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DEFINITIONS 

Given many of the terms and definitions related to agent modeling and machine 

learning may have different connotations, this section begins with a set of definitions that 

articulate what is meant by a particular term.  

Agent Based Model (ABM): A computational model for representing and studying a 

social system consisting of autonomous, interacting, goal-oriented, bounded-rational set 

of actors that use a given rule set and are situated in an environment. An ABM consists of 

three main components: agents, rules, and environments where agents are situated 

(Cioffi-Revilla, 2014). 

Reinforcement Learning (RL): The term reinforcement learning describes a 

dynamically learning, trial and error method to maximize the outcome, while deep 

reinforcement learning (DRL) is learning from existing knowledge and applying it to a 

new data set (Williams, 1987). 

Bounded Rationality: A concept that describes decision-making and planning under 

resource limitations, which is an adaptation strategy for coping with our innate lack of 

perfect rationality. In other words, social institutions are causally explained by Bounded 

Rationality (Simon, 1957b).  
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Bounded Optimality: The concept refers to algorithms that maximize utility where the 

optimal solution is constrained by its technology architecture, computing power, and the 

task environment (Horvitz, 1988). 

Emergent Behavior: Emergent behavior is a type of global behavior that arises from 

many agents interacting in a system, but is not attributable to any particular agent 

(Privosnik, 2002) 

Heuristic: A heuristic is a cognitive strategy that is composed of building blocks, 

typically three: search rules that specify where to look for information, stopping rules that 

specify when to end search, and decision rules that specify how to make a final decision. 

Fast-and-frugal Heuristics: A simple, task-specific decision strategies that are part of a 

decision maker’s repertoire of cognitive strategies for solving judgment and decision 

tasks (Gigerenzer and Todd, 1999). 

Heuristic vs. Strategy: The term heuristic and strategy can be used somewhat 

interchangeably, where heuristics are precisely defined as strategies derived from 

previous experiences with similar problems. 

Satisfice: To be satisfied with a minimum or merely satisfactory level of performance, 

profitability, etc., rather than a maximum or optimum level (Simon, 1956).  

LAISR Model: Term is used when referencing both Actor (deep reinforcement learning) 

and Interpreter (AI interpretation methods). See Chapter 3. 

DRL-Agent: Term referring only to the deep reinforcement learning agent 
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ABSTRACT 

 

A HYBRID MACHINE LEARNING AND AGENT-BASED MODELING 
APPROACH TO EXAMINE DECISION-MAKING HEURISTICS 

PAUL CUMMINGS, PhD 

George Mason University, 2020 

Dissertation Director: Hamdi Kavak 

 

Agent-Based Models (ABMs) have become more widespread over the last two decades 

allowing researchers to explore complex systems composed of heterogeneous entities.  

Although ABMs have proven effective for generating simple rules over homogenous and 

heterogeneous agent types to observe emergent behaviors, several challenges exist. One, 

typical ABMs are limited in the representation of cognition and learning to maximize 

their actions based on current (and future) rewards of being in a particular state.   Two, 

ABMs are not designed to produce their own behaviors that can be interpreted by the 

designer.  Although agents may act upon code generated by the model designer, their 

local and global responses are not easily interpretable. Additionally, ABMs do not 

decompose behaviors into information rooted in cognitive processing, specifically 

satisficing or fast-and-frugal heuristics. To address these challenges, this dissertation 

presents a model and methodology called the Learning-based Actor-Interpreter State 

Representation (LAISR), where agents use Deep Reinforcement Learning (DRL) to 
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generate strategies to maximize for current and future states. Due to the agent’s behavior 

representation as a deep neural network (DNN), explainable artificial interpretation 

(XAI) methods are used to decompose DNN features into simple but satisficing strategies 

(heuristics).  The results of this work demonstrate an approach that bridges machine 

learning with that of the social sciences where agents can build their own optimal and 

boundedly rational strategies. This methodology is demonstrated across several 

homogeneous and heterogeneous agent-based models.  The implications of this work 

demonstrate significant steps towards how machine learning-enhanced ABMs can be 

used to develop novel and optimal decision strategies, enhance human behavior 

modeling, and provide a bridge between social science and artificial intelligence research. 
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1 INTRODUCTION 

Agent-Based Models (ABMs) have grown in their application over the last two 

decades partly because such a style of the model can represent complex systems with 

minimal knowledge of parameter values or without fully knowing the optimal parameter 

states to describe the real-world environment (Li et al., 2013). Not only do ABMs allow 

us to study complex systems, but they also provide an intuitive and realistic description 

of the behavior of such systems. Agent-based modeling and simulation platforms offer 

architectures of varying complexity for the agents, where reactive agents are very 

simplistic, reacting to environmental stimuli often without any long-term reasoning; 

finite-state machines require the scripting of all of the possible states of the agents and 

the corresponding behaviors; cognitive agents offer a more flexible description of 

behaviors in terms of goals and plans (Kennedy, 2012). Agent-based modeling has 

proven itself invaluable to the social science community, including work in conflict 

(Epstein, 2006; Bhavnani and Miodownik, 2009), segregation (Schelling, 1971; Bruch 

and Mare, 2006), evolutionary biology (Holland, 1992; Nowak, 2006), and ecology 

(DeAngelis and Mooij, 2005; Heckbert et al., 2010).  Often cognitive theories are 

difficult to address from an agent-based modeling perspective; it is challenging to ensure 

they are calibrated, generated, and accurately evaluated in reference to a real-world 

system (Cioffi-Revilla, 2014).  



2  

 
2 

1.1 Challenges with ABMs 

There are three main challenges which this dissertation addresses in reference to 

modeling rationality in ABMs. 

1.1.1 Challenge 1: ABMs are limited in their ability to find optimal strategies 

By their design, ABM models are limited in their abilities as information 

processors and are boundedly rational (Simon, 1957b). ABMs act in accordance with a 

set of simple variables and parameters given by the modeler and make decisions that are 

primarily scripted or coded.   Notably, they are not able to learn strategies on their own. 

Ideally, agents learn to maximize their ability to select actions based on current (and 

future) rewards of being in a particular state.   

1.1.2 Challenge 2: ABMs are not easily interpreted 

ABMs are not designed to produce their own behaviors that can be interpreted by 

the designer.  Although agents may take action based on code generated by the model 

designer, their behaviors are often difficult to analyze.  Additionally, given agents act 

within complex systems, often producing emergent properties, the process of interpreting 

agent behaviors can be even more challenging.   

1.1.3 Challenge 3: ABMs strategies are not decomposable to simple heuristics 

 Given the social science community’s interest in modeling decision processes, 

ideally, we would like to be able to provide techniques that mimic human cognitive 

processes, i.e., quick decisions, particularly when working with complex data. Although 
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these ‘heuristics’ made may not necessarily be optimal, they can aid our understanding of 

how humans acquire and employ decision strategies. 

 

1.2 An Example ABM to Illustrate the Challenges: The Bat-Frog Predation 

Model 

In this example, two distinct agent types, the bat (predator) and frog (prey), must 

interpret and respond to their environment in order to survive. Here are the basic rules: 

• The frog would like to mate but must be careful not to be eaten by a bat.  

• The frog can only mate if it calls out to a mate, so it must be careful not to 

give itself up.  

• The bat, on the other hand, can hear mating calls but only at specific 

frequencies and when it is awake (primarily at night).  

• The bat must be careful not to eat all the frogs; otherwise, there is no 

mating for its future meals. 

In pseudo programming, one might write frog and bat programming that would do 

the following: 

 

Frog Model: The frog selects a list of frequencies to sing to and selects a set of times it 

speaks to mating frogs. If it sees a bat, stop singing and choose an escape behavior. If 

male, sing to the mate, and if female, listen for mating call, go to mate.   

def frog ():  

 #select low and high frequencies 
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var song frequency = list {low frequency, high frequency} 

 

#select a start and end time 

var time activity = list {start time, end time} 

 

#update function 

def Update () 

#take actions if seen other predators or prays 

 

If {bat-seen} 

[stop-singing, hide, jump in the river, move quickly left and right, 

etc]. 

If {mate-seen} 

[if male->sing to mate; if female (and hear singing) -> go to mate] 

 

Bat Model: The bat selects a list of frequencies to listen to and selects a set of times it 

listens for mating frogs. If it hears a frog, fly to it and eat it. Randomly choose not to eat 

the frog in order to ensure they can procreate.    

 

def bat ():  

var hear song frequency = list {low frequency, high frequency} 

var time activity = list {start time, end time} 
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#update function 

def Update () 

If (hear song frequency == frog frequency) 

{fly to frog; eat frog}  

Random (1.0) < .2 {leave frogs to procreate} 

 

 

In this pseudo-code example, the Bat-Frog model designer may generate a set of 

parameters that could be tested through a parameter sweep and examine how each 

predator and prey may react in the environment. 
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Figure 1: Frog Preferences (a) and Bat Preferences (b) 

 
 
 
After running the model several times, Figure 1 (a) illustrates that the frog may 

have a preference to never overlap with bat hunting in order to maximize its survival. On 

the other hand, in Figure 1 (b), the bat would choose to overlap sometimes with the frog 

in order to eat but would still leave enough frogs for future meals. From here, the 

observer might deduce the following strategy:  

• Bat: eat but don't eat everything 

• Bat: eat when frogs are out 

• Frog: stay hidden unless you need to eat 

(

a) 

(

b) 
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• Frog: procreate 

 

1.2.1 Complex Bat-Frog Model 

The complexity of the problem shall now be enhanced. Let's assume that frogs 

mate if the female frog can hear the male frog sing at a certain frequency where the sonic 

frequency of calls allows mate recognition and generally matches the female tympanic 

range (Ryan, 1988). Additionally, the bat can hear certain frequencies, and the frog must 

continually update its song frequencies in order to not get spotted by the bat.  

 

 

Figure 2: Bat Behavior Relative to Frog 
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In Figure 2, the bat must learn to adapt its hearing to recognize frog frequencies at 

certain times of the day. The frog, in turn, must modulate its frequencies so it may 

survive and mate. As one can imagine, the set of conditions and variables can get 

particularly challenging to determine as the number of parameters increases. In the 

model, the conditions are at state 𝑠 of the environment at time 𝑡; the bat must determine 

the action (song frequency 𝑓	and hour of interaction𝑡 ) of the frog. The frog may select to 

continuously update its frequency modulation every few days to keep the bat guessing its 

whereabouts, and with this, the bat-frog model gets even more complex. In the simple 

bat-frog example, agents are bestowed behaviors coded in advance by the modeler (Sen, 

1999). But for a more dynamic set of conditions as in the complex example, behaviors 

must be learned such that actions are taken to achieve maximum rewards for making a 

decision in a particular state. How does an agent learn such a process?  Let us refer back 

to the challenges discussed in section 1.1. 

Imagine that instead of generating a set of specific actions, we can endow each 

agent with reward signals that the agents must strive for to achieve their respective goals.  

If the agent takes an action 𝐴 at state 𝑆 and is given a reward 𝑅 for being in that state, 

then over time, we can develop a set of optimal action-state pairs which lead to the 

highest reward (Sutton and Barto, 1998). 
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Figure 3: Agent Takes Actions in a State and is Rewarded 

 

This learning strategy imbues agents with a type of continuous updating and 

refining its approach to optimizing actions within its environment.  The continuous self-

governing learning process also removes a considerable amount of coding for the model 

developer (i.e., it is up to the agent to discover competent behavior), and eventually, the 

agent learns to select appropriate actions based on the ability to maximize its rewards in a 

particular state. 

In the example, imagine that now that the agent has generated its behaviors 

through utility maximization, we can deconstruct its behaviors (preferably through 

explainable artificial intelligence methods) into sets of actions taken given specific 

conditions. These features can be generated into a set of strategies (heuristics) used to 

describe the behavior of the agent.  

1.3 Research Questions 

RQ 1: What methods can aid in the design, development, and analysis of hybrid 

ABM and reinforcement learning system in efforts to address challenges in ABM 

modeling? 
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This research question addresses the importance of how agents could learn 

independently to build their own learned strategies using deep reinforcement learning 

(DRL) techniques. In classical ABM design, agents are built with discrete rules and then 

self-organize into systems that perform tasks and potentially generate emergent properties 

(Hutchinson and Gigerenzer, 2005).  DRL models, on the other hand, are not designed 

with discrete rules; these rules must rather be learned through deep reinforcement 

learning mathematical principles.  But, certainly, we do not want to throw the baby out 

with the bathwater. ABMs have some very important characteristics, such as allowing us 

to generate simple rules over homogenous and/or heterogeneous agent types and observe 

emergent behavioral changes. ABMs are also fairly easy to decipher at their fundamental 

level. It is therefore important to consider a research question that includes the values of 

both traditional ABMs and features of DRL that can aid in the enhancement of the 

proposed research question. 

 

RQ 2: What AI-based research techniques can help to deconstruct behaviors of 

the proposed agent model into decision strategies? 

If RQ 1’s goal is to use deep reinforcement learning methods to build optimal 

policies for each agent, DRL models must also be deconstructed. Unfortunately, DRL 

agents use artificial neural networks (ANN) to build their internal representation of the 

environment, which are challenging to decipher due to the “black box” nature of these 

structures (Kamruzzaman et al., 2010)). Explainable AI (XAI) techniques provide some 

support in our understanding of the ANN. However, a more sophisticated process needs 
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to be developed to further decompose XAI data in order to uncover specific strategies 

generated by the DRL agent. This process will help us develop a more precise equivalent 

to the Hutchinson et al. (2005) and Todd & Gigerenzer (1999) cognitive heuristic.  

Based on these research questions, this dissertation presents a novel approach to 

designing and developing a formal ABM and machine learning hybrid model called the 

Learning-based Actor-Interpreter State Representation (LAISR). The model is tested 

within the bounds of computational social sciences theory to include Schelling's model, 

homogeneous and heterogeneous model design, and ultimately an analytical method to 

deconstruct its behaviors into strategies. The design, development, and analysis of the 

approach are discussed over the course of the following chapters. 
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1.4 Methodology and Dissertation Organization 

 

Figure 4: Methodology 

 
 
 
The following methodology provides an overarching view of the procedures used 

in this dissertation.  Across the top, from left to right, there are six development sections 

in this dissertation: An initial set of research questions are gathered based on gaps related 

to social ABM design challenges. From here, a research design plan was generated to 

include the design of the LAISR model. For each portion of the LAISR model 

(Homogeneous Actor 1, Homogeneous Actor 2, Interpreter, State Descriptor), an 

Analysis, Design, Build & Test, Evaluate, and Report process was followed. Steps were 



13  

 
13 

written into respective sections of the dissertation, as were the results of the experiments. 

For each section having a software component to it, a verification and validation section 

was developed to ensure the code was properly implemented and validated. Through each 

successive “analysis to evaluation” period, data were collected and included within a 

report, which was added to this dissertation. All code was uploaded to GitHub and is 

available for review in order to replicate the entirety of this process.  

 

1.4.1 Dissertation Chapters 

Background introduces the background to this work, which includes research in a) 

Rationality, b) Utility, c) Interpretation, and d) Heuristics, and gaps leading to the design 

of this model. Additional background chapters in Artificial Intelligence and Explainable 

Artificial Intelligence provide detail about theoretical, mathematical, and computational 

methods for developing the LAISR model. 

LAISR Experiments: Homogeneous Models builds on the previous chapter by 

developing two agent-based models with multiple agent types that must compete for 

resources within an environment. This chapter highlights how LAISR agents can generate 

an appropriate strategy in relation to their goals (see section 3.2.3). 

LAISR Experiments: HeterogeneousModel attempts to generate a set of 

heterogeneous multi-agent reinforcement learning agents. The principal concept is to 

evaluate how the LAISR agent explores its own learning strategy when in competition 

with an alternate agent type.  
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LAISR Experiments: Advanced Explainable Artificial Intelligence investigates the 

complexity of machine learning interpretation, including a research section on new 

methods of AI interpretability.  This section also contains a section on the development 

of a State Descriptor (see 4.10). 

Finally, Discussion and Future Work provides a look into the LAISR model from 

the social science perspective, present areas of future research, and discusses disciplines 

that can benefit from this work in the future. Finally, the new field of Inverse Generative 

Social Science (IGSS) is introduced, which in some form could provide additional 

insights into new generative methods at play in social system theory. 
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2 BACKGROUND 

We want the [reinforcement learning] agent to explore to find changes in the environment. As in the earlier 
exploration/exploitation conflict, there probably is no solution that is both perfect and practical, but simple 
heuristics are often effective. - Sutton and Barto (1998)   
 

2.1 ABMs in the Social Science Community 

ABMs have long been a method for examining collective and emergent properties 

of complex systems. These properties emerge from local behaviors of a multitude of 

agents in social science contexts (Bonabeau, 2002; Miller et al., 2007).  In order to 

identify emergent behavior in an ABM, it is first necessary to identify local rules that 

generate the intended behavior at system a larger scale (Fehérvári, 2010). ABMs can 

simulate the evolutionary attributes of complex systems environments with a large 

number of parameters for many time steps (Li et al., 2013). ABMs have some very 

important characteristics, such as allowing us to generate simple rules over homogenous 

and/or heterogeneous agent types and observe emergent behavioral changes. ABMs are 

also fairly easy to decipher at their fundamental level; this feature becomes more difficult 

as ABMs aggregate their behavior, but the building blocks can be fundamentally simple. 

But ABMs have their deficiencies as described in section 1.1 Challenges with 

ABMs.  In order to overcome these shortcomings, I will outline four areas of research that 

are necessary to begin the enhancement of the ABM model:  a) Rationality, b) Utility, c) 

Interpretation, and d) Heuristics. Each of these areas is addressed from two areas of 

research: Decision-making theory and Artificial Intelligence Research.  
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Figure 5: Four Model Research Areas and Decision Theory and AI Representation 

 

 

2.2 Rationality 

A considerable amount of work has gone into the concept of rationality decision-

making (Malpas, 2012). Humans make decisions under a variety of conditions and make 

these decisions with information and resource constraints. Researchers in social science 

theory has tried to define decision-making from the perspective of rationality. Currently, 

there are two primary decision-making approaches: Bounded Rationality (Allard, 2003) 

and Rational Decision-Making.  A rational thinker is predicted to reach their highest 

results in the selection of decisions made while considering values, attributes, and risk 

preferences. 

 

 

Model Research Areas 

Representation 
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2.2.1 Bounded Rationality Decision-Making 

 Bounded rationality (Simon, 1957b) assumes that information for both human 

cognition and AI agents is imperfect, and we accommodate this constraint within the 

theory of bounded rationality.  

 
 
 
Table 1: Bounded Rationality Representations 

 
Decision Theory Artificial Intelligence 

Definition Due to the mind's limitations, humans 
must approximate methods to handle 
most tasks (Simon, 1990). 

Modeling behavior requires reward 
functions to maximize expected future 
rewards with no previous knowledge of 
the environment (Sutton and Barto, 
1998)  

Methods and 
Models 

Mental processing, environmental  
structure/constraints 
Satisficing 
Friedman model 

Kahneman Cognition Architecture 
Russell and Norvig Bounded and 
Globally Rational Model 

 
 
 

2.2.2 Representing Bounded Rationality 

Decision theory and AI are endowed with representations of bounded rationality. 

