
2000 Congress on Evolutionary Computation, San Diego CA, July, 2000

Experimental Validations of the Learnable Evolution Model
Guido Cervone

Kenneth K. Kaufman
 Ryszard S. Michalski*

Machine Learning and Inference Laboratory

George Mason University
Fairfax, VA, 22030

*Also Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland

Abstract

A recently developed approach to evolutionary
computation, called Learnable Evolution Model or
LEM, employs machine learning to guide processes of
generating new populations.

The central new idea of LEM is that it generates new
individuals by processes of hypothesis generation and
instantiation, rather than by mutation and/or
recombination, as in conventional evolutionary
computation methods. The hypotheses are generated
by a machine learning program from examples of high
and low performance individuals.

When applied to problems of function optimization
and parameter estimation for nonlinear filters, LEM
significantly outperformed the evolutionary
computation algorithms used in experiments,
sometimes achieving two or more orders of magnitude
of evolution speed-up in terms of the number of
generations (or births). An application of LEM to the
problem of optimizing heat exchangers has produced
designs equal to or exceeding the best human designs.

1 Introduction

Current methods evolutionary computation employ
various forms of mutation and/or recombination operators
to generate new individuals. Because these operators are
semi-random, such methods often suffer from low
efficiency (e.g., Holland 1975; Goldberg 1989;
Michalewicz 1996; Mitchell 1996; Baeck, Fogel and
Michalewicz 1997; Banzhaf et al. 1998).

A new approach, called the Learnable Evolution Model
(LEM), speeds up evolutionary computation by
introducing a learning process to evolution (Michalski
1998; 2000). Specifically, at selected steps of evolution,
LEM seeks hypotheses differentiating between groups of
high and low performance individuals, that is, individuals
that score high and low on the given fitness evaluation

criterion. These groups are selected from the current and
possibly also past populations.

In LEM1 and LEM2, early systems implementing the
methodology (Michalski and Zhang 1999; Cervone 1999),
hypotheses are generated by AQ-type learning systems
(AQ15 and AQ18, respectively). The AQ-type learning
has proven to be highly suitable for LEM. The following
sections briefly describe the LEM methodology, and then
illustrate it by a sample of results from its application to
function optimization and heat exchanger design.

2 An Overview of the LEM methodology

The Learnable Evolution Model or LEM is fundamentally
different from the Darwinian-type model that underlies
most of the current methods of evolutionary computation.
The central engine of evolution in LEM is Machine
Learning mode, which creates new individuals by
processes of generalization and instantiation rather than
mutation and/or recombination as in the Darwinian-type
evolutionary computation methods.

Machine Learning mode consists of two processes:
hypothesis generation, which determines a hypothesis
characterizing differences between high-fitness and low-
fitness individuals in one or more past populations, and
hypothesis instantiation, which generates new individuals
by instantiating the hypothesis in various ways. Machine
Learning mode thus produces new individuals not through
semi-random Darwinian-type operations, but rather
through a deliberate reasoning process involving
generation and instantiation of hypotheses about
populations of individuals. Thus, in LEM, new individuals
are genetically engineered, in the sense that they are
determined according to descriptions learned from the
analysis of the current and possibly past generations.

LEM may alternate between Machine Learning mode
and Darwinian Evolution mode (executing one of the
conventional evolutionary computation methods), or may
rely entirely on Machine Learning mode.

LEM differs not only from the Darwinian-type
evolution but also from the Lamarckian-type of evolution,
because in generating new individuals it takes into
consideration not only the experience of single
individuals, but the experience of one or more
populations of individuals.

