge-based systems,
this paper presents the generalization of experience gained by designing and imple-
menting the ADVISE system at the University of Illinois [2]. By integrating different,
apparently competing, knowledge-based system techniques together with powerful
machine learning techniques for knowledge acquisition and refinement, knowledge-
based systems of a qualitatively different character can be constructed.

The emphasis in the ADVISE effort has been to develop a unified approach to the
construction of knowledge-based systems incorporating multiple control schemes, mul-
tiple knowledge representations, different uncertainty propagation schemes, and ex-
tensive learning capabilities. The integrated approach described here goes beyond the
degree of integration which was achieved with the actual implementation of ADVISE
but is, none the less, grounded in the practical experience gained with that system.

The next section discusses two of the major design issues which influenced the original
ADVISE effort and the current integrated approach as well. The discussion of an
integrated approach to knowledge representation is followed by a discussion of the
variety of machine learning tools and problem solving methods which can be brought
to bear on knowledge organized in the form of networks, rules, and relational tables of
data. The paper concludes with a description of an integrated language for knowledge-
based systems called KBVL,.

2. MATCHING THE PROBLEM TO THE SOLUTION

The advent of an increasing number of expert system shells for computers ranging
from a personal computer to large main frames has produced an interesting phe-
nomenon. In most cases, users of expert system shells are people with a solution
in search of a suitable problem. That is, the knowledge representation and problem
solving capabilities of the system are predefined by the choice of shell, and in that
situation, the knowledge enginecer is searching for a problem suited to the solution
technique already chosen.

The knowledge structuring and manipulation operations supported by a given expert
system shell limit or foster the description of domain knowledge for inclusion in the
knowledge base as they clash or conform to the natural expression of the domain
knowledge. For instance, when large numbers of facts and simple relationships be-
tween them characterize the domain, then posting and retrieving simple assertions on
a blackboard can be quite natural. In other situations where the domain knowledge
is best expressed as a non-deterministic exploration of a group of possibilities at each
step in the solution, the concept of exploring multiple worlds can be much more con-
cise. Finally, when causal or associational reasoning chains are known, then standard
production rule systems are most natural.
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Frequently, the enforced regimen of constructing a knowledge base is, itself, a con-
tribution to the domain being studied. When the representation for the knowledge
is cognitively close to the way that domain knowledge is already expressed and ma-
nipulated, then the construction of the knowledge base is simple, the validation of
correctness is more likely, and the knowledge base can be used by itself as a distiila-
tion of knowledge in the domain. It is important to note that there is no such thing
as a single best knowledge representation or problem solving paradigm. The different
approaches have evolved as part of experience with different classes of problems and
reflect a response to the requirements of different domains.

Matching solution technique to problem is made more complex by the cost and com-
plexity of building the knowledge bases in complex domains. Once domain experts
and knowledge engineers have been trained on a particular system, they are not gen-
erally able to use another system with differing primitives for knowledge structuring.
It is as though each separate system is a different foreign language and retraining
on radically different (and therefore potentially more suitable) approaches is simply
not feasible. This problem is especially important because, in many cases, knowledge
acquisition and refinement are the limiting factors in the construction of knowledge-
based systems.

3. LIMITATIONS OF CURRENT EXPERT SYSTEMS

At present, the technology of expert systems is undergoing very rapid growth and is
being applied to a wide spectrum of practical problems. Although the application
of existing expert system techniques to practical problems can now produce useful
expert systems, the current techniques have different limited areas of applicability
and do not work together well.

Current expert systems suffer from a number of limitations that restrict their use-
fulness. They typically émploy only one form of knowledge representation, have no
learning capabilities, use only one type of inference procedure, employ only a single
control strategy, and often do not deal with data or situations that are time-dependent
[3] [4, 5]. Many of the techniques explored in today’s expert system shells have been
extensively studied and have known areas of applicability as well as known deficien-
cies. For a discussion of specific problems or limitations with individual techniques
consult [1].

Limiting an expert system to both a single knowledge representation and a single
control scheme is a common way to simplify the construction of the expert system.
Unfortunately, different problem domains and even different aspects of a single domain
may not be well suited to the same knowledge representation or the same problem
solving control scheme. Limitations in an expert system technique which do not
correspond to requirements of a particular domain do not hinder the operation of the
system, but subproblems with different requirements will frequently not fit a single
paradigm.
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Single paradigm approaches impose their particular assumptions about the nature
of the data, the knowledge representation, and the problem solving in the given do-
main. Assumptions about the nature of the data commonly made include assumptions
about:

distribution of training examples in the space of possible situations

¢ conditional dependence/independence of individual findings
o time dependence/independence of data
o ambiguity, reproducibility, completeness, and redundancy of data

¢ ability to influence data collection

level of specificity, timeliness, and reliability of the data

e data and situations do not change during the consultation.

Complex domains which are uniformly structured according to one version of all of
the assumptions listed above are quite rare. All too often, portions of the problem
solving process or areas of the domain will require conflicting assumptions.

Current expert system shells make a number of assumptions about the nature of
the knowledge to represent and the best approach to that representation. In some
cases, blackboards form ideal models for communication between cooperating prob-
lem solving processes but do not form good representations for intermediate decision
making. Some domains are data driven and easily organized for constraint propaga-
tion or spreading activation; other domains may contain procedural knowledge which
is properly represented by rules, while still others are underconstrained and benefit
from a hypothesize and test approach.

Domains which are highly goal directed or diagnostic in nature are well suited to back-
ward chaining while domains such as mechanical component design are much less well
structured and require some construction of the goal itself. Explicit representation for
some control information is also a requirement not always met by current techniques.
Quite often in industrial design applications (such as switching system configuration),
a domain expert will know not only detailed information about the design process,
but also general approaches and precedence relations defined over data collection,
problem decomposition, and candidate solutions to try before conducting a search.
This strategic information needs to be separated from the more tactical information
normally incorporated in non-deterministically scheduled rulebases so as not to loose
the strategic information in a sea of tactical rules for intermediate decision making.

Knowledge acquisition is perhaps the most important part of the construction of any
intelligent system. The rate at which domain knowledge can be captured is directly
limited by the suitability of the knowledge representation primitives to the domain
and to the level of detail at which the domain knowledge is specified. Generally,
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high level non-deterministic descriptions of the desired problem solving process are
the most concise to acquire. Knowledge acquisition that depends on learning by
instruction has been a major factor in the development of expert systems to date.
Such an approach can be extremely limiting when general heuristics are not known
or domain expert time is at a premium. Machine learning techniques can be used
to reduce the dependence on pre-digestion of the problem solving process by domain
experts and to refine knowledge bases regardless of their source.

4. INTEGRATED APPROACH TO KNOWLEDGE-BASED SYSTEMS

The expert system shells currently in the marketplace are predominantly built upon
the expert systems research of the middle to late 1970s. More recent attempts to
build knowledge-based systems reflect the need for even more knowledge intensive
paradigms for constructing intelligent computational models of real world expertise.
Thus, while current knowledge-based system research is grounded in earlier work in
expert systems, it should not be considered as merely an extension of the that earlier
work.

There have been a number of efforts to develop special purpose knowledge represen-
tations and/or problem solving strategies for knowledge-based systems. Rather than
attempt to develop another radically different approach, the ADVISE effort centered
around using a variety of existing techniques within a single knowledge-based system
paradigm. Thus, the knowledge representation and problem solving strategies could
be selected from among the range supported by the system.

