

A HYBRID MACHINE LEARNING AND AGENT-BASED MODELING
APPROACH TO EXAMINE DECISION-MAKING HEURISTICS

By

Paul Cummings
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University
in Partial Fulfillment of

The Requirements for the Degree
of

Doctor of Philosophy
Computational Social Science

Committee:

________________________________ Dr. Hamdi Kavak, Committee Chair

________________________________ Dr. Andrew Crooks, Committee Member

________________________________ Dr. William Kennedy, Committee Member

________________________________ Dr. Michael Eagle, Committee Member

________________________________ Dr. Jason Kinser, Department Chair

________________________________ Dr. Donna M. Fox, Associate Dean,

Office of Student Affairs & Special
Programs, College of Science

________________________________ Dr. Fernando Miralles-Wilhelm, Dean,
College of Science

Date:____________________________ Fall Semester 2020

 George Mason University
 Fairfax, VA

A Hybrid Machine Learning and Agent-Based Modeling Approach to Examine
Decision-Making Heuristics

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Paul Cummings
Paul Cummings

Master of Arts in Interdisciplinary Studies
George Mason University, 2018

Bachelor of Arts
Boston University, 1992

Director: Hamdi Kavak, Professor
Department of Computational and Data Sciences

Fall Semester 2020
George Mason University

Fairfax, VA

ii

ii

Copyright 2020Paul Cummings

All Rights Reserved

iii

iii

DEDICATION

This is dedicated to my loving family Naomi, Kaeya, Mia, and Hero Dogs

Captain.

He's such a good boy.

iv

iv

ACKNOWLEDGEMENTS

I would like to thank my wife, Naomi, my children Kaeya and Mia, and my
loving parents Anne and Jim Cummings, who always guided my educational success. 'I'd
like to thank my advisor Dr. Hamdi Kavak and Dr. Andrew Crooks that stood by me in
my concept, as well as my other esteemed committee members Dr. Bill Kennedy and Dr.
Michael Eagle. Finally, 'I'd like to thank those research scientists who came before me, as
I stand on the brilliant work of those before me.

v

v

TABLE OF CONTENTS

Page
 Abstract….. xix
List of Tables ... x
List of Figures ... xii
List of Abbreviations and Symbols ... xv
Definitions .. xvii
1 Introduction .. 1

1.1 Challenges with ABMs .. 2
1.1.1 Challenge 1: ABMs are limited in their ability to find optimal

strategies 2
1.1.2 Challenge 2: ABMs are not easily interpreted 2
1.1.3 Challenge 3: ABMs strategies are not decomposable to simple

heuristics 2
1.2 An Example ABM to Illustrate the Challenges: The Bat-Frog Predation

Model 3
1.2.1 Complex Bat-Frog Model .. 7

1.3 Research Questions ... 9
1.4 Methodology and Dissertation Organization ... 12

1.4.1 Dissertation Chapters ... 13
2 Background ... 15

2.1 ABMs in the Social Science Community .. 15
2.2 Rationality ... 16

2.2.1 Bounded Rationality Decision-Making ... 17
2.2.2 Representing Bounded Rationality .. 17
2.2.3 Bounded Rationality: AI .. 20

2.3 Utility ... 24
2.3.1 Maximizing Utility: Decision Theory .. 24
2.3.2 Maximizing Utility: AI .. 25

2.4 Interpretation ... 26
2.4.1 Interpretation: Decision Theory ... 26
2.4.2 Interpretation: AI .. 27

2.5 Heuristics ... 27

vi

vi

2.5.1 Heuristics: Decision Theory ... 28
2.5.2 Heuristics: AI ... 29

2.6 Summary .. 31
3 Building Blocks of the DRL-Agentand Explainable Artificial Intelligence 32

Definition: DRL-Agent .. 32
3.1 Artificial Intelligence ... 32

3.1.1 Machine Learning .. 33
3.1.2 Supervised Learning Methods ... 33
3.1.3 Unsupervised Learning .. 34
3.1.4 Reinforcement Learning (RL) .. 35

3.2 The Policy .. 38
3.2.2 Model-Free vs. Model-Based Reinforcement Learning 40
3.2.3 Model-Free Methods: Off-Policy and On-Policy Methods of RL 41
3.2.4 Off-Policy Methods .. 41
3.2.5 On-Policy-Based Methods .. 42

3.3 Deep Reinforcement Learning (DRL) ... 44
3.4 Background in Explainable Artificial Intelligence (XAI) 45

3.4.1 IF-THEN rules: .. 45
3.4.2 Time-Based Behavior Evaluation: Recurrent Neural Network (RNN)

 46
3.4.3 Sequence Prediction ... 47
3.4.4 DeepLIFT ... 47
3.4.5 Marginal Contribution Algorithms: ... 47

4 Developing the Learning-based Actor-Interpreter State Representation
Model 50

4.1 Introduction ... 50
4.2 The Actor – A Deep Reinforcement Learning Agent 51
4.3 The Interpreter ... 51
4.4 State Representation: Developing Strategies ... 52

4.5 Developing, Running, and Analyzing a LAISR Model 53
4.6 STEP 1: Select the Actor Model, Define Behaviors and Rewards 54
4.7 STEP 1a: Selecting Reward Signals .. 54

4.7.1 Parsimony: Reducing Reward Signal Complexity 55
4.7.1 Reward Verification ... 56
4.7.2 Reward Signal Parameter Sensitivity Analysis (RS-PSA): 57

4.8 The Interpreter ... 58
4.9 STEP 2: Selecting the Interpreter .. 58
4.10 STEP 3: Selecting the Description State Representation 59

vii

vii

4.10.1 State Representation Level of Decomposition 59
4.11 STEP 4: Selecting a DRL Framework ... 60

4.11.1 Unity Platform .. 61
4.11.2 Arcade Learning Environment ... 61
4.11.3 DeepMind Lab ... 61
4.11.4 Project Malmo .. 61
4.11.5 VizDoom: ... 62

4.12 STEP 5: Verification and Validation Process 62
4.12.1 Verifying Code Process ... 63
4.12.2 Model Validation ... 63

4.13 Challenges Verification and Validation Challenges of ABMs 64
4.13.1 The “Curse of Dimensionality” .. 64
4.13.2 Human-Intervention Bias ... 65
4.13.3 Validating Behaviors .. 66

5 LAISR Experiments: Homogeneous Models ... 67
5.1 Experiment 1: Schelling Experiment ... 67
5.2 Schelling LAISR Model Development ... 69

5.3 Results and Interpretation: DRL Schelling Experiment 71
5.4 Experiment 2: Demonstrating LAISR with General Interpretability 72
5.5 Tactical Warfare Concept .. 73

5.5.1 Unity Platform Selection .. 75
5.6 Actor Agent Design ... 76
5.7 Actor Results ... 77
5.8 Interpreter Agent Results ... 80
5.9 Summary .. 82

6 LAISR Experiments: HeterogeneousModel ... 84
6.1 Multi-Agent Systems (MAS) in Reinforcement Learning 84

6.1.1 Problems of Nonstationarity .. 85
6.1.2 Example: Bat/Frog System Revisited .. 85
6.1.3 Multi-Agent Markov games ... 87

6.2 Experiment 2: The Heterogeneous Multi-Agent Reinforcement
Learning LAISR Model ... 87

6.3 Adversarial Self Play ... 89
6.4 Reward Signals and Parameters .. 90
6.5 Results: Heterogeneous Agent Model ... 92

7 LAISR Experiments: Advanced Explainable Artificial Intelligence and State
Representation ... 94

viii

viii

7.1 Interpreting the Heterogenous LAISR Model 94
7.2 Select Algorithms: Partial Dependency Plots (PDP) and SHAP 95

7.3 Display Descriptive Statistics .. 95
7.4 Embark on AI Interpretation Techniques .. 96

7.4.1 Partial Dependence Plot Analysis .. 97
7.4.2 Generate Partial Dependency Plot Prediction Variables 97
7.4.3 Partial Dependency Plot Data Preparation ... 98

7.5 Partial Dependency Plot (PDP) Analysis .. 98
7.5.1 Activity 0: Idle ... 99
7.5.2 Activity 1: Move .. 100
7.5.3 Activity 2: Forage .. 101
7.5.4 Activity 3: Eat .. 102

7.6 Partial Dependence Plot Results .. 103
7.7 SHAP Interpretation .. 104

7.7.1 Training the SHAP Model ... 105
7.8 SHAP Global Interpretability (Variable Importance) 106
7.9 SHAP Local Interpretability (Variable Importance) 107

7.9.1 Explaining and Plotting Predictors and target Variables 107
7.9.2 Activity 0: Idle Summary Plot ... 109
7.9.3 Activity 0 (Idle): Simplified plot ... 110
7.9.4 Activity 1 (Move) Summary Plot ... 111
7.9.5 Activity 1 (Move): Simplified plot .. 112
7.9.6 Activity 2 (Forage): Summary Plot .. 113
7.9.7 Activity 2 (Forage): Simplified plot ... 113
7.9.8 Activity 3 (Eat): Summary Plot ... 115
7.9.9 Activity 3 (Eat): Simplified Plot .. 116

7.10 Developing the State Representation: Finite State Machine 117

7.11 Developing a Conditional Map ... 117
7.11.1 Translating Strategies into Cognitive Heuristics 121

8 Discussion and Future Work .. 123
8.1 Importance of this Work .. 125
8.2 Revisiting Social Science Theory .. 127

8.2.1 Is the Heuristic a Neural Network Overfitting/Underfitting Problem?
 129

8.3 Future Work ... 129
8.4 Applications of the Actor-Interpreter Model 131

8.4.1 Modeling Agents in Gaming and Entertainment Environments 131
8.4.2 Wargaming and Decision Support ... 132

ix

ix

8.4.3 Department of Defense (DoD) Training Systems 132
8.4.4 Research: Inverse Generative Social Science (IGSS) 133

APPENDIX ... 135
Introduction: Discussion of Coding Process .. 135

DRL-Agent Code Links ... 135
Interpretation Models ... 135

Explaining SHAP Values as Individual Features .. 136
Activity 0 (Idle): ... 136
Activity One (Move): ... 137
Activity 2 (Forage): .. 138
Activity 3 (Eat): ... 139
Examining Feature Importance .. 139

References ... 141

x

x

LIST OF TABLES

Table Page

Table 1: Bounded Rationality Representations ... 17

Table 2: AI and Bounded Rationality (Source: Adapted from Russell and Norvig

(2010), Figure 1.1, p.2.) ... 21

Table 3: Expected Utility Definitions and Measurement 24

Table 4: Interpretation Definitions and Measurement ... 26

Table 5: Heuristics Definitions and Measurement .. 27

Table 6: Janssen Reward Structure (Source: Janssen, 2012) 55

Table 7: Reward Signal and Signal Distribution ... 57

Table 8: Methods of Framing State Level Decomposition (Abel, 2019) 59

Table 9: NetLogo Schelling Model Parameters .. 67

Table 10: LAISR Methodology for Schelling Reinforcement Learning Model ... 69

Table 11: Reward Table for Schelling Model (Source: Sert et al. (2020)) 71

Table 12: LAISR Methodology for Homogeneous Multi-Agent Reinforcement

Learning (Tactical Warfare) .. 73

Table 13: Code Link for LAISR Methodology (Tactical Warfare) 73

Table 14: AC3 (P, A, R) definitions and rewards ... 77

Table 15: Actor agent results: Cumulative reward .. 79

Table 16: CSV Format for Homogenous Agent Skirmish 81

xi

xi

Table 17: Actor-Interpreter dominant use of strategy ... 81

Table 18: LAISR Methodology for Heterogeneous Multi-Agent Reinforcement

Learning ... 88

Table 19: Code Link for Heterogeneous Multi-Agent Reinforcement Learning .. 89

Table 20: Carnivore Herbivore Reward Signals ... 90

Table 21: Agent Parameters (Herbivore/Carnivore) ... 91

Table 22: PD and SHAP Code Link .. 96

Table 23: Data Collected Within Simulation .. 97

Table 24: Reading the Summary Plot .. 108

Table 25: Ranges of Age and Energy .. 120

Table 26: Conditional States Based on Interpretative AI Model 120

xii

xii

LIST OF FIGURES

Figure Page

Figure 1: Frog Preferences (a) and Bat Preferences (b) .. 6

Figure 2: Bat Behavior Relative to Frog ... 7

Figure 3: Agent Takes Actions in a State and is Rewarded 9

Figure 4: Methodology .. 12

Figure 5: Four Model Research Areas and Decision Theory and AI

Representation ... 16

Figure 6: Kahneman Architecture of Cognition: Source (Kahneman, 2003) 22

Figure 7: Fast-and-frugal Tree (Source: Gigerenzer & Gaissmaier, 2011) and

Finite State Representation .. 31

Figure 8: Reinforcement Learning Taxonomy .. 35

Figure 9: Reinforcement Learning Cycle (Source: Recreated Sutton and Barto,

1998) .. 37

Figure 10: Actor-Critic (Source: Recreated Sutton and Barto, 1998) 43

Figure 11: LAISR Model (Source: Cummings and Crooks, 2020) 51

Figure 12: LAISR Design, Development, and Analysis Methodology 53

Figure 13: Considerations When Decomposing States ... 60

Figure 14: NetLogo Schelling Model (Source: Wilensky, 1997) 68

xiii

xiii

Figure 15: Results of DRL Schelling Experiment (Source, Sert et al. 2020) 72

Figure 16: LAISR Simulation Example .. 75

Figure 17: Heat map representations of actor agent location in a metered grid 80

Figure 18: Actor Finite State Machine .. 82

Figure 19: Wolf Sheep Model ... 92

Figure 20: TensorFlow Output (Red) Carnivore (Blue) .. 92

Figure 21: Distribution of Activities ... 96

Figure 22: PDPs of Activity 0 (Idle) probability based on influencing variables . 99

Figure 23: PDPs of Activity 1 (Move) probability based on influencing variables

 ... 100

Figure 24: PDPs of Activity 2 (Forage) probability based on influencing variables

 ... 101

Figure 25: PDPs of Activity 3 (Eat) probability based on influencing variables 102

Figure 26: Energy (x-axis) as compared to Activity Partial Dependency (y-axis) to

4 Activities ... 103

Figure 27 Age (x-axis) as compared to Activity Partial Dependency (y-axis) to 4

Activities .. 104

Figure 28: Global Interpretability Graph (Variable Importance) 106

Figure 29: Example Summary Plot ... 107

Figure 30: Activity 0 (idle) Summary Plot .. 109

Figure 31: Activity 0 (idle) Simplified Plot .. 110

Figure 32: Activity 1 (Move): Summary Plot ... 111

xiv

xiv

Figure 33: Activity 1 simplified plot ... 112

Figure 34: Activity 2 (Forage) Summary Plot ... 113

Figure 35: Activity 2 (Forage): Simplified Plot .. 114

Figure 36: Activity 3 (Eat) Summary Plot .. 115

Figure 37: Conditional Map .. 117

Figure 38: Energy Partial Dependency Plot .. 118

Figure 39: Age Partial Dependency Plot ... 119

Figure 40: Bridging Cognitive Heuristics and Explainable AI 121

Figure 41: Kahneman Systems Revisited .. 126

Figure 42: Idle Activity Individual Feature ... 136

Figure 43: Move Activity Individual Feature .. 137

Figure 44: Forage Activity Individual Feature .. 138

Figure 45: Eat Activity Individual Feature .. 139

Figure 46: Light Gradient Boosting Machine Results (Gain vs. Split) 140

xv

xv

LIST OF ABBREVIATIONS AND SYMBOLS

Advantage Actor-Critic ... A2C

Artificial Neural Networks ... ANN

Asynchronous Advantage Actor-Critic ... A3C

Artificial Intelligence ... AI

Agent-Based Model ... ABM

Computer Generated Forces .. CGF

Cross-Validation .. CV

Deep Learning Important FeaTures .. DeepLIFT

Deep Q-Network .. DQN

Deep Reinforcement Learning .. DRL

Finite State Machine .. FSM

Learning-based Actor-Interpreter State Representation LAISR

Local Interpretable Model-agnostic Explanation .. LIME

Long Short-Term Memory ... LSTM

Machine Learning .. ML

Multi-Agent Informational Learning Processes ... MAILP

Multi-Agent Reinforcement Learning .. MARL

Multi-Agent Systems .. MAS

Markov Decision Process ... MDP

Partial Dependency Plot ... PDP

Partially Observable Markov Decision Process .. POMDP

Policy Proximal Optimization .. PPO

Recurrent Neural Network ... RNN

xvi

xvi

Shapley Additive exPlanations .. SHAP

Explainable Artificial Intelligence ... XAI

xvii

xvii

DEFINITIONS

Given many of the terms and definitions related to agent modeling and machine

learning may have different connotations, this section begins with a set of definitions that

articulate what is meant by a particular term.

Agent Based Model (ABM): A computational model for representing and studying a

social system consisting of autonomous, interacting, goal-oriented, bounded-rational set

of actors that use a given rule set and are situated in an environment. An ABM consists of

three main components: agents, rules, and environments where agents are situated

(Cioffi-Revilla, 2014).

Reinforcement Learning (RL): The term reinforcement learning describes a

dynamically learning, trial and error method to maximize the outcome, while deep

reinforcement learning (DRL) is learning from existing knowledge and applying it to a

new data set (Williams, 1987).

Bounded Rationality: A concept that describes decision-making and planning under

resource limitations, which is an adaptation strategy for coping with our innate lack of

perfect rationality. In other words, social institutions are causally explained by Bounded

Rationality (Simon, 1957b).

xviii

xviii

Bounded Optimality: The concept refers to algorithms that maximize utility where the

optimal solution is constrained by its technology architecture, computing power, and the

task environment (Horvitz, 1988).

Emergent Behavior: Emergent behavior is a type of global behavior that arises from

many agents interacting in a system, but is not attributable to any particular agent

(Privosnik, 2002)

Heuristic: A heuristic is a cognitive strategy that is composed of building blocks,

typically three: search rules that specify where to look for information, stopping rules that

specify when to end search, and decision rules that specify how to make a final decision.

Fast-and-frugal Heuristics: A simple, task-specific decision strategies that are part of a

decision maker’s repertoire of cognitive strategies for solving judgment and decision

tasks (Gigerenzer and Todd, 1999).

Heuristic vs. Strategy: The term heuristic and strategy can be used somewhat

interchangeably, where heuristics are precisely defined as strategies derived from

previous experiences with similar problems.

Satisfice: To be satisfied with a minimum or merely satisfactory level of performance,

profitability, etc., rather than a maximum or optimum level (Simon, 1956).

LAISR Model: Term is used when referencing both Actor (deep reinforcement learning)

and Interpreter (AI interpretation methods). See Chapter 3.

DRL-Agent: Term referring only to the deep reinforcement learning agent

xix

xix

ABSTRACT

A HYBRID MACHINE LEARNING AND AGENT-BASED MODELING
APPROACH TO EXAMINE DECISION-MAKING HEURISTICS

PAUL CUMMINGS, PhD

George Mason University, 2020

Dissertation Director: Hamdi Kavak

Agent-Based Models (ABMs) have become more widespread over the last two decades

allowing researchers to explore complex systems composed of heterogeneous entities.

Although ABMs have proven effective for generating simple rules over homogenous and

heterogeneous agent types to observe emergent behaviors, several challenges exist. One,

typical ABMs are limited in the representation of cognition and learning to maximize

their actions based on current (and future) rewards of being in a particular state. Two,

ABMs are not designed to produce their own behaviors that can be interpreted by the

designer. Although agents may act upon code generated by the model designer, their

local and global responses are not easily interpretable. Additionally, ABMs do not

decompose behaviors into information rooted in cognitive processing, specifically

satisficing or fast-and-frugal heuristics. To address these challenges, this dissertation

presents a model and methodology called the Learning-based Actor-Interpreter State

Representation (LAISR), where agents use Deep Reinforcement Learning (DRL) to

xx

xx

generate strategies to maximize for current and future states. Due to the agent’s behavior

representation as a deep neural network (DNN), explainable artificial interpretation

(XAI) methods are used to decompose DNN features into simple but satisficing strategies

(heuristics). The results of this work demonstrate an approach that bridges machine

learning with that of the social sciences where agents can build their own optimal and

boundedly rational strategies. This methodology is demonstrated across several

homogeneous and heterogeneous agent-based models. The implications of this work

demonstrate significant steps towards how machine learning-enhanced ABMs can be

used to develop novel and optimal decision strategies, enhance human behavior

modeling, and provide a bridge between social science and artificial intelligence research.

1

1

1 INTRODUCTION

Agent-Based Models (ABMs) have grown in their application over the last two

decades partly because such a style of the model can represent complex systems with

minimal knowledge of parameter values or without fully knowing the optimal parameter

states to describe the real-world environment (Li et al., 2013). Not only do ABMs allow

us to study complex systems, but they also provide an intuitive and realistic description

of the behavior of such systems. Agent-based modeling and simulation platforms offer

architectures of varying complexity for the agents, where reactive agents are very

simplistic, reacting to environmental stimuli often without any long-term reasoning;

finite-state machines require the scripting of all of the possible states of the agents and

the corresponding behaviors; cognitive agents offer a more flexible description of

behaviors in terms of goals and plans (Kennedy, 2012). Agent-based modeling has

proven itself invaluable to the social science community, including work in conflict

(Epstein, 2006; Bhavnani and Miodownik, 2009), segregation (Schelling, 1971; Bruch

and Mare, 2006), evolutionary biology (Holland, 1992; Nowak, 2006), and ecology

(DeAngelis and Mooij, 2005; Heckbert et al., 2010). Often cognitive theories are

difficult to address from an agent-based modeling perspective; it is challenging to ensure

they are calibrated, generated, and accurately evaluated in reference to a real-world

system (Cioffi-Revilla, 2014).

2

2

1.1 Challenges with ABMs

There are three main challenges which this dissertation addresses in reference to

modeling rationality in ABMs.

1.1.1 Challenge 1: ABMs are limited in their ability to find optimal strategies

By their design, ABM models are limited in their abilities as information

processors and are boundedly rational (Simon, 1957b). ABMs act in accordance with a

set of simple variables and parameters given by the modeler and make decisions that are

primarily scripted or coded. Notably, they are not able to learn strategies on their own.

Ideally, agents learn to maximize their ability to select actions based on current (and

future) rewards of being in a particular state.

1.1.2 Challenge 2: ABMs are not easily interpreted

ABMs are not designed to produce their own behaviors that can be interpreted by

the designer. Although agents may take action based on code generated by the model

designer, their behaviors are often difficult to analyze. Additionally, given agents act

within complex systems, often producing emergent properties, the process of interpreting

agent behaviors can be even more challenging.

1.1.3 Challenge 3: ABMs strategies are not decomposable to simple heuristics

 Given the social science community’s interest in modeling decision processes,

ideally, we would like to be able to provide techniques that mimic human cognitive

processes, i.e., quick decisions, particularly when working with complex data. Although

3

3

these ‘heuristics’ made may not necessarily be optimal, they can aid our understanding of

how humans acquire and employ decision strategies.

1.2 An Example ABM to Illustrate the Challenges: The Bat-Frog Predation

Model

In this example, two distinct agent types, the bat (predator) and frog (prey), must

interpret and respond to their environment in order to survive. Here are the basic rules:

• The frog would like to mate but must be careful not to be eaten by a bat.

• The frog can only mate if it calls out to a mate, so it must be careful not to

give itself up.

• The bat, on the other hand, can hear mating calls but only at specific

frequencies and when it is awake (primarily at night).

• The bat must be careful not to eat all the frogs; otherwise, there is no

mating for its future meals.

In pseudo programming, one might write frog and bat programming that would do

the following:

Frog Model: The frog selects a list of frequencies to sing to and selects a set of times it

speaks to mating frogs. If it sees a bat, stop singing and choose an escape behavior. If

male, sing to the mate, and if female, listen for mating call, go to mate.

def frog ():

 #select low and high frequencies

4

4

var song frequency = list {low frequency, high frequency}

#select a start and end time

var time activity = list {start time, end time}

#update function

def Update ()

#take actions if seen other predators or prays

If {bat-seen}

[stop-singing, hide, jump in the river, move quickly left and right,

etc].

If {mate-seen}

[if male->sing to mate; if female (and hear singing) -> go to mate]

Bat Model: The bat selects a list of frequencies to listen to and selects a set of times it

listens for mating frogs. If it hears a frog, fly to it and eat it. Randomly choose not to eat

the frog in order to ensure they can procreate.

def bat ():

var hear song frequency = list {low frequency, high frequency}

var time activity = list {start time, end time}

5

5

#update function

def Update ()

If (hear song frequency == frog frequency)

{fly to frog; eat frog}

Random (1.0) < .2 {leave frogs to procreate}

In this pseudo-code example, the Bat-Frog model designer may generate a set of

parameters that could be tested through a parameter sweep and examine how each

predator and prey may react in the environment.

6

6

Figure 1: Frog Preferences (a) and Bat Preferences (b)

After running the model several times, Figure 1 (a) illustrates that the frog may

have a preference to never overlap with bat hunting in order to maximize its survival. On

the other hand, in Figure 1 (b), the bat would choose to overlap sometimes with the frog

in order to eat but would still leave enough frogs for future meals. From here, the

observer might deduce the following strategy:

• Bat: eat but don't eat everything

• Bat: eat when frogs are out

• Frog: stay hidden unless you need to eat

(

a)

(

b)

7

7

• Frog: procreate

1.2.1 Complex Bat-Frog Model

The complexity of the problem shall now be enhanced. Let's assume that frogs

mate if the female frog can hear the male frog sing at a certain frequency where the sonic

frequency of calls allows mate recognition and generally matches the female tympanic

range (Ryan, 1988). Additionally, the bat can hear certain frequencies, and the frog must

continually update its song frequencies in order to not get spotted by the bat.

Figure 2: Bat Behavior Relative to Frog

8

8

In Figure 2, the bat must learn to adapt its hearing to recognize frog frequencies at

certain times of the day. The frog, in turn, must modulate its frequencies so it may

survive and mate. As one can imagine, the set of conditions and variables can get

particularly challenging to determine as the number of parameters increases. In the

model, the conditions are at state 𝑠 of the environment at time 𝑡; the bat must determine

the action (song frequency 𝑓	and hour of interaction𝑡) of the frog. The frog may select to

continuously update its frequency modulation every few days to keep the bat guessing its

whereabouts, and with this, the bat-frog model gets even more complex. In the simple

bat-frog example, agents are bestowed behaviors coded in advance by the modeler (Sen,

1999). But for a more dynamic set of conditions as in the complex example, behaviors

must be learned such that actions are taken to achieve maximum rewards for making a

decision in a particular state. How does an agent learn such a process? Let us refer back

to the challenges discussed in section 1.1.

Imagine that instead of generating a set of specific actions, we can endow each

agent with reward signals that the agents must strive for to achieve their respective goals.

If the agent takes an action 𝐴 at state 𝑆 and is given a reward 𝑅 for being in that state,

then over time, we can develop a set of optimal action-state pairs which lead to the

highest reward (Sutton and Barto, 1998).

9

9

Figure 3: Agent Takes Actions in a State and is Rewarded

This learning strategy imbues agents with a type of continuous updating and

refining its approach to optimizing actions within its environment. The continuous self-

governing learning process also removes a considerable amount of coding for the model

developer (i.e., it is up to the agent to discover competent behavior), and eventually, the

agent learns to select appropriate actions based on the ability to maximize its rewards in a

particular state.

In the example, imagine that now that the agent has generated its behaviors

through utility maximization, we can deconstruct its behaviors (preferably through

explainable artificial intelligence methods) into sets of actions taken given specific

conditions. These features can be generated into a set of strategies (heuristics) used to

describe the behavior of the agent.

1.3 Research Questions

RQ 1: What methods can aid in the design, development, and analysis of hybrid

ABM and reinforcement learning system in efforts to address challenges in ABM

modeling?

10

10

This research question addresses the importance of how agents could learn

independently to build their own learned strategies using deep reinforcement learning

(DRL) techniques. In classical ABM design, agents are built with discrete rules and then

self-organize into systems that perform tasks and potentially generate emergent properties

(Hutchinson and Gigerenzer, 2005). DRL models, on the other hand, are not designed

with discrete rules; these rules must rather be learned through deep reinforcement

learning mathematical principles. But, certainly, we do not want to throw the baby out

with the bathwater. ABMs have some very important characteristics, such as allowing us

to generate simple rules over homogenous and/or heterogeneous agent types and observe

emergent behavioral changes. ABMs are also fairly easy to decipher at their fundamental

level. It is therefore important to consider a research question that includes the values of

both traditional ABMs and features of DRL that can aid in the enhancement of the

proposed research question.

