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ABSTRACT 

ASSESSMENT OF FLASH FLOOD HAZARDS IN A SEMIARID AREA THROUGH 

SATELLITE AND SOCIAL MEDIA DATA MINING 

Eidah Ghurm Alzahrani, Ph.D. 

George Mason University, 2022 

Dissertation Director: Dr. Donglian Sun 

 

Since 2009, flood events have shown an increasing trend in Saudi Arabia. Moreover, most 

floods occur in cities and may be related to rapid urbanization.  Meanwhile, flooding in 

semiarid areas is usually short-term flash floods within small areas. Therefore, satellite-

based flash flood observations are still challenging, while conventional observations are 

usually sparse in semiarid areas.   

 This study combines machine learning techniques, the statistical analysis of frequency 

ratio, the logistic regression, and the analytic hierarchy process (AHP) method to identify 

flood-prone areas in a semiarid area in southern Saudi Arabia. This study integrates thirteen 

flood-contributing factors such as rainfall, elevation, aspect, slope, flow accumulation, 

stream power index (SPI), topographic wetness index (TWI),  drainage density, distance 

from the river, distance from roads, soil types, urban area as represented by impervious 

area, and normalized difference vegetation index (NDVI). Ground observations from social 

media, such as Twitter and YouTube, validate the prediction results. The objectives of this 

study include: First, analyze the impacts of the selected thirteen flood-contributing factors. 

Second, build a decision-tree model between a flash flood and the influencing factors. 



 

 

Third, create a flood susceptibility map in southern Saudi Arabia using the AHP method. 

The susceptibility map shows the levels of flood risk and their respective percentages in 

the study area: very low 5%, low 44%, moderate 39%, high 1%, and very high 11%. The 

results are validated against the ground observations from social media, such as Twitter 

and YouTube. This research indicates 30.76% commission error and 35.71% omission 

error from the derived flood susceptibility map with very high and high flood risks, while 

the overall accuracy can reach 90.37%.  
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CHAPTER ONE INTRODUCTION 

Section One Problem Description 

Floods are a threat to human life in various parts of the world due to increasing fluctuation 

in the world's weather patterns. Floods have been observed in areas with adequate 

information about occurrence patterns. Still, predicting these floods has become a 

challenge (Wolman, 2001). 

In addition to the unpredictability of some of these devastating floods, little research has 

been focused on arid areas that experience little or no rainfall. These areas pose a challenge 

and a risk of tragic floods due to the lack of a flood hazard map. In recent years, Saudi 

Arabia has been experiencing a high risk of flash floods due to extreme weather conditions 

with heavy rainfall. Meteorologists warned that heavy wind, thunder, and rain would affect 

Jazan, Baha heights, and Asir (Subyani, 2016). In addition, rapid urbanization often 

involves removing vegetation, soil, and depressions from the land surface (El Alfy, 2016). 

The permeable soil is replaced by impermeable surfaces such as roads, roofs, parking lots, 

and sidewalks, reducing water infiltration into the ground and increasing runoff to streams. 

As a result, the peak discharge, volume, and frequency of floods increase. Floods have led 

to property damage and loss of life. Multiple uncertainties exist in the optimal flood-control 

decision‐making process to deal with the threats associated with climate hazards and 

uncontrolled urbanization (Zhu et al., 2016). 
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The peak discharge of a flood is influenced by many factors, including the intensity and 

duration of storms and rainfall, the topography of streams, the vegetation, the soil types, 

and the hydrologic conditions preceding storm events (Wu et al., 2010). This research will 

investigate the factors that may have caused floods in Saudi Arabia from 2009 to 2020. In 

addition, artificial intelligence and machine learning will investigate the conditions under 

which heavy rainfall may cause a flash flood in Saudi Arabia, especially in areas of 

urbanization (Abdulrazzak et al., 2019). 

Floods can be mapped and monitored using remotely sensed data acquired by satellites. 

Also, remote sensing provides valuable data and observations that may compensate for the 

sparse data from field surveys and gauging stations, especially in remote areas and 

developing countries (de Cunha, 2012). 

Section Two Flood in Saudi Arabia  

 

Between 2009 and 2021, the Kingdom of Saudi Arabia was exposed to many floods in 

separate areas; some of these floods were monitored by the Civil Defense Department, 

which counts the number of deaths and injuries as well as property losses such as drifting 

cars, damaged homes, power outages, the collapse of roads, and the closure of schools 

(Alrehaili, 2021). 

Table 1 below lists the floods recorded in Saudi Arabia that significantly impacted the 

country's population and economic resources. This list contains twenty floods that occurred 

at separate times, but most were during the rainy months of November, December, January, 



3 

 

and May. The southern and southwestern parts of the Kingdom of Saudi Arabia are affected 

by the southwest monsoon, which contributes to the heavy rainfall in those parts of the 

Kingdom of Saudi Arabia. 

Table 1 shows that floods occurred more than once in some areas, causing property and 

human losses. For example, floods occurred in the Makkah region and the Jeddah region 

in 2009, 2011, 2015, and 2017. Bahrawi et al. (2020) found that the flood characteristics 

of 2009-2011 showed an increased risk of flooding in watersheds, and the death rate was 

also high. For example, in the November 2009 flood in Jeddah, there were 122 deaths 

recorded, 350 people disappeared, and the number of cars swept away by the flood was 

estimated at 3,000 vehicles. In 2011, a flood killed ten people, and approximately 1,500 

people took refuge. In contrast, the Asir region recorded the lowest deaths: only one person 

died, and ten people were injured. However, the business damages alone were reported to 

be about 1 billion Saudi Riyal (AL-Bassam et al., 2014). 

In 2019, the city of Hafar Al-Batin was hit by a flood, and about seven people were lost, 

11 people were injured, and 40 cars were submerged in water. In addition, about 1,100 

people suffered property losses. All these floods were due to heavy rain for only 3 hours. 

The highest rain rate was about 115.5 mm per hour in Jeddah in 2017. Also, in 2015, the 

city of Jeddah was exposed to 23 mm of rain in half an hour. All these data were collected 

by the Civil Defense Administration, which contributed to the rescue.  



4 

 

Table 1. A list of flash floods in the Kingdom of Saudi Arabia from 2009 - 2021 

Source Reason Material and human losses Location Date Number 

General 

Directorate 

of Civil 

Defense 

(CDD) 

 

heavy 

rainfall 

 

 

Four people were rescued 

 

 

Tabuk  

 

6 

February 

2021 

 

 

1 

General 

Directorate 

of Civil 

Defense 

(CDD) 

 

heavy 

rainfall 

 

 

22 people were injured. 

 

 

Hafr AL-

Batin 

 

6 

February 

2021 

 

 

2 

General 

Directorate 

of Civil 

Defense 

(CDD) 

 

heavy 

rainfall 

 

Some streets in the Holy 

Capital were turned into 

floods 

 

 

Makkah  

 

 

27 April 

2021 

 

 

3 

 

General 

Directorate 

of Civil 

Defense 

(CDD) 

 

 

heavy 

rainfall 

77 people were rescued and 

about 600 were evacuated 

from their homes and moved 

to temporary shelter. Three 

people died. 

 

Makkah 

Al Madinah 

‘Asir 

Jizan 

Al Bahah. 

 

25 July to  

6 August  

2020 
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General 

Directorate 

of Civil 

Defense 

(CDD) 

 

heavy 

rainfall 

 

 

14 people were rescued, and a 

vehicle was swept away in the 

flood. 

 

 

Tabuk, 

Streets of 

Tabuk City. 

 

 

6 

February 

2021 
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General 

Directorate 

of Civil 

Defense 

(CDD) 

strong 

winds and 

heavy 

rainfall 

dumped 

43mm of 

rain in just 

30 minutes 

 

7 people died; 11 people were 

injured. 

16 people were rescued from 

vehicles. 

3 buildings were damaged, 

along with about 40 cars. 

About 1,100 people were 

affected. 

 

 

 

Hafr Al-

Batin 

 

6 

February 

2021 

 

 

 

 

6 

 

General 

Directorate 

of Civil 

Defense 

(CDD) 

 

heavy 

rainfall 

landslides 

1 person was missing. The 

effect was mostly people in 

vehicles trapped in flood 

water. Volunteers searched for 

the missing person for 3 days. 

 

Southwest  

Saudi 

Arabia, 

Jazan and 

Najran 

Regions. 

 

22-23 

May 

2019 

 

 

7 

General 

Directorate 

of Civil 

Defense 

(CDD) 

 

heavy 

rainfall 

 

111 people were rescued, 

many of them from vehicles 

stranded in flooding wadis. 

Homes were damaged for 14 

families. 

 

Madinah 

Region 

 

08 -10 

February 

2019 

 

 

 

8 

http://floodlist.com/tag/saudi-arabia
http://floodlist.com/tag/saudi-arabia
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General 

Directorate 

of Civil 

Defense 

(CDD) 

 

 

 

heavy 

rainfall 

One person died. in Madinah. 

About 30 people were 

evacuated. Schools were 

closed. 

 

Tabuk, Jawf, 

Madinah, 

and Makkah 

regions. 

 

27 -28 

January 

2019 

 

 

 

 

9 

NASA’s 

Global 

Precipitation 

Measurement 

Mission 

heavy 

rainfall 

powerful 

storms 

115.5 mm 

(4.5 inches) 

per hour. 

4 people died. 481 people 

were rescued. 

40 people in 10 families were 

evacuated. Streets were under 

water up to 50 cm deep in 

cities, causing major traffic 

problems. 