An evolutionary process in LEM starts with an initial
population, which is generated randomly or according to
some rules. In analogy to nature, this population may
represent “phenotypes,” or “genotypes” that are used to
produce “phenotypes.” Below is a simplified form of
LEM (a full version is in (Michalski 2000a)):

1. Generate a population
2. Invoke Machine Learning mode:
 a) Derive extrema: Split the current population
(or the union of the current and selected past
populations) into three groups: H-group (high-
performance), L-group (low-performance), and
the rest, based on the fitness function.
b) Create a hypothesis: Apply an inductive
learning method to hypothesize a description of
the H-group that differentiates it from the L-
group.
c) Generate new population: Generate new
individuals by instantiating the learned hypothesis
in different ways, and combine the new
individuals with those in the H-group. Select from
the combined set a new population.
d) Go to step 2a), and continue repeating Machine
Learning mode until the Machine Learning mode
termination condition is met, in which case
perform one of the following steps:

(i) If the LEM termination condition is met,
end the evolution process.
(ii) Repeat the process from step 1. This is
called a start-over operation.
(iii) Go to step 3.

3. Invoke Darwinian Evolution mode and apply
one of the existing Darwinian-type
evolutionary computation methods. Repeat
and continue this mode until the Darwinian
Evolution mode termination condition is met.

4. Go to step 2, and then continue alternating
between steps 2 and 3 until the LEM
termination condition is met.

The best individual existing when the LEM termination
condition is met is the output result of the evolution.

The Machine Learning mode termination condition is
met when a plateau of the fitness function is reached while
the LEM termination condition is not yet satisfied. In this
case, LEM may execute the start-over operation [step 2d
(ii)] or switch to Darwinian Evolution mode. If at this
point LEM always chooses the start-over operation, the

evolution process is based solely on a repetitious
application of Machine Learning mode. This version of
LEM is called uniLEM. For the purpose of distinction,
LEM’s version that works in both modes is called
duoLEM.

 The main parameters of LEM are those that control the
way the H-group and the L-group are selected and the
number of new individuals that ought to be instantiated
from each rule found. Other parameters control the
persistence of executing each mode, the start-over
operation, and termination conditions (Cervone 1999,
Michalski 2000a).

Selecting H- and L-groups can be done according to a
fitness-based method, a population-based method, or a
combination of the two. The fitness-based method
partitions the population using two fitness thresholds,
HFT (“High Fitness Threshold”) and LFT (“Low Fitness
Threshold”), which specify portions of the total fitness
value range in the population that are used to determine
the H- and L-groups. The population-based method
partitions the population using parameters HPT (the
“high population threshold”) and LPT (the “ low
population threshold”) that specify the portions of the
population to be used as H-group and L-group group,
respectively. Figure 1 illustrates the latter method using a
fitness profile function that maps individuals ordered by
their fitness into the fitness value.

 Fitness-ordered individuals
 L H

Figure 1. A fitness profile function and the HPT and
LPT thresholds.

The H-group and L-group are then passed as positive and
negative training examples to the AQ attributional
learning program. AQ was selected because it has many
feature particularly useful for LEM, such as internal
disjunction and conjunction in the representation
language, the ability to generate rules at different levels of
generalization, and others (Michalski, 1999, 2000). AQ
determines rulesets that differentiate between the H-group
and L-group. As illustrated in Figure 2, these rulesets

1.1

describe a subspace of the search space that is
hypothesized to contain the global optimum (or optima).

New individuals are selected from this subspace by an
operation of ruleset instantiation. This operation creates
new individuals by instantiating the variables in the rules
in different ways. The learned rules typically include only
a subset of the initial variables, that is, make no
constraints on some variables. Variables not included in
the rules are thus assigned values based on the individuals
in the population.

The number of new individuals generated through
instantiation is determined by the rule fitness [called in
(Cervone, 1999), the weighted t-weight of the rule]. The
rule fitness is the sum of the fitnesses of individuals
covered by the rule. In calculating the rule fitness, the
range of fitnesses of individuals was mapped into discrete
units 1 to 5, using the χ2 method (Cervone, 1999).

An H-group description represents a hypothesis that the
area in the landscape identified by it contains individuals
with a higher fitness than that of the individuals outside of
that area. Such a description can thus be interpreted as a
qualitative differential that approximates the direction of
change of the fitness landscape. Selecting individuals
from the area indicated this description corresponds to
climbing up an extrapolated fitness landscape. This
qualitative differential achieves a qualitative zero at the
extreme points of the fitness landscape, or in the areas
where it is unchanging. Thus, the qualitative zero is
indicated by a flat fitness profile function and the
consequent impossibility of dividing a population into
distinct H- and L-groups.

