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ABSTRACT 

CYBERSECURITY INCIDENT RESPONSE ORCHESTRATION USING AGILE 

COGNITIVE ASSISTANTS 

Steven W. Meckl, Ph.D 

George Mason University, 2019 

Dissertation Director: Dr. Gheorghe Tecuci 

 

In this work, I explore the problem of autonomously orchestrating cybersecurity 

incident response using agile cognitive assistants.  Detection of sophisticated cyber threat 

activity has become more complex over time, as the threat landscape has shifted from 

cyber vandals and pranksters to multi-billion-dollar criminal enterprises and state-

sponsored Advanced Persistent Threats.  What was once the realm of criminals with a 

small collection of easily discovered automated tools is now ruled by well-funded and 

highly sophisticated sets of hackers carefully orchestrating intrusions as a means to 

advance their criminal enterprise or intelligence collection mission.  This research 

identifies a new approach to intrusion detection and security incident response aimed at 

leveraging advances in the field of artificial intelligence to improve the ability of a CSOC 

to detect these sophisticated attacks.  More specifically, it demonstrates how agile 

cognitive assistants leveraging knowledge-based learning and evidence-based reasoning 
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can be used to improve the effectiveness of attack detection for both known and unknown 

threats.  Building on the Disciple learning agent theory and technology, I researched, 

developed, and demonstrated a prototype framework for agile cybersecurity.  The key 

idea is to integrate a special type of a knowledge-based learning assistant into 

cybersecurity operations centers.  This cognitive assistant can be trained by cybersecurity 

experts, based on threat intelligence, to automate the investigation of alerts from a variety 

of intrusion detection devices, integrating multiple detection techniques with automated 

network forensics, to significantly increase the probability of accurately detecting 

intrusion activity while drastically reducing the workload of the operators of the 

cybersecurity operations centers.  This dissertation presents the following novel 

contributions: (1) conceptual modeling of the automatic APT detection process; (2) 

ontology design for APT detection; (3) automatic generation of abductive triggers from 

basic intrusion detection systems; (4) autonomous, hypothesis-driven search for evidence; 

(5) selection and integration of multiple, collaborative, search and collection agents 

working together to detect and investigate threats; and (6) development of Collection 

Manager software for translating and optimizing abstract searches into searches 

executable by real collection agents. 
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1. INTRODUCTION 

The field of cybersecurity has rapidly expanded over the last decade, evolving 

into multiple disciplines including cryptography, intrusion detection, threat analysis, 

managed detection and response (MDR), security orchestration and automation, and 

intrusion tolerance.  While the state of the art has seen steady progress, the volume and 

sophistication of attacks have outpaced the rate at which network defenses have evolved 

(Verizon, 2014).  History has shown security to be a constant war of escalation between 

attackers and defenders, and high-profile intrusions including attacks on Sony Pictures 

Entertainment (USATODAY, 2015), the coordinated network exploitation campaign of 

China’s People’s Liberation Army (Mandiant, 2013), and the alleged attacks on the 

White House by Russian actors (CNN, 2015) show that attackers are still successful in 

spite of record high cybersecurity budgets (Cybersecurity Ventures, 2015). 

The science and art of intrusion detection and prevention has evolved over the last 

decade, largely due to the shift from cyber vandals and pranksters to multi-billion-dollar 

criminal enterprises and state-sponsored Advanced Persistent Threat (APT) intrusion 

methodology (Zimmerman, 2014).  What was once the realm of criminals with a small 

collection of easily discovered automated tools is now ruled by well-funded and highly 

sophisticated sets of hackers carefully orchestrating intrusions as a means to advance 

their criminal enterprise or intelligence collection mission.  State-sponsored attack groups 
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such as the People’s Republic of China’s (PRC) APT1 have demonstrated that 

organization, funding, and lack of consequences can be more effective than use of 

sophisticated intrusion tools (Mandiant, 2013). 

Commercial intrusion detection tools have not adapted well to this shift in 

attacker methodology.  Attackers’ sophistication has outpaced that of network defenders.  

This is most apparent in data analysis published in Verizon’s 2014 Data Breach 

Investigations Report (Verizon, 2015).  In 2013, the attacker’s time to compromise was 

measured in days over 90% of the time while the defender’s time to detection was 

measured in days less than 25% of the time, leaving large windows of time for attackers 

to operate undetected.  What’s worse is that the attackers’ time to compromise is 

shrinking at a faster rate than defenders’ time to detection.  Technological advances are 

necessary to shrink the gap between the two.  

