
MITIGATING DENIAL-OF-SERVICE ATTACKS IN MOBILE AD HOC NETWORKS
USING NETWORK CAPABILITIES

by

Eric J. Swankoski
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University
In Partial fulfillment of

The Requirements for the Degree
of

Doctor of Philosophy
Computer Science

Committee:

Dr. Sanjeev Setia, Dissertation Director

Dr. Robert Simon, Committee Member

Dr. Angelos Stavrou, Committee Member

Dr. Songqing Chen, Committee Member

Dr. Brian Mark, Department Chair

Dr. Kenneth Ball, Dean, Volgenau School of
Engineering

Date: Summer 2017
George Mason University
Fairfax, VA

Mitigating Denial-of-Service Attacks in Mobile Ad Hoc Networks using Network
Capabilities

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Eric J. Swankoski
Master of Science

The Pennsylvania State University, 2004
Bachelor of Science

The Pennsylvania State University, 2002

Director: Dr. Sanjeev Setia, Professor
Department of Computer Science

Summer 2017
George Mason University

Fairfax, VA

Copyright c© 2017 by Eric J. Swankoski
All Rights Reserved

ii

Dedication

I dedicate this dissertation to my wife, Danielle, who has always pushed me to be my best,
and to my daughter, Cora, who has shown me what life is truly about.

iii

Acknowledgments

I would like to thank the following people who made this dissertation possible. First,
I extend my gratitude to the U.S. Naval Research Laboratory, my first employer after
graduation, whose outstanding continuing education programs allowed me the opportunity
to pursue the highest education while contributing to the Navy’s mission. Second, and
perhaps most importantly, I would like to thank my advisor, Dr. Setia, who always pushed
for the highest standards of integrity and academic discovery in our work.

iv

Table of Contents

Page

List of Tables . viii

List of Figures . ix

Abstract . xii

1 Introduction . 1

1.1 Statement of the Problem . 2

1.2 Summary of Contributions . 3

1.2.1 Capabilities for Unicast Communication 3

1.2.2 Capabilities for Multicast Communication 5

1.3 Structure of the Dissertation . 6

2 Background and Related Work . 7

2.1 Capabilities and Denial-of-Service Prevention in the Internet 7

2.2 Capabilities and Denial-of-Service Prevention in Wireless and Mobile Ad Hoc

Networks . 11

2.3 Integrating Denial-of-Service Prevention with Congestion Control Mechanisms 12

2.4 Securing Multicast: Routing and Key Management 13

2.5 Multicast Capabilities . 14

2.6 Attacks on Capability Mechanisms . 15

2.7 Decentralized Access Control in MANETs 17

2.8 Differentiating between our Research and Prior Work 18

2.8.1 Summarizing Related Work . 18

2.8.2 Problems with the Existing Framework 19

2.8.3 Building on the Existing Framework 20

3 Supporting Deny-by-Default for Unicast Traffic in MANETs 22

3.1 Capability Protocols in Wired Networks . 22

3.2 EPIC: Motivating Path Independence . 23

3.3 EPIC: An Overview . 25

3.4 EPIC: Path-Independent Capability Protocol Design 26

3.4.1 EPIC: Protocol Design . 26

v

3.4.2 EPIC Capability Components . 31

3.5 EPIC: Security Analysis . 33

3.5.1 Attacks on Deny-By-Default Protocols 34

3.5.2 Flooding and Remote Packet Injection 36

3.5.3 Attacks on Capability Establishment 37

3.5.4 Congestion Control . 38

3.6 RAC: Enhancing EPIC Security . 39

3.6.1 Route-Adaptive Capabilities: An Overview 40

3.6.2 RAC: Protocol Design . 41

3.6.3 RAC Capability Components . 47

3.6.4 RAC: Security Analysis . 48

3.7 Performance Results . 54

3.7.1 Simulation Methodology . 54

3.7.2 Simulation Framework and Scenarios 54

3.7.3 Zero-Attack Throughput & Efficiency: AODV 60

3.7.4 Zero-Attack Throughput & Efficiency: OLSR 64

3.7.5 EPIC and RAC: DoS / DDoS Mitigation 69

3.8 Summary . 72

4 Supporting Deny-by-Default for Multicast Traffic in MANETs 76

4.1 Multicast Capabilities: An Overview . 76

4.2 EPIC-M: Multicast Capabilities . 77

4.2.1 Initial Bootstrapping . 77

4.2.2 Multicast Capability Group Controllers 78

4.2.3 EPIC-M Protocol Design . 79

4.3 Multicast Security: EPIC-M . 84

4.3.1 Threshold Cryptography and Capability Group Controllers 85

4.3.2 Flooding Attacks / Packet Injection 85

4.4 Performance Results . 87

4.4.1 Test Parameters & Metrics . 87

4.4.2 Mobility Models . 88

4.4.3 Multicast Routing Protocols . 88

4.4.4 Threshold Capability Establishment 89

4.4.5 MCBR Performance & Efficiency . 93

4.5 Summary . 96

5 Future Directions and Conclusions . 97

vi

5.1 Summary . 97

5.2 Future Work . 98

5.2.1 EPIC and RAC: Unicast Capabilities 98

5.2.2 EPIC-M: Multicast Capabilities . 98

Bibliography . 100

vii

List of Tables

Table Page

3.1 Summary of Simulation Scenarios . 55

3.2 MMTS Model Characteristics . 57

3.3 Capability Request: EPIC (20 Bytes) . 59

3.4 Capability Request: RAC / RDC (36 Bytes) 59

3.5 Capability Response: EPIC (96 Bytes) . 59

3.6 Capability Response: RAC / RDC (112 Bytes) 60

3.7 Capability Data Packets: EPIC / RAC / RDC (36 Bytes) 60

3.8 Computation Overhead: EPIC / RAC / RDC 61

4.1 Multicast Simulation Parameters . 87

4.2 Multicast Capability Request: EPIC-M (64 Bytes) 90

4.3 Multicast Capability Response: EPIC-M (64 Bytes) 90

4.4 Multicast Capability Data Packets: EPIC-M (40 Bytes) 90

4.5 Computation Overhead: EPIC-M . 91

viii

List of Figures

Figure Page

3.1 Illustrating Capability Maintenance Problems Associated with Node Movement 25

3.2 Components of an EPIC Capability. The encapsulated portion represents

the base capability BC, and the receiver signature SR is computed over

this portion. The current capability hash value CHi is used for subsequent

packets in a flow. 31

3.3 Flooding Attacks: Local and Distant Packet Injection 37

3.4 The sender S sends a capability request to the receiver R by first creating and

sending a signed request packet and forwarding to its next hop X. Before

forwarding the request, X caches the current route RTS,X = {S,X}, the

request time, the source and destination S and R, and the next hop Y . It

also sets a flag indicating it has forwarded a signed request. Node Y does the

same, caching its route as RTS,Y = {S,X, Y }. The receiver R, after receipt

of the capability with route RTS,R = {S,X, Y,R}, issues a capability to S

along this route with an expiration time of T1. 41

3.5 The sender S sends the first packet on the flow containing the signed BC.

Node X, upon receiving the packet, validates the capability by verifying the

receiver signature and checking the route field for its information. If present,

X forwards the packet. Y follows the same course of action and the packets

arrive at R. Intermediate nodes cache the signed capability BC along with

the next hop. 41

ix

3.6 Node Y leaves the route, and the route between S and R is re-established

along the route {S,X,Z,R}. The sender S issues a packet containing a

normal capability to X. However, node X sees that Y is no longer the next

hop, and thus modifies the packet to mark it an intermediate request, signs it,

and appends the cached capability BC to the node Z. Node X also starts its

grace period timer with a value of TGP . Node Z first verifies that S possesses

a valid capability using the EPIC protocol rules, even though it is not on the

established route, before forwarding the packet and signed capability request

to R. Upon receipt, R issues a capability to S along the route {S,X,Z,R}

with the original expiration time T1. 42

3.7 Components of a RAC Capability . 47

3.8 The sender S and the receiver R have established authorized communication

on the route RT = {S,X, Y,R} using capability BC0. Node X then forwards

a packet to A using a wormhole and marks it as a request. A, verifying the

capability as accurate, starts its timer TGP and forwards the packet to B.

The process continues until R is reached, at which point a new capability

BC1 is issued along the route RT = {S,X,A,B,C,D,R}. 51

3.9 Average AODV / FTP Throughput (kbps) 62

3.10 Average AODV / FTP Overhead Efficiency 62

3.11 Average AODV / CBR End-to-End Delay (s) 64

3.12 Average AODV / CBR Jitter (s) . 64

3.13 Average AODV / CBR Overhead Efficiency 65

3.14 Average OLSR / FTP Throughput (kbps) 67

3.15 Average OLSR / FTP Overhead Efficiency 67

3.16 Average OLSR / CBR End-to-End Delay (s) 68

3.17 Average OLSR / CBR Jitter (s) . 68

3.18 Average OLSR / CBR Overhead Efficiency 69

3.19 Average AODV / CBR End-to-End Delay (s) - DoS Resistance, Performance

vs. Number of Attackers . 70

3.20 Average OLSR / CBR End-to-End Delay (s) - DoS Resistance, Performance

vs. Number of Attackers . 71

3.21 Average AODV / FTP Throughput (kbps) - DoS Resistance, Performance

vs. Number of Attackers . 71

x

3.22 Average OLSR / FTP Throughput (kbps) - DoS Resistance, Performance vs.

Number of Attackers . 72

3.23 Average AODV / CBR Overhead Efficiency - DoS Resistance, Efficiency vs.

Number of Attackers . 72

3.24 Average OLSR / CBR Overhead Efficiency - DoS Resistance, Efficiency vs.

Number of Attackers . 73

3.25 Average AODV / FTP Overhead Efficiency - DoS Resistance, Efficiency vs.

Number of Attackers . 73

3.26 Average OLSR / FTP Overhead Efficiency - DoS Resistance, Efficiency vs.

Number of Attackers . 74

4.1 k = {x, 10} Threshold Capability Establishment Times: Manhattan 92

4.2 k = {x, 10} Threshold Capability Establishment Times: RWP 92

4.3 k = {x, 10} Threshold Capability Establishment Times: Overall Average by

Protocol . 93

4.4 k = {x, 10} Threshold Capability Establishment Times: Overall Average by

Mobility Model . 93

4.5 Multicast Performance (MCBR Receiver Throughput): Manhattan 94

4.6 Multicast Performance (MCBR Receiver Throughput): Random Waypoint . 95

4.7 Multicast Efficiency (EPIC-M Overhead): Manhattan 95

4.8 Multicast Efficiency (EPIC-M Overhead): Random Waypoint 96

xi

Abstract

MITIGATING DENIAL-OF-SERVICE ATTACKS IN MOBILE AD HOC NETWORKS
USING NETWORK CAPABILITIES

Eric J. Swankoski, PhD

George Mason University, 2017

Dissertation Director: Dr. Sanjeev Setia

The open nature of mobile ad hoc networks (MANETs) makes them vulnerable to denial-

of-service attacks. With no well-defined access points, network perimeter, or centralized

authority, these networks are susceptible to attacks from one or more authorized nodes

(insiders) or malicious external entities (outsiders). Mitigation methods for such attacks

are critically important, and in this work we explore the use of network capabilities to

enforce a deny-by-default network access control policy. While capabilities can minimize

the damage caused by malicious adversaries, the aforementioned characteristics of MANETs

also complicate the operation of capabilities. Traditional network capability mechanisms

are not designed to cope with frequent route changes. The problem is not well-studied,

either for unicast-based or multicast-based MANET communication.

For unicast networks, we have developed EPIC (Efficient Path-Independent Capabili-

ties), a method which combines reverse-disclosure hash chains, identity-based cryptography,

and per-packet verification to support the establishment of destination-controlled path-

independent capabilities and to show how they can be efficiently operated and maintained

in a high mobility environment. EPIC decouples the capability from any particular route,

allowing for a seamless transition from one authorized route to another between a source

and destination. We have also developed RAC (Route-Adaptive Capabilities), which uses

the same basic building blocks of EPIC but combines the high security of route-dependent

capabilities with dynamic route reconfiguration to maintain high efficiency and performance.

For multicast networks, we have developed EPIC-M (Multicast), which builds on the core

aspects of EPIC to provide capability functionality in multicast networks. EPIC-M uses

the building blocks of EPIC, but also utilizes threshold cryptography (partial digital sig-

natures) to facilitate capability establishment and decouple capability establishment and

maintenance from multicast routing and membership operations. We show through simula-

tions that EPIC, RAC and EPIC-M can operate efficiently in well-behaved networks while

also minimizing network disruption caused by malicious entities in hostile or unsecured

networks.

Chapter 1: Introduction

Mobile ad hoc networks (MANETs) offer a high degree of flexibility in many regards, offering

substantial advantages over fixed-topology networks. This flexibility, however, leads to

additional security complications. The unconstrained physical structure of MANETs does

not lend itself well to a secure architecture - with no well-defined access points or network

perimeter, any node, malicious or benign, can enter the network and attempt to launch

attacks - many of them particularly difficult to mitigate.

In recent years, there has been a great deal of research on securing MANETs [1,2]. Sev-

eral authors have proposed novel approaches for secure key establishment, secure neighbor

discovery, and secure routing, among others [3–6]. A critically important issue that still

remains to be fully addressed is the problem of preventing or mitigating denial-of-service

attacks launched by malicious or compromised nodes. DoS attacks in MANETs are both

difficult to detect and defend against; nodes may act alone to conduct denial-of-service

attacks or they may collude with other malicious nodes for maximum effect.

Attacks can be launched both by outside adversaries (entities external to the network)

and insider adversaries (nodes that are members of the target network). Insider attacks are

particularly problematic as these nodes are compromised or malicious nodes that possess

the proper authorization and credentials to access the network and as such are difficult to

differentiate from legitimate participants. Most existing security mechanisms are designed

to protect against outsider attacks, but insiders - authorized network nodes - are more

difficult to detect and defend against.

1

1.1 Statement of the Problem

The primary objective of this dissertation is to address the problem of denial-of-service

(DoS) and distributed denial-of-service (DDoS) attacks in mobile ad hoc networks (MANETs).

While security in mobile ad-hoc networks (MANETs) remains a hot topic in general, the

problem of preventing or mitigating DoS attacks in MANETs remains open. Consider, for

example, the situation where a node that has been compromised by an adversary injects

packets into the MANET with the goal of depleting the resources of the nodes relaying the

packets. While researchers have proposed mechanisms for preventing outsider adversaries

from launching such attacks in MANETs, these mechanisms do not prevent insider adver-

saries from launching the same attacks [7, 8]. Given the limited bandwidth and resource

constraints of nodes in MANETs, even a single compromised node can launch an effective

DoS attack that affects the entire MANET.

As a preventative measure against DoS and DDoS attacks, a deny-by-default security

policy has been proposed in wired networks [9]. We define this policy as follows: if no specific

authorization exists for a given node or traffic flow, then all traffic associated with that node

or traffic flow is blocked. This helps to raise the network’s resistance to both denial-of-service

(DoS) and degradation attacks. Contrast this with the open access policy of the Internet,

in which traffic is generally forwarded unless specifically blocked. In this regard, deny-by-

default is the opposite of the Internet - all traffic is blocked unless specifically authorized,

while in the Internet all traffic is allowed unless specifically blocked.

An important component of the solutions that have been proposed is the use of network

capabilities, which are defined as tokens of authorization associated with a network flow

that are issued by receivers to authorized senders. These tokens are embedded in each

packet that is part of a network flow from the sender to the receiver. Routers on the path

from the sender to the receiver drop packets that do not include a legitimate capability,

thus ensuring that only authorized traffic can flow between the source and destination.

Most approaches were designed for high-powered modern wired network environments

and assumed the presence of trusted central authorities or dedicated routers. Authorization

2

tokens were embedded in each packet limited to a dedicated route specified at the time of

the initial request and authorization.

In this dissertation, we investigate the design of a deny-by-default network access con-

trol policy in MANETs based upon the use of network capabilities, which represent

non-permanent cryptographically secure authorization tokens allowing nodes access to net-

work resources. There are several characteristics of MANETs that make it necessary to

explore new approaches for network capabilities different from those proposed for wired

networks. First, and most importantly, routes in MANETs change frequently due to node

mobility. Most proposals for capability-based protocols depend upon routers on the path

between the sender and receiver maintaining state that enables them to verify a capability.

Frequent route changes make it necessary for any capability-based protocol for MANETs

to re-establish this state as efficiently as possible. Second, nodes in MANETs are not dedi-

cated routers, and are likely to be much more resource-constrained than routers in a wired

network. Third, the mechanisms for implementing capabilities are likely to be very different

depending on whether the traffic is unicast or multicast.

1.2 Summary of Contributions

Our research, presented in this dissertation, addresses the problem of deny-by-default capa-

bility architectures in MANETs. We propose variants of capability mechanisms suitable for

both unicast and multicast networks, and we show that capabilities can be used to ensure

efficient operation in mobile networks.

1.2.1 Capabilities for Unicast Communication

The first research thrust of this dissertation is in the area of capabilities for unicast-based

traffic. Unicast capabilities are point-to-point (single source to single receiver) and can be

controlled by the intended receiver. Our contributions are summarized below:

• We introduce two protocols for unicast traffic - EPIC (Efficient Path-Independent

3

Capabilities) and RAC (Route-Adaptive Capabilities) - to support capabilities in

MANETs. EPIC and RAC are independent of the routing protocol. EPIC combines

reverse-disclosure hash chains, identity-based cryptography, and per-packet verifica-

tion to support the establishment of destination-controlled path-independent capa-

bilities and to show how they can be efficiently operated and maintained in a high

mobility environment. EPIC completely decouples the capability from any particu-

lar route, allowing for multiple simultaneous authorized routes between a source and

destination. RAC maximizes the security of the mechanism by creating a hybrid

between the fully route-independent method and traditional route-coupled methods,

allowing only one active route while supporting dynamic and transparent changes to

the authorized route.

• We evaluate the performance of both EPIC and RAC through simulation, showing

how they can be used with two different routing protocols - AODV and OLSR - as

well as with multiple pedestrian and vehicle-based mobility models. Simulation results

show that EPIC provides as much as a 27.3% increase in performance and a 33.7%

increase in efficiency over route-dependent capabilities (RDC), while RAC provides

higher security and resistance to attack at a cost of slightly reduced performance with

respect to EPIC. RAC provides as much as an 8.2% increase in performance and

a 13.6% increase in efficiency over RDC. Comparisons to applications that do not

use any security mechanism show that EPIC does not incur substantial performance

penalties; FTP throughput is reduced on average by 4.2% when EPIC is used and

9.6% when RAC is used.

• We also evaluate the security of the EPIC and RAC mechanisms, from relatively simple

attacks (such as capability-enabled local packet flooding) to more complex attacks

(such as capability-enabled remote packet injection). Our protocols are independent

of the routing protocols and as such are capable of working in conjunction with existing

security mechanisms.

4

1.2.2 Capabilities for Multicast Communication

The second research thrust of this dissertation is on the extension of path-independent

capabilities to network environments with predominantly multicast-based traffic. Mobile

ad hoc networks are often studied with a primary focus on unicast communications, but

anecdotal evidence suggests that communication consists of both unicast and multicast

traffic. It is not difficult to envision multiple scenarios where the traffic is predominantly

multicast. With one-to-many and many-to-many communication models being essential to

a wide variety of MANETs deployed in military or disaster relief applications, providing

capability support to multicast communication is necessary for supporting a deny-by-default

network communication model. We summarize our contributions below:

• We propose EPIC-M (EPIC-Multicast), a capability protocol that operates indepen-

dently of the multicast routing protocol. In our approach, group controllers are respon-

sible for issuing capabilities to members of a multicast group. Representing a logical

extension of EPIC, it is completely decoupled from the routing protocol. EPIC-M

uses threshold cryptography mechanisms to support capability establishment while

providing resilience to attack, failure, or compromise of individual group controllers.

• We analyze both tree-based and mesh-based multicast protocols to evaluate the per-

formance and efficiency of EPIC-M. We study three uniquely different protocols:

MAODV (tree-based), ODMRP (mesh-based), and PIM-SM, which is tree-based but

with the caveat that it can span a very large area. We compare EPIC-M using a point-

to-multipoint threshold capability establishment and MCBR traffic patterns against

regular multicast traffic without capabilities and show that impacts on performance

and efficiency are relatively minimal with respect to multicast networks not employ-

ing a capability mechanism, with performance decreasing by an average of 4.0% and

efficiency decreasing by an average of 2.0%.

• We analyze the security of the EPIC-M mechanism, considering both simple and

complex attacks as well as attacks dependent on the type of multicast routing protocol.