 

Jeddah, 

Saudi 

Arabia. 

 

21 

November 

2017 

 

 

 

 

10 

General 

Directorate 

of Civil 

Defense 

(CDD) 

 

heavy 

rainfall 

 

The railway line Saudi 

Railways was damaged. 18 

people were injured. 

Dammam, 

Eastern 

Province 

 

16 

February 

2017 

 

 

 

11 

 

General 

Directorate 

of Civil 

Defense 

(CDD) 

 

heavy 

rainfall 

 

1 person died and at least 10 

were injured. 

Emergency crews responded 

to a total of 914 calls. 280 

rescued were in vehicles at the 

time. 

 

 

 

Asir region 

 

 

 

14-15 

February 

2017 

 

 

 

 

12 

 

 

General 

Directorate 

of Civil 

Defense 

(CDD) 

 

heavy 

rainfall 

 

8 people died. 120 people 

were evacuated. 120334 

people 

Rescued 334 people 

 

Riyadh, 

Eastern 

Province, 

Asir, Jizan, 

Makkah and 

Tabuk. 

 

 

27- 30 

November 

2016 
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General 

Directorate 

of Civil 

Defense 

(CDD) 

heavy 

rainfall 

11 were killed, and 3 were 

missing. Over 400 vehicles 

were trapped in floodwater. 

300 people had to be rescued 

from the floods. 

 

Riyadh 

 

 

23 March 

2015 

 

 

14 

 

 

General 

Directorate 

of Civil 

Defense 

(CDD) 

heavy 

rainfall 

23 mm of 

rain in just 

15 minutes 

 

12 people died in Jeddah after 

they were electrocuted by 

power cables falling into 

floodwater. 16 people were 

trapped in the floods. 

Floodwater was up to 1 meter 

deep. 

 

Western, 

northern, 

and central 

parts of 

Jeddah 

 

 

17 

November 

2015 

 

 

 

 

 

15 

 

General 

Directorate 

of Civil 

Defense 

(CDD)) 

heavy 

rainfall 

 

Schools were closed; roads 

were blocked. 

Riyadh and  

Al-Qassim 

Regions. 

24-25 

November 

2015 

 

 

 

16 

 

General 

Directorate 

of Civil 

heavy 

rainfall 

over the 

last two 

days, 

3 children died. Emergency 

services received nearly 1000 

calls. Schools were closed 

 

 

 

(Ha’yel) 

Province, 

 

 

4 January 

2014 

 

 

 

17 



6 

 

Defense 

(CDD) 

 Northwest 

Saudi 

Arabia. 

 

the official 

SPA news 

agency 

reported. 

 

heavy 

rainfall 

74mm 

 

Four people were reported 

dead and 10 were missing. 

Schools were closed and 

residents were urged to stay 

indoors. 

Emergency teams rescued 

1,357 people. 

Power to parts of the city of 5 

million was knocked out. 

 

 

 

 

Riyadh 

 

 

 

16 

November 

2013 

 

 

 

 

18 

 

General 

Directorate 

of Civil 

Defense 

(CDD) 

11cm of 

heavy 

rainfall 

in 3 hours 

 

10 people died, and 1,500 

people were missing. Shelter 

and relief were necessary for 

more than 1,500 families. 

 

 

 

Jeddah 

 

13January 

14 

2011 

 

 

 

19 

General 

Directorate 

of Civil 

Defense 

(CDD) 

heavy 

rainfall 

More than 

70 

millimeters 

of rain fell 

in Jeddah 

in just four 

hours on 

Wednesday 

25 

 

122 people were killed, and 

more than 350 were missing. 

At least 3,000 vehicles were 

swept away or damaged. 

Some roads were under a 

meter (three feet) of water. 

Business losses were 

estimated at a 

billion riyals (US$270 

million). 

 

 

 

 

 

 

Jeddah 

 

 

 

 

25th 

November 

2009. 
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 Particular indentation was found that floods recurred in recent years by measuring the 

number of floods in Saudi Arabia using data released on the flood-list website. In 

addition, flood-related information has increased on social media platforms such as 

Twitter, YouTube, and Facebook. 

Floods were more common between 2009 and 2021, as seen in Table 2. Furthermore, the 

Flood Frequency occurrence between 2009 and 2021 shows a rise in the number of 

floods, with the year 2021 recording four floods between February and April. According 

https://en.wikipedia.org/wiki/Saudi_riyal


7 

 

to the Saudi Civil Defense Directorate, most of these occurrences occurred in Tabuk, 

Harf Al-Batin, and Makkah. 

 

 

Table 2. Flood Frequency in Saudi Arabia from 2009 – 2021 

Year Flood 

Frequency 

2009 1 

2011 1 

2013 1 

2014 1 

2015 3 

2016 1 

2017 3 

2019 3 

2020 2 

2021 4 
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Figure 1. Flood Frequency in Saudi Arabia Between 2009 - 2021 

 

 

 

Table 3 also shows the number of human losses that accompanied floods from 2009 to 

2021, and it was found that the number of deaths was high in 2009, 2011, and 2015. Still, 

there was a noticeable decrease in the following years due to improved rescue efforts in 

Saudi Arabia. In addition, some issues were also addressed, particularly in Jeddah, by the 

design of water canals and dams and the removal of several slums. 

As for the number of people rescued, the numbers were still high because of the change 

in the areas of flood occurrence. Many floods have occurred in northern areas such as 

Tabuk and southern and southwestern areas such as Najran, Jizan, Al Baha, and Aysar; 

these areas have received a high amount of rain in recent years. 
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Table 3. The number of Human Life Losses Due to Floods in Saudi Arabia Between 2009 – 2020 

Year People 

Rescued 

People Died 

2009 350 122 

2011 1500 10 

2013 10 4 

2014 0 0 

2015 300 23 

2016 334 8 

2017 531 5 

2019 141 2 

2020 677 0 

2021 19 7 
 

 

 

As shown by the timeline of the occurrence of floods from 2009 to 2021, there has 

been an increase in the number of floods, with four floods recorded between February 

and April in the year 2021, mainly in the Tabuk, Hafr Al-Batin, and Makkah regions, 

as reported by the Saudi Civil Defense Directorate. In 2018 and 2012 no reported or 

missing data.  
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Figure 2. Human Life Losses Due to Floods in Saudi Arabia Between 2009 – 2021 

 

 

Section Three Research Statement 

It is difficult for researchers to obtain data that contribute to the study of natural disasters 

in Saudi Arabia. We seek through this study to provide good data sources with the lowest 

cost. In semiarid areas like Saudi Arabia, conventional observation is sparse. 

A flash flood is usually a short-term event caused by heavy rainfall associated with 

clouds; however, satellite imageries still have difficulty detecting flash floods. Optical 

imagery cannot penetrate clouds to watch floods; radar-type sensors cannot penetrate rain 

clouds. After the sky becomes clear, the flash flood is also gone. Sensors like Landsat and 

SAR usually have a low temporal resolution or a long revisit time (6-12 days), and their 

limited spatial and temporal coverages may not be able to catch a short-term flash flood 
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in semiarid areas. Therefore, there is a need to assess flash flood hazard to identify risk 

area and monitor flash flood in small semi-arid region like Saudi Arabia. 

Section Four Objectives of the Study 

 

● Study flash floods in Saudi Arabian cities using open data. 

● Determine the impact weight of the selected thirteen flood-conditioning factors 

● Identify risk areas and monitor flash floods in a small semi-arid region like Saudi 

Arabia. 

● Combine the flood-conditioning factors using the weighted overlay method in 

ArcGIS to map the Wadi Al-Ahsbah in southern Saudi Arabia, a flood-prone area, 

and classify these areas based on risk. 

Section Five What is Expected from the Model Outputs? 

● The model can be used to understand a catchment's hydraulic behavior 

better and assist in developing flood control solutions. 

● The model will create flood-risk maps, which are essential tools for 

planning and managing emergency responses in the country. 

● The most important output of this assessment is to identify flood-prone 

areas where conventional data is unavailable. 
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● It also helps determine flood locations during heavy rains and provides 

flood warnings to residents. 

● Creating a good database for flood-prone areas to avoid using them for 

human activities like schools and housing. 

● In the end, researchers are encouraged to use open data to conduct more 

studies on this subject. 

 

Section Six Impact and Benefit of Studying Flash Floods in an Arid Region 

 

These are the impacts and benefits of studying flash floods in an arid region: 

● Because of the low probability of floods in arid areas, little attention has been 

paid to this area in previous research, so the proposed research is essential. 

● Determine risk levels for areas to help identify new construction sites and 

redevelop high-risk sites to avoid potential disasters in the future. 

● Manage floods in arid areas, which may cause significant damage because such 

areas are not likely to take the required precautions.  

● Help adventurers avoid the possible risk of floods (Memon et al., 2015).  

● Saudi Arabia's government also focuses on developing a comprehensive disaster 

risk assessment, strengthening urban resilience planning, and building regional 

capacity for emergency response planning (GFDRR, 2017).  



13 

 

CHAPTER TWO LITERATURE REVIEW 

One of the most dangerous forms of hazard is flash flooding. Since flash floods are difficult 

to track and have a rapid onset, their suddenness, rarity, small size, and peak discharge are 

also unexpected (Xia et al., 2011). Flash floods have severe impacts on human society, 

including loss of life, property damage, road and communication problems, and 

environmental damage. Flash floods have historically resulted in the highest number of 

human deaths (Jonkman and Kelman, 2005). Flooding risks are increased by the lack of 

hydrologic studies undertaken for most urban plans and by incomplete rainwater drainage 

systems and flood projects that fail to consider actual measurements and accurate pathways 

of the main wadis (Ashraf and Ahmed, 2019). The planning process and long-term urban 

growth must identify flood-prone areas and develop urban flooding maps based on 

geomatics and hydrological and hydraulic modeling (Marco, 2019).  

