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ABSTRACT

The paper presents a core theory of human plausible reascning, based on
analysis of people’'s answers to everyday questions about the world. The theory

consists of three parts:

1. a formal representation of plausible inference patterns. such as deductions,
inductions. and analogles, that are frequently employed 1n answering
everyday gquestions.

<. a set of parameters, such as conditional likelihood, typicality, and similarity,
that affect the certainty of people's answers to such questions. and

3. a system relating the different plausible inference patterns and the different
certainty parameters.

This is one of the first attempts to construct a formal theory that addresses both the
semantic and parametric aspects of the kind of everyday reasoning that pervades all

of human discourse.



1. BACKGROUND FOR THE THEORY

The gcal of our research on plausible reasoning is to develep a formal system
based on Michalskis (1980, 1983) variable-valued logic calculus that characterizes
different patterns of plausible inference humans use 1n reasoning about the world
{Polya, 1958. Collins, 1978a). Qur work attempts to formalize the plausible inferences
that frequently occur in people's responses to qguestions for which they do not have
ready ANSWErS (Carbonell & Collins, 1973; Collins, 197Ba,b, Collins, Warnock, Aiello, &
Miller, 1975). In this sense it is a major departure from formal logic and various non-
classical logics: e.g., fuzzy logic (Zadeh 1965), multiple-valued logic {Lukasiewicz
1967), Dempster—Shafer logic (Shafer, 1978), intuitionist logic {(Martin—Lof, 1982)
variable—precision logic (Michalski & Winston 1986), probabilistic legic (Nilsson 1888},
belief networks (Pear! 1986), and default logic (Reiter 1980, Yager 1987), Being
descriptively based, the theory includes a variety of inference patterns that do not
occur in formal logic~based theories. The central goals of the theory are to discover
recurring general patterns of human plausible inference and to determine parameters
affecting the certainty of these inferences. Unlike cther theories of plausible
reasoning, the theory combines semantic aspects with parametric aspects captured by

numeric or symbolic estimates of certainty.

In order to analyze human plausible reasoning. Collins {1978b) collected a large
number of people's answers to everyday questions. some from teaching dialogues and
seme fraom asking difficult questions to four subjects. These answers have the

following characteristics:

1. There are usually several different inference patterns used to answer any
question.

AN

The same inference patterns recur 1n many different answers.
3. People weigh different evidence that bears on their conclusion.

4. People are more or less certain about their conclusion depending on the
certainty of their information (either from some outside source or from
memory), the certainty of the inference patterns and associated parameters
used, and on whether different patterns lead to the same or opposite
conclusions.
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The anealysis of the answers attempts to account for the reasconing and the
conclusions drawn in terms of a taxonomy of plausible inference patterns. As will be
evident, this is an inferential analysis. To use Chomsky's (1965} felicitaus terms, we
are trving to construct a deep structure theory from the surface structure traces of

the reasoning process.

In our development of the theory tc date we have not tried to characterize all
the different tvpes of plausible 1nferences that coccur in the protocols. In particular
we have not formalized the spatial, temporal, and meta-knowledge inferences often
seen in protocols (Collins 1978a). This project presents a core system centered
around the plausible deductions, analogies, and inductions, seen most frequently in the
protocols, but we expect there are other forms of these inferences that will need to
be added to the core theory. In future work we plan to extend this cecre system to
encompass the other patterns of inference, such as spatial, temporal, and meta-

knowledge inferences (Collins, 1978 a/b).

We will illustrate some of the characteristics of people’s answers, as well as some
of the inference patterns formulated in the theory with several transcripts. The first
transcript comes from a teaching dialogue an South American geography {(Carbonell &

Collins. 1973) (T stands for teacher and S for student}:

T. There 1s some jungle 1n here (points to Venezuela) but this breaks into a

savanna around the Orinoco (points to the Llanos in Venezuela and Colombia).

u_:n

Oh right. 1s that where they grow the coffee up there?

T. [ don't think thet the savanna is used for growing coffee. The trouble is the
savanna has a ralnv season and vou can't count on rain in general. But |
don't know. This area around Sac Paule (in Brazil} is coffee region, and it is

sort of getting into the savanna repgion there.

In the protocol the teacher went through the following reasoning. Initially. the



teacher made a hedged “no” response to the question for two reasons. First, the
teacher knew that coffee growing depends on a number of factors (e.g., rainfall,
temperature, scil, and terrain}, and that savannas do not have the correct value for
growing coffee on at least one of those factors (i.e., reliable rainfall}. In the theory
this is an i1nstance of the inference pattern called a derivation from o wmutual
implication‘, in particular the implication that coffee growing depends on reliable
rainfall. Second, the teacher did not know that the Llanos was used for growing
coffee, which he implicitly took as evidence against its being a coffee region. The
inference takes the form "I would know the Llanos produces coffee if i1t did, and I
don't know it, so probably it does not.” This i1s called a lack—of-knowledge inference

(Collins et al., 1975, Gentner & Collins, 1982). This inference pattern 1s based on

knowledge about one's own knowledge and hence is a meta—knowledge inference.

Then the teacher backed off his initial negative response, because he found
positive evidence. In particular, he thought the Brazilian savanna might overlap the
coffee growing region in Brazil around Sao Paulo, and therefore might produce coffee.
If the Braczilian savanna produces coffee, then by functional analogy ({(called a
similarily transform in our theory) the Llanos might. Hence, the teacher ended up

saying "I don't know,” even theough his original conclusion was correct.

The teacher’s answer exhibits a number of the 1mportant aspects of human
pleusible reasoning In general, a number of inference patterns are used together to
derive an answer. Some of these are inference chains where the premise of one
inference draws on the conclusion of another inference. In other cases the inference
patterns are triggered by independent sources of evidence. When there are different
sources of evidence, the subject weighs them together to determine a conclusion and
the strength of belief in it. This weighing of evidence parallels the theory of
endorsements espoused by Cohen {Cohen 1985, Cohen & Grinberg, 1983).

It is alse apparent in this protocol how different pieces of information are found
over time. What appears to happen is that the subject launches a search for

information starting with the words 1n the questien (Quillian, 1968, Collins & Loftus,

1This and other technical terms introduced in iteliics in the paper are defined and
exempliified in a Glossary at the end of the paper.



1975). As pieces of information are found. they trigger particular inferences. Which
inference pattern is applied is determined by the relation between the information

found and the question asked. For the question about growing ceffee in the Llanos, if
the respondent knew that savannas are in general good for growing coffee, that would
trigger a deductive i1nference. If the respondent knew of a similar savanna somewhere
that produced coffee, that would trigger an analogical inference. In the protocol, the
more accessible information about the unreliable rainfall in sevannas was found before
the less accessible information about the coffee growing region in Brazil and its
relation to the Brazilian savanna. The search for information is such that the most
accessible information is found first, as by & marker passing or spreading activation

glgorithm (Charniak, 1982, Quillian, 1968).

The next protocol illustrates a plausible deduction. (Q stands for questicner and

R for respondent).

Q. [s Uruguay in the Andes Mountains?

R. 1 get mixed up on a lot of South American countries (pause). I'm not even
sure. [ forget where Uruguay 1s in South America. It's a good guess to say

that it's in the Andes Mountains because a lot of the countries are.

The respondent knew that the Andes are 1n most South American countries (7 out
of 9 of the Spanish speaking countries}) Since Uruguay 1s a fairly typical South
American countryv, he guesses that the Andes mav be there too. He is wrong, but the
conciusion was quite plausible. This kind of plausible deduction is called =a
specializalion transform 1in the theory. based on the fact that Uruguay is a
specialization of a South American country. This example illustrates two of the

certainiy parameters asscciated with it . freguency (he knows the Andes are in most

countries), and typicality (Uruguay is a typical South American country).

The third protocol 1llustrates the other kind of plausible deduction in the
theory, called a derivafion from mutual implication (1n particular, rice growing implies

warm weather, flat terrain. and fresh water})



Q Do you think they might grow rice in Florida?

R.. Yeah. | guess they could. if there were an adequate fresh water supply.

Certainly a nice, big, warm, flat area.

The respondent knew that whether a place can grow rice depends on a number
of factors. He also knew that Florida had the correct values on at least two of these
factors (warm temperatures and flat terrain). He therefore inferred that Florida could
grow rice if it had the correct value on the other factor he thought of (i.e., adequate
fresh water}). He may or may not have been aware that rice growing also depends on
fertile soil, but he did not mention it here Florida in fact does not produce rice in
any substantial amount, prebably because the soil is not adequate. This protocol
shows how people make plausible inferences based on their approximate knowledge
about what depends on what, and how the certainty of such inferences is a function of
the degree of dependency bhetween the variable 1n question (rice) and the known

variables (i.e. terrain, climate, water).

The fourth protocol from a teaching dialogue illustrates two inferences in the

core theory, a similarity transform and & dissimilarily transform:

3. Is the Chaco the cattle country? [ know the cattle country 1s down there

{referring to Argentina).

T. I think it's more sheep country It's like western Texas, so in some sense I
guess it's cattle country The cattle were originally in the Pampas, but not

so much anymore.

As In the first protocol. the respondent is making a number of plausible
inferences 1n answering this question, some of which lead to different conclusions.
First, he thinks that the Chaco is used for sheep raising, but there is some
uncertainty about the information retrieved. which leads to a hedged response. This

supports a dissimilarity transform and an implicit lack—of—knowledge inference (a



meta—knowledge inference). The dissimilarity transform 1s based on the view that
sheep country is distinct f'rom cattle country. presumably 1n terms of its climate or
vegetation. so that if the Chaco is sheep country it is not likely to be cattle country
The lack-of-knowlcdge inference takes the form "[ don’t know that it's cattle country.
and 1 would know if it were (e.g., 1 know about sheep) so it probably 1s not cattle
country.” But then the teacher noted a similarity between the Chaco and western
Texas, presumably in terms of the functional determinants of cattle raising {e.g.
climate, vegetation. terrain). Because Western Texas is cattle country, this led him to
a very hedged affirmative response, based on a similarity trensform. Finally the
teacher alluded to the fact that the Pampas is the place 1n Argentina known for
cattle, and the place the student most likely was thinking of This argues against the
Chaco having cattle based on another meta—knowledge inference, a functional
alternative inference (Collins, 1978b, Pearl, 1987): “The Pampas 15 an Argentinan
plain and the Pampas has cattle. so the fa\ct that there are cattle in an Argentinan
plain cannot be taken as evidence for cattle in the <Chaco.” In answering this
question, then, two patterns of plausible inference led to a negative conclusion and

one to a positive conclusion.

The fifth protocel agein illustrates both & similarity and a dissimilarity
transform, and more importaﬁtly, the distinction between inferences based on overall
similarity and those based on similarity with respect to the functional determinants of

the property in question.

Q. Can a goose quack?

R. No a goose — well. its like a duck, but its not a duck.
It can honk, but to say 1t can gquack. No. I think its
vocal cords are built differently. They have a beak

and everything, but no, 1t can't quack.

The similarity transform shows up in the phrases, "it's like a duck’ and ''They
have a beak and everything” as well as 1n the initial uncertainty about the negative

conclusion. It takes the form, "A duck gquacks and a goose is like a duck with respect
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tc most features, so mavbe a goose quacks” The certainty of the inference depends

cn the degree of similarity between ducks and geese.

But then two lines of negative inference led the respondent to a negative
conclusion. First there 1s a lack—-of—knowledge inference 1mplicit in the statement [t
can honk, but to say it can quack.” She knew about geese honking but not about
their quacking. Therefore. she thought she would know about geese quacking, if in

fact they did quack.

The second line of negative inference (apparently found after she started
answering} is the dissimilarity {ransform evident when she says, 'l think its vocal
cords are built differently” The dissimilarify ftransform takes the form "Ducks quack,
geese are dissimilar to ducks with respect to vocal cords, and vocal cords determine
the sound an animal makes, so probably geese do not quack”. This inference was
enough to lead her to & strong "ne”. Of course she knew nothing about the vocal
cords of ducks and geese, because they don't have any. She was probably thinking of
the difference in the length of their necks. Our own hypothesis is that longer necks

resonate at lower frequencies and hence honking can be thought of as deep gquacking.

These five examples illustrate & number of aspects of human plausible reascning
as 1t occurs in common discourse. They show how people bring different pieces of
knowledge to bear on & question and how these pieces sometimes lead to the same
conclusion and sometimes to different conclusions. Often knowledge is found after the
respondent has started answering, so that the certainty of the answer seems to
change 1n midstream. The examples also show how people's approximate functional
knowledge of what depends on what often comes to play in different inferences such
as deductions and analogies. Therefore these dependencies are a central part of the
core theory we have developed. We will return to these examples to illustrate how the
formal rules we have developed can be used to characterize different plausible

inferences seen in these examples.

