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Abstract 

A recently developed approach to evolutionary 
computation, called Learnable Evolution Model or 
LEM, employs machine learning to guide processes of 
generating new populations.  

The central new idea of LEM is that it generates new 
individuals by processes of hypothesis generation and 
instantiation, rather than by mutation and/or 
recombination, as in conventional evolutionary 
computation methods. The hypotheses are generated 
by a machine learning program from examples of high 
and low performance individuals.   

When applied to problems of function optimization 
and parameter estimation for nonlinear filters, LEM 
significantly outperformed the evolutionary 
computation algorithms used in experiments, 
sometimes achieving two or more orders of magnitude 
of evolution speed-up in terms of the number of 
generations (or births). An application of LEM to the 
problem of optimizing heat exchangers has produced 
designs equal to or exceeding the best human designs. 

 

1 Introduction 

Current methods evolutionary computation employ 
various forms of mutation and/or recombination operators 
to generate new individuals.  Because these operators are 
semi-random, such methods often suffer from low 
efficiency (e.g., Holland 1975; Goldberg 1989; 
Michalewicz 1996; Mitchell 1996; Baeck, Fogel and 
Michalewicz 1997; Banzhaf et al. 1998).    

A new approach, called the Learnable Evolution Model 
(LEM), speeds up evolutionary computation by 
introducing a learning process to evolution (Michalski 
1998; 2000). Specifically, at selected steps of evolution, 
LEM seeks hypotheses differentiating between groups of 
high and low performance individuals, that is, individuals 
that score high and low on the given fitness evaluation 

criterion. These groups are selected from the current and 
possibly also past populations. 

In LEM1 and LEM2, early systems implementing the 
methodology (Michalski and Zhang 1999; Cervone 1999), 
hypotheses are generated by AQ-type learning systems 
(AQ15 and AQ18, respectively). The AQ-type learning 
has proven to be highly suitable for LEM.  The following 
sections briefly describe the LEM methodology, and then 
illustrate it by a sample of results from its application to 
function optimization and heat exchanger design. 

 

2 An Overview of the LEM methodology 

The Learnable Evolution Model or LEM is fundamentally 
different from the Darwinian-type model that underlies 
most of the current methods of evolutionary computation. 
The central engine of evolution in LEM is Machine 
Learning mode, which creates new individuals by 
processes of generalization and instantiation rather than 
mutation and/or recombination as in the Darwinian-type 
evolutionary computation methods.  

Machine Learning mode consists of two processes: 
hypothesis generation, which determines a hypothesis 
characterizing differences between high-fitness and low-
fitness individuals in one or more past populations, and 
hypothesis instantiation, which generates new individuals 
by instantiating the hypothesis in various ways.  Machine 
Learning mode thus produces new individuals not through 
semi-random Darwinian-type operations, but rather 
through a deliberate reasoning process involving 
generation and instantiation of hypotheses about 
populations of individuals. Thus, in LEM, new individuals 
are genetically engineered, in the sense that they are 
determined according to descriptions learned from the 
analysis of the current  and possibly past generations. 

LEM may alternate between Machine Learning mode 
and Darwinian Evolution mode (executing one of the 
conventional evolutionary computation methods), or may 
rely entirely on Machine Learning mode.   



 

LEM differs not only from the Darwinian-type 
evolution but also from the Lamarckian-type of evolution, 
because in generating new individuals it takes into 
consideration not only the experience of single 
individuals, but the experience of one or more  
populations of individuals.  

An evolutionary process in LEM starts with an initial 
population, which is generated randomly or according to 
some rules. In analogy to nature, this population may 
represent “phenotypes,”  or “genotypes”  that are used to 
produce “phenotypes.”   Below is a simplified form of 
LEM (a full version is in (Michalski 2000a)): 

1. Generate a population  
2. Invoke Machine Learning mode: 
 a) Derive extrema: Split the current population 
(or the union of the current and selected past 
populations) into three groups: H-group (high-
performance), L-group (low-performance), and 
the rest, based on the fitness function. 
b)  Create a hypothesis: Apply an inductive 
learning method to hypothesize a description of 
the H-group that differentiates it from the L-
group. 
c) Generate new population: Generate new 
individuals by instantiating the learned hypothesis 
in different ways, and combine the new 
individuals with those in the H-group. Select from 
the combined set a new population.  
d) Go to step 2a), and continue repeating Machine 
Learning mode until the Machine Learning mode 
termination condition is met, in which case 
perform one of the following steps:  

(i) If the LEM termination condition is met, 
end the evolution process.  
(ii) Repeat the process from step 1. This is 
called a start-over operation.  
(iii) Go to step 3.  