Where Decision Theory sees it as a cognitive processing limitation, AI makes the 

assumption that an agent does not have full awareness of its environment. Over time it 

must learn to generate its own set of actions that it believes will create maximum utility.  

In Table 1, bounded rationality is defined by Simon (1990) and represented as one of 

several cognitive representations (satisficing, fast-and-frugal). The AI equivalent is 
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algorithms such as the Bellman Equation that maximize future rewards with minimal 

knowledge about the environment.   

 

2.2.2.1 Bounded Rationality: Decision Theory 

Herbert Simon (1957b) was one of the first to argue that human beings are 

bounded in their ability to be completely rational. Simon suggested that humans behave 

in an irrational manner due to a lack of important information that would help them 

define the problem before making a decision. Simon envisioned bounded rationality as 

two interlocking components: the limitations of the human mind and the structure of the 

environments in which the mind operates.  

The first component of his vision means that models of human judgment and 

decision-making should be built on the mind's ability to process rather than on all known 

rationality. In many real-world situations, optimal strategies are unknown or unknowable 

(Simon, 1987). Even in a game such as chess, where an optimal (best) move does, in fact, 

exist at every point, no strategy can calculate that move in a reasonable amount of time 

(either by human minds or computers), despite the well-defined nature of the possibilities 

to be searched. In less well-defined natural situations, the hope of identifying a useable 

optimal strategy is even further diminished. Because of the mind's limitations, humans 

must approximate methods to handle most tasks (Simon, 1990). These methods include 

recognition processes that largely obviate the need for further information search, 

heuristics that guide search and determine when it should end, and simple decision rules 

that make use of the information found.  
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The second component of Simon's view of bounded rationality, environmental 

structure, explains when and why simple heuristics perform well.  Broadly stated, "the 

task is to replace the global rationality of economic man with the kind of rational 

behavior that is compatible with the access to information and the computational 

capacities that are actually possessed by organisms, including man, in the kinds of 

environments in which such organisms exist." (Simon 1955a: 99).   Others made this 

point before Simon (e.g., Brunswik, 1943) several times during his life. Balancing the 

quality of a decision against its costs was popular in economics (Stigler, 1961). To this 

day, it remains common to formulate boundedly rational decision-making as a 

constrained optimization problem. Milton Friedman's as if methodology (Friedman, 

1953) similarly uses models that ignore contributing factors supporting decision-making. 

Todd & Gigerenzer (2007) describe how we make inferences about the world around us 

with limited information and processing power. Whereas several models assume 

rationality assumes a type of “all-knowingness” (Ibid). These models are in conflict with 

what we understand about both rationality and processing power. 

2.2.2.2 Satisficing 

Satisficing (Simon, 1957a) is a boundedly rational decision-making strategy 

whose goal is determining a satisfactory or acceptable result, rather than an optimal 

solution. Instead of putting maximum exertion toward attaining the ideal outcome, 

satisficing focuses on pragmatic effort when confronted with tasks. This is because 

aiming for the optimal solution may necessitate a needless expenditure of time, energy, 

and resources. For example, it can be used to choose between two competing available 
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objects, where options are limited, rather than searching across a large space of choices 

(Gigerenzer, 2000).  

2.2.3 Bounded Rationality: AI 

AI-Based Bounded Rationality is essentially the AI analog to human bounded 

rationality. The links between Bounded Rationality and machines are often seen in AI 

research on two-player zero-sum games with perfect information such as Checkers, 

Chess, and Go. Within AlphaGo and AlphaGo Zero, the algorithms are designed where 

"thinking" is bounded rational in that it is not designed to undertake a full search of the 

decision tree (Lee, 2019). The super-human gameplay demonstrated by AlphaGo and 

AlphaGo Zero also demonstrates that computational rationality can lead to super-human 

Artificial Intelligence(AI) even though it is not able to observe all possible states (Lee, 

2019) bounded rationality and AI do not often appear together in research articles. 

Economists discussing bounded rationality rarely mention AI and vice versa. Lee (2019) 

noted this is surprising given Herbert Simon was a pioneer in both bounded rationality 

and AI. Simon undertook research on both bounded rationality and AI simultaneously in 

the 1950s, and these interests persisted throughout his research career. 

Simon's research in the 1950s was critical to the growth of computational science, 

social science theory, and AI. The pursuit of modeling or replicating human behavior has 

developed two general camps which can be applied to the social sciences: Artificial 

Intelligence and Cognitive Science. Cognitive science is designed to replicate aspects of 

human behavior and emotion, where AI replicates human behavior and, with some effort, 

may surpass human intelligence (Ibid).   
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2.2.3.1 Boundedly and Globally Rational AI Models 

Russell and Norvig’s (2010) represented AI behaviors as a matrix of Thinking-

Acting and Bounded-Global categories. In the first category, AI resolved to develop 

computational models that create ‘systems that think’ which are similar to that of 

humans. These mechanisms include language, knowledge representation (and memory), 

reasoning, and learning (Lee, 2019). In the second category, machines are required to act 

like humans. They do not need to possess a human-like mechanism. In the third category, 

the focus is on machines that think rationally in terms of mathematical logic. The fourth 

and last group relates to machines that take actions that are optimal (rational) but may not 

be based on logical reasoning. This dissertation’s interest resides in the first column (see 

Table 2). 

 

 

Table 2: AI and Bounded Rationality (Source: Adapted from Russell and Norvig (2010), Figure 1.1, 

p.2.) 

 Bounded Rationality Global Rationality 
Thinking (Mental 
Process) 

1.Thinking Humanly 
Limitations in learning, 
memory and computation 
(learning, self-learning) 

3. Thinking Rationally 
(Super intelligent?) 
(Universal Turing Machine) 
 
 

Acting (Action) 2.Acting Humanly 
Not globally optimal 
outcome/action 
(Brute-force search) 

4. Acting Rationally 
Globally Optimal 
outcome/action 
(Non-Halting UTM) 
(Incomputable) 

 

 



22  

 
22 

2.2.3.2 The Kahneman Cognition Architecture 

Determining a satisfactory result has been observed by Kahneman (2003) and 

others as part of a spectrum of methods of intuition (System 1) and reasoning (System 2) 

where "intuitive thoughts seem to come spontaneously to mind, without conscious search 

or computation, and reasoning is a slower less intuitive but more process-driven response, 

the reasoning is done deliberately and effortfully" (Kahneman, 2003). Their cognitive 

architecture is illustrated in Figure 6. Kahneman also states that these two systems do not 

exist independently. For example, System 2, through the process of repetition, can 

eventually move into an unconscious fast state. Kahneman goes on to discuss how deep 

learning is much closer to System 1, where it finds patterns to assemble behaviors, yet 

there is no causality or meaning attributes in deep learning and until that is solved.    

 
 
 

 

Figure 6: Kahneman Architecture of Cognition: Source (Kahneman, 2003) 
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2.2.3.3 Gaps in Bounded Rationality Research 

Heuristics-and-biases tradition has been criticized by Gigerenzer et al. (2005) and 

others for being too focused on how heuristics lead to errors. The critics argue that 

heuristics can be seen as rational in an underlying sense. According to this perspective, 

heuristics are good enough for most purposes without being too demanding on the brain's 

resources. Another theoretical perspective sees heuristics as fully rational in that they are 

rapid, can be made without full information, and can be as accurate as more complicated 

procedures. Heuristics are useful in a variety of circumstances but can also be cognitively 

biased (Korteling et al., 2018; Simon, 1955; Broadbent, 1958; Kahneman, 1973, 2003; 

Norman & Bobrow, 1975).  Although the proposed criticisms are well-founded, there is 

very little research on how to automatically generate heuristics. Rather, most of the work 

has been on how modelers build heuristics into their agent models (by hand).    

2.2.3.4 Perfect Rationality Decision-making 

Coming from economic research, the theory of rational decision-making aims to 

connect varied phenomena into a single body of mathematical social theory. Perfect 

rationality, coming from rational choice theory, orders the decisions on the basis of 

subjective expected utility (von Neuman, 1953). Here, homo economicus (Mill, 1848) is 

perfectly rational and has complete knowledge, while his economic choices, guided by 

rationality, are self-contained in the economic sphere without affecting other aspects of 

the individual, such as the emotions or being influenced by the environment. 
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2.3 Utility 

 
 

Table 3: Expected Utility Definitions and Measurement 

 
Decision Theory Artificial Intelligence 

Definition A weighted average of the utilities of each of 
its possible outcomes, 

Given a set of states, select actions that 
maximize current and future rewards 

Methods and 
Models 

The utility of an outcome measures the extent 
to which that outcome is preferred, or 
preferable, to the alternatives.  

Action, state, outcome representations 
 
Maximal set of possibilities, 𝑃, of which 
each state, act, or outcome is a subset. 

 
 
 
 
This section discusses Utility and Expected Utility and how they are aligned from 

the perspective of Decision Theory and Artificial Intelligence (AI).  Utility in Decision 

Theory provides the cognitive foundations for the model, where AI provides a means to 

implement the theory in an AI mathematical model.  

2.3.1 Maximizing Utility: Decision Theory 

The Stanford publication Normative Theories of Rational Choice: Expected 

Utility (2014) introduces the expected utility hypothesis. Bernoulli (1738) is a method for 

an agent to optimize its current and future states. The expected utility of an action is "a 

weighted average of the utilities of each of its possible outcomes, where the utility of an 

outcome measures the extent to which that outcome is preferred, or preferable, to the 

alternatives" (Briggs, 2019). The expected utility has some general characteristics where 
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outcomes are preferred over future states; these states are often outside the decision 

maker's control.  

2.3.2 Maximizing Utility: AI 

The expected utility acts as a bridge between bounded rationality, heuristics, and 

machine learning methods. Within the expected utility, there are three essentials: actions, 

states, and outcomes. 

• States, actions, and outcomes are all sets of possibilities. There is a maximal set of possibilities,𝑃, 

of which each state, act, or outcome is a subset. 

• The set of actions, the set of states, and the set of outcomes are all sub-components of 𝑃, i.e., 

actions and states are individualized so that every possibility in 𝑃 is one where an agent attempts 

to maximize its expected reward and chooses an action based on current state conditions. The 

expected utility of an action 𝐴 depends on two qualities: 

a) The value of each outcome is measured by a utility. 

b) The probability of each outcome conditional on 𝐴. 

In exactly one state, the agent performs exactly one action, and exactly one outcome 

ensues.1Navarro-Martinez et al. (2018) designed a "choice under risk” satisficing model, 

which puts Expected Utility Theory (EUT) in a boundedly rational framework. The 

decision-maker gathers evidence for and against options favoring one option satisfies the 

desired level of confidence. 

 

1 The author also assumes for the moment that, given a state of the world, each act 
has exactly one possible outcome. 
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2.4 Interpretation 

An aspect of the model that deals with explaining the model decisions, so they are 

represented as heuristics, is interpretation.  Decision theory interpretation modeling is 

often cognition and declaration-focused on where activities are described or 

contextualized by an operator. On the other hand, AI interpretation is highly algorithm-

based; in reference to deep learning, AI interpretation is usually the interpretation of the 

‘black box’ neural network substructure.  

 
 
 

Table 4: Interpretation Definitions and Measurement 

 
Decision Theory Artificial Intelligence 

Definition Dedicated to explaining and interpreting 
decisions and modeling of the decision 
maker’s preferences 

Dedicated to developing procedures to 
make ML understandable to the user   

Methods 
and 
Models 

 
Decision Support Systems (DSS)  
Multiple Criteria Decision-making (MCDM) 
 
 

IF-THEN rules  
Recurrent Neural Network (RNN)  
Sequence Prediction  
DeepLIFT  
LIME/SHAP 

 
 
 

2.4.1 Interpretation: Decision Theory 

Interpretable Decision Theory can be thought of as solving a problem by a) 

explaining your reasoning to yourself and/or someone else by b) starting from a high 

abstraction level, and c) breaking the problem into smaller sub-problems.  Although the 

literature on interpretable Decision Theory is sparse, the Analytic Hierarchy Process 
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(AHP) (Saaty, 1999) was devised as a weighted sum, where the primary tasks are broken 

into sub hierarchical tasks. The weights are gathered from specialists using a pair-wise 

operator that generates a matrix; this is then changed into a set of weights by a 

normalized Eigenvector.  

2.4.2 Interpretation: AI 

This section is covered in detail in section 3.4:  Background in Explainable 

Artificial Intelligence (XAI), where the dissertation presents IF-THEN rules (3.4.1), 

Recurrent Neural Network (RNN) (3.4.2), Sequence Prediction (3.4.3), DeepLIFT 

(3.4.4), and LIME/SHAP (3.4.5.1) algorithms. 

2.5 Heuristics 

  The intention now is to address how Decision Theory heuristics (fast-and-frugal) 

can be adopted into AI techniques such as fast-and-frugal trees (FFTs) and finite state 

machines (FSM) (see sections 2.5.2.1- 2.5.2.2). 

 
 
 

 

Table 5: Heuristics Definitions and Measurement 

 
Decision Theory Artificial Intelligence 

Definition Simple strategies or mental processes that are 
used to quickly form a judgment make 
decisions and find solutions to complex 
problems. 

 Set of discrete instructions that are 
used to solve a problem within an 
action space 

Methods 
and 
Models 

Processes 
 
Fast-and-frugal 

Discrete decision process that selects 
between one or more solutions based 
on simple pre-determined probability. 
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Take the best 
Take the first 
Rule-of-thumb 

 

 
Fast-and Frugal Decision Trees 
Finite State Machines 

 

2.5.1 Heuristics: Decision Theory 

The heuristic rule-of-thumb strategy minimizes the time it may take to make 

decisions without stopping to consider the next course of action (Todd & Gigerenzer, 

1999). Heuristics are essentially fast, efficient processes, i.e., rules of thumb. A heuristic 

is composed of building blocks, typically three: search rules that specify where to look 

for information, stopping rules that specify when to end search, and decision rules that 

specify how to make a final decision. (Hutchinson et al., 2005; Todd & Gigerenzer, 1999) 

propose that the brain does not work in intricate probabilities and functions; actually, the 

mind is bounded by its own strategies and works using fast-and-frugal heuristics. 

Essentially, human decision-making processes can be demonstrated using a minimal 

number of heuristics without full knowledge of time and information. These models 

provide crude computational abilities and do not participate in the domain of probability 

(Gigerenzer and Todd, 1999). 

2.5.1.1 Fast-and-Frugal Heuristics 

Fast-and-frugal heuristics (Gigerenzer and Todd, 1999) are simple to execute, 

limited information, search, and computation rules generated by humans. They are 

building blocks that demonstrate searching (search rule), termination of searching 

stopped (stopping rule) and a processing step towards a decision (decision rule). 
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Determining these heuristics is an important part of the work that is being presented. The 

fact that behavior can be shaped through the use of rewards provided by my model is a 

core tenet of both behavioristic psychologies as well as reinforcement machine learning.  

Fast-and-frugal heuristics generate adaptive choices by minimizing the use of 

time, knowledge, and computational processing.  Numerous studies have investigated the 

extent to which models of fast-and-frugal heuristics accurately describe people's choices 

and decisions and the underlying cognitive processes(Hertwig, Hoffrage, & Martignon, 

1999). Examples include resource allocation (Hertwig, Davis, & Sulloway, 2002), 

classification (Berretty, Todd, & Martignon, 1999), preferential selection (Brandstätter et 

al., 2006, 2008), and decision-making (Dhami, 2003). 

 

2.5.2 Heuristics: AI 

Forster (1999) argued fast-and-frugal heuristics couldn’t emerge from an underlying 

complexity in a process that is driven by machine intelligence and AI. Yet, it remains 

unclear how people’s decision processes compare to resource-rational behavior. Leider et 

al. (2017) modeled the decision method as an arrangement of computations to generate an 

optimal decision process.  

2.5.2.1 Fast-and-Frugal Trees (FFT) 

FFTs are a type of decision tree with consecutively ordered lines, where every 

line has two branches where one is an exit value (Martignon et al., 2003). The final line 

has two exit points stating a decision is always made. FFTs are fast; like cognitive 

heuristics, decision-making usually occurs within a very few lines. Green & Mehr (1997) 
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and Martignon et al. (2008) have demonstrated that predictive precision of FFTs is 

comparable to machine learning-based decision trees. As the main proponent of FFTs, 

Luan (2011) believes FFTs may be more cognitively realistic as compared to complicated 

machine-learning algorithms given the speed the brain processes.  

2.5.2.2 Finite State Machine (FSM) 

Another type of state representation is the Finite State Machine (FSM). One can 

consider the finite state machine as a triple	𝑴	 = 	 (𝑺, 𝑹, 𝒕), where 𝑺 is a finite set of 

states., 𝑹 is a finite set of symbols called the alphabet., 𝒕:	𝑺	 × 	𝑨	 → 	𝑺	is the transition 

function. The inputs to this function are the current state and the last input symbol. While 

the function value 𝝂(𝒔, 𝒙) is the state, the automaton goes from state 𝒔 after reading 

symbol 𝒙. Then the resultant FSM should mimic behaviors of its ML counterpart.  FSMs 

may be more accurate when describing predictive methods of behavior that may involve 

more complex nodes than the FFT model (see section 2.5.2.1), although results may not be as indicative of 

cognitive heuristics given they are not as ‘fast’ (Luan, 2011).  From  

Figure 7, one can see that the structure of representation may also help to 

determine which would be a dominant choice.  For example, when the conditional states 

are binary, and choices can be decomposed into a simple tree structure, the FFT may be a 

better selection, whereas, if each state has multiple conditional probabilities, it may be 

more prudent to choose the FSM approach.  
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Figure 7: Fast-and-frugal Tree (Source: Gigerenzer & Gaissmaier, 2011) and Finite State 

Representation 

 
 
 

2.6 Summary 

The background outlined the primary components of the model, a) Rationality, b) 

Utility, c) Interpretation, and d) Heuristics, noting that given there are two disciplines 

(Decision Theory, Artificial Intelligence) that must be integrated in order to build the 

model.   The next two sections describe the background in machine learning and AI-

explainability research necessary to build the agent model.  
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3 BUILDING BLOCKS OF THE DRL-AGENTAND EXPLAINABLE 

ARTIFICIAL INTELLIGENCE 

Definition: DRL-Agent 

The DRL-Agent is an ABM that employs Deep Reinforcement Learning to 

generate maximum value for being in a particular state. The following chapter will 

discuss mathematical and computational underpinnings necessary to understand and 

develop the DRL-Agent. 

3.1 Artificial Intelligence 

AI is often defined as a computer system with the ability to perform tasks 

commonly associated with intelligent beings. As this definition somewhat 

problematically requires us to define intelligence and is inconveniently repetitive, 

Artificial Intelligence is now commonly defined as a scientific discipline, as the activity 

that creates machines that can function appropriately and with foresight in their 

environment. The first explicit definition of  

AI was suggested in a funding proposal to the Rockefeller Foundation in 1955. It was 

based on the "conjecture that every aspect of learning or any other feature of intelligence 

can in principle be so precisely described that a machine can be made to simulate it." 

(Tuomi, 2018) This early definition rapidly led to deep controversies. In practice, the 

early developers of AI interpreted intelligence and thinking as mechanical processing of 
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logical statements, thus, in effect, defining human intelligence as computation of truth 

values. 