We have collected many such protocels (Collins 1978b) and these same patterns
(as well as others) recur again and again in many different content domains and
contexts. Any theory that is to account for such data will have to characterize these

systematic patterns and the way that functional dependencies (e.g. coffee growing



depends on reliable rainfall) interpenetrate these patterns of inference. The theory
outlined in the rest of the paper 1s the simplest theary that we have been able to

construct to do that job.

We shouild emphasize alsco that the scope of the theory is the kind of domain-
independent, weak inferences (Newell 18B0) akin to the syllogistic forms in logic. The
core theory attempts to specify the generalizations of syllogistic forms that reflect the
way people actually reason, not how they should reason. This scope leaves out two
kinds of plausible reasoning seen frequently in people’'s answers to questions: 1)
domain specific reasoning (e.g. "the language of Mexico is Mexican.” which employs a
special rule for forming language names), and 2) generalized weak methods that involve
active search for information, such as means—-ends analysis (Newell & Simon, 1972) and
proof by cases {(e.g., to estimate how many Catholics there are in the world, many

people will consider different countries or continents and estimate how many in each).

Johnson-Laird (1980, 1983) has argued that the best account for human
reasoning is not in terms of systematic rules or inference patterns, but rather 1n
terms of the mamipulation of mental models. While we agree that people manipulate
mental models in their reasoning (Collins, 1985, Collins & Gentner, 1982, 1983, 1987,

Stevens & Collins, 1980}, their use of mental models is orthogonal to the systematic

patterns described in this paper. I[n particular, the protocols we have collected often
invelve picturing different situations {(e.g. a mental map of South America, images of
savannas. or an advertisement showing Juan Valdez on his coffee plantation in
Colombia}. These images can be itaken as evidence for the manipulation of mental
models in Johnson-Laird's terms. But overiaying this manipulation of mental models
are the systematic patterns in which they are depioved to support one's conclusions
{(c.f. Rips 19886). So while mental models may be part of the story of plausible

reasoning, there is another critical part which the theory we propose addresses.

The theory does not address the issue of whether people make systematic errors
in their reasoning. as the psychological literature on decision making (Kahneman,
Slovic, and Tversky, 1982) attempts to document. This issue does not arise in the
theory because we are developing a formalism for representing the kinds of inferences
people make and ‘the parameters that affect their certainty, rather than a theory

about how people make particular inferences. People may systematically ignore some



kinds of information or undervalue particular certainty parameters - we have not
attempted to determine whether they do or not. Instead we have tried to represent

all the kinds of reasoning patterns and the kinds of certainty parameters that appear
in the protccols we have analyzed (Collins, 1978 a, b). In this regard it :s worth
pointing out that certain faillacies in logic, such as affirming the consequent (Haviland,

1974), become plausible inference patterns in the theory.?

The theory was developed to account for protecols where a guestion drives the
search for relevant informaticn - in Artificial Intelligence this is called backward
inferencing. One question that might arise is whether the theory applies to forward
inferencing. when & person finds out some fact such as that they grow rice in Java,
does she draw inferences mbout places that might grow rice (e.g. Sumatra, Borneo, the
Philippines, or even Madegascar, the Congo, and Brazil) or about what conditions lead
to rice growing (e.g. a tropical climate, an oriental location, an istand climate, having
a lot of people to feed, etc.). One danger in forward inferencing is that there are so
many possible inferences, it can go on forever — if one decides that islands cean grow
rice, one can carry this to Iceland and Greenland and then wonder about Antarctica
and Australia, or even Africa. In general people probably do not do much forward
inferencing, except as Schank (1986) suggests when they ask themselves questions in
order to explain and generalize their experiences. In any case, people do some
forward inferencing and our gﬁess 1s that the same patterns occur. But they do not
carry it very far hecause the certainty of the inferences quickly falls below some
threshold of plausibility. There are Just no long cheins of inference in people’'s

piausible reasoning, unlike logical or mathematical proofs.

There 15 a high payoff from trying to formalize the patterns of human plausible
reascning in & system. The system helps to i1dentify parallels between apparently
different inference types (e.g. deductions, analogies and inductions). Furthermore, 1t
makes it possible to see the systematic patterns in which different certainty factors in
the psychological hiterature (e.g. typicality, similarity, frequency, dominance) affect

related inference types The payoff 1s similar to what happened when Mendeleev

2As will be seen, dependencies cnd imptications ore bidirectional in the theory and so
dertvations from them, such ags affirming the consegquent, are plousible but not certoin
inferences. The same point is made by Polya (1968).
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discovered the periodic table establishing the regularities between different chemical
elements. then it was possible to see which elements were missing, predict how new

elements might behave. and begin the search for why the systematic patterns in the

table arose at some deeper level
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2. ASSUMPTIONS UNDERLYING THE THEORY

The theorv assumes that a large part of human knowledge is represented in
dynamic hierarchies, that are always being updated, modified or expanded. In the core
theory described here we distinguish between two basic kinds of hierarchies, type-
and part—hierarchies (Collins and Quillian, 1972). A type-hierarchy (also called an
abstraction or is—a hierarchy) is organized by the fype relation holding between
connected nodes, or more precisely, between concepts represented by the nodes. A
part—hierarchy 1s organized by the part-of relation holding between connected nodes.
Any given node may be a member of more than one hierarchy. Each such hierarchy
characterizes the node from a different viewpoint. There are other kinds of
hierarchies {e.g. kinship hierarchies) that govern human inferences, but they play a

minor role as compared to type— and part—hierarchies.

Nodes of a hierarchy may represent classes (e.g., flowers), individuals {(e.g., a
specific flower) or manifestations of individuals (e.g.. a specific flower at a given
moment). For the purpose of the theory, they are treated alike, though it may be
necessary in future refinements of the thecry to treat manifestations, individuals. and

classes differently.

Figure 1 shows examples of type— and part-hierarchies. In the first four
examples (a.b.c.d)., the Llanos is viewed from four different perspectives. These
perspectives are crgamzing principles of the hierarchies {Bobrow and Winograd, 1977).
The type-hierarchy in Figure la is organized according to the type of terrain. The
type of terramn can be mountainous., plateau. hilly, or plain, etc. The Llanos is
characterized as a type of plain, like the Chaco. The type—hierarchy in Figure 1b 1s
organized according to the geographical land type. It characterizes the Llanos as a
ype of savanna, which 1s one of the major land types that geographers divide. the
world into, including rain forests, deserts, steppes, Mediterranean climates, mid-
latitude forests, etc. The part—hierarchy in Figure 1lc is orgenized according to
regions in South America. the Andes, ‘Amazon Jungle, Llanos, Guiana Highlands, and
their subregions in different countries. The part-hierarchy in Figure 1d represents

South America broken down into countries and the subregions within each.
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Insert Figure 1 here

The other three examples in Figure 1 are designed to illustrate how different
kinds of information are represented in hierarchies. Among colors there are green
and red. Among reds there are scarlet and burgundy, and among scarlets there are
bright scarlet and perhaps dull scarlet, etc. Colior is a one—place descriptor applying
to objects, but feeling emotion is a two place descriptor where X (a person) feels the
emotion toward Y {any concept). In the emotion hierarchy there are many types of
emotions, among them love and hate, and there are different kinds of love, such as
romeance, affection, motherly love, etc. In the weight hierarchy there are different
kinds of weight, such as human weight which in turn might be divided into birth
weight and aduit weight. For birth weight one might think of 1 1b. as a minimum, 15
lbs as a maximum, and 7 lbs as the nerm. For the purposes of the theory these can
be thought of as different values of birth weight, just as red and green are different

values of color.

Node A in any hierarchy can be a descriptor of node B in another hierarchy, i.e.,

A can be used to characterize node B. We write such a relation as a ferm

A(B)

For example, the node "color” in hierarchy le of Figure 1 applies as a descriptor to
the node "eves” in a hierarchy of body parts. This is denoted as 'color{eyes).” The.
node “"eyes” can in turn be applied as descriptor to the node, John, in some hierarchy

describing people. To express both relations we would write.

color(eves{John}))

A term A{(B) can take values (called referenits in the theory) only from the set of
subnodes of A, i.e., the descendants of the node A in the hierarchy. Applying a
descriptor to an argument (a node or a sequence of nodes) produces a specific value
characterizing the argument. This 1mplies that only non—terminal nodes of a

hierarchy can be descriptors. For example., to state that the color of the eyes of
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Figure 1. Examples of hierarchies.



John is blue, a path would be created that links John, coler and blue as shown in

Figure 2. To express this formally, we write:
color{eves{John))=blue

In the theory such an expression 13 called a sfafement. Statements are
recordings of information within the hierarchies. They are paths connecting the nodes
of two or more hierarchies that represent beliefs about the world. Figure 2 shows
examples of statements representing the beliefs that there are daffodils and roses in
England, and that John's eyes are blue. The stetements can have annotations
describing their origin, their frequency of use, the certainty of belief 1n their
correctness, and other information. The links denoting the type and part relation in
generalization hierarchies can alse be viewed as denoting statements, but for the
purposes of the theory we will distinguish them from other statements. The knowledge
organization described above includes various elements of semantic network structure
(Carbonell & Collins, 1973, Collins & Quillian, 1972; Quillian, 1968, Woods, 1975} and
frame structure (Bobrow & Winograd, 1977, Brachman & Schrﬁolze, 1985, Minsky, 1975;
Schank & Abelson, 1977, Winograd, 1975).

Iinsert Figure 2 here

Figure 3 illustrates the fact that the hierarchies are partial orderings, and can
be differentiated or collapsed as appropriate for the purpose of drawing plausible
inferences. At a fairly early age children think of animals as coming in different
types: dogs, cats, fish. birds, etc. They don't differentiate them much more than that.
When they get to school they may learn there are different basic types of animals,
such as fish, birds, reptiles, mammals, and amphibians, and that dogs and cats are
types of mammals. Still later 1n biclogy this hierarchy might be differentiated much
more finely as in Figure 3¢. For the purposes of the theory, such hierarchies may be

thought to coexist., and plausible inferences can be made in any of themn.

Insert Figure 3 here
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Table 1 shows hypothetical concept structures for a few concepts in someone’'s
memory {Collins & Quillian, 1972; Collins et al, 1975). These examples are not meant to
provide a detailed analysis of how concepts are represented, but rather to illustrate
how the statements shown in later examples can be constructed from a memory
structure. In the example, type and part relations form the basis for hierarchical
structures such as those shown in Figures 1 and 3. Flowers are represented as a
type of plant coming in at least four varieties (i.e. roses, etc.), having various parts,
various colors, and growing in all countries, Each descriptor (i.e. type/of, types,
parts, color, countries) might be further specified as to how it relates to the concept
flower (e.g., type/of is a bioclogical class, colors are surface features of the petals,
countries are places where flowers are grown, etc). The concept description for
daffodils, which are a particular type of flower, provides further specification for each
of the variables in. the concept of flowers. That is, they have petals and a stem, they
come 1n vellow and perhaps other colors, and they are grown in at least England and
the United States. The concept red is shown to illustrate how a color concept points
back to various objects which it describes. Finally let us stress that we have not
concerned ourselves with exactly how concepts are represented. but rather we have

assumed they are represented in a structure similar to these examples.

Insert Table 1 here

Any node 1n a hierarchy can potentiaily be a descriptor for a node in another
hierarchy. For example, if flower is 1n a hierarchy of things and England is in a
hierarchy of places, flower—type might be a descriptor for England. This produces a
statement of the form:

(1} flower—type(England}=}daffodils, roses,.... }

In (1} flower—type is & descriptor, England is an argument. flower—type{England) is a
term, 'and daffodils and roses are referents for the term. The brackets and dots
indicate that daffedils and roses are not assumed to be & complete set, although the
person may not know other flowers of England. Any descriptor, as a node in a
hierarchy, can be further differentiated. For example, flowers can be differentiated
between naturally-growing flowers vs. filowers grown in greenhouses, or between

flowers sold vs. flowers grown, etc. People make finer or less fine discriminations
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Table 1

Hypothetical Frames in a Person s Memory

flower
type/of = plant
types =irose, daffodil, peony, bougeainvillea ...}
parts =jpetals, stem ...{
colors ={pink, vellow, white, red ...}
countries =iall countries}
daffodil
type/of = flower
parts =ipetals, stem ...{
colers =}yellow ...}
countries =3iEngland, United States ...{
red
typesof = color
types =iscarlet, burgundy .. .}
flowers =iroses. tulips ...{

vehicles =ifire engines. London buses .. .}



depending on their knowledge and purposes. and a theory of plausible reasoning must

accommodate these different degrees of discrimination.

