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GLOBAL PATTERNS OF CHANGES IN THE GENE EXPRESSION ASSOСIATED 

WITH GENESIS OF CANCER 

 

Ganiraju Manyam, PhD 

 

George Mason University, 2009 

 

Dissertation Director: Dr. Ancha Baranova 

 

 

 

Cancer arises from a stepwise accumulation of genetic changes through expansion of the 

malignant cell clones in the population of pre-malignant cells undergoing the Darwinian 

selection process. In other words, cancer is an outcome of continuous and random 

acquisition of the changes in the genomes of individual cells. These modifications 

gradually and progressively change the phenotype of the normal cell making it more 

malignant through a loss of an overall stability of genome. To gain the comprehension of 

the mechanisms underlying tumor development, a number of high-throughput expression 

studies have been performed. The objective of the current study is to use publicly 

available datasets in order to analyze the most general features of the malignant cell, thus, 

investigating molecular phenomena common for all tumor cells, with no regard to the 

characteristics related to tumor’s tissue of origin. Thus, we analyzed and compared the 

transcript diversity patterns in tumor and normal cells, studied an expression of the genes 

located adjacent to the telomeres and provided an evidence for the hypothesis that tumor 



 

state behaves as stable “attractor” state. An intermediate regulatory framework 

hypothesis implying a set of local ‘vantage points’ genes that control the transcription of 

all other genes in a semi-democratic fashion has been endorsed. 
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A SUMMARY 

 

 

 

The central idea of this dissertation is to explore gene expression patterns in the cancer 

cells having in mind a systems biology perspective on this disease. In this study we 

attempted to uncover the most general features of the malignant cell, thus, investigating 

molecular phenomena common for all tumor cells, with no regard to the tissue-specific 

characteristics of individual tumors. To perform large-scale data analysis, we have 

developed a number of novel bioinformatics techniques and as well employed some 

algorithms previously developed for other purposes and published elsewhere. The results 

obtained in this study enhance a general understanding of cancer as an expression system 

comprising of the components dynamically interacting with each other. The results 

reported in this dissertation and novel tools for in silico analysis of the cancer cell 

provide novel avenues for the functional genomics and systems biology of cancer and 

may be of help for large-scale computational modeling of cancer.  

 

The first chapter provides general information on cancer, the molecular events causing 

this pathology as well as an introduction to human gene expression and its diversity. This 

summarization helps to place cancer in the perspective of gene expression both for the 

biologists and bioinformatic researchers. A review of bioinformatics studies of cancer is 

aimed to introduce the readers to the in silico analysis of this disorder. An overview of 



 

xiv 

the high-throughput experimental platforms, particularly, microarrays, associated 

methods of the gene expression analysis, an utility of these methods for the cancer 

transcriptome studies is accompanied by a special emphasis on the meta-analysis of 

expression data. Finally, the systems biology perspective of carcinogenesis is outlined, 

stressing the importance of inter-disciplinar nature of these studies allowing 

comprehension of the malignant cell at the systems biology level. 

 

The second chapter describes the analysis of the cancer expression system in the 

perspective of attractor states. First, the concept of the cell as a dynamic system and the 

concept of attractor states are reviewed. The modeling strategy for the distance based 

statistical approach is described in details. The data produced as a result of the distance 

analysis of the two-point and the multi-point datasets are presented in two different 

sections. Finally, the results of the principal component analysis (PCA) are described. 

These results are shedding more light on the attractor behavior of cancer. 

 

The third chapter explores the bioinformatics methods developed to analyze 

transcriptional abundances. We reviewed the UniGene database system that provides 

information on the clusters of ESTs obtained by sequencing of cDNA libraries prepared 

form various human tumors and tissues. The adaptation of the Shannon’ statistics for 

estimation of the diversity to the gene expression systems is detailed in the Methods 

section. The classification of human tissues and tumor types as well as quantitative 

estimation of unique and common gene clusters in the normal and cancer tissues are 



 

xv 

described in two separate sections. Diversity estimations for the various human tissues 

and the lists of the potential tumor biomarkers and biomarkers of normal tissue 

functioning (anti-cancer biomarkers) are given. Finally, we present the results of the 

functional analysis of the protein-coding subset of the tumor biomarkers and anti-cancer 

biomarkers. 

 

The last chapter reviews the role of telomeres in cancer development and the previous 

studies on the telomere position effect as well as the methodology we employed to define 

subtelomeric and non-telomeric region of the human chromosomes. The statistical 

techniques allowing comparison of the expression levels for the genes located in sub-

telomeric region to that in other regions of the human genome are discussed and results 

presented. An exploratory approach allowing estimation of the optimal length of the sub-

telomeric regions is presented. Finally, we have used the distance analysis technique 

previously discussed in the second chapter to compare functional properties of the 

expression patterns of human genes located in these two regions. 

 

Finally, an appendix with Supplementary information containing the data associated with 

the chapters two, three and four was put together. Of particular interest, this appendix 

contains a description of a novel publicly available tool, KEGG Pathway Painter. This 

tool was specifically developed to provide automated summarization of the functional 

information pertinent to the genes comprising “top hit” lists routinely obtained in large-

scale transcriptome studies.  
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1. Introduction 

 

 

 

Cancer and its genesis 

Cancer can be attributed to as many as 25% of deaths in the United States, making it the 

second most common cause of death (ACS 2009). Cancer arises from a stepwise 

accumulation of genetic changes through clonal expansion events in the population of 

pre-malignant cells undergoing the Darwinian selection process (Weinberg 2007). In a 

genetics perspective, it is a micro-evolutionary phenomenon resulting in the cooperative 

malfunction of a number of human genes enhancing the selfish survival and metastasis of 

cells. Each individual tumor is an outcome of continuously acquisition of the random 

mutations in the genomes of individual cells, a process supported by a natural selection.  

 

Carcinogenesis is complex process initiated in a single cell or a group of cells, 

progressively leading to the disruption of the normal tissue architecture. The subset of 

cells tolerates deleterious mutations, accelerates their proliferation and invades the 

surrounding tissue followed by metastasis to the distant organs. This uncontrolled growth 

of cellular population is often due to the damage of the molecular circuitry responsible 

for programmed cell death or apoptosis. The cause of carcinogenesis is unknown. There 

are two common theories that explain the process. The somatic mutation theory states 
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that DNA mutations that occur in the genes regulating cell cycle and proliferation of a 

single somatic cell cause its transformation into the malignant one through the disruption 

of the otherwise quiescence state (Varmus 2006). The tissue organization field theory 

suggests that proliferation is the default state of the cell and that carcinogenesis is a 

problem of tissue restructuring and organization  (Sonnenschein and Soto 2008). To the 

most part, a combined understanding provided by these theories enables one to 

comprehend the causation for the genesis of cancer. 

 
In a combined view, cancer is produced as the result of a Darwinian evolution of cells 

located in the microenvironment within the particular tissue of multicellular organism 

(Stratton, Campbell et al. 2009). The progression of cancer leads to an increase of the 

overall mutation rates due to the changes in certain genes that serve as caretakers of the 

genome. Cumulative load of the mutations pushes cell to proliferate faster than normal by 

whatever mean possible, direct or indirect (Strauss 1998). Usually, the hypermutability is 

observed at early stage of the tumor development, often in the premalignant cell before it 

successful transforms into the malignant one. Gene expression level changes observed in 

tumors are caused by a combination of genetic and epigenetic events (Gronbaek, Hother 

et al. 2007). Mutated genes tend to express ectopically, in the tissues where they are 

normally silenced.   

Genetic and epigenetic events causing cancer 

The genetic events causing cancerogenesis include point mutations and deletions or 

insertions in small as well as large DNA segments. The rearrangements of the genome 
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and increase/decrease of the gene/chromosome copy number are also quite common 

events in this process. Additionally, somatic mutations in mitochondrial genomes were 

also reported in many tumor types, although the precise role of these alterations in cancer 

progression is not well comprehended (Chatterjee, Mambo et al. 2006). Mutations can 

also happen due to disruption of the gene by insertion of the completely exogenous DNA, 

for example, some tumorigenic viruses, including HPV, EBV, HBV, HHV8 which can 

also possess viral oncogenes (Talbot and Crawford 2004).  Of all these mutations 

described above, a small portion can be fixed in the cellular lineage by the process of 

natural selection. The mutational rates for these different kinds of genetic alterations 

vary. Generally, these rates tend to increase in response to the exposure to exogenous 

mutagens or clastogens, for example, tobacco smoke or X-ray. Mutation rates are also 

increased in subjects with certain inherited diseases associated with increased cancer risk, 

for example, xeroderma pigmentosum, Fanconi anemia or ataxia-telangiectasia (Kennedy 

and D'Andrea 2006; Stratton, Campbell et al. 2009). The increased rate of mutation 

would yield increased DNA sequence diversity, providing the selection with the raw 

material to choose from and support the drive for increased proliferation, invasion and 

cancer.  

 

Mutations found in tumors often damage the key regulatory genes controlling cell cycle, 

proliferation, apoptosis, genomic stability and other biological processes or functions, 

which normally prevent the cancer. The key genes in this context can be subdivided into 
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two categories: cancer causing genes (oncogenes) and the tumor suppressor genes (often 

abbreviated as TSGs).  

 

Oncogenes code for proteins that positively regulate cell proliferation and/or negatively 

affect apoptosis. Usually, these genes are activated by point mutation or fusion with other 

gene or juxtaposition to enhancer element that drive their expression to higher level 

(Konopka, Watanabe et al. 1985; Tsujimoto, Gorham et al. 1985). The cellular proto-

oncogenes may acquire genetic mutation or increase their copy number (become 

amplified) and, thus, transform into oncogenes (Croce 2008). Oncogenes are identified by 

their tendency to increase the tumor growth rate and their ability to transform the cell 

morphologically. The protein products of oncogenes include transcription factors, 

chromatin remodelers, signal transducers, apoptosis suppressors, growth factors and their 

receptors. 

 

As opposed to oncogenes, tumor supressors are capable of the suppression of oncological 

transformation by negative regulation of the genes in the pathways related to 

oncogenesis, for example, cell cycle (Kopnin 2000) or positive regulation of apoptosis. 

Unlike oncogenes, tumor suppressor genes require mutations in both of their alleles in the 

diploid genome as they act recessively. The mutation patterns of TSGs range from single 

base substitutions to whole gene deletions, generally tending to abolish the functioning of 

the protein product of tumor suppressor gene. 
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In the biological knowledge bases summarizing information of the genes involved in 

malignization of human cells, proven tumor suppressors are relatively rare (10%) as 

compared to the proven oncogenes (90%) (Stratton, Campbell et al. 2009). The 

mutational events promoting the tumor growth may either upregulate oncogenes or 

downregulate the tumor suppressor genes. The overall increase in the transcription rates 

were noted during cancer progression which might bias in favor of the outnumbered 

oncogenes and push the cell through malignization threshold. 

 

In their natural evolution, the cancer cells gradually and progressively change their 

phenotype toward most malignant as result of the accumulation of the mutations in the 

oncogenes and the tumor suppressor genes (Barrett, Oshimura et al. 1986), the 

rearrangements of chromosomes (Radman, Jeggo et al. 1982) and the perturbation of the 

gene expression levels (Nicolson 1991). Many genes and molecular pathways involved in 

the underlying processes are well studied (Vogelstein and Kinzler 2004), but the complex 

spatiotemporal patterns of interactions between the involved molecules contribute to the 

difficulties of the comprehension of the malignant cell system (Hornberg, Bruggeman et 

al. 2006). On top of the genetic modifications, epigenetic events also play a vital role in 

the initiation and progression of a tumor.  

 

Epigenetic alterations comprise mitotically and meiotically heritable changes in gene 

expression that are not caused by changes in the primary DNA sequence. These changes 

are increasingly being recognized for their roles in carcinogenesis (Gronbaek, Hother et 
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al. 2007). Darwinian selection can act upon the phenotypic effects that are generated by 

epigenetic changes for cancer evolution, analogous to selection of mutations in the case 

of genetic alterations. Methylation is the most common epigenetic event, which often 

leads to gene silencing through subsequent histone deacetylation and chromatin 

condensation (Worm and Guldberg 2002). Hypermethylation at the promoters of tumor 

suppressors is a distinctive feature seen in many tumors, which can happen very early in 

the tumor progression. Hypermethylation is known to mediate an imbalance in many 

important signaling pathways (Baylin, Esteller et al. 2001; Gronbaek, Hother et al. 2007). 

CpG islands are the hot spots for methylation, with 50-70% of the cytosines in these sites 

are being methylated in human tissues (Ehrlich, Gama-Sosa et al. 1982; Esteller 2006).  

These cytosines often undergo spontaneous transition to thymines by deamination 

(Rideout, Coetzee et al. 1990). If these transitions are not corrected, they become either 

somatic or germline point mutations.  

 

The change in the DNA methylation landscape of a cancer cell usually occurs in the 

context of other epigenetic changes. DNA methylation attracts methyl-CpG binding 

proteins and DNA methyltransferases. In turn, these proteins associate with histone 

deacetylases and histone methyltransferases, two types of enzymes playing a key role in 

chromatin remodeling (An 2007). Some well known oncogenes, for example, 

PML/RARα fusion, an archetypal chimeric oncoprotein, were shown to bring complexes 

of histone deacetylases (HDACs), histone methyltransferases (HMTs), and DNA methyl 

transferases (DNMTs) to target genes (Hormaeche and Licht 2007). 
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Epigenetic gene silencing has always been envisaged as a local event, silencing genes one 

by one. However, recent data indicate that large regions of chromosomes can be 

coordinately suppressed by a process termed as long range epigenetic silencing (LRES) 

(Frigola, Song et al. 2006; Stransky, Vallot et al. 2006; Hitchins, Lin et al. 2007). LRES 

can span megabases of DNA. It involves formation of a broad heterochromatin regions 

accompanied by hypermethylation in the contiguous clusters of CpG islands. It is not 

clear if LRES is initiated by one critical gene target, then spreads to cloak innocent 

bystanders, analogous to large chromosome deletions, or if coordinated silencing of 

multiple genes occur (Clark 2007). 

 

It is important to note that unlike the genetic alterations, gene silencing by epigenetic 

modifications is potentially reversible. Treatment by agents that inhibit cytosine 

methylation and histone deacetylation can initiate chromatin decondensation, 

demethylation and re-establishment of gene transcription of the silenced tumor 

suppressor genes that, in turn, might help to restore normal phenotype. On the other hand, 

it is likely that application of said therapeutics will provoke further deregulation of cancer 

cell transcriptome, and, possibly, further malignization. 

 

Interestingly, both genetic and epigenetic changes can be seen as either the cause for the 

malignization or as consequences of the tumor progression. Despite tremendous efforts to 

connect gene expression profiles in tumor cells to particular milestones of the tumor 

progression (Ellis 2003; Lee and Thorgeirsson 2004; Liu 2004; Wang 2005; Driouch, 
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Landemaine et al. 2007; Henrickson, Hartmann et al. 2007), the exact mechanism of the 

tumorigenesis remains unclear.  

Diversity of human gene expression 

Tumors arising from different organ/tissue systems of the tumor body are often 

considered as different diseases due to observed differences in their cell phenotypes and 

particular prognoses. However, the difference of one type of the tumor from another type 

of the tumor might be explained by the underlying differences in the tissues of their 

respective origins. Each of the normal human tissues has a distinct gene expression 

pattern, with an exception of the constitutively expressing housekeeping genes shared 

between all the tissues (Butte, Dzau et al. 2001). Recent studies shown that even the 

housekeeping
 
genes are not necessarily expressed at the same level across

 
all tissues; 

rather, each tissue seems to have a specific expression
 
profile of housekeeping genes. 

Interestingly, housekeeping genes are less compact and are evolutionary older than 

tissue-specific genes, and they evolve more slowly in terms of both coding and core 

promoter sequences (Zhang and Li 2004; Zhu, He et al. 2008). Housekeeping genes 

primarily use CpG-dependent core promoters, whereas the majority of tissue-specific 

genes possess neither CpG-islands nor TATA-boxes in their core promoters (Zhu, He et 

al. 2008).  

 

Generally, the distinctive patterns of gene expression in various tissue types are explained 

by the differences in the functions of the resulting proteins in that particular tissue. 
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Typically, this phenomenon is illustrated by the tissue-specific expression of mRNA 

encoding for secreted hormone insulin, that is present only in Langerhans’ islets of the 

pancreatic gland (Bliss 1982). Another important note about the expression of the human 

genes is that many of them are alternatively spliced. Alternative splicing leads to the 

expression of multiple mRNA transcripts with different sets of exons joined together. It is 

a prevalent phenomenon that is observed in around half of the human genes (Modrek and 

Lee 2002). The use of alternative promoters and the alternative exons endings (splice 

donor sites) may also result in alternative mRNA transcripts. There is lot of variation in 

the alternative transcript expression patterns across the human tissues (Landry, Mager et 

al. 2003; Yeo, Holste et al. 2004). The alternative splicing code that controls and 

coordinates the transcriptome in complex multicellular organisms remains poorly 

understood. It has long been argued that regulation of alternative splicing relies on 

combinatorial interactions between multiple proteins, and that tissue-specific splicing 

decisions most likely result from differences in the concentration and/or activity of these 

proteins (Matlin, Clark et al. 2005; Singh and Valcarcel 2005). 

 

Among human organs, the testis shows unusually diverse gene expression pattern. In 

part, this pecularity of the testicular expression signature is explained by presence of the 

specific gene isoforms that are transcribed as a result of the chromatin remodeling and the 

activation of specialized transcription complexes activated during the differentiation 

program of spermatogenesis (Kimmins, Kotaja et al. 2004). Along with testis, brain also 

shows a complex and diversified transcription. On the other extreme, tissues with a 
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secretory function such as pancreas, salivary gland, and stomach show more specialized 

and narrow gene expression patterns (Jongeneel, Delorenzi et al. 2005; Shyamsundar, 

Kim et al. 2005). The expression signatures of the splicing factor encoding genes 

correlate with the degree of the expression variation seen among the human tissues 

(Grosso, Gomes et al. 2008). Respectively, brain and testis, the two tissues with highest 

levels of alternative splicing events, have the largest number of expressed genes encoding 

for splicing factors. Additionally, SR protein kinases and small nuclear ribonucleoprotein 

particle (snRNP) proteins that modulate the association of core components of
 
the 

spliceosome with the pre-mRNA were identified as most highly differentially expressed 

in the particular tissues (Grosso, Gomes et al. 2008). Concerning the brain-specific 

splicing factor gene expression
 

signature, the gene list includes the brain-splicing
 

regulators PTB1, NOVA1, A2bp1/FOX1, and members of the CELF/BRUNOL
 
and 

ELAVL families, the non-SR splicing
 
regulator Y-box protein 1 and the

 
core snRNP 

protein SmN. The testis-specific signature included the splicing factor 3a
 
subunit 2 

(SF3A2) and the SR protein kinases 1 and 2 (SRPK1
 
and SRPK2) (Grosso, Gomes et al. 

2008).  

 

Nearly all of the cancer-upregulated genes with tissue-selective expression tend to show 

their selective expression in tissues, which are different from the tissue of origin of 

cancer (Axelsen, Lotem et al. 2007). Interestingly, different types of cancers, including 

different brain cancers arising from the same lineage, showed differences in the tissue-

selective genes they overexpressed. Cancer cells ectopically expressing such genes may 



 

11 

acquire phenotypic modifications that contribute to cancer cell growth and metastasis 

(Axelsen, Lotem et al. 2007). Of all of the genes with tissue-selective expression, those 

selectively expressed in testis showed the highest frequency of genes that are 

overexpressed in at least two types of cancer (Axelsen, Lotem et al. 2007). Respectively, 

in many types of human cancers the phenomenon of coordinated up-regulation of so 

called cancer/testis antigens is observed; these genes are particularly expressed only in 

testis and in tumor tissues. The specific expression of these genes in tumors and their 

restriction to testis tissue, make them good candidates for the cancer vaccines (Scanlan, 

Simpson et al. 2004). 

Bioinformatics & Cancer 

An increase of the amount of biotechnological datasets and the demand for the 

maintenance and analysis of such data lead to the development of specialized scientific 

discipline known as bioinformatics. It can be broadly described as the application of 

computer technology to explore biological processes through an analysis of the large-

scale and multi-dimensional data generated from numerous sources. It encompasses 

organized storage of the data, development of tools to analyze the data and the actual 

analysis of data. Bioinformatics uses both informatic and statistical tools implemented to 

extract and analyze information (Wu 2001). The tools utilized to analyze the data depend 

on the type of data and nature of biological question addressed through the use of the 

particular dataset. In a broader context, bioinformatics can be viewed as the management 
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information system (MIS) with the scope on the biotechnology and the molecular biology 

(Umar 2004). 

 

Bioinformatics became an inevitable research component of the molecular biology. Due 

to the accelerated generation of large-scale datasets by high throughput research 

platforms, cancer biology also got tightly bonded to informatics. Informatics occupies a 

special role in the translation cancer research to aggregate and perform integrative 

analysis on cancer biomarkers with ultimate goal of the improvement of both prevention 

and therapy. Bioinformatics is being used primarily to identify cancer biomarkers, their 

function and molecular mechanisms underlying cancer progression. The feasibility of the 

targeting of the biomolecule with the drug can also be assessed by structural 

bioinformatics, thus, reducing the drug development timeline (Wishart 2005). The 

addition of the biological function and/or the associated molecular cascade of the marker 

gene along with the quantified transcript or protein data significantly improved the 

relevance of biomarkers discovered. A number of novel bioinformatics methods, for 

example, gene set enrichment and pathway-based analysis, already reached the level of 

sophistication allowing to perform the functional analysis in semi-automated manner 

(Subramanian, Tamayo et al. 2005; Yi, Horton et al. 2006).  

 

So far, expression analysis spotted a number of target genes, which laid the path for the 

development of novel cancer diagnostics and drugs. For example, AMACR (alpha-

methylacyl CoA racemase) was at first identified as prostate cancer specific protein. 
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Currently, it is one of the prominent biomarkers for prostate cancer, with excellent 

specificity and sensitivity (Jiang, Woda et al. 2004). Other studies identified specific 

markers for progressing of the early stage cancers that permits individualized application 

of the treatments to patients through precise assessment of their prognoses. An example 

of such biomarker is EZH2 (enhancer of zeste homolog 2), a polycomb group protein that 

seems to be overexpressed in metastatic prostate cancer and specifically in the 

progressive tumors (Varambally, Dhanasekaran et al. 2002). Using multivariate model, 

this protein was later identified along with E-cadherin as powerful predictor of the 

disease recurrence following surgery (Rhodes, Sanda et al. 2003). 

 

Functional analysis of biomarkers identified in large-scale datasets can be performed 

using a wide variety of bioinformatics tools. Gene annotation is the first and foremost 

requirement for the initiation of functional analysis. The annotation information is 

provided both by various biotechnological database management organizations like 

NCBI (Gene), EBI (Ensembl) and by independent groups like GeneCards (Safran, 

Solomon et al. 2002; Curwen, Eyras et al. 2004; Maglott, Ostell et al. 2007). Pathway 

information systems, for example, Kyoto encyclopedia of genes and genomes (KEGG) 

and Biocarta provide information concerning the molecular interactions of gene products 

in an organized fashion (Biocarta ; Aoki-Kinoshita and Kanehisa 2007). Association of 

genes with their corresponding ontological terms is another way of enhancing functional 

analysis. The gene ontology (GO) database was developed to standardize the gene and 

gene product attributes across the unending list of biological databases (Ashburner, Ball 
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et al. 2000). Database for annotation, visualization, and integrated discovery (DAVID) is 

a hybrid functional analysis tool combining all these systems in a single web interface 

(Dennis, Sherman et al. 2003; Huang, Sherman et al. 2009). Such integrative tools 

enhanced the functional analysis of the genes and/or proteins while providing a holistic 

perspective of large-scale datasets. 

 

Data collection and maintenance remains an important aspect of clinical research as the 

aggregated data improves the statistical power to ascertain the results (Mathew, Taylor et 

al. 2007). The cancer biomedical informatics grid (caBIG
TM

) is an ambitious initiative to 

connect cancer research centers in a network that allows to share biomedical data 

(Kakazu, Cheung et al. 2004). This co-operative bioinformatics system brings 

translational cancer research into the next level, changing the whole cancer research 

paradigm. Its seamless architecture defines compatibility standards based on ontologies, 

interfaces, data elements and information models for tool development enhancing the 

semantic interoperability between the research groups (Cimino, Hayamizu et al. 2009). 

An integrating informatics system for the annotation and exchange of array based data, 

caArray, was recently developed for acquisition, dissemination and aggregation of 

interoperable array data as a part of caBIG
TM

. caArray enhances the translational cancer 

research by supporting analysis of array data by tools and services on and off the grid. 

The resources developed on the grid are generally applicable beyond cancer research, 

promoting the comprehension of other complex diseases.  
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The analysis of microarrays and the cancer transcriptome 

From its inception in the mid-90s, microarray analysis was instrumental in the discovery 

of clinically relevant knowledge by associating changes in gene expression (GE) patterns 

with particular pathological conditions. In a typical experiment, mRNA expression 

profiles are generated for thousands of genes across a collection of samples that belong to 

either one of two classes, for example, pathological specimen vs. healthy tissue controls. 

The registered changes in expression of individual genes can be ordered in a ranked list. 

However, extraction of a biological insight from the long lists of individual genes 

generated in typical microarray experiment remains a significant challenge. 

 

A common approach to the analysis of GE data involves focusing on a handful of genes 

at the top and bottom of the ordered list (i.e., those showing the largest difference in the 

expression level in up and down regulatory fashion) and attempting an interconnection of 

these genes into the plausible biological network or pathway. This approach, however, 

has major limitations that may potentially nullify the experimental results. In particular, 

the required correction for multiple hypotheses testing (e.g. by Bonferroni or by 

Benjamini-Hochberg methods) may lead to the situation when no individual gene meets 

the threshold for statistical significance indicating that the relevant biological differences 

between two sample sets are modest relative to the technical noise. This outcome is not 

surprising since severe over-fitting is regarded as inevitable plague of the microarray 

studies where the typical number of observations (dozens or, rarely, hundreds of patients’ 

samples) is dramatically smaller than the number of measured end-points (typically 5 to 
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30 thousands of genes). Alternative approaches not controlled by multiple hypothesis 

tests often leave scientists with extensive lists of statistically significant genes that cannot 

be bound together by any common biological theme. Subsequently, an interpretation of 

these gene lists is left to subjective opinions of the expert biologists.  

 

One of the current standard technologies of GE analysis that partially resolves the 

problem of over-fitting in microarray study design is Significance Analysis of 

Microarrays (SAM) (Tusher, Tibshirani et al. 2001). Based on stochastic procedure of 

iterative cross-validation of false discovery rate, it allows eliminating a majority of 

spurious and potentially non-reproducible findings. This technology has already 

successfully replaced conventional t-tests. However, it remains a subject of the 

commonest drawback in all single-gene methods: statistically significant genes often lack 

biological meaning. Additionally, SAM, on par with other single-gene based methods of 

GE analysis, may miss pathway wide effects. For example, effects of the coordinated 

20% increases in the expression levels of all genes that belong to the same metabolic 

pathway may be masked by spurious 500% decrease in an expression of a single gene 

with redundant function.  

 

Identification of the pathological mechanisms underlying differentially expressed gene 

lists may be facilitated by pre-grouping these genes into the relevant biological pathways 

or networks. Thus, instead of the traditional “bottom-up” approach that relies on post 

factum integration of GE lists with existing literature describing the potential biological 
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roles of individual genes, enrichment-based analysis of gene sets may be executed. In this 

type of knowledge-based analysis (KBA), previously collected gene lists are used for the 

ranking of the functional categories or pathways and subsequent evaluation of the ranked 

pathways according to their gene enrichment levels. The significantly enriched pathways 

are further explored as primary biological themes. For this purpose, the gene sets known 

as signature databases were generated in accordance with the prior biological knowledge 

accumulated in wet-lab experiments or using computational models that identify 

functionally similar genes by their sequence or structural similarities. 

 

The pioneering tool for enrichment-based analysis of microarray datasets named GSEA 

(Gene Set Enrichment Analysis) has been developed by a group of bioinformaticians at 

MIT (Subramanian, Tamayo et al. 2005). Though it’s been more than three years since 

the method was published, GSEA have just started to gain popularity among microarray 

researchers, mostly due to the time required for generation of extensive knowledge basis 

justifying the grouping of genes into gene sets. Today, an innovative idea of GSEA has 

reached its maturity. Particularly, several gene signature databases became available, 

including those with gene sets grouped according to their chromosomal locations, an a 

priori placement within certain molecular pathways, a commonality of regulatory 

mechanisms, and an annotation under the same gene ontology terms. These gene 

signature databases could be used for extracting novel and often unexpected knowledge 

about pathologic processes and disease mechanisms. Some of the examples of successful 

GSEA applications include studying differential gene expression associated with 
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adenocarcinoma of esophagus (Lagarde, Ver Loren van Themaat et al. 2008), advanced 

pancreatic cancer (Campagna, Cope et al. 2008), breast cancer (Anders, Hsu et al. 2008), 

nasopharyngeal carcinoma (Pegtel, Subramanian et al. 2005).  

 

To gain the comprehension of the underlying mechanism of tumor development, 

particularly the regulation of cell growth, apoptosis and genomic stability (Hanahan and 

Weinberg 2000), a number of high-throughput microarray initiatives have been started. 

Cancer cell lines have served as the primary experimental system for exploring cancer 

molecular biology and pharmacology. For instance, the Nation Cancer Institute 

developed an NCI-60 panel consisting of 60 diverse human cancer cell lines. These cell 

lines underwent both selected gene sequencing and gene expression profiling in order to 

facilitate screenings for drugs aimed at cancer therapy (Ikediobi, Davies et al. 2006; 

Shoemaker 2006). DNA microarrays expression analysis of these heterogeneous cell 

lines provided initial snapshots of the genes and related molecular pathways pertaining to 

the malignization in a broad sense and to the response to specific chemotherapeutic drug 

treatments (Efferth 2005; Shankavaram, Reinhold et al. 2007).  

The contribution of microarray based studies to cancer research is not limited to the study 

of NCI-60 cell lines. For instance, microarray profiling is widely used for an 

identification of aberrant chromosomal regions and expression signatures of various 

primary tumors (Buness, Kuner et al. 2007; Xu, Geman et al. 2007). Numerous high-

throughput experiments generated quantitative profiles of global gene expression for 

most of the common forms of cancer. Based on these profiles, the diagnostic signatures 



 

19 

were generated for specific cancer types, in many cases producing substantial insights 

into the tumor biology. Meta-analysis of these datasets has been attempted to extract 

common or generic cancer signature pattern (Xu, Geman et al. 2007). The utility of gene 

expression profiling for clinical settings was demonstrated by bringing the breast and 

lymphoma tumor signatures into the process of the clinical decision making (van de 

Vijver, He et al. 2002; Dave, Wright et al. 2004). Proven to be efficient means for the 

cancer researchers, DNA microarrays became a staple of cancer transcriptome studying 

labs. For example, study of Golub et al demonstrated the feasibility of cancer 

classification based solely on gene expression monitoring and suggested a general 

strategy for discovering and predicting cancer classes, independent of previous biological 

knowledge (Golub, Slonim et al. 1999). 

 

The increasing number of the microarray datasets in the research of cancer and other 

diseases, demanded a central system to congregate this valuable profile data. The 

National Central for Biotechnology Information (NCBI) took an initiative to develop the 

database called Gene Expression Omnibus (GEO), which archives and freely distributes 

raw microarray files as well as other forms of large-scale data generated by the scientific 

community (Barrett and Edgar 2006; Barrett, Troup et al. 2007). Until recently, 

ArrayExpress was an analogous system to GEO developed by the European 

Bioinformatics Institute (EBI) (Parkinson, Kapushesky et al. 2007). Nowadays, GEO has 

emerged into the principal repository for microarray data storage and retrieval that covers 

an assortment of microarray platforms. Standard analyses of the cancer array dataset 
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stored in these repositories are maintained in a database known as Oncomine. This 

database enables one to query for the specific up and down regulated genes across 

microarray datasets according to the tumor or tissue types of interest (Rhodes, Kalyana-

Sundaram et al. 2007).  

 

Public availability of cancer microarray datasets lead to the development of the methods 

to derive common cancer signatures across datasets (Xu, Geman et al. 2007). Integrative 

analyses are also performed combining sub-datasets in order to borrow information and 

using statistical and clustering analysis techniques to derive relevant markers (Golub, 

Slonim et al. 1999; Tusher, Tibshirani et al. 2001). The process of the combination of 

expression profiles resulted from independent microarray experiments often called the 

meta-analysis, analogous to meta analysis in clinical research that is directed to test single 

hypothesis using material from multiple studies (Rhodes and Chinnaiyan 2005). An 

example of meta-analysis of microarray datasets is the study of Wren, 1999 that included 

all publicly available GEO two-channel human microarray datasets (a total of 3551 

individual profiling experiments). This study was conducted to identify genes with 

recurrent, reproducible patterns of co-regulation across different conditions. Patterns of 

co-expression were divided into parallel (i.e. genes are up and down-regulated together) 

and anti-parallel. Several ranking methods to predict a gene's function based on its top 20 

co-expressed gene pairs were compared. The data matrix describing differential 

expression of the human genes with unknown function was made available to the 

scientific community (Wren 2009). 
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Pertinent to cancer, a handful of meta-analysis studies were performed. In the study of 

Alles et al., 2009 gene expression values from five large microarray datasets describing 

breast carcinoma expression patterns relative to ER status of the tumors were subjected to 

Gene Set Enrichment Analysis (GSEA). As expected, the expression of the direct 

transcriptional targets of the ER was muted in ER- tumors, but the expression of genes 

indirectly regulated by estrogen was enhanced. An enrichment of independent MYC- and 

E2F-driven transcriptional programs was also observed. A conclusion concerning 

increased transcriptional activity of MYC as a characteristic of basal breast cancers 

capable of mimicking a large part of an estrogen response in the absence of the ER was 

made, thus, suggesting a mechanism by which these cancers achieve estrogen-

independence and providing a potential therapeutic target for this poor prognosis sub 

group of breast cancer (Alles, Gardiner-Garden et al. 2009). Another study compared 

expression data from a diverse collection of 9 breast tumor array datasets generated on 

either cDNA or oligonucleotide arrays from the Oncomine database and identified genes 

that were universally up or down regulated with respect to ER+ versus ER- tumor status 

(Smith, Saetrom et al. 2008). Liang et al. analyzed miRNA target genes across Oncomine 

datasets profiling gene expression in the patients with lung adenocarcinoma (AD) and 

squamous cell carcinoma (SCC), two major histologic subtypes of lung cancer. 

Expression of a minimal set of 17 predicted miR-34b/34c/449 target genes was identified 

from a training set to classify 41 AD and 17 SCC, and correctly predicted in average 87% 

of 354 AD and 82% of 282 SCC specimens from total 9 independent published datasets. 

Expression of this signature in two published datasets of epithelial cells obtained at 
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bronchoscopy from cigarette smokers, if combined with cytopathology of the cells, 

yielded 89-90% sensitivity of lung cancer detection and 87-90% negative predictive 

value to non-cancer patients (Lagarde, Ver Loren van Themaat et al. 2008). Romualdi et 

al. used meta-analysis to define the gene expression signature of rhabdomyosarcoma, a 

highly malignant soft tissue sarcoma (Romualdi, De Pitta et al. 2006), and demonstrated a 

general downregulation of the energy production pathways, suggesting a hypoxic 

physiology for rhabdomyosarcoma cells. 

 

Meta analysis of cancer microarrays was also useful in identifying the aberrant genomic 

loci in the tumor cells. Eight datasets including more than 1200 breast tumors were 

investigated to identify chromosomal regions and candidate genes possibly causal for 

breast cancer metastasis. By utilizing Gene Set Enrichment Analysis chromosomal 

regions were ranked according to their relation to metastasis. Over-representation 

analysis identified regions with increased expression for chromosome 1q41-42, 8q24, 

12q14, 16q22, 16q24, 17q12-21.2, 17q21-23, 17q25, 20q11, and 20q13 among 

metastasizing tumors and reduced gene expression at 1p31-21, 8p22-21, and 14q24. 

