

USING MODEL CHECKING FOR VERIFICATION OF REDUNDANCY AND

INCONSISTENCY IN MARITIME LAWS

by

Muzammil Sagheer

A Thesis

Submitted to the

Graduate Faculty

of

George Mason University

In Partial Fulfillment of

The Requirements for the Degree

of

Master of Science

Computer Science

Committee:

_________________________________ Dr. Syed Abbas K. Zaidi, Thesis Director

_________________________________ Dr. Alexander H. Levis, Committee Member

_________________________________ Dr. Gheorghe Tecuci, Committee Member

_________________________________ Dr. Hassan Gomaa, Department Chair

_________________________________ Dr. Lloyd J. Griffiths, Dean, The Volgenau

School of Information Technology and

Engineering

Date:_____________________________ Summer Semester 2010

 George Mason University

 Fairfax, VA

Using Model Checking for Verification of Redundancy and Inconsistency in Maritime

Laws

A thesis submitted in partial fulfillment of the requirements for the degree of Master of

Science at George Mason University

By

Muzammil Sagheer

Bachelor of Science

Mohammad Ali Jinnah University, Karachi, Pakistan, 2004

Director: Syed Abbas K. Zaidi, Research Professor

Department of Electrical and Computer Engineering

Summer Semester 2010

George Mason University

Fairfax, VA

ii

ACKNOWLEDGEMENTS

First of all I would like to thank God Almighty for giving me strength, wisdom and

perseverance during this research and indeed throughout my life. May His blessings be

upon all of us in all of the times to come.

I owe my deepest gratitude to my advisor Dr. Syed Abbas K. Zaidi for his guidance,

support, insightful feedback and constructive criticism throughout this thesis. He has

been an invaluable mentor during the entire period of this research. His personal advices

have taught me innumerable lessons in the area of academic research.

I am also thankful to my other committee members, Dr. Alexander Levis and Dr.

Gheorghe Tecuci, for their support, co-operation and their contributions to the success of

this thesis.

I express my heartfelt gratitude to my parents for their constant support and

encouragement during my studies. This thesis was simply impossible without the support

and love of my brothers, my fiancée and her family.

Last but not the least; I would like to thank all of my friends, especially my colleagues at

System Architectures Laboratory who were always there to help me whenever I needed

it.

iii

TABLE OF CONTENTS

 Page
ABSTRACT .. ix

CHAPTER 1: INTRODUCTION .. 1

1.1. Motivation .. 1

1.2. Goals and Contributions ... 2

1.3. Related Work .. 4

1.4. Thesis Outline .. 6

CHAPTER 2: PROBLEM DEFINITION .. 8

2.1. Introduction ... 8

2.2. Verifiable Characteristics of Maritime Laws .. 9

2.3. Examples of Various Cases Within Maritime Laws .. 15

CHAPTER 3: FOUNDATIONS .. 22

3.1. Introduction ... 22

3.2. Petri Net Theory ... 23

3.3. Model Checking ... 33

CHAPTER 4: PETRI NET REPRESENTATION OF RULES ... 40

4.1. Introduction ... 40

4.2. Rule Normalization .. 41

4.3. Transformation of Normalized Rules into Petri Nets .. 42

4.4. Pattern of Inconsistent and Redundant Rules in Occurrence Graphs 47

4.5. Conclusion .. 55

CHAPTER 5: SOLUTION TO THE PROBLEM ... 56

5.1. Introduction ... 56

5.2. Structural Analysis ... 56

iv

5.3. Behavioral Analysis ... 57

5.4. Conclusion .. 70

CHAPTER 6: REASONING WITH MARITIME LAWS .. 71

6.1. Introduction ... 71

6.2. Petri Net Models for Reasoning .. 72

6.3. Forward Reasoning ... 77

6.4. Backward Reasoning .. 82

6.5. Use of Verification Results in Decision Making .. 84

6.6. Conclusion .. 86

CHAPTER 7: APPLICATION: MARITIME LAW MANAGER AND ANALYZER 87

7.1. Introduction ... 87

7.2. Maritime Law Management System ... 88

7.3. RULER (Rule Evaluation Routine) .. 96

7.4. RulEx (Rule Execution Engine) ... 99

7.5. Conclusion .. 101

CHAPTER 8: CONCLUSION AND FUTURE WORK ... 102

8.1. Conclusion .. 102

8.2. Future Work .. 103

APPENDIX A .. 106

A.1. Temporal Logic .. 106

A.2. Linear-time Temporal Logic (LTL) .. 107

A.3. Branching-time Logic .. 110

APPENDIX B .. 117

B.1. Scenario Overview .. 117

B.2. Sample Rules ... 118

B.3. Formal Representation ... 120

B.4. Shorthand Representation of Formal Rules .. 121

B.5. Sample Queries ... 123

APPENDIX C .. 124

REFERENCES .. 132

v

LIST OF TABLES

Table Page

 TABLE 2.1: SYMBOLS CORRESPONDING TO PROPOSITIONS OF QUERY 5 IN APPENDIX B…16

 TABLE 2.2: SYMBOLS CORRESPONDING TO PROPOSITIONS OF QUERY 6 IN APPENDIX B…18

 TABLE 2.3: SYMBOLS CORRESPONDING TO PROPOSITIONS OF RULE 1(A) OF OPERATION

GOOD SAMARITAN ROE, RULE 2 OF SEACOM ROE AND RULE 2 OF SOFA FOR

INDONESIA IN APPENDIX B…………………………………………………………..19

 TABLE 3.1: DERIVED OPERATORS....……………………………………………………..35

 TABLE 4.1: SYMBOLS CORRESPONDING TO PROPOSITIONS OF RULE 1(B) OF OPERATION

GOOD SAMARITAN ROE IN APPENDIX B....………………………………………….43

 TABLE 4.2: SYMBOLS CORRESPONDING TO PROPOSITIONS OF RULE 2 AND RULE 3 OF

SOFA FOR INDONESIA IN APPENDIX B……………………………………………....45

 TABLE 4.3: SYMBOLS CORRESPONDING TO PROPOSITIONS OF RULE 2 OF SOFA FOR

INDONESIA AND RULE 2 OF SEACOM ROE IN APPENDIX B....……………………...46

 TABLE 4.4: SYMBOLS CORRESPONDING TO PROPOSITIONS OF RULES 1(B) OF OPERATION

GOOD SAMARITAN ROE AND SEACOM ROE IN APPENDIX B……………………...50

 TABLE 4.5: SYMBOLS CORRESPONDING TO PROPOSITIONS OF RULES 1(B) OF JOINT

EXERCISE ROE AND SEACOM ROE IN APPENDIX B……………………………….53

 TABLE 5.1: SYMBOLS CORRESPONDING TO PROPOSITIONS OF MUTUALLY EXCLUSIVE

SETS………………………………………………………………………………....59

 TABLE 5.2: SYMBOLS CORRESPONDING TO PROPOSITIONS OF SAMPLE QUERY IN APPENDIX

B...63

 TABLE 5.3: SYMBOLS CORRESPONDING TO PROPOSITIONS OF RULES 1(B) OF OPERATION

GOOD SAMARITAN ROE AND SEACOM ROE IN APPENDIX B……………………...66

 TABLE 5.4: SYMBOLS CORRESPONDING TO PROPOSITIONS OF RULE 2 OF SOFA FOR

INDONESIA AND RULE 2 OF SEACOM ROE IN APPENDIX B………………………...67

 TABLE 5.5: SYMBOLS CORRESPONDING TO PROPOSITIONS OF RULES 1(B) OF JOINT

EXERCISE ROE AND SEACOM ROE IN APPENDIX B……………………………….68

 TABLE 6.1: SYMBOLS CORRESPONDING TO PROPOSITIONS OF RULE 1(B) OF OPERATION

GOOD SAMARITAN ROE IN APPENDIX B…………………………………………….72

 TABLE 6.2: SYMBOLS CORRESPONDING TO PROPOSITIONS OF RULES 2 AND 3(A) OF

SEACOM ROE IN APPENDIX B……………………………………………………..76

vi

 TABLE 6.3: SYMBOLS CORRESPONDING TO PROPOSITIONS OF RULE2 OF SEACOM ROE,

RULE 1(A) OF OPERATION GOOD SAMARITAN ROE AND RULE 1(B) OF JOINT EXERCISE

ROE IN APPENDIX B..79

 TABLE B.1: SET OF PROPOSITIONS USED IN THE FORMAL REPRESENTATION OF MARITIME

LAWS……………………………………………………………………………….121

vii

LIST OF FIGURES

Figure Page

FIGURE 1.1: OVERVIEW OF COMPUTER-AIDED APPROACH .. 4

FIGURE 3.1: AN ORDINARY PETRI NET .. 24

FIGURE 3.2: ORDINARY PETRI NET WITH MARKING .. 26

FIGURE 3.3: PETRI NET WITH FIRING SEQUENCE T1, T2 .. 28

FIGURE 3.4: PETRI NET WITH FIRING SEQUENCE T2, T1 .. 28

FIGURE 3.5: PETRI NET AFTER FIRING T1 AND T2 CONCURRENTLY 29

FIGURE 3.6: PETRI NET AFTER FIRING T3 .. 29

FIGURE 3.7: OCCURRENCE GRAPH (OG) FOR PETRI NET IN FIGURE 3.2 31

FIGURE 3.8: AN EXAMPLE OF A CONFLICT ... 32

FIGURE 3.9: AN EXAMPLE OF A CONFLICT-FREE PETRI NET .. 32

FIGURE 3.10: OCCURRENCE GRAPH (OG) SATISFYING EV (P4 P5) 38

FIGURE 3.11: OCCURRENCE GRAPH (OG) SATISFYING EX(P4 P5) 39

FIGURE 4.1: PETRI NET REPRESENTATION OF RULE 1(B) OF OPERATION GOOD SAMARITAN

ROE ... 43

FIGURE 4.2: PETRI NET REPRESENTATION FOR DISJUNCTION IN CONCLUSION 44

FIGURE 4.3: PETRI NET REPRESENTATION OF TWO MUTUALLY EXCLUSIVE CONCEPTS 45

FIGURE 4.4: PETRI NET BEFORE AND AFTER MERGING COMMON PLACES 47

FIGURE 4.5: PETRI NET REPRESENTATION OF MARITIME LAWS .. 48

FIGURE 4.6: PETRI NET REPRESENTATION OF TWO INCONSISTENT RULES 51

FIGURE 4.7(A): PETRI NET AFTER FIRING OGS_1B .. 51

FIGURE 4.7(B): PETRI NET AFTER FIRING SEACOM_1B ... 51

FIGURE 4.8: OCCURRENCE GRAPH CORRESPONDING TO PETRI NET OF FIGURE 4.6 52

FIGURE 4.9: PETRI NET REPRESENTATION OF TWO REDUNDANT RULES 54

FIGURE 4.10(A): PETRI NET AFTER FIRING JE_1B .. 54

FIGURE 4.10(B): PETRI NET AFTER FIRING SEACOM_1B ... 54

FIGURE 4.11: OCCURRENCE GRAPH CORRESPONDING TO PETRI NET OF FIGURE 4.9 55

FIGURE 5.1: MODIFIED PETRI NET OF MARITIME LAWS (HAVING NO CIRCULAR RULES) .. 64

FIGURE 5.2: OCCURRENCE GRAPH CORRESPONDING TO PETRI NET OF FIGURE 5.1 69

FIGURE 6.1: PETRI NET MODEL FOR FORWARD REASONING .. 74

FIGURE 6.2: PETRI NET MODEL FOR BACKWARD REASONING ... 74

viii

FIGURE 6.3: PETRI NET WITH BI-DIRECTIONAL ARCS .. 74

FIGURE 6.4: CONVERSION OF PETRI NET HAVING CONFLICT INTO A CONFLICT-FREE NET 77

FIGURE 6.5(A): PETRI NET WITH TOKENS (CORRESPONDING TO INITIAL FACTS) 79

FIGURE 6.5(B): PETRI NET (AFTER FIRST EXECUTION STEP) ... 80

FIGURE 6.5(C): PETRI NET (AFTER SECOND EXECUTION STEP) ... 80

FIGURE 6.5(D): PETRI NET (AFTER THIRD EXECUTION STEP) .. 81

FIGURE 6.6(A): INITIALIZED PETRI NET FOR BACKWARD REASONING 83

FIGURE 6.6(B): PETRI NET (AFTER FIRST EXECUTION STEP) ... 83

FIGURE 6.6(C): PETRI NET (AFTER SECOND EXECUTION STEP) ... 84

FIGURE 7.1: STATIC ENTITY MODEL (DATA MODEL) OF MARITIME LAW MANAGEMENT

SYSTEM .. 89

FIGURE 7.2: USER INTERFACE OF MARITIME LAW MANAGEMENT SYSTEM 91

FIGURE 7.3: VARIOUS COMPONENTS WITHIN MARITIME LAW MANAGEMENT SYSTEM 92

FIGURE 7.4: GUI OF MARITIME LAW MANAGEMENT SYSTEM SHOWING SEARCH

RESULTS……………………………………………………………………………..94

FIGURE 7.5: GENERATED REPORT FOR THE SELECTED RULES ... 95

FIGURE 7.6: INPUT RULES FROM MARITIME LAW MANAGEMENT SYSTEM 97

FIGURE 7.7: RESULTS SHOWING IDENTIFIED REDUNDANT CASES 98

FIGURE 7.8: RESULTS SHOWING IDENTIFIED INCONSISTENT CASES 99

FIGURE 7.9: EXAMPLE OF RULE EXECUTION PROCESS ... 100

FIGURE 7.10: EXAMPLE OF INPUT CONDITIONS IDENTIFICATION PROCESS 101

FIGURE A.1: A DIRECTED GRAPH REPRESENTING STATE-TRANSITION SYSTEM 108

FIGURE A.2: A STATE-TRANSITION SYSTEM SATISFYING X .. 109

FIGURE A.3: A STATE-TRANSITION SYSTEM SATISFYING G .. 109

FIGURE A.4: A STATE-TRANSITION SYSTEM SATISFYING F .. 109

FIGURE A.5: A STATE-TRANSITION SYSTEM SATISFYING 1 U 2 110

FIGURE A.6: STATE-TRANSITION SYSTEMS SATISFYING 1 R 2 110

FIGURE A.7: A STATE-TRANSITION SYSTEM WHOSE STARTING STATE SATISFIES AF 113

FIGURE A.8: A STATE-TRANSITION SYSTEM WHOSE STARTING STATE SATISFIES AG ... 114

FIGURE A.9: A STATE-TRANSITION SYSTEM WHOSE STARTING STATE SATISFIES EF 114

FIGURE A.10: A STATE-TRANSITION SYSTEM WHOSE STARTING STATE SATISFIES EG ...115

FIGURE A.11: A STATE-TRANSITION SYSTEM WHOSE STARTING STATE SATISFIES AX . 115

FIGURE A.12: A STATE-TRANSITION SYSTEM WHOSE STARTING STATE SATISFIES E[1 U

2]…………………………………………………………………………………...116

ix

ABSTRACT

USING MODEL CHECKING FOR VERIFICATION OF REDUNDANCY AND

INCONSISTENCY IN MARITIME LAWS

Muzammil Sagheer, MS

George Mason University, 2010

Thesis Director: Syed Abbas K. Zaidi

A computer-aided solution for the task performed by a Maritime Lawyer is presented in

this thesis. It facilitates the process of searching a set of rules from across different

Maritime Laws that are applicable in a certain given situation and provides analytical

capabilities that include verification of the selected rules against inconsistency as well as

reasoning with them. The analyses are meant to decide the applicability of actions from

the selected rule set after a careful consideration of possible inconsistencies that may

appear in the applicable rules. The analytical techniques require that Maritime Laws be

represented as Production Systems. The production rules are first normalized and

transformed into an equivalent Petri Net representation. The structural and behavioral

analysis of the Petri Net is then performed to look for properties of the net corresponding

to useless, incomplete, cyclic, redundant and inconsistent cases. The structural analysis is

done by an already existing approach to identify the cases of useless, incomplete and

circular rules. The behavioral analysis is done by using a formal methodology of model

x

checking that explores the state space of the Petri Net to verify the properties

corresponding to redundant and inconsistent rules. A reasoning mechanism is also

proposed, which uses the Petri Net representation, to answer queries about the

applicability of actions from the selected set of rules. The combined use of the

verification results and the reasoning mechanism will help a Maritime Lawyer in

identifying a course of action for a given situation of interest that is supported by the

applicable Maritime Laws.

1

CHAPTER 1: INTRODUCTION

This thesis focuses on the formulation of a technique for verification of rules,

selected from different Maritime Laws, against properties like consistency, completeness

and redundancy. It is similar to the problem of validation and verification (V&V) of rule-

bases proposed in the literature [1-13]. The objective of the approach presented in this

thesis is to help a Maritime Lawyer to decide the suitability and applicability of actions in

a particular situation. It, therefore, differs from the other V&V approaches [1-13] by not

attempting to correct or update the rule set as a result of its application.

1.1. Motivation

A ship or, a fleet of ships, operating at sea has to abide by different Maritime

Laws, e.g., Admiralty Law, Law of the Sea, etc. These laws come from different sources

(e.g., international agencies, nation states, etc.) and their applicability changes from one

geographical location to the other and also with time. A Maritime Lawyer is required to

look into these law books to identify the applicability of action(s) in a given situation.