Whether a particular descriptoer applies teo any argument depends on what
knowledge the person has. For example, it :s not clear what color—type (England)
might mean because one probably doesn't have knowledge in one's data base about the
color of England (though one might interpret the term as the color of the overall

appearance of the country, e.g., Ireland looks green),

Examples (2) to (B) below illustrate how different descriptors apply to different

concepts:

(2) England-part(daffodils)=§Southern England...}
(3) daoffodil—part(England)=}{petals, stem...}

(4) country—type{daffodiis)=}temperate countries...}
(5) daffodil—type{England)=fyellow daffodils...}

(6) Engiond-type(daffodiis)={England in the spring}

Exemples (2} and {3) illustrate statements based on part hierarchies. In (2) the
descriptor selects the part of England where daffodils occur. in (3) the descriptor
selects the parts of daffodils that occur in Englend;, presumably daffodil parts in
England are the same as daffodil parts anywhere in the world (though perhaps Martian
daffodils are quite different}. In (4) country-type applied to daffodils selects the
types of countries that have daffodils {(1.e., temperate countries). Statement (4) could
have specified the particular countries (e.g., England. France) that have daffodils,.
since hierarchies can be collapsed as leng as a partial order 1s maintained. In (5)
daffodil-type applied to England selects the different daffedil types found in England,
of which only one type 15 stored (1.e., yellow daffodils), though there may be . others.
In (8) we show that when vou take an instance like England and look at its subtypes
vou get a manifestation, in this case the manifestation that has daffodils. These

examples show how different terms are evaluated within the theory.

We have discussed the most important assumptions we are making about how
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human memory 1is organized and accessed for the purposes of making plausible
inferences. Further descriptions of our underlying assumptions about human memory
are given in earlier papers (Carbonell & Collins, 1873; Collins & Loftus, 1975; Collins &
Quillian, 1972: Collins., Warnock, Aiello & Miller, 1975).



3. PRIMITIVES IN THE CORE SYSTEM

In the core system we have developed there 1s a set of primitives and a set of
basic inference rules. In this section we describe the primitives in the system,

consisting of basic expressions, operators, and certainty parameters.

Table 2 shows the basic elements in the core system. Arguments can be any
node in a hierarchy, or a function of one or more nodes such as Fido's master or the
flag of England. Descriptors apply to arguments, and together they form a ferm, such
as breed (Fido). The potential referent for a term is the set of nodes in the hierarchy
under the descriptor node. it can be either a definite set of values such as collie, or
brown and white, or an indefinite set of values such as brown plus other colors {(or
possibly no other colors). Indefinite sets are represented by brackets and dots {(e.g.,

{brown...}).

Insert Table 2 here

Statements consist of a term on the left of a relational operator (usually an
equals sign}) and a referent on the right, tcgethér with a set of certainty parameters.
Expressions (1) through (6) above were all statements, without the certainty
parameters specified. The certainty parameters can be thought of '&s approximate
numbers ranging between 0 and 1, but we have represented them as verbal
descriptions. In the example of a statement in Table 2. ~ refers to how certain one is
the statement 1s true, and ¢ to the belief about the frequency that if something is a
bird it can fly (p(flying/bird)). These certainty parameters are all listed in Table 4, to

be discussed later.

The last two types of expressions in Table 2 represent functional dependencies
between different variables. Mutual dependencies befween tferms represent the

functional relationship between two terms, such as between the average temperature of

18



Table 2

Elements of Expressions

arguments
8, &, f{a1}
e.g., Fidoa, collie, fido's master

descriptors d,. d,
e.g., breed, color

terms d,(a,), dz(az}, dz(d1 (a1)}
e.g., breed (Fido), color {collie}, color (breed {(Fido))

referents r,, r, ry, ir, .4
e.g., collie, brown and white, brown plus other colors

statements d1(a1)=r1:“1. o
e.g., means—of-locomotion (bird)=iflying...{. certain. high
frequency (translation: 1 am certain almost all birds fly)

dependencies between terms d1(a1)<———>d2(f(a1)):a.
3,
e.g.. latitude (piace) <—---> average temperature (place).

moderate. moderate. certain (translation: I am certain

that latitude constrains average temperature with moderate
relhiability. and that average temperature constrains latitude
with moderate reliability)

implications between statements

d,(a,)=r <===>d,(f(a,})=r, o 3,

~

e.g., grain {(place)=irice.. ! <===> rainfall (place)=heavy:

high, low, certain (translation. [ am certain that :f
a place produces rice, it implies the place has heavy
rainfall with high reliability. but that if a place
has heavy rainfall 1t only implies the place produces
rice with low relhiability}



a place and the latitude of the place.3 The dependency can be annotated to different
degrees: it can be unmarked meaning there exists some functional relation between
the two. it can be marked with + or - indicating a monotonic increasing or decreasing
relation, or 1t can be further specified to any degree {(e.g., a V-shaped function with 3
values specified). For example, if one thinks that average temperature of & place in
January varies between about 85° at the equator and -30° at the North Pole and +
30° at the South Pole, this relation can be represented as a V-shaped function with
values (-90° 30°), (0° 85°) and (90° -30°), where the first number is latitude and
the second temperature. The conditional likelihood parameters (o and 3) specify the
degree of constreint in the dependency from latitude to temperature and from
temperature to latitude, respectively. In the latitude-temperature example the degree

of constraint is moderate in both directions, as is discussed later.

Mutual implications beiween siatements relate particular values of functions such
as the latitude—temperature function above (e.g., latitude {place) = equator <=>
average temperature (place} = hot). The example shown in the table relates the grain
of a place being rice to the rainfall of the place being heavy (e.g., >40 in/vear).
Knowing a place produces rice predicts that it will have heavy rainfall quite strongly,
so that a is high (though there are exceptions like Egypt where rice is grown by
irrigation). However the fact that the rainfall of a place is heavy (e.g., Oregon) only
weakly predicts that rice is grown, so 8 is low. In general mutual implications between

statements will be asymmetric in this way,

Table 3 illustrates the four relations 1n the core system and the kinds of
statements they occur in. The generalization (GEN) and specialization (SPEC) relations .
go up and down in a hierarchy, while the similarity (SIM) and dissimilarity (DIS)

relations go between any two comparable nodes in a hierarchy. Associated with the

SDependencies between terms play essentially the same role in this theory as
determinaiions piay in the work of Davies ond Russell (1988). Determinotions have the form
that one variaobie determines the truth of another variabie, whareas dependencies are
bidirectional, where each varioble constrains the cother variacbie to some degree specified by
certainty parometers o and 3. Determinaticons are used in their theory to determine the
relevance of wvariobles over which analeogies qre mode, whereas dependencies in our theory
mere generally constrain o larger class of inferences including bosic analogies (called
similarity transforms in our theory).
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GEN and SPEC relations there is & typicality* parameter v (Rosch, 1975, Smith & Medin,
1982), and with the SIM and DIS relations there is a similarity parameter o. There 1s
also a dolminance parameter & associated with GEN and SPEC statements that specifies
what proportion of the superset, the subset actuaily comprises. Finally all the
statements involving relations have a ~ parameter associated with them reflecting the

certainty of belief that the statement is true.

Insert Table 3 here

Typicality and similarity are always computed in some context {CX} which is
denoted by the CX variables. The first variable in the CX denotes a nocde in the
argument hierarchy specifying the range of arguments over which {ypicality or
similarity are computed. For GEN and SPEC this is always the superset specified in
the statement: for chicken SPEC barnyard fowl, barnyard fowl is the superset over
which typicality is computed. For SIM and DIS, however, it is the basic level category
{(Rosch 1875; Smith & Medin, 1982) to which the two arguments belong that is the basis
for computing similarity. Hence the similarity of ducks and geese would normally be

computed in the context of birds, which is their basic level category.

The second variable in the CX specifies the set of descriptors to be used in
comparing the two nodes with respect to typicality or similarity. For example, one can
evaluate how typical chickens are as birds with respect to their physical features,
with respect to all their features, or with respect to some particular feature such as
the cost of feeding them. Similarity and dissimilarity can also be computed with
respect to different features. As we discussed with respect to the fifth protocol
shown earlier, ducks and geese are quite similar when compared on all their features,
but they are dissimilar in neck length {(which is relevant to determining the sound

they make}. The procedure for computing typicahty and similarity 1s described below.

Table 4 lists the certainty parameters we have identified so far that affect the

certainty of different plausible inferences. These parameters do not yet have an

4Typicality corresponds roughly to representativeness in the work of Kahneman aond Tversky
(1972).
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agreed computational definition, and so different computer models of the theory have
implemented them in different forms. We will describe each of these parameters in
terms of the examples given above. The description 1s meant to specify our best

hypothesis about how people might compute these parameters.

Insert Table 4 here

The conditional likelihood (o and #) parameters can best be introduced in terms
of the example. grain(place)=irice...}<===>rainfall{place)=heavy. As we said, o would
be high in such a case if a person thinks that most places that grow rice have heavy
rainfall {say greater than 40 inches per year), whereas 3 would be low if he or she
thinks there are many places with heavy rainfall, that don't produce rice. We can
construct a hypothetical contingency table that represents this view in terms of a
small sample of places and the frequencies with which they have heavy rainfall and

produce rice:

Rice No Rice Total
Heavy Rainfelil 8 8 186
No Heavy Rainfail 2 20 22
Total 10 28 38

Given this table o is simply the conditional probability that a rice—~producing
place has heavy rainfell, in this case 8 of 10 or .8, and B is the conditional
probability that & place with heavy rainfall produces rice. in this case 8 of 16 or .5.
We don't think that peopie actually construct such tables though they may consider a
small number of cases in computing rough estimates of a and 3. as they do in using
the availability heuristic (Tversky & Kahneman, 1973). Basically our assumption is
that people build up a rough intuition about how frequently one thing leads to (or
predicts) another, and this 1s what is captured by the o and 3 parameters. By
providing two parameters. the theory can encompass the kind of asymmetries found by

Tversky and Kahneman (1980) in reasoning causally vs. diagnostically.

The o« and B8 parameters for mutual dependencies can be constructed by an
extension of the procedure feor mutual implications. Suppose one considers the

relationship of rainfall and grain growing as before, but instead as a mutual



Table 3

Relations*

Generalization a' GEN a in CX{a',d{a'}). ~, 7, b

e.g., bird GEN chicken in CX {(birds., physical features(birds)):
certain, atypical, low dominance (translation: I am
certain chickens are birds, but they are atypical of
birds in their physical features, and they are a low

percentage of birds)

Specialization a" SPEC a in CX{a.d{a)}): ~, 7. t
e.g., chicken SPEC fowl in CX (fowl, food cost(fowl)):
certain, typical, moderate dominance
(translation: I am certain chicken are fowl
and they are typical of fow]l with respect
to food costs, and they are a moderate percentage of
barnyvard fowl) '

Similarity a’ SIM a in CX{A.d(A)): ~, o

e.g., ducks SIM geese in CX(birds, all features(birds)). certain.
highly similar ({iranslation: | am certain ducks are
highly similar to geese with respect to all their features)

Dissimilarity a’ DIS a in CX(A.d{A)): -, o
e.g., ducks DIS geese in CX{birds. neck length{birds)}) certain,

fairly dissimilar {(translation. ! am certain ducks are
fairly dissimilar to geese with respect to neck length)

* A represents o superordinagte of o and a’



dependency: i.e., graimn {place} <—-> rainfall {place). For simplicity we can present

the same hypothetical table in revised form.

Rice Wheat Corn Total
Heavy Rainfall 8 6 2 16
Light Rainfall 2 14 6 22
Total 10 20 8 38

Then « reflects the degree to which you can predict whether a place has heavy
or light rainfall, given the predominant grain grown in the place, which is quite high
(i.e., the prediction is correct in 28 or 38 cases or 7 assuming an optimal guessing
strategy). Similarly, 3 reflects the degree to which you can predict whether they Erow
rice, wheat, or corn, given the amount of rainfall (i.e., the prediction is correct in 22
of 38 cases or .6, assuming an optimal strategy of guessing wheat for light rainfall and
rice for heavy rainfall). This example makes evident the fact that the « and B

parameters reflect the way the dependency partitions the known cases in the world.

The ~ parameter in Table 3 reflects the certainty or subjective likelihood with
which a person believes any expression is true. ~ can reflect different possible
sources of uncertainty. One source arises when people retrieve a fact from memory
and are uncertain whether they are making & memory confusion. Another basis for
uncertainty arises when they doubt the source from which they got the information.
Finally, if a piece of information derives from a plausible inference, there will be
uncertainty as to whether the conclusion is correct, and this uncertainty will
propagate to inferences dependent on it All these sources of -uncertainty are

represented by the ~ parameter.