Analysis of genes with extremely imbalanced expression in these regions, DIRAS3 at 

1p31, PSD3, LPL, EPHX2 at 8p21-22 and FOS at 14q24 pinpointed them as candidate 

metastasis suppressor genes. Potential metastasis promoting genes list included RECQL4 

at 8q24, PRMT7 at 16q22, GINS2 at 16q24, and AURKA at 20q13 (Thomassen, Tan et 

al. 2009). An association was also established between the tumor stage of the breast 

carcinoma and the recognized genomic regions identified by the meta analysis applied to 
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12 independent human breast cancer microarray studies comprising 1422 tumor samples 

(Buness, Kuner et al. 2007).  

Cancer – A systems biology perspective 

Understanding the biology at the system level should improve the way a medical 

condition is perceived and thus affects the methods to prevent, diagnose and treat it (Ahn, 

Tewari et al. 2006). The capability of current biotechnological methods to extract global 

gene expression patterns along with levels of proteins and metabolites from the same 

sample opened avenues for the conception of network level data. Sequencing of genomes, 

high-throughput data generation technologies combined with organized informatic 

systems further enabled the collection of comprehensive datasets providing the system-

wide overview of the complex biological objects (Kitano 2002). The elucidation of the 

network of biological networks with their dynamic interactions forms the basic premise 

for systems biology in general. System-level models require quantification of the network 

elements as they change over time in response to various perturbations, therefore, 

implying the computational modeling of the dynamic interactions (Laubenbacher, Hower 

et al. 2009).  In the context of cancer, such models would be helpful in deciphering the 

relevant biological network underlying particular type of malignancies. 

Cancer is an outcome of the malfunctioning in the cell system with inherent genomic 

instability, thus it is identified as a systems biology disease. The progress in the treatment 

of cancer can be drastically accelerated, if the ongoing research is done in the systems 

biology perspective, instead of classic molecular biology based approaches (Hornberg, 
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Bruggeman et al. 2006). Apart of intra-cellular interactions as represented by internal 

signal transduction in cell, inter-cellular interactions also play a vital role in the 

development of cancer. The horizon of system-level study of cancer should be expanded 

to the tissue level considering the role of inter-cellular interactions in the realistic 

comprehension of cancer. Challenges lie in various disciplines of sciences including 

mathematics, physics, chemistry and biology to develop models, generate precise data 

and calculate the interactions between the biological network components. Last but not 

the least, the contribution of informational technology is inevitable, not only for data 

management but also for the analyzing the simulated models of individual cancer cells 

and interactions within their proliferating society (cancer tissue). 
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2. Genome wide discrimination of normal and tumor samples 
 

 

 

 

Rationale 

The current study quantitatively estimates the relative importance of global and local 

features of gene expression regulation landscape in the process of tumor development. 

The work is based on the hypothesis that the cancer could be viewed as an attractor state. 

Background 

To date, most of the high-throughput studies of the gene expression studies are still 

focused on elucidation of the discriminatory gene signatures reflecting key regulatory 

processes participating in establishing cell phenotypes (J. Wang et al. 2003; Ben-Dor et 

al. 2000; Furge et al. 2004). On the other hand, a change in a cell phenotype requires 

coordinated interaction of a variety of genes that determine the functional identity of the 

cell within a population of cells (Bar-Yam et al. 2009). This notion implies an 

understanding that a given cell type could be represented as a dynamic system that can 

assume different states, thus, occupying a specific position in the multidimensional phase 

space spanned by the different genes (Tsuchiya, Piras et al. 2009; Tsuchiya, Selvarajoo et 

al. 2009; H. H. Chang et al. 2008).  
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The ability of gene regulatory circuits to assume multiple equilibrium states was first 

proposed by Max Delbruck in 1948 (cited according to S. Huang et al. 2009). In terms of 

dynamics, this specific position of equilibrium is called an ‘attractor’, i.e. a “stable” 

position characterized by a specific pattern of gene expression levels that determines the 

particular kind (differentiation pattern) of the cell population (S. Huang 2009). Multiple 

attractor states can exist. The current stable state of the cells depends on the history of the 

past states of cell, implicating the importance of epigenetic mechanisms in such a 

context. The attractor states are robust, distinct and possess self stabilizing properties. 

The gene expression pattern associated with a particular state could be maintained even 

after the original stimulus that placed the cell in the current attractor state has been 

removed (S. Huang 2009). Of course, the attractor state is a property of the cell 

population, so its location in the phase space corresponds to the average expression levels 

for the millions of single cells over thousands of genes. When individual gene expression 

levels are measured, cells could be different for each other, thus, demonstrating intra-

population variance. In this sense, attractor state viewed as an analogy to the definition of 

the temperature in statistical mechanics that allows for evaluation of the intrinsic 

differences between the components of the system (Huang 2009). 

 

Earlier studies have indicated that the differentiation destinies of the progenitor cells 

could be defined as high dimensional attractor states of the underlying molecular 

networks (H. H. Chang et al. 2008; S. Huang et al. 2007). Particularly, a study of the 

differentiation trajectories of blood stem cells demonstrated that specific differentiated 
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cell types behave as attractors (A. C. Huang et al. 2009). The same group provided some 

evidences of an analogous behavior of the cancer cells that are to be considered as 

located at the ‘periphery’ of the correspondent normal cell attractor for the same kind of 

tissue (S. Huang & Ingber 2006; S. Huang et al. 2009; Yuchun Guo et al. 2006). 

Although cancer was proposed as an attractor state of a cell as early as 1971 (S Kauffman 

1971), a path to verify such a notion has been paved only recently, with an advent of the 

genomic technologies.  

 

Under “attractor” paradigm, cell population is considered as a dynamic system that could 

be attracted to one or another “stable” state by transition that implies extensive mutual 

regulation of all elements of cell’s genome. This is in striking contrast with the traditional 

idea of a division of the mRNA transcripts into those generated by ‘housekeeping’ and 

‘tissue-specific genes’, where a set of the master genes is responsible for the switch 

between different phenotypes. In their seminal paper Bar-Yam and colleagues describe 

this dichotomy. Particularly, the definitions for a ‘democratic’ (no master genes, all genes 

act as mutual regulators going toward a global attractor state) and an ‘autocratic’ (few 

master genes drive the differentiation process) regulatory landscape were introduced 

(Bar-Yam et al. 2009). 

 

A possible middle ground between “democratic” and ‘autocratic” regulatory landscapes 

may be described as a general attractor-like behavior of the regulatory machinery with 

some local ‘vantage points’ representing genes most sensitive to dynamical changes of 
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the system. Recent study of Tsuchiya et al demonstrated biphasic nature of the cellular 

response to innate immune stimuli involving an acute-stochastic mode consisting of small 

number of sharply induced genes and a collective mode where a large number of weakly 

induced genes adjust their expression levels to novel “stable” state. We hypothesize that 

similar regulatory scenario takes place during tumor development.  

Hypothesis 

Cancer is an attractor state. Normal cell can became cancerous and progress toward 

malignant phenotype using an intermediate regulatory framework that combines both 

local and global regulatory features. 

Here we propose to perform a quantitative estimation of the relative importance of global 

and local features of gene expression regulation landscape in the process of tumor 

development through an analysis of publicly available microarray data.  

Materials and Methods 

Microarray datasets were extracted from the NCBI Gene Expression Omnibus as raw 

data (.CEL files) by selecting the data using Oncomine browser (Barrett & Edgar 2006; 

Barrett et al. 2007; D. R. Rhodes et al. 2007). To exclude cross-platform variability 

factors, only the datasets profiled using Affymetrix oligonucleotide arrays were chosen. 

The chosen datasets were classified into the following three categories: 1) Two-point 

datasets describing paired normal and tumor tissue samples collected from the same 

individual (N=8); 2) Two-point datasets describing a group of normal and a group of 
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tumor samples collected from the same tissue type across a number of subjects (N=9); 3) 

Multi-point datasets describing three or more physiological groups of normal and tumor 

samples collected from same subject or across a number of subjects (N=7). The detailed 

descriptions of these datasets are given in the tables 1, 2 and 3 for each of categories, 

respectively.  

Table 1: The table describes the attributes of two-point datasets describing paired 

normal and tumor tissue samples collected from the same individual.  
Total Number of 

transcripts extracted; 

GEO ID Sample source 
Number of 

samples 
Total number of 

transcripts significant 

by MW test 

Reference 

IDC (N=5)  

Normal duc 

tal  (N =5) 
54675; 2278 

GSE5764 

Invasive ductal (IDC) and 

lobular breast (ILC) 

carcinomas in postmenopausal 

patients  
ILC (N=5) 

Normal lobular 

(N=5)    
54675; 988 

(Turashvil

i et al. 

2007) 

Lung AdCa 

(N=20) GSE2514 
Pulmonary adenocarcinoma 

and adjacent lung tissue 
Normal (N =19) 

12625; 5857 
(Stearman 

et al. 

2005) 

Lung AdCa 

(N=27) GSE7670 
pulmonary adenocarcinoma 

and adjacent lung tissue 
Normal (N =27) 

22283; 8599 
(Su et al. 

2007) 

Stage 1 tumor 

(N=5) 

Stage 2 tumor 

(N=5) 

Stage 1 normal 

(N=5) 

GSE6344 Renal cell carcinoma (RCC) 

Stage 2 normal 

(N=5) 

44760; 23701 
(Gumz et 

al. 2007) 

Tumor (N=7) 
GSE781 

Renal clear cell carcinoma 

(RCC) Normal (N=7) 
44760; 11119 

(Lenburg 

et al. 

2003) 

Tumor (N=22) 
GSE6631 

Head and neck squamous cell 

carcinoma (HNSCC) Normal (N =22) 
12625; 2880 

(Kuriakos

e et al. 

2004) 

Tumor (N=9) 
GDS1665 

papillary thyroid carcinoma 

(PTC) Normal (N =9) 
54675; 13985 

(H. He et 

al. 2005) 
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Analysis was performed by R data analysis packages of Bioconductor. Affy package was 

used for the data processing and normalization (Reimers & Carey 2006; Gregory Alvord 

et al. 2007; Gautier et al. 2004). Perl scripting has been used to automate the analysis 

pipeline.  The gene expression data were background corrected, normalized and the 

summarized expression values were calculated using Robust Multichip Average (RMA) 

method that consists of three steps: a background adjustment, quantile normalization and, 

finally, summarization (R. A. Irizarry et al. 2003). The expression values for individual 

genes in each of the cancer and normal samples were subjected to non-parametric Mann-

Whitney test that extracted the transcripts with significant (P <0.05) differential 

expression (Mann & Whitney 1947). The global and specific expression distances 

(DGlobal and DSpecific) were calculated based on the whole transcripts on the chip and 

significantly differentially expressing transcripts as selected by Mann-Whitney test, 

respectively. The distance between two samples i and j corresponds to : Dij = 1 – Rij, 

where Rij is the Pearson correlation coefficient between the vectors correspondent to i 

and j samples and having as dimensions the entire set of transcripts (DGlobal) or only the 

gene with statistically significant expression differences (DSpecific). These distance 

metrics were previously adopted for the dynamical characterization of microarray data 

and statistical analysis of microarrays in other studies (Hayden et al. 2009; H. H. Chang 

et al. 2008; Tsuchiya, Selvarajoo et al. 2009). 
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Table 2:  The table describes the two-point datasets comprised of normal and tumor 

samples collected from the same tissue type across a number of subjects 

Total Number of 

transcripts extracted; 

GEO ID Sample source 
Number of 

samples Total number of 

transcripts significant 

by MW test 

Reference 

Normal Head/Neck 

(N=14) 

Gene Expression 

Profiles of HPV-

Positive and -Negative 

Head/Neck Cancers 
Head/Neck Cancer 

(N=42) 

54675; 35778 

Normal Cervix  

(N=8) 

GSE6791 
Gene Expression 

Profiles of HPV-

Positive and –Negative 

Cervical Cancers 
Cervical Cancer 

(N=20) 

54675; 25098 

(Pyeon et al. 

2007) 

Normal Thyroid 

(N=7) 
GSE3678 

Papillary thyroid 

carcinoma  Papillary thyroid 

carcinoma (N=7) 

54675; 5617 -- 

OSCC (N=16) 
GSE3524 

Oral squamous cell 

carcinoma (OSCC) 
Normal (N=4) 

22283; 5757 
(Toruner et al. 

2004) 

Normal breast 

epithelium (N=5) 

Invasive breast 

cancer epithelium 

(N=28) 

22277; 2491 

Normal breast 

stroma (N=5) 

GSE10797 

Transcriptomes of 

breast epithelium and 

stroma in normal 

reduction 

mammoplasty and 

invasive breast cancer 

patients. Invasive breast 

cancer stroma 

(N=28) 

22277; 1190 

(Casey et al. 

2009) 

Normal pleural 

tissue (N=8) 
GSE12345 

Global gene 

expression profiling of 

human pleural 

mesotheliomas 
Mesothelioma 

tissue (N=8) 

54675; 5995 -- 

Normal 

nasopharyngeal 

tissue (N=10) GSE12452 

mRNA expression 

profiling of 

nasopharyngeal 

carcinoma 
nasopharyngeal 

carcinoma (N=31) 

54675; 15383 

(Dodd et al. 

2006; 

Sengupta et 

al. 2006) 

Normal renal tissue 

(N=12) 
GSE14762 

Renal Cell Carcinoma: 

Hypoxia and 

Endocytosis Renal carcinoma 

(N=10) 

54675; 18501 
(Y. Wang et al. 

2009) 
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Table 3:  The table describes the datasets with three or more physiological groups of 

normal and tumor samples collected across the same subject or a number of subjects 

Total Number of 

transcripts extracted; 

GEO ID Sample source Number of samples Total number of 

transcripts significant 

by MW test 

Reference 

Normal (N=8) 

Barrett’ esophagus (N=8) 

GSE1420 

Barrett's esophagus, 

Barrett's-associated 

adenocarcinomas and 

normal esophageal 

epithelium 

Barrett's-associated 

adenocarcinoma  

(N = 8) 

22283; 6552 
(Kimchi et al. 

2005) 

Benign prostate (N=6) 

primary prostate cancer 

(N=7) 
GSE3325 

Benign prostate, primary 

and metastatic prostate 

cancer samples 
metastatic prostate (N=6) 

54675; 20667 

(Sooryanarayana 

Varambally et 

al. 2005) 

Normal pancreas (N=5)  

Chronic pancreatitis (N=5) 

http://dot.pe

d.med.umic

h.edu:2000/

pub/Panc_t

umor/index.

html 

Normal pancreas, chronic 

pancreatitis and pancreatic 

adenocarcinoma 

(microdissected) 
Pancreatic 

adenocarcinomas (n=10) 

7129; 2289 
(Logsdon et al. 

2003) 

Normal Bladder (N=9) 

sTCC (N=15) 

sTCC with CIS (N=13) 

mTCC (N=13)  GSE3167 

Normal  Bladder, 

superficial transitional cell 

carcinoma(sTCC), STCC 

with carcinoma in situ, 

metastatic transitional cell 

carcinoma, normal 

cystectomy and 

cystectomy with CIS 

Cystectomy    

Normal(N=5)    CIS (N=5) 

22283;  13861 
(Dyrskjøt et al. 

2004) 

Normal Prostate Tissue 

free of any pathological 

alteration (N=17) 

Metastatic Prostate(N=25) 

Primary Prostate (P=59) 

GSE6919 

The Normal Prostate 

Tissue free of any 

pathological alteration., 

Metastatic Prostate 

Tumor, Primary Prostate 

Tumor, Normal Prostate 

Tissue Adjacent to Tumor  
Normal Prostate Tissue 

Adj to Tumor (N=62) 

37757; 18973 

(Yan Ping Yu et 

al. 2004; 

Chandran et al. 

2007) 

Normal liver   (N=10) 

Dysplastic liver tissue 

(N=17) 

Cirrhotic liver tissue 

(N=13) 

Very early HCC (N=8) 

Early HCC (N=10) 

Advanced HCC (N=7) 

GSE6764 

Genome-wide molecular 

profiles of HCV-induced 

dysplasia and 

hepatocellular carcinoma 

Very Adv HCC (N=10) 

54675; 19250 
(Wurmbach et 

al. 2007) 

Normal controls (N=12) 

BRCA-1/2 mutation 

carriers (N=12) GSE10971 

Gene expression data 

from non-malignant 

fallopian tube epithelium 

and high grade serous 

carcinoma. 
High grade serous 

carcinoma (N=13) 

54675; 15988  
(Tone et al. 

2008) 

 



 

33 

 

Principal Component Analysis (PCA) was performed on the cancer microarray 

expression datasets based on the distance parameters (Roden et al. 2006). In this analysis, 

each sample is described by four distance based descriptors reflecting the average 

distance of each sample from i) cancer sample space (DC) and  ii) normal sample space 

(DN) in both global and specific frames, therefore, producing following variables: 

DCglobal, DNglobal, DCspecific and DNspecific. PCA was performed using R on each 

of the datasets separately, in the four dimensional space represented by these parameters. 

The structure of correlations emerging from the analysis of the variable loadings on the 

extracted components allowed for a straightforward quantification of some relevant 

topological features of the analyzed systems. 

 

 

Results and Discussion  
 

a) Modeling strategy 

The discrimination between a tumor and a normal sample can be achieved using both a 

summed expression change involving the entire set of mRNAs (DGlobal) and a summed 

expression change of the functionally important genes specifically involved in the 

development of the tumor state (DSpecific). In the case of the “democratic” regulatory 

landscape (no preferred vantage points, or particular mRNAs, specifically responding to 

the change of the physiological state), the discrimination would be achieved by DGlobal, 

while gene signature-based (DSpecific) distances should better reflect “autocratic” 
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landscape with a profound changes in expression of master (or signature) genes while the 

great portion of mRNAs remain unaffected. In the latter case, the correlation between 

genome-wide (DGlobal) and signature-based (DSpecific) distances should not be 

substantial.  

In case of an intermediate scenario, - a middle ground between “democratic” and 

“autocratic” regulatory landscapes, - the discrimination between tumor and normal 

sample calculated using DSpecific should be consistently better than the discrimination 

achieved using by DGlobal. However the two metrics should correlate, thus, 

demonstrating both the existence of a global attractor correspondent to the cell phenotype 

and reflecting the change of entire genome expression and the most influential roles for a 

specific set of the tumorigenesis-related genes. 

 

The most natural metrics for estimating the distance between expression profiles of two 

biological samples is based on the Pearson correlation coefficient: the level of 

concordance of any two expression vectors correspondent to two different biological 

samples, x and y with n dimension (n = genes) and mean values of expressions x and y   

corresponds to their mutual Pearson correlation, ( )yx ,r =   defined as: 

( )
( )( )

( ) ( )

θcos

YX

YX

yyxx

yyxx

r
n

i

i

n

i

i

n

i

ii

n

i

n

i

ii

n

i

ii

=
⋅

==

−−

−−

=

∑∑

∑

∑ ∑

∑

==

=

= =

=

YX

YX
yx,

1

2

1

2

1

1 1

22

1 ,    Eq. 1 



 

35 

where
( )xx,..,xx,xx n1 −−−= 2X

,
( )yy,..,yy,yy n1 −−−= 2Y

 correspond to the 

differences from the mean expression of each gene in the X and Y sample respectively  

and θ  is the angle between two expression vectors. Geometrically, Eq. 1 shows the 

correlation coefficient can be viewed as the cosine of the angle on n-dimensional space 

between the two vectors of data which have been shifted by the average to have mean 

zero. Angle θ  is a measure of the differences between the two vectors and consequently 

of the difference in expression pattern of the two sample, when θ  = 0 (and consequently r 

= 1.0) the two expression patterns are completely coincident, and the two vectors are 

parallel. In the case of r = 1 (and consequently θ = 90 degrees) the two expression vectors 

are orthogonal, i.e. the expression patterns of the two samples are each other independent. 

 

The measure Dij = 1-Rij with R = Pearson correlation coefficient between i and j samples 

can be considered as a distance between samples. This distance could vary from 0 (R = 1) 

reflecting the perfect resemblance of the two samples to 1 corresponding to maximal 

possible distance between two states (absence of correlation). In the case when samples 

are picked from two different sub-groups -- normal (N) and cancer (C) -- for each sample 

j analyzed two different descriptors DCj and DNj can be computed corresponding to the 

average distance of sample j from the spaces occupied by cancer (DCj) and normal (DNj) 

samples. Thus if (i) corresponds to a cancer sample DCi will be the average of all the 

pairwise distances of (i) vector from all the other cancer samples vectors, and 

consequently DNi the average of all the distances of (i) from the non-cancer samples. 
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When the distance is computed only over the previously extracted differentiating gene 

signature defined as a set of genes with expression values significantly different between 

Cancer and normal subgroups by Mann-Whitney test, two similarly defined but gene 

signature-specific distance indexes (DCspecific, DNspecific) were obtained. In entirety, 

four descriptors were defined for every specific sample on each dataset:  

� DCglobal: Genome-wide distance from cancer sample space to the  

particular sample 

� DNglobal: Genome-wide distance from normal sample space to the 

particular sample 

� DCspecific: Signature based distance from cancer sample space to the 

particular sample 

� DNspecific: Signature based distance from normal sample space to 

the particular sample 

 

 

b) Assessment of the global and signature-specific gene expression distances for two-

point (Normal-Tumor) datasets 

In this study we used a total of 17 two-point datasets represented by normal and tumor 

gene expression profiles. Paired datasets (tumor and normal samples derived form the 

same individual) and populational datasets (tumor and normal samples were collected 

across a number of subjects) were considered separately. Eight paired and nine 

population datasets profiled using the Affymetrix platforms were chosen for the two-
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point (normal-tumor) analysis (Tables 1, 2). For each dataset, the global and specific 

expression distances were calculated based either on the all probes present on the chip 

and passing the detection call (DNglobal and DCglobal) or on the genes highlighted as 

significantly differentially expressed according to Mann-Whitney test (DNspecific and 

DCspecific).  

 

In both paired and population datasets, DC (global, specific) was greater than DN (global, 

specific) for most of the normal samples. The reverse was true, i.e. DC (global, specific) 

is less than DN (global, specific) for the tumor samples. Such a relation provides a basis 

an unbiased classification scheme, given a sufficiently relevant population of samples is 

achieved. Figure 1 depicts the four parameters as panels of paired plots for the lobular 

and ductal breast carcinoma dataset. The clear classification of the cancer and tumor 

samples using the complete chip data (global)  using a simple metric like distance 

illustrate the differentiating power of the overall transcription. Moreover, ranking of the 

datasets based on global and specific distances of the tumor sample from the normal 

center were very similar, albeit not identical (Table 4). The conservation of global and 

specific distances across the datasets adds to the credibility of using this metric for 

diagnostic purpose.  
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 Panel A  

 
 Panel B 

 
Figure 1: The illustration depicts the distance parameters derived for the paired 

breast carcinoma dataset (GSE5764) using a paired-plot panels. Panel A and Panel B 

represent the distance parameters for the lobular and ductal carcinoma with in this 

dataset. Each point depicts individual cancer (red) or normal (blue) sample, line 

reflects a linear fit for each group of samples 
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Table 4: Rankings of the tumor malignancy potential according to the relative 

distance to the Normal Sample Space (two-point paired datasets) 1 – lowest; 9 – 

highest 

DATASET 

Mean (DGlobal) 

from individual 

tumor samples to 

the Norma  center  

Mean 

(DSpecific) from 

individual tumor 

samples to the 

Normal center  

GSE2514 (pulmonary 

adenocarcinoma) 
1 1 

GDS1665 (papillary thyroid 

carcinoma) 
2 2 

GSE781 (RCC) 3 4 

GSE6344 (RCC stage 2) 5 3 

GDS2520 (HNSCC) 4 6 

GSE6344 (RCC stage 1) 6 5 

GSE7670 (pulmonary 

adenocarcinoma) 
7 7 

GSE5764 (ductal breast  

cancer subset) 
8 8 

GSE5764 (lobular breast 

cancer subset) 
9 9 

 

 

In case when distances were calculated using DNglobal, in all studied paired data, tumors 

were further away from the Normal Sample Space than the control samples with normal 

histology (Table 5). On average, for normal samples the distance to the Normal Space 

defined by DGlobal was 0.047+/-0.045 as compared to 0.080+/- 0.034 for Tumor 

samples (P < 0.038) in paired datasets.  Distances between individual Normal samples 

and the Normal Space defined by DSpecific were also significantly different from that 

calculated for Tumor samples (Normal: 0.044+/-0.034; Tumor: 0.138 +/- 0.063, P < 

0.001).  All metrics were heavily correlated to each other. This correlation indicates 
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strong attractor-like behavior; the discussion on this would be continued in the PCA 

results section. Here it is important to stress that signature-based and genome-wide 

approaches allow for the same level of discrimination efficiency of the data sets. 

 

Table 5: Mean, Standard Deviation and Variance calculated for Global and 

Specific Distances from individual samples to the Normal Sample Space of the 

paired datasets 

DATASET 

Mean +/- SD 

variance 

(DNglobal) from 

individual 

normal samples 

to the Normal 

Sample Space  

Mean +/- SD 

variance 

(DNglobal) from 

individual tumor 

samples to the 

Normal  Sample 

Space 

Mean +/- SD 

variance 

(DNspecific) from 

individual normal 

samples to the 

Normal Sample 

Space 

Mean +/- SD 

variance 

(DNspecific) 

from individual 

tumor samples to 

the Normal 

Sample Space 

GSE5764 (ductal 

breast cancer 

subset) 

0.0989+/-0.0111 

0.0001231 

0.1134+/-0.0196 

0.0003861 

0.0634+/-0.00595 

0.00003547 

0.1827+/-0.02951 

0.000870855 

GSE5764 

(lobular breast  

cancer subset) 

0.1449+/-0.0084 

0.0000704 

0.1496+/-0.0389 

0.00151395 

0.1092+/-0.01037 

0.00010758 

0.2788+/-0.0873 

0.00762137 

GSE2514 

(pulmonary 

adenocarcinoma) 

0.0113+/-0.0015 

0.0000023 

0.0407+/-0.0199 

0.000399112 

0.0138+/-0.00211 

0.0000044 

0.0688+/-0.03296 

0.001086227 

GSE7670 

(pulmonary 

adenocarcinoma) 

0.0399+/-0.0104 

0.000107128 

0.0841+/-0.0285 

0.000814786 

0.0483+/-0.01129 

0.000127647 

0.1417+/-0.04826 

0.002329823 

GSE781 (RCC) 
0.0187+/-0.008 

0.0000646 

0.0624+/-0.0087 

0.0000751 

0.0234+/-0.0128 

0.0001639 

0.1247+/-0.01585 

0.0002513 

GDS2520 

(HNSCC) 

0.0577+/-0.0151 

0.000227314 

0.0742+/-0.0141 

0.000197704 

0.0789+/-0.01866 

0.000348429 

0.1362+/-0.02979 

0.000887682 

GDS1665   

(PTC) 
0.0184+/-0.002 

0.0000039 

0.0407+/-0.0133 

0.0001773 

0.0168+/-

0.002107 

0.0000044 

0.0785+/-0.0276 

0.0007636 

GSE6344 

(RCC stage 1) 

0.0216+/-0.0019 

0.0000038 

0.0802+/-0.0058 

0.0000337 

0.0219+/-0.00208 

0.0000043 

0.1213+/-0.00702 

0.0000494 

GSE6344 

(RCC stage 2) 

0.0196+/-0.0022 

0.0000048 

0.0758+/-0.0096 

0.0000926 

0.0201+/-0.00265 

0.0000070 

0.1098+/-0.01424 

0.0002028 

 

Similar to that in paired datasets, by DNglobal, tumors in all the population datasets were 

further away from the Normal Sample Space than the control samples with normal 

histology (Table 6). On average, for normal samples the distance to the Normal Space 
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defined by DGlobal was 0.0520+/-0.021 as compared to 0.095+/- 0.032 for Tumor 

samples (P < 0.012).  Distances between individual Normal samples and the Normal 

Space defined by DSpecific were also significantly smaller than that that calculated for 

Tumor samples (Normal: 0.054+/-0.018; Tumor: 0.154 +/- 0.029, P < 0.00078). The 

concordance between the populational and paired data sets allows us to exclude the 

hypothesis the ‘between distances’ correlation is driven by ‘individuality effects’, i.e. by 

the fact each single individual has a specific gene expression pattern accounting for the 

observed global/specific distance from tumor / distance from normal concordance. 

 

C) Assessment of the global and signature-specific gene expression distances of 

Multi-stage (three or more stage) datasets  

There were a total of 7 datasets describing tumor and normal samples collected from the 

same subject (1 dataset) or across a number of subjects (6 datasets). The development of 

the tumor usually involves its progression from the relatively benign to invasive and to 

metastatically aggressive phenotypes (Merlo et al. 2006). It is widely accepted that the 

gene expression signatures are able to discriminate between distinct stages of the tumor 

development. To explore the idea whether a summed expression change involving the 

entire set of mRNAs behaves similarly to the changes in signature-specific, “master” 

genes, we calculated DNGlobal and DNSpecific for 7 (six from NCBI GEO and one 

external) datasets representing normal and tumor samples  that were comprised of three 

or more distinct physiological states of the underlying tissue.  
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Table 6: Mean, Standard Deviation and Variance calculated for Global and Specific 

distances from individual samples to the Normal Sample Space in the populational 

datasets 

 

DNGlobal DNSpecific 

DATASET 

From individual 

normal samples to 

the Normal Sample 

Space  

(Mean +/- SD; 

variance) 

From individual 

tumor samples to 

the Normal  

Sample Space 

(Mean +/- SD; 

variance) 

From individual 

normal samples 

to the Normal 

Sample Space 

(Mean +/- SD;  

variance) 

From individual 

tumor samples to 

the Normal 

Sample Space 

(Mean +/- SD; 

variance) 

GSE6791  

(cervical 

cancer) 

0.05721 +/- 

0.01671;  

0.000279167 

0.13059 +/- 

0.02493; 

0.0006216929 

0.064005 +/- 

0.01937; 

0.000375219 

0.1585726 +/- 

0.03052591; 

0.000931831 

GSE10797  

(invasive 

breast cancer)  

0.08878211 +/-  

0.018546943; 

0.0003439891 

0.1480193 +/-  

0.04274649; 

0.0018272624 

0.0475659 +/- 

0.009414584; 

0.0000886343 

0.1545566 +/- 

0.03623782; 

0.0013131799 

GSE12345 

(pleural 

mesothelioma

) 

0.06323201 +/- 

0.01296917; 

0.0001681993 

0.0871369 +/- 

0.02157966; 

0.0004656815 

0.0789417 +/- 

0.01844578; 

0.0003402469 

0.1960226 +/- 

0.05226790; 

0.0027319334 

GSE12452 

(nasopharyng

eal 

carcinoma) 

0.05510947 +/- 

0.01769130; 

0.0003129822 

0.077843 +/- 

0.013091253; 

0.0001713809 

0.0707538 +/- 

0.01992132; 

0.0003968591 

0.1413587 +/- 

0.027503111; 

0.0007564211 

GSE14762 

(RCC) 

0.02229638 +/- 

0.004879693; 

0.0000238114 

0.1080666 +/- 

0.09848668; 

0.009699626 

0.0302542 +/- 

0.007646735; 

0.0000584726 

0.1875954 +/- 

0.09617942; 

0.009250482 

GSE6791 

(HNSCC) 
0.05799383 +/- 

0.01747614; 

0.0003054155 

0.0834743 +/- 

0.01661218; 

0.0002759646 

0.0641543 +/- 

0.01976013; 

0.0003904628 

0.1060674 +/- 

0.02143241; 

0.0004593481 

GSE3678 

(papillary 

thyroid 

carcinoma) 

0.04147274 +/- 

0.006705467; 

0.00004496329 

0.0560819 +/- 

0.005507370; 

0.0000303311 

0.0493836 +/- 

0.009431665; 

0.0000889563 

0.1582217 +/- 

0.009836067; 

0.0000967482 

GSE3524 

(oral 

squamous cell 

carcinoma) 

0.02964479 +/- 

0.006389468; 

0.0000408253 

0.0715533 +/- 

0.01914830; 

0.0003666572 

0.0298668 +/- 

0.005858421; 

0.0000343211 

0.1318646 +/- 

0.03691830; 

0.0013629609 
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Figure 2: Distance parameters successfully separate samples in the esophageal 

sample (GSE1420) dataset representing normal esophagus (blue), Barrett’s 

esophagus (orange) and esophagus carcinoma (red) samples 
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Figure 3(a): Linear graphs depicting the relative distance of every given sample to the 

Normal sample space as defined by DNGlobal and DNSpecific metrics in the multi-stage 

datasets. 
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Figure 3(b): The figure illustrates the linear graphs of the DN metric for the multi-stage 

datasets GSE6764 and GSE10971. Various stages in the progression are depicted in each of 

these datasets. 

 

As GEO database contains only one dataset, GSE1420 (Figure 2), that is represented by 

paired tissue samples profiled using Affimetrix platform, we added to this study 6 

datasets comprised of the samples collected across a number of individuals and profiled 

using the same microarray platform (Table 3). For each dataset, the global and specific 

expression distances were calculated as described above. In all datasets, the progression 



 

46 

of the disease was reflected in an increase of the distance of individual tumors from 

Normal Sample Space. 

 

For each of these datasets linear graphs were generated. Each graph depicts the relative 

distance of every given sample to the Normal Sample Space as defined by DNGlobal and 

DNSpecific metrics (Figure 3). As could be seen at the Figure 1, both DNGlobal and 

DNSpecific place the most malignant tumors farther from the normal tissue control than 

the least malignant tumors or relatively benign tumors precursor states. The only case 

when metastatic tumors were less distant from the Normal Tissue Space than primary 

tumors, was the comparison of metastatic transitional cell carcinomas (TCC) of the 

bladder and superficial TCC with carcinoma in situ (TCC-CIS) (dataset GSE3167). This 

discrepancy might be explained by previous observations that the presence of 

concomitant CIS confers a worse prognosis in patients TCC (Shariat et al. 2007) et al., 

2007). In all the cases when easy visual discrimination of the tumor and normal/benign 

samples could be achieved, the performances of DNGlobal and DNSpecific were 

comparable. These results suggest that the genome-wide metrics may help to assess the 

‘degree of malignancy’ of the tumor cells. 

d) Principal component analysis (PCA) of the distance spaces  

In addition to the direct correlation between indexes, the degree of the mutual correlation 

between DNGlobal and DNSpecific distances could be quantified by the principal 

component analysis (PCA) on the four dimensional space spanned by these four indexes 

(DCglobal, DNglobal, DCspecific, DNspecific). PCA gives us an immediate quantitative 
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appreciation of the relative importance of the architectural modes of gene regulation. 

Typical results of the PCA analysis of the two-point and multipoint (one for each type) 

datasets are reported in Table 7. The patterns of the component loading are remarkably 

consistent across all the 24 (including multi-stage) datasets analyzed. The proportion of 

the variation observed is also similar across the datasets. The variance data for the two-

point data can be observed for paired and population datasets in Tables 8 and 9, 

respectively  

 

In the four dimensional space, the PCA generated four components reflecting the 

variation in the data. The first component (PC1) is the largest one. In this component all 

the indexes enter with the same direction of correlation (loading sign). This component 

might reflect the presence of the attractor. The proportion of the variance it explains 

reflects the relative importance of attractor (cell type) driven dynamics in gene expression 

regulation. As all the distance indexes are positively correlated along this axis and as the 

distance from this attractor is equally measured by all the distance indexes adopted 

(DNglobal, DNspecific, DCglobal, DCspecific), this attractor corresponds to the center of 

distribution, and the PC1 (distance from the attractor) has the same sign as measured by 

any of the indexes. PC1 component explains by far major portion of information 

contained in the expression profiles and, given the homogeneity of signs, it reflects a 

topological ‘distance from a centre’ (here, a center of attractor) from which all the 

samples could have either lesser or higher distance independently of being cancer or 

normal samples. 
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Table 7: The table illustrates the relative importance of components and the actual 

loadings corresponding to the distances in the two-point datasets GDS1165 and 

GSE12345. The highlighted pattern of loadings is consistent across all the datasets. The 

results of the PCA analysis of all other datasets can be found in the Appendix. 