Flood mapping is an integral part of flood risk management since it involves identifying 

geographical areas that could be prone to flooding (Salamon et al., 2014). Flood mapping 

includes developing two different maps that aim to show the flood danger levels in each 

region (Alfieri et al., 2017). First, a flood hazard map determines water depth in flooded 

areas (Alfieri et al., 2017). It solves this by categorizing the flood extent into three 

scenarios: low, medium, and high likelihood. A flood risk map is a map of possible flood 

areas that considers the region's population, economic activities, and, ultimately, areas with 

a higher potential risk of flooding (Rosser et al., 2017). To minimize losses in lives, 

property, and facilities, identifying the dynamics of floods in dry environments and 
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forecasting a reliable flood hazard map while considering different factors and conflicting 

objectives are essential in Saudi Arabia's vision for 2030. A recent study (Essel et al., 2017) 

proposed that hydrologic assessment using geospatial approaches could identify different 

hydrologic components, plan hydrologic designs, and construct possible scenarios to 

reduce the risk of flash flooding. 

Section One Flood Modeling 

Ashraf and Al-Alola (2020) used the analytic hierarchy process (AHP) to extract weighted 

averages of eight parameters that influence flood-prone areas, including flow 

accumulation, distance from the wadi network, slope, and rainfall density, drainage 

density, and rainfall speed. They discovered that 22.12% of urban areas and 46.39 % of 

agricultural areas are vulnerable to high or very high flooding hazards (Ahmed and Ashraf, 

2019). They used the hydraulic modeling program (HEC-RAS) to implement the risk 

matrix model while designing a two-dimensional model to measure the flood's speed, 

depth, and spread. Flooding was classified by Opolot (2013) based on the characteristics 

of the flood, the size of the affected area as a spatial element, and the triggering 

precipitation event's duration as a temporal element, expanding on Bronster's classification 

(Al-Ghamdi, 2012) that investigated the effects of urban development on flood hazards in 

Makkah, Saudi Arabia, using the NRCS curve number method. According to the findings, 

the residential areas of Makkah city have grown by 197 percent, while overall flood 

volumes have grown by 248 percent. The Convolutional Neural Networks (CNN) -based 

methods technique uses flood susceptibility mapping to two separate CNN classifications 

(Wang et al., 2020). In the CNN architecture, three data presentation methods are designed. 
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Eleven flood-triggering factors related to past flood events were used to construct the 

proposed CNN-based methods. In addition to the current support vector machine (SVM) 

classifier, the output of these CNN-based methods was evaluated using several objective 

parameters. The experiments showed that all CNN-based approaches could generate more 

accurate and valuable flood susceptibility maps.  

Sarkar and Mondal (2020) used a frequency ratio model to demarcate flood vulnerability 

areas in the Kulik river basin. Parameters such as slope, elevation, rainfall, drainage 

density, land use–land cover, TWI, population density, road density, and household density 

were recommended to help understand flood mechanisms. Flood locations were obtained 

from the flood inventory map. The flood vulnerability zone map was divided into very low, 

moderately low, highly vulnerable, and highly vulnerable. The flood-prone map built with 

the FR model is highly accurate, with an AUC value of 0.901 for success rate. 

Another study evaluated the Wi method's efficacy and compared its findings to frequency 

ratio (FR) and logistic regression (LR) methods. Thirteen variables were used, including 

elevation height, slope, aspect, curvature, geology, and soil. The area under the curve 

(AUC) and the Kappa index can be used to compare model results. The AUC prediction 

rates for LR, Wi, and FR were 79.45 percent, 78.18 percent, and 67.33 percent, 

respectively. The work suggested that the Wi system conducts flood susceptibility analysis 

effectively (Tehrany and Kumar, 2018). 

 

 

 



16 

 

Section Two Flood Mapping Techniques and Social Media 

 

People and organizations use microblogging services like Twitter as communication 

channels during mass emergencies to provide status updates, provide aid, request help, and 

search for actionable information (Alharbi et al.,2019). (Petrovic et al., 2013) Twitter, it 

was discovered, frequently breaks incoming news about disaster-related incidents faster 

than traditional news channels. Detecting disaster-related information early allows 

decision-makers to respond quickly and successfully during disasters. Besides GIS, recent 

studies have focused on using social media in reporting flooding and event mapping (Smith 

et al., 2017). This advent of social media flood reporting can be attributed to a worldwide 

increase in the Internet and smartphones (Munasinghe et al., 2018). Social media has been 

used in various parts of the world because flood calamities may not be predicted, thus 

leading to the use of the information that citizens provide, either by their description or 

their video footage (Munasinghe et al., 2018). Their research on the use of social media for 

mapping (Rosser et al., 2017). Twitter, for example, provides a rich source of real-time 

information regarding emergencies from which meaningful information can assist 

situational awareness (Alharbi et al.,2019), revealing the use of geo-referenced reports 

related to floods. This method was described as a way of determining the credibility of 

information given by the citizens. Therefore, the research by Rosser, Leibovici, and 

Jackson (2017) has been used to describe the use of citizens' information in various formats, 

including video footage, where the information is ranked and stored for future events in 

response to emergencies. They also suggest using video footage to determine the hydraulics 
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of flash floods. Aburizaiza (2019) used social media data to determine the locations of 

floods in Jeddah in 2009 and compared this data to the Topographic wetness index (TWI). 

She found that YouTube was more useful than Twitter because Twitter data was filtered 

and obtained using only English keywords. Finally, Rosser et al. (2017) also propose an 

interpolation approach that uses citizens’ or social media users’ photographs to determine 

flood levels.  

In addition, research conducted by Herfort and colleagues in 2014 focused on assessing 

whether the geospatial distribution of tweets represents the geospatial distribution of 

floods. The research used hydrological information and digital elevation data to assess 

whether the tweets' geographical positioning represents the floods' geospatial information 

(Herfort, 2014). This research aimed to extract data relevant for mapping River Elbe floods 

with the aid of social media. The study found that only a small amount of information is 

georeferenced by Twitter users, thus hinting at the possibility of the use of geospatial 

distribution of tweets to determine the distribution of floods. 

Another study conducted on flood mapping in Pakistan suggested using topographic 

information (Memon et al., 2015). This research differed from other research that used 

topographic information; this study incorporated a moderate-resolution imaging spectro-

radiometer, which helps provide images that researchers can view and easily interpret. The 

use of social media and GIS for flood mapping, as found in various sources consulted by 

this research, clearly shows that using the two techniques is crucial in mapping data in arid 

areas, where there is a likelihood of unpredicted floods due to the unpredictable nature of 

rainfall (Middleton et al., 2013).  
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CHAPTER THREE STUDY AREA 

Section One Location 

Saudi Arabia is the largest country in the Middle East, covering an area of 2.253 x 10 km2. 

Al-Zahrani (2008). This study, however, will focus on the 2017 flood in Wadi Al-Ahsbah. 

Wadi Al-Ahsbah flows into the Red Sea from the Kingdom of Saudi Arabia’s central-

western region. Flooding has occurred in several coastal areas. (Al-Zahrani, 2005) 

The Wadi Al-Ahsbah valley is the longest in southern Saudi Arabia. The valley is located 

in the Tihama region and flows from east to west into the Red Sea. It is 50 kilometers long, 

and the total area is 1177 square kilometers. Many cities, villages, and residential areas are 

located on its banks; the most notable is the city of Al-Makhwah, which is situated on Wadi 

Rush and is one of the most important tributaries of Wadi Al-Hisbah. Estimates of the size 

of the floods in this valley indicate that they present a hazard to everything in the valley’s 

lower water basin and do not benefit from the amount of surface water wasted each year, 
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which ends up in the sea. These floods typically cause property damage, loss of life, and 

damage to facilities. Furthermore, the torrential water pools eventually create swamps  

for diseases harmful to human health (Khimi, 2003). However, this study will focus on the 

2017 flood in the Wadi Al-Ahsbah region (Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The study Area 
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Section Two Climate 

The climate in Saudi Arabia is predominantly desert, and the country is extremely hot in 

summer (Peter,2008). Almost everywhere, rainfall is limited, with a peak from November 

to April. The current study looked at rainfall patterns and extremes in Saudi Arabia for the 

42 years 1978 to 2019 (Figure 4) (Almazroui, 2020). Saudi Arabia is at risk of several 

natural hazards, including floods, sand and dust storm, and drought. Heavy rainfall in Saudi 

Arabia sometimes results in flash floods. The country receives intense rainfall, especially 

in the mountainous southwestern region, which floods seasonal water courses (Sharif et al., 

2016). In the study of climatic variables, the rainfall quantities at each station show that 

the central and southern parts of Saudi Arabia receive the most substantial rainfall 

(Almazroui, 2020). Due to the high latitudinal range, Saudi Arabia’s climate is influenced 

by various weather patterns. According to seasonal rainfall data, most rain falls during the 

winter and spring seasons Figure 5 (Almazroui,2020).  
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Figure 4. A Time Series of Country-Averaged Annual Rainfall (mm) 

 

 

 

Figure 5. A Time Series of Saudi Arabia’s Wet Seasonal Rainfall 
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Wadi Al-Ahsbah is in the AL-Baha region, for which the temperature and rainfall 

averages from 1991 to 2020 are shown in Figure 6. 