Well-organized cybersecurity operations centers (CSOCs) leverage analysts with 

a wide variety of skills to constantly monitor and adjust their security infrastructure to 

adapt to intrusion methodology changes.  Even advanced CSOCs, leveraging state-of-the-

art intrusion detection system (IDS) technology, receive too many alerts for their analysts 

to handle.  Investigation of each alert has a cost to the organization, measured in time, 

man-hours, and infrastructure expenses.  The cost of missed detections can range from 

negligible to catastrophic.  While many simple network compromises are routine and 

easy to overcome, the average cost of a data breach has risen to nearly $4 million in 

recent years (Ponemon Institute, 2017).  False positives are also expensive (Zimmerman, 

2014), as network defenders waste time investigating incorrectly identified security 
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incidents.  In large enterprises, that see thousands of network events per day, even a 1% 

false positive rate can be unmanageable.   

This dissertation details a new approach to autonomous orchestration of security 

incident response aimed at leveraging advances in the field of artificial intelligence and 

machine learning.  More specifically, this approach uses agile cognitive assistants 

leveraging knowledge-based learning and evidence-based reasoning to improve the 

effectiveness of a CSOC’s ability to detect both known and unknown sophisticated 

threats.  Building on the Disciple agents learning theory and technology (Tecuci et al., 

2016a), I researched, developed, and demonstrated a prototype framework for agile 

cybersecurity.  The key idea is to integrate a special type of a knowledge-based learning 

assistant into CSOCs.  This cognitive assistant is trained by cybersecurity experts, based 

on threat intelligence, to automate the investigation of alerts from a variety of intrusion 

detection devices, integrating multiple detection techniques with automated network 

forensics, to significantly increase the probability of accurately detecting intrusion 

activity while drastically reducing the workload of the operators of the CSOCs. This 

approach is agile because these agents can rapidly learn the subject matter expertise of 

skilled CSOC analysts to accurately identify both the existence and scope of network 

intrusion events.  They learn general models of threats in the form of explicit reasoning 

patterns that are used to hypothesize intrusions, to direct the sensors to collect evidence 

for these hypotheses, and to test the hypothesized intrusions based on the collected 

evidence.  
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1.1. Motivation 

This section provides more detail of the challenges modern CSOCs face, and why 

advancements in the field are necessary. 

1.1.1. Intrusion Detection Overview 

Intrusion detection is typically done by searching through network data, host-

based data, or logs, either in real-time or after the fact, and applying detection algorithms 

to the data to identify intrusion activity.  In some cases, multiple types of data can be 

fused to provide more robust detection capability, although there are not too many 

capabilities to do data fusion at present. 

Intrusion detection algorithms focus on two major approaches: anomaly detection 

and misuse detection.  Anomaly detection focuses on building a model of what is normal 

and then using that model to identify behavior that is abnormal.  It can work in real-time 

and is capable of detecting new threats, but often has a high false positive rate.  Misuse 

detection uses information about attacks, often in the form of static signatures or 

Indicators of compromise (IOCs), to detect malicious activity.  It has a high detection rate 

for existing threats and a low false positive rate, but normally cannot detect new threats 

(Kemmerer & Vigna, 2002). 

Machine learning, in the form of neural networks, statistical methods, or a 

combination of learning models, is a major area of anomaly detection research.  Bhuyan 

et al. (2014) provides an excellent overview of the topic.  While there have been some 

improvements in the state of the art, machine learning methods still have not solved two 

important problems for network defenders:  
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1. While machine learning methods (e.g., neural networks) perform well, they 

cannot tell the user why they arrived at a conclusion. 

2. They still have unacceptably high false positive rates for large CSOCs. 

Misuse detection is a common approach used in production systems today.  

Misuse detectors are designed to use IOCs to scan network, disk, or volatile memory to 

detect known tools, techniques, or procedures (TTPs) used by attackers.  Common 

intrusion detection system (IDS) software packages, such as SNORT (Northcutt et al., 

2007) and BRO (Paxson, 1999), along with traditional antivirus programs, are misuse 

detectors.  Most desktop anti-virus programs also fall into this category.  They are 

popular because they are easy to implement and share indicators for.  The general 

weakness of misuse detection is the inability to detect new threats, although they have a 

high detection rate for known threats (Kemmerer & Vigna, 2002).  