The power of LEM seems to stem from computing such
qualitative differentials and using them to guide the
evolution process. Since qualitative differentials can be
repeatedly computed in parallel, i.e., determined
simultaneously in many places of the fitness landscape,
LEM has higher chances to efficiently find the global
optimum than methods that rely only on mutation or
crossover. Moreover, if the fitness landscape has several
global optima, LEM may be able to find all or a subset of
them simultaneously. To do so, the machine learning
method used in Machine Learning mode must be able to
construct disjunctive descriptions of H-groups. If the H-
group description correctly hypothesizes the direction of
the landscape change, the evolution process will proceed
rapidly. This is demonstrated by quantum leaps or “ insight
jumps” of the fitness function.

The process of computing qualitative differentials can
be executed in such a way that in each iteration, the
generated descriptions describe a subset of the previously
described region of the search space. Figure 2 illustrates
such a progressive partitioning of the search space
(different shading indicates areas indicated by

descriptions obtained in different generations). The
symbol “1” indicates the globally optimal solution.

 1st generation 2nd generation 3rd generation

Figure 2. An illustration of progressive partitioning of the
search space.

If the generated hypotheses accurately predict the
region with the global optimum, such iterative partitioning
of the search space leads to a rapid progress of the
evolution.

3 LEM1, LEM2 and ISHED

LEM1 was the first preliminary LEM implementation
described in (Michalski and Zhang, 1999) and it was
developed combining the aq15c machine learning
program to GA1 and GA2, two simple evolutionary
algorithms. (De Jong, 1999). Despite the names lead in
thinking GA1 and GA2 are traditional Genetic Algorithm,
they implement a deterministic selection mechanism and a
real-value representation of the variables. The main
differences between the two, is that GA1 generates new
individuals only through a uniform gaussian mutation
operator, while GA2 implements in addition a uniform
crossover.

The first application of LEM1 was to optimize a set of
well-know functions, and analyze how the machine
learning program improves the efficiency of the algorithm.
The second application was to design a linear digital filter.
(Coletti et al, 1999).

LEM2, is the newest implementation of the Learnable
Evolution Model and it was programmed using EC++, a
generic Evolutionary Computation Library (Cervone and
Coletti, 2000). LEM2 introduced several improvements,
and fixed some of the problems that arise with the early
implementation. The main improvements are:

A. Employment of a new method for discretizing
continuous variables, called Adaptive Anchoring
Discretization, briefly, ANCHOR (Michalski and
Cervone, 1999). This method replaced the χ2 method used
in LEM1 (Zhang, 1999). This method allows to gradually

increasing the resolution for the representation of
continuous variables, and it leaded to drastic
improvements in several problems.

B. Creation of new individuals by instantiating multiple

rules rather than only the strongest rule in a ruleset
generated by AQ18. This feature allows the system to
explore in parallel several subareas of the search space
rather than one. This feature is important in the case of
multi-modal landscapes.

C. The rule instantiation takes into consideration the
rule mass, defined as the sum of fitnesses of examples
covered by the rule (the current implementation takes into
consideration the rule mass per example covered)

D. Employment of the fitness-based selection, in
addition to the population-based selection used in LEM1.
This way, the number of examples selected as training
examples is not a fixed percentage of the population, but
depends on the behavior of the fitness profile function.

E. Dynamic adjustment of the cost of variables in the
learning process. Each time a variable is included in a
ruleset generated by the learning program, its cost is
increased. This way, the system will give a preference to
other variables when learning a ruleset in the next
generation. This feature has proven to be useful for
optimizing functions with large number of variables (> 50
variables).

F. Implementation of a simple version of the Startover
operator. Specifically, when the fitness profile function is
flat for a certain number of generations (defined by the
fitness_probe parameter), the evolution is re-started from
a new, randomly generated population. The best
individual generated so far is, however, preserved
(“elitism”). This feature has proved to be useful in cases
where the system converges to a local optimum.

G. The introduction of the uniLEM mode, in which the
evolution process executes only Machine Learning mode,
that is, is guided solely by machine learning process, and
Darwinian-type operators of mutation and cross-over are
not applied.