3.1.1 Machine Learning 

Machine Learning is a subset of the term Artificial Intelligence, provides 

automated methods that can detect and learn patterns in data and use them to achieve 

some tasks (Christopher, 2006; Murphy, 2012). Three types of machine learning tasks are 

explained:  

• Supervised learning is the task of inferring a classification or regression from labeled training 

data.  

• Unsupervised learning is the task of drawing inferences from datasets consisting of input data 

without labeled responses.  

• Reinforcement learning (RL) is the task of learning how agents ought to take sequences of actions 

in an environment in order to maximize cumulative rewards.  

3.1.2 Supervised Learning Methods 

Although not directly applicable to the LAISR model, supervised learning is the 

machine learning task of learning a function that maps an input to an output based on 

example input-output pairs. (Russell and Norvig, 2010) It infers a function from labeled 

training data consisting of a set of training examples (Mohri et al., 2012). In supervised 

learning, each example is a pair consisting of an input object and the desired output value 

(or supervisory signal). A supervised learning algorithm analyzes the training data and 

produces an inferred function, which can be used for mapping new examples. An optimal 

scenario allows for the algorithm to correctly determine the class labels for unseen 
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instances. This requires the learning algorithm to generalize from the training data to 

alternate data sources. Although supervised learning is a field of dynamic research, the 

proposed dissertation focuses on the second area of research, unsupervised learning. 

Supervised learning is based on training data that has been labeled, usually by humans, so 

that the network weights can be adjusted when the labels for training data are wrongly 

predicted. After a sufficient number of examples are provided, the error can, in most 

cases, be reduced to a level where the predictions of the network become useful for 

practical purposes. For example, if an image detection program tries to differentiate 

between cats and dogs, during the training process, someone needs to tell the system 

whether a picture contains a cat or a dog. 

3.1.3 Unsupervised Learning 

Unsupervised learning is a branch of machine learning that learns from test data 

that has not been labeled, classified, or categorized (Hinton and Sejnowski, 1999). 

Instead of responding to feedback, unsupervised learning identifies commonalities in the 

data and reacts based on the presence or absence of such commonalities in each new 

piece of data. Alternatives include supervised learning and reinforcement learning. A 

central application of unsupervised learning is in the field of density estimation in 

statistics (Smola et al., 2008) though unsupervised learning encompasses many other 

domains involving summarizing and explaining data features. It could be contrasted with 

supervised learning by saying that whereas supervised learning intends to infer a 

conditional probability distribution, unsupervised learning intends to infer an a priori 

probability distribution.  



35  

 
35 

3.1.4 Reinforcement Learning (RL) 

 
Figure 8: Reinforcement Learning Taxonomy 

 
 
 

 
RL exists between supervised and unsupervised learning. In traditional supervised 

learning, there is a target label for each training example, and in unsupervised learning, 

there are no labels, where in reinforcement learning, there are sparse and time-delayed 

rewards (Pathak, 2017)—based only on those rewards the agent has to learn to generate 

optimal behaviors within the environment(Sutton et al., 1995).  Reinforcement learning 

can be understood using the concepts of agents, environments, states, actions, and 

rewards, all of which are explained in the equations below. Capital letters tend to denote 

sets of things, and lower-case letters denote a specific instance of that thing, e.g., 𝐴 is all 

possible actions, while	𝑎	is a specific action contained in the set. 

• Action (𝑨):	𝐴 is the set of all possible moves the agent can make. 

• Discount factor (γ): The discount factor𝛾 is multiplied by future rewards as discovered 

by the agent in order to dampen these reward's effects on the agent’s choice of action. 
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• Environment (€): The€world through which the agent moves. The environment takes 

the agent's current state and action as input and returns as output the agent’s reward and 

its next state 

• State (S): State 𝑠 is a concrete and immediate situation in which the agent finds itself, 

i.e., a specific place and moment, an instantaneous configuration that puts the agent in 

relation to other significant elements of the environment. 

• Reward (R): A reward 𝑟is the feedback by which measures the success or failure of an 

agent’s actions. 

• Policy (π): The policy	𝜋 is the strategy that the agent employs to determine the next 

action based on the current state. It maps states to actions, the actions that promise the 

highest reward. 

• Value (V): The value 𝑣 is the expected long-term return with discount, as opposed to the 

short-term reward R. Vπ(s) is defined as the expected long-term return of the current state 

under policy π. I discount rewards or lower their estimated value the further into the 

future they occur. 

• Q-value or action-value (Q): Q-value is similar to value, except that it takes an extra 

parameter, the current action a. Qπ(s, a) refers to the long-term return of the current state 

𝑠, taking action a under policy π. Q maps state-action pairs to rewards. 

 

In RL, an agent interacts with an environment and uses the experience to optimize 

a decision-making policy. In a standard RL formulation, the agent aims to max-following 

the policy after first using action to advance. With these definitions in hand, we can 

briefly review the deep RL algorithms. RL enables agents to learn policies for task 

performance based on rewards received over a sequence of trials (Sutton et al., 1995). A 

reinforcement learning (RL) agent learns by interacting with its dynamic environment 
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(Kaelbling, 1998). At each time step, the agent perceives the state of the environment and 

takes an action, which causes the environment to transit into a new state. A scalar reward 

signal evaluates the quality of each transition, and the agent has to maximize the 

cumulative reward along the course of interaction.  

 

 
Figure 9: Reinforcement Learning Cycle (Source: Recreated from Sutton and Barto, 1998) 

 

 

3.1.4.1 The Markov Decision Processes (MDP) 

A primary component within the model is the MDP. MDPs are often used to 

model sequential decision processes in machine learning systems. This policy maximizes 

the accumulated expected reward is then considered optimal and can be learned from 

sampling. Unfortunately, model parameters are often assessed from noisy data (Mannor 

et al., 2007; Roy et al., 2017). This second type of uncertainty can often degrade the 

performance of the optimal strategy and thereby affect the model’s prediction. Neto 

(2005) discussed the concept of the MDP and discussed the concept eloquently in this 
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introduction to agent reinforcement learning where it is defined as a tuple (S, A, T, R) 

where:  

• 𝐴 is an action set.  

•	𝑆 is a state space.  

• 𝑇:	𝑆	 × 𝐴 × 𝑆	 → 	 [0, 1] is a transition function defined as a probability 

distribution over the states. Hence, we have 𝑇(𝑠, 𝑎, 𝑠!	) 	= 	𝑃𝑟{𝑠"#$ = 𝑠!	|	𝑠" = 𝑠, 𝑎" =

𝑎}. 𝑠"#$represents the state of the process at time t+1, 𝑠𝑡 the state at time t, and at the 

action taken after observing state 𝑠𝑡.  

• 𝑅: 𝑆 × 𝐴 × 𝑆 → 𝑅 is a reward function representing the expected value of the 

next reward, given the current state s and action and the next state 𝑎!:	𝑅(𝑠, 𝑎, 𝑠!) 	=

	𝐸{𝑟"#$	|	𝑠" = 	𝑠, 𝑎" = 𝑎, 𝑠"#$ =	𝑠!}. In this context 𝑟"#$represents the immediate payoff 

of the environment to the agent at time 𝑡	 + 	1 (Bellman, 1957; Howard, 1960; Bertsekas, 

1995; Sutton and Barto, 1998; Puterman, 1994). The MDP acts on the environment with 

action 𝑎, in state 𝑠, and waits for the response of the environment, in the form of the 

following state 𝑠! and a real number representing the immediate reward the agent 

receives by choosing to perform 𝑎 in 𝑠. The task of deciding which action to choose in 

each state is done by a policy function.  

3.2 The Policy 

Generally, a policy is a collection of probability distributions, one for each trace 

of the process	𝜋(𝑠"	, 𝑎" − 1, 𝑠"%$, 𝑎"%&, . . . ) 	 ∈ 	𝑃𝐷(𝐴)		defining the probability that each 

action is chosen for that particular trace of the system. However, there is no need to 
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consider other than Markovian policies because the MDP itself is Markovian by 

construction – it is sufficient to define the policy for each state of the MDP.  

3.2.1.1 Partially Observable Markov Decision Processes (POMDP) 

The POMDP is a dominant operation of RL is the recurrent interaction between 

an agent and a Markov Decision Process. Specifically, the interaction assumes that the 

agent knows everything about the current state of world: there is no notion of hidden 

information (aside from not knowing the causal rules or reward structure). The POMDP 

does not make this assumption. In either case, the agent interacts indefinitely with its 

world, trying to update its beliefs about what exists in the world and how to take actions 

to maximize reward. A POMDP is a Markov model that attaches unobservable states to 

observations. The agent can perform actions that maximize their reward. However, the 

agent cannot directly observe the system state, but at each discrete point in time, the 

agent makes observations that depend on the state. The agent uses these observations to 

form a belief of what state the system currently is. This belief is called a belief state and 

is expressed as a probability distribution over the states. The solution of the POMDP is a 

policy prescribing which action is optimal for each belief state. The POMDP framework 

is broad enough to model a variety of real-world sequential decision-making problems. A 

discrete-time POMDP can be described as a 7-tuple (	𝑆	, 𝐴	, 𝑇	, 𝑅	, Ω, 𝑂	, 𝜆), where 

• 𝑆	 = 	 {𝑠!, 𝑠", . . . , 𝑠#} is a set of states, 

• 𝐴	 = 	 {𝑎!, 𝑎", . . . , 𝑎#} is a set of actions, 

• 𝑇 is a set of conditional transition probabilities 𝑇	(𝑠$|	𝑠, 𝑎)	for the state transition 𝑠 → 	 𝑠$. 

• 𝑅 ∶ 	𝑆	 × 	𝐴	 → 	𝑅 is the reward function, 

• Ω	 = 	 {𝑜!, 𝑜", . . . , 𝑜#} is a set of observations, 
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• 𝑂 is a set of conditional observation probabilities 𝑂(𝑜	|	𝑠$, 𝑎), and 

• 𝜆	 ∈ 	 [0, 1]	is the discount factor. 

At each time period, the environment is in some state 𝑠 ∈ 𝑆. The agent chooses an 

action 𝑎 ∈ 𝐴, which causes the environment to transition to a state 𝑠! ∈ 	𝑆 with 

probability 𝑇	(𝑠!	|	𝑠, 𝑎). At the same time, the agent receives an observation 𝑜 ∈ Ω which 

depends on the new state of the environment with probability 𝑂(𝑜	|	𝑠', 𝑎). Finally, the 

agent receives a reward 𝑅(𝑠, 𝑎). Then the process repeats. The goal is for the agent to 

choose actions at each time step that maximizes its expected future discounted reward. 

Within the RL model, agents evaluate their respective states and generate an action based 

on maximizing rewards. Given the state of the environment, the agent needs to pick the 

best action to maximize rewards. Through reinforcement learning’s trial and error, it 

accumulates knowledge through these (state, action) pairs, as in, it can tell if there would 

be a positive or negative reward given a (state, action) pair. This value is referred to as 

the Q-value, which a value of being in a particular state, and choosing a particular action, 

otherwise stated as 𝑄	(𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛). An elementary way to store this knowledge would 

be a Q-value table populated with 𝑠𝑡𝑎𝑡𝑒𝑠, 𝑎𝑐𝑡𝑖𝑜𝑛𝑠, and 𝑄	(𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛) pairs. Once 

enough data is collected, the trained model can generally determine the best Q-state to 

select.  

3.2.2 Model-Free vs. Model-Based Reinforcement Learning 

There are two primary areas of RL, Model-Free and Model-Based. Model-based 

RL uses an experience value to build a model of the transitions and outcomes in the 

environment. Appropriate actions are then chosen by searching or planning in this world 
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model. Model-free RL uses experiences to learn (𝑠𝑡𝑎𝑡𝑒/	𝑎𝑐𝑡𝑖𝑜𝑛	𝑣𝑎𝑙𝑢𝑒𝑠	𝑜𝑟	𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠), 

which can potentially achieve equivalent optimal behaviors but without estimation or use 

of a world model. Given a policy, a state has a value, defined in terms of the future utility 

that is expected to accrue starting from that state.  

3.2.3 Model-Free Methods: Off-Policy and On-Policy Methods of RL 

The two most popular classes of model-free reinforcement learning algorithms are 

Off-Policy and On-Policy Methods.  They are described in sections 3.2.4 and 3.2.5, with 

examples from each that are relevant to this work. 

3.2.4 Off-Policy Methods 

Off-policy reinforcement learning learns about one policy, π₁, while the reward 

observations are generated by the action sequence of another policy, π₂. 

3.2.4.1 Q-Learning 

Q-learning (an off-policy method) is a type of value iteration method that aims at 

approximating the Q function, while policy gradient (an on-policy method) is a method to 

optimize in the action space directly. The goal of Q-learning is to learn a policy, which 

tells an agent what action to take under what circumstances. It does not require a model 

of the environment and can handle problems with stochastic transitions and rewards 

without requiring adaptations. For any finite Markov decision process (FMDP), Q-

learning finds a policy that is optimal in the sense that it maximizes the expected value of 

the total reward overall successive steps, starting from the current state (Melo, 2007). Q-

learning can identify an optimal action-selection policy for any given FMDP, given 
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infinite exploration time and a partly random policy (Ibid). "Q" names the function that 

returns the reward used to provide the reinforcement and can be said to stand for the 

"quality" of an action taken in a given state (Matiisen, 2015). Q-Learning is designed to 

explore rather than respond to a fixed set of rules designed by the model developer.  

Q-learning estimates a state-action value function (𝑄_𝑆𝐴) for a target policy 𝜋 

that deterministically selects the action of the highest value. Instead of directly 

parameterizing a policy, Q-value learning methods estimate the Q-function as Q(s, a; θ). 

The greed y	policy selects the (discrete)action maximizing value:a∗ =

	argmaxaQ(s, a; θ). Exploration can be performed using a greedy policy, which chooses 

a uniform random action with probability and otherwise uses the greedy action. By itself-

policy nature, Q-learning permits repeated training use of samples. It can determine 

information from the environment and receive rewards for performing those actions 

(Neto et al., 2005). Within the model, the agents are not told which actions to take but 

instead must discover which actions generate the highest rewards by trying out 

experimenting with "actions within" in the environment. 

3.2.5 On-Policy-Based Methods 

Policy-based methods seek to optimize the policy space. In policy gradient 

methods, the policy is directly parameterized. Although ABMs have been studied in the 

form	π(a|s; θ),where π is a probability distribution over actions a when observing states, 

as parameterized by θ, a neural network. The agent exercises the policy in the 

environment, recording experiences. Periodically, it uses the samples to update θ	by 
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estimating the gradient ∇θE[Rt]. Typically, the agent then discards these samples and 

repeats, optimizing the policy iteratively. 

 

3.2.5.1 Advantage Actor-Critic (A2C) 

 
Figure 10: Actor-Critic (Source: Recreated from Sutton and Barto, 1998) 

 
 
 

 

In advantage of actor-critic, the policy gradient is computed as 

E[∇θlogπ(a)|s); θ)(Rt − V(s)))].The agent estimates V(s)) from the data, for instance, 

using separate output conjunction with ML, very little work has been done to address 

how hybrid models can use aspects from the same network used for π.(Rt −

Vt)estimates the advantage:	A(s, a) = Q(s, a) − V(s).Rt is computed using the 

discounted sum of as many future returns as are observed in a given batch, up to rtmax, 

both ABMS and is bootstrapped with	V(stmax + 1), appropriately discounted. The 
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estimator	V(s; θ)	is trained using, e.g., a squared-error loss simultaneously to π. In A3C 

(Mnihetal., 2016), a separate actor-learner threads sample environment steps and update 

a centralized copy of the parameter asynchronously to each other. In (batched) A2C, 

which performs similarly to A3C (see, e.g. (Schulman et al., 2017)), separate 

environment instances are sampled, but the learner is single-threaded. It gathers all data 

into one mini-batch to compute the gradient. 

3.2.5.2 Proximal Policy Optimization (PPO) 

The PPO introduced by Schulman et al. (2017) is a policy gradient technique for 

reinforcement learning, which does the following: the PPO samples data through actions 

and interactions within the simulated environment. Here it must optimize a specific 

(objective) function using stochastic gradient ascent. Where policy gradient approaches 

perform a single update per sample; thus, the objective function creates a set of mini-

batch updates. These updates are more generalized, and have improved sample 

complexity (Juliani, 2018).  

3.3 Deep Reinforcement Learning (DRL) 

RL models discussed in this chapter have some substantial challenges to 

overcome. Most notably, it is possible for decisions to become too complex for the 

traditional reinforcement learning method. When the simulation becomes complicated, 

the knowledge space can become intractable, and it no longer becomes feasible to store 

all (state, action) pairs in a table. In intuitive terms, even a small difference in states is 

still a distinct state. In lieu of storing and looking up every distinct state, RL can employ 
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a neural network that predicts the reward for an input (state, action). Alternatively, neural 

networks can predict value and policy-based methods.    

 

3.4 Background in Explainable Artificial Intelligence (XAI) 

XAI is dedicated to developing procedures to make deep learning more 

understandable and thus build an understanding of the model to the user (Park and 

Hendricks, 2018; Zintgraf, Cohen, Adel, & Welling, 2017). While the accuracy obtained 

by neural networks may be more precise than human experts, the complexity of the 

neural network structure makes it very difficult, if not impossible, to uncover complex 

attributes of its network connection. This term is deemed a “black box” problem 

(Kamruzzaman et al., 2010). Torrey et al. (2005) attempted to build rules to describe an 

RL policy by using source-task models, otherwise described as a “decomposition 

strategy” (Andrews, 1995), i.e., a method where model mechanics affect rules that are 

extracted. Craven (1996) defines rule extraction as follows: "given a trained neural 

network and the data on which it was trained, a description of the network that closely 

approximates the network's predictive behavior." A Rule extraction approach can also 

help to validate a neural network (Ibid). 

3.4.1 IF-THEN rules: 

The general form of the IF-THEN rule is designed to state simply if a state can be 

applied to a condition and stated as true, then the state can be added to a particular class. 

The IF-THEN developer can decide the level of resolution necessary to build the IF-
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THEN decision tree. Andrews et al. (1995) generated an IF-THEN neural network 

taxonomy algorithm. The Decomposition procedure works by dividing the network into 

neurons. Each result is then combined to represent the entire network. DIFACON-miner 

(Özbakır, Baykasoğlu, and Kulluk (2010)) was designed to generate IF-THEN rules from 

an artificial neural network. The rule creation process places each repetition in a non-

sequential process. The uniqueness of the decompositional model is that rule generation 

is performed at the same time as neural network training. Using evolutionary algorithms, 

Dorado et al. (2002) created a “black-box” that used Genetic Programming (GP) model to 

develop a rule-extraction approach for artificial neural networks, irrespective of network 

structure. 

3.4.2 Time-Based Behavior Evaluation: Recurrent Neural Network (RNN) 

Recurrent Neural Network (RNN) are key methods to model time-based data. 

Hidasi et al. (2016) have contributed substantial work in the development of 

recommender systems, although new and very relevant work has been done in the use of 

explainable AI using RNNs (Tan et al., 2016). A subset of RNN, the long short-term 

memory (LSTM) model is a type of artificial recurrent neural network (RNN) used to 

evaluate temporal based information (Lee, 2019). Wang et al. (2016) developed a novel 

semantic perception model that suggests an LSTM-based series prediction. The approach 

improves the prediction performance by uncovering semantics hidden in the observed 

sequences. 