5

1.3 Structure of the Dissertation

The remainder of this dissertation is structured as follows. Chapter 2 discusses related work

on capabilities, including their application to wired networks, mobile ad hoc networks,

both unicast and multicast environments, and the secure implementation of capabilities.

Chapter 3 outlines the design, implementation, security and simulation of EPIC, our unicast

capability mechanism, and its route-dependent adaptive variant RAC. Chapter 4 details

the design, implementation, security and simulation of EPIC-M, our multicast capability

mechanism. Finally, Chapter 5 outlines directions for future work and provides a conclusion

to our work.

6

Chapter 2: Background and Related Work

Most of the previous research on the use of capabilities has focused on wired networks;

there is relatively little work on how they can be used for disallowing unauthorized traffic

in MANETs.

Capabilities are defined as a token agreed upon between a sender and receiver that

proves the sender is authorized to communicate with the receiver. They serve as a defense

mechanism against attacks aimed at preventing legitimate use of a limited resource (such

as a communication channel) by flooding it. If an unauthorized malicious user has no

capability to send to a particular destination, then it can only flood that destination to

the extent that unauthorized traffic is allowed. This prevents attacks by ensuring that the

majority of authorized traffic can proceed with little or no interruption even in the presence

of an active attacker.

2.1 Capabilities and Denial-of-Service Prevention in the In-

ternet

In an early paper on the subject, Anderson et al defined capabilities as a token agreed

upon between a sender and receiver that proves the sender is authorized to communicate

with the receiver [10]. They assumed that capabilities would be generated using a hash

chain of arbitrary length, with the last value serving as the first capability. As any given

capability value was about to expire (based either on a use counter or a time value), the

destination would send the next value. Intermediate nodes could then verify this value by

calculating its hash and ensuring it matches the previous value. As a necessary step in the

establishment of capabilities, nodes on the route between a source and a destination were

tied to the capability itself as they were required to verify the capability was authentic.

7

In wired networks, routes between nodes are relatively stable so associating the capability

for a flow with the intermediate nodes on the route between the source and destination

does not pose a problem. Intuitively, there is nothing intrinsic to capabilities that would

require a specific route. The authors instead propose linking routes and capabilities to both

prevent nodes not on the route from interfering and to limit the damage associated with

compromised capabilities.

Yaar et al proposed a scheme called SIFF (Stateless Internet Flow Filter) which aimed

to prevent or mitigate distributed denial-of-service (DDoS) attacks in the Internet [11].

The method allows receivers to selectively prevent sources from reaching them and also

requires that routers be able to differentiate between good traffic and bad traffic, which

is accomplished through capability exchange. Also, since each router participates in the

identification and verification of a packet, it is in effect a capability system. SIFF made

the important contribution of suggesting the linking of a source IP address to a capability

hash value, which in this context limited capability abuse to spoofing the source IP address.

While SIFF provided some important insights into capability design, as a route-dependent

design it still remains inherently unsuitable for mobile ad hoc networks.

Stavrou and Keromytis proposed using stateless multipath overlays to mitigate DDoS

attacks [12]. The use of a modified indirection-based overlay network (ION) prevents at-

tackers from discovering connectivity information by utilizing a principle similar to spread-

spectrum or frequency-hopping - the source does not utilize the same path on subsequent

packets, instead randomly choosing a path from the subset of available paths. While an

attacker might be able to attack a specific subset of an overlay network, it is assumed that

its attack power is insufficient to bring down the entire overlay network. The basic premise

of this approach is that the source has a capability for the overlay network, and packets

to the destination are sent on randomly determined paths (making it difficult or impossi-

ble for an attacker to prevent delivery). Per-path packet diversity provides some measure

of protection against DoS at the cost of increased routing complexity as well as increased

latency, but it does offer some resilience to more complex attack models.

8

Argyraki and Cheriton proposed a scheme called Active Internet Traffic Filtering (AITF),

which would allow receivers to identify problematic traffic and request that it be stopped [13].

This requires identification of a particular source’s path, which is accomplished through

header-contained route records. It also requires that routers be able to provide real-time

protection against attackers based on their source. Filtering is based on the interaction

between four parties - the source, the destination, and the gateway routers of each. As-

suming that the gateway routers remain uncompromised, they then can either request that

misbehaving sources stop sending traffic or, if they do not comply, filter the traffic from the

malicious entity. Routers may not cooperate for several reasons, both because they may

not want to provide diminished service and because they may not have the capability to

identify the particular offending flow. Though not called capabilities, the basic principle

is the same - provide mechanisms for supporting authorized traffic as well as mechanisms

for minimizing the effect of unauthorized traffic. This method has the same drawbacks

and weaknesses as the standard capability mechanism - source spoofing, path spoofing, and

attacks on the filtering mechanism, for example.

Yang builds on earlier work, including [10, 11, 13], and proposes the Traffic Validation

Architecture (TVA), which represents a more thorough definition of a capability-based net-

work architecture [14]. The notion of pre-capabilities is introduced based on earlier work

in [11] and requires that participating routers contribute information towards the establish-

ment of a capability. While the end goal remains the prevention of DoS attacks through the

control of received traffic by each receiver, the actual implementation and maintenance of

capabilities also illustrates a practical defense against DoS attacks. This paper puts forth

some key requirements for capabilities, and these requirements apply equally well to both

wired and wireless networks - they are granted to the sender by the receiver, they should

be both unforgeable and non-permanent, and routers, dedicated or otherwise, must be able

to verify them.

The nodes that possess a valid capability are allowed to send a rate-limited amount

of data, which helps to prevent attackers with legitimate authorization from disrupting

9

the network. Following this, unauthorized traffic (packets with an expired capability or

no capability at all) is allowed but also at a substantially reduced priority. Such traffic is

necessarily required, but is rate-limited generally being allocated a single-digit percentage of

the channel. To prevent attacks on the capability setup channel, they propose rate-limiting

requests by associating them with a path identifier based on their point of entry into the

network. This allows for the timely establishment of new capabilities while providing a

reasonable defense against DoS attacks, both against the network at large as well as the

capability establishment mechanism. This paper also assumes that capabilities are linked

to routes. It also represents a significant advancement in the design of practical protocols

that use network capabilities.

Wolf and Vasudevan argue that hop-by-hop capability enforcement with each router

participating in both the initial capability setup and the ongoing capability verification

does not introduce significant performance limitations after the capability is established [15].

This method advocated the use of Bloom filters to ensure that each router on a path could

verify a packet without significantly affecting the data rate. Put simply, the goal is to

maintain cryptographic strength (the difficulty of forging a capability) while allowing for

quick and efficient verification. Connection setup is difficult and time-consuming, as it

requires the sender to sequentially negotiate terms with each router on the path. In static

networks, this approach might be acceptable, but is clearly not practical in networks with

any significant degree of mobility or resource limitation.

Parno et al first address the issue of changing routes with SNAPP, which allows capability-

enabled senders to embed the intended route in a packet’s header [16]. This in turn allows es-

tablished capabilities to continue to function with the established route even after routes are

subsequently changed or optimized. While this method avoids capability re-establishment

following a route change, it is only viable if the physical route is still operational and as

such is only suitable for wired networks.

10

2.2 Capabilities and Denial-of-Service Prevention in Wire-

less and Mobile Ad Hoc Networks

The capability protocols proposed for wired networks can be extended to support wireless

networks, but there are several key differences that add substantial difficulty. First, routes

change frequently due to dynamic node membership and node movement. Second, the

wireless channel is significantly less reliable than a wired channel. Third, routers in wireless

networks are multipurpose - unlike the Internet, in which routers are dedicated hardware

units, MANETs use regular nodes to facilitate routing.

These problems illustrate the necessity for a new approach to capability establishment

and maintenance in MANETs. Little work has been done on the subject, with most fo-

cusing mainly on the translation of traditional capabilities to what are assumed to be

resource-limited mobile nodes. Alicherry et al proposed the extension of existing capabil-

ities to MANETs [17]. This work proposes what are in effect two types of capabilities -

globally-issued policy tokens, representing bandwidth allocation, and peer-to-peer capabili-

ties, which represent communication between two nodes. This approach limits the scope of

authorized flooding attacks launched by colluding attackers by enforcing global bandwidth

policy limitations. Capability-enabled packets are represented by a single static value and

are verified probabilistically. This represents a tradeoff between storage requirements (nodes

must store policy and bandwidth allocation information for all nodes individually as well

as for all communicating pairs of nodes) and computational complexity, but it does serve

as an important first step in MANET-focused capabilities. Further work provides some

validation for this work, showing through simulation that the approach was workable in

MANETs. The effects of MANET mobility are quantified, with a reported throughput

decrease of as much as 16.1% and a packet delivery ratio decrease of as much as 9.1% with

respect to an open-access network. This work illustrates that capabilities can be adapted

to MANETs with acceptable losses to performance. However, this approach does not sup-

port a deny-by-default network access policy where any packet that lacks authorization is

11

dropped.

Later research formalized and improved the approach. Data transmission is assumed to

be block-based (multi-packet), with subsequent packet hash signatures transmitted in the

initial packet. Subsequent packets consult memory to determine validity of future packets,

which represents a tradeoff between computation and storage - no signature verification

is required, but state information storage requirements are increased. Results indicate a

total performance decrease of between 19.8% and 34%, depending on the situation, while

maintaining adequate performance in the presence of attackers utilizing a variety of schemes.

However, the DIPLOMA approach has some drawbacks - an offline centralized authority is

required to use global capabilities, and the storage requirements are not scalable to larger

networks.

2.3 Integrating Denial-of-Service Prevention with Conges-

tion Control Mechanisms

The concept of preventing or mitigating denial-of-service attacks by utilizing existing con-

gestion control mechanisms is an important one, but little work has been done on the

subject. In [18], Liu et al introduce NetFence, a method to detect and mitigate DoS attacks

by utilizing unforgeable congestion policing feedback structures. Even if a malicious sender

has a colluding receiver and attempts to flood the network with traffic, it is unable to forge

congestion policing feedback information and as such cannot gain more than its fair share

of bandwidth. When congestion is detected and a presumed victim of a DoS attack wishes

to stop receiving traffic from a malicious sender, NetFence can act as a sort of capability

mechanism and prevent or limit the malicious node from using the network. While NetFence

works well within the context of the Internet, many factors make it unsuitable for applica-

tion in MANETs. For example, it is necessary to identify bottleneck routers. While this

is practical in the Internet, node mobility makes it a difficult problem in MANETs. Also,

the computational requirements placed on routers to implement NetFence are problematic

12

without dedicated routers with significant computing power.

Another interesting approach is the combination of traceback and path verification,

which aims to prevent deviation from an established or authorized route. The use of trace-

back allows the point of departure to be identified [19]. One such mechanism, ICING,

forwards packets after checking that a particular path is approved and has been followed

to that point. Authorization is supported by ID-based cryptosystems, and route deviations

result in dropped packets [20]. Other work builds on the concept by reducing the overhead

of the mechanism and including the ID of the previous router, allowing for positive iden-

tification of a malicious node [21]. The reduction of the problem to binary decisions (to

either forward or drop a packet) results in the mechanism in effect achieving the same goal

as fully route-dependent capabilities.

2.4 Securing Multicast: Routing and Key Management

While individual networks vary, it has been suggested anecdotally that the majority of

communication in MANETs is multicast rather than unicast. Securing multicast commu-

nications has focused on multiple different aspects, including authentication (uniquely and

securely identifying the members of a multicast group), access control (restricting both

membership of the group and the rights of the individual members of the group), and

key management (ensuring confidentiality and integrity of group transmissions). Source

authentication mechanisms focused on broadcast and multicast, such as TESLA and its

variants, change the traditional PKI-based authentication (asymmetric cryptography) in

favor of symmetric cryptographic primitives better suited to more resource-constrained

networks [22, 23]. Access control and key management can more broadly be combined into

multicast group management, which aims to address the problem of limiting access both

to group membership and well as to its respective communications. Research on multicast

key management mechanisms is fairly broad; approaches can be both high-level (multi-

cast group-level key sharing) as well as low-level (individual node-to-node shared keys).

13

They can also be fully decentralized or centralized, requiring the use of a key management

authority [24–27].

At a higher level, both unique secure multicast mechanisms and additions to existing

multicast routing protocols have been proposed. These too are varied, including centralized

approaches that are independent of the underlying protocol to tree-based (i.e., MAODV)

distributed security mechanisms designed to defend against colluding attackers [28, 29].

Other work focuses on extending specific routing protocols. KHIP, for example, focuses on

extending hierarchical multicast routing (HIP) by employing multiple keys per multicast

tree [30]. MAODV, in comparison, is relatively well-studied; extensions and modifications

have been proposed for source and group authentication [31], secure route discovery [32],

and a combined route discovery and maintenance mechanism employing trusted computing

mechanisms [33].

2.5 Multicast Capabilities

Network access control for multicast traffic can be divided into two distinct problems - sender

control (limiting who can send to a given multicast group) and receiver control (limiting who

can receive packets sent to a multicast group) [34]. At a basic level, sender access control is

provided by using a source-specific multicast approach, in which receivers can specify from

which sources they wish to receive multicast packets [35]. This mechanism is quite similar

to that of unicast capabilities, in which receivers explicitly provide transmit permission to

sending nodes. Receiver access control can be provided in a variety of ways, but most

involve group management via controlling the multicast join process [36]. Very little work

has been done on the concept of extending capabilities to multicast. In fact, to date we

only know of one paper on the subject, published by Alicherry and Keromytis in 2010 [37].

Like the previous published work, a DIPLOMA-based capability system was implemented

in Linux and tested in the Orbit environment. In this work, there are separate capabilities

for sending and receiving. Nodes that have a sending capability are also allowed to receive,

14

while nodes with only a receiving capability cannot send. However, authorized senders can

also issue receiving capabilities. Simulation results conducted based on PIM-SM indicate

that the multicast DIPLOMA scheme operates with only limited costs in throughput and

packet loss (3.6% and 9%, respectively).

Extending capabilities to multicast routing is difficult because unlike unicast routing,

network capabilities cannot be practically established between a single source and a receiver.

By definition, with many receivers, the problem does not scale and unlike unicast, the peer-

to-peer capability establishment approach becomes impractical. This is true of multicast

DIPLOMA, which also introduces significant scalability problems - the costs of maintaining

and updating capability information, both in terms of storage and communication, increase

exponentially as the size of the network increases. It follows that allowing senders to issue

capabilities can create security problems - malicious senders with the ability to issue receive

capabilities to other nodes could carry out authorized flooding attacks with relative ease.

Nonetheless, this paper remains an important first step towards addressing the problem.

2.6 Attacks on Capability Mechanisms

Several solutions have been proposed to address the problem of protecting the initial capa-

bility setup. TVA (Traffic Validation Architecture) attempts to secure the capability request

mechanism by tagging each request to group and prioritize such requests [14]. Parno et al

recognized the need to protect the capability setup channel from attacks. Denying the abil-

ity to negotiate a capability in a deny-by-default environment is by definition an effective

denial-of-service attack. They propose Portcullis, a method to protect the connection setup

phase of a capability system. This is necessary because in a capability-enabled environ-

ment, capabilities must be negotiated and established in an unprotected environment. To

accomplish this, Portcullis employs a challenge/response model, which bounds the delay

any adversary can impose on a legitimate request. Portcullis relies on a trusted third-party

entity (in this case, DNS) to periodically release seed values that senders use to generate

15

puzzles from a known algorithm. Puzzles can be generated at higher difficulties, and pri-

ority is given to entities which successfully solve higher-level puzzles. Note that puzzles

also include a 64-bit nonce, limiting or preventing the reuse of puzzle solutions. Since an

attacker must compute a puzzle solution to access the network, legitimate entities can at the

very least access the network (and thus establish a capability) during this computationally

bounded time. Results show that the capability establishment mechanism can be protected,

allowing access for legitimate participants even in the presence of malicious entities [38].

Argyraki and Cheriton proposed that capabilities were ultimately unnecessary. Their

reasoning was that capabilities themselves could be prevented via a denial-of-capability

(DoC) attack, and mitigating such an attack would obviate the need for capabilities alto-

gether. This is because some sort of DoS prevention would need to be employed to facilitate

legitimate capability establishment. However, this appears to ignore the effects of quality-of-

service (QoS) requirements on different aspects of communication. The level of throughput

required to sustain capability negotiation is extremely low - in theory, as little as a single

packet in both directions. It is also not typically time-sensitive, so extreme levels of packet

loss (even asymptotically approaching 100%) do not prohibit capability establishment unless

they can prevent delivery of all packets in either direction. As long as packets can eventually

be delivered, a capability can be established. Provided that possession of a valid capability

can ensure a reasonable quality of service (through higher priority at participating routers),

then merely ensuring that capability establishment is possible within some finite and reason-

able amount of time would achieve effective prevention against denial-of-capability attacks.

Stated simply, preventing DoC attacks requires only that the packet delivery ratio of both

the sender and receiver be nonzero. This would not be sufficient for actual application-

layer communication, so we operate under the assumption that preventing DoC does not

automatically constitute a de facto prevention of DoS. Countermeasures against both DoC

and DoS are required in networks and the problems are mutually exclusive [39]. Other po-

tential solutions include LHAP (Lightweight Hop-by-hop Access Protocol), which presents

16

a mechanism for validating each packet at each node. LHAP is of particular interest be-

cause it operates effectively as an additional layer and allows for near-transparent removal

of unauthorized or misbehaving nodes from the network [7].

2.7 Decentralized Access Control in MANETs

Threshold cryptography has been studied as a method to produce a single signature or

certificate from multiple independent components. As security mechanisms, {k, n} threshold

cryptosystems allow for a cryptographic primitive to be constructed provided at least k of

the n components have contributed partial signatures. Below this threshold k, cryptographic

operations are not possible [40]. The applicability of such schemes to MANETs was proposed

by Zhou and Haas in [41] to support key management. This extended earlier work by

making the scheme more resilient to node failures, accounting for incorrect partial signatures

due to compromised nodes and eliminating the requirement for temporal synchronization.

This approach has been since adapted multiple times for use in key distribution and key

management mechanisms in MANETs [42,43]. In these approaches, threshold mechanisms

are combined with identity-based cryptosystems with the primary goal of mitigating the

single point of failure associated with traditional single-entity key management while also

minimizing the storage requirements associated with a traditional public key infrastructure.

This makes the approach particularly well-suited to MANETs. Some mechanisms, such as

MOCA, aim to provide both availability and security by distributing the key shares to a

secure subset of nodes in the network which remain anonymous, thus preventing malicious

nodes from attacking those nodes. This provides additional security [44]. Other schemes

require all nodes to act as certification authorities, effectively turning access control into a

pure peer-to-peer mechanism [45].

In URSA (Ubiquitous and Robust Secure Access Control for Mobile Ad-Hoc Networks),

Luo et al put forth an architecture in which all nodes in the network collaborate to certify or

revoke each node’s network access [46]. A node’s local neighborhood is defined as those nodes

17

within either a one-hop or a two-hop distance, and these neighboring nodes decide based on

the node’s behavior whether to grant continued access to the network. Misbehaving nodes

are unable to access the network once classified as malicious even if they move to a different

area of the network. URSA operates independently of the actual misbehavior detection

methods and relies on threshold cryptography to establish tickets for network access. This

allows any given node to ”build” a valid ticket provided enough of its neighbors recognize

its valid contributions to the network. The idea of decentralized access control in MANETs

is an important concept to our work. While URSA does not specifically deal with network

capabilities between a sender and a receiver, it does offer some insights into the ideas of

universally verifiable authorization tokens created without a central authority, a key concept

in our work. However, URSA is not without problems. Saxena et al illustrated that URSA

did not provide for verifiability of the partial signatures used to construct a share. In

addition, it showed that RSA-based threshold schemes were inapplicable to MANETs, but

other approaches (DSS, Schnorr, and BLS) were both practicable and efficient [47]. We

note that each scheme places differing limitations on the number of total threshold nodes

as well as the threshold requirement.

Securing MANETs ultimately requires eliminating the dependence of such networks on

offline or centralized authorities, and this has led to research in multiple areas on distributed

security mechanisms. This complicates the problem, as the limitations of MANET nodes

with regards to availability, computing power, and bandwidth make it increasingly difficult

to develop distributed security mechanisms without compromising performance.

2.8 Differentiating between our Research and Prior Work

2.8.1 Summarizing Related Work

The main focus of the existing work has been on the application of deny-by-default mech-

anisms - realized in the form of network capabilities - to wired networks and the Internet.

The nature of wired networks allows for computationally demanding and route-dependent

18

mechanisms, which provide sufficient security given the lack of environmental limitations.