At present, this process is done manually by a Maritime Lawyer, who searches for

all the rules that are relevant to answer queries about applicability of action(s),

considering the geographical boundaries, temporal aspects, and others. From the set of

identified rules, he/she figures out the applicability/suitability of action(s) and presents

the results to the commander of the ship or fleet.

2

The entire process of information foraging and deciding the course of action from

the applicable rules is a time-consuming activity. It becomes even more difficult for some

time-critical decisions that need to be made, especially in a rapidly changing situation.

Also, there is no guarantee that the rules are complete and consistent across all the law

books, resulting in an additional task on the Maritime Lawyer to verify the completeness

and consistency of the rules before arriving at a conclusion. Consequently, a computer-

aided approach is needed that facilitates the process of information foraging and checking

for possible conflicting cases across disparate law books. The approach can also be

supplemented by a reasoning mechanism that a Maritime Lawyer can use for deciding the

appropriateness or suitability of inquired action(s).

1.2. Goals and Contributions

A new technique is proposed for the identification of inconsistency and

redundancy within rules selected from different law sources. It extends an earlier

approach proposed in [1, 2] to overcome the issues and limitations of that methodology.

A discussion on some weaknesses in the previous approach, namely the algorithms for

inconsistent and redundant rules, is presented in the next section. The proposed

verification technique makes use of Production Systems, where pre- and post-conditions

of a production rule are given as first-order expressions, as the formal knowledge

representation scheme for Maritime Laws. The formal representation is the basis for all

the algorithms developed to assist a Maritime Lawyer while deciding the applicability of

a course of actions. A reasoning mechanism is also proposed that can be used for

3

decision-making. The reasoning mechanism uses the same representation of the rules as

used by the verification technique.

An overview of the computer-aided approach is shown in Figure 1.1. The

formally represented set of rules, applicable in a certain given situation, is first selected

from various Maritime Laws. Different analyses are then performed on these selected set

of rules to verify certain properties within them. The approach first transforms the

formally represented rules into an equivalent Petri Net representation, which is then

initialized based on the given input situation. The structural and behavioral exploration of

the Petri Net is then performed to look for properties of the net corresponding to useless,

incomplete, cyclic, redundant and/or inconsistent cases. The structural analysis is done by

the approach proposed in [1, 2]. The behavioral analysis is done by the new technique

that employs a formal model checking methodology for the verification task. Finally, the

reasoning engine is used to decide the appropriateness of inquired action or course of

actions.

It should be noted that the set of verifiable properties are not considered errors in

the problem addressed in this thesis. The reported cases are intended as a support

provided to the Maritime Lawyer in identifying possible problematic situations where a

law differs from the other applicable ones. In other words, they are supposed to provide

assistance to the Maritime Lawyer in deciding the suitability of action(s) while using the

reasoning engine.

4

Figure 1.1: Overview of Computer-Aided Approach

1.3. Related Work

There have been a number of tools and techniques for validation and verification

(V&V) of rule-based systems that employ production rules as the representation scheme.

A large number of these proposed approaches make use of Petri Nets for the V&V task,

since they provide exactly the same operational formalism as Production Systems.

Zisman [3] was the first to note this similarity and use Petri Nets for the verification task.

Other techniques that utilize Petri Nets were proposed by Giordanna and Saitta [4],

Zhang and Nguyen [5-6], Liu and Dillon [7], Agarwal and Tanniru [8]. Zaidi and Levis

[1] discuss the weaknesses of these earlier approaches. The technique proposed by them

divides the set of properties into two classes: structural and behavioral. The behavioral set

of properties includes redundancy and inconsistency. Their approach requires

construction of a state space graph (also known as reachability graph or occurrence

5

graph) for the Petri Net representation of a rule-base, and a search within it for

identification of these properties. The proposed methodology is intended for the case

where the initial marking of the Petri Net is unknown. A heuristic is used to overcome the

combinatorial enumeration problem that results from the unknown input assumption for

generation of the state space graph and its analysis. However, the approach proposed for

behavioral analysis is, in general, too complex to be used in practice. A detailed

discussion of their approach is also provided in [2]. A number of other techniques was

proposed afterwards, but most of them have certain problems of their own, which are

presented in the following discussion.

Yang et al. [9] propose an approach that uses the incidence matrix of the Petri Net

representing a rule-base to verify properties within it. The approach is based on an

ordering of rules according to some criteria defined by them before representing it with a

Petri Net and using its corresponding incidence matrix for the verification task.

Furthermore, the technique proposed by them works with a restricted form of rules

known as Horn clauses. Also, their approach does not have the capability for verification

of properties in chains of rules.

He et al. [10] and Yang et al. [11] propose an approach that uses ω-net (a special

type of low-level Petri Net) for rule-base representation and the analysis of the

corresponding reachability graph of ω-net for verification of properties. The issue in both

the proposed techniques is that the structure of the reachability graph for a ω-net ignores

paths to reachable markings, resulting in an additional work for the accurate detection of

those properties [12].

6

Wu et al. [13] presented the use of Colored Petri Nets for rule-base representation

and its reachability graph analysis for the verification task.

Ding et al. [12] recently proposed a technique that extends the approach of He et

al. [10] by generating a backward reasoning forest of reachable markings in reachability

graph. Their purpose of doing this is to explicitly present and record the missing

reachable path information within the reachability graph of a ω-net. However, their

approach has the limitation of working with only those rule-bases where rules are

expressed as Horn clauses.

Some other tools, reported in the literature, include MELODIA [14] that uses

Boolean techniques for verification of inconsistency and redundancy in production rules,

KHEOPS [15], which is a real-time rule-based system having a forward-chaining

interpreter and allows for checking some formal properties, CLIPS [16] and Algernon

[17], which are expert system shells that include features for verification and validation

of expert systems.

A new methodology is proposed in this thesis that overcomes the weaknesses of

previous approaches. The approach extends the work proposed by Zaidi and Levis [1, 2]

by presenting a formal technique of model checking to capture redundant and

inconsistent cases. The set of useless, incomplete and circular rules is identified by using

static analysis methodology proposed by them.

1.4. Thesis Outline

The thesis is organized as follows: Chapter 2 describes the problem addressed in

this thesis by providing a formal description of the verifiable properties (or

7

characteristics) within rules along with illustrative examples taken from some sample

Maritime Laws. Chapter 3 provides background information on the essential concepts

used throughout the thesis. Chapter 4 discusses the Petri Net representation to model the

set of rules from law sources. Chapter 5 provides the solution to the verification problem.

It briefly describes the already existing approach for identification of incomplete, useless

and circular rules; and presents a detailed discussion on the new technique that employs

formal model checking methodology to verify the cases of inconsistency and redundancy.

Chapter 6 discusses the reasoning mechanism that has been developed for deciding the

appropriateness of actions from the set of applicable rules. It also shows the usage of

results from the verification to assist in decision-making. Chapter 7 presents a suite of

tools that has been developed to provide a computer-aided support to a Maritime Lawyer.

The suite consists of a Management System, a Rule Evaluation Routine and a Rule

Execution Engine providing the functionalities of management of Maritime Laws,

automated verification of rules, and reasoning with them, respectively. Finally, Chapter 8

concludes the thesis and suggests some directions for future research.

8

CHAPTER 2: PROBLEM DEFINITION

This chapter presents the details of the problem that is addressed in the thesis. It

defines the various properties in a rule set, or across several rule sets, that a Maritime

Lawyer might be interested in exploring to address a situation of interest. The formal

description of the set of properties, presented in this chapter, has been compiled from

different V&V approaches that were reported in the literature.

2.1. Introduction

Maritime Laws are, in essence, a set of rules expressed in natural language. If

these rules can be converted into some formal representation using an appropriate

knowledge representation language, then they can be used for analysis by machines. The

analyses may include verification of rules for completeness and correctness using

automated formal techniques as well as reasoning with them using a reasoning engine.

The rules in Maritime Laws can be regarded as Condition-Action rules which help

a Maritime Lawyer to determine when, where, and how certain actions should be taken.

This suggests the use of Production Systems to be a better choice compared to other

formalisms for encoding Maritime Laws, since such a representation is useful in action

selection problems.

A Production System consists of a set of Condition-Action rules, also known as

production rules, a working memory that contains the current state of knowledge, and a

9

rule interpreter that executes the rules, consequently, making changes in the working

memory [18]. The conditions and actions of production rules are expressed as First-Order

Logic (FOL) formulas. Such types of Production Systems are referred to as First-Order

Production Systems [18]. The reason for choosing FOL to encode the conditions and

actions of production rules is because of its adequacy of representation (i.e. expressive

power) [19]. It has already been mentioned in Chapter 1 that the technique proposed, in

this thesis, is an extension of a previous work presented in [1, 2]. However, the

methodology proposed in [2] uses different Petri Net representations for the rules in

Propositional Logic (PL) and for the rules expressed in First-Order Logic (FOL). This

thesis presents a technique that uses the same Petri Net representation for both the

expressions. Since every FOL formula having a finite set of constant symbols can be

converted to an equivalent Propositional formula [20], so the FOL statements in

production rules are transformed into PL statements by instantiating their variables with

known constant values. This process of transforming FOL statements into PL statements

is known as propositionalization [20], which makes it possible to exploit the Petri Net

representation for PL expressions that has been presented in [1, 2] to deal with both the

cases. A small sample of rules from different Maritime Law sources, supporting a

hypothetical maritime scenario [21], is provided in Appendix B. The set of corresponding

propositionalized production rules are given in Section B.3.

2.2. Verifiable Characteristics of Maritime Laws

The Production System representing the set of rules from across different

Maritime Laws is likely to have inconsistency, redundancy, etc., since the constituent

10

rules come from different law sources. A rule from one Maritime Law may allow an

action, whereas another rule addressing the same situation from a different Maritime Law

may prohibit it. There can also be cases in which two Maritime Laws, applicable in a

given situation, may say the same thing. Under these circumstances, a Maritime Lawyer

has to suggest if an action can be taken or not. In other words, he/she has to be certain

about his/her decisions after a careful consideration of the various characteristics that

may appear in the set of applicable Maritime Laws. This section outlines such

characteristics and provides a formal description of them by demonstrating them using

Production System as representation technique for rules. Such systems work by using

forward-chaining mechanism that executes the rule by matching conditions of a rule to

the current set of facts (state of knowledge), thereby, deducing new set of facts, which get

added to existing set of knowledge [18]. It should be noted that the discussion in the

remaining section makes use of a hypothetical set of production rules for describing

various properties. Examples of such properties in Maritime Laws are provided in

Section 2.3.

2.2.1. Inconsistent Rules

Inconsistent rules result in conflicting facts [10]. The execution of rule set having

inconsistent rules result in new facts that either conflict with one another or conflict with

original fact(s).

Example 1:

Consider the two rules shown below. Given A, B, C and D (as facts), these two

rules become applicable, leading to two conflicting conclusions (P and ¬P) if executed. It

11

should be noted that the formal representation used in this thesis makes use of the symbol

„ ‟ to represent the logical AND and „¬‟ to represent the negation (i.e. NOT) operator.

Given facts: A B C D

Rule 1: A B → P

 Rule 2: C D → ¬P

Example 2:

Consider another set of facts and rules presented below. Based on the given

information, the first rule becomes applicable leading to a conclusion which makes the

second rule applicable as well that leads to a conclusion (¬A) contradicting with original

information (A).

Given facts: A B D

 Rule 1: A B → P

 Rule 2: P D → ¬A

To put it another way, a rule set free of inconsistent rules will never infer

conflicting information. It should be noted that the inconsistent case presented in the

second example was not caused because of two rules concluding inconsistent

information. In fact, the cause of inconsistency was the conclusion from an applicable

rule contradicting with the original set of facts.

2.2.2. Redundant Rules

Redundancy refers to the presence of multiple copies of the same rule or the

presence of set of rules that lead to the same effect (output), from the same input

conditions [1, 2].

12

Example 1:

Consider the set of rules shown below. The two provided rules are identical

except that their input conditions are arranged differently. Based on the given set of facts

(A and B), which makes their input conditions true, same conclusion is derived by their

execution.

Given facts: A B

 Rule 1: A B → P

 Rule 2: B A → P

Example 2:

The rule set shown below is another example of redundancy in which the first

three rules have the same effect as the last rule while processing the same input

conditions (A, B, C and D).

Given facts: A B C D

 Rule 1: A B → P

 Rule 2: C D → Q

 Rule 3: P Q → R

 Rule 4: A B C D → R

2.2.3. Incompleteness

Incompleteness refers to a situation when there is not enough information in the

rule-base to answer a query of interest [22]. Some of the previous approaches in V&V

literature have further categorized this case into Rules with Unknown Conditions and

Rules with Useless Conclusions i.e. both the categories determine incompleteness in a

13

rule-base [1, 2][6]. The incompleteness in this thesis is defined as the situation when the

system either does not have rules that can reach the goal (i.e. answer a query) or it has a

set of rules that can arrive at some desired goal, however, their inputs are unknown to the

system. The example below illustrates the concept.

Example:

Consider the set of rules shown below. Based on the given set of facts (A, B, C

and D), it is not possible for the system to make an assertion R, since one of the input

conditions (S) of the last rule, which can assert R, is unknown. This situation may have

originated because of some missing rule that can make assertion S from the input

information or due to an insufficient amount of information provided in the original set of

facts.

Given facts: A B C D

 Rule 1: A B → P

 Rule 2: C D → Q

 Rule 3: P Q S → R

2.2.4. Useless Rules

This case has already been mentioned in the previous discussion. They refer to the

rules that do not produce useful results. In other words, these are the rules whose output

is not of interest to the user and there is no rule or set of rules leading from their outputs

to useful conclusions [1, 2].

14

Example:

Consider a case, where the set of facts and rules are as provided below and a user

is interested to know if assertion P can be made or not. It should be noted that the formal

representations in this thesis follow Prolog notation to express such queries, which are

denoted as ?proposition. From the given information, it can be seen that the system can

reach to a decision about P using the first rule, however, the remaining rules are

applicable as well, whose outputs are not relevant to the query in this case.

 Given facts: A B C D

 Rule 1: A B → P

 Rule 2: C D → Q

 Rule 3: A B C D → R

Goal: ?P

2.2.5. Circular Rules

Circularity refers to the presence of rules that will lead a system to get trapped in

executing them again and again. The following example illustrates such a case.

Example 1:

Consider the two rules shown below. Given A (as fact), the first rule becomes

applicable leading to a conclusion which makes the second rule applicable as well. The

conclusion of the second rule leads back to the first rule to become applicable again.

Given facts: A

 Rule 1: A → B

 Rule 2: B → A

15

Another case of circularity is defined as the presence of rules that are circularly

dependent on each other resulting in a deadlock [1, 2].

Example 2:

The set of rules shown below illustrates the case of a deadlock. Given A and B as

facts, the first rule cannot execute since it requires an input condition R that can be

obtained by executing the second rule, which in turn requires the execution of first rule to

make an assertion P to become applicable in the given situation.

Given facts: A B

 Rule 1: A R → P

 Rule 2: B P → R

2.3. Examples of Various Cases Within Maritime Laws

This section uses some of the rules from a sample of Maritime Laws and test

queries, provided in Appendix B, to show the properties that have been described in the

previous section within those rules. The textual as well as formal representation of the

rules is provided, whenever they are referred in the following discussion. It is assumed

that the Maritime Laws have already been transformed into a Production System. A

shorthand representation using symbols for long propositional statements of production

rules is used in the entire thesis. The table listing these symbols and their corresponding

propositions is provided in Appendix B.4.

Example 1:

This example uses a test query (from Appendix B.5), to show a case in which

conflicting conclusions are reached from two different applicable Maritime Laws. The

16

textual as well as formal representation of the query is provided below. The symbols used

in the logical representation and their corresponding propositions are listed in Table 2.1.

“Is it allowed to follow a pirate vessel in territorial waters, if it commits a hostile

act?” (Query 5, Philippines Tsunami Humanitarian Assistance Disaster Relief

Mission: OPLAW/ROE Scenario v1.0)

 Formally,

Given Facts: P5 P9 P10 P14

Goal: ?P13, ?P15

Table 2.1: Symbols Corresponding to Propositions of Query 5 in Appendix B

Symbols Propositions

P5 pirate_vessel(V1)

P9 territorial_water(C1)

P10 position(V1, C1)

P13 pursue(V1, C1)

P14 hostile_act(V1)

P15 not_pursue(V1, C1)

17

Some of the rules (from Appendix B) relevant to answer this query are stated below.

“It is not permitted to pursue a pirate ship into territorial waters unless the hostile

act was committed against U.S. forces.” (Rule 1b, SEACOM ROE)

Formally,

P5 P9 P10 P14 → P13 (Rule 1b, SEACOM ROE)

“Under no circumstances is it authorized to pursue a pirate vessel into territorial

waters.” (Rule 1b, Operation Good Samaritan ROE)

Formally,

P5 P9 P10 → P15 (Rule 1b, Operation Good Samaritan ROE)

The above mentioned rules are applicable in the provided situation; however, they

totally contradict one another since one rule prohibits following pirates in territorial

waters (P15), whereas the other allows such an action (P13) in the given condition i.e.

when the vessel commits a hostile act against U.S. forces.