H. The introduction of the population lookback and the
description lookback in the process of generating H and L
groups, as described in (Michalski, 2000). In the
experiments described below, the population lookback
was set to 1, and the description lookback parameter was
set to 0 (no past rules are taken into consideration when
generating new rules).

LEM2 was applied to optimize highly dimensional
problems, and it performance compared to standard
Darwinian type Evolutionary Algorithms (Cervone, 1999).

ISHEDis an implementation of the methodology for a
specific domain of applications, namely the design of heat
exchange systems.

4 Experiments

In this section we present some of the most
distinguishing results that were achieved with the LEM
methodology.

4.1 Designing Digital filters

LEM-1 with GA1 and GA2 were compared on a
different type of problems, namely problems related to the
design of digital filters. We present here just a sample of
results (for more details, see Coletti et al, 1999). The
fitness function was defined by equations specifying linear
and nonlinear filters described in (Yao and Sethares,
1994).

Problem:. Determine optimal parameters of nonlinear

filters defined by the equation:

where: k – is the sample index (or time), n() – is a

noise component ranging from -.25 to .25, and u() – an
inserted function (sin, step, random)

In this study, we assumed that coefficients -0.3, 0.4,

1.25, and -2.5 in the above equation are variables. The
problem was to find their correct values from a set of
<vector i, y(vector i)> pairs, where vectorI is a specific
assignment of values to variables. Individuals in the
population are thus vectors with four real-valued variables
(“genes”). When substituted in the equation, the
individual's genes yield a value of y that is compared with
the known correct value. The fitness of an individual is
inversely proportional to the difference between the result
and correct value. The individual whose gene coefficients
give the lowest error is assigned the highest fitness.

In the experiments, three different sets of input data to
LEM-1, GA1, and GA2 were used. In Machine Learning
mode, LEM-1 used the population-based method with
HPT and LPT both equal 30%. The population of each
generation was 20; the learn-probe was 3, the learn-
threshold was 0.01; dar-length was 3, dar-threshold was
0.01. Each variable was discretized into 200 ranges. Each
program was executed 10 times, each time using a
different input data. Runs differed in the seeds used for
starting a random number generator. Presented results are
averages of results obtained in these runs. LEM-1 and
genetic algorithm GA1 used the same seeds.

Yao and Sethares used a uniformly distributed random

input over the interval (-2.5, 2.5). In addition to this input,
a unit step function 2.5u(k) and a sine wave 2.5sin(�/10)

were used for comparison. The landscape function
generated an output array based on a 200 sample input
sequence and stored it for comparison against the
populations. Populations were generated, and the fitness
of each individual was calculated by computing the mean-
square error between the known values and the output
generated by the individual's genes. The fitness function
was defined as in (Yao and Sethares, 1994), namely, as
the reciprocal of the mean-square error over the 200
sample window:

LEM-1, GA1, GA2 were applied ten times using

uniform noise, sine, and step function inputs. The initial
populations were generated randomly. The convergence
rate varied greatly between populations and generations
due to the random initial conditions. It was difficult to
obtain a meaningful average performance, because a few
runs would dominate the average. Therefore, for
comparing performance we used learning curves that
converged the fastest for each of the three systems for
different input functions. For a non-linear filter,
experiments were performed with uniform random input,
unit step input, and sine wave input. In all cases, LEM-1
significantly outperformed GA1 and GA2. For illustration,
Figures 8, 9 and 10 show results for the case of a
nonlinear filter with a uniform noise input.

GA1 Learning Curve, Nonlinear Filter Uniform
Noise Input

0

5000

10000

15000

20000

1 92 18
3

27
4

36
5

45
6

54
7

63
8

72
9

82
0

91
1

10
02

10
93

11
84

12
75

13
66

14
57

Generations

M
ea

n
-s

q
u

ar
e

E
rr

o
r

Figure 3. A GA1 revolutionary process for nonlinear

filter with uniform random noise input.