RQ 2: What AI-based research techniques can help to deconstruct behaviors of

the proposed agent model into decision strategies?

If RQ 1’s goal is to use deep reinforcement learning methods to build optimal

policies for each agent, DRL models must also be deconstructed. Unfortunately, DRL

agents use artificial neural networks (ANN) to build their internal representation of the

environment, which are challenging to decipher due to the “black box” nature of these

structures (Kamruzzaman et al., 2010)). Explainable AI (XAI) techniques provide some

support in our understanding of the ANN. However, a more sophisticated process needs

11

11

to be developed to further decompose XAI data in order to uncover specific strategies

generated by the DRL agent. This process will help us develop a more precise equivalent

to the Hutchinson et al. (2005) and Todd & Gigerenzer (1999) cognitive heuristic.

Based on these research questions, this dissertation presents a novel approach to

designing and developing a formal ABM and machine learning hybrid model called the

Learning-based Actor-Interpreter State Representation (LAISR). The model is tested

within the bounds of computational social sciences theory to include Schelling's model,

homogeneous and heterogeneous model design, and ultimately an analytical method to

deconstruct its behaviors into strategies. The design, development, and analysis of the

approach are discussed over the course of the following chapters.

12

12

1.4 Methodology and Dissertation Organization

Figure 4: Methodology

The following methodology provides an overarching view of the procedures used

in this dissertation. Across the top, from left to right, there are six development sections

in this dissertation: An initial set of research questions are gathered based on gaps related

to social ABM design challenges. From here, a research design plan was generated to

include the design of the LAISR model. For each portion of the LAISR model

(Homogeneous Actor 1, Homogeneous Actor 2, Interpreter, State Descriptor), an

Analysis, Design, Build & Test, Evaluate, and Report process was followed. Steps were

13

13

written into respective sections of the dissertation, as were the results of the experiments.

For each section having a software component to it, a verification and validation section

was developed to ensure the code was properly implemented and validated. Through each

successive “analysis to evaluation” period, data were collected and included within a

report, which was added to this dissertation. All code was uploaded to GitHub and is

available for review in order to replicate the entirety of this process.

1.4.1 Dissertation Chapters

Background introduces the background to this work, which includes research in a)

Rationality, b) Utility, c) Interpretation, and d) Heuristics, and gaps leading to the design

of this model. Additional background chapters in Artificial Intelligence and Explainable

Artificial Intelligence provide detail about theoretical, mathematical, and computational

methods for developing the LAISR model.

LAISR Experiments: Homogeneous Models builds on the previous chapter by

developing two agent-based models with multiple agent types that must compete for

resources within an environment. This chapter highlights how LAISR agents can generate

an appropriate strategy in relation to their goals (see section 3.2.3).

LAISR Experiments: HeterogeneousModel attempts to generate a set of

heterogeneous multi-agent reinforcement learning agents. The principal concept is to

evaluate how the LAISR agent explores its own learning strategy when in competition

with an alternate agent type.

14

14

LAISR Experiments: Advanced Explainable Artificial Intelligence investigates the

complexity of machine learning interpretation, including a research section on new

methods of AI interpretability. This section also contains a section on the development

of a State Descriptor (see 4.10).

Finally, Discussion and Future Work provides a look into the LAISR model from

the social science perspective, present areas of future research, and discusses disciplines

that can benefit from this work in the future. Finally, the new field of Inverse Generative

Social Science (IGSS) is introduced, which in some form could provide additional

insights into new generative methods at play in social system theory.

15

15

2 BACKGROUND

We want the [reinforcement learning] agent to explore to find changes in the environment. As in the earlier
exploration/exploitation conflict, there probably is no solution that is both perfect and practical, but simple
heuristics are often effective. - Sutton and Barto (1998)

2.1 ABMs in the Social Science Community

ABMs have long been a method for examining collective and emergent properties

of complex systems. These properties emerge from local behaviors of a multitude of

agents in social science contexts (Bonabeau, 2002; Miller et al., 2007). In order to

identify emergent behavior in an ABM, it is first necessary to identify local rules that

generate the intended behavior at system a larger scale (Fehérvári, 2010). ABMs can

simulate the evolutionary attributes of complex systems environments with a large

number of parameters for many time steps (Li et al., 2013). ABMs have some very

important characteristics, such as allowing us to generate simple rules over homogenous

and/or heterogeneous agent types and observe emergent behavioral changes. ABMs are

also fairly easy to decipher at their fundamental level; this feature becomes more difficult

as ABMs aggregate their behavior, but the building blocks can be fundamentally simple.

But ABMs have their deficiencies as described in section 1.1 Challenges with

ABMs. In order to overcome these shortcomings, I will outline four areas of research that

are necessary to begin the enhancement of the ABM model: a) Rationality, b) Utility, c)

Interpretation, and d) Heuristics. Each of these areas is addressed from two areas of

research: Decision-making theory and Artificial Intelligence Research.

16

16

Figure 5: Four Model Research Areas and Decision Theory and AI Representation

2.2 Rationality

A considerable amount of work has gone into the concept of rationality decision-

making (Malpas, 2012). Humans make decisions under a variety of conditions and make

these decisions with information and resource constraints. Researchers in social science

theory has tried to define decision-making from the perspective of rationality. Currently,

there are two primary decision-making approaches: Bounded Rationality (Allard, 2003)

and Rational Decision-Making. A rational thinker is predicted to reach their highest

results in the selection of decisions made while considering values, attributes, and risk

preferences.

Model Research Areas

Representation

17

17

2.2.1 Bounded Rationality Decision-Making

 Bounded rationality (Simon, 1957b) assumes that information for both human

cognition and AI agents is imperfect, and we accommodate this constraint within the

theory of bounded rationality.

Table 1: Bounded Rationality Representations

Decision Theory Artificial Intelligence

Definition Due to the mind's limitations, humans
must approximate methods to handle
most tasks (Simon, 1990).

Modeling behavior requires reward
functions to maximize expected future
rewards with no previous knowledge of
the environment (Sutton and Barto,
1998)

Methods and
Models

Mental processing, environmental
structure/constraints
Satisficing
Friedman model

Kahneman Cognition Architecture
Russell and Norvig Bounded and
Globally Rational Model

2.2.2 Representing Bounded Rationality

Decision theory and AI are endowed with representations of bounded rationality.

Where Decision Theory sees it as a cognitive processing limitation, AI makes the

assumption that an agent does not have full awareness of its environment. Over time it

must learn to generate its own set of actions that it believes will create maximum utility.

In Table 1, bounded rationality is defined by Simon (1990) and represented as one of

several cognitive representations (satisficing, fast-and-frugal). The AI equivalent is

18

18

algorithms such as the Bellman Equation that maximize future rewards with minimal

knowledge about the environment.

2.2.2.1 Bounded Rationality: Decision Theory

Herbert Simon (1957b) was one of the first to argue that human beings are

bounded in their ability to be completely rational. Simon suggested that humans behave

in an irrational manner due to a lack of important information that would help them

define the problem before making a decision. Simon envisioned bounded rationality as

two interlocking components: the limitations of the human mind and the structure of the

environments in which the mind operates.

The first component of his vision means that models of human judgment and

decision-making should be built on the mind's ability to process rather than on all known

rationality. In many real-world situations, optimal strategies are unknown or unknowable

(Simon, 1987). Even in a game such as chess, where an optimal (best) move does, in fact,

exist at every point, no strategy can calculate that move in a reasonable amount of time

(either by human minds or computers), despite the well-defined nature of the possibilities

to be searched. In less well-defined natural situations, the hope of identifying a useable

optimal strategy is even further diminished. Because of the mind's limitations, humans

must approximate methods to handle most tasks (Simon, 1990). These methods include

recognition processes that largely obviate the need for further information search,

heuristics that guide search and determine when it should end, and simple decision rules

that make use of the information found.

19

19

The second component of Simon's view of bounded rationality, environmental

structure, explains when and why simple heuristics perform well. Broadly stated, "the

task is to replace the global rationality of economic man with the kind of rational

behavior that is compatible with the access to information and the computational

capacities that are actually possessed by organisms, including man, in the kinds of

environments in which such organisms exist." (Simon 1955a: 99). Others made this

point before Simon (e.g., Brunswik, 1943) several times during his life. Balancing the

quality of a decision against its costs was popular in economics (Stigler, 1961). To this

day, it remains common to formulate boundedly rational decision-making as a

constrained optimization problem. Milton Friedman's as if methodology (Friedman,

1953) similarly uses models that ignore contributing factors supporting decision-making.

Todd & Gigerenzer (2007) describe how we make inferences about the world around us

with limited information and processing power. Whereas several models assume

rationality assumes a type of “all-knowingness” (Ibid). These models are in conflict with

what we understand about both rationality and processing power.

2.2.2.2 Satisficing

Satisficing (Simon, 1957a) is a boundedly rational decision-making strategy

whose goal is determining a satisfactory or acceptable result, rather than an optimal

solution. Instead of putting maximum exertion toward attaining the ideal outcome,

satisficing focuses on pragmatic effort when confronted with tasks. This is because

aiming for the optimal solution may necessitate a needless expenditure of time, energy,

and resources. For example, it can be used to choose between two competing available

20

20

objects, where options are limited, rather than searching across a large space of choices

(Gigerenzer, 2000).

2.2.3 Bounded Rationality: AI

AI-Based Bounded Rationality is essentially the AI analog to human bounded

rationality. The links between Bounded Rationality and machines are often seen in AI

research on two-player zero-sum games with perfect information such as Checkers,

Chess, and Go. Within AlphaGo and AlphaGo Zero, the algorithms are designed where

"thinking" is bounded rational in that it is not designed to undertake a full search of the

decision tree (Lee, 2019). The super-human gameplay demonstrated by AlphaGo and

AlphaGo Zero also demonstrates that computational rationality can lead to super-human

Artificial Intelligence(AI) even though it is not able to observe all possible states (Lee,

2019) bounded rationality and AI do not often appear together in research articles.

Economists discussing bounded rationality rarely mention AI and vice versa. Lee (2019)

noted this is surprising given Herbert Simon was a pioneer in both bounded rationality

and AI. Simon undertook research on both bounded rationality and AI simultaneously in

the 1950s, and these interests persisted throughout his research career.

Simon's research in the 1950s was critical to the growth of computational science,

social science theory, and AI. The pursuit of modeling or replicating human behavior has

developed two general camps which can be applied to the social sciences: Artificial

Intelligence and Cognitive Science. Cognitive science is designed to replicate aspects of

human behavior and emotion, where AI replicates human behavior and, with some effort,

may surpass human intelligence (Ibid).

21

21

2.2.3.1 Boundedly and Globally Rational AI Models

Russell and Norvig’s (2010) represented AI behaviors as a matrix of Thinking-

Acting and Bounded-Global categories. In the first category, AI resolved to develop

computational models that create ‘systems that think’ which are similar to that of

humans. These mechanisms include language, knowledge representation (and memory),

reasoning, and learning (Lee, 2019). In the second category, machines are required to act

like humans. They do not need to possess a human-like mechanism. In the third category,

the focus is on machines that think rationally in terms of mathematical logic. The fourth

and last group relates to machines that take actions that are optimal (rational) but may not

be based on logical reasoning. This dissertation’s interest resides in the first column (see

Table 2).

Table 2: AI and Bounded Rationality (Source: Adapted from Russell and Norvig (2010), Figure 1.1,

p.2.)

 Bounded Rationality Global Rationality
Thinking (Mental
Process)

1.Thinking Humanly
Limitations in learning,
memory and computation
(learning, self-learning)

3. Thinking Rationally
(Super intelligent?)
(Universal Turing Machine)

Acting (Action) 2.Acting Humanly
Not globally optimal
outcome/action
(Brute-force search)

4. Acting Rationally
Globally Optimal
outcome/action
(Non-Halting UTM)
(Incomputable)

22

22

2.2.3.2 The Kahneman Cognition Architecture

Determining a satisfactory result has been observed by Kahneman (2003) and

others as part of a spectrum of methods of intuition (System 1) and reasoning (System 2)

where "intuitive thoughts seem to come spontaneously to mind, without conscious search

or computation, and reasoning is a slower less intuitive but more process-driven response,

the reasoning is done deliberately and effortfully" (Kahneman, 2003). Their cognitive

architecture is illustrated in Figure 6. Kahneman also states that these two systems do not

exist independently. For example, System 2, through the process of repetition, can

eventually move into an unconscious fast state. Kahneman goes on to discuss how deep

learning is much closer to System 1, where it finds patterns to assemble behaviors, yet

there is no causality or meaning attributes in deep learning and until that is solved.

Figure 6: Kahneman Architecture of Cognition: Source (Kahneman, 2003)

23

23

2.2.3.3 Gaps in Bounded Rationality Research

Heuristics-and-biases tradition has been criticized by Gigerenzer et al. (2005) and

others for being too focused on how heuristics lead to errors. The critics argue that

heuristics can be seen as rational in an underlying sense. According to this perspective,

heuristics are good enough for most purposes without being too demanding on the brain's

resources. Another theoretical perspective sees heuristics as fully rational in that they are

rapid, can be made without full information, and can be as accurate as more complicated

procedures. Heuristics are useful in a variety of circumstances but can also be cognitively

biased (Korteling et al., 2018; Simon, 1955; Broadbent, 1958; Kahneman, 1973, 2003;

Norman & Bobrow, 1975). Although the proposed criticisms are well-founded, there is

very little research on how to automatically generate heuristics. Rather, most of the work

has been on how modelers build heuristics into their agent models (by hand).

2.2.3.4 Perfect Rationality Decision-making

Coming from economic research, the theory of rational decision-making aims to

connect varied phenomena into a single body of mathematical social theory. Perfect

rationality, coming from rational choice theory, orders the decisions on the basis of

subjective expected utility (von Neuman, 1953). Here, homo economicus (Mill, 1848) is

perfectly rational and has complete knowledge, while his economic choices, guided by

rationality, are self-contained in the economic sphere without affecting other aspects of

the individual, such as the emotions or being influenced by the environment.

24

24

2.3 Utility

Table 3: Expected Utility Definitions and Measurement

Decision Theory Artificial Intelligence

Definition A weighted average of the utilities of each of
its possible outcomes,

Given a set of states, select actions that
maximize current and future rewards

Methods and
Models

The utility of an outcome measures the extent
to which that outcome is preferred, or
preferable, to the alternatives.

Action, state, outcome representations

Maximal set of possibilities, 𝑃, of which
each state, act, or outcome is a subset.

This section discusses Utility and Expected Utility and how they are aligned from

the perspective of Decision Theory and Artificial Intelligence (AI). Utility in Decision

Theory provides the cognitive foundations for the model, where AI provides a means to

implement the theory in an AI mathematical model.

2.3.1 Maximizing Utility: Decision Theory

The Stanford publication Normative Theories of Rational Choice: Expected

Utility (2014) introduces the expected utility hypothesis. Bernoulli (1738) is a method for

an agent to optimize its current and future states. The expected utility of an action is "a

weighted average of the utilities of each of its possible outcomes, where the utility of an

outcome measures the extent to which that outcome is preferred, or preferable, to the

alternatives" (Briggs, 2019). The expected utility has some general characteristics where

25

25

outcomes are preferred over future states; these states are often outside the decision

maker's control.

2.3.2 Maximizing Utility: AI

The expected utility acts as a bridge between bounded rationality, heuristics, and

machine learning methods. Within the expected utility, there are three essentials: actions,

states, and outcomes.

• States, actions, and outcomes are all sets of possibilities. There is a maximal set of possibilities,𝑃,

of which each state, act, or outcome is a subset.

• The set of actions, the set of states, and the set of outcomes are all sub-components of 𝑃, i.e.,

actions and states are individualized so that every possibility in 𝑃 is one where an agent attempts

to maximize its expected reward and chooses an action based on current state conditions. The

expected utility of an action 𝐴 depends on two qualities:

a) The value of each outcome is measured by a utility.

b) The probability of each outcome conditional on 𝐴.

In exactly one state, the agent performs exactly one action, and exactly one outcome

ensues.1Navarro-Martinez et al. (2018) designed a "choice under risk” satisficing model,

which puts Expected Utility Theory (EUT) in a boundedly rational framework. The

decision-maker gathers evidence for and against options favoring one option satisfies the

desired level of confidence.

1 The author also assumes for the moment that, given a state of the world, each act
has exactly one possible outcome.

26

26

2.4 Interpretation

An aspect of the model that deals with explaining the model decisions, so they are

represented as heuristics, is interpretation. Decision theory interpretation modeling is

often cognition and declaration-focused on where activities are described or

contextualized by an operator. On the other hand, AI interpretation is highly algorithm-

based; in reference to deep learning, AI interpretation is usually the interpretation of the

‘black box’ neural network substructure.

Table 4: Interpretation Definitions and Measurement

Decision Theory Artificial Intelligence

Definition Dedicated to explaining and interpreting
decisions and modeling of the decision
maker’s preferences

Dedicated to developing procedures to
make ML understandable to the user

Methods
and
Models

Decision Support Systems (DSS)
Multiple Criteria Decision-making (MCDM)

IF-THEN rules
Recurrent Neural Network (RNN)
Sequence Prediction
DeepLIFT
LIME/SHAP

2.4.1 Interpretation: Decision Theory

Interpretable Decision Theory can be thought of as solving a problem by a)

explaining your reasoning to yourself and/or someone else by b) starting from a high

abstraction level, and c) breaking the problem into smaller sub-problems. Although the

literature on interpretable Decision Theory is sparse, the Analytic Hierarchy Process

27

27

(AHP) (Saaty, 1999) was devised as a weighted sum, where the primary tasks are broken

into sub hierarchical tasks. The weights are gathered from specialists using a pair-wise

operator that generates a matrix; this is then changed into a set of weights by a

normalized Eigenvector.

2.4.2 Interpretation: AI

This section is covered in detail in section 3.4: Background in Explainable

Artificial Intelligence (XAI), where the dissertation presents IF-THEN rules (3.4.1),

Recurrent Neural Network (RNN) (3.4.2), Sequence Prediction (3.4.3), DeepLIFT

(3.4.4), and LIME/SHAP (3.4.5.1) algorithms.

2.5 Heuristics

 The intention now is to address how Decision Theory heuristics (fast-and-frugal)

can be adopted into AI techniques such as fast-and-frugal trees (FFTs) and finite state

machines (FSM) (see sections 2.5.2.1- 2.5.2.2).

Table 5: Heuristics Definitions and Measurement

Decision Theory Artificial Intelligence

Definition Simple strategies or mental processes that are
used to quickly form a judgment make
decisions and find solutions to complex
problems.

 Set of discrete instructions that are
used to solve a problem within an
action space

Methods
and
Models

Processes

Fast-and-frugal

Discrete decision process that selects
between one or more solutions based
on simple pre-determined probability.

28

28

Take the best
Take the first
Rule-of-thumb

Fast-and Frugal Decision Trees
Finite State Machines

2.5.1 Heuristics: Decision Theory

The heuristic rule-of-thumb strategy minimizes the time it may take to make

decisions without stopping to consider the next course of action (Todd & Gigerenzer,

1999). Heuristics are essentially fast, efficient processes, i.e., rules of thumb. A heuristic

is composed of building blocks, typically three: search rules that specify where to look

for information, stopping rules that specify when to end search, and decision rules that

specify how to make a final decision. (Hutchinson et al., 2005; Todd & Gigerenzer, 1999)

propose that the brain does not work in intricate probabilities and functions; actually, the

mind is bounded by its own strategies and works using fast-and-frugal heuristics.

Essentially, human decision-making processes can be demonstrated using a minimal

number of heuristics without full knowledge of time and information. These models

provide crude computational abilities and do not participate in the domain of probability

(Gigerenzer and Todd, 1999).

2.5.1.1 Fast-and-Frugal Heuristics

Fast-and-frugal heuristics (Gigerenzer and Todd, 1999) are simple to execute,

limited information, search, and computation rules generated by humans. They are

building blocks that demonstrate searching (search rule), termination of searching

stopped (stopping rule) and a processing step towards a decision (decision rule).

29

29

Determining these heuristics is an important part of the work that is being presented. The

fact that behavior can be shaped through the use of rewards provided by my model is a

core tenet of both behavioristic psychologies as well as reinforcement machine learning.

Fast-and-frugal heuristics generate adaptive choices by minimizing the use of

time, knowledge, and computational processing. Numerous studies have investigated the

extent to which models of fast-and-frugal heuristics accurately describe people's choices

and decisions and the underlying cognitive processes(Hertwig, Hoffrage, & Martignon,

1999). Examples include resource allocation (Hertwig, Davis, & Sulloway, 2002),

classification (Berretty, Todd, & Martignon, 1999), preferential selection (Brandstätter et

al., 2006, 2008), and decision-making (Dhami, 2003).

2.5.2 Heuristics: AI

Forster (1999) argued fast-and-frugal heuristics couldn’t emerge from an underlying

complexity in a process that is driven by machine intelligence and AI. Yet, it remains

unclear how people’s decision processes compare to resource-rational behavior. Leider et

al. (2017) modeled the decision method as an arrangement of computations to generate an

optimal decision process.

2.5.2.1 Fast-and-Frugal Trees (FFT)

FFTs are a type of decision tree with consecutively ordered lines, where every

line has two branches where one is an exit value (Martignon et al., 2003). The final line

has two exit points stating a decision is always made. FFTs are fast; like cognitive

heuristics, decision-making usually occurs within a very few lines. Green & Mehr (1997)

30

30

and Martignon et al. (2008) have demonstrated that predictive precision of FFTs is

comparable to machine learning-based decision trees. As the main proponent of FFTs,

Luan (2011) believes FFTs may be more cognitively realistic as compared to complicated

machine-learning algorithms given the speed the brain processes.

2.5.2.2 Finite State Machine (FSM)

Another type of state representation is the Finite State Machine (FSM). One can

consider the finite state machine as a triple	𝑴	 = 	 (𝑺, 𝑹, 𝒕), where 𝑺 is a finite set of

states., 𝑹 is a finite set of symbols called the alphabet., 𝒕:	𝑺	 × 	𝑨	 → 	𝑺	is the transition

function. The inputs to this function are the current state and the last input symbol. While

the function value 𝝂(𝒔, 𝒙) is the state, the automaton goes from state 𝒔 after reading

symbol 𝒙. Then the resultant FSM should mimic behaviors of its ML counterpart. FSMs

may be more accurate when describing predictive methods of behavior that may involve

more complex nodes than the FFT model (see section 2.5.2.1), although results may not be as indicative of

cognitive heuristics given they are not as ‘fast’ (Luan, 2011). From

Figure 7, one can see that the structure of representation may also help to

determine which would be a dominant choice. For example, when the conditional states

are binary, and choices can be decomposed into a simple tree structure, the FFT may be a

better selection, whereas, if each state has multiple conditional probabilities, it may be

more prudent to choose the FSM approach.

31

31

Figure 7: Fast-and-frugal Tree (Source: Gigerenzer & Gaissmaier, 2011) and Finite State

Representation

2.6 Summary

The background outlined the primary components of the model, a) Rationality, b)

Utility, c) Interpretation, and d) Heuristics, noting that given there are two disciplines

(Decision Theory, Artificial Intelligence) that must be integrated in order to build the

model. The next two sections describe the background in machine learning and AI-

explainability research necessary to build the agent model.

32

32

3 BUILDING BLOCKS OF THE DRL-AGENTAND EXPLAINABLE

ARTIFICIAL INTELLIGENCE

Definition: DRL-Agent

The DRL-Agent is an ABM that employs Deep Reinforcement Learning to

generate maximum value for being in a particular state. The following chapter will

discuss mathematical and computational underpinnings necessary to understand and

develop the DRL-Agent.

3.1 Artificial Intelligence

AI is often defined as a computer system with the ability to perform tasks

commonly associated with intelligent beings. As this definition somewhat

problematically requires us to define intelligence and is inconveniently repetitive,

Artificial Intelligence is now commonly defined as a scientific discipline, as the activity

that creates machines that can function appropriately and with foresight in their

environment. The first explicit definition of

AI was suggested in a funding proposal to the Rockefeller Foundation in 1955. It was

based on the "conjecture that every aspect of learning or any other feature of intelligence

can in principle be so precisely described that a machine can be made to simulate it."

(Tuomi, 2018) This early definition rapidly led to deep controversies. In practice, the

early developers of AI interpreted intelligence and thinking as mechanical processing of

33

33

logical statements, thus, in effect, defining human intelligence as computation of truth

values.

3.1.1 Machine Learning

Machine Learning is a subset of the term Artificial Intelligence, provides

automated methods that can detect and learn patterns in data and use them to achieve

some tasks (Christopher, 2006; Murphy, 2012). Three types of machine learning tasks are

explained:

• Supervised learning is the task of inferring a classification or regression from labeled training

data.

• Unsupervised learning is the task of drawing inferences from datasets consisting of input data

without labeled responses.

• Reinforcement learning (RL) is the task of learning how agents ought to take sequences of actions

in an environment in order to maximize cumulative rewards.

3.1.2 Supervised Learning Methods

Although not directly applicable to the LAISR model, supervised learning is the

machine learning task of learning a function that maps an input to an output based on

example input-output pairs. (Russell and Norvig, 2010) It infers a function from labeled

training data consisting of a set of training examples (Mohri et al., 2012). In supervised

learning, each example is a pair consisting of an input object and the desired output value

(or supervisory signal). A supervised learning algorithm analyzes the training data and

produces an inferred function, which can be used for mapping new examples. An optimal

scenario allows for the algorithm to correctly determine the class labels for unseen

34

34

instances. This requires the learning algorithm to generalize from the training data to

alternate data sources. Although supervised learning is a field of dynamic research, the

proposed dissertation focuses on the second area of research, unsupervised learning.

Supervised learning is based on training data that has been labeled, usually by humans, so

that the network weights can be adjusted when the labels for training data are wrongly

predicted. After a sufficient number of examples are provided, the error can, in most

cases, be reduced to a level where the predictions of the network become useful for

practical purposes. For example, if an image detection program tries to differentiate

between cats and dogs, during the training process, someone needs to tell the system

whether a picture contains a cat or a dog.

3.1.3 Unsupervised Learning

Unsupervised learning is a branch of machine learning that learns from test data

that has not been labeled, classified, or categorized (Hinton and Sejnowski, 1999).

Instead of responding to feedback, unsupervised learning identifies commonalities in the

data and reacts based on the presence or absence of such commonalities in each new

piece of data. Alternatives include supervised learning and reinforcement learning. A

central application of unsupervised learning is in the field of density estimation in

statistics (Smola et al., 2008) though unsupervised learning encompasses many other

domains involving summarizing and explaining data features. It could be contrasted with

supervised learning by saying that whereas supervised learning intends to infer a

conditional probability distribution, unsupervised learning intends to infer an a priori

probability distribution.

35

35

3.1.4 Reinforcement Learning (RL)

Figure 8: Reinforcement Learning Taxonomy

RL exists between supervised and unsupervised learning. In traditional supervised

learning, there is a target label for each training example, and in unsupervised learning,

there are no labels, where in reinforcement learning, there are sparse and time-delayed

rewards (Pathak, 2017)—based only on those rewards the agent has to learn to generate

optimal behaviors within the environment(Sutton et al., 1995). Reinforcement learning

can be understood using the concepts of agents, environments, states, actions, and

rewards, all of which are explained in the equations below. Capital letters tend to denote

sets of things, and lower-case letters denote a specific instance of that thing, e.g., 𝐴 is all

possible actions, while	𝑎	is a specific action contained in the set.

• Action (𝑨):	𝐴 is the set of all possible moves the agent can make.

• Discount factor (γ): The discount factor𝛾 is multiplied by future rewards as discovered

by the agent in order to dampen these reward's effects on the agent’s choice of action.