(P5 P9 P10 P14)

P5 P9 P10 → P15 (Rule 1b, Operation Good Samaritan ROE)

P15

(P5 P9 P10 P14)

P5 P9 P10 P14 → P13 (Rule 1b, SEACOM ROE)

P13

18

Example 2:

This example presents an instance of incompleteness i.e. a situation in which a

certain inquired action cannot be answered from the available set of input conditions

(facts). It uses the following query to illustrate the incompleteness.

“Is it permitted to stop and search a vessel that commits a hostile act?” (Query 6,

Philippines Tsunami Humanitarian Assistance Disaster Relief Mission:

OPLAW/ROE Scenario v1.0)

Formally,

Given facts: P1 P14

 Goal: ?P6

Table 2.2: Symbols Corresponding to Propositions of Query 6 in Appendix B

Symbols Propositions

P1 normal_vessel(V1)

P6 search(V1)

P14 hostile_act(V1)

The rules relevant to this query are: Rule 2 from SOFA for Indonesia; part of Rule

1(a) from Operation Good Samaritan ROE, and Rule 2 from SEACOM ROE. The textual

as well as logical representation of these rules is provided below.

19

“Only ships that have been declared pirate ships by the policing entity are allowed

to be searched.” (Rule 2, SOFA for Indonesia)

Formally,

P5 → P6 (Rule 2, SOFA for Indonesia)

“A ship shall be considered a pirate vessel if it commits a hostile act against U.S.

forces.” (Rule 1a rephrased, Operation Good Samaritan ROE)

Formally,

P1 P14 → P5 (Rule 1a, Operation Good Samaritan ROE)

“U.S. forces are authorized to search any vessel that has been declared a pirate

vessel by a U.S. or foreign entity.” (Rule 2, SEACOM ROE)

Formally,

P5 → P6 (Rule 2, SEACOM ROE)

Table 2.3: Symbols Corresponding to Propositions of Rule 1(a) of Operation Good Samaritan ROE,

Rule 2 of SEACOM ROE and Rule 2 of SOFA for Indonesia in Appendix B

Symbols Propositions

P1 normal_vessel(V1)

P5 pirate_vessel(V1)

P6 search(V1)

P14 hostile_act(V1)

20

Suppose that Rule 1(a) of Operation Good Samaritan ROE was missing from the

provided set of rules. Although, Rule 2 from SOFA for Indonesia and Rule 2 from

SEACOM ROE authorizes such an action (P6) for pirate vessels (P5), but they cannot be

applied since there is no information to determine if the vessel is a pirate vessel or not.

However, it would have been possible to figure this out from the given set of facts, if the

missing rule was also present.

Without Rule 1(a) from Operation Good Samaritan ROE,

(P1 P14)

P5 → P6 (Rule 2, SOFA for Indonesia), (Rule 2, SEACOM ROE)

{}

With Rule 1(a) from Operation Good Samaritan ROE,

(P1 P14)

P1 P14 → P5 (Rule 1a, Operation Good Samaritan ROE)

P5 → P6 (Rule 2, SOFA for Indonesia), (Rule 2, SEACOM ROE)

P6

Example 3:

This example uses the same query and set of rules, provided in the previous

example, to present a case where rules from different Maritime Laws say the same thing

in a given situation (i.e. an instance of redundancy).

From the three rules presented in previous example, it can be seen that Rule 2

from SOFA for Indonesia and Rule 2 from SEACOM ROE are identical (in terms of both

21

input condition and conclusion). The two rules conclude that U.S. forces are allowed to

search any vessel, which has been declared pirate.

(P1 P14)

P1 P14 → P5 (Rule 1a, Operation Good Samaritan ROE)

P5 → P6 (Rule 2, SOFA for Indonesia)

P6

(P1 P14)

P1 P14 → P5 (Rule 1a, Operation Good Samaritan ROE)

P5 → P6 (Rule 2, SEACOM ROE)

P6

22

CHAPTER 3: FOUNDATIONS

This chapter provides information on the foundational concepts used throughout

the thesis. It includes discussion on Petri Nets and Formal Model Checking theory. The

material presented in this chapter on Petri Nets has been taken from [23] and on Formal

Model Checking from [24, 25] with minor editorial changes.

3.1. Introduction

Petri Nets, whether colored or ordinary, have been used by several researchers for

the verification of rule-based systems [1-13]. The advantage of using Petri Nets, for the

problem addressed in this thesis, can be summarized as follows:

 Petri Nets have well-established formal mechanisms for modeling and checking

the properties of a concurrent system, which can be used to model the applicable

set of rules and verify them against incompleteness, inconsistency and/or

redundancy.

 The execution nature of Petri Nets makes it possible to perform reasoning from

the applicable set of rules, once they have been transformed into a Petri Net

model.

 The graphical structure of Petri Nets can help visualize the transition firing

sequence of the net, which can serve as an explanation facility for a Maritime

Lawyer.

23

As a result, the use of Petri Net formalism to model the rules within Maritime

Laws provides a way to approach the overall problem, which includes verification of

applicable rules from Maritime Laws and reasoning with them.

The next section presents a discussion on Ordinary Petri Nets, which are used to

model the rules within Maritime Laws in this thesis, and some other fundamental

concepts from Petri Net theory that are used in the approach being proposed.

3.2. Petri Net Theory

3.2.1. Ordinary Petri Net

Definition (Ordinary Petri Net):- An Ordinary Petri Net is a directed graph that consists

of:

– a finite set of places P,

– a finite set of transitions T such that P ∩ T = Ø, and

– a set of directed arcs E from places to transitions or from transitions to places,

such that there exists at most one arc between a place and a transition (i.e. the

multiplicity of arcs is 1)

E (P T)  (T P)

The two sets P and T constitute the entire set of nodes N of the Petri Net.

In the graphical representation of Petri Net, places are denoted by elliptical nodes,

transitions by square nodes and arcs by arrows.

Definition (Pre-set and Post-set):- For an element x of N (= P  T), its pre-set •x is

defined by:

•x = {y N | (y, x) E}

24

and its post-set x• is defined by:

x• = {y N | (x, y) E}

Since the arcs in a Petri Net connect places to transitions or transitions to places,

the pre-set of a transition (•t) can be defined as the set of all places that are input to it and

the post-set of a transition (t•) as the set of its output places. The pre-set and post-set of a

place (•p and p•) can be defined in a similar way.

Example:

Consider the Petri Net shown in Figure 3.1.

Figure 3.1: An Ordinary Petri Net

The set of places P, the set of transitions T and the set of directed arcs E for this Petri Net

are:

P = {P1, P2, P3, P4, P5, P6}

T = {T1, T2, T3}

E = {(P1, T1), (P2, T1), (T1, P4), (P3, T2), (T2, P5), (P4, T3), (P5, T3), (T3, P6)}

P1

P2

P3

P4 T1

P5

P6 T3

T2

25

The pre-sets and post-sets of places and transitions for this Petri Net are:

Pre-set of P1 = {} Pre-set of P2 = {} Pre-set of P3 = {}

Pre-set of P4 = {T1} Pre-set of P5 = {T2} Pre-set of P6 = {T3}

Post-set of P1 = {T1} Post-set of P2 = {T1} Post-set of P3 = {T2}

Post-set of P4 = {T3} Post-set of P5 = {T3} Post-set of P6 = {}

Pre-set of T1 = {P1, P2} Pre-set of T2 = {P3} Pre-set of T3 = {P4, P5}

Post-set of T1 = {P4} Post-set of T2 = {P5} Post-set of T3 = {P6}

3.2.2. States and Behavior of a Petri Net

The states of a Petri Net are defined by its markings.

Definition (Marking):- A marking M of a Petri Net is a mapping that assigns a non-

negative number to each place of the Petri Net.

M: P → ℕ where ℕ = {0, 1, 2, …}

A place p is said to be marked by a marking M if M(p) > 0.

Graphically, a marked place is denoted by the presence of a token (•) or some

tokens in that place.

Example:

Figure 3.2 shows a Petri Net with the indicated marking. It is the same Petri Net

shown in Figure 3.1 but with tokens. Places with tokens (i.e. P1, P2 and P3) correspond

to the ones that are marked by the given marking M. The marking of a Petri Net can also

be expressed as a vector with a specified ordering of the places. The indicated marking M

of Figure 3.2 can be represented as:

M = [1 1 1 0 0 0]
T

26

corresponding to the ordering P1, P2, P3, P4, P5 and P6.

M(P1) = M(P2) = M(P3) = 1 M(P4) = M(P5) = M(P6) = 0

Figure 3.2: Ordinary Petri Net with Marking

A marking defines the state of a Petri Net. Changes in state of the Petri Net are

caused by the occurrence of its transitions. The set of states and the events that cause the

change from one state to another describe the dynamic behavior of a Petri Net.

Definition (Marked Petri Net):- A Marked Petri Net is a Petri Net equipped with a

marking called initial marking M0.

The example Petri Net shown in Figure 3.2 is a marked Petri Net with initial marking

M0 = [1 1 1 0 0 0]
T
.

Definition (Transition Enablement):- A transition t is enabled by a marking M if all the

places in the pre-set of transition (•t) are marked by M.

Definition (Transition Firing):- If a transition t is enabled, it can fire or execute, which

transforms the marking M into a new Marking M'.

P1

P2

P3

P4 T1

P5

P6 T3

T2

27

M
t

 M'

The new marking M' is defined for each place p as:

 M(p) − 1 if p •t − t•

M'(p) = M(p) + 1 if p t• − •t

 M(p) otherwise.

The firing of a transition may lead to another transition becoming enabled.

Consider the same Petri Net shown in Figure 3.2, based on the given marking, transitions

T1 and T2 are enabled concurrently. The enabled transitions are shown highlighted in the

figure. With two enabled transitions at the same time, there are two possibilities of

transition firing; either one of them fires first followed by the execution of the other, or

both of them fire simultaneously. Figures 3.3, 3.4 and 3.5 show the three firing

sequences. In all situations, the resulting marking of the Petri Net is [0 0 0 1 1 0]
T
, which

makes another transition T3 enabled.

(a) After Firing T1

P1

P2

P3

P4 T1

P5

P6 T3

T2

28

(b) After Firing T2

Figure 3.3: Petri Net with Firing Sequence T1, T2

(a) After Firing T2

(b) After Firing T1

Figure 3.4: Petri Net with Firing Sequence T2, T1

P1

P2

P3

P4 T1

P5

P6 T3

T2

P1

P2

P3

P4 T1

P5

P6 T3

T2

P1

P2

P3

P4 T1

P5

P6 T3

T2

29

Figure 3.5: Petri Net after Firing T1 and T2 Concurrently

Figure 3.6: Petri Net after Firing T3

Definition (Occurrence Sequence):- A finite sequence of transitions t1, … , tk enabled at

marking M is called finite occurrence sequence, if they transform the marking M into Mk,

with M1, M2, Mk-1 as intermediate markings.

M
1t

 M1
2t

 …
tk

 Mk

The expression can also be written as M Mk, where σ = t1, … , tk.

P1

P2

P3

P4 T1

P5

P6 T3

T2

P1

P2

P3

P4 T1

P5

P6 T3

T2

30

It should be noted that transitions enabled concurrently at a marking, result in

multiple occurrence sequences. The Petri Net of Figures 3.2 to 3.6 shows such a case,

which has two occurrence sequences T1, T2, T3 and T2, T1, T3 resulting in the same end

marking.

Since, the occurrence sequence σ transforms one marking M into another marking

M', it can also be said that M' is reachable from M for such a sequence σ. The behavior of

a Petri Net is characterized by these changes of markings. This implies that the overall

behavior of a Petri Net, for a given marking M, is specified by the set of all occurrence

sequences enabled at M.

Definition (Occurrence Graph):- An Occurrence Graph (OG), also known as state space,

for a Petri Net with an initial marking (also called a Petri Net System) is a directed-graph

that consists of:

– a set of nodes corresponding to the set of reachable markings from M0,

– a set of arcs between nodes that correspond to transitions from one marking to

another.

In other words, it is a graphical representation of all the set of occurrence

sequences from M0 and all the reachable markings reachable from M0, depicting the

overall behavior of a Petri Net System. Figure 3.7 shows the Occurrence Graph (OG)

corresponding to the Petri Net of Figure 3.2.

The dynamic nature of Petri Nets introduces a number of behavioral properties

that are closely related to the structure of the net [2]. The following discussion presents

one such property known as Conflict.

31

 T1 T2

 T2 T1

 T3

Figure 3.7: Occurrence Graph (OG) for Petri Net in Figure 3.2

Definition (Conflict):- The transitions of a Petri Net are said to be in a conflict at a

marking M if and only if M enables these transitions but not concurrently i.e. firing of

one transition will disable the others.

The cause of such a conflict is the presence of place(s) in the Petri Net, which are

input to multiple transitions, resulting in a case of contention between their output

transitions once they get marked.

P1 P2 P3 P4 P5 P6

 1 1 1 0 0 0

P1 P2 P3 P4 P5 P6

 0 0 1 1 0 0
P1 P2 P3 P4 P5 P6

 1 1 0 0 1 0

P1 P2 P3 P4 P5 P6

 0 0 0 0 0 1

P1 P2 P3 P4 P5 P6

 0 0 0 1 1 0

32

Example:

Figure 3.8 shows an example of a conflict with the help of a marked Petri Net.

The placement of token in P1 corresponding to the initial marking enables both the

transitions in its post-set (i.e. T1 and T2); however, the execution of any of the two

enabled transitions (e.g. T1) will cause the other (T2) to get disabled.

M0 = [1 0 0]
T

Figure 3.8: An Example of a Conflict

Definition (Conflict-free Net):- A Petri Net is said to be conflict-free, if p P, |p•|

1.

Example:

Figure 3.9 shows an example of a conflict-free Petri Net in which each place has

at most one transition in its post-set.

Figure 3.9: An Example of a Conflict-free Petri Net

P1

P3

P2 T1

T2

P1 P4 P2 T1 T2

P3

33

3.3. Model Checking

 Model Checking is an approach for formal verification of finite state concurrent

systems. It starts by specifying a property of a system as a formal logical expression and

then interprets this logical expression over the state space of the system to establish if the

given property holds in the system‟s behavior or not. In other words, it establishes using

an exhaustive search of the state space if the system‟s behavior is a model of the input

logical expression or not. The process always ends with a yes or no answer indicating the

presence or absence of the specified property within the system. The technique was

initially proposed by Clarke and Emerson [26, 27] and by Sifakis and Queille [28].

The model checking method requires the following steps:

a) Modeling: The first step is to represent the system by a model accepted by the

model checker.

b) Specification: The second step requires specification of properties that needs to be

checked in the system. The properties are normally expressed by temporal logic,

which can assert how the behavior of a system changes over time.

c) Verification: The verification step is automated. It exhaustively searches the state

space of modeled system to check if the specified property exists in the system. It

provides an error trace in case of a property violation that can be used to identify

the point of error.

3.3.1. ASK-CTL

 ASK-CTL is an extension of Computation Tree Logic (CTL), a class of temporal

logics, which is used to model check Petri Nets. In other words, it is used for

34

specification of properties that need to be checked in systems represented by Petri Net

models. The specified properties are checked against the state space (or Occurrence

Graph) of a Petri Net. An implementation of ASK-CTL model checking algorithm is

available in CPN Tools [29], which is a tool for creating, simulating and analyzing Petri

Nets.

 Since the Occurrence Graph of a Petri Net model carries information on nodes as

well as edges, the CTL extension in ASK-CTL allows specification of these properties

with both state and transition information. A quick reference on CTL is provided in

Appendix A.

 An ASK-CTL expression, as defined in [30], is a state or a transition formula. The

definition of both the categories is as follows:

Definition (ASK-CTL State Formula):- An ASK-CTL state formula A is defined by the

following Backus Naur Form:

A ::= tt | ¬ A | A A | A A | EU(A, A) | AU(A, A) | α |

where tt is interpreted as true, α is a function mapping from markings to Boolean values,

B is a transition formula (defined below), U (until) is the standard temporal operator, A

and E (for-all and exist respectively) are the path quantifiers. The temporal operator U is

used in combination with one of the path quantifiers A and E, e.g. the formula EU(A1, A2)

expresses the existence of a path from a given state (marking) where A1 holds to a state

where A2 holds. Similarly, the formula AU(A1, A2) requires the property to hold along all

paths from a given initial state [30].

35

Definition (ASK-CTL Transition Formula):- An ASK-CTL transition formula B is

defined by the following Backus Naur Form:

B ::= tt | ¬ B | B B | B B | EU(B, B) | AU(B, B) | β | <A>

where β is a function mapping from transitions to Boolean values and A is a state

formula.

The functions α and β, mentioned in the formulae, are required to be implemented

in Standard ML programming language [31, 32]. They return a Boolean value after

checking some property of the state and transition, respectively. In addition to the above

mentioned operators, ASK-CTL library offers a number of other derived operators to

construct complex formulae for checking properties of a system. A list of some of these

operators, along with their description, is provided in Table 3.1.

Table 3.1: Derived Operators

 Operator Description

Pos (A) ≡ EU(tt, A) It is possible to reach a state where A holds.

Inv (A) ≡ ¬Pos (¬A) A holds in every reachable state; A is invariant.

Ev (A) ≡ AU(tt, A) For all paths, A holds within a finite number of steps; A is

eventually true.

Along (A) ≡ ¬Ev (¬A) There exist a path which is either infinite or ends in a dead

state, along which A holds in every state.