47  

 
47 

3.4.3 Sequence Prediction 

Sequence prediction models evaluate models from the perspective of 

arrangement. Y. Liu et al. (2016) suggested a time-based approach to integrating 

evolving preferences with interval assessment. When considering spatial and temporal 

contexts sequentially, Liu et al. also extended RNN and proposed a method that could 

model local temporal and spatial contexts in each layer. Q. Liu et al. (2017) suggested an 

approach that evaluated behavioral sequences using transition matrices. 

3.4.4 DeepLIFT 

DeepLIFT (Deep Learning Important FeaTures) is a recursive calculation method 

for supervised deep learning (Shrikumar, 2017). DeepLIFT decomposes the prediction 

value of a neural network by backpropagating the out of each neuron in the network to 

every feature of the input network. Shrikumar (2017) notes that typical perturbation-

based approaches (e.g., LIME/SHAP) and certain gradient-based approaches fail to 

model saturation, where his backpropagation process is designed to handle such 

characteristics. Similar layer-wise relevance propagation models have been developed to 

interpret the predictions of deep networks (Bach et al., 2015). 

3.4.5 Marginal Contribution Algorithms: 

3.4.5.1 LIME and SHAP 

LIME (Ribiero, 2016) and SHAP (Lundberg et al., 2017) approximate how 

features affect prediction by perturbing instances of data sets and b) analyzing these 

perturbations on a classification system (i.e., black box output). Due to their 
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generalization, they explain several classifications; i.e., neural networks in medical, law, 

and behavioral science (Elshawi et al., 2019; Whitmore et al., 2019; Ibrahim et al., 2019). 

SHAP and LIME are both standard approaches to model explainability. SHAP (Shapley 

Additive exPlanations) uses Shapley values defined as the “average marginal contribution 

of a feature value over all possible associations.” (Shapley, 1953); due to the exhaustive 

search of SHAP, it can ensure consistent accuracy across variables. In fact, the SHAP 

model is used for interpretation within this effort.  

SHAP is an additive feature attribution model where explanations are stated as a 

set of linear features. SHAP computes a Shapley value based on a general game-theoretic 

model (Lundberg et al., 2016). Let us say, for example, there is a basketball game with 

three players on each team, Mark, Jill, and Bob. Mark alone scores 60 points in the game. 

Jill, a seasoned player, gets 80 points. When Bob plays together, they each score 90 

(totaling 180). Would it be fair to say that Bob is a key factor for the team’s success? 

This is not entirely accurate; rather, it is best to consider how different combinations of 

the three players can contribute to the team’s success. As Lundberg et al. (2019) discuss 

the model, he defines three important characteristics of the SHAP model.  

• Local accuracy: feature attributions sum should be equivalent to the explainable output of 

the model. 

• Missingness: features that are not explained or are missing to not cause a change in the 

model. 

• Consistency: altering a model where a variable has a greater influence will never reduce 

the importance of that feature. 
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3.4.5.2 Partial Dependency Plots 

The PDP shows the marginal effect one or more features have on the predicted 

outcome of a machine learning model. The plot can also show whether the relationship 

between the target and a feature is linear, monotonic, or more complex. PDPs may be an 

appropriate tool for generating averaged features with a target (Friedman, 2001).  
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4 DEVELOPING THE LEARNING-BASED ACTOR-INTERPRETER STATE 

REPRESENTATION MODEL 

4.1 Introduction 

This chapter introduces a new agent model and methodology called the Learning-

based Actor Interpreter model (LAISR) (Cummings et al., 2020). Learning-based refers 

to the fact that the agent attempts to maximize actions taken in the scenario based on 

what it perceives to be the best set of actions or policy. Within LAISR, there is the Actor, 

Interpreter, and State Representation. The Actor, in reference to the first research 

question (see section1.3) the uses DRL (see section 3.3) to derive its behaviors using a 

simple reward system. In reference to research question two, the Interpreter decomposes 

behaviors into a model that can be expressed in terms of its behavioral strategies (see 

section 1.3).  Finally, the State Representation generates a readable or referenceable 

output of the Interpreter model. 
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Figure 11: LAISR Model (Source: Cummings and Crooks, 2020) 

 
 
 

4.2 The Actor – A Deep Reinforcement Learning Agent 

The Actor portion of the LAISR model uses a type of neural network enhanced 

reinforcement learning (RL) called Deep Reinforcement Learning (DRL) (see section 

3.3).  DRL-based agents build strategies (or policies) that lead to the highest long-term 

expected rewards (Sutton and Barto, 1995).  Much like human decision-making, DRL 

agents construct and learn their own knowledge with minimal input from the model 

designer.  Using DRL, the Actor generates its own optimal policy based on expected 

future rewards; these behaviors are then explained from the perspective of the Interpreter.  

4.3 The Interpreter 

While efficient and versatile, the DRL’s (see section 3.3) use of neural networks 

to approximate its policy is generally unintelligible to the viewer (Lee, 2019), thereby 
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reducing its value as a research behavior evaluation tool. These models are essentially 

black boxes (Castelvecchi, 2016), i.e., the nature of neural networks makes it nearly 

impossible to inspect how the algorithm is accomplishing its function. Even for a network 

with only a single layer, it is quite challenging to understand how patterns arise due to the 

complexity of the network (Kamruzzaman et al., 2010). The mechanisms that solve DRL 

models are hidden within an interconnected network of input, hidden, and output layers. 

The interpreter attempts to evaluate the state of the Actor model and then predicts its 

behavior in the form of a set of states and conditions.  

4.4 State Representation: Developing Strategies 

The State Representation provides a method to translate the Interpreter’s 

interpretation into a human or code readable format. This representation is designed to 

generate a fully usable and coherent representation of the data returned from the 

Interpreter. This may come in the form of an excel spreadsheet, a python implementation, 

or a more abstract form such as a finite state machine representation or a form of 

declarative knowledge.  This final state representation also provides a means to 

decompose interpretations into a result that defines the characteristics of a strategy.  For 

example, the Behavior State representation in the Bat-Frog example (see section 0) might 

be a representation of a set of states and the probability of being in a particular state. It 

may also be something more concrete such as a code representation, including variables 

and methods that describe the bat and frog behavior. Nevertheless, the approach provides 

some flexibility as to how detailed the designer may wish the model to be. Here, the 
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developer can select the level of parsimony and near decomposability (Simon, 1957a) 

necessary to accurately model and present behavior results.   

4.5 Developing, Running, and Analyzing a LAISR Model 

 

Figure 12: LAISR Design, Development, and Analysis Methodology 

 
 

The methodology for developing and implementing a LAISR model is based on 

the steps outlined in Figure 12. One must first select the representation of the Actor, 

Interpreter, and State Representation; Once the characteristics are chosen, the Actor must 

be endowed with a reward system to provide a basis for how it selects actions given its 

current state and potential for future rewards. Consequently, the Interpreter must be 

selected to address how the Actor's behaviors can be interpreted. Interpretation 

decomposition provides knowledge of how the Actor behaved within the simulation. 

Finally, a State Representation is selected and employed in order to generate a behavior 

narrative for the observer.  Although there are several ways to approach the 

STEP 5: Verification and Validation

STEP 4: Select Machine Learning Platform

STEP 3: Select the Description State Representation

STEP 2: Select the Interpreter Model and Define Interpretation Criteria

STEP 1: Select the Actor and Define Behavior/Rewards
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implementations of a LAISR model, this dissertation focuses primarily on the use of DRL 

(see section 3.3) techniques for the Actor and AI interpretation techniques (0) for the 

Interpreter. DRLs (see section 3.3) are unique in their ability to act as complex function 

approximators, which have been shown to produce sometimes better than human 

strategies for gameplay (Beattie et al., 2016). Equivalently, AI interpretation techniques 

(see section 7.1) are unique in their ability to extract feature information from DRL 

systems.  

4.6 STEP 1: Select the Actor Model, Define Behaviors and Rewards 

In order to build the LAISR model from a mathematical foundation, some 

background in AI and machine learning theory must be introduced.  This lays the 

foundation for the type of Actor model development that may suit the desires of the 

researcher.  

4.7 STEP 1a: Selecting Reward Signals 

One of the more challenging aspects of developing a DRL model is determining 

how to reward its actions to achieve maximum future rewards. With this in mind, rewards 

should be simple (parsimonious) and testable. And once implemented, reward systems 

should be verified and validated through proper code analysis and examination of results 

of implementing rewards. This section discusses approaches that demonstrate how to 

apply these techniques.  
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4.7.1 Parsimony: Reducing Reward Signal Complexity 

Parsimony, or ''just enough but no less'', ensures that causal explanations and 

experimental descriptions contain a minimal number of factors which are essential for an 

explanation, understanding, and sometimes prediction (Cioffi-Revilla, 2014). With 

parsimony in mind, we must balance simplicity with design realism to ensure that the 

model maintains empirical accuracy and sufficiency. In the context of ABMs, parsimony 

is generally related to coded behavior, which satisfices the design of the model. On the 

other hand, reinforcement learning models must consider reward signals from a 

parsimonious perspective.  

Shelton (2000) noted that often rewards could be difficult to track when combined 

with other signals that do not correlate to similar behaviors. Also, reward signals become 

even more complex within multi-agent scenarios. Leibo et al. (2017) developed methods 

to reduce complexity in reward signals using the Sequential Social Dilemma (SSD) 

approach. SSDs are partially observable multi-agent games (see section 3.2.1.1) where a 

single agent can obtain a greater reward displaying short term non-cooperative behavior, 

but the accrued payoff is higher if agents are cooperative overall. Janssen (2012) 

provided a method for creating a simplified approach to categorizing and implementing 

reward signals in terms of When, What, and Magnitude (How Much?) (See Table 6). 

 
 

 

Table 6: Janssen Reward Structure (Source: Janssen, 2012) 

Category Description 
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When:  Model modifies three reward-based parameters: moment, objective function, 
and magnitude. Moment refers to feedback on how performance is 
experienced (or given). 

What: 
 

What refers to the objective function which dictates how performance is 
rewarded. For the objective accuracy function, each model is reinforced to 
reinforce accuracy of each item encoded and placed during a round of 
strategy. 

Magnitude—how 
much? 

The third parameter is reward magnitude. This is dependent on the objective 
function (OF). The OF dictates the rewarded, and magnitude states the amount 
of the reward. This allows the model to distinguish between different levels 
of success and failure 

 

4.7.1 Reward Verification 

Bastani et al. (2018) developed a process for designing rewards that could be 

proficiently verified. They took the approach of developing learning decision tree policies 

for two reasons: a) they are nonparametric and can represent complex policies, and b) 

they are well-structured, ensuring easier verification.  The approach presented in this 

dissertation considered several aspects of the Bastani model, where, when developing 

rewards signals in code for each agent, each reward was tested to examine how it affected 

agent responses. In accordance with Crooks et al. (2018) model, the goal was to generate 

a pattern that can be reproduced and for which observation data exist. First, a set of 

assumptions were put in place that described the reward and generally expected results of 

the reward. Second, each model was trained with reward signals individually and with 

variations in the reward signal. Then a series of simulated experiments were tested to 

ensure there was a clear correlation to how rewards affected agent decisions.    
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4.7.2 Reward Signal Parameter Sensitivity Analysis (RS-PSA): 

A parameter sensitivity analysis is the most extensively employed method for 

testing simulation stability (Crooks et al., 2018). The goal was to, through a quantitative 

measure, examine the effect that small adjustments in reward parameter values have on 

given model output. The approach was designed to isolate a single parameter at a time, 

known as the one factor at a time approach, with the remaining parameters and conditions 

held constant. Referring to the reward signals developed for the wargaming model (see 

section 5.5), a target reward was selected, and a distribution of values was tested around 

the reward signal to determine if the reward signal produced the expected behaviors (see 

Table 7).   

 

Table 7: Reward Signal and Signal Distribution 

Rule Reference: Destroy Ground Target 
 
 Acquired Target Missed Target 
Reward Signal 0.2f  -.05  
Distribution (lower-upper bounds)  [0, .4] [-.1.05, .1.05] 

 
 
  
Often reward issues may arise when rewards are set too high or low, or when a reward is 

sparse (Pathak, 2017).   It was also decided to minimize the number of possible rewards 

available to the agent to ensure actions were clearly related to how a reward produced an 

identifiable behavior related to said reward. 
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4.8 The Interpreter 

This section introduces the most novel aspect of the model, the Interpreter. The 

Interpreter’s role is to look for forms of consistent behaviors that can be termed ‘rules of 

thumb’ (Kahneman, 2011) within the RL agent model results. The Interpreter poses a 

substantial challenge which is, drawing the bridge between what the agent is doing 

(interpretability) and determining the type of behavioral strategy the agent may be using 

to generate its own ‘rules of thumb’. Interpretability can be defined in two primary ways 

as it relates to human behavior and the social sciences. Miller (2019) states the 

following:  

• Interpretability is the “degree to which a human can understand the cause of a 

decision.” Here, the greater the ability to interpret a machine learning model, the easier it is to 

understand or comprehend why machine learning predictions have been made. 

• Interpretability is the “degree to which a human can consistently predict the model's result.”  

Although the term explainability and interpretability are sometimes used interchangeably, this 

chapter refers to the term explainability as being able to explain AI-Interpretation model 

predictions.  

4.9 STEP 2: Selecting the Interpreter 

The Interpreter is designed to construct decision policies using available data and 

appropriate XAI algorithms for the data. Additionally, the type of information is 

important when selecting the Interpreter, including whether it is primarily temporal, 

causal, or pattern identification matching.  Additionally, the researcher may be interested 

in local (individual features describing the whole) or global features that aggregate 
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features into a single correlation plot.  A sampling of important XAI techniques is 

described in the sections below. 

4.10 STEP 3: Selecting the Description State Representation 

 Once data is interpreted, it must be then presented in a format that can be 

represented as a strategy.  There is not a substantial amount of literature related to the 

state representation of heuristics; however, a clear attribute that can help in a 

decomposition process is the Fast-and-Frugal Tree (FFT) and Finite State Machine 

(FSM) representation. 

4.10.1 State Representation Level of Decomposition 

One may ask at what level of state decomposition is necessary to describe a 

strategy?  Abel (2019) provides some insight into how this question can be posed, 

specifically where each sub-node is primitive, and each primitive is defined by how it 

attempts to solve a particular problem.  

 
 
 

Table 8: Methods of Framing State Level Decomposition (Abel, 2019) 

Bounds Description 
Lower  What is the minimum number of primitive moves needed to solve 

a given problem? 
Average On average (across problem instances), what is the number of 

primitive moves needed to solve a given problem? 
Upper After how many primitive moves can we guarantee that we solve 

any instance of the problem? 
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Abel (2019) also notes that actions, or how to break down the specifics of a plan, the 

agent must consider resolution overgeneralization.  For example, if the agent reasons over 

all possible permutations, then the possible paths into the future create intractability. 

However, if an agent makes decisions that balance between accuracy and speed, the agent 

is able to search over optimal actions.  In other words, we seek fast-acting, utility-

maximizing, and robust generalization across different state-action pairs. Unfortunately, 

tradeoffs exist between these variables, as shown in Figure 13. 

 

Figure 13: Considerations When Decomposing States 

 
 
 

4.11 STEP 4: Selecting a DRL Framework 

Given there are a large number of machine learning agent environments available 

for testing and research, several platforms are discussed. Generally, it is prudent to focus 

on the development of the process for building scenarios and rewards rather than 

developing the code to implement specific DRL code. Example variables may also be 

necessary to consider when selecting a DRL agent framework: 

• State of the art RL algorithms implemented 

• Documentation/tutorials and examples 

• Robust cross-platform support 

• Open-source code that’s easily modifiable 

• Regular updates and an active community 
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• Quality visualization 

The following is a non-exhaustive list of deep reinforcement learning models 

currently in use in the machine learning community for just such efforts. 

4.11.1 Unity Platform 

Unity is a framework for game development that supports several core areas; 

importing art and assets, 2D and 3D, modeling; assemble assets into scenes and 

environments; audio, 3D models, physics and animation, AI interactivity, and gameplay 

logic; and edit, debug and optimize the content for your target platforms (Juliani, 2018). 

4.11.2 Arcade Learning Environment 

The Arcade Learning Environment (ALE) is a Deep Q-Network (DRL) based 

system designed to achieve expert-level competency on Atari console games (Mnih et al., 

2015; Bellemare et al., 2017). 

4.11.3 DeepMind Lab 

DeepMind Lab (Lab), derived from the Quake III game engine, has been used 

extensively by the DeepMind Lab for researching reinforcement learning systems 

(Beattie et al., 2016). Given the nature of the engine, simulations are designed primarily 

as first-person, which may not be relevant to strategy and multi-agent models (Juliani, 

2018). 

4.11.4 Project Malmo 

 Project Malmo is a Minecraft game-based platform (Johnson et al., 2016). 

Although limited in flexibility (issues of low resolution tied to game type), several 
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research projects have been developed in the environment (Oh et al., 2016; Shu &Socher, 

2017; Tessler et al., 2017).  

4.11.5 VizDoom: 

Kempka et al. (2016) generated VizDoom (based on the game Doom) as an early 

first-person Deep Reinforcement Learning framework (Kempka et al., 2016). Some work 

in learning curricula (Wu & Tian, 2016) and memory (Lample & Chaplot, 2016) have 

been included in the framework, although it is generally considered lower fidelity than 

Deep Mind and Unity. 

4.12 STEP 5: Verification and Validation Process 

For each representation of the LAISR Actor Model (as well as Interpreter (see 

section 4.8)), a verification and validation process should be followed. Robust training and 

testing are implicit in the development of accurate models. However, it is difficult to 

guarantee that a system returns an expected value given the “black box” attributes of the 

neural network structure. In large and complex models, computing all possible outputs for 

a given set of inputs is intractable due to the number of potential discrete or continuous 

states. However, when training a model, one can first develop efficient methods to test 

inputs and outputs.   Many properties that cannot be verified offline can be verified at 

runtime, although this might not always be feasible with regards to computation time or 

resource efficiency. Instead of verifying the entire specification, only the affected parts 

can be verified at runtime, assuming that if the specification was verified at the start of 
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learning, and each change is deemed valid, then the specification is still valid after an 

arbitrary number of changes. 

4.12.1 Verifying Code Process 

Verification processes included a formal review process for code to include its 

comparison to several code examples provided by all code libraries. A second coder 

provided some experience with machine learning and generated a set of concepts that 

could extend existing examples.  Within this framework, each concept was generated in a 

pair/review programming review where one coder wrote the code, and another would 

read it. Additional comments were included for each aspect of the model, as this allows 

the model design to be easily explained to others in the future.   A beta test for each 

simulation was run where the model developer provided conditions for running the model 

(test cases), and results were evaluated based on the test cases. 

4.12.2 Model Validation 

Validation is an interesting problem related to reinforcement learning, given we 

cannot always be sure that the agent produced an optimal policy. In reinforcement 

learning, regret𝑅 (François-Lavet, 2018) is a very commonly used metric where, at each 

time step, one takes the difference between the reward of the optimal decision versus the 

decision the algorithm actually took. We could then sum each𝑅 for cumulative regret. As 

each agent performed its optimal policy, the smaller the 𝑅, 𝑡he better an algorithm has 

performed. The difficulty with the regret approach to validation is that it assumes there is 

a single optimal decision policy. This may be difficult if more than one policy is 
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determined. The work presented in this dissertation dealt with this issue by ensuring that 

all agents of a certain type within a single simulation shared a collective neural network. 