However, mobile ad hoc networks exhibit some unique and complicating characteristics

that complicate the operation of network capabilities. For example, they have high node

turnover, high node mobility, and node heterogeneity, all of which introduce additional

complexity. It follows that there is very little work on extending capability mechanisms to

MANETs based on their specific characteristics. The DIPLOMA architecture is the main

example of a MANET-based capability system, but it does not fully address security con-

cerns in either unicast or multicast networks [17, 37, 48, 49]. We aim to adapt and improve

upon some of the existing concepts to create efficient and secure capability mechanisms for

both unicast and multicast applications.

2.8.2 Problems with the Existing Framework

It is not difficult to see how the existing capability architecture designed for the Internet

would not be suitable for mobile ad hoc networks. One key requirement - that routers must

be able to verify capabilities - becomes extremely problematic when we consider that the

nodes, which must necessarily also act as routers in MANETs, are neither powerful nor

fixed to a given location. As nodes moves and existing routes break, capabilities tied to

a specific route would need to be re-established, and thus the risk of failure increases as

the route length increases. The problems with MANETs that illustrate the necessity for

a new approach to capability establishment and maintenance include high turnover, high

mobility, node heterogeneity, a lack of a centralized authority, and mixed multicast and

unicast traffic.

Unfortunately, networks with such properties are likely to be deployed in critical situa-

tions (such as military or emergency response applications). This makes the need for robust

traffic and channel access control even greater. First, and perhaps most importantly, all

of these factors lead to high variability among routes over time. Any method that relies

on route dependence is necessarily at a disadvantage as it becomes increasingly inefficient

as mobility increases. This is the main motivation for addressing unicast capabilities with

19

a path-independent approach. Second, with a potentially significant amount of multicast

traffic in any given MANET, the established architecture fails to fully address the problem

as it focuses only on unicast traffic.

2.8.3 Building on the Existing Framework

We can build on the existing research by adapting and modifying prior concepts as well

as by developing novel approaches to solving the problem of DoS and DDoS mitigation in

MANETs. The end goal is to support the efficient use of capabilities as both a mechanism

for node authorization and access control as well as a mechanism for DoS prevention in such

networks through per-packet authorization. We propose the use of the following concepts

to provide for efficient, high-performance, and high-security capability mechanisms.

1. Fully Distributed Authorization Infrastructure: Deny-by-default protocols in MANETs

should require no centralized infrastructure to support capability-enabled networks,

allowing for both dynamic re-establishment and dynamic global policy changes.

2. Efficient, Secure, and Available Cryptographic Mechanisms: The computational and

communication efficiency as well as the availability of cryptographic mechanisms can

be significantly improved by using identity-based cryptography, which both mitigates

the need for public key management systems and provides for universal verification,

and threshold cryptography, which mitigates failure points and increase the availabil-

ity of certification authorities.

3. Route Independence: Due to the inherent mobility and unreliable communication

patterns of MANETs, deny-by-default mechanisms for both unicast and multicast

traffic should either be independent of the route between communicating nodes or

tolerant of route changes.

4. Efficiency and Scalability: Due to the limited computational and storage capabilities

of MANET nodes, mechanisms should be scalable and efficient, requiring minimal

20

computation to verify a capability and minimal state storage to reference existing

capabilities.

5. Resistance to Misuse and Attack: Capabilities should be unforgeable, non-permanent,

and be independently secure in that they do not provide an opportunity for either

insider or outsider attackers to misuse the system.

21

Chapter 3: Supporting Deny-by-Default for Unicast Traffic

in MANETs

In this chapter, we propose two methods to implement a deny-by-default network access pol-

icy for unicast capabilities in MANETs: EPIC, a method that combines reverse-disclosure

hash chains, identity-based cryptography, and hop-by-hop verification to support the estab-

lishment of path-independent capabilities, and RAC, an adaptive extension to EPIC that

combines route dependence with seamless dynamic capability maintenance and renewal. For

comparison, we study a traditional route-dependent capability framework in which only the

originally established route is allowed. We analyze the efficiency, security, and performance

of all three protocols in MANETs for a variety of scenarios involving different applications

and varying levels of node mobility. We also compare the performance of our protocols

against applications that do not employ any security protocols.

3.1 Capability Protocols in Wired Networks

Before we introduce EPIC, it is helpful to consider the operation of capability-based proto-

cols in wired networks. The main steps are described below:

1. Capability Requests: Once a node determines it needs to communicate with another

node, it checks to see whether it has a capability for that node. If it does not, it issues a

request. This request identifies the sender, the terms requested for the capability, and,

optionally, the sender’s authentication information. Some mechanisms also implement

some protection against denial-of-capability attacks such that capability establishment

is allowed in a timely manner [10, 11, 14, 15]. Most protocols propose piggybacking

capability requests on TCP SYN packets or specialized RTS packets.

22

2. Capability Response: Typically, the destination issues capabilities in response to a

request if it is willing to receive packets from the source node [10,11,14]. Alternatives

exist where routers rather than destinations issue capabilities provided the sender can

successfully answer a challenge [15].

3. Capability Verification: Once a sender receives a capability from the source, the capa-

bility is included in every packet it sends. Verification of capabilities in wired networks

is done by the intermediate routers. It is important to note that in most of the promi-

nent proposals for capability-based protocols in wired networks, the capability itself

is closely tied to the route between the source and destination. In [14], routers tag

requests with their own identifying information and as such are explicitly identified in

the capability itself. In [15], the routers themselves establish the capabilities and use

Bloom filters to verify them. In [11], routers verify capabilities by calculating a hash

based on a combination of the router addresses as well as the source and destination

addresses.

4. Capability Maintenance and Renewal: As a general rule, capabilities should be valid

only for a limited and defined amount of time. Thus, if a capability is compromised,

the damage is limited because even without detection its validity period is finite. When

a capability reaches or approaches its expiration, it is renewed either by the destination

or one of the routers on the path. Routers can verify that the new capability value

and the previous value are assigned to the same communication flow.

3.2 EPIC: Motivating Path Independence

The traditional deny-by-default capability protocols were originally proposed for wired net-

works, and the majority were dependent on the route between a source and destination for

verification - that is, if the route changed, the capability would need to be re-established.

This approach is sufficient for traditional wired networks in which the topology changes

infrequently. The increase in overhead associated with the generation and verification of

23

multiple digital signatures did not present a problem because the dedicated routers process-

ing the authorized packets are relatively powerful.

However, route changes in MANETs are more frequent for multiple reasons, including

high node mobility, node heterogeneity, and changes in the network membership due to

nodes joining or leaving the network. These factors introduce additional complexity as

the route between two nodes may change frequently. This is problematic since an existing

capability associated with a flow between two nodes becomes invalid once there is a route

change, and continued communication necessitates a repeat of the capability establishment

process. The limited computational capability also serves as motivation to minimize digital

signature generation and verification.

We illustrate this with an example in Figure 3.1. Suppose that A initiates a request for

a capability with F and establishes a capability along the path A → B → C → E → F .

Recall that with traditional mechanisms, no consideration is given to the possibility of that

route breaking and when routes change, capabilities are simply reestablished along the new

route. Now suppose that the route breaks as C leaves and is no longer within transmission

range of B. B then repairs the route locally and establishes a route through D. However,

when D receives packets containing a capability for the flow A → B → C → E → F , it

drops them as it cannot verify them. The capability is not re-established until A detects,

either through explicit notification or lack of acknowledgment, that its route to F needs

repair. Node A must then re-initiate the capability negotiation process and it establishes

a new capability along the path A → B → D → E → F . Each time a route changes, this

process repeats.

This is precisely the situation we want to avoid. In the ideal case, B detects that C is

no longer reachable, repairs the route locally through D, and transmits a packet that in-

cludes a capability to F along the new route without requiring any additional information

or retransmission from A. This imposes two requirements. First, the capability must not

include anything that is tied to C - the capability should be path-independent. Second,

24

Figure 3.1: Illustrating Capability Maintenance Problems Associated with Node Movement

the information included in the path-independent capability should be unforgeable (cryp-

tographically secure). Route-dependent mechanisms do not meet the first requirement, and

this is a major motivation for the development of EPIC. Using route-dependent capabilities

would present significant problems as source nodes would be forced to renegotiate capa-

bilities every time a route changes. In EPIC, capabilities by default do not include any

route-dependent information. Instead, each capability includes the sender, the receiver,

and a hash value, which is part of a one-way hash chain.

3.3 EPIC: An Overview

We propose EPIC as a lightweight path-independent capability protocol, which aims to

allow for change in the established route of the capability while simultaneously limiting the

ability of malicious nodes to hijack or otherwise misuse legitimate capabilities. Following

this, we must support two important concepts - first, that full path independence does

not significantly impact performance in the absence of malicious nodes, and second, that

full path independence successfully mitigates DoS and DDoS attacks as well as capability

hijacking or misuse.

Capabilities are granted by the receiver to the sender following an initial request. Both

the request and the response are digitally signed, which ensures that capabilities are un-

forgeable and authentic. End-to-end encryption ensures confidentiality. The sender is then

able to use the capability response to mint its own capabilities on a per-packet basis by

25

creating a one-way hash chain. Both the initial and terminal values of the hash chain are

specified by the receiver in the initial response, providing for full receiver control over the

number of packets a sender is authorized for. Each capability-enabled packet includes a ca-

pability value that is a predecessor in the one-way hash chain of the previously used value,

which link together packets in the flow. This ensures the security of the mechanism pro-

vided the hash function is secure as the sender is the only node with access to the starting

value in the chain.

The first capability-enabled packet along a new or updated flow includes a digitally

signed field known as the base capability, which allows for full authentication of the capa-

bility by any member node of the network. When a node receives the first packet that is

part of a flow, it verifies the signature for the initial capability to check its validity and stores

the base capability. In EPIC, we propose to use digital signatures based on identity-based

cryptosystems because of the performance benefits of using identity-based cryptosystems

over traditional public key cryptosystems in MANETs [50,51]. Specifically, a node receiving

a packet that includes a signed capability can derive the public key of the signing node from

its identifier and use that public key to verify the signature. In EPIC, a node needs to verify

a signature only when it receives the capability for the first time; for subsequent packets,

only a computationally inexpensive hash operation is needed. When a route changes, the

signed base capability is forwarded to the new node along with the first packet it receives

that is part of the flow. With local capability storage and no route information included in

the base capability, EPIC achieves full route independence without requiring any additional

communication by either the endpoints or intermediate nodes.

3.4 EPIC: Path-Independent Capability Protocol Design

3.4.1 EPIC: Protocol Design

In this section, we describe the operation of the EPIC capability protocol. Specifically, we

discuss the steps followed by the sender, the receiver, and individual nodes along the route

26

to generate and verify capability-enabled packets.

EPIC Notation

We use the following notation to describe our protocols:

R,S R and S are communicating principals: S, the source,

wishes to communicate with the destination R

N An intermediate node of the route

IDX The identifier for a given node X

K−1
X Node X’s private key

KX Node X’s public key, derivable from X’s identifier IDX

〈M〉K−1
X

Field or message M signed with node X’s private key

E{M}KX
Field or message M encrypted with node X’s public key

fh One-way hash function used for generating a hash chain

BC The base capability

CAPi Capability with sequence number i

T0 Initial capability request time

TCV Validity period for a given capability chain

RTS,n The route membership between a source S and a given node n

RTTX The maximal approximate expected configuration-time round-trip delay based on

network area, node quantity, and bandwidth capabilities

TGP Grace period for forwarding packets without re-established capabilities

and establishing new capabilities prior to expiration based on 2 ∗RTTX

EPIC Capability Request

• S: Compute M1 = (RFC, T0)

27

• S → R: 〈M1〉K−1
S

To initiate communication with the destination, the source sends a digitally signed and

timestamped request for capability (RFC) packet. The capability request packet can be

an independent packet or piggybacked on either a routing control packet or a transport

protocol packet. There are two security concerns with regards to initial capability requests.

First, successful denial-of-capability attacks are effectively denial-of-service attacks and thus

we need to protect capability setup. Fortunately, we can adapt methods similar to those

proposed for wired networks [10, 11, 14, 15]. Second, if requests do not carry digital sig-

natures, then any node can request a capability for any other node. Initial requests thus

require authentication and must be digitally signed. Intermediate nodes forward capability

requests to the destination, but they do not need to verify the signature.

EPIC Capability Response

• R: Compute CHn and CH0

• R: Compute BC = (T0, TCV , IDS , IDR, CH0)

• R → S: E{〈BC〉K−1
R
, 〈CHn〉K−1

R
}KS

When a node R receives an authenticated capability request and is willing to accept

packets from the source node S, it will calculate the base capability BC and securely

transmit it to the source along with additional information as described below. EPIC is

based upon the use of reverse-disclosure one-way hash chains. The receiver calculates a value

CHn based on a one-way hash function fh, which takes as input a unique combination of

the sender and receiver identification IDS and IDR, the receiver’s public key KR, the initial

timestamp T0, and a nonce RN0 as shown below. Subsequently, CH0 is calculated using

n successive applications of a one-way hash function fh to produce a sequence of values

(CHn, CHn−1, ..., CH1, CH0).

CHn = fh(IDS , IDR,KR, T0, RN0) (3.1)

28

CH0 = fh(fh(...(fh(CHn)))) (3.2)

The base capability BC is composed of the parameters associated with the network

flow for which the capability was requested - namely the node identifiers IDR and IDS , the

initial timestamp T0, the validity time period for the capability chain TCV , and the anchor

of the one-way hash chain CH0. Further, BC is digitally signed by the receiver R, so that

any node that receives BC will be able to verify its authenticity using the public key of R.

We assume the use of identity-based cryptosystems so the public key of R can be derived

from its identifier. Node R then transmits its response to S, which includes both BC and

CHn. The base capability BC and the capability root value CHn are both digitally signed

by R and the message encrypted with the sender’s public key KS . This ensures that the

sender is the only entity with access to the capability.

EPIC Protocol Operation: Authorized Packets

• S: Compute Capability Hash Values (CHn, CHn−1, ..., CH0)

• S: Compute Initial Capability CAP0 = {BC, 0}

• S: Compute Individual Capabilities CAPi = {CHi, i}

• S → R: Data Packet | CAPi

• Intermediate Nodes with no prior knowledge of BC: The sender includes the

signed capability BC with the first packet of the flow (i = 0). Otherwise, the previous

node on the route, having detected a route change (a different next hop), will include

the signed BC with the data packet. Verify authenticity of BC with KR and check that

it has not expired. Verify that CH0 = f ih(CHi) using CH0 included in BC. Cache

BC and CHi along with the next hop.

• Intermediate Nodes with cached BC: Verify CHi−1 = fh(CHi). If packet is

outdated or a duplicate, drop the packet. Check that capability has not expired using

T0 and TCV . If the next hop has changed, include cached BC in the data packet.

29

After receiving the base capability BC and CHn, node S can calculate its own per-

packet capabilities. First, it uses the value CHn to mint exactly n capability hash values.

Once the sender S has these n values, it can construct its per-packet capabilities for the

next n packets, associating each successive capability with one packet. Each capability is

represented by the value CAPi and consists of the base capability BC, the current hash

value CHi, and the sequence number i. The basic idea behind this approach is that the

hash values CHi are disclosed in reverse order of their generation. A node that obtains CHi

will not be able to derive CHi+1 because of the one-way aspect of the hash function, but

will be able to verify that CHi is part of a hash chain if it has cached a previously disclosed

hash value CHk, where 0 < k < i.

Normal operation of EPIC does not require any knowledge of the underlying routing

protocol. The process for verifying a capability is identical regardless of whether a node is

receiving the first packet in an authorized flow or it is receiving a packet from an established

flow as a router in a new route resulting from a route repair by the underlying routing

protocol. Intermediate nodes upon first receipt of a packet belonging to a flow must then

verify the included capability by verifying the authenticity of the base capability BC using

R’s public key and, if necessary, performing some number of hash calculations to ensure

that the included hash value CHi is part of the same hash chain terminating with the value

CH0 included in BC. If the node has already cached the value of BC, for subsequent

packets it needs to verify that the current packet capability hash value CHi is part of the

same chain as the signed capability CH0. The sequence number i can be used along with

the time values T0 and TCV to determine the approximate number of hash computations

required to ensure that CHi is a predecessor of CH0 in the hash chain. Finally, it need only

perform the verification step.

EPIC Protocol Maintenance: Normal Operation

The only maintenance required for EPIC capabilities is the periodic renewal as one capa-

bility approaches the end of its lifespan. The protocol interaction for maintenance between

30

senders and receivers is identical to that of the initial negotiation. The destination should

not proactively send new capabilities as current ones expire. Instead, senders explicitly

request renewed capabilities. Requests for renewed capabilities take place as the current

capability is expiring. Nodes can request renewed capabilities provided their current ca-

pability expires less than or equal to a value of TGP from the present time. The use of

TGP along with single-use capabilities helps prevents nodes from stockpiling capabilities

and ensures non-permanence.

3.4.2 EPIC Capability Components

Figure 3.2 provides an illustration of what is included in an EPIC capability.

BC: Base Capability 1

1 IDS Sender ID 1

1 IDR Receiver ID 1

1 CH0 Initial Capability Hash Value 1

1 T0 Initial Capability Timestamp 1

1 TCV Capability Chain Validity Period 1

Receiver Signature SR
CHi Current Capability Hash Value

Figure 3.2: Components of an EPIC Capability. The encapsulated portion represents the
base capability BC, and the receiver signature SR is computed over this portion. The
current capability hash value CHi is used for subsequent packets in a flow.

• Receiver Signature - SR: EPIC capabilities are signed by the receiver. The receiver’s

identification information (and thus the means to derive its public key) is known from

the packet’s routing information. The signed portion - IDS , IDR, CH0, T0, and TCV

- is only verified when first received. The inclusion of the initial timestamp prevents

malicious nodes from replaying the capability at a later time. If a node has already

seen a capability in this chain, then the node can simply perform one or more hash

computations to ensure that the received value is part of the same capability chain.

31

• Initial Capability Hash Value - CH0: This is considered the initial capability hash

values and represents the final element of a one-way hash chain. This value is critical

in both ensuring non-permanence of the capability as well as facilitating universal

verification. CH0 is calculated using n successive applications of a hash function

fH to produce a sequence of values (CHn, CHn−1, CHn−2, ..., CH1, CH0), and T0 is

the current time and R0 is a nonce. The concatenation of these values represents a

unique input to the hash function not reproducible by other nodes and also ensures

that successive capabilities between a sender/receiver pair will not be recycled.

A key part of the capability negotiation process is the encrypted transmission of

the value CHn to the sender. The destination securely transmits both CHn and

CH0 to the sender, which allows the sender to mint exactly n capabilities. If each

capability is to be forwarded exactly once, then the sender has authorization to send

no more than n packets without requesting additional authorization. By transmitting

CHn, the destination is able to enforce a unique per-packet authorization scheme for

exactly n packets without being required to transmit n unique capabilities. This does

not compromise our non-permanence and universal verification requirements as the

destination must periodically issue new capability values when current values expire.

The first value intended for use by the destination is CH0, and each capability is

only valid as long as is indicated by the capability chain validity period TCV . The

verification of a capability starts with the verification of the destination’s signature

using its public key. The current capability CHt is then verified along with the current

time and the capability chain validity period TCV . A node can apply successive

applications of the universally known hash function fh to ensure that the current

capability CHt is a predecessor of CH0 in the hash chain.

• Current Time and Capability Values: CHi/T0/TCV : By definition, CHi is the current

capability and must be a predecessor of CH0 in the one-way capability hash chain.

TCV represents the length of time any particular capability value in a given capability

chain can be considered valid and T0 represents the initial timestamp of the capability.

32

With unique per-packet authorization (a single capability hash value per packet), a

capability value will only be valid until it is used once or its validity period expires,

whichever comes first. In a static route, an intermediate node will have to perform

no more than one hash computation at a time to verify that the current value CHi is

the immediate predecessor of the prior known value CHi−1 in the chain. Loose time

synchronization is required among nodes, and we make the assumption that all nodes

in the network are temporally synchronized within some error margin δ such that if

the current absolute time is considered to be Ta, then any node in the network will

have its own time TX such that (Ta−δ) ≤ TX ≤ (Ta +δ). In this manner, at most one

additional hash calculation is required in the event the current time T0 falls within 2δ

of the beginning or end of a capability validity period. This is because it is possible for

two loosely synchronized nodes to assume they are operating legitimately within two

adjacent capability validity periods. The use of single-use capability elements allows

for the validity period to be very short, thus providing further protection against

abuse. We note that the capability lifetime, however, should be sufficiently long

enough that any capability issued to any node will be valid for most of its nominal

life; in absolute terms this means that for a given capability lifetime TCV and a time

synchronization error margin δ, the relation TCV � δ must hold true.

3.5 EPIC: Security Analysis

In this section, we evaluate the security of the EPIC protocol with respect to various attacks.