Typicality (7v) and similarity (o) both invelve computing the coincidence of
features.® In the case of typicality it 1s computed between a subset and its superset,
and in the case of similarity it is computed between two subsets. We assume for these
purposes that any set (or concept) is represented as a bundle of features {Collins &
Quillian, 1972), and the 7 and o parameters are computed by comparing the two

concepts with respect to those features specified by the descriptor variable in the

5Rips (in press} hos evidence that people in fact compute typicality and simiiarity
differentliy.
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Tahle 4

Certainty Parameters for Expressions

« Conditionai hikelihood that the right-hand side of a dependency or
implication has a particular value {(referent) given that the left—hand
side has a particular value. Applies to dependencies and 1mplications.

3 Conditional likelihood that the left—-hand side of a dependency or
implication has a particular value given that the right—hand side
has a particular value. Applies to dependencies and implications.

4 Degree of certainty or belief that an expression is true. Applies
to any expresslon.

T Degree of typicality of a subset within a set (e.g., rebin is a
typical bird and ostrich is an an atypical bird). Applies to GEN
and SPEC statements.

¢ Degree of similarity of one set to another set. Applies to SIM
and DIS statements.

© Frequency of the referent in the domain of the descriptor (e.g., a
large percentage of birds fly). Applies to any non-relational statement.

¢ Dominance of a subset in a set {e.g., chickens are not large
percentage of birds. but are a large percentage of dominant
among barnyard fowl). Applies to GEN and SPEC statements.

W Multiplicity of the referent (e g. many minerals are produced
by a country like Venezuela). Applies to any non-relational statement.

#, Multiplicaty of the argument (e.g. many countries

produce a mineral iike oi1l}). Applies to any non-relational statement.



context CX. For example, "chicken” might be compared to "bird"” with respect to size
or with respect to all its physical features to determine its typicality. For a
continuous variable like size, typicality or similarity i1s determined by computing how
close (normalized betweenn 0 and 1) the two values are in the distribution of sizes for
the class specified by the context CX {(e.g. birds). For discrete variables like "ability
to fly"', the two concepts either match or not (assigned either 1 or 0), though many
discrete variables might better be treated as continuous for comparison processes
(e.g., reflecting the degree of flying ability}. Typicality or similarity are based on the
average score for all the features compared, weighted for their ecriteriality or
importance {(Carbonell & Collins, 1973, Collins & Quillian, 1872). We assume the
combining function used is something hke that proposed by Tversky (1977) where
matching features increase the similarity or typicality and mismatching features

decrease similarity or typicality.

Frequency (¢) and dominance (8) reflect different ratios that affect the certainty
cr'f plausible inferences in systematic ways. Frequency reflects the proportion of
members of the argument set that can be characterized by the referent specified. It
reflects what "Some” or "All" reflect in logic (e.g., “Some men have arms"), but as a
continuous variable between 0 and 1. For the statement “means-of-locomotion
(birds}={flying.. {." © is the proportion of birds that fly to the total of all birds. The
dominance {¢) of a subset within a set applies only to generalization and specialization
statements It reflects the proportion of members of the set that are members of the
subset specified 1n the statement. For example. chickens constitute a high prepertion

of barnyard fowl. but not of birds in general.

The muitiphcity of the referent {prJ and multiplicity of the argument {uq) are
closely related parameters. Suppose somebody thinks that Mineral{Venezuela)=}oil...}.
The multiplicity of the referent in this case reflects the relative number of'.minerals
(the superordinate of oil) the person thinks Venezuela might have, and the multiplicity
of the argument reflects the number of countries (the superordinate of Venezuela)
that might produce oil. [n this case most people think of both w. and p as multiple:
l.e., Venezuela produces more than one mineral, and there are other countries that

produce oil. In general people don’'t know about the multiplicity of particular cases,
so they derive the multiplicities by inference from more general knowledge: e.g. that

countries typically produce more than one mineral. and that any mineral 1s found in



more than one country. Many descriptors and arguments are thought of as single-
valued or low in multiplicity. For example most people think of mines as producing
only one mineral (i.e. u.rzlow) though each mineral comes from multiple mines
{(p,=high). For capital (Spain}=Madrid both u_ is low (Spain has only one capital) and
h, is low (only one country has Madrid as capital}). If the multiplicity of the referent
is Jow, then this corresponds to the fact that the referent is single—valued rather
than set-valued. The theory treats the single-valued vs. set-valued distinction as a

continuous variable, thereby allowing the degree of certainty derived from inferences

to vary continuously with different degrees of multiplicity.

In conclusion, the different primitives in the system can be classified into four
groups. The first group are statements representing people's beliefs about the world
(e.g. means—of —locomotion{birds})={flying...}). The second group are statements
involving relations (i.e. GEN, SPEC, SIM, DIS} representing different relationships
between concepts in hierarchies (e.g. canary SPEC bird). The third group are
relational expressions called mutual implications and mutual dependencies, that
represent people's approximate knowledge about what depends on what, which can be
specified with more or less precision. The fourth group are the certainty parameters
that act to condition these three kinds of expressions. and which affect the certainty

of the different inferences described in the next two sections.
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4. STATEMENT TRANSFORMS

The simplest class of inferences 1n the core theory are called statement
transforms. [f a person believes some statement. such as that the flowers growing in
England® include daffodils and roses [1e.. flower—type{England)=idaffodils, roses...}],
there are eight statement transforms that allow plausible conclusions to be drawn.
These eight transforms can be thought of as perturbations of the statement either
with respect to the argument hierarchy. (starting from England)} or the referent
hierarchy (starting from deaffodils and roses). The transforms of arguments move up
(using GEN), down (using SPEC), or sideways (using SIM or DIS) in the argument
hierarchy. Similarly the transforms of referents move up, down, or sideways in the
referent hierarchy. Thus each of these transforms is & perturbation in one of the two

hierarchies.

Let us illustrate the eight transforms of statements in terms of hierarchies for
England and roses. Figure 4 shows a part hierarchy for England and a type hierarchy
for roses and daffedils that someone might have. I[f a given person believes that
"flower—type(England)={daffodils, roses...{," then Table 5 shows eight conclusions that
the person might plausibly draw (assuming other information does not override any of

the conclusions).

Insert Figure 4 and Table 5 here

The first GEN inference is that Europe as a whole grows daffodils and roses.
which is a kind of induction. This may not be true: Daffodils and roses may be a
peculiarity of England, but it is at least plausible that daffodils and roses are
widespread throughout Europe. Similarly, for the SPEC operator 1t is a plaﬁslble
inference that the county of Surrey in southern England grows roses and daffodils.
There 1s an implicit context (CX) in GEN and SPEC transforms. that will be discussed

later.

®This can be taken to mean flowers that grow outdoors in England which we have simplified
to flower—type(England).
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The SIM and DIS inferences are alsc made 1n scme context. In the case of the
transforms of arguments the context might be “countries of the world with respect to
the variable climate.” Holland 1s quite similar to England with respect to climate,
while Brazil 1s gquite dissimilar. The variables cver which the comparison is made may
be few or many but people will make the comparison with respect to those variables
that they think are most relevant to the guestion (e.g., whether they grow daffodils in
Holland}. That is, they base their inference on whatever mﬁtuai dependency most
constrains the descriptor 1n question. In this case the flowers grown in a place
depend highly on the climate of the place, but hardly at all on the language of the
place. Therefore climate 1s a reasonable variable on which to make the comparison.
We will refer to this issue later when we talk about how different parameters affect

the certainty of any statement transform.

The transforms of referents are perhaps easiest to understand if you substitute
a fictional place like Ruritania for England, because other inferences are not invoked
so easily. If one believes they grow daffodils and roses in Ruritania. then one might
infer they grow temperate flowers in general there, and yellow roses in particular. It
is alsc reasonable that they grow pecnies there, since they are similar to roses and
daffodils as to the climates they grow in. But bougainvillea grows in more tropical
climates, so 1t 1s unlikely to grow in Ruritama (Ruritania is, after all, a small little
kingdom and wunlikely to encompass different climates——see discussion under
multiplicity below), These examples should give a feel for how the transforms of

statements are made.

An argument that might be made against the generality of these patterns of
inference 1s that people would draw all sorts of absurd conclusions if they followed
these patterns in most cases. For example, since most people know that in general
birds fly (i.e., means—of-locomotion(birds}=iflying...{), they therefore might conclude by
a generalization transform that animals or living things in general fly. Or by a
specialization transform that penguins and ostriches fly. Or by a similarity transform
that fish or chipmunks fly, 1f they think fish or chipmunks are in sbme ways similar to
birds. Or by a dissimilarity transform. that i1nsects do not fly because they are so

different from birds. Examples like these can be invented indefinitely.

The claim of the theory 1s that to the degree people do not have contrary
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(1)
(2)
(3)
(4)

{5)
(6)
(7)
(8)

GEN

SPEC

SIM

DIS

GEN

SPEC

>IM

DIS

Table 5

Eight Transforms on the Statement
"flower—type(England)={daffodils, roses...}"

Argument Transforms

flower—type{(EBurope)=idaffodils, roses.. .}
flower—type{Surrey}=idaffodils, roses...}
flower—type(Holland)={daffodils, roses.. }

flower—type{Brazil)#{daffodils, roses...{

Referent Transforms

flower ~type{Engiand)={temperate flowers...}
flower—type{England)={vellow roses...}
flower—type{England)={peonies...}

flower—type(England)=i{bougainvillea. .|



information or make countervailing inferences to override such conclusions, that they
indeed will tend to make such inferences. Consider the plight of a young child who
has never seen any animals until he is three If he first meets up with birds and is
told that there are many different kinds of animals other than birds, he might well
infer that they all fly around in the air like birds. And if he is told that there are
different kinds of birds, like bobolinks and starlings. he will infer that they probably
fly unless given some reason to think they do nct. And if he is shown a little
chipmunk that looks & lot like a bird he has seen, he may think it can fly, unless he
notices it doesn’'t have wings. And until he sees insects flying, he might well infer
that they do not fly, since they look so different from birds. That is to say the thing
that prevents people from making a lot of absurd inferences in our view ié the
overwhelming dominance of their knowledge about the worid: when put into the
situation of reasoning about aspects of the world for which they have little knowledge,
these kinds of incorrect conclusions are commonplace. That is not to criticize such
plausible reasonirig: more often than not it leads to correct conclusions, particularly
when one has enough information to go on. In order to help the reader see the
plausibility of the patterns in the theory, we have tried to choose examples where
most readers will not have a lot of relevant information to override the plausibility of

the inferences shown.

4.1 Certainty Parameters Affecting Statement Transforms

In this section we will discuss how different certainty parameters affect the

various transforms shown in Table 5.

Typicality. Typicality (7) affects the certainty of any GEN or SPEC transform as

shown 1n Table 6. In transforms of arguments the more typical the subset is of the
set in the argument hierarchy, the more certain the inference. For example, in Table
5 inference (1) is more certain the more typical England 1s as part of Europe, and

inference (2} 1s more certain the more typical Surrey is as part of England.

Insert Table 6 here




[n making plausible inferences people compute typicality with respect to those
variables, such as climate, that they think flower growing depends on. Thus, if Surrey
1s thought to have a typical climate for England, and climate is thought to predict the

types of flowers grown 1n a place, then the inference is more certain.

This example reveals the mutual dependency imp_licit in any statement transform,
that has forced us to include a third premise in the statement transforms. The
mutual dependency relates the set of variables on which the typicality or similarity
judgment is made (e.g., climate or all variables) to the descriptor in question (e.g.,
flower—type). If the typicality judgment is made considering all variables (as when we
said Surrey 15 a typical English county), the transform will be inherently less certain
because of the weak dependency between most variables and any descriptor such as
flower—type. Therefore, if you know that Surrey is typical of England in genereal. it

leads to a less certain inference than if you know Surrey is typical of England with

respect to climate.

In transforms of referents typicality works the same way, except that it is
computed with respect to the subset and its superset in the referent hierarchy. In
inference (5) in Table 5, the greater the typicality of daffodils and roses as temperate
flowers, the more certain the inference. Similarly in the inference (B), the greater the
typicality of yellow roses as roses, the more certain the inference. Pink roses are
more typical than yellow roses, and so they are even more likely to be found 1n
England (or Ruritania for that matter} Again the 1inference is more certain if

typicality 1s measured with respect to the climate in which the flowers are grown.