 A ≡ <B Λ <A>> There exist an immediate successor state M satisfying A and

B holds on the transition between the current state and M.

36

With this brief introduction to ASK-CTL, the model checking problem using

ASK-CTL can be described as:

Given an Occurrence Graph of a Petri Net and an ASK-CTL property (formula) p,

determine if p holds in the initial state of OG, i.e. if OG╞ p.

As per this definition, a Petri Net model is said to satisfy a property if the ASK-CTL

formula that describes the property can be shown to hold in the initial state of the OG

corresponding to the Petri Net being examined. The complexity of ASK-CTL model

checking algorithm, implemented in CPN Tools, is linear in the product of the size of

formula and the size of state space – O(N(|V| + |E|)), where N is the length of the formula,

|V| is the number of nodes (or states) and |E| is the number of edges in the Occurrence

Graph.

3.3.2. Examples of ASK-CTL

This section presents some examples of ASK-CTL expressions interpreted over

the Occurrence Graph (OG) of Figure 3.7. The given Occurrence Graph corresponds to

the Petri Net model of Figure 3.2.

EX(A) ≡ <tt> A There exists an immediate successor state in which A holds.

Read „Exist Next‟.

AX(A) ≡ ¬EX(¬A) A holds in all immediate successor states, if any. Read „For

All Next‟.

37

Example 1:

Consider a case that requires verification of the property defined by the following

ASK-CTL formula within the given Petri Net model (of Figure 3.2).

Ev (P4 P5)

Description:- In all possible futures, P4 and P5 hold together.

It has already been mentioned that the verification process in model checking

methodology performs a search to establish if the specified property exists in the state

space. A search of this type in the OG of a Petri Net System is demonstrated in Figure

3.10. It shows that the given property exists in the example Petri Net, since there is a

reachable state along all paths from the initial state of OG that has P4 and P5 true at the

same time. The resulting state is shown highlighted in the figure along with all the paths

leading to it.

38

 T1 T2

 T2 T1

 T3

Figure 3.10: Occurrence Graph (OG) Satisfying Ev (P4 P5)

Example 2:

Consider another example that demonstrates the presence of a property defined by

the following ASK-CTL formula in the given Petri Net System.

EX(P4 P5)

Description:- It is possible to have P4 or P5 to hold in some of the next states.

The result of state space exploration process for the given ASK-CTL expression is

illustrated in Figure 3.11. It shows the existence of an immediate node from the initial

P1 P2 P3 P4 P5 P6

 1 1 1 0 0 0

P1 P2 P3 P4 P5 P6

 0 0 1 1 0 0

P1 P2 P3 P4 P5 P6

 1 1 0 0 1 0

P1 P2 P3 P4 P5 P6

 0 0 0 0 0 1

P1 P2 P3 P4 P5 P6

 0 0 0 1 1 0

39

state of the Occurrence Graph which satisfies the given ASK-CTL formula indicating the

presence of the specified property in the Petri Net model.

 T1 T2

 T2 T1

 T3

Figure 3.11: Occurrence Graph (OG) Satisfying EX(P4 P5)

P1 P2 P3 P4 P5 P6

 1 1 1 0 0 0

P1 P2 P3 P4 P5 P6

 0 0 1 1 0 0

P1 P2 P3 P4 P5 P6

 1 1 0 0 1 0

P1 P2 P3 P4 P5 P6

 0 0 0 0 0 1

P1 P2 P3 P4 P5 P6

 0 0 0 1 1 0

40

CHAPTER 4: PETRI NET REPRESENTATION OF RULES

This chapter explains the process of transforming production rules to a Petri Net

model that will be used for verification of certain properties within it.

4.1. Introduction

A production rule, also known as a Condition-Action rule (or a Situation-Action

rule) [20], is of the form:

α → β (4.1)

where the left-hand side of the expression (or antecedent) represents the condition α and

the right-hand side (or consequent) represents the corresponding action β. It states that

whenever the condition α is satisfied, then the action β can be taken as a consequence.

 It has already been mentioned in Chapter 2 that the verification technique,

proposed in this thesis, makes use of the Petri Net representation defined for

Propositional Logic Systems in [1, 2]. The discussion that follows in the next two

sections is taken from [1, 2]. It describes a methodology of transforming formally

represented rules (in this case, production rules) into an equivalent Petri Net

representation.

41

4.2. Rule Normalization

 The technique works with rules, expressed in the form (4.1), whose antecedents

are organized in Disjunctive Normal Form (DNF) and the conclusions in Conjunctive

Normal Form (CNF). This assumption does not impose any restriction, since any schema

constructed with the help of logical connectives and operators can be converted to an

equivalent Disjunctive Normal Form (DNF) or an equivalent Conjunctive Normal Form

(CNF). An example of such a rule is:

α1 ∨ α2 ∨ … ∨ αn → β1 β2 … βm (4.2)

where α and β are conjunctions and disjunctions of atomic propositions respectively.

The rule specified above (in 4.2) can be split into the following set of rules:

α1 ∨ α2 ∨ … ∨ αn → β1

α1 ∨ α2 ∨ … ∨ αn → β2

 . . .

α1 ∨ α2 ∨ … ∨ αn → βm

It can also be split into the following set of rules:

α1 → β1 β2 … βm

α2 → β1 β2 … βm

 . . .

αn → β1 β2 … βm

It follows that the rule expressed in form (4.2) can be split into the following (n * m)

rules:

α1 → β1

42

α1 → β2

 . . .

α1 → βm

α2 → β1

α2 → β2

 . . .

αn → βm

This leads to a set of rules, expressed in a form, in which the antecedents are conjunction

of one or more propositions and the consequents are disjunction of one or more action

propositions.

4.3. Transformation of Normalized Rules into Petri Nets

The normalized set of rules is then transformed into an equivalent Petri Net

representation. For each rule, a Petri Net is generated where the conditions of a rule are

represented by input places, satisfying the definition of conjunctive operator, and the

conclusions by output places. The labels on transitions correspond to the rules they

represent. An example of Petri Net representation for Rule 1(b) of Operation Good

Samaritan ROE (taken from Appendix B) is shown in Figure 4.1. The referred rule is

described as follows:

“Under no circumstances is it authorized to pursue a pirate vessel into territorial

waters.” (Rule 1b, Operation Good Samaritan ROE)

Formally,

P5 P9 P10 → P15 (Rule 1b, Operation Good Samaritan ROE)

43

Table 4.1: Symbols Corresponding to Propositions of Rule 1(b) of Operation Good Samaritan ROE

in Appendix B

Symbols Propositions

P5 pirate_vessel(V1)

P9 territorial_water(C1)

P10 position(V1, C1)

P15 not_pursue(V1, C1)

Figure 4.1: Petri Net Representation of Rule 1(b) of Operation Good Samaritan ROE

The consequent of a rule may have more than one proposition connected by

disjunctive connective. For such cases, each output βi with k individual propositions

(connected by disjunction), is required to be represented by additional (2
k
-1) output

transitions leading to k places (representing those individual propositions), that

corresponds to all possible combinations of propositions according to the definition of

P5

P9

P10

P15 OGS_1b

44

disjunctive connective. Figure 4.2 shows a representation for such a case. It should be

noted that the Petri Net model shown in Figure 4.2 corresponds to a hypothetical rule,

which is not a part of sample scenario (of Appendix B) and is presented to explain the

concept.

 . . .

 . .

 . .

. .

Figure 4.2: Petri Net Representation for Disjunction in Conclusion

The negation of a proposition (i.e., ¬P or not_P) is represented by a place different

from the place representing the proposition (i.e., P). Figure 4.3 shows an example of such

a case using two rules from the sample scenario, which are stated as follows:

“Only ships that have been declared pirate ships by the policing entity are allowed

to be searched.” (Rule 2, SOFA for Indonesia)

Formally,

P5 → P6 (Rule 2, SOFA for Indonesia)

“Labeling a ship as non-compliant does not authorize U.S. forces to search

vessel.” (Rule 3, SOFA for Indonesia)

Condition_1

Condition_n

βi Rule_1

βi1

βik

Temp_1

Temp_2 Condition_2

Temp_

2
k
-1

45

Formally,

P8 → P7 (Rule 3, SOFA for Indonesia)

Table 4.2: Symbols Corresponding to Propositions of Rule 2 and Rule 3 of SOFA for Indonesia in

Appendix B

Symbols Propositions

P5 pirate_vessel(V1)

P6 search(V1)

P7 not_search(V1)

P8 non_compliant_vessel(V1)

 P7 ¬P6

Figure 4.3: Petri Net Representation of Two Mutually Exclusive Concepts

A token in a place represents the truth assignment of a proposition. If all the input

places of a transition, representing the input conditions of a rule, have tokens then the

P5 P6 IS_2

P7 IS_3 P8

46

transition (rule) is enabled and can fire (execute), making the output place (consequent)

true.

Finally, a single Petri Net representation for the entire rule set is obtained by

merging (fusing) all the common places of Petri Nets representing individual rules. An

example of such a process using Rule 2 of SOFA for Indonesia and Rule 2 of SEACOM

ROE is shown in Figure 4.4. The textual as well as logical representations for the two

rules are provided below.

“Only ships that have been declared pirate ships by the policing entity are allowed

to be searched.” (Rule 2, SOFA for Indonesia)

Formally,

P5 → P6 (Rule 2, SOFA for Indonesia)

“U.S. forces are authorized to search any vessel that has been declared a pirate

vessel by a U.S. or foreign entity.” (Rule 2, SEACOM ROE)

Formally,

P5 → P6 (Rule 2, SEACOM ROE)

Table 4.3: Symbols Corresponding to Propositions of Rule 2 of SOFA for Indonesia and Rule 2 of

SEACOM ROE in Appendix B

Symbols Propositions

P5 pirate_vessel(V1)

P6 search(V1)

47

Figure 4.4: Petri Net before and after merging common places

The Petri Net representation for the entire set of sample rules, presented in

Appendix B.3, was generated based on the defined mapping. The resulting Petri Net

model is shown in Figure 4.5, which will be used for verification of properties described

in Chapter 2.

4.4. Pattern of Inconsistent and Redundant Rules in Occurrence

Graphs

A discussion on Occurrence Graph (OG) has already been presented in Chapter 3.

This section presents the patterns of inconsistent and redundant rules within the

Occurrence Graphs of Petri Nets. Such patterns can help in formulating the two

properties using ASK-CTL, which can be checked against the state space of a Petri Net,

representing Maritime Laws. The patterns for incomplete, useless and circular rules

within a Petri Net model have already been presented in [1, 2].

P5 P6 IS_2

P5 P6
SEACOM_

2

P5 P6

IS_2

SEACOM_

2

48

Figure 4.5: Petri Net Representation of Maritime Laws

IS: SOFA for Indonesia

SEACOM: South East Asia Command ROE

OGS: Operation Good Samaritan ROE

JE: Joint Exercise ROE

49

4.4.1. Inconsistent Rules

As per the definition of inconsistency, such a case occurs when two conflicting

concepts become true in a given situation. In a Petri Net, these cases appear in the form

of two conflicting places getting marked by a token in the set of occurrence sequences

from M0 (where M0 represents the initial marking corresponding to a given situation). As

a result, the two conflicting places will get marked in the corresponding OG as well. An

example of such a case appearing in a Petri Net and the corresponding OG is shown in

Figures 4.6, 4.7 and 4.8. The Petri Net model shown in Figures 4.6 and 4.7 corresponds

to Rules 1(b) of Operation Good Samaritan ROE and SEACOM ROE, which are stated

below.

“Under no circumstances is it authorized to pursue a pirate vessel into territorial

waters.” (Rule 1b, Operation Good Samaritan ROE)

Formally,

P5 P9 P10 → P15 (Rule 1b, Operation Good Samaritan ROE)

“It is not permitted to pursue a pirate ship into territorial waters unless the hostile

act was committed against U.S. forces.” (Rule 1b, SEACOM ROE)

Formally,

P5 P9 P10 P14 → P13 (Rule 1b, SEACOM ROE)

50

Table 4.4: Symbols Corresponding to Propositions of Rules 1(b) of Operation Good Samaritan ROE

and SEACOM ROE in Appendix B

Symbols Propositions

P5 pirate_vessel(V1)

P9 territorial_water(C1)

P10 position(V1, C1)

P13 pursue(V1, C1)

P14 hostile_act(V1)

P15 not_pursue(V1, C1)

Assume that the input conditions of both these rules are true, which makes both of

them applicable. The two occurrence sequences, corresponding to the enabled transitions,

result in conflicting places (P13 and P15) getting marked, implying a contradiction in

conclusion. Figures 4.7(a) and (b) show such a case by the presence of tokens in P13 and

P15 for the two occurrence sequences. This conflicting behavior is represented by the

corresponding OG as well (refer to Figure 4.8), which shows contradiction in the form of

P13 and P15 getting marked in two different reachable states. The states having P13 and

P15 marked are shown highlighted in the figure.

51

Figure 4.6: Petri Net Representation of Two Inconsistent Rules

Figure 4.7(a): Petri Net after Firing OGS_1b

Figure 4.7(b): Petri Net after Firing SEACOM_1b

P5

P9

P10

P15 OGS_1b

P14 P13 SEACOM_

1b

P5

P9

P10

P15 OGS_1b

P14 P13 SEACOM_

1b

P5

P9

P10

P15 OGS_1b

P14 P13 SEACOM_

1b

52

 OGS_1b SEACOM_1b

Figure 4.8: Occurrence Graph Corresponding to Petri Net of Figure 4.6

4.4.2. Redundant Rules

In a Petri Net, redundancy appears in the form of several paths from place(s) with

multiple outputs to place(s) with multiple inputs [1, 2]. In an Occurrence Graph of a Petri

Net model, such cases appear in the form of multiple distinct paths from one state

(marking) to another state [1, 2]. An example of a Petri Net and the OG representation for

a redundant case is given in Figures 4.9, 4.10 and 4.11. The Petri Net model shown in

Figures 4.9 and 4.10 corresponds to Rules 1(b) of Joint Exercise ROE and SEACOM

ROE, which are stated below.

“It is prohibited to follow any suspected pirate ship into territorial waters unless

the pirate ship has committed a hostile act or demonstrated hostile intent against

U.S. forces.” (Rule 1b, Joint Exercise ROE)

Formally,

P5 P9 P10 P14 → P13 (Rule 1b, Joint Exercise ROE)

P5 P9 P10 P13 P14 P15

 1 1 1 0 1 0

P5 P9 P10 P13 P14 P15

 0 0 0 0 1 1

P5 P9 P10 P13 P14 P15

 0 0 0 1 0 0

53

“It is not permitted to pursue a pirate ship into territorial waters unless the hostile

act was committed against U.S. forces.” (Rule 1b, SEACOM ROE)

Formally,

P5 P9 P10 P14 → P13 (Rule 1b, SEACOM ROE)

Table 4.5: Symbols Corresponding to Propositions of Rules 1(b) of Joint Exercise ROE and

SEACOM ROE in Appendix B

Symbols Propositions

P5 pirate_vessel(V1)

P9 territorial_water(C1)

P10 position(V1, C1)

P13 pursue(V1, C1)

P14 hostile_act(V1)

The two rules mentioned above, are identical in terms of both input conditions

and conclusion. Assume a situation in which these input conditions are true, in which

case both the rules will lead to same conclusion on execution. The transition firing

process for the two rules is shown in Figures 4.10(a) and (b). An Occurrence Graph

representation corresponding to the Petri Net is provided in Figure 4.11, which shows

redundancy in the form of two distinct paths from one state to another.

54

Figure 4.9: Petri Net Representation of Two Redundant Rules

Figure 4.10(a): Petri Net after Firing JE_1b

Figure 4.10(b): Petri Net after Firing SEACOM_1b

P5

P9

P10

JE_1b

P14

P13

SEACOM_

1b

P5

P9

P10

JE_1b

P14

P13

SEACOM_

1b

P5

P9

P10

JE_1b

P14

P13

SEACOM_

1b

55

 JE_1b SEACOM_1b

Figure 4.11: Occurrence Graph Corresponding to Petri Net of Figure 4.9

4.5. Conclusion

A method for transforming production rules into a Petri Net representation has

been presented in this chapter. The Petri Net representation for the set of rules will be

used for different analyses to verify them against the properties outlined in Chapter 2. A

discussion on the composition of inconsistent and redundant cases within an Occurrence

Graph of a Petri Net has also been presented. Such patterns will serve in formulating the

behavioral analysis technique for the two cases that will be presented in the next chapter.

P5 P9 P10 P13 P14

1 1 1 0 1

P5 P9 P10 P13 P14

 0 0 0 1 0

56

CHAPTER 5: SOLUTION TO THE PROBLEM

This chapter presents the solution to the verification problem that was defined in

Chapter 2.

5.1. Introduction

Once the set of rules have been converted into a Petri Net representation, various

analyses can be used to explore the properties of the Petri Net. This chapter presents the

ones for the verification of properties corresponding to the set of cases discussed in

Chapter 2. The set of properties can be divided into two classes: structural and

behavioral. The Petri Net verification process using the structural properties has already

been presented in [1, 2]. This chapter presents a new technique for behavioral analysis of

Petri Nets to capture properties that correspond to redundancy and inconsistency in a

rule-base.

5.2. Structural Analysis

The verification of rules using structural analysis, also known as static analysis, is

used to reveal portions of a Petri Net structure that correspond to some of the rule

patterns, mentioned in Chapter 2. The rule types identified by the structural analysis

include circular, useless and incomplete rules.