This would ensure a single optimal decision was selected. 

4.13 Challenges Verification and Validation Challenges of ABMs 

Although section 1.1 outlined several challenges related to the design of a 

proposed boundedly-rational agent, there are several other criticisms that relate to 

verification and validation challenges. These critiques have to do with dealing with large, 

parameter intensive models and human bias.   

4.13.1 The “Curse of Dimensionality” 

ABMs simulate the evolution of complex systems with a set of parameters 

without fully knowing the optimal parameter states to describe the real-world 

environment (Li et al., 2013). These parameters provide a rich expressiveness, which 

provides a broad state space for examining a complex domain. Although with this rich set 

of parameters comes the "curse of dimensionality" (Busoniu, 2010) that leads to an 

exponential number of critical points along with the parameter space, with multiple local 

maxima, minima, and saddle points, which negatively impact the performance of 

gradient-based search procedures (Wong, 2015). Even for small models, exploring the 

behavior of the model through all possible parameter combinations (a full factorial 

exploration) is practically impossible, even employing multi-objective optimization 

procedures such as multimodal optimization or niching (Li et al., 2013). Parameter-

intensive systems suffer from the unpredictability of the results due to dependencies 
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between parameters (Alahi et al., 2016). Agent models also develop complex state spaces 

with a very large result space. In practical terms, integrating a large number of details 

into a model will make generating agent-based models difficult to evaluate, as each 

feature within the model needs to be defined and integrated with the other model 

components in a meaningful way. Within this so-called "curse of dimensionality," 

increasing the variables integrated with the model increase the potential results. If we 

want to obtain meaningful statistical results, it is useful to either keep the number of 

variables as low as possible or increase the number of agents and runs.  Although this is a 

design challenge, it also relates back to section 1.1.1, demonstrating that an agent could, 

through its own sub-systems, minimize the amount of complexity and dimensionality that 

is in the hands of the model developer.  

4.13.2 Human-Intervention Bias 

Currently, there is no true automated method for developing agents that can 

produce desired results without direct human intervention. Thus, at any point in the 

development of a complex model, even if the verification method was done with great 

scrutiny, any number of parts of the system could generate errors which will then be 

accumulated within the larger system. Ideally, a system would be able to adapt to its 

conditions and make its own best model without developing specific 'pre-designed' rules.  

Modelers will often provide agents in an ABM with discrete rules that control how the 

agent behaves in response to its local environment. These behavioral models are intended 

to be reasonable estimates of real-world decision-making. Yet human-biased 

representations may limit opportunities for an agent to build their own utility-
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maximizing, decision-making representation of its environment (Osoba et al., 2020).  

This inherent design challenge is also discussed in section 1.1.2 where agents do not 

build their own heuristics.   

4.13.3 Validating Behaviors 

In order to design a self-organizing system with the desired emergent behavior, it 

is important to find local rules for the behavior of the system's components (agents) that 

generate the intended behavior at the system scale. In many cases, this is done by a trial-

and-error process, which in the case of systems with high complexity, is not efficient or 

even unfeasible. Agent models also suffer from the unpredictability of the results due to 

unexpected dependencies between parameters.   This gap addresses the general concern 

that agents must be predictable in their behaviors, given they are designed with specific 

actions in mind.  This is an understandable challenge and will not easily be removed from 

standard ABM design. However, the proposed model does not assume that it has a 

specific behavior in mind. Rather, the hope is that the agent will help us uncover 

strategies to optimize its behaviors.   
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5 LAISR EXPERIMENTS: HOMOGENEOUS MODELS 

This chapter presents two LAISR experiments, the Schelling (see section 5.1) and 

a Tactical Warfare (see section 5.5) experiment.  The primary purpose of this chapter 

highlights the Actor implementation, where I leave the more complex Interpretation 

implementation until Chapter 7: LAISR Experiments: Advanced Explainable Artificial 

Intelligence . 

5.1 Experiment 1: Schelling Experiment 

The first experiment is intended to provide an existing example of how the 

LAISR model can be applied to social science theory. This example demonstrates the 

simple yet well-known Schelling segregation model (Schelling, 1971). The Schelling 

model of segregation is an agent-based model that illustrates how individual tendencies 

regarding neighbors can lead to segregation. The model is particularly beneficial for the 

study of segregation of ethnic groups where agents represent householders who relocate 

in the city (Ibid). Within the model, each agent is part of one of two groups and aims to 

reside within a neighborhood where the fraction of similar agents is satisfactorily high: 

above a predefined tolerance threshold value 𝐹. It is known that depending on 𝐹, for 

groups of equal size, Schelling's residential pattern come together as to either complete 

integration (a random-like pattern) or segregation. 

Table 9: NetLogo Schelling Model Parameters 

Parameter Type Description 
DENSITY  Variable The slider controls the occupancy density of the neighborhood 

(and thus the total number of agents).  
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The %-SIMILAR-
WANTED 

Variable The slider controls the percentage of same-color agents that 
each agent wants among its neighbors. For example, if the 
slider is set at 30, each green agent wants at least 30% of its 
neighbors to be green agents. 

The % SIMILAR  Monitor 
Output 

The monitor shows the average percentage of same-color 
neighbors for each agent. It starts at about 50% since each 
agent starts (on average) with an equal number of red and 
green agents as neighbors. 

The NUM-
UNHAPPY  

Monitor 
Output 

The monitor shows the number of unhappy agents, and the % 
UNHAPPY monitor shows the percent of agents that have 
fewer same-color neighbors than they want (and thus want to 
move). The % SIMILAR and the NUM-UNHAPPY monitors 
are also plotted. 

The 
VISUALIZATION  

Combo Box The combo box gives two options for visualizing the agents. 
The OLD option uses the visualization that was used by the 
segregation model in the past. The SQUARE-X option 
visualizes the agents as squares. The agents have X's in them 
if they are unhappy. 

 

 

Figure 14: NetLogo Schelling Model (Source: Wilensky, 1997) 
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In the NetLogo Model (see Figure 14: NetLogo Schelling Model), agent and 

environmental parameters are set, and the observer can view how parameter changes can 

affect the results of the model, both in the amount of segregation and the time it takes to 

achieve a stable state.  

5.2 Schelling LAISR Model Development 

The Schelling LAISR model (see Table 10) employs a DRL Q-Learning (see 

section 3.2.4.1) and a set of rewards necessary to help the agent find optimal actions 

when in specific states.   

 
 
 

Table 10: LAISR Methodology for Schelling Reinforcement Learning Model 

SELECTION STEP SELECTION 

Step 1: Select the Actor and Define Behavior/Rewards Q-Learning Model (see section 3.2.4.1) 
and Reward Signals (See Table 17) 

Step 2: Select the Interpreter Model and Select 
Interpretation Requirements 

Heat Map Representation (See Figure 
17: Heat map representations of actor 
) 

Step 3: Select the Description State Representation Not Implemented in this Model 

Step 4: Select Machine Learning Platform 
 

See Sert et al. (2020) paper 

Step5: Verification and Validation See Sert et al. (2020) paper 

 
 
 
Sert et al. (2020) developed the Schelling implementation with a set of rewards 

that could generally imitate the ABM model. When developing a reinforcement learning 

model (see section 3.1.4) compared to traditional ABMs (see section 2.1), one must first 

examine the existing social science model, then determine how to revise the model to 
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support reward signals. In the Schelling NetLogo implementation (Wilensky, 1997), 

agent behaviors are defined purely by parameters.  The model rewards, 𝑅, are scalar 

values that are given to each agent as it completes an action at a given state. The final 

summary reward for the agent is the sum of rewards based on the signals in Table 11.  
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Table 11: Reward Table for Schelling Model (Source: Sert et al. (2020)) 

Reward Signal Description 
Segregation reward 
(SR).  

This reward promotes agents' segregation, in the form: 𝑆𝑅=𝑠−𝛼𝑑SR=s−αd, 
where s is the number of agents of a similar kind within the agent’s observation 
window, d is the number of agents of different kind and 𝛼∈[0,1]α∈[0,1] is a 
parameter used to control the intolerance of agents to be next to those that are 
different from them. 

Interdependence 
reward (IR). 

This reward promotes interactions among agents of different kinds. When an 
agent meets another agent of different backgrounds, a winner is selected, i.e., 
one who moves to the cell occupied by the other agent. The winner receives a 
positive reward and a life extension of one iteration. The loser dies. 

Vigilance reward 
(VR).  

This reward reinforces agents that stay alive 𝑉𝑅=0.1reward for every time step 
they survive and 𝑉𝑅=0 when they die. 

Death reward (DR).  Agents are punished (or killed) who lose interactions against agents of the 
opposite agent type. Agents receive 𝐷𝑅=−1reward when they die 
or 𝐷𝑅=0 when they stay alive. Agents must learn that being killed is not 
rewarded, primarily to reward non-risky behavior.  

Occlusion reward 
(OC).  

This reward punishes movements into occupied cells between agents of the 
same kind. If an agent tries to move towards an area occupied by an agent of its 
own kind, the agent receives 𝑂𝐶=−1reward. If the agent moves towards a free 
cell, it receives 𝑂𝐶=0. 

Stillness reward (TR).  Signal promotes the exploration of space by punishing immobility. Agents who 
remain immobile receive 𝑇𝑅=−1reward. Agents who chose to move 
receive 𝑇𝑅=0.  

 
 
 

5.3 Results and Interpretation: DRL Schelling Experiment 

Figure 15 displays agent behaviors for multiple values of aggregated rewards 

(rows) and times (columns). Rows demonstrate results aligned to the distinctive values of 

the interdependence reward (IR). Columns demonstrate the states at differing times 

within the simulation. Heat maps are achieved by generating a mean across 1000 

iterations. Panel (a) red regions signify "biased occupation of type A" agents are fully 

occupied with type A (agents are a concentration of values of +1). Blue regions signify 

the occupation of B agents, and full blue occupation is -1. White areas indicate across the 

mixing of types and are denoted as concentration 0.  
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Figure 15: Results of DRL Schelling Experiment (Source, Sert et al. 2020) 

 
 
 

 
 
In Panel (b), color signifies the age of agents regardless of type. As color changes 

from blue to red, agent age rises. The heat maps are presented over a single trial of the 

experiment. The dynamics of segregation rapidly-produce patches of segregated types 

(top panels). As interdependence rewards increase, the probability of one grid being 

occupied by an agent of type A or B becomes more alike, and plots are represented 

whiter (bottom right panels). By creating interdependencies among agents, they increase 

their interactions and reduce spatial segregation. Sert et al. note that increasing the 

connection of rewards diminishes spatial segregation among different types. In sum, this 

study succinctly demonstrates how reward signals using reinforcement learning can be 

applied to social science models effectively.  

5.4 Experiment 2: Demonstrating LAISR with General Interpretability 

A second, more complex LAISR example was developed with the intention of 

demonstrating the concept of the Advantage Actor-Critic (see section 3.2.5.1) DRL 
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method. The Advantage Actor-Critic model was selected as it has proven more precise 

with curiosity modeling as compared to the DQN approach within the Unity platform 

(Juliani, 2017). The model also includes a simplified Interpreter, which generates a 

statistical translation of output results towards general behavior and strategies. Finally, 

the State Representation uses a Finite State Machine (see section 2.5.2.2) representation 

for readability and a path to code representations of the agent strategies.  

5.5 Tactical Warfare Concept 

 
 
 

Table 12: LAISR Methodology for Homogeneous Multi-Agent Reinforcement Learning (Tactical 

Warfare) 

SELECTION STEP SELECTION 
Step 1: Select the Actor and Define Behavior/Rewards Advantage Actor-Critic DRL Model (see 

section 3.2.5.1) and Reward Signals (Table 
14: AC3 (P,A,R) definitions and rewards) 

Step 2: Select the Interpreter Model and Select 
Interpretation Requirements 

Statistical Representation and Heat Map 
Description  

Step 3: Select the Description State Representation Finite State Machine Representation  

Step 4: Select Machine Learning Platform 
 

Unity ML-Agents 

Step 5: Verification and Validation  See Section 4.12 

 

 

Table 13: Code Link for LAISR Methodology (Tactical Warfare) 

CODE LINK DESCRIPTION 
https://github.com/paulsimvient/Homogeneous-
MultiAgent 
 
 

Tactical Warfare Concept 
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Tactical Air and ground warfare are complex; it involves many dimensions, 

complicated processes, high costs, and significant hazards, and its doctrine is a set of 

specialized knowledge on the execution of combat maneuvers (Yining and Yuxian, 

2003).  The same doctrine is used to generate discrete rules within a commercial-grade 

simulation platform using computer-generated force (CGF) agents. This is based on a 

traditional 1-v-1 pursuit-evasion problem in three-dimensional airspace (Ardema, 1985). 

A wargame was developed as a simulated, two-sided (Blue and Red) game, where the 

operation is modeled in a game-based environment. Referring to the LAISR model, the 

intention was to first generate a set of RL models that provide a type of optimal decision-

making, and second, create a means to derive descriptive behavior representations in 

readable formats. Within the simulation, there are three layers; a) a Game/Simulation 

Layer that represents the simulation content and structure of the overall simulation 

design, b) a DRL Layer where agents generate rewards for achieving mission goals, and 

c) the Interpretation Layer demonstrates the decomposition process of the agent’s policy 

into a set of finite state based models for evaluation. 
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Figure 16: LAISR Simulation Example 

 
 
 

5.5.1 Unity Platform Selection 

A Unity-based simulation was selected to provide the essential characteristics of 

tactical air warfare operations (See 4.11.1). Unity3D was selected for several reasons; 

One, it is a free game platform and toolkit which has been designed to research agent 

models using several reinforcement learning methods; 2) Within the platform, multi-

agent interaction, and Unity agents are trained using Google's TensorFlow and Keras 

packages (Juliani, 2018) which are both well-adopted frameworks for machine learning; 

and 3) Unity provided several examples that allowed experimentation with temporal 

domains (e.g., long short term memory), curiosity and sparse rewards, and competitive 

multi-agent machine learning.  

The model was designed based on a set of general criteria necessary to begin the 

wargaming experiment. A common understanding of the wargaming objective was 

created, including the reason for running the scenario, learning objectives, and external 
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conditions and limitations. A simulated area of 10 km x 10 km area within the game 

environment was developed to be observable from both a top-down (command and 

control) and a 3D man-in-the-loop (MITL) perspective. Within this model, there were 20 

LAISR Agents - ten red and ten blue force agents - in the simulated three-dimensional 

environment. All agents were tasked to outmaneuver each other so as to enter into a 

favorable position to eliminate each other using missiles. The objective of the model was 

to develop opposing agents which learn intrinsically  

a) that each red/blue agent must first destroy the ground weapon, and  

b) once ground targets are destroyed, engage air targets while not being shot 

down.  

The winning team had the most agents in the air at the end of the episode. The game layer 

was developed using the Unity ML-Agent extension library (Juliani, 2016) to develop 

both the Actor and the Interpreter.  

5.6 Actor Agent Design 

For the Actor Agent, a reward system as shown in Table 14 was developed within 

a 3-tuple: case = (𝑃, 𝐴, 𝑅)	where: 𝑃 is the description of the action, containing pertinent 

information about the state of the agent (𝑎	𝑠𝑡𝑎𝑡𝑒	𝑠	 ∈ 	𝑆); 𝐴 is an action (or a sequence of 

actions) that must be performed for the problem at hand; 𝑅 is the expected reward for 

performing the action (Ros, 2009). For this simulation, ten agents contribute to the same 

continuous action space. The game rules are as follows: 

• Rule 1: Destroy as many enemy agents as quickly possible.  
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• Rule 2: Prioritize destruction of ground weapons: Ground weapons should be destroyed first 

to minimize risk to a fighter squadron. 

• Rule 3: Once fighters are safe from ground weapons, destroy enemy fighters 

• Rule 4: At any cost, do not get shot down 

Each of the Red and Blue force agents, in this case, the stealth tactical fighters, are given 

reward signals for completing a number of actions with no specific tactic for how to do 

so. Reward signals (see Table 14) are used to train the agent’s optimal policy. 

 
 
 

Table 14: AC3 (P,A,R) definitions and rewards 

Rule Reference P A R 
 

 Acquired Target Missed 
Target 

Rule 1 & Rule 2 A.0 Destroy ground targets 0.2f  -.05  

Rule 1 & Rule 3 A.1 Destroy air targets .12 -.01 
Rule 1 A.2 Temporal Penalty -0.1 
Rule 4 A.3 Shot Down -5 

 

5.7 Actor Results 

Experiments were conducted by generating the conditions for developing Actor 

agents that used an intrinsic curiosity model as a means to delineate two primary 

behaviors; one, target and destroy ground weapons, and two, engage enemy fighters. 

During each run of the simulation, Actor agents explore the action space and respond 

based on reward incentives from Table 14. The Actor agents were trained over 500,000 

episodes within the Unity ML-Agents (see section 4.11.1) environment using the 

Advantage Actor-Critic model (see section 3.2.5.1) model. The results were evaluated 
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using the TensorFlow analytics website Tensorboard which demonstrates the speed and 

accuracy of model training. The model is able to achieve stable rewards, taking 

approximately 12 hours on an NVIDIA GeForce RTX 2060 6GB. Reviewing 500,000 

episodes, Table 15reveals the cumulative reward for the agent training increased over the 

episodes as well as minimum and maximum rewards over the 500,000 episodes. 
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Table 15: Actor agent results: Cumulative reward 

Reward Type Value 
Result reward 86.3387494  
min reward -21.9573917  
Max reward 176.8109988 
Count (episodes) 500000 

 
 
 
Once the Actor agents were trained, 500 skirmishes were run between the red and 

blue teams. A heat map was created that showed locations of red and blue fighters. Figure 

17presents data for both red and blue Actor agents. Column (A) presents locations before 

the ground weapon is destroyed. We find that in this column, opposing agents converge 

on the general artillery location. In Column (B), we observe agent behavior after the 

artillery is destroyed. The heat maps are generated over 1000 iterations, where the red 

regions demonstrate significant occupation of agents. Light blue regions denote some 

occupation of agents where full blue is indicated by no concentration. A white cross 

denotes the location of the ground weapon before it is destroyed. The results of the 

skirmishes showed agents converging towards enemy ground weapons until they are 

destroyed, then they engage in air-to-air combat. 
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 Column A Column B 

 Ground Weapon Attack  Air to Air Combat 

Red 

Agent Fighters 

  
Blue 

Agent Fighters 

  

Figure 17: Heat map representations of actor agent location in a metered grid 

 
 
 

5.8 Interpreter Agent Results 

This section demonstrates a simple example of an interpretation model. It is 

important to note that a full AI interpretation model is discussed in chapter 7 although 

this early example provides some methods that demonstrate interpretation. Referring 

back to the Interpreter, the goal is to uncover behaviors that can be considered strategies. 