Similarity Degree of similarity (o) affects the certainty of any SIM or DIS

inference as shown in Table 6.7 Like typlcality, similarity can be computed over all

7Rips (1975) found that the typicality of a bird affected the certainty of the inference
thaet another type of bird on an isiond wouid hove the same disease as the first type of
bird: in our terms this is a similarity troansform. While Rips found that similarity between
the two types of birds also affected certointy, there is nothing in our theory that says
that the typicality of the bird with the disease should matter. Qur view is that this
implies there are two chains of supporting inference: one based on the similarity transform,
and one based on a generalizotion (robins have disease x => birds in general have disease
x) and a corresponding speciclization {(birds have disease x = stariings have disease x).
Rips” finding that the typicality of the first bird (robins) mottered more than typicality
of the second bird (starlings) may reflect the fact that the generalization is inherently a
much less certain inference than the speciolization, and so is more affected by the
certainty parameters.



Table 6

Fifects of Different Parameters on Statement Transforms

Transforms Parameters Target Node
in Table 5
T a Q o ¢ h, Mg

1 GEN * 0 + + + 0 + Europe
Argument 2 SPEC -+ 0 + + + 0 { surrey
Transforms

3 SIM 0 + + + 0 0 + Hollend

4 DIS 0 - + - 0 0 - Brazil

5 GEN + 0 + + T+ + D Temperate Flowers
Referent 6 SPEC + 0 + 4+ + 4 0 Yellow Roses
Transforms

7 SIM .0 + + + 0 + 0 Peonies

8 DIS 0 — + — 0 — 0 Bougainvillea

"Note: As the value of the parameter increases, a + means it has
a positive effect on the certainty of the inference and

a — means it has a negative effect on the certainty of
the i1nference.



variables or over a subset of variables (e.g., climate) that are particularly relevant in
the given context. Degree of similarity increases the certainty of SIM inferences and
decreases the certainty of DIS inferences, as would be expected. In Table 5, therefore
the inference {3} that Holland has daffodils and roses is more certain the more similar
Holland i1s to England with respect to climate or whatever variables one thinks flowers
are related to. The inference (4) that Brazil does not have roses and daffodils is
more certain the less similar Brazil is to England. The inference (7} that England has
peonies is more certain, the greater the similarity of peonies to both daffodils and
roses. The inference (8) that England does not have bougainvillea is more certain, the
less similar bougainvillea is to daffodils and roses. More particularly bougainvillea is

dissimilar in that it tends to grow in warmer climates than daffodils and roses.

Conditional hikelihood Every statement transform involves an implicit mutual

dependency. The inference is always more certain the greater the conditional
likelihood (o) between the variables on which typicality or similarity are measured and
the variable in question as shown in Table 6. If climate were the variable used for
measuring typicality and similarity, the transforms on arguments would be more
certain the more the climate of a place constrains the flowers grown in the place.
The mutual dependency is slightly different for transforms on referents. They are
more certamn, the more the climate where flowers grow constrains the places where

flowers grow.

Frequency. The frequency (o) of the referent set within the domain of the

argﬁment (which is the same as the all. most, or some variable 1n logic) affects the
certainty of aill eight inferences. as shown in Table 6. For a particular instance like
England, frequency with respect to the argument set only makes sense if you think of
Engiand as a set of small parts {about the size of Surrey or Holland} and count the
freguency of parts that have daffodils and roses vs. those that deo not. The more
frequent daffodils and roses are in the parts of England, then all but the DIS
inferences are more certain. For example, roses and daffodils are more likely to
occur in Helland or Surrev if they are very frequent in England. The two DIS
inferences go in the opposite direction. For example, the less frequent are daffodils
and roses in England., the more likely bougainvillea will be found there (though this is

a very weak inference).
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Dominance. Dominance (8) affects GEN and SPEC inferences as is shown in Table

6 In all cases, the greater the dominance of the subset, the more certain the
inference. For example, for {2) if Surrey comprised most of England it would be a

more certain Inference that it has daffodils and roses, than if it is a very small area
in England. Similarly faor {(6) if yellow roses were the most dominant kind of roses,

they would be more likely found in England than if they are a rare type of rose,

Multiplicity. The multiplicity of the referent (ur} and the multiplicity of the

argument (#a) directly affect the eight transforms as shown in Table 68 1t England
produces many different flower types (ur = high), then it makes it more likely that
temperate flowers in general grow in England and that peonies, in particular. grow in
England (one might even argue it makes yellow roses more likely). However, the
negative inference that bougainvillea do not grow in England is less certain 1f England
produces lots of flowers. Similarly, if many countiries have daffodils and roses (uu is
high), it is more likely that Europe in general and Holland in particular have them,

and it is less likely that Brazil does not have them.

These two types of multiplicity often determine whether a SIM or DIS inference is
invoked. In particular, if a referent is viewed as single valued (e.g. Capital(place) and
Weather(place)), then DIS inferences are more certain than SIM inferences. For
example, if Capital(Spain)=Madrid and Lisbon DIS Madrid, then probably
Capital(Spain)#£Lisbon; or if Weather(Boston)=rain and Sunshine DIS rain, then probably
Weather(Boston)#sunshine. However, to the degree a referent is set—valued (e.g.
Minerals(place} and Means-of-locomotion{animal)), then SIM inferences are more
certain than DIS inferences. For example, if Mineral(Chile)=copper and Zinc 3IM
copper. then perhaps Mineral{Chile})=zinc;, aor if Means—of—-locomotion(gazelle)=running

and Walking SIM running., then probably Means—of—-locomotion{gazelle)=walking.

These examples bring up two caveats. First it 1s important to understand that

BThere are also indirect effects of low multiplicity on SIM ond DIS transforms where B's

gppear in Table &. If only one or few kinds of flowers were grown in o country (ur = low),
then it would be less likely that Holland has daffodils ond roses {especigily if one knows
about Holland's tulips), ond more likely that Brazil does not have daffodils and roses.
Similarly, if very few countries had a particular flower (ua = low), then it is less likely

that England would have peonies, and more likely that it wouid not have bougoinvillea.
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zingle—valued vs. set-valued referents and arguments are often not cleariy
distinguished in people's minds. as linguists or logicians might prefer. Instead, there
15 a continuum between single—valued and set-valued: just because it is raining in a
spot doesn't necessarilv mean it i1sn't sunny as well, and just because the capital of
Brazil 1s Brasilia doesn't mean the capital of Brazil isn't Rio de Janeiro as well (where
the Congress meets}. In a parallel manner, people may get the impression from their
school learning that many South American countries produce one mineral product and
that is all (i.e. Chile produces copper, Venezuela oil, and Bolivia tin), in which case
they may reject other minerals as comiﬁg from these countries. So people treat
variables as having more or fewer values depending on their understanding of the

world.

The other caveat has to do with the way that SIM and DIS inferences are always
competing. The competition between SIM and DIS inferences showed up in the goose
quacking protocol, where the SIM inference (1.e. ducks quack, and geese are similar to
ducks, so maybe geese quack) competed with the DIS inference {(ducks quack and geese
are different from ducks in their vocal cords, so probably geese do not guack). But
often only one of the two (SIM or DIS} is actually invoked, and so whether a SIM or DIS
inference 1s invoked can depend on other variables. If one thinks of the
Minerals(Mines) as being single—valued. then one will likely invoke a DIS inference
rather than the SIM inference cited above for copper and zinc (e.g. 1if
Mineral{Anaconda mine)=copper and Zinc DIS copper, then Mineral{Anaconda
mine)#zinc). But which inference wins out really does seem to hang on a knife edge.
If a person is aware that some mines produce more than one mineral. then they may
conclude that the Anaconda mine might very possibly produce zinc as well as copper.
[n summary both SIM and DIS transforms are appropriate in many caeses, and whether a
person invokes one or the other often depends on the peculiarities of their knowiedge,

particularly their knowledge about the multiplicity of the referents and arguments.
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4.2 Formal Representation of Statement Transforms®

Tabie ¥ szhows the formal representations we have developed for each of the
elght statement transforms in terms of the variable—-valued logic notation of Michalsk:
(1983). Most of the examples shown are from protocols we have collected {Collins,
1978b), some of which appear in the first section of this paper. We will briefly

describe each of the examples.

Insert Table 7 here

We can illustrate GEN-based argument transforms with the inference that if
chickens have gizzards, then birds in general may have gizzards. The first premise,
represents the belief that chickens have gizzards. presumably almost all chickens have
gizzards so the frequency (¢} and the certainty (4) are high. Presumably b, is also
high because any internal organ tends to occur in many different animals. The second
premise represents the belief that chickens are birds, and that they are typical with
respect to their biological characteristics. As we pointed ocut earlier, the dominance |
(8) of chickens among birds 1s low. The third premise states that the internal organs
cf a bird depend highly on the biological chz.arac:teristics of the bird. The conclusion
that birds in general have gizzards is fairly certain given the high values of the

critical variables.

SPEC-based argument transforms are illustrated by an example' from the
beginming of the paper where the respondent inferred that the Andes might be in
Uruguay. The respondent believed that the Andes are 1n most South American
countries, so frequency (¢) was moderately high. With respect to the second premise,
Uruguay is a typical South American country, which increases the likelihood that the
Andes would be found there. But its low dominance (¢) in terms of the propartion of
South America that Uruguev comprises makes the inference less likely. With respect to
the third premise, the fact that Uruguay 1s typical of Scuth American countries in

general only weakly predicts that 1t will include the Andes mountains. Altogether. the

9This section can safely be skipped by readers.
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Table 7

Formal Representations of Statement Transforms*

(1) GEN-based argument transforms

d(a)=r. =, o, Hq

a' GEN a in CX {(a';D(a")}. 7, Yy, b

Dia’} <—-—-—=-> d(a') a. i3

dla’)=r. v =1 (4. 0 kg 7y & o, g)

Internal organ (chicken) = {gizzard ..} '11:h1gh, ¢=high, pu=indeterm1nate

Bird GEN chicken in CX (bird: biological characteristics(bird)):
T=high, No=high. t=low

Biological characteristics (bird) <--~--> Internal organ {(bird):
~a=high, *;Szhigh

e e e ettt e g e | L e i s e 1 i e i gt A | e . .« ) . A R o . i e -

(2) SPEC-based argument transforms

d(a)=r. ~,. ©

a SPEC & in CX {a. D{a)). 1. iy b

Dia) <—~~—> dia). «. 3

d{a }=r = f (‘]1 Gy T ﬁiz &Q ni3)

Mountains (S A country) = j{Andes . ¢ '"thlgh. Ozhigh.ua:mdetermmate

Uruguay SPEC S.A country in CX (3.4 country, characteristics(S.A. country)).
T=high, 1,=high. t=low

Characteristics (S.A. country) <« -—-~- Mountains {5.A. country).
a=moderate, “|3:h1gh

T T T NS T T T e e e ] S ] . e i ) i i e o i i e e e

Mountains (Uruguay) = }Andes { ~=moderate

+ D and A represent superordinates of d and a respectivety.



(3) SIM-based argument transforms

dla} = r. vy, 0 g
e’ SIM a in CX (A: D(A)). 0. 7,
D(A) <———-—> d{A). @, 4

i i i e e e e S i o st e i el e e, s s g . e el Mt ettt et . A e e S

Livestock (West Texas) = {cattle ..{: ~,=high, $=high, p = high

Chaco SIM West Texas in CX (region: vegetation{region))
c=moderate, 12=moderate

Vegetation (region) <----> Livestock (region). a=high, ~y=high

West Texas, Chaco SPEC region. "14_=h1'gh, ‘15=high

R T e m— — — — — — — — — — — — — — — — o —n e e — — — —— —— — — — — — — AT W— — — — —— — — — — — — — — — i

Livestock (Chacc) = icattle ...} y=moderate

{4) DIS-based argument transforms

dla) = r: ~, ¢, 1,

a’ DIS a in CX{(A; D{(A)) @, iy
D(A) <———-> d{A). o, Iy

a, a SPEC A: T4 g

— — — — — — — —— — —— b——rn | Tmmrd ettt it e i ey e e s e m— m— — — — — — — — — — — — — . pY— — — —— —— —t— il e\ —m

Sound {(duck) = quack: ~,=high, o=high, u_=low
Goose DIS duck 1in CX (bird; vocal cords {bird}}:

og=low, ~.=moderate

Z
Vocal cords (bird) <—---> Sound (bird). «=high, N3 =iow
Duck. goose SPEC bird: ~,=high, yg=high

M i i o o i e et e e e e TmAM SN R o e R M R e e e i e e A e AR i e A e e e — — e — — — — — — — — — —

Sound {goose)#quack. ~=low



{5) GEN-based referent transforms

r' GEN ran CX{d: D{d)): 7, v, @

D(d) <—-—-——1> A(d) «, s

a SPEC A -,

d(ﬂ} = 311 ; v = f {‘\1| @ I'er T, ”12 2 —\13: Alq_}
Agricultural product (Honduras) = {bananas ...}