Most knowledge-based systems emphasize the deductive application of the knowledge
base to a presenting problem in order to produce a result. Our efforts to develop an
integrated approach are different in that they have emphasized the incorporation of
machine learning techniques to build and modify the knowledge base.

Figure 1 shows the three knowledge representation techniques supported in our uni-
fied approach and the inference operations defined over them. The arrows represent
inferential transformations which operate on one representation and produce another.
Thus, the traditional expert system operation is depicted as a deductive application
arrow from the rulebase to a particular database element (a database tuple consisting
of the presenting data and the deductively produced result). Similarly, the arc from
data to rules represents the learning from examples arc and depicts the inductive
generalization of rules from examples of the decision. The remainder of this paper
consists of more detailed presentation of information about each component of the
integrated approach to knowledge-based systems portrayed in Figure 1.
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FIGURE 1
Knowledge representation alternatives and transformation operations linking them.

Each arc in Figure 1 corresponds to a transformation operation which takes in one
form of knowledge from the knowledge base and produces a potentially different
knowledge representation. Some of the transformations shown in Figure 1 correspond
to inductive learning operations and some correspond to deductive application of the
knowledge base for problem solving. A few arcs such as the one from database to
database can be both inductive learning and deductive problem solving. The meaning
of the various arcs is briefly outlined in the remainder of this section and described
in greater detail in sections 6 and 7 below.

4.1. Learning Transformation Operations

Figure 2 shows the subset of the transformation arcs from Figure 1 which represent
learning components of the integrated approach. Each of these arcs corresponds
to inductive learning operators which operate on a portion of the knowledge base
to inductively derive revised or additional knowledge base contents. The learning
transformation operations are:

database — database — used to reduce database complexity by selecting most
representative data examples (called events) and/or by eliminating unnecessary
attributes from further consideration;

network — network — used to reason by analogy and produce a revised or ex-
tended network structure from an existing network structure;

rulebase — rulebase — used to derive improved or extended rules from ineflicient
or overly restrictive rules;

database — network — used to organize data elements together into groups (con-
ceptual clusters) and to derive hierarchies of such groups;

rulebase —» network — used to organize the rules together into groups and to
derive hierarchies of such groups;

database — rulebase — used to derive rules which summarize the decision be-
havior implicit in a set of examples taken from the database.
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Among the learning transformation operations shown in Figure 2, the learning of
rules from examples has received the most attention and is the most developed.

SR

(_database ) {rulebase )

FIGURE 2
Transformation operations which involve learning.

4.2. Problem Solving Transformation Operations

Figure 3 shows the subset of the transformation arcs from Figure 1 which represents
the use of portions of the knowledge base for problem solving. Each of these transfor-
mations corresponds to one or more (usually deductive) operators which applies the
general knowledge in the knowledge base to a specific situation. The problem solving
transformations are:

database — database — direct retrieval of a solution from the fact base;

network — network — plausible reasoning and/or reasoning by analogy to de-
termine network relationships which hold for the present problem;

rulebase — rulebase — rule-based reasoning about the control over which rules
to use and in which order to pursue them;

network — rulebase — network-based reasoning about the control over which
rules to use and in which order to pursue them;

rulebase — database — the application of the rulebase to the situation at hand
to define solution (and, thus, an event in the database).

‘_
(database ) rulebase )
| S ) 7
FIGURE 3

Transformation operations for problem solving.
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Before discussing the transformation operations shown in the figures above in greater
detail, additional information about the various knowledge representations must be
presented.”

5. MULTIPLE KNOWLEDGE REPRESENTATIONS

In our integrated approach to knowledge representation, we identified three different
knowledge representation techniques, each well suited to a different role:

e networks of objects
o relational database of facts

e and a rulebase for more procedural information.

A unified underlying access protocol is used to support these conceptually different
forms of knowledge. The knowledge base is structured into segments for ease of
management and efficiency of some inference operations. A segment is merely a
subset of the knowledge base and can either contain only information of one type
or can span all.three types of representation. Finally, a segment can itself contain
segments to as many levels as needed.

The network of objects is used to contain strategic information about the domain and
is used for planning during problem solving. The relational database stores facts or
assertions-about the problem at hand and facts about the domain or about specific
decisions (usually examples supplied by a human expert). Finally, the rulebase is
used to store detailed procedural information about the domain and the solution to
problems.

5.1. Networks of Objects

The network component of the knowledge base consists of network links between
objects used to capture general domain knowledge about interrelationships among
various conceptual units. For example, it can include hierarchies of attributes from
the application domain indicating the level of generality of such attributes (a gen-
eralization tree), a representation of the structure of the rulebase, and precedence
relations defined over queries to the user. Links between nodes in the network repre-
sent static relationships between concepts. The network organization is a form of the
Logic Net formalism described in [6].

Each conceptual unit in the knowledge base behaves like an object in an object ori-
ented programming environment. Thus, each object can have attached attributes
and procedures. The networks of objects are used to capture not only the tradi-
tional object oriented inheritance hierarchies but also knowledge engineer designed
relationships between concepts.
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In combination with the notion of knowledge base segments, which can themselves be
conceptual objects, the networks of objects portion of the knowledge base provides a
powerful structuring mechanism. Rules can be gathered together into segments and
structured as networks; individual findings can be associated together in a network
with inference defined over the links, and structure within the range of values of a
variable or among a group of variables can be captured as a generalization tree.

Although the original ADVISE system, on which this integrated approach is based,
only supported construction of static network structures, the generalization to dy-
namic structures is quite desirable. The concept of worlds common to a number of
expert system-shells amounts to the dynamic management of subsets of facts in the
knowledge base. In a similar manner, the dynamic management of segments con-
taining rules is a way to provide for adjustment of the knowledge base to changing
situations or a predictable temporal evolution.

5.1.1. Instance Variables

A knowledge engineer uses predefined objects and knowledge engineer defined objects
in describing a domain knowledge to the system. The instance variables of an object
behave like the slots in a frame and the instance variable inheritance is similar to slot
inheritance in a frame hierarchy. When defining an object, the knowledge engineer can
start with the predefined object which contains nothing and buid an object entirely to
suite the situation at hand, or the knowledge engineer can build upon the predefined
object classes. '

An instance variable of an object may be a full object itself or simply a value. A simple
value behaves like an object with a single instance variable called value. Predefined
object classes for variables used in logic rules such as integer, real, and string have
instance variables used to contain: a prompt string, a default value, whether or not
the variable is askable, the range of values the variable is allowed, and the units with
which the variable is measured. These properties may be modified or extended by
changing the object oriented core of the system.

5.1.2. Methods

Unlike most object oriented systems where the methods on objects are specified in
some programming language, the methods on objects are here defined using the same
rule format used to define the segments of rules in the rulebase. The methods are
deterministically scheduled rules which are investigated in the order in which they
occur in the method. These logic rules mmay modifly instance variables and they may
also modify knowledge engineer defined variables which are also used by the rules in
the rulebase segments.

A number of predefined methods exist for uncertainty management, rule scheduling
in the rule segments, data collection, and presentation of results. These methods
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may be modified or extended by defining new methods. In general, the predefined
methods provide higher performance than the knowledge engineer defined methods
because they can be pre-compiled into the system rather than being interpretively
executed.