RL
Algorithms

Model Free

On-Policy

PPO
A2C

Off-Policy

Q-Learning

Model
Based

Learn
Model

Given
Model

36

36

• Environment (€): The€world through which the agent moves. The environment takes

the agent's current state and action as input and returns as output the agent’s reward and

its next state

• State (S): State 𝑠 is a concrete and immediate situation in which the agent finds itself,

i.e., a specific place and moment, an instantaneous configuration that puts the agent in

relation to other significant elements of the environment.

• Reward (R): A reward 𝑟is the feedback by which measures the success or failure of an

agent’s actions.

• Policy (π): The policy	𝜋 is the strategy that the agent employs to determine the next

action based on the current state. It maps states to actions, the actions that promise the

highest reward.

• Value (V): The value 𝑣 is the expected long-term return with discount, as opposed to the

short-term reward R. Vπ(s) is defined as the expected long-term return of the current state

under policy π. I discount rewards or lower their estimated value the further into the

future they occur.

• Q-value or action-value (Q): Q-value is similar to value, except that it takes an extra

parameter, the current action a. Qπ(s, a) refers to the long-term return of the current state

𝑠, taking action a under policy π. Q maps state-action pairs to rewards.

In RL, an agent interacts with an environment and uses the experience to optimize

a decision-making policy. In a standard RL formulation, the agent aims to max-following

the policy after first using action to advance. With these definitions in hand, we can

briefly review the deep RL algorithms. RL enables agents to learn policies for task

performance based on rewards received over a sequence of trials (Sutton et al., 1995). A

reinforcement learning (RL) agent learns by interacting with its dynamic environment

37

37

(Kaelbling, 1998). At each time step, the agent perceives the state of the environment and

takes an action, which causes the environment to transit into a new state. A scalar reward

signal evaluates the quality of each transition, and the agent has to maximize the

cumulative reward along the course of interaction.

Figure 9: Reinforcement Learning Cycle (Source: Recreated from Sutton and Barto, 1998)

3.1.4.1 The Markov Decision Processes (MDP)

A primary component within the model is the MDP. MDPs are often used to

model sequential decision processes in machine learning systems. This policy maximizes

the accumulated expected reward is then considered optimal and can be learned from

sampling. Unfortunately, model parameters are often assessed from noisy data (Mannor

et al., 2007; Roy et al., 2017). This second type of uncertainty can often degrade the

performance of the optimal strategy and thereby affect the model’s prediction. Neto

(2005) discussed the concept of the MDP and discussed the concept eloquently in this

38

38

introduction to agent reinforcement learning where it is defined as a tuple (S, A, T, R)

where:

• 𝐴 is an action set.

•	𝑆 is a state space.

• 𝑇:	𝑆	 × 𝐴 × 𝑆	 → 	 [0, 1] is a transition function defined as a probability

distribution over the states. Hence, we have 𝑇(𝑠, 𝑎, 𝑠!) 	= 	𝑃𝑟{𝑠"#$ = 𝑠!	|	𝑠" = 𝑠, 𝑎" =

𝑎}. 𝑠"#$represents the state of the process at time t+1, 𝑠𝑡 the state at time t, and at the

action taken after observing state 𝑠𝑡.

• 𝑅: 𝑆 × 𝐴 × 𝑆 → 𝑅 is a reward function representing the expected value of the

next reward, given the current state s and action and the next state 𝑎!:	𝑅(𝑠, 𝑎, 𝑠!) 	=

	𝐸{𝑟"#$	|	𝑠" = 	𝑠, 𝑎" = 𝑎, 𝑠"#$ =	𝑠!}. In this context 𝑟"#$represents the immediate payoff

of the environment to the agent at time 𝑡	 + 	1 (Bellman, 1957; Howard, 1960; Bertsekas,

1995; Sutton and Barto, 1998; Puterman, 1994). The MDP acts on the environment with

action 𝑎, in state 𝑠, and waits for the response of the environment, in the form of the

following state 𝑠! and a real number representing the immediate reward the agent

receives by choosing to perform 𝑎 in 𝑠. The task of deciding which action to choose in

each state is done by a policy function.

3.2 The Policy

Generally, a policy is a collection of probability distributions, one for each trace

of the process	𝜋(𝑠"	, 𝑎" − 1, 𝑠"%$, 𝑎"%&, . . .) 	 ∈ 	𝑃𝐷(𝐴)		defining the probability that each

action is chosen for that particular trace of the system. However, there is no need to

39

39

consider other than Markovian policies because the MDP itself is Markovian by

construction – it is sufficient to define the policy for each state of the MDP.

3.2.1.1 Partially Observable Markov Decision Processes (POMDP)

The POMDP is a dominant operation of RL is the recurrent interaction between

an agent and a Markov Decision Process. Specifically, the interaction assumes that the

agent knows everything about the current state of world: there is no notion of hidden

information (aside from not knowing the causal rules or reward structure). The POMDP

does not make this assumption. In either case, the agent interacts indefinitely with its

world, trying to update its beliefs about what exists in the world and how to take actions

to maximize reward. A POMDP is a Markov model that attaches unobservable states to

observations. The agent can perform actions that maximize their reward. However, the

agent cannot directly observe the system state, but at each discrete point in time, the

agent makes observations that depend on the state. The agent uses these observations to

form a belief of what state the system currently is. This belief is called a belief state and

is expressed as a probability distribution over the states. The solution of the POMDP is a

policy prescribing which action is optimal for each belief state. The POMDP framework

is broad enough to model a variety of real-world sequential decision-making problems. A

discrete-time POMDP can be described as a 7-tuple (𝑆	, 𝐴	, 𝑇	, 𝑅	, Ω, 𝑂	, 𝜆), where

• 𝑆	 = 	 {𝑠!, 𝑠", . . . , 𝑠#} is a set of states,

• 𝐴	 = 	 {𝑎!, 𝑎", . . . , 𝑎#} is a set of actions,

• 𝑇 is a set of conditional transition probabilities 𝑇	(𝑠$|	𝑠, 𝑎)	for the state transition 𝑠 → 	 𝑠$.

• 𝑅 ∶ 	𝑆	 × 	𝐴	 → 	𝑅 is the reward function,

• Ω	 = 	 {𝑜!, 𝑜", . . . , 𝑜#} is a set of observations,

40

40

• 𝑂 is a set of conditional observation probabilities 𝑂(𝑜	|	𝑠$, 𝑎), and

• 𝜆	 ∈ 	 [0, 1]	is the discount factor.

At each time period, the environment is in some state 𝑠 ∈ 𝑆. The agent chooses an

action 𝑎 ∈ 𝐴, which causes the environment to transition to a state 𝑠! ∈ 	𝑆 with

probability 𝑇	(𝑠!	|	𝑠, 𝑎). At the same time, the agent receives an observation 𝑜 ∈ Ω which

depends on the new state of the environment with probability 𝑂(𝑜	|	𝑠', 𝑎). Finally, the

agent receives a reward 𝑅(𝑠, 𝑎). Then the process repeats. The goal is for the agent to

choose actions at each time step that maximizes its expected future discounted reward.

Within the RL model, agents evaluate their respective states and generate an action based

on maximizing rewards. Given the state of the environment, the agent needs to pick the

best action to maximize rewards. Through reinforcement learning’s trial and error, it

accumulates knowledge through these (state, action) pairs, as in, it can tell if there would

be a positive or negative reward given a (state, action) pair. This value is referred to as

the Q-value, which a value of being in a particular state, and choosing a particular action,

otherwise stated as 𝑄	(𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛). An elementary way to store this knowledge would

be a Q-value table populated with 𝑠𝑡𝑎𝑡𝑒𝑠, 𝑎𝑐𝑡𝑖𝑜𝑛𝑠, and 𝑄	(𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛) pairs. Once

enough data is collected, the trained model can generally determine the best Q-state to

select.

3.2.2 Model-Free vs. Model-Based Reinforcement Learning

There are two primary areas of RL, Model-Free and Model-Based. Model-based

RL uses an experience value to build a model of the transitions and outcomes in the

environment. Appropriate actions are then chosen by searching or planning in this world

41

41

model. Model-free RL uses experiences to learn (𝑠𝑡𝑎𝑡𝑒/	𝑎𝑐𝑡𝑖𝑜𝑛	𝑣𝑎𝑙𝑢𝑒𝑠	𝑜𝑟	𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠),

which can potentially achieve equivalent optimal behaviors but without estimation or use

of a world model. Given a policy, a state has a value, defined in terms of the future utility

that is expected to accrue starting from that state.

3.2.3 Model-Free Methods: Off-Policy and On-Policy Methods of RL

The two most popular classes of model-free reinforcement learning algorithms are

Off-Policy and On-Policy Methods. They are described in sections 3.2.4 and 3.2.5, with

examples from each that are relevant to this work.

3.2.4 Off-Policy Methods

Off-policy reinforcement learning learns about one policy, π₁, while the reward

observations are generated by the action sequence of another policy, π₂.

3.2.4.1 Q-Learning

Q-learning (an off-policy method) is a type of value iteration method that aims at

approximating the Q function, while policy gradient (an on-policy method) is a method to

optimize in the action space directly. The goal of Q-learning is to learn a policy, which

tells an agent what action to take under what circumstances. It does not require a model

of the environment and can handle problems with stochastic transitions and rewards

without requiring adaptations. For any finite Markov decision process (FMDP), Q-

learning finds a policy that is optimal in the sense that it maximizes the expected value of

the total reward overall successive steps, starting from the current state (Melo, 2007). Q-

learning can identify an optimal action-selection policy for any given FMDP, given

42

42

infinite exploration time and a partly random policy (Ibid). "Q" names the function that

returns the reward used to provide the reinforcement and can be said to stand for the

"quality" of an action taken in a given state (Matiisen, 2015). Q-Learning is designed to

explore rather than respond to a fixed set of rules designed by the model developer.

Q-learning estimates a state-action value function (𝑄_𝑆𝐴) for a target policy 𝜋

that deterministically selects the action of the highest value. Instead of directly

parameterizing a policy, Q-value learning methods estimate the Q-function as Q(s, a; θ).

The greed y	policy selects the (discrete)action maximizing value:a∗ =

	argmaxaQ(s, a; θ). Exploration can be performed using a greedy policy, which chooses

a uniform random action with probability and otherwise uses the greedy action. By itself-

policy nature, Q-learning permits repeated training use of samples. It can determine

information from the environment and receive rewards for performing those actions

(Neto et al., 2005). Within the model, the agents are not told which actions to take but

instead must discover which actions generate the highest rewards by trying out

experimenting with "actions within" in the environment.

3.2.5 On-Policy-Based Methods

Policy-based methods seek to optimize the policy space. In policy gradient

methods, the policy is directly parameterized. Although ABMs have been studied in the

form	π(a|s; θ),where π is a probability distribution over actions a when observing states,

as parameterized by θ, a neural network. The agent exercises the policy in the

environment, recording experiences. Periodically, it uses the samples to update θ	by

43

43

estimating the gradient ∇θE[Rt]. Typically, the agent then discards these samples and

repeats, optimizing the policy iteratively.

3.2.5.1 Advantage Actor-Critic (A2C)

Figure 10: Actor-Critic (Source: Recreated from Sutton and Barto, 1998)

In advantage of actor-critic, the policy gradient is computed as

E[∇θlogπ(a)|s); θ)(Rt − V(s)))].The agent estimates V(s)) from the data, for instance,

using separate output conjunction with ML, very little work has been done to address

how hybrid models can use aspects from the same network used for π.(Rt −

Vt)estimates the advantage:	A(s, a) = Q(s, a) − V(s).Rt is computed using the

discounted sum of as many future returns as are observed in a given batch, up to rtmax,

both ABMS and is bootstrapped with	V(stmax + 1), appropriately discounted. The

44

44

estimator	V(s; θ)	is trained using, e.g., a squared-error loss simultaneously to π. In A3C

(Mnihetal., 2016), a separate actor-learner threads sample environment steps and update

a centralized copy of the parameter asynchronously to each other. In (batched) A2C,

which performs similarly to A3C (see, e.g. (Schulman et al., 2017)), separate

environment instances are sampled, but the learner is single-threaded. It gathers all data

into one mini-batch to compute the gradient.

3.2.5.2 Proximal Policy Optimization (PPO)

The PPO introduced by Schulman et al. (2017) is a policy gradient technique for

reinforcement learning, which does the following: the PPO samples data through actions

and interactions within the simulated environment. Here it must optimize a specific

(objective) function using stochastic gradient ascent. Where policy gradient approaches

perform a single update per sample; thus, the objective function creates a set of mini-

batch updates. These updates are more generalized, and have improved sample

complexity (Juliani, 2018).

3.3 Deep Reinforcement Learning (DRL)

RL models discussed in this chapter have some substantial challenges to

overcome. Most notably, it is possible for decisions to become too complex for the

traditional reinforcement learning method. When the simulation becomes complicated,

the knowledge space can become intractable, and it no longer becomes feasible to store

all (state, action) pairs in a table. In intuitive terms, even a small difference in states is

still a distinct state. In lieu of storing and looking up every distinct state, RL can employ

45

45

a neural network that predicts the reward for an input (state, action). Alternatively, neural

networks can predict value and policy-based methods.

3.4 Background in Explainable Artificial Intelligence (XAI)

XAI is dedicated to developing procedures to make deep learning more

understandable and thus build an understanding of the model to the user (Park and

Hendricks, 2018; Zintgraf, Cohen, Adel, & Welling, 2017). While the accuracy obtained

by neural networks may be more precise than human experts, the complexity of the

neural network structure makes it very difficult, if not impossible, to uncover complex

attributes of its network connection. This term is deemed a “black box” problem

(Kamruzzaman et al., 2010). Torrey et al. (2005) attempted to build rules to describe an

RL policy by using source-task models, otherwise described as a “decomposition

strategy” (Andrews, 1995), i.e., a method where model mechanics affect rules that are

extracted. Craven (1996) defines rule extraction as follows: "given a trained neural

network and the data on which it was trained, a description of the network that closely

approximates the network's predictive behavior." A Rule extraction approach can also

help to validate a neural network (Ibid).

3.4.1 IF-THEN rules:

The general form of the IF-THEN rule is designed to state simply if a state can be

applied to a condition and stated as true, then the state can be added to a particular class.

The IF-THEN developer can decide the level of resolution necessary to build the IF-

46

46

THEN decision tree. Andrews et al. (1995) generated an IF-THEN neural network

taxonomy algorithm. The Decomposition procedure works by dividing the network into

neurons. Each result is then combined to represent the entire network. DIFACON-miner

(Özbakır, Baykasoğlu, and Kulluk (2010)) was designed to generate IF-THEN rules from

an artificial neural network. The rule creation process places each repetition in a non-

sequential process. The uniqueness of the decompositional model is that rule generation

is performed at the same time as neural network training. Using evolutionary algorithms,

Dorado et al. (2002) created a “black-box” that used Genetic Programming (GP) model to

develop a rule-extraction approach for artificial neural networks, irrespective of network

structure.

3.4.2 Time-Based Behavior Evaluation: Recurrent Neural Network (RNN)

Recurrent Neural Network (RNN) are key methods to model time-based data.

Hidasi et al. (2016) have contributed substantial work in the development of

recommender systems, although new and very relevant work has been done in the use of

explainable AI using RNNs (Tan et al., 2016). A subset of RNN, the long short-term

memory (LSTM) model is a type of artificial recurrent neural network (RNN) used to

evaluate temporal based information (Lee, 2019). Wang et al. (2016) developed a novel

semantic perception model that suggests an LSTM-based series prediction. The approach

improves the prediction performance by uncovering semantics hidden in the observed

sequences.

47

47

3.4.3 Sequence Prediction

Sequence prediction models evaluate models from the perspective of

arrangement. Y. Liu et al. (2016) suggested a time-based approach to integrating

evolving preferences with interval assessment. When considering spatial and temporal

contexts sequentially, Liu et al. also extended RNN and proposed a method that could

model local temporal and spatial contexts in each layer. Q. Liu et al. (2017) suggested an

approach that evaluated behavioral sequences using transition matrices.

3.4.4 DeepLIFT

DeepLIFT (Deep Learning Important FeaTures) is a recursive calculation method

for supervised deep learning (Shrikumar, 2017). DeepLIFT decomposes the prediction

value of a neural network by backpropagating the out of each neuron in the network to

every feature of the input network. Shrikumar (2017) notes that typical perturbation-

based approaches (e.g., LIME/SHAP) and certain gradient-based approaches fail to

model saturation, where his backpropagation process is designed to handle such

characteristics. Similar layer-wise relevance propagation models have been developed to

interpret the predictions of deep networks (Bach et al., 2015).

3.4.5 Marginal Contribution Algorithms:

3.4.5.1 LIME and SHAP

LIME (Ribiero, 2016) and SHAP (Lundberg et al., 2017) approximate how

features affect prediction by perturbing instances of data sets and b) analyzing these

perturbations on a classification system (i.e., black box output). Due to their

48

48

generalization, they explain several classifications; i.e., neural networks in medical, law,

and behavioral science (Elshawi et al., 2019; Whitmore et al., 2019; Ibrahim et al., 2019).

SHAP and LIME are both standard approaches to model explainability. SHAP (Shapley

Additive exPlanations) uses Shapley values defined as the “average marginal contribution

of a feature value over all possible associations.” (Shapley, 1953); due to the exhaustive

search of SHAP, it can ensure consistent accuracy across variables. In fact, the SHAP

model is used for interpretation within this effort.

SHAP is an additive feature attribution model where explanations are stated as a

set of linear features. SHAP computes a Shapley value based on a general game-theoretic

model (Lundberg et al., 2016). Let us say, for example, there is a basketball game with

three players on each team, Mark, Jill, and Bob. Mark alone scores 60 points in the game.

Jill, a seasoned player, gets 80 points. When Bob plays together, they each score 90

(totaling 180). Would it be fair to say that Bob is a key factor for the team’s success?

This is not entirely accurate; rather, it is best to consider how different combinations of

the three players can contribute to the team’s success. As Lundberg et al. (2019) discuss

the model, he defines three important characteristics of the SHAP model.

• Local accuracy: feature attributions sum should be equivalent to the explainable output of

the model.

• Missingness: features that are not explained or are missing to not cause a change in the

model.

• Consistency: altering a model where a variable has a greater influence will never reduce

the importance of that feature.

49

49

3.4.5.2 Partial Dependency Plots

The PDP shows the marginal effect one or more features have on the predicted

outcome of a machine learning model. The plot can also show whether the relationship

between the target and a feature is linear, monotonic, or more complex. PDPs may be an

appropriate tool for generating averaged features with a target (Friedman, 2001).

50

50

4 DEVELOPING THE LEARNING-BASED ACTOR-INTERPRETER STATE

REPRESENTATION MODEL

4.1 Introduction

This chapter introduces a new agent model and methodology called the Learning-

based Actor Interpreter model (LAISR) (Cummings et al., 2020). Learning-based refers

to the fact that the agent attempts to maximize actions taken in the scenario based on

what it perceives to be the best set of actions or policy. Within LAISR, there is the Actor,

Interpreter, and State Representation. The Actor, in reference to the first research

question (see section1.3) the uses DRL (see section 3.3) to derive its behaviors using a

simple reward system. In reference to research question two, the Interpreter decomposes

behaviors into a model that can be expressed in terms of its behavioral strategies (see

section 1.3). Finally, the State Representation generates a readable or referenceable

output of the Interpreter model.

51

51

Figure 11: LAISR Model (Source: Cummings and Crooks, 2020)

4.2 The Actor – A Deep Reinforcement Learning Agent

The Actor portion of the LAISR model uses a type of neural network enhanced

reinforcement learning (RL) called Deep Reinforcement Learning (DRL) (see section

3.3). DRL-based agents build strategies (or policies) that lead to the highest long-term

expected rewards (Sutton and Barto, 1995). Much like human decision-making, DRL

agents construct and learn their own knowledge with minimal input from the model

designer. Using DRL, the Actor generates its own optimal policy based on expected

future rewards; these behaviors are then explained from the perspective of the Interpreter.

4.3 The Interpreter

While efficient and versatile, the DRL’s (see section 3.3) use of neural networks

to approximate its policy is generally unintelligible to the viewer (Lee, 2019), thereby

52

52

reducing its value as a research behavior evaluation tool. These models are essentially

black boxes (Castelvecchi, 2016), i.e., the nature of neural networks makes it nearly

impossible to inspect how the algorithm is accomplishing its function. Even for a network

with only a single layer, it is quite challenging to understand how patterns arise due to the

complexity of the network (Kamruzzaman et al., 2010). The mechanisms that solve DRL

models are hidden within an interconnected network of input, hidden, and output layers.

The interpreter attempts to evaluate the state of the Actor model and then predicts its

behavior in the form of a set of states and conditions.

4.4 State Representation: Developing Strategies

The State Representation provides a method to translate the Interpreter’s

interpretation into a human or code readable format. This representation is designed to

generate a fully usable and coherent representation of the data returned from the

Interpreter. This may come in the form of an excel spreadsheet, a python implementation,

or a more abstract form such as a finite state machine representation or a form of

declarative knowledge. This final state representation also provides a means to

decompose interpretations into a result that defines the characteristics of a strategy. For

example, the Behavior State representation in the Bat-Frog example (see section 0) might

be a representation of a set of states and the probability of being in a particular state. It

may also be something more concrete such as a code representation, including variables

and methods that describe the bat and frog behavior. Nevertheless, the approach provides

some flexibility as to how detailed the designer may wish the model to be. Here, the

53

53

developer can select the level of parsimony and near decomposability (Simon, 1957a)

necessary to accurately model and present behavior results.

4.5 Developing, Running, and Analyzing a LAISR Model

Figure 12: LAISR Design, Development, and Analysis Methodology

The methodology for developing and implementing a LAISR model is based on

the steps outlined in Figure 12. One must first select the representation of the Actor,

Interpreter, and State Representation; Once the characteristics are chosen, the Actor must

be endowed with a reward system to provide a basis for how it selects actions given its

current state and potential for future rewards. Consequently, the Interpreter must be

selected to address how the Actor's behaviors can be interpreted. Interpretation

decomposition provides knowledge of how the Actor behaved within the simulation.

Finally, a State Representation is selected and employed in order to generate a behavior

narrative for the observer. Although there are several ways to approach the

STEP 5: Verification and Validation

STEP 4: Select Machine Learning Platform

STEP 3: Select the Description State Representation

STEP 2: Select the Interpreter Model and Define Interpretation Criteria

STEP 1: Select the Actor and Define Behavior/Rewards

54

54

implementations of a LAISR model, this dissertation focuses primarily on the use of DRL

(see section 3.3) techniques for the Actor and AI interpretation techniques (0) for the

Interpreter. DRLs (see section 3.3) are unique in their ability to act as complex function

approximators, which have been shown to produce sometimes better than human

strategies for gameplay (Beattie et al., 2016). Equivalently, AI interpretation techniques

(see section 7.1) are unique in their ability to extract feature information from DRL

systems.

4.6 STEP 1: Select the Actor Model, Define Behaviors and Rewards

In order to build the LAISR model from a mathematical foundation, some

background in AI and machine learning theory must be introduced. This lays the

foundation for the type of Actor model development that may suit the desires of the

researcher.

4.7 STEP 1a: Selecting Reward Signals

One of the more challenging aspects of developing a DRL model is determining

how to reward its actions to achieve maximum future rewards. With this in mind, rewards

should be simple (parsimonious) and testable. And once implemented, reward systems

should be verified and validated through proper code analysis and examination of results

of implementing rewards. This section discusses approaches that demonstrate how to

apply these techniques.

55

55

4.7.1 Parsimony: Reducing Reward Signal Complexity

Parsimony, or ''just enough but no less'', ensures that causal explanations and

experimental descriptions contain a minimal number of factors which are essential for an

explanation, understanding, and sometimes prediction (Cioffi-Revilla, 2014). With

parsimony in mind, we must balance simplicity with design realism to ensure that the

model maintains empirical accuracy and sufficiency. In the context of ABMs, parsimony

is generally related to coded behavior, which satisfices the design of the model. On the

other hand, reinforcement learning models must consider reward signals from a

parsimonious perspective.

Shelton (2000) noted that often rewards could be difficult to track when combined

with other signals that do not correlate to similar behaviors. Also, reward signals become

even more complex within multi-agent scenarios. Leibo et al. (2017) developed methods

to reduce complexity in reward signals using the Sequential Social Dilemma (SSD)

approach. SSDs are partially observable multi-agent games (see section 3.2.1.1) where a

single agent can obtain a greater reward displaying short term non-cooperative behavior,

but the accrued payoff is higher if agents are cooperative overall. Janssen (2012)

provided a method for creating a simplified approach to categorizing and implementing

reward signals in terms of When, What, and Magnitude (How Much?) (See Table 6).

Table 6: Janssen Reward Structure (Source: Janssen, 2012)

Category Description

56

56

When: Model modifies three reward-based parameters: moment, objective function,
and magnitude. Moment refers to feedback on how performance is
experienced (or given).

What:

What refers to the objective function which dictates how performance is
rewarded. For the objective accuracy function, each model is reinforced to
reinforce accuracy of each item encoded and placed during a round of
strategy.

Magnitude—how
much?

The third parameter is reward magnitude. This is dependent on the objective
function (OF). The OF dictates the rewarded, and magnitude states the amount
of the reward. This allows the model to distinguish between different levels
of success and failure

4.7.1 Reward Verification

Bastani et al. (2018) developed a process for designing rewards that could be

proficiently verified. They took the approach of developing learning decision tree policies

for two reasons: a) they are nonparametric and can represent complex policies, and b)

they are well-structured, ensuring easier verification. The approach presented in this

dissertation considered several aspects of the Bastani model, where, when developing

rewards signals in code for each agent, each reward was tested to examine how it affected

agent responses. In accordance with Crooks et al. (2018) model, the goal was to generate

a pattern that can be reproduced and for which observation data exist. First, a set of

assumptions were put in place that described the reward and generally expected results of

the reward. Second, each model was trained with reward signals individually and with

variations in the reward signal. Then a series of simulated experiments were tested to

ensure there was a clear correlation to how rewards affected agent decisions.

57

57

4.7.2 Reward Signal Parameter Sensitivity Analysis (RS-PSA):

A parameter sensitivity analysis is the most extensively employed method for

testing simulation stability (Crooks et al., 2018). The goal was to, through a quantitative

measure, examine the effect that small adjustments in reward parameter values have on

given model output. The approach was designed to isolate a single parameter at a time,

known as the one factor at a time approach, with the remaining parameters and conditions

held constant. Referring to the reward signals developed for the wargaming model (see

section 5.5), a target reward was selected, and a distribution of values was tested around

the reward signal to determine if the reward signal produced the expected behaviors (see

Table 7).

Table 7: Reward Signal and Signal Distribution

Rule Reference: Destroy Ground Target

 Acquired Target Missed Target
Reward Signal 0.2f -.05
Distribution (lower-upper bounds) [0, .4] [-.1.05, .1.05]

Often reward issues may arise when rewards are set too high or low, or when a reward is

sparse (Pathak, 2017). It was also decided to minimize the number of possible rewards

available to the agent to ensure actions were clearly related to how a reward produced an

identifiable behavior related to said reward.

58

58

4.8 The Interpreter

This section introduces the most novel aspect of the model, the Interpreter. The

Interpreter’s role is to look for forms of consistent behaviors that can be termed ‘rules of

thumb’ (Kahneman, 2011) within the RL agent model results. The Interpreter poses a

substantial challenge which is, drawing the bridge between what the agent is doing

(interpretability) and determining the type of behavioral strategy the agent may be using

to generate its own ‘rules of thumb’. Interpretability can be defined in two primary ways

as it relates to human behavior and the social sciences. Miller (2019) states the

following:

• Interpretability is the “degree to which a human can understand the cause of a

decision.” Here, the greater the ability to interpret a machine learning model, the easier it is to

understand or comprehend why machine learning predictions have been made.

• Interpretability is the “degree to which a human can consistently predict the model's result.”

Although the term explainability and interpretability are sometimes used interchangeably, this

chapter refers to the term explainability as being able to explain AI-Interpretation model

predictions.

4.9 STEP 2: Selecting the Interpreter

The Interpreter is designed to construct decision policies using available data and

appropriate XAI algorithms for the data. Additionally, the type of information is

important when selecting the Interpreter, including whether it is primarily temporal,

causal, or pattern identification matching. Additionally, the researcher may be interested

in local (individual features describing the whole) or global features that aggregate

59

59

features into a single correlation plot. A sampling of important XAI techniques is

described in the sections below.