~500 agent trials were run within the simulated environment, given each of the fighter 
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agents interacted with ten adversarial entities and nine friendly entities. All agent actions 

were stored in CSV tables (see Table 16) with 8000-20000 entries total depending on the 

length of the skirmish, across the red and blue agents as strategies A.0-A.3 (see Table 

17). The CSV file stored agent type (0=red, 1=blue), x and y positions, whether it was 

shooting, if the ground weapon was destroyed, and the ground weapon and y position.  

  
 
 

Table 16: CSV Format for Homogenous Agent Skirmish 

team; 
1=blue 

x y shoot Guns 
Destroyed 

gun_pos_x gun_pos_y 

1 -323 -351 0 0 699 1244 

 

 

Table 17: Actor-Interpreter dominant use of strategy 

Strategies Interpreter 

Pre-Ground Weapon Post-Ground 
Weapon  

A.0 Destroy ground targets 56.30% 4.21% 
A.1 Destroy air targets 2.45% 60.00% 
A.2 Observe the ground target current state  0.03% 3.00% 
A.3 Observe locations of hostile  14.00% 4.60% 

 

 

Table 17shows the results of how the Interpreter designated Actor behaviors. One 

could observe that both the Interpreter observed a strategy for spending time destroying 

the ground weapon; once the ground weapon was destroyed, agents changed their 

dominant strategy to air-to-air combat. These calculations were then used to develop a 

FSM with probabilities of entering each of these states.  
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Figure 18: Actor Finite State Machine 

 
 
 

In Figure 18, the plane stays in a fly state when the ground weapon is active (G1). 

While in G1, each sub-state is iterated through, dominant states are given more time and 

therefore are more likely to be activated by the FSM. Moving into the ground weapon 

destroyed state (G0) produces a second set of dominant states with differing levels of 

priority. 

5.9 Summary 

In this chapter, the dissertation introduced a method that demonstrates how 

machine learning can be used to model decisions made by agent models. The 

decomposition of neural networks for mission planners, instructional designers, and agent 

modelers, amongst others, can provide a significant way to find optimal solutions to 

complex scenarios. The approach also provides the basis for how this type of 

decomposition can be used to develop DRL-Agents (see section 3.3) to refine our ability 

to solve and manage agent behaviors. The initial results of the Interpreter (see section 

4.3) model demonstrate promise as a mechanism to derive strategies.  Using these models 

to provide results to problem-solving and reasoning can help learners transfer and apply 
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their knowledge to novel problems and situations (Rudd, 2010). These models also 

provide methods to generalize across operating environments, adversary, and even 

game/simulation tools. 
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6 LAISR EXPERIMENTS: HETEROGENEOUSMODEL 

Until now, the dissertation has discussed the concept of the LAISR model (see 

section 3.3) as primarily homogeneous entities that interact against one another. Epstein 

(2006) notes that heterogeneous agent populations change or adapt endogenously over 

time.  This next phase attempts to generate a set of heterogeneous multi-agent 

reinforcement learning models (see section 6.1). This section introduces a heterogeneous 

multi-agent DRL (see section 3.3) model. The LAISR-Actor is designed to work in 

cooperative, fully competitive, and mixed environments (Zhang, 2019). This chapter 

investigates the challenges of coordinated learning across heterogeneous agents.  

This section also addresses a key concern in developing heterogeneous multi-

agent models, the problem of nonstationarity (see section 6.1.1). Nonstationarity 

becomes problematic where the Markov property (see section 6.1.3) assumes agents of 

different types must contend with a continuously changing environment. 

6.1 Multi-Agent Systems (MAS) in Reinforcement Learning 

Multi-Agent Systems (MAS) can be described as two or more agents interacting 

with each other in a common environment that acts in response to individual goals 

(Busoniu et al., 2008). That is, in lieu of having a centralized singular model, each agent 

plays a role in decision-making (Ibid). Multi-agent reinforcement learning (MARL) is an 

extension of single-agent reinforcement but must contend with additional areas of 

complexity. Primarily, heterogeneous goals among agents (Agogino and Tumer, 2005; 
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Busoniu et al., 2008) and multiple agent parameters (Panait and Luke, 2005), and 

scalability (Busoniu et al., 2008).  

6.1.1 Problems of Nonstationarity 

A challenge with Heterogeneous Reinforcement Learning-based Multi-Agents, as 

described by Castaneda (2016), is nonstationarity, which occurs because the interaction 

of multiple agents constantly reshapes the domain space. Where in single-agent RL, the 

agent is observing only the effect of its own actions. In MARL, agents are interacting and 

learning concurrently, and agents must associate an action to certain outcomes as well as 

to another agents’ behavior. Nonstationarity is a fundamental problem in traditional 

cooperative MARL whereas each agent relearns other agent policies; this causes 

information convergence to be slow (Papoudakis et al., 2019; Hernandez-Leal et al., 

2017).   

6.1.2 Example: Bat/Frog System Revisited 

Consider the following: an environment has two agents discussed early in the 

section  Given the social science community’s interest in modeling decision processes, 

ideally, we would like to be able to provide techniques that mimic human cognitive 

processes, i.e., quick decisions, particularly when working with complex data. Although 

these ‘heuristics’ made may not necessarily be optimal, they can aid our understanding of 

how humans acquire and employ decision strategies. 
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An Example ABM to Illustrate the Challenges: The Bat-Frog Predation Model 

(0), where a frog and bat must learn to exist together. Frog’s policy must have knowledge 

of bat’s policy, which from its perspective is a part of the environment (and the opposite 

is true for bat’s policy). At each step of learning, the frog learns about the bat’s policy 

and its environment. Bat then learns about the environment and the frog’s policy, 

updating his policy and making the frog’s knowledge of his sightly wrong. Now frog 

must learn bat’s new policy and update its own, making the bat’s knowledge slightly 

wrong. This ringing of information can greatly slow convergence during learning, 

especially for highly coordinated tasks with many agents, and this specific form of 

nonstationarity is believed to be a fundamental reason why it’s so difficult to converge to 

good policies in multi-agent learning Papoudakis et al. (2019). Therefore, it is one 

intention of this dissertation to develop a convergence approach where both parties are 

generally satisfied with their policy. The reader is reminded that there is an important 

differentiation that exists between the homogeneous model and the heterogeneous one.  

• Homogeneous models maximize their own current and future rewards with no 

bearing on any other considerations 

• Often (but not always), heterogeneous agents use game-theoretic methods to 

generate stable states between themselves and another agent type in the 

environment. For example, our bat will not achieve its rewards if it kills off all the 

frogs in the environment.  
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6.1.3 Multi-Agent Markov games 

One approach to MARL development is the use of Markov games, where multiple 

adaptive agents will interact with opposing goals. This is where precisely, two agents 

with opposing goals share an environment. The discussion begins with the discussion of a 

Q-learning-like (see section 3.2.4.1) algorithm for developing policies and demonstrating 

its use within a two-player game in which the optimal policy is probabilistic.  Unlike 

MDP’s (see section 3.1.4.1), deterministic policies are not necessary. Instead, the policy 

is often probabilistic and stationary, mapping discrete states to probability distributions. 

The Multi-Agent Informational Learning Processes (MAILP) model, introduced by Terry 

and Grammel (2020), is a novel model of information transfer during multi-agent 

learning. They used the Multi-agent informational learning process (MAILP) to show that 

increasing training centralization arbitrarily mitigates the slowing of convergence due to 

nonstationarity. Here, the MAILP model demonstrates MARL converges slowly under 

normal circumstances due to nonstationarity and that centralization during learning 

arbitrarily improves this (with parameter sharing having the greatest level centralization). 

In another approach, Lowe (2017) employed a Multi-agent Actor-Critic (MAC) 

algorithm (see section 3.2.5.1), which gives each agent a central and global critic during 

the training process.   

6.2 Experiment 2: The Heterogeneous Multi-Agent Reinforcement Learning 

LAISR Model 
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Table 18: LAISR Methodology for Heterogeneous Multi-Agent Reinforcement Learning 

SELECTION STEP SELECTION 

Step 1: Select the Actor and Define 
Behavior/Rewards 

Advantage Actor-Critic Model (see section 
3.2.5.1) and Heterogeneous Reward Signals 
(Table 20). Adversarial Self-Play (see section 6.3) 

Step 2: Select the Interpreter Model and Select 
Interpretation Requirements 

Random Forest Partial Dependency and SHAP AI 
Interpretation (0)   

Step 3: Select the Description State 
Representation 

Finite State Machine Representation (see section 
2.5.2.2) 

Step 4: Select Machine Learning Platform 
 

Unity ML-Agents (see section 5.5.1) 

Step 5: Verification and Validation  See Section 4.12 
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Table 19: Code Link for Heterogeneous Multi-Agent Reinforcement Learning 

Code Link Description 
https://github.com/paulsimvient/Sheep-Wolf 
 

Heterogeneous Multi-Agent 
Reinforcement Learning 

 

 

The heterogeneous model examines the equilibrium state between dissimilar 

agents within a population of carnivores and herbivores. Unlike the first round of 

homogeneous agents (see section 5.1), this experiment demonstrates how differing agent 

types (with different reward signals). The concept presented in the proposed model was 

recreated based on a Lenham (2018) Terrarium model, although the presented model 

contained its own approach towards generating the reward signals. The terrarium contains 

a pre-defined number of carnivores and herbivores as well as plants. The plants grow at a 

constant rate and can be eaten by herbivores. Additionally, plants can spread seeds and 

thus expand their locations of sprouting in the virtual environment. Carnivores move 

within the space and eat herbivores. Both herbivores and carnivores need the energy to 

survive and dissipate energy as they move through the environment. If a maximum 

energy threshold is reached, an agent can reproduce. The goal for each of the agent types 

is to dominate the space, i.e., no opposing member is left in the environment.  

6.3 Adversarial Self Play 

In a customary DRL (see section 3.3) training condition, an agent increases its 

reward signal towards a maximum accumulated reward. These signals are encoded as 
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agent tasks, such as navigation, behaviors, and actions. Certain limits are applied to agent 

behaviors such as constrained speed, forces, physical constraints (e.g., walls), and the 

agent must work within these constraints while maintaining a maximized reward.  Unlike 

standard reinforcement learning scenarios, adversarial self-play agents compete with 

opposing agents where, from its perspective, is effectively part of the environment. Each 

agent receives its own Nash Q-Value (Hu and Wellman, 1998) where Q-values now must 

consider cooperative actions, rather than just individual actions.  

6.4 Reward Signals and Parameters 

Table 20 presents the reward signals and descriptions (See Table 20)  that are 

used to reinforce the DRL behaviors noting that the herbivore is penalized (-.25) for 

eating an herbivore, and carnivores are penalized for eating plants.  

 
 
Table 20: Carnivore Herbivore Reward Signals 

Reward Value Carnivore Herbivore Description 
Reproduce 
 

1 x x Reinforced to reproduce through reaching 
a maturity size. Creates reproduced agents 

Eat Agent .5/-.25 x  Agents contain energy, even after they die, 
so carnivores can eat dead herbivores. If it 
eats an herbivore with energy, it received a 
positive reward; if it eats one with no 
energy (dead too long), it receives a 
negative reward.  

Eat Plant .5 -.25 x Herbivore eats plants 
Attack Agent .5 x x Rewards attacking alternate type, which 

dissipates a competitor’s energy 
Kill Agent 1.0 x x If the opponent is killed, reward 
Out of bounds -1.0 x x If the agent is out of bounds, create a 

negative reward 
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Initial parameters were set for each of the opposing agent types - both herbivores 

and carnivores (See Table 21). Noting that this is a toy model, parameters were designed 

to generate some standardization in game playtime. In other words, herbivores were on 

the lookout for plants to eat, which grew at a different rate than both herbivores and 

carnivores. Additionally, carnivores could eat herbivores, but not vice versa.  

 

Table 21: Agent Parameters (Herbivore/Carnivore) 

Parameter Value Discussion 
Max Energy 1 Maximum energy dissipates with time, movement, and 

attacks.  
Mature Size 5.0 Maximum size is used to normalize the speed of growth.  
Growth Rate 3.0 Value is used to increase the size of all agents, which in turn 

supports the amount of damage that an agent can incur.  
e.g., defenseDamage = Defense + (Size / 10); 

Eating Speed .3 Controls the amount of energy consumed by agents when 
eating.  

Decay Rate .001 Once an agent is dead, the decay rate reduces the energy of 
the corpse 

Max Speed 2.5 Speed in movement within the simulated environment 
Attack Damage 0 Amount of attack damage received by agents 
Defend Damage .5 Used as a value to calculate overall 

damage = AttackDamage - vic.DefendDamage;  
 

Eyesight 20 Distance line of sight for each agent 
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6.5 Results: Heterogeneous Agent Model 

 

Figure 19: Wolf Sheep Model 

 

 

Figure 20: TensorFlow Output (Red) Carnivore (Blue) 

 
 
All experiments were performed on a six-core i7 8700k @ 3.70 GHz, with an 

NVIDIA GTX 1080 GPU, using TensorFlow-GPU v1.7.1. The training time was roughly 

4.5 hours. Results are tested on both the PC architecture, as shown above, and a 

MacBook Pro 2016. The herbivore agent over 1,000,000 iterations demonstrated a more 

optimal learning strategy over the carnivore. It is likely that herbivores may have had 
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more players within the simulation as they generally tended to gather more energy as 

compared to the carnivores. It is possible with future iterations, parameters can be 

adjusted to minimize the growth of herbivores, but this ensures values between 

herbivores and carnivores were as consistent as possible. The next chapter, LAISR 

Experiments: Advanced Explainable Artificial Intelligence explains the results through 

advanced AI interpretation methods.  
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7 LAISR EXPERIMENTS: ADVANCED EXPLAINABLE ARTIFICIAL 

INTELLIGENCE AND STATE REPRESENTATION 

Research Question RQ 2 

In the previous chapter, two distinct heterogeneous DRL-Actors (see section 3.3), 

the wolf and sheep, were introduced. Picking up where the previous chapter left off, the 

concept of Explainable Artificial Intelligence (XAI) is developed into an example for the 

Wolf-Sheep Predation model (see section 6.2). In reference to research question two (see 

section 1.3), XAI techniques are implemented that are designed to decompose deep 

learning models. This will help to enable human users to understand, trust, and describe 

the emerging generation of AI algorithms, as discussed in this dissertation. In the section 

part of the chapter (7.10), a State Descriptor will be created, which presents XAI data in a 

format that describes the agent’s strategy as a set of states and probabilities. 

7.1 Interpreting the Heterogenous LAISR Model 

The model interpretation process demonstrates ways to show prediction between 

actions and how these actions affect change within the model. The first objective is to 

identify the most significant and remove insignificant ones; this gets us to a result in 

much shorter training time. For model interpretation, the following steps are taken: 

1) Select Algorithms 

2) Display Descriptive Statistics 

3) Embark on AI Interpretation Techniques 

4) Present Results 
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7.2 Select Algorithms: Partial Dependency Plots (PDP) and SHAP 

Given the available interpretation methods, two particular systems were chosen: 

PDP and SHAP methods.  The PDP approach was chosen for its straightforward and 

simplistic representation. In the PDP, the partial dependency at a particular feature value 

is the average prediction if we assume all data points of that feature value (Friedman, 

2001).  In both correlated and uncorrelated cases, the plot presentations clearly show 

correlations between variables. Second SHAP interpretation is a suitable complement to 

the PD as it provides detailed (local) feature level information rather than global plot 

representations.  

 

7.3 Display Descriptive Statistics 

Once several thousand iterations of the simulation were run, the distribution of 

activities for each agent can be plotted on a frequency graph of the number of times an 

activity occurred.   Although the results include data from both the herbivores and 

carnivores, for the sake of highlighting the interpretation methodology, this section 

focuses only on herbivore interpretation. First, activities that are available to each 

herbivore are defined: 

Idle: 0 
Move:1  
Forage:2  
Eat:3  
Attack:4 
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Figure 21: Distribution of Activities 

 
 
 

Figure 21shows that of the five activities; Move, Forage, and Eat, have the 

highest frequency, and Idle and Attack have the least frequency. It is noted that at this 

time, there is no reference to the conditions that led to when the activities were applied, 

only that there is a particular frequency of behaviors. The next stage of the process 

predicts the next activity of the agent-based on prediction variables. 

7.4 Embark on AI Interpretation Techniques 

The following section presents work that was completed to achieve agent 

interpretability using Random Forest Classification and SHAP Interpretation. Code was 

developed in Python 3.7 and delivered using Jupyter Notebooks.  

 
 
 

Table 22: PD and SHAP Code Link 

Code Link Description 
 
https://github.com/paulsimvient/InterpretationCode 
 

 Section contains both random forest 
classification and SHAP value 
interpretation methods 
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7.4.1 Partial Dependence Plot Analysis 

As discussed in section 7.2, the first AI interpretation method employed was the 

partial dependence plot (PDP).  To plot the PDP, a random forest classifier is first trained 

using a cross-validation (CV) approach.CV is a technique used to test the effectiveness of 

a machine learning model; it is also a resampling procedure used to evaluate a model if 

there is limited data. In order to use the Randomized Search CV, model parameters are 

specified for searching the Python dictionary. Randomized Search CV implements to 

create a Predict and Fit method. Here in the CV model, parameters of the classifier are 

cross-validated to ensure accurate and optimized prediction. In the classification 

approach, the model predicts the probabilities of each class and determine which class 

has the highest probability for selection.  

7.4.2 Generate Partial Dependency Plot Prediction Variables 

Data were initially collected for each run of the model and stored within a CSV 

file. As each iteration of the simulation was run, data was collected by the time interval of 

a millisecond and gathered within the data file (see Table 23). 

 
 
 

Table 23: Data Collected Within Simulation 

Variable Type Description 
identifier  int64 Unique Object ID 
creature type  int64 Herbivore or Carnivore 
Time  int64 Time in Seconds 
reproduce  int64 Is it ready to reproduce? 
CanGrow  int64 Variables set to grow 
CanAttack  int64 Can attack opposing agent 
Energy float64 Level of Energy  
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MaxEnergy  int64 Maximum Energy 
Size  float64 Size of agent 
Age float64 Age of Agent 
Activity  int64 Activity Type 
herbivores  int64 Number of Herbivores in Environment 
carnivores  int64 Number of Carnivores in Environment 
plants  int64 Number of Plants in Environment 
herbivores_e  int64 Current Average Herbivore Energy 
carnivores_e  int64 Current Average Carnivore Energy 
plants_e float64 Plant Energy (average) 

 
 
 
First, several prediction variables are noted to be irrelevant. This is done through 

a process where we examine how variations, or perturbations, in these variables may 

influence activity change. 

7.4.3 Partial Dependency Plot Data Preparation 

The dataset preparation process divides data into training and testing data and 

begins by generating data based on the herbivore activity. Given the model is addressing 

only herbivore values, the variables related to carnivores (carnivores, carnivores_e, and 

creature_Type) are removed. Certain variables do not change throughout the model 

lifetime (e.g., Identifier and MaxEnergy) and can also be removed. Time and Age appear 

to be highly correlated, so either one of them can be selected as part of the training data 

(this is a machine learning rule for evaluating dependence).  

7.5 Partial Dependency Plot (PDP) Analysis 

After model training, a random forest model is applied for evaluating the most 

important variables; this is plotted in ascending order where the most important variable 
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is plotted last. Given there are four activity classes, the PD is plotted for each class for 

analysis and observes how each variable affects activity.  