We use the defined notation from Section 3.4, while the protocol is evaluated under the

following assumptions:

1. The digital signature scheme and its underlying identity-based cryptosystem are se-

cure.

2. The one-way hash function used in capability generation and verification is secure.

3. A node’s private key is secure, preventing one node from masquerading as another.

33

4. Senders and receivers are not compromised at the time of capability establishment.

3.5.1 Attacks on Deny-By-Default Protocols

Forgery

In EPIC, capability requests are signed by the originating node S, and thus no node can

request a capability on behalf of another node. A receiver R will not generate a capability

response without a signed request, preventing unauthorized or outsider nodes without a

valid private key from requesting capabilities. The response generated by the receiver R is

both digitally signed (ensuring it was generated by the named receiver R) and encrypted

(ensuring it can only be used by the named sender S). This signed response, BC, contains

the hash chain anchor CH0. This in turn allows all nodes in the network to verify the

authenticity of BC as legitimately generated by R. These signature scheme ensures the

generation of capabilities is limited to legitimate senders and receivers.

Interception

The use of end-to-end encryption prevents interception by malicious nodes as the receiver

R encrypts the response, including both the signed base capability BC and the signed

capability hash chain root CHn, with the public key of the sender S. Without compromising

the sender, no node can intercept a capability intended for another node. Further, as the

signed capability BC is tied to a single source/destination pair, it cannot be used for

communication between any other pair of nodes. The signed and encrypted value CHn

ensures the sender is the only node with the ability to create individual capability values.

Replay Attacks

Initial capability requests are timestamped by the sender S with the value T0. Since this

request is signed by the originating node S, it cannot be successfully modified by another

node. The receiver R generates a signed response that includes the chain validity period

34

TCV . This is controlled by R, preventing senders from requesting arbitrarily long or in-

definite capabilities. During the chain validity period TCV , capabilities are only valid for

communication between S and R. Beyond that time, values in the capability chain are

invalid, and they cannot be used for communication by any node regardless of identity.

Data Modification

By utilizing a reverse-disclosure hash chain, EPIC allows each capability to be used exactly

once. If a malicious node were able to successfully modify a capability-enabled message

to add spurious data and send it to the destination (or a node prior to the destination

also used by the legitimate sender), it could prevent the legitimate packets from being

accepted if the malicious packet reaches the node prior to the sender’s legitimate packet or

the sender’s legitimate packet is dropped or lost. Spurious data packets reaching a node

after the use of a legitimate capability will be dropped as duplicates. Since any message

can be modified by an intermediate forwarding node, end-to-end message authentication is

required, allowing the destination to detect such modification attacks. We note that end-to-

end message authentication is required with or without EPIC, so no additional complexity

is introduced.

Capability Revocation

Capabilities in EPIC are non-permanent, so expiration (and thus implicit non-real-time

revocation) is guaranteed for any given capability. However, should explicit revocation be

necessary, EPIC could be modified to allow receivers to maintain final control over the

capabilities they issue by allowing for explicit termination. This can be accomplished by

broadcasting authenticated explicit revocation messages; nodes can both invalidate existing

(cached) capabilities and retain the revocation information for future use.

35

3.5.2 Flooding and Remote Packet Injection

Traditional route-dependent capability methods have the inherent protection of complete

route dependence; packets being routed on unauthorized routes are blocked immediately

by intermediate nodes. However, in EPIC, packets injected remotely could be forwarded

and accepted by legitimate nodes. A consequence of complete path independence is that

the capability mechanism cannot differentiate between normal mobility-induced changes

to the route and deliberate misuse. Since capabilities are universally verifiable, any node

that receives a capability-enabled packet will attempt to verify the capability and forward

the packet. The broadcast nature of the medium allows nodes not on the intended route

to both hear and understand these packets just as it allows malicious nodes to forward

these packets to their neighbors, causing unnecessary computation for the receiving nodes

as well as unnecessary delays for authorized traffic. While EPIC is resistant to capability

interception, it is not inherently resistant to authorized flooding attacks in the form of

remote packet injection.

However, if colluding attackers are able to utilize a wormhole to inject packets at a

remote location, they may use strategic locations to conduct an effective DoS attack against

a legitimate sender by retransmitting an overheard or intercepted capability. In Figure 3.3,

the sender S communicates with the receiver R. Locally, attackers X and Y are present

and inject duplicate capability-enabled packets to nodes C and D. Nodes on the actual

route are more likely to reject packets as duplicates - in this case, B can reject duplicate

packets. This is because it is more difficult to find a disjoint route locally. However, if X

can use a wormhole or other side channel to transmit its packets to Z, a remote colluding

attacker, then Z can inject packets to its neighbors E and F (who would ordinarily never

see this capability). This allows attackers to exdhaust resources by causing significant

congestion regardless of whether the injected packets ever reach the destination or not.

The ideal solution would be to prevent disjoint routes from being used by either preventing

multipath communication or only authorizing a single active route between each pair of

communicating nodes, which represents a tradeoff between increased complexity (identifying

36

and maintaining authorized route information) and security (mitigating multiple types of

capability-enabled packet injection).

If attackers are able to effectively create and exploit wormholes, it is likely they can

inject duplicate packets without detection. While wormhole attacks are possible, they are

difficult to engineer and represent a fairly complex and impractical attack, and integrating

EPIC with secure routing protocols would make detection and mitigation of wormhole

attacks more efficient. However, wormhole attacks represent an attack against the routing

protocol and not necessarily against EPIC, and secured routing protocols do not have this

vulnerability. Regardless, mechanisms such as temporal or geographical packet leashes can

be used to detect and mitigate such attacks [52].

Figure 3.3: Flooding Attacks: Local and Distant Packet Injection

3.5.3 Attacks on Capability Establishment

In ad hoc networks that employ a deny-by-default access policy, preventing legitimate nodes

from obtaining authorization effectively creates an absolute denial-of-service attack. We

consider neither such denial-of-capability attacks nor their countermeasures in this paper,

instead noting that existing measures (such as Portcullis) are adaptable to MANETs [38].

Preventing against denial-of-capability attacks is critical to the successful operation of deny-

by-default mechanisms, but it does not need to be a part of such a mechanism. Intuitively,

37

DoC prevention is achieved provided all nodes that are otherwise connected in the network

topology are able to communicate bidirectionally, and we posit that the solution to this

problem is best suited for a lower layer of the network. As such, it is beyond the scope of

this work.

Certain attacks against the routing protocol, such as selective forwarding, may prevent

EPIC from establishing or renewing capabilities. Intermediate nodes, when compromised,

might maliciously drop packets that are part of a capability request or response chain. While

we note that all capability mechanisms are susceptible to such attacks, certain methods can

be used to detect and mitigate malicious packet forwarding activity. In wireless networks,

it is difficult to differentiate between legitimate failures (due to collisions and transmission

errors) and deliberate failures (caused by malicious nodes). Hayajneh et al show that passive

observation can significantly reduce such attacks by identifying forwarding behavior that

deviates significantly from expected values. While ultimately dependent on the accuracy

with which nodes can identify the expected behavior, forwarding rates that deviate by more

than 4% can be detected [53]. Active probing techniques can also be used to monitor the

forwarding behavior of a given node. With this method, one particular one-hop neighbor of

an evaluated node forces traffic through the target to a different one-hop neighbor. While

this is more limited as support for multi-hop source routing is required, it can also effectively

identify malicious packet dropping with as much as a 94% accuracy rate [54].

3.5.4 Congestion Control

The establishment and enforcement of capabilities does not prevent all malicious activity

by an inside attacker. Multiple colluding nodes could create multiple capabilities, exploit

multiple paths, or otherwise attempt to subvert not the capability protocol itself but the

limits it places on nodes. Capabilities do not provide a complete defense against collusion.

However, queue management and congestion control mechanisms are useful in enforcing a

maximal level of fair use, and this applies regardless of whether a deny-by-default mech-

anism is utilized or not. Thus, the solution to this problem (the general enforcement of

38

equitable network resource allocation) is orthogonal to the use of capability mechanisms,

but it remains a necessary component of a secure network. As such, it is also beyond the

scope of this work.

3.6 RAC: Enhancing EPIC Security

EPIC, at its core, is designed to allow for effectively unlimited changes to a route without re-

quiring capability renegotiation. However, as discussed in Section 3.5, when malicious nodes

are present, we consider the possibility that capabilities could be hijacked with the goal of

disrupting normal network operation. Authorized flooding attacks can present a problem

- as more malicious traffic is forwarded with valid capabilities, legitimate communication

must contend for channel resources and throughput decreases. To mitigate this problem,

we aim to enhance EPIC with security features that limit or prevent the detrimental effects

of malicious nodes forwarding otherwise authorized capability-enabled packets elsewhere in

the network. In the case where the underlying network is secure against wormholes and

similar attacks, EPIC itself is adequate and does not introduce any security vulnerabilities.

However, we propose a modification of EPIC with the assumption that a secure underlying

network is not guaranteed.

Route-dependent capabilities provide excellent security against such attacks, but at a

price - decreased performance and increased overhead. Intuitively, some combination of the

two approaches would be ideal. We propose augmenting EPIC with a security mechanism,

RAC (Route-Adaptive Capabilities), which employs dynamically repaired path-dependent

capabilities. We propose a modification to EPIC - capabilities are limited to only one active

route between a sender and receiver, but as the route changes, the capability is dynamically

reconfigured to support the new route. Intermediate nodes on the route responsible for

forwarding packets, when they detect a route has changed, issue signed capability requests

to the receiver R on behalf of the sender S.

39

3.6.1 Route-Adaptive Capabilities: An Overview

RAC provides for a capability protocol that can adapt to changes in the route with little

or no disruption to the operation of capability-enabled packets. This is accomplished by

combining the efficient verification aspects of EPIC with the security restrictions of full

route dependence. We propose RAC as an extension of EPIC that replaces complete path

independence with dynamic route dependence. In RAC, capabilities are associated with the

route beween the sender and receiver. During the capability request process, intermediate

nodes cache some state information about the process, including the time of request, the

sender, the receiver, and the partial route. When routes break, intermediate nodes issue

signed requests on behalf of the sender using cached route information. The receiver then

issues a capability to the sender using the new route, but with the original expiration

time. A grace period TGP allows for packets to be forwarded during the capability re-

establishment process. The request and renewal process of the RAC protocol minimizes

disruptions to communications even when routes break and also prevents intermediate nodes

from hijacking the renewal process by ensuring the non-permanence of both initial and

repaired capabilities.

When the source receives and uses the repaired capability, the previous capability is

invalidated. By default, RAC only allows for a single flow to be authorized between a

sender and a receiver. When a sender receives a capability that it did not request, it must

follow that a route change has occurred and one or more new nodes not on the original route

have requested a renewal with their own information. If the sender uses this new capability,

intermediate nodes will replace their existing cached information with the new capability,

and subsequently they will only accept and forward packets with the most recently used

capability.

Figures 3.4, 3.5, and 3.6 illustrate graphically the normal operation of the RAC pro-

tocol.

40

Figure 3.4: The sender S sends a capability request to the receiver R by first creating and
sending a signed request packet and forwarding to its next hop X. Before forwarding the
request, X caches the current route RTS,X = {S,X}, the request time, the source and
destination S and R, and the next hop Y . It also sets a flag indicating it has forwarded a
signed request. Node Y does the same, caching its route as RTS,Y = {S,X, Y }. The receiver

R, after receipt of the capability with route RTS,R = {S,X, Y,R}, issues a capability to S
along this route with an expiration time of T1.

Figure 3.5: The sender S sends the first packet on the flow containing the signed BC. Node
X, upon receiving the packet, validates the capability by verifying the receiver signature
and checking the route field for its information. If present, X forwards the packet. Y follows
the same course of action and the packets arrive at R. Intermediate nodes cache the signed
capability BC along with the next hop.

3.6.2 RAC: Protocol Design

In this section, we describe the operation of the RAC capability protocol. Specifically, we

discuss the steps followed by the sender, the receiver, and individual nodes along the route

to generate and repair capabilities. We also discuss the operation of RAC with regards to

capability-enabled packets, before, during, and after a route change.

RAC Capability Request

• S: Compute M1 = (RFC, T0)

• S → R: 〈M1〉K−1
S

+ (RTS)

41

Figure 3.6: Node Y leaves the route, and the route between S and R is re-established along
the route {S,X,Z,R}. The sender S issues a packet containing a normal capability to X.
However, node X sees that Y is no longer the next hop, and thus modifies the packet to
mark it an intermediate request, signs it, and appends the cached capability BC to the node
Z. Node X also starts its grace period timer with a value of TGP . Node Z first verifies that
S possesses a valid capability using the EPIC protocol rules, even though it is not on the
established route, before forwarding the packet and signed capability request to R. Upon
receipt, R issues a capability to S along the route {S,X,Z,R} with the original expiration
time T1.

The original request in this case is very similar between EPIC and RAC. The only

addition is the route field RTS , which is defined by the sender initially containing only the

identifying information of the sender S. To create and maintain the route field RTS,n, we

use a cryptographically secure Bloom filter. Nodes need only be able to add elements (their

own identifying bits) and check for their presence upon receipt [55–57]. The final value of

the route field RTS,n - contains identifying bits for all nodes on the route. Other alternatives

exist to identify the route, such as full source routing (by including identifying information

such as IP addresses for all nodes on the route) or probabilistic node identification as

illustrated in the SIFF approach [11].

RAC Capability Request Forwarding

• N: Compute RTS,n = RTS,n−1 +RTn

• N → R: 〈M1〉K−1
S

+ (RTS,n)

With RAC, intermediate nodes, much like the fully route-dependent protocols, do not

simply forward the packet. A node forwards the message after adding its identifying in-

formation to the existing route field RTS,n−1, resulting in RTS,n. Nodes cache the route

42

field RTS,n for use during future capability renegotiation, eliminating the need to main-

tain a route field for each packet. Nodes also cache the sender and receiver, the time of

the request, and a flag indicating whether the request was generated by the sender or an

intermediate node. This information is necessary to facilitate capability re-establishment

without the participation of the sender.

RAC Capability Response

• R: Compute CHn and CH0

• R: Compute BC = (T0, TCV , IDS , IDR, CH0, RTS,R)

• R → S: E{〈BC〉K−1
R
, CHn}KS

The only difference in capability response between EPIC and RAC is the addition of

the authorized route field RTS,R, used to uniquely derive the capability BC. The respective

public and private reference values CH0 and CHn do not change with the exception that

CHn takes as input the authorized route field RTS,R. To support RAC’s dynamic recovery

and repair, the receiver includes the final established route RTS,R in the response. This

value provides an authoritative basis for comparison for future capability-enabled packets,

allowing for route-dependent forwarding decisions. Figure 3.7 provides an illustration of

what is included in an RAC capability. These definitions of the common factors do not

change between RAC and EPIC. The RAC protocol includes, in addition to the EPIC

capability components, one additional parameter to support route adaptation, and that is

the authorized capability route RTS,R.

RAC Protocol Operation: Authorized Packets & Capability Repair

• S: Compute Capability Hash Values (CHn, CHn−1, ..., CH0)

• S: Compute Initial (First Packet) Capability CAP0 = {BC,CH0, 0}

• S: Compute Individual Capabilities CAPi = {CHi, i}

43

• S → R: Data Packet | CAPi

• Intermediate Node N , first packet of flow (i = 0, RFC = 0):

– N verifies the receiver signature SR and the base capability BC

– N verifies its presence in the route field RTS,R

– N caches base capability BC and next hop and forwards the packet

• Intermediate Node N , subsequent packets (i 6= 0, RFC = 0):

– Verify CHi−1 = fh(CHi). If packet is outdated or a duplicate, drop the packet.

Check that capability has not expired using T0 and TCV . If the route has not

changed, forward the packet.

– If the route has changed (the next hop differs from the cached value), mark the

packet as a request (RFC = 1), sign the packet, and include the cached base

capability BC and the route information RTS,n from the sender to the current

node in the forwarded packet.

∗ N → R: Data Packet | 〈BCS,R | RFC〉K−1
N
| RTS,n

– Verify CHi−1 = fh(CHi). If packet is outdated or a duplicate, drop the packet.

Check that capability has not expired using T0 and TCV .

• Intermediate Node N after route change (i 6= 0, RFC = 1):

– If packet does not contain BC and RTS,n−1 from previous hop, drop the packet.

– If packet signature does not match the identified signing node, drop the packet.

– If packet contains BC and RTS,n−1 from previous hop:

∗ N verifies BC is still a valid capability using SR, verifying CHi−1 = fh(CHi).

N verifies that capability has not expired using T0 and TCV .

∗ N caches the current route RTS,n = {RTS,n−1, RTn}, the request time TR,

the source and destination S and R, the next hop, and the base capability

BC.

44

∗ N starts its grace period timer TGP for this flow and forwards the packet to

the next hop with the current route RTS,n.

• Intermediate Node N , provisional packet (during capability repair):

– (EPIC Verification): Verify CHi−1 = fh(CHi). If packet is outdated or a dupli-

cate, drop the packet. Check that capability has not expired using T0 and TCV .

– N verifies that the grace period is still valid using the current time T0, the repair

time TR, and the grace period TGP such that T0 − TR ≤ TGP .

– If the grace period is still active, N forwards the packet. If it is not, then the

packet is dropped. No packets, request or data, are forwarded after the expiration

of the timer TGP for a given source and destination pair.

• Receiver R after route change (i 6= 0, RFC = 1):

– If R has an existing capability BC0 for S:

∗ If an identical request has been responded to more than the allowed number

of times, drop the packet.

∗ If R has not seen an identical request from S with route RTS,R:

· R: Compute CHn and CH0

· R: Compute BC = (T0, TCV , IDS , IDR, CH0, RTS,R) where TCV is the

original expiration time from BC0 and RTS,R is the current route

· R → S: E{〈BC〉K−1
R
, CHn}KS

· Cache request for S with route RTS,R and time T0

There is one key addition required for RAC to support to support dynamic recovery and

reconfiguration that is otherwise irrelevant for true path-independent protocols - RTS,R, the

overall current route for the capability-enabled packet. This value is initially empty aside

from the source’s information whereas in its final form it represents all nodes on route

between S and R.

45

The operation of RAC slightly differs from that of EPIC. In the case of EPIC, new nodes

on the route would receive the authoritative capability value BC from its one-hop upstream

neighbor. However, in RAC, if a node determines that it is not part of RTS,R, that quantity

would represent authorization for a different route. We define TGP as the grace period for

forwarding packets on new routes based on the configuration-time maximal approximate

expected value for a packet’s round-trip time in the network. Following this, the first node

N that receives a capability-enabled packet containing an authorized route that recognizes

a change in the route (a new next hop) will mark the packet an intermediate request, sign

it, and forward it as provisionally authorized packet. Intermediate nodes only do this for a

time period of TGP (approximately 2 ∗ RTTX) for each sender/receiver pair, which allows

for the source to successfully establish, receive, and use the updated capability.

Intermediate nodes cache the current time, current route, and destination for each inter-

mediate request. This holds whether an intermediate node signs a packet as an intermediate

request or receives a packet previously signed by another node as an intermediate request.

When the time period TGP has expired, then the node will not forward the packet. This can

happen for multiple reasons - the sender is no longer communicating with the destination,

the route was not selected by the sender for use, or transmission delays occurred with the

response packet. Receivers in RAC respond once to each intermediate request only, and will

subsequently wait for a period of TGP before responding to another intermediate request

for the same source and route. Also, receivers will only respond to intermediate requests if

they have previously issued a capability to that source that would otherwise still be active.

An authenticated request (one signed by the original sender), however, will be responded

to immediately regardless of the status of any other requests.

Protocol Maintenance: RAC Capability Renewal

Receivers in RAC can respond to requests generated by intermediate nodes on the route,

but only if they have previously issued a capability to that source that would still be valid

at the time of response generation. As with EPIC, the only maintenance required for

46

RAC capabilities is the periodic renewal either as capabilities approach the end of their

validity period or intermediate capability renegotiation fails. The protocol interaction for

maintenance between senders and receivers is identical to that of the initial negotiation.

Renewal caused by route changes in RAC is transparent within the capability validity

period provided the flow is active, since an intermediate request can only extend the life of

the capability until the end of the originally established route. RAC will only respond to re-

quests generated by an intermediate node provided it has issued a capability to the proposed

source in response to a signed request within that same time period. Intermediate nodes

will only forward unauthorized packets for a limited time period TGP and the destination

will not respond to duplicate requests for the same time period more than a finite number

of times. We note that intermediate nodes may forward multiple requests during the grace

period provided the parameters are not identical to previous requests. Identical requests

can be forwarded a finite number of times to allow for normal channel losses, collisions, and

transmission errors. In all cases, however, the timer does not reset.