5.1.3. Using Networks of Objects

The simplest network of objects used in the system is the inheritance hierarchy for
the classes of objects defined within the system. This hierarchy provides for default
structure of objects, default methods, and default values for individual instance vari-
ables. In addition to the predefined inheritance hierarchy, the knowledge engineer
can define additional networks for use in the problem solving process. For instance,
a goal tree can be defined to capture a static problem decomposition and a method
can be defined to traverse the tree in a case specific order. A knowledge engineer can
also define a specificity hierarchy of attributes where such a structure exists for the
domain or can be derived using the learning techniques discussed in the next section.
Separate specificity hierarchies can be used for attributes themselves and for structure
within the range of values of an attribute.

Network-based problem solving can take the form of spreading activation where
changes in values or certainties are propagated along network links. Methods at-
tached to network segments control this form of problem solving in a similar way to
the rule scheduling methods attached to rulebase segments. In general, the network
portion of the knowledge base is best suited to describing general properties or orga-
nizational principles of the domain and not detailed problem solving. The network
structures can provide partial orderings of goals to pursue and/or data to solicit.

5.2. Rule base

The rulebase is the most commonly used knowledge structuring for knowledge-based
systems. It is best suited to capturing tactical information. Individual rules or groups
of rules can be used to answer specific questions or differentiate among a small number
of alternatives.

5.2.1. Generalized Decision Rules

The rule format supported by the ADVISE system is based on the GVL rule syntax
developed by Michalski [7]. As with most decision rules, the rules are divided into
condition/action pairs. The condition can be a disjunction of multiple conjunctions
of constraints on attribute values. The action portion of a rule contains one or more
assignments of values to attributes. The rulebase consists of rules of the following
basic form:

CTX: CONDITION = CONCLUSION : o,f
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where:

CTX is an experssion describing the context within which the rule is applicable;

CONDITION is a formal expression (in VL, [8]) which involves elementary con-
ditional statements (called selectors), linked by various logic operators (including
quantifiers);

CONCLUSION defines the decision or action which is executed when the CONDI-
TION is satisfied by a given situation;

« is the strength of the evidence which supports the CONCLUSION when the CON-
DITION is completely satisfied (0 < o < 1) and

B is the strength of the evidence which supports the CONDITION when the CON-
CLUSION is completely satisfied (0 < 8 < 1).

The rule above is read: In the context CTX, CONDITION implies CONCLUSION
with forward strength ”o” and backward strength ”5”. Specifically, the rule states
that: if the context and the left hand side (LHS) of the decision assignment operator
(=) are satisfied, then the right hand side (RHS) is asserted with a degree of confi-
dence e, and if the context and the RHS are both satisfied, then the LHS is asserted
with a degree of confidence 8. The decision assignment operator is equivalent to log-
ical implication when @ = 1 and 8 = 0, and is equivalent to logical equivalence when
a =1 and = 1. Thus, by providing both ”a” and ”8” for each rule, it is possible
to use rules in both forward and backward directions.

5.2.2. Application of Reversible Rules to Design Problems

Reversible logic rules pose some problems in that they necessarily support the same
logical operations on both sides of the decision assignment operator. When nested dis-
junctive operations are supported in both the CONDITION and the CONCLUSION
some form of woerld management is required. Despite these difficulties, reversible rules
support a very important class of problems as can be illustrated briefly here.

Particularly in mechanical design, there are deep models and mathematical simula-
tion programs which can predict an outcome from specified design parameters. For
instance, the stress or wear on a given metal can be predicted from a simulation of the
known behavior of the metal in a given environment. Such outcome knowledge can be
captured in a knowledge-based system as, for instance, production rules which specify
« to a great degree of precision. Unfortunately, design problems rarely present in this
form. All too often, the design problem takes the form of a desired outcome (say lack
of metal fatigue) and the problem is to find the design parameters which lead to that
conclusion. Once those parawmeters have been found, they can be validated with the
forward logic.

The reversible rules described above directly address the design problem. In particu-
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lar, the rules are initially constructed from the deep knowledge to run in the forward
direction. Later the S values are added and the rules are actually used in the reverse
direction to solve a design problem. Once a candidate solution has been obtained, it
can be evaluated by using the same rules in the forward direction. It should be noted
that not all rules are reversible (as signified by either « = 0 or # = 0) and that the
definitions of forward and backward, while they must be used consistently for a given
domain, are arbitrary.

5.2.83. Options for Uncertainty Management

The term strength of evidence used above was intentionally vague. In much the same
way that the original ADVISE system sought to solve the problem of choosing the
correct knowledge representation by supporting multiple representations which could
be chosen based on the problem, it also supported multiple mechanisms for uncer-
tainty propagation. Thus, both the CONDITION and CONCLUSION portions of
rules allowed several different strategies to be used to propagate uncertainty. Each
attribute (similar to an assertion in a blackboard system) to which a value can be
assigned can also be assigned a strength of evidence supporting that value. In the case
that there are multiple values possible, cach may have its own strength of supporting
evidence. The strengths of evidence are all assumed to increase with increasing evi-
dence and decrease with decreasing evidence; only the Bayesian control scheme uses
a strict probabilistic interpretation of strengths of evidence. By choosing among the
predefined methods for combining strengths of evidence (or writing new methods),
the knowledge engineer can utilize a range of uncertainty managements including
probabilistic, MYCIN-like certainty factors, and normalized/unnormalized fuzzy log-
ics.

Each constraint on an attribute within a rule (called a selector) can be parameterized
with an a-weight and a S-weight analogous to the ¢ and 8 of an entire rule. The
weights indicate the importance of the attributes to the truth or falsity respectively of
the term in which they occur. The weighted strength of evidence of each constraint
may be linearly combined with the weighted certainty of other selectors to form a
linear module. Individual selectors or linear modules may be anded or ored together
in any combination to form the strength of evidence of the condition.

The combining of the strengths of evidence for a variable with the weight on the
selector and the subsequent folding together of the weighted strengths of other selec-
tors can be done using any of several dilferent uncertainty propagation schemes. The
conjunction of strengths of evidence may consist of maximum, average, probabilistic
sum or Bayesian updating of strengths. Similarly, disjunction may be minimum or
average. The uncertainty propagation scheme may be changed for every rule within
the knowledge base, but usually all rules within a single knowledge base segment will
use the same uncertainty propagation scheme.

In general, the difficulty with utilizing different uncertainty propagation mechanisms
within a single system lies in combining strengths of evidence arising from different
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sources and calculated using different assumptions. Unfortunately, there is no sim-
ple solution to this problem. The problem can be mitigated by using homogeneous
propagation mechanisms within a knowledge base segment and, thus, minimizing the
exchange of strengths arising from different assumptions. For instance, a knowledge
base segment might be used to derive a rank ordered list of candidate hypotheses
for investigation by another segment which utilizes the partial ordering and not the
actual strengths of evidence. In such a case, there is no need for the uncertainty
management to be the same in the two segments.

5.3. Relational Database of Facts

The relational database contains relational tables which represent any factual infor-
mation, e.g., examples of experts’ past decisions. Also, the operation of the deductive
inference component of the system essentially produces additional examples which can
be stored in the relational tables -— these are results of the operation of the machine-
based expert. A modified relational algebra has been developed using constructs
from Variable-valued Logic in order to integrate database operations concisely into
the knowledge base formalism.