 

Two-point dataset:  Papillary thyroid carcinoma dataset (GDS1665) 

Relative importance 
PC1 

“Attractor” 

PC2 

“Normal/Cance

r difference” 

PC3 

“Degree of 

autonomy” 

PC4 

“Noise” 

Standard deviation 0.0968 0.0398 0.00375 0.00120 

Proportion of Variance 

explained by  

component 

0.8542 0.1444 0.00128 0.00013 

Cumulative Proportion 0.8542 0.9986 0.99987 1.00000 

Component Loadings: 

 

PC1 

“Attractor” 

PC2 

“Normal/Cance

r difference” 

PC3 

“Degree of 

autonomy” 

PC4 

“Noise” 

DCGlobal -0.4055784 0.1936700 -0.4882024 0.7481019 

DNGlobal -0.3365074 -0.2185903 -0.7043803 
-

0.5855164 

DCSpecific -0.6383106 0.6270132 0.3455199 
-

0.2828959 

DNSpecific -0.5610958 -0.7221944 0.3822601 0.1322270 

Multi-stage dataset: Mesothelioma (GSE12345) 

Relative importance: 
PC1 

(Attractor) 

PC2 

(Normal/Cance

r difference) 

PC3 

(Degree of 

autonomy) 

PC4 

(Noise) 

Standard deviation 0.244 0.0846 0.00892 0.00362 

Proportion of Variance 0.892 0.1071 0.00119 0.0002 

Cumulative Proportion 0.892 0.9986 0.9998 1 

Component Loadings: 

 

PC1 

(Attractor) 

PC2 

(Normal/Cance

r difference) 

PC3 

(Degree of 

autonomy) 

PC4 

(Noise) 

DCGlobal -0.34642 0.145146 -0.63865 0.671609 

DNGlobal -0.34828 -0.08457 -0.59061 -0.72299 

DCSpecific -0.51471 0.780904 0.334231 -0.11643 

DNSpecific -0.70269 -0.60164 0.362763 0.112533 
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The second component (PC2) puts in opposition (opposite loading signs) the distances 

from cancer (DC) and normal (DN) poles. The topological structure described by PC2 

corresponds to the fact that normal and cancer poles do in effect occupy distinct positions 

in the gene expression space and thus, as for this structure, there must be a component of 

the distances indexes reflecting the relatively higher (lower) distance of a sample from 

the Normal or Tumor pole (Figure 4). The modulation driven by Tumor/Normal relative 

distance is definitively less important than the cell-kind attractor, as is inferred from the 

observation that the portion of the variance explained by PC2 is considerably lower than 

the portion explained by PC1. Along this component, DNspecific-DNglobal indices enter 

with the same loading sign, while being in opposition to the DCspecific-DCglobal pair.  

 

Table 8: PCA profiles of two-point paired datasets representing the proportion of 

variance observed by each component 

Proportion of Variance / 

Dataset 

PC1    

(Attractor) 

PC2       

(Normal/Cancer 

difference) 

PC3        

(Degree of 

autonomy) 

Ductal Breast Carcinoma 

(GSE5764) 
0.908 0.0901 0.00107 

Lobular Breast Carcinoma 

(GSE5764) 
0.882 0.116 0.00199 

Pulmonary adenocarcinoma 

(GSE2514) 
0.8635 0.1361 0.00022 

Pulmonary adenocarcinoma 

(GSE7670) 
0.917 0.0815 0.00108 

Renal cell carcinoma (GSE6344) 0.777 0.2231 0.00023 

Renal cell carcinoma (GSE781) 0.781 0.219 0.00055 

Head and neck squamous cell 

carcinoma (GSE6631) 
0.954 0.0436 0.00252 

Papillary thyroid carcinoma 

(GSE3467) 
0.8542 0.1444 0.00128 

Esophagus Carcinoma (GSE1420) 0.875 0.124 0.124 
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The third component (PC3) reflects the ‘degree of autonomy’ of the signature genes from 

the global behavior of the cell-kind attractor. Relative strength of PC3 tells us whether 

signature genes possess intrinsic difference from the components of the general 

expression landscape or simply represent transcription units most sensitive to the 

common regulatory signal. Latter behavior is registered by PC2, while purely 

‘democratic’ behavior of gene expression profile is registered by PC1. Intuitively, the 

loading pattern of PC3 component (the loadings correspond to the correlation coefficient 

of the original variables with the components) should have the specific 

(DNspecific,DCspecific) and global (DNglobal,DNspecific) indexes entering with 

opposite signs.  

Table 9: PCA profiles of two-point population datasets representing the proportion 

of variance observed by each component 

Proportion of Variance / Dataset 
PC1    

(Attractor) 

PC2       

(Normal/Cancer 

difference) 

PC3        

(Degree of 

autonomy) 

Invasive Breast (Epithelial) 

Carcinoma (GSE10797) 
0.978 0.0192 0.00233 

Invasive Breast (Stromal) Carcinoma 

(GSE10797) 
0.986 0.012 0.0013 

Cervical Carcinoma (GSE6791) 0.884 0.1153 0.00029 

Head and Neck Carcinoma 

(GSE6791) 
0.967 0.0319 0.00072 

Mesothelioma   (GSE12345) 0.892 0.1071 0.00119 

Nasopharyngeal Carcinoma 

(GSE12452) 
0.934 0.0655 0.00062 

Oral Squamous Cell Carcinoma 

(GSE3524) 
0.914 0.0857 0.00059 

Renal Cell carcinoma(GSE14762) 0.891 0.1027 0.00669 

Papillary thyroid carcinoma 

(GSE3678) 
0.814 0.1847 0.00094 
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The proportion of the variation explained by fourth component (PC4) was negligible in 

all the cases compared to three previously discussed components. The PC4 might 

represent the ‘background’ noise generated by the stromovascular or other cells that may 

be present in the analyzed tissue samples. The PC4 would explain the smallest proportion 

of observed variation between sample sets. Its relatively small size reflects the strict 

quality controls used in the procedure of the selection of the published high-throughput 

datasets used in the current study.  

 
 

Figure 4: Three dimensional representation of the principal components PC1, PC2 and 

PC3 in the two-point paired and population datasets. Normal samples are shown in blue 

and tumor samples are shown in red. This figure specifically highlights the classification 

power of PC2 (Normal/Cancer classifier) that does not require selection or validation of 

the minimized expression signature. 

Paired Datasets 

PC1 PC2 

PC3 

GSE781 GSE3467 GSE7670 

GSE781 GSE1245 GSE6791 

Population Datasets 
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In analyzed datasets, the relative importance of cell-kind driven gene expression 

regulation (PC1) was ranged from 77% to 98%, while the distinction between normal and 

cancer poles (PC2) was ranged from 22% to 1%. The ‘degree of autonomy’ (signature 

genes working independently of global attractor dynamics) was represented by smallest 

component (PC3) being less than 1% in all datasets with an exception of esophageal 

dataset (GSE1420). 

 

e) Cancer – An attractor with intermediate regulatory framework  

Results of the principal component analysis could be used to discern the topological 

structure of cancer and cell-kind attractors. Our observations support the hypothesis of 

cancer being a stable attractor state in the dynamic system with intermediate regulation 

architecture could be described as a midpoint between “democratic” and “autocratic” 

regulatory landscapes. The intermediate paradigm is illustrated through an analysis of 

PC2 that is able to “readily sense” the difference between Normal and Cancer samples 

using both specific and global distance measures. Despite the fact that specific indices 

(gene signatures) enter as higher loadings on PC2 as compared to global distance indexes, 

latter indices also play a substantial role. In the case of purely ‘democratic’ architecture, 

PC3 would be expected to accounts for only a very small portion of variation; otherwise, 

at least some degree of autonomy of signature, or ‘master’, genes shall be acknowledged. 

Thus, after analysis of the principal components we conclude the canalization of the 

tumor development towards the stabilization of the cell population in the cancer attractor 

state follows the intermediate paradigm [not fully “democratic” or not fully “autocratic”]. 
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It is worth noting, that the use of the distances (instead of the differences in the 

expression levels for individual genes) allows for an unbiased estimation of the 

regulatory paradigm in the living system, as each descriptive parameter of the system 

(global, specific, normal, tumor) is described by numerical value and evaluated as such, 

being not affected by the number of genes that passed some arbitrary significance 

threshold chosen for individual dataset. The cancer attractor model arising from the 

results obtained in the present study is depicted in the Figure 5. 

 

 

Figure 5: Panel A describes the topology of the cell-kind and tumor attractors supported 

by present study. Panel B reports the classical view of cancer. The red and blue circles 

represent the cancer and normal attractor states as distinct poles. The rectangle represents 

the phase space of possible gene expression profiles, the stars are the observed samples, 

while the ellipse represents the general cell-kind attractor. From this model we can derive 

that the cells that by one or another reason leave “stable state” and depart from the 

normal attractor may with relatively high probability be attracted to the road toward 

cancer attractor without the prerequisite of getting departed from relatively strong cell-

kind attractor.  

 

As could be seen from the Figure 5, the topology of the cell-kind and tumor attractors 

supported by present study closely follows the Huang’s hypothesis stating that the cancer 

is a sub-attractor of the general cell kind attractor (S. Huang et al. 2009). The main 

A B 
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component defining the location of the sample in the space occupied by all samples is its 

distance from the general cell-kind attractor, thus the samples far removed from the 

normal subattractor are also distant from the cancer subattractor(PC1 component). In case 

of PC1, DN and DC indices are correlated and enter with the same sign into the 

component. The second component, PC2, discriminates if a given sample is closer to the 

cancer or normal sub-attractors (PC2 has opposite signs for DN and DC). Therefore, the 

similarity between cancer and normal samples is greater than the difference between 

them. In other words, prostatic cancer cell remains a prostate cell after all. Notable, this 

view is substantially different from the “classical” understanding of the tumorigenesis, 

when tumor and normal cells occupy the opposite poles of the allowed expression space 

(Fig.5, Panel B). If the“classical” model was correct, PC1 should have DN and DC 

indices entering with opposite signs reflecting negative correlation values.  

  
 

A case study performed on the breast carcinoma dataset (GSE10971) may serve as a good 

illustration for an attractor model. The multi-stage dataset comprises luteal phase 

fallopian tube epithelium from BRCA1/2 mutation carriers and from normal controls as 

well as the samples of the high-grade adnexal serous carcinoma of the ovary. Traditional 

analysis of this data collected using Affymetrix microarrays highlighted specific gene 

signature that passed multiple test correction places. This gene signature places fallopian 

tube epithelium from BRCA1/2 mutation carriers close to the high-grade serous 

carcinoma samples (Tone et al. 2008). Our analysis of both Global and Specific distance 

charcteristics indicated that the normal epithelial samples collected from the patients 
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predisposed to ovarian carcinoma have not yet embarked on the travel toward “cancer” 

attractor (Figure 3b). Other three-point datasets also provided clear discrimination 

between normal and malignant states, while providing relatively poor discrimination for 

the true normal and pre-malignant samples (Figure 3a). The only case when surefooted 

discrimination was possible at the earliest stages of the carcinogenesis was a set of 

samples representing the progression of the hepatocellular carcinoma (dataset GSE6764, 

Figure 3b). All together, our observations point that that the shift toward cancer attractor 

either takes place relatively late in the process of carcinogenesis or requires some time to 

become substantial. This observation also goes well with the hypothesis that cancer-

specific changes of the expression landscape are subject to intermediate regulatory 

pattern, representing the middle ground between “democratic” and “autocratic” 

regulatory landscapes.  

 

Conclusion and Future Perspective 

Here we presented quantitatively evidence supporting the structure of the cancer attractor 

previously suggested by Huang and the hypothesis that cancer-specific changes of the 

expression landscape are subject to intermediate regulatory pattern, representing the 

middle ground between “democratic” and “autocratic” regulatory landscapes.. The 

remarkable similarity of the observations made using multiple independent datasets, 

including these comprised of multiple types of samples demonstrates robustness of the 

genome-wide expression signatures as a mean to diagnose tumors. This study supports 

the view of the cell population as dynamic system. Moreover, the strong correlation 
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between the ‘distance from normal’ and ‘distance from cancer’ poles for all the analyzed 

samples proves existence of a cell-kind-attractor, with cancer and normal poles 

representing two sub-attractors. 

 

There are a number of immediate applications of the analyses performed. First, after 

initial sets of normal and tumors samples for each particular cancer are analyzed to define 

Normal and Cancer Spaces, the classification of any new sample to be diagnosed could 

be achieved by calculation sample specific distance from this sample to Normal Space 

(DN) and Cancer Sample (DC). If DN > DC sample will be classified as cancer, If DC > 

DN, sample will be classified as normal. An increase in the number of the initially 

profiled samples will provide for better definition of the Normal and Cancer Spaces and 

better classification of the subsequent samples. Second, for every sample to be diagnosed, 

the distance from the sample to the Normal Space could be plotted linearly, and the 

degree of the malignancy of the given sample will be proportional to the linear distance. 

Importantly, relative degree of the malignancy could be assigned to the sample using 

whole-genome patterns of the gene expression, without the need for specific biomarkers 

or gene signatures. Third, the principal component analysis (PCA) on the four 

dimensional space spanned by four indexes (DCGlobal, DNGlobal, DCSpecific, 

DNSpecific) could be used for diagnostic discrimination of the sampels. Each new 

sample to be diagnosed should be added to initial (reference) dataset of the cancer and 

normal tissues of the particular cell-type, PCA executed at whole dataset, then first three 

components (PC1, PC2, PC3) should be used for three dimensional graphing of the 
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results. New samples will be co-classified with the group of the samples with similar 

degree of the malignancy.  

 

Cell populations are collective dynamic systems living in a phase space where only very 

specific low energy states (cell kind attractors) are compatible with survival. These 

attractor states define cell differentiation. When cell departs from its cell-kind attractor, 

there are only three possible scenarios. One, cell could die as a result of a profound 

deregulation of its molecular networks incompatible with survival. Second, cell could be 

attracted back to the normal pole of the cell-kind attractor. Third, cell could randomly fall 

under the influence of the cancer pole of the cell-kind attractor, and acquire tumorigenic 

properties. We are still far from the exploiting a statistical mechanics of life, but our data 

suggest that, in principle, this can be done. The ‘cell kind’ barriers are energetically much 

higher than the normal/cancer one, thus, offering a possibility of the ‘global reversion’ of 

cancer phenotype. It might be possible to find the way to “kick” the cell out of 

equilibrium, and, therefore, out of the influence of cancer pole of cell-kind attractor. 

Being removed from low energy state, cell will be pushed to face three possible fates 

again: death, normalization or attracting back to the cancer pole. Of course, the molecular 

or other mean of the ‘global reversion’ therapy should be delivered specifically to the 

cancer cells. ‘Global reversion’ therapy cannot be based on the exploitation of ‘master 

key genes’, but should rely on more general means, for example, previously postulated 

morphogenetic fields sharing some similarities in embryonic and cancer cells.  
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3. Abundance based transcriptome analysis as a tool for automated 

discovery of the tumor biomarkers 

 

 

 

Rationale 

The purpose of the current study is to explore the composition of the human 

transcriptome over a wide range of normal tissues and tumors using EST abundance 

analysis. We hypothesize that analysis of EST abundance might help to identify novel 

biomarkers of cancer initiation and progression. 

 

Background 

The enormous scale in which cancer affected mankind in the past century emphasizes an 

importance of both prevention and early stage detection of this devastating disease. 

Indeed, biomarkers project a promising future for the early stage detection of cancer 

(Oluwadara & Chiappelli 2009; Cazzaniga et al. 2009; A. Scott & Salgia 2008). 

Additionally, prognostic biomarkers provide vital information influencing therapeutic 

decisions (Ludwig & John N Weinstein 2005; J. J. Liang et al. 2009; Hwa et al. 2008). A 

number of bioinformatics and machine learning methods for the detection of biomarkers 

have been developed and utilized previously (Phan et al. 2009).  
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Unlike genomes comprised of relatively stable, species-specific DNA, tissue 

transcriptomes are very dynamic in nature. The functional and structural landscape of a 

particular cell phenotype depends heavily on the relative frequency of the transcription of 

individual genes. These frequencies, usually described as expression levels, are prone to 

change under the influence of the environmental and internal stimuli (Martínez & Reyes-

Valdés 2008). Gene expression can be quantitatively measured at the transcriptional level 

by a number of low- to high-throughput methods. 

 

The inventory of the human transcripts has increased dramatically in recent years, to 

include large number of non-coding mRNAs. Accumulating data on non-protein-coding 

transcripts suggest that besides the regulatory machinery driven by proteins, another yet 

enigmatic regulatory network of RNA molecules operates and has considerable impact on 

cell functions (Széll et al. 2008; Pontius et al. 2007; Waterston et al. 2002). Indeed, 

exonic sequences cover only 1.1% of the Human genome; the majority of not-yet-

processed and spliced transcripts are represented by intronic and intergenic sequences (J. 

C. Venter et al. 2001). Therefore, it is not surprising that aside from mutations and 

polymorphisms in protein-coding genes, much of the variation between individuals, 

including that which may affect our predispositions to cancer, is probably due to 

differences in the non-coding regions of the genome (Mattick JS 2003).  

 

In the course of an analysis of tissue-specific transcriptomes, many non-coding 

transcripts have been identified. Additionally, the class of the transcripts with relatively 
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low coding potential has been described. Later transcripts encode only short open reading 

frames (50–70 amino acids) and, in many cases, these ORFs lack Kozak sequences at 

translation start sites or are not evolutionarily conserved. Many of these non-coding 

transcripts RNAs with low coding potential were predicted using bioinformatic methods. 

For example, a study of Washietl et al, 2005 evaluated conserved genomic DNA 

sequences for signatures of structural conservation in base-pairing patterns with 

exceptional thermodynamic stability and predicted more than 30,000 structured RNA 

elements in the human genome (Washietl et al. 2005). Almost a 1,000 of these sequences 

were found to be conserved across all vertebrates (Washietl et al. 2005). Chromosome 

tiling experiments using DNA microarrays also demonstrated that most of the genome 

sequences are transcribed, and that many introns encode for the novel RNA species 

(Weile et al. 2007; Kapranov et al. 2005). 

 

The role of non-coding RNAs, particularly miRNA, in the context of cancer has been 

recently established (Visone & Croce 2009; Conrad et al. 2006). In many cases non-

coding RNA species has been shown to regulate the alternative splicing of essential 

proteins, a phenomenon that has great implication in inflammation, disease and cancer 

(Mallardo et al. 2008). Interestingly, the use of tiling microarrays revealed genome-wide 

hyper-transcription in mouse embryonic stem cells (ESCs), including expression of 

normally silent, non-coding regions. This hyper-transcription reflects the unusual "open" 

structure of ESC chromatin and contributes to the plasticity of the stem cells. Hyper-

transcription points represent additional commonality between ESC and cancer (Efroni et 
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al. 2008; B. M. Turner 2008). Thus, it is logical to assume that non-coding RNAs could 

become valuable source for novel prognostic and diagnostic biomarkers for human 

malignancies.  

 

DNA Microarrays and protein arrays, with their inherent ability to capture the diverse 

aspects of cancer are the most commonly used data source for the discovery of novel 

biomarkers. Most often, these arrays are fabricated to cover only the protein encoding 

genes (Ambros 2001). In a number of previous studies, meta analysis was attempted 

using a compendium of microarrays allowing one to mine for novel markers of cancer 

(Xu et al. 2007; Wren 2009). However, these high-level analyses in most part were 

restricted to searches for the markers performing in the context of a particular subtype of 

cancer. Multi-cancer analysis attempts are less common. One example of this kind of 

studies is analysis of expression profiles covering 60 human cancer cell lines of NCI-60 

panel spanning 9 different human tissues (Shankavaram et al. 2007).  

 

Complete transcriptome studies of cancer cells that include non-coding transcripts are 

warranted. One barrier to such studies is relative difficulty of obtaining expression 

profiles that are comprehensive enough to cover low-abundancy intra and intergenic 

transcripts. However, these difficulties may be solved using publicly available data 

describing EST sequences. Expressed Sequence Tags (ESTs) were introduced during the 

initiation phase of high-throughput cDNA sequencing and quickly became useful in the 

identification of novel genes and mapping of the genomic sequences (M. D. Adams et al. 
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1991). On average, these sequences are relatively short, with a length ranging from 400 

to 600 bases, and are relatively inaccurate (NCBI 2002). Many genome projects utilized 

the EST based approach to gene mapping, resulting in an ever-increasing number of 

ESTs in the databases maintained by NCBI. ESTs provide a quick and inexpensive 

roadmap not only to identify novel genes, but also to obtain data on gene expression and 

gene regulation in various tissues. The highly redundant nature of ESTs makes them an 

excellent material for the RNA expression quantification in silico. The study of cancer 

transcriptomes using both coding and non-coding ESTs would help to comprehend the 

cancer cell expression patterns down to a better degree than the classic gene-coding RNA 

studies.  

 

The expression patterns of both tumor tissues and their normal counterparts may be 

profiled by analyzing the largest publicly available expression database, the UniGene. 

This system is developed, maintained and updated by the National Center for 

Biotechnological Information at National Institute of Health (NCBI, NIH). UniGene is 

comprised of non-redundant set of gene-centered clusters of the expressed sequences, 

including mRNAs, ESTs and high throughput cDNA (HTC) sequences (NCBI 2002; D. 

L. Wheeler et al. 2007). To avoid false alignment within the gene clusters, the repetitive 

stretches of the nucleotides are masked (Schneeberger et al. 2005). High quality reads on 

the templates of expressed sequences with a sequence length of at least 100 base pairs are 

used for subsequent clustering. UniGene forms the basis for other core NCBI resources 

utilized in the routine searches for protein similarities and putative evolutionary 
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relationships and in comparisons of EST-based expression profiles of various tissues 

(NCBI 2002). 

 

ESTs form the building blocks of UniGene and represent an integral part of nearly every 

gene cluster in the UniGene. The EST data in the UniGene database can be utilized to 

study the expression patterns of genes in normal tissues and tumor samples. This 

methodology enables a study of the abnormal expression of genes in cancer through the 

direct comparison of the diverse express patterns of genes within a wide range of human 

tissues and tumor samples and will possibly lead to the discovery of new human tumor 

marker candidates.  

 

Hypothesis  

Abundance based meta-analysis of tissue-specific transcriptomes may reveal novel 

diagnostic and prognostic biomarkers for human tumors. Here we attempted to profile the 

variation in the abundance of ESTs derived from normal tissues and tumors and available 

through UniGene database system and to extract candidate biomarker genes for various 

human malignancies. 

 

 

Materials and Methods 

To compare the patterns of the gene expression in the normal and tumor EST libraries, 

the UniGene build 210 of Homo sapiens was downloaded from the NCBI ftp portal of the 

Unigene database. Descriptions of the UniGene cluster data and the cDNA libraries 
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associated with each of these clusters were deconvoluted. This particular version of the 

UniGene database contained 123,687 UniGene clusters associated with 8668 cDNA 

libraries used to generate all contributing ESTs. Perl scripts and MySQL database 

management system were used to automate the data extraction and to provide for the data 

storage, respectively. R data analysis package with Bioconductor was utilized to perform 

the statistical analysis on the downloaded dataset (Gregory Alvord et al. 2007; Mark 

Reimers & Carey 2006). 

 

The abundance of ESTs was used as the fundamental quantitative unit describing the 

expression levels similarly to the hybridization intensity of the DNA microarray. The 

abundance of the ESTs belonging to a particular gene cluster in a given tissue of the 

Unigene was defined as the ratio of a number of ESTs that belong to the particular gene 

cluster and are expressed in a given tissue to the total number of ESTs captured from that 

particular tissue. The terms “UniGene cluster”, “cluster” and “unigene” are used 

interchangeably in the following text. Diversity coefficients of the tissue transcriptomes 

as represented by abundance measures for various UniGene clusters were calculated 

using Shannon diversity index (Shannon 1948). This index was formally defined in a 

recent study addressing diversity in the context of transcriptome (Martínez & Reyes-

Valdés 2008). The richness (quantity of unigenes) and the evenness of each tissue were 

calculated using Pielou index. A t-test was used to compare the diversities in the normal 

and the corresponding tumor tissues (Magurran 1988). The significance of the variation 

between the paired normal and cancer human tissues was tested using non-parametric 
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Mann-Whitney procedure (H. Mann & Whitney 1947). Metastats, an expression variation 

analysis tool that handles sparsely sampled features was used to compute the false 

discovery rate (White et al. 2009). Gene cluster related information for the significant 

unigenes was extracted from the data provided in the current version of the UniGene 

database. Functional analysis was performed using a population of genes with 

expressions significantly skewed toward tumors. For this analysis we used the KEGG 

pathway painter (KPP) specially developed for 

this project using the KEGG API (Kawashima et 

al. 2003). The detailed description of the KPP tool 

is given in the Appendix.  

 

Results and Discussion 

a) Development of the standard vocabulary 

describing human tissues 

The text descriptors annotating all the tissues and 

cancer types that served as a source for the 

production of the cDNA libraries comprising 

UniGene were extracted. For most of these 

libraries, data descriptions containing information 

about their tissue of origin and type of the tumor 

were available. The complete list of tissue 

descriptors includes a total of 64 tissue categories 

Table 10: A list of broader tumor 

descriptors used in this study.  
Cancer Type 

Liver tumors 

Leukemia 

Lymphoma 

Pancreatic tumors 

Head and neck tumors 

Germ cell tumors 

Cervical tumors 

Breast (mammary gland) tumors 

Thymoma 

Uterine tumors 

Testicular tumors 

Esophageal tumors 

Adrenal tumors 

Kidney tumors 

Meningioma 

Retinoblastoma 

Multiple myeloma 

Adenoid cystic carcinoma 

(unspecified tissue) 

Gallbladder tumors 

Prostate tumors 

Lung tumors 

Nerve tissue tumors 

Bladder tumors 

Bone tumors 

Ovarian tumors 

Gastrointestinal tumors 

Schwannoma/glioma/astrocytoma 

Skin tumors 

Non-malignant tumors (benign 

tumors/cysts/benign proliferative 

disease) 
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and 51 different types of cancers originated in these tissues.  

 

These library descriptors were compressed into broader tissue descriptors. For example, 

terms “hepatic cancer”, “hepatic carcinoma”, “hepatic tumor”, “liver cancer”, “liver 

tumor”, “HCC” etc were co-classified as “Hepatic tumors”. Re-classification of the 

descriptors resulted in a final vocabulary comprised of 37 different tissues and 28 types 

of tumors derived form these tissues (Table 10). The descriptions of cDNA libraries 

stored in the MySQL database were automatically updated using these broadly defined 

classes that were utilized in further analysis. 

 

b) Classification of the cDNA libraries used in the study  

For the purpose of this study, all cDNA libraries were classified in four different broad 

categories: i) Normal, ii) Cancer, iii) Non-malignant diseases (e.g. Parkinson disease, 

ischemia) and iv) Libraries lacking proper tissue descriptions.  

 

For each tissue, we have calculated number of normal and cancer libraries, numbers of 

gene clusters (unigenes) and total number of ESTs derived from normal and cancer 

libraries (Table 11), as well as libraries made of the diseased tissues and libraries lacking 

tissue descriptions. The normal and the cancer groups represented the largest part (87%) 

of the expression data represented by the ESTs. There were also a substantial number of 

ESTs lacking proper descriptions (12.5%), while the amount of ESTs from the diseased 

tissues and/or benign tumors was negligible compared to the other three groups. The 
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diseased tissue samples were mostly restricted to the bone and muscle diseases (e.g. 

Duchenne dystrophy), illustrating an unevenness of efforts in characterization of 

transcriptome changes in non-malignant disorders (Table 12). ESTs from the non-

malignant diseased tissues and tissues lacking proper descriptors were excluded from 

further analysis.  

 

According to our observations, cumulative efforts aimed at the cancer transcriptomes, 

though, seems to be more advanced, as UniGene database contains more cancer cDNA 

libraries (N = 4642) than the libraries built using normal tissues (N = 2682). An overall  

excess of cancer cDNA libraries spans an entire dataset, with every tissue covered by 

twice as much of tumor-derived libraries than normal libraries. On the other hand, the 

total number of ESTs derived from each normal tissue, on average, is substantially higher 

compared to that derived from respective cancer. This paradox can be explained by the 

fundamental objective of the Human Genome project to catalogue all the genes in the 

normal human genome.  

 

As could be seen from Table 11, the distribution of ESTs across tumor and normal tissues 

is far from being well-balanced. For example, categories “heart”, “vasculature”, 

“peritoneum”, “ear” and “pineal gland” lack tumor ESTs, while “olfactory mucosa”, 

“chest wall” and “penis” lack ESTs derived form normal tissues. This discrepancy was, 

to certain extent, normalized by taking into account per tissue abundance for each 

unigene.  
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c) Unique and Common Unigenes 

After extraction the data describing ESTs and gene clusters, it became feasible to 

separately extract tissue-specific unigenes represented by both normal and tumor ESTs, 

tissue-specific unigenes built solely upon ESTs derived from tumor libraries and tissue-

specific unigenes that contain only ESTs derived from normal libraries (Table 12). 

 

For example, according to the Table 12, in the brain the number of “normal unigenes” 

represents the number of EST clusters where at least one EST was derived from normal 

brain samples; the number of “cancer unigenes” reflect the number of EST clusters, 

where at least one EST was derived from brain tumor samples; the number of “unique or 

exclusive normal unigenes” is a number of EST clusters, where all brain-specific ESTs 

were derived from normal brain samples; the number of “exclusive cancer unigenes” 

represent the number of EST clusters, where all brain-specific ESTs were derived from 

brain tumor samples; number of “common unigenes” is a number of EST clusters, where 

at least one EST was derived from normal brain samples and at least one EST was 

derived from brain tumor sample. Tissues with sparse representation by ESTs are 

removed from the table. EST clusters summarized in the Table 12 represents both the 

protein coding as well as non-coding genes. 
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Table 11: Statistics describing the libraries, unigenes (gene clusters) and ESTs derived 

from normal tissues and tumors samples. Normal unigenes are defined as gene clusters 

that contain at least one EST from the particular normal tissue; Cancer unigenes are 

defined as gene clusters that contain at least one EST from the cDNA library representing 

a particular tumor type. 

  

As could be seen from the Table 12, there is a substantial number of unigenes that 

include both normal and tumor ESTs derived from the same tissue (“common unigenes”).  

Tissue 
Normal 
libraries 

Normal 
unigenes 

Normal 
ESTs 

Cancer 
libraries 

Cancer 
unigenes 

Cancer 
ESTs 

Brain 497 34604 787007 87 18642 174529 

Tissues lacking descriptors 59 39259 352400 174 24057 223929 

Eye 56 24976 160932 3 8086 39123 

eart 32 14619 77193 0 0 0 

Liver 39 15068 99207 54 13687 107936 

Kidney 31 19817 107596 87 17058 89069 

Bone 9 6157 16172 22 13702 50358 

Adrenal gland 12 6029 19762 14 6274 13221 

Muscle 19 15397 75841 6 5592 23898 

Testis tissue 170 25782 147432 73 13859 104177 

Pregnancy tissue 472 31392 512435 9 7091 30351 

Pancreas 19 14908 105643 18 14142 102394 

Lung tissue 159 22985 158569 630 23543 195964 

Lymphatic tissue 93 23380 220930 342 16707 148729 

Vasculature 18 9876 46530 0 0 0 

Lower gastrointestinal tissue 240 13571 83030 1040 24175 229598 

Skin 27 13031 74232 33 13274 119604 

Adipose tissue 13 5468 12417 1 558 720 

Mammary gland 330 11156 47829 767 16565 106111 

Upper gastrointestinal tissue 13 4075 12363 262 12470 72982 

Peritoneum 5 180 291 0 0 0 

Female reproductive tissue 27 12859 53761 318 24819 250839 

Parathyroid 1 24 24 2 7045 20602 

Prostate 144 16667 81107 165 14591 107355 

Salivary gland 4 912 2514 3 2891 10355 

Connective tissue 8 4770 16389 17 16599 82051 

Thyroid 79 4700 12031 280 9706 33611 

Pineal gland 4 3437 6353 0 0 0 

Ear 6 5523 16378 0 0 0 

Pituitary gland 7 5403 13430 2 923 1392 

Nerve tissue 7 9582 25579 7 609 701 

Bladder tissue 12 3304 8550 53 6611 18295 

Olfactory mucosa 0 0 0 1 2 2 

Chest wall 0 0 0 1 3 3 

Penis 0 0 0 2 6 8 
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These common unigenes corresponds to the parts of the cellular machinery in one or 

another way essential for running both normal and tumor cells derived from the same 

tissue. Existence of a large number of such unigenes signifies the inevitable need to fulfill 

basic metabolic and other cellular function. However, it seems that the sizes of the gene 

sets supporting basic functions differ from tissue to tissue.  

 

As inferred from the Table 12, the total number of unigenes in normal and cancer groups 

was classified as either exclusive or common unigenes. The portion of exclusive and 

common unigenes in the normal and cancer categories is illustrated as percentage of total 

unigenes in each category (Table 12).  

 

The category “pregnancy-related tissues” corresponds to the largest number of exclusive 

normal unigenes. Our definition of “pregnancy-related tissues” includes umbilical cord, 

amniotic fluid and embryonic tissues. The high number of gene clusters that contain at 

least one EST from tissues of this category can be attributed to the fact that embryonic 

parts represent all tissues of the human body.  

 

 

Next in the tissue list ranked by number of exclusively normal unigenes are brain and eye 

followed by testis. These patterns correspond to the diversity patterns previously reported 

for these tissues (Martínez & Reyes-Valdés 2008; Piatigorsky 1989). In case of exclusive 

cancer unigenes these numbers might be influenced both by an intrinsic versatility of 

expression and the variability among the assortment of cancer subtypes derived of the 
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particular tissue. Largest number of unigenes that include at least one tumor EST derived 

from a given were found in the categories “lower gastrointestinal tissues”,  followed by 

“connective tissue”,  “uterus’ and “ovary”. 

 

 

Table 12: The table summarizes tissue-specific distribution of EST clusters composed of 

both normal and tumor ESTs, tumor ESTs only and normal ESTs only.  