4.10 STEP 3: Selecting the Description State Representation

 Once data is interpreted, it must be then presented in a format that can be

represented as a strategy. There is not a substantial amount of literature related to the

state representation of heuristics; however, a clear attribute that can help in a

decomposition process is the Fast-and-Frugal Tree (FFT) and Finite State Machine

(FSM) representation.

4.10.1 State Representation Level of Decomposition

One may ask at what level of state decomposition is necessary to describe a

strategy? Abel (2019) provides some insight into how this question can be posed,

specifically where each sub-node is primitive, and each primitive is defined by how it

attempts to solve a particular problem.

Table 8: Methods of Framing State Level Decomposition (Abel, 2019)

Bounds Description
Lower What is the minimum number of primitive moves needed to solve

a given problem?
Average On average (across problem instances), what is the number of

primitive moves needed to solve a given problem?
Upper After how many primitive moves can we guarantee that we solve

any instance of the problem?

60

60

Abel (2019) also notes that actions, or how to break down the specifics of a plan, the

agent must consider resolution overgeneralization. For example, if the agent reasons over

all possible permutations, then the possible paths into the future create intractability.

However, if an agent makes decisions that balance between accuracy and speed, the agent

is able to search over optimal actions. In other words, we seek fast-acting, utility-

maximizing, and robust generalization across different state-action pairs. Unfortunately,

tradeoffs exist between these variables, as shown in Figure 13.

Figure 13: Considerations When Decomposing States

4.11 STEP 4: Selecting a DRL Framework

Given there are a large number of machine learning agent environments available

for testing and research, several platforms are discussed. Generally, it is prudent to focus

on the development of the process for building scenarios and rewards rather than

developing the code to implement specific DRL code. Example variables may also be

necessary to consider when selecting a DRL agent framework:

• State of the art RL algorithms implemented

• Documentation/tutorials and examples

• Robust cross-platform support

• Open-source code that’s easily modifiable

• Regular updates and an active community

61

61

• Quality visualization

The following is a non-exhaustive list of deep reinforcement learning models

currently in use in the machine learning community for just such efforts.

4.11.1 Unity Platform

Unity is a framework for game development that supports several core areas;

importing art and assets, 2D and 3D, modeling; assemble assets into scenes and

environments; audio, 3D models, physics and animation, AI interactivity, and gameplay

logic; and edit, debug and optimize the content for your target platforms (Juliani, 2018).

4.11.2 Arcade Learning Environment

The Arcade Learning Environment (ALE) is a Deep Q-Network (DRL) based

system designed to achieve expert-level competency on Atari console games (Mnih et al.,

2015; Bellemare et al., 2017).

4.11.3 DeepMind Lab

DeepMind Lab (Lab), derived from the Quake III game engine, has been used

extensively by the DeepMind Lab for researching reinforcement learning systems

(Beattie et al., 2016). Given the nature of the engine, simulations are designed primarily

as first-person, which may not be relevant to strategy and multi-agent models (Juliani,

2018).

4.11.4 Project Malmo

 Project Malmo is a Minecraft game-based platform (Johnson et al., 2016).

Although limited in flexibility (issues of low resolution tied to game type), several

62

62

research projects have been developed in the environment (Oh et al., 2016; Shu &Socher,

2017; Tessler et al., 2017).

4.11.5 VizDoom:

Kempka et al. (2016) generated VizDoom (based on the game Doom) as an early

first-person Deep Reinforcement Learning framework (Kempka et al., 2016). Some work

in learning curricula (Wu & Tian, 2016) and memory (Lample & Chaplot, 2016) have

been included in the framework, although it is generally considered lower fidelity than

Deep Mind and Unity.

4.12 STEP 5: Verification and Validation Process

For each representation of the LAISR Actor Model (as well as Interpreter (see

section 4.8)), a verification and validation process should be followed. Robust training and

testing are implicit in the development of accurate models. However, it is difficult to

guarantee that a system returns an expected value given the “black box” attributes of the

neural network structure. In large and complex models, computing all possible outputs for

a given set of inputs is intractable due to the number of potential discrete or continuous

states. However, when training a model, one can first develop efficient methods to test

inputs and outputs. Many properties that cannot be verified offline can be verified at

runtime, although this might not always be feasible with regards to computation time or

resource efficiency. Instead of verifying the entire specification, only the affected parts

can be verified at runtime, assuming that if the specification was verified at the start of

63

63

learning, and each change is deemed valid, then the specification is still valid after an

arbitrary number of changes.

4.12.1 Verifying Code Process

Verification processes included a formal review process for code to include its

comparison to several code examples provided by all code libraries. A second coder

provided some experience with machine learning and generated a set of concepts that

could extend existing examples. Within this framework, each concept was generated in a

pair/review programming review where one coder wrote the code, and another would

read it. Additional comments were included for each aspect of the model, as this allows

the model design to be easily explained to others in the future. A beta test for each

simulation was run where the model developer provided conditions for running the model

(test cases), and results were evaluated based on the test cases.

4.12.2 Model Validation

Validation is an interesting problem related to reinforcement learning, given we

cannot always be sure that the agent produced an optimal policy. In reinforcement

learning, regret𝑅 (François-Lavet, 2018) is a very commonly used metric where, at each

time step, one takes the difference between the reward of the optimal decision versus the

decision the algorithm actually took. We could then sum each𝑅 for cumulative regret. As

each agent performed its optimal policy, the smaller the 𝑅, 𝑡he better an algorithm has

performed. The difficulty with the regret approach to validation is that it assumes there is

a single optimal decision policy. This may be difficult if more than one policy is

64

64

determined. The work presented in this dissertation dealt with this issue by ensuring that

all agents of a certain type within a single simulation shared a collective neural network.

This would ensure a single optimal decision was selected.

4.13 Challenges Verification and Validation Challenges of ABMs

Although section 1.1 outlined several challenges related to the design of a

proposed boundedly-rational agent, there are several other criticisms that relate to

verification and validation challenges. These critiques have to do with dealing with large,

parameter intensive models and human bias.

4.13.1 The “Curse of Dimensionality”

ABMs simulate the evolution of complex systems with a set of parameters

without fully knowing the optimal parameter states to describe the real-world

environment (Li et al., 2013). These parameters provide a rich expressiveness, which

provides a broad state space for examining a complex domain. Although with this rich set

of parameters comes the "curse of dimensionality" (Busoniu, 2010) that leads to an

exponential number of critical points along with the parameter space, with multiple local

maxima, minima, and saddle points, which negatively impact the performance of

gradient-based search procedures (Wong, 2015). Even for small models, exploring the

behavior of the model through all possible parameter combinations (a full factorial

exploration) is practically impossible, even employing multi-objective optimization

procedures such as multimodal optimization or niching (Li et al., 2013). Parameter-

intensive systems suffer from the unpredictability of the results due to dependencies

65

65

between parameters (Alahi et al., 2016). Agent models also develop complex state spaces

with a very large result space. In practical terms, integrating a large number of details

into a model will make generating agent-based models difficult to evaluate, as each

feature within the model needs to be defined and integrated with the other model

components in a meaningful way. Within this so-called "curse of dimensionality,"

increasing the variables integrated with the model increase the potential results. If we

want to obtain meaningful statistical results, it is useful to either keep the number of

variables as low as possible or increase the number of agents and runs. Although this is a

design challenge, it also relates back to section 1.1.1, demonstrating that an agent could,

through its own sub-systems, minimize the amount of complexity and dimensionality that

is in the hands of the model developer.

4.13.2 Human-Intervention Bias

Currently, there is no true automated method for developing agents that can

produce desired results without direct human intervention. Thus, at any point in the

development of a complex model, even if the verification method was done with great

scrutiny, any number of parts of the system could generate errors which will then be

accumulated within the larger system. Ideally, a system would be able to adapt to its

conditions and make its own best model without developing specific 'pre-designed' rules.

Modelers will often provide agents in an ABM with discrete rules that control how the

agent behaves in response to its local environment. These behavioral models are intended

to be reasonable estimates of real-world decision-making. Yet human-biased

representations may limit opportunities for an agent to build their own utility-

66

66

maximizing, decision-making representation of its environment (Osoba et al., 2020).

This inherent design challenge is also discussed in section 1.1.2 where agents do not

build their own heuristics.

4.13.3 Validating Behaviors

In order to design a self-organizing system with the desired emergent behavior, it

is important to find local rules for the behavior of the system's components (agents) that

generate the intended behavior at the system scale. In many cases, this is done by a trial-

and-error process, which in the case of systems with high complexity, is not efficient or

even unfeasible. Agent models also suffer from the unpredictability of the results due to

unexpected dependencies between parameters. This gap addresses the general concern

that agents must be predictable in their behaviors, given they are designed with specific

actions in mind. This is an understandable challenge and will not easily be removed from

standard ABM design. However, the proposed model does not assume that it has a

specific behavior in mind. Rather, the hope is that the agent will help us uncover

strategies to optimize its behaviors.

67

67

5 LAISR EXPERIMENTS: HOMOGENEOUS MODELS

This chapter presents two LAISR experiments, the Schelling (see section 5.1) and

a Tactical Warfare (see section 5.5) experiment. The primary purpose of this chapter

highlights the Actor implementation, where I leave the more complex Interpretation

implementation until Chapter 7: LAISR Experiments: Advanced Explainable Artificial

Intelligence .

5.1 Experiment 1: Schelling Experiment

The first experiment is intended to provide an existing example of how the

LAISR model can be applied to social science theory. This example demonstrates the

simple yet well-known Schelling segregation model (Schelling, 1971). The Schelling

model of segregation is an agent-based model that illustrates how individual tendencies

regarding neighbors can lead to segregation. The model is particularly beneficial for the

study of segregation of ethnic groups where agents represent householders who relocate

in the city (Ibid). Within the model, each agent is part of one of two groups and aims to

reside within a neighborhood where the fraction of similar agents is satisfactorily high:

above a predefined tolerance threshold value 𝐹. It is known that depending on 𝐹, for

groups of equal size, Schelling's residential pattern come together as to either complete

integration (a random-like pattern) or segregation.

Table 9: NetLogo Schelling Model Parameters

Parameter Type Description
DENSITY Variable The slider controls the occupancy density of the neighborhood

(and thus the total number of agents).

68

68

The %-SIMILAR-
WANTED

Variable The slider controls the percentage of same-color agents that
each agent wants among its neighbors. For example, if the
slider is set at 30, each green agent wants at least 30% of its
neighbors to be green agents.

The % SIMILAR Monitor
Output

The monitor shows the average percentage of same-color
neighbors for each agent. It starts at about 50% since each
agent starts (on average) with an equal number of red and
green agents as neighbors.

The NUM-
UNHAPPY

Monitor
Output

The monitor shows the number of unhappy agents, and the %
UNHAPPY monitor shows the percent of agents that have
fewer same-color neighbors than they want (and thus want to
move). The % SIMILAR and the NUM-UNHAPPY monitors
are also plotted.

The
VISUALIZATION

Combo Box The combo box gives two options for visualizing the agents.
The OLD option uses the visualization that was used by the
segregation model in the past. The SQUARE-X option
visualizes the agents as squares. The agents have X's in them
if they are unhappy.

Figure 14: NetLogo Schelling Model (Source: Wilensky, 1997)

69

69

In the NetLogo Model (see Figure 14: NetLogo Schelling Model), agent and

environmental parameters are set, and the observer can view how parameter changes can

affect the results of the model, both in the amount of segregation and the time it takes to

achieve a stable state.

5.2 Schelling LAISR Model Development

The Schelling LAISR model (see Table 10) employs a DRL Q-Learning (see

section 3.2.4.1) and a set of rewards necessary to help the agent find optimal actions

when in specific states.

Table 10: LAISR Methodology for Schelling Reinforcement Learning Model

SELECTION STEP SELECTION

Step 1: Select the Actor and Define Behavior/Rewards Q-Learning Model (see section 3.2.4.1)
and Reward Signals (See Table 17)

Step 2: Select the Interpreter Model and Select
Interpretation Requirements

Heat Map Representation (See Figure
17: Heat map representations of actor
)

Step 3: Select the Description State Representation Not Implemented in this Model

Step 4: Select Machine Learning Platform

See Sert et al. (2020) paper

Step5: Verification and Validation See Sert et al. (2020) paper

Sert et al. (2020) developed the Schelling implementation with a set of rewards

that could generally imitate the ABM model. When developing a reinforcement learning

model (see section 3.1.4) compared to traditional ABMs (see section 2.1), one must first

examine the existing social science model, then determine how to revise the model to

70

70

support reward signals. In the Schelling NetLogo implementation (Wilensky, 1997),

agent behaviors are defined purely by parameters. The model rewards, 𝑅, are scalar

values that are given to each agent as it completes an action at a given state. The final

summary reward for the agent is the sum of rewards based on the signals in Table 11.

71

71

Table 11: Reward Table for Schelling Model (Source: Sert et al. (2020))

Reward Signal Description
Segregation reward
(SR).

This reward promotes agents' segregation, in the form: 𝑆𝑅=𝑠−𝛼𝑑SR=s−αd,
where s is the number of agents of a similar kind within the agent’s observation
window, d is the number of agents of different kind and 𝛼∈[0,1]α∈[0,1] is a
parameter used to control the intolerance of agents to be next to those that are
different from them.

Interdependence
reward (IR).

This reward promotes interactions among agents of different kinds. When an
agent meets another agent of different backgrounds, a winner is selected, i.e.,
one who moves to the cell occupied by the other agent. The winner receives a
positive reward and a life extension of one iteration. The loser dies.

Vigilance reward
(VR).

This reward reinforces agents that stay alive 𝑉𝑅=0.1reward for every time step
they survive and 𝑉𝑅=0 when they die.

Death reward (DR). Agents are punished (or killed) who lose interactions against agents of the
opposite agent type. Agents receive 𝐷𝑅=−1reward when they die
or 𝐷𝑅=0 when they stay alive. Agents must learn that being killed is not
rewarded, primarily to reward non-risky behavior.

Occlusion reward
(OC).

This reward punishes movements into occupied cells between agents of the
same kind. If an agent tries to move towards an area occupied by an agent of its
own kind, the agent receives 𝑂𝐶=−1reward. If the agent moves towards a free
cell, it receives 𝑂𝐶=0.

Stillness reward (TR). Signal promotes the exploration of space by punishing immobility. Agents who
remain immobile receive 𝑇𝑅=−1reward. Agents who chose to move
receive 𝑇𝑅=0.

5.3 Results and Interpretation: DRL Schelling Experiment

Figure 15 displays agent behaviors for multiple values of aggregated rewards

(rows) and times (columns). Rows demonstrate results aligned to the distinctive values of

the interdependence reward (IR). Columns demonstrate the states at differing times

within the simulation. Heat maps are achieved by generating a mean across 1000

iterations. Panel (a) red regions signify "biased occupation of type A" agents are fully

occupied with type A (agents are a concentration of values of +1). Blue regions signify

the occupation of B agents, and full blue occupation is -1. White areas indicate across the

mixing of types and are denoted as concentration 0.

72

72

Figure 15: Results of DRL Schelling Experiment (Source, Sert et al. 2020)

In Panel (b), color signifies the age of agents regardless of type. As color changes

from blue to red, agent age rises. The heat maps are presented over a single trial of the

experiment. The dynamics of segregation rapidly-produce patches of segregated types

(top panels). As interdependence rewards increase, the probability of one grid being

occupied by an agent of type A or B becomes more alike, and plots are represented

whiter (bottom right panels). By creating interdependencies among agents, they increase

their interactions and reduce spatial segregation. Sert et al. note that increasing the

connection of rewards diminishes spatial segregation among different types. In sum, this

study succinctly demonstrates how reward signals using reinforcement learning can be

applied to social science models effectively.

5.4 Experiment 2: Demonstrating LAISR with General Interpretability

A second, more complex LAISR example was developed with the intention of

demonstrating the concept of the Advantage Actor-Critic (see section 3.2.5.1) DRL

73

73

method. The Advantage Actor-Critic model was selected as it has proven more precise

with curiosity modeling as compared to the DQN approach within the Unity platform

(Juliani, 2017). The model also includes a simplified Interpreter, which generates a

statistical translation of output results towards general behavior and strategies. Finally,

the State Representation uses a Finite State Machine (see section 2.5.2.2) representation

for readability and a path to code representations of the agent strategies.

5.5 Tactical Warfare Concept

Table 12: LAISR Methodology for Homogeneous Multi-Agent Reinforcement Learning (Tactical

Warfare)

SELECTION STEP SELECTION
Step 1: Select the Actor and Define Behavior/Rewards Advantage Actor-Critic DRL Model (see

section 3.2.5.1) and Reward Signals (Table
14: AC3 (P,A,R) definitions and rewards)

Step 2: Select the Interpreter Model and Select
Interpretation Requirements

Statistical Representation and Heat Map
Description

Step 3: Select the Description State Representation Finite State Machine Representation

Step 4: Select Machine Learning Platform

Unity ML-Agents

Step 5: Verification and Validation See Section 4.12

Table 13: Code Link for LAISR Methodology (Tactical Warfare)

CODE LINK DESCRIPTION
https://github.com/paulsimvient/Homogeneous-
MultiAgent

Tactical Warfare Concept

74

74

Tactical Air and ground warfare are complex; it involves many dimensions,

complicated processes, high costs, and significant hazards, and its doctrine is a set of

specialized knowledge on the execution of combat maneuvers (Yining and Yuxian,

2003). The same doctrine is used to generate discrete rules within a commercial-grade

simulation platform using computer-generated force (CGF) agents. This is based on a

traditional 1-v-1 pursuit-evasion problem in three-dimensional airspace (Ardema, 1985).

A wargame was developed as a simulated, two-sided (Blue and Red) game, where the

operation is modeled in a game-based environment. Referring to the LAISR model, the

intention was to first generate a set of RL models that provide a type of optimal decision-

making, and second, create a means to derive descriptive behavior representations in

readable formats. Within the simulation, there are three layers; a) a Game/Simulation

Layer that represents the simulation content and structure of the overall simulation

design, b) a DRL Layer where agents generate rewards for achieving mission goals, and

c) the Interpretation Layer demonstrates the decomposition process of the agent’s policy

into a set of finite state based models for evaluation.

75

75

Figure 16: LAISR Simulation Example

5.5.1 Unity Platform Selection

A Unity-based simulation was selected to provide the essential characteristics of

tactical air warfare operations (See 4.11.1). Unity3D was selected for several reasons;

One, it is a free game platform and toolkit which has been designed to research agent

models using several reinforcement learning methods; 2) Within the platform, multi-

agent interaction, and Unity agents are trained using Google's TensorFlow and Keras

packages (Juliani, 2018) which are both well-adopted frameworks for machine learning;

and 3) Unity provided several examples that allowed experimentation with temporal

domains (e.g., long short term memory), curiosity and sparse rewards, and competitive

multi-agent machine learning.

The model was designed based on a set of general criteria necessary to begin the

wargaming experiment. A common understanding of the wargaming objective was

created, including the reason for running the scenario, learning objectives, and external

76

76

conditions and limitations. A simulated area of 10 km x 10 km area within the game

environment was developed to be observable from both a top-down (command and

control) and a 3D man-in-the-loop (MITL) perspective. Within this model, there were 20

LAISR Agents - ten red and ten blue force agents - in the simulated three-dimensional

environment. All agents were tasked to outmaneuver each other so as to enter into a

favorable position to eliminate each other using missiles. The objective of the model was

to develop opposing agents which learn intrinsically

a) that each red/blue agent must first destroy the ground weapon, and

b) once ground targets are destroyed, engage air targets while not being shot

down.

The winning team had the most agents in the air at the end of the episode. The game layer

was developed using the Unity ML-Agent extension library (Juliani, 2016) to develop

both the Actor and the Interpreter.

5.6 Actor Agent Design

For the Actor Agent, a reward system as shown in Table 14 was developed within

a 3-tuple: case = (𝑃, 𝐴, 𝑅)	where: 𝑃 is the description of the action, containing pertinent

information about the state of the agent (𝑎	𝑠𝑡𝑎𝑡𝑒	𝑠	 ∈ 	𝑆); 𝐴 is an action (or a sequence of

actions) that must be performed for the problem at hand; 𝑅 is the expected reward for

performing the action (Ros, 2009). For this simulation, ten agents contribute to the same

continuous action space. The game rules are as follows:

• Rule 1: Destroy as many enemy agents as quickly possible.

77

77

• Rule 2: Prioritize destruction of ground weapons: Ground weapons should be destroyed first

to minimize risk to a fighter squadron.

• Rule 3: Once fighters are safe from ground weapons, destroy enemy fighters

• Rule 4: At any cost, do not get shot down

Each of the Red and Blue force agents, in this case, the stealth tactical fighters, are given

reward signals for completing a number of actions with no specific tactic for how to do

so. Reward signals (see Table 14) are used to train the agent’s optimal policy.

Table 14: AC3 (P,A,R) definitions and rewards

Rule Reference P A R

 Acquired Target Missed
Target

Rule 1 & Rule 2 A.0 Destroy ground targets 0.2f -.05

Rule 1 & Rule 3 A.1 Destroy air targets .12 -.01
Rule 1 A.2 Temporal Penalty -0.1
Rule 4 A.3 Shot Down -5

5.7 Actor Results

Experiments were conducted by generating the conditions for developing Actor

agents that used an intrinsic curiosity model as a means to delineate two primary

behaviors; one, target and destroy ground weapons, and two, engage enemy fighters.

During each run of the simulation, Actor agents explore the action space and respond

based on reward incentives from Table 14. The Actor agents were trained over 500,000

episodes within the Unity ML-Agents (see section 4.11.1) environment using the

Advantage Actor-Critic model (see section 3.2.5.1) model. The results were evaluated

78

78

using the TensorFlow analytics website Tensorboard which demonstrates the speed and

accuracy of model training. The model is able to achieve stable rewards, taking

approximately 12 hours on an NVIDIA GeForce RTX 2060 6GB. Reviewing 500,000

episodes, Table 15reveals the cumulative reward for the agent training increased over the

episodes as well as minimum and maximum rewards over the 500,000 episodes.

79

79

Table 15: Actor agent results: Cumulative reward

Reward Type Value
Result reward 86.3387494
min reward -21.9573917
Max reward 176.8109988
Count (episodes) 500000

Once the Actor agents were trained, 500 skirmishes were run between the red and

blue teams. A heat map was created that showed locations of red and blue fighters. Figure

17presents data for both red and blue Actor agents. Column (A) presents locations before

the ground weapon is destroyed. We find that in this column, opposing agents converge

on the general artillery location. In Column (B), we observe agent behavior after the

artillery is destroyed. The heat maps are generated over 1000 iterations, where the red

regions demonstrate significant occupation of agents. Light blue regions denote some

occupation of agents where full blue is indicated by no concentration. A white cross

denotes the location of the ground weapon before it is destroyed. The results of the

skirmishes showed agents converging towards enemy ground weapons until they are

destroyed, then they engage in air-to-air combat.

80

80

 Column A Column B

 Ground Weapon Attack Air to Air Combat

Red

Agent Fighters

Blue

Agent Fighters

Figure 17: Heat map representations of actor agent location in a metered grid

5.8 Interpreter Agent Results

This section demonstrates a simple example of an interpretation model. It is

important to note that a full AI interpretation model is discussed in chapter 7 although

this early example provides some methods that demonstrate interpretation. Referring

back to the Interpreter, the goal is to uncover behaviors that can be considered strategies.

~500 agent trials were run within the simulated environment, given each of the fighter

81

81

agents interacted with ten adversarial entities and nine friendly entities. All agent actions

were stored in CSV tables (see Table 16) with 8000-20000 entries total depending on the

length of the skirmish, across the red and blue agents as strategies A.0-A.3 (see Table

17). The CSV file stored agent type (0=red, 1=blue), x and y positions, whether it was

shooting, if the ground weapon was destroyed, and the ground weapon and y position.

Table 16: CSV Format for Homogenous Agent Skirmish

team;
1=blue

x y shoot Guns
Destroyed

gun_pos_x gun_pos_y

1 -323 -351 0 0 699 1244

Table 17: Actor-Interpreter dominant use of strategy

Strategies Interpreter

Pre-Ground Weapon Post-Ground
Weapon

A.0 Destroy ground targets 56.30% 4.21%
A.1 Destroy air targets 2.45% 60.00%
A.2 Observe the ground target current state 0.03% 3.00%
A.3 Observe locations of hostile 14.00% 4.60%

Table 17shows the results of how the Interpreter designated Actor behaviors. One

could observe that both the Interpreter observed a strategy for spending time destroying

the ground weapon; once the ground weapon was destroyed, agents changed their

dominant strategy to air-to-air combat. These calculations were then used to develop a

FSM with probabilities of entering each of these states.

82

82

Figure 18: Actor Finite State Machine

In Figure 18, the plane stays in a fly state when the ground weapon is active (G1).

While in G1, each sub-state is iterated through, dominant states are given more time and

therefore are more likely to be activated by the FSM. Moving into the ground weapon

destroyed state (G0) produces a second set of dominant states with differing levels of

priority.

5.9 Summary

In this chapter, the dissertation introduced a method that demonstrates how

machine learning can be used to model decisions made by agent models. The

decomposition of neural networks for mission planners, instructional designers, and agent

modelers, amongst others, can provide a significant way to find optimal solutions to

complex scenarios. The approach also provides the basis for how this type of

decomposition can be used to develop DRL-Agents (see section 3.3) to refine our ability

to solve and manage agent behaviors. The initial results of the Interpreter (see section

4.3) model demonstrate promise as a mechanism to derive strategies. Using these models

to provide results to problem-solving and reasoning can help learners transfer and apply

83

83

their knowledge to novel problems and situations (Rudd, 2010). These models also

provide methods to generalize across operating environments, adversary, and even

game/simulation tools.

84

84

6 LAISR EXPERIMENTS: HETEROGENEOUSMODEL

Until now, the dissertation has discussed the concept of the LAISR model (see

section 3.3) as primarily homogeneous entities that interact against one another. Epstein

(2006) notes that heterogeneous agent populations change or adapt endogenously over

time. This next phase attempts to generate a set of heterogeneous multi-agent

reinforcement learning models (see section 6.1). This section introduces a heterogeneous

multi-agent DRL (see section 3.3) model. The LAISR-Actor is designed to work in

cooperative, fully competitive, and mixed environments (Zhang, 2019). This chapter

investigates the challenges of coordinated learning across heterogeneous agents.

This section also addresses a key concern in developing heterogeneous multi-

agent models, the problem of nonstationarity (see section 6.1.1). Nonstationarity

becomes problematic where the Markov property (see section 6.1.3) assumes agents of

different types must contend with a continuously changing environment.

6.1 Multi-Agent Systems (MAS) in Reinforcement Learning

Multi-Agent Systems (MAS) can be described as two or more agents interacting

with each other in a common environment that acts in response to individual goals

(Busoniu et al., 2008). That is, in lieu of having a centralized singular model, each agent

plays a role in decision-making (Ibid). Multi-agent reinforcement learning (MARL) is an

extension of single-agent reinforcement but must contend with additional areas of

complexity. Primarily, heterogeneous goals among agents (Agogino and Tumer, 2005;

85

85

Busoniu et al., 2008) and multiple agent parameters (Panait and Luke, 2005), and

scalability (Busoniu et al., 2008).

6.1.1 Problems of Nonstationarity

A challenge with Heterogeneous Reinforcement Learning-based Multi-Agents, as

described by Castaneda (2016), is nonstationarity, which occurs because the interaction

of multiple agents constantly reshapes the domain space. Where in single-agent RL, the

agent is observing only the effect of its own actions. In MARL, agents are interacting and

learning concurrently, and agents must associate an action to certain outcomes as well as

to another agents’ behavior. Nonstationarity is a fundamental problem in traditional

cooperative MARL whereas each agent relearns other agent policies; this causes

information convergence to be slow (Papoudakis et al., 2019; Hernandez-Leal et al.,

2017).

6.1.2 Example: Bat/Frog System Revisited

Consider the following: an environment has two agents discussed early in the

section Given the social science community’s interest in modeling decision processes,

ideally, we would like to be able to provide techniques that mimic human cognitive

processes, i.e., quick decisions, particularly when working with complex data. Although

these ‘heuristics’ made may not necessarily be optimal, they can aid our understanding of

how humans acquire and employ decision strategies.