'11=unlcnown, o=high, ur:high

Tropical fruits GEN bananas in CX (agricultural products,
climate(agricultural products)): s=high, “,=high, d=low

Climate (agricultural products) <----> Place (agricultural products):
a=high. ~;=high

Honduras SPEC place. -,=high

A T AL e T —m —— i i, . s i e Wl W ol A ek e . . s~ ovala e | e " " s i

Agricultural products (Honduras)={tropical fruits...i: 4 =moderate

(6) SPEC~-based referent transforms

r’ SPEC r in CX{d, D{d)} ~. Yy B

D{d) <———-> A({d). «, Vs

a SPEC A; Mg

dla) = jr'..f. v = vy 0, 7 " & @, g 71y)

Minerals (South Africa) = {diamonds. .{. Ny =high, e=high

Industrial diamonds SPEC diamonds in CX (minerals. characteristics{(minerals)).
v =high, ~, =high, ¢t =high

Characteristics{minerals) <~———> Place (minerals).
¢« =moderate. ~; =high

South Africa SPEC place. = high

T TS ST A e e e e e e o e e e e e e — e e e e e e e e e mm e . ) mr wr E— E—— . e e G AR i e —— e — — — — —



(7) SIM-based referent transforms

d{a) = {r.b 0 K,

rSIM r in CX{(d; D(d}}: o, al

D(d) <———-~> A(d). o, “ig

a SPEC A: Vg

dla) = ir..4: v = fyy 0 0 0 vy @ g T1,)

Sound (wolf) = {thowl..{: ~,=high. é=high, u =low
Bark SIM howl in CX{sound; means of production{sound}):
o =high, ‘12=high
Means of production (sound) <----> ammal (sound}: «=high. y;=high
Wolf SPEC animal: “;4=h1gh

— — — — — — — — — — — — — — — — — — — — — — — — — — — —— — — i Ak el S e M IR TR e e e e m—— m— — — o — — — —

Sound (wolf}) = {bark...}: ~=moderate

(B) DIS—-based referent transforms

da) = frd vy 6n,
r’' DIS r in CX{d: D(d)): o, Ny
D{d) <——-=> Ald): a. "4

a SPEC A g

— SRR ML e — N R Wt A M e g e — — — — —— — — — —— — — — — — — — — — — il R PO — — — — — — i o bk vt | | el s m— dm—

Color {(Princess phones} = jwhite, pink. yellow ..{: -~ =high, é=high, p = moderate
Black DIS white & pink & vellow in CX (color; lightness{color)):
oc=low, ﬁ2=high
Lightness (color) <-—--> phone type (color). a=low. ~y=high
Princess phone SPEC phone: ~,=high

——— — — — — — — — — — — — — — — — — — — — — — — — —— bt m— il W R I mUm e e m— o m— — — m— el e EEE RS S e m— — e— — —

Color (Princess phones}#iblack...{: y=moderate



inference 1s fairly uncertain given the moderate frequency and the low dominance of

Uruguay.

We can 1illustrate SIM-based argument transforms with the Chaco protocel from
the beginning of the paper, where the respondent inferred that the Chaco might
produce cattle given that west Texas did. In the first premise, the frequency (&) with
which different parts of west Texas have cattle is high, and the multiplicity (pa) of
places with cattle is high, both of which make the inference more likely. The second
premise asserts that the Chaco 1s at least moderastely similar to west Texas in
vegetation (or whatever variables the respondent had in mind). The third premise
relates vegetation of a region to its livestock, which 1s a strong relation, given that
cattle will usually be raised where the vegeta.tion will support them. The fourth
premise merely establishes the fact that west Texas and the Chaco are regions, in
support of the second and third premises. The ceonclusion is only moderate 1n
certainty, given our assumption of uncertainty about how similar the Chaco and west

Texas are.

To illustrate DIS-based argument transforms, we chose the example from the
protocol shown earlier as to whether a goose gquacks The first premise reflects the
respondent’s belief that ducks quack, which was verv certain. Though almost all
ducks quacks (¢ is high). very few other amimals quack (b, is low), which makes the
DIS inference more certain. The second premise states the belief that ducks and
geese are dissimilar in their vocal cords which the respondent must have been at least
8 bit uncertain about {(hence the low certainty assigned to the statement). The third
premise relates the soﬁnd a bird makes to 1ts vocal cords. which alse must have been
an uncertain belief given that it is not true. The certainty of the conclusion that
geese do not quack should have been fairly low {(though another inference led to the

same cohclusicn in the actual protocol).

We have created an example to illustrate GEN-based referent transforms. The
first premise asserts that Honduras produces bananas among other things (the
multiplicity {ur) of agricultural products is high). Bananas are a fairly typical tropical
fruit in terms of the climates where they are grown, as the second premise states.
The third premise asserts that the climate appropriate for agricultural products

constrains the places where thev are grown fairly strongly. The conclusion follows
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with moderate certainty that Honduras produces many tropical fruits, such as mangos

and coconuts.

We also created the example of SPEC-—based referent transforms. The first
premise states that South Africa produces diamonds. Industrial diamonds are a kind
of low quality diamond (used in drills) and they must be fairly dominant (8) among
diamonds given their low quality, though they are not particularly typical of what we
think of as diamonds. Here is a case where high dominance compensates for low
typicality. The third premise 1s somewhat irrelevant since the typicality is low. But
the inference that South Africa produces industriel diamonds is quite certain given the

high deminance of industrial diamonds among diamonds.

The example of SIM-based referent transforms is drawn from a protocol where
the respondent, when asked whether wolves could bark, inferred they probably could
(Collins, 1978b). One of his inferences derived from the fact that he knew wolves
could howl, with both high frequency and certainty (but low multiplicity (ur) because
most animals only make one or two sounds). He also thought that barking was similar
te howling in terms of the way the sound is produced {a how!l, as it were, is a
sustained bark). Furthermore, the means of production of a sound constrains the
type of animals that can make that sound, as the third premise states. [t follows then

with at least moderate certainty that a wolf can bark.

The example of DIS-based referent transforms s from a protocel where the
respondent was asked if there are black princess telephones (Collins, 1978b). The
respendent could remember seeing white, pink and yellow princess phones, as the first
premise states. Here the frequency {(¢) of these colors among those she had seen
seemed qguite high, which counts against the possibility of black princess phones. But
the multiplicity of different ccelors among phones {ur} is moderate, which counts for
the possibility of black princess phones. The second premise reflects the fact that
bilack 15 quite dissimilar to those colors in terms of lightness. The third premise
states that knowing the lightness only somewhat constrains the type of phone (o is
low). The conclusion that princess phones are not black is uncertain given the low «

in the third premise and the moderate W oan the first premise.
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9. INFERENCES BASED ON IMPLICATIONS AND DEPENDENCIES

The previous section illustrated the systematic patterns by which one statement
can be transformed 1nto another. The pattern of inferences based on mutual
implications &nd dependencies s somewhat more complicated, but is also quite
systematic. There are three basic classes of these inferences: (a) derivations from
mutual implications and dependencies, where a statement is derived from an
implication or dependency, (b) transitivity inferences, where a new implication or
dependency is derived from a given pair of implications or dependencies, and {c)
argument or referent transforms based on implication or dependency, that parallel the
statement transforms shown in the previous section. In this section we give the

formal representation for these inference patterns together with an example of each.

9.1 Derivations from Implications and Dependencies

Table B illustrates the two types of derivation from mutual implication that
occurred 1n the protocols shown at the beginning of the paper. The positive
derivation illustrates how multiple conditions were ANDed together ({(ie., a warm
climate, heavy rainfall. and flat terrain} as predictors of rice growing. The belief that
Filorida has all three leads to a prediction that rice will be grown there. In the actual
protocol the respondent was unsure about rainfall in Florida, and so concluded that
‘rice would be grown 1if there was enough rain (1.e., Rainfall(Florida) = heavy <===>

Product(Fierida}) = {rice...}}.

Insert Table 8 here

The negative derivation illustrates the fact that if any of the variables on cne
side of a mutual implicaticn that are ANDed together do not have the appropriate
values, then vou can conclude that the variable on the other side does not have the

value assumed in the mutual i1mplication. In the example, because the Llanos did not
have reliable rainfall, the respondent concluded that the Llanos probably did not

produce coffee. If variables are ORed together (e.g., either heavy rainfall or irrigation
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Table 8

Formal Representations of Derivations from Mutual Implication

Positive Derivation

d,(a') = ry, v = fla v, 0 Yy "g)

Climate(place} = warm & Rainfall{place) = heavy & Terrain(place) = flat <==
Product{place} = jrice...} : &« = high, Ny = certain

Climate(Florida) = warm : o, = moderately high, 7, = certain

Rainfall{Florida) = heavy ¢, = moderate, y; = uncertain

Terrain{Florida) = flat ®, = high, v, = certain

Florida SPEC place : ng = certain

Product{Florida) = jrice...t . 7 = uncertain

Negative Derivation

d,{(a) = r, <==> dyfa) = r,0 a, 7
d, {8’} A1, . 0 ", K,
8’ SPEC & : 1,

T

dz{ﬂ:} ?é r2 : ’1 =22 f{C{_‘ ”\11: ¢}1 —\12' p‘rs -\]3)

Rainfall{place) = reliable & climate{place) = subtropical <==>
Product(place) = jcoffee...{ . a = moderate, iy = certain

Reinfall{Llanos) # reliable : ¢ = high. Ny = fairly certain, p_ = low
Llanos SPEC place . =5 = certain
Product{Llanos) # jcoffee...t : 4 = fairly certain




are needed for growing rice) a different pattern holds: having one or the other

predicts rice 1s grown and having neither predicts no rice 1s grown.

Table 9 shows the equivalent representations for derivations from mutual
dependencies,. The inference patterns are different for positive and negative
dependencies, so we have separated them in the table. [t is possible to draw a
negative concluston from a mutual implication simply by negating the second premise

and the conclusion in either of the patterns shown.

Insert Table 9 here

The positive dependency represents the case where as one variable increases,
the other variable also increases. In the formal analysis we have denoted the entire
range of both variables by three wvalues: high, medium, and low. When a positive
dependency holds, if the values of the first variable is high, medium, or low, the value
of the second variable will also be high, medium, or low, respectively. This is the
weakest kind of derivation possible from & mutual dependency: In the example, if a
person knows that the temperature of air predicts the water holding capacity of air,
and he knows that temperature of the air outside is warm. then he can infer that the
alr outside could held a lot of moisture. Peoplie make thiz kind of weak inference very
frequently 1n reasoning about such variables (Collins & Gentner. 1987, Stevens &

Collins. 1980}

The pattern for the negative dependency 1s reversed: if the value of one variable
is high. the other 13 low, and vice versa. We have 1llustrated the derivation from a
negative dependency in terms of a more precise dependency between two variables. If
a person believes that the latitude of a place varies negatively (and linearly) with the
temperature of the place, and also that the average temperature is near B5 degrees at
the equator and 0 degrees at the poles, then he might conciude that a place like Lima,
Peru, that 15 about 10 degrees from the equator, has an average temperature of about
75 degrees. People have both more and less precise notiens of how variables interact,
and we have tried to preserve flexibility within ocur representation for handling these

different degrees of precision.
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Table 9

Formal Representations of Derivations from Mutual Dependencies

Derivation from Positive Dependency

d,{a) ==t d,{a) : @,

d,(a’) = high medium, low . o -,

a' SPEC a . =,

d,{(a'}) = high, medium, low . v = fla, =y @0 Yy "i3)

Temperature{air) <——-*--> Water holding capacity(air) : « = high, ~,
Temperature{air cutside) = high : ¢ = high, s = certalin

Alr outside SPEC air Nz = certain

Water hoiding capacity({air outside) = high : y = certain

Derivation from Negative Dependency

d,{a) <—-"—-> d,(a) : a. 7,

d,{(a’} = high, medium, low @ ¢, ~,

a' SPEC a : i3

d,(a’} = low, medium, high . ~ = f{o, v, & 4, ")

Abs. Val. Latitude{place) <——"—-> Aver Temperature(place):

0° 85° 90° 0°% o = moderate, ", = certain

Abs. Val. Latitude(Lima Peru) = 10° o = high. v, =
Lima Peru S5PEC place . 5, = certain

Aver. Temperature(Lima Peru = 75° ~ = moderately certain

linear;

feirly certain

certain



5.2 Transitivity Inferences

Table 10 shows two forms of a transitive inference, one based on mutual
implication and the other based on mutual dependency. The example for mutual
implication states that if a person believes an average temperature of B85 degrees
implies a place 1s equatorial, and that if a place is equatorial it will tend to have high
humidity, then' he can infer that if the average temperature of a place is 85 degrees it
will tend to have high humidity, and vice versa. This example illustrates the way
people often confuse causality and diagnosticity in their 1.1nd~'.=,r'stan*:1'1ng."?‘h If one were
to write the causal links for this example, it would probably go from eguatorial
latitude to high temperature tc high humidity. But people do not Systematically_make
a distinction between causal and diagnostic links, nor do they store things in such a
systematic order. For example. they mey know that equatorial places. such as jungles,
have high humidity and not link it explicitly to their high temperature. Thus, the
inference in this example derives a more direct link (temperature <==> humidity) from
a less direct link (latitude <==> humidity). It also should be noted that the diagnostic
link in the first implication (temperature => latitude) may be more constraining than
the causal link {iatitude => temperature). That is, there are probably more equatorial
places where the average ‘temperature is not 85 degrees {e.g. Ecuador) than places

where the average temperature is 85 degrees but are not equatorial.