3.6.3 RAC Capability Components

BC: Base Capability 1

1 IDS Sender ID 1

1 IDR Receiver ID 1

1 CH0 Initial Capability Hash Value 1

1 T0 Initial Capability Timestamp 1

1 TCV Capability Chain Validity Period 1

1 RTS,R Authorized Capability Route (RAC) 1

Receiver Signature SR
CHi Current Capability Hash Value

Figure 3.7: Components of a RAC Capability

• Authorized Capability Route - RTS,R: For each capability, the source and destination

will operate based on an established (authorized) route. Depending on the routing

47

protocol, there may be multiple capability requests, each with differing routes. When

a node generates a capability request, it adds its own identifying information to the

route field. Each node that forwards the request to the destination subsequently adds

its own information to the route field. When the destination receives the request

and generates a formal capability response, it will include the route of that request

(RTS,R) in the response. This will allow the sender to include the authorized route

with each capability packet.

The route field can be implemented in a variety of ways. A Bloom filter provides

a space-efficient mechanism for constructing route membership, and its supported

operations (adding a member to the set and checking for a given element’s membership

in the set) meet the requirements for RAC’s route field. While Bloom filters allow

for false positives, this depends on the number of elements in the set, and in most

mobile networks the number of nodes (and as such the route length) is sufficiently

low enough that Bloom filters are a workable solution. With shorter routes, however,

even simpler solutions - such as simply appending node address or ID information -

are workable as well. We note that the actual implementation of the route field is

orthogonal to the implementation of the RAC protocol as a whole.

3.6.4 RAC: Security Analysis

In this section, we evaluate the security of the RAC protocol with respect to various attacks.

We use the defined notation from Section 3.4, while the protocol is again evaluated under

the following assumptions:

1. The digital signature scheme and its underlying identity-based cryptosystem are se-

cure.

2. The one-way hash function used in capability generation and verification is secure.

3. A node’s private key is secure, preventing one node from masquerading as another.

4. Senders and receivers are not compromised at the time of capability establishment.

48

As RAC uses the same underlying mechanism as EPIC, the security analysis with regards

to forgery, interception, replay attacks, data modification, and revocation as detailed in

Section 3.5 apply. The structure of the RAC protocol, however, adds additional security

characteristics - specifically, the structure of the route field RT and authentication of the

route information warrants additional consideration.

Attacks on Capability Establishment

We note that as with EPIC, RAC is also susceptible to disruptions in legitimate packet for-

warding. While the solutions proposed for EPIC also apply to RAC, additional complexity

is introduced in that the correctness of a given route, potentially including its order, is im-

portant to the establishment and maintenance of RAC capabilities. The normal operation

of RAC mandates that the route field RT be modified by each node routing the packet, so

it is necessary to prevent malicious modification of this field.

Aggregate signatures, which represent the authentication of a single message or sequence

by multiple independent nodes, can be used to help secure RAC against such attacks, both

during the initial capability request phase and the capability repair phase. Ultimately,

to provide effective security against such attacks, the aggregate signature must prevent

malicious nodes from modifying the route information without detection.

Forward-secure sequential aggregate signatures have been proposed to solve this prob-

lem. Ma proposes a mechanism to allow signatures generated at different times with different

keys on different messages to be combined into a single constant-size signature. Compro-

mised nodes cannot truncate, delete, or modify aggregate signatures and message order is

preserved [58]. Some mechanisms are designed to work exclusively on different messages,

which is directly applicable to RAC [59], while others are required to work on the same

message, which is directly applicable to EPIC [60]. The problem is somewhat well-studied

and aggregate signatures have been proposed to secure routing protocols [61–63]. Some ag-

gregate signature mechanisms are also designed with identity-based cryptography in mind,

making them particularly attractive for RAC [59,62].

49

Bloom Filters

We propose the use of Bloom filters to support a space-efficient implementation of the route

field RT . For RAC, the route field RT is intended to represent the route information for a

given route by storing bits securely corresponding to some subset of nodes in the network.

Cryptographic security is necessary, as malicious nodes should be prevented from modifying

the route information in an attempt to masquerade as one or more additional nodes [55].

With the known property that a Bloom filter with all bits set to one will always return a

positive result when queried, simple threshold approaches (effectively limiting the number

of elements that can be stored) can be used to prevent such manipulation [15].

Other variants of Bloom filters exist and may provide better security for RAC’s intended

purpose. Complement Bloom filters, for example, represent the inverse of traditional Bloom

filters as they provide no false positives but finite false negatives, an acceptable alternative

for a deny-by-default protocol. Yes-No Bloom filters also represent a significant improve-

ment as they substantially reduce false positives by storing both the members of the set

(an ordinary Bloom filter) as well as those elements that result in false positives. This

approach can reduce false positives by nearly an order of magnitude while still maintaining

the computational efficiency of a normal Bloom filter [64]. Ultimately, it is necessary for

RAC to employ a secure variant of the Bloom filter to minimize or eliminate attempted

modification of the route field RT .

Flooding and Remote Packet Injection

The RAC protocol differs from EPIC and RDC in two important ways. First, authorized

packets can trigger capability renewal based on the current and established route. Second,

the first packet in an authorized flow also includes a field containing route information,

so each node can verify that it has participated in capability establishment. Capability

renewal by intermediate nodes determines the difference in the route between the initial

route established and the current route. In general, if the current node is not on the

authorized route, the capability must be renewed along the current route.

50

With RAC, the combination of the use of a single authorized route and the ability of

intermediate nodes to request capability renewal potentially allows a receiver to identify

anomalous behavior. Consider, for example, the case where a valid route RTS,R is active

and authorized. A malicious node on that route re-routes the packet to a remote location

will then either fail to reach the destination (in which case the grace period TGP prevents

significant impacts) or generate a capability response from the destination along the mali-

cious route. A node may assume that its route has been changed and attempt to use the

new capability. However, even if the route has not actually changed, this subsequent packet

will not generate a capability request along the original route it had just abandoned unless

the node responsible for diverting the packet signs a new intermediate request, effectively

incriminating itself. If it does generate a request along the original route, thrashing can be

detected and with high probability we can assume that a remote packet injection attack

is underway. The node can resume operation with the original capability, if available, or

request a new capability altogether. We illustrate such an attack in Figure 3.8.

Figure 3.8: The sender S and the receiver R have established authorized communication on
the route RT = {S,X, Y,R} using capability BC0. Node X then forwards a packet to A
using a wormhole and marks it as a request. A, verifying the capability as accurate, starts
its timer TGP and forwards the packet to B. The process continues until R is reached, at
which point a new capability BC1 is issued along the route RT = {S,X,A,B,C,D,R}.

With RAC, the normal operating nature of a MANET means that capabilities will be

dynamically reestablished based on the tracking of a given packet’s flow. If it deviates

51

from the established route of the current capability, intermediate nodes forward the packet

provisionally and mark it as a new capability request. Based on this knowledge, malicious

nodes could theoretically request capabilities for injected packets, triggering a response

from the destination to the sender. RAC, however, achieves a significant level of protection

against such packet injection attacks, since it only allows for a single active capability

between a source and a destination. There are several factors limiting the scope of such an

attack:

• Duplicate Prevention: Intermediate nodes may, during an attack, forward multiple

requests from previous intermediate nodes. The receiver R, however, will not respond

to duplicate intermediate requests as determined by the source S, the receiver R,

and the proposed route RTS,R more than a finite and determined number of times.

While R cannot necessarily determine the unique nodes comprising a proposed route,

it can determine whether the value RTS,R is a route for which it has already issued a

response. R is also able to determine the signing node N , and duplicate requests are

only retransmitted a finite number of times to accommodate normal network failures.

• Sender-Controlled Use: Senders retain full autonomy over which capabilities they

use. In the event a remote packet injection occurs and an unneeded (malicious)

capability is generated by the receiver, the sender does not have to use it. Consider

the following situation:

– S has a capability BC0 for the receiver R.

– Intermediate node X attempts to launch an injection attack. It must sign a new

capability request for the proposed repaired route as shown in Section 3.6.2.

– The receiver R issues capability BC1 for the new route.

– S receives the new capability BC1. If S uses BC1, it will only be accepted along

the route field RTS,R defined in BC1. As X cannot forge capability values or

force S to use its original capability BC0, it cannot attempt a multipath attack

without signing a request for another repaired route.

52

In this case, the sender will be in possession of two legitimate capabilities, but only one

of them can be used. Intermediate nodes only cache a single active capability value

and as such use of any renewed or repaired capability invalidates previous capabilities.

For each node, including the destination, only a single capability can be active at any

point in time. If a node does not use a malicious capability, its original capability

remains valid, while the new capability will not be used. In Figure 3.8, capability

BC0 is not invalidated until BC1 is used. In this case, the attack is reduced to a route

manipulation attack, which is ultimately an attack on the routing protocol rather

than the capability mechanism. As a failsafe, if the normal operation of the RAC

protocol does not result in a successful repair, a new capability request signed by the

sender S will be forwarded by intermediate nodes and responded to by the receiver

R, so the sender retains ultimate control over the repair process.

• Self-Incrimination: Since intermediate nodes must sign requests when they de-

termine a route has broken, they effectively identify themselves as malicious if they

forward the packet to a remote location. The only way subsequent nodes will forward

either provisional authorized packets or intermediate capability requests is with a pre-

viously received valid signature, which would serve to identify the node that initiated

the wormhole attack. If a node X launches a wormhole attack which causes a legiti-

mate sender to use an alternate route, security is preserved as if a node X forwards

a packet containing the new capability to a subsequent node, it will not be able to

verify the hash value CHi since its cached capability value belongs to a different hash

chain. Similarly, if X tries to re-establish the capability along the original route, it

will identify itself as the likely source of the wormhole attack. It also follows that if S

uses the subsequent capability, it will invalidate the capability established along the

wormhole route.

• Temporal Forwarding Limitation: Both intermediate nodes and destination nodes

do not allow for unlimited requests. An intermediate node will only forward a du-

plicate intermediate request a finite number of times. Similarly, intermediate nodes

53

only forward provisional packets for a limited time TGP . Destinations can limit the

number of route changes they will allow within a given capability validity period and

only respond at fixed intervals or a fixed number of times; for RAC a destination

will not respond to a given intermediate request more than once every TGP seconds.

Intermediate nodes allow for multiple potential route changes during capability re-

establishment, but the timer does not reset following the initial repair request.

3.7 Performance Results

3.7.1 Simulation Methodology

We use simulation models to compare the operation of the EPIC, RAC, and RDC pro-

tocols. We have three main goals for simulation: first, to show that EPIC’s performance

with regards to denial-of-service prevention is at least statistically equivalent to that of

traditional route-dependent capabilities; second, to evaluate the performance and efficiency

impacts of EPIC’s flexible enforcement mechanisms on the network; and third, to evalu-

ate EPIC’s resilience to attacks under a variety of scenarios. For purposes of comparison,

route-dependent capabilities are implemented by including route information in the packet

headers and comparing them with the established route, which is included in the capability.

When a route breaks, the capability is considered broken and a new request must be issued

by the source. We use the methodology of independent experiment replications to obtain

simulation result within a 95% confidence interval and validate our results [65].

3.7.2 Simulation Framework and Scenarios

We use QualNet versions 5.0, 7.1, and 7.3. QualNet is a commercially available network

simulator based on UCLA’s GloMoSim project, a scalable Parsec-based parallel discrete-

event simulator suitable for mobile ad hoc networks [66]. To evaluate the potential security,

performance, and efficiency aspects of EPIC and RAC, we simulate using both the AODV

and OLSR routing protocols and a variety of mobility models and traffic patterns. Details

54

and simulation parameters are listed in Table 3.1.

Table 3.1: Summary of Simulation Scenarios

Parameter Values

Routing Protocols AODV, OLSR
Mobility Models Manhattan, MMTS
MMTS Models City, Rural, Urban

Number of Nodes 50 (Manhattan)
158 (MMTS Rural)

250 (MMTS Urban / City)
Simulation Area 2.25 km2 (Manhattan)

9 km2 (MMTS)
Applications FTP, CBR

Simulation Time 1800 s
Number of Runs 20

Confidence Interval 95%

Routing Protocols

The Ad Hoc On-Demand Distance Vector routing protocol (AODV) is a reactive protocol

that only establishes routes when it needs to support communication between endpoints.

The Optimized Link State routing protocol (OLSR) is a proactive protocol that maintains

optimal routes by establishing and maintaining awareness of the entire network’s topology.

Mobility Models

We use the Manhattan and MMTS mobility models, derived from the Generic Mobility

Simulation Framework (GMSF). These models are described in detail in [67] and [68].

Characteristics of the mobility models are described below.

• Manhattan: This model is designed to simulate vehicle and pedestrian traffic in a

city setting. Nodes move along a restricted grid-like pattern at randomly determined

speeds and either turn at the intersection of horizontal and vertical grid lines (spaced

at 200 meter intervals) or continue straight; decisions regarding movement are not

55

made except at defined intersections. Manhattan mobility simulations are conducted

with 50 nodes in a 1500 m x 1500 m (2.25 km2) area. The intersection distance is a

uniform 200 meters, and node movement speed is between 12 m/s and 14 m/s with

acceleration distributed between {−0.1, 0.1} m/s2. For a given node, the movement

speed is limited by leading nodes. Manhattan models cover 41.2% of the simulation

area and have relatively low node density.

• MMTS (General): MMTS, The Microscopic Multi-Agent Traffic Simulator, is de-

signed to simulate realistic vehicular movement patterns over real-world regional road

maps in Switzerland. Because they are limited to roads, nodes cover at most 9% of the

simulation space, which is 3000 m x 3000 m (9 km2). Following this, maximum node

density is much higher. The distance between nodes is variable, but most frequently

ranges from a uniformly distributed range of 500 meters to 2000 meters. The average

speed of vehicles is about 10.5 m/s, but this is not uniform as speeds are clustered

at or around two peaks: 3 m/s, which represents traffic, and 12 - 17 m/s, which

represents movement at normal speed. As traffic is limited to defined roads, routes

are longer on average.

• MMTS (City): In this model, the road map covers a small portion of the map, but

roads are in close spatial proximity and thus node density is potentially very high.

Simulations are conducted with 250 nodes, so the potential for congestion (clustering)

is also very high. Following this, movement speed is the lowest of the MMTS models.

• MMTS (Urban): In the Urban model, roads are approximately evenly spaced and

cover more of the map than other MMTS models. Movement speed and node density

are both moderate, with the probability of both high movement speed and node

congestion minimized. Simulations are conducted with 250 nodes and this model is

ideal for evaluating performance under balanced conditions.

56

• MMTS (Rural): The Rural model covers a minimal area of the map, and represents

multiple high-speed roads with minimal intersection points. Node density is lowest

and thus the possibility of network connectivity issues is highest. Additional, average

movement speed is maximized. Simulations are conducted with 158 nodes (the maxi-

mum allowable by the GMSF) and represents the most difficult network environment

despite the fact that the risk of congestion is minimal.

Based on the characteristics of our routing protocols (the reactive AODV and the proac-

tive OLSR), we can intuitively expect certain performance levels based on the mobility

model. However, we note that both AODV and OLSR were evaluated during the design

of the GMSF, and the author’s conclusion was that the performance of a given protocol is

highly dependent on the mobility model [67]. The overall characteristics of the models are

given in Table 3.2.

Table 3.2: MMTS Model Characteristics
Node Density Map Coverage Mobility Speed

Manhattan Moderate High Moderate
MMTS City Very High Moderate Low
MMTS Rural Low Very Low High
MMTS Urban Moderate Moderate Moderate

Direction Difference Speed Difference Map Area

Manhattan Moderate Very Low Low
MMTS City Moderate Low High
MMTS Rural High High High
MMTS Urban Low Low High

Node Distance Node Reachability

Manhattan Moderate Very High
MMTS City Low Moderate
MMTS Rural High Low
MMTS Urban Moderate High

57

Applications

We also conduct simulations using both CBR and FTP transport-layer applications. For

CBR, one node acts as the CBR client and one node acts as the CBR server. Two identical

sessions are established to facilitate easier capability establishment and maintenance (two

nodes participate, with each node acting as both client and server). The client sends packets

for a 10 minute interval with a 250 ms inter-packet delay for a total of 2400 packets. This

represents relatively low channel utilization over a long period of time, allowing the effects of

mobility greater significance. For FTP, one node acts as the FTP server and one node acts

as the FTP client. The server sends 1000 packets, each 1000 bytes in length, to the client

continuously until the session is complete. This represents maximal channel utilization over

a potentially long period of time, allowing varying degrees of significance to both channel

contention and mobility.

Metrics

For CBR applications, performance is studied through the end-to-end delay metric. Since

packets are not being transmitted constantly but rather at specific intervals, end-to-end

delay represents a more accurate approximation of performance for typical CBR applications

(such as voice, audio, and video data). We also include the variance in the end-to-end delay,

which is commonly known as jitter. This helps to establish some level of confidence in the

reported end-to-end delay. For FTP, the performance metric is straightforward and is

represented by the throughput. The application transmits data at maximum effort until

the session is closed, and as such the total data and total time are appropriate metrics.

Efficiency for both applications is defined as the ”goodput” percentage of traffic between a

sender and a receiver, measuring the capability protocol-related overhead data against the

actual application data.

EPIC, RAC, and RDC Control Overhead Information & Computational Delays

We define the following packet control information for all of our simulated models.

58

Table 3.3: Capability Request: EPIC (20 Bytes)

Data Field Bit Width

RFC 4
Reserved Control 4

Request Timestamp T0 24
Sender Signature SS 128

Table 3.4: Capability Request: RAC / RDC (36 Bytes)

Data Field Bit Width

RFC 4
Reserved Control 4

Request Timestamp T0 24
(Optional) Sender Signature SS 128

Authorized Route RTS,R 128

Table 3.5: Capability Response: EPIC (96 Bytes)

Data Field Bit Width

RFC 4
Reserved Control 4

Request Timestamp T0 24
Sender ID IDS 32

Receiver ID IDR 32
Capability Chain Validity Period TCV 32

Capability Hash Chain Initial Value CHn 256
Capability Hash Chain Anchor CH0 256

Receiver Signature SR 128

EPIC, RAC and RDC all incur computational delays due to their use of digital signatures

(both generation and verification) as well as hash functions. Receivers and senders make

extensive use of all types of cryptographic functions, while intermediate nodes primarily

need to verify hash functions. With RAC, intermediate nodes do sign requests.

59

Table 3.6: Capability Response: RAC / RDC (112 Bytes)

Data Field Bit Width

RFC 4
Reserved Control 4

Request Timestamp T0 24
Sender ID IDS 32

Receiver ID IDR 32
Capability Chain Validity Period TCV 32

Capability Hash Chain Initial Value CHn 256
Capability Hash Chain Anchor CH0 256

Receiver Signature SR 128
Authorized Route RTS,R 128

Table 3.7: Capability Data Packets: EPIC / RAC / RDC (36 Bytes)

Data Field Bit Width

Flow ID 16
Sequence Number i 16

Current Capability Hash Value CHi 256

It is difficult to assign a computation delay to each specific operation. The expected

computation time is highly dependent on the specific algorithm being used as well as the

underlying hardware being used. In the established literature, results vary widely; signature

operations can range from less than 0.1 ms on modern hardware to greater than 10 ms on

miniaturized sensor hardware [69–71]. The same holds true for hash operations [72]. We

note that while the true numbers are highly dependent on both the specific algorithms and

the underlying hardware, the relative performance effects are unchanged.

3.7.3 Zero-Attack Throughput & Efficiency: AODV

Given the lightweight nature of EPIC, we expect that it will provide the highest potential

performance for normal network operation. This is because of the minimal computation

60

Table 3.8: Computation Overhead: EPIC / RAC / RDC

Operation Computation Time

Hash Function 0.5 ms
Digital Signature Generation 20 ms
Digital Signature Verification 60 ms

involved in verifying capabilities. Similarly, we expect RAC to be less complex than verifying

each step of a route as we see in RDC, but it does have additional overhead due to the

complexity of maintaining active route information. We would expect that the capability

maintenance-related delays would be somewhere between EPIC and RDC, since its incidence

of capability renegotiation nearly approaches that of RDC but the performance impacts are

substantially reduced.

FTP

Figure 3.9 illustrates the FTP performance of all capability protocols with respect to multi-

ple mobility models. Following this, Figure 3.10 illustrates the overhead efficiency for FTP

applications when AODV is used as the routing protocol. The results are mostly straightfor-

ward; EPIC outperforms RAC while both outperform RDC. However, the mobility model

has a much greater impact on efficiency than does the capability model.