 

 

 

 

 

 

 

 

 

 

Figure 6. Average monthly temperature and rainfall from 1991 to 2020 for the AL-Baha region 

 

 

 

 



23 

 

Section Three Urban Development in Saudi Arabia 

Worldwide, throughout the last century, there has been a gradual increase in urbanization 

(Newbold and Scott, 2013). In the United States, urbanized areas are defined as “areas 

having 50,000 or more population” (United Nations Statistics Division 2007 Demographic 

Yearbook: Table 6). In recent years, rapid urbanization has been observed in the Kingdom 

of Saudi Arabia, and large numbers of people have moved from rural areas to urban areas 

that provide all services (Moustapha et al., 1985).  

According to the Municipal and Rural Affairs Ministry, Saudi Arabia has significantly 

increased urbanization since the 1950s. Saudi Arabia’s urban population had grown from 

21% in 1950 to 80% in 2015 (Alahmadi and Atkinson, 2019). Table 4 shows the increase 

in population from 1970 to 2020. The population of Saudi Arabia reached about 34 million 

in 2020. The resulting growth in urban housing was much faster than the development 

plans available. 
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Table 4. Saudi Arabia Population Between 1970 and 2020 

Population 

Year Million 

1970 5.8 

2000 20.5 

2018 33.7 

2020 34.81 

 

The rapid expansion of urbanization in Saudi cities has resulted in a lack of technological 

and administrative capacity to plan for it properly. In addition, there is a lack of cooperation 

between government departments and executive authorities, and there is also a lack of skills 

to manage urban growth (Bahrawi et al., 2020). This has resulted in increased built-up areas 

at the expense of the natural environment, valleys, and vegetation cover. The random urban 

expansion contributes to the waste of vegetation cover and the destruction of the 

ecosystem. In addition, unplanned urbanization leads to high human and economic losses 

(Al-Zamil and Al-Qarni, 2019). Many difficulties were encountered when attempting to 

study urban growth because of the lack of data or difficulties in obtaining it. Therefore, 

satellite data was used for mapping urban areas, such as the Operational Line-Scan System 

(OLS) of stable night-time (SNT) light images (Alahmadi and Atkinson, 2019).  
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Section Four The Effect of Urban Growth on Waterways  

 

Several Saudi cities, including Riyadh, Jeddah, Mecca, Jizan, and Najran, were built on the 

sides of valleys. During the season of heavy rain, these cities may be prone to flooding (Al 

Zahrani et al., 2017). In some agricultural areas, factors such as soil fertility and 

groundwater availability have contributed to the spread of urban growth. 

As a result of economic growth, most cities grew and expanded at the expense of areas for 

water run-off. Moreover, at the end of the last century, Saudi Arabia experienced periods 

of drought, which prompted people to build houses and farms randomly near waterways 

without considering the run-off areas, the terrain, and the slope of the land. Since Saudi 

Arabia experienced a significant rise in rainfall between 2009 and 2020, these residential 

activities exposed these new residential areas to flooding during the rainy seasons 

(Almazroui et al., 2012; World Bank, 2020). 

The Geological Survey has confirmed that the climate of Saudi Arabia is desert. It causes 

heavy rains in short bursts, resulting in significant floods and damage to infrastructures 

such as roads and bridges, as seen during the Jeddah floods. As posted on the flood-list 

website, a flood struck Jeddah on November 21, 2017. As a result, four people were killed, 

481 people were rescued, and 40 people from ten families were evacuated. In addition, 

streets in cities were under water up to 50 cm deep, causing severe traffic problems due to 

heavy rain of 115.5 mm (4.5 inches) per hour. 
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CHAPTER FOUR METHODOLOGY  

 

This paper proposes a machine learning methodology to assess flash flood hazards with 

multi-satellite images automatically. The goal is to develop a system that can help 

automatically identify the factors contributing more to the flood areas in massive amounts 

of data. The statistical analysis method will use a decision tree and combine the frequency 

ratio (FR) and the application of logistic regression (LR). 

Section One GIS 

A geographic information system (GIS) allows for considering several factors that affect 

floods’ frequency (Dewan, 2007). In this part, data mining and GIS will be used to analyze 

the factors that contribute to flooding, using Spatial Analyst and other tools. 

 

4.1.1. Pre-Processing 

1) Terrain data was collected using the Digital Elevation Model (DEM): 

The elevation data from the Shuttle Radar Topography Mission (SRTM) at 30-m resolution 

in a latitude/longitude projection (EPSG:4326), obtained from NASA (EPSG:20437, Ain 

el Abd / UTM zone 37N), was used to re-project the DEM 

2) The Define Projection by Data Management tool in Arc GIS is used to transform a 

raster dataset from one coordinate system to another in Arc GIS. 

http://www2.jpl.nasa.gov/srtm/
http://spatialreference.org/ref/epsg/wgs-84/
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3) The Resample tool in Arc GIS is used to change the spatial resolution of a raster 

dataset and set rules for aggregating or interpolating values across the new pixel 

sizes. 

4) (Data Management) > Clip Raster tool in Arc GIS is used to clip a raster with the 

study area.  

5) (Conversion tool) > was used to convert point to raster.  

6) (Extraction tool) > sample was used to create a table that can be worked with in 

Weka software.  

7) Spatial Analyst tool in the ArcGIS is used to transform the DEM into a slope map 

(Spatial Analyst > Surface > Slope). This map describes the slope for each raster 

cell in degrees, based on the elevation at each point. 

8) Another tool was used to calculate the aspect within the GIS spatial analysis 

(Spatial Analyst > Surface > Aspect).  

9) Performed calculation of the flow accumulation to concentrate flow areas, which 

can identify stream channels using the GIS spatial analysis tool (Spatial Analyst 

Tools > Hydrology > Flow Accumulation). 

10) The Stream Power Index (SPI) was calculated by using this formula (Danielson, 

2013): 



28 

 

SPI = Ln ((Flow Accumulation Raster) + 0.001) * ((Slope Raster/100) + 0.001)) Arc Map 

software was used to produce the SPI and TWI from the DEM (Jaafari et al., 2014). 

11) The Topographic Wetness Index (TWI) measures topographic influences on basic 

hydrological processes (Schillaci et al., 2015). TWI was calculated using 

interactions between fine-scale landforms and the up-gradient contributing land 

surface area, as follows (Beven et al., 1979): 

 

TWI can be calculated from Equation (1) 

TWI = ln [CA/Slope]     (1) 

 

Where CA is the local upslope catchment area that drains through a grid cell. 

Slope is the steepest outward slope measured in drop/distance for each grid cell, i.e., the 

tangent of the slope angle for each grid cell (Tarboton, 1997). 

12) To find (Distance from the river), we used (Spatial analyst tool) Hydrology > 

stream link and stream to feature. 

13) In ArcGIS, we used Euclidean distance, a standard tool used mainly in multiple 

criteria analysis. This tool helps create a raster from a vector layer or another raster 

that visually and colorfully represents the current distances from that river or roads 

to the remainder of the field.  
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15) To transform a raster into an integer raster, reclassify tool in the ArcGIS is used to 

classify all factors to five classifications using the Equal interval method.This tool 

converted all raster images before using the weighted overlay.  

16) All flood contributing factors were classified into five classes using the Equal 

Interval method for FR modeling (Ayalew and Yamagishi, 2005). Each 

conditioning factor has a spatial resolution of 30-m. Thus, for each class of 

conditioning factors, determine the total number of flood pixels (Mojaddadi and 

Pradhan, 2017). Figure 7 shows the flow chart of the processing. 

 

 

 

 



30 

 

  

Figure 7. Flow chart of modeling flood susceptibility map. 
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Section Two Statistical Analysis Method 

 

The decision trees, the frequency ratio (FR), and logistic regression (LR) were primarily 

applied to models. The flood Twitter Point data X Y from 2017 was collected and used as 

the models were applied using the statistical application Arc GIS and the data mining 

application Weka. The related factors were collected or measured from the DEM, soil, 

stream power index (SPI), topographic wetness index (TWI), distance from the river, 

precipitation (rainfall), and (GMIS) maps to examine the association between the factors 

and flood susceptibility. 

After choosing the research area, the study's dependent variables were the flood-occurrence 

locations, and the independent variables were the other factors that affect the occurrence 

of floods. 

The spatial datasets contain a total of ten susceptibility factors. In addition, the Twitter 

flood-location Point data (X, Y) will be used for validation purposes. 

When the data from the Arc GIS file was finished with classification using the five equal 

intervals method, it was converted into the STATISTICA format, then the decision trees, 

frequency ratio (FR), and the logistic regression (LR), which were primarily applied to 

models, were applied in the program. The resampling nearest neighbor assignment result 

for flood conditions is shown in Table 5.  
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Table 5. The resampling result for flood conditions (sample) 

.  