Insert Table 10 here

The exampie for a transitivity inference on mutual dependency illustrates how -
people reason aboul economics (Salter, 1983). Salter asked subjects questions, such
as what is the effect of an Increase 1n inierest rates on the inflation rate of sa
country. People gave him chains of inferences like the one shown. if interest rates
increase. then growth 1n the money supply will decrease, and that in turn will cause

the 1nflation rate to decrease (the latter 1s a positive dependency). So an increase in

19This is not to say thot where peopie do moke a clear distinction between cousality and
diagnosticity, as in the examples cited by Tversky and Kahnemen (1980}, that they do not
treat & and 3 asymmetrically, giving preference to causal |inks.



Table 10

Formal Representations of Transitivity Inferences

On Mutusal Implicaticon

d1{a) = T =25 dz{'a} Sl PN Bys 1y
_clg{a) = r, <==> dgL(a} = ry O, 'f.lz, 2P
d (a) = r, <==> dy(a) = ry a = flay, oy), 8 =3, By) v = £y, o)

Aver. Temperature(place) = 85° <==> Latitude(place) = equatorial :

o, = high, 8, = fairly high, ~, = certain

Latitude{(place) = equatorial <==> Abs. humidity(place} = high :
o, = high, 8, = moderate, %, = certain

Aver. Temperature(place) = 85° <==> Abs. Humidity(place) = high :
a = high. B = low, v = certain

On Mutual Dependency

d,{a) <—-> d,la) : ay 3,
dz(a) <——> déia) . @y, Bg?—'h

Interest rates(country) <—"—> Money supply growth(country):

a, = high, 3; = moderate, v,= certain

Money supply growth(country) <—%~> Inflation rate{country).
«., = high. 3, = high, Ny = certain

L =

Interest rates{country) <-"—> Inflation rate {country}:

a4 = high 33 = low, 1y = certain



interest rates will lead to a decrease 1n the inflation rate. This kind of reasoning 1s a

meajor wav that people construct new mutual inplications and dependencies.

5.3 Transforms based on Implications and Dependencies

Tables 11 and 12 show a set of transforms based on mutual implications that
follow the same pattern as the statement transforms in the previous section. Table 11
shows four referent transforms that parallel the last four statement transforms shown
in Tables 5 and 7. ({In fact there is a quite direct equivalence, because any statement
can be transformed inte a mutual implication in the following way: Flowers (England)
= {daffodils...! goes into type(place} = England <==> flowers{place)} = {daffodils...}, or
more generally. d(a) =r goes into type(A)=a <==> d(A) = r.) We have represented the
three positive transforms (i.e. generalization, specialization, and similarity) in the rule
at the tep. with ithe three alternatives shown {(GEN, SPEC, and SIM) where they occur
in the rule. The typicality parameter (7} is associated with the GEN and SPEC
transforms, and the similarity parameter (o} with the SIM transform. The exﬁmple
omits the certainty parameters for simplicity. In English the example states the
following. given the belief that if a place 1s subtropical., 1t is likely to preoduce
oranges, this implies that if a place is subtropical, it 1s likely te produce citrus fruits
(a generalization). or navel oranges (a specialization). or grapefruit {a similarity
transform). The dissimilarity transform at the bottom follows the same pattern: if you
think that subtropical places produce oranges, and apples are dissimilar to oranges
with respect to their growing conditions, then probably subtropical places do not

produce apples.

Insert Table 11 here

Table 12 shows the corresponding four types (i.e.. GEN, SPEC, SIM, and DIS} of
argument transferms. These correspond to the first four statement transforms shown
in Tables 5 and 7. We i1llustrate the four with & demographic example: if one believes
that men who live in the tropics have & short lhife expectancy and that farmers are
typical of men in terms of their demographic characteristics, then one can plausibly

infer that farmers have & short life expectancy 1f they live in the tropics. Similarly
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Table 11

Formal Representations of Referent Transforms based on Mutual Implications

Positive Transforms

d,{a) = r; <==> dz(a} = T, @ 0y, Ty By
GEN
l"'z SPEC(r
SIM

D(di} = - A(dﬂ) L Os, tiy
dfa) = r, <==>dyla) =r,: 1= flog, Ny B $1/08 " 05 i)

5 1N C}{{dz; D(dz)} - {7/0d, "y

1

Climate(place) = subtropical <==> Fruit(place) = joranges.. .}
Citrus fruits "YGEN |

Nave! oranges$SPEC¢oranges in CX (fruit; growing conditions{fruit))
Grapefruit SIM

Growing conditions{fruit) <—--—> Place(fruit)

$Citrus fruit...t

Climate(place) = subtropical <==> Fruit(place) =)iNaval oranges...|
{Grapefruit...}

Negative Transform

d1(a) =r, <s=> dz(a'}’ =T, @ 0y, Ty M,
r'lz DIS r, in CX (d,; D(d,}} : 0.
D{d,) <==> A{d,) . 0, I3
d1{&) = I".I K= dz(,‘&.]' = r

2 . il & f(ﬁ1 *11. I‘-‘lr| G, ﬁ\z- 0—2p .-.33)
Climate{place) = subtropical <==> Fruit{place) = joranges...|
Apples DIS oranges in CX (fruit; growing conditions {(fruit))
Growing conditions{fruit) <--> Place (fruit)

Climate(place}) = subtropical <==> Fruit(place) # japples...{




one can infer that people 1n general and women (because they are similar to men in
thetr demographic characteristics) have short life expectancy in the tropics. Finally,
one might conclude that birds do not have a short life expectancy in the tropics, if

one thinks thev are dissimilar to men i1n their demographic characteristics.

Insert Table 12 here

Table 13 shows the  corresponding positive transforms based on mutual
dependencies. We have illustrated these with another example from economics: if one
believes that the business tax rate in a state negatively impacts the amount of
investment in the state, then one might generalize this relationship to any
governmental unit, or particularize it to Illinois, or conclude that it would also apply
to Canadian provinces. There is really no negative transform based on dissimilarity
that corresponds to these three pesitive transforms. For example, if one believes that
communist countries are quite dissimilar from states in their economics, the most one
can conclude i1s that there 1s no negative relation between the business tax rate (if
there were one} and the amount of investment, that is to say, no conclusion can be
drawn. In such a case we just omit the form from the theory, because the theory
does not specify conclusions that cannot be drawn. Similarly, there can be no
referent transforms based on mutual dependencies, because they do not involve a

referent term.

Insert Table 13 here
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Table 12

Formal Representations of Argument Transforms based on Mutual Implications

Positive Transforms

d,(a) = r, <==> dz{a) = r, &, i

GEN
a'YSPECt{a) in CX (A: d4(A)) : {7 /ot "t
SIM
g_é(A) e sy dz(A) O, iy
dt(a‘) = r, <===> dz(a') = ry = f{{x1, g i7 /04, Ny O, '-13)

Habitat(man) = tropics <==> Life expectancy {(man) = short
GENWarmer |

Man{ SPEQ) persony in CX (people: demographic characteristics(people))
SIMfiwoman '

Demographic characteristics{people) <-—> Life expectancy(people)

(farmer) (farmer)
Habitat{(person) } = tropics <==> Life expectancyq(person}p}= short
(woman) (woman)

Negative Transforms

d,(e) = r, <==>d,{a) = r, . a,.
a' DIS a in CX(A; ds{A}} L8 Ny
d;@) <—=> d (A) . o, g
d,{a’} = r, <==> dz{a’} = o

f 2
Habitatiman} = tropics <==> Life expectancy{man) = short

Man DIS bird in CX (animals. demographic characteristics (animals))
Demographic characteristics(animals) <——> Life expectancy (animals)

Habitat{birds) = tropics<==> Life expectancy(birds) £ short




Table 13
Formal Representations of Argument Transforms based on Mutual Dependencies

Positive Transforms

d1(a} <R dala) - e N

GEN
a'{SPECYa in CX (A; di{A)) : {r/at, Ty

SIM
da(A) <~--> dy(A} . o, -
dyla’) <==>dyla’) : ~ = fla,. v, {1/0h v, ag 3)
Business tax rate (state} <-7-> Amount of investment (state))
Government uniffGEN
lilinois SPEC}state in CX (place; economics (place))
Province SIM -
Economics(place) <-"-> Amount of investment(place)

| | (government unit {(government unit)

Business tax rated(Illinois) <— —> Amount of investmenty (Illinois)

(province) {province)



6. CONCLUSION

We conclude with a few comments about the methodology being used to construct
and test the theory. It is difficult for experimental psychologists to find experiments
that address the processes that pecple use to answer everyday questions. The
problem is that cognitive psychology s methods are limited for the most part to
percent correct and response time measures. Trying to understand the processing in
the human mind with these two measures is hke trying to conduct a surgical operation
with a hammer and chisel. The tools are inappropriate for the questions involved.
Cognitive psychologists manage to carry off some clever operations despite their tools,

but at the same time they should be locking for finer—grain tools.

The methodology of fitting the arguments made in a set of human responses to a
minimal set of argument forms is an attempt to develop one such fine—grain method.
The method attempts to balance the constraints necessary to produce consistent
structures. It is not a hypothesis—testing method. the forms used to fit the data are
for the most part derived from the data. The difficulty of the data analysis is to find
the optimal decomposition of the argument forms, so that the set of forms is in some
sense minimeal (i.e. there are not a large set of forms that share subparts). In other
words the difficulty 15 to extract ail the regularities from the data. Suffice to say we

have only partially succeeded i1n this endeavor.

There are real limitations to the methodology, just as there are limitations when
an astronomer studies the sky using only the visible spectrum. Some of the problems
with protocol analysis as developed by Newell and Simon {1972) apply to the analysis
of people’s answers that the theory is based on: it 1s both a post—hoc analysis and a
highly inferential analysis. Unhke protocol analysis the method used here does not
interfere with normal processing, people just answer in a way that is the normal
conversational mode. Some psychologists worry that answering so many gquestions may
force pecple into a special mode of answering questions, but the patterns of inference
appear to be the same in the teaching dialogues we have collected. Even if people are
more articulate about their reasoning in this kind of setting, they are not inventing

new modes of reasoning for the occasion.

Another difficulty in constructing a theory of plausible reasoning from analyzing
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actual cases of human reasoning is that the theory is likely to be underconstrained.
That 1s to say, there may be many cases where people could employ a particular
reasoning pattern, but do not because of other constraints on its invocation. As it
stands now. the onlv constraints we place on the invocation of any inference pattern
1s that iits premises be satisfied and that its certainty parameters not drive the
conclusion beiow some threshold level of certainty. But there may well be other

factors that ceonstrain the invocation of any inference pattern.

A more serious limitation to the method is its bias against non—verbal processes.

We can illustrate this with the following protocol.

Q. How many piano tuners do vou think are in New York City?

DK. Well now let me think. How many people are there in New York City anvway? If
you think about the whole area, | suppose there may be 10 or 12 million people.
You don't need a lot of pianc tuners to keep a whole city in tune. Maybe a
thousand? '

Q. Why do you guess a thousand?

DK. Well, let's think. If there are 12 million people in the city. How many households
might there be, and what proportieon of them wouid have pianos and then how
many...? We're talking about employed piano tuners I suppose. A pianc tuner
must need to do a whole lot of pianos just to keep bread on the table. Ah. A
thousand is beginning to sound a little high because if one guy does a whole lat
of piancs, he’ll cover a lot of ground. There must be fewer piano tuners than
there are doctors in the city. They can service more pianos, and they are fewer
and farther between. [t's just a matter of what feels right and might be off by
an order of magnitude either way Mavybe 300.