Tissue 
Normal 

unigenes 
Cancer 

unigenes 

Exclusive 
Normal 

unigenes 
(ENU) 

Exclusive 
Cancer 

unigenes 
(ECU) 

Common 
unigenes 

(CU) 

% of 
ENU 

% of 
CNU 

% of 
ECU 

% of 
CCU 

Brain 34604 18642 19392 3430 15212 56.04 43.96 18.40 81.60 
Pregnancy –
related tissues 31392 7091 24706 405 6686 78.70 21.30 5.71 94.29 

Testis tissue 25782 13859 15725 3802 10057 60.99 39.01 27.43 72.57 

Eye 24976 8086 17787 897 7189 71.22 28.78 11.09 88.91 

Lymphatic tissue 23380 16707 10960 4287 12420 46.88 53.12 25.66 74.34 

Lung tissue 22985 23543 8662 9220 14323 37.69 62.31 39.16 60.84 

Kidney 19817 17058 8300 5541 11517 41.88 58.12 32.48 67.52 

Prostate 16667 14591 7091 5015 9576 42.55 57.45 34.37 65.63 

Muscle 15397 5592 11343 1538 4054 73.67 26.33 27.50 72.50 

Liver 15068 13687 6263 4882 8805 41.56 58.44 35.67 64.33 

Pancreas 14908 14142 6068 5302 8840 40.70 59.30 37.49 62.51 
Lower 
gastrointestinal 
tract 

13571 24175 2539 13143 11032 18.71 81.29 54.37 45.63 

Skin 13031 13274 4345 4588 8686 33.34 66.66 34.56 65.44 

Mammary gland 11156 16565 3198 8607 7958 28.67 71.33 51.96 48.04 

Uterus 11084 20800 2097 11813 8987 18.92 81.08 56.79 43.21 

Nerve tissue 9582 609 9298 325 284 97.04 2.96 53.37 46.63 

Bone 6157 13702 1997 9542 4160 32.43 67.57 69.64 30.36 

Adrenal gland 6029 6274 3287 3532 2742 54.52 45.48 56.30 43.70 

Ovary 5503 14698 1377 10572 4126 25.02 74.98 71.93 28.07 

Adipose tissue 5468 558 5241 331 227 95.85 4.15 59.32 40.68 

Pituitary gland 5403 923 4905 425 498 90.78 9.22 46.05 53.95 
Connective 
tissue 

4770 16599 1030 12859 3740 21.59 78.41 77.47 22.53 

Thyroid 4700 9706 1764 6770 2936 37.53 62.47 69.75 30.25 
Upper 
gastrointestinal 
tract 

4075 12470 986 9381 3089 24.20 75.80 75.23 24.77 

Bladder tissue 3304 6611 1646 4953 1658 49.82 50.18 74.92 25.08 

Salivary gland 912 2891 644 2623 268 70.61 29.39 90.73 9.27 

Parathyroid 24 7045 8 7029 16 33.33 66.67 99.77 0.23 
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The percentage of unigenes contributing to the exclusive and common pools by the 

normal and cancerous gene clusters is also summarized in the table. In the cases of tissues 

with substantial number of unigenes (Eg: Brain, testis, eye, lung, kidney), the cancer 

unigenes tend to show a lot of commonality with the normal pool of unigenes. 

Interestingly, the exclusive gene clusters of the cancerous tissue were underrepresented 

when compared to the pool of exclusive normal unigenes. It might push the notion that 

the spectrum of transcriptional activity in normal tissue is higher than that of the cancer 

tissue. If this is the case, then the increased transcription observed in cancer might be due 

to amplified transcription of already active genes rather than increased transcriptional 

diversity. 

d) Estimation of the diversity of transcripts within normal and tumor tissues  

An introduction of the tissue-specific measures of the diversity may shed light on the 

versatility of the transcription of human genome in particular tissue contexts. An 

estimation of the diversity has been was performed through quantification of the tissue 

labels attached to ESTs contributing to unigenes that are expressed in each tissue (or 

tumor) of interest.  

 

Diversity is the composition of two fundamental components: a) Variety and b) Relative 

abundance. The tissue-specific “richness” coefficients (S) depict the diversity pattern in a 

way that reflects not only the number of unigenes per se, but also the expression levels 

(abundance) of these unigenes. Thus, the “richness” of each unigene contributes to the 

tissue-specific “richness”. Although as a heterogeneity measure, Shannon’s index takes 
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into account the evenness of the abundance of species; it is possible to calculate a 

separate additional measure of evenness (Magurran 1988). Evenness is the normalized 

Shannon and falls in the range of 0 and 1. An evenness of 1 indicates that the all unigenes 

contributing to tissue transcriptome are equally abundant, while an evenness of 0 

indicates that there is absolutely no commonality in the abundance of unigenes. Both the 

normal tissue and tumors demonstrate substantial evenness of the distribution of 

abundances of the ESTs contributing to the gene clusters. High values of the evenness 

factor indicate that the process of the normalization of EST abundance successfully 

reduced an initial bias of the UniGene database, where tissues were unevenly covered by 

EST libraries.  

 

Comparison of the diversity measures calculated for normal and cancerous tissues as 

represented by the abundance of contributing ESTs is presented in Tables 13 and 14. 

Among human tumors, the most diverse pattern of expression was observed in the 

category: “lower gastrointestinal cancer” comprising gastric, colonic and intestinal 

malignancies. The lung cancer tissue group consisting of tumors associated with lung, 

bronchus, pleura, trachea, larynx and pharynx displayed second most highly diverse 

pattern. Observed diversity patterns observed also provided interesting data concerning 

expression patterns in normal human tissues. According to our observations, eye tops the 

list of the tissues with highly diverse expression patterns, thus, confirming a conclusion 

inferred after the quantification of exclusively normal unigenes (Table 12). Second place 

in the list is occupied by testis.  
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Table 13: Diversity statistics describing of diversity, richness, evenness and variance of 

diversity reflecting the abundance of ESTs in each of the normal human tissues. 

Tissue 
Number of  
Sequences 

Diversity 
H' 

Richness  
S 

Evenness 
E 

Variance 
of H' 

Standard 
Error of H' 

Eye 160932 9.31899 24976 0.920333 1.18E-05 0.003435 

Testis tissue 147432 9.250885 25782 0.91075 1.63E-05 0.004042 

Pregnancy tissue 512435 9.013833 31392 0.870539 5.31E-06 0.002305 

Kidney 107596 8.950741 19817 0.904636 2.55E-05 0.005045 

Lung tissue 158569 8.946467 22985 0.890852 1.80E-05 0.004248 

Prostate 81107 8.883301 16667 0.913808 2.99E-05 0.005467 
Female reproductive 53761 8.859325 12859 0.936326 3.19E-05 0.005646 

Lymphatic tissue 220930 8.833965 23380 0.878159 1.33E-05 0.003644 

Brain 787007 8.804831 34604 0.842429 4.39E-06 0.002095 

Skin 74232 8.713065 13031 0.919576 2.42E-05 0.004923 

Heart 77193 8.70495 14619 0.907704 3.26E-05 0.005707 

Nerve tissue 25579 8.553971 9582 0.933061 7.60E-05 0.00872 
Muscle 75841 8.449439 15397 0.876323 4.65E-05 0.006819 

Mammary gland 47829 8.400288 11156 0.901344 6.12E-05 0.007825 

Pancreas 105643 8.316743 14908 0.865457 4.31E-05 0.006565 

LowerGastrointestinal tissue 83030 8.208109 13571 0.862587 4.55E-05 0.006743 

Vascular 46530 8.08016 9876 0.878482 7.21E-05 0.008489 
Adipose tissue 12417 8.06399 5468 0.936947 0.000141 0.011867 

Bone 16172 7.874164 6157 0.902447 0.000206 0.014359 

Ear 16378 7.80055 5523 0.905285 0.00017 0.013049 

Pineal gland 6353 7.785438 3437 0.956165 0.000204 0.014297 

Adrenal gland 19762 7.602619 6029 0.873429 0.000195 0.01397 

Liver 99207 7.601805 15068 0.790181 7.87E-05 0.008873 
Pituitary gland 13430 7.510406 5403 0.873841 0.000351 0.018742 

Thyroid 12031 7.501853 4700 0.887235 0.000338 0.018382 

Connective tissue 16389 7.355674 4770 0.868428 0.000208 0.014424 

Bladder tissue 8550 7.272814 3304 0.897558 0.000324 0.018008 

UpperGastrointestinal tissue 12363 7.166962 4075 0.862178 0.000325 0.018018 

Salivary gland 2514 5.292427 912 0.776512 0.001936 0.044001 
Peritoneum 291 4.893458 180 0.942326 0.003833 0.061913 

 

 

The diversity patterns of the normal tissue and corresponding tumor tissue were 

compared by calculating the tissue specific T-statistics (Table 15). According to this 

measure, the diversity patterns in the tumor and normal lung tissue appears to be similar. 

With the exception on lung tissue, all other human tissue demonstrated significant 

changes in the diversity after malignization. The diversity pattern in the lung tumors 

might be overestimated due to the tumor set comprising of lung, bronchus, pleura, 

trachea, larynx and pharynx tissues. The lack of variation between the normal and tumor 

lung tissue diversity might be due to an overestimation in the diversity in the normal 
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tissue due to large variety of the epithelial tissue components of this organ that is 

comprised of lung, bronchus, pleura, trachea, larynx and pharynx. 

 

 

Table 14: Diversity statistics describing of diversity, richness, evenness and variance of 

diversity reflecting the abundance of ESTs in each of the human tumors. 

Tissue 
Number of  
Sequences 

Diversity 
H' 

Richness 
S 

Evenness 
E 

Variance 
of H' 

Standard 
Error of H' 

Lower Gastro- 
intestinal tissue 

229598 9.028835 24175 0.894558 9.99E-06 0.003161 

Lung tissue 195964 8.954499 23543 0.889527 1.44E-05 0.003793 

Female 
reproductive 

250839 8.924292 24819 0.881902 1.13E-05 0.003357 

Connective 
tissue 

82051 8.868648 16599 0.912685 2.56E-05 0.005058 

Bone 50358 8.853011 13702 0.929421 3.74E-05 0.006112 

Kidney 89069 8.834877 17058 0.906664 2.99E-05 0.005466 

Mammary gland 106111 8.782686 16565 0.904029 2.19E-05 0.004683 

Brain 174529 8.679998 18642 0.882726 1.71E-05 0.004138 

Lymphatic 
tissue 

148729 8.596777 16707 0.884116 1.86E-05 0.004308 

Prostate 107355 8.504952 14591 0.887027 2.44E-05 0.004939 

Testis tissue 104177 8.479037 13859 0.889096 2.44E-05 0.004942 

Upper Gastro-  
Intestinal tissue 72982 8.407071 12470 0.891422 3.60E-05 0.006 

Pancreas 102394 8.392749 14142 0.878187 3.09E-05 0.005563 

Thyroid 33611 8.384825 9706 0.91333 7.34E-05 0.008569 

Parathyroid 20602 8.383832 7045 0.946249 6.29E-05 0.007932 

Skin 119604 8.377987 13274 0.882491 2.20E-05 0.004694 

Liver 107936 8.286482 13687 0.870045 3.27E-05 0.005723 

Adrenal gland 13221 8.232684 6274 0.941506 0.000129 0.011374 

Bladder tissue 18295 8.165420 6611 0.928259 0.000104 0.010189 

Pregnancy 
tissue 

30351 7.966101 7091 0.898441 8.31E-05 0.009115 

Eye 39123 7.833186 8086 0.870558 9.87E-05 0.009933 

Muscle 23898 7.677075 5592 0.889674 0.00011 0.010511 

Salivary gland 10355 7.2727 2891 0.912583 0.000192 0.013858 

Nerve tissue 701 6.274774 609 0.978626 0.001336 0.036549 

Pituitary gland 1392 6.217004 923 0.910566 0.002162 0.046495 

Adipose tissue 720 6.033908 558 0.954074 0.002033 0.045086 

 

 

Interestingly, “human tumor” categories were almost evenly split into those with 

increased expression diversity when compared to its normal tissue counterpart, and those 
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with decreased diversity. As could be seen form tables 15(a) and 15(b), tumors with 

increased diversity mostly originate from epithelial cells (carcinomas), while tumors with 

decreased diversity were mostly represented by the malignancies of non-epithelial 

tissues, e.g. brain (gliomas and astrocytomas), pituitary gland, nerve, muscle. The only 

exception to this list was skin. However, in our classification skin tumors included 

melanomas that are derived of melanocytes (non-epithelial skin components). 

Importantly, the changes in the diversity patterns observed in this study cannot be 

explained by the change in the alternative splicing, as our datapoints represent EST 

clusters (unigenes) rather than ESTs. 

 

 

Table 15(a): The following table illustrates the tissues having increased diversity in 

tumors compared to normal tissue. T-statistics reflects the diversity in the EST abundance 

data of the Unigene system in human normal tissues and the corresponding cancerous 

tissues.  
Normal Cancer 

Tissue Number 
of ESTs 

Diversity Variance 
Number 
of ESTs 

Diversity Variance 
T-stat P-value 

Lung tissue 158569 8.946467 1.80E-05 195964 8.954499 1.44E-05 -1.4110 0.158321 

Female-
reproductive 

53761 8.859325 3.19E-05 250839 8.924292 1.13E-05 -9.8843 <0.00001 

Mammary gland 
47829 8.400288 6.12E-05 106111 8.782687 2.19E-05 -41.948 <0.00001 

Pancreas 
105643 8.316743 4.31E-05 102394 8.39275 3.09E-05 -8.8356 <0.00001 

Lower GI tissue 
83030 8.208109 4.55E-05 229598 9.028836 9.99E-06 -110.17 <0.00001 

Bone 
16172 7.874164 0.000206 50358 8.853011 3.74E-05 -62.717 <0.00001 

Adrenal gland 
19762 7.602619 0.000195 13221 8.232684 0.000129 -34.975 <0.00001 

Liver 
99207 7.601805 7.87E-05 107936 8.286482 3.27E-05 -64.869 <0.00001 

Thyroid 
12031 7.501853 0.000338 33611 8.384826 7.34E-05 -43.537 <0.00001 

Connective tissue 
16389 7.355674 0.000208 82051 8.868648 2.56E-05 -98.977 <0.00001 

Bladder tissue 
8550 7.272814 0.000324 18295 8.16542 0.000104 -43.141 <0.00001 

Upper GI tissue 
12363 7.166962 0.000325 72982 8.407071 3.60E-05 -65.300 <0.00001 

Salivary gland 
2514 5.292427 0.001936 10355 7.2727 0.000192 -42.926 <0.00001 
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Table 15(b): The following table illustrates the tissues having decreased diversity in 

tumors compared to normal tissue. T-statistics reflect the diversity in the EST abundance 

data of the Unigene system in human normal tissues and the corresponding cancerous 

tissues.  

 
Normal Cancer 

Tissue Number 
of ESTs 

Diversity Variance 
Number 
of ESTs 

Diversity Variance 
T-stat P-value 

Eye 160932 9.31899 1.18E-05 39123 7.833186 9.87E-05 141.345 <0.00001 

Testis tissue 147432 9.250885 1.63E-05 104177 8.479038 2.44E-05 120.985 <0.00001 

Pregnancy tissue 512435 9.013833 5.31E-06 30351 7.966101 8.31E-05 111.429 <0.00001 

Kidney 107596 8.950741 2.55E-05 89069 8.834878 2.99E-05 15.5664 <0.00001 

Prostate 81107 8.883301 2.99E-05 107355 8.504952 2.44E-05 51.3443 <0.00001 
Lymphatic tissue 220930 8.833965 1.33E-05 148729 8.596777 1.86E-05 41.9949 <0.00001 

Brain 787007 8.804831 4.39E-06 174529 8.679999 1.71E-05 26.9283 <0.00001 

Skin 74232 8.713065 2.42E-05 119604 8.377987 2.20E-05 49.2975 <0.00001 

Nerve tissue 25579 8.553971 7.60E-05 701 6.274775 0.001336 60.6583 <0.00001 

Muscle 75841 8.449439 4.65E-05 23898 7.677075 0.00011 61.6460 <0.00001 

Adipose tissue 12417 8.06399 0.000141 720 6.033909 0.002033 43.5439 <0.00001 
Pituitary gland 13430 7.510406 0.000351 1392 6.217005 0.002162 25.8007 <0.00001 

 

 

e) An analysis of the unigenes for putative tumor biomarkers 

The tissue-specific unigenes exclusively represented by cancer or normal ESTs (Table 

12) represent a unique mining resource that may be used to produce biomarker candidates 

for a particular cancer type or for a set of related cancers. Given an enormous share 

occupied by these exclusive gene clusters in a wide range of human tissues, extracting the 

gene clusters with differences between the normal and cancer tissues, poses interesting 

statistical problem.  

 

A total of 27 human tumor tissues having a corresponding normal tissue were used to 

identify the biomarkers. Pair-wise Mann-Whitney test was performed on the normalized 

EST abundance data of each Unigene gene cluster. The gene clusters which show 

significant variation in this pair-wise non-parametric test across the 27 tissues were 

filtered for further analyses. The tissue groups are marked by only their pathological 
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characterstic (normal or tumor) leaving their tissue identities in the filtered gene clusters. 

This data is scaled to illustrate EST abundance as frequency. Metastats is used on this 

grouped normal and tumor frequency data to extract differentially abundant features 

(gene clusters). The gene clusters with a significant degree of differential abundance were 

only considered as biomarkers. 

 

Of the 123,687 gene clusters in the current Unigene database system, only 2863 were 

observed to have significant variation (P-values < 0.05) by pairwise non-parametric 

testing. These significant unigenes were ran through Metastats software to filter these 

unigenes differentiating normal and tumor samples in order to pinpoint ones associated 

with low false discovery rate (<0.05). This filter resulted in a final list of candidate 

unigenes (1751 gene clusters) comprised of 668 tumor-specific and 1083 normal-specific 

expressing gene clusters.  

 

Heatmap of the EST abundance of these significant unigenes showed a clear difference 

between the normal and tumor groups (Figure 6). Selected unigenes were mostly 

represented by the protein-coding gene clusters and, to some extent, by non-coding 

unigenes, with 139 non-coding unigenes in tumor biomarker list and 157 unigenes in the 

normal (anti-cancer) list. The Genbank accession numbers for all listed biomarker 

candidate transcripts are presented in the Appendix. 

 

There were 526 cancer specific and 826 normal specific protein-coding gene clusters 

whose expression patterns were statistically different between normal and tumor tissues. 
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These unigenes are potential candidate biomarkers that may help to identify various 

subtypes of human cancer. An entire list of these biomarkers is also given in an 

Appendix. 

 
Figure 6: Heatmap of the EST abundance data from 27 different human tissues from the 

normal and corresponding cancer cDNA libraries of the unigene system. Blue bar at the 

top of heatmap identifies the normal tissues, while red bar marks their malignant 

counterparts. 

 

f) Functional analysis of protein-coding unigenes identified as tumor biomarker 

candidates 

Functional analysis of protein-coding unigenes identified as tumor biomarker candidates 

was performed using the molecular pathway information provided in the KEGG 
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knowledge base (Kanehisa et al. 2008). A novel tool, KEGG Pathway painter (KPP) was 

built in-house with the purpose to automatically identify the function of the candidate 

biomarker unigenes through high-throughput analysis of the KEGG pathway maps. The 

methodology underlying KPP processing and the detailed description of KPP are 

available in the Appendix. Briefly, the complete sets of human molecular pathways were 

extracted by KPP separately for the cancer-specific and normal-specific significant 

unigenes. The enrichment of the pathways with the genes that belong to particular 

functional categories was assessed using the DAVID functional analysis framework 

(Dennis et al. 2003; Huang et al. 2009). 

Figure 7: KPP representation of the KEGG cell cycle pathway map painted using genes 

differentially expressed in the malignant tumors (red background) as compared to normal 

human tissues. 
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The enrichment analysis revealed that sets of the pathways highlighted by the cancer and 

normal biomarker candidates are substantially different. In this context, the normal 

specific genes could be called anti-cancer markers as they are exclusively present in the 

normal tissue, and are devoid in cancerous tissue. The fundamental biological processes 

enriched by cancer specific unigenes as represented by KPP analysis include cell cycle 

regulation, p53 signaling, ubiquitin mediated proteolysis and apoptosis. The enhanced 

proliferation activity influenced by the set of tumor biomarker candidate unigenes in the 

perspective of cell cycle is illustrated in Figure 7.  

 
Figure 8: Illustration of the Genes expressing more abundantly in the normal tissue (red 

background) compared to the cancerous tissue on the KEGG Calcium signaling pathway. 
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Wide set of cancer specific pathways pertaining to chronic myeloid leukemia, melanoma, 

glioma, pancreatic cancer, prostate cancer, colorectal cancer, bladder cancer, small cell 

and non-small cell lung cancer was also shown as being enriched by these cancer-specific 

markers. The extensive range of cancer pathways enrichment supports the cancer-

specificity of the unigenes associated in the context.  

 

The anti-cancer markers represented by the unigenes abundant in normal tissues, on the 

other hand, demonstrated an enrichment of the broad variety of biological pathways and 

networks. The cascades highlighted by this analysis include calcium signaling, MAPK 

signaling, insulin signaling, gonadotropin-releasing hormone (GnRH) signaling and T-

cell receptor signaling. The enrichment of calcium signaling pathway by the anti-cancer 

markers (Specific to normal tissue) is depicted visually in figure 8. The specific emphasis 

identified in the context of normal tissue in comparison to cancer tissue is signaling in a 

broad sense. Speaking generally, our analysis redefined cancer as the loss of tissue-

specific signaling, while, at the same time, cancer demonstrated gains in the proliferating 

system. This definition is equivalent to the classic understanding of the tumor 

phenomenon. The full set of the pathways enriched by the cancer and anti-cancer 

biomarkers could be found in the appendix. 

Conclusion 

In this study, the diversity of the human tissue specific transcriptomes was studied. After 

normalization, relative abundancies of the ESTs derived from normal human tissues were 

compared to these collected using their malignant counterparts. An analysis of the 
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abundance of EST in the UniGene database was proven useful as a tool for a search for 

candidate biomarkers for human tumors. Functional analysis of the protein-coding 

biomarker candidates described cancer as the loss of tissue-specific signaling with 

simultaneous gain in the proliferating system.  
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4. Effects of the tumor-specific telomere rearrangements on the 

adjacent gene expressions 

 

 

 

Rationale 

Telomere rearrangements may result in the disturbance of the expression levels of 

adjacent genes. Telomere position effect may provide a mechanism to incrementally alter 

phenotype of the cancer cells. Telomere-related cancer studies concentrated at the 

structural changes have to be complemented by studies of gene expression changes. Here 

we hypothesize that the telomere rearrangements commonly found in cancer cells perturb 

an expression of the genes adjacent to telomeres in human tumors.  

Background 

Telomeres are made of guanine (G) rich repetitive DNA, composed of TTAGGG motifs 

representing the ends of chromosomes. DNA loss incurred during the DNA replication 

leads to the formation of 3’ G-rich protrusions which transforms into G-quartet structure 

at both the chromosomal ends (Pommier, Lebeau et al. 1995). The G-rich single stranded 

overhangs, with the help of telomeric repeat binding factors (TRF1 and TRF2) bind to the 

double-stranded telomeric region, forming a lasso-like loop structure called the 

T(telomere)-loop (Shin, Hong et al. 2006; Verdun and Karlseder 2007). This T-loop 
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structure is supposed to protect the chromosome ends from recognition by recombination 

and double strand DNA-repair machinery.  

 

Telomeres also undergo length alterations during tumor development. These alterations 

have been shown to be independent markers of cancer prognosis (Bisoffi, Heaphy et al. 

2006). Normal human somatic cells stop dividing after a finite number (~50) of 

replication cycles, a phenomenon known as the “Hayflick limit” (Hayflick 1965). This 

limitation of cell cycle is associated with the reduction of the number of telomere repeats 

at the chromosomal ends after each cycle. The reduction of the telomeres activates p53 

which prevents the damage of cells by inducing DNA damage repair and inhibiting 

further cell division, causing cellular senescence (Artandi and Attardi 2005). However, 

some cells are exempt from the replicative senescence, particularly, the immortal germ 

cells and some tissue stem and progenitor cells expressing special telomere restoring 

enzyme called telomerase (Sherr and DePinho 2000).  

 

Telomerase is a complex ribonucleoprotein that consists of the a DNA polymerase and a 

RNA template components and possesses reverse transcriptase activity at the telomeres 

(Cech 2004). In human cells, this enzyme stabilizes telomere length by adding TTAGGG 

repeats onto the telomeric ends during the S phase of cell cycle (Hug and Lingner 2006). 

The reactivation of telomerase in the somatic cells leads to the uncontrollable cell 

division, which might further pave the way to cancer. In the cells with p53 mutations, an 

expression of telomerase lifts the “Hayflick limit” and helps to maintain genomic 

instability (Finkel, Serrano et al. 2007). 
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Telomere maintenance is essential to the proliferation of tumor cells as expression of the 

mutant catalytic subunit of human telomerase results in complete inhibition of telomerase 

activity, reducing the telomere length, which ultimately lead to the death of tumor cells 

(Hahn, Stewart et al. 1999). Moreover, the minimal set of molecular events required for 

direct tumorogenic conversion of normal human epithelial and fibroblast cells requires an 

abnormal expression of the telomerase catalytic subunit (hTERT) in combination with 

overexpression of two oncogenes, the simian virus 40 large-T oncoprotein and an 

oncogenic allele of H-ras (Hahn, Counter et al. 1999). Indeed, a majority of human tumor 

cells acquire immortality through expression of the catalytic subunit of telomerase 

(hTERT) (Hiyama and Hiyama 2002). Approximately 10% of human cancers do not 

show evidence of telomerase activity, and a subset of these maintain telomere lengths by 

a recombination-based mechanism termed alternative lengthening of telomeres (ALT). 

The ALT phenotype, relatively common in certain sarcomas and germ cell tumors, is 

very rare in carcinomas. This alternative mechanism of telomere maintenance does not 

depend on the actions of telomerase (Stewart 2005). 

 

In addition to the telomerase that is directly responsible for addition of telomeric 

sequences to the ends of the chromosomes, a plethora of other proteins also play 

important roles in the regulation of telomere length maintenance (de Lange 2005). 

Simultaneous and balanced upregulation of genes encoding telomere-associated proteins 

in cancer cell is an unlikely event. As active telomerase alone is not sufficient for 

preserving normal functionality of the telomere-associated protein complex in cancer 
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cells, many telomerase-expressing tumors exhibit chromosomal instability triggered by 

dysfunctional telomeres (Gisselsson and Hoglund 2005; Calcagnile and Gisselsson 2007). 

Invasive tumors frequently demonstrate intra-tumoral heterogeneity of telomere lengths 

that include both an increase in telomere length over the normal range and telomere 

shortening (Meeker, Hicks et al. 2004; Hansel, Meeker et al. 2006; Maida, Kyo et al. 

2006).  

 

In eukaryotic yeast cells, particularly in Saccharomyces cerevisiae, genes located near 

telomeres undergo reversible silencing (Tham and Zakian 2002). This effect, termed as 

the
 
telomere position effect (TPE), involve

 
changes in the chromatin conformation and is 

dependent on both the
 
distance from the telomere and the telomere length (Tham and 

Zakian 2002). The silencing effect of the genes near telomeres, and the spontaneous 

reactivation of these genes have been described in HeLa cells (Baur, Zou et al. 2001; 

Baur, Shay et al. 2004). However, the literature on possibility of TPE in mammalian cells 

is scarce and conclusions remain controversial. Some researchers failed to find evidence
 

for TPE and concluded that in higher eukaryotes the gene expression is independent of 

telomere length (Bayne, Broccoli et al. 1994; Sprung, Sabatier et al. 1996). Others 

demonstrated an influence of telomeres on the
 
expression of the adjacent transgenes 

within the human and mouse cell lines (Baur, Zou et al. 2001; Koering, Pollice et al. 

2002; Pedram, Sprung et al. 2006). A study of the expression of endogenous
 
genes 

located near telomeres in human fibroblasts revealed a discontinuous pattern of altered 

gene expression
 
during senescence-associated telomere shortening (Ning, Xu et al. 2003). 
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Subtelomeric regions may buffer or facilitate the spreading of silencing that emanates 

from the telomere (Ottaviani, Gilson et al. 2008). As these regions are particularly prone 

to recombination in tumor cells, they may add an extra level of the complexity to the 

problem reviewed. 

 

Telomere rearrangements observed in cancer cells may result in the disturbance of the 

expression levels of the adjacent genes, and this in genomic instability. So far, the studies 

of the telomeres in cancer cells were concentrated at the structural changes in the 

telomeres themselves and the quantification of the telomere-associated molecules,  

including telomerase and telomere-binding proteins TRF1, TRF2, TIN1, POT1, TPP1, 

Cdc13p (Hug and Lingner 2006). In our opinion, the characterization of expression levels 

of the genes located near telomeres in tumors and normal tissues may shed light on the 

effects of TPE in the physiology of cancer. Therefore, we assessed effects of the telomere 

position and its rearrangements in the cancer cell studying the perturbations of expression 

of the genes adjacent to telomeres in human tumors.   

Hypothesis 

Telomere rearrangements commonly found in cancer cells perturb an expression of the 

genes adjacent to telomeres in human tumors.   

Materials and Methods 

To investigate the possibility that rearrangement of telomeres in cancer cells may lead to 

the disturbance in the expression levels of adjacent genes, we retrieved the publicly 
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available data describing changes in gene expression patterns in the prostatic carcinoma, 

a tumor with common findings of the telomerase reactivation and telomere erosion 

(Vukovic, Park et al. 2003; Meeker, Hicks et al. 2004; Meeker 2006). Prostatic carcinoma  

dataset GDS1439 was obtained from Gene Expression Omnibus (GEO) repository 

(Barrett and Edgar 2006). This dataset describes raw data collected in course of the 

microarray profiling of primary (N=7) and metastatic (N=6) prostate carcinoma samples 

along with the samples of normal prostate tissue (N = 6). The microarray platform 

employed for this study was the Affymetrix GeneChip U133 Plus 2.0 (GPL570), an 

oligonucleotide array covering an entire human genome with over 47,000 transcript-

specific probes.  

 

The GenBank annotated Human Genome (Build 36, Version 2) sequence was 

downloaded from the NCBI Genome repository (Benson, Karsch-Mizrachi et al. 2007). 

Contig information for each of the human chromosomes was obtained from the NCBI 

MapViewer (Wheeler, Barrett et al. 2007). R data analysis package with Bioconductor 

(Reimers and Carey 2006; Gregory Alvord, Roayaei et al. 2007) and Perl scripting 

language were used to perform the computational analysis. 

 

Based on the GenBank annotation and the contig information, locations for each human 

gene on their respective chromosomes were calculated as absolute numeric coordinates 

defined as nucleotide position from the end of the available chromosome sequence to the 

gene. All genes were associated with their expression data based on their HUGO gene 

symbols. A total of 17522 out of 28479 genes annotated in the human genome at the time 
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of the project were in this manner assigned to the human genome map and associated 

with their respective expression levels. These mapped transcripts were then categorized 

into telomere associated and non-telomere (body of the chromosome) associated fractions 

based on their position. Two computational experiments were performed (see Fig 9). In 

experiment I, 10% of genes on either extreme of each chromosome (except acrocentric 

chromosomes with only one telomere), accounting to a total of 20% per chromosome 

(10% for acrocentric chromosome) were defined as telomere associated genes, and 

remaining 80% were defined as centromere associated or non-telomeric genes. In 

experiment II the telomere associated gene definition was narrowed down, to include 

only 5% on each extreme of chromosome, accounting to a total of 10% telomere 

associated genes per chromosome.  

 

 

 
Figure 9: All the genes in each of the human chromosomes were subdivided into sum 

of their telomere associated (T) genes and rest as the centromere associated (C) genes 

based on the number of the genes as shown above in two experiments. 
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The gene expression data were background corrected, normalized and the individual gene 

expression values were calculated from the CEL files using Robust Multichip Average 

(RMA) method of background adjusted, normalized, and log transformed perfect match 

(PM)  values (Irizarry, Bolstad et al. 2003). RMA software is a part of the R package affy 

that is a module of Bioconductor. It provides an interactive environment for data analysis 

and exploration of Affymetrix oligonucleotide array’s probe level data (Gautier, Cope et 

al. 2004).  The mean expression value of all the samples in each sample type (B-normal, 

P-primary and M-metastatic) was taken as the representative expression for that gene in 

the particular stage of the tumor development or in normal prostatic tissue. 

 

Results and Discussion 

a) The definition of the over/underexpressed genes 

The dataset GDS1439 contains gene expression profiles for three types of prostate 

samples: primary (N=7) and metastatic (N=6) prostatic carcinoma samples along with the 

samples of normal prostate tissue (N = 6). Therefore, in this study over- and 

underexpressed genes could be derived in three different comparisons: metastatic (M) vs. 

primary (P) samples, metastatic (M) vs. normal (B) samples and primary (P) vs. normal 

(B) samples. For the purpose of this study we termed the genes that significantly change 

their expression in M/B comparison. If M/B was greater than or equal to 1.4, then the 

gene was considered to be overexpressed; else if M/B less than or equal to 0.71 (i.e. 

1/1.4), then the gene was considered to be underexpressed. A total of 528 over/under 
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expressed genes pertinent to the GEO dataset GDS1439 correspond to the 3% of the 

genes matched with GenBank annotation of the whole Human genome (Benson, Karsch-

Mizrachi et al. 2007). In Experiment I, the number of over/under expressed genes present 

in telomere-associated regions covering 20% of coding human chromosome DNA was 

15% of the total number of over/under expressed genes.  

 

The percentage of centromere associated genes that change their expression was 

approximately the same for every chromosome, while the percentage of telomere 

associated genes that change their expression was chromosome specific, as demonstrated 

by high variation in a number of over/under expressed genes on individual chromosomes 

(see Fig 10). Chromosome Y was devoid of overexpressed genes in the non-telomere 
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Figure 10: The graph depicts the percentage of genes that change their expression on each 

chromosome in the telomere and centromere associated regions. On average, the 

percentage of the over/under expressed genes varies by a greater degree in the telomere 

associated region compared to the body of chromosome, when individual chromosomes 

are taken into account.  
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associated regions. Telomeric regions of many other chromosomes were shown to lack 

either under or over expressed genes or both.  

b) Correlation with tumor stage 

The patterns of the changes of gene expression at different stages of tumor development 

might be different for the telomeric genes and genes in the body of chromosome. The 

metastatic to normal (M/B) gene expression ratio was initially introduced in order to 

estimate the variation of expression in telomeric as compared to centromere associated 

genes. We interpreted this measure as representation of expression change imbalance 

between telomeric and centromeric regions. Mann-Whitney test (Mann and Whitney 

1947), a non-parametric testing procedure was employed for assessing the statistical 

significance of the difference in the gene expressions in the telomere and non-telomere 

associated regions in each of the chromosome.  

 

The gene expression ratios reflecting the shift of the tissue between three studied states 

(M/B, M/P and P/B) were calculated as independent vectors for all genes associated with 

the telomeres and the body of chromosomes. The differences between the groups of 

corresponding ratios for telomere-associated and body of chromosome-associated genes 

were tested using the Mann-Whitney test under the null hypothesis that they are similar. 

Thus, the correlation between the location of the gene and the change in its expression 

was tested. The tests were performed for the whole human genome (i.e. all telomeres 

together vs. all bodies of chromosomes together) at once, and for chromosome separately.  
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The chromosomes that showed statistically significant variation in Experiment I, were 

again tested for variation in Experiment II. The chromosomes that revealed significant 

differences in both experiments were again tested for variation in the telomere and non-

telomere associated regions using metastatic to primary (M/P) and primary to normal 

(P/B) gene expression ratios. These analyses allowed to correlate the changes in the 

expression for genes located in telomere and centromere associated regions with the stage 

of the tumor development. 

 

In Experiment I, the variation of the M/B ratio across the telomere and centromere 

associated regions was significant by Mann-Whitney test (p-values < 0.005) in 

chromosomes 4, 5, 8, 9, 16 and X. There was a marginal significance (p-value < 0.05) in 

the variation for the chromosomes 2, 10 and Y as assessed by the same test. Mann-

Whitney test results also showed the difference in the M/B ratio (p-values < 0.005) for 

chromosomes 1, 4, 5, 7, 8, 16 and X, and a marginal variation (p-value < 0.05) for 

chromosome 13 in Experiment II. The chromosomes that show significant variation in 

M/B ratio in both Experiments I and II (4, 5, 8, X, 16) were further tested for variation in 

the M/P ratio and P/B ratio in the telomere and non-telomere associated regions. 

 

The expression change imbalance of the M/P ratios for the telomeric and body of 

chromosome associated was significant when all of these chromosomes were taken into 

account both in Experiment I (P < 8.53e-14) and Experiment II (P < 1.05e-11). In case of 

P/B ratios, expression change imbalance was not significant in almost all the cases, 

except for chromosomes 12, 15 and 16 using telomere definition of Experiment II (see 
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Table 16). Differences in P/B ratios were not significant even when all the chromosomes 

are compared together representing the genome. 

 

Table 16: Telomere associated genes are more likely to change their level of 

expression as compared to non-telomere genes. When metastatic tumors were 

compared to normal prostates using (M/P) ratio, these changes were significant for 11 

out of 24 chromosomes (Exp I) or 8 out of 24 chromosomes (Exp II), while in the 

primary tumor to normal tissue (P/B) comparisons only 3 out of 24 chromosomes 

demonstrated expression change imbalance. HS-Highly significant (p-value < 0.0005), 

S-Significant (p-value < 0.005), MS-Marginally significant (p-value < 0.05), NS-Not 

significant (p-value ≥ 0.05). 