 

 

4.2.1. Decision Trees DT 

A decision tree (DT) classifier represents a hierarchical model composed of internal nodes, 

leaf nodes, and branches (Bhaduri et al., 2008). A decision tree approach can help 

determine the threshold values of the predictors. Moreover, it can integrate all the possible 

candidate predictors. The basic strategy of DT is to select an attribute that will best separate 

the samples into individual classes (such as flood and no-flood in this study) by the 

measurement Information Gain Ratio. The main advantage of decision trees is that they are 

easy to construct, and the resulting trees are readily interpretable. From the set of input 

variables, decision rules will be generated through precise analysis. Without strict 

assumptions, this method can model relationships between variables regarding data 

distribution (Myles et al., 2004). Also, no specific rules are needed for the data format, as 

it can be nominal or scalar. It represents the relationship between a dependent variable and 

predicting factors. A root node, a set of internal nodes, and a set of terminal nodes construct 
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the tree. Each node of the tree produces a binary decision that separates the classes. This 

analysis continues, and the tree moves down until the terminal node is reached.  

 4.2.2. Frequency Ratio FR 

Lee et al. (2012) used the FR method for the flood-prone areas of South Korea. The 

researchers stated that the FR method could be easily applied to areas with limited map 

data at a low cost. Since the FR value represents the relationship between each class of 

impact factors and flood location, weights will be assigned to each class under each factor 

with accuracy (Neshat and Pradhan, 2015) using the ratio of the probabilities of the 'flooded 

and 'not flooded' areas (Bonham-Carter, 1994). Flood susceptibility mapping by the FR 

model is made simple with RS and GIS-like advanced techniques. The following formula 

was used to calculate FR values: 

Frequency ratio is calculated by Equation (2) 

             FR = (E/F) / (M/L)        (2) 

where E is the total number of pixels with flash flooding hazards in the study area, 

F is the total number of pixels with flash flooding hazards in each class of conditions, 

M is the total number of pixels in the study area, and  

N is the number of pixels in each class of the condition. 
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A higher FR indicates a stronger connection between flood incidence and conditioning 

factors. If the FR value is greater than 1, it shows a good correlation; if FR is less than 1, 

it shows a weak correlation (Regmi et al., 2013). 

4.2.3. Logistic Regression LR 

Flood-susceptibility mapping requires knowledge of flooding processes and the relevant 

conditioning factors, such as rainfall, soil, and elevation (Ayalew and Yamagishi, 2005). 

In this section, "logistic regression" is used to examine a dependent variable of a specific 

event (flood) and the relationship between that event and multiple independent variables 

(conditioning factors) that may influence the frequency of the event (Tehrany, 2018). The 

"success" and "fail" categories in logistic regression are represented by the term y = 1 for 

the "Flood" category and y = 0 for the "non-flood" category. 

Probability index is calculated by Equation (3) 

P =     1/ (1 + e-z)       (3) 

P is the expected flood probability, which ranges from 0 to 1 on an S-shaped curve, and  

Z is a linear combination that is represented in the following equation: 

Z = b0 + b1x1 + b2x2 + b3x3 + bnxn       (4) 
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CHAPTER FIVE DATA USED  

The data used in this study include multiple remote sensing and social media data; the 

sources and descriptions are listed in Table 6. 

 

Table 6. Descriptions and Sources of Data Used in This Study 

Data Data Description Source 

GPM  Precipitation data with 0.1∘ 

spatial resolution and 

half-hourly temporal 

resolution  

NASA 

 

 https://giovanni.gsfc.nasa.gov/giovanni/ 

 

Soil 

type 

Vector Data 

with 27 soil types 

Digital Soil Map of the World Maps & 

Layers, 

 owned by Alison Hillegeist 

http://worldmap.harvard.edu/data/geonode:D

SMW_RdY 

DEM Digital elevation model 

data at 30-meter resolution 

NASA 

Shuttle Radar Topography Mission (SRTM)  

GMIS Global Man-made 

Impervious Surface 

percentage data at  

30- meter resolution 

 

NASA Socioeconomic Data and Application 

Center (SEDAC)  

https://sedac.ciesin.columbia.edu/data/set/sde

i-viirs-dmsp-dlight/data-download 

Twitter  Flood location data Keyhole  

https://keyhole.co/index-1/?home_force=true 

NDVI Level 3 Global 

MODIS/Terra 16-day 

composite vegetation 

Indices at 250 m 

resolution 

NASA Earth Data  

https://ladsweb.modaps.eosdis.nasa.gov/miss

ions-and-

measurements/products/MOD13Q1#product-

information 

 

 

 

https://giovanni.gsfc.nasa.gov/giovanni/
http://worldmap.harvard.edu/data/geonode:DSMW_RdY
http://worldmap.harvard.edu/data/geonode:DSMW_RdY
http://www2.jpl.nasa.gov/srtm/
https://sedac.ciesin.columbia.edu/data/set/sdei-viirs-dmsp-dlight/data-download
https://sedac.ciesin.columbia.edu/data/set/sdei-viirs-dmsp-dlight/data-download
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Section One Flood Contributing Factors 

Researchers have proposed many spatial methods for mapping flood hazard zones and 

flood risk zones to distinguish flood-prone areas spatially. However, many flood-related 

variables are needed to build a flood hazard assessment model (Tehrany et al., 2014). There 

are nine factors in the data set used in this study. Each factor is described below.  

 

5.1.1. Precipitation Intensity  

Precipitation intensity is a critical factor since it significantly affects the total of floods over 

a wide range of time and locations (Souissi et al., 2018). Therefore, rainfall is a significant 

water source; the data were collected from the Earth data Giovanni website and selected 

using a time-averaged map from 2017. That source was NASA Global Precipitation 

Measurement (GPM) half-hourly data with a spatial resolution of 0.1∘ and a time scale of 

half-hourly. The (GPM) represents the period 2017. In addition, we have obtained 14 

images with half-hourly temporal resolution. Figure 8 shows the Global Precipitation 

Measurement (GPM) data at half-hourly temporal resolution for the Wadi Al-Ahsbah 

region in southern Saudi Arabia.  
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Figure 8. The Precipitation Distribution Map  

 

5.1.2. Surface Elevation  

Digital Elevation Model (DEM) data show the physical land surface in flood models. A 

DEM’s spatial resolution determines the quantity of land covered by a single grid cell. 

DEM resolutions typically range from 1000 m to 2m or less (Saksena et al., 2015). We 

used 30-meter resolution elevation data from NASA’s Shuttle Radar Topography Mission 

(SRTM) with an arcsecond resolution (3601x3601pixels) in a latitude/longitude projection 
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(EPSG:4326) in this study. The digital elevation model generated additional rasters that 

depicted slopes, aspects, flow directions, and flow accumulations in the research region, 

then complemented the original raster. These results were used with the rest of the data to 

determine the flood’s risk map. Figure 9 shows a Digital Elevation Model (DEM) map in 

the study area. 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. The Digital Elevation Model Map 
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Figure 10. Model Builder for Slope, Flow direction, and Aspect 
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The geoprocessing model was generated in ArcMap using the Model Builder tool. This 

process allows us to enter, process, and create good outcomes in the shortest amount of 

time. First, the Slope, Aspect, and Flow Direction were calculated using the model in 

Figure 10. 

5.1.3. Aspect  

Figure 10 displays the aspect of each raster cell grouped into compass directions (north, 

northwest). The Reclassify tool was used to classify the aspect map based on elevation to 

five classifications (Amar Sitabi, 2015).  
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Figure 11. The Aspect of each cell of a raster surface is organized by direction Map 

 

5.1.4. Slope  

The slope is a topographical factor regarded as a vital hydrology parameter (Tehrany et al., 

2013). Furthermore, slopes play a significant role in determining flood areas since they 

control the speed of the water on the neighboring slopes, where the amount of rushing 
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water is much more than in flat areas. Therefore, the slopes were classified into five 

categories in this study: very low, low, medium, high, and extremely high. Figure 12 shows 

the slope classification map in the study area.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. The Slope Classification Map 
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5.1.5. Flow Accumulation  

Flow Accumulation produces a raster of cumulative flow to each cell, as determined by 

adding the weights of all cells that flow into each downslope cell. High-flow accumulation 

output cells are places of the concentrated flow used to identify stream channels. Per 

relevant studies, the most crucial factor has been identified as flow accumulation (Kazakis 

et al., 2015). In Figure 13, the Flow Accumulation raster was classified into five 

classifications. 
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Figure 13. Classifications of Flow Accumulation Map 
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5.1.6. Stream Power Index SPI 

The SPI is used to measure the erosive power of overland flow at a particular location on 

a topographic surface (Moore and Grayson, 1991). SPI is a significant component 

affecting channel widening and hence floods (Righini et al., 2017). Therefore, a more 

significant SPI number should indicate a greater probability of erosion in the area. Figure 

14 shows the SPI distribution calculated from Equation 1. 