We see that more permissive the capability model is, the higher the throughput, an

intuitive result since they result in fewer capability-related disruptions to the network. One

important thing to note is that the difference between the various capability models (EPIC

and RDC) is not significant compared to the difference between mobility models. Also, the

difference between EPIC and RAC is even smaller. While the network density might help

reduce the delay in route re-establishment, these benefits can be offset by the additional

overhead incurred in both sparse (Rural) and dense (City) networks. As the mobility

model leads to higher overhead, especially capability-related overhead, both performance

and efficiency decline. The results show that multiple factors interact to influence both

61

performance and efficiency.

We also evaluate the performance of EPIC against AODV without any modifications,

and we see that for the Manhattan mobility model EPIC incurs a 7.3% penalty to through-

put. While this is an expected result as the capability mechanism necessarily incurs addi-

tional computational and networking overhead, the performance penalty is relatively small.

Figure 3.9: Average AODV / FTP Throughput (kbps)

Figure 3.10: Average AODV / FTP Overhead Efficiency

62

CBR

Figures 3.11 and 3.12 illustrate the CBR performance for each capability model using AODV

as the routing protocol. Unlike the FTP results, CBR performance is far more likely to be

stable as a long-running application. While we see some of the same factors - in particu-

lar, EPIC has the highest performance, due mainly to the reduced incidence of capability

renegotiation - there are some important differences. The mobility model in particular has

a reduced effect compared to the capability verification method, having approximately the

same impact as the capability model. Contrast this with FTP, where the significant vari-

ation comes from the mobility model with relatively little contribution from the capability

model. The variance in the end-to-end delay tracks closely with the reported end-to-end

delay, and ranges from approximately 16.0% of the reported delay for EPIC to 22.7% and

22.6%, respectively, for RDC and RAC.

Figure 3.13 illustrates the overhead efficiency for the CBR application for each capability

model and routing protocol. We see here some variation with respect to the routing protocol.

The capability model has a much more substantial effect than the mobility model. While the

most intuitive result still holds true (the more permissive or efficient a capability model is,

the more the incidence or impact of capability renegotiation decreases, in turn resulting in

lower overhead), it is difficult on the whole to predict what will ultimately be the dominating

factor. However, it is important to see that the degree of control a network member holds

over its mobility model or routing protocol is very low (and potentially zero), where nodes

could potentially negotiate the use of a different capability model. It follows then that the

impact of the capability model is of greater importance than the mobility model and the

routing protocol even if significance is reduced.

The performance and efficiency are, as with FTP, affected by the mobility model in

intuitive ways. Also, as the FTP results show, it is apparent that the effects of the mobility

model cannot be simply quantified or correlated directly to a single factor. Instead, mul-

tiple factors influence the final result. We note also that the base AODV performance for

the Manhattan mobility model is 23.9% higher than EPIC, though in absolute terms the

63

inclusion of the EPIC security mechanisms adds only an additional 0.029 s to the average

end-to-end delay. This again represents a relatively small performance penalty.

Figure 3.11: Average AODV / CBR End-to-End Delay (s)

Figure 3.12: Average AODV / CBR Jitter (s)

3.7.4 Zero-Attack Throughput & Efficiency: OLSR

As with AODV, we expect that EPIC, which requires the least additional communication

from a capability perspective, will offer the highest performance. However, as all protocols

are able to take advantage of the proactive nature of OLSR, we do not expect a significant

64

Figure 3.13: Average AODV / CBR Overhead Efficiency

difference between them. This is because of the minimal differences in capability opera-

tion given the route establishment and maintenance is handled proactively by the routing

protocol - EPIC allows authorized communication as long as a route exists. RAC allows

authorized communication as long as a route exists, and RDC must re-establish a capability

along the route before allowing authorized communication. As before, we also expect that

the performance of the RAC protocol will fall between EPIC and RDC, but given the nature

of OLSR the differences should not be substantial.

FTP

Figure 3.14 illustrates the FTP performance of all capability protocols with respect to

multiple mobility models. Following this, Figure 3.15 illustrates the overhead efficiency

for FTP applications when OLSR is used as the routing protocol. The results are mostly

straightforward; EPIC outperforms RAC while both outperform RDC. The mobility model,

however, has different effects on OLSR than it does on AODV. The MMTS City model, with

its maximum density, likely incurs congestion-related delays due to the very high network

load caused by the routing protocol. Research supports this conclusion, as OLSR has been

shown to scale poorly to larger and denser networks [73,74]. The combination of moderate

congestion and density along with similar node direction makes the MMTS Urban model

65

an ideal performance evaluation.

With OLSR, we cannot evaluate the peripheral statistics as we do with AODV since the

protocol itself proactively maintains routes regardless of whether nodes wish to communi-

cate or not. This means that capability maintenance does not have much of an effect as

it is dependent only the end-to-end delay of the network, which is almost identical among

capability protocols. Also, as OLSR is proactive, the network load from the routing pro-

tocol is substantially higher than from the capability protocol. This dominates capability

protocol-related overhead and ultimately has considerably more impact on performance.

The performance of OLSR significantly exceeds that of AODV. This result is supported

by much of the existing research, which has shown that OLSR outperforms AODV in

terms of both throughput and delay, sometimes by orders of magnitude [74–81]. Simi-

larly, other aspects of the protocols are apparent - AODV, for example, performs poorly

as mobility increases [73,74, 77,82], while OLSR can exhibit performance impacts in dense

networks [73, 74, 83]. We do not necessarily expect a straightforward result in terms of the

performance differences between OLSR and AODV as multiple factors - mobility, routing

protocol, application, and capability protocol - interact to affect performance and efficiency

in different and sometimes conflicting ways.

We also evaluate the OLSR protocol using the Manhattan mobility model without any

security enhancements, and we see again that the base performance of the routing protocol,

as expected, exceeds the performance of EPIC. However, the proactive nature of OLSR

substantially limits the performance effects of EPIC, RAC, and RDC; the inclusion of the

EPIC protocol reduces performance by only 1.1%.

CBR

Figures 3.16 and 3.17 illustrate the CBR performance of each capability protocol and mo-

bility model when OLSR is used as the routing protocol. Similarly, Figure 3.18 illustrates

the overhead efficiency for CBR applications when OLSR is used as the routing protocol.

The results with regards to both delay and jitter show little absolute difference between any

66

Figure 3.14: Average OLSR / FTP Throughput (kbps)

Figure 3.15: Average OLSR / FTP Overhead Efficiency

variable, whether we are referring to the capability protocol or the mobility model. The

absolute value of the jitter is low, and as a percentage of the reported end-to-end delay

the results are similar to AODV, ranging from 13.7% for RDC to 27.2% for EPIC. RAC is

closer to the lower end at 16.7%.

The proactive nature of OLSR contributes to this result as it leads to fairly significant

resilience to different mobility patterns. We note that previous research has established

this as well [75–77, 79, 81, 83]. The mobility model, unlike with FTP, has little effect on

OLSR. The ability of OLSR to maintain routes leads to lower delay as a route is almost

67

always available when requested. We note that in absolute terms the difference between

both mobility models and capability protocols is low.

We note that the base OLSR performance for CBR with the Manhattan mobility model

is 19.6% higher than EPIC. As with FTP, however, the performance impact in absolute

terms is quite small as the inclusion of the EPIC security mechanism adds only an additional

0.009 s to the average end-to-end delay.

Figure 3.16: Average OLSR / CBR End-to-End Delay (s)

Figure 3.17: Average OLSR / CBR Jitter (s)

68

Figure 3.18: Average OLSR / CBR Overhead Efficiency

3.7.5 EPIC and RAC: DoS / DDoS Mitigation

As network capabilities are designed to mitigate DoS attacks in particular, it is necessary to

evaluate their performance under such scenarios. For this simulation, we use the Manhattan

mobility model using the AODV and OLSR routing protocols. We also use both CBR and

FTP as the base applications. For FTP, we use a highly structured session that sends

exactly 1000 items of 1000 bytes in size. For the attack model, we assume that malicious

nodes are only able to flood unmodified capability-enabled messages. For each scenario, we

define the value x as the total number of malicious nodes in the network. This is defined

on the x-axis in each performance figure. In general, if the route is presumed valid, a given

capability is accepted (or, in the case of RAC, a new request issued) once the next value in

the chain is accepted. Thus malicious nodes are limited by the legitimate sending activity

of the source.

For each scenario, we define one node as the primary (legitimate) sender S and one node

as the receiver. The number of malicious nodes can be in the set {0, 1, 2, 4, 8, 16}, and the

location of each malicious node is not fixed but rather dictated by the mobility model. We

assume that a wormhole link exists between the source node (the legitimate sender S) and

each malicious node, and the point of injection is the location of the respective malicious

69

node. The destination for all malicious packets, regardless of origination, is the originally

defined receiver R.

Figures 3.19 and 3.20 illustrate the CBR performance of EPIC under various attack

scenarios (different numbers of malicious nodes). We also compare the results to both RAC

and RDC results. For all models, throughput degrades as the legitimate source contends

with malicious nodes for limited resources. In the case of CBR, both RAC and RDC suffer

little to no effect from malicious activity while EPIC takes a substantial performance hit as

the number of attackers increases. As shown in Figures 3.21 and 3.22, the same is true of

FTP (albeit to a lesser degree). In general, RAC is highly resistant to attacks. EPIC holds

a significant advantage in low-attack networks, but degrades substantially as the number of

attackers increases. RDC is highly resistant to attack, but also has the lowest performance

in low-attack networks. RAC provides a solid balance, as it is highly resistant to attack and

can operate at a consistent level even in attacker-saturated networks. From a zero-attacker

to a 16-attacker network, RAC on average retains 84.3% of its base throughput compared to

only 28.2% for EPIC. In fact, it only takes one attacker conducting packet injection attacks

for RAC to surpass EPIC’s performance.

Figure 3.19: Average AODV / CBR End-to-End Delay (s) - DoS Resistance, Performance
vs. Number of Attackers

Similarly, Figures 3.23, 3.24, 3.25, and 3.26 illustrate the effects of malicious nodes on

70

Figure 3.20: Average OLSR / CBR End-to-End Delay (s) - DoS Resistance, Performance
vs. Number of Attackers

Figure 3.21: Average AODV / FTP Throughput (kbps) - DoS Resistance, Performance vs.
Number of Attackers

efficiency. Again, we see that EPIC’s enhanced security model (RAC) is highly resistant

to attack, retaining 92.0% of the base (low-attack) efficiency compared to 39.4% for EPIC.

There is little substantial difference between applications and routing protocols in terms of

the relationship between efficiency; capability models perform very similarly for all combi-

nations of routing protocols and applications. The results are very similar to performance

in that EPIC performs best in low-attack networks while the more restrictive methods are

more resistant to attack. As expected, RAC is flatter in the sense in that it does not exhibit

71

Figure 3.22: Average OLSR / FTP Throughput (kbps) - DoS Resistance, Performance vs.
Number of Attackers

significant variation with regards to the number of attackers.

Figure 3.23: Average AODV / CBR Overhead Efficiency - DoS Resistance, Efficiency vs.
Number of Attackers

3.8 Summary

In this section, we have presented EPIC, Efficient Path-Independent Capabilities, which

represents a significant improvement in efficiency and performance on the existing unicast

capability methods. We also present an enhanced security version of the mechanism, RAC, a

72

Figure 3.24: Average OLSR / CBR Overhead Efficiency - DoS Resistance, Efficiency vs.
Number of Attackers

Figure 3.25: Average AODV / FTP Overhead Efficiency - DoS Resistance, Efficiency vs.
Number of Attackers

capability mechanism which dynamically reestablishes capabilities along new routes, which

represents an efficient and reasonably well-performing attack-resistant capability mecha-

nism. EPIC is based on two key principles: reverse-disclosure hash chains, which allow two

communicating entities to efficiently maintain secure communications over multiple time

periods on a unique per-packet basis, and identity-based cryptography, which allows us to

avoid the problem of public key exchange by having digital signatures and authentication

methods dependent on a unique identity (such as a network address). These allow for

73

Figure 3.26: Average OLSR / FTP Overhead Efficiency - DoS Resistance, Efficiency vs.
Number of Attackers

the most important aspect of EPIC - universal verification ability. This is precisely what

makes both complete path independence and dynamic reconfiguration possible. Results

indicate a statistically significant increase in performance and a significant reduction in

routing-associated and capability-associated overhead. However, both the performance and

efficiency of EPIC degrade rapidly as malicious nodes conduct authorized flooding attacks,

injecting otherwise authorized packets at random locations in the network. This led us to

develop the enhanced security version of EPIC, which builds on EPIC by utilizing dynamic

capability repair to facilitate transparent maintenance and efficient operation. RAC allows

for changes to the route while streamlining reconfiguration in such a way that allows legiti-

mate traffic while mitigating the effects of malicious traffic while simultaneously remaining

relatively transparent to the nodes involved. Further, we have shown that EPIC is not diffi-

cult to implement and represents a more flexible and efficient implementation of capabilities

as compared to fully route-dependent capability mechanisms.

We have illustrated how EPIC can be used in conjunction with multiple different routing

protocols and have simulated two very different protocols - AODV and OLSR. Simulation

results show that EPIC provides as much as a 27.4% increase in performance and a 33.7%

increase in efficiency over route-dependent capabilities (RDC), while RAC provides as much

74

as an 8.2% increase in performance and a 13.6% increase in efficiency over RDC. When

compared to applications that do not employ any capability mechanisms, the performance

impacts of EPIC and RAC are acceptable - for EPIC, FTP throughput is reduced by an

average of 4.2%, and for RAC, FTP throughput is reduced by an average of 9.6%.

75

Chapter 4: Supporting Deny-by-Default for Multicast Traffic

in MANETs

In this chapter, we propose a method to support deny-by-default communication for mul-

ticast traffic: EPIC-M (Multicast), a method that, like EPIC, combines reverse-disclosure

hash chains, identity-based cryptography, threshold cryptography, and hop-by-hop verifi-

cation to support the establishment and maintenance of effective multicast capabilities.

We evaluate the performance of EPIC-M through simulations, including multiple mobil-

ity models and multicast routing protocols. We also analyze the security of the EPIC-M

protocol.

4.1 Multicast Capabilities: An Overview

Multicast routing protocols employ groups that have an open access policy. Any node can

send to the group by sending to the well-known multicast group address. Similarly, any

node can join the multicast group, entitling them to receive communications addressed to

that group. We focus on the problem of enforcing deny-by-default for multicast traffic by

controlling sending access to the group. While multicast capabilities could be separated

into distinct sending and receiving capabilities, we do not consider receiving capabilities to

be a problem from a denial-of-service perspective. Also, restricting which nodes are able to

receive can be accomplished using the standard approach of encrypting transmitted data

with a group key that is only known to legitimate members of the group.

Most multicast routing protocols use group leaders or controllers to manage membership

and group key distribution. We take the approach that a capability group controller (CGC),

potentially separate from the multicast group controller, will provide the separate function

of issuing and authorizing sending capabilities for the group. This only increases complexity

76

minimally as multicast group leaders are configured when the group is set up, usually offline,

so all controllers that handle network management functions will be designated at the same

time. We assume that all nodes that participate in multicast routing will forward packets

that contain the necessary authorization from a controller. Since each node obtains its

own sending capability independently, a necessary disadvantage of this approach is that

multicast router nodes will have to maintain some state for each sender in a group.

To provide resilience to communication failures caused by node mobility or member-

ship changes, group capability controllers can be configured to have multiple independent

nodes that act cooperatively to issue capabilities. We adapt an approach based on k, n

threshold signatures to provide resilience to such problems. Previous research has shown

that threshold cryptography can aid in securing MANET communication against individual

node failures [42,43,47]. In EPIC-M, senders create their own capabilities, but they are not

valid until k partial signatures are obtained from the individual group controllers.

EPIC lends itself naturally to the problem of deny-by-default for multicast traffic for

three main reasons. First, capabilities are not tied to routes, but instead to a logical

multicast group. Not only will routes change frequently but in the case of a multicast, there

are multiple paths that each packet will traverse. Second, the reverse hash chain mechanism

is efficient for verifying a capability. Finally, the capability protocol is designed to operate

independently from the routing protocol, which allows for both tree-based (e.g. MAODV)

and mesh-based (e.g. ODMRP) multicast routing protocols to be used without requiring

any changes to the capability protocol.

4.2 EPIC-M: Multicast Capabilities

4.2.1 Initial Bootstrapping

At network launch time, an offline authority outside of the network is assumed to be re-

sponsible for both the designation of the threshold (capability group controller) nodes and

the initial creation of the multicast groups.

77

Following boot strapping, we can assume the following state for a given multicast group:

1. A {k, n} threshold cryptography mechanism, acting as a capability group controller

(CGC) for issuing capabilities, has been initialized among the network’s N total nodes

such that k < n < N.

2. Multicast groups have been created and initialized, with group leaders identified and

configured.

3. Nodes in the network are made aware of the identities of the capability group controller

nodes {CGC1, CGC2, ..., CGCn}, of which k partial signatures must be obtained for

proper capability operations.

4.2.2 Multicast Capability Group Controllers

Using a threshold-based approach with multiple distributed authorities is not only desirable

but effectively necessary in MANETs. Unlike unicast EPIC, in multicast environments, the

necessity of either distributed or centralized authorities mandates the effective security,

both localized and remote, of the nodes issuing capabilities. Being distributed among

multiple entities, high availability and fault tolerance are two inherent aspects of threshold

cryptography mechanisms.

We can identify the requirements of the distributed capability group controller as follows.

1. A {k, n} threshold cryptography mechanism exists and can generate a known signature

for some message or quantity M provided at least k of the n participating nodes have

contributed a valid share.

2. A given node S constructs a non-permanent proposed capability CS according to

acceptable global parameters and forwards this to a well-known subset of capability-

issuing nodes.

3. Authority nodes {k0, k1, ..., kn} validate the proposed capability CS , identifying the

sender and appropriate parameters, and issue a partial signature to the sender S.

78

4. When at least k valid partial signatures are received, S can use the reconstructed

quantity as an authorized capability BC to send capability-enabled messages to the

given multicast group using the universally verifiable signature attached to the capa-

bility.

5. A reconstructed capability BC must be verifiable through the use of a well-known

public key corresponding to the issuing authority.

4.2.3 EPIC-M Protocol Design

EPIC-M Notation

We use the following notation to describe the EPIC-M protocol:

79

R,S R and S are communicating principals: S, the source,

wishes to communicate with the destination R

N An intermediate node of the route

IDX The identifier for a given node X

K−1
X Node X’s private key

KX Node X’s public key, derivable from X’s identifier IDX

〈M〉K−1
X

Field or message M signed with node X’s private key

〈M〉CGCi,k
−1
X

Field or message M signed with node CGCi,k’s partial key share

E{M}KX
Field or message M encrypted with node X’s public key

fh One-way hash function used for generating a hash chain

CS The sender-generated proposed capability

BC The signed base capability, constructed from at least k partial signatures

CAPi Capability with sequence number i

T0 Initial capability request time

TCV Validity period for a given capability chain

Gi The identifier for a multicast group i

CGCi The {k, n} threshold CGC for a given multicast group i

CGCi,k The ID for a given node k as a member of CGCi

CGCi,k
S A partial key share for CGCi,k

The capability request process is described as follows:

EPIC-M Capability Request

• S: Compute CHn and CH0

• S: Compute capability CS = (T0, TCV , IDS , Gi, CH0)

• S: Compute M1 = (CS , RFC)

80

• S → CGCi,k: 〈M1〉K−1
S

When a node S wishes to obtain a capability, it creates a proposed capability, initially

unsigned, for use in future sending to a multicast group Gi. Since the sender is responsible

for generating the hash chain, only the anchor CH0 is included, but the chain validity

period TCV must also be used to achieve effective rate limiting. The proposed unsigned

capability indicates the establishment time, the validity period, the sender’s ID, the hash

chain anchor, and the multicast group identifier. While unsigned, it is only valid as part of

a request. Encrypting each message with the public keys of the n CGC nodes ensures that

other nodes cannot attempt to manipulate the process or generate phony partial signatures.

However, since k unique partial key shares are required to reconstruct a valid signed

capability, at least k unicast requests must be sent. Depending on the network’s parameters

and effective packet delivery ratio, some buffer can be included and m requests can be sent

such that k ≤ m ≤ n. This represents a tradeoff between an increase in overhead and an

increase in performance, noting that a more conservative time-based minimum approach

can be adopted such that only the necessary number of requests are sent.

Intermediate nodes in the network do not need to perform any validation prior to for-

warding requests. It follows that some network attacks could be carried out by attempting

to flood or redirect request packets, but this is not unique to EPIC or EPIC-M, either unicast

or multicast, and as such denial-of-capability (DoC) prevention methods are a requirement

for EPIC-M.

EPIC-M Capability Response

• CGCi,k: Check capability CS for validity (TCV , Gi, IDs)

• CGCi,k: Compute response M2 = 〈M1〉CGCi,k
−1
X

• CGCi,k → S: 〈M2〉KS

• S reaches the threshold k and creates a signed capability BC:

81

– S: k ∗ 〈CS〉CGCi,k
−1
X

: CS → BC

When the n member nodes of the addressed capability group controller receive an au-

thenticated capability request, they first check to ensure the proposed capability CS is valid.