 

7.5.1 Activity 0: Idle 

 
Figure 22: PDPs of Activity 0 (Idle) probability based on influencing variables 

 
 
 

 

For the activity Idle (see Figure 22), the variable Age is the most important 

attribute.  The PDP shows Age doesn't demonstrate a correlation until it reaches Age=2, 

and then shows a strong prediction correlation. For Energy, the probability did not show 

any trend, it decreases and increases without any trend, but after 2.5, the probability 
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remains consistent. For Number of Plants, the probability is the same, but after 15, the 

Number of Plants probability exponentially increases.  

 

7.5.2 Activity 1: Move 

 
Figure 23: PDPs of Activity 1 (Move) probability based on influencing variables 

 
 
 

 

For the activity Move (see Figure 23), the graph shows that as Move decreases, 

Age increases, i.e., it is negatively correlated with the Move activity. For Energy, its 

initial probability increases and then decreases, and after 2.5 it remains the same. For 

Number of Plants, the probability is consistent, but at roughly 15 plants, the probability 
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for Move decreases. This might be because with the increase in plants, it is likely that 

moving isn’t necessary. 

 

7.5.3 Activity 2: Forage 

 

Figure 24: PDPs of Activity 2 (Forage) probability based on influencing variables 

 
 

 

For the Activity Forage (see Figure 24), Age, the PDP shows that the Forage 

probability increases until value 1 and then decreases. For Energy, its dependence 

probability spikes early (1) then dissipates over time. For the Number of Plants, the 

probability is similar, but after 15 plants, the probability increases substantially. 
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7.5.4 Activity 3: Eat 

 
Figure 25: PDPs of Activity 3 (Eat) probability based on influencing variables 

 
 
 

 

For the activity Eating (see Figure 25), the PDP shows that the probability 

increases as the Age value rises and is highly positively correlated. For Energy, the 

probability decreases until 𝐴𝑔𝑒	 = 	1 and then increases as Energy value increases, but 

after 𝐴𝑔𝑒	 = 	2.5 the probability remains the same. 
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7.6 Partial Dependence Plot Results 

 

Figure 26: Energy (x-axis) as compared to Activity Partial Dependency (y-axis) to 4 Activities 

 
 
 
 
 
 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

VA
LU
E 0

0 .
2 5 0 .

5
0 .
7 5 1

1 .
2 5 1 .

5
1 .
7 5 2

2 .
2 5 2 .

5
2 .
7 5 3

3 .
2 5 3 .

5
3 .
7 5 4

4 .
2 5 4 .

5
4 .
7 5 5

PA
RT

IA
L 

DE
PE

N
DE

N
CY

IDLE Eat Chase Move



104  

 
104 

 

Figure 27 Age (x-axis) as compared to Activity Partial Dependency (y-axis) to 4 Activities 

 
 
 

Upon analysis of the PDP, some interesting and more precise representations of 

how variables such as age and energy are influencing activities can be observed. For 

example, as Age increases, the agent has a high probability to Eat. Additionally, it does 

not Forage or Move as Age increases. On the other hand, Age does not appear to deter 

eating. In fact, as the Age increase, Eat increases even though the agent does not Move. 

Importantly, it must be ensured that behavior evaluation aggregates result from both Age 

and Energy when uncovering strategies. This is described in more detail in the analysis 

process.  

7.7 SHAP Interpretation 

SHAP (Shapley Additive explanations), looks at features within the model and 

assigns a prediction to each (Lundberg and Lee, 2017). Shapley (1953) values express the 
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contribution that features have on the output of a model. There are two primary benefits 

of using SHAP values: 

1. Global Interpretability: Describes the model from a global perspective across 

multiple features within an aggregated dataset. 

2. Local Interpretability: Localizes a problem and describes the model in the local 

vicinity, rather than creating an explanation of the whole model. 

7.7.1 Training the SHAP Model 

A trained model for SHAP value calculation was built. SHAP algorithm has 

several methods for calculation of SHAP values for different models. Although several 

explainers are available (Tree, Gradient, Deep, Linear, Kernel), it was decided that a Tree 

Explainer would be used for several reasons. 

1) sampling-based estimation variance is minimized, i.e., no need for a background dataset or 

select a subset of feature coalitions. 

2) results are no longer skewed due to dependencies between features since these are contained 

in the tree structure (although under some circumstances, one would waive both of the 

previous benefits); 

3) The run time is significantly faster. The Tree Explainer is used for tree ensemble models, 

given the approach is based on a random forest approach. 

There are several choices for implementation, including XGBoost, LightGBM, CatBoost, 

scikit-learn Tree models (Random Forest, etc.), and pyspark tree models. LightGBM 

model is used as a low-performance impact approach to the calculation of SHAP values. 

LightGBM is a gradient boosting and tree-based learning model (Ke et al., 2017).    
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7.8 SHAP Global Interpretability (Variable Importance) 

The concept of SHAP (see section 3.4.5) feature importance is fairly straight 

forward: Features with larger absolute Shapley values are more important than smaller 

ones. Given an interest in global relevance, Shapley absolute values are averaged per 

feature. Then, each feature is sorted by decreasing its relevance and plot the results 

(Lundberg, 2017). Then the SHAP values of every feature are plotted to demonstrate the 

most important model features. The Global Interpretability graph in Figure 28 is the sum 

of SHAP value magnitudes over all samples demonstrating variable importance.  

 
Figure 28: Global Interpretability Graph (Variable Importance) 

 
 
 

The graph demonstrates that the most relevant feature is Age and the second one 

is Energy. Although the plot is interesting, it is a purely global outcome, i.e., it 

demonstrates the input variable effect as an aggregate to the total data set, and not 

specific observations. But it is worth noting that that given the Partial Dependence Plot 

Results Age is prioritized over Energy when considering the likelihood of activity. 



107  

 
107 

7.9 SHAP Local Interpretability (Variable Importance) 

The Summary Plot (Figure 29) is a density scatter plot showing features in SHAP 

values demonstrating the importance of each feature on the model output. The plot also 

shows the relationships of the predictors with the target variable (positive and negative). 

We have four activities and a plot for each activity and its analysis. 

7.9.1 Explaining and Plotting Predictors and target Variables 

 

Figure 29: Example Summary Plot 

 
 
 

This plot encompasses all points in the training data. It demonstrates the 

information, as discussed in Table 24. 
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Table 24: Reading the Summary Plot 

Feature 
importance:  

Ranked descending order values that describe the importance of the 
feature on model prediction 

SHAP Value 
Impact: 

The horizontal demarcation is showing how each value is associated 
with a higher or lower prediction, i.e., feature value over the entire 
dataset. 

Color values Color values where the red variable is higher predictions or Blue for 
lower predictions. 

Feature 
Correlation 

The vertical axis describes each feature as a high 
and positive correlation on the predictive quality rating. The red color 
implies “high” correlation, and Blue is “low” correlation. 

 
 
 
From the diagram, it can be seen that Age and Energy have large effects on the 

prediction over the entire dataset (high SHAP value shown on the bottom axis). 

High Age values affect the prediction positively (red values on the right-hand side) while 

high Energy values affect the prediction negatively (red values on the left-hand side). 

For a more detailed explanation of Summary Plot results, please see the section in the 

APPENDIX: Explaining SHAP Values as Individual Features. 
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7.9.2 Activity 0: Idle Summary Plot 

 
Figure 30: Activity 0 (idle) Summary Plot 

 
 
 

For the Idle Activity, when Age value is high, then it is positively correlated with 

it, and its prediction accuracy increases. If the Age SHAP value is negative (blue color), 

then there is a negative correlation, and the SHAP values define a lower correlation. (This 

is same analysis as the random forest, where lower values have a lower probability, and 

after 𝐴𝑔𝑒=2, the probability increases.) For Energy, if the value is high, then the 

probability is lower that it remains in an Idle activity. This is also the case for Size, where 

the agent size is negatively correlated with the Idle activity. 
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7.9.3 Activity 0 (Idle): Simplified plot 

A simplified graph of the above figure is plotted. The Green color means a feature 

is positively correlated with the target variable and is negatively correlated when Red and 

no correlation is Blue.  

 
 

Figure 31: Activity 0 (idle) Simplified Plot 

 
 
 

The next step is to interpret each variable correlation. Age, plants_e, herbivores, 

and herbivores_e are positively correlated, whereas Size and CanReproduce are 

negatively correlated to Activity 0. 
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7.9.4 Activity 1 (Move) Summary Plot 

 
Figure 32: Activity 1(Move): Summary Plot 

 
 
 

For Activity 1 (Move), it is noted that if Age is high, then the SHAP values are 

negative, indicating it is less likely to move as it gets older. This correlates to our Partial 

Dependency Plot results; whereas Age increases, less movement is expected (see Figure 

32). One might also note that there is a distinct correlation between the number of plants 

and the desire to move where an increased number of plants is correlated with increased 

movement, and vice versa.  
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7.9.5 Activity 1 (Move): Simplified plot 

 
Figure 33: Activity 1 simplified plot 

 
 
 
Figure 33 confirms Figure 32 results at a global scale. Here, Age and number of plants are 

negatively correlated, and Energy and the number of herbivores are positively correlated. 

 



113  

 
113 

7.9.6 Activity 2 (Forage): Summary Plot 

 
Figure 34: Activity 2 (Forage) Summary Plot 

 
 
 

7.9.7 Activity 2 (Forage): Simplified plot 

This plot describes the Forage activity stating that If Energy is high, then the 

probability for Foraging is low (blue color). This may occur because the Energy value 

has already been reached, and therefore there is less reason to Forage. It is also worth 

noting that as the number of plants increases, the likelihood of Forage also increases. 

One might also note that there is a high correlation between Size and Forage activity.  

What is of particular importance is that the graph demonstrates that the activity is not 

necessarily a predictor of the variable. So larger Size does not imply more Forage 

activity. It is more likely that more Forage behavior leads to a larger Size.  And more 

plants also led to more Forage behavior.  
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Figure 35: Activity 2 (Forage): Simplified Plot 

 
 
 
 

For Activity 2 (Forage), Plants (number of plants) are positively correlated, and 

Age, plants_e, herbivores, herbivores_e, CanGrow, and CanReproduce are negatively 

correlated. 
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7.9.8 Activity 3 (Eat): Summary Plot 

 

Figure 36: Activity 3 (Eat) Summary Plot 

 

 

 
The plot demonstrates that if agent Age is high, then SHAP values are also high 

for Eat behavior, and they are positively correlated. Values are less clear for Energy, but 

for Plants (number of plants), it is negatively correlated. There are several interesting 

relationships that are represented here. First, Age should not necessarily be a reason for 

more eating, but there is another consideration, Size. If one were to consider what might 

be happening in the graph, imagine that as time progressed, more plants existed, and with 

that, the herbivore ate more, and Size increased when it Ate (noting the positive 

correlation).  But as it ate, there were simply fewer plants (negative correlation).  Also, 
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given Energy was low, this would cause the herbivore to decide to Eat more (showing a 

negative correlation).  

 

7.9.9 Activity 3 (Eat): Simplified Plot 

 
Figure 17: Activity 3 (Eat) Summary Plot 

 
 
 
 

For Activity 3, Age, Size, plants_e, herbivores, herbivores_e, Can Grow, and 

CanReproduce are positively correlated, and Plants (number of plants) are negatively 

correlated. 
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7.10 Developing the State Representation: Finite State Machine 

A FSM representation was built using results from the PDP and SHAP analysis. 

The finite state machine is a triple 𝑀	 = 	 (𝑆, 𝑅, 𝑡), where 𝑆 is a finite set of states., 𝑅 is a 

finite set of symbols called the alphabet., 𝑡:	𝑆	 × 	𝐴	 → 	𝑆	is the transition function. The 

inputs to this function are the current state and the last input symbol (Arbib, 1969; Booth, 

1967). While the function value 𝜈(𝑠, 𝑥) is the state, the automaton goes to from state 𝑠 

after reading the symbol 𝑥. The resultant FSM is then used as the basis for an agent 

model that is purely FSM based, which should mimic behaviors of its ML counterpart. 

7.11 Developing a Conditional Map 

The next phase was to construct the data into a format that can translate into a 

finite state representation. Probability trees are constructed that state the following: Given 

the current state of the agent (specifically its highest deterministic factors, Age and 

Energy), what is the likelihood it moves into one of the four states?  

 

Figure 37: Conditional Map 
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Given this information is generated through the partial dependency map described 

in the previous section, the potential for selecting an activity based on the existing state of 

the agent is now more apparent. Noting earlier, the two primary predictors of its behavior 

were Age and Energy, so for simplicity's sake, these variables are highlighted as the most 

predictive characteristics of its potential state. Figure 38 and Figure 39are partial 

dependency plots of Age and Energy, respectively.  

 

Figure 38: Energy Partial Dependency Plot 
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Figure 39: Age Partial Dependency Plot 

 
 
 

The goal is now to create a distribution of states 𝑠 for Energy and Age that lead to 

an action 𝑎.  This allows for a range of parameters that can lead to a state. For example, 

when 𝐴𝑔𝑒	 = 	𝑙𝑜𝑤	(𝑟𝑎𝑛𝑔𝑒	[0 − 1]) and 𝐸𝑛𝑒𝑟𝑔𝑦	 = 	ℎ𝑖𝑔ℎ	(𝑟𝑎𝑛𝑔𝑒	[3 − 4]), we can 

generate a set of probabilities the agent is participating in an action.  These probabilities 

are listed in Table 26: Conditional States Based on Interpretative AI Model. The table 

provides state variable probabilities based on the Age and level of Energy. From these 

values, a set of states can be derived based on values.  For example, based on Table 26, 

one can state the following: Given 𝐴𝑔𝑒	(𝑟𝑎𝑛𝑔𝑒) 	= 	𝑋 and Energy (range) = Y, the 

likelihood of selecting a state 𝑆	 = ((𝑝)𝐼𝑑𝑙𝑒	|	(𝑝)𝐸𝑎𝑡		|		(𝑝)𝐶ℎ𝑎𝑠𝑒		|		(𝑝)𝑀𝑜𝑣𝑒	). 
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Table 25: Ranges of Age and Energy 
 

Low Low-Mid High-Mid High Very 
High 

Age [0 - 1] [1 - 2] [2 - 3] [3 - 4] [4 - 5] 
Energy [0 - 1] [1 - 2] [2 - 3] [3 - 4] [4 - 5] 

 
 
 
 
 

Table 26: Conditional States Based on Interpretative AI Model 

AGE ENERGY IDLE Eat Forage Move  
Low   Low  14% 38% 34% 14% 
Low   Low-Med  14% 35% 38% 14% 
Low   High-Med  15% 37% 32% 15% 
Low   High  15% 38% 32% 15% 
Low   Very high  14% 40% 32% 14% 
Low-Med   Low  10% 44% 37% 10% 
Low-Med   Low-Med  9% 41% 41% 9% 
Low-Med   High-Med  11% 43% 36% 11% 
Low-Med   High  10% 44% 35% 10% 
Low-Med   Very high  9% 46% 36% 9% 
High-Med   Low  17% 45% 22% 17% 
High-Med   Low-Med  17% 42% 24% 17% 
High-Med   High-Med  18% 44% 20% 18% 
High-Med   High  18% 45% 19% 18% 
High-Med   Very high  17% 47% 19% 17% 
High   Low  17% 51% 14% 17% 
High   Low-Med  17% 49% 17% 17% 
High   High-Med  18% 51% 12% 18% 
High   High  18% 52% 11% 18% 
High   Very high  17% 54% 11% 17% 
Very high   Low  16% 56% 13% 16% 
Very high   Low-Med  15% 54% 15% 15% 
Very high   High-Med  17% 56% 10% 17% 
Very high   High  17% 57% 9% 17% 
Very high   Very high  16% 59% 9% 16% 

 

Table 26creates a set of states and probabilities of the likelihood of being in one 

of the respective states. For example, if Energy is low and Age is low, we can expect a 

roughly 40% likelihood that the agent Eats, 35% it Forages, and 15% Idle and Moves, 

respectively. These conditions are the basis for the design of agent FSM and, thus, how 

we can describe its behavior in a readable narrative.  



121  

 
121 

7.11.1 Translating Strategies into Cognitive Heuristics 

 

Figure 40: Bridging Cognitive Heuristics and Explainable AI 

 

 

Figure 40illustrates a basic representation of what is intended for review in this 

chapter. The goal is to derive boundedly rational behaviors (see 2.2.1) from an AI-

Interpretation FSM. From the perspective of cognitive heuristics, some interesting 

potential strategies can be derived. For example, using the take-the-best heuristic, we can 

see that we can define behaviors from the perspective of “what is the highest probability 

action based on the existing state?” This is a single-reason decision rule, a type of 

heuristic where judgments are based on one “good” reason only, ignoring other 

indications (Gigerenzer & Gaissmaier, 2011). Using the take-the-best heuristic, one 

might deduce that, all things equal, an Eat-Forage strategy might be a viable approach to 

all conditions, where the agent fluctuates between the two based general conditions in the 

environment, where fast-and-frugal heuristics are useful in situations of uncertainty, 
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while optimization is designed for risk-based situations. We may observe that under the 

duress of Age, even with high Energy expenditure, it may not be wise to Forage, 

although in this simple example, we can deduce that when Age increases, there may 

simply more things to eat within the environment. But high Age does not imply that 

agents take the opportunity to expend energy to find new food sources. In fact, one may 

say a strategy is simply “don’t waste energy, eat what you have in front of you.” This is 

further reinforced by the variable Move, which generally demonstrates movement is not 

advantageous, even in high energy states.  

The premise itself is objectively clear. Interpretation techniques can derive both 

local and global level feature interpretation. And this provides some very compelling 

ways of creating behavior descriptions once the agents have created their respective 

optimal policies. 
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8 DISCUSSION AND FUTURE WORK 

Although technical in nature, this work is no more an Artificial Intelligence 

dissertation than is Epstein and Axtell’s work in generative societies is a computational 

system technology. The design, development, and analysis of this document is a 

methodology to generate computational strategies for social science research. Multi-agent 

systems, both homogenous and heterogenous, can benefit from developing LAISR 

agents. Once created, behaviors can be interpreted, analyzed, and represented as 

strategies for the social scientist to use as a method of modeling and measuring theory. 

Starting with the first research question, “What methods can aid in the design, 

development, and analysis of hybrid ABM and reinforcement learning system in efforts 

to address challenges in ABM modeling?” In this section, I refer specifically to the 

portion of the agent that is using the deep reinforcement methods, the DRL-Agent. First, 

rational agents can exist in bounded conditions, i.e., states with limited understanding of 

the environment. These conditions have given rise to algorithms that have permitted us to 

draw relationships between Simon’s concept of bounded rationality and the field of 

reinforcement learning; a DRL-Agent learns and makes decisions while not having a full 

understanding of its domain (Abel, 2019). Thus, it is argued that DRL can act as a 

method for modeling bounded rational agents. The Partially Observable MDP (POMDP) 

agents use a partial understanding of the environment to generate the true nature of the 

world state.  The DRL-Agent, with its partially observable representation, must optimize 

actions based on the little it understands. Where rationality in human behavior is often 
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limited by our existing knowledge, DRL-Agents are subject to restrictions on their 

understanding of the modeled environment (Abel, 2019). A key term that is used for this 

type of constraint is computational rationality, which assigns boundedness by resource 

constraints. Lewis et al.’s work (2014) describes a conceptual Optimal Program Problem 

(OPP) with three attributes: environment, a resource-constrained machine, and a utility 

function. My work has some overlap with the concept of computational rationality yet 

frames things somewhat differently; namely, DRL-Agents are not computationally 

resource-constrained; rather, they are limited by what their input sensors observe. 