 SPI can be expressed by Equation (5) 

SPI=A tan β        (5) 

where A is the upstream contributing area (m2), and 

 β is the slope in each cell (degrees). 
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Figure 14. Classifications of Stream Power Index (SPI) Map 

 

5.1.7. Topographic Wetness Index TWI 

The TWI identifies and measures the saturated region exposed to overland flow (Wilson 

and Gallant, 2000). Beven and Kirkby (1979) developed the TWI as a component of 

TOPMODEL’s runoff model. The topographic wetness index (TWI) can be used instead 

of the conventional method of identifying flood-prone areas just by contours. The TWI is 

a more cost-effective method of determining floods than standard hydrodynamic models 
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(Pourali et al., 2014). A tool has been developed through the ArcGIS software from the 

toolbox and model-builder tool to obtain the topographic wetness index (TWI). Figure 16 

shows the topographic wetness index using the digital elevation model as shown in Figure 

15 for the model builder for the topographic wetness index (TWI) and the stream power 

index (SPI). 
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Figure 15. ArcGIS Model Builder for (TWI) and (SPI
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Figure 16. The topographic wetness index (TWI) Map 
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5.1.8. Drainage Density  

When dividing the total length of all stream lengths in the basin by the total area of the 

basin, we get a measure of the amount of dissection of the watershed, which is called the 

drainage density (Bhattacharjee, 2016) Drainage densities in semiarid to humid 

environments range from 2 to 12 km2, with most of the variation reflecting changes in 

rainfall (Abrahams 1972). Figure 17 shows the Drainage density map with a classification 

of areas according to their density. 
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Figure 17. The Classification and Distribution of Drainage Density 
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5.1.9. Distance from River 

The distance from the river is critical in identifying flood-prone areas and evaluating the 

flood hazard index. (Hernandez and Lutz, 2010) demonstrate that regions next to river 

networks are particularly prone to floods. Like flow accumulation, when there is much rain, 

the water levels in rivers rise, and the water overflows into the areas nearest to the river, 

causing floods. The map of distance from the river was generated using the Euclidean 

distance tool in the spatial analyst tool of ArcGIS. The Arc Map 10.1.8 thematic map in 

Figure 18 was classified into five categories: very high, high, moderate, low, and very low. 

A description of the distance from the river is shown in Table 7. 

 

Table 7. Description of Distance from River 

Distance Values  Class Values (Ranking) 

400 -800 (M) Very High Risk  

800 -1200 (M) High Risk 

1200 -1600 (M) Moderate Risk 

1600 – 12000 (M) Low Risk  

>12000 (M) Very Low Risk  
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Figure 18. The Classification map of distance from the river 
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5.1.10. Distance from Roads 

Surface-water runoff is increased on impervious surfaces such as roads, pavements, and 

parking lots because rainwater cannot filter through the soil. Therefore, it is considered 

one of the most critical factors that help us identify flood-prone locations, based on the 

study that looked at the distance from roads (Tehrany et al. 2017). Figure 19 shows how 

to use ArcGIS’ spatial analyst tool, the Euclidean distance tool, to map how far this place 

is from a road. This map was divided into five categories: very high, high, moderate, low, 

and very low.  
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Figure 19. The Classification of distance from Roads Map 
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5.1.11. Soil Types 

The soil map is critical in identifying flood-prone areas since soil type directly impacts 

drainage. Also, soil impacts water storage and permeability. (Mojaddadi et al. 2017; 

Tehrany et al. 2017). The soil was taken into consideration in the study. Twenty-seven soil 

types are found in Saudi Arabia; our study area included three types of soil (Mojaddadi and 

Pradhan, 2017). Figure 20 shows the three types of soil: silty clay, which does not drain 

well at all; clay, which does not drain well; and loamy, which covers most of the study area 

(including high regions) and is well-drained. The Digital Soil Map data was obtained from 

World Map as Vector Data. Alison Hillegeist owns this data. A description of soil types in 

the study area is shown in Table 8. 

 

Table 8. A description of soil types 

Code Type Meaning 

1  Silty Clay Does not drain well at all 

2 Clay  Does not drain well 

3 Loamy Well-drained 
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Figure 20. Soil classification map 

 

5.1.12. Urban Area as Represented Impervious Areas  

Urbanization is one of the factors that cause change on the Earth’s surface, with most of 

the world’s population residing in urban areas (Nigussie, 2019). As a result, to fully 

understand the changes that occur during this activity, it is required to obtain urbanization 

maps, which are critical in creating flood sites. In addition, compared to vegetated regions, 
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urbanized areas create significantly greater surface runoff (Tehrany et al., 2015). Because 

of this, land use is a significant contributor to flooding (Beckers et al., 2013). However, for 

a large country like Saudi Arabia, which has a land area of over 2 million km2, processing 

such high spatial resolution is challenging (Alahmadi and Atkinson, 2019) 

Due to a shortage of data, it was challenging to create a map with a recent update in the 

study area. Therefore, global High-Resolution Urban Data from Landsat was used. The 

(GMIS) Dataset contains global estimates of fractional impervious cover generated from 

the Global Land Survey (GLS) Landsat dataset for the target year 2010. The GMIS dataset 

is made up of two parts:  

1) global percent of impervious cover 

2) per-pixel-related impervious cover uncertainty 

These layers are co-registered to the same spatial extent and serve as a companion dataset 

to the Global Human Built-up and Settlement Extent (HBASE) dataset (Wang et al., 2017). 

These data can be used in local modeling studies of urban influences on energy and water 

and country-level analysis. Lower values of the (GMIS) index, which runs from 0-100 (%), 

are associated with places with no impervious surfaces (vegetation, no human build-up). 

Buildings, roads, other human-made things, and rocks have higher values (Colstoun et al., 

2017).  Figure 21 shows the impervious area distribution map in the study area from the 

Global Man-made Impervious Surface (GMIS) Dataset from Landsat (2010). It has a 30m 

special resolution produced from Landsat satellite data.  
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Figure 21. Classification of Impervious Surfaces map 
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5.1.13. Normalized Difference Vegetation Index NDVI 

The Normalized Difference Vegetation Index (NDVI) is a graphical indicator used to 

assess whether a target includes live green vegetation (Pettorelli, 2013). As previously 

stated, vegetation has a negative relationship with flooding because it reduces the amount 

of water that runs off. According to the results of this study, in Figure 22, the NDVI was 

classified into five classes: very low vegetation, low vegetation; medium vegetation; high 

vegetation; and very high vegetation. 

 

Normalized Difference Vegetation Index (NDVI) can be calculated by Equation (6) 

 

NDVI =
𝑁𝐼𝑅 −𝑅𝑒𝑑 

𝑁𝐼𝑅 +𝑅𝑒𝑑 
                                                              (6) 
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Figure 22. Classification of the Normalized Difference Vegetation Index (NDVI) 
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5.1.14. Social Media Data  

Social media data was used as a validation tool in this study. This data contained additional 

information about the flood areas and was gathered by the public via social media platforms 

such as Twitter and YouTube for November 2016, as listed on the flood list website. The 

data was collected by subscribing to the Keyhole website, and the study area’s boundaries 

sorted the points in Figure 23. This data set contains two categories. The first was assigned 

to represent the flooded area; it has 114 locations. The second category, signified by the 

number 2, represents 548 locations that are not prone to flooding. These points were found 

at high elevations with minimal possibility of flooding. In addition, we collected social 

media data reported in both Arabic and English. 

The word used to search for social media data were as follows:  

سيول#,  #الباحه, #تهامة_الباحة المخواه , #Saudi, #Flooding,  #Flood #SaudiArabia, #AlBaha, 

Saudi Arabia al Baha flood, Heavy rainfall in al Baha Saudi Arabia, JCB rescue mission 

in Saudi Arabia Al Baha.  

Most of the data contain multiple images. A few of them describe the extent of the disaster, 

such as the collapse of electricity poles, the shoveling of cars, the deaths of people, and the 

disruption of traffic. On the other hand, some tweets got many adventurers to walk around 

the floodwaters as places experience a shortage of precipitation throughout the year.  

 

 

 

https://twitter.com/hashtag/Saudi?src=hashtag_click
https://twitter.com/hashtag/flooding?src=hashtag_click
https://twitter.com/hashtag/Flood?src=hashtag_click
https://twitter.com/hashtag/SaudiArabia?src=hashtag_click
https://twitter.com/hashtag/AlBaha?src=hashtag_click
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Table 9. Description of flood location data. 

Code Description 

1 This one was assigned to represent the flooded area reported in 

social media in both Arabic and English 

2 Represents locations that are not prone to flooding. 

It was included for data mining using the decision tree algorithm. 

These locations were found at high elevations with very little 

possibility of flooding 
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Figure 23. Social media flood location data 
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CHAPTER SIX RESULTS 

 

Section One Results from the Decision Tree 

The multiple factors contribute to the generation of flood-susceptibility mapping; in this 

section, the study focused on ten factors: elevation, aspect, slope, flow accumulation, 

Stream Power Index, Topographic Wetness Index, Drainage Density, Distance from 

River, Distance from Roads, Soil Type, Urban Classes as Represented by Impervious 

Area Percentage (%) in Table (11), Normalized Difference Vegetation Index (NDVI). 

The extracted data from the resampling nearest neighbor assignment result table was 

processed using the “Treej48” method, and the result is shown below in Table 10. 

 

Table 10. Class of Impervious Surface Percentage 

Class Percentage of Impervious Area 

1 0 – 6.3 

2 6.3 – 12.6 

3 12.6 – 18.9 

4 18.9 – 25.5 

5 25.2 – 31.5 

6 31.5 – 37.8 

7 37.8 – 44.1 

8 44.1 – 50.4 

9 50.4 – 56.7 

10 56.7 – 63 
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Table 11. Resampling nearest neighbor assignment result using Decision Tree 
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The overall extent of the flood was this: 662 locations were identified, of which 548 were 

chosen at random to be validated in the study region, and 114 were chosen based on Twitter 

data. A DEM was used to validate the chosen positions, proving that they had been 

extracted correctly. The classifier had an accuracy of 91.25%.  

The correctly classified instances and incorrectly classified instances show the percentage 

of test instances that were correctly classified and the percentage of test instances that were 

incorrectly classified. The raw numbers are shown in the confusion matrix, 

with a and b representing the class labels. Here, there were 608 instances, so the 

percentages and raw numbers add up: aa + bb = 70+ 452= 522, ab + ba = 18+ 32 = 50. 
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Figure 24. Decision tree showing rules for flood prediction 
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In the Decisions model, the Tree created and displayed rules for the dataset as a structure 

in a tree. A more critical effect on floods is the conditioning mechanisms that are in the 

order of the structure of the trees. The dependent data consisted of flood pixels and non-

flood samples for the decision tree model. The most important attribute or predictor is 

“distance from the river.”  