3. Invoke Darwinian Evolution mode and apply 
one of the existing Darwinian-type 
evolutionary computation methods. Repeat 
and continue this mode until the Darwinian 
Evolution mode termination condition is met. 

4. Go to step 2, and then continue alternating 
between steps 2 and 3 until the LEM 
termination condition is met.  

The best individual existing when the LEM termination 
condition is met is the output result of the evolution. 

The Machine Learning mode termination condition is 
met when a plateau of the fitness function is reached while 
the LEM termination condition is not yet satisfied.  In this 
case, LEM may execute the start-over operation [step 2d 
(ii)] or switch to Darwinian Evolution mode. If at this 
point LEM always chooses the start-over operation, the 

evolution process is based solely on a repetitious 
application of Machine Learning mode. This version of 
LEM is called uniLEM. For the purpose of distinction, 
LEM’s version that works in both modes is called 
duoLEM.   

 The main parameters of LEM are those that control the 
way the H-group and the L-group are selected and the 
number of new individuals that ought to be instantiated 
from each rule found. Other parameters control the 
persistence of executing each mode, the start-over 
operation, and termination conditions (Cervone 1999, 
Michalski 2000a). 

Selecting H- and L-groups can be done according to a 
fitness-based method, a population-based method, or a 
combination of the two.  The fitness-based method 
partitions the population using two fitness thresholds, 
HFT (“High Fitness Threshold” ) and LFT (“Low Fitness 
Threshold” ), which specify portions of the total fitness 
value range in the population that are used to determine 
the H- and L-groups.  The population-based method 
partitions the population using parameters  HPT (the 
“high population threshold” ) and LPT (the “ low 
population threshold” ) that specify the portions of the 
population to be used as H-group and L-group group, 
respectively.  Figure 1 illustrates the latter method using a 
fitness profile function that maps individuals ordered by 
their fitness into the fitness value. 

 Fitness-ordered   individuals 
                    L                                                    H     

Figure 1.   A fitness profile function and the HPT and 
LPT thresholds. 

The H-group and L-group are then passed as positive and 
negative training examples to the AQ attributional 
learning program. AQ was selected because it has many 
feature particularly useful for LEM, such as internal 
disjunction and conjunction in the representation 
language, the ability to generate rules at different levels of 
generalization, and others (Michalski, 1999, 2000).  AQ 
determines rulesets that differentiate between the H-group 
and L-group.  As illustrated in Figure 2, these rulesets 



 

1.1

describe a subspace of the search space that is 
hypothesized to contain the global optimum (or optima).  

New individuals are selected from this subspace by an 
operation of ruleset instantiation. This operation creates 
new individuals by instantiating the variables in the rules 
in different ways. The learned rules typically include only 
a subset of the initial variables, that is, make no 
constraints on some variables.  Variables not included in 
the rules are thus assigned values based on the individuals 
in the population.  

The number of new individuals generated through 
instantiation is determined by the rule fitness [called in 
(Cervone, 1999), the weighted t-weight of the rule]. The 
rule fitness is the sum of the fitnesses of individuals 
covered by the rule.  In calculating the rule fitness, the 
range of fitnesses of individuals was mapped into discrete 
units 1 to 5, using the χ2 method (Cervone, 1999). 

An H-group description represents a hypothesis that the 
area in the landscape identified by it contains individuals 
with a higher fitness than that of the individuals outside of 
that area. Such a description can thus be interpreted as a 
qualitative differential that approximates the direction of 
change of the fitness landscape. Selecting individuals 
from the area indicated this description corresponds to 
climbing up an extrapolated fitness landscape.  This 
qualitative differential achieves a qualitative zero at the 
extreme points of the fitness landscape, or in the areas 
where it is unchanging. Thus, the qualitative zero is 
indicated by a flat fitness profile function and the 
consequent impossibility of dividing a population into 
distinct H- and L-groups. 