Additionally, the difference between my model and that of Lewis’ work is utility 

maximization. Lewis implied maximizing utility removes bounded rationality, which I 

offer is not the case. Utility maximization is a process for optimizing the decision process 

and is necessary for the model.  

The argument for DRL-Agent and human cognitive processing is that both 

humans and agents do not have perfect rationality (Simon, 1955), and herein lies the 

fundamental importance of the approach – if full rationality does not exist in human 

behavior, nor should it in the representation of the behavior in silico.  In the proposed 

model, Artificial Intelligence research provides some representation of learning and 

decision-making yet is still subject to realistic constraints on reasoning. The DRL-Agent 

empowers our ability to generate other forms of decision-making under realistic 

assumptions; these include the study of reinforcement learning (RL), a general problem 

construction in which agents must simultaneously learn about their environment while 

making good decisions in that environment. This type of boundedly rational, using 
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reward signals rather than specific behaviors, can help social science imagine generalized 

questions without highly specific implementations.  

8.1 Importance of this Work 

Certainly, when one observes the level of detail it may take to generate DRL-

Agents and resultant interpretations of their behavior, one may ask, is it worth it? After 

all, generating simple discrete agents with often complex and emergent results may be 

enough.  Simon (1969) discusses AI in relation to decision-making where human 

cognition is limited in its ability to comprehend and respond to a vast amount of data; 

machines may be able to solve problems by simply running millions or even billions of 

steps to determine potential strategies. This is why this work, even its early 

implementation, may become highly valuable as a tool in the community.  Here, we 

return to research question 2, “What AI-based research techniques can help to 

deconstruct behaviors of the proposed agent model into decision strategies that mimic 

attributes of human mental processing (i.e., ‘fast-and-frugal)?”  Interpretation modeling 

provides new and sometimes quite novel insights into behavior, and model interpretation 

methods such as SHAP and random forests can provide meaningful insights into the 

results of the DRL models.  Succinctly, if we can allow the agent to run its course, its 

strategy development may provide insight into the way the brain creates its own 

behaviors.  We may not be able to always create a perfect correlation between human 

decision-making and what the agent accomplishes, but that is not the point. The point is 

rather to allow the DRL-Agent to create its own strategies; sometimes, we may find a 

mapping to human decision-making, but sometimes we may also find new and interesting 
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strategies that could enhance our understanding of some environment or state space.  

Rather than creating our representation of a boundedly rational agent representation, the 

agent itself makes that determination.  

The heuristics and biases program made famous by Kahneman and Tversky 

(1972) examines rational choice and how it deviates from normal human behavior.  

 

 

Figure 41: Kahneman Systems Revisited 

 
 
 
For example, one may deduce that the DRL-Agent ’s learning process is close to human 

intuition (See System 1: Figure 41), where it can assemble behaviors, create decisions 

with minimal effort, and generalize with limited cognitive processing. DRL-Agents train 

over hundreds of thousands, even millions of iterations, much like the brain does when 

selecting its own optimal approach to problem-solving.  And like our own cognitive 

process, a DRL-Agent uses its knowledge to generalize over many situations. 

Kahnemanand Tversky (1972) state that human cognition relies on “some fast (in terms 

of time) and frugal (in terms of information acquisition and processing) heuristics” 

artificial agents in many ways, with limited knowledge, make their own ‘fast decisions.’ 

And with the model, we have tools that can aid in the decompositional behavior process. 
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These interpretation techniques, prevalent now in the AI community (i.e., SHAP and 

random forest interpretation models), provide glimpses into how social models in silico 

can be better understood. This is very important, where even precise problems are often 

very difficult to analyze (Fraenkel & Lichtenstein, 1981).  

8.2 Revisiting Social Science Theory 

When considering the relevance of the DRL-Agent model to social science 

theory, we must examine not only individual behaviors but that of groups of 

heterogeneous agents and how they cooperate, defect, or some middle strategy.  

Multiagent Reinforcement Learning algorithms (MARL) provide some ability to develop 

DRL-Agent behaviors but with new challenges in nonstationary policies (Papoudakis et 

al., 2019). Techniques to minimize the complexity of multi-agent learning using a 

“heuristic policy” (Bianchi, 2007) may help to advance the ability for multi-agent 

systems to learn together using DRL algorithms. For example, imagine an agent that is 

continuously refining its behavior by optimizing based on rewards, building new 

heuristics, then incorporating these heuristics into the new reward signal.  This process 

could continuously test generalized theories by creating an almost infinite set of potential 

strategies, and with enough time, one could build a fully dynamic set of agents that 

respond to almost constantly changing conditions.     

There are a few very key considerations in how these DRL methods may help us 

understand human mental processing.  Das (2006) stated, there are no suitable definitions 

for intelligence, although understanding human divergences from decision norms might 

prove informative in the design of algorithms.  Here, we can observe that heuristics and 
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biases from Kahneman and Tversky’s(2011) work can help us better understand how our 

cognitive processes may deviate from the models of rational choice.  We could imagine 

that the heuristically biased processes in the brain are simply the brain’s representation of 

a deep Q-neural network with the data it has available to it. Within the context of 

“ecological rationality,” Mata et al. (2006) state that simple heuristic strategies can work 

well in many natural environments, suggesting that human rationality, much like an agent 

deep neural network, is an adaptive fit between its capacity to generate consistent and 

semi-optimal decisions across multiple environments. Todd et al. (2016) noted that in 

ecological rationality, top-down learning starts with a set of principles, and heuristics are 

built within uncertain environments and can be enhanced by refining complex models.  

This is, in fact, clearly similar to the way a refined neural network model accomplishes 

its goals.  Gigerenzer & Goldstein (1996) also note heuristics are “ecologically rational” 

(capable of using existing information available within the environment) yet violate 

rationality norms.  In fact, the two researchers have developed their own computational 

models that are fast, frugal, simple to operate even though they are computationally 

limited (Das, 2006).   

But it is important to address the “how much is enough?” question as it relates to 

what a heuristic is in computational modeling. For example, DRL-Agent must straddle 

their domain knowledge where it is not so simple that it cannot produce a usable heuristic 

(under fitted) and one that is not generalizable enough to transfer knowledge into new 

domains (overfitted).   Horvitz (1987) notes the term bounded optimality seems to be the 
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right goal, where an agent is bounded-optimal if its model is a solution given a 

constrained optimization problem presented by its architecture and the task environment. 

8.2.1 Is the Heuristic a Neural Network Overfitting/Underfitting Problem? 

This research leads us to how the human brain’s non-rational behavior might be 

similar to what we see in a neural network. The brain’s neural network ‘under its’ in 

order to generalize for as many conditions as possible. In fact, we have survived not 

simply by our adaptability but rather our generalizability. Our brains must learn to act 

quickly and efficiently with minimal resources, and so does the DRL-Agent. If its life – 

or how it is rewarded - depends on how it selects its next decision and future decisions, it 

must be careful not to simply be precise. It must also be prepared to adapt to a multitude 

of conditions and make choices that are optimal for its survival.   

 

8.3 Future Work 

Methods that are discussed in this dissertation provide some new and meaningful 

insights into the future of our understanding of complex behaviors in the context of social 

science theory.  However, the work being presented has substantial room for growth. A 

few of the primary topics that are still underrepresented in this research are causality, 

temporal detail, and heterogeneous decomposability. First, the approaches that are being 

discussed related to model interpretation does not necessarily imply causality. 

Importantly, SHAP values do not identify causality.  The relationships presented in 

SHAP and random forest graphs are important to demonstrate an association, but for the 
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time being, that is all. However, the association is a very important first step towards 

uncovering causality. For example, observing general conditions where behaviors tend to 

occur can help to lay the foundation for deeper exploration of causality. 

Second, when this work began, research related to time-based interpretation was 

still in its bourgeoning stages. Earlier (see section 3.4.2), an AI technique called 

recurrent neural networks (RNN) was referenced as a way to model and analyze time 

series and equivalent data.  Currently, the DRL model considers time but only in a 

minimal context. For example, Age does not fluctuate; it only increases, so time-related to 

age is consistent and can be used to predict variables based on the SHAP model. The 

energy, on the other hand, fluctuates based on several other factors and cannot easily be 

associated with behaviors occurring over time. A more robust time-based interpretation 

technique may be important in future work. 

Third, behavior interpretation is still fairly coarse; specifically, it can be difficult 

to evaluate a set of strategies for agents who are of the same type yet act differently. Even 

if all the agents share a common neural network, this can still be a challenging DRL 

problem to overcome, given the converge of behaviors is unlikely. Luckily, local 

representations such as SHAP Summary Plot helps to identify large behavior 

distributions by showing how easy it is to predict features. The feature values identify 

how much impact each feature has on the model output and show the positive and 

negative relationships of the predictors with the target variable (see Figure 29). For 

example, we can use SHAP data to determine how relevant a particular action is to the 

model (feature value), and in doing so, we can generate a distribution of possible actions 
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that fall within the SHAP feature distribution. We can also use the SHAP data to generate 

a prioritized list of actions that influence a feature, and therefore can weigh the potential 

for an action to take place. But there is still much work to be done here. 

8.4 Applications of the Actor-Interpreter Model 

It is believed that the notion of allowing agents to develop behaviors and to 

observe conceptually how they can help us uncover strategies, behaviors, and insights 

entice our community for years to come. AI agents may exist to help us understand that 

we are no longer bound by our own cognition. Within the social science discipline, we 

can expand our ability to design social scenarios and observe how new and diverse 

behaviors emerge as DRL models can uncover novel ways to refine their understanding 

of environments. These agents can evaluate the domain space, then provide suggestions 

towards problem-solving. This is a uniquely important aspect of social science, where 

through traditional computational approaches, our agents are often pre-wired with 

discrete rules. The approach can enhance the research that spans modeling, real-time 

simulation, and training, as well as learning strategies using intelligent tutoring and 

remediation. Several new fields are emerging where the use of an Actor-Interpreter 

model can be of great use, where there may be rules and robust solutions for an agent (Vu 

et al., 2019).   

8.4.1 Modeling Agents in Gaming and Entertainment Environments 

Game technologies have begun to enhance mechanics through the use of 

reinforcement learning agents. Creating semi-intelligent non-playable game characters 
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through RL has supported game scalability and complexity (Juliani, 2018). ML-Agents, 

which is used in this dissertation, is an open-source platform providing tools for policy 

and off-policy learning. One would likely notice that the same dynamics generated in 

gaming environments can also be applied to other forms of entertainment, including VR 

experiences and movie special effects. Game testing can be enhanced through the design 

of DRL-Agents/Interpreter and examined through the proposed interpretation process. 

8.4.2 Wargaming and Decision Support 

Wargames are analytic games that simulate aspects of warfare at the tactical, 

operational, or strategic level. They are used to examine warfighting concepts, train and 

educate commanders and analysts, explore scenarios, and assess how to force planning 

and posture choices to affect campaign outcomes. Several examples have been developed 

and can execute various types of wargames, including scenario exercises, tabletop map 

exercises, games, and computer-supported exercises. For example, RAND (Linick et al., 

2020) developed Hegemony, a wargame designed to teach U.S. defense professionals 

how different strategies could affect key planning factors in the trade space at the 

intersection of force development, force management, force posture, and force 

employment.  The use of DRL-Agent/Interpretation offers ways of examining new 

strategies for wargaming and decision support professionals.  

8.4.3 Department of Defense (DoD) Training Systems 

The DoD is the development of modernized simulation technologies for training, 

which includes live, virtual, and constructive training exercises.   The approach to the 
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development of these complex exercises includes the demands of adaptive AI is 

constantly changing scenarios that exist in ambiguity and chaos.  For example, the DoD’s 

Synthetic Training Environment (STE) provides training as a service through immersive 

simulation and gaming technologies where AI (and reinforcement learning) can optimize 

human performance and support operational and training scenarios (Hubal, 2017).   

Generating dynamic training scenarios and examining DRL-Agent/Interpreter solutions 

can transform the way that training is accomplished for the next generation warfighter. 

8.4.4 Research: Inverse Generative Social Science (IGSS) 

Similar to the DRL-Agent approach, IGSS is not to build entire agent types, but 

rather, to encode rules, parameters, and possible mathematical principles, one would 

search the space for the most appropriate agent architectures. Vu and Epstein (2019) 

develop an IGSS approach using Genetic Programming, Decision Trees, Causal State 

Modeling, and Machine Learning and AI. Certainly, a bridge exists, which may lead to 

similar definitions, methods, and theoretical underpinnings. The use of the DRL-Agent 

and Interpreter can be an important addition to the IGSS community.  

----- 

This dissertation finishes with a short fictional narrative about a socially evolving 

agent named Darla. Although quite fantastical, it provides a guiding light to what may be 

possible when we think about the future of AI and behavioral attributes in the coming 

decades. Agents may themselves be part of either fictitious or non-fictitious narrative and 

must build their own decision processes to adapt and thrive in their surroundings.  The 

future is certainly exciting and left with great opportunities to explore. 
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Darla, as a young biomorph, was no larger than the size of a house cat. In a quiet corner of her playpen, she 
touched the follicles of her abrasive hair against everything within her reach. Her single lidless eye stared 
intently at each object she handled, sometimes for several minutes at a time, in what appeared to be a gentle 
meditative trance. Her experimentation was much like how a baby explores its world. It was mesmerizing to 
watch. To view a biomorph interacts with its surroundings was like watching a work of art paint itself. No 
two biomorphs were alike, often not even remotely alike. Some were large string-like beings that wrapped 
around their observations like a snake eating its prey. Others were shapeless beings that moved through the 
environment like purposeful gelatin. Still, other biomorphs resembled the form and function of multi-legged 
creatures, akin to small insects. 
 
Darla’s behaviors were often difficult to fathom. Unlike the gates, walks, crawls, and undulations we are 
accustomed to seeing in earth creatures, biomorphs were highly experimental in shape and mobility. It was 
not unusual to see a creature use two or three large protrusions scrape against the ground while smaller 
foot-like projections would push from behind. Sometimes a biomorph could move in circles or poke at the 
ground for hours on end, demonstrating no logical reason for its behavior. Other times, after days of 
seemingly random movements, an entity would suddenly stop and begin an exquisite orchestration of 
movement. She was now roughly 4.5 billion trillion episodes old, or more specifically, 123 super-epics. 
Unlike typical sentient life, it did not make much sense to measure age by cycles around the sun. The 
biomorph had a distinct advantage as compared to earth organisms – it did not need to live a lifetime to 
grow and evolve. Where, for example, it can take 100,000 years before a mutation in the human gene pool 
to become an adaptive trait, biomorphs were able to learn, evolve, and re-design themselves in a picosecond. 
 
The skin that surrounded Darla had a soft and wool-like attribution. Although it appeared to be fibrous in 
texture, her skin was actually a dense array of micro-cilia that that were in constant motion, often too small 
for the eye to observe unless under a microscope. However, the skin was highly advanced, allowing it to work 
in conjunction with other cilia to create what appeared to be synthetic appendages. It took a few days for her 
body to reach a stable state. She would observe and experiment with its attributes, often holding on to it for 
several days, then would begin a new transformation. At the moment, she appeared happy with cilia tentacles 
growing from the top of her head. Her current experimentation did not include a need for mobility, and hence 
legs and arms were not well-developed. All the while, the world seemed to be a beautiful place for Darla to 
explore.  
 
It was difficult to say whether her experience was one of joy, inquisitiveness, or simple observation, but Darla 
never tired from the endless exploration of her world. 
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APPENDIX 

Introduction: Discussion of Coding Process 

DRL-Agent Code Links 

The first two code bases are in reference to the homogeneous and heterogeneous 

reinforcement learning systems.  

 

Reference Section Code Link 
https://github.com/paulsimvient/Homoge
neous-MultiAgent 
 
 

Homogeneous Multi-Agent Reinforcement 
Learning 

https://github.com/paulsimvient/Sheep-
Wolf 
 

Heterogeneous Multi-Agent Reinforcement 
Learning 

 

Interpretation Models 

The following section presents work that was completed to achieve agent 

interpretability using Random Forest Classification and SHAP Interpretation. Code was 

developed in Python 3.7 and delivered using Jupyter Notebooks.  

 

Reference Section Code Link Description 
 
Interpreting the 
Heterogenous LAISR 
Model 

 
https://github.com/paulsimvient/Inte
rpretationCode 
 

Section contains both random 
forest classification and 
SHAP value interpretation 
methods 
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Explaining SHAP Values as Individual Features 

For the reader, it may be somewhat difficult to decipher the SHAP graph. 

Therefore, some examples are provided to attempt to explain predicted Activity with 

SHAP Values. First, the activity Move as a target is selected. Predictions are explained 

with the SHAP values, and a Summary Plot are developed for one target pointer activity. 

Activity 0 (Idle): 

According to the model probability of this activity is 0.0012, which is low. The 

graph is a decomposition of a single point in the Summary Plot. 

 

 

 

Figure 42: Idle Activity Individual Feature 

Age has the highest positive SHAP value 1.5, which is increases probability. 

Energy and Size also have positive values, but values are low, so they are not increasing 
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the probability much higher. Number of Plants, herbivores, and Plant Energy (plants_e) 

have higher negative SHAP values, which are decreasing probability. 

Activity One (Move): 

According to the model probability of the Move activity is 0.9942which is very 

high, and also, the target activity is one. The summary plot is as follows 

 

 

Figure 43: Move Activity Individual Feature 

 

Age has 3.0 shape value, and Energy has 2.3 value, which pushes probability very 

high, and only plants have a lower negative value. So that is why it has a high probability 

for this activity. 
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Activity 2 (Forage): 

According to the model, the probability of this activity is 0.004.

 

Figure 44: ForageActivity Individual Feature 

 

Age has a very high negative SHAP value, which is decreasing the probability, 

and energy is also decreasing the probability. Number of Plants (plants), Number of 

Herbivores (herbivores), and Herbivore Energy (herbivores_e) is increasing probability.  



139  

 
139 

Activity 3 (Eat): 

 

Figure 45: Eat Activity Individual Feature 

 

All the prediction variables are decreasing probability, and only plants_e is 

increasing probability. But the overall impact is negative, so the probability of this 

Activity is zero. Overall, the Age factor is the most important feature in the prediction, age 

is positively correlated with eating activity, and middle-aged stays idle at most among all 

ages. Energy is the most non-trending feature, which sits at generally the same position, 

whereas in Forage activity with high energy, the probability is lowest. 

Examining Feature Importance 

After the initial model training, certain important features can be identified 

according to the Light Gradient Boosting Machine.  
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Figure 46: Light Gradient Boosting Machine Results (Gain vs. Split) 

 

Figure 46 displays two graphs: gain and split. The gain is the contribution of the 

equivalent feature in the model computed by each feature’s influence in each tree model. 

The split is the number of times the feature appears within the model, i.e., the number of 

times each feature was used when creating the trees. Very succinctly, one may notice that 

the gain and split models are not equivalent. Given that, accuracy is determined when 

generating shap values 
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