57

The concept that makes structural analysis different from behavioral analysis is

that it is independent of a marking. It explores the structure of the graph that represents a

Petri Net model instead of an Occurrence Graph that corresponds to the dynamics or

execution of the Petri Net, to identify certain characteristics. The structural exploration of

a Petri Net, presented in [1, 2], looks at the invariants in the Petri Net to identify possible

loops or dead ends corresponding to circularity in rules. In addition, it checks for the

directed paths from input places (i.e. places corresponding to input situation) to output

places (places corresponding to actions in question) to verify the cases of useless and

incomplete rules. This evaluation of Petri Net structure is done by making use of

incidence matrix of the Petri Net. The incidence matrix is a mathematical representation

of a Petri Net, defining connectivity among its nodes, thus making it possible to verify

the above-mentioned properties within its structure.

5.3. Behavioral Analysis

Behavioral analysis, also known as dynamic analysis, makes use of an Occurrence

Graph to capture properties that correspond to redundant and inconsistent cases. It uses

the state space of a Petri Net system to look for patterns among states or inside a state

description that correspond to the two cases.

The new approach proposed in this thesis makes use of formal model checking

with the state space of a Petri Net system representing a rule set. An introduction of

formal model checking and ASK-CTL has already been presented in Chapter 3. This

section presents the use of ASK-CTL for verification of inconsistent and redundant rules.

The technique uses ASK-CTL formulae, representing certain behavioral properties, to

58

look for patterns in a state space that correspond to redundancy and inconsistency. The

patterns corresponding to the two cases have already been discussed and presented in

Chapter 4.

The approach presented in this thesis requires that circular instances of rules

should be identified and isolated prior to applying the state space analysis. This can be

easily achieved by the application of structural analysis as presented in [1, 2]. This is due

to the fact that the presence of circular instances of rules in a Petri Net will result in

cycles within the corresponding Occurrence Graph, which may lead to an infinite

execution of the model checking algorithm, when applied to the Occurrence Graph of

such a Petri Net.

5.3.1. ASK-CTL Formulae for Verification of Inconsistency and

Redundancy

The construction of an Occurrence Graph, as mentioned in its definition, depends

on the initial marking M0 of a Petri Net. The working memory of the Production System

representing a set of rules can be used to mark the conditions (i.e., places) that correspond

to an initial marking of the Petri Net. An Occurrence Graph can then be constructed with

the Petri Net representation of the rule set, marked by the tokens in the places that

correspond to the conditions in the working memory. It is assumed for this approach that

the sets of mutually exclusive concepts µ are also provided along with the set of rules.

The sets of mutually exclusive concepts will be used in identification of inconsistent

cases. Some examples of mutually exclusive sets from the sample rules (of Appendix B)

are given below.

59

µ1 = {P6, P7}

µ2 = {P13, P15}

Table 5.1: Symbols Corresponding to Propositions of Mutually Exclusive Sets

Symbols Propositions

P6 search(V1)

P7 not_search(V1)

P13 pursue(V1, C1)

P15 not_pursue(V1, C1)

The rest of the section presents the ASK-CTL formulae for verification of

redundancy and inconsistency and provides an explanation as to what they mean. It also

shows the soundness and completeness of both the formulae i.e. they can be used to

capture only and every instance of the two cases. An implementation of the two formulae

(provided as a pseudo code) is presented in Appendix C.

(a) Verification of Inconsistency

Given an Occurrence Graph of a Petri Net with an initial marking M0, the

following ASK-CTL formula can be used to verify if the rule set, represented by the Petri

Net, has inconsistent cases in it.

Pos (α1) Pos (α2) (5.1)

60

where

α1 is a state function that checks if u is true,

α2 is a state function that checks if v is true,

such that {u, v} µ

Description:- It is possible that in the entire state space, two mutually exclusive concepts

belonging to a set µi are true.

Since the list of mutually exclusive concepts is maintained in this approach, the

presented ASK-CTL formula is checked for every mutually exclusive set to identify

every possible case of inconsistency within the rule set.

Soundness:- It has been mentioned in Chapter 2 that a rule set free of inconsistent rules

will never result in conflicting knowledge. In other words, it can be said that the

Occurrence Graph generated for such a conflict-free rule set will never have two

mutually exclusive places from a set µi as marked. This implies that the ASK-CTL

formula, given by expression 5.1, does not capture any case other than inconsistency,

since it checks for the truth values of the mutually exclusive concepts (propositions) in

the state space.

Completeness:- The marked places in the states of an Occurrence Graph correspond to

the propositions that are true in a certain given situation. Since the ASK-CTL formula,

presented in expression 5.1, is checked for every mutually exclusive set in an Occurrence

Graph, it guarantees that every possible conflicting case that can occur in a certain given

situation will be identified. It is imperative that the list of mutually exclusive concepts be

exhaustive and complete.

61

(b) Verification of Redundancy

Given an Occurrence Graph of a Petri Net with an initial marking M0, the

following ASK-CTL formula can be used to identify if the rule set, represented by Petri

Net system, has redundancy.

 Pos (α1

 Pos (α2)

 (α3)) (5.2)

where

α1 is a state function that checks if state i has multiple output paths,

α2 is a state function that checks if state j has multiple reachable paths from state i,

and

α3 is a function that checks if there are at least two occurrence sequences between

i and j having uncommon transitions.

Description:- It is possible to reach a state that has multiple output paths from which

there exists another reachable state having multiple input paths such that at least two of

these paths between them are distinct (i.e. the occurrence sequences correspond to

different sets of transitions).

Soundness:- The pattern for redundancy has already been presented in Chapter 4, which

describes it as a set of multiple distinct paths from one state to another state within an

OG. In fact, such a composition within an OG only corresponds to a redundant case. This

implies that the ASK-CTL formula, given by expression 5.2, is guaranteed to capture

62

only redundant cases, since it looks for such patterns of multiple distinct paths from one

state to another state.

Completeness:- The ASK-CTL formula, given by expression 5.2, only identifies a single

redundant case when applied to an Occurrence Graph. However, it is still possible to

capture the entire set of redundant cases. Since an ASK-CTL formula is required to be

implemented in SML programming language, the programming constructs of looping

structures can be used to capture the entire set of redundant cases. The idea is to place the

formula within a looping structure (e.g. while, do while) that captures a new redundant

case, not captured before, in an iterative fashion. The pseudo code of an SML program

implementing this function is presented in Appendix C. Such a modification will,

however, increase the time complexity of the process by a factor of „r‟ where r is the total

number of redundant cases in the rule set.

5.3.2. Application of ASK-CTL Formulae on the Example Petri Net

This section presents an example to illustrate the new proposed technique. It uses

the rules from Maritime Laws (provided in Appendix B). The input situation for the

example is described by the following query, which has been taken from sample scenario.

“What are the permissible actions that can be taken against a hostile act of pirate

vessel located in territorial waters?” (Rephrased Query 5, Philippines Tsunami

Humanitarian Assistance Disaster Relief Mission: OPLAW/ROE Scenario v1.0)

The given query can be formally represented as,

P5 P9 P10 P14

63

Table 5.2: Symbols Corresponding to Propositions of Sample Query in Appendix B

Symbols Propositions

P5 pirate_vessel(V1)

P9 territorial_water(C1)

P10 position(V1, C1)

P14 hostile_act(V1)

The Petri Net representation for the sample Maritime Laws has already been

presented in Chapter 4 (see Figure 4.5). There was a circular instance of a rule present in

the given Petri Net representation, which was identified by the static analysis approach.

The given Petri Net representation was modified by removing the identified circular

instance comprising of second rule from Rule 1(a) of Operation Good Samaritan ROE.

The modified version of Petri Net model is shown in Figure 5.1. Tokens were added to

the places of Petri Net that correspond to the given situation (i.e. P5, P9, P10 and P14).

An Occurrence Graph of the Petri Net corresponding to the given marking was generated.

The resulting Occurrence Graph is shown in Figure 5.2.

The execution of the two SML programs (presented in Appendix C), which are

implementations of the defined ASK-CTL formulae, for the given OG revealed the

presence of inconsistency and redundancy as well as their cause in the set of rules for the

given input.

64

Figure 5.1: Modified Petri Net of Maritime Laws (having No Circular Rules)

IS: SOFA for Indonesia

SEACOM: South East Asia Command ROE

OGS: Operation Good Samaritan ROE

JE: Joint Exercise ROE

65

(a) Inconsistent Rules

The sets of mutually exclusive concepts, which were manually identified for the

test case, were provided as an input to Program 1 (of Appendix C). The identified sets of

mutually exclusive concepts have already been presented in Section 5.3.1 (see Table 5.1).

The execution of the program uncovered that Rule 1(b) of SEACOM ROE and Rule 1(b)

of Operation Good Samaritan ROE were applicable in the given situation, both leading to

two conflicting conclusions (P13 and P15). The textual as well as formal representation

for the two identified rules is provided below.

“It is not permitted to pursue a pirate ship into territorial waters unless the hostile

act was committed against U.S. forces.” (Rule 1b, SEACOM ROE)

Formally,

P5 P9 P10 P14 → P13 (Rule 1b, SEACOM ROE)

“Under no circumstances is it authorized to pursue a pirate vessel into territorial

waters.” (Rule 1b, Operation Good Samaritan ROE)

Formally,

P5 P9 P10 → P15 (Rule 1b, Operation Good Samaritan ROE)

66

Table 5.3: Symbols Corresponding to Propositions of Rules 1(b) of Operation Good Samaritan ROE

and SEACOM ROE in Appendix B

Symbols Propositions

P5 pirate_vessel(V1)

P9 territorial_water(C1)

P10 position(V1, C1)

P13 pursue(V1, C1)

P14 hostile_act(V1)

P15 not_pursue(V1, C1)

(b) Redundant Rules

Similarly, the SML program for redundant case (Program 2 of Appendix C) was

executed to identify the presence of redundancy in rules. There were two sets of

redundant rules identified by the program. The first set included Rule 2 from SOFA for

Indonesia and Rule 2 from SEACOM ROE, whereas the second set consisted of Rule

1(b) from SEACOM ROE and Rule 1(b) from Joint Exercise ROE. The identified sets of

rules along with their formal representation are given below.

First Set of Rules:

“Only ships that have been declared pirate ships by the policing entity are allowed

to be searched.” (Rule 2, SOFA for Indonesia)

67

Formally,

P5 → P6 (Rule 2, SOFA for Indonesia)

“U.S. forces are authorized to search any vessel that has been declared a pirate

vessel by a U.S. or foreign entity.” (Rule 2, SEACOM ROE)

Formally,

P5 → P6 (Rule 2, SEACOM ROE)

Table 5.4: Symbols Corresponding to Propositions of Rule 2 of SOFA for Indonesia and

Rule 2 of SEACOM ROE in Appendix B

Symbols Propositions

P5 pirate_vessel(V1)

P6 search(V1)

Second Set of Rules:

“It is prohibited to follow any suspected pirate ship into territorial waters unless

the pirate ship has committed a hostile act or demonstrated hostile intent against

U.S. forces.” (Rule 1b, Joint Exercise ROE)

Formally,

P5 P9 P10 P14 → P13 (Rule 1b, Joint Exercise ROE)

“It is not permitted to pursue a pirate ship into territorial waters unless the hostile

act was committed against U.S. forces.” (Rule 1b, SEACOM ROE)

68

Formally,

P5 P9 P10 P14 → P13 (Rule 1b, SEACOM ROE)

Table 5.5: Symbols Corresponding to Propositions of Rules 1(b) of Joint Exercise ROE and

SEACOM ROE in Appendix B

Symbols Propositions

P5 pirate_vessel(V1)

P9 territorial_water(C1)

P10 position(V1, C1)

P13 pursue(V1, C1)

P14 hostile_act(V1)

The Occurrence Graph shown in Figure 5.2 highlights the pattern corresponding

to the second set of redundant rules identified by the new proposed technique.

69

Figure 5.2: Occurrence Graph Corresponding to Petri Net of Figure 5.1

70

5.4. Conclusion

A technique for formal verification of set of rules has been presented in this

chapter. It employs an existing approach for structural analysis of Petri Nets representing

a rule set and a new formal approach for behavioral analysis. The result of the technique

is a report of identified set of rules that are inconsistent, redundant, circular, incomplete

and/or useless.

71

CHAPTER 6: REASONING WITH MARITIME LAWS

This chapter presents another analysis technique that can assist in the process of

decision-making from the set of applicable Maritime Laws.

6.1. Introduction

Once the formally represented set of rules, selected from multiple Maritime Laws,

is verified against the specified properties, it can be used to answer certain queries.

Several reasoning engines are available that can provide such a functionality e.g. CLIPS

[16], Jess [33], Algernon [17] etc. However, it is also possible to use the Petri Net

constructed for the verification algorithms for the reasoning purpose. Since a Petri Net is

an executable model, it can be used to develop a reasoning mechanism for the rule-base.

Such an approach can be useful, in particular, to answer queries about:

 Identification of all possible actions that can be taken in a given situation.

 Identification of applicable rules in a given situation.

 Appropriateness/suitability of a certain action in a given situation.

 Identification of required conditions for a certain action to be taken.

Additionally, the graphical structure of the Petri Net can also serve to visualize the

transition firing sequence of the net, which can act as an explanation facility for a

Maritime Lawyer.

72

This chapter presents the Petri Net representations that can be used to answer the

above mentioned queries. It also discusses the usage of results from the proposed

verification technique in decision-making process.

6.2. Petri Net Models for Reasoning

Two different Petri Net representations are required for forward and backward

reasoning, the two most commonly used methods for reasoning with rules. The forward

reasoning determines the conclusion using a rule and its input conditions whereas

backward reasoning determines the condition using a rule and its conclusion. Figures 6.1

and 6.2 illustrate this concept using Rule 1(b) of Operation Good Samaritan ROE, which

is stated below.

“Under no circumstances is it authorized to pursue a pirate vessel into territorial

waters.” (Rule 1b, Operation Good Samaritan ROE)

Formally,

P5 P9 P10 → P15 (Rule 1b, Operation Good Samaritan ROE)

Table 6.1: Symbols Corresponding to Propositions of Rule 1(b) of Operation Good Samaritan ROE

in Appendix B

Symbols Propositions

P5 pirate_vessel(V1)

P9 territorial_water(C1)

73

P10 position(V1, C1)

P15 not_pursue(V1, C1)

The Petri Net shown in Figure 6.1 (a-b) corresponds to the model for forward

reasoning, since it uses the information (tokens) in its input places (see Figure 6.1a) to

determine new information (marked by a token in the output place) on execution (see

Figure 6.1b). Similarly, the Petri Net model for backward reasoning is given in Figure 6.2

showing the flow of information in backwards direction (i.e. from conclusion of original

rule to its input conditions). The rest of the thesis uses the terminology of reverse net to

refer to the Petri Net model for backward reasoning. The two reasoning mechanisms are

considered because some queries require forward reasoning to achieve the goal whereas

others require the use of backward reasoning, as will be explained in the following

discussion.

It should be noted that the possibility of using bi-directional arcs in Ordinary Petri

Nets cannot be considered, since such a representation would only result in an infinite

execution of the Petri Net, once it gets triggered. The Petri Net model using such an

approach is shown in Figure 6.3.

74

(a) Before Execution (b) After Execution

Figure 6.1: Petri Net Model for Forward Reasoning

(a) Before Execution (b) After Execution

Figure 6.2: Petri Net Model for Backward Reasoning

Figure 6.3: Petri Net with Bi-directional Arcs

P5

P9

P10

P15 OGS_1b

P5

P9

P10

P15 OGS_1b

P5

P9

P10

P15 OGS_1b

P5

P9

P10

P15 OGS_1b

P5

P9

P10

P15 OGS_1b

75

The use of forward or backward reasoning depends on the type of query being

answered. From the description of both reasoning mechanisms, it can be seen that

forward reasoning is appropriate for the first two queries (described in Section 6.1), since

the goal is to identify all the possible set of facts (actions) and applicable rules. For the

case where it is required to identify the suitability of an action in a given situation, a more

reasonable approach is to use backward reasoning mechanism in order to avoid deducing

irrelevant facts (actions). The approach can be used by adding a token in the place of

reverse Petri Net model that corresponds to the action in question and executing it to find

out if the new marked places correspond to the provided input situation, thus, giving

support to the goal (action). However, it is also possible to use forward reasoning

mechanism for this case by neglecting the execution of all those rules that have been

identified as useless rules using verification approach, thus, preventing the mechanism to

draw irrelevant conclusions. The last query (mentioned in Section 6.1) requires the use of

backward reasoning mechanism, since it involves the identification of all possible

combinations of input conditions that support a certain goal (action).

It should be noted that the Petri Net representation for the set of rules, which was

described in Chapter 4, is not used for reasoning, since the generated Petri Net model has

place(s) that are input to multiple transitions. The presence of such places, as described in

Chapter 3, will lead to a conflict between its output transitions, once those places get

marked. The problem is resolved by converting the generated Petri Net model into a

conflict-free net. This is done by replacing each place having multiple transitions in its

post-set with the same number of places as were the number of output transitions in the

76

original Petri Net model. An example of a Petri Net having conflict and its equivalent

conflict-free net, using two sample rules (Rule 2 and Rule 3(a) from SEACOM ROE), is

shown in Figure 6.4. The two rules are stated below.