  

Metastatic / Normal Metastatic / Primary Primary / Normal 

Chr 
Experiment 

I 

Experiment 

II 

Experiment 

I 

Experiment 

II 

Experiment 

I 

Experiment 

II 

1 NS S NS S MS NS 

2 MS NS NS NS MS NS 

3 NS NS NS NS NS NS 

4 HS HS S S NS NS 

5 HS S HS HS NS NS 

6 NS NS NS NS NS NS 

7 NS S NS S NS NS 

8 HS S MS MS NS NS 

9 S NS MS NS NS NS 

10 MS NS NS NS NS NS 

11 NS NS NS NS NS NS 

12 NS NS NS NS NS MS 

13 NS MS NS NS NS NS 

14 NS NS NS NS NS NS 

15 MS NS NS MS NS MS 

16 S HS MS S NS S 

17 NS NS NS NS NS NS 

18 NS NS NS NS NS NS 

19 NS NS NS NS NS NS 

20 NS NS NS NS NS NS 

21 MS NS MS NS MS NS 

22 NS NS NS NS NS NS 

X HS S HS MS NS NS 

Y MS NS NS NS NS NS 
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As could be seen from the Table 1, the variation in the ratios of the gene expression 

between the telomere and non-telomere (centromere) associated regions increases with 

the progression of the prostatic tumor and is the most pronounced for the metastatic 

tumors.  

c) Variation in distribution of expression changes 

To assess possible variation in distribution of individual gene expression values in each 

of the metastatic (M) and normal (B) samples, these values were subjected to pairwise t-

test.  The p-values obtained in the t-test were adjusted to control the false discovery rate 

(FDR) using Multtest module of R package (Pollard, Dudoit et al. Dec 2004) that utilizes 

Benjamini and Hochberg (BH) method (Benjamini and Hochberg 2000). The 

distributions of these adjusted p-values from telomere and non-telomere associated genes 

were also constructed using R. The overall variation in the distribution of p-values in the 

two regions (telomere and centromere associated) was tested using Kolmogorov-Smirnov 

test (Conover 1971). This variation in the p-values was also verified by t-test and rank 

test (Mann and Whitney 1947).  

 

The paired t-test between the metastatic (M) and normal (B) expression data for every 

gene in the genome resulted in a total of 1521 significantly varying genes (p-value < 

0.05) after controlling the false discovery rate. Interestingly, the distributions of these p-

values in the telomere and centromere associated genes as defined in Experiment I were 

found to be more dense at lower cutoffs (p-value < 0.01), showing a significant variation 

between metastatic and normal samples. The variation between the telomere and 



 

97 

centromere associated genes in the context of metastatic and normal samples was 

assessed by testing the variation between these p-values by a number of statistical tests  

(Table 17). A significant variation was seen in these p-values corresponding to telomere 

and centromere associated genes, returning the p-values in the order of 0.001. The rank 

test between the first 1000 p-values of telomere and centromere associated genes show 

even more substantial variation described by a p-value less than 3.18796e-05. 

 

d) Gene Ontology analysis 

For each of the the telomere and centromere associated genes with p-values remaining 

significant after FDR adjustement, the gene ontology (GO) term descriptions defining its 

relationship to certain cellular compartment, molecular function and/or biological process 

were retrieved. A comparative analysis of the GO terms distributions between the  

telomere and non-telomere associated genes was done using the goTools package of R 

(Paquet and Yang 2007) and presented on Fig. 11.  

 

Table 17: The p-values obtained from the t-test between the metastatic and normal 

expression data were subjected to various statistical tests to find the variation between 

the telomere and centromere associated genes. The significant p-values (< 0.05) 

corresponding to genes in the telomere and centromere associated regions indeed show 

variation in all three tests. 

 

Test 

p-values for all the genes, 

including not significantly 

changed p-values < 0.05 

Kolmogorov-Smirnov test 0.06352 0.003997 

t-test NS 0.001201 

Rank test (Mann-Whitney 

test) 
NS 0.000886426 
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Figure 11: The bar graph in each GO category represents the ratio of the number of the 

direct GO identifiers associated with the telomere associated (shown in black) and 

centromere associated (shown in grey) genes to the number of GO identifiers associated 

with all the genes in the Affymetrix GeneChipU133 Plus 2.0 oligonucleotide array. As 

could be seen from the Figure, relative abundances of the GO terms in each GO category 

for the telomere and centromere associated genes were similar.  
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A comparative analysis of the GO terms in the telomere and centromere associated genes 

was performed with reference to the number of probe identifiers and GO identifiers 

associated with all the genes in the array. GO term analysis revealed that differentially 

expressed telomere and non-telomere associated genes are involved in a wide variety of 

biological processes, carrying various molecular functions in different cellular locations. 

The relative abundances of the GO terms and probe identifiers in each GO category for 

the telomere and centromere associated genes were almost equal (see Fig 11), revealing 

the functional similarity of the telomere and non-telomere associated genes based on GO 

terms. This functional similarity points out that the variation between the telomere and 

non-telomere associated genes was due to the effect of their adjacent to telomeres rather 

than any bias in their functional importance. 

e) Defining the maximal length of the subtelomeric fragment that might be 

influenced by telomere rearrangements in cancer cells 

In the Experiments I and II genes were called “telomeric” or “centromeric” (non-telomere 

associated) based on the overall number of genes on each chromosome (Fig 9). However, 

in the perspective of TPE, a physical distance from the gene to the telomere is important. 

We hypothesized that the plotting the gene expression ratios obtained in M/B (metastatic 

to normal), M/P (metastatic to primary) and P/B (primary to normal) comparisons across 

the chromosome length may help to define the distances with measurable TPE.  

 

The gene locus table of the GenBank annotated Human genome (Build 36, Version 2) 

sequence was downloaded from the NCBI. Exact physical coordinates for each gene have 
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been utilized to map M/B ratios for the genes present on Affymetrix chip across 

chromosomal lengths. These plots have not revealed any discernible pattern that might 

help to define the length of the telomeric fragment susceptible to TPE. However, the plots 

provided for the clear illustration of the concept that the scale of the changes in the gene 

expression dramatically increases with the progression of the prostatic tumors (see Fig 12 

for an example of the plot).  
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Figure 12: This graph plots M/B, M/P and P/B gene expression ratios (y-axis) to the 

physical distance from the telomere (x-axis) on human chromosome X. The variation in 

the M/B ratio (blue) is larger than the variation in M/P ratio (purple), while the P/B ratio 

(yellow), is characterized by smallest variation along the  length of chromosome X. 
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An alternative approach to find the characteristic length of the subtelomeric region 

susceptible to TPE is to calculate gene expression changes in a variety of different sub-

telomere lengths windows that were arbitrary chosen from the range of 0.2MB to 50MB. 

The tested arbitrary telomeric lengths were stepwise increased up to as the maximum 

physical length that can be assigned to telomere from the end of the chromosome to 

centromere of this chromosome in each of its arms. This telomere length window was 

defined globally for the whole genome, while chromosomes with shorter arms ended up 

with a smaller subtelomeric region. The genomic regions accounting for 5MB of physical 

length on either side of the centromere were truncated as the heterochromatic parts of the 

chromosomes surrounding its centromeres might also effect the gene expression levels 

via CPE (centromere positioning effect). 

 

The metastatic to normal (M/B) expression ratios were used to find the variation between 

the telomere genes and genes in the body of chromosome for 20 gradually increasing 

subtelomeric windows. The analysis was performed by separately for a) all genes 

changing their expression, b) upregulated genes only and c) downregulated genes only. 

Cumulative changes in the expression levels of the genes located within given 

subtelomeric window and the rest of the chromosome were compared. 
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The distributions of the transcripts in the upregulated groups in the telomere and 

centromere associated regions were calculated by sorting them into bins of the range 1 - 

1.1, 1.1 - 1.2, 1.2 - 1.3, 1.4 - 1.5, and > 1.5. Similar methodology was used for 

downregulated groups where the bins representing the ranges of 1 - 1/1.1, 1/1.1 – 1/1.2, 

1/1.2 – 1/1.3, 1/1.3 – 1/1.4, 1/1.4 – 1/1.5 and < 1/1.5. The distribution plots were built for 

each of the subtelomere windows; Fig 13 represents the distribution of upregulated and 

downregulated genes for subtelomeric window of 5 Mb. Although these distributions 

were difficult to assess visually, statistical analysis performed on the frequency 

distribution help to dissect expression change imbalance between the telomere and 

centromere associated regions in specific subtelomeric windows. Chi-square test of 

 
Figure 13: This bargraph plots the number of upregulated (black) and downregulated 

(grey) transcripts in each of the M/B ratio bins for the whole human genome (WG), 

considering a telomere length of 5 MB on either side of chromosome. Similar bargraphs 

were built for each subtelomeric window separately for a) all genes changing their 

expression, b) upregulated genes only and c) downregulated genes only. Genes located 

within given subtelomeric window and the rest of the chromosome were compared. 
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homogeneity was used to find the extent of variation between the distributions in the 

telomere and centromere associated genes.   

 

The homogeneity test was performed separately for a) all genes changing their 

expression, b) upregulated genes only and c) downregulated genes only. Genes located 

within given subtelomeric window and the rest of the chromosomes were compared. 

Differentially expressing groups DEG1, DEG2 and DEG3 comprising of transcripts with 

varying levels of changes in their expression were formed by excluding transcripts with 

less pronounced expression changes. M/B ratios in the range 1/1.1 to 1.1, 1/1.2 to 1.2 and 

1/1.3 to 1.3 were excluded in DEG1, DEG2 and DEG3, respectively (Table 18). Almost 

all the tests seem to be significant when gene expression changes were considered wit no 

regards to their directionality, except for subtelomere windows of 2, 4, 5 and 6 Mb. The 

position effects for downregulated group of genes were significant when all expression 

ratios were considered, but lost significance when tests were performed only for genes in 

DEG1 and DEG2 groups. The upregulated group of genes demonstrated substantial 

position effect in telomeres with lengths ranging from 0.5 Mb to 5Mb. The smaller DEG2 

and DEG1 groups with larger differences in expression levels seem pinpoint subtelomeric 

windows with length range of 2 to 4Mb, with largest effect at the subtelomeric window of 

3Mb. 

 

To study the correlation between the significance of gene expression changes and gene 

location in the subtelomere region, chi-square test using a 2x2 contingency table was 

performed. For each arbitary subtelomeric window, a 2x2 contingency table consisting of  
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the number of significantly changing genes within the subtelomere window, significantly 

changing genes outside of the subtelomere window, not significantly changing genes 

within the subtelomere window and  not significantly changing genes outside of the 

subtelomere window was computed for two different significance levels, DEG2 and 

DEG3. The chi-square tests were performed on each of these tables using a) all genes 

changing their expression, b) upregulated genes only and c) downregulated genes only. 

Table 18: The table represents the p-values obtained from the chi-square test of 

homogeneity between the distribution of M/B ratios in the telomere and centromere 

associated regions for varying subtelomeric windows. P-values shown in grey are not 

significant (>=0.05). In the differentially expressing groups (DEG), the transcripts 

showing minimal changes of expression were excluded. In DEG1, DEG2 and DEG3 M/B 

ratios in the range 1/1.1 to 1.1, 1/1.2 to 1.2 and 1/1.3 to 1.3 were excluded respectively. 

 

 

Telomere  

.Length... 
              All (Up + Down regulated)            Downregulated             Upregulated 

  All DEG 1 DEG 2 DEG 3 All      DEG 1 DEG 2 All DEG 1 DEG 2 

50 MB 8.47E-21 0 7.37E-118 2.53E-18 0.00047 0.361 0.284 0.549 0.675 0.747 

40 MB 4.33E-20 0 9.12E-114 1.42E-11 3.59E-07 0.017 0.05 0.22 0.319 0.245 

30 MB 3.37E-30 0 3.53E-95 2.24E-10 9.93E-10 0.502 0.999 0.017 0.008 0.006 

25 MB 8.01E-33 0 7.66E-88 1.47E-07 2.00E-08 0.099 0.84 0.095 0.055 0.045 

20 MB 1.35E-51 0 1.47E-77 3.29E-08 2.07E-10 0.42 0.957 0.016 0.014 0.144 

15 MB 1.60E-53 0 6.36E-67 0.002048 5.85E-14 0.121 0.414 0.148 0.15 0.105 

10 MB 2.01E-47 0 4.33E-44 0.02297 1.80E-13 0.047 0.158 0.203 0.211 0.123 

9 MB 4.81E-51 0 2.43E-42 0.025999 1.73E-10 0.049 0.156 0.444 0.346 0.215 

8 MB 2.46E-45 0 2.62E-41 0.006398 7.64E-10 0.037 0.072 0.748 0.613 0.489 

7 MB 8.34E-44 0 1.17E-33 0.017777 9.65E-11 0.064 0.109 0.616 0.472 0.466 

6 MB 1.81E-48 4.36E-320 5.99E-32 0.133988 1.57E-11 0.12 0.283 0.534 0.439 0.406 

5 MB 2.27E-54 5.38E-291 2.27E-28 0.211632 1.24E-10 0.289 0.291 0.184 0.11 0.18 

4 MB 2.03E-57 1.17E-256 5.85E-28 0.161683 1.51E-08 0.223 0.44 0.021 0.011 0.013 

3 MB 1.02E-45 4.21E-213 1.80E-28 0.043766 5.62E-06 0.241 0.387 0.002 8E-04 4E-04 

2 MB 9.12E-31 7.90E-161 3.71E-17 0.234099 0.00053 0.451 0.505 0.05 0.025 0.029 

1 MB 8.93E-16 7.60E-87 1.85E-11 0.000474 0.00027 0.051 0.431 0.045 0.053 0.023 

0.75 MB 2.05E-11 1.14E-73 1.77E-08 5.48E-05 0.00264 0.015 0.088 0.023 0.039 0.02 

0.5 MB 3.39E-06 4.22E-39 8.48E-05 2.78E-05 0.03309 0.15 0.3 0.021 0.027 0.008 

0.25 MB 0.069175 3.71E-11 0.004005 0.00125 0.19165 0.14 0.503 0.125 0.104 0.142 

0.2 MB 0.012106 2.12E-07 0.004893 0.000139 0.57665 0.424 0.477 0.012 0.007 0.008 
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The combined (upregulated + downregulated) and downregulated groups seem to show 

good p-values (< 0.05) in both the significance levels, except for small telomere lengths 

0.2 and 0.25 MB (Table 19).  

 

The upregulated group opens up a window again in the higher differential expression 

level (DEG3). This window specifically corresponds to telomere lengths 2 to 4 MB, 

which seem to be significant in the chi-square test of homogeneity also. The ideal 

telomere length obtained (3MB) in the homogeneity test show a better p-value (0.007) 

than for telomere lengths 2MB (0.024) and 4MB (0.012), that are present in this window.  

Table 19: The table represents the p-values obtained by two significance levels (DEG2 and 

DEG3) by the chi-square test using 2x2 contingency table. The test is performed between 

the telomere and centromere associated genes with all the genes combined, as well as by 

dividing the genes into upregulated and downregulated groups. P-values shown in grey are 

not significant (>=0.05). 

Telomere 
Length  DEG2 = ratios < 1/1.2 and > 1.2 DEG3 = ratios < 1/1.3 and > 1.3 

  All Downregulated Upregulated All Downregulated Upregulated 

50 MB 1.91E-06 0.002436953 0.119896351 0.000252 0.034614613 0.196168367 

40 MB 1.24E-08 3.75E-06 0.152223813 2.05E-07 6.14E-05 0.092946198 

30 MB 1.96E-09 5.87E-08 0.485674473 7.60E-07 8.66E-05 0.253873821 

25 MB 6.26E-11 2.23E-08 0.264393533 7.33E-08 9.39E-06 0.306561668 

20 MB 8.85E-16 2.52E-08 0.003617533 2.87E-10 2.84E-05 0.018070286 

15 MB 7.24E-14 3.75E-10 0.178829797 1.89E-11 8.45E-08 0.09808447 

10 MB 3.83E-12 9.36E-10 0.332284513 8.12E-09 5.09E-07 0.432338738 

9 MB 3.22E-10 3.13E-08 0.670891063 1.57E-07 2.93E-05 0.42769367 

8 MB 3.41E-09 1.97E-07 0.699547048 2.03E-07 3.40E-05 0.365660498 

7 MB 5.83E-10 9.99E-08 0.42180974 4.35E-07 6.11E-05 0.35165262 

6 MB 4.43E-10 1.88E-08 0.623543202 2.78E-07 5.08E-05 0.341613399 

5 MB 5.26E-11 6.51E-07 0.127351618 4.71E-08 0.000369424 0.057675389 

4 MB 1.28E-11 8.10E-07 0.063464319 4.00E-09 0.000354439 0.012018911 

3 MB 5.75E-09 2.57E-05 0.125535116 8.55E-09 0.000464098 0.007000918 

2 MB 3.86E-07 0.000728299 0.09450423 3.93E-06 0.009672502 0.024137083 

1 MB 0.000132 2.91E-05 0.992908906 0.000681 0.000719066 0.841405461 

0.75 MB 0.000219 0.000208505 0.723969426 0.001125 0.00138297 0.710549007 

0.5 MB 0.006767 0.00354004 0.938509461 0.048815 0.010236132 0.759429064 

0.25 MB 0.225291 0.01420092 0.367672817 0.29151 0.033364957 0.462961703 

0.2 MB 0.380347 0.140937114 0.732884195 0.64757 0.115185791 0.331735767 
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This test concludes that the most suitable telomere length to define subtelomeric genes 

for the current dataset as 3MB.  

 

f) Functionally, the behavior of the genes located in the subtelomeric regions of 

human chromosomes is not different from that of the genes located in other parts of 

the human chromosomes 

Using results of the in silico experiment described above the definition of subtelomeric 

region may be derived. According to our findings, TPE susceptible subtelomeric regions 

of human chromosomes are approximately 3Mb in length. To find out whether 

subtelomeric genes contribute to the cancer phenotype to larger extent than the genes 

located in the bodies of the chromosomes, we quantified the variation in both sets of 

genes by distance analysis. The distance (D) between the tissue states was calculated 

based on Pearson’ correlation (R), as D = 1-R (Materials and Methods, Chapter 2). This 

distance might be computed over the entire genome (n = all the gene of chip) or over the 

particular set of the genes (i.e. subtelomeric genes). Fundamentally, two kinds of the 

global distances may be computed, one that measure the distance from the particular 

tissue sample to the metastatic tumor space and from the particular tissue sample to the 

normal tissue space, DMglobal and DBglobal, respectively.  

 

� DMglobal: Genome-wide distance from Metastatic sample space 

� DBglobal: Genome-wide distance from Normal (Benign) sample space 
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The patterns of the distances between prostatic tumors and normal prostate samples look 

similar when DB and DM are calculated using subtelomeric and non-telomeric genes as 

illustrated in Figure 14, panels A) and B) respectively. According to our 3-Mb definition 

of human telomere, the telomeric genes account for 8.4% of all human genes. The 

Metastatic (red) are distant from the primary tumor (orange) and normal (blue) samples. 

The primary tumor and normal samples didn’t show much variation as compared to the 

metastatic tumors as the distribution of the distances between prostatic tumors and 

normal prostates are very similar when calculated using subtelomeric or non-telomeric 

gene sets, thus indicating that the changes of expression of subtelomeric genes are rather 

consequence than the cause of the tumor progression.  

 
 

Figure 14: The Panel A represents the distance indices (DMglobal and DBglobal) for 

the telomeric genes prostate dataset. Panel B represents the distance indices for the non-

telomeric or genes in the body of chromosome. On these panels metastatic tumors are 

represented by red circles, primary tumors by circles and normal prostate samples as 

blue circles.  

A) B) 
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Conclusion 

Here we demonstrate an in silico evidence proving telomere positioning effect (TPE) in 

human tumors. In studied dataset, TPE effect was found to spread over 3Mb of the 

subtelomeric distance. In microarray experiment profiling human prostatic tumors, a 

considerable increase in the number of up-regulated and down-regulated genes in 

telomeres compared to other regions of genome was observed. Importantly, an extent of 

this increase parallels progression of the prostatic tumors form normal tissue to primary 

tumor to metastatic carcinoma, with a steep increase at the late stage of cancer 

progression. The distances between prostatic tumors and normal prostates are very 

similar when calculated using subtelomeric or non-telomeric gene sets, thus indicating 

that the changes of expression of subtelomeric genes are rather consequence than the 

cause of the tumor progression.  
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Appendix A 
 

 

KEGG Pathway Painter 

High-throughput technologies became common tools to decipher genome-wide changes 

of gene expression (GE) patterns. Functional analysis of GE patterns is a daunting task as 

it requires often recourse to the public repositories of biological knowledge. On the other 

hand, in many cases researcher’s inquiry can be served by a comprehensive glimpse. The 

KEGG PATHWAY database is a compilation of manually verified maps of biological 

interactions represented by the complete set of pathways related to signal transduction 

and other cellular processes.  Rapid mapping of the differentially expressed genes to the 

KEGG pathways may provide an idea about the functional relevance of the gene lists 

provided by the high-throughput expression experiments Here web based graphic tool 

KEGG Pathway Painter (KPP) is described. KPP paints pathways from the KEGG 

database using large sets of the candidate genes accompanied by “overexpressed” or 

“underexpressed” marks, for example, those generated by microarrays or miRNA 

profilings. KPP will provide fast and comprehensive visualization of the global GE 

changes by consolidating a list of the color-coded candidate genes into the KEGG 

pathways. KPP is freely available and can be accessed at 

http://www.cos.gmu.edu/~gmanyam/kegg/ 

Introduction 

High-throughput technologies became common tools to decipher genome-wide changes 

of gene expression (GE) patterns or relative protein abundance. Typical output of these 
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large-scale studies is represented as a list comprised of hundreds of gene candidates with 

attached quantitative labels. Functional analysis of these gene lists is a daunting task as it 

requires often recourse to the public repositories of biological knowledge or use of 

expensive databases of manually curated biological annotation (Ganter and Giroux 2008). 

On the other hand, in many cases researcher’s inquiry can be successfully served by a 

comprehensive glimpse.  

 

Functional analysis of markers identified from large-scale datasets can be performed 

using a wide variety of bioinformatics tools. As microarrays became a common tool to 

decipher global gene expression, centralized systems like Gene Expression Omnibus 

(GEO), ArrayExpress were developed to congregate the valuable expression profile data 

(Barrett and Edgar 2006; Barrett, Troup et al. 2007; Parkinson, Kapushesky et al. 2007).  

The combined expression profile analysis fusing various microarray datasets (termed as 

the meta-analysis) is useful in the process of the development of the biomarker panels for 

various human diseases and specifically for various types of cancers (Rhodes and 

Chinnaiyan 2005; McShea, Marlatt et al. 2006). Meta-analysis lead to an increase of the 

complexity of microarray analysis pipeline and further sophistication of subsequent 

functional analysis is anticipated. Recently, Gene Ontology (GO) and Pathway-based 

analysis became the most important entry points  to the functional analysis of expression 

data derived from high-throughput platforms (Werner 2008). 
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KEGG (Kyoto Encyclopedia of Genes and Genomes) is a compendium of databases 

covering annotated genomes and protein interaction networks for all sequenced 

organisms. KEGG PATHWAY is a compilation of manually verified pathway maps 

displaying both the molecular interactions and the biochemical reactions (Kanehisa 

2002). The recent version of this database includes a complete set of pathways related to 

signal transduction and other cellular processes (Kanehisa, Araki et al. 2008). The 

extensive collection of the pathways at KEGG can be utilized for the rapid graphical 

evaluation of the functional relevance of the observed changes in GE patterns. This will 

save the precious time of the expert biologists and bioinformatic specialists.  

 

Pathways assembled into the KEGG database are displayed as semi-static objects that can 

be manipulated using tools like KGML and KEGG application programmable interface 

(API) (Kawashima, Katayama et al. 2003; Klukas and Schreiber 2007). KEGG API 

provides a routine that highlights specified genes within the particular metabolic pathway 

(http://www.genome.jp/kegg/tool/color_pathway.html).Gene set functional analysis tools 

like DAVID also returns the KEGG pathways by marking genes of interest (Dennis et al. 

2003; Huang et al. 2009). The upregulated and downregulated marks can't be 

incorporated in such platforms. Similar task may be also executed using G-language 

Genome Analysis Environment (Arakawa, Kono et al. 2005). Both approaches work on 

the pathway by pathway basis. Another tool, Pathway express, calculates the pathway-

wise impact of differentially expressed genes based on normalized fold change and 

depicts the pathways with differentially expressed genes (Khatri, Sellamuthu et al. 2005). 
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However, the fold-change approach and its associated standard t-test statistics usually 

produce severely over-fitted models. A number of recently developed approaches 

generate gene rankings dissociated from the fold change estimates (Hsiao, Worrall et al. 

2004; Simon 2008). An analysis of these gene lists may benefit from the binary graphical 

mapping of upregulated and downregulated elements within the complete collection of 

pathway maps. Resulting graphical pictures may be helpful both as tool for a quick 

assessment of the functional relevance of a gene list and as a set of the snapshots easily 

convertible into the illustrative material for presentations or manuscript figures.  

 

With this notion, here we present a web-based tool, KEGG Pathway Painter (KPP). KPP 

performs a batch painting of relevant pathways using the uploaded lists of up-regulated 

and down-regulated genes in KEGG. KPP returns a set of images that give a holistic 

perspective to the functional importance of the change in the GE patterns revealed by a 

given high-throughput experiment and facilitate the extraction of the biological insights.  

 

Algorithm and Implementation 

KPP accepts the up-regulated and down-regulated gene lists as two different text files 

containing the gene identifiers of any sequenced organism. Permitted identifiers include 

GenBank id, NCBI GENE id, NCBI GI accession, Unigene ID and Uniprot ID.  
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a) Algorithm 

These gene identifiers are converted to KEGG identifiers and all the pathways associated 

with each of identified genes are extracted. Mapped genes are automatically consolidated 

within each pathway. The number of the KPP returned pathways could be filtered by 

either the total number of the painted genes in a given pathway or the ratio of painted 

genes to the total number of genes in a given pathway. The chosen pathways passing the 

criteria on filter are color coded according to users’ preferences. Users can browse 

through these high-resolution pathway images along with gene information and an 

archive of the painted pathways can also be saved for future reference. 

b) Implementation 

KPP was implemented using PERL/CGI, and KEGG API was used to communicate with 

kegg/pathway database. The API allows access to the resources stored in KEGG system 

in a interactive and user-friendly way (http://www.genome.jp/kegg/soap/). Conversion of 

the gene identifiers, extraction of the corresponding pathway and their painting is 

performed by specific API routines. The KPP processes data through direct interface to 

the KEGG database, and therefore, the KPP painted pathways are always up-to date with 

reference to KEGG knowledgebase. Genes of interest can be also highlighted with user-

specified forground and background colors for differentiating up and down regulated 

genes. The URL to the index of resulting output images is sent to the user by e-mail along 

with the job summary.  
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Discussion 

 

The motivation for the development of KPP came up from the idea to build a user-

friendly, platform-independent and simple tool to visualize the genes in their associated 

pathways. The simplicity factor of KPP was due to the acceptance of gene identifiers 

instead of association with a microarray platform. This isolation would enhance its utility 

study the quantified transcript data from RT-PCR or  even to validate varies hypothesis 

Figure 1:  Image of the MAPK signaling pathway painted by KPP according to the imported list of 

genes differentially expressed in the prostatic carcinoma as compared to normal prostate. Red and 

blue boxes represent up- and down- regulated genes, respectively. The genes in green background 

represent the specifies specific genes (Homo sapiens, in this case) in the KEGG reference pathway 
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surrounding groups of genes that regulate patterns of gene expression in abnormal 

tissues. The utility is demonstrated using the publicly available prostate carcinoma 

dataset (GDS1439), from the NCBI GEO database (see Figure 1).  

 

The major fetching point of the tool lies in its tight connection with the KEGG database, 

as this will allow for the pathway visualization of every sequenced organism. Although, 

this flexibility is at the cost of bottlenecks caused as a result of the delays during the data 

transfer. While the pathway painting can be performed for a given set of genes through 

the KEGG website (http://www.genome.jp/kegg/), the utility of KPP lies in generating 

the over-all glimpse up and down regulated genes of the dataset as a whole. 

 

In summary, KPP provides fast and comprehensive visualization of the global gene 

expression changes by consolidating a list of the color-coded candidate genes into the 

KEGG pathways. 
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Appendix B 
 

Enriched pathway plots generated by KPP for cancer-specific markers 

The genes in light green background were human-specific. 

 

 
 

Figure 2: The figure illustrates abundant cancer-specific genes (in red background) in the 

KEGG p53-signalling pathway.  
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Figure 3: The figure illustrates abundant cancer-specific genes (in red background) in the 

KEGG Apoptosis pathway.  

 



 

118 

 
 

Figure 4: The figure illustrates abundant cancer-specific genes (in red background) in the 

KEGG pathway representing the Ubiquitin mediated proteolysis.  
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Figure 5: The figure illustrates abundant cancer-specific genes (in red background) in the 

KEGG pathway representing the regulation of actin cytoskeleton.  
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Figure 6: The figure illustrates abundant cancer-specific genes (in red background) in the 

KEGG colorectal cancer pathway.  
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Figure 7: The figure illustrates abundant cancer-specific genes (in red background) in the 

KEGG Renal cell carcinoma pathway.  
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Figure 8: The figure illustrates abundant cancer-specific genes (in red background) in the 

KEGG Pancreatic cancer pathway.  
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Figure 9: The figure illustrates abundant cancer-specific genes (in red background) in the 

KEGG Human Glioma pathway.  

 



 

124 

 
 

Figure 10: The figure illustrates abundant cancer-specific genes (in red background) in 

the KEGG Prostate cancer pathway.  
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Figure 11: The figure illustrates abundant cancer-specific genes (in red background) in 

the KEGG Human Melanoma pathway.  

 

 
Figure 12: The figure illustrates abundant cancer-specific genes (in red background) in 

the KEGG Bladder cancer pathway.  
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Figure 13: The figure illustrates abundant cancer-specific genes (in red background) in 

the KEGG chronic myeloid leukemia pathway.  
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Figure 14: The figure illustrates abundant cancer-specific genes (in red background) in 

the KEGG small cell lung cancer pathway.  

 

 
Figure 15: The figure illustrates abundant cancer-specific genes (in red background) in 

the KEGG Non-small cell lung cancer pathway.  
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Appendix C 
 

Enriched pathway plots generated by KPP for normal-specific (anti-cancer) 

markers 

The genes in light green background were human-specific. 

 

 
Figure 16: The figure illustrates abundant normal-specific genes (in red background) in 

the KEGG MAPK signaling pathway.  
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Figure 17: The figure illustrates abundant normal-specific genes (in red background) in 

the KEGG ERBB signaling pathway.  
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Figure 18: The figure illustrates abundant normal-specific genes (in red background) in 

the KEGG pathway representing cytokine-cytokine reception interaction genes.  
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Figure 19: The figure illustrates abundant normal-specific genes (in red background) in 

the KEGG chemokine signaling pathway.  
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Figure 20: The figure illustrates abundant normal-specific genes (in red background) in 

the KEGG Wnt signaling pathway.  

 



 

133 

 
Figure 21: The figure illustrates abundant normal-specific genes (in red background) in 

the KEGG TGF-beta signaling pathway.  
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Figure 22: The figure illustrates abundant normal-specific genes (in red background) in 

the KEGG TOLL-like signaling pathway.  
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Figure 23: The figure illustrates abundant normal-specific genes (in red background) in 

the KEGG T-Cell receptor signaling pathway.  
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Figure 24: The figure illustrates abundant normal-specific genes (in red background) in 

the KEGG leukocyte trans-endothelial migration pathway.  
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Figure 25: The figure illustrates abundant normal-specific genes (in red background) in 

the KEGG Insulin signalling pathway.  

 

 
Figure 26: The figure illustrates abundant normal-specific genes (in red background) in 

the KEGG GnRH signalling pathway.  