The power of LEM seems to stem from computing such 
qualitative differentials and using them to guide the 
evolution process. Since qualitative differentials can be 
repeatedly computed in parallel, i.e., determined 
simultaneously in many places of the fitness landscape, 
LEM has higher chances to efficiently find the global 
optimum than methods that rely only on mutation or 
crossover. Moreover, if the fitness landscape has several 
global optima, LEM may be able to find all or a subset of 
them simultaneously.  To do so, the machine learning 
method used in Machine Learning mode must be able to 
construct disjunctive descriptions of H-groups. If the H-
group description correctly hypothesizes the direction of 
the landscape change, the evolution process will proceed 
rapidly. This is demonstrated by quantum leaps or “ insight 
jumps”  of the fitness function. 

The process of computing qualitative differentials can 
be executed in such a way that in each iteration, the 
generated descriptions describe a subset of the previously 
described region of the search space.  Figure 2 illustrates 
such a progressive partitioning of the search space 
(different shading indicates areas indicated by 

descriptions obtained in different generations). The 
symbol “1”  indicates the globally optimal solution.  

 
 
 
 
 
 
 
 
 
 
 
 
      1st generation       2nd generation      3rd generation 

Figure 2.  An illustration of progressive partitioning of the 
search space. 

If the generated hypotheses accurately predict the 
region with the global optimum, such iterative partitioning 
of the search space leads to a rapid progress of the 
evolution.  

 

3 LEM1, LEM2 and ISHED 

LEM1 was the first preliminary LEM implementation 
described in (Michalski and Zhang, 1999) and it was 
developed combining the aq15c machine learning 
program to GA1 and GA2, two simple evolutionary 
algorithms. (De Jong, 1999).  Despite the names lead in 
thinking GA1 and GA2 are traditional Genetic Algorithm, 
they implement a deterministic selection mechanism and a 
real-value representation of the variables.  The main 
differences between the two, is that GA1 generates new 
individuals only through a uniform gaussian mutation 
operator, while GA2 implements in addition a uniform 
crossover. 

The first application of LEM1 was to optimize a set of 
well-know functions, and analyze how the machine 
learning program improves the efficiency of the algorithm.  
The second application was to design a linear digital filter. 
(Coletti et al, 1999). 

LEM2, is the newest implementation of the Learnable 
Evolution Model and it was programmed using EC++, a 
generic Evolutionary Computation Library (Cervone and 
Coletti, 2000). LEM2 introduced several improvements, 
and fixed some of the problems that arise with the early 
implementation.  The main improvements are:  

A. Employment of a new method for discretizing 
continuous variables, called Adaptive Anchoring 
Discretization, briefly, ANCHOR (Michalski and 
Cervone, 1999). This method replaced the χ2 method used 
in LEM1 (Zhang, 1999). This method allows to gradually 



 

increasing the resolution for the representation of 
continuous variables, and it leaded to drastic 
improvements in several problems. 

 
B. Creation of new individuals by instantiating multiple 

rules rather than only the strongest rule in a ruleset 
generated by AQ18.  This feature allows the system to 
explore in parallel several subareas of the search space 
rather than one. This feature is important in the case of 
multi-modal landscapes.  

C. The rule instantiation takes into consideration the 
rule mass, defined as the sum of fitnesses of examples 
covered by the rule  (the current implementation takes into 
consideration the rule mass per example covered) 

D. Employment of the fitness-based selection, in 
addition to the population-based selection used in LEM1. 
This way, the number of examples selected as training 
examples is not a fixed percentage of the population, but 
depends on the behavior of the fitness profile function. 

E. Dynamic adjustment of the cost of variables in the 
learning process.  Each time a variable is included in a 
ruleset generated by the learning program, its cost is 
increased. This way, the system will give a preference to 
other variables when learning a ruleset in the next 
generation. This feature has proven to be useful for 
optimizing functions with large number of variables (> 50 
variables). 