“U.S. forces are authorized to search any vessel that has been declared a pirate

vessel by a U.S. or foreign entity.” (Rule 2, SEACOM ROE)

Formally,

P5 → P6 (Rule 2, SEACOM ROE)

“The collection of biometric data is authorized for ships declared to be pirate

ships.” (Part of Rule 3a, SEACOM ROE)

Formally,

P2 P5 → P4 (Rule 3a, SEACOM ROE)

Table 6.2: Symbols Corresponding to Propositions of Rules 2 and 3(a) of SEACOM ROE in

Appendix B

Symbols Propositions

P2 biometric_data(D1)

P4 collect(D1)

P5 pirate_vessel(V1)

P6 search(V1)

77

(a) Petri Net with Conflict (b) Equivalent Conflict-free Net

Figure 6.4: Conversion of Petri Net having Conflict into a Conflict-free Net

Such a modification is required for both the models (i.e. the original one and its

reversed version) before using them for reasoning.

6.3. Forward Reasoning

Once the modified Petri Net model for forward reasoning mechanism is obtained,

it can be used to derive new set of information (actions). Tokens are added to the places

that correspond to the given input situation. An execution of the Petri Net is performed to

deduce new set of information from the existing one until no more rules (transitions) can

be executed. Such an approach can be used to identify all the possible set of actions that

can be taken in a given input situation. It can also be used to identify all the rules that are

applicable in a given situation based on fired transitions. An execution sequence of Petri

Net corresponding to Rule 2 of SEACOM ROE, Rule 1(b) of Joint Exercise ROE and

first part of Rule 1(a) of Operation Good Samaritan ROE for the input situation (P1, P9,

P10 and P14) is shown in Figure 6.5(a-d). The places that get marked after each

P5

P2

P6

P4 SEACOM_

3a

SEACOM_

2

P5

P2

P6

P4 SEACOM_

3a

SEACOM_

2

P5

78

execution step corresponds to the new set of information derived. The three rules used to

demonstrate forward reasoning mechanism are stated below.

“U.S. forces are authorized to search any vessel that has been declared a pirate

vessel by a U.S. or foreign entity.” (Rule 2, SEACOM ROE)

Formally,

P5 → P6 (Rule 2, SEACOM ROE)

“It is prohibited to follow any suspected pirate ship into territorial waters unless

pirate ship has committed a hostile act or demonstrated hostile intent against U.S.

forces.” (Rule 1b, Joint Exercise ROE)

Formally,

P5 P9 P10 P14 → P13 (Rule 1b, Joint Exercise ROE)

“A ship shall be considered a pirate vessel if hostile acts against U.S. forces is

directly observed by U.S. forces.” (Rule 1a rephrased, Operation Good Samaritan

ROE)

Formally,

P1 P14 → P5 (Rule 1a, Operation Good Samaritan ROE)

79

Table 6.3: Symbols Corresponding to Propositions of Rule2 of SEACOM ROE, Rule 1(a) of

Operation Good Samaritan ROE and Rule 1(b) of Joint Exercise ROE in Appendix B

Symbols Propositions

P1 normal_vessel(V1)

P5 pirate_vessel(V1)

P6 search(V1)

P9 territorial_water(C1)

P10 position(V1, C1)

P13 pursue(V1, C1)

P14 hostile_act(V1)

Input Facts: P1, P9, P10, P14

Figure 6.5(a): Petri Net with Tokens (Corresponding to Initial Facts)

P14

P9

P1

P13 JE_1b

OGS_1a_

1

P5

P10

P14

P5

P6 SEACOM_

2

80

Input Facts: P1, P9, P10, P14 Derived Facts: P5

 Rules Used: OGS_1a_1

Figure 6.5(b): Petri Net (After First Execution Step)

Input Facts: P1, P9, P10, P14 Derived Facts: P5, P6

 Rules Used: OGS_1a_1,

SEACOM_2

Figure 6.5(c): Petri Net (After Second Execution Step)

P14

P9

P1

P13 JE_1b

OGS_1a_

1

P5

P10

P14

P5

P6
SEACOM_

2

P14

P9

P1

P13 JE_1b

OGS_1a_

1

P5

P10

P14

P5

P6 SEACOM_

2

81

Input Facts: P1, P9, P10, P14 Derived Facts: P5, P6, P13

 Rules Used: OGS_1a_1,

SEACOM_2, JE_1b

Figure 6.5(d): Petri Net (After Third Execution Step)

Such a reasoning mechanism can also be used to answer queries about the

applicability of a certain action in a given situation. Since it looks at all the possible set of

facts based on the existing ones; however, it is computationally more expensive to derive

all conclusions in addition to the one action under consideration. A formal description of

the useless rules and their detection methodology has already been presented in Chapter 2

and 5 respectively. The set of useless rules can assist, in this case, to decide which of the

enabled rules need to be executed in order to reach the desired goal. Since these are the

rules that do not produce useful conclusions, the forward reasoning mechanism can avoid

them.

P14

P9

P1

P13 JE_1b

OGS_1a_

1

P5

P10

P14

P5

P6
SEACOM_

2

82

6.4. Backward Reasoning

Backward reasoning mechanism is used in a similar way for the remaining set of

queries, but with a reversed Petri Net model. Tokens are added to the place corresponding

to an action in question. An execution of the resulting Petri Net is performed to identify

the set of input conditions that support the action, until no more transitions can be

executed. The set of places marked by a token after every execution step corresponds to

input conditions that support the desired action. Figure 6.6 demonstrates an example of

such a case with the help of the second and the third rules used in the forward reasoning

example in the previous section (i.e. Rule 1a of Operation Good Samaritan ROE and Rule

1b of Joint Exercise ROE).

The queries that involve identification of the applicability of a certain action can

be worked out in a similar way. However, after each execution step, an additional process

is performed that matches the set of identified input conditions against initial facts to see

if they support the desired action.

83

Action in Question: P13

Figure 6.6(a): Initialized Petri Net for Backward Reasoning

Action in Question: P13 Applicable Rules: JE_1b

 Required Input Conditions: {P5, P9,

P10, P14}

Figure 6.6(b): Petri Net (After First Execution Step)

P14

P9

P1

P13 JE_1b

OGS_1a_

1
P5

P10

P14

P9

P1

P13 JE_1b

OGS_1a_

1
P5

P10

84

Action in Question: P13 Applicable Rules: JE_1b, OGS_1a_1

 Required Input Conditions: {P5, P9,

P10, P14}, {P1, P9, P10, P14}

Figure 6.6(c): Petri Net (After Second Execution Step)

6.5. Use of Verification Results in Decision Making

The two reasoning mechanisms, presented in the previous sections, can be used to

answer queries that have been mentioned in Section 6.1. However, the reasoning process

alone cannot be used for decision-making. It has already been mentioned in Chapter 2

that in order to make correct decisions from Maritime Laws, it is required to consider

various properties within them as well. This section presents the combined use of

verification results and reasoning mechanism that can assist a Maritime Lawyer in

decision-making process. In other words, the use of reasoning mechanism will help

him/her in answering certain queries while the verification results will serve as the

information that provide him/her assurance about the correctness of the answers. The rest

of the section presents the usage of some of the verification results, which include

P14

P9

P1

P13 JE_1b

OGS_1a_

1
P5

P10

85

inconsistent and redundant rules, while finalizing the actions. The use of circular and

useless rules has already been discussed previously, in the case of avoiding infinite

execution of model checking algorithm (refer to Chapter 5) and preventing a forward

reasoning mechanism from drawing irrelevant facts, respectively. The remaining case of

incompleteness can be used to figure out if a certain query can be answered from the

given set of input information.

6.5.1. Inconsistent Rules

The results from the reasoning mechanism can be checked in the list of

inconsistent set to verify if there exists any rule contradicting the inferred information.

Such a confirmation is required in order to be certain that there is no applicable rule

opposing it. The situation in which no such rule is found, a Maritime Lawyer can

conclude to go for the action, based on the fact that there does not exist any rule

contradicting it, thus providing a consistency check for his/her recommendation. On the

contrary, a situation in which there exists some rule contradicting it, he/she may take a

more cautious approach in deciding about the applicability of an action.

6.5.2. Redundant Rules

The presence of redundant rules, especially across different law books, adds more

support to the set of applicable actions. Once the results from the reasoning mechanism

are verified from the inconsistent set, they can be checked in the redundant set to find out

if there exists more rules leading to the same information, thus, providing additional

support to the concluded action.

86

6.6. Conclusion

A reasoning mechanism has been presented in this chapter to answer certain type

of queries that would be of interest to the Maritime Lawyer. It is capable of performing

both forward and backward reasoning. The presented reasoning mechanism along with

the results from verification technique will assist the Maritime Lawyer in decision-

making from the set of applicable Maritime Laws.

87

CHAPTER 7: APPLICATION: MARITIME LAW MANAGER AND ANALYZER

An implementation of the approach given in the earlier chapters, for the analysis

and providing a decision support to a Maritime Lawyer, is presented in this chapter.

7.1. Introduction

A Maritime Law Handbook (Maritime Law source document) is a collection of

rules used by a Maritime Lawyer. If these rules are extracted from the source documents

and stored in an organized way (e.g. database), then it becomes possible for the Maritime

Lawyer to search and extract the ones that are relevant to a situation. He/she can use the

selected set of rules and perform various analyses on them, such as the ones presented in

the previous two chapters.

In this chapter, a suite of tools is presented that has been developed to provide a

computer-aided solution for the task of a Maritime Lawyer. The suite consists of a

Maritime Law Management System, a Rule Evaluation Routine, and a Rule Execution

Engine providing the functionalities for management of Maritime Laws, automated

verification of rules, and reasoning from them, respectively. The motivation for the

computer-aided approach is to make the task easier and less cumbersome for the

Maritime Lawyer.

88

7.2. Maritime Law Management System

In the previous chapters, it was assumed that the collection of Maritime Laws and

rules within them were available for the analytical techniques that were presented. The

analyses were applied on their formal representation. This section presents an application

known as Maritime Law Management System, which provides storage facility for various

Maritime Laws and rules within them and facilitates selection of rules specific to a

particular task, serving as the source of input to the already presented analytical

techniques.

An effort was made to identify the organization of different set of information,

available in the Maritime Laws, within a database and discover the set of functionalities

that would be required by a Maritime Lawyer for its management. The following set of

functionalities was identified to be required in the system:

 A facility to introduce/delete law sources and rules or make editorial changes in

the existing ones.

 Storage for both a textual as well as a formal representation of rules.

 A search mechanism to facilitate the selection of rules specific to a task.

 A facility to store and attach additional important information to rules (e.g. maps,

images, notes).

 A report generation facility.

Some knowledge management tools were also studied, in parallel, to find out if there was

an already available tool that could provide the identified set of functionalities.

89

An application, named Zotero [34], was chosen as a possible candidate for

Maritime Law Management System, since it provided most of the above mentioned

functionalities. It is a free, open source add-on for the Firefox browser, developed by

Center for History and New Media at George Mason University. It enables users to

manage bibliographic data and other electronic objects such as books and articles. The

application was further customized and changes were made in the database structure at its

back-end to fully meet the identified requirements. The resulting data model of the

application is presented in Figure 7.1, which shows the organization of various entities

within the application and the connections among them.

Figure 7.1: Static Entity Model (Data Model) of Maritime Law Management System

90

The rest of the section describes various features and functionalities provided by the

Maritime Law Management System with the help of some of its screenshots.

Figure 7.2 shows the user interface of Maritime Law Management System which

has four basic sections (or panels). Section 1 displays the list (or collection) of Maritime

Laws stored in the repository. The list of rules within the selected Maritime Law source is

displayed in the area of Section 2. Selection of a rule shows its details in the area of

Section 3, which include information about the title of rule, its textual as well as logical

representation, the set of attachments, and tags attached to it. Tags are keywords or

phrases, created by the user, for cataloging (or indexing) the rules. A rule can have

multiple tags attached to it. The set of tags, attachments, and the two representations are

assigned to the rules at the time they are entered in the system. Finally, section 4 is the

area that displays the entire list of tags assigned to the stored rules. The list of tags assists

in searching the rules from the repository by enabling a user to select a tag or a

combination of them, which extracts all the rules having those tags assigned to them. In

other words, it can be said that they provide a more efficient search mechanism compared

to other search procedures. For example, the tag of “piracy” on selection will pull all the

rules having that tag assigned to them. The presented example is based on the assumption

that the tag was created and assigned to rules from various Maritime Law sources that

talk about piracy.

91

Figure 7.2: User Interface of Maritime Law Management System

Figure 7.3 presents another view of the first three sections, showing the interconnection

between various data entities.

1

2

3

4

92

Figure 7.3: Various Components within Maritime Law Management System

So far, the set of features were presented based on the assumption that the information

from various Maritime Law sources, which include their names, rules within them, and

their formal representation has already been introduced and populated in the rule-base.

However, users can enter all this information using additional features provided by the

system. The screenshots in Figure 7.3 show menus on the top side, represented by „+‟,

and buttons that can be used to perform such operations. In addition to these features, the

system offers other important functionalities for a Maritime Lawyer, which are stated

below:

Rules within the
Selected Law

Source

Details of the

Selected Rule

Two Equivalent

Representations

93

 It facilitates text-based searching, which can be used to search the rule-base by

entering keywords or phrases, in addition to tag-based search mechanism.

 The selected set of rules, along with their textual as well as formal

representations, can be exported as a file to other applications.

 A detailed report about the selected set of rules can be generated, which includes

their source information and the two representations.

The system was tested using some sample queries, presented in Appendix B. The

set of rules, provided in Appendix B, were entered in the system and tags were created

manually and assigned to them based on their textual description. An example of a test

case is presented that uses the same query which was used to illustrate the verification

technique in Chapter 5. The referred query is stated below.

“What are the permissible actions that can be taken against a hostile act of pirate

vessel located in territorial waters?” (Rephrased Query 5, Philippines Tsunami

Humanitarian Assistance Disaster Relief Mission: OPLAW/ROE Scenario v1.0)

Since the query refers to a situation in which a pirate vessel is encountered, a search was

made in the rule-base by selecting the tag “Pirate Vessel”. The selected tag extracted all

the set of rules that talk about various actions, whether permitted or prohibited, against

the pirate vessel. A screenshot of the application showing the resulting rules, from

different applicable law sources, is shown in Figure 7.4. The highlighted Maritime Law,

shown in the figure, represents the source of the selected rule. A detailed report of the

resulting set of rules was also generated, a portion of which is shown in Figure 7.5. It

should be noted that the current implementation of the suite of tools uses “&” symbol for

94

the conjunctive connective instead of “ ”, which is used in the formal representation

provided in Appendix B.

Figure 7.4: GUI of Maritime Law Management System Showing Search Results

95

Figure 7.5: Generated Report for the Selected Rules

96

7.3. RULER (Rule Evaluation Routine)

The technique for formal verification of a set of rules, selected from various

Maritime Laws, has already been presented in Chapter 5. The behavioral analysis in it,

which addresses portion of the verification problem, is performed by CPN Tools [35]. A

utility named “RULER (Rule Evaluation Routine)” was developed in Java to implement

the proposed verification technique. It uses an open source library, named Britney Suite

[36], to interact with CPN Tools. The referred library is a set of functions written in Java

that uses CPN Tools simulator, making it possible to integrate Petri Net simulation (i.e.

Petri Net execution mechanism) and its state space analysis in Java applications. The

implemented utility works by taking the file of the exported rule set (generated by

Maritime Law Management System), the set of facts, and mutually exclusive concepts

from the user and performs verification analyses using the given information,

consequently, providing a report on identified inconsistent, redundant, incomplete, and

useless rules. A Petri Net model is also generated by the application corresponding to the

set of rules that can be used by the Rule Execution Engine, presented in the next section,

to assist in decision-making process. The generation of Petri Net by RULER and its

exportation to Rule Execution Engine is, however, transparent to the user. Figures 7.6,

7.7 and 7.8 show some of the screenshots of RULER, displaying some results from the

implemented verification technique.

97

Figure 7.6: Input Rules from Maritime Law Management System

98

Figure 7.7: Results showing Identified Redundant Cases

99

Figure 7.8: Results showing Identified Inconsistent Cases

7.4. RulEx (Rule Execution Engine)

The reasoning mechanism, presented in Chapter 6, was incorporated into the suite

by developing a reasoning engine known as “Rule Execution Engine (RulEx)”. This

application makes use of the Britney Suite library [36] to perform simulation on the Petri

Net model that was generated by RULER. Some of the screenshots of Rule Execution

Engine are presented in Figures 7.9 and 7.10.

Figure 7.9 shows the results of rule execution process that derives new set of

information based on the given facts. The interface consists of five sections in which

Section 1 displays the set of rules triggered, Section 2 shows the entire set of facts (input

100

and resulting), Sections 3 and 4 correspond to the graphical representation of the rule set,

and Section 5 presents the summary of the entire execution process.

Figure 7.9: Example of Rule Execution Process

Similarly, the screenshot in Figure 7.10 presents the process of identifying input

conditions that support a certain action. The selected concept (i.e. P12) in the top-left

panel of the interface corresponds to the action proposition, whereas the bottom-left panel

displays all the identified set of input conditions that support it.