1) The results from the Decision Tree indicate flash floods likely happen at these 

locations: 

● close to the river (distance from the river is less than 905 (m). 

● with a small slope (less than 11.38). 

● Under heavy rainfall (>3.85 mm/hr.).  

2) Flash Food is also related to urbanization: 

● If an urban class is less than 6 (Impervious area <37.8%), then low places 

(DEM<316 m) and close to the river (distance to river <=1830 m) may 

experience a flash flood.  

● If urbanization is greater than 6 (Impervious area >37.8%), low places 

(DEM<431m) with high stream power (SPI) (>223.25) may experience 

flash flood. 

● If urbanization class is greater than 8 (Impervious area >44.1%), flash 

flood may occur at the areas with large slope (>4.26). 

3) Flash Food is also related to soil type: 

● For soil types >1, high flow accumulation can result in a flash flood. 
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Section Two Assess the flash flood susceptibility 

The analytic hierarchy process (AHP) is a mathematically organized approach for 

organizing and evaluating complicated choices. It was established in the 1970s by Thomas 

L. Saaty (Forman and Gass, 2001). The most basic methods evaluate the criteria based on 

their relevance and direct weight evaluation when the total of the evaluations equals one 

(100 percent) (Vojtek et al., 2019). AHP allows us to give a numerical value to the 

assessment criteria to assess their relative importance. AHP can assign a higher number to 

a more significant criterion (Indeed, 2021). AHP is used to evaluate the factors causing 

flash floods. AHP is a helpful technique for handling quantitative decision-making 

analysis. The current study used the AHP approach to create a flash flood assessment model 

based on the factors generating flash floods in the study region (Dano, 2020). AHP assists 

decision-makers in finding the one that best meets their objectives and knowledge of the 

problem (Forman and Gass, 2001). AHP was applied by (Al-shabeeb, 2016) to identify the 

most critical aspects of problematic rainwater catchment locations. 

The Wadi Al-Ahsbah flood is identified using the AHP method, which uses Digital 

Elevation Models (DEM) and slope degree, which are the most critical factors, followed 

by river density, distance from rivers, flow accumulation, distance from roads, rainfall, 

stream power index (SPI), topographic wetness index (TWI), soil type data, urban area, 

and Normalized difference vegetation index (NDVI). 

Using the weighted linear tables method and Pairwise comparisons, it is reasonable to 

estimate which areas will be affected by the floods. The AHP approach compares criteria 
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using PCM matrices, allowing it to identify which criteria are of the highest importance. 

There are 9 PCMs, each ranging from 1 to 9. As an example, consider the following scale 

table (Table 12) (Al-shabeeb,2016). Table 13 shows the relative importance of each 

component, with the most important one being given the most weight. In this study, several 

factor weights were examined to identify the one that produced an excellent correlation 

with flood risk maps. AHP is a multiple-criteria decision-analytic (MCDA) technique that 

is integrated into GIS (Al-shabeeb, 2016)  

 

 
Table 12. Scales for the pairwise comparisons method, adapted from (Al-shabeeb, 2016) 

 

Intensity of 

importance 

Definition Explanation 

1 Equal 

importance 

Two elements contribute equally to the 

objective 

3 Moderate 

importance 

Experience and judgment slightly favor 

one element over another 

5 Strong 

Importance 

Experience and judgment strongly favor 

one element over another 

7 Very strong 

importance 

One element is favored very strongly 

over another, its dominance is 

demonstrated in practice 

9 Extreme 

importance 

The evidence favoring one element over 

another is of the highest possible order 

of affirmation 

2,4,6,8 can be used to express intermediate values 
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Table 13. A sample from the questionnaire used to determine the relative importance of criteria 

Factor weighting score 
criteria Less importance than Equal More importance than  criteria 

TWI 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 TWI 

Elevation                  Elevation 

Aspect                   Aspect  

Flow 

Accumulati

on  

                 Flow 

Accumulati

on  

Slope                  Slope 

Precipitatio

n 

                 Precipitatio

n 

Built Up                  Built Up 

NDVI                  NDVI 

SPI                  SPI 

Distance 

from river 

                 Distance 

from river 

Distance 

from road 

                 Distance 

from road 

Drainage 

density 

                 Drainage 

density 

Soil                  Soil 

 

 

The next step is to normalize the matrix by adding all the numbers in each row and 

column. The opinion pairwise comparison matrix is shown below in Table 14. 

 A normalized score was derived for each column by multiplying the entries by the total 

sum of each column equals one.  
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Table 14. The opinion pairwise comparison matrix 
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There are three parts involved in determining the consistency ratio: 

1. Calculate the consistency measure in a spreadsheet in Excel software.  

2. Calculate the consistency index (CI), also known as the consistency index of the 

data.  

Consistency index is presented by Equation (7) 

 

(7) 

n = The order of the 13 flood factors. 

RI = 1.56 

 

Table 15. number of criteria 

 

Consistency index (CI) =  
14.701

13−1 
 

Consistency index (CI) = 0.1418 
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3. Calculate the consistency ratio (CI/RI), where RI is a random index.  (Table 14) 

Consistency Ratio = CI /RI > = 1.56  

Consistency Ratio is calculated by Equation (8) 

CR=CI/RI       (8) 

Consistency Ratio (CR) = 
𝐶𝐼

𝑀𝐸𝐴𝑁 𝑅𝐴𝑁𝐷𝑂𝑀𝐸 𝑐𝑖
 

= 
0.1418

1.56
 = 0.090 

The CR value is calculated by dividing the CI value by the Random Consistency Index 

(RCI), specified in Table 16. 
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Table 16. The estimated weights (priority vector), CI, RI, and CR for expert opinions 

 

The consistency ratio tells us how consistent the judgment matrix is. A higher number 

means less consistent, and a lower number means more consistency. For example, if the 

consistency ratio is 0.10 or less, the decision-makers answers are relatively consistent. 

Therefore, the researcher should seriously consider re-evaluating responses during 

pairwise comparisons for consistency ratios greater than 0.10 (Elsheikh et al., 2015). 

This study showed a Consistency Ratio (CR) of 0.09, which was well below the threshold 

level of 0.1 and indicated high consistency. As a result, the weights are acceptable. 
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The flood susceptibility map was processed using ArcGIS software, using these steps: 

classify the factor data into five categories (very low, low, moderate, high, and very high); 

reclassify using the Spatial Analyst tool, and use the Spatial Analyst overlay tool. Thirteen 

flood contributing factors were used to collect the necessary data. 

The analysis was conducted using the ArcGIS 10.8 software. First, all thirteen maps 

obtained from the pre-analysis processes were added, resulting in a map with five 

classifications: very low, low, moderate, high, and very high. The Spatial Analyst tool was 

then applied using weighted overlay and weighted sum tools. We added all elements to this 

tool, placing the weight of each factor and taking into account the classification scale from 

1 to 5. Additionally, we ensured that the sum of all influence weights was equal to 1. 

The order of the classifications in terms of importance must be determined before the 

process can be completed. For instance, although the Topographic wetness index TWI was 

arranged from low to high, Elevation and Build Up were sorted from high to low (Table 

17). The final map of flood susceptibility was created by adding the weighted total of all 

conditioning factors to the flood map. After applying the sum of the weights of the 

conditioning factors, the flood susceptibility map was obtained. The final map of flood 

susceptibility was classified using the Jenks grading method. The Jenks Natural Breaks 

Classification (or Optimization) system is a data classification method that tries to put a set 

of values into "natural" groups. It is one of the best types of classification in a data set. 

Each group includes items that share characteristics and make sense together (George, 

1967). Figure 25 shows five different classifications of flood-prone areas. 
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Table 17. Susceptibility class ranges and rating 

Flood 

Causative 

Criterion 

Unit Class Susceptibilit

y Class 

Range and 

Rating 

Susceptibilit

y Class 

Rating 

Weigh

t (%) 