The relational database serves as the starting point for all inductive learning from
examples. In many ways, the relational database of facts forms the bridge between the
inductive learning process and the largely deductive problem solving process. Logic-
based relational operations can be performed interactively by a knowledge engineer
to control knowledge acquisition and refinement programs, or these same operations
can be controlled from within logic rules during problem solving.

5.3.1. Table Creation

Relational tables can be constructed as part of batch loading of a knowledge base,
operation of rules during problem solving, and interactive knowledge acquisition from
a human expert. In any case, the table must be named and the attributes (columns)
of the table must be defined. In addition, key attributes may be specified along with
whether or not the table is normalized. The key attributes may be used to select
rows from the table and to sort entries. A normalized table requires that all rows
(corresponding to events or examples) must have unique values for the keys for that
row. An unnormalized table by have duplicate values for the key fields in two or more
TOWS.

The predefined object class, table, can be used to define a new table. Either a new
class of table can be defined by adding properties to the system table or an instance
of the predefined table can be created. For example, the table for holding information
on blood tests might contain information about the specimens and laboratory result
such as:

labvals : table (spec#, MCV : integer; Hgb : real; RBC_morph: string) key = spec#
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where the spec# is the specimen number used to retrieve the results for the test and
the additional attributes represent the mean corpuscular volume, hemoglobin, and
red cell morphology respectively.

The table, integer, real, and string objects used in the table declarations above are
not just simple data types. They are predefined object class definitions which the
knowledge engineer can modify or extend. For instance, each has default methods for
soliciting values from the user and a default prompt string to be used when requesting
a value. The key instance variable is an instance variable of the object table which is
used to contain the set of attribute names which are keys for the table. It is initialized
to contain one attribute in the example above.

5.3.2. Operations on Tables

The system table object comes with a number of default methods which operate on
the tables and behave as simple operators. These operators include the following
editing operations: add — appends a new row onto a table, change — modifies
selected rows in a table, delete — removes the selected rows from a table, and the
following relational data operations:

union — the union of two relational tables is a table containing all of the rows
(without dup}ication) from the two input tables. The input tables for union,
intersection and difference must have identical attribute lists.

intersect — the intersection of two tables is a table containing only the rows com-
mon to the two tables. :

difference — the difference of two tables is a table made up of the rows of the first
table which are not also rows of the second table.

product — the Cartesian product of two tables is a table made up of the con-
catenation of each row from the first table with all of the rows of the second
table.

select — a selection from one input table is a table formed from the input table
by applying a logical constraint rule to each row in the input table. Only rows
which meet the logical constraint are included in the output table.

project — the projection of a table is a table containing only the indicated columns
(with duplicate rows removed).

join — the join of two or more tables is a table containing a row for each row
containing identical values for the shared attributes among the tables. The
resultant row is formed by concatenating the input rows and using only one
copy of the shared attributes. When the input tables share no attributes, then
the result is the same as for the Cartesian product of the input tables.
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The operations listed above can be used to manipulate tables of data either for prob-
lem solving or for submission to various learning operations which use tables. In
either case, the operations can be incorporated into the rulebase or used interactively
by the content expert in building or refining the knowledge base.

6. Learning Capabilities

Inferential learning techniques (largely inductive) can be used for knowledge acqui-
sition and refinement. The inclusion of machine-based inference as a part of the
knowledge acquisition process is intended to reduce the burden on human experts
who would otherwise have to directly encode the contents of the knowledge base. By
defining inference procedures over each component of the knowledge base, the system
no longer relies on the human expert to organize and present a complete, concise,
and error free knowledge base. In much the same way that the relational table oper-
ators have been incorporated into the rule formalism as operators which can operate
directly on the knowledge base, the learning operators can be interactively invoked
or invoked from within rules during problem solving.

Recent progress in the area of machine learning [9] opens a number of possibilities
for improving knowledge acquisition methods for knowledge-based systems. Various
experiments have demonstrated that it is possible to learn the decision rules from
examples of experts’ decisions, and that these rules perform as well, and sometimes
even better than rules obtained by encoding the experts’ rules e.g., [10].

Important progress has been made recently in studying other machine learning strate-
gies, such as learning by analogy [11, 12, 13] and learning from observation and dis-
covery [14, 15]. These findings indicate possibilities for developing new techniques for
knowledge acquisition for knowledge based systems using learning techniques.

The discussion of learning capabilities for integrated knowledge-based system building
below is organized according to the transformations from Figure 2. Additional details
about each category of transformation are provided below. In principal, there is no
Limit to the number and variety of inferential operators that miglit be included in this
integrated approach. The discussion below has been limited to a meaningful length
by only including those inferential operations which we have explicitly explored rather
than all possibilities.

6.1. From Data to Rules — Learning from Examples

Inductive derivation of rules from expert supplied sets of examples is one of the most
classic applications of machine learning to knowledge acquisition as demonstrated by
such programs as AQVAL [16], INDUCE [17], and ID3 [18]. Such programs are usu-
ally used to differentiate among outcomes and produce rules which summarize tables
of examples of the desired decision. In our work, we have investigated rule inference
in three different areas: attribute-based decision rules — differentiate, structural de-
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scriptions — structure, temporal process prediction — predict. Each of these efforts
has lead to an operator in the integrated approach.

6.1.1. Differentiate

We have explored the differentiate operation using the programs GEM, and AQll
[19]. The GEM program takes in two or more relational tables each containing a
set of examples of a decision class and produces as output a set of consistent and
optimized decision rules expressed as statements in the attribute calculus known as
VL, (Variable-valued Logic system 1) [16]. The output of the induction process is
a collection of decision rules which can be stored in the knowledge base. The GEM
operator can be used to interactively generate optimized decision rules when only
examples of the decisions are well known. It has been used to generate soybean
diagnosis rules from examples. In that situation, the generated rules outperformed
the rules which were hand-crafted from expert knowledge [20]. The AQ11 and AQL5
programs take a number of event classes and attempt to find the conceptually simplest
rules that will determine the class of each event. These programs use the same
basic Ag algorithm which is used in GEM but support a more extended knowledge
representation than that supported by GEM.

6.1.2. Structure

The program INDUCE/3 is able to learn structural descriptions of classes of objects
from examples. It can solve learning problems similar to those solved by GEM, but
unlike GEM, it processes structured examples described in an extended predicate
calculus (system VL;). The program incorporates an inference mechanism of con-
structive snduction for applying background knowledge rules to examples to produce
new descriptors. The INDUCE program can be used to generate decision rules when
examples of the decisions are available and the examples have internal structure.

6.1.3. Predict

The SPARC family of programs generate rules describing processes which evolve
over time (temporal process prediction). Examples of temporal processes can be
represented in a conceptual network, or in Annotated Predicate Calculus. In previous
research [21], the program was used to play the card game Eleusis in which the
goal is to discover a card sequence prediction rule to direct the play of the cards.
The program has recently been extended to solve a more general problem of process
prediction.
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6.2. From Data to Data — Event and Attribute Selection

Transformations of tables of data elements into other tables of data elements are
common operations during knowledge acquisition and refinement. The relational ta-
ble operations such as project, join, and select can be used to build new tables from
existing tables. Also, a table can be extended or modified to reflect new informa-
tion. In addition to these interactive operations, there are two inductive operations
we have investigated: attribute (variable) selection — VARSEL, event (example) se-
lection — ESEL. If the table of examples is organized with the attributes across the
top as column headers and the examples themselves as rows, then these operations
correspond to selecting a subset of the columns or rows for further use. Selecting a
subset of the available examples can be particularly important for time saving with
computationally intensive learning algorithms.