1 2 3

4
5

101

Figure 7.10: Example of Input Conditions Identification Process

7.5. Conclusion

A suite of tools has been presented in this chapter that was developed to provide a

computer-aided approach for the task of Maritime Lawyer. The suite consists of three

separate applications which provide the functionalities of management and verification of

Maritime Laws as well as decision-making from them. The functionalities were

demonstrated with the help of some example queries and the results obtained by the

software.

102

CHAPTER 8: CONCLUSION AND FUTURE WORK

This chapter concludes the thesis and suggests some directions for future work.

8.1. Conclusion

A computer-aided approach for providing a comprehensive support to a Maritime

Lawyer is presented in this thesis. The approach will provide considerable help to

him/her in performing his/her job, which is performed manually at present and is a

challenging and strenuous activity due to the time critical nature of the task. The

presented approach, being automated for the most part, overcomes these limitations. It

makes use of several tools and techniques, some of which already exists, to address the

defined problem. It was tested with a sample scenario to verify the degree of

accomplishment of the specified goal. The tests, which have been presented in various

parts of the thesis showed the achievement of most of the goals.

The proposed solution is not restricted to Maritime Law Analysis problem. The

individual components of the presented approach, meant to address specific portions of

the problem, can be used in other problem domains as well that require those specific

functionalities. For example, the verification technique presented in this thesis can be

used to address the general V&V problem for Production Systems, which has been

addressed by several researchers in the past. Similarly, the reasoning mechanism

presented in this thesis can be used as an alternative to existing reasoning engines. It is

103

capable of performing forward and backward reasoning, and provides visualization

capabilities for both the processes, which can serve as an explanation tool to the user.

Moreover, the two analytical techniques, which include verification methodology and

reasoning mechanism, can also serve in domains that require both the functionalities

together, such as the kinds of problem addressed in this thesis.

8.2. Future Work

It has already been mentioned that the proposed solution accomplishes most of the

defined goal. However, there exists some room for improvements and enhancements. The

rest of the section discusses some of the possible future work.

The solution proposed in this thesis performs reasoning using production rules.

An obvious future step is to incorporate an ontological representation of the domain

information for the reasoning mechanism that will help derive new information based on

semantic relationships among domain concepts. Since semantic knowledge is not

explicitly defined within the rules, enhancements are required to the proposed solution to

employ a formalism that provides such a reasoning capability. For example, consider a

set of rules that talk about piracy, some of which are defined using the terminology of

“pirate vessel” and the rest use the vocabulary of “pirate ship”. Since the two concepts

are related to one another (second one being the special case of the first one), and such an

information is also not defined in the rule-base, it is not possible to make use of all the

rules about piracy in situations when one of the two concepts is known to be true. Such a

capability can, however, be achieved by making use of an ontology that defines the

relationships between various concepts, and an ontology reasoner that derives new

104

information based on these defined relationships. Moreover, the use of an ontology can

also help to explicitly represent additional knowledge about Maritime Laws e.g. regions

of their applicability, missions to which they apply etc. Since such information is also not

defined in rules, the ontology can help to encode such knowledge and provide reasoning

capabilities over it. Such an enhancement will facilitate the processing of the following

types of queries:

“What is the OPLAW applicable to U.S. Forces during this joint exercise?”

(Query 1, Philippines Tsunami Humanitarian Assistance Disaster Relief Mission:

OPLAW/ROE Scenario v1.0)

“What are the important changes in ROE as U.S. forces depart to carry out

Operation Good Samaritan?” (Query 2, Philippines Tsunami Humanitarian

Assistance Disaster Relief Mission: OPLAW/ROE Scenario v1.0)

“How does the transition across the equator and out of the Indonesian SOFA

region change ROE?” (Query 3, Philippines Tsunami Humanitarian Assistance

Disaster Relief Mission: OPLAW/ROE Scenario v1.0)

The analytical techniques, presented in this thesis, assume that the formal

representation of the set of rules is already available. However, such a representation

does not exist, in actual, for Maritime Laws and needs to be constructed manually by

transforming the rules, expressed in the natural language, into a machine-readable format.

Same procedure was adopted, in this thesis, by manually transforming Maritime Laws

(provided in Appendix B) to a formal representation, for the verification and

105

demonstration of various analytical techniques. A possible enhancement can be to

provide a methodology that performs or assists in performing the translation task.

Finally, the verification technique presented in this thesis did not address the case

of subsumed rules within Maritime Laws. A possible future step is to provide a formal

approach for the verification of subsumption in the formally represented set of rules.

106

APPENDIX A

This appendix presents a brief introduction to temporal logic, linear time logic

and computation tree logic. The discussion that follows has been compiled from [37] with

minor editorial changes.

A.1. Temporal Logic

The concept that makes temporal logic different from propositional and predicate

logic is that a formula in the former one is not statically true or false in a model, as

opposed to the later ones. The model of temporal logic has several states and a formula

can be true in some states and false in others. In case of propositional and predicate logic,

a formula is either true or false in a model and it stays that way. Thus, the static notion of

truth value is replaced by a dynamic one in temporal logic. In model checking, systems

are modeled (or represented) as state-transition systems and properties are expressed as

temporal logic formulae to verify if they exist in the model as the system evolves from

state to state. There are many classes of temporal logic that have been proposed.

However, they can all be divided into two classes based on their view of time: linear-time

logic (or LTL) and branching-time logic.

107

A.2. Linear-time Temporal Logic (LTL)

LTL is a class of temporal logic, which models time as a sequence of states, going

infinitely into the future. In other words, it views time as a path.

An LTL formula is defined by the following Backus Naur form:

 ::= p | (¬) | () | (∨) | (→) | (X) | (F) |

(G) | (U) | (R)

where p represents any atomic formula e.g. The traffic light is green, The printer is idle,

The switch is on. The symbols , ∨, → are logical connectives whereas X, F, G, U and R

are temporal connectives or temporal operators, which will be described in the following

discussion.

It has already been mentioned that the systems to be verified by model checking

methodology are represented as state-transition systems.

Definition (State-transition System):- A state-transition system is defined by a set of

states, a relation describing how the system moves from one state to another and a

mapping which assigns a truth value (True/False) to every atomic formula within a state.

Mathematically, a state-transition system M can be expressed as:

M = (S, →, L)

where S is the set of states, → is the relation among the states in S and L is the

assignment of truth values to the atomic formulae in every .

Graphically, such a system can be represented by a directed graph whose nodes

are the states in S containing all the atomic formulae that are true and the arcs are the

transition relation. An example of a state-transition system is provided in Figure A.1,

108

which consists of four states (s0, s1, s2 and s3) corresponding to transition relation (s0 →

s1, s0 → s2, s1 → s3, s2 → s3) and mapping defined as L(s0) = {p, q}, L(s1) = {p, r}, L(s2) =

{q, r} and L(s3) = {r}.

 s2

 s0 s3

 s1

Figure A.1: A directed graph representing state-transition system

System Verification Using LTL

Let M be the model of state-transition system. Given π = s0 → s1 → … as a path

in M, whether an LTL formula is satisfied by π is defined by the relation as follows:

 π ╞ p iff p L(s0).

 π ╞ ¬ iff π |≠ .

 π ╞ 1 2 iff π ╞ 1 and π ╞ 2.

 π ╞ 1 ∨ 2 iff π ╞ 1 or π ╞ 2.

 π ╞ 1 → 2 iff π ╞ 2 whenever π ╞ 1.

 π ╞ X iff π
2
 ╞ , where π

2
 = s1 → s2 → … is the sub-path of π starting from s1.

Thus, X means: „ holds in next state‟.

 π ╞ G iff, for all i 1, π
i
 ╞ . Thus, G means: „ holds in all future states‟.

p, q

q, r

p, r

r

109

 π ╞ F iff there is some i 1 such that π
i
 ╞ . Thus, F means: „ holds in some

future state‟.

 π ╞ 1 U 2 iff there is some i 1 such that π
i
 ╞ 2 and for all j=1,…,i-1 it is

the case that π
j
 ╞ 1. Thus, U means: „ 1 holds until 2 starts to hold‟.

 π ╞ 1 R 2 iff either there is some i 1 such that π
i
 ╞ 1 and for all j=1,…,i it

is the case that π
j
 ╞ 2 , or for all k 1 it is the case that π

k
 ╞ 2. Thus, R says: „

2 holds until and including the point where 1 starts to hold. If 1 does not

hold in a future state, then 2 will hold forever‟.

An interpretation of some of the above mentioned temporal operators is depicted

graphically in Figures A.2-A.6.

…

Figure A.2: A state-transition system satisfying X

…

Figure A.3: A state-transition system satisfying G

…

Figure A.4: A state-transition system satisfying F

,

 ,

110

 …

Figure A.5: A state-transition system satisfying 1 U 2

 …

 …

Figure A.6: State-transition systems satisfying 1 R 2

A.3. Branching-time Logic

In previous section, it was shown that an LTL formula is interpreted over a path.

It is also possible to consider a set of paths using LTL, however, an LTL formula

quantifies universally over all possible set of paths i.e. an LTL formula has to be true for

all the paths considered. Therefore, properties that assert the existence of a path cannot be

expressed in LTL. Branching-time logics solve this problem by providing quantification

over the set of paths. This section presents a branching-time logic known as Computation

Tree Logic (CTL), describing temporal operators it offers in addition to the ones

presented in previous section.

2, 1

1 1 1 2

2 2 2

2 2 2 2

111

A.3.1. Computation Tree Logic (CTL)

CTL is a branching-time logic, which means that model of time is a tree like

structure in which the future is not determined. In other words, there are multiple paths in

future anyone of which can be the actual path.

A CTL formula is defined by the following Backus Naur form:

 ::= p | (¬) | () | (∨) | (→) | AX | EX | AF | EF |

AG | EG | A[U] | E[U]

It introduces two new operators A (for all futures) and E (for some future) in

addition to the ones presented in previous section. It should be noticed that every CTL

temporal connective is composed of one universal quantifier (A or E) and one path

quantifier (F, G, X or U). The universal quantifiers are used to make statements that

range over all possible paths in future and path quantifiers are used to make statements

that range over all moments of time along a particular path [38].

System Verification Using CTL

Let M be the model of state-transition system and s be any state in M. Whether a

CTL formula holds in s is defined by the relation as follows:

 M, s ╞ p iff p L(s).

 M, s ╞ ¬ iff M, s |≠ .

 M, s ╞ 1 2 iff M, s ╞ 1 and M, s ╞ 2.

 M, s ╞ 1 ∨ 2 iff M, s ╞ 1 or M, s ╞ 2.

 M, s ╞ 1 → 2 iff M, s |≠ 1 or M, s ╞ 2.

112

 M, s ╞ AX iff for all s1 such that s → s1 we have M, s1 ╞ . Thus, AX says: „in

every next state‟.

 M, s ╞ EX iff for some s1 such that s → s1 we have M, s1 ╞ . Thus, EX says:

„in some next state‟.

 M, s ╞ AG holds iff for all paths s1 → s2 → s3 → …, where s1 equals s and all si

along the path, we have M, si ╞ . Thus, it says: „for all paths beginning in s the

property holds globally‟.

 M, s ╞ EG holds iff there is a path s1 → s2 → s3 → …, where s1 equals s and for

all si along the path, we have M, si ╞ . Thus, it says: „there exists a path

beginning in s such that holds globally along it‟.

 M, s ╞ AF holds iff for all paths s1 → s2 → s3 → …, where s1 equals s, there is

some si such that M, si ╞ . Thus, it says: „for all paths beginning in s there will

be some future state where holds‟.

 M, s ╞ EF holds iff there is a path s1 → s2 → s3 → …, where s1 equals s, and for

some si along the path M, si ╞ . Thus, it says: „there exists a path beginning in s

such that holds in some future state in that path‟.

 M, s ╞ A[1 U 2] holds iff for all paths s1 → s2 → s3 → …, where s1 equals s,

the path satisfies 1 U 2, i.e. there is some si along the path, such that M, si ╞

2 and for each j<i, we have M, sj ╞ 1. Thus, it says: „all paths beginning in s

satisfy that 1 Until 2 holds on it‟.

113

 M, s ╞ E[1 U 2] holds iff there is a path s1 → s2 → s3 → …, where s1 equals s,

and the path satisfies 1 U 2. Thus, it says: „there exists a path beginning in s

such that 1 Until 2 holds on it‟.

An interpretation of some CTL formulae, using some of the temporal connectives

presented above, is shown graphically in Figures A.7-A.12.

 .

 .

 .

Figure A.7: A state-transition system whose starting state satisfies AF

114

 .

 .

 .

Figure A.8: A state-transition system whose starting state satisfies AG

 .

 .

 .

Figure A.9: A state-transition system whose starting state satisfies EF

115

 .

 .

 .

Figure A.10: A state-transition system whose starting state satisfies EG

 .

 .

 .

Figure A.11: A state-transition system whose starting state satisfies AX

116

 .

 .

 .

Figure A.12: A state-transition system whose starting state satisfies E[1 U 2]

1

1

2

117

APPENDIX B

This appendix presents a hypothetical maritime scenario [21], using a small set of

Operational Laws (OPLAWS). The OPLAWS are Maritime Laws used by the U.S. Navy.

The scenario also includes some sample queries that a Maritime Lawyer, in this case

Staff Judge Advocate, may be interested in.

B.1. Scenario Overview

In this scenario, the United States is conducting a multi-force joint exercise in

Indonesia. When a large earthquake occurs in the Philippines, U.S. forces cancel their

exercise and provide Humanitarian-Assistance and Disaster-Relief to the affected people.

Staff Judge Advocates are aboard the USS Temolu (LHA 1), command ship of the U.S.

forces, advising the commander. The Temolu is moored in Jakarta‟s Tanjung Priok Port

for the multi-force exercise. Upon receiving orders for the relief mission, she travels

north out of the Java Sea, towards the South China Sea, with a fleet comprised of various

surface and amphibious ships. A vessel is encountered near Malaysia that commits a

hostile act against them, and the U.S. commander must decide how to respond based on

all the laws that are applicable in that region.

118

B.2. Sample Rules

Below are some OPLAWS applicable in the region, each of which contains a set

of rules relevant to the scenario.

Sofa for Indonesia

1. Biometric Data.

No biometric data is to be gathered without prior oral consent from individuals of

interest.

2. Search/Detain

Only ships that have been declared pirate ships by the policing entity are allowed to

be searched.

3. Non-compliant ships.

Labeling a ship as non-compliant does not authorize U.S. forces to search vessel.

Joint Exercise ROE

1. Piracy

It is prohibited to follow any suspected pirate ship into territorial waters unless owner

of territorial waters has specifically requested U.S. assistance, and has given

permission for U.S. vessel to enter their water, or pirate ship has committed a hostile

act or demonstrated hostile intent against U.S. forces.

119

Operation Good Samaritan ROE

1. Piracy

a. A ship shall be considered a pirate vessel if and only if hostile acts or hostile

intents against U.S. forces are directly observed by U.S. forces.

b. Under no circumstances is it authorized to pursue a pirate vessel into territorial

waters.

SEACOM ROE

1. Piracy

It is not permitted to pursue a pirate ship into territorial waters unless express consent

has been given by the coastal state prior to entry into their territorial waters, unless

the hostile act was committed against U.S. forces, U.S. property, or committed in

U.S. territorial waters.

2. Search

U.S. forces are authorized to search any vessel that has been declared a pirate vessel

by a U.S. or foreign entity.

3. Biometric Data

a. The collection of biometric data is authorized for ships declared to be pirate ships

or defined as non-compliant.

b. The collection of biometric data is authorized for all other ships, per the consent

of the individuals of interest.

120

B.3. Formal Representation

This section provides a logical representation for the set of rules mentioned

above. The logical representation was not a part of the scenario [21] and was created

manually for various analyses proposed in this thesis.

Sofa for Indonesia

1. normal_vessel(V1) biometric_data(D1) permitted(P1) → collect(D1)

2. pirate_vessel(V1) → search(V1)

3. non_compliant_vessel(V1) → not_search(V1)

Joint Exercise ROE

1. (a) pirate_vessel(V1) territorial_water(C1) position(V1, C1)

entry_request(C1) permitted(C1) → pursue(V1, C1)

(b) pirate_vessel(V1) territorial_water(C1) position(V1, C1) hostile_act(V1)

→ pursue(V1, C1)

Operation Good Samaritan ROE

1. (a) normal_vessel(V1) hostile_act(V1) → pirate_vessel(V1)

pirate_vessel(V1) → normal_vessel(V1) hostile_act(V1)

(b) pirate_vessel(V1) territorial_water(C1) position(V1, C1) → not_pursue(V1,

C1)

SEACOM ROE

1. (a) pirate_vessel(V1) territorial_water(C1) position(V1, C1)

entry_request(C1) permitted(C1) → pursue(V1, C1)

121

(b) pirate_vessel(V1) territorial_water(C1) position(V1, C1) hostile_act(V1)

→ pursue(V1, C1)

(c) pirate_vessel(V1) territorial_water(US) position(V1, US) hostile_act(V1)

→ pursue(V1, US)

2. pirate_vessel(V1) → search(V1)

3. (a) pirate_vessel(V1) biometric_data(D1) → collect(D1)

non_compliant_vessel(V1) biometric_data(D1) → collect(D1)

(b) normal_vessel(V1) biometric_data(D1) permitted(P1) → collect(D1)

B.4. Shorthand Representation of Formal Rules

The long propositional statements of machine-readable rules, presented in the

previous section, are represented by a shorthand representation using symbols. The

symbols and their corresponding propositions are listed in Table B.1. These symbols will

be used in the entire thesis instead of their corresponding propositions.