Topographic 

wetness 

index 

Index 2 – 5.3 Very Low 1 0.08 

  5.4 – 7 Low 2  

  7.1 – 9.5 Moderate 3  

  9.6 – 13 High 4  

  14 – 24 Very High 5  

Elevation M 100 – 

430 

Very High 5 0.08 

  440 – 

730 

High 4  

  740 – 

1,100 

Moderate 3  

  1,200 – 

1,700 

Low 2  

  1,800 – 

2,500 

Very Low 1  

Aspect Degree 72 Very Low 1 0.09 

  72- 140 Low 2  

  150-220 Moderate 3  

  230-290 High 4  

  300- 360 Very High 5  

Flow 

Accumulatio

n 

m 1,200,00

0 – 

1,200,00

0 

Very High 5 0.08 

  510,000 

– 

1,100,00

0 

High 4  

  260,000 

– 

500,000 

Moderate 3  

  58,000 – 

250,000 

Low 2  

  0 – 

57,000 

Very Low 1  

Slope % 0 – 8.86 Very Low 1 0.08 

  8.87 – 

18.34 

Low 2  
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  18.35 – 

27.51 

Moderate 3  

  27.52 – 

38.2 

High 4  

  38.21 – 

77.93 

Very High 5  

Precipitation MM/Hue

r 

0.0 – 1.1 Very Low 1 0.08 

  1.2 – 2.8 Low 2  

  2.9 – 4.6 Moderate 3  

  4.7 – 6.4 High 4  

  6.5 – 8.8 Very High 5  

Built Up M 0 – 42 Very High 5 0.14 

  43 – 76 High 4  

  77 – 120 Moderate 3  

  130 – 

170 

Low 2  

  180 – 

200 

Very Low 1  

NDVI  -1,900 – 

1,200 

Very High 5 0.08 

  1,300 – 

1,500 

High 4  

  1,600 – 

1,900 

Moderate 3  

  2,000 – 

2,500 

Low 2  

  2,600 – 

6,600 

Very Low 1  

SPI M 310000 – 

480000 

Very High 5 0.05 

  210000 – 

300000 

High 4  

  110000 – 

200000 

Moderate 3  

  16000- 

100000 

Low 2  

  0.030 – 

15000 

Very Low 1  

Distance 

from Roads 

M 0 – 80 Very High 5 0.06 

  81 – 160 High 4  

  170 – 

240 

Moderate 3  

  250 – 

320 

Low 2  
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  330 – 

400 

Very Low 1  

Distance 

from River 

M 0 – 39 Very High 5 0.05 

  40 – 79 High 4  

  80 – 120 Moderate 3  

  130 – 

160 

Low 2  

  170 – 

200 

Very Low 1  

Drainage 

Density 

Level 1 Very Low 1 0.08 

  1.1 – 2 Low 2  

  2.1 – 3 Moderate 3  

  3.1 – 4 High 4  

  4.1 – 5 Very High 5  

Soil type Loamy 1 Low 1 0.06 

 Silty 

Clay 

2 High 3  

 Clay 3 Moderate 2  
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Figure 25. Flood susceptibility map 
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In the second stage, we measured the area of each category and divided it by the total 

study area. The result is shown in Table 18. 

 

Table 18. Area of flood susceptibility map as a percentage of total area 

Flood Risk  % of the Total Area  

Very Low 5 % 

Low 44 % 

Moderate Risk 39 % 

High  1 % 

Very High  11 % 

Total 100% 
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Figure 26. Risk of flooding in southern Saudi Arabia's Wadi Al-Ahsbah 

 

 

 

The results we obtained from previous analyses found that 5% of the area is considered to 

have a very low risk of flooding, and floods are excluded in this area due to its height above 

ground level. 

 Also, 44% of the area was classified as having a low risk of flooding. Areas with a medium 

risk of flooding constitute 39% of the study area. It was found that 1% of the study area 

has a high risk of flooding, and 11%, has a very high risk of flooding, exposed to the 

dangers of flooding in rainy seasons. Table 18 and Figure 26 show the levels of risk in 

Wadi Al-Ahsbah region. 
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To understand this classification well, it is necessary to review the table of weights for each 

factor; the highest weight percentage was recorded for the built-up factor at a weight of 

0.14; Elevation Models DEM, slope degree, and topographic wetness index TWI were 

weighted at .08 in Table 16. 

 

Section Three Validate the Derived Flood Susceptibility Map Against Observation 

from Social Media 

 

It is possible to determine flood-prone areas using analytical models, and we can also find 

some data through social media on the Internet to see if it confirms the flood-prone areas. 

Alharbi and Lee (2019) stated that social media platforms are a rich source of real-time 

information on crises. The study focused on high-risk floods via social media in the Arabic 

language. The classifiers used were classical machine learning (ML) and deep neural 

networks (DNN). The study found that deep learning was more effective than ML at 

identifying flood-related posts. 

Furthermore, Sun et al. (2015) compared the findings to geotagged Flickr postings about 

floods and discovered that 95% of Flickr contributions happened within the ATMS-derived 

flood area. 

In this study, ground observations from social media, including Twitter and YouTube, were 

used to validate the flood sites and learn the extent to which the danger areas match the 

flood sites recorded on social networking sites. The intersect tool was used in ArcGIS 

software to match each category and the flood points from social media. Next, we 

compared the locations of flood-prone areas and those not exposed to repeated flooding 
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with all five classifications to determine how many sites were affected by the flood and 

how many were not affected. Table 19 shows the results of repeating this step ten times 

using the intersect tool. It was found that 47 social media sites match high-risk areas. 

 

 

Table 19. Flood susceptibility classifications with flood location points 

 

Risk Category 

Number of Flood 

Locations from social 

media 

Number of Non-

Flood Locations 

from social media 

Very Low Risk 2 30 

Low Risk 10 134 

Moderate Risk 23 364 

High Risk 16 16 

Very High Risk 47 12 
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Table 20. Confusion Matrix 

Flood  

(High to very 

high risk from 

Prediction) 

Number of Flood 

Locations 

(Observation)  

Number of Non-Flood 

Locations 

(Observation) 

TRUE True positive  

TP 

False positive 

FP 

False  False negative  

FN 

True negative 

TN 

 

 

Table 21. Confusion Matrix2 

Flood from Prediction 

 (High to very high risk) 

Number of Flood 

Locations 

(Observation)  

Number of Non-

Flood Locations 

(Observation) 

True 63 28 

False 35 528 

 

 

FP: The false positive non-flood locations  

TP: The true positive flood locations 

FN: The false negative flood locations 

TN: The true negative non-flood locations 
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Commission error is calculated from the following equation (9) 

Commission Error = 
 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
  =  

 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

 𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑     
      (9) 

=  
28

 28+63      
 = 

28

 91     
 = 30.76% 

 

 

Commission error was calculated as the number of flood locations incorrectly classified 

as a percentage of all non-flood areas in each non-flood location category. In addition, we 

found that 30% of the flood locations from social media sites were incorrect because they 

are in very low flood risk areas. 

 

Omission Error is calculated by Equation (10) 

 

 

Omission Error =
𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 +𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 = 

𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 
    (10) 

 

= 
35

35 +63
= 

35

98
 = 35.71% 

 

 

We calculated the omission error as the number of true-flood locations incorrectly 

classified as non-flood as a percentage of all flood locations. We found that 35.71% of 

the identified sites with flooding may be predicted as non-flood in the future. 
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Overall Accuracy can be calculated by the following Equation (11) 

 

Overall Accuracy = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+ 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+ 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒+ 𝐹𝑎𝑙𝑠𝑒  𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒  
 

=
63+ 528

 63+35+ 528 + 28 
=  

591

654  
 = 90.37%          (11) 

 

Validation of the flood susceptibility map results against observations from social media 

data showed a good result, reaching 90.37% overall accuracy (where 100% indicates 

perfect prediction). This percentage is not far from that result of using the analytic 

hierarchy process (AHP) with flood condition data.  

There is a significant correlation between the flood locations identified by social media 

data and the areas determined by the AHP in this study, with roughly 63 sites occurring 

in very high and high-risk areas. In addition, 35 locations were found to have been shared 

by users outside the area of flood risk due to repeated share data from different locations 

not within the area of flood risk.  
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CHAPTER SEVENTH CONCLUSIONS AND DISCUSSIONS 

In this study, multi-satellite data are collected to derive thirteen factors that may affect the 

incidence of flash floods in semiarid areas, like the Wadi Al-Hisbah region in southwestern 

Saudi Arabia.  

There are limitations and challenges to accessing urban and population data. The Global 

Man-made Impervious Surface (GMIS) data was used to identify populated urban areas.  

Classification accuracy of 91.25 % can be obtained from the Decision Tree algorithm. The 

Decision Tree results indicate that low-lying urban areas close to rivers with high 

impervious percentages and high accumulation flow may experience a flash flood in a 

semiarid region.  

A flood susceptibility map in the Wadi Al-Hisbah region in southwestern Saudi Arabia is 

created with the practical application of the AHP technique. According to the flood 

susceptibility map, 1% of the region is classified as having a high probability of flooding, 

and 11% of the region has a very high probability of flooding. These studies show that 

specific locations are at a high risk of flooding during the rainy seasons. Additionally, the 

study discovered that 10% of the very high-risk area is located in a residential area, with 

some flooding incidents impacting agricultural activity at the bottom of the valley.  

The derived flood susceptibility map results show a decrease in the flood area in the 

flatlands below the valley, while the vulnerable area increases in the sloping areas towards 

the middle, where the population is concentrated. The reason for this is the spread of 
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agricultural lands below the valley. Also, the slope and construction in the water flow areas 

are the dominant factors.  

To investigate the urbanization impacts on flash flood, impervious areas were given the 

highest weight during the creation of the flood susceptibility map. When comparing the 

impervious map with the social media observations, it was found that most of these flood 

locations from social media are concentrated in impervious urban areas.  

When validated against the social media observations, 30.76% commission error and 

35.71% omission error are found from the derived flood susceptibility map, while the 

overall accuracy can reach 90.37%.  

It may be possible to improve the results of this risk map with the AHP technique by adding 

more data, such as the rainfall data from weather stations and soil moisture data from 

satellites. 

Current satellite-based flood products may not capture flash floods, while conventional 

observations are usually sparse over the semiarid area. It is not easy for a researcher to 

obtain the data; a lot of time and effort may be needed.  The cost is high even for social 

media data, making it difficult to obtain data for more events. To address the limited data 

availability in Saudi Arabia, some alternative approaches are needed to assess the spatial 

variability of flood risks.  

As part of future works, our plans are in three areas: analyze flood-related messages from 

social media to evaluate our models; search for high-resolution data with a resolution of 
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higher than 30 meters; and gather rainfall data from local monitoring stations to combine 

it with other variables that influence the likelihood of flooding. 
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