86

86

An Example ABM to Illustrate the Challenges: The Bat-Frog Predation Model

(0), where a frog and bat must learn to exist together. Frog’s policy must have knowledge

of bat’s policy, which from its perspective is a part of the environment (and the opposite

is true for bat’s policy). At each step of learning, the frog learns about the bat’s policy

and its environment. Bat then learns about the environment and the frog’s policy,

updating his policy and making the frog’s knowledge of his sightly wrong. Now frog

must learn bat’s new policy and update its own, making the bat’s knowledge slightly

wrong. This ringing of information can greatly slow convergence during learning,

especially for highly coordinated tasks with many agents, and this specific form of

nonstationarity is believed to be a fundamental reason why it’s so difficult to converge to

good policies in multi-agent learning Papoudakis et al. (2019). Therefore, it is one

intention of this dissertation to develop a convergence approach where both parties are

generally satisfied with their policy. The reader is reminded that there is an important

differentiation that exists between the homogeneous model and the heterogeneous one.

• Homogeneous models maximize their own current and future rewards with no

bearing on any other considerations

• Often (but not always), heterogeneous agents use game-theoretic methods to

generate stable states between themselves and another agent type in the

environment. For example, our bat will not achieve its rewards if it kills off all the

frogs in the environment.

87

87

6.1.3 Multi-Agent Markov games

One approach to MARL development is the use of Markov games, where multiple

adaptive agents will interact with opposing goals. This is where precisely, two agents

with opposing goals share an environment. The discussion begins with the discussion of a

Q-learning-like (see section 3.2.4.1) algorithm for developing policies and demonstrating

its use within a two-player game in which the optimal policy is probabilistic. Unlike

MDP’s (see section 3.1.4.1), deterministic policies are not necessary. Instead, the policy

is often probabilistic and stationary, mapping discrete states to probability distributions.

The Multi-Agent Informational Learning Processes (MAILP) model, introduced by Terry

and Grammel (2020), is a novel model of information transfer during multi-agent

learning. They used the Multi-agent informational learning process (MAILP) to show that

increasing training centralization arbitrarily mitigates the slowing of convergence due to

nonstationarity. Here, the MAILP model demonstrates MARL converges slowly under

normal circumstances due to nonstationarity and that centralization during learning

arbitrarily improves this (with parameter sharing having the greatest level centralization).

In another approach, Lowe (2017) employed a Multi-agent Actor-Critic (MAC)

algorithm (see section 3.2.5.1), which gives each agent a central and global critic during

the training process.

6.2 Experiment 2: The Heterogeneous Multi-Agent Reinforcement Learning

LAISR Model

88

88

Table 18: LAISR Methodology for Heterogeneous Multi-Agent Reinforcement Learning

SELECTION STEP SELECTION

Step 1: Select the Actor and Define
Behavior/Rewards

Advantage Actor-Critic Model (see section
3.2.5.1) and Heterogeneous Reward Signals
(Table 20). Adversarial Self-Play (see section 6.3)

Step 2: Select the Interpreter Model and Select
Interpretation Requirements

Random Forest Partial Dependency and SHAP AI
Interpretation (0)

Step 3: Select the Description State
Representation

Finite State Machine Representation (see section
2.5.2.2)

Step 4: Select Machine Learning Platform

Unity ML-Agents (see section 5.5.1)

Step 5: Verification and Validation See Section 4.12

89

89

Table 19: Code Link for Heterogeneous Multi-Agent Reinforcement Learning

Code Link Description
https://github.com/paulsimvient/Sheep-Wolf

Heterogeneous Multi-Agent
Reinforcement Learning

The heterogeneous model examines the equilibrium state between dissimilar

agents within a population of carnivores and herbivores. Unlike the first round of

homogeneous agents (see section 5.1), this experiment demonstrates how differing agent

types (with different reward signals). The concept presented in the proposed model was

recreated based on a Lenham (2018) Terrarium model, although the presented model

contained its own approach towards generating the reward signals. The terrarium contains

a pre-defined number of carnivores and herbivores as well as plants. The plants grow at a

constant rate and can be eaten by herbivores. Additionally, plants can spread seeds and

thus expand their locations of sprouting in the virtual environment. Carnivores move

within the space and eat herbivores. Both herbivores and carnivores need the energy to

survive and dissipate energy as they move through the environment. If a maximum

energy threshold is reached, an agent can reproduce. The goal for each of the agent types

is to dominate the space, i.e., no opposing member is left in the environment.

6.3 Adversarial Self Play

In a customary DRL (see section 3.3) training condition, an agent increases its

reward signal towards a maximum accumulated reward. These signals are encoded as

90

90

agent tasks, such as navigation, behaviors, and actions. Certain limits are applied to agent

behaviors such as constrained speed, forces, physical constraints (e.g., walls), and the

agent must work within these constraints while maintaining a maximized reward. Unlike

standard reinforcement learning scenarios, adversarial self-play agents compete with

opposing agents where, from its perspective, is effectively part of the environment. Each

agent receives its own Nash Q-Value (Hu and Wellman, 1998) where Q-values now must

consider cooperative actions, rather than just individual actions.

6.4 Reward Signals and Parameters

Table 20 presents the reward signals and descriptions (See Table 20) that are

used to reinforce the DRL behaviors noting that the herbivore is penalized (-.25) for

eating an herbivore, and carnivores are penalized for eating plants.

Table 20: Carnivore Herbivore Reward Signals

Reward Value Carnivore Herbivore Description
Reproduce

1 x x Reinforced to reproduce through reaching
a maturity size. Creates reproduced agents

Eat Agent .5/-.25 x Agents contain energy, even after they die,
so carnivores can eat dead herbivores. If it
eats an herbivore with energy, it received a
positive reward; if it eats one with no
energy (dead too long), it receives a
negative reward.

Eat Plant .5 -.25 x Herbivore eats plants
Attack Agent .5 x x Rewards attacking alternate type, which

dissipates a competitor’s energy
Kill Agent 1.0 x x If the opponent is killed, reward
Out of bounds -1.0 x x If the agent is out of bounds, create a

negative reward

91

91

Initial parameters were set for each of the opposing agent types - both herbivores

and carnivores (See Table 21). Noting that this is a toy model, parameters were designed

to generate some standardization in game playtime. In other words, herbivores were on

the lookout for plants to eat, which grew at a different rate than both herbivores and

carnivores. Additionally, carnivores could eat herbivores, but not vice versa.

Table 21: Agent Parameters (Herbivore/Carnivore)

Parameter Value Discussion
Max Energy 1 Maximum energy dissipates with time, movement, and

attacks.
Mature Size 5.0 Maximum size is used to normalize the speed of growth.
Growth Rate 3.0 Value is used to increase the size of all agents, which in turn

supports the amount of damage that an agent can incur.
e.g., defenseDamage = Defense + (Size / 10);

Eating Speed .3 Controls the amount of energy consumed by agents when
eating.

Decay Rate .001 Once an agent is dead, the decay rate reduces the energy of
the corpse

Max Speed 2.5 Speed in movement within the simulated environment
Attack Damage 0 Amount of attack damage received by agents
Defend Damage .5 Used as a value to calculate overall

damage = AttackDamage - vic.DefendDamage;

Eyesight 20 Distance line of sight for each agent

92

92

6.5 Results: Heterogeneous Agent Model

Figure 19: Wolf Sheep Model

Figure 20: TensorFlow Output (Red) Carnivore (Blue)

All experiments were performed on a six-core i7 8700k @ 3.70 GHz, with an

NVIDIA GTX 1080 GPU, using TensorFlow-GPU v1.7.1. The training time was roughly

4.5 hours. Results are tested on both the PC architecture, as shown above, and a

MacBook Pro 2016. The herbivore agent over 1,000,000 iterations demonstrated a more

optimal learning strategy over the carnivore. It is likely that herbivores may have had

93

93

more players within the simulation as they generally tended to gather more energy as

compared to the carnivores. It is possible with future iterations, parameters can be

adjusted to minimize the growth of herbivores, but this ensures values between

herbivores and carnivores were as consistent as possible. The next chapter, LAISR

Experiments: Advanced Explainable Artificial Intelligence explains the results through

advanced AI interpretation methods.

94

94

7 LAISR EXPERIMENTS: ADVANCED EXPLAINABLE ARTIFICIAL

INTELLIGENCE AND STATE REPRESENTATION

Research Question RQ 2

In the previous chapter, two distinct heterogeneous DRL-Actors (see section 3.3),

the wolf and sheep, were introduced. Picking up where the previous chapter left off, the

concept of Explainable Artificial Intelligence (XAI) is developed into an example for the

Wolf-Sheep Predation model (see section 6.2). In reference to research question two (see

section 1.3), XAI techniques are implemented that are designed to decompose deep

learning models. This will help to enable human users to understand, trust, and describe

the emerging generation of AI algorithms, as discussed in this dissertation. In the section

part of the chapter (7.10), a State Descriptor will be created, which presents XAI data in a

format that describes the agent’s strategy as a set of states and probabilities.

7.1 Interpreting the Heterogenous LAISR Model

The model interpretation process demonstrates ways to show prediction between

actions and how these actions affect change within the model. The first objective is to

identify the most significant and remove insignificant ones; this gets us to a result in

much shorter training time. For model interpretation, the following steps are taken:

1) Select Algorithms

2) Display Descriptive Statistics

3) Embark on AI Interpretation Techniques

4) Present Results

95

95

7.2 Select Algorithms: Partial Dependency Plots (PDP) and SHAP

Given the available interpretation methods, two particular systems were chosen:

PDP and SHAP methods. The PDP approach was chosen for its straightforward and

simplistic representation. In the PDP, the partial dependency at a particular feature value

is the average prediction if we assume all data points of that feature value (Friedman,

2001). In both correlated and uncorrelated cases, the plot presentations clearly show

correlations between variables. Second SHAP interpretation is a suitable complement to

the PD as it provides detailed (local) feature level information rather than global plot

representations.

7.3 Display Descriptive Statistics

Once several thousand iterations of the simulation were run, the distribution of

activities for each agent can be plotted on a frequency graph of the number of times an

activity occurred. Although the results include data from both the herbivores and

carnivores, for the sake of highlighting the interpretation methodology, this section

focuses only on herbivore interpretation. First, activities that are available to each

herbivore are defined:

Idle: 0
Move:1
Forage:2
Eat:3
Attack:4

96

96

Figure 21: Distribution of Activities

Figure 21shows that of the five activities; Move, Forage, and Eat, have the

highest frequency, and Idle and Attack have the least frequency. It is noted that at this

time, there is no reference to the conditions that led to when the activities were applied,

only that there is a particular frequency of behaviors. The next stage of the process

predicts the next activity of the agent-based on prediction variables.

7.4 Embark on AI Interpretation Techniques

The following section presents work that was completed to achieve agent

interpretability using Random Forest Classification and SHAP Interpretation. Code was

developed in Python 3.7 and delivered using Jupyter Notebooks.

Table 22: PD and SHAP Code Link

Code Link Description

https://github.com/paulsimvient/InterpretationCode

 Section contains both random forest
classification and SHAP value
interpretation methods

97

97

7.4.1 Partial Dependence Plot Analysis

As discussed in section 7.2, the first AI interpretation method employed was the

partial dependence plot (PDP). To plot the PDP, a random forest classifier is first trained

using a cross-validation (CV) approach.CV is a technique used to test the effectiveness of

a machine learning model; it is also a resampling procedure used to evaluate a model if

there is limited data. In order to use the Randomized Search CV, model parameters are

specified for searching the Python dictionary. Randomized Search CV implements to

create a Predict and Fit method. Here in the CV model, parameters of the classifier are

cross-validated to ensure accurate and optimized prediction. In the classification

approach, the model predicts the probabilities of each class and determine which class

has the highest probability for selection.

7.4.2 Generate Partial Dependency Plot Prediction Variables

Data were initially collected for each run of the model and stored within a CSV

file. As each iteration of the simulation was run, data was collected by the time interval of

a millisecond and gathered within the data file (see Table 23).

Table 23: Data Collected Within Simulation

Variable Type Description
identifier int64 Unique Object ID
creature type int64 Herbivore or Carnivore
Time int64 Time in Seconds
reproduce int64 Is it ready to reproduce?
CanGrow int64 Variables set to grow
CanAttack int64 Can attack opposing agent
Energy float64 Level of Energy

98

98

MaxEnergy int64 Maximum Energy
Size float64 Size of agent
Age float64 Age of Agent
Activity int64 Activity Type
herbivores int64 Number of Herbivores in Environment
carnivores int64 Number of Carnivores in Environment
plants int64 Number of Plants in Environment
herbivores_e int64 Current Average Herbivore Energy
carnivores_e int64 Current Average Carnivore Energy
plants_e float64 Plant Energy (average)

First, several prediction variables are noted to be irrelevant. This is done through

a process where we examine how variations, or perturbations, in these variables may

influence activity change.

7.4.3 Partial Dependency Plot Data Preparation

The dataset preparation process divides data into training and testing data and

begins by generating data based on the herbivore activity. Given the model is addressing

only herbivore values, the variables related to carnivores (carnivores, carnivores_e, and

creature_Type) are removed. Certain variables do not change throughout the model

lifetime (e.g., Identifier and MaxEnergy) and can also be removed. Time and Age appear

to be highly correlated, so either one of them can be selected as part of the training data

(this is a machine learning rule for evaluating dependence).

7.5 Partial Dependency Plot (PDP) Analysis

After model training, a random forest model is applied for evaluating the most

important variables; this is plotted in ascending order where the most important variable

99

99

is plotted last. Given there are four activity classes, the PD is plotted for each class for

analysis and observes how each variable affects activity.

7.5.1 Activity 0: Idle

Figure 22: PDPs of Activity 0 (Idle) probability based on influencing variables

For the activity Idle (see Figure 22), the variable Age is the most important

attribute. The PDP shows Age doesn't demonstrate a correlation until it reaches Age=2,

and then shows a strong prediction correlation. For Energy, the probability did not show

any trend, it decreases and increases without any trend, but after 2.5, the probability

100

100

remains consistent. For Number of Plants, the probability is the same, but after 15, the

Number of Plants probability exponentially increases.

7.5.2 Activity 1: Move

Figure 23: PDPs of Activity 1 (Move) probability based on influencing variables

For the activity Move (see Figure 23), the graph shows that as Move decreases,

Age increases, i.e., it is negatively correlated with the Move activity. For Energy, its

initial probability increases and then decreases, and after 2.5 it remains the same. For

Number of Plants, the probability is consistent, but at roughly 15 plants, the probability

101

101

for Move decreases. This might be because with the increase in plants, it is likely that

moving isn’t necessary.

7.5.3 Activity 2: Forage

Figure 24: PDPs of Activity 2 (Forage) probability based on influencing variables

For the Activity Forage (see Figure 24), Age, the PDP shows that the Forage

probability increases until value 1 and then decreases. For Energy, its dependence

probability spikes early (1) then dissipates over time. For the Number of Plants, the

probability is similar, but after 15 plants, the probability increases substantially.

102

102

7.5.4 Activity 3: Eat

Figure 25: PDPs of Activity 3 (Eat) probability based on influencing variables

For the activity Eating (see Figure 25), the PDP shows that the probability

increases as the Age value rises and is highly positively correlated. For Energy, the

probability decreases until 𝐴𝑔𝑒	 = 	1 and then increases as Energy value increases, but

after 𝐴𝑔𝑒	 = 	2.5 the probability remains the same.

103

103

7.6 Partial Dependence Plot Results

Figure 26: Energy (x-axis) as compared to Activity Partial Dependency (y-axis) to 4 Activities

0

0.1

0.2

0.3

0.4

0.5

0.6

VA
LU
E 0

0 .
2 5 0 .

5
0 .
7 5 1

1 .
2 5 1 .

5
1 .
7 5 2

2 .
2 5 2 .

5
2 .
7 5 3

3 .
2 5 3 .

5
3 .
7 5 4

4 .
2 5 4 .

5
4 .
7 5 5

PA
RT

IA
L

DE
PE

N
DE

N
CY

IDLE Eat Chase Move

104

104

Figure 27 Age (x-axis) as compared to Activity Partial Dependency (y-axis) to 4 Activities

Upon analysis of the PDP, some interesting and more precise representations of

how variables such as age and energy are influencing activities can be observed. For

example, as Age increases, the agent has a high probability to Eat. Additionally, it does

not Forage or Move as Age increases. On the other hand, Age does not appear to deter

eating. In fact, as the Age increase, Eat increases even though the agent does not Move.

Importantly, it must be ensured that behavior evaluation aggregates result from both Age

and Energy when uncovering strategies. This is described in more detail in the analysis

process.

7.7 SHAP Interpretation

SHAP (Shapley Additive explanations), looks at features within the model and

assigns a prediction to each (Lundberg and Lee, 2017). Shapley (1953) values express the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

VA
LU
E 0

0 .
2 5 0 .

5
0 .
7 5 1

1 .
2 5 1 .

5
1 .
7 5 2

2 .
2 5 2 .

5
2 .
7 5 3

3 .
2 5 3 .

5
3 .
7 5 4

4 .
2 5 4 .

5
4 .
7 5 5

PA
RT

IA
L

DE
PE

N
DE

N
CY

IDLE Eat Chase Move

105

105

contribution that features have on the output of a model. There are two primary benefits

of using SHAP values:

1. Global Interpretability: Describes the model from a global perspective across

multiple features within an aggregated dataset.

2. Local Interpretability: Localizes a problem and describes the model in the local

vicinity, rather than creating an explanation of the whole model.

7.7.1 Training the SHAP Model

A trained model for SHAP value calculation was built. SHAP algorithm has

several methods for calculation of SHAP values for different models. Although several

explainers are available (Tree, Gradient, Deep, Linear, Kernel), it was decided that a Tree

Explainer would be used for several reasons.

1) sampling-based estimation variance is minimized, i.e., no need for a background dataset or

select a subset of feature coalitions.

2) results are no longer skewed due to dependencies between features since these are contained

in the tree structure (although under some circumstances, one would waive both of the

previous benefits);

3) The run time is significantly faster. The Tree Explainer is used for tree ensemble models,

given the approach is based on a random forest approach.

There are several choices for implementation, including XGBoost, LightGBM, CatBoost,

scikit-learn Tree models (Random Forest, etc.), and pyspark tree models. LightGBM

model is used as a low-performance impact approach to the calculation of SHAP values.

LightGBM is a gradient boosting and tree-based learning model (Ke et al., 2017).

106

106

7.8 SHAP Global Interpretability (Variable Importance)

The concept of SHAP (see section 3.4.5) feature importance is fairly straight

forward: Features with larger absolute Shapley values are more important than smaller

ones. Given an interest in global relevance, Shapley absolute values are averaged per

feature. Then, each feature is sorted by decreasing its relevance and plot the results

(Lundberg, 2017). Then the SHAP values of every feature are plotted to demonstrate the

most important model features. The Global Interpretability graph in Figure 28 is the sum

of SHAP value magnitudes over all samples demonstrating variable importance.

Figure 28: Global Interpretability Graph (Variable Importance)

The graph demonstrates that the most relevant feature is Age and the second one

is Energy. Although the plot is interesting, it is a purely global outcome, i.e., it

demonstrates the input variable effect as an aggregate to the total data set, and not

specific observations. But it is worth noting that that given the Partial Dependence Plot

Results Age is prioritized over Energy when considering the likelihood of activity.

107

107

7.9 SHAP Local Interpretability (Variable Importance)

The Summary Plot (Figure 29) is a density scatter plot showing features in SHAP

values demonstrating the importance of each feature on the model output. The plot also

shows the relationships of the predictors with the target variable (positive and negative).

We have four activities and a plot for each activity and its analysis.

7.9.1 Explaining and Plotting Predictors and target Variables

Figure 29: Example Summary Plot

This plot encompasses all points in the training data. It demonstrates the

information, as discussed in Table 24.

108

108

Table 24: Reading the Summary Plot

Feature
importance:

Ranked descending order values that describe the importance of the
feature on model prediction

SHAP Value
Impact:

The horizontal demarcation is showing how each value is associated
with a higher or lower prediction, i.e., feature value over the entire
dataset.

Color values Color values where the red variable is higher predictions or Blue for
lower predictions.

Feature
Correlation

The vertical axis describes each feature as a high
and positive correlation on the predictive quality rating. The red color
implies “high” correlation, and Blue is “low” correlation.

From the diagram, it can be seen that Age and Energy have large effects on the

prediction over the entire dataset (high SHAP value shown on the bottom axis).

High Age values affect the prediction positively (red values on the right-hand side) while

high Energy values affect the prediction negatively (red values on the left-hand side).

For a more detailed explanation of Summary Plot results, please see the section in the

APPENDIX: Explaining SHAP Values as Individual Features.

109

109

7.9.2 Activity 0: Idle Summary Plot

Figure 30: Activity 0 (idle) Summary Plot

For the Idle Activity, when Age value is high, then it is positively correlated with

it, and its prediction accuracy increases. If the Age SHAP value is negative (blue color),

then there is a negative correlation, and the SHAP values define a lower correlation. (This

is same analysis as the random forest, where lower values have a lower probability, and

after 𝐴𝑔𝑒=2, the probability increases.) For Energy, if the value is high, then the

probability is lower that it remains in an Idle activity. This is also the case for Size, where

the agent size is negatively correlated with the Idle activity.

110

110

7.9.3 Activity 0 (Idle): Simplified plot

A simplified graph of the above figure is plotted. The Green color means a feature

is positively correlated with the target variable and is negatively correlated when Red and

no correlation is Blue.

Figure 31: Activity 0 (idle) Simplified Plot

The next step is to interpret each variable correlation. Age, plants_e, herbivores,

and herbivores_e are positively correlated, whereas Size and CanReproduce are

negatively correlated to Activity 0.

111

111

7.9.4 Activity 1 (Move) Summary Plot

Figure 32: Activity 1(Move): Summary Plot

For Activity 1 (Move), it is noted that if Age is high, then the SHAP values are

negative, indicating it is less likely to move as it gets older. This correlates to our Partial

Dependency Plot results; whereas Age increases, less movement is expected (see Figure

32). One might also note that there is a distinct correlation between the number of plants

and the desire to move where an increased number of plants is correlated with increased

movement, and vice versa.

112

112

7.9.5 Activity 1 (Move): Simplified plot

Figure 33: Activity 1 simplified plot

Figure 33 confirms Figure 32 results at a global scale. Here, Age and number of plants are

negatively correlated, and Energy and the number of herbivores are positively correlated.

113

113

7.9.6 Activity 2 (Forage): Summary Plot

Figure 34: Activity 2 (Forage) Summary Plot

7.9.7 Activity 2 (Forage): Simplified plot

This plot describes the Forage activity stating that If Energy is high, then the

probability for Foraging is low (blue color). This may occur because the Energy value

has already been reached, and therefore there is less reason to Forage. It is also worth

noting that as the number of plants increases, the likelihood of Forage also increases.

One might also note that there is a high correlation between Size and Forage activity.

What is of particular importance is that the graph demonstrates that the activity is not

necessarily a predictor of the variable. So larger Size does not imply more Forage

activity. It is more likely that more Forage behavior leads to a larger Size. And more

plants also led to more Forage behavior.

114

114

Figure 35: Activity 2 (Forage): Simplified Plot

For Activity 2 (Forage), Plants (number of plants) are positively correlated, and

Age, plants_e, herbivores, herbivores_e, CanGrow, and CanReproduce are negatively

correlated.

115

115

7.9.8 Activity 3 (Eat): Summary Plot

Figure 36: Activity 3 (Eat) Summary Plot

The plot demonstrates that if agent Age is high, then SHAP values are also high

for Eat behavior, and they are positively correlated. Values are less clear for Energy, but

for Plants (number of plants), it is negatively correlated. There are several interesting

relationships that are represented here. First, Age should not necessarily be a reason for

more eating, but there is another consideration, Size. If one were to consider what might

be happening in the graph, imagine that as time progressed, more plants existed, and with

that, the herbivore ate more, and Size increased when it Ate (noting the positive

correlation). But as it ate, there were simply fewer plants (negative correlation). Also,

116

116

given Energy was low, this would cause the herbivore to decide to Eat more (showing a

negative correlation).

7.9.9 Activity 3 (Eat): Simplified Plot

Figure 17: Activity 3 (Eat) Summary Plot

For Activity 3, Age, Size, plants_e, herbivores, herbivores_e, Can Grow, and

CanReproduce are positively correlated, and Plants (number of plants) are negatively

correlated.

117

117

7.10 Developing the State Representation: Finite State Machine

A FSM representation was built using results from the PDP and SHAP analysis.

The finite state machine is a triple 𝑀	 = 	 (𝑆, 𝑅, 𝑡), where 𝑆 is a finite set of states., 𝑅 is a

finite set of symbols called the alphabet., 𝑡:	𝑆	 × 	𝐴	 → 	𝑆	is the transition function. The

inputs to this function are the current state and the last input symbol (Arbib, 1969; Booth,

1967). While the function value 𝜈(𝑠, 𝑥) is the state, the automaton goes to from state 𝑠

after reading the symbol 𝑥. The resultant FSM is then used as the basis for an agent

model that is purely FSM based, which should mimic behaviors of its ML counterpart.

7.11 Developing a Conditional Map

The next phase was to construct the data into a format that can translate into a

finite state representation. Probability trees are constructed that state the following: Given

the current state of the agent (specifically its highest deterministic factors, Age and

Energy), what is the likelihood it moves into one of the four states?

Figure 37: Conditional Map

118

118

Given this information is generated through the partial dependency map described

in the previous section, the potential for selecting an activity based on the existing state of

the agent is now more apparent. Noting earlier, the two primary predictors of its behavior

were Age and Energy, so for simplicity's sake, these variables are highlighted as the most

predictive characteristics of its potential state. Figure 38 and Figure 39are partial

dependency plots of Age and Energy, respectively.

Figure 38: Energy Partial Dependency Plot

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6

PR
O

BA
BI

LI
TY

 O
F

AC
TI

VI
TY

ENERGY LEVEL

P(IDLE) P(Eat) P(Forage) P(Move)

119

119

Figure 39: Age Partial Dependency Plot

The goal is now to create a distribution of states 𝑠 for Energy and Age that lead to

an action 𝑎. This allows for a range of parameters that can lead to a state. For example,

when 𝐴𝑔𝑒	 = 	𝑙𝑜𝑤	(𝑟𝑎𝑛𝑔𝑒	[0 − 1]) and 𝐸𝑛𝑒𝑟𝑔𝑦	 = 	ℎ𝑖𝑔ℎ	(𝑟𝑎𝑛𝑔𝑒	[3 − 4]), we can

generate a set of probabilities the agent is participating in an action. These probabilities

are listed in Table 26: Conditional States Based on Interpretative AI Model. The table

provides state variable probabilities based on the Age and level of Energy. From these

values, a set of states can be derived based on values. For example, based on Table 26,

one can state the following: Given 𝐴𝑔𝑒	(𝑟𝑎𝑛𝑔𝑒) 	= 	𝑋 and Energy (range) = Y, the

likelihood of selecting a state 𝑆	 = ((𝑝)𝐼𝑑𝑙𝑒	|	(𝑝)𝐸𝑎𝑡		|		(𝑝)𝐶ℎ𝑎𝑠𝑒		|		(𝑝)𝑀𝑜𝑣𝑒).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6

PR
O

BA
BI

LI
TY

 O
F

AC
TI

VI
TY

AGE LEVEL

P(IDLE) P(Eat) P(Forage) P(Move)

120

120

Table 25: Ranges of Age and Energy

Low Low-Mid High-Mid High Very
High

Age [0 - 1] [1 - 2] [2 - 3] [3 - 4] [4 - 5]
Energy [0 - 1] [1 - 2] [2 - 3] [3 - 4] [4 - 5]

Table 26: Conditional States Based on Interpretative AI Model

AGE ENERGY IDLE Eat Forage Move
Low Low 14% 38% 34% 14%
Low Low-Med 14% 35% 38% 14%
Low High-Med 15% 37% 32% 15%
Low High 15% 38% 32% 15%
Low Very high 14% 40% 32% 14%
Low-Med Low 10% 44% 37% 10%
Low-Med Low-Med 9% 41% 41% 9%
Low-Med High-Med 11% 43% 36% 11%
Low-Med High 10% 44% 35% 10%
Low-Med Very high 9% 46% 36% 9%
High-Med Low 17% 45% 22% 17%
High-Med Low-Med 17% 42% 24% 17%
High-Med High-Med 18% 44% 20% 18%
High-Med High 18% 45% 19% 18%
High-Med Very high 17% 47% 19% 17%
High Low 17% 51% 14% 17%
High Low-Med 17% 49% 17% 17%
High High-Med 18% 51% 12% 18%
High High 18% 52% 11% 18%
High Very high 17% 54% 11% 17%
Very high Low 16% 56% 13% 16%
Very high Low-Med 15% 54% 15% 15%
Very high High-Med 17% 56% 10% 17%
Very high High 17% 57% 9% 17%
Very high Very high 16% 59% 9% 16%

Table 26creates a set of states and probabilities of the likelihood of being in one

of the respective states. For example, if Energy is low and Age is low, we can expect a

roughly 40% likelihood that the agent Eats, 35% it Forages, and 15% Idle and Moves,

respectively. These conditions are the basis for the design of agent FSM and, thus, how

we can describe its behavior in a readable narrative.