6.2.1. Attribute Selection

The VARSEL operation invokes the program called PROMISE [22] which selects the
most promising attributes for differentiating between classes of events. Its output is
therefore intended for use with the Differentiate operation described above.

The VARSEL operation takes two or more relational tables each containing examples
of a particular class and selects a projection of the tables which consists of relevant
selected variables. A variable is relevant if its values contribute significantly to differ-
entiating the examples in one class from those in another class. The output consists
of tables containing the same examples as the input, but with columns of values for
only the relevant attributes. The VARSEL operator is used to reduce the complexity
of example sets in the relational database by removing attributes which are irrelevant.

6.2.2. Event Selection

The ESEL operation invokes the program ESEL/2 [23], a program that takes a large
number of examples and selects a small subset of examples that is most representative
of the larger group.” The smaller sample will require less computation when used as
input to other inductive operators. Large numbers of examples (more than 200) can
require substantial processing time when used as input to other inference operators.

The ESEL operator takes one or more relational tables containing examples and se-
lects a subset of examples which are most representative of the set. Several different
selection algorithms are available, based on conceptual measures similar to the con-
ceptual cohesiveness measure used by the CLUSTER operator (described below). The
ESEL operator is used to scale down Jarge example sets while trying to retain the
embedded knowledge.
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6.3. From Rules to Rules — Incremental Rule Refinement

In our experiments, we have not developed separate tools devoted to incremental
rule refinement, but we have used other existing tools to meet this need. We have
identified two different cases for rule refinement: Refinement based on experience
- Refine, Refinement from consistency checking — Consistency. Each of these cases
involves taking in a segment of rules and producing a revised segment of rules that
are more consistent or more general.

6.3.1. Refine

When additional examples are provided or the results of problem solving are critiqued,
errors in the problem solving behavior of the system can be detected. Ignoring for the
moment the substantial problem of blame assignment, rules in the knowledge base
can be modified with special exception clauses which specifically exclude the known
counter examples from the more general terms in the rules. This form of knowledge
base update can be performed by storing a table of exceptions to check first or by
modifying individual rules.

As rules accumulate exception clauses, they become cumbersome to manipulate and
are less likely to fully represent the structure of the original problem. Either the
original training set of examples can be modified to include the new examples for an
entirely new inductive learning process, or the rules can be incrementally modified.
Incremental modification of rules preserves as much of the previous solution as pos-
sible while improving the performance, understandability, and predictive value of the
refined rules. (The INDUCE operation provides limited support for this function.)

6.3.2. Consistency

A knowledge base can be refined by analyzing it for consistency and completeness
[24]. A segment of rules can be inspected for its coverage of the full range of input
values (completeness) or for the uniquencss of its reported result for any given input
pattern (consistency). When inconsistencies or omissions are detected, additional
rules can be generated to force the supplied rule segment to be either complete or
consistent. Usually, such rules will need to be inspected by an expert with domain
knowledge to evaluate the suitability of including the inductively derived rules into
the knowledge base.

The consistency and completeness operations are combined in a single program which
is invoked by the consistency operator [24]. This operator takes a rule segment and
returns a (potentially) modified rule segment where rules have been modified or added
to make the knowledge base more complete or consistent. The rulebase is made
complete by simply constructing a rule (or rules) which explicitly enumerate the
incompleteniess by explicitly assigning the decision variable(s) to undefined. Rules
are added or modified to produce a consistent rulebase by eliminating competing rule
chains that produce conflicting results.
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6.4. From Rules to Networks — Completeness

The completeness operator described above is also capable of detecting structure
within a rulebase. The operator groups rules together into functional groups which
share access to common variables and participate in common rule chains. The result
is similar to that produced by Jacob and Froscher [26] but is based upon the inter-
mediate results of the consistency analysis. The grouping of the rules is structured
as segments defined within the original segment and these segments are organized in
a tree structure using the network of object primitives.

6.5. From Data to Networks — Conceptual Clustering

The purpose of the cluster operation is to divide a collection of objects into smaller
groups of similar objects based upon some criterion or measure of similarity. Cluster-
ing is the process of developing a taxonomy or classification scheme for the objects
of a study. The program invoked by the cluster command is called CLSUTER /paf
[25]. Unlike most numerical taxonomic techniques, this program uses a concept-based
method of clustering that produces descriptions of the clusters (categories) that it de-
rives. It also permits the user to specify the criteria which are to be used to evaluate
clusters.

The ciuster operation takes one relational table containing examples and automat-
ically builds classifications of the examples. A classification is a hierarchy of con-
junctive concepts expressed in the attribute calculus of VL;. A more powerful exten-
sion of the operator invokes thc CLUSTER/S program which accepts a collection of
structured objects and automatically builds classifications composed of tonjunctive
statments in the extended predicate calculus (VLy). The CLUSTER operator is used
to organize and give conceptual structure to a collection of examples. This can im-
prove ease and speed of access to the data, the efficiency of subsequent inferential
operations, and can reveal to the domain expert underlying patterns.

6.6. From Networks to Networks

In the work on ADVISE, we have not explored machine learning as applied to refining
network structures from networks. Michalski and Collins, however, have explored the
use of transformation operators which operate to produce a form of plausible reasoning
[27). The application of the theory of plausible reasoning they have outlined can
produce organizations of new material based on reasoning over existing knowledge.
Thus, a specificity hierarchy can serve to guide the construction of a similar hierarchy
using transformation operators such as generalization, specialization, similarity and
dissimilarity as applied to both attributes and their values.
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7. Problem Solving Using Multiple Representations

The reason for supporting an integrated approach to problem solving over multiple
knowledge representations is to allow the selection of the knowledge representation
which most suits the problem domain. By choosing the knowledge representation
and associated problem solving technique most natural for a problem or subproblem,
the knowledge engineer can minimize the distance between the way that information
about the problem is presented in the outside world and recorded in the knowledge
base.

This section explores the problem solving transformations shown in Figure 2. In most
cases, we have explored these problem solving strategies as separate components
of the ADVISE system. A brief outline of problem solving over each knowledge
representation is presented in the subsections which follow. Additional information
about some of the problem solving methods is prescnted in the example applications
in the next section.

7.1. From Data to Data — Deductive and Inductive Retrieval

Deductive retrieval represents the simplest and most straight forward method for
conducting problem solving (unfortunately it is seldom sufficient). The relational
commands supported over the knowledge base provide for simple deductive retrieval
of examples. When an example in the knowledge base (such as the exceptions dis-
cussed under learning from rules to rules) is directly retrieved based on a match
between the presenting information and the present case, the stored decision can be
used. Although direct retrieval is not a good general purpose way to implement a
machine-based problem solver, it can be uscd to encode exceptional, prototypical,
and exemplary cases for use in problem solving, generalization, and explanation.

The deductive retrieval process can be implemented as part of the problem solving
process, e.g. a preamble to more traditional machine-based reasoning techniques or
as an end in itself. If deductive retrieval is included, then it is quite natural to provide
for relaxed criteria matching on the retrieval and, thus, support inductive retrieval.
In the case of inductive retrieval, other than a perfect match between the presenting
data and the retrieved data can be used to generate a decision. The amount of the
generalization allowed in the inductive retrieval can be controlled and used to decide
whether additional methods should be used to verify a given result. When the results
of the inductive retrieval are themselves stored back in the knowledge base, then a
form of incremental learning results.