GA2 Learning Curve, Nonlinear Filter Uniform
Noise Input

0
2000
4000
6000
8000

10000
12000

1

10
2

20
3

30
4

40
5

50
6

60
7

70
8

80
9

91
0

10
11

11
12

12
13

13
14

14
15

15
16

16
17

Generations

M
ea

n
 S

q
u

ar
e

E
rr

o
r

Figure 4. A GA2 evolutionary process for nonlinear

filter with uniform random noise input.

LEM-1 Learning Curve, Nonlinear Filter
Uniform Noise Input

0

1000

2000

3000

4000

1 38 75 11
2

14
9

18
6

22
3

26
0

29
7

33
4

37
1

40
8

44
5

48
2

51
9

55
6

Generations

M
ea

n
-s

q
u

ar
e

E
rr

o
r

Figure 5. LEM-1 evolutionary process for nonlinear

filter with uniform random noise input.

As Figures 3, 4, and 5 show, the convergence of GA1

and GA2 was relatively slow. The effect of the machine
learning mode is demonstrated by a dramatic drop (an
“ insight jump”) in the mean-square error when the system
learned good rules for generating the next generation of
individuals.

LEM-1 toggles between Machine Learning mode and
Darwinian Evolution mode roughly 10-800 times
throughout the course of a typical experiment. A dramatic
drop in the mean-square error usually occurred within the
first 100 generations. Because four genes were used to
represent the four parameters of the filter, the error
surface generated by the mean-square error is four-
dimensional.

Such an error surface creates difficulties for traditional
search techniques. These techniques, for example, the
gradient descent and LMS, are subject to finding local
minima, and they would have to run in parallel to achieve
the robustness of the evolutionary computation approach.
LEM-1 alleviates much of the computational cost of the
genetic algorithm approach by accelerating the
evolutionary process through a series of symbolic learning
steps.

4.2 Optimization Problems

 Below is one of many testing results. This result concerns
the application of LEM to the problem of minimizing the
Rosenbrock function (denoted as f2), in which the number
of arguments, n, was set to 100:

For comparison, an evolutionary strategy method, ES,

was also applied to the same problem.
This is a rather complex optimization problem because

the Rosenbrock function has a very narrow and sharp
ridge and runs around a parabola, so the variables are
interrelated (Figure 6).

Figure 6. An inverted 2D graph of the Rosenbrock
function.

The results of this experiment are graphically presented
in Figure 6. Two different population sizes were used,
100 and 150 for both LEM2 and ES.

In Figure 7, LEM a,b,c means that the method was
LEM, the population size was a, and the High and Low
population thresholds (for class assigament) were b and c,
respectively. ES a,b means that the method was
evolutionary strategy with population size a and mutation
rate c. ES employs a real-value representation, a
deterministic selection, and the binary tournament method
for the selection of the survivors. Each parent is cloned
(produces only one child), and then mutated using uniform
mutation (Cervone and Michalski 2000). Optionally, the
Uniform Crossover operator or the One Point Crossover
operators are used to generate more individuals. Finally

all the new individuals compete with a randomly selected
parent.

As shown in Figure 7, LEM2 was significantly less
dependent on the input parameters than ES, and
converged to the function minimum (the value “0”) much
faster than ES .

LEM2 was also compared with the best available result
previously published using this function, however the only
data available were relative to the original problem which
involves a much smaller number of variables (2 and 4).

The results from the following experiments are
summarized in a table that shows the number of
evaluations needed to come δ-close to the global
optimum, and the relative speedups. To evaluate the
performance of the algorithms in another way, we
determined the δ-close number, that is, the number of
generations in the evolution process after which the
relative distance to target of the solution produced by an
algorithm reaches a given value, δ. Using δ, we define
the speedup of algorithm A over B, as the ratio, expressed
in percentage, of the number of births required by B to the
number of births required by A to achieve the δ-close
result.

Table 1. Results for the Rosenbrock function of 2 variables.

Rosenbrock function
minimization 2 vars

δ=0

LEM2 101

CHC 4893

Speedup LEM2/CHC 4800%

In the case of two variables, the best result was achieved
using the CHC+BLX algorithm using 4893 evaluations
(Back, Hoffmeister and Schwefel, 1991). LEM2 found the
global minimum using only 101 births, that is, about fifty
times fewer (the speedup of nearly 5000%). Table 7
summarizes the results.