121

121

7.11.1 Translating Strategies into Cognitive Heuristics

Figure 40: Bridging Cognitive Heuristics and Explainable AI

Figure 40illustrates a basic representation of what is intended for review in this

chapter. The goal is to derive boundedly rational behaviors (see 2.2.1) from an AI-

Interpretation FSM. From the perspective of cognitive heuristics, some interesting

potential strategies can be derived. For example, using the take-the-best heuristic, we can

see that we can define behaviors from the perspective of “what is the highest probability

action based on the existing state?” This is a single-reason decision rule, a type of

heuristic where judgments are based on one “good” reason only, ignoring other

indications (Gigerenzer & Gaissmaier, 2011). Using the take-the-best heuristic, one

might deduce that, all things equal, an Eat-Forage strategy might be a viable approach to

all conditions, where the agent fluctuates between the two based general conditions in the

environment, where fast-and-frugal heuristics are useful in situations of uncertainty,

122

122

while optimization is designed for risk-based situations. We may observe that under the

duress of Age, even with high Energy expenditure, it may not be wise to Forage,

although in this simple example, we can deduce that when Age increases, there may

simply more things to eat within the environment. But high Age does not imply that

agents take the opportunity to expend energy to find new food sources. In fact, one may

say a strategy is simply “don’t waste energy, eat what you have in front of you.” This is

further reinforced by the variable Move, which generally demonstrates movement is not

advantageous, even in high energy states.

The premise itself is objectively clear. Interpretation techniques can derive both

local and global level feature interpretation. And this provides some very compelling

ways of creating behavior descriptions once the agents have created their respective

optimal policies.

123

123

8 DISCUSSION AND FUTURE WORK

Although technical in nature, this work is no more an Artificial Intelligence

dissertation than is Epstein and Axtell’s work in generative societies is a computational

system technology. The design, development, and analysis of this document is a

methodology to generate computational strategies for social science research. Multi-agent

systems, both homogenous and heterogenous, can benefit from developing LAISR

agents. Once created, behaviors can be interpreted, analyzed, and represented as

strategies for the social scientist to use as a method of modeling and measuring theory.

Starting with the first research question, “What methods can aid in the design,

development, and analysis of hybrid ABM and reinforcement learning system in efforts

to address challenges in ABM modeling?” In this section, I refer specifically to the

portion of the agent that is using the deep reinforcement methods, the DRL-Agent. First,

rational agents can exist in bounded conditions, i.e., states with limited understanding of

the environment. These conditions have given rise to algorithms that have permitted us to

draw relationships between Simon’s concept of bounded rationality and the field of

reinforcement learning; a DRL-Agent learns and makes decisions while not having a full

understanding of its domain (Abel, 2019). Thus, it is argued that DRL can act as a

method for modeling bounded rational agents. The Partially Observable MDP (POMDP)

agents use a partial understanding of the environment to generate the true nature of the

world state. The DRL-Agent, with its partially observable representation, must optimize

actions based on the little it understands. Where rationality in human behavior is often

124

124

limited by our existing knowledge, DRL-Agents are subject to restrictions on their

understanding of the modeled environment (Abel, 2019). A key term that is used for this

type of constraint is computational rationality, which assigns boundedness by resource

constraints. Lewis et al.’s work (2014) describes a conceptual Optimal Program Problem

(OPP) with three attributes: environment, a resource-constrained machine, and a utility

function. My work has some overlap with the concept of computational rationality yet

frames things somewhat differently; namely, DRL-Agents are not computationally

resource-constrained; rather, they are limited by what their input sensors observe.

Additionally, the difference between my model and that of Lewis’ work is utility

maximization. Lewis implied maximizing utility removes bounded rationality, which I

offer is not the case. Utility maximization is a process for optimizing the decision process

and is necessary for the model.

The argument for DRL-Agent and human cognitive processing is that both

humans and agents do not have perfect rationality (Simon, 1955), and herein lies the

fundamental importance of the approach – if full rationality does not exist in human

behavior, nor should it in the representation of the behavior in silico. In the proposed

model, Artificial Intelligence research provides some representation of learning and

decision-making yet is still subject to realistic constraints on reasoning. The DRL-Agent

empowers our ability to generate other forms of decision-making under realistic

assumptions; these include the study of reinforcement learning (RL), a general problem

construction in which agents must simultaneously learn about their environment while

making good decisions in that environment. This type of boundedly rational, using

125

125

reward signals rather than specific behaviors, can help social science imagine generalized

questions without highly specific implementations.

8.1 Importance of this Work

Certainly, when one observes the level of detail it may take to generate DRL-

Agents and resultant interpretations of their behavior, one may ask, is it worth it? After

all, generating simple discrete agents with often complex and emergent results may be

enough. Simon (1969) discusses AI in relation to decision-making where human

cognition is limited in its ability to comprehend and respond to a vast amount of data;

machines may be able to solve problems by simply running millions or even billions of

steps to determine potential strategies. This is why this work, even its early

implementation, may become highly valuable as a tool in the community. Here, we

return to research question 2, “What AI-based research techniques can help to

deconstruct behaviors of the proposed agent model into decision strategies that mimic

attributes of human mental processing (i.e., ‘fast-and-frugal)?” Interpretation modeling

provides new and sometimes quite novel insights into behavior, and model interpretation

methods such as SHAP and random forests can provide meaningful insights into the

results of the DRL models. Succinctly, if we can allow the agent to run its course, its

strategy development may provide insight into the way the brain creates its own

behaviors. We may not be able to always create a perfect correlation between human

decision-making and what the agent accomplishes, but that is not the point. The point is

rather to allow the DRL-Agent to create its own strategies; sometimes, we may find a

mapping to human decision-making, but sometimes we may also find new and interesting

126

126

strategies that could enhance our understanding of some environment or state space.

Rather than creating our representation of a boundedly rational agent representation, the

agent itself makes that determination.

The heuristics and biases program made famous by Kahneman and Tversky

(1972) examines rational choice and how it deviates from normal human behavior.

Figure 41: Kahneman Systems Revisited

For example, one may deduce that the DRL-Agent ’s learning process is close to human

intuition (See System 1: Figure 41), where it can assemble behaviors, create decisions

with minimal effort, and generalize with limited cognitive processing. DRL-Agents train

over hundreds of thousands, even millions of iterations, much like the brain does when

selecting its own optimal approach to problem-solving. And like our own cognitive

process, a DRL-Agent uses its knowledge to generalize over many situations.

Kahnemanand Tversky (1972) state that human cognition relies on “some fast (in terms

of time) and frugal (in terms of information acquisition and processing) heuristics”

artificial agents in many ways, with limited knowledge, make their own ‘fast decisions.’

And with the model, we have tools that can aid in the decompositional behavior process.

127

127

These interpretation techniques, prevalent now in the AI community (i.e., SHAP and

random forest interpretation models), provide glimpses into how social models in silico

can be better understood. This is very important, where even precise problems are often

very difficult to analyze (Fraenkel & Lichtenstein, 1981).

8.2 Revisiting Social Science Theory

When considering the relevance of the DRL-Agent model to social science

theory, we must examine not only individual behaviors but that of groups of

heterogeneous agents and how they cooperate, defect, or some middle strategy.

Multiagent Reinforcement Learning algorithms (MARL) provide some ability to develop

DRL-Agent behaviors but with new challenges in nonstationary policies (Papoudakis et

al., 2019). Techniques to minimize the complexity of multi-agent learning using a

“heuristic policy” (Bianchi, 2007) may help to advance the ability for multi-agent

systems to learn together using DRL algorithms. For example, imagine an agent that is

continuously refining its behavior by optimizing based on rewards, building new

heuristics, then incorporating these heuristics into the new reward signal. This process

could continuously test generalized theories by creating an almost infinite set of potential

strategies, and with enough time, one could build a fully dynamic set of agents that

respond to almost constantly changing conditions.

There are a few very key considerations in how these DRL methods may help us

understand human mental processing. Das (2006) stated, there are no suitable definitions

for intelligence, although understanding human divergences from decision norms might

prove informative in the design of algorithms. Here, we can observe that heuristics and

128

128

biases from Kahneman and Tversky’s(2011) work can help us better understand how our

cognitive processes may deviate from the models of rational choice. We could imagine

that the heuristically biased processes in the brain are simply the brain’s representation of

a deep Q-neural network with the data it has available to it. Within the context of

“ecological rationality,” Mata et al. (2006) state that simple heuristic strategies can work

well in many natural environments, suggesting that human rationality, much like an agent

deep neural network, is an adaptive fit between its capacity to generate consistent and

semi-optimal decisions across multiple environments. Todd et al. (2016) noted that in

ecological rationality, top-down learning starts with a set of principles, and heuristics are

built within uncertain environments and can be enhanced by refining complex models.

This is, in fact, clearly similar to the way a refined neural network model accomplishes

its goals. Gigerenzer & Goldstein (1996) also note heuristics are “ecologically rational”

(capable of using existing information available within the environment) yet violate

rationality norms. In fact, the two researchers have developed their own computational

models that are fast, frugal, simple to operate even though they are computationally

limited (Das, 2006).

But it is important to address the “how much is enough?” question as it relates to

what a heuristic is in computational modeling. For example, DRL-Agent must straddle

their domain knowledge where it is not so simple that it cannot produce a usable heuristic

(under fitted) and one that is not generalizable enough to transfer knowledge into new

domains (overfitted). Horvitz (1987) notes the term bounded optimality seems to be the

129

129

right goal, where an agent is bounded-optimal if its model is a solution given a

constrained optimization problem presented by its architecture and the task environment.

8.2.1 Is the Heuristic a Neural Network Overfitting/Underfitting Problem?

This research leads us to how the human brain’s non-rational behavior might be

similar to what we see in a neural network. The brain’s neural network ‘under its’ in

order to generalize for as many conditions as possible. In fact, we have survived not

simply by our adaptability but rather our generalizability. Our brains must learn to act

quickly and efficiently with minimal resources, and so does the DRL-Agent. If its life –

or how it is rewarded - depends on how it selects its next decision and future decisions, it

must be careful not to simply be precise. It must also be prepared to adapt to a multitude

of conditions and make choices that are optimal for its survival.

8.3 Future Work

Methods that are discussed in this dissertation provide some new and meaningful

insights into the future of our understanding of complex behaviors in the context of social

science theory. However, the work being presented has substantial room for growth. A

few of the primary topics that are still underrepresented in this research are causality,

temporal detail, and heterogeneous decomposability. First, the approaches that are being

discussed related to model interpretation does not necessarily imply causality.

Importantly, SHAP values do not identify causality. The relationships presented in

SHAP and random forest graphs are important to demonstrate an association, but for the

130

130

time being, that is all. However, the association is a very important first step towards

uncovering causality. For example, observing general conditions where behaviors tend to

occur can help to lay the foundation for deeper exploration of causality.

Second, when this work began, research related to time-based interpretation was

still in its bourgeoning stages. Earlier (see section 3.4.2), an AI technique called

recurrent neural networks (RNN) was referenced as a way to model and analyze time

series and equivalent data. Currently, the DRL model considers time but only in a

minimal context. For example, Age does not fluctuate; it only increases, so time-related to

age is consistent and can be used to predict variables based on the SHAP model. The

energy, on the other hand, fluctuates based on several other factors and cannot easily be

associated with behaviors occurring over time. A more robust time-based interpretation

technique may be important in future work.

Third, behavior interpretation is still fairly coarse; specifically, it can be difficult

to evaluate a set of strategies for agents who are of the same type yet act differently. Even

if all the agents share a common neural network, this can still be a challenging DRL

problem to overcome, given the converge of behaviors is unlikely. Luckily, local

representations such as SHAP Summary Plot helps to identify large behavior

distributions by showing how easy it is to predict features. The feature values identify

how much impact each feature has on the model output and show the positive and

negative relationships of the predictors with the target variable (see Figure 29). For

example, we can use SHAP data to determine how relevant a particular action is to the

model (feature value), and in doing so, we can generate a distribution of possible actions

131

131

that fall within the SHAP feature distribution. We can also use the SHAP data to generate

a prioritized list of actions that influence a feature, and therefore can weigh the potential

for an action to take place. But there is still much work to be done here.

8.4 Applications of the Actor-Interpreter Model

It is believed that the notion of allowing agents to develop behaviors and to

observe conceptually how they can help us uncover strategies, behaviors, and insights

entice our community for years to come. AI agents may exist to help us understand that

we are no longer bound by our own cognition. Within the social science discipline, we

can expand our ability to design social scenarios and observe how new and diverse

behaviors emerge as DRL models can uncover novel ways to refine their understanding

of environments. These agents can evaluate the domain space, then provide suggestions

towards problem-solving. This is a uniquely important aspect of social science, where

through traditional computational approaches, our agents are often pre-wired with

discrete rules. The approach can enhance the research that spans modeling, real-time

simulation, and training, as well as learning strategies using intelligent tutoring and

remediation. Several new fields are emerging where the use of an Actor-Interpreter

model can be of great use, where there may be rules and robust solutions for an agent (Vu

et al., 2019).

8.4.1 Modeling Agents in Gaming and Entertainment Environments

Game technologies have begun to enhance mechanics through the use of

reinforcement learning agents. Creating semi-intelligent non-playable game characters

132

132

through RL has supported game scalability and complexity (Juliani, 2018). ML-Agents,

which is used in this dissertation, is an open-source platform providing tools for policy

and off-policy learning. One would likely notice that the same dynamics generated in

gaming environments can also be applied to other forms of entertainment, including VR

experiences and movie special effects. Game testing can be enhanced through the design

of DRL-Agents/Interpreter and examined through the proposed interpretation process.

8.4.2 Wargaming and Decision Support

Wargames are analytic games that simulate aspects of warfare at the tactical,

operational, or strategic level. They are used to examine warfighting concepts, train and

educate commanders and analysts, explore scenarios, and assess how to force planning

and posture choices to affect campaign outcomes. Several examples have been developed

and can execute various types of wargames, including scenario exercises, tabletop map

exercises, games, and computer-supported exercises. For example, RAND (Linick et al.,

2020) developed Hegemony, a wargame designed to teach U.S. defense professionals

how different strategies could affect key planning factors in the trade space at the

intersection of force development, force management, force posture, and force

employment. The use of DRL-Agent/Interpretation offers ways of examining new

strategies for wargaming and decision support professionals.

8.4.3 Department of Defense (DoD) Training Systems

The DoD is the development of modernized simulation technologies for training,

which includes live, virtual, and constructive training exercises. The approach to the

133

133

development of these complex exercises includes the demands of adaptive AI is

constantly changing scenarios that exist in ambiguity and chaos. For example, the DoD’s

Synthetic Training Environment (STE) provides training as a service through immersive

simulation and gaming technologies where AI (and reinforcement learning) can optimize

human performance and support operational and training scenarios (Hubal, 2017).

Generating dynamic training scenarios and examining DRL-Agent/Interpreter solutions

can transform the way that training is accomplished for the next generation warfighter.

8.4.4 Research: Inverse Generative Social Science (IGSS)

Similar to the DRL-Agent approach, IGSS is not to build entire agent types, but

rather, to encode rules, parameters, and possible mathematical principles, one would

search the space for the most appropriate agent architectures. Vu and Epstein (2019)

develop an IGSS approach using Genetic Programming, Decision Trees, Causal State

Modeling, and Machine Learning and AI. Certainly, a bridge exists, which may lead to

similar definitions, methods, and theoretical underpinnings. The use of the DRL-Agent

and Interpreter can be an important addition to the IGSS community.

This dissertation finishes with a short fictional narrative about a socially evolving

agent named Darla. Although quite fantastical, it provides a guiding light to what may be

possible when we think about the future of AI and behavioral attributes in the coming

decades. Agents may themselves be part of either fictitious or non-fictitious narrative and

must build their own decision processes to adapt and thrive in their surroundings. The

future is certainly exciting and left with great opportunities to explore.

134

134

Darla, as a young biomorph, was no larger than the size of a house cat. In a quiet corner of her playpen, she
touched the follicles of her abrasive hair against everything within her reach. Her single lidless eye stared
intently at each object she handled, sometimes for several minutes at a time, in what appeared to be a gentle
meditative trance. Her experimentation was much like how a baby explores its world. It was mesmerizing to
watch. To view a biomorph interacts with its surroundings was like watching a work of art paint itself. No
two biomorphs were alike, often not even remotely alike. Some were large string-like beings that wrapped
around their observations like a snake eating its prey. Others were shapeless beings that moved through the
environment like purposeful gelatin. Still, other biomorphs resembled the form and function of multi-legged
creatures, akin to small insects.

Darla’s behaviors were often difficult to fathom. Unlike the gates, walks, crawls, and undulations we are
accustomed to seeing in earth creatures, biomorphs were highly experimental in shape and mobility. It was
not unusual to see a creature use two or three large protrusions scrape against the ground while smaller
foot-like projections would push from behind. Sometimes a biomorph could move in circles or poke at the
ground for hours on end, demonstrating no logical reason for its behavior. Other times, after days of
seemingly random movements, an entity would suddenly stop and begin an exquisite orchestration of
movement. She was now roughly 4.5 billion trillion episodes old, or more specifically, 123 super-epics.
Unlike typical sentient life, it did not make much sense to measure age by cycles around the sun. The
biomorph had a distinct advantage as compared to earth organisms – it did not need to live a lifetime to
grow and evolve. Where, for example, it can take 100,000 years before a mutation in the human gene pool
to become an adaptive trait, biomorphs were able to learn, evolve, and re-design themselves in a picosecond.

The skin that surrounded Darla had a soft and wool-like attribution. Although it appeared to be fibrous in
texture, her skin was actually a dense array of micro-cilia that that were in constant motion, often too small
for the eye to observe unless under a microscope. However, the skin was highly advanced, allowing it to work
in conjunction with other cilia to create what appeared to be synthetic appendages. It took a few days for her
body to reach a stable state. She would observe and experiment with its attributes, often holding on to it for
several days, then would begin a new transformation. At the moment, she appeared happy with cilia tentacles
growing from the top of her head. Her current experimentation did not include a need for mobility, and hence
legs and arms were not well-developed. All the while, the world seemed to be a beautiful place for Darla to
explore.

It was difficult to say whether her experience was one of joy, inquisitiveness, or simple observation, but Darla
never tired from the endless exploration of her world.

135

135

APPENDIX

Introduction: Discussion of Coding Process

DRL-Agent Code Links

The first two code bases are in reference to the homogeneous and heterogeneous

reinforcement learning systems.

Reference Section Code Link
https://github.com/paulsimvient/Homoge
neous-MultiAgent

Homogeneous Multi-Agent Reinforcement
Learning

https://github.com/paulsimvient/Sheep-
Wolf

Heterogeneous Multi-Agent Reinforcement
Learning

Interpretation Models

The following section presents work that was completed to achieve agent

interpretability using Random Forest Classification and SHAP Interpretation. Code was

developed in Python 3.7 and delivered using Jupyter Notebooks.

Reference Section Code Link Description

Interpreting the
Heterogenous LAISR
Model

https://github.com/paulsimvient/Inte
rpretationCode

Section contains both random
forest classification and
SHAP value interpretation
methods

136

136

Explaining SHAP Values as Individual Features

For the reader, it may be somewhat difficult to decipher the SHAP graph.

Therefore, some examples are provided to attempt to explain predicted Activity with

SHAP Values. First, the activity Move as a target is selected. Predictions are explained

with the SHAP values, and a Summary Plot are developed for one target pointer activity.

Activity 0 (Idle):

According to the model probability of this activity is 0.0012, which is low. The

graph is a decomposition of a single point in the Summary Plot.

Figure 42: Idle Activity Individual Feature

Age has the highest positive SHAP value 1.5, which is increases probability.

Energy and Size also have positive values, but values are low, so they are not increasing

137

137

the probability much higher. Number of Plants, herbivores, and Plant Energy (plants_e)

have higher negative SHAP values, which are decreasing probability.

Activity One (Move):

According to the model probability of the Move activity is 0.9942which is very

high, and also, the target activity is one. The summary plot is as follows

Figure 43: Move Activity Individual Feature

Age has 3.0 shape value, and Energy has 2.3 value, which pushes probability very

high, and only plants have a lower negative value. So that is why it has a high probability

for this activity.

138

138

Activity 2 (Forage):

According to the model, the probability of this activity is 0.004.

Figure 44: ForageActivity Individual Feature

Age has a very high negative SHAP value, which is decreasing the probability,

and energy is also decreasing the probability. Number of Plants (plants), Number of

Herbivores (herbivores), and Herbivore Energy (herbivores_e) is increasing probability.

139

139

Activity 3 (Eat):

Figure 45: Eat Activity Individual Feature

All the prediction variables are decreasing probability, and only plants_e is

increasing probability. But the overall impact is negative, so the probability of this

Activity is zero. Overall, the Age factor is the most important feature in the prediction, age

is positively correlated with eating activity, and middle-aged stays idle at most among all

ages. Energy is the most non-trending feature, which sits at generally the same position,

whereas in Forage activity with high energy, the probability is lowest.

Examining Feature Importance

After the initial model training, certain important features can be identified

according to the Light Gradient Boosting Machine.

140

140

Figure 46: Light Gradient Boosting Machine Results (Gain vs. Split)

Figure 46 displays two graphs: gain and split. The gain is the contribution of the

equivalent feature in the model computed by each feature’s influence in each tree model.

The split is the number of times the feature appears within the model, i.e., the number of

times each feature was used when creating the trees. Very succinctly, one may notice that

the gain and split models are not equivalent. Given that, accuracy is determined when

generating shap values

141

141

REFERENCES

Abbott R., Hadžikadić M. (2017). Complex Adaptive Systems, Systems Thinking, and
Agent-Based Modeling. In: Hadžikadić M., Avdaković S. (eds) Advanced
Technologies, Systems, and Applications. Lecture Notes in Networks and
Systems, vol 3. Springer, 1-8.

Abel, D. (2019). Concepts in Bounded Rationality: Perspectives from Reinforcement
Learning. (Master’s Thesis).

Agogino A., Tumer K. (2004). Efficient Evaluation Functions for Multi-Rover Systems.
In the Genetic and Evolutionary Computation Conference, Seatle, WA. 1-12.

Alahi, A., Goel, K., Ramanathan, V. Robicquet, A., Fei-Fei,L., Savarese, S. (2016).
Social LSTM: Human Trajectory Prediction in Crowded Spaces. The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016. 961-
971.

Alexander, P. A., Schallert, D. L., & Hare, V. C. (1991). Coming to terms: How
researchers in learning and literacy talk about knowledge. Review of Educational
Research, 61(3), 315-343.

Ali, S., and Shah, M. (2010). Human action recognition in videos using kinematic
features and multiple instance learning., IEEE Trans. Pattern Anal. Mach. Intell.,
32(2). 288–303.

Allard C.R (2003). Effective Decision-Making in the High-Tech Service Innovation
Process, Doctoral Dissertation, Maastricht University, Maastricht,
Datawyse/Maastricht University Press.

Almeida, A., Azkune, G. (2018). Predicting Human Behaviour with Recurrent Neural
Networks. Appl. Sci. 2018, 8, 305.

Anderson, L. W., & Krathwohl, D. R. (2001). A Taxonomy for Learning, Teaching and
Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives:
Complete Edition. New York: Longman.

Andrews, R. Diederich J. and Tickle, A. (1995). Survey and critique of techniques for
extracting rules from trained artificial neural networks, Knowledge-Based
Systems, Vol. 8, no. 6. 373-389

142

142

Andrews, R., Diederich, J., Tickle, A. (1995). A survey and critique of techniques for
extracting rules from trained artificial neural networks. In Knowledge Based
Systems.

Andrews, R., Diederich, J., Tickle, A. (1995). Survey and Critique of Techniques for
Extracting Rules from Trained Artificial Neural Networks, Knowledge-based
Systems, Vol. 8, No. 6, 373- 389.

Antonosvsky, A. (1993). Complexity, Conflict, Chaos, Coherence, Coercion and Civility
Social Science and Medicine, 969-974.

Apeldoorn, D., Kern-Isberner, G. (2017). A Discrete-Heuristic Learning Approach for
Finding and Exploiting Heuristics in Unknown Environments, Proceedings of the
Thirteenth International Symposium on Commonsense Reasoning,
{COMMONSENSE} 2017, London, UK, November 6-8.

Arbib, Michael A. (1969). Theories of Abstract Automata (1st ed.). Englewood Cliffs,
N.J.: Prentice-Hall, Inc.

Ardema, M. Heymann, and N. Rajan (1985)., Combat Games, Journal of Optimization
Theory and Applications, Vol. 46, No. 4, 391–398.

Ardema, M., Rajan, N. (1987). An approach to three-dimensional aircraft pursuit-
evasion. Computers & Mathematics with Applications, Vol. 13, no. 1-3. 97–110.

Baddeley, B. (2008). Reinforcement learning in continuous time and space: Interference
and Not Ill Conditioning is the main problem. Transactions on Systems, Man, and
Cybernetics. Part B: Cybernetics, Vol. 38, Nov 4, August 2008, 950-956.

Beattie, C., Leibo, J., Teplyashin, D., Ward, T., Wainwright, M., Küttler, H., Lefrancq,
A., Green, S., Valdés, V., Sadik, A., Schrittwieser, J., Anderson, K., York, S.,
Cant, M., Cain, A., Bolton, A., Gaffney, S., King, H., Hassabis, D., Petersen, S.
(2016). DeepMind Lab.

Bastani, O., Pu, Y., Solar-Lezama, A. (2018), Verifiable Reinforcement Learning via
PolicyExtraction, NIPS'18: Proceedings of the 32nd International Conference on
Neural Information Processing Systems. 2499–2509.

Been, K., Khanna, R., Koyejo, O. (2016). Examples Are Not Enough, Learn to Criticize!
Criticism for Interpretability. Advances in Neural Information Processing
Systems, Curran Associates, Inc. Nips2016, 2280-2288.

Bellemare, M. G., Dabney, W., &Munos, R. (2017). A distributional perspective on
reinforcement learning. arXiv preprint arXiv:1707. 06887.

Bellemare, M. G., Dabney, W., &Munos, R. (2017). A Distributional Perspective on
Reinforcement Learning. Arxiv Preprint Arxiv:1707.06887.

143

143

Bellman, R. E. (1957). Dynamic Programming. Princeton Press.

Bernoulli, B. (1738). Exposition of a New Theory on the Measurement of Risk,
Econometrica, 22(1): 23–36. Doi:10.2307/1909829.

Berretty, P. M., Todd, P. M., &Martignon, L. (1999). Categorization by Elimination:
Using Few Cues to Choose. In G. Gigerenzer, P. M. Todd, & the ABC Research
Group (Eds.), Simple Heuristics That Make Us Smart (235–254). New York: Ox-
Ford University Press.

Bertsekas, Dimitri P. (1995). Dynamic Programming and Optimal Control. Vol. 1 and 2.
Athena Scientific.

Bhavnani R, Miodownik D. (2009). Ethnic Polarization, Ethnic Salience, and Civil War.
Journal of Conflict Resolution.; 53(1):30–49.

Bianchi, R., Ribeiro, C., Costa, A. (2007). Heuristic Selection of Actions in Multiagent
Reinforcement Learning. IJCAI International Joint Conference on Artificial
Intelligence. 690-695.