7.2. From Rules to Data — Deductive Rule Application
Deductive rule application is the most common form of problem solving for expert

systems. In our experiments with ADVISE, we have investigated the use of mul-
tiple control schemes for scheduling rules and multiple mechanisms for propagating
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uncertainty. Reinke [28] empirically investigated the role of uncertainty propaga-
tion mechanisms within the ADVISE approach and constructed tools for executing
ADVISE rules in batch mode for analysis.

The notion of a rulegroup in the ADVISE system has been generalized to a knowl-
edge base segment in this integrated approach. A rule group forms a unit of uniform
scheduling and uncertainty propagation scheme and usually corresponds to a subprob-
lem in a task decomposition. Support for multiple schemes for conducting deductive
inference over the rules allows the problem solving to be tailored to the problem
domain.

7.3. From Rules to Rules — Rule-based Scheduling

Reasoning from rules to rules is equivalent to reasoning about the control of rule
exploration using rules. In our integrated approach, we have used the concept of a
rulegroup (here generalized to a knowledge base segment) as a rulebase structuring
element. An entire rule segment appears like an encapsulated logic operation which
has a similar external structure to that of a rule. Thus, an entire rule segment can
be invoked in a rule of another segment much like a function call. The, acquisition of
the value of the function is scheduled in the same way that scalar attribute collection
is scheduled (e.g. based on cost, frequency, strength of implication, etc.).

In its most basic form, an invocation of a rule segment from within a rule segment
looks like a single rule which summarizes the behavior of the the invoked rule seg-
ment. This use of rule segments and their encapsulation can provide a simplifica-
tion of knowledge base management similar to that afforded traditional- programs by
equivalent software engineering techniques {26].

7.4. From Networks to Data — Network Problem Solving

Although experiments with purely network-based problem solving were conducted
with the BABY system (described below), true network-based problem solving was
never incorporated into the ADVISE system. Systems such as AL/X and PROSPEC-
TOR in addition to numerous efforts involving spreading activation indicate that such
techniques should be part of the integrated approach.

When reasoning from networks to data, the problem solving strategy consists of a
traversal of the network in order to evaluate the possible conclusions in light of the
prevailing evidence. The acquisition of evidence can be controlled by the topology of
the network linkages and sequential Bayesian updating of probabilities or analogous
operations on certainty factors of various kinds can support reasoning over uncertain
evidence.
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7.5. From Networks to Rules — Network-based Scheduling

Reasoning from networks to rules is similar to reasoning from rules to rules in that
it amounts to a form of rule scheduling. This option for rule scheduling was used
extensively in the BABY system described in the next section to support an evolution
of the reasoning process.

Spreading activation or sequential Bayesian traversal of the network can be used to
evaluate what amount to preconditions on the invocation of rule segments or indi-
vidual rules. In either case, rule sequencing information has been included in the
network. This approach is particularly well suited to situations where data arrives
naturally in the course of operation of the system and does not need to be solicited.
Temporal progressions or developing situations can be described by the network and
appropriate rules to react to the evolving situation can be activated by the the indi-
vidual nodes in the network.

7.6. From Networks to Networks — Plausible Reasoning

Reasoning from networks to networks amounts to reasoning from known structure
of the problem domain (or the problem at hand) to a new structure of the problem
at hand in light of available evidence. Such reasoning can take at least two forms:
reasoning by analogy and responding to changing situations. These two distinct
problem solving activities can share a common knowledge representation and many
of the operations over that representation. Reasoning by analogy as a part of plausible
reasoning was discussed in the section on inference of networks from networks above
and is more fully discussed in [27].

When reasoning from networks to networks is used to respond to changing situations,
network descriptions of the structure of the various possible situations must be con-
structed. These descriptions serve to guide the instantiation of sub-networks which
provide detailed descriptions of the evolving situations.

8. Experiments Using the Integrated Approach

The range of applicability of many of the ideas presented in this integrated approach
can be seen from three example knowledge-based systems which were developed in the
ADVISE approach and an application of the ESSAI system (which incorporates many
ideas from the integrated approach). The system which was most fully developed was
the PLANT/ds which serves as a consultant for soybean disease diagnosis. The
PLANT/cd system predicts the cutworm damage to corn and the BABY system was
developed as a consultant for the neo-natal intensive care unit. The ESSAI system,
derived from the original ADVISE system, was applied to the problem of configuring
a System 12 switching system. Each of these systems made use of different knowledge
structuring primitives and different problem solving strategies.
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8.1. PLANT/ds

The PLANT/ds system uses data about the condition of plants in a soybean field to
predict which of the 19 most common discase(s) may be present [29]. The questions
the system asks are organized in a collection of forms which allow many related
questions to be answered at one time. The selection of the forms to present to the
user is determined by evaluating the wtility of all of the variables for which a value
is not known. The form containing the more useful variable is then presented to the
user and the form is filled out. The. evaluation of the utility measure for the next
variable to select uses all of the data volunteered on the previous forms in evaluating
variables and rules.

The PLANT/ds control scheme has been used with expert derived rules and rules
derived from machine induction.. A version of PLANT was developed that used both
expert and machine rules to arrive at a diagnosis. In addition, the utility measure
control scheme was also used in a project to develop a turf management expert system
using expert rules.

8.2. PLANT/cd

The PLANT/cd expert system uses data about insects and corn plants to predict
the damage to corn due to cutworms [30]. The control scheme for PLANT/cd is a
traditional backward chaining theorem proving model. Rules, and, finally variables
are selected for evaluation based on the potential strength of implication of the rules.
The PLANT/cd system is disjunctive because of its use of an external climatologic
database and a deep model of insect growth. These two sources of information exter-
nal to the expert system itself were consulted in much the same way that the human
user was asked a question. Because of the nature of backward chaining, questions
were asked serially and there was limited ability for the user to volunteer data.

8.3. BABY

The BABY system is a consultant that is intended to monitor on-line data, laboratory
data, and clinical data in a neo-natal intensive care unit [31]. (The system used
transaction files to simulate direct connection to a premature infant.) Data is supplied
to BABY as it is generated and the majority of the data input into the system
comes automatically. Clinical findings which a doctor might specify are requested
by the system when they would be important for a diagnosis. Unlike the other
systems, BABY must contend with data that arrives at different time intervals and
with differing levels of detail and reliability.

BABY uses input data that changes in time as normal (or abnormal) bodily func-
tions proceed in the infant. In addition, the situations (the patterns of normal and
abnormal physiology) change with the age of the infant. Because BABY is intended
to operate over long periods of time with little operator intervention, it handles data
and situations that change in time.
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The control scheme for BABY is a hybrid of a forward chaining and a network-based
partial sequential Bayesian updating of certainty factors. Rules are used to recognize
patterns in the data and a causal network is used to identify physiologic states that
should cause medical intervention or further investigation. Changes in certainty that
result from evaluation of rules are propagated through the network using a modified
sequential Bayesian updating of the odds for each node in the network.