This includes verifying the sender’s signature, the target group, and the proposed validity

period. If the criteria are met, a CGC node CGCi,k will generate a partial signature of the

proposed capability and return it to the sender encrypted with the sender’s public key KS .

The returned partial signatures are encrypted with the sender’s public key, ensuring only

the original sender will be able to collect partial signatures and reconstruct a valid capabil-

ity. When the sender S has collected at least k partial signatures from the capability group

controller, the proposed capability CS can be used to construct an authorized capability

BC. With both unicast and multicast, EPIC-M conducts the capability request-response

operation in a point-to-point fashion.

EPIC-M Protocol Operation: Authorized Packets

• S: Compute Individual Capabilities CAPi = {BC,CHi, i}

• S → Gi: Data Packet | CAPi

• Ni: No prior knowledge of BC

– The sender includes the signed capability BC with the first packet of the flow

(i = 0). Otherwise, the previous node on the route, having detected a route

change (a different next hop), will include the signed BC with the data packet.

Verify authenticity of BC with well-known group public key KG and check that it

has not expired. Verify that CH0 = f ih(CHi) using CH0 included in BC. Check

that target multicast group Gi in BC matches current group address. Cache BC

and CHi along with the next hop.

• Ni: Cached BC

82

– Verify CHi−1 = fh(CHi). Check that capability has not expired and well-known

public key and group parameters have not changed. If packet is outdated or a

duplicate, drop the packet. If the next hop has changed, include cached BC in

the data packet.

Multicast capability verification expands upon unicast capability verification slightly.

With the knowledge that multicast group capability group controllers and well-known public

keys associated with a group can change, it becomes necessary to ensure that a capability

is still valid beyond using parameters beyond simply the validity period. For our purposes,

we assume that public key redistribution or threshold re-keying is beyond the scope of this

dissertation.

Nodes must maintain state information to effectively process capabilities. For a given

node n, it must maintain state for a maximum number of (a ∗ b) separate flows, where a

denotes the number of multicast groups that the node routes messages for and b represents

the number of authorized senders in that multicast group that route traffic through n.

EPIC-M Multicast Capability Maintenance

As capabilities in EPIC-M are issued by an entity other than the receiver, member nodes

responsible for routing multicast messages must be aware of and cache well-known keys.

Note that nodes do not need to be aware of the identities of the capability group controller

nodes unless they want to send data to a multicast group.

With respect to EPIC-M, the multicast group reorganization that occurs at a protocol

level following a group leader change does not immediately invalidate existing capabilities

issued by that authority. Other changes - tree pruning and membership change, for example

- also do not necessarily affect existing capabilities. The increased cryptographic demands

placed on both sender nodes and CGC nodes by the multicast model necessitate an approach

that minimizes renegotiation.

EPIC-M capabilities are not renewed automatically regardless of the method of expira-

tion. Multicast maintenance messages, when received, will indicate implicitly to authorized

83

senders that a new capability request is required and must be issued to the updated group

leader. This does not require any additional traffic or control messages (no explicit error

control notifications are required). However, there are exceptions, such as the case where a

CGC group is considered compromised. This means that capabilities signed by that {k, n}

threshold group are no longer valid. Other maintenance requirements are identical to uni-

cast EPIC in that capabilities that are otherwise exhausted by repeated use or have reached

temporal expiration must be renewed by the standard capability request process.

4.3 Multicast Security: EPIC-M

In this section, we evaluate the security of the EPIC-M protocol with respect to various

attacks. We use the defined notation from Section 4.2.3, while the protocol is evaluated

under the following assumptions:

1. The digital signature scheme and its underlying identity-based cryptosystem are se-

cure.

2. The one-way hash function used in capability generation and verification is secure.

3. A node’s private key is secure, preventing one node from masquerading as another.

4. Senders and receivers are not compromised at the time of capability establishment.

As EPIC-M uses the same underlying mechanism as EPIC and RAC, the security analy-

sis with regards to forgery, interception, replay attacks, and data modification as detailed in

Section 3.5 apply. Similarly, the structure of the EPIC-M protocol does not alter the secu-

rity characteristics with regards to protecting capability establishment. With EPIC-M, as

with both EPIC and RAC, malicious nodes would need to be able to both successfully forge

a capability hash value and guess the bits for each subsequent hop in the route. However,

as we consider the hash function to be secure, this does not add any security benefit.

84

4.3.1 Threshold Cryptography and Capability Group Controllers

With EPIC-M, we use {k, n} threshold cryptography to request and establish capabilities.

Threshold cryptography allows for both increased availability by increasing the number of

nodes available to sign capabilities (n) as well as increased security by requiring a greater

number of nodes (k) to sign a proposed capability. The choice of both k and n in this case

represent tradeoffs between security and availability. As k increases, the security of the

mechanism increases; similarly, as n increases, the availability of the mechanism increases.

The use of threshold cryptography mechanisms as capability group controllers allows for

capability establishment to continue even when individual nodes are unavailable (providing

resilience) or compromised (providing security).

The selection of k and n is ultimately dependent on the security requirements of the

network. Maximizing reliability and availability means maximizing the difference between

k and n, either by decreasing the value of k or increasing the value of n, while tolerating

compromise of the group controller nodes means increasing the value of n. In general, for

a {k, n} threshold cryptographic mechanism, the following hold true:

• (n− k) node failures are tolerated.

• (k − 1) node compromises are tolerated.

4.3.2 Flooding Attacks / Packet Injection

Unicast EPIC capabilities are potentially subject to remote injection attacks whereby a

malicious node, close in spatial proximity to an established and authorized route carrying

capability-enabled packets, could forward those packets to a remote location along a high-

speed covert link with the goal of flooding the network with authorized packets. Without

packets being tied to a specific route, they would be considered authorized and forwarded to

the specified destination. RAC introduced dynamic route reconfiguration and authorization,

effectively limiting the scope of such an attack by requiring that a forwarding node either

be on the current active route or have recently forwarded a request to be included on the

85

authorized route. This allows for some route changes due to mobility, node membership, or

other factors without requiring a wait time for capability renegotiation while simultaneously

mitigating the effects of deliberate remote injection.

In EPIC-M, capability-related forwarding decisions are not made until the packet is

routed and otherwise destined for sending on an outgoing interface. Remote injection of

an authorized packet has different effects depending on the multicast routing protocol, but

the attack does not succeed. Nodes who obtain capabilities can attempt to inject packets

at remote locations, but two factors prevent this:

• Packets injected in the existing tree or mesh will not be forwarded unless the node

recognizes the receiver and would otherwise forward the packet according to the rules

of the multicast routing protocol.

• Packets injected will be rejected if they are duplicates. Nodes in the multicast tree or

mesh structure will only forward packets that meet the requirements of the multicast

routing structure, so no duplicate packets will be routed (a packet, malicious or other-

wise, will only be routed and forwarded if it is otherwise part of the multicast routing

structure.)

In both tree-based multicast and mesh-based multicast, certain nodes are identified as

forwarding nodes. For tree-based, this includes all non-leaf nodes, while for mesh it simply

includes a subset of the group nodes such that all group members are reachable. In both

cases, the routing protocol prevents packet injection attacks. A node not responsible for

forwarding will not forward a packet regardless of capability status. A node that is part of

a forwarding group (either tree or mesh) will forward that packet, but only once, so either

the injected packet or the original packet will be rejected as a duplicate and discarded.

Without the ability to modify messages, malicious nodes cannot force legitimate multicast

forwarding nodes to route any packets they otherwise would not. However, in both cases,

the only time a packet is actually forwarded is when the first node proximal to the remote

injection site is otherwise a participant in the multicast group. This effectively nullifies

86

the utility of this attack, as a node in the multicast group would be receiving that packet

regardless.

4.4 Performance Results

4.4.1 Test Parameters & Metrics

We evaluate EPIC-M with respect to three key factors. They are as follows:

1. The average capability establishment time based on a {k, n} threshold mechanism

2. The performance of the multicast application

3. The associated capability overhead of the multicast application

To analyze these properties, we conduct a series of operations while varying the routing

protocol mobility model, node movement speed, and transport-layer application. The details

are listed in Table 4.1.

Table 4.1: Multicast Simulation Parameters
Parameter Values

Unicast Routing Protocol AODV
Multicast Routing Protocols MAODV, OLSR, PIM-SM

Mobility Models Manhattan, Random Waypoint
Number of Nodes 50
Simulation Area 2.25 km2

Node Movement Speed {12, 14} m/s : Manhattan
{10, 40} m/s : Random Waypoint

{k, n} Threshold Members 10
Multicast Application MCBR

Simulation Time 1800 s
Number of Runs 20

This comparison lets us quantify the effectiveness of EPIC-M as an efficient capability

mechanism by establishing a baseline for performance and efficiency with no capability

87

operations (an unsecured network) and then comparing performance and efficiency with

capability establishment and verification mechanisms in place.

4.4.2 Mobility Models

The Manhattan mobility model is designed to simulate vehicle and pedestrian traffic in

a city setting. Nodes move along a restricted grid-like pattern at randomly determined

speeds with a fixed acceleration and either turn only at the intersection of horizontal and

vertical grid lines or continue straight. Manhattan mobility models have the advantage that

movement patterns do not intersect in impractical or counterintuitive ways.

The random waypoint (RWP) model is perhaps the most basic mobility model. Nodes

start at a given location on the map randomly determined according to a uniform distri-

bution and then simply move to a randomly determined location at a given speed. A key

advantage of the RWP model is that the speed is variable between upper and lower bounds,

allowing us to simulate both low-speed and high-speed simultaneous traffic. The disadvan-

tage is that the movement pattern is not necessarily realistic as the roads traveled by the

nodes are dynamically generated and may intersect or overlap in unnatural ways. Also, in

contrast to Manhattan, a node’s given position p0 at some time t0 does not necessarily have

significant influence on its subsequent position p1 at time t1 beyond establishing an upper

bound on the possible locations based on the maximum movement speed. However, despite

these limitations, its simplicity and availability make it an attractive option for simulation.

4.4.3 Multicast Routing Protocols

The main difference in the simulations aside from the presence or absence of the capability

mechanisms is with the multicast routing protocol itself. Previous research has shown that

the choice of multicast protocol can affect performance substantially with respect to end-

to-end delay, packet delivery ratio, and throughput.

1. MAODV: The multicast version of AODV, MAODV is a tree-based on-demand mul-

ticast routing protocol. A self-organizing protocol, MAODV creates bidirectional

88

multicast routing trees with a designated leader for each group. Trees are maintained

as long as group members remain reachable; disconnected trees can form separate

independent multicast trees. When connectivity is reestablished, the original tree can

be restored. Each group in an MAODV multicast network is maintained separately,

providing a guarantee that the most current routing information available is used.

2. ODMRP: The On-Demand Multicast Routing Protocol is a mesh-based multicast

routing protocol. This creates multicast meshes instead of trees, potentially asym-

metric, and traffic from a given source to a given receiver is not guaranteed to take

the same route (nor is the reverse traffic). To reduce overhead, ODMRP utilizes

forwarding groups within a multicast group, so only certain nodes are designated to

propagate multicast network traffic via localized broadcast.

3. PIM-SM: Protocol Independent Multicast - Sparse Mode is a tree-based multicsat

routing protocol. Unlike MAODV, trees are unidirectional. It is called protocol

independent because it does not have any dependence on any particular underlying

unicast routing protocol. PIM-SM is considered more scalable as it builds trees from

a given rendezvous point based on explicit membership. In contrast, dense multicast

methods generally flood messages and prune areas of the network with no receivers.

EPIC-M Control Overhead Information

We define the following packet control information for all of our EPIC-M simulated models.

To evaluate the performance of EPIC-M, we use the same computation delays as EPIC.

4.4.4 Threshold Capability Establishment

With the use of threshold cryptography to establish multicast capabilities, we expect several

tradeoffs to occur:

1. The larger the difference between k and n, the more reliable capability establishment

will be.

89

Table 4.2: Multicast Capability Request: EPIC-M (64 Bytes)

Data Field Bit Width

RFC 4
Control 4

Request Timestamp T0 24
Sender ID IDS 32

Multicast Group ID IDG 32
Capability Validity Period TCV 32

Capability Hash Chain Anchor CH0 256
Sender Signature SS 128

Table 4.3: Multicast Capability Response: EPIC-M (64 Bytes)

Data Field Bit Width

RFC 4
Control 4

Sender ID IDS 32
Multicast Group ID IDG 32

Capability Validity Period TCV 32
Capability Hash Chain Anchor CH0 256

Sender Signature SS 128
Capability Group Controller i Partial Signature Si

CGC 128

Table 4.4: Multicast Capability Data Packets: EPIC-M (40 Bytes)

Data Field Bit Width

Flow ID 16
Sequence Number 16

Multicast Group ID IDG 32
Current Capability Hash Value CHi 256

2. For a given value of k, as the value of n increases, capability establishment becomes

more reliable, though not necessarily less time-consuming.

90

Table 4.5: Computation Overhead: EPIC-M

Operation Computation Time

Hash Function 0.5 ms
Digital Signature Generation 20 ms
Digital Signature Verification 60 ms

3. For a given value of n, as the value of k decreases, capability establishment becomes

both more reliable and less time-consuming.

These are intuitive results considering that in MANETs, node mobility and the unre-

liable nature of network communication means that reaching any given subset of nodes is

not guaranteed.

Simulation results show that as expected, there is no statistically significant difference

between the routing protocols or mobility models. This is because the movement range

and node speed is within a close enough range that differences do not reach the level of

statistical significance. It is interesting to note that in all cases, ODMRP does trend towards

slightly lower capability establishment times, especially at higher thresholds. This is not

necessarily an intuitive result as capability establishment is based on the unicast routing

protocol, AODV, which is constant across each multicast protocol. However, ODMRP is a

more efficient protocol than both MAODV and PIM, so we ascribe the advantages to the

reduced multicast overhead.

The distribution of establishment times is exponential rather than linear. This is at-

tributed to the fact that all threshold authority members are contacted at once, not se-

quentially, and it is increasingly likely that one or more nodes are temporarily unreachable,

the route to that node is not stable, or some other complicating factor exists. This affects

the selection of both k and n in practice. The average capability establishment times are

shown visually in Figures 4.1, 4.2, 4.3, and 4.4.

The rate of increase rises sharply after k reaches 5, and we can see the tradeoff between

increased security (requiring a greater threshold be reached) and decreased performance

91

as capability establishment times increase substantially. We choose a value of k = 3 in

our simulations, though capability establishment is not necessarily done on-demand but

rather some arbitrary time prior to multicast communication. Thus, since these times are

not necessarily reflected in the actual capability-enabled multicast performance, we present

them here with the caveat that these delays are required prior to authorized multicast

communication. However, as the CBR sessions are long-running (10 minutes) the capability

establishment delay is unlikely to have any noticeable effect on performance.

Figure 4.1: k = {x, 10} Threshold Capability Establishment Times: Manhattan

Figure 4.2: k = {x, 10} Threshold Capability Establishment Times: RWP

92

Figure 4.3: k = {x, 10} Threshold Capability Establishment Times: Overall Average by
Protocol

Figure 4.4: k = {x, 10} Threshold Capability Establishment Times: Overall Average by
Mobility Model

4.4.5 MCBR Performance & Efficiency

We evaluate the performance of EPIC-M using the multicast MCBR application, which

sends fixed-rate to multiple group subscribers. In our simulations, ten group members join

solely as receivers, and one joins as the primary sender. MCBR is a suitable approximation

for practical multicast applications, including real-time or near-real-time compressed video,

audio, and data that might be sent in actual multicast environments. Group membership

93

is defined prior to simulation, but both multicast group operations (control messages) and

maintenance multicast capabilities both occur during the actual simulation.

Figures 4.5 and 4.6 illustrate the average multicast CBR throughput at each of the

ten receiver nodes. As expected, networks that do not require capability maintenance and

verification provide slightly higher performance. However, due to the separate nature of

the capability establishment (completely independent of multicast operations), the average

actual application-level performance penalty is only 3.5% for Manhattan and 4.5% for RWP.

Results show that all of the routing protocols perform well relative to their base performance.

For Manhattan, MAODV and ODMRP are the highest-performing while PIM is significantly

lower; this is consistent with the established performance of the routing protocols. For RWP,

however, the generally lower end-to-end delay associated with PIM-SM leads to increased

performance with the higher movement speeds and less predictable movement patterns.

Figure 4.5: Multicast Performance (MCBR Receiver Throughput): Manhattan

Figures 4.7 and 4.8 illustrate the efficiency of each scenario, defined as the difference

in overhead and control packets between the base scenario (no capability-enabled traffic)

and EPIC-M. Results show that the efficiency penalty averages only 1.9% for Manhat-

tan and 2.1% for RWP, indicating that EPIC-M is a lightweight and efficient method for

capability-enabled communication in multicast networks. MAODV and PIM both incur

94

Figure 4.6: Multicast Performance (MCBR Receiver Throughput): Random Waypoint

the most overhead overall as well as the greatest penalty when expanding to capability-

enabled traffic, both for Manhattan and RWP scenarios. Thus, we see that the potential

performance benefits of MAODV are offset somewhat by increased overhead. The primary

source of control overhead associated with EPIC-M is from new nodes in both tree and

mesh architectures requesting existing capability information from neighbors; we expect

that this would scale as mobility increases (and as such the rate of turnover in the multicast

forwarding architecture increases).

Figure 4.7: Multicast Efficiency (EPIC-M Overhead): Manhattan

95

Figure 4.8: Multicast Efficiency (EPIC-M Overhead): Random Waypoint

4.5 Summary

In this section, we have extended EPIC (Efficient Path-Independent Capabilities) to multi-

cast environments. We have presented EPIC-M (Multicast), which uses both identity-based

and threshold cryptography to provide secure capability generation and verification in multi-

cast networks. EPIC-M accomplishes this by decoupling operation of the multicast protocol

from the operation of the capability protocol. This allows for substantial flexibility in dif-

ferentiating between send and receive capabilities as well as allowing for management of

multiple multicast groups independently. EPIC-M provides the ability for any node in the

network to verify a multicast capability; the only prerequisite is that each node be aware

of the authority nodes responsible for capability issuance and management.

Simulation results have shown that for a {k, n} threshold mechanism, with n set at 10

(20% of the available nodes in the networks), capability establishment time grows slowly

from approximately 1 ≤ k ≤ 5, with capability establishment times less than 5s. We also

show that impacts on performance and efficiency are relatively minimal with respect to no

capability mechanism, with performance decreasing by an average of 4.0% and efficiency

decreasing by an average of 2.0%.

96

Chapter 5: Future Directions and Conclusions

5.1 Summary

In this dissertation, we have presented a contribution to the field of mobile ad hoc net-

work security in the form of three network security mechanisms. Two are unicast security

mechanisms. The first is EPIC (Efficient Path-Independent Capabilities), which represents

an improvement in efficiency and performance over previous route-dependent existing uni-

cast capability methods. The second mechanism is an enhanced security version of the

mechanism, RAC (Route-Adaptive Capabilities), a capability mechanism which dynami-

cally reestablishes capabilities along new routes. This represents an efficient and reasonably

well-performing attack-resistant capability mechanism ideal for use in cases where mali-

cious nodes are present or the underlying network in potentially unsecured. EPIC and

RAC mechanisms combine the key principles of reverse-disclosure hash chains, which al-

low two communicating entities to efficiently maintain secure communications over multiple

time periods on a unique per-packet basis, and identity-based cryptography, which allows

digital signatures and authentication methods to depend on a node’s unique identity rather

than a shared public key. Simulation results for both EPIC and RAC indicate a statisti-

cally significant increase in performance and a significant reduction in routing-associated

and capability-associated overhead. Security analysis and simulation also show that both

EPIC and RAC mechanisms provide excellent resistance to DoS and DDoS attacks in net-

works relatively dominated by malicious nodes, providing a quality-of-service level that is

highly resistant to even substantial network-layer and application-layer malicious activity.

The third contribution is the multicast security mechanism, EPIC-M (Multicast), wh

ich provides a unique method that utilizes both identity-based and threshold cryptogra-

phy to provide secure network capability generation and verification in multicast networks.

97

EPIC-M accomplishes this by fully decoupling operation of the multicast protocol from

the operation of the capability protocol. EPIC-M provides the ability for any node in the

network to verify a multicast capability. As with EPIC, EPIC-M operates efficiently in

well-behaved networks, incurring only a minor overhead penalty with respect to unsecured

network operations. EPIC-M is also resistant to typical attacks carried out in multicast

networks.