With four variables, the best published result was
achieved by a breeder GA, which required about 250,000
evaluations (Schlierkamp-Voosen and Muhlenbein, 1994).
LEM2 found the global solution (δ=0) with only 281
births (evaluations), that is, required about 750 times

))1() ((100),..,(2
i

2

0

1i212 −+−⋅=
�

=

+ xxxxxxf i

n

i

n

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

0

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

40
00

0

45
00

0

50
00

0

55
00

0

60
00

0

65
00

0

70
00

0

LEM 150 .3 .3
LEM 150 .3 .1
LEM 150 .1 .3
LEM 150 .1 .1
LEM 100 .3 .3
LEM 100 .3 .1
LEM 100 .1 .3
LEM 100 .1 .1
ES 150 .1
ES 150 .3
ES 150 .5
ES 150 .7
ES 150 .9
ES 100 .1
ES 100 .3
ES 100 .5
ES 100 .7
ES 100 .9

LEM2 vs. ES- Rosenbrock Function (f2)
 100 Variables - Each curve is the average of 10 runs

Figure 7. A graphical comparison of performance of LEM2 and ES methods.

fewer births than GA that found δ=0.1 solution (the
speedup at least of 75,000). Table 2 summarises. This is
the highest speedup obtained by LEM2 over a genetic
algorithm for this set of problems.

Table 2. Results for the Rosenbrock function of 4 variables.

Rosenbrock function
minimization 4 vars

LEM2 δ=0: 281

GA δ=0.1: 77,000

Speedup LEM2/GA 27,500%

This strong results indicates that LEM2 was able very

quickly locate the area of the landscape with the global
optimum. In achieving this result, LEM2 was helped by
the ANCHOR method that gives preference to values that
represented this optimum.

4.3 An Application to Heat Exchanger Design

LEM was also tested on real-world problems, such as
parameter estimation for digital filters (Coletti et al.
1999), and the optimization of heat exchangers. For the
latter application, we have developed ISHED-1, a LEM
implementation specifically tailored to a class of design
problems (Kaufman and Michalski 2000a). ISHED-1
conducts an evolutionary optimization process to
determine the best arrangement of the evaporator tubes in
the heat exchanger of an air conditioning system under
given technical and environmental constraints.

In an air conditioning unit, the refrigerant flows through
a loop. It is superheated and placed in contact with cooler
outside air in the condenser unit, where it transfers heat
out and liquifies. Coming back to the evaporator, it comes
into contact with the warmer interior air that is being
pushed through the heat exchanger, as a result cooling the
air while heating and evaporating the refrigerant. The
heat exchanger consists of an array of parallel tubes
through which the refrigerant flows back and forth.

ISHED-1 is able to apply background knowledge based
on the nature of the problem in order to constrain its
search for the best ordering of the tubes search to
plausible architectures. A user-defined parameter imposes
limitations on the lengths of most tube bends.
Additionally, the program enforces six real-world
constraints on generated designs, ranking from suggested
to essential. The program rejects structures that violate a
required constraint, and only under special circumstances
(namely when designing a more coherent architecture is
very difficult) generates structures from scratch that
violate the more lenient constraints.

For example, a constraint limiting splits in refrigerant
paths is based on the unacceptable drops in refrigerant
pressure that will occur if a single path undergoes multiple
splits. Another constraint requiring inlets and outlets to
be on the same side of the heat exchanger manifold is
based on the structural requirements of the air
conditioning unit, and a third constraint forbids looping in
the refrigerant path.

An ISHED-1 run proceeds as follows: Given
instructions characterizing the environment for the sought
heat exchanger design, an initial population of designs
(either specified by the user, randomly generated, or a

combination of the two), and parameters for the
evolutionary process, it evolves populations of designs
using a synthesis of specially designed Darwinian and
symbolic evolution operators for a specified number of
generations, and returns a report that includes the best
designs (architectures) found and their estimated capacity.

Troughout the execution, design capacities are
determined by a heat exchanger simulator (Domanski
1989).