As part of the management of time, cach certainty factor associated with a variable
is aged if the value is not supplied again. The aging factor used is tailored to the
normal rate of change of each variable. The changing situations are managed using
context arcs in the Bayesian network. The context arcs control the portions of the
graph that are instantiated at any given time. The instantiation (or deinstantiation)
of portions of the network also control the rules that are evaluated. Thus, it becomes
possible for the system to properly recognize that patterns of findings that would
signal alarm for a full term infant are normal for premature infants. Similarly, in the
presence of known problems, expected patterns of abnormality are not pointed out,
but those that should not be expected under the circumstances are.

8.4. ESSAI

The ESSAI system, incorporating many of the ADVISE ideas, was developed by
the Tools and Technology Group of the telecommunications company, Alcatel, at
their base in Paris, France. It was applied to the customer application engineering
(CAE) process whereby the exchange requirements of a telephone administration are
translated into detailed design and layout specifications needed for the exchange in-
stallation. The CAE process is naturally subdivided into 20 major functional units
— each of which can be associated with a knowledge base segment. The equipment
placement portion of the CAE process is concerned with determining a valid place-
ment within a building for the various items of equipment that constitute a System
12 telephone exchange. This equipment includes the telephonic equipment such as
the suites into which are placed the racks, power supplies, and the main distribution
frame containing peripheral equipment. The placement process involves knowledge
of physical constraints affecting equipment position and access as well as knowledge
of exchange design rules affecting power supplies and cabling requirements.

The object oriented nature of the system has proven particularly effective in support-
ing end user interaction. Here, the major challenge was to enable the end user to
prepare a representation of the building plan using a high resolution graphics work-
station. The building plan supplies the physical space dimensions of each of the
rooms in the building and shows the psoition of physical obstacles, such as pillars,
doors, and location of windows; the plan may also indicate customer preferences for
positioning equipment, access points, and a specification of more detailed aspects of
the switching room. The layout produced by the expert system is stored in a tabular
database to enable extensions or modifications to the plan by the customer, and the
layout can be printed on a plotter to produce a scale drawing of the floor plan.
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The experience with ESSAI has shown the value of an integrated paradigm which
combines features of rule-based systems with those of object oriented programming.
This combination enables a high degree of control and configurability without losing
the advantages of declarative representations and non-deterministic problem solving.

9. Design of a Language for Integrated Knowledge-based Systems

The integrated approach described here is of little value unless all of its components
can be unified in a single knowledge-based system. At first glance, it is not apparent
that the diverse operations and representations described in the integrated approach
can coexist within a single formalism. The Knowledge Base Variable-valued Logic
system 2 (KBVL;) has been developed to provide a unifying syntax and semantics
for expressing operations and knowledge within the integrated approach. This section
discusses a few major design constraints on KBVL; and illustrates major components
of the language with simple examples.

9.1. Requirements for KBVL; Design

The KBVL, language is intended to support the three representations which are
part of the integrated approach, the inductive learning operations defined over them,
and the problem solving operations defined over them. This formalism is intended
to integrate the various operations and knowledge base representations as much as
possible rather than simply merge. otherwise separate systems for rules, networks,
and data. The KBVL, formalism is intended to support batch operation in which a
knowledge base can be described and tested [28] as well as interactively constructed
and refined [32, 24]. Finally, all knowledge structuring primitives as well as inferential
operators must be available to operations coded in the knowledge base language itself.

The last constraint on the design of KBVL; is implicit within the entire integrated
approach. In many knowledge-based system environments, the logic of the control
of the problem solving is implicit within the design of the system itself and is not
subject to change by the knowledge base builder. Because of limitations in the knowl-
edge representation and because of this implicit definition of the control information,
considerable portions of sophisticated exert systems for real world problems must be
encoded directly in a procedural language of some form rather than be captured in
the knowledge base itself. This problem arises when the implicit procedural control
of problem solving does not match the explicitly required problem solving behavior
of a portion of the solution to a complex problem.

The theme of explicitly encoding problem solving control information within the
knowledge base runs through the integrated approach (see reasoning from networks
to networks, networks to rules, and rules to rules above). The KBVL, formalism
is intended to directly address the need to provide for explicit declaration of the
sort of problem solving control information which is traditionally implicit within
a particular expert system shell. Thus, the knowledge base builder can construct
a knowledge-based system where strategic knowledge about how to go about the
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problem solving process can be integrated within the knowledge base formalism along
with the traditional tactical information about the problem at hand.

9.2. Knowledge Base Objects

In KBVL,, each atomic entity and all of the composite enties are viewed as objects.
That is, they can have instance variables and methods attached. Instance variables
themselves may be objects and methods are rules which are executed when the method
is invoked. A few objects such as integer, real, string, and a generic object with no
properties are predefined in the system. Additional objects for manging networks,
rules, and a relational database are described below.

In KBVL, there is a distinction between class definitions and instances as found in
most object oriented systems. A class definition and instance definition are repre-
sented as:

< new._class_name >=< existing_class_.name > with < object options >
< new_class_name > : < existing_class_name > with <object options>

respectively where the with <object options> is optional and defines additional in-
stance variables and methods if required for the new object. Thus, to define a class
of integer valued laboratory tests which can be performed on one of two different in-
struments with a cost per test which is dependent on the instrument used, one would
write:

two_instruments=integer with
{instrument:nominal(instrument],instrument2);
cost_instrumentl : real; cost_instrument? : real;
price : method {[instrument = instrument1] = [price = cost_instrumentl];
[instrument = instrument2] = [price = cost_instrument2]; } }

where the method called price calculates the price of the test by sequentially schedul-
ing the rules in the body of the method for evaluation and potential execution. The
class called two_instrument_test is formed from the builtin class integer by adding the
indicated instance variables and methods. In order to define two instances of the new
class and initialize their costs, one would write:

testl:two_instrument_test with cost_instrumentl = 2.34, costinstrument2 = 3.45;
test2:two_instrument._test with cost_instrumentl = 3.31, cost_instrument2 = 2.05;

where the two instances differ from each other only in their initial values for their costs
based on each instrument. Using these structuring primitives, a knowledge engineer
can construct concept descriptions which are natural to the domain and tailor them
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to individual problems by changing initial values, adding instance variables, or adding
methods.

9.3. Structuring the Knowledge Base — Segments

A large knowledge base can quickly become unmanageable if representations for
knowledge base structuring are not used. In KBVL,, knowledge base segments are
defined and used to delineate portions of the knowledge base which behave as struc-
tural units. (The method definition in the previous subsection is an example of a
knowledge base segment nested within the definition of a knowledge base object. In
keeping with the three forms of knowledge representation, there are three predefined
knowledge base segments which can be instantiated by a knowledge base builder.

The class and instance definitions shown above cannot stand alone; they must be
included in a knowledge base segment. The class definition would most naturally
be included in a network segment of class definitions linked by the subclass and
superclass relations. The individual laboratory tests would be included in a table of
other attributes and both might be included together in a knowledge base segment
called test_kb:

test kb : {class : network (subclass, superclass) {
two_instrument._test = integer with
{instrument : nominal (instrumentl, instrument2);
costinstrumentl : real; cost_instrument2 : real;
price:method {[instrument = instrumentl] = [price = cost_instrument1};
[instrument = instrument2] = [price = cost_jnstrumentﬂ; }

attribute : table(name : string, value : object) {
testl:two_instrument_test with cost_instrumentl = 2.34,
cost_instrument2 = 3.45;
test2:twoinstrument_test with-cost_instrumentl = 3.31,
costinstrument2 = 2.05;
}}

Multiple knowledge base segments can be constructed for subproblems and each can
use concept descriptions from global segments as well as individualized knowledge
representations and problem solving techniques.