 



 

138 

Appendix D 
 

Results of the PCA analysis of the datasets comprised of two-point paired tumor 

and normal samples (Table 1) 

Ductal Breast Carcinoma (GSE5764 

Relative 

importance: 

PC1 

“Attractor” 

PC2 

“Normal/Cancer 

difference” 

PC3  

“Degree of 

autonomy” 

PC4  

“Noise” 

Standard deviation    0.261  0.0823  0.00898  0.00592 

Proportion of 

Variance explained 

by  component 

0.908  0.0901  0.00107  0.00047 

Cumulative 

Proportion   
0.908  0.9985  0.99953  1.00000 

Component 

Loadings: 
 

PC1 

“Attractor”  

PC2 

“Normal/Cancer 

difference” 

PC3  

“Degree of 

autonomy” 

PC4  

“Noise” 

DCGlobal -0.4792611   0.0347449 -0.3525736  0.8029903 

DNGlobal -0.4315327 -0.0642264 -0.7019314 -0.5629803 

DCSpecific -0.5729407   0.6708277  0.4351537 -0.1799179 

DNSpecific -0.5057938  -0.7380095   0.4400289 -0.0767414 

Lobular Breast Carcinoma (GSE5764) 

Relative 

importance: 

PC1 

“Attractor” 

PC2 

“Normal/Cancer 

difference” 

PC3  

“Degree of 

autonomy” 

PC4  

“Noise” 

Standard deviation     0.374  0.135  0.01778  0.00960 

Proportion of 

Variance explained 

by  component 

0.882  0.116  0.00199  0.00058 

Cumulative 

Proportion   
0.882  0.997  0.99942  1.00000 

Component 

Loadings: 

PC1 

“size” 

PC2 

“Normal/Cancer 

difference” 

PC3  

“Degree of 

autonomy” 

PC4  

“Noise” 

DCGlobal -0.4336790   0.0032826  -0.5559545   0.7091025 

DNGlobal -0.4196183  -0.0321633  -0.5714445  -0.7045120 

DCSpecific -0.5651979   0.7156881   0.4093347 -0.0280528 

DNSpecific -0.5624894 -0.6976713   0.4436338   0.0070378 
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Pulmonary adenocarcinoma (GSE2514) 

 

Relative 

importance: 

PC1 

“Attractor”  

PC2 

“Normal/Cancer 

difference” 

PC3  

“Degree of 

autonomy” 

PC4  

“Noise” 

Standard deviation     0.0901  0.0358  0.00143  0.000988 

Proportion of 

Variance explained 

by  component 

0.8635  0.1361  0.00022  0.000100 

Cumulative 

Proportion   
0.8635  0.9997  0.99990  1.000000 

Component 

Loadings: 
 

PC1 

“size” 

PC2 

“Normal/Cancer 

difference” 

PC3  

“Degree of 

autonomy” 

PC4  

“Noise” 

DCGlobal -0.4223058 -0.2673878   0.3579391   0.7886958 

DNGlobal -0.3479712   0.3425144   0.7661334 -0.4178990 

DCSpecific -0.6195546  -0.6111058 -0.2421958 -0.4290024 

DNSpecific -0.5627841   0.6616172 -0.4756684   0.1388390 

 

Pulmonary adenocarcinoma (GSE7670) 

 

Relative 

importance: 

PC1 

“Attractor”  

PC2 

“Normal/Cancer 

difference” 

PC3  

“Degree of 

autonomy” 

PC4  

“Noise” 

Standard Deviation    0.193  0.0576  0.00663  0.00149 

Proportion of 

Variance explained 

by  component 

0.917  0.0815  0.00108  0.00005 

 

Cumulative 

Proportion   

0.917  0.9989  0.99995  1.00000 

Component 

Loadings: 
 

PC1 

“size” 

PC2 

“Normal/Cancer 

difference” 

PC3  

“Degree of 

autonomy” 

PC4  

“Noise” 

DCGlobal -0.4241949   0.2328628 -0.4694148   0.7385685 

DNGlobal -0.3486490 -0.3041166 -0.6972629 -0.5475230 

DCSpecific -0.6355490  0.6064523   0.3269082 -0.3484596 

DNSpecific -0.5427522  -0.6967809   0.4319783   0.1825134 
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Esophageal Cancer (GSE1420) 

 

Relative 

importance: 

PC1 

“Attractor”  

PC2 

“Normal/Cancer 

difference” 

PC3  

“Degree of 

autonomy” 

PC4  

“Noise” 

Standard deviation     0.226  0.085  0.00990  0.00172 

Proportion of 

Variance explained 

by  component 

0.875  0.124  0.00168  0.00005 

Cumulative 

Proportion   
0.875  0.998  0.99995  1.00000 

Component 

Loadings: 

PC1 

“size” 

PC2 

“Normal/Cancer 

difference” 

PC3  

“Degree of 

autonomy” 

PC4  

“Noise” 

DCGlobal -0.3634003   0.2365433   0.5838462   0.6863753 

DNGlobal -0.3856582  -0.2269184 0.6150850 -0.6491890 

DCSpecific -0.5892720   0.6806972 -0.3663376 -0.2349607 

DNSpecific -0.6098905  -0.6551386 -0.3828719   0.2285521 

 

 

 

Renal cell carcinoma (GSE6344) 

 

Relative 

importance: 

PC1 

“Attractor”  

PC2 

“Normal/Cancer 

difference” 

PC3  

“Degree of 

autonomy” 

PC4  

“Noise” 

Standard deviation     0.133  0.0715  0.00230  0.000472 

Proportion of 

Variance explained 

by  component 

0.777  0.2231  0.00023  0.000010 

Cumulative 

Proportion   
0.777  0.9998  0.99999  1.000000 

Component 

Loadings: 

PC1 

“Attractor”  

PC2 

“Normal/Cancer 

difference” 

PC3  

“Degree of 

autonomy” 

PC4  

“Noise” 

DCGlobal -0.4536096   0.3104922   0.6132022   0.5672884 

DNGlobal -0.3913748 -0.3780481   0.5147935 -0.6624901 

DCSpecific -0.5869027   0.5997387  -0.4316633  -0.3309463 

DNSpecific -0.5446185 -0.6332359 -0.4154967   0.3602296 
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Renal cell carcinoma (GSE781) 

 

Relative 

importance: 

PC1 

“Attractor”  

PC2 

“Normal/Cancer 

difference” 

PC3  

“Degree of 

autonomy” 

PC4  

“Noise” 

Standard deviation     0.138  0.073  0.00366  0.000972 

Proportion of 

Variance explained 

by  component 

0.781  0.219  0.00055  0.000040 

Cumulative 

Proportion   
0.781  0.999  0.99996  1.000000 

Component 

Loadings: 

PC1 

“Attractor”  

PC2 

“Normal/Cancer 

difference” 

PC3  

“Degree of 

autonomy” 

PC4  

“Noise” 

DCGlobal -0.4015367 0.1770823 -0.5931930 -0.6749313 

DNGlobal -0.3159439  -0.2905877 -0.6200694 0.6566979 

DCSpecific -0.6328689   0.6538785   0.3089273   0.2765569 

DNSpecific -0.5817428   -0.6757541 0.4101218 -0.1916557 

 

 

 

Head and neck squamous cell carcinoma (GDS2520) 

 

Relative 

importance: 

PC1 

“Attractor”  

PC2 

“Normal/Cancer 

difference” 

PC3  

“Degree of 

autonomy” 

PC4  

“Noise” 

Standard deviation     0.190  0.0407  0.00979  0.00126 

Proportion of 

Variance explained 

by  component 

0.954  0.0436  0.00252  0.00004 

Cumulative 

Proportion   
0.954  0.9974  0.99996  1.00000 

Component 

Loadings: 

PC1 

“Attractor”  

PC2 

“Normal/Cancer 

difference” 

PC3  

“degree of 

autonomy” 

PC4  

“noise” 

DCGlobal -0.3839816   0.1435169   0.5972208   0.6894116 

DNGlobal -0.3578240  -0.1809713   0.6062387 -0.6867940 

DCSpecific -0.6171703 0.6782271  -0.3589338 -0.1739981 

DNSpecific -0.5861919   -0.6976105 -0.3833646 0.1508320 
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Papillary thyroid carcinoma (GDS1665) 

 

Relative 

importance: 

PC1 

“Attractor”  

PC2 

“Normal/Cancer 

difference” 

PC3  

“Degree of 

autonomy” 

PC4  

“Noise” 

Standard deviation     0.0968  0.0398  0.00375  0.00120 

Proportion of 

Variance explained 

by  component 

0.8542  0.1444  0.00128  0.00013 

Cumulative 

Proportion   
0.8542  0.9986  0.99987 1.00000 

Component 

Loadings: 
 

PC1 

“Attractor”  

PC2 

“Normal/Cancer 

difference” 

PC3  

“Degree of 

autonomy” 

PC4  

“Noise” 

DCGlobal -0.4055784  0.1936700 -0.4882024   0.7481019 

DNGlobal -0.3365074  -0.2185903 -0.7043803 -0.5855164 

DCSpecific -0.6383106   0.6270132   0.3455199 -0.2828959 

DNSpecific -0.5610958  -0.7221944   0.3822601   0.1322270 
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Appendix E 
 

Results of the PCA analysis of population datasets comprised of two-point tumor 

and normal samples (Table 2) 

Invasive Breast (Epithelial) Carcinoma (GSE10797) 
 

Relative 

importance: 

PC1 

(Attractor) 

PC2 

(Normal/Cancer 

difference) 

PC3  

(Degree of 

autonomy) 

PC4  

(Noise) 

Standard deviation     0.298 0.0418 0.01457 0.00595 

Proportion of Variance 

explained by  component 
0.978 0.0192 0.00233 0.00039 

Cumulative Proportion   0.978 0.9973 0.99961 1 

Component 

Loadings:  

PC1 

(Attractor) 

PC2 

(Normal/Cancer 

difference) 

PC3  

(Degree of 

autonomy) 

PC4  

(Noise) 

DCGlobal -0.56631 -0.30366 0.196662 -0.74055 

DNGlobal -0.4949 0.21754 0.695137 0.473856 

DCSpecific -0.43919 -0.62278 -0.44098 0.474118 

DNSpecific -0.49141 0.687466 -0.53259 -0.04754 

 

Cervical Cancer (GSE6791) 
 

Relative 

importance: 

PC1 

(Attractor) 

PC2 

(Normal/Cancer 

difference) 

PC3  

(Degree of 

autonomy) 

PC4  

(Noise) 

Standard deviation     0.223 0.0804 0.00402 0.00162 

Proportion of Variance 

explained by  component 
0.884 0.1153 0.00029 0.00005 

Cumulative Proportion   0.884 0.9997 0.99995 1 

Component 

Loadings:  

PC1 

(Attractor) 

PC2 

(Normal/Cancer 

difference) 

PC3  

(Degree of 

autonomy) 

PC4  

(Noise) 

DCGlobal -0.42173 -0.43508 0.605168 -0.51636 

DNGlobal -0.5185 0.346409 0.43942 0.646585 

DCSpecific -0.40695 -0.69282 -0.47056 0.364638 

DNSpecific -0.62265 0.459029 -0.46825 -0.42701 
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Head and Neck Cancer (GSE6791) 
 

Relative 

importance: 

PC1 

(Attractor) 

PC2 

(Normal/Cancer 

difference) 

PC3  

(Degree of 

autonomy) 

PC4  

(Noise) 

Standard deviation     0.169 0.0308 0.00463 0.0011 

Proportion of Variance 

explained by  component 
0.967 0.0319 0.00072 0.00004 

Cumulative Proportion   0.967 0.9992 0.99996 1 

Component 

Loadings: 

  

PC1 

(Attractor) 

PC2 

(Normal/Cancer 

difference) 

PC3  

(Degree of 

autonomy) 

PC4  

(Noise) 

DCGlobal -0.45602 -0.30736 0.542741 0.634831 

DNGlobal -0.47091 0.312987 0.525327 -0.63586 

DCSpecific -0.47903 -0.70074 -0.41236 -0.33083 

DNSpecific -0.58379 0.562613 -0.50934 0.288488 

 

 

 

 

 

Mesothelioma (GSE12345) 
 

Relative 

importance: 

PC1 

(Attractor) 

PC2 

(Normal/Cancer 

difference) 

PC3  

(Degree of 

autonomy) 

PC4  

(Noise) 

Standard deviation     0.244 0.0846 0.00892 0.00362 

Proportion of Variance 

explained by  component 
0.892 0.1071 0.00119 0.0002 

Cumulative Proportion   0.892 0.9986 0.9998 1 

Component 

Loadings:  

PC1 

(Attractor) 

PC2 

(Normal/Cancer 

difference) 

PC3  

(Degree of 

autonomy) 

PC4  

(Noise) 

DCGlobal -0.34642 0.145146 -0.63865 0.671609 

DNGlobal -0.34828 -0.08457 -0.59061 -0.72299 

DCSpecific -0.51471 0.780904 0.334231 -0.11643 

DNSpecific -0.70269 -0.60164 0.362763 0.112533 
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Nasopharyngeal Carcinoma (GSE12452) 
 

Relative 

importance: 

PC1 

(Attractor) 

PC2 

(Normal/Cancer 

difference) 

PC3  

(Degree of 

autonomy) 

PC4  

(Noise) 

Standard deviation     0.184 0.0488 0.00475 0.00121 

Proportion of Variance 

explained by  component 
0.934 0.0655 0.00062 0.00004 

Cumulative Proportion   0.934 0.9993 0.99996 1 

Component 

Loadings: 

  

PC1 

(Attractor) 

PC2 

(Normal/Cancer 

difference) 

PC3  

(Degree of 

autonomy) 

PC4  

(Noise) 

DCGlobal -0.33784 0.289965 -0.70708 0.549388 

DNGlobal -0.4066 -0.1413 -0.46484 -0.77372 

DCSpecific -0.47991 0.752777 0.42756 -0.14215 

DNSpecific -0.70016 -0.57383 0.318053 0.281654 

 

 

 

 

 

Oral Squamous Cell Carcinoma (GSE3524) 
 

Relative 

importance: 

PC1 

(Attractor) 

PC2 

(Normal/Cancer 

difference) 

PC3  

(Degree of 

autonomy) 

PC4  

(Noise) 

Standard deviation     0.171 0.0522 0.00434 0.00237 

Proportion of Variance 

explained by  component 
0.914 0.0857 0.00059 0.00018 

Cumulative Proportion   0.914 0.9992 0.99982 1 

Component 

Loadings:  

PC1 

(Attractor) 

PC2 

(Normal/Cancer 

difference) 

PC3  

(Degree of 

autonomy) 

PC4  

(Noise) 

DCGlobal -0.36222 -0.29688 0.725488 -0.50431 

DNGlobal -0.40249 0.162528 0.419678 0.797156 

DCSpecific -0.43109 -0.78102 -0.42128 0.163367 

DNSpecific -0.72177 0.524838 -0.3465 -0.28901 
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Renal Cell carcinoma(GSE14762) 
 

Relative 

importance: 

PC1 

(Attractor) 

PC2 

(Normal/Cancer 

difference) 

PC3  

(Degree of 

autonomy) 

PC4  

(Noise) 

Standard deviation     0.271 0.0922 0.02352 0.00252 

Proportion of Variance 

explained by  

component 

0.891 0.1027 0.00669 0.00008 

Cumulative Proportion   0.891 0.9932 0.99992 1 

Component 

Loadings:  

PC1 

(Attractor) 

PC2 

(Normal/Cancer 

difference) 

PC3  

(Degree of 

autonomy) 

PC4  

(Noise) 

DCGlobal -0.48269 0.14762 -0.27471 -0.81838 

DNGlobal -0.33537 -0.40744 -0.75998 0.379411 

DCSpecific -0.64799 0.602155 0.178277 0.430968 

DNSpecific -0.4844 -0.67053 0.561411 -0.02369 

 

 

Papillary thyroid carcinoma (GSE3678) 
 

Relative 

importance: 

PC1 

(Attractor) 

PC2 

(Normal/Cancer 

difference) 

PC3  

(Degree of 

autonomy) 

PC4  

(Noise) 

Standard deviation     0.17 0.0807 0.00574 0.00121 

Proportion of Variance 

explained by  

component 

0.814 0.1847 0.00094 0.00004 

Cumulative Proportion   0.814 0.999 0.99996 1 

Component 

Loadings: 

  

PC1 

(Attractor) 

PC2 

(Normal/Cancer 

difference) 

PC3  

(Degree of 

autonomy) 

PC4  

(Noise) 

DCGlobal -0.3045 0.081804 0.496542 -0.80872 

DNGlobal -0.2992 -0.09796 0.759593 0.569125 

DCSpecific -0.64121 0.702814 -0.27129 0.145953 

DNSpecific -0.63766 -0.69983 -0.32073 -0.02762 
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Appendix F 
 

Results of the PCA analysis of the datasets comprised of multi-stage tumor and 

normal samples collected across population (Table 3) 

 

 

Ovarian (fallopian tube) carcinoma (GSE10971) 
 

Relative 

importance: 

PC1 

(Attractor) 

PC2 

(Normal/Cancer 

difference) 

PC3  

(Degree of 

autonomy) 

PC4  

(Noise) 

Standard deviation     0.271 0.0956 0.00778 0.00111 

Proportion of Variance 

explained by  component 
0.889 0.1107 0.00073 0.00001 

Cumulative Proportion   0.889 0.9992 0.99999 1 

Component 

Loadings: 

  

PC1 

(Attractor) 

PC2 

(Normal/Cancer 

difference) 

PC3  

(Degree of 

autonomy) 

PC4  

(Noise) 

DCGlobal -0.4319740 0.1653989 0.5648672 -0.6833496 

DNGlobal -0.3371510 -0.2908749 0.6148158 0.6509397 

DCSpecific -0.6792346 0.5755423 -0.3745092 0.2591029 

DNSpecific -0.4882294 -0.7461810 -0.4033230 -0.2053693 

 

Bladder carcinoma (GSE3167) 
 

Relative 

importance: 

PC1 

(Attractor) 

PC2 

(Normal/Cancer 

difference) 

PC3  

(Degree of 

autonomy) 

PC4  

(Noise) 

Standard deviation     0.228 0.0694 0.00589 0.00160 

Proportion of Variance 

explained by  component 
0.914 0.0850 0.00061 0.00005 

Cumulative Proportion   0.914 0.9993 0.99995 1 

Component 

Loadings:  

PC1 

(Attractor) 

PC2 

(Normal/Cancer 

difference) 

PC3  

(Degree of 

autonomy) 

PC4  

(Noise) 

DCGlobal -0.4219051 0.4471904 -0.6546958 -0.4397615 

DNGlobal -0.5576904 -0.3487430 -0.3327277 0.6757603 

DCSpecific -0.3752885 0.7052464 0.5163564 0.3084836 

DNSpecific -0.6083880 -0.4254722 0.4405017 -0.5047729 
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Esophagus carcinoma (GSE1420) 
 

Relative 

importance: 

PC1 

(Attractor) 

PC2 

(Normal/Cancer 

difference) 

PC3  

(Degree of 

autonomy) 

PC4  

(Noise) 

Standard deviation     0.246 0.101 0.0119 0.00201 

Proportion of Variance 

explained by  component 
0.854 0.144 0.0020 0.00006 

Cumulative Proportion   0.854 0.998 0.9999 1 

Component 

Loadings: 

  

PC1 

(Attractor) 

PC2 

(Normal/Cancer 

difference) 

PC3  

(Degree of 

autonomy) 

PC4  

(Noise) 

DCGlobal -0.3604909 0.2376977 0.5853858 0.6861993 

DNGlobal -0.3849471 -0.2241357 0.6157891 -0.6499097 

DCSpecific -0.5851186 0.6857592 -0.3637739 -0.2346041 

DNSpecific -0.6160343 -0.6503824 -0.3818320 0.2273955 

 

 

 

 

 

Hepato Cellular carcinoma (GSE6764) 
 

Relative 

importance: 

PC1 

(Attractor) 

PC2 

(Normal/Cancer 

difference) 

PC3  

(Degree of 

autonomy) 

PC4  

(Noise) 

Standard deviation     0.134 0.0425 0.00439 0.000683 

Proportion of Variance 

explained by  component 
0.908 0.0911 0.00097 0.000020 

Cumulative Proportion   0.908 0.9990 0.99998 1 

Component 

Loadings:  

PC1 

(Attractor) 

PC2 

(Normal/Cancer 

difference) 

PC3  

(Degree of 

autonomy) 

PC4  

(Noise) 

DCGlobal -0.4871506 0.1924781 -0.5238308 0.6717423 

DNGlobal -0.3563782 -0.3680381 -0.5963258 -0.6180114 

DCSpecific -0.6539801 0.5581170 0.3891397 -0.3307351 

DNSpecific -0.4560580 -0.7183352 0.4675117 0.2396632 
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Pancreas carcinoma (Logsdon et al.) 
 

Relative 

importance: 

PC1 

(Attractor) 

PC2 

(Normal/Cancer 

difference) 

PC3  

(Degree of 

autonomy) 

PC4  

(Noise) 

Standard deviation     0.213 0.106 0.0098 0.00296 

Proportion of Variance 

explained by  component 
0.801 0.198 0.0017 0.00016 

Cumulative Proportion   0.801 0.998 0.9998 1 

Component 

Loadings: 

  

PC1 

(Attractor) 

PC2 

(Normal/Cancer 

difference) 

PC3  

(Degree of 

autonomy) 

PC4  

(Noise) 

DCGlobal -0.3106436 0.3413867 -0.5844092 -0.6673991 

DNGlobal -0.4308919 -0.1495312 -0.6043367 0.6532609 

DCSpecific -0.4633882 0.7489053 0.4070460 0.2423340 

DNSpecific -0.7092984 -0.5479383 0.3571507 -0.2628743 

 

 

 

 

 

Prostate carcinoma (GSE6919) 
 

Relative 

importance: 

PC1 

(Attractor) 

PC2 

(Normal/Cancer 

difference) 

PC3  

(Degree of 

autonomy) 

PC4  

(Noise) 

Standard deviation     0.094 0.0218 0.00202 0.000289 

Proportion of Variance 

explained by  component 
0.948 0.0512 0.00044 0.000010 

Cumulative Proportion   0.948 0.9996 0.99999 1 

Component 

Loadings:  

PC1 

(Attractor) 

PC2 

(Normal/Cancer 

difference) 

PC3  

(Degree of 

autonomy) 

PC4  

(Noise) 

DCGlobal -0.4868723 0.2591513 -0.5374330 0.6379355 

DNGlobal -0.3937599 -0.3927989 -0.5607571 -0.6133626 

DCSpecific -0.6342255 0.5425107 0.4349970 -0.3379612 

DNSpecific -0.4535047 -0.6958676 0.4555160 0.3203231 
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Prostate carcinoma (GSE3325) 
 

Relative 

importance: 

PC1 

(Attractor) 

PC2 

(Normal/Cancer 

difference) 

PC3  

(Degree of 

autonomy) 

PC4  

(Noise) 

Standard deviation     0.185 0.0962 0.00555 0.00142 

Proportion of Variance 

explained by  component 
0.787 0.2127 0.00071 0.00005 

Cumulative Proportion   0.787 0.9992 0.99995 1 

Component 

Loadings: 

  

PC1 

(Attractor) 

PC2 

(Normal/Cancer 

difference) 

PC3  

(Degree of 

autonomy) 

PC4  

(Noise) 

DCGlobal -0.4656498 0.1456634 -0.6308057 0.6033544 

DNGlobal -0.2653653 -0.3860657 -0.5525927 -0.6893300 

DCSpecific -0.7344495 0.4844237 0.3763689 -0.2902828 

DNSpecific -0.4163357 -0.7714072 0.3937917 0.2766288 
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Appendix G 
 

Protein-coding genes extracted using the EST abundance analysis of the Human 

Unigene data as potential tumor biomarkers (Table 4). 

 

S.No Unigene_ID Gene Symbol NCBI Gene_ID Genomic loci 

1 Hs.655285 ABCF1 23 6p21.33 

2 Hs.387567 ACLY 47 17q12-q21 

3 Hs.514581 ACTG1 71 17q25 

4 Hs.467125 AP2A1 160 19q13.33 

5 Hs.388004 AHCY 191 20cen-q13.1 

6 Hs.525622 AKT1 207 14q32.32|14q32.32 

7 Hs.531682 ALDH3A1 218 17p11.2 

8 Hs.511605 ANXA2 302 15q21-q22 

9 Hs.517969 APEH 327 3p21.31 

10 Hs.514527 BIRC5 332 17q25 

11 Hs.502659 RHOC 389 1p13.1 

12 Hs.465985 ASNA1 439 19q13.3 

13 Hs.707979 ATP1B2 482 17p13.1 

14 Hs.406510 ATP5B 506 12q13.13 

15 Hs.514870 ATP5F1 515 1p13.2 

16 Hs.516966 BCL2L1 598 20q11.21 

17 Hs.106880 BYSL 705 6p21.1 

18 Hs.555866 C1QBP 708 17p13.3 

19 Hs.377010 CAD 790 2p22-p21 

20 Hs.515162 CALR 811 19p13.3-p13.2 

21 Hs.516155 CAPG 822 2p11.2 

22 Hs.58974 CCNA2 890 4q25-q31 

23 Hs.23960 CCNB1 891 5q12 

24 Hs.244723 CCNE1 898 19q12 

25 Hs.82916 CCT6A 908 7p11.2 

26 Hs.501497 CD70 970 19p13 

27 Hs.405958 CDC6 990 17q21.3 

28 Hs.524947 CDC20 991 1p34.1 

29 Hs.437705 CDC25A 993 3p21 

30 Hs.153752 CDC25B 994 20p13 

31 Hs.95577 CDK4 1019 12q14 

32 Hs.512599 CDKN2A 1029 9p21 

33 Hs.1594 CENPA 1058 2p24-p21 

34 Hs.516855 CENPB 1059 20p13 

35 Hs.75573 CENPE 1062 4q24-q25 

36 Hs.170622 CFL1 1072 11q13 
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37 Hs.706874 CTSC 1075 11q14.1-q14.3 

38 Hs.374378 CKS1B 1163 1q21.2 

39 Hs.83758 CKS2 1164 9q22 

40 Hs.563509 AP1S1 1174 7q22.1 

41 Hs.414565 CLIC1 1192 6p22.1-p21.2 

42 Hs.522114 CLTA 1211 9p13 

43 Hs.132370 CSTF2 1478 Xq22.1 

44 Hs.289271 CYC1 1537 8q24.3 

45 Hs.706840 DCN 1634 12q21.33 

46 Hs.290758 DDB1 1642 11q12-q13 

47 Hs.484782 DFFA 1676 1p36.3-p36.2 

48 Hs.4747 DKC1 1736 Xq28 

49 Hs.632398 DPH2 1802 1p34 

50 Hs.591664 DUSP7 1849 3p21 

51 Hs.654393 E2F1 1869 20q11.2 

52 Hs.703174 E2F3 1871 6p22 

53 Hs.518299 ECT2 1894 3q26.1-q26.2 

54 Hs.586423 EEF1A1 1915 6q14.1 

55 Hs.520703 EEF1A1 1915 6q14.1 

56 Hs.333388 EEF1D 1936 8q24.3 

57 Hs.144835 EEF1G 1937 11q12.3 

58 Hs.129673 EIF4A1 1973 17p13 

59 Hs.707977 EIF4A2 1974 3q28 

60 Hs.433750 EIF4G1 1981 3q27-qter 

61 Hs.534314 EIF5A 1984 17p13-p12 

62 Hs.522823 EMD 2010 Xq28 

63 Hs.517145 ENO1 2023 1p36.3-p36.2 

64 Hs.2913 EPHB3 2049 3q21-qter 

65 Hs.299002 FBL 2091 19q13.1 

66 Hs.110849 ESRRA 2101 11q13 

67 Hs.434059 ETV4 2118 17q21 

68 Hs.444082 EZH2 2146 7q35-q36 

69 Hs.302003 FANCE 2178 6p22-p21 

70 Hs.335918 FDPS 2224 1q22 

71 Hs.409065 FEN1 2237 11q12 

72 Hs.524183 FKBP4 2288 12p13.33 

73 Hs.239 FOXM1 2305 12p13 

74 Hs.524910 FTH1 2495 11q13 

75 Hs.461047 G6PD 2539 Xq28 

76 Hs.544577 GAPDH 2597 12p13 

77 Hs.479728 GAPDH 2597 12p13 

78 Hs.708288 GJA1 2697 6q21-q23.2 

79 Hs.487341 GNA12 2768 7p22.2 

80 Hs.185172 GNB2 2783 7q21.3-q22.1|7q22 

81 Hs.523718 SFN 2810 1p36.11 

82 Hs.594634 GRINA 2907 8q24.3 
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83 Hs.466828 GSK3A 2931 19q13.2 

84 Hs.445052 MSH6 2956 2p16 

85 Hs.75782 GTF3C2 2976 2p23.3 

86 Hs.477879 H2AFX 3014 11q23.2-q23.3 

87 Hs.171280 HSD17B10 3028 Xp11.2 

88 Hs.88556 HDAC1 3065 1p34 

89 Hs.707995 HMGB1 3146 13q12 

90 Hs.181163 HMGN2 3151 1p36.1 

91 Hs.518805 HMGA1 3159 6p21 

92 Hs.703764 HMGA1 3159 6p21 

93 Hs.569017 SLC29A2 3177 11q13 

94 Hs.436181 HOXB7 3217 17q21.3 

95 Hs.463350 HOXB9 3219 17q21.3 

96 Hs.580427 HPCAL1 3241 2p25.1 

97 Hs.20521 PRMT1 3276 19q13.3 

98 Hs.707984 IDUA 3425 4p16.3 

99 Hs.654400 IMPDH2 3615 3p21.2 

100 Hs.522819 IRAK1 3654 Xq28 

101 Hs.654848 EIF6 3692 20q12 

102 Hs.2722 ITPKA 3706 15q14-q21 

103 Hs.3100 KARS 3735 16q23-q24 

104 Hs.436912 KIFC1 3833 6p21.3 

105 Hs.532793 KPNB1 3837 17q21.32 

106 Hs.533782 KRT8 3856 12q13 

107 Hs.406013 KRT18 3875 12q13 

108 Hs.449909 RPSA 3921 3p22.2 

109 Hs.446149 LDHB 3945 12p12.2-p12.1 

110 Hs.514535 LGALS3BP 3959 17q25 

111 Hs.89497 LMNB1 4001 5q23.3-q31.1 

112 Hs.706751 LTBP1 4052 2p22-p21 

113 Hs.521903 LY6E 4061 8q24.3 

114 Hs.546264 NBR1 4077 17q21.31 

115 Hs.417816 MAGEA3 4102 Xq28 

116 Hs.441113 MAGEA6 4105 Xq28 

117 Hs.169246 MAGEA12 4111 Xq28 

118 Hs.23650 MAZ 4150 16p11.2 

119 Hs.477481 MCM2 4171 3q21 

120 Hs.179565 MCM3 4172 6p12 

121 Hs.460184 MCM4 4173 8q11.2 

122 Hs.438720 MCM7 4176 7q21.3-q22.1 

123 Hs.567303 MDM2 4193 12q14.3-q15 

124 Hs.423348 MEN1 4221 11q13 

125 Hs.80976 MKI67 4288 10q25-qter 

126 Hs.391464 ABCC1 4363 16p13.1 

127 Hs.179718 MYBL2 4605 20q13.1 

128 Hs.524599 NAP1L1 4673 12q21.2 
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129 Hs.81469 NUBP1 4682 16p13.13 

130 Hs.277677 NDUFA10 4705 2q37.3 

131 Hs.148340 RPL10A 4736 6p21.3-p21.2 

132 Hs.675285 NFKBIL2 4796 8q24.3 

133 Hs.557550 NPM1 4869 5q35 

134 Hs.473583 YBX1 4904 1p34 

135 Hs.446427 OAZ1 4946 19p13.3 

136 Hs.708130 OGN 4969 9q22 

137 Hs.17908 ORC1L 4998 1p32 

138 Hs.524498 PA2G4 5036 12q13.2 

139 Hs.180909 PRDX1 5052 1p34.1 

140 Hs.546271 PCBP2 5094 12q13.12-q13.13 

141 Hs.255093 PFKL 5211 21q22.3 

142 Hs.494691 PFN1 5216 17p13.3 

143 Hs.290404 SLC25A3 5250 12q23 

144 Hs.371344 PIK3R2 5296 19q13.2-q13.4 

145 Hs.534770 PKM2 5315 15q22 

146 Hs.154104 PLAGL2 5326 20q11.21 

147 Hs.591953 PLCB3 5331 11q13 

148 Hs.592049 PLK1 5347 16p12.1 

149 Hs.279413 POLD1 5424 19q13.3 

150 Hs.306791 POLD2 5425 7p13 

151 Hs.356331 PPIA 5478 7p13 

152 Hs.183994 PPP1CA 5499 11q13 

153 Hs.533308 PPP2R5D 5528 6p21.1 

154 Hs.516948 PRCC 5546 1q21.1 

155 Hs.465627 MAP2K2 5605 19p13.3 

156 Hs.523004 PSAP 5660 10q21-q22 

157 Hs.89545 PSMB4 5692 1q21 

158 Hs.77060 PSMB6 5694 17p13 

159 Hs.250758 PSMC3 5702 11p12-p13 

160 Hs.211594 PSMC4 5704 19q13.11-q13.13 

161 Hs.518464 PSMD2 5708 3q27.1 

162 Hs.459927 PTMA 5757 2q35-q36 

163 Hs.458332 PYCR1 5831 17q25.3 

164 Hs.368157 PYGB 5834 20p11.2-p11.1 

165 Hs.647062 RFC2 5982 7q11.23 

166 Hs.461925 RPA1 6117 17p13.3 

167 Hs.79411 RPA2 6118 1p35 

168 Hs.644628 RPL4 6124 15q22 

169 Hs.186350 RPL4 6124 15q22 

170 Hs.571841 RPL7 6129 8q21.11 

171 Hs.499839 RPL7A 6130 9q34 

172 Hs.178551 RPL8 6132 8q24.3 

173 Hs.546285 RPLP0 6175 12q24.2 

174 Hs.109059 MRPL12 6182 17q25 
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175 Hs.370895 RPN2 6185 20q12-q13.1 

176 Hs.506997 RPS2 6187 16p13.3 

177 Hs.498569 RPS2 6187 16p13.3 

178 Hs.356366 RPS2 6187 16p13.3 

179 Hs.546286 RPS3 6188 11q13.3-q13.5 

180 Hs.356572 RPS3A 6189 4q31.2-q31.3 

181 Hs.446628 RPS4X 6191 Xq13.1 

182 Hs.378103 RPS5 6193 19q13.4 

183 Hs.381126 RPS14 6208 5q31-q33 

184 Hs.433427 RPS17 6218 15q 

185 Hs.226390 RRM2 6241 2p25-p24 

186 Hs.436687 SET 6418 9q34 

187 Hs.97616 SH3GL1 6455 19p13.3 

188 Hs.23348 SKP2 6502 5p13 

189 Hs.631582 SLC1A5 6510 19q13.3 

190 Hs.187946 SLC20A1 6574 2q11-q14 

191 Hs.118400 FSCN1 6624 7p22 

192 Hs.83753 SNRPB 6628 20p13 

193 Hs.707993 SOX9 6662 17q24.3-q25.1 

194 Hs.301540 SPR 6697 2p14-p12 

195 Hs.443258 SREBF2 6721 22q13 

196 Hs.511425 SRP9 6726 1q42.12 

197 Hs.523680 SSRP1 6749 11q12 

198 Hs.250822 AURKA 6790 20q13.2-q13.3 

199 Hs.481860 TARS 6897 5p13.2 

200 Hs.519672 TCOF1 6949 5q32-q33.1 

201 Hs.708025 TEGT 7009 12q12-q13 

202 Hs.513305 TFAP4 7023 16p13 

203 Hs.645227 TGFB1 7040 19q13.2|19q13.1 

204 Hs.78769 THOP1 7064 19q13.3 

205 Hs.515122 TK1 7083 17q23.2-q25.3 

206 Hs.707975 TNFRSF1A 7132 12p13.2 

207 Hs.524219 TPI1 7167 12p13 

208 Hs.654421 TPM3 7170 1q21.2 

209 Hs.12084 TUFM 7284 16p11.2 

210 Hs.170107 UQCRFS1 7386 19q12-q13.1 

211 Hs.78601 UROD 7389 1p34 

212 Hs.520943 EIF4H 7458 7q11.23 

213 Hs.707878 ZFP36 7538 19q13.1 

214 Hs.662176 ZNF90 7643 19p13.1-p12 

215 Hs.234521 MAPKAPK3 7867 3p21.3 

216 Hs.695957 DEK 7913 6p22.3 

217 Hs.283565 FOSL1 8061 11q13 

218 Hs.631661 USP5 8078 12p13 

219 Hs.524214 MLF2 8079 12p13 

220 Hs.513797 SLC7A5 8140 16q24.3 
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221 Hs.115232 SF3A2 8175 19p13.3-p13.2 

222 Hs.75238 CHAF1B 8208 21q22.13 

223 Hs.401509 RBM10 8241 Xp11.23 

224 Hs.592082 AXIN1 8312 16p13.3 

225 Hs.134999 HIST1H2AM 8336 6p22-p21.3 

226 Hs.706783 RAD54L 8438 1p32 

227 Hs.405046 CBX4 8535 17q25.3 

228 Hs.708050 PPAP2B 8613 1pter-p22.1 

229 Hs.371001 EIF3B 8662 7p22.2 

230 Hs.492599 EIF3H 8667 8q24.11 

231 Hs.86131 FADD 8772 11q13.3 

232 Hs.212680 TNFRSF18 8784 1p36.3 

233 Hs.412842 CDC123 8872 10p13 

234 Hs.591942 ZNF259 8882 11q23.3 

235 Hs.118631 TIMELESS 8914 12q12-q13 

236 Hs.446522 RPL14 9045 3p22-p21.2 

237 Hs.567385 PRC1 9055 15q26.1 

238 Hs.54277 FAM50A 9130 Xq28 

239 Hs.194698 CCNB2 9133 15q22.2 

240 Hs.514590 HGS 9146 17q25 

241 Hs.498248 EXO1 9156 1q42-q43 

242 Hs.576875 DDX21 9188 10q21 

243 Hs.442658 AURKB 9212 17p13.1 

244 Hs.151787 EFTUD2 9343 17q21.31 

245 Hs.350265 LONP1 9361 19p13.2 

246 Hs.31442 RECQL4 9401 8q24.3 

247 Hs.5258 MAGED1 9500 Xp11.23 

248 Hs.522810 CSAG2 9598 Xq28 

249 Hs.118351 UBE3C 9690 7q36.3 

250 Hs.81892 KIAA0101 9768 15q22.31 

251 Hs.292579 PTDSS1 9791 8q22 

252 Hs.5719 NCAPD2 9918 12p13.3 

253 Hs.656243 AMMECR1 9949 Xq22.3 

254 Hs.654972 RCE1 9986 11q13 

255 Hs.497353 MED6 10001 14q24.2 

256 Hs.79018 CHAF1A 10036 19p13.3 

257 Hs.58992 SMC4 10051 3q26.1 

258 Hs.515500 SAE1 10055 19q13.32 

259 Hs.654958 ABCF2 10061 7q36 

260 Hs.489284 ARPC1B 10095 7q22.1 

261 Hs.73625 KIF20A 10112 5q31 

262 Hs.522817 BCAP31 10134 Xq28 

263 Hs.467408 TRIM28 10155 19q13.4 

264 Hs.696342 NUTF2 10204 16q22.1 

265 Hs.516160 SF3B4 10262 1q12-q21 

266 Hs.522087 OPRS1 10280 9p13.3 
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267 Hs.20447 PAK4 10298 19q13.2 

268 Hs.173162 COX4NB 10328 16q24 

269 Hs.707307 PCGF3 10336 4p16.3 

270 Hs.524390 TUBA1B 10376 12q13.12 

271 Hs.705373 TUBA1B 10376 12q13.12 

272 Hs.433615 TUBB2C 10383 9q34 

273 Hs.5662 GNB2L1 10399 5q35.3 

274 Hs.435850 LYPLA1 10434 8q11.23 

275 Hs.655909 TOMM40 10452 19q13 

276 Hs.104019 TACC3 10460 4p16.3 

277 Hs.386390 TADA3L 10474 3p25.3 

278 Hs.470804 UBE2E3 10477 2q32.1 

279 Hs.371416 CARM1 10498 19p13.2 

280 Hs.532851 RNASEH2A 10535 19p13.13 

281 Hs.494604 ANP32B 10541 9q22.32 

282 Hs.518774 PAICS 10606 4q12 

283 Hs.514033 SPAG5 10615 17q11.2 

284 Hs.144936 IGF2BP1 10642 17q21.32 

285 Hs.520794 YKT6 10652 7p15.1 

286 Hs.348308 C1orf2 10712 1q21 

287 Hs.241517 POLQ 10721 3q13.33 

288 Hs.263812 NUDC 10726 1p35-p34 

289 Hs.101937 SIX2 10736 2p16-p15 

290 Hs.435120 KIF1C 10749 17p13.2 

291 Hs.655012 GIPC1 10755 19p13.1 

292 Hs.469030 MTHFD2 10797 2p13.1 

293 Hs.458598 UTP14A 10813 Xq25 

294 Hs.705916 CD3EAP 10849 19q13.3 

295 Hs.310809 WDR3 10885 1p13-p12 

296 Hs.337295 STIP1 10963 11q13 

297 Hs.74405 YWHAQ 10971 2p25.1 

298 Hs.15591 COPS6 10980 7q22.1 

299 Hs.298716 GCN1L1 10985 12q24.2 

300 Hs.528834 NUDT21 11051 16q13 

301 Hs.93002 UBE2C 11065 20q13.12 

302 Hs.397638 WDR5 11091 9q34 

303 Hs.708055 HNRPUL1 11100 19q13.2 

304 Hs.591363 ZWINT 11130 10q21-q22 

305 Hs.160958 CDC37 11140 19p13.2 

306 Hs.478150 PDCD10 11235 3q26.1 

307 Hs.519993 NRM 11270 6p21.33 

308 Hs.567419 MGAT4B 11282 5q35 

309 Hs.504620 PHB2 11331 12p13 

310 Hs.632296 PDAP1 11333 7q22.1 

311 Hs.531563 DOLK 22845 9q34.11 

312 Hs.515610 SAPS1 22870 19q13.42 
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313 Hs.244580 TPX2 22974 20q11.2 