F. Implementation of a simple version of the Startover 
operator. Specifically, when the fitness profile function is 
flat for a certain number of generations (defined by the 
fitness_probe parameter), the evolution is re-started  from 
a new, randomly generated population. The best 
individual generated so far is, however, preserved 
(“elitism”). This feature has proved to be useful in cases 
where the system converges to a local optimum. 

G. The introduction of the uniLEM mode, in which the 
evolution process executes only Machine Learning mode, 
that is, is guided solely by machine learning process, and 
Darwinian-type operators of mutation and cross-over are 
not applied.  

H. The introduction of the population lookback and the 
description lookback in the process of generating H and L 
groups, as described in (Michalski, 2000). In the 
experiments described below, the population lookback 
was set to 1, and the description lookback parameter was 
set to 0 (no past rules are taken into consideration when 
generating new rules). 

LEM2 was applied to optimize highly dimensional 
problems, and it performance compared to standard 
Darwinian type Evolutionary Algorithms (Cervone, 1999). 

ISHEDis an implementation of the methodology for a 
specific domain of applications, namely the design of heat 
exchange systems. 

 

4 Experiments 

In this section we present some of the most 
distinguishing results that were achieved with the LEM 
methodology. 

4.1 Designing Digital filters 

LEM-1 with GA1 and GA2 were compared on a 
different type of problems, namely problems related to the 
design of digital filters. We present here just a sample of 
results (for more details, see Coletti et al, 1999). The 
fitness function was defined by equations specifying linear 
and nonlinear filters described in (Yao and Sethares, 
1994).  

 
Problem:.  Determine optimal parameters of nonlinear 

filters defined by the equation:  

 
where:   k – is the sample index (or time), n() – is a 

noise component ranging from -.25 to .25, and u() – an 
inserted function (sin, step, random)  

 
In this study, we assumed that coefficients -0.3, 0.4, 

1.25, and -2.5 in the above equation are variables.  The 
problem was to find their correct values from a set of 
<vector i, y(vector i)> pairs, where vectorI is a specific 
assignment of values to variables. Individuals in the 
population are thus vectors with four real-valued variables 
(“genes”). When substituted in the equation, the 
individual's genes yield a value of y that is compared with 
the known correct value. The fitness of an individual is 
inversely proportional to the difference between the result 
and correct value. The individual whose gene coefficients 
give the lowest error is assigned the highest fitness.  

In the experiments, three different sets of input data to 
LEM-1, GA1, and GA2 were used. In  Machine Learning 
mode, LEM-1 used the population-based method with 
HPT and LPT both equal 30%. The population of each 
generation was 20; the learn-probe was 3, the learn-
threshold was 0.01; dar-length was 3, dar-threshold was 
0.01. Each variable was discretized into 200 ranges. Each 
program was executed 10 times, each time using a 
different input data. Runs differed in the seeds used for 
starting a random number generator. Presented results are 
averages of results obtained in these runs. LEM-1 and 
genetic algorithm GA1 used the same seeds. 

 
Yao and Sethares used a uniformly distributed random 

input over the interval (-2.5, 2.5). In addition to this input, 
a unit step function 2.5u(k) and a sine wave 2.5sin(�/10) 



 

were used for comparison. The landscape function 
generated an output array based on a 200 sample input 
sequence and stored it for comparison against the 
populations. Populations were generated, and the fitness 
of each individual was calculated by computing the mean-
square error between the known values and the output 
generated by the individual's genes. The fitness function 
was defined as in (Yao and Sethares, 1994), namely, as 
the reciprocal of the mean-square error over the 200 
sample window: 

 
LEM-1, GA1, GA2 were applied ten times using 

uniform noise, sine, and step function inputs. The initial 
populations were generated randomly. The convergence 
rate varied greatly between populations and generations 
due to the random initial conditions.  It was difficult to 
obtain a meaningful average performance, because a few 
runs would dominate the average. Therefore, for 
comparing performance we used learning curves that 
converged the fastest for each of the three systems for 
different input functions. For a non-linear filter, 
experiments were performed with uniform random input, 
unit step input, and sine wave input. In all cases, LEM-1 
significantly outperformed GA1 and GA2. For illustration, 
Figures 8, 9 and 10 show results for the case of a 
nonlinear filter with a uniform noise input. 