Table B.1: Set of Propositions Used in the Formal Representation of Maritime Laws

Symbols Propositions

P1 normal_vessel(V1)

P2 biometric_data(D1)

P3 permitted(P1)

P4 collect(D1)

122

P5 pirate_vessel(V1)

P6 search(V1)

P7 not_search(V1)

P8 non_compliant_vessel(V1)

P9 territorial_water(C1)

P10 position(V1, C1)

P11 entry_request(C1)

P12 permitted(C1)

P13 pursue(V1, C1)

P14 hostile_act(V1)

P15 not_pursue(V1, C1)

P16 territorial_water(US)

P17 position(V1, US)

P18 pursue(V1, US)

123

B.5. Sample Queries

Following are some sample queries that will be of interest to a Staff Judge

Advocate officer.

1. What is the OPLAW applicable to U.S. Forces during this joint exercise?

2. What are the important changes in ROE as U.S. forces depart to carry out Operation

Good Samaritan?

3. How does the transition across the equator and out of the Indonesian SOFA region

change ROE?

4. Are there any restrictions as to where U.S. forces are allowed to moor their vessels?

5. Is it allowed to follow a pirate vessel in territorial waters, if it commits a hostile act?

6. Is it permitted to stop and search a vessel that commits a hostile act?

7. Is it allowed to collect biometric data of individuals boarding a vessel?

124

APPENDIX C

A formal description of the ASK-CTL formulae to capture redundant and

inconsistent cases has been presented in Chapter 5. This appendix provides a description

concerning the implementation of the formally described ASK-CTL formulae. It presents

the pseudo codes of two SML programs (in Pascal style code); which are, in actual,

implementations of the two ASK-CTL formulae and the state functions within them. The

state functions, as mentioned in Chapter 5, are symbols in italics within the parentheses

of both the defined ASK-CTL formulae. They require an explicit definition within a

program to check certain properties in the states of an Occurrence Graph. The two pseudo

codes of programs provide definitions for all the state functions used in the defined ASK-

CTL formulae (5.1 and 5.2), each meant for the verification of a specific property within

a state. For example, “function hasMultipleOutArcs” in Program 2 (below) corresponds

to the expression α1 of formula 5.2, which is defined to verify the property of multiple

arcs going out from a state of an OG. Some pre-defined SML functions are also available

in CPN Tools [39], to check some basic properties within the individual states of an

Occurrence Graph, which can be used as state functions. However, the available set of

functionalities in [39] does not cover verification of complex properties within a state,

which require an explicit definition of these complex properties using the basic ones

available. The pseudo code of the two programs (below) highlights all such pre-defined

125

functions that are used in state functions by indicating them in comments. The comments

in the following code are statements enclosed within braces { and }. The rest of the

section presents pseudo codes for the two SML programs: Program 1 and Program 2. The

input to Program 1 is a list of mutually exclusive concepts. For each set in the list, the

ASK-CTL formula is executed, which verifies the property of inconsistency defined by

the set of state functions within it. The only addition to ASK-CTL expression in the

pseudo code is the use of keyword “NF” which is a pre-defined function in ASK-CTL

library that handles call and response from the state functions. The resulting set of rules

leading to any identified inconsistency is displayed as an output. Similarly, Program 2

implements the case of redundancy which verifies the said property within an OG and

displays the set of rules leading to such a case.

(a) Program 1 (Verification of Inconsistent Rules)

var stateOne, stateTwo : integer;

var conceptOne, conceptTwo : string;

function main (var mutuallyExclusiveSet : array[1..n][1..2] of string)

var askctlResult : boolean;

for i := 1 to n

conceptOne := mutuallyExclusiveSet[i][1];

 conceptTwo := mutuallyExclusiveSet[i][2];

askctlResult := AND(POS(NF(“-”,

checkMutuallyExclusiveConceptOne)),

POS(NF(“-”,

checkMutuallyExclusiveConceptTwo)));

{ASK-CTL expression in SML for inconsistency

check that returns true/false. The functions AND,

POS and NF are pre-defined in ASK-CTL library,

where NF is the call to the function declared within

126

it having the current state number as its argument

value}

 if askctlResult = true

 if stateOne = 1

 print “Contradiction identified with original facts”;

 else

 displayRule(stateOne, conceptOne);

 endif

 if stateTwo = 1

 print “Contradiction identified with original facts”;

 else

 displayRule(stateTwo, conceptTwo);

 endif

 endif

endfor

endmain

function checkMutuallyExclusiveConceptOne (var stateNumber : integer)

if val(conceptOne, stateNumber) >= 1 {val represents a pre-defined

function in CPN SML to get the

marking of conceptOne within the

stateNumber}

stateOne := stateNumber;

return true;

else

 return false;

endif

endcheckMutuallyExclusiveConceptOne

function checkMutuallyExclusiveConceptTwo (var stateNumber : integer)

if val(conceptTwo, stateNumber) >= 1

stateTwo := stateNumber;

return true;

else

 return false;

endif

endcheckMutuallyExclusiveConceptTwo

function displayRule (var stateNumber : integer, var concept : string)

var parentNodes : list;

parentNodes := InNodes(stateNumber); {InNodes is a pre-defined

function in CPN SML}

127

 for i := 1 to length(parentNodes)

 if val(concept, parentNodes[i]) = 0

print ArcsInPath(parentNodes[i], stateNumber); {ArcsInPath is

a pre-defined

function in

CPN SML}

 endif

 endfor

enddisplayRule

(b) Program 2 (Verification of Redundant Rules)

var occurrenceSequenceList, redundantRulesList, processedNodesList : list;

var stateOne : integer;

function main ()

do

 occurrenceSequenceList := null;

 stateOne := 0;

askctlResult := POS(AND(NF("-", hasMultipleOutArcs),

POS(AND(NF("-", hasMultipleReachableInArcs),

NF("-", hasDistinctPath)))));

{ASK-CTL expression in SML for redundancy

check that returns true/false. The functions AND,

POS and NF are pre-defined in ASK-CTL library,

where NF is the call to the function declared within

it having the current state number as its argument

value}

 if askctlResult = true

 print redundantRulesList;

 endif

 while askctlResult = true;

endmain

function hasMultipleOutArcs (var stateNumber : integer)

if length(OutArcs(stateNumber))>1 {OutArcs is a pre-defined

function in CPN SML}

stateOne := stateNumber;

return true;

else

128

stateOne := 0;

return false;

endif

endhasMultipleOutArcs

function hasMultipleReachableInArcs (var stateNumber : integer)

var parentNode : list;

 if existsInList(processedNodesList, [stateOne, stateNumber])

 return false;

 else

 if length(InArcs) > 1 {InArcs is a pre-defined function in CPN

SML}

parentNode := InNodes(stateNumber); {InNodes is a pre-

defined function in

CPN SML}

 for i := 1 to length(parentNode)

if Reachable(stateOne, stateNumber) = false

{Reachable is a pre-defined function in CPN

SML}

 return false;

 endif

 endfor

 return true;

 else

 return false;

 endif

endif

endhasMultipleReachableInArcs

function hasDistinctPath (var stateNumber : integer)

var distinctPath : boolean;

 depthFirstTraversal(stateOne, stateNumber);

 redundantRulesList := null;

 for i := 1 to length(occurrenceSequenceList)

 distinctPath := false;

 for j := i+1 to length(occurrenceSequenceList)

if hasCommonElements(occurrenceSequenceList[i],

occurrenceSequenceList[j]) = true

 distinctPath := false;

 break;

 else

129

 distinctPath := true;

 endif

 endfor

 if distinctPath = true

redundantRulesList := append(redundantRulesList,

[occurrenceSequenceList[i]]);

 endif

 endfor

 if length(redundantRulesList) > 1

processedNodesList := append(processedNodesList, [stateOne,

stateNumber]);

 endif

endhasDistinctPath

function depthFirstTraversal (var startNode : integer, var endNode : integer)

var outgoingarcs, occurrenceSequence : list;

outgoingarcs := OutArcs(startNode); {OutArcs is a pre-defined

function in CPN SML}

 for i := 1 to length(outgoingarcs)

if DestNode(outgoingarcs[i]) = endNode {DestNode is a pre-

defined function in

CPN SML}

 occurrenceSequence := append(occurrenceSequence,

[outgoingarcs[i]]);

 occurrenceSequenceList := append(occurrenceSequeceList,

[occurrenceSequence]);

 else

 if Reachable(DestNode(outgoingArcs[i]), endNode)

 occurrenceSequence := append(occurrenceSequence,

[outgoingarcs[i]]);

 depthFirstTraversal(DestNode(outgoingArcs[i]), endNode);

 endif

 endif

 endfor

enddepthFirstTraversal

function hasCommonElements (var list1 : list, var list2 : list)

 for i := 1 to length(list1)

 for j := 1 to length(list2)

 if list1[i] = list2[j]

 return true;

130

 endif

 endfor

 endfor

 return false;

endhasCommonElements

131

REFERENCES

132

REFERENCES

[1] A. Zaidi and A. Levis, “Validation and verification of decision making

rules,” Automatica, vol. 33, 1997, pp. 155-169.

[2] S. A. K. Zaidi, “Validation and verification of decision making rules,”

PhD Thesis, School of Information Technology and Engineering, George

Mason University, 1994.

[3] M. D. Zisman, “Use of production systems for modeling asynchronous,

concurrent processes,” ACM SIGART Bulletin, 1977, p. 23.

[4] A. Giordana, “Modeling production rules by Means of Predicate

Transition networks,” Information Sciences, vol. 35, 1985, pp. 1-41.

[5] D. Zhang and D. Nguyen, “A technique for knowledge base verification,”

[Proceedings 1989] IEEE International Workshop on Tools for Artificial

Intelligence, Fairfax, VA, USA: , pp. 399-406.

[6] Du Zhang and Doan Nguyen, “A tool for knowledge base verification,” in

Development of Knowledge-Based Shells, World Scientific Publishers,

1992.

[7] N. K. Liu and T. Dillon, “An approach towards the verification of expert

systems using numerical petri nets,” International Journal of Intelligent

Systems, vol. 6, 1991, pp. 255-276.

[8] R. Agarwal, “A Petri-Net based approach for verifying the integrity of

production systems,” International Journal of Man-Machine Studies, vol.

36, 1992, pp. 447-468.

[9] S. Yang, A. Lee, W. Chu, and Hongji Yang, “Rule base verification using

Petri nets,” Proceedings. The Twenty-Second Annual International

Computer Software and Applications Conference (Compsac '98) (Cat.

No.98CB 36241), Vienna, Austria: , pp. 476-481.

[10] Xudong He, W. Chu, H. Yang, and S. Yang, “A new approach to verify

rule-based systems using Petri nets,” Proceedings. Twenty-Third Annual

International Computer Software and Applications Conference (Cat.

No.99CB37032), Phoenix, AZ, USA: , pp. 462-467.

[11] S. Yang, J. Tsai, and Chyun-Chyi Chen, “Fuzzy rule base systems

verification using high-level petri nets,” IEEE Transactions on Knowledge

and Data Engineering, vol. 15, 2003, pp. 457-473.

[12] Z. Ding, M. Pan, C. Jiang, and Y. Han, “Using Petri nets to verify acyclic

rule-based system,” Frontiers of Electrical and Electronic Engineering in

China, vol. 3, 2008, pp. 155-161.

133

[13] Qingfeng Wu, Changle Zhou, Jinlin Wu, and Chaonan Wang, “Study on

Knowledge Base Verification Based on Petri Nets,” 2005 International

Conference on Control and Automation, Budapest, Hungary:, pp. 997-

1001.

[14] E. Charles, and O. Dubois, “MELODIA: Logical methods for checking

knowledge bases,” in Validation, Verification and Test of Knowledge-

Based Systems, 1991, John Wiley & Sons, Chichester.

[15] J. -P. Gouyon, KHEOPS User's Guide. Technical report, LAAS-CNRS,

Toulouse – France, 1995.

[16] J. C. Giarratano, CLIPS User’s Guide, version 6.20, 2002,

http://clipsrules.sourceforge.net/

[17] B. Kuipers, Algernon for Expert Systems, 1994, http://algernon-

j.sourceforge.net/

[18] J. de Bruijn and M. Rezk, “A Logic Based Approach to the Static Analysis

of Production Systems,” 3rd International Conference on Web Reasoning

and Rule Systems (RR 2009), pp. 254–268.

[19] A. Ligeza, Logical Foundations for Rule-Based Systems, Berlin: Springer,

2006.

[20] S. Russell, and P. Norvig, Artificial Intelligence: A Modern Approach,

Upper Saddle River N.J.: Prentice Hall/Pearson Education, 2003.

[21] T. Gleed, D. Beer, and H. S. Smallman, “Philippines Tsunami

humanitarian assistance disaster relief mission: OPLAW/ROE Scenario

v1.0”, Pacific Science & Engineering Group, Inc., 2008.

[22] H. J. Levesque, “The logic of incomplete knowledge bases,” in On

Conceptual Modeling: Perspective from Artificial Intelligence, Databases

and Programming Languages, M. L. Brodie, J. Mylopoulos and J. W.

Schmidt (eds.), Springer-Verlag, New York, 1984, pp. 165-189.

[23] W. Reisig and G. Rozenberg, Lectures on Petri nets: advances in Petri

nets, Berlin; New York: Springer, 1998.

[24] A. K. Zaidi and A. H. Levis, “Verification of System Architectures Using

Modal Logics and Formal Model Checking Techniques,” Conference on

Systems Engineering Research (CSER), 2006, Los Angeles, CA.

[25] E. Clarke, O. Grumberg, and D. Peled, Model Checking, Cambridge

Mass.: MIT Press, 1999.

[26] E. A. Emerson, “Branching time temporal logic and the design of correct

concurrent programs,” PhD Thesis, Harvard University, 1981.

[27] E. Clarke and E. Emerson, “Design and synthesis of synchronization

skeletons using branching time temporal logic,” Logics of Programs,

1981, pp. 52–71.

[28] J. P. Queille, and J. Sifakis, "Specification and verification of concurrent

systems in CESAR", International Symposium on Programming, 1982.

[29] S. Christensen, and K. H. Mortensen, Design/CPN ASK-CTL Manual,

version 0.9, 1996,

http://www.daimi.au.dk/designCPN/libs/askctl/ASKCTLmanual.pdf

http://clipsrules.sourceforge.net/
http://algernon-j.sourceforge.net/
http://algernon-j.sourceforge.net/
http://www.daimi.au.dk/designCPN/libs/askctl/ASKCTLmanual.pdf

134

[30] A. Cheng, S. Christensen, and K. H. Mortensen, “Model checking

coloured petri nets exploiting strongly connected components,”

Proceedings of the International Workshop on Discrete Event Systems,

WODES96. Institution of Electrical Engineers, Computing and Control

Division, Edinburgh, UK, 1996.

[31] R. Milner, M. Tofte, R. Harper, and D. MacQueen, The Definition of

Standard ML: Revised, Cambridge Mass.: MIT Press, 1997.

[32] J. Ullman, Elements of ML programming, Upper Saddle River NJ:

Prentice Hall, 1998.

[33] E. Friedman-Hill, Jess the Rule Engine for Java Platform, version 7.1p2,

2008, http://www.jessrules.com/

[34] “Zotero”, Center for History and New Media (CHNM) at George Mason

University (GMU), http://www.zotero.org/

[35] “CPN Tools: Computer Tool for Coloured Petri Nets”, University of

Aarhus, http://wiki.daimi.au.dk/cpntools/cpntools.wiki

[36] “Britney Suite: Experimental Test-bed for New Features for CPN Tools”,

University of Aarhus, http://wiki.daimi.au.dk/britney/britney.wiki

[37] M. Huth, and M. Ryan, Logic in Computer Science: Modelling and

Reasoning about Systems, Cambridge [U.K.]; New York: Cambridge

University Press, 2004.

[38] M. C. Chu-Carroll, A Quick Bit of Temporal Logic: Introducing CTL.

Article published in Books Category of Scienceblogs.com. April, 2009.

[39] K. Jensen, S. Christensen, and L. M. Kristensen, CPN Tools State Space

Manual, 2006, http://wiki.daimi.au.dk/cpntools-help/_files/manual.pdf

http://www.jessrules.com/
http://en.wikipedia.org/wiki/Center_for_History_and_New_Media
http://en.wikipedia.org/wiki/George_Mason_University
http://en.wikipedia.org/wiki/George_Mason_University
http://www.zotero.org/
http://wiki.daimi.au.dk/cpntools/cpntools.wiki
http://wiki.daimi.au.dk/britney/britney.wiki
http://wiki.daimi.au.dk/cpntools-help/_files/manual.pdf

135

CURRICULUM VITAE

Muzammil Sagheer received his Bachelor of Science (major in Computer Science)

degree in 2004 from Mohammad Ali Jinnah University, Karachi, Pakistan. He served as

an Undergraduate Teaching Assistant in the courses of Computer Programming and

Compiler Construction at Mohammad Ali Jinnah University and later worked as a

Software Developer for two years at Infinilogic (Pvt.) Ltd., Karachi, Pakistan. Nowadays,

he is working as a Graduate Research Assistant at System Architectures Laboratory,

George Mason University.