314 Hs.586219 KIAA0194 22993 5q33.1 

315 Hs.246112 ASCC3L1 23020 2q11.2 

316 Hs.155829 TBC1D9B 23061 5q35.3 

317 Hs.517670 TTLL12 23170 22q13.31 

318 Hs.535901 BOP1 23246 8q24.3 

319 Hs.645279 BOP1 23246 8q24.3 

320 Hs.583391 NOMO1 23420 16p13.11 

321 Hs.513484 QPRT 23475 16p11.2 

322 Hs.436329 SCRIB 23513 8q24.3 

323 Hs.32018 SNAPIN 23557 1q21.3 

324 Hs.49760 ORC6L 23594 16q12 

325 Hs.173464 FKBP8 23770 19p12 

326 Hs.648326 KIF4A 24137 Xq13.1 

327 Hs.31334 PRPF6 24148 20q13.33 

328 Hs.50915 KLK5 25818 19q13.3-q13.4 

329 Hs.706873 SIN3A 25942 15q24.2 

330 Hs.11314 C20orf4 25980 20pter-q12 

331 Hs.708014 SERBP1 26135 1p31 

332 Hs.532129 TSPAN17 26262 5q35.3 

333 Hs.279529 PRELID1 27166 5q35.3 

334 Hs.396393 UBE2S 27338 19q13.43 

335 Hs.502705 PRPF19 27339 11q12.2 

336 Hs.534041 CTA-126B4.3 27341 22q13.2-q13.31 

337 Hs.504249 DCPS 28960 11q24.2 

338 Hs.18349 MRPL15 29088 8q11.2-q13 

339 Hs.5199 UBE2T 29089 1q32.1 

340 Hs.157351 OLA1 29789 2q31.1 

341 Hs.279877 FTSJ2 29960 7p22 

342 Hs.436341 DONSON 29980 21q22.1 

343 Hs.3439 STOML2 30968 9p13.1 

344 Hs.645463 THAP4 51078 2q37.3 

345 Hs.463797 MRTO4 51154 1p36.13 

346 Hs.381256 GLTP 51228 12q24.11 

347 Hs.584908 MRPL37 51253 1p32.1 

348 Hs.475387 CHCHD8 51287 11q13.4 

349 Hs.558499 CD320 51293 19p13.3-p13.2 

350 Hs.69499 TRIAP1 51499 12q24.31 

351 Hs.386189 GTSE1 51512 22q13.2-q13.3 

352 Hs.706898 MTP18 51537 22q 

353 Hs.528641 SIRT7 51547 17q25 

354 Hs.514216 SLC25A39 51629 17q12 

355 Hs.655138 WBP11 51729 12p12.3 

356 Hs.193326 FGFRL1 53834 4p16 

357 Hs.437060 CYCS 54205 7p15.2 

358 Hs.592116 FAM64A 54478 17p13.2 
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359 Hs.481836 MTMR12 54545 5p13.3 

360 Hs.654762 DDX56 54606 7p13 

361 Hs.485449 GTPBP2 54676 6p21-p12 

362 Hs.700127 QPCTL 54814 19q13.32 

363 Hs.481526 NSUN2 54888 5p15.31 

364 Hs.572318 TIPIN 54962 15q22.31 

365 Hs.330663 C12orf48 55010 12q23.2 

366 Hs.34045 CDCA4 55038 14q32.33 

367 Hs.524571 CDCA8 55143 1p34.3 

368 Hs.14559 CEP55 55165 10q23.33 

369 Hs.655253 ATAD3A 55210 1p36.33 

370 Hs.513126 FANCI 55215 15q26.1 

371 Hs.267446 FLJ11184 55319 4q32.3 

372 Hs.7570 CNO 55330 4p16.1 

373 Hs.532968 HJURP 55355 2q37.1 

374 Hs.518265 CDV3 55573 3q22.1 

375 Hs.516450 SMPD4 55627 2q21.1 

376 Hs.27222 NOLA2 55651 5q35.3 

377 Hs.707116 ZNF446 55663 19q13.43 

378 Hs.567803 C9orf86 55684 9q34.3 

379 Hs.55028 CENPN 55839 16q23.2 

380 Hs.656063 BAIAP2L1 55971 7q21.3 

381 Hs.472667 CTNNBL1 56259 20q11.23-q12 

382 Hs.22678 C10orf2 56652 10q23.3-q24.3 

383 Hs.283739 UBQLN4 56893 1q21 

384 Hs.250456 DHX33 56919 17p13.2 

385 Hs.663740 ARNTL2 56938 12p12.2-p11.2 

386 Hs.283734 MRPL47 57129 3q26.33 

387 Hs.268488 LRRC47 57470 1p36.32 

388 Hs.158381 AARS2 57505 6p21.1 

389 Hs.107382 DHX37 57647 12q24.31 

390 Hs.444173 PHF12 57649 17q11.2 

391 Hs.325838 KIAA1542 57661 11p15.5 

392 Hs.465829 ZNF317 57693 NA 

393 Hs.516826 TRIB3 57761 20p13-p12.2 

394 Hs.654720 KIAA1967 57805 8p22 

395 Hs.107003 CCNB1IP1 57820 14q11.2 

396 Hs.708201 CXCL16 58191 17p13 

397 Hs.477498 EEFSEC 60678 3q21.3 

398 Hs.175613 CLSPN 63967 1p34.2 

399 Hs.604789 MCCC2 64087 5q12-q13 

400 Hs.706966 HERPUD2 64224 7p14.2 

401 Hs.527989 NXN 64359 17p13.3 

402 Hs.15825 NOM1 64434 7q36.3 

403 Hs.436102 ISG20L1 64782 15q26.1 

404 Hs.18946 MRPS26 64949 20p13 
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405 Hs.103832 UPF3B 65109 Xq25-q26 

406 Hs.157160 MRPS34 65993 16p13.3 

407 Hs.437059 C17orf53 78995 17q21.31 

408 Hs.209979 LRFN4 78999 11q13.1 

409 Hs.208912 CENPM 79019 22q13.2 

410 Hs.596726 TMEM106C 79022 12q13.1 

411 Hs.240170 OBFC2B 79035 12q13.2 

412 Hs.632191 XTP3TPA 79077 16p11.2 

413 Hs.79625 C20orf149 79144 20q13.33 

414 Hs.465374 EFHD2 79180 1p36.21 

415 Hs.412304 THOC6 79228 16p13.3 

416 Hs.661128 KREMEN2 79412 16p13.3 

417 Hs.521168 GCC1 79571 7q32.1 

418 Hs.418233 MRPL24 79590 1q21-q22 

419 Hs.371642 ADIPOR2 79602 12p13.31 

420 Hs.59425 NOL9 79707 1p36.31 

421 Hs.411865 IPO4 79711 14q12 

422 Hs.163754 ZNF669 79862 1q44 

423 Hs.496501 CXorf34 79979 Xq22.1 

424 Hs.302051 MYO19 80179 17q12 

425 Hs.567594 CXXC6 80312 10q21 

426 Hs.440899 TTYH3 80727 7p22 

427 Hs.534492 PRR7 80758 5q35.3 

428 Hs.458390 INTS5 80789 11q12.3 

429 Hs.373741 HM13 81502 20q11.21 

430 Hs.150837 TXNDC5 81567 6p24.3 

431 Hs.495229 URM1 81605 9q34.11 

432 Hs.656466 ANP32E 81611 1q21.2 

433 Hs.122908 CDT1 81620 16q24.3 

434 Hs.444046 NETO2 81831 16q11 

435 Hs.374421 CEP78 84131 9q21.2 

436 Hs.643537 TRAF7 84231 16p13.3 

437 Hs.19673 MAF1 84232 8q24.3 

438 Hs.124015 HAGHL 84264 16p13.3 

439 Hs.76662 ZDHHC16 84287 10q24.1 

440 Hs.462913 MRPL45 84311 17q21.2 

441 Hs.548868 THOC3 84321 5q35.2 

442 Hs.631633 ELOF1 84337 19p13.2 

443 Hs.631506 MCM8 84515 20p12.3 

444 Hs.405925 PSRC1 84722 1p13.3 

445 Hs.538286 LMNB2 84823 19p13.3 

446 Hs.133122 ZDHHC12 84885 9q34.11 

447 Hs.102971 ALG10 84920 12p11.1 

448 Hs.71574 TIGD5 84948 8q24.3 

449 Hs.334713 UBL7 84993 15q24.1 

450 Hs.655493 UNK 85451 17q25.1 
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451 Hs.495240 WDR34 89891 9q34.11 

452 Hs.19322 C9orf140 89958 9q34.3 

453 Hs.533597 PYGO2 90780 1q21.3 

454 Hs.696333 LOC90784 90784 2p11.2 

455 Hs.708161 C17orf72 92340 17q24.2 

456 Hs.590956 TIMM50 92609 19q13.2 

457 Hs.638652 LOC92755 92755 8p12 

458 Hs.531614 BTBD14B 112939 19p13.13 

459 Hs.101742 RPUSD1 113000 16p13.3 

460 Hs.380094 PLCD3 113026 17q21.31 

461 Hs.434886 CDCA5 113130 11q12.1 

462 Hs.591998 SAAL1 113174 11p15.1 

463 Hs.534521 TMEM54 113452 1p35-p34 

464 Hs.406840 SLC35A4 113829 5q31.3 

465 Hs.201083 MAL2 114569 8q23 

466 Hs.347524 C16orf75 116028 16p13.13 

467 Hs.705716 TLCD1 116238 17q11.2 

468 Hs.368934 C17orf45 125144 17p11.2 

469 Hs.708197 PODN 127435 1p32.3 

470 Hs.416375 E2F7 144455 12q21.2 

471 Hs.135094 LOC146909 146909 17q21.31 

472 Hs.632255 RUNDC1 146923 17q21.31 

473 Hs.631760 DHRS13 147015 17q11.2 

474 Hs.164324 TRIM16L 147166 17p11.2 

475 Hs.381225 SPC24 147841 19p13.2 

476 Hs.105153 SGOL1 151648 3p24.3 

477 Hs.377830 MBOAT1 154141 6p22.3 

478 Hs.567739 LOC158345 158345 9p24.1 

479 Hs.657472 GPR180 160897 13q32.1 

480 Hs.406461 FAM86A 196483 16p13.3 

481 Hs.189823 TRIM65 201292 17q25.1 

482 Hs.380920 LOC201725 201725 4q32.1 

483 Hs.636480 TUBB 203068 6p21.33 

484 Hs.706772 TUBB 203068 6p21.33 

485 Hs.533655 TYSND1 219743 10q22.1 

486 Hs.165607 C11orf82 220042 11q14.1 

487 Hs.448226 RPLP0-like 220717 2p22.1 

488 Hs.706964 RPLP0-like 220717 2p22.1 

489 Hs.88523 C13orf3 221150 13q12.11 

490 Hs.72363 C14orf80 283643 14q32.33 

491 Hs.633835 LOC284072 284072 17q25.1 

492 Hs.378885 PIGW 284098 17q12 

493 Hs.381204 METTL2A 339175 17q23.2 

494 Hs.103939 C1orf174 339448 1p36.32 

495 Hs.459311 ZNF710 374655 15q26.1 

496 Hs.512492 RAB15 376267 14q23.3 
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497 Hs.500561 LOC387703 387703 10q23.33 

498 Hs.433791 TMEM46 387914 13q12.13 

499 Hs.560655 LOC388524 388524 19p12 

500 Hs.647251 LOC390183 390183 11q12.1 

501 Hs.355210 LOC400019 400019 12p11.21 

502 Hs.620821 VMAC 400673 19p13.3 

503 Hs.516290 LOC400963 400963 2p11.2 

504 Hs.590999 RPL23AP2 401904 19p13.12 

505 Hs.73105 PMS2CL 441194 7p22.1 

506 Hs.536395 DUXAP10 503639 14q11.2 

507 Hs.523097 EIF5AL3 642592 10q22.3 

508 Hs.645558 LOC642784 642784 Xq21.31 

509 Hs.646686 LOC642909 642909 5q21.1 

510 Hs.507343 LOC643446 643446 4p15.33 

511 Hs.647694 LOC643586 643586 1p13.2 

512 Hs.531200 HMGN2P6 643872 14q12 

513 Hs.614453 LOC643873 643873 Xq23 

514 Hs.647368 LOC644035 644035 16q22.1 

515 Hs.632240 FAM83G 644815 17p11.2 

516 Hs.632598 LOC645018 645018 4q31.21 

517 Hs.632537 LOC645691 645691 2q33.1 

518 Hs.647919 LOC646612 646612 3q22.3 

519 Hs.571791 LOC647150 647150 1q31.2 

520 Hs.289232 LOC648232 648232 NA 

521 Hs.654748 TMEM183B 653659 3q25.1 

522 Hs.444467 LOC654007 654007 7q32.3 

523 Hs.646673 LOC728301 728301 5q22.3 

524 Hs.535769 LOC728554 728554 5q35.3 

525 Hs.594117 HMGN2P3 728632 16p12.1 

526 Hs.596312 hCG_1988300 728638 8q12.3 

527 Hs.535464 EIF3CL 728689 16p11.2 

528 Hs.512314 LOC728891 728891 NA 

529 Hs.652172 LOC729859 729859 2p11.2 
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Appendix H 
 

Protein-coding genes extracted using the EST abundance analysis of the Human 

Unigene data as potential biomarkers of normal tissues (Table 5). 

 

S.No Unigene_ID Gene Symbol NCBI Gene_ID Genomic loci 

1 Hs.506908 AADAC 13 3q21.3-q25.2 

2 Hs.647097 ABP1 26 7q34-q36 

3 Hs.445040 ACADM 34 1p31 

4 Hs.532492 ACP2 53 11p11.2-p11.11|11p12-p11 

5 Hs.498178 ACTN2 88 1q42-q43 

6 Hs.591026 ACVRL1 94 12q11-q14 

7 Hs.474018 ADARB1 104 21q22.3 

8 Hs.481545 ADCY2 108 5p15.3 

9 Hs.593293 ADCY5 111 3q13.2-q21 

10 Hs.4 ADH1B 125 4q21-q23 

11 Hs.654537 ADH1C 126 4q21-q23 

12 Hs.197029 ADORA2A 135 22q11.23 

13 Hs.249159 ADRA2A 150 10q24-q26 

14 Hs.522666 ALAS2 212 Xp11.21 

15 Hs.76392 ALDH1A1 216 9q21.13 

16 Hs.2533 ALDH9A1 223 1q23.1 

17 Hs.111256 ALOX15B 247 17p13.1 

18 Hs.102 AMT 275 3p21.2-p21.1 

19 Hs.283749 ANG 283 14q11.1-q11.2 

20 Hs.620557 ANK2 287 4q25-q27 

21 Hs.1239 ANPEP 290 15q25-q26 

22 Hs.422986 ANXA4 307 2p13 

23 Hs.412117 ANXA6 309 5q32-q34 

24 Hs.406238 AOX1 316 2q33 

25 Hs.158932 APC 324 5q21-q22 

26 Hs.244139 FAS 355 10q24.1 

27 Hs.76152 AQP1 358 7p14 

28 Hs.455323 AQP7 364 9p13 

29 Hs.502876 RHOB 388 2p24 

30 Hs.6838 RND3 390 2q23.3 

31 Hs.503284 ARRB1 408 11q13 

32 Hs.88251 ARSA 410 22q13.31-qter|22q13.33 

33 Hs.24976 ART3 419 
4p15.1-p14|4p15.1-
p14|4p15.1-p14 

34 Hs.460 ATF3 467 1q32.3 

35 Hs.343522 ATP2B4 493 1q32.1 
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36 Hs.492280 ATP7B 540 13q14.3 

37 Hs.333738 BBS2 583 16q21 

38 Hs.410026 BCL2L2 599 14q11.2-q12 

39 Hs.821 BGN 633 Xq28 

40 Hs.169998 BST1 683 4p15 

41 Hs.150557 KLF9 687 9q13 

42 Hs.384598 SERPING1 710 11q12-q13.1 

43 Hs.8986 C1QB 713 1p36.12 

44 Hs.458355 C1S 716 12p13 

45 Hs.591148 C3AR1 719 12p13.31 

46 Hs.78065 C7 730 5p13 

47 Hs.149363 C18orf1 753 18p11.2 

48 Hs.155097 CA2 760 8q22 

49 Hs.82129 CA3 761 8q13-q22 

50 Hs.59093 CACNB2 783 10p12 

51 Hs.440961 CAST 831 5q15 

52 Hs.458426 CCK 885 3p22-p21.3 

53 Hs.292524 CCNH 902 5q13.3-q14 

54 Hs.163867 CD14 929 5q22-q32|5q31.1 

55 Hs.374990 CD34 947 1q32 

56 Hs.120949 CD36 948 7q11.2 

57 Hs.633085 CD36 948 7q11.2 

58 Hs.278573 CD59 966 11p13 

59 Hs.191346 7-Sep 989 7p14.3-p14.1 

60 Hs.690198 CDC42 998 1p36.1 

61 Hs.76206 CDH5 1003 16q22.1 

62 Hs.238990 CDKN1B 1027 12p13.1-p12 

63 Hs.106070 CDKN1C 1028 11p15.5 

64 Hs.442378 CDO1 1036 5q22-q23 

65 Hs.517106 CEBPB 1051 20q13.1 

66 Hs.479867 CENPC1 1060 4q12-q13.3 

67 Hs.657385 RCBTB2 1102 13q14.3 

68 Hs.535891 CHRM2 1129 7q31-q35 

69 Hs.334347 CKM 1158 19q13.2-q13.3 

70 Hs.628393 CLN3 1201 16p12.1 

71 Hs.30213 CLN5 1203 13q21.1-q32 

72 Hs.465929 CNN1 1264 19p13.2-p13.1 

73 Hs.368921 COL16A1 1307 1p35-p34 

74 Hs.4055 KLF6 1316 10p15 

75 Hs.432453 MAP3K8 1326 10p11.23 

76 Hs.584750 CREB1 1385 2q34 

77 Hs.200250 CREM 1390 10p11.21 

78 Hs.115617 CRHBP 1393 5q11.2-q13.3 

79 Hs.408767 CRYAB 1410 11q22.3-q23.1 

80 Hs.592192 CSF2RB 1439 22q13.1 

81 Hs.108080 CSRP1 1465 1q32 
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82 Hs.75262 CTSO 1519 4q31-q32 

83 Hs.154654 CYP1B1 1545 2p21 

84 Hs.516700 CYP27A1 1593 2q33-qter 

85 Hs.481980 DAB2 1601 5p13 

86 Hs.279806 DDX5 1655 17q21 

87 Hs.594952 DES 1674 2q35 

88 Hs.155597 CFD 1675 19p13.3 

89 Hs.700572 CYB5R3 1727 
22q13.31-qter|22q13.2-
q13.31 

90 Hs.80552 DPT 1805 1q12-q23 

91 Hs.173381 DPYSL2 1808 8p22-p21 

92 Hs.522074 TSC22D3 1831 Xq22.3 

93 Hs.117060 ECM2 1842 9q22.3 

94 Hs.784 EBI2 1880 13q32.3 

95 Hs.126667 EDG2 1902 9q31.3 

96 Hs.183713 EDNRA 1909 4q31.23 

97 Hs.82002 EDNRB 1910 13q22 

98 Hs.647061 ELN 2006 7q11.23 

99 Hs.76753 ENG 2022 9q33-q34.1 

100 Hs.253903 STOM 2040 9q34.1 

101 Hs.473819 ERG 2078 21q22.3 

102 Hs.155729 ETFDH 2110 4q32-q35 

103 Hs.361463 F10 2159 13q34 

104 Hs.591133 FBN1 2200 15q21.1 

105 Hs.76224 EFEMP1 2202 2p16 

106 Hs.58367 GPC4 2239 Xq26.1 

107 Hs.7636 FES 2242 15q26.1 

108 Hs.567268 FGF7 2252 15q15-q21.1 

109 Hs.435369 FHL1 2273 Xq26 

110 Hs.144912 FMO2 2327 1q23-q25 

111 Hs.103183 FMR1 2332 Xq27.3 

112 Hs.25647 FOS 2353 14q24.3 

113 Hs.370858 FUCA1 2517 1p34 

114 Hs.390567 FYN 2534 6q21 

115 Hs.80720 GAB1 2549 4q31.21 

116 Hs.75335 GATM 2628 15q21.1 

117 Hs.62661 GBP1 2633 1p22.2 

118 Hs.656774 GBP3 2635 1p22.2 

119 Hs.2171 GDF10 2662 10q11.22 

120 Hs.97469 GGTA1 2681 9q33.2-q34.11 

121 Hs.437156 GGTLA1 2687 22q11.23 

122 Hs.296310 GJA4 2701 1p35.1 

123 Hs.83381 GNG11 2791 7q21 

124 Hs.524418 GPD1 2819 12q12-q13 

125 Hs.122926 NR3C1 2908 5q31.3 

126 Hs.75652 GSTM5 2949 1p13.3 
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127 Hs.449630 HBA1 3039 16p13.3 

128 Hs.654744 HBA2 3040 16p13.3 

129 Hs.705371 HBG1 3047 11p15.5 

130 Hs.302145 HBG2 3048 11p15.5 

131 Hs.363396 CFH 3075 1q32 

132 Hs.233325 HFE 3077 6p21.3 

133 Hs.118651 HHEX 3087 10q23.33 

134 Hs.196952 HLF 3131 17q22 

135 Hs.524430 NR4A1 3164 12q13 

136 Hs.632828 HNRPH2 3188 Xq22 

137 Hs.436885 HRC 3270 19q13.3 

138 Hs.195040 HSD11B1 3290 1q32-q41 

139 Hs.406861 HSD17B4 3295 5q21 

140 Hs.520028 HSPA1A 3303 6p21.3 

141 Hs.97013 HSPB2 3316 11q22-q23 

142 Hs.75619 HYAL1 3373 3p21.3-p21.2 

143 Hs.654563 ICAM3 3385 19p13.3-p13.2 

144 Hs.312485 CFI 3426 4q25 

145 Hs.47338 IFIT3 3437 10q24 

146 Hs.520414 IFNGR1 3459 6q23.3 

147 Hs.8867 CYR61 3491 1p31-p22 

148 Hs.632790 IL3RA 3563 Xp22.3 or Yp11.3 

149 Hs.194778 IL8RA 3577 2q35 

150 Hs.513022 ISLR 3671 15q23-q24 

151 Hs.699822 ISLR 3671 15q23-q24 

152 Hs.512235 ITPR2 3709 12p11 

153 Hs.121495 KCNE1 3753 21q22.1-q22.2|21q22.12 

154 Hs.591606 KCNJ3 3760 2q24.1 

155 Hs.182971 KPNA5 3841 6q22.2 

156 Hs.444414 AFF3 3899 2q11.2-q12 

157 Hs.572535 LAIR1 3903 19q13.4 

158 Hs.133421 LIFR 3977 5p13-p12 

159 Hs.438236 ABLIM1 3983 10q25 

160 Hs.65436 LOXL1 4016 15q24-q25|15q22 

161 Hs.661130 LOXL2 4017 8p21.3-p21.2 

162 Hs.1116 LTBR 4055 12p13 

163 Hs.406475 LUM 4060 12q21.3-q22 

164 Hs.656534 SMAD1 4086 4q31 

165 Hs.465087 SMAD7 4092 18q21.1 

166 Hs.446125 MAK 4117 6p24 

167 Hs.102788 MAN1A1 4121 6q22 

168 Hs.599039 MCAM 4162 11q23.3 

169 Hs.387262 MCF2 4168 Xq27 

170 Hs.6790 DNAJB9 4189 7q31|14q24.2-q24.3 

171 Hs.699175 MEF2C 4208 5q14 

172 Hs.170355 MEOX2 4223 7p22.1-p21.3 
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173 Hs.61418 MFAP1 4236 15q15-q21 

174 Hs.432818 MFAP3 4238 5q32-q33.2 

175 Hs.3745 MFGE8 4240 15q25 

176 Hs.163924 NR3C2 4306 4q31.1 

177 Hs.293970 ALDH6A1 4329 14q24.3 

178 Hs.357128 MOCS1 4337 6p21.3 

179 Hs.79015 CD200 4345 3q12-q13 

180 Hs.396566 MPP3 4356 17q21.31 

181 Hs.371225 MSH5 4439 6p21.3 

182 Hs.349110 MST1 4485 3p21 

183 Hs.471991 MTF1 4520 1p33 

184 Hs.498187 MTR 4548 1q43 

185 Hs.654589 MYBPC1 4604 12q23.2 

186 Hs.82116 MYD88 4615 3p22 

187 Hs.440895 MYH3 4621 17p13.1 

188 Hs.278432 MYH7 4625 14q12 

189 Hs.517939 MYL3 4634 3p21.3-p21.2 

190 Hs.463300 MYL4 4635 17q21-qter 

191 Hs.556600 MYLK 4638 3q21 

192 Hs.436037 MYOC 4653 1q23-q24 

193 Hs.444403 PPP1R12B 4660 1q32.1 

194 Hs.66180 NAP1L2 4674 Xq13 

195 Hs.477693 NCK1 4690 3q21 

196 Hs.522615 NDP 4693 Xp11.4 

197 Hs.699288 NEDD9 4739 6p25-p24 

198 Hs.191911 NFIA 4774 1p31.3-p31.2 

199 Hs.77810 NFATC4 4776 14q11.2 

200 Hs.656450 NINJ2 4815 12p13 

201 Hs.529509 NKTR 4820 3p23-p21 

202 Hs.436100 NOTCH4 4855 6p21.3 

203 Hs.529006 NPC1 4864 18q11-q12 

204 Hs.237028 NPR3 4883 5p14-p13 

205 Hs.268788 NRAP 4892 10q24-q26 

206 Hs.410969 NTRK3 4916 15q25 

207 Hs.563344 NR4A2 4929 2q22-q23 

208 Hs.380271 OGG1 4968 3p26.2 

209 Hs.31595 CLDN11 5010 3q26.2-q26.3 

210 Hs.510334 SERPINA5 5104 14q32.1 

211 Hs.680373 PDE1A 5136 2q32.1 

212 Hs.530871 PDE1B 5153 12q13 

213 Hs.256667 PDK2 5164 17q21.33 

214 Hs.8364 PDK4 5166 7q21.3 

215 Hs.190977 ENPP2 5168 8q24.1 

216 Hs.532768 SERPINF1 5176 17p13.1 

217 Hs.36473 PEPD 5184 19q12-q13.2 

218 Hs.119316 PET112L 5188 4q27-q28 
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219 Hs.137415 VIT 5212 2p22-p21 

220 Hs.307835 PGM5 5239 9q13 

221 Hs.159628 SERPINA4 5267 14q31-q32.1 

222 Hs.132225 PIK3R1 5295 5q13.1 

223 Hs.99949 PIP 5304 7q34 

224 Hs.75813 PKD1 5310 16p13.3 

225 Hs.181272 PKD2 5311 4q21-q23 

226 Hs.466804 PLA2G2A 5320 1p35 

227 Hs.444975 PLAGL1 5325 6q24-q25 

228 Hs.80776 PLCD1 5333 3p22-p21.3 

229 Hs.442498 FXYD1 5348 19q13.1 

230 Hs.170839 PLN 5350 6q22.1 

231 Hs.372031 PMP22 5376 17p12-p11.2 

232 Hs.292996 PMS2L2 5380 7q11-q22 

233 Hs.632368 EXOSC10 5394 1p36.22 

234 Hs.702224 PRRX1 5396 1q24 

235 Hs.287518 4-Sep 5414 17q22-q23 

236 Hs.1897 POMC 5443 2p23.3 

237 Hs.530077 PON2 5445 7q21.3 

238 Hs.505662 PPP1R1A 5502 12q13.2 

239 Hs.303090 PPP1R3C 5507 10q23-q24 

240 Hs.467192 PPP2R1A 5518 19q13.33 

241 Hs.280604 PPP3R1 5534 2p15 

242 Hs.125503 MAPK10 5602 4q22.1-q23 

243 Hs.632287 PRKY 5616 Yp11.2 

244 Hs.89983 MASP1 5648 3q27-q28 

245 Hs.154658 PSD 5662 10q24 

246 Hs.458324 PTGIR 5739 19q13.3 

247 Hs.154084 PYGM 5837 11q12-q13.2 

248 Hs.377992 RABGGTA 5875 14q11.2 

249 Hs.695926 RASA1 5921 5q13.3 

250 Hs.591111 RASGRF1 5923 15q24 

251 Hs.50223 RBP4 5950 10q23-q24 

252 Hs.235069 RECQL 5965 12p12 

253 Hs.78944 RGS2 5997 1q31 

254 Hs.657266 RPL3L 6123 16p13.3 

255 Hs.287749 SC5DL 6309 11q23.3 

256 Hs.272493 CCL14 6358 17q11.2 

257 Hs.57907 CCL21 6366 9p13 

258 Hs.531668 CX3CL1 6376 16q13 

259 Hs.598247 SDC2 6383 8q22-q23 

260 Hs.522891 CXCL12 6387 10q11.1 

261 Hs.275775 SEPP1 6414 5q31 

262 Hs.309090 SFRS7 6432 2p22.1 

263 Hs.591727 SGCD 6444 5q33-q34 

264 Hs.380691 SLC2A4 6517 17p13 
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265 Hs.530003 SLC2A5 6518 1p36.2 

266 Hs.1964 SLC5A1 6523 22q13.1|22q12.3 

267 Hs.149098 SMTN 6525 22q12.2 

268 Hs.468274 SLC8A1 6546 2p23-p22 

269 Hs.337696 SLC8A3 6547 14q24.1 

270 Hs.518270 SLCO2A1 6578 3q21 

271 Hs.152292 SMARCA1 6594 Xq25 

272 Hs.2420 SOD3 6649 4p15.3-p15.1 

273 Hs.654397 SOS1 6654 2p22-p21 

274 Hs.167535 SRP54 6729 14q13.2 

275 Hs.117715 ST5 6764 11p15 

276 Hs.80642 STAT4 6775 2q32.2-q32.3 

277 Hs.437058 STAT5A 6776 17q11.2 

278 Hs.25590 STC1 6781 8p21-p11.2 

279 Hs.479898 SULT1E1 6783 4q13.1 

280 Hs.558403 SUOX 6821 12q13.2 

281 Hs.2563 TAC1 6863 7q21-q22 

282 Hs.632099 TAGLN 6876 11q23.2 

283 Hs.644653 TCF4 6925 18q21.1 

284 Hs.124503 ZEB1 6935 10p11.2 

285 Hs.446392 DYNLT3 6990 Xp21 

286 Hs.89640 TEK 7010 9p21 

287 Hs.592317 TGFB3 7043 14q24 

288 Hs.482390 TGFBR3 7049 1p33-p32 

289 Hs.657724 TLR3 7098 4q35 

290 Hs.174312 TLR4 7099 9q32-q33 

291 Hs.267632 TMF1 7110 3p21-p12 

292 Hs.494595 TMOD1 7111 9q22.3 

293 Hs.505337 CLDN5 7122 22q11.21 

294 Hs.182421 TNNC2 7125 20q12-q13.11 

295 Hs.73454 TNNT3 7140 11p15.5 

296 Hs.471381 TNS1 7145 2q35-q36 

297 Hs.133892 TPM1 7168 15q22.1 

298 Hs.108301 NR2C1 7181 12q22 

299 Hs.159003 TRPC6 7225 11q21-q22 

300 Hs.486292 TSPYL1 7259 6q22-q23 

301 Hs.654592 TTN 7273 2q31 

302 Hs.520348 UBC 7316 12q24.3 

303 Hs.21899 SLC35A2 7355 Xp11.23-p11.22 

304 Hs.516217 UGP2 7360 2p14-p13 

305 Hs.409662 COL14A1 7373 8q23 

306 Hs.133135 UTRN 7402 6q24 

307 Hs.440848 VWF 7450 12p13.3 

308 Hs.326420 WNT9B 7484 17q21 

309 Hs.78919 XK 7504 Xp21.1 

310 Hs.326801 ZNF711 7552 Xq21.1-q21.2 
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311 Hs.502127 ZNF155 7711 19q13.2-q13.32 