 

GA1 Learning Curve, Nonlinear Filter Uniform 
Noise Input
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Figure 3.  A GA1 revolutionary process for nonlinear 

filter with uniform random noise input. 
 

GA2 Learning Curve, Nonlinear Filter Uniform 
Noise Input
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Figure 4. A  GA2 evolutionary process for nonlinear 

filter with uniform random noise input. 
 

LEM-1 Learning Curve, Nonlinear Filter 
Uniform Noise Input
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Figure 5. LEM-1 evolutionary process for nonlinear 

filter with uniform random noise input. 
 
As Figures 3, 4, and 5 show, the convergence of GA1 

and GA2 was relatively slow. The effect of the machine 
learning mode is demonstrated by a dramatic drop (an 
“ insight jump”) in the mean-square error when the system 
learned good rules for generating the next generation of 
individuals.  

LEM-1 toggles between Machine Learning mode and 
Darwinian Evolution mode roughly 10-800 times 
throughout the course of a typical experiment. A dramatic 
drop in the mean-square error usually occurred within the 
first 100 generations. Because four genes were used to 
represent the four parameters of the filter, the error 
surface generated by the mean-square error is four-
dimensional.   

Such an error surface creates difficulties for traditional 
search techniques. These techniques, for example, the 
gradient descent and LMS, are subject to finding local 
minima, and they would have to run in parallel to achieve 
the robustness of the evolutionary computation approach. 
LEM-1 alleviates much of the computational cost of the 
genetic algorithm approach by accelerating the 
evolutionary process through a series of symbolic learning 
steps. 

 



 

4.2 Optimization Problems 
 

 Below is one of many testing results. This result concerns 
the application of LEM to the problem of minimizing the 
Rosenbrock function (denoted as f2), in which the number 
of arguments, n, was set to 100: 

 
For comparison, an evolutionary strategy method, ES, 

was also applied to the same problem. 
This is a rather complex optimization problem because 

the Rosenbrock function has a very narrow and sharp 
ridge and runs around a parabola, so the variables are 
interrelated (Figure 6). 

 
 
 
 
 
 
 
 
 
 
 

Figure 6.  An inverted 2D graph of the Rosenbrock 
function.  

The results of this experiment are graphically presented 
in Figure 6.  Two different population sizes were used, 
100 and 150 for both LEM2 and ES.  

In Figure 7, LEM a,b,c means that the method was 
LEM, the population size was a, and the High and Low 
population thresholds (for class assigament) were b and c, 
respectively.  ES a,b means that the method was 
evolutionary strategy with population size a and mutation 
rate c. ES employs a real-value representation, a 
deterministic selection, and the binary tournament method 
for the selection of the survivors.   Each parent is cloned 
(produces only one child), and then mutated using uniform 
mutation (Cervone and Michalski 2000). Optionally, the 
Uniform Crossover operator or the One Point Crossover 
operators are used to generate more individuals.  Finally 

all the new individuals compete with a randomly selected 
parent. 

As shown in Figure 7, LEM2 was significantly less 
dependent on the input parameters than ES, and 
converged to the function minimum (the value “0” ) much 
faster than ES . 

LEM2 was also compared with the best available result 
previously published using this function, however the only 
data available were relative to the original problem which 
involves a much smaller number of variables (2 and 4).  

The results from the following experiments are 
summarized in a table that shows the number of 
evaluations needed to come δ-close to the global 
optimum, and the relative speedups. To evaluate the 
performance of the algorithms in another way, we 
determined the δ-close  number,  that is, the  number of 
generations in the evolution process after which the 
relative distance to target  of  the solution produced by an 
algorithm reaches a given value, δ.   Using δ, we define 
the speedup of algorithm A over B, as the ratio, expressed 
in percentage, of the number of births required by B to the 
number of births required by A to achieve the δ-close 
result.  

 

Table 1. Results for the Rosenbrock function of  2 variables.   