In the protocel the respondent attempts to carry out & means—ends analysis of
the problem (Newell & Simon. 1972), but he never carries it through.” Rather he
seems first to pull the number 1000 out of the air. which he then revises down to 300.
The number 1000 could have been derived from any number of non-verbal processes.
In any case, whatever process was used, there is no trace in the protocol of it. Such
non-verbal processes may be equally systematic as the verbal processes that are so
omnipresent; it is just that they do not show up in the protocols. The danger John

Seely Brown and Jonathan Barcn {personal communication) point out is that the verbal

11Directed search techniques, like means—ends analysis are beyond the scope of the theory,
though they often utilize information obtained from the kind of outomatic inferences
included in the theory.
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protocols may be rationalizations for answers arrived at by some other process. QOur
intuition is different. It is that the answers frequently follow from beoth from verbal
and non-verbal reasoning processes and that these are weighed together 1n
responding. In answering the piane tuner question some subjects have actually
carried through a verbal process (in particular the means—ends analysis the subject
quoted above started or a functional analogy) and the answers they derived clearly
followed from the verbal process. If our anealysis is correct, the responses shown in
the five protocols at the beginning of the paper follow at least in part from a verbal
process. It is certainly true that non-verbal processes will not be as visible in the
responses, though some subjects certainly allude to them (Collins 197Ba,b). But their
existence does not negate the ubiquity of patterns we have identified in people’s
reasoning. Our position then is that while there may be additional processes used to
answer questions that are not apparent in the responses, nevertheless the processes
apparent in the responses play a central role in determining people's conclusions, and

hence are not mere rationalizations.

The real test of our position iz whether a computer implementation of the theory
produces the same conclusions as people do and for the same reasons, given the same
information. In order to test out the core theory, we have built a computer model
incorporating the reasoning patterns derived from our analysis {(Baker, Burstein &
Collins, 198%). Similar models were alsc built by Dontos and Zenankova {(1988) and
Kelly (198B) a student of Michalski. We plan to evaluate the theory in a series of
eXxperiments comparing the system's reasoning te that of expert human reasoners who
have no special knowledge about the domain they are asked to reason about. To do
this we will ask expert human reasoners, working from well-specified, small knowledge
bases 1n geography and economics to draw plausible conclusions from each knowledge
base and to estimate the certainty of each conclusion. The knowledge bases are
incomplete and it is the subject’s task to infer what they can about the missing
information. For example, the geography data base has data about twelve different
regions of the world concerning nine different variables such as climate, soil, terrain.

precipitation, and grain.

This methodology for testing the thecry looks like it will be very revealing. The
data we have collected so far, though not fully analyzed as yet, are very rich in the

kinds of inferences described in the core theory. But there are clearly new inference
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patterns emerging in the data. We think this kind of tight coupling between
computational modelling on the one hand and detailed analysis of human processing on

the other hand offers a genuinely new approach to understanding human thinking.
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7. GLOSSARY

argument. The concept within a statement to which & descriptor is applied.

E.g.. in "means—-of-locomotion (birds)= jflying...{.” "birds” 1s the argument.

argument transform. A plausible inference where a person infers a statement (or

its negation) is true based on the fact that the argument in the statement is related
by one of the four relations (GEN, SPEC, SIM. and DIS) to the argument in a statement
the person believes 1s true. E.g., if a person believes that "grain(Kansas}) = jwheat. .{"
and that "lowa SIM Kansas”’ then a person may plausibly infer that "grain (lowa) =

{wheat...}”. {See Tables 5 and 7 for other examples.)

certainty. The certainty parameter denoted by =~ that indicates the degree of

belief & person has that an expression is true. E.g., in "means—of-locomotion(dogs} =
{swimming...}"”, ~ denotes the degree of belief & person has that dogs in general can

Swim.

conditional likelihood. The certainty parameters denoted by o and 8 that in a

mutual implicaticn or dependency indicate the degree of constraint frqm one side of
the expression to the other. E.g., "temperatureipiace) <—-—-> desirability—of-
living(place)’, « denotes the degree to which ‘'temperature{place)’ predicts
“desirability—of-living(place)” and 8 denoctes the degree that “desirability-of-

living{place)” predicts “temperature(place}".

dependency {(see mutual dependency)

descriptor. The concept within a statement that applies to the argument to form

a term. E.g., in "mean—-of-locomotion(birds) = i(flying...{". "means—of-locomotion” 1s

the descriptor.

derivation from a mutual dependency. A plausible inference where a person

derives & belief about a new statement based on knowledge about a particular
statement and how another term depends on the term i1n that statement. E.g., if a
person believes 'temperature (place} <-%-> desirability—af-living (place)’, and that
“temperature (Texas) = warm,” then she may infer that “desirability—of-living (Texas)

= high”. (See Table 9 for other examples.)
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derivation from mutual implication. A plausible inference where a person derives

a belief about a new statement based upon knowledge about a particular statement
and how another statement depends on that statement. E.g.. if a person believes
“grain(place)l = rice <==> ranfall(place) = heavy" and that “grain(Southern China) =
rice”, then he mayv infer that "rainfall (Southern China) = heavy”’ (See Table 8 for

other examples.)

DIS. The dissimilarity operator that specifies a concept that is dissimilar to
another concept. E.g., geese DIS ducks in CX (birds, neck length(birds)) means that

geese are dissimilar to ducks in the length of their necks.

dissimilarity transform. A plausible inference where a person infers a

statement’'s negation based on the dissimilarity of the argument or referent in the
statement to the argument or referent in another statement that the person believes
s true. E.g.. if a person believes that “geese DIS ducks in CX{birds, neck length
(birds))” and that “sound {ducks) = quack” and that "'neck length (birds) <—-—> sound
(birds})”, then she may conclude that "sound (geese) # quack” (See Tables 5 and 7

for octher examples.}

deminance. The certainty parameter denoted by t that specifies the degree a

subset comprises a large fraction of its superset. E.g.. chicken comprise a large

fraction of pouliry, whereas turkeys comprise only a small fraction.

eEXpression,. Any statement, mutual dependency, or mutual implication. E.g.

‘sound{ducks) = quack”, "geese DIS ducks in CX{(birds. neck length(birds))’, "cost(coal)
<---> cost {oi)". ‘rainfail{place) = heavy <==> grain{place} = rice" are all

expressions.

frequency. The certainty parameter, denoted by o, that specifies the proportion

of elements in the argument set for which the referent is true. E.g.. for "means—~of-

locomotion (birds) = {flving . {". ¢ specifies the proportion of birds that fly.

GEN. The generalization relation that specifies a superordinate of a concept.
E.g.. "island GEN Great Britain 1n CX{islands. size (island))”’ means that Great Britain is

an 1sland (with typicality evaluated in terms of size).
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generalization transform. A plausible inference where a person infers a

statement 1s true based on the fact that the argument or referent in the statement is
a generalization of the argument or referent in a statement the person believe 1s true,
E.g.. person knows that "birth—form (frogs} = eggs” and that “amphibians GEN frogs".
the person might plausibly conclude that “birth-form (amphibians) = eggs". {(See

Tables 5 and 7 for other examples.)

implication. (see mutual implication)

multiplicity of the argument. The certainty parameter, denoted by K, that

specifies the degree to which there are multiple arguments within the superordinate of
the argument for which the statement holds true. E.g., for '"means-—of-

locomotion(birds} = iflying...{". u_ is low because not many other kinds of animals can

Q
fly, whereas for "means~of-locomotion (robins) = }flying...}", W, is high because many

other kinds of birds can fly.

multiplicity of the referent. The certainty parameter, denoted by k.. that

specifies the degree to which there are multiple referents within the superordinate of
the referent (i.e. the descriptor) for which the statement holds true. E.g. for “means-
of-locomotion (birds} = iflying.. }"” k. 1s moderate because there are other means of

locomotion (e.g. walking, swimming) among birds.

mutual dependency between terms. An expression which characterizes the

relationship between two terms. E.g., "temperature (place) <-"-> latitude {place)”
exXpresses the relationship that temperature increases as latitude decreases. The o
and 3 certainty parameters express the degree that knowing about temperature

constrains latitude, and knowing about latitude constrains temperature. respectively.

mutual implication between statements. An expression which characterizes the

relationship between two statements. Eg.., “temperature(place})=hot <==>
latitude(place) = tropical” expresses the belief that hot places are tropical (the right
arrow) and that tropical places are hot (the left arrow). The o and 3 certainty
parameters express the degree to which knowing the place is hot leads to believing it
1s tropical, and the degree to which knowing the place is tropical leads to believing it

is hot.
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referent. The concept within a statement which specifies the value(s) of the

term. E.g. 1n "means-of-locomotion{birds) = {flying...{", "flying” is the referent.

referent transform A plausible inference where a person infers a statement {(or

1ts negation) 1s true based on the fact that the referent is related by one of the four
relations (GEN, SPEC, SIM. and DIS) to the referent in a statement the person believes
1s true. E.g., if a person believes “political beliefs (George) = jconservative ..}” and
"hawkish SIM conservative”, then she may plausibly conclude that "political beliefs

(George) = {hawkish...}" (See Tables 5 and 7 for other examples).

relation. One of the four relations: GEN, SPEC, SIM, and DIS. They select a
member of either the generalization set, the specialization set, the similarity set, or
the dissimilarity set, respectively, of the set operated on. E.g. "birds GEN ducks”
selects the sel "birds” among the generalization sets of ducks, rather than water fowl

or poultry.

SIM.  The similarity relation that specifies a concept that is similar tc another
concept. E.g., geese SIM ducks in CX(birds, feet(birds)) means that geese are similar

to ducks in the kind of feet they have.

similarity. The certainty parameter, denoted by o. that specifies the degree of

match between two concepts with respect to some set of characteristics specified by
the context (CX}. E.g.. from "geese DIS ducks in C¥{birds, neck length{birds})"’, o
specifies the degree to which ducks and geese are similar 1n the context of the neck

lengths cf birds.

similarity transform. A plausible inference where a person infers a statement is

true based on the similarity of the argument or referent in the statement to the
argument or referent in another statement the person believes is true. Eg., if a
person believes that "geese SIM ducks in CX(birds, legs (birds))"’ and that "means-—of-
walking(ducks) = waddle” and that “legs{birds) «<--> means—of-walking(birds)" then
she may conclude that "means-of-walking (geese) = waddle”. (See Tables 5 and 7 for

other examples.)

SPEC. The specialization relation that specifies a subordinate of a concept.

E.g.. "bobolink SPEC bird in the CX (birds, characteristics (birds})” means a bobolink is

a bird (with typicality evaluated in terms of all characteristics).
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specialization transform. A plausible inference where a person infers a

statement is true based on the fact that the argument or referent in the statement is

& speciahization of the argument or referent in a statement that the person believes is

true. E.g.. If & person believes "means-of-locomotion(birds) = {flying. ..t and that
"bobolink = SPEC(bird)" the person may plausibly conclude that "means—of—
locomotion{bobolinks) = iflying...}". (See Tables 5 and 7 for other examples.)

statement. An expression where a déscriptor 1s applied to an argument
specifying some set of referents. E.g. "means—of-locomotion (birds) = Iiflying,
hopping...}" is a statement.

term. The left side of a statement. that is, a descriptor applied to an argument.

E.g., "means—-of—-locamotion (birds)” 1s a term.

transform based on a mutual dependency. A plausible inference where a person

infers a dependency 1s true based on the fact that the argument in the dependency is
related by one of three relations (GEN, SPEC, and SIM) to the argument in a
dependency the person believes is true. E.g.. if a person believes "latitude (place)
<—=> temperature (place)"’ and that “city SPEC place”, then she can plausibly infer

that “latitude (city) <—--> temperature (city)” (See Table 13 for other examples).

transform based on a mutual implicatien. A plausible inference where a person

infers an 1mplication is true baséd on the fact that an argument or referent in the
implication 1s related by one of the four relations (GEN., SPEC. SIM, or DIS) to the

argument or referent in an implication the perscon believes is true. E.g., if a person

believes that "means-of-locomotion{object)={flying...} <==> structural part {object) =
jwings...{" and that "animals SPEC object”, then he might plausibly infer that "means-—
of —locomotion (anima!s): iflving. { <==> structural part (animal) = }wings...}" (See

Tables 11 and 12 for other examples).

transitivity inference A plausible inference where a person infers that an

implication or dependency 1s true by transitivity from the belief about two related

implications or dependencies. E.g.. if a person believes that "diet(person) = too much
salt <==> blood-pressure (person) = too high" and that "foods—eaten {person) =
processed f{oods ==> diet {person} = too much salt”, then she may plausibly
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conclude "foods-eaten {person) = processed foods <==:» blood-pressure (person} =

toco high” (See Table 10 for other examples).

typicaiity  The certainty parameter. denoted by + that specifies the degree of

match between a concept and its superordinate with respect to some set of
characteristics specified by the context (CX}. E.g. for “goose SPEC bird in CX (birds,
neck length(birds})”, v denotes the degree that the neck length of geese is typical of

the neck length of birds in general.
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