Bideau, B., Kulpa, R. Vignais, N., Brault, S., Multon, F., Craig, C. (2010). Using Virtual
Reality to Analyze Sports Performance. Computer Graphics and Applications,
IEEE 30(2): 14-21.

Bonabeau, E. (2002). Agent-based modeling: Methods and Techniques for Simulating
Human Systems. Proceedings of the National Academy of Sciences, 99 (Supp
3):7280–7287.

Booth, Taylor L. (1967). Sequential Machines and Automata Theory (1st ed.). New
York: John Wiley and Sons, Inc. Library of Congress Card Catalog Number 67-
25924.

Brandstätter, E., Gigerenzer, G., &Hertwig, R. (2006). The Priority Heuristic: Making
Choices without Trade-offs. Psychological Review, 113, 409–432.

Brandstätter, E., Gigerenzer, G., &Hertwig, R. (2008). Risky Choice with Heuristics:
Reply to Birnbaum (2008). Johnson, Schulte-Mecklenbeck, and Willemsen
(2008). and Rieger and Wang (2008). Psychological Review, 115(1), 281–289.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1993). Classification and
Regression Trees. New York: Chapman & Hall.

Brenner, T. and Werker, C. (2006). A Practical Guide to Inference in Simulation Models.
Papers on Economics and Evolution 2006-02, Philipps University Marburg,
Department of Geography.

Briggs, R. A. (2019). Normative Theories of Rational Choice: Expected Utility", The
Stanford Encyclopedia of Philosophy (Fall 2019 Edition), Edward N. Zalta (ed.),

144

144

URL = <https://plato.stanford.edu/archives/fall2019/entries/rationality-normative-
utility/>.

Broadbent, B. E. (1958). Perception and Communication. New York, Ny: Pergamon
Press. Doi: 10.1037/10037-000.

Brocas I., Carrillo J.D. (2010). Neuroeconomic Theory, Using Neuroscience to
Understand Bounds of Rationality, Voxeu.org, March.http://www.voxeu.org.

Bruch E., Mare R. (2006). Neighborhood Choice and Neighborhood Change. American
Journal of Sociology;112(3):667–709.

Brunswik, E. (1943). Organismic Achievement and Environmental Probability.
Psychological Review, 50, 255-272.

Burger, A., Oz, T., Crooks, A., & Kennedy, W. G. (2017). Generation of Realistic
Megacity Populations and Social Networks for Discrete-Heuristic Modeling.
Proceedings of the 2017 International Conference of The Computational
Operational Planning Society of the Americas on - CSS 2017, 1–7.

Busoniu, L., Babuska, R. and Schutter, B. D. (2008). A Comprehensive Survey of
Multiagent Reinforcement Learning, Trans. Sys. Man Cyber Part C, Vol. 38. 156–
172.

Carbonell, J. (1983). Learning by Analogy, in Machine Learning: An Artificial
Intelligence Approach, Michalski, R., Carbonell, J., and Mitchell, T. (eds.), San
Francisco: Morgan Kaufmann.

Castaneda, A. (2016). Deep Reinforcement Learning Variants of Multi-Agent Learning
Algorithms. Master's Dissertation, School of Informatics, University of
Edinburgh, 2016.

Castelvecchi, D. (2016). Can We Open the Black Box of AI? Nature.com,
https://www.nature.com/news/can-we-open-the-black-box-of-ai-1.20731

Caudell, T. P., and Mizell, D. W. (1992). Augmented Reality: An Application of Heads-
up Display Technology to Manual Manufacturing Processes. In Proceedings of
the Twenty-Fifth Hawaii International Conference on Systems Science, Kauai,
Hawaii, 7th-10th Jan. 1992, Vol. 2. 659-669.

Champion, E., Bishop, I., and Dave, B. (2011). The Palenque Project: Evaluating
Interaction in an Online Virtual Archaeology Site. Virtual reality: 1-19.

Chan, S. (2011). Complex Adaptive Systems. Website: https://tinyurl. com/yaccpw93.

Chang, M. (2011). Discrete Heuristic Modeling and Computational Experiments in
Industrial Organization: Growing Firms and Industries "in silico." Eastern

145

145

Economic Journal, 37(1), 28-34. Retrieved from http://www.
jstor.org/stable/41239491.

Chang, S. (2006). The Systematic Design of Instruction, Educational Technology
Research and Development 54(4):417-420, DOI: 10. 1007/s11423-006-9606-0.

Chimeh, M.K., Richmond, R.(2018). Simulating Heterogeneous Behaviours in Complex
Systems on GPUs, Simulation Modelling Practice and Theory, Volume 83, 3-17.

Christopher, M. B. (2006). Pattern Recognition and Machine Learning. Springer.

Cioffi-Revilla, Claudio (2014). Introduction to Computational Social Science: Principles
and Applications (Texts in Computer Science). Springer London. Kindle Edition.

Clancey, W. J. (1986). From Guidon to Neomycin and Heracles in Twenty Short
Lessons, AI Magazine. 7, Number 3, 40-60.

Claus, C., Boutilier, C. (1998). the Dynamics of Reinforcement Learning in Cooperative
Multi-Agent Systems. in 15th National Conference on Artificial Intelligence,
746–752.

Clemente, a. V., MartıNez, H., Nicolas C., and Chandra, a. (2017). Efficient Parallel
Methods for Deep Reinforcement Learning. Corr, Abs/1705. 0486.

Cramer, H. S. M. (2004). Usability Evaluation and Context Analysis to Support
Development of Virtual Reality Systems. Master Dissertation. Faculty of Science,
University of Amsterdam, Netherlands.

Craven, M. (1996). Extracting Comprehensible Models From Trained Neural Networks,
Ph. D. Dissertation, Department of Computer Sciences, University of Wisconsin-
Madison.

Craven, M. W. (1996). Extracting Comprehensible Models From Trained Neural
Networks, Ph.D. Dissertation, Department of Computer Sciences, University of
Wisconsin-Madison.Crites, R. H.,Barto, A. G. (1996). Improving elevator
performance using reinforcement learning. In: D. S. Touretzky, M. C. Mozer, M.
E. Hasselmo (eds.) Advances in Neural Information Processing Systems 8. 1017–
1023. MIT Press.

Crooks, a., Malleson, N., Manley, E., Heppenstall, a. (2019). Agent-Based Modeling and
Geographical Information Systems, Spatial Analytics and GIS, Sage Publications.
126.

Cruz-Neira, C., Sandin, D. J. and Defanti T. a. (1993). Surround-Screen Projection-Based
Virtual Reality: The Design and Implementation of the Cave. in Proceedings of
the 20th Annual Conference on Computer Graphics and Interactive Techniques
(Siggraph '93): 135-142.

146

146

Cummings, P. and Crooks, A.T. (2020). Development of a Hybrid Machine Learning
Agent Based Model for Optimization and Interpretability, in Thomson, R., Bisgin,
H., Dancy, C., Hyder, a. and Hussain, M. (Eds), 2020 International Conference on
Social Computing, Behavioral-Cultural Modeling and Prediction and Behavior
Representation in Modeling and Simulation, Washington DC., 151-160.

Das, S. (2006). On Agent-Based Modeling of Complex Systems: Learning and Bounded
Rationality, Elsevier Preprint.

Davis, P., Kulick, J., Egner, M. (2005). Implications of Modern Decision Science for
Military Decision-Support Systems, Rand Corporation. Ed. 1.

Dawid, H., Gemkow, S., Harting, P., Van Der Hoog, S., &Neugart, M. (2012). the
Eurace@Unibi Model: A Discrete-Heuristic Macroeconomic Model for Economic
Policy Analysis, 12-13.

Dawid, H., and Neugart, M. (2011). Discrete-Heuristic Models for Economic Policy
Design. Eastern Economic Journal, 37.

Dejong, G., and Mooney, R. (1986). Explanation-Based Learning: An Alternative View,
Machine Learning, 1:145-176, Reprinted in Shavlik, J. and Dietterich, T.,
Readings in Machine Learning, San Francisco: Morgan Kaufmann, 1990, 452-
467.

de Jong, T., & Ferguson-Hessler, M. G. M. (1996). Types and Qualities of Knowledge.
Educational Psychologist, 31(2). 105-113.

Deangelis D., Mooij W. (2005). Individual-Based Modeling of Ecological and
Evolutionary Processes. Annual Review of Ecology, Evolution, and Systematics.
36:147–168.Delage, E., and Mannor, S. (2010). Percentile Optimization for
Markov Decision Processes with Parameter Uncertainty. Operations Research,
58(1):203–213.

Dhami, M. K. (2003). Psychological Models of Professional Decision-Making.
Psychological Science, 14, 175–180.

Dick, W. (1996). the Dick and Carey Model: Will It Survive the Decade? Educational
Technology Research and Development 1).44, Number 3, 1996 Issn 1042-1629.

Dietterich, T. G. (1999). Hierarchical Reinforcement Learning with the Maxq Value
Function Decomposition. J. Artif. Intell. Res., 13, 227-303.

Diuk, C., Schapiro, a., Córdova, N., Ribas-Fernandes, J., Niv, Y., &Botvinick, M. (2013).
Divide and Conquer: Hierarchical Reinforcement Learning and Task
Decomposition in Humans. New York, Ny, Us: Springer-Verlag Publishing, 271-
291.

147

147

Dorado, J., Rabunãl, J., Santos, a., Pazos a., and Rivero, D. (2002). Automatic Recurrent
and Feed-Forward Ann Rule and Expression Extraction with Genetic
Programming, Proceedings 7th International Conference on Parallel Problem
Solving From Nature, Granada.

Eberlen, J., Scholz, G., &Gagliolo, M. (2017). Simulate This! an Introduction to
Discrete-Heuristic Models and Their Power to Improve Your Research Practice.
International Review of Social Psychology, 30(1), 149–160.

Egidi, M., & Marengo, L. (2004). Near-Decomposability, Organization, and Evolution:
Some Notes on Herbert Simon's Contribution. in M. Augier & J. G. March (Eds.).
Models of a Man: Essays in Memory of Herbert a. Simon (335-350). Cambridge,
Ma, Us: MIT Press.

Elshawi, R., Al-Mallah, M., &Sakr, S. (2019). On the Interpretability of Machine
Learning-Based Model for Predicting Hypertension. BMC Medical Informatics
and Decision-Making, 19.

Emer, J., Gloy, N. (1997). a Language for Describing Predictors and Its Application to
Automatic Synthesis. in 24th Annual International Symposium on Computer
Architecture.

Epstein, J. (2006). Generative Social Science: Studies in Agent-Based Computational
Modeling (Princeton Studies in Complexity) (5-6). Princeton University Press.

Epstein, J., Cummings, D., Chakravarty, S., Singa, R., Burke, D. (2004). Toward a
Containment Strategy for Smallpox Bioterror: An Individual-Based
Computational Approach. Generative Social Science: Studies in Agent-Based
Computational Modeling. 1-55.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V., Ward, T., Doron, Y., Firoiu,
V., Harley, T., Dunning, I., Legg, S., Kavukcuoglu, K. (2018). ImpalA: Scalable
Distributed Deep-Rl With Importance Weighted Actor Learner Architectures.
Arxiv E-Prints. European Conference on Machine Learning.

Fagiolo, G. and Roventini, a. (2007). Macroeconomic Policy in DSGE and Agent-Based
Models. Revue de L’Ofce, 124:67–116.

Fehérvári, I., &Elmenreich, W. (2010). Evolving Neural Network Controllers for a Team
of Self-Organizing Robots. J. Robotics, 2010, 841286:1-841286:10.

Forster, M. (1999). How Do Simple Rules `Fit to Reality' in a Complex World?. Minds
and Machines. 9. 543-564. 10.1023/A:1008304819398.

Francisco S. Melo. (2007). Convergence of Q-Learning: A Simple Proof, Proceedings of
the European Control Conference Kos, Greece, July 2-5.

148

148

François-Lavet, V., Henderson, P., Islam, R., Bellemare, M., and Pineau, J. (2018). An
Introduction to Deep Reinforcement Learning, Foundations and Trends in
Machine Learning: Vol. 11, 3-4.

Fraenkel, a., Lichtenstein, D. (1981). Computing a Perfect Strategy for N*N Chess
Requires Time Exponential in N. ICALP. Friedman, M. (1953). Essays in Positive
Economics, Chicago Press.

Friedman, J. H. (2001). Greedy function approximation: A Gradient Boosting Machine.
Annals of Statistics: 1189-1232.

Funkhouser, T. Jot, J. -M. and Tsingos, N. (2004). Survey of Methods for Modeling
Sound Propagation in Interactive Virtual Environment Systems. Presence -
Teleoperators and Virtual Environments.

Galán, J. M., Izquierdo, Izquierdo, S. S., Santos, J., del Olmo, R., López-Paredes, A.,
Edmonds, B. (2009). Errors and Artefacts in Agent-Based Modelling. Journal of
Artificial Societies and Social Simulation. 12 (1): 1.

Gatto, M., Maue, J., Mihalák, M., &Widmayer, P. (2009). Shunting for Dummies: An
Introductory Algorithmic Survey. Robust and Online Large-Scale Optimization.

Gelenbe, E., Hussain, K., Kaptan, V. (2005). Simulating Autonomous Agents in
Augmented Reality Journal of Systems and Software Archive. 74 Issue 3, 255-
268.

Gigerenzer, G., Todd, M.P., ABC Research Group (Eds.). (1999). Simple Heuristics That
Make Us Smart. New York: Oxford University Press.

Gigerenzer, G. & Goldstein,D. (1996). Reasoning the Fast-and-frugal Way: Models of
Bounded Rationality. Psychological Review. 62. 650-669.

Gigerenzer, G., &Kurzenhäuser, S. (2005). Fast-and-frugal Heuristics in Medical
Decision-making. In R. Bibace, J. D. Laird, K. L. Noller, & J. Valsiner (Eds.),
Science and medicine in dialogue: Thinking through particulars and universals (p.
3–15). Praeger Publishers/Greenwood Publishing Group.

Gigerenzer G. (2016). Towards a Rational Theory of Heuristics. In: Frantz R., Marsh L.
(Eds) Minds, Models and Milieux. Archival Insights into the Evolution of
Economics. Palgrave Macmillan, London.

Gordon, G., Ahissar, E. (2011). Hierarchical Curiosity Loops and Active Sensing, 2012
Special Issue, Neural Networks. 32, August 2012, 119-129.

Gorr, W. L. (1994). Editorial: Research Prospective on Neural Network Forecasting.
International Journal of Forecasting, 10(1):1–4

149

149

Granovetter, Mark. (1978). Threshold Models of Collective Behavior, American Journal
of Sociology 83 (May): 489-515.

Grazzini, J., Gatti, D. (2013). Paper on The Development of Mabm Mark Ii: The Input-
output Network in The Crisis Macro Agent-based Model. Crisis Project
Deliverable D3. 3, Universit Cattolica Del Sacro Cuore, Milano.

Grazzini, J., Richiardi, M. G. (2013). Consistent Estimation of Agent-based Models By
Simulated Minimum Distance. Laboratorio R. Revelli Working Papers Series 130,
Laboratorio R. Revelli, Centre For Employment Studies. Greek, R., Hansen, L. A.
(2013). Questions Regarding the Predictive Value of One Evolved Complex
Adaptive System for a Second: Exemplified by the SOD1 Mouse. Progress in
Biophysics and Molecular Biology, 113, 231-253.

Grazzini, J., Richiardi, M. G., and Tsionas, M. (2017). Bayesian Estimation of Agent-
Based Models. Journal of Economic Dynamics and Control, 77:26 – 47.

Green, L., Mehr, D. R. (1997). What Alters Physicians’ Decisions to Admit to the
Coronary Care Unit?. Journal of Family Practice, 45(3), 219–226.

Grey, J. (2002). Human-computer Interaction in Life Drawing, a Fine Artist's
Perspective. Proceedings 6th International Conference on Information
Visualisation: 761-770.

Guestrin, C., Michail G. Parr, R. (2002). Coordinated Reinforcement Learning:
Proceedings of the Nineteenth International Conference on Machine Learning.
Icml ’02. San Francisco, Ca, USA: Morgan Kaufmann Publishers Inc., 227–234.

Gunning, D. (2017). Explainable Artificial Intelligence (Xai), Defense Advanced
Research Projects Agency, Darpa/i20.

Ha, D., Schmidhuber, J. (2018). World Models, Arxiv Preprint Arxiv:1803. 10122, 4-5.

Hayles, K. (2008). Electronic Literature: New Horizons for the Literary, Notre Dame:
University of Notre Dame Press, 45-50.

Heckbert S, Baynes T, Reeson A. (2010). Agent-based Modeling in Ecological
Economics. Annals of the New York Academy of Sciences. 1185(1):39–53.

Hengst B. (2011). Hierarchical Reinforcement Learning. In: Sammut C., Webb G. We.
(Eds) Encyclopedia of Machine Learning. Springer, Boston, Ma, Abstract.

Henrya, J. A. G. And Polysb, N. F. (2010). The Effects of Immersion and Navigation on
the Acquisition of Spatial Knowledge of Abstract Data Networks. International
Conference on Computational Science (ICCS '2010): 1737-1746.

Hernandez-Leal, P., Kaisers, M., Baarslag, T., Munoz De Cote. E. (2017). A Survey of
Learning in Multiagent Environments: Dealing with Non-stationarity.

150

150

Hertwig, R., Davis, J. N., &Sulloway, F. J. (2002). Parental Investment: How an Equity
Motive Can Produce Inequality. Psychological Bulletin, 128, 728–745.

Hertwig, R., Hoffrage, U., &Martignon, L. (1999). Quick Estimation: Letting the
Environment Do the Work. In G. Gigerenzer, P. M. Todd, & the ABC Research
Group, Evolution and Cognition. Simple Heuristics That Make Us Smart (P. 209–
234). Oxford University Press.

Hidasi, B., Karatzoglou, A., Baltrunas, L., &Tikk, D. (2016). Session-based
Recommendations with Recurrent Neural Networks. CoRR, abs/1511.06939.

Hinton, G. E., and Sejnowski, T. J. (1999). Unsupervised Learning: Foundations of
Neural Computation In: G. E. Hinton and T. J. Sejnowski (Eds.) Unsupervised
learning: Foundation computation, MIT Press, Cambridge, MA, vii-xv.

Hobbs, J. R. (1985). Granularity. In: Proc. of IJCAI, Los Angeles, USA, 432–435.

Holland J. (1992). Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence.
Cambridge, Ma: Mit Press.

Howard, Richard Author (1960). Dynamic Programming and Markov Decision
Processes. MIT Press.

Horvitz, E. J. (1988). Reasoning about Beliefs and Actions under Computational
Resource Constraints. In T. Levitt, J. Lemmmer, & L. Kanal (Eds.), Uncertainty
in Artificial Intelligence 3. Amsterdam: North Holland.

Hu, J. and Wellman, M. P. (1998). Multiagent Reinforcement Learning: Theoretical
framework and an algorithm. Proceedings of the Fifteenth International
Conference on Machine Learning. IEEE Computer Society. 285–285.

Hubal, R.& Parsons, T. (2017). Synthetic Environments for Skills Training and Practice.

Hutchinson JM1, Gigerenzer G. (2005). Simple Heuristics and Rules of Thumb: Where
Psychologists and Behavioral Biologists Might Meet. Behavioral Processes. May
31; 69(2):97-124.

Hutter, M. (2004.) Universal Artificial Intelligence: Sequential Decisions Based on
Algorithmic Probability. Berlin: Springer.

Ijsselsteijn, W. A., Ridder, H. D., Freeman, J. and Avons, S. E. (2000). Presence:
concept, determinants, and measurement. Proceedings of SPIE human vision and
electronic imaging: 520-529.

Jaderberg, M., Czarnecki, WM., Dunning, I., Marris, L., Lever, G. (2018). Human-level
Performance in First-person Multiplayer Games with Population-based Deep
Reinforcement Learning. Submitted, 2018.

151

151

Janssen, C., Gray, W. (2012). When, What, and How Much to Reward in Reinforcement
Learning-Based Models of Cognition. Cogn Sci. 2012 Mar;36(2):333-58.

Johnson, M., Hofmann, K., Hutton, T., &Bignell, D. (2016). The Malmo Platform for
Artificial Intelligence Experimentation, in Ijcai. 4246-4247.

Johnson, W. L. (1994). Agents that Learn to Explain Themselves. In Proceedings of the
Twelfth National Conference on Artificial Intelligence, 1257-1263.

Juliani, A., Berges, V., Vckay, E., Gao, Y., Henry, H., Mattar, M. and Lange, D. (2018).
Unity: A General Platform for Intelligent Agents. arXiv preprint arXiv:1809.
02627.

Kaelbling, L.P., Littman, M. L., Cassandra, A.R (1998). Planning and Acting in Partially
Observable Stochastic Domains. Artificial Intelligence, 101(1):99–134.

Kahneman D., Tversky A. (1972). Subjective Probability: A Judgment of
Representativeness. In: Staël Von Holstein CA.S. (eds) The Concept of
Probability in Psychological Experiments. Theory and Decision Library (An
International Series in the Philosophy and Methodology of the Social and
Behavioral Sciences), vol 8. Springer, Dordrecht.

Kahneman, D. (2003). Maps of Bounded Rationality: Psychology for Behavioral
Economics. American Economic Review, 93 (5).

Kahneman, D. (1973). Attention and Effort. Englewood Cliffs, Nj: Prentice-hall Inc.

Kahneman, D. (2003). Maps of Bounded Rationality: Psychology for Behavioral
Economics. American Economic Review, 93 (5): 1449-1475.

Kahneman, D. (2011). Thinking Fast and Slow, Deep Learning, and
Aihttps://lexfridman.com/daniel-kahneman/.

Kamruzzaman S., Islam, M. M. (2006). An Algorithm to Extract Rules from Artificial
Neural Networks for Medical Diagnosis Problems, International Journal of
Information Technology, Vol. 12, No. 8. 41−59.

Kamruzzaman, S. M., Hasan, a. (2010). Rule Extraction Using Artificial Neural
Networks.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Y, Q., Liu, T. (2017).
LightGBM: A Highly Efficient Gradient Boosting Decision Tree, Advances in
Neural Information Processing Systems 30 (Nips 2017), Pp. 3149-3157.

Kempka, M., Et Al. (2016). VizDoom: a Doom-based AI Research Platform for Visual
Reinforcement Learning. In Computational Intelligence and Games (Cig), 2016
Ieee Conference on (1-8).

152

152

Kennedy, W. (2012). Modelling Human Behavior in Agent-based Models. Chapter 9 of
Current Geographical Theories for Agent-based Modelling, Edited by Michael
Batty, Alison Heppenstall, and Andrew Crooks. Springer.

Kim, J. Canny, J. (2017). Interpretable Learning for Self-driving Cars by Visualizing
Causal Attention, the IEEE International Conference on Computer Vision
(ICCV), 2017. 2942-2950.g

Kitani, K. M. Ziebart, B. D. Bagnell, J., Herbert. M. (2012). Activity Forecasting. In
Computer Vision–ECCV 2012, Springer., 201–214.

Kok, J., Vlassis, N. (2004). Sparse Tabular Multi-Agent Q-learning. In Annual Machine
Learning Conference of Belgium and the Netherlands, 65–71. Kok, J., Vlassis, N.
(2006). Collaborative multi-agent reinforcement learning by payoff propagation.
Journal of Machine Learning Research, 7: 1789–1828.

Kolodner, J. (1993). Case-Based Reasoning, San Francisco: Morgan Kaufmann,

Korteling Je, Brouwer Am, Toet a. A Neural Network Framework for Cognitive Bias.
Front Psychol. 2018; 9:1561. Published 2018 Sep 3.
Doi:10.3389/fpsyg.2018.01561

Koutnık, J. Schmidhuber, J. and Gomez, F. (2014). Evolving Deep Unsupervised
Convolutional Networks for Vision-Based Reinforcement Learning. In
Proceedings of the 2014 conference on Genetic and evolutionary computation,
541–548. ACM, 2014.

Kubler, S., Voisin, A., Derigent, W., Thomas, A., Rondeau, E., Främling, K.(2014).
Group Fuzzy AHP Approach to Embed Relevant Data on Communicating
Material. Comput. Ind. 65(4), 675–692.

Kubler, S., Robert, J., Derigent, W., Voisin, A., Le Traon, Y.(2016). A State-of the-Art
Survey & Testbed of FuzzyAHP (FAHP) applications. Expert Syst. Appl. 65,
398–422.

Kulkarni, T. D., Narasimhan, K., Saeedi, A., & Tenenbaum, J. B. (2016). Hierarchical
Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic
Motivation. NIPS.

Laird, J., Rosenbloom, P., and Newell, A. (1986). Chunking in Soar: The Anatomy of a
General Learning Mechanism, Machine Learnisng, 1. 11-46, 1986. Reprinted in
Buchanan, B. and Wilkins, D. (eds.), Readings in Knowledge Acquisition and
Learning, Morgan Kaufmann, San Francisco, CA. 518-535

Lample G., Devendra, Sc. (2017). Playing Fps Games with Deep Reinforcement
Learning. In Proceedings of the Thirty-first AAI Conference on Artificial
Intelligence (Aaai'17). Aaai Press, 2140–2146.

153

153

Lane, H., Core, M., van Lent, M., Solomon, S., and Gomboc. D. (2005). Explainable
Artificial Intelligence for Training and Tutoring. In Proceedings of the 2005
Conference on Artificial Intelligence in Education: Supporting Learning through
Intelligent and Socially Informed Technology. IOS Press, Amsterdam, The
Netherlands, The Netherlands, 762-764.

Lee, C. (2019). The Game of Go: Bounded Rationality and Artificial Intelligence. Iseas
Yusof Ishak Institute. Http://hdl.handle.net/11540/10253.

Lee-Urban, S. (2018). Game AI, Finite State Machines. http://www.cc.gatech.
edu/~surban6/2016-cs4731/.

Lei, X., Huang, A., Zhao, T., Su, Y. Chuan, R. (2018). A New Machine Learning
Framework for Air Combat Intelligent Virtual Opponent. Journal of Physics:
Conference Series. 1069. 012031. 10.1088/1742-6596/1069/1/012031.

Lieder, F., Krueger, P., Griffiths, T. (2017). An Automatic Method for Discovering
Rational Heuristics for Risky Choice. (unpublished).

Leibo, J., Zambaldi,v., Lanctot, M., Marecki, J., and Graepel, T. (2017). Multi-agent
Reinforcement Learning in Sequential Social Dilemmas. In Proceedings of the
16th Conference on Autonomous Agents and Multiagent Systems (Aamas '17).
International Foundation for Autonomous Agents and Multiagent Systems,
Richland, Sc, 464–473.

Lessiter, J., Freeman, J., Keogh, E. And Davidoff, J. (2001). A Cross-media Presence
Questionnaire: the Itc-sense of Presence Inventory. Presence - Teleoperators and
Virtual Environments 10(3): 282-297.

Lewis, R., Howes, A., Singh, S. (2014). Computational Rationality: Linking Mechanism
and Behavior Through Bounded Utility Maximization. Topics in Cognitive
Science, 6(2):279{311, 2014}.

Li, K. (2017). Learning to Optimize with Reinforcement Learning, Berkley Artificial
Intelligence Research, https://bair.berkeley.edu/blog/2017/09/12/learning-to-
optimize-with-rl/

Li, X., Engelbrecht, a., and Epitropakis, M. G. (2013). Benchmark Functions for
Cec’2013 Special Session and Competition on Niching Methods for Multimodal
Function Optimization. Rmit University, Evolutionary Computation, and Machine
Learning Group, Australia, Tech. Rep, 1-10. Liang, E. and Liaw, R. (2018).
Scaling Multi-Agent Reinforcement Learning, The Berkeley Artificial
Intelligence Research Blog, 4-5.

Lenham, M. (2018). Learn Unity ML-Agents Fundamentals of Unity Machine Learning,
Packt Publishing.

154

154

Liarokapis, F. (2006). An Exploration from Virtual to Augmented Reality Gaming.
Simulation & Gaming 37(4): 507-533.