During the course of ISHED-1 development, many
experiments with the system were conducted. The best
ISHED-produced architectures conformed intuitively to
expectations of the general form of a successful
architecture in the given airflow environment, and some
performed far better than currently-used expert-designed
structures in situations of non-uniform airflow.

5 Conclusions

6 References

Back, T., Hoffmeister, F., and Schwefel, H. (1991). A
Survey of Evolution Strategies, Proceedings of the Fourth
International Conference on Genetic Algorithms and their
Applications, Morgan Kaufmann.

Cervone, G. (1999). An Experimental Application of the
Learnable Evolution Model to Selected Optimization
Problems. Master’s Thesis, Dept. Of Computer Science,
George Mason University.

Cervone, G. and Michalski, R.S. (2000). Design and
Experiments with the LEM2 Implementation of the
Learnable Evolution Model. Reports of the Machine
Learning and Inference Laboratory, MLI 00-2, George
Mason University, Fairfax, VA.

Cervone, G. and Coletti, M. (2000). EC++, a Generic C++
Library for Evolutionary Computation. Reports of the
Machine Learning and Inference Laboratory, George
Mason University, Fairfax, VA. (to appear).

Coletti, M., Lash, T., Mandsager, C., Michalski, R.S., and
Moustafa, R. (1996). Comparing Performance of the
Learnable Evolution Model and Genetic Algorithms on
Problems in Digital Signal Filter Design. Proceedings of
the 1996 Genetic and Evolutionary Computation
Conference (GECCO).

De Jong, K.A., Evolutionary Computation: Theory and
Practice, MIT Press, 1999 (to appear).

Goldberg, D.E. (1989). Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-Wesley.

Holland, J. (1975). Adaptation in Artificial and Natural
Systems. Ann Arbor: The University of Michigan Press.

Kaufman, K.A. and Michalski, R.S. (2000). ISHED-1:
Applying the LEM Methodology to Heat exchanger
Design. Reports of the Machine Learning Laboratory,
George Mason University, Fairfax, VA (to appear).

Kaufman, K.A. and Michalski, R.S. (2000). The AQ18
Machine Learning and Data Mining System: An
Implementation and User’s Guide. Reports of the Machine
Learning Laboratory, George Mason University, Fairfax,
VA.

Michalewicz, Z. (1996). Genetic Algorithms + Data
Structures = Evolutionary Programs. Springer Verlag,
Third edition.

Michalski, R.S. (1983). A Theory and Methodology of
Inductive Learning. In Michalski, R.S. Carbonell, J. and
Mitchell, T. eds. Machine Learning: An Artificial
Intelligence Approach. Palo Alto: TIOGA Publishing Co.,
83-134.

Michalski, R.S. (1998). Learnable Evolution: Combining
Symbolic and Evolutionary Learning. Proceedings of the
Fourth International Workshop on Multistrategy
Learning (MSL'98), 14-20.

Michalski, R.S. (2000). LEARNABLE EVOLUTION
MODEL: Evolutionary Processes Guided by Machine
Learning. Machine Learning 38(1-2).

Michalski, R.S. (2000). Natural Induction: A Theory,
Methodology, and Applications to Machine Learning and
Knowledge Mining. Reports of the Machine Learning
Laboratory, George Mason University, Fairfax, VA (to
appear).

Michalski. R.S. and Cervone, G. (2000). Adaptive
Anchoring Quantization of Continuous Variables for
Learnable Evolution. Reports of the Machine Learning
and Inference Laboratory, George Mason University,
Fairfax, VA (to appear).

Michalski. R.S. and Zhang, Q. (1996). Initial Experiments
with the LEM1 Learnable Evolution Model: An
Application to Function Optimization and Evolvable
Hardware. Reports of the Machine Learning and
Inference Laboratory, MLI 99-4, George Mason
University, Fairfax, VA.

Muhlenbein, H., Schomisch, M. and Born, J. (1996). The
Parallel Genetic Algorithm as Function Optimizer,
Proceedings of the Fourth International Conference on
Genetic Algorithms and their Applications, Morgan
Kaufmann.