Rosenbrock function 
minimization 2 vars 

δ=0 

LEM2 101 

CHC            4893 

Speedup LEM2/CHC         4800%  

 
In the case of two variables, the best result was achieved 
using the CHC+BLX algorithm using 4893 evaluations 
(Back, Hoffmeister and Schwefel, 1991). LEM2 found the 
global minimum using only 101 births, that is, about fifty 
times fewer (the speedup of nearly 5000%). Table 7 
summarizes the results. 

With four variables, the best published result was 
achieved by a breeder GA, which required  about 250,000 
evaluations (Schlierkamp-Voosen and Muhlenbein, 1994).  
LEM2 found the global solution (δ=0) with only 281 
births (evaluations), that is, required about 750 times 
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Figure 7. A graphical comparison of performance of LEM2 and ES methods.
  

fewer births than GA that found δ=0.1 solution (the 
speedup at least of 75,000).  Table 2 summarises. This is 
the highest speedup obtained by LEM2 over a genetic 
algorithm for this set of problems.  

Table 2. Results for the Rosenbrock function of 4 variables.   

Rosenbrock function 
minimization 4 vars 

 

LEM2          δ=0: 281 

GA δ=0.1: 77,000  

Speedup LEM2/GA 27,500% 

 
This strong results indicates that LEM2 was able very 

quickly locate the area of the landscape with the global 
optimum. In achieving this result, LEM2 was helped by 
the ANCHOR method that gives preference to values that 
represented this optimum. 

 

4.3  An Application to Heat Exchanger Design  

LEM was also tested on real-world problems, such as 
parameter estimation for digital filters (Coletti et al. 
1999), and the optimization of heat exchangers.  For the 
latter application, we have developed ISHED-1, a LEM 
implementation specifically tailored to a class of design 
problems (Kaufman and Michalski 2000a).  ISHED-1 
conducts an evolutionary optimization process to 
determine the best arrangement of the evaporator tubes in 
the heat exchanger of an air conditioning system under 
given technical and environmental constraints.  

In an air conditioning unit, the refrigerant flows through 
a loop. It is superheated and placed in contact with cooler 
outside air in the condenser unit, where it transfers heat 
out and liquifies. Coming back to the evaporator, it comes 
into contact with the warmer interior air that is being 
pushed through the heat exchanger, as a result cooling the 
air while heating and evaporating the refrigerant.  The 
heat exchanger consists of an array of parallel tubes 
through which the refrigerant flows back and forth.  

ISHED-1 is able to apply background knowledge based 
on the nature of the problem in order to constrain its 
search for the best ordering of the tubes search to 
plausible architectures.  A user-defined parameter imposes 
limitations on the lengths of most tube bends.  
Additionally, the program enforces six real-world 
constraints on generated designs, ranking from suggested 
to essential.  The program rejects structures that violate a 
required constraint, and only under special circumstances 
(namely when designing a more coherent architecture is 
very difficult) generates structures from scratch that 
violate the more lenient constraints. 

For example, a constraint limiting splits in refrigerant 
paths is based on the unacceptable drops in refrigerant 
pressure that will occur if a single path undergoes multiple 
splits.  Another constraint requiring inlets and outlets to 
be on the same side of the heat exchanger manifold is 
based on the structural requirements of the air 
conditioning unit, and a third constraint forbids looping in 
the refrigerant path. 

An ISHED-1 run proceeds as follows: Given 
instructions characterizing the environment for the sought 
heat exchanger design, an initial population of designs 
(either specified by the user, randomly generated, or a 



 

combination of the two), and parameters for the 
evolutionary process, it evolves populations of designs 
using a synthesis of specially designed Darwinian and 
symbolic evolution operators for a specified number of 
generations, and returns a report that includes the best 
designs (architectures) found and their estimated capacity.  

Troughout the execution, design capacities are 
determined by a heat exchanger simulator (Domanski 
1989).  

During the course of ISHED-1 development, many 
experiments with the system were conducted.  The best 
ISHED-produced architectures conformed intuitively to 
expectations of the general form of a successful 
architecture in the given airflow environment, and some 
performed far better than currently-used expert-designed 
structures in situations of non-uniform airflow.  

5 Conclusions 
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