312 Hs.157883 ZNF187 7741 6p21.31 

313 Hs.8198 ZNF204 7754 6p21.3 

314 Hs.406096 ZFAND5 7763 9q13-q21 

315 Hs.279567 ZNF225 7768 19q13.2 

316 Hs.371823 PRDM2 7799 1p36.21 

317 Hs.406050 DNALI1 7802 1p35.1 

318 Hs.512842 MFAP5 8076 12p13.1-p12.3 

319 Hs.183428 SSPN 8082 12p11.2 

320 Hs.187376 IFT88 8100 13q12.1 

321 Hs.185910 HDHD1A 8226 Xp22.32 

322 Hs.80358 JARID1D 8284 Yq11|Yq11 

323 Hs.655309 USP9Y 8287 Yq11.2 

324 Hs.591968 FZD4 8322 11q14.2 

325 Hs.534371 PIP5K1B 8395 9q13 

326 Hs.62886 SPARCL1 8404 4q22.1 

327 Hs.484918 CMAH 8418 6p21.32 

328 Hs.466766 LTBP4 8425 19q13.1-q13.2 

329 Hs.388918 RECK 8434 9p13-p12 

330 Hs.694819 TPST2 8459 22q12.1 

331 Hs.655143 SORBS2 8470 4q35.1 

332 Hs.442180 CILP 8483 15q22 

333 Hs.158237 ITGA10 8515 1q21 

334 Hs.171311 ITGA8 8516 10p13 

335 Hs.558423 CYP4F2 8529 19pter-p13.11 

336 Hs.40582 CDC14B 8555 9q22.33 

337 Hs.514146 TCAP 8557 17q12 

338 Hs.371594 MKNK1 8569 1p33 

339 Hs.631562 PLA2G4C 8605 19q13.3 

340 Hs.233552 CDC2L5 8621 7p13 

341 Hs.198241 AOC3 8639 17q21 

342 Hs.76873 HYAL2 8692 3p21.3 

343 Hs.534375 B3GALT4 8705 6p21.3 

344 Hs.520313 CD164 8763 6q21 

345 Hs.511149 SNAP23 8773 15q15.1 

346 Hs.546323 SUCLA2 8803 13q12.2-q13.3 

347 Hs.509780 WDR22 8816 14q23-q24.1 

348 Hs.390736 CFLAR 8837 2q33-q34 

349 Hs.654371 STK19 8859 6p21.3 

350 Hs.58756 PER2 8864 2q37.3 

351 Hs.109590 STBD1 8987 4q24-q25 

352 Hs.632460 SELENBP1 8991 1q21-q22 

353 Hs.47357 CH25H 9023 10q23 

354 Hs.71215 DOK2 9046 8p21.3 

355 Hs.524491 PAPSS2 9060 10q23-q24 

356 Hs.534377 CLDN10 9071 13q31-q34 
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357 Hs.23748 LDB2 9079 4p16 

358 Hs.448851 USP6 9098 17p13 

359 Hs.77854 RGN 9104 Xp11.3 

360 Hs.625674 MTMR7 9108 8p22 

361 Hs.216226 SYNGR1 9145 22q13.1 

362 Hs.443683 MYOM2 9172 8p23.3 

363 Hs.66 IL1RL1 9173 2q12 

364 Hs.478031 SLC33A1 9197 3q25.31 

365 Hs.533986 ZMYM6 9204 1p34.2 

366 Hs.612814 CCPG1 9236 15q21.1 

367 Hs.654558 CD83 9308 6p23 

368 Hs.647113 ACCN3 9311 7q35 

369 Hs.376206 KLF4 9314 9q31 

370 Hs.632339 TRIP11 9321 14q31-q32 

371 Hs.95243 TCEAL1 9338 Xq22.1 

372 Hs.66708 VAMP3 9341 1p36.23 

373 Hs.696554 ITGBL1 9358 13q33 

374 Hs.80485 ADIPOQ 9370 3q27 

375 Hs.667720 CYP7B1 9420 8q21.3 

376 Hs.656823 RASAL2 9462 1q24 

377 Hs.180871 PICK1 9463 22q13.1 

378 Hs.643357 ADAMTS1 9510 21q21.2 

379 Hs.459940 LITAF 9516 16p13.13 

380 Hs.437075 CREB5 9586 7p15.1 

381 Hs.371240 AKAP12 9590 6q24-q25 

382 Hs.594708 SH3PXD2A 9644 10q24.33 

383 Hs.468426 SOCS5 9655 2p21 

384 Hs.654651 PDE4DIP 9659 1q12 

385 Hs.655934 ZNF432 9668 19q13.33 

386 Hs.518138 KIAA0040 9674 1q24-q25 

387 Hs.168762 ULK2 9706 17p11.2 

388 Hs.478868 KIAA0226 9711 3q29 

389 Hs.559459 C6orf32 9750 6p22.3-p21.32 

390 Hs.634856 TOX 9760 8q12.1 

391 Hs.482660 ZFYVE16 9765 5q14 

392 Hs.79276 KIAA0232 9778 4p16.1 

393 Hs.31720 HEPH 9843 Xq11-q12 

394 Hs.170999 LBA1 9881 3p22.2 

395 Hs.524692 NUAK1 9891 12q23.3 

396 Hs.5333 KBTBD11 9920 8p23.3 

397 Hs.434951 USP15 9958 12q14 

398 Hs.282735 NR1H4 9971 12q23.1 

399 Hs.527105 HNRPDL 9987 4q13-q21 

400 Hs.13967 NAALADL1 10004 11q12 

401 Hs.508148 ABI1 10006 10p11.2 

402 Hs.556496 TANK 10010 2q24-q31 
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403 Hs.474705 TOM1 10043 22q13.1 

404 Hs.306412 SH2D3C 10044 9q34.11 

405 Hs.20136 MAMLD1 10046 Xq28 

406 Hs.490745 DNAJB6 10049 7q36.3 

407 Hs.593923 DNAJB6 10049 7q36.3 

408 Hs.498720 OPTN 10133 10p13 

409 Hs.332706 OPTN 10133 10p13 

410 Hs.123464 P2RY5 10161 13q14 

411 Hs.655248 MBOAT5 10162 12p13 

412 Hs.648603 LHFP 10186 13q12 

413 Hs.470882 CALCRL 10203 2q32.1 

414 Hs.559259 NBR2 10230 17q21 

415 Hs.25691 RAMP3 10268 7p13-p12 

416 Hs.13351 LANCL1 10314 2q33-q35 

417 Hs.471619 NMUR1 10316 2q37.1 

418 Hs.50282 RRAGB 10325 Xp11.21 

419 Hs.504687 MYL9 10398 20q11.23 

420 Hs.54403 CLEC10A 10462 17p13.1 

421 Hs.584851 TRIM38 10475 6p21.3 

422 Hs.523739 NXF1 10482 11q12-q13 

423 Hs.332708 FBLN5 10516 14q32.1 

424 Hs.448664 DEAF1 10522 11p15.5 

425 Hs.696027 SORBS1 10580 10q23.3-q24.1 

426 Hs.522449 POMT1 10585 9q34.1 

427 Hs.369574 CDC42EP3 10602 2p21 

428 Hs.480311 PDLIM5 10611 4q22 

429 Hs.472227 POLR3F 10621 20p11.23 

430 Hs.533977 TXNIP 10628 1q21.1 

431 Hs.309288 CUGBP2 10659 10p13 

432 Hs.59106 CGRRF1 10668 14q22.2 

433 Hs.515048 AP4B1 10717 1p13.2 

434 Hs.314246 ZNF271 10778 18q12 

435 Hs.635221 WASF3 10810 13q12 

436 Hs.519694 C5orf4 10826 5q31-q32 

437 Hs.920 ARID5A 10865 2q11.2 

438 Hs.654480 HCP5 10866 6p21.3 

439 Hs.655332 LYVE1 10894 11p15 

440 Hs.425144 MTMR11 10903 1q12-q21 

441 Hs.486357 SMPDL3A 10924 6q22.31 

442 Hs.523774 EHD1 10938 11q13 

443 Hs.272168 SERINC3 10955 20q13.1-q13.3 

444 Hs.75969 PNRC1 10957 6q15 

445 Hs.509343 FERMT2 10979 14q22.2 

446 Hs.532824 MAPRE2 10982 18q12.1 

447 Hs.268551 RIPK3 11035 14q11.2 

448 Hs.659219 C10orf10 11067 10q11.21 
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449 Hs.470646 RAPGEF4 11069 2q31-q32 

450 Hs.521651 STMN2 11075 8q21.13 

451 Hs.13852 DNAJB4 11080 1p31.1 

452 Hs.666782 PRDM5 11107 4q25-q26 

453 Hs.191510 BTN3A1 11119 6p22.1 

454 Hs.159028 BTN2A1 11120 6p22.1 

455 Hs.43670 KIF3A 11127 5q31 

456 Hs.293411 AP4S1 11154 14q12 

457 Hs.657271 LDB3 11155 10q22.3-q23.2 

458 Hs.43666 PTP4A3 11156 8q24.3 

459 Hs.506357 FAM107A 11170 3p21.1 

460 Hs.647118 ABCB8 11194 7q36 

461 Hs.105105 AKAP11 11215 13q14.11 

462 Hs.373857 KLF12 11278 13q22 

463 Hs.646614 KLF8 11279 Xp11.21 

464 Hs.7884 SLCO2B1 11309 11q13 

465 Hs.483909 GPR182 11318 12q13.3 

466 Hs.8904 VSIG4 11326 Xq12-q13.3 

467 Hs.439199 NLGN4Y 22829 Yq11.221 

468 Hs.445030 RHOBTB3 22836 5q15 

469 Hs.470457 COBLL1 22837 2q24.3 

470 Hs.508010 FNDC3A 22862 13q14.2 

471 Hs.188495 WDR37 22884 10p15.3 

472 Hs.443109 ARHGEF15 22899 17p13.1 

473 Hs.7972 RUFY3 22902 4q13.3 

474 Hs.268107 MMRN1 22915 4q22 

475 Hs.182982 GOLGA8A 23015 15q11.2 

476 Hs.151220 PALLD 23022 4q32.3 

477 Hs.98259 SAMD4A 23034 14q22.2 

478 Hs.167115 ENDOD1 23052 11q21 

479 Hs.155995 CLUAP1 23059 16p13.3 

480 Hs.591221 MYCBP2 23077 13q22 

481 Hs.584867 CDC2L6 23097 6q21 

482 Hs.440414 SPG20 23111 13q13.3 

483 Hs.301989 STAB1 23166 3p21.1 

484 Hs.464585 ANKRD12 23253 18p11.22 

485 Hs.633454 EXOC7 23265 17q25.1 

486 Hs.193133 SASH1 23328 6q24.3 

487 Hs.655410 DNAJC16 23341 1p36.1 

488 Hs.12967 SYNE1 23345 6q25 

489 Hs.343334 TENC1 23371 12q13.13 

490 Hs.4014 ZDHHC17 23390 12q21.2 

491 Hs.369779 SIRT1 23411 10q21.3 

492 Hs.580782 MACF1 23499 1p32-p31 

493 Hs.409081 OPN3 23596 1q43 

494 Hs.271341 RABGAP1 23637 9q33.2 
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495 Hs.517617 MAFF 23764 22q13.1 

496 Hs.533710 FLRT2 23768 14q24-q32 

497 Hs.252839 IFIT5 24138 10q23.31 

498 Hs.591976 PANX1 24145 11q21 

499 Hs.30965 SHC2 25759 19p13.3 

500 Hs.519075 LMOD1 25802 1q32 

501 Hs.653847 METTL7A 25840 12q13.13 

502 Hs.105460 DKFZP564O0823 25849 4q13.3-q21.3 

503 Hs.591288 C3orf17 25871 3q13.2 

504 Hs.655272 LETMD1 25875 12q13.13 

505 Hs.477015 ABI3BP 25890 3q12 

506 Hs.55044 DKFZP586H2123 25891 11p13 

507 Hs.12844 EGFL6 25975 Xp22 

508 Hs.466539 CLIP3 25999 19q13.12 

509 Hs.431317 GORASP2 26003 2q31.1-q31.2 

510 Hs.654657 SIPA1L1 26037 14q24.2 

511 Hs.446017 WSB1 26118 17q11.1 

512 Hs.279580 KIAA1279 26128 10q21.3 

513 Hs.655108 ZBTB20 26137 3q13.2 

514 Hs.693802 ZBTB20 26137 3q13.2 

515 Hs.494985 FBXW2 26190 9q34 

516 Hs.696160 PITPNC1 26207 17q24.2 

517 Hs.643433 FBXL5 26234 4p15.33 

518 Hs.76917 FBXO8 26269 4q34.1 

519 Hs.400095 HSPB8 26353 12q24.23 

520 Hs.78960 LATS2 26524 13q11-q12 

521 Hs.491172 NBEA 26960 13q13 

522 Hs.352656 GHITM 27069 10q23.1 

523 Hs.657015 SDCBP2 27111 20p13 

524 Hs.652367 PDE7B 27115 6q23-q24 

525 Hs.502612 HSPB7 27129 1p36.23-p34.3 

526 Hs.310893 CSDC2 27254 22q13.2-q13.31 

527 Hs.306339 SRPX2 27286 Xq21.33-q23 

528 Hs.419800 C10orf28 27291 10q24.2 

529 Hs.696468 RBMS3 27303 3p24-p23 

530 Hs.530053 RABGEF1 27342 7q11.21 

531 Hs.523230 POLL 27343 10q23 

532 Hs.696057 MAT2B 27430 5q34-q35 

533 Hs.279819 MAGEH1 28986 Xp11.21 

534 Hs.371856 ZC3H7A 29066 16p13-p12 

535 Hs.699226 TRA2A 29896 7p15.3 

536 Hs.470369 BAZ2B 29994 2q23-q24 

537 Hs.109672 ST6GALNAC6 30815 9q34.11 

538 Hs.278694 CD209 30835 19p13 

539 Hs.631554 EHD2 30846 19q13.3 

540 Hs.432132 G0S2 50486 1q32.2-q41 
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541 Hs.647182 CUZD1 50624 10q26.13 

542 Hs.44685 RNF141 50862 11p15.4 

543 Hs.241545 FAM26B 51063 10pter-q26.12 

544 Hs.16606 CUTC 51076 10q24.2 

545 Hs.579828 FCF1 51077 14q24.3 

546 Hs.136309 SH3GLB1 51100 1p22 

547 Hs.178170 DUSP13 51207 10q22.2 

548 Hs.631730 C1RL 51279 12p13.31 

549 Hs.27018 RASL12 51285 15q11.2-q22.33 

550 Hs.439474 PCDH12 51294 5q31 

551 Hs.274309 ERAF 51327 16p11.2 

552 Hs.428147 CDC40 51362 6q21 

553 Hs.279815 CSAD 51380 12q13.11-q14.3 

554 Hs.647072 PRKAG2 51422 7q36.1 

555 Hs.191213 SNX9 51429 6q25.1-q26 

556 Hs.163776 UBE2J1 51465 6q15 

557 Hs.371563 RAB14 51552 9q32-q34.11 

558 Hs.705444 RAB14 51552 9q32-q34.11 

559 Hs.696104 TTRAP 51567 6p22.3-p22.1 

560 Hs.515890 YPEL5 51646 2p23.1 

561 Hs.534458 TPPP3 51673 16q22.1 

562 Hs.510327 ASB2 51676 14q31-q32 

563 Hs.152913 EMCN 51705 4q23 

564 Hs.656794 ZNF44 51710 19p13.2 

565 Hs.125300 TRIM34 53840 11p15 

566 Hs.547009 SLC37A1 54020 21q22.3 

567 Hs.54725 C21orf49 54067 21q22.11 

568 Hs.702188 CLIC6 54102 21q22.12 

569 Hs.62880 MOV10L1 54456 22q13.33 

570 Hs.353022 ETAA1 54465 2p13-p15 

571 Hs.431081 USP53 54532 4q26 

572 Hs.524121 ROBO4 54538 11q24.2 

573 Hs.567513 WDR5B 54554 3q21.1 

574 Hs.591901 EPB41L4B 54566 9q31-q32 

575 Hs.558570 MXRA8 54587 1p36.33 

576 Hs.591145 MANSC1 54682 12p13.2 

577 Hs.370522 BTN2A3 54718 6p22.1 

578 Hs.270851 OTUD4 54726 4q31.21 

579 Hs.269654 MPHOSPH8 54737 13q12.11 

580 Hs.441975 XAF1 54739 17p13.2 

581 Hs.386684 AHI1 54806 6q23.3 

582 Hs.435655 ASPN 54829 9q22 

583 Hs.356216 FAM46C 54855 1p12 

584 Hs.406223 CCDC49 54883 17q12 

585 Hs.30141 MTMR10 54893 15q13.3 

586 Hs.439894 CASZ1 54897 1p36.22 
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587 Hs.371210 C1orf27 54953 1q25 

588 Hs.413123 C2orf42 54980 2p14 

589 Hs.265018 FAM118A 55007 22q13 

590 Hs.591900 STX17 55014 9q31.1 

591 Hs.409352 PID1 55022 2q36.3 

592 Hs.655317 C19orf60 55049 19p13.11 

593 Hs.567523 DET1 55070 15q25.3 

594 Hs.504597 TAPBPL 55080 12p13.31 

595 Hs.159066 C10orf118 55088 10q25.3 

596 Hs.168241 ATG2B 55102 14q32.2 

597 Hs.353454 BSDC1 55108 1p35.1 

598 Hs.476319 ECHDC2 55268 1p32.3 

599 Hs.435933 PHF10 55274 6q27 

600 Hs.24545 ZNF444 55311 19q13.42 

601 Hs.567532 NIPSNAP3B 55335 9q31.1 

602 Hs.647079 GIMAP5 55340 7q36.1 

603 Hs.525589 MEG3 55384 14q32 

604 Hs.700471 YOD1 55432 1q32.1 

605 Hs.654970 IL17RB 55540 3p21.1 

606 Hs.525163 ANKRD10 55608 13q34 

607 Hs.515169 TRMT1 55621 19p13.13 

608 Hs.259605 PIGV 55650 1p36.11 

609 Hs.377705 ZNF692 55657 1q44 

610 Hs.561954 CDC37L1 55664 9p24.1 

611 Hs.469881 LIMS2 55679 2q14.3 

612 Hs.584933 ZNF334 55713 20q13.12 

613 Hs.696152 RCOR3 55758 1q32.2-q32.3 

614 Hs.467210 ZNF83 55769 19q13.3 

615 Hs.655166 ChGn 55790 8p21.3 

616 Hs.4865 SCN3B 55800 11q23.3 

617 Hs.435741 IQWD1 55827 1q24.2 

618 Hs.32148 SELS 55829 15q26.3 

619 Hs.187635 C20orf19 55857 20pter-q11.23 

620 Hs.446438 GPRC5C 55890 17q25 

621 Hs.507025 MYNN 55892 3q26.2 

622 Hs.699209 ZNF395 55893 8p21.1 

623 Hs.193406 C1orf183 55924 1p13.2 

624 Hs.529100 LIN37 55957 19q13.1 

625 Hs.168799 METTL3 56339 14q11.1 

626 Hs.164144 EIF5A2 56648 3q26.2 

627 Hs.499960 SAR1A 56681 10q22.1 

628 Hs.29106 DUSP22 56940 6p25.3 

629 Hs.9315 OLFML3 56944 1p13.2 

630 Hs.118241 CABC1 56997 1q42.13 

631 Hs.4859 CCNL1 57018 3q25.32 

632 Hs.126035 RPGRIP1 57096 14q11 
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633 Hs.371794 ZNFX1 57169 20q13.13 

634 Hs.645966 FAM91A2 57234 1q21.1 

635 Hs.655636 KIAA0508 57244 1p36.32 

636 Hs.333958 SLC4A10 57282 2q23-q24 

637 Hs.656339 RHOJ 57381 14q23.2 

638 Hs.525205 NDRG2 57447 14q11.2 

639 Hs.21035 GALNTL1 57452 14q24.1 

640 Hs.551552 ZNF512B 57473 20q13.33 

641 Hs.705876 ZNF608 57507 5q23.2 

642 Hs.7946 MTUS1 57509 8p22 

643 Hs.657263 CDGAP 57514 3q13.32-q13.33 

644 Hs.156352 KIAA1377 57562 11q22.1 

645 Hs.211520 KIAA1432 57589 9p24.1 

646 Hs.42586 GPAM 57678 10q25.2 

647 Hs.438482 WDR19 57728 4p14 

648 Hs.270869 ZNF410 57862 14q24.3 

649 Hs.511251 SQRDL 58472 15q15 

650 Hs.516994 TP53INP2 58476 20q11.22 

651 Hs.655066 ZBED5 58486 11p15.3 

652 Hs.201034 NTN4 59277 12q22-q23 

653 Hs.501624 SIGIRR 59307 11p15.5 

654 Hs.407694 ZNF350 59348 19q13.33 

655 Hs.269764 BACH2 60468 6q15 

656 Hs.42194 SPCS3 60559 4q34.2 

657 Hs.187284 PAPPA2 60676 1q23-q25 

658 Hs.348342 BRUNOL6 60677 15q24 

659 Hs.463035 FKBP10 60681 17q21.2 

660 Hs.372309 C10orf84 63877 10q26.11 

661 Hs.567562 CIDEC 63924 3p25.3 

662 Hs.198158 PBLD 64081 10pter-q25.3 

663 Hs.487200 SMOC2 64094 6q27 

664 Hs.24719 MOAP1 64112 14q32 

665 Hs.591605 TMBIM1 64114 2p24.3-p24.1 

666 Hs.199368 TINAGL1 64129 1p35.2 

667 Hs.525597 DIO3OS 64150 14q32.31 

668 Hs.319171 NFKBIZ 64332 3p12-q12 

669 Hs.420830 HIF3A 64344 19q13.32 

670 Hs.501289 IKZF5 64376 10q26 

671 Hs.511143 ZFP106 64397 15q15.1 

672 Hs.380897 AKTIP 64400 16q12.2 

673 Hs.592982 TPSB2 64499 16p13.3 

674 Hs.159430 FNDC3B 64778 3q26.31 

675 Hs.71912 LMF1 64788 16p13.3 

676 Hs.112981 DEPDC6 64798 8q24.12 

677 Hs.471162 RAPH1 65059 2q33 

678 Hs.235390 ZSCAN18 65982 19q13.43 
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679 Hs.363558 GRAMD3 65983 5q23.2 

680 Hs.8035 RASL11B 65997 4q12 

681 Hs.632772 SLC2A11 66035 22q11.2 

682 Hs.8719 DUSP26 78986 8p12 

683 Hs.241576 DERL1 79139 8q24.13 

684 Hs.591453 MMEL1 79258 1p36 

685 Hs.181173 GLB1L 79411 2q35 

686 Hs.211511 TCTN1 79600 12q24.11 

687 Hs.655660 RIC3 79608 11p15.4 

688 Hs.90250 C4orf31 79625 4q27 

689 Hs.459652 TMEM204 79652 16p13.3 

690 Hs.655162 ZCCHC6 79670 9q21 

691 Hs.458973 ZFHX4 79776 8q21.11 

692 Hs.115497 RERGL 79785 12p12.3 

693 Hs.524479 MMRN2 79812 10q23.2 

694 Hs.665354 ASAM 79827 11q24.1 

695 Hs.180402 ZNF671 79891 19q13.43 

696 Hs.183390 ZNF613 79898 19q13.33 

697 Hs.513296 FLJ14154 79903 16p13.3 

698 Hs.694119 GRRP1 79927 1p36.11 

699 Hs.189652 C7orf58 79974 7q31.31 

700 Hs.522334 SVEP1 79987 9q32 

701 Hs.309849 C14orf159 80017 14q32.12 

702 Hs.390817 MYO15B 80022 17q25.1 

703 Hs.286194 SLC24A6 80024 12q24.13 

704 Hs.513343 ATF7IP2 80063 16p13.13 

705 Hs.654967 ZNF606 80095 19q13.4 

706 Hs.469561 UXS1 80146 2q12.2 

707 Hs.288382 CENPT 80152 16q22.1 

708 Hs.632527 SLC35F5 80255 2q14.1 

709 Hs.167805 EPC1 80314 10p11 

710 Hs.127126 CPEB4 80315 5q21 

711 Hs.173716 ADAM33 80332 20p13 

712 Hs.147434 TRAF3IP3 80342 1q32.3-q41 

713 Hs.221597 SLC19A3 80704 2q37 

714 Hs.120267 TSGA10 80705 2q11.2 

715 Hs.42217 ITFG1 81533 16q12.1 

716 Hs.372123 NDEL1 81565 17p13.1 

717 Hs.656389 PLA2G12A 81579 4q25 

718 Hs.356061 MAP1LC3B 81631 16q24.2 

719 Hs.132599 DOCK8 81704 9p24.3 

720 Hs.169333 TIGD6 81789 5q33.1 

721 Hs.657508 ADAMTS10 81794 19p13.3-p13.2 

722 Hs.444229 ARHGAP24 83478 4q21.23-q21.3 

723 Hs.513779 CRISPLD2 83716 16q24.1 

724 Hs.696346 SYT15 83849 10q11.1 
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725 Hs.631789 SETDB2 83852 13q14 

726 Hs.136901 FSD1L 83856 9q31 

727 Hs.655273 TBC1D10A 83874 22q12.1-qter 

728 Hs.512773 USHBP1 83878 19p13 

729 Hs.132121 SGIP1 84251 1p31.3 

730 Hs.59486 HSDL2 84263 9q32 

731 Hs.43125 C2orf40 84417 2q12.2 

732 Hs.480848 USP38 84640 NA 

733 Hs.126706 ACCS 84680 11p11 

734 Hs.50334 C9orf24 84688 9p13.3 

735 Hs.632528 PLCD4 84812 2q35 

736 Hs.129959 IL17RC 84818 3p25.3|3p25.3-p24.1 

737 Hs.564188 TMEM25 84866 11q23.3 

738 Hs.135254 RSPO3 84870 6q22.33 

739 Hs.655177 MFSD2 84879 1p34.2 

740 Hs.522520 C9orf37 85026 9q34.3 

741 Hs.655626 DIXDC1 85458 NA 

742 Hs.376289 ZC3H12C 85463 11q22.3 

743 Hs.512805 CCDC65 85478 12q13.12 

744 Hs.149540 SEC16B 89866 1q25.2 

745 Hs.655123 KLC4 89953 6p21.1 

746 Hs.654661 CCDC32 90416 15q15.1 

747 Hs.31917 C6orf176 90632 6q27 

748 Hs.348390 IL33 90865 9p24.1 

749 Hs.173840 ESAM 90952 11q24.2 

750 Hs.145061 UBXD5 91544 1p36.11 

751 Hs.380906 MYADM 91663 19q13.41 

752 Hs.36859 WDR20 91833 14q32.31 

753 Hs.49599 TMEM132C 92293 12q24.32 

754 Hs.514402 LYK5 92335 17q23.3 

755 Hs.651480 LOC92482 92482 10q25.2 

756 Hs.89029 ANUBL1 93550 10q11.21 

757 Hs.567641 MYOCD 93649 17p11.2 

758 Hs.135167 ACRC 93953 Xq13.1 

759 Hs.515417 EGLN2 112398 19q13.2 

760 Hs.26670 PIK3IP1 113791 22q12.2 

761 Hs.410388 LACTB 114294 15q22.1 

762 Hs.514071 LRRC37B 114659 NA 

763 Hs.593159 MRFAP1L1 114932 4p16.1 

764 Hs.308480 PCMTD1 115294 8q11.23 

765 Hs.656731 GPR146 115330 7p22.3 

766 Hs.348350 DHRS1 115817 14q12 

767 Hs.253247 OSR2 116039 8q22.2 

768 Hs.516854 HSPA12B 116835 20p13 

769 Hs.410316 HRASLS5 117245 11q13.2 

770 Hs.17253 IHPK3 117283 6p21.31 



 

180 

771 Hs.529984 TAGAP 117289 6q25.3 

772 Hs.162963 ANTXR2 118429 4q21.21 

773 Hs.656887 CPXM2 119587 10q26.13 

774 Hs.657163 TARSL2 123283 15q26.3 

775 Hs.371690 C18orf51 125704 18q22.3 

776 Hs.534538 HSPB6 126393 19q13.12 

777 Hs.524767 ZNF684 127396 1p34.2 

778 Hs.44277 LRRC39 127495 1p21.2 

779 Hs.269546 FLJ40298 129852 2p16.2 

780 Hs.233398 BBS5 129880 2q31.1 

781 Hs.591615 RFTN2 130132 2q33.1 

782 Hs.123933 OSR1 130497 2p24.1 

783 Hs.534540 ZFAND2B 130617 2q35 

784 Hs.40808 TMEM178 130733 2p22.1 

785 Hs.230601 DNAJC19 131118 3q26.33 

786 Hs.390823 IL17RE 132014 3p25.3 

787 Hs.656937 CPEB2 132864 4p15.33 

788 Hs.297814 ENPP6 133121 4q35.1 

789 Hs.661876 LOC134466 134466 5q33.1 

790 Hs.368203 DOCK11 139818 Xq24 

791 Hs.591712 ASB5 140458 4q34.2 

792 Hs.27453 RAB40A 142684 Xq22.1 

793 Hs.210586 C13orf31 144811 13q14.11 

794 Hs.144696 C14orf50 145376 14q23.3 

795 Hs.658619 TMED6 146456 16q22.1 

796 Hs.11782 MGC45438 146556 16p13.3 

797 Hs.657197 C18orf18 147525 18p11.31 

798 Hs.651111 ZNF565 147929 19q13.12 

799 Hs.511848 ZNF569 148266 19q13.12 

800 Hs.591445 SAMD13 148418 1p31.1 

801 Hs.177744 PM20D1 148811 1q32.1 

802 Hs.593721 LOC149448 149448 1q43 

803 Hs.116254 C22orf15 150248 22q11.23 

804 Hs.368312 FAM109B 150368 22q13.2 

805 Hs.516176 SMYD1 150572 2p11.2 

806 Hs.655700 ANKAR 150709 2q32.2 

807 Hs.493819 C9orf19 152007 9p13-p12 

808 Hs.484195 C5orf41 153222 5q35.2 

809 Hs.289293 C8orf42 157695 8p23.3 

810 Hs.190043 MOSPD2 158747 Xp22.2 

811 Hs.42572 ALDH1L2 160428 12q23.3 

812 Hs.13854 PPTC7 160760 12q24.11 

813 Hs.525307 CLEC14A 161198 14q21.1 

814 Hs.522545 ZNF791 163049 19p13.2-p13.13 

815 Hs.65256 LGI4 163175 19q13.12|19q13.11 

816 Hs.681239 CLEC4F 165530 2p13.3 
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817 Hs.699317 PRICKLE2 166336 3p14.1 

818 Hs.132087 KLHDC6 166348 3q21.3 

819 Hs.159006 ZNF800 168850 7q31.33 

820 Hs.385493 C10orf128 170371 10q11.22 

821 Hs.655519 SYNPO2 171024 4q26 

822 Hs.527874 CCDC131 196441 12q21.1 

823 Hs.532469 PAOX 196743 10q26.3 

824 Hs.443935 TTC21A 199223 3p22.2 

825 Hs.301243 TIGD4 201798 4q31.3 

826 Hs.133337 RWDD4A 201965 4q35.1 

827 Hs.199777 RANBP3L 202151 5p13.2 

828 Hs.482625 CMYA5 202333 5q14.1 

829 Hs.585069 STK32A 202374 5q32 

830 Hs.28780 ZNF449 203523 Xq26.3 

831 Hs.42400 USP12 219333 13q12.13 

832 Hs.204947 PLAC9 219348 10q22.3 

833 Hs.118513 MRGPRF 219928 11q13.2 

834 Hs.668747 FLJ32682 220081 13q14.12 

835 Hs.607594 FAM13C1 220965 10q21.1 

836 Hs.147440 ZNF485 220992 10q11.21 

837 Hs.427449 LOC221091 221091 11q12.3 

838 Hs.412103 EFHA1 221154 13q12.11 

839 Hs.25391 PI16 221476 6p21.2 

840 Hs.519904 RBM24 221662 6p22.3 

841 Hs.596587 C7orf38 221786 7q22.1 

842 Hs.587427 HOXA11S 221883 7p15.2 

843 Hs.368944 JAZF1 221895 7p15.2-p15.1 

844 Hs.200100 C7orf41 222166 7p15.1 

845 Hs.522863 CYorf15A 246126 Yq11.222 

846 Hs.407926 RICTOR 253260 5p13.1 

847 Hs.339024 MSRB3 253827 12q14.3 

848 Hs.693749 ZDHHC20 253832 13q12.11 

849 Hs.346575 C19orf26 255057 19p13.3 

850 Hs.435515 LOC255167 255167 5p15.31 

851 Hs.163451 LOC255275 255275 17q25.3 

852 Hs.22575 BCL6B 255877 17p13.1 

853 Hs.591401 KANK3 256949 19p13.2 

854 Hs.503500 OLFML1 283298 11p15.4 

855 Hs.560343 LOC283666 283666 15q21.3 

856 Hs.569669 LOC283901 283901 16p12.1 

857 Hs.664267 FLJ36208 283948 16p13.3 

858 Hs.437191 PTRF 284119 17q21.31 

859 Hs.400688 IZUMO1 284359 19q13.33 

860 Hs.303669 SLC25A42 284439 19p13.11 

861 Hs.567816 FAM126B 285172 2q33.1 

862 Hs.518059 C3orf64 285203 3p14.1 
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863 Hs.559386 LOC285286 285286 3p14.2 

864 Hs.476399 CCDC66 285331 3p14.3 

865 Hs.449206 LOC285359 285359 3q12.3 

866 Hs.588682 SUMF1 285362 3p26.2 

867 Hs.399980 LOC285550 285550 4p15.33-p15.32 

868 Hs.480371 LOC285556 285556 4q23 

869 Hs.403594 EFHA2 286097 8p22 

870 Hs.496530 MGC39900 286527 Xq22.2 

871 Hs.146059 TUSC5 286753 17p13.3 

872 Hs.700799 LOC339290 339290 18p11.31 

873 Hs.471067 LOC339483 339483 1p35.1 

874 Hs.146730 KY 339855 3q22.2 

875 Hs.379754 TMEM173 340061 5q31.2 

876 Hs.444834 RSPO2 340419 8q23.1 

877 Hs.21249 ZC3H12B 340554 Xq11.1 

878 Hs.369380 MGC40069 348035 14q11.2 

879 Hs.208673 NMNAT3 349565 3q23 

880 Hs.595458 MAST4 375449 5q12.3 

881 Hs.704486 LOC387647 387647 10p11.23 

882 Hs.32478 FIBIN 387758 11p14.2 

883 Hs.131035 GLTPD2 388323 17p13.2 

884 Hs.657260 RP13-401N8.2 388358 20p11.21-p11.1 

885 Hs.204449 ZNF470 388566 19q13.43 

886 Hs.435013 VGLL3 389136 3p12.1 

887 Hs.658041 MGC21881 389741 9q21.11 

888 Hs.497573 FLJ45244 400242 14q32.13 

889 Hs.153827 C14orf180 400258 14q32.33 

890 Hs.187134 LOC400464 400464 15q26.3 

891 Hs.641441 LOC400604 400604 17q21.33 

892 Hs.61508 LOC400657 400657 18q22.3 

893 Hs.668085 C1orf220 400798 1q25.2 

894 Hs.173705 LOC401152 401152 4q26 

895 Hs.131064 KLHL31 401265 6p12.1 

896 Hs.561708 LOC401320 401320 7p15.1 

897 Hs.461247 MRC1L1 414308 10p12.33 

898 Hs.530380 FAM116B 414918 22q13.33 

899 Hs.536319 IQSEC3 440073 12p13.33 

900 Hs.512963 ALG11 440138 13q14.2 

901 Hs.449880 LOC440434 440434 17q12 

902 Hs.641142 FLJ46875 440918 2q24.1 

903 Hs.507676 FLJ12993 441027 4q21.22 

904 Hs.510098 C6orf217 441171 6q23.3 

905 Hs.559067 ARMETL1 441549 10p13 

906 Hs.647105 GIMAP6 474344 NA 

907 Hs.596537 C2orf64 493753 2q11.2 

908 Hs.661883 PGA4 643847 11q12.2 



 

183 

909 Hs.380698 WIPF3 644150 7p15.1 

910 Hs.58690 LOC644192 644192 15q26.2 

911 Hs.575741 LOC644431 644431 NA 

912 Hs.683930 LOC644554 644554 19q13.12-q13.13 

913 Hs.693822 LOC645431 645431 14q23.3 

914 Hs.463652 LOC645638 645638 17q23.1 

915 Hs.444950 LOC652968 652968 22q12 

916 Hs.632434 LOC653513 653513 1q21.1 

917 Hs.659982 LOC654841 654841 2q36-q37 

918 Hs.655534 LOC728190 728190 10q23.2 

919 Hs.535639 D2HGDH 728294 2q37.3 

920 Hs.662127 RP11-592B15.4 728407 10q11.23 

921 Hs.559428 SERF1B 728492 5q13.2 

922 Hs.559827 LOC729096 729096 10q22.2 

923 Hs.557608 LOC729178 729178 6q24.3 

924 Hs.591387 KIAA1881 729359 19p13.3 

925 Hs.371576 FAM18A 780776 16p13.13 

926 Hs.1581 DDTL 100037417 22q11.23 
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