Linick, M. E., Yurchak, J., Spirtas, M., Dalzell, S., Wong, Y., Crane, Y (2020).
Hedgemony: A Game of Strategic Choices, Santa Monica, Calif.: RAND
Corporation, TL-301-OSD, 2020. As of October 26, 2020:
https://www.rand.org/pubs/tools/TL301.html

Littman. M. (1994). Markov Games as a Framework for Multi-Agent Reinforcement
Learning. In Proceedings of the Eleventh International Conference on Machine
Learning, 157–163.

Liu, Q., Wu, S., Wang, L. (2017). Multi-behavioral Sequential Prediction with Recurrent
Log-bilinear Model. Ieee Trans. Knowl. Data Eng., 29(6):1254-1267. Liu, S.,
Lever, G., Merel, J., Tunyasuvunakool, S., Heess, N., Graepel, T. (2018).
Emergent Coordination through Competition, DeepMind, London, United
Kingdom.

Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, P., Mordatch, I. (2017). Multi-Agent
Actor-Critic for Mixed Cooperative-Competitive Environments. In Advances in
Neural Information Processing Systems, 6379–6390.

Luan, S., Schooler, L. J., & Gigerenzer, G. (2011). A Signal-Detection Analysis of Fast-
and-Frugal Trees. Psychological Review, 118(2), 316–338.

Lundberg, S., Su-in, L. (2017). A Unified Approach to Interpreting Model Predictions,
Advances in Neural Information Processing Systems 30, Curran Associates, Inc,
4765-4774.

Lyu, D., Yang, F., Liu, B., and Gustafson, S. (2019). SDRL: Interpretable and Data-
efficient Deep Reinforcement Learning Leveraging Symbolic Planning. In AAAI
2019.

Malpas, J. (2012). The Stanford Encyclopedia of Philosophy (Winter Edition 2012),
Edward N. Zalta (ed.), URL = <https://plato.stanford.edu/entries/bounded-
rationality/>.

Privosnik, M. Marolt, a. Kavcic, and S. Divjak (2002). Evolutionary Construction of
Emergent Properties in Multi-Agent Systems. 327–330.

Magnenat-Thalmann, N. and Bonanni, U. (2006). Haptics in Virtual Reality and
Multimedia. IEEE Multimedia: 6-11.

Mannor, S. Simester, D., Sun, P., Tsitsiklis, J. (2007). Bias and Variance Approximation
in Value Function Estimates. Management Science, 53(2):308–322.

155

155

Manson, Steven. (2006). Bounded Rationality in Agent-based Models: Experiments with
Evolutionary Programs. International Journal of Geographical Information
Science. 20.

Martignon, L., Vitouch, O., Takezawa, M., Forster, M. R. (2003). Naive and Yet
Enlightened: From Natural Frequencies to Fast-and-frugal Decision Trees.
Thinking: Psychological Perspective on Reasoning, Judgment, and Decision-
making, 189–211.

Martignon, L., Katsikopoulos, K. V., Woike, J. K. (2008). Categorization with Limited
Resources: A Family of Simple Heuristics. Journal of Mathematical Psychology,
52(6), 352–361.

Mata, R., Thorsten, P., Von Helversen, B., Hertwig, R., Rieskamp, J., Schooler,L. (2012).
Ecological Rationality: A Framework for Understanding and Aiding the Aging
Decision Maker, Frontiers in Neuroscience, 19.

Matignon, L., Laurent, G., Fort-piat, N. (2012). Independent Reinforcement Learners in
Cooperative Markov Games: A Survey Regarding Coordination Problems. The
Knowledge Engineering Review. 27, 1-31.

Matiisen, T. (2015). Demystifying Deep Reinforcement Learning. Neuro.cs.ut.ee.
Computational Neuroscience Lab. Retrieved 2018-04-06.

Melo, F.s., & Ribeiro, M. (2007). Q-Learning with Linear Function Approximation. Colt.

Milgram, P., Haruo T., Akira U., and Fumio K. (1994). Augmented Reality: A Class of
Displays on the Reality-Virtuality Continuum. SPIE 2351 282–92.

Mill, J.S. (1848)/ Principles of Political Economy with Some of their Applications to
Social Philosophy, 1 (1 ed.), London: John W. Parker, retrieved 7 December
2012, volume 2.

Miller, J., and Page. S. (2007). Complex Adaptive Systems: An Introduction to
Computational Models of Social Life. Princeton University Press, Full article.

Miller, T (2019). Explanation in Artificial Intelligence: Insights from the Social Sciences.
Artificial Intelligence 267 (2019): 1–38.

Mirshekarian, S., &Sormaz, D. N. (2018). Machine Learning Approaches to Learning
Heuristics for Combinatorial Optimization Problems. Procedia Manufacturing. 17.
102-109. 10.1016/j.promfg.2018.10.019.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, a., Antonoglou, I., Wierstra, D.,
Riedmiller, M. (2013). Playing Atari with Deep Reinforcement Learning. Nips
Deep Learning Workshop 2013.

156

156

Mnih, V., Badia, A., Mirza, M., Graves, A. Lillicrap, T., Harley, T., Silver, D.,
Kavukcuoglu, K. (2016). Asynchronous Methods for Deep Reinforcement
Learning. Unpublished.

Mohri, M., Rostamizadeh, A., Talwalkar, A. (2012). Foundations of Machine Learning,
The MIT Press ISBN 9780262018258.

Mousavi, S. (2017). Heuristics are Tools for Uncertainty, Homo Oeconomicus, Vol 34, 4,

Muggleton, S. (1991). Inductive Logic Programming, New Generation Computing, 8.
295-318.

Murphy, K. P. (2012). Machine Learning - A Probabilistic Perspective. Adaptive
Computation and Machine Learning Series. MIT Press.

Nair, A., Srinivasan, P., Blackwell, S., Alcicek, C., Fearon, R., De Maria, A.,
Panneershelvam, V., Suleyman, M., Beattie, C., Petersen, S., Legg, S., Mnih, V.,
Kavukcuoglu, K. and Silver, D. (2015). Massively Parallel Methods for Deep
Reinforcement Learning. Arxiv Preprint. arXiv: 1507. 04296.

Navarro-Martinez, D., Loomes, G., Isoni, a., Butler, D., Alaoui, L. (2018). Boundedly
Rational Expected Utility Theory, Journal of Risk and Uncertainty, Springer, Vol.
57(3), Pages 199-223, December.

Neto, G. (2005). From Single-Agent to Multi-Agent Reinforcement Learning:
Foundational Concepts and Methods.

Neto, G., Lima, P. (2005). Minimax Value Iteration Applied to Robotic Soccer. In: IEEE
ICRA 2005 Workshop on Cooperative Robotics. Barcelona, Spain, 1-4.

Niazi, M., Hussain, A. (2011). Agent-based Computing from Multi-agent Systems to
Agent-Based Models: A Visual Survey (PDF). Scientometrics. 89 (2): 479–499.

Nils J. Nilsson. (1997). Artificial Intelligence: A New Synthesis. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, Full article.

Nilsson, Nils J. (2010). The Quest for Artificial Intelligence: A History of Ideas and
Achievements. Cambridge: Cambridge University Press.

Nischelwitzer, A., Lenz, F. J., Searle, G., &Holzinger, A. (2007). Some Aspects of the
Development of Low-Cost Augmented Reality Learning Environments as
Examples for Future Interfaces in Technology Enhanced Learning. In C.
Stephanidis (Ed.), Universal Access in Human-Computer Interaction.
Applications and Services (728-737). Berlin: Springer.

Norman, D. A., and Bobrow, D. G. (1975). On Data-limited and Resource-limited
Processes. Cogn. Psychol. 7, 44–64. Doi: 10.1016/0010-0285(75)90004-3.

157

157

Russel, S., Norvig., P. (2010). Artificial Intelligence: A Modern Approach, Third Edition.
New Jersey: Prentice Hall.

Nowak M. (2006). Five Rules for the Evolution of Cooperation.
Science.314(5805):1560–1563.

Oh, J., Chockalingam, V., Singh, S., & Lee, H. (2016). Control of Memory, Active
Perception, and Action in Minecraft, Arxiv Preprint Arxiv:1605.09128.

Ohtsuki H., Hauert C., Lieberman E., Nowak J. (2006). A Simple Rule for the Evolution
of Cooperation on Graphs and Social Networks. Nature. 441(7092):502–505.

Oikonomopoulos, A., Pantic, M. (2013). Human Activity Recognition Using
Hierarchically-Mined Feature Constellations, 150–159.

Ortega, P., Lee, D. (2014). An Adversarial Interpretation of Information-Theoretic
Bounded Rationality. Proceedings of the National Conference on Artificial
Intelligence. 4.

Osoba, O., Vardavas, R., Grana, J., Zutshi, R., &Jaycocks, A. (2020). Policy-focused
Agent-based Modeling using RL Behavioral Models. ArXiv, abs/2006.05048.

Oudeyer, P. Y., Kaplan, F., & Hafner, V. V. (2007). Intrinsic Motivation Systems for
Autonomous Mental Development. Evolutionary Computation, IEEE
Transactions on, 11, 265–286.

Özbakır, A. Baykasoğlu, and S. Kulluk. (2010). A Soft Computing-Based Approach for
Integrated Training and Rule Extraction from Artificial Neural Networks:
DIFACONN-miner, Applied Soft Computing, Vol. 10, no. 1. 304–317.

Pals, G. (2018). Opening the Black Box of Machine Learning: Let’s See What’s
Happening. Medium publishing, https://tinyurl. com/y32de6te

Panait, L., Luke., S. (2005). Cooperative Multi-Agent Learning: The State of the Art. In:
Autonomous Agents and Multi-Agent Systems 11. 3. 387–434.

Papadimitriou, C., and Tsitsiklis, J. (1987). The Complexity of Markov Decision
Processes. Mathematics of Operations Research 12(3):441–450.

Papoudakis, G., Christianos, F., Rahman, a., & Albrecht, S.V. (2019). Dealing with Non-
stationarity in Multi-Agent Deep Reinforcement Learning. Arxiv,
Abs/1906.04737.

Park, D. H., Hendricks, L. A., Akata, Z., Rohrbach, A., Schiele, B., Darrell, T., &
Rohrbach, M. (2018). Multimodal Explanations: Justifying Decisions and
Pointing to the Evidence.

158

158

Parr, R., Russell, S. (1998). Reinforcement Learning with Hierarchies of Machines, In
Advances in Neural Information Processing Systems Vol 10, 1043-1049
Cambridge MA MIT Press.

Partalas, I., Feneris, I., Vlahavas, I. (2007). Multi-agent Reinforcement Learning Using
Strategies and Voting. In 19th IEEE International Tools on Artificial Intelligence,
318–324.

Pashevich, A., Hafner, D., Davidson, J., Sukthankar, R., & Schmid, C. (2018). Modulated
Policy Hierarchies. arXiv preprint arXiv:1812.00025.

Pathak, D., Agrawal, P., Efros, A. A., Darrell, T. (2017). Curiosity-Driven Exploration
by Self-Supervised Prediction, 2017 IEEE Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), Honolulu, HI, 2017, 488-489.

Perez-Liebana, D., Hofmann, K., Prasanna S., Kuno, N., Kramer, A., Devlin, S., Gaina,
R. (2018). The Multi-Agent Reinforcement Learning in MalmÖ (MARLÖ).
Competition, 2019, Challenges in Machine Learning (NIPS Workshop). 1-4.

Persky, J. (1995). Retrospectives: The Ethology of Homo Economicus. The Journal of
Economic Perspectives, Vol. 9, No. 2 (Spring, 1995), 221–231.

Peters, J.; Mulling, K.; and Altun, Y. (2010). Relative Entropy Policy Search. In AAAI.

Puterman, Martin L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley-Interscience.

Quinlan, J. R. (1990). Learning Logical Definitions from Relations. Machine Learning,
5:239-266.

Rand, W. (2017). Machine Learning Meets Agent-Based Modeling: When Not to Go to a
Bar. https://ccl.northwestern.edu/papers/agent2006rand.pdf

Resnick, M. (1997). Turtles, Termites, and Traffic Jams: Explorations in Massively
Parallel Microworlds (Complex Adaptive Systems). The MIT Press, January.

Rhodes, C. J., Anderson, R. M. (1996). Power Laws Governing Epidemics in Isolated
Populations, Nature, 381, 600–602.

Ribeiro, M.T., Singh, S., Guestrin, C. (2016). "Why Should I Trust You?": Explaining
the Predictions of Any Classifier. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD '16).
Association for Computing Machinery, New York, NY, USA, 1135–1144.

Ros, R., LluisArcos, J., Lopez R. Veloso. M. (2009). A Case-Based Approach for
Coordinated Action Selection in Robot Soccer. Artificial Intelligence, 173(9-
10):1014–1039.

159

159

Rosenblatt, F. (1958). The Perceptron: A Probabilistic Model for Information Storage and
Organization in the Brain. Psychological Review, 65(6):386.

Roy, A., Xu, H., Pokutta. S. (2017). Reinforcement Learning under Model Mismatch.
31st Conference on Neural Information Processing Systems.

Rudd, D. M. (2010). The Effects of Heuristic Problem-Solving Strategies on Seventh
Grade Students' Self-Efficacy and Level of Achievement in Mathematics.

Russell, S. (1997). Rationality and intelligence. Artificial Intelligence, 94:57–77,1997.

Russell, S.J., Norvig, P. (2003). Artificial Intelligence: A Modern Approach, Prentice-
Hall, New York, NY, 1080.

Ryan, M. J. (1988). Constraints and Patterns in the Evolution of Anuran Acoustic
Communication. In B. Fritzsch, T. Hetherington, M.J. Ryan, W. Walkowiad& W.
Wilczynski (Eds.). The evolution of the amphibian auditory system. New York,
NY: Wiley, John & Sons.637–677.

Saad, E., Wunsch, D. (2007). Neural Network Explanation Using Inversion, Neural
Networks, Vol. 21. 78-93.

Samuel, A. L. (1959). Some Studies in Machine Learning Using the Game of Checkers.
IBM Journal of Research and Development, 3(3), 210-229.

Saroj, K. A. (2009). Decision-Making: Meaning and Definition. Retrieved from
http://www.excellentguru.com/index. php.

Saaty, T.L. (1999). Decision-Making for Leaders: The Analytic Hierarchy Process for
Decisions in a Complex World. RWS Publications, Pittsburgh.

Sato, M., Tsukimoto, H. (2001). Rule Extraction from Neural Networks via Decision
Tree Induction, in International Joint Conference on Neural Network,
Washington, DC, 2001. 1870 - 1875 Vol. 3.

Scheibehenne, B., Miesler, L., & Todd, P. M. (2007). Fast-and-frugal Food Choices:
Uncovering Individual Decision Heuristics. Appetite, 49, 578–589.

Schelling TC. (1971). Dynamic Models of Segregation. Journal of Mathematical
Sociology, 1(2):143–186.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015). Trust Region
Policy Optimization. In Blei, D., and Bach, F., editors, Proceedings of the 32nd
International Conference on Machine Learning (ICML-15). 1889–1897.

Schulman, J., Wolski, F., Dhariwal, P., Radford, a. &Klimov, O. (2017). Proximal Policy
Optimization Algorithms. Corr, Abs/1707.06347.

160

160

Shapley, L S. (1953). A Value for N-Person Games.Contributions to the Theory of
Games 2.28 (1953): 307-317.

Sen, S., Sekaran, M., Hale, J. (1994). Learning to Coordinate without Sharing
Information. In: Proceedings of the 13th National Conference on Artificial
Intelligence.

Sen, S., Weiss, G. (1999). Learning in Multiagent Systems. In: G. Weiss (ed.) Multiagent
Systems: A Modern Approach to Distributed Artificial Intelligence, chap. 6. 259–
298. MIT Press.

Sert, E., Bar-Yam, Y. & Morales, A.J. (2020). Segregation Dynamics with
Reinforcement Learning and Agent-based Modeling. Sci Rep 10, 11771.

Setiono, R. (2000). Extracting M-of-N Rules from Trained Neural Networks, IEEE
Transactions of Neural Networks, Vol. 11, no. 2. 512-519.

Setiono, R., Liu, H. (1995). Understanding Neural Networks via Rule Extraction, In
Proceedings of the International Joint Conference on Artificial Intelligence, 480-
485.

Setiono, R., Liu, H. (1996). Improving Backpropagation Learning with Feature Selection,
Applied Intelligence, Vol. 6, no. 2, 129-140.

Shelton, C. (2000). Balancing Multiple Sources of Reward in Reinforcement Learning.
Advances in Neural Information Processing Systems.

Sherman, W., Craig, A. (2002). Literacy in Virtual Reality: A New Medium, IEEE
Virtual Reality Conference, p. 183, March 24-28, 2002. 81.

Sherwood, T., Calder, B. (2001). Automated Design of Finite State Machine Predictors
for Customized Processors. In Proceedings of the 28th annual international
symposium on Computer architecture (ISCA ’01). Association for Computing
Machinery, New York, NY, USA, 86–97.

Shoham, Y., Leyton-Brown,K. (2008). Multiagent Systems Algorithmic, Game Theoretic
and Logical Foundations. Cambridge University Press.

Shrikumar, A., Greenside,P., Kundaje. A. (2017). Learning important features through
propagating activation differences. In Proceedings of the 34th International
Conference on Machine Learning - Volume 70 (ICML'17). JMLR.org, 3145–
3153.

Simon, Herbert A. (1947). Administrative Behavior: A Study of Decision-Making
Processes in Administrative Organization, first edition, New York: Macmillan.

–––, 1955a, “A Behavioral Model of Rational Choice”, Quarterly Journal of Economics,
69(1): 99–118. doi:10. 2307/1884852.

161

161

–––, 1955b, “On a Class of Skew Distribution Functions”, Biometrika, 42(3–4): 425–440.
doi:10. 1093/biomet/42. 3-4. 425.

–––, 1957a, Administrative Behavior: A Study of Decision-Making Processes in
Administrative Organization, second edition, New York: Macmillan.

–––, 1957b, Models of Man, New York: John Wiley.

–––, 1969, The Sciences of the Artificial, 3rd ed. MIT Press.

–––, 1972, Theories of Bounded Rationality. In Radner, C., and Radner, R., Eds.,
Decision and Organization. Amsterdam: North Holland Publ. 161–176.

–––, 1976, From Substantive to Procedural Rationality, in 25 Years of Economic Theory,
T. J. Kastelein, S. K. Kuipers, W. A. Nijenhuis, and G. R. Wagenaar (eds.),
Boston, MA: Springer US, 65–86. doi:10. 1007/978-1-4613-4367-7_6.

–––, 1990, Utility and Probability. Palgrave Macmillan UK, Eatwell, J. and Milgate, M.
and Newman, P.

Skinner, B.F. (1938). The Behavior of Organisms: An Experimental Analysis. Appleton-
Century.

Smola, A., Vishwanathan, S. V. N. (2008). Introduction to Machine Learning, Purdue
University Press, 42-84.

Snook, B., Taylor, P. J., &Bennel, C. (2004). Geographic Profiling: The Fast, Frugal, and
Accurate Way. Applied Cognitive Psychology, 18, 105–121.

Snook, B., Zito, M., Bennell, C., & Taylor, P. J. (2005). On the Complexity and
Accuracy of Geographic Profiling Strategies. Journal of Quantitative
Criminology, 21, 1–26.

Squazzoni, F. (2012). Agent‐Based Computational Sociology, John Wiley & Sons, Ltd,
10-11.

Stanney, K. M. (Ed.) (2002). Handbook of Virtual Environments: Design,
Implementation, and Applications. Mahwah, NJ: Lawrence Erlbaum Associates.

Stefanidis, A., Jenkins A., Croitoru, A. and Crooks, A. T. (2016). Megacities Through the
Lens of Social Media, Journal of the Homeland Defense & Security Information
Analysis Center (HDIAC), 3(1): 26-28.

Stigler, G. J. (1961). The Economics of Information. Journal of Political Economy, 69,
213-225.

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y. (1999). Policy gradient
methods for reinforcement learning with function approximation. In Proceedings
of the 12th International Conference on Neural Information Processing Systems

162

162

(NIPS'99). S. A. Solla, T. K. Leen, and K. Müller (Eds.). MIT Press, Cambridge,
MA, USA, 1057-1063.

Sutton, R. and Barto, A. (1995). Reinforcement Learning: An Introduction. MIT Press.

Sutton, R. and Barto, A. (1998). Reinforcement Learning, 2nd Edition: An Introduction.
MIT Press.

Swartout, W. R., Paris, C. L., and Moore, J. D. (1994). Design for Explainable Expert
Systems. IEEE Expert. 6, Number 3, 58-64.

Taha, A., Ghosh, J. (1999). Symbolic Interpretation of Artificial Neural Networks, IEEE
Transactions on Knowledge and Data Engineering, Vol. 11, no. 3. 448–463.

Tampuu, A., Matiisen T., Kodelja, D., Kuzovkin, We., Korjus, K., Aru, J., Aru, J., and
Vicente, R. (2017). Multi-agent Cooperation and Competition with Deep
Reinforcement Learning. PloS one.

Tan. A. (1993). Multi-Agent Reinforcement Learning: Independent vs. Cooperative
Agents. In Proc. 10th International Conference on Machine Learning.

Tan, Y., Xu, X., Liu. Y. (2016). Improved Recurrent Neural Networks for Session-based
Recommendations. In Proceedings of the 1st Workshop on Deep Learning for
Recommender Systems (DLRS 2016). Association for Computing Machinery,
New York, NY, USA, 17–22.

Terry, J.K., &Grammel, N. (2020). Multi-Agent Informational Learning Processes.

Tesauro, G. (1992). Practical Issues in Temporal Difference Learning. In: Advances in
Neural Information Processing Systems, (John E. Moody, Steve J. Hanson, and
Richard P. Lippmann, Eds.). Vol. 4. Morgan Kaufmann Publishers, Inc. 259–266.

Tesauro, Gerald (1992). Practical Issues in Temporal Difference Learning. In: Advances
in Neural Information Processing Systems (John E. Moody, Steve J. Hanson and
Richard P. Lippmann, Eds.). Vol. 4. Morgan Kaufmann Publishers, Inc. 259–266.

Thorndike, E. L. (1911). Animal Intelligence. New York: Macmillan (Reprinted Bristol:
Thoemmes.

Thrun S. (1995). Extracting Rules from Artificial Neural Networks with Distributed
Representations. Advances in Neural Information Processing Systems. 505, 12.

Todd, P., Gigerenzer, G. (2007). Environments That Make Us Smart. 16. 167-171.
10.1111/j.1467-8721.2007.00497. Oxford University Press, 2012.

Todd, P.M., Brighton, H. (2016). Building the Theory of Ecological Rationality. Minds &
Machines 26, 9–30. https://doi.org/10.1007/s11023-015-9371-0

163

163

Torrey, L., Walker, T., Shavlik, J., Maclin, R. (2005). Using Advice to Transfer
Knowledge Acquired in One Reinforcement Learning Task to Another. In: Gama
J., Camacho R., Brazdil P.B., Jorge A.M., Torgo L. (eds) Machine Learning:
ECML 2005. ECML 2005. Lecture Notes in Computer Science, vol 3720.
Springer, Berlin, Heidelberg.

Tsukimoto, H. (2000). Extracting Rules from Trained Neural Networks. Neural
Networks, IEEE Transactions on, 11(2):377–389.

Tuomi, I. (2018). The Impact of Artificial Intelligence on Learning, Teaching, and
Education: Policies for the Future. 10.2760/12297.

van der Hoog, S. (2016). Deep Learning in Agent-Based Models: A Prospectus,
arXiv:1706. 06302.

Von Neumann, J., Oskar, M. (1953). Theory of Games and Economic Behavior.
Princeton, Nj. Princeton University Press.

Vu, T., Probst, C., & Epstein, J., Brennan, A., Strong, M., Robin, P. (2019). Toward
Inverse Generative Social Science Using Multi-Objective Genetic Programming.
1356-1363.

Wallace, R., Geller, A., Ayano, V (2015). Assessing the Use of Agent-Based Models for
Tobacco Regulation, The National Academies Press, Washington, DC, Full article

Wang, H., Wu, X., Sun, L., & Du, B. (2019). Passenger Behavior Prediction with
Semantic and Multi-pattern LSTM Model. IEEE Access, 7, 157873-157882.

Watkins, C. J. C. H. (1989). Learning with Delayed Rewards. Ph. D. Dissertation,
Cambridge University.

Watkins, C.J.C.H. (1989). Learning from Delayed Rewards. Ph.D. Thesis, Cambridge
University, Cambridge, England.

Weick, K. (1979). The Social Psychology of Organization (2 ed.). New York: McGraw
Hill.

Werker, C. and Brenner, T. (2004). Empirical Calibration of Simulation Models. Papers
on Economics and Evolution 2004-10, Philipps University Marburg, Department
of Geography.

Wilensky, U. (1997). NetLogo Carnivore Herbivore Predation Model. http://ccl.
northwestern. edu/netlogo/models/Carnivore Herbivore Predation. Center for
Connected Learning and Computer-Based Modeling, Northwestern University,
Evanston, IL.

164

164

Wilensky, U. (1999). NetLogo. http://ccl. northwestern.edu/Netlogo/.Center for
Connected Learning and Computer-Based Modeling, Northwestern University,
Evanston, IL.

Williams, Ronald J. (1987). A Class of Gradient-Estimating Algorithms for
Reinforcement Learning in Neural Networks. Proceedings of the IEEE First
International Conference on Neural Networks.

Wong, K. C. (2015). Evolutionary Multimodal Optimization: A Short Survey. arXiv
preprint arXiv:1508. 00457.

Wu, Y., & Tian, Y. (2016). Training Agent for First-person Shooter Game with Actor-
Critic Curriculum Learning. ICLR 2017 Conference.

Yildizoglu, M. and Salle, I. (2012). Efficient Sampling and Metamodeling for
Computational Economic Models. Cahiers du GREThA 2012-18, Groupe de
Recherche enEconomieTheorique et Appliquee.

Yining, W., Yuxian, J. (2003). An Intelligent Differential Game on Air Combat Decision
Flight Dynamics 21 66-70.

Zargarpour, H., H. LaBounta, et al. (2010). Interactive Games. The Ves Handbook of
Visual Effects: Industry Standard Vfx Practices and Procedures: 707-736. 1st
edition. Publisher: Focal Press. ISBN-13: 9780240812427. ISBN-10:
0240812425.

Zeng, Z., Miao, C, Leung,C. Chin, J. J. (2018). Building More Explainable Artificial
Intelligence with Argumentation AAAI Publications, Thirty-Second AAAI
Conference on Artificial Intelligence.

Zhang, C. Bengio, S. Hardt, M. Recht, B. Vinyals, O. (2017). Understanding Deep
Learning Requires Rethinking Generalization,” in ICLR 2017.

Zhang, L., Zhang, B. (2006). Hierarchical Machine Learning – A Learning Methodology
Inspired by Human Intelligence, Lecture Notes in Computer Science, Conference:
Rough Sets and Knowledge Technology, First International Conference, RSKT,
Chongqing, China.

Zheng, H., Jiang, J., Wei, P., Long, G., Zhang, C. (2020). Competitive and Cooperative
Heterogeneous Deep Reinforcement Learning. In Proc. of the 19th International
Conference on Autonomous Agents and Multiagent Systems (Aamas 2020),
Auckland, New Zealand, May 9–13,2020, Ifaamas, 9.

Zhou, Z. H., Chen, S. F., and Chen, Z. Q. (2000). A Statistics-based Approach for
Extracting Priority Rules from Trained Neural Networks. In Neural Networks,
2000. IJCNN 2000, Proceedings of the IEEE-inns-enns International Joint
Conference on, 1).3, 401–406. IEEE.

165

165

Zilke, J. (2015). Extracting Rules from Deep Neural Networks, M. S. Thesis, Computer
Science Department, Technische Universität Darmstadt.

Zintgraf, L. M., Cohen, T. S., Adel, T., & Welling, M. (2017). Visualizing Deep Neural
Network Decisions: Prediction Difference Analysis. CoRR, abs/1702. 04595.
Retrieved from http:// arxiv. org/abs/1702. 04595.

2

BIOGRAPHY

Paul Cummings graduated from Wethersfield High School, Wethersfield, CT in 1987. He
received his Bachelor of Arts from Boston University in 1992. In his many leadership
roles, he has developed a career in research, technology, and management. He received a
Master of Interdisciplinary Studies from George Mason University in 2018.