5.2 Future Work

5.2.1 EPIC and RAC: Unicast Capabilities

With results being encouraging to this point, future work will be focused on three primary

areas. The first will be the exploration of using hop counts to make forwarding decisions,

potentially allowing for different routes provided the route length is within a given distance

of the original (established) capability route. The second will be to evaluate the possibility

of dynamic adaptation, potentially leveraging anomaly detection and intrusion detection

methods to change the network’s forwarding restrictions when attacks are detected. This

would ideally let the network use EPIC in networks where the level of malicious activity is

low while switching to a more restrictive EPIC mechanism, either the aforementioned hop

count-limited method or RAC, when the level of malicious activity increases. The third will

be the implementation, deployment, and evaluation of EPIC, RAC, and EPIC-M in real-

world situations, including complex attack scenarios (such as subsets of colluding nodes).

As a general goal, we plan to adopt aspects of EPIC, RAC, and EPIC-M into a high-level

deny-by-default MANET architecture suitable for most mobile networks.

5.2.2 EPIC-M: Multicast Capabilities

Future work includes the simulation of attackers in multicast networks, the dynamic main-

tenance of multicast capabilities during normal operations, and finally the real-world im-

plementation and deployment of EPIC-M. The first point is important as capabilities are

98

designed to mitigate or prevent attackers from impacting the network. The second point is

important as well as we have already shown that capability establishment is not necessarily

trivial from a temporal perspective and the impact on performance of dynamic capability

maintenance is nontrivial. We can study these effects on a new-node basis (a node joins

an active group, wishing to send immediately, but must first establish a capability), an

existing-node basis (a node possessing an active capability must renew it because it has

expired or otherwise invalid), or a group-wide basis (the threshold authority membership

for a particular group has changed, so all capabilities must be renewed).

99

Bibliography

100

Bibliography

[1] D. Djenouri, L. Khelladi, and A. Badache, “A Survey of Security Issues in Mobile Ad
Hoc and Sensor Networks,” IEEE Journal of Communications Surveys, vol. 7, no. 4,
Q4 2005.

[2] B. Wu, J. Chen, J. Wu, and M. Cardei, “A survey of attacks and countermeasures
in mobile ad hoc networks,” in Wireless Network Security. Springer US, 2007, pp.
103–135.

[3] B. Zhu, Z. Wan, M. Kankanhalli, F. Bao, and R. Deng, “Anonymous Secure Routing
in Mobile Ad-hoc Networks,” in Proceedings of the 29th Annual IEEE International
Conference on Local Computer Networks, November 2004.

[4] P. Papadimitratos and Z. Haas, “Secure Routing for Mobile Ad Hoc Networks,” in Pro-
ceedings of the 2002 SCS Communication Networks and Distributed Systems Modeling
and Simulation Conference, January 2002.

[5] R. Stoleru, H. Wu, and H. Chenji, “Secure Neighbor Discovery in Mobile Ad Hoc
Networks,” in Proceedings of the 8th IEEE International Conference on Mobile Ad-
Hoc and Sensor Systems, October 2011.

[6] S. Zhu, S. Xu, S. Setia, and S. Jajodia, “Establishing Pairwise Keys for Secure Com-
munication in Ad Hoc Networks,” in Proceedings of the 11th IEEE International Con-
ference on Network Protocols, November 2003.

[7] ——, “LHAP: A Lightweight Hop-by-Hop Authentication Protocol for Ad-Hoc Net-
works,” in Proceedings of the 23rd International Conference on Distributed Computing
Systems, 2003.

[8] S. Zhu, S. Setia, and S. Jajodia, “LEAP+: Efficient Security Mechanisms for Large-
Scale Distributed Sensor Networks,” ACM Transactions on Sensor Networks, vol. 2,
no. 4, November 2006.

[9] H. Ballani, Y. Chawathe, S. Ratnasamy, T. Roscoe, and S. Shenker, “Off by Default!”
in Proceedings of the 4th Workshop on Hot Topics in Networks, November 2005.

[10] T. Anderson, T. Roscoe, and D. Wetherall, “Preventing Internet Denial-of-Service
with Capabilities,” in Proceedings of the 2nd Workshop on Hot Topics in Networks,
November 2003.

[11] A. Yaar, A. Perrig, and D. Song, “SIFF: A Stateless Internet Flow Filter to Mitigate
DDoS Flooding Attacks,” in Proceedings of the 2004 IEEE Symposium on Security and
Privacy, May 2004.

101

[12] A. Stavrou and A. Keromytis, “Countering DoS Attacks with Stateless Multipath Over-
lays,” in Proceedings of the 12th ACM Conference on Computer and Communications
Security, 2005.

[13] K. Argyraki and D. Cheriton, “Scalable Network-Layer Defense Against Internet
Bandwidth-Flooding Attacks,” IEEE/ACM Transactions on Networks, vol. 17, no. 4,
August 2009.

[14] X. Yang, D. Wetherall, and T. Anderson, “A DoS-Limiting Network Architecture,” in
Proceedings of the 11th ACM Special Interest Group on Data Communications Con-
ference, August 2005.

[15] T. Wolf and K. Vasudevan, “A High-Performance Capabilities-Based Network Proto-
col,” in Proceedings of the 5th IEEE Workshop on Secure Network Protocols, October
2009.

[16] B. Parno, A. Perrig, and D. Andersen, “SNAPP: Stateless Network-Authenticated Path
Pinning,” in Proceedings of the 2008 ACM Symposium on Information, Computer and
Communications Security, March 2008, pp. 168–178.

[17] M. Alicherry, A. Keromytis, and A. Stavrou, “Deny-by-Default Distributed Security
Policy Enforcement,” in Proceedings of the 5th International ICST Conference on Se-
curity and Privacy in Communication Networks, September 2009.

[18] X. Liu, X. Yang, and Y. Xia, “NetFence: Preventing Internet Denial-of-Service with
Capabilities,” in Proceedings of the 2010 ACM Conference of the Special Interest Group
on Data Communication, September 2010.

[19] A. Snoeren, C. Partridge, L. Sanchez, C. Jones, F. Tchakountio, B. Schwartz, S. Kent,
and W. Strayer, “Single-Packet IP Traceback,” IEEE/ACM Transactions on Network-
ing, vol. 10, no. 6, December 2002.

[20] J. Naous, M. Walfish, A. Nicolosi, D. Mazieres, M. Miller, and A. Seehra, “Verifying
and Enforcing Network Paths with ICING,” in Proceedings of the 7th Conference on
Emerging Networking Experiments and Technologies, December 2011.

[21] T. Kim, C. Basescu, L. Jia, S. Lee, Y. Hu, and A. Perrig, “Lightweight Source Au-
thentication and Path Validation,” in Proceedings of the 2014 Conference of the ACM
Special Interest Group on Data Communication, August 2014.

[22] A. Perrig, R. Canetti, J. Tygar, and D. Song, “The TESLA Broadcast Authentication
Protocol,” RSA CryptoBytes, 2002.

[23] A. Perrig, R. Canetti, D. Song, and J. Tygar, “Efficient and Secure Source Authenti-
cation for Multicast,” in Proceedings of the Network and Distributed System Security
Symposium, February 2001.

[24] S. Rafaeli and D. Hutchison, “A Survey of Key Management for Secure Group Com-
munication,” ACM Computing Surveys, September 2003.

[25] C. Wong, M. Gouda, and S. Lam, “Secure Group Communications using Key Graphs,”
IEEE/ACM Transactions on Networking, February 2000.

102

[26] T. Kaya, G. Lin, G. Noubir, and A. Yilmaz, “Secure Multicast Groups on Ad Hoc
Networks,” in Proceedings of the 1st ACM Workshop on Security of Ad Hoc and Sensor
Networks, October 2003.

[27] D. SuganyaDevi and G. Padmavathi, “Secure Multicast Key Distribution for Mobile Ad
Hoc Networks,” International Journal of Computer Science and Information Security,
Februrary 2010.

[28] H. Chu, L. Qiao, K. Nahrstedt, H. Wang, and R. Jain, “A Secure Multicast Proto-
col with Copyright Protection,” ACM SIGCOMM Computer Communications Review,
vol. 32, no. 2, April 2002.

[29] R. Curtmola and C. Nita-Rotaru, “BSMR: Byzantine-Resilient Secure Multicast Rout-
ing in Multihop Wireless Networks,” IEEE Transactions on Mobile Computing, April
2009.

[30] C. Shields and J. Garcia-Luna-Aceves, “KHIP - A Scalable Protocol for Secure Mul-
ticast Routing,” ACM SIGCOMM Computer Communications Review, vol. 29, no. 4,
August 1999.

[31] S. Roy, V. Addada, S. Setia, and S. Jajodia, “Securing MAODV: Attacks and Coun-
termeasures,” in 2005 Second Annual IEEE Communications Society Conference on
Sensor and Ad Hoc Communications and Networks, September 2005.

[32] R. Shyamala and S. Valli, “Securing Route Discovery in MAODV for Wireless Sensor
Networks,” Ubiquitous Computing and Communication, 2009.

[33] F. He, K. Hao, and H. Ma, “S-MAODV: A Trust Key Computing Based Secure Mul-
ticast Ad-Hoc On Demand Vector Routing Protocol,” in Proceedings of the 2010 3rd
International Conference on Computer Science and Information Technology, July 2010.

[34] P. Judge and M. Ammar, “GOTHIC: A Group Access Control Architecture for Secure
Multicast and Anycast,” in Proceedings of the 21st Annual Joint Conference of the
IEEE Computer and Communications Societies, June 2002.

[35] T. Bartczak and P. Zwierzykowski, “Performance Evaluation of Source-Specific Multi-
cast Routing Protocols for IP Networks,” in Proceedings of the 2012 8th International
Symposium on Communication Systems and Networks Digital Signal Processing, July
2012, pp. 1–6.

[36] P. Judge and M. Ammar, “Security Issues and Solutions in Multicast Content Distri-
bution: A Survey,” IEEE Network, vol. 17, no. 1, January 2003.

[37] M. Alicherry and A. Keromytis, “Securing MANET Multicast using DIPLOMA,” in
Proceedings of the 5th International Conference on Advances in Information and Com-
puter Security, November 2010.

[38] B. Parno, D. Wendlandt, E. Shi, A. Perrig, B. Maggs, and Y. Hu, “Portcullis: Pro-
tecting Connection Setup from Denial-of-Capability Attacks,” in Proceedings of the
2007 ACM Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications, October 2007.

103

[39] K. Argyraki and D. Cheriton, “Network Capabilities: The Good, the Bad, and the
Ugly,” in Proceedings of the 4th Workshop on Hot Topics in Networks, November
2005.

[40] R. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital Signatures
and Public Key Cryptosystems,” Communications of the ACM, vol. 21, no. 2, February
1978.

[41] L. Zhou and Z. J. Haas, “Securing Ad Hoc Networks,” IEEE Network, vol. 13, no. 6,
pp. 24–30, November 1999.

[42] J. Li, D. Wei, and H. Kou, “Identity-Based and Threshold Key Management in Mobile
Ad Hoc Networks,” in 2006 International Conference on Wireless Communications,
Networking and Mobile Computing, September 2006.

[43] H. Deng, A. Mukherjee, and D. Agrawal, “Threshold and Identity-Based Key Manage-
ment and Authentication for Wireless Ad Hoc Networks,” in Proceedings of the 2004
International Conference on Information Technology: Coding and Computing, April
2004.

[44] S. Yi and R. Kravets, “MOCA: Mobile Certificate Authority for Wireless Ad Hoc
Networks,” University of Illinois, Tech. Rep., December 2004.

[45] J.Kong, Z. Petros, H. Luo, S. Lu, and L. Zhang, “Providing Robust and Ubiquitous Se-
curity Support for Mobile Ad-Hoc Networks,” in Proceedings of the Ninth International
Conference on Network Protocols, November 2001.

[46] H. Luo, J. Kong, P. Zerfos, S. Lu, and L. Zhang, “URSA: Ubiquitous and Robust
Access Control in Mobile Ad-Hoc Networks,” IEEE/ACM Transactions on Networking,
vol. 12, no. 6, December 2004.

[47] N. Saxena, G. Tsudik, and J. Yi, “Threshold Cryptography in P2P and MANETs:
The Case of Access Control,” Computer Networks, vol. 51, no. 12, August 2007.

[48] M. Alicherry, A. Keromytis, and A. Stavrou, “Evaluating a Collaborative Defense
Architecture for MANETs,” in Proceedings of the IEEE Workshop on Collaborative
Security Technologies, December 2009.

[49] M. Alicherry and A. Keromytis, “DIPLOMA: Distributed Policy Enforcement Archi-
tecture for MANETs,” in Proceedings of the 4th International Conference on Network
and System Security, September 2010.

[50] J. Baek, J. Newmarch, R. Safavi-Naini, and W. Susilo, “A Survey of Identity-Based
Cryptography,” in Proceedings of the 2004 Australian Unix Users Group Annual Con-
ference, September 2004.

[51] P. Michiardi and R. Molva, “IDHC: ID-Based Hash Chains for Broadcast Authentica-
tion in Wireless Networks,” Institut Eurecom, Tech. Rep., July 2004.

[52] Y. Hu, A. Perrig, and D. Johnson, “Packet Leashes: A Defense against Wormhole
Attacks in Wireless Networks,” in Proceedings of the 22nd Annual Joint Conference of
the IEEE Computer and Communications Societies, April 2003.

104

[53] T. Hayajneh, P. Krishnamurthy, D. Tipper, and T. Kim, “Detecting Malicious Packet
Dropping in the Presence of Collisions and Channel Errors in Wireless Ad Hoc Net-
works,” in Proceedings of the 2009 IEEE International Conference on Communications,
June 2009, pp. 1–6.

[54] M. Just, E. Kranakis, and T. Wan, “Resisting Malicious Packet Dropping in Wireless
Ad Hoc Networks,” in Proceedings of the Second International Conference on Ad-Hoc,
Mobile, and Wireless Networks, October 2003.

[55] R. Nojima and Y. Kadobayashi, “Cryptographically Secure Bloom Filters,” Transac-
tions on Data Privacy, vol. 2, no. 2, August 2009.

[56] E. Chung, J. Joy, and M. Gerla, “DiscoverFriends: Secure Social Network Communi-
cation in Mobile Ad Hoc Networks,” in Proceedings of the 2015 International Wireless
Communications and Mobile Computing Conference, August 2015.

[57] A. Broder and M. Mitzenmacher, “Network Applications of Bloom Filters: A Survey,”
in Internet Mathematics, October 2002.

[58] D. Ma, “Practical Forward Secure Sequential Aggregate Signatures,” in Proceedings of
the 2008 ACM Symposium on Information, Computer and Communications Security,
March 2008.

[59] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and Verifiably Encrypted
Signatures from Bilinear Maps,” in Proceedings of the 22nd International Conference
on Theory and Applications of Cryptographic Techniques, May 2003.

[60] S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, and B. Waters, “Sequential Aggregate
Signatures and Multisignatures without Random Oracles,” in Proceedings of the 24th
Annual International Conference on The Theory and Applications of Cryptographic
Techniques, May 2006.

[61] M. Zhao, S. Smith, and D. Nicol, “Aggregated Path Authentication for Efficient BGP
Security,” in Proceedings of the 12th ACM Conference on Computer and Communica-
tions Security, November 2005.

[62] S. Chakrabarti, S. Chandrasekhar, M. Singhal, and K. Calvert, “Authenticating DSR
using a Novel Multisignature Scheme based on Cubic LFSR Sequences,” in Proceed-
ings of the 4th European Conference on Security and Privacy in Ad-Hoc and Sensor
Networks, July 2007.

[63] R. Bhaskhar, J. Herranz, and F. Laguillaumie, “Efficient Authentication for Reactive
Routing Protocols,” in Proceedings of the 20th International Conference on Advanced
Information Networking and Applications, April 2006.

[64] L. Carrea, A. Vernitski, and M. Reed, “Yes-No Bloom Filter: A Way of Representing
Sets with fewer False Positives,” Computing Research Repository, March 2016.

[65] R. Jain, The Art of Computer Systems Performance Analysis - Techniques for Exper-
imental Design, Measurement, Simulation, and Modeling. Wiley, 1991.

105

[66] X. Zeng, R. Bagrodia, and M. Gerla, “GloMoSim: A Library for Parallel Simulation of
Large-Scale Wireless Networks,” in Proceedings of the 12th Workshop on Parallel and
Distributed Simulation, May 1998.

[67] P. Sommer, “Design and Analysis of Realistic Mobility Models for Wireless Mesh Net-
works,” Master’s thesis, ETH Zurich, 2007.

[68] R. Baumann, F. Legendre, and P. Sommer, “Generic Mobility Simulation Framework
(GMSF),” in Proceedings of the 1st ACM SIGMOBILE Workshop on Mobility models,
May 2008.

[69] G. Ateniese, G. Bianchi, A. Capossele, and C. Petrioli, “Low-Cost Standard Signatures
in Wireless Sensor Networks: A Case for Reviving Pre-computation Techniques,” in
Proceedings of the 20th Annual Network and Distributed System Security Symposium,
February 2013.

[70] H. Wang and Q. Li, “Efficient Implementation of Public Key Cryptosystems on Mote
Sensors,” in Proceedings of the 8th International Conference on Information and Com-
munications Security, December 2006, pp. 519–528.

[71] A. Ali, “Comparison and Evaluation of Digital Signature Schemes employed in NDN
Network,” International Journal of Embedded Systems and Applications, vol. 5, no. 2,
June 2015.

[72] S. Phoha, T. L. Porta, and C. Griffin, Sensor Network Operations. Wiley-IEEE Press,
2006.

[73] A. Huhtonen, “Comparing AODV and OLSR Routing Protocols,” Helsinki Institute of
Technology, Tech. Rep., 2004.

[74] H. Paul and P. Sarkar, “A Study and Comparison of OLSR, AODV, and ZRP Routing
Protocols in Ad Hoc Networks,” International Journal of Research in Engineering and
Technology, vol. 2, no. 8, August 2013.

[75] S. Mohapatraa and P.Kanungob, “Performance Analysis of AODV, DSR, OLSR and
DSDV Routing Protocols using NS2 Simulator,” in Proceedings of the 2011 Interna-
tional Conference on Communication Technology and System Design, December 2011.

[76] A. Aneiba and M. Melad, “Performance Evaluation of AODV, DSR, OLSR, and GRP
MANET Routing Protocols using OPNET,” International Journal of Future Computer
and Communication, vol. 5, no. 1, February 2016.

[77] C. Mbarushimana and A. Shahrabi, “Comparative Study of Reactive and Proactive
Routing Protocols Performance in Mobile Ad Hoc Networks,” in Proceedings of the
21st International Conference on Advanced Information Networking and Applications
Workshops, May 2007.

[78] S. Ali and A. Ali, “Performance Analysis of AODV, DSR and OLSR in MANET,”
Master’s thesis, Blekinge Institute of Technology, 2009.

106

[79] J. Singh and R. Mahajan, “Performance Analysis of AODV and OLSR using OPNET,”
International Journal of Computer Trends and Technology, vol. 5, no. 3, November
2013.

[80] K. Kaur, S. Kaur, and V. Singh, “Throughput Analysis of Proactive and Reactive
MANET Routing Protocols,” International Journal of Emerging Research in Manage-
ment and Technology, vol. 3, no. 3, March 2014.

[81] P. Bai and M. Sundararajan, “Performance Efficiency of OLSR and AODV protocols
in MANETs,” Indian Journal of Science and Technology,, vol. 8, no. 4, July 2015.

[82] T. Kumar, “Performance Evaluation of AODV and OLSR under Mobility,” Master’s
thesis, Rutgers University, 2009.

[83] P. Kuppusamy, K. Thirunavukkarasu, and B. Kalaavathi, “A Study and Comparison
of OLSR, AODV and TORA Routing Protocols in Ad Hoc Networks,” in Proceedings
of the 2011 3rd International Conference on Electronics Computer Technology, April
2011.

107

Curriculum Vitae

Eric Swankoski was born in 1981 in Allentown, Pennsylvania. He attended high school
in his hometown of Northampton, Pennsylvania, prior to attending Pennsylvania State
University from 1999 to 2004 where he obtained the Bachelor of Science degree in Computer
Engineering (2002) and the Master of Science degree in Computer Science and Engineering
(2004) with a thesis focused on encryption and security in reconfigurable hardware. After
graduation, he moved to Virginia in 2004 to pursue research and engineering opportunities,
first at the U.S. Naval Research Laboratory and later at General Dynamics Information
Technology. He enrolled at George Mason University in 2006 to pursue the Ph.D. degree
in Computer Science under the advice of Dr. Sanjeev Setia. His research interests include
location-aware computing, automation, evidence-based heuristics and computation, and
information assurance and security.

108