1.1.2. Threat-Driven Analysis and the Cybersecurity Operations Center 

CSOCs employ teams of network defense experts, analysts, system 

administrators, and forensics experts.  CSOCs leverage a rich tool set including intrusion 

detection systems (IDSs), data collection tools, analysis tools, and visualization tools.  

CSOCs receive incident information from high-value sources – law enforcement, user 

reporting, or threat intelligence from other CSOCs – and unconfirmed alerts from 

security infrastructure such as antivirus software, IDSs, heuristic alerts, or machine 

learning algorithms.  The analyst’s responsibility is to monitor alerts and logging 

information from all available information sources, each having differing levels of 
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reliability, and use them to make a determination about the presence or absence of 

intrusion activity (Zimmerman, 2014). 

TTPs used by attackers change rapidly and can be discovered on almost any 

network.  In an effort to adapt, there has been a movement toward making the sharing of 

indicators between CSOCs fast and easy.  IOCs can now be shared among communities 

of interest using multiple open formats and transports including OpenIOC (2015), created 

by Mandiant, and the STIX/TAXII architecture (Barnum, 2014; Conolly et al., 2012), 

created by The MITRE Corporation.  Additionally, security companies have begun 

publishing threat intelligence to customers and the public, such as the now famous 

Mandiant report on the APT1 intrusion set (Mandiant, 2013), which attributed an 

aggressive group of computer intrusion operators to China’s People’s Liberation Army.  

While these initiatives can be effective in sharing signatures and other threat artifacts, 

each receiving organization still must implement their own process to integrate the 

information into their security infrastructure, using the myriad anomaly and misuse 

detection systems on the market.  

1.1.3. Advanced Persistent Threats 

The most sophisticated type of attacker group is called the Advanced Persistent 

Threat.  APTs are characterized by the use of superior knowledge, resources, or tactics to 

gain and maintain access to the networks of their intended victims to accomplish 

missions ranging from information theft (Mandiant, 2013) to destruction of data 

(Pagliery, 2015).  Many APT groups are known or suspected to be large state-sponsored 
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teams of highly trained and well-funded hackers, following a structured attack process 

called the Attacker Lifecycle (Mandiant, 2013). 

APT groups have some distinct differences from traditional hackers making them 

difficult to deal with.  Due to the fact that they are often government employees or 

contractors performing their attacks as a part of their job and have been authorized to 

conduct such activity by their government, it is low risk/high reward activity.  Unlike 

criminal hackers, there is no risk of incarceration should they get identified.  As such, 

they can afford to optimize for volume over stealth, meaning they can attack a lot of 

potential victims simultaneously, exhausting defenders’ resources.  They are also often 

acting to fulfill the intelligence requirements of their government.  They are persistent in 

pursuing that mission, frequently returning to previously compromised networks with 

different apparent TTPs.  Many organizations are not prepared for this level of 

persistence. 

The structured nature of APT activity also provides some opportunities defenders 

can exploit.  Since they are often large organizations, they are subject to the limitations of 

large information technology teams, namely the slow evolution of their malware tools 

and the predictability of their structured attacker lifecycle. 

I use the APT attack model as a model for study in this research because prior 

research into APT attackers has yielded important insights regarding the structured 

approach many sophisticated attackers use, including modern criminal enterprises and 

even some “lone wolf” attackers.  While this research was built around the theoretical 
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model of APT detection, the developed approach is applicable to the autonomous 

orchestration of security incident response to any modern cyber attacker profile. 

1.1.4. Evolution of Malware 

One of the main reasons that misuse detection fails is the reliance on matching 

static IOCs in malware files, on disk, or in volatile memory.  It is trivial for attackers to 

change their malware to avoid signature-based detectors and it is done in many ways, 

including the following: 

• Packers/Obfuscators – Code packers or obfuscators are tools that can 

compress, encrypt, or otherwise change the look of a compiled executable 

program file.  At run-time, the code is de-obfuscated in memory prior to 

execution. 

• Reconfiguration – Attackers often change the way artifacts of their malware 

look when executed during an intrusion to evade static signature detection.  

For example, the attacker may change the name of any domains, Internet 

Protocol (IP) addresses, Registry keys, or file names used for each attack, but 

the malware otherwise behaves the same. 

• Evolutionary Development – Malware is written using the same techniques 

as legitimate software systems.  The tools evolve over time as malware 

developers learn new techniques.  Each incremental development step helps 

evade static signatures developed to detect previous versions. 