The example above shows a knowledge base segment containing different kinds of
knowledge. A rule segment could be added which produces interpretive reports for
the two laboratory tests and the segment would form a solution to the subproblem
of generating reports. Segments can be used to define structure within the knowl-
edge base or to portray its organization. For instance, given a class definition for
a blackboard as a table with post, remove, and search methods operating on black-
board entries, a structured blackboard can be constructed by creating a network of
sub-blackboards. The decomposition of the blackboard can parallel decompositions
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within the rulebase or can simply reflect structure within the solution to the problem
and not the manner of problem solving.

9.4. A More Complete Example — The Monkey and the Banana

The KBVL, language can be illustrated with a simple example of a knowledge base
for solving a problem. The problem and solution shown in this section have been
constructed to present a range of features of KBVL, and not with the intent of
presenting an optimal solution.

The monkey and banana problem has been used frequently to illustrate machine-
based problem solving systems. The KBVL, language is well suited to describing
both the problem and its solution. The problem to be solved is that of instructing
a monkey alone in a room with several objects of furniture and a bunch of bananas
suspended from the ceiling. The monkey’s goal is to assemble the furniture into a pile
so that the bananas can be reached by climbing on the furniture. The instructions
can be presented as a sequence of commands to move about within the room, carry
objects, pile objects, climb on, and grasp objects. The KBVL, object classes and
objects which can be used to define the monkey and banana problem are (omitting
the optional object with from the declarations):

location = {zpos : integer; xypos: {xpos,ypos:integer}}
movable_object = {height:integer;
identity : noininal(table, stool, box, banana);
. xyzpos:location;}
room : {objects : set of movable_object;
banana : location with identity : nominal(banana); }
monkey : movableobject with {grip : movable_object;}

where the operations grasp, climb_on, moveto, and release are also defined as truth-
valued functions that return true if their indicated function was accomplished by the
monkey. The situation can be defined by initializing the instance variables for each
movable_object in the room and placing them in the set of objects associated with
the room. The goal of the monkey can be stated as an attempt to make the logical
condition [identity of grip of monkey = banana] be true. The named rules which
define the possible actions of the monkey are:

GRASP :For.all obj in objects of room [grip of monkey = empty]
and [location of monkey = location of obj]
= [grip(obj)] — [grip of monkey = obj]

MOVE :For_all obj in objects of room [xypos of obj # xypos of monkey|
= [moveto(xypos of obj)]— [xypos of monkey = xypos of obj]
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CLIMB :For.all obj in objects of room [location of obj = location of monkey]
= [climb_on(obj)}— [zpos of monkey = zpos of monkey + height of obj]

RELEASE : [grip of monkey # empty] => [ release ] — [grip of monkey = empty]

where the implication arrows on the right hand side of the rules describe the side
effects of the instructions to the monkey. (The syntax of the quantification has been
altered slightly for the purposes of readability in this example.) The rules above
constitute both a statement of the degrees of freedom of the monkey and the solution
to the problem. Taken together with the logical statement of the goal, the rules non-
deterministically define a solution to the problem at hand. Unfortunately, neither a
forward nor a backward chaining search will produce a solution to this problem with
a short search.

While the rules above accurately portray the solution to the problem, they do not lend
themselves to its rapid solution. The performance of the rules can be substantially
improved by incorporating information about the goal directly into them. In the
event that the rules of behavior are modified to include information pertinent to
the monkey’s search for the banana, the rules become less useful for other purposes,
Indeed, it is just such a mixing of tactical and strategic information that the integrated
approach is intended to avoid.

Information about good strategies to employ can be readily incorporated into a net-
work structure which can direct the search. For instance, the concept of carry can be
represented as release — move_to — grasp — move_to. Similarly, the concept of pile
can be constructed as a loop involving carry — climb — release. Finally, the overall
strategy can be specified as pile followed by grasping the banana.

Separating the strategic information from the rules about the world of monkies and
bananas allows the strategic information to be treated as only one of many possible
annotations on the group of rules. Different annotations can be added and kept
distinct from each other as well as distinct from the rules themselves.

A data table (not shown in the example above) can be used to accumulate a trace
of the actual commands issued to the moneky. In the event that a correct solution
which can be correctly executed is derived, then the table will contain a trace of the
monkey’s steps in obtaining the banana. In any case, the tabular trace, or tables
of such tables, can be used to inductively derive the sort of strategic information
discussed above.

10. Bringing It All Together ~ QUIN

The original research on the ADVISE system which emphasized the use of multiple
knowledge representations, multiple control and uncertainty propagation schemes, to-
gether with a major learning component has been generalized to form the integrated
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approach to knowledge-based systems presented here. The integrated approach em-
phasizes the construction of knowledge bases using the best problem solving and
representational tools at hand rather than using a single prescribed representation
and problem solving scheme. The approach emphasizes the integration of machine
learning tools directly within the knowledge base language and within an interactive
user interface for knowledge acquisition and refinement.

The KBVL, language was developed as part of this integrated approach and provides
for description of libraries of knowledge base segments which can be integrated into
a single knowledge-based system or used as building blocks for defining a family of
knowledge-based systems. The KBVL; language directly supports the definition of
problem solving control information separated from tactical decision rules. This sep-
aration together with the rich combination of network, rule and database structuring
primitives for knowledge representation provides a more widely useful knowledge-
based system tool than would otherwise be possible.

The QUery and INference system, QUIN, provides interactive access to the knowl-
edge represented in a KBVL; knowledge base. QUIN is primarily a marriage between
relational database and inductive learning technologies [33]. Its purpose is the man-
agement of large amounts of data for input to and output from the inductive trans-
formation operators shown in Figure 1. The system provides rudimentary access to
problem solving using the knowledge base for deductive and inductive retrieval as
well as learning.

QUIN may be used for the management and analysis of data as well as to browse
through a knowledge base. Management here refers to the creation, retrieval, and
modification of the data, while analysis refers to activities that attempt to discover
more about 1) interrelationships within the data and 2) phenomena that produce
those interrelationships. Although the QUIN interface was originally developed to
operate only on tables of relational data, some editing and display operations on
networks and rules have been added in this integrated approach.

The operations in QUIN provide access to the inductive inference, analysis, and prob-
lem solving transformations shown in Figure 1. In general, each operation requires an
options object in addition to the table(s) of input data on which to operate. Output
from the inferential process in the form of tables, networks or rules can be inspected
by the user and introduced into a new segment or stored over the information in the
segment from which it came. (Details about each operation can be found in sections
6 and 7 above.)

The induction operations within QUIN interact to form a set of utilities that can be
used in sequence or in cycles. The databases used to test and experiment with these
learning algorithms are more easily handled with database management techniques
that store, modify, and restructure data for eventual input to the inference programs.
The cycle of knowledge refinement by iteration of the mechanized inference with a
human critic produces better results than either alone.
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The integrated approach to the construction of knowledge-based systems discussed
in this paper brings together interactive application of machine learning techniques,
variations in knowledge representation, problem solving strategy, and uncertainty
management in a single paradigm. The integrated approach, while not fully realized
in any existing system, has been substantially incorporated in experimental meta-
expert system tools and has demonstrated its potential for qualitative improvement
in knowledge-based system technology.
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