 

These phenomena have been observed many times over a long period of time 

(Gupta et al., 2009).  In their report on the APT1 intrusion set Mandiant (2013) describes 
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the set of malware programs used by the group of attackers over several years.  It also 

contains lists of domains, digital certificates, IP addresses, and accounts used by the 

group.  APT1 would use the same malware for multiple attacks, reconfiguring the 

programs to communicate with different domains, register themselves as Windows 

services with different display names, and use different file and process names.  Heavy 

use of reconfiguration is one of the factors allowing the group to be successful for so 

long. 

APT1, among other attacker groups, also practices evolutionary development to 

adapt to changes in network defense technology or simply to increase efficiency.   

Further analysis of APT1 by Mila (2013) at contagiodump.blogspot.com shows a 

timeline of the attacker group’s tool usage from 2004 to 2012, including information on 

dozens of samples of malware.  The group evolved their tool set slowly over the course 

of at least eight years.   

These changes in the way malware presents itself on the network and on host 

computers made it difficult for signature-based intrusion detection tools to detect attacks 

because the attacks can change static information in their malware faster than defenders 

can adapt.  However, the patterns of behavior change more slowly and with less variance. 

Analysis of the IOCs published by Mandiant (2013) shows that APT1 malware 

demonstrates clusters of behavior.  Subsets of the programs share sets of techniques for 

communicating on the network, persisting through a reboot, or storing data on disk.  One 

example of this is the cluster of malware programs comprised of AURIGA, BANGAT, 

SEASALT, and KURTON.  While the features of the software changed fairly drastically 
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over time, the main differences in forensic evidence generated by those four tools is the 

persistence mechanism used to survive a reboot, the strings used to register as a service or 

device driver, and the names of files and Registry keys.   

Clusters of malware programs are often called malware families in published 

research.  Each member of the family incrementally builds on previous versions as they 

get detected and become less effective.  The Sobig virus (Stewart 2003a; 2003b) is an 

example of a malware family.  It was used in 2003 in a widespread email phishing attack.  

The Sobig virus evolved over five different revisions.  Over the course of these revisions, 

the author changed how the malware set its expiration timer, where the command-and-

control servers were located, and how encryption was used to improve the effectiveness 

of the malware. 

Security analysts and network defenders can take advantage of the slow evolution 

of behavior in malware families to be more effective in detecting malware and 

implementing new security controls.  This uses the same methods I employed to train a 

knowledge-based learning agent to improve the ability of a CSOC to detect attacks. 

1.2. Problem Statement 

The fast evolution of malware, increasing number of security events, and 

relatively high false positive rates have become problematic for CSOC analysts and 

network defenders.  This combination of factors has resulted in increases in the number 

of successful attacks, the number of attacks that go undetected, and an overwhelming 

number of security events for CSOC analysts to investigate.  Dealing with this complex 

security environment has become very expensive for network defense organizations. 
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The evolution of malware and network intrusion TTPs has allowed attackers to 

continue to evade security controls.  Despite the tens of billions of dollars spent on 

security every year, the number of successful attacks has increased steadily year over 

year.  According to Symantec’s 2019 Internet Security Threat Report (O’Gorman et al., 

2019), both the volume and sophistication of attacks continues to increase.  To make 

matters worse, the time required for attackers to compromise a network has gone down 

while the time required for defenders to detect the intrusion has gone up.  This means that 

attackers have a larger window of time to accomplish their goals before detection. 

There are several reasons why intrusion detection systems and CSOCs have 

remained unsuccessful against evolving malware and TTPs.  Most security systems 

deployed today are simple rule-based misuse detection systems that rely on a current set 

of IOCs to be effective.  As TTPs change, the set of IOCs cannot be maintained fast 

enough to keep up.  Development of IOCs is a complicated process, first requiring 

detection of an intrusion, then detailed analysis of the malware and attacker TTPs, 

followed by careful development of signatures that can distinguish between legitimate 

and malicious traffic.  This is typically a time-consuming and manual process, requiring a 

highly skilled analyst.  Analysis of the rising number of new attacks has caused a 

resource strain on network defense organizations.  In a large enterprise thousands of 

alerts can be reported daily, and most organizations report they are able to investigate less 

than 50 in a typical work week (Ponemon Institute, 2017).  

The large and increasing number of alerts and the time required for their manual 

analysis creates a very complex, expensive, and non-sustainable security environment for 
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network defense organizations where most alerts are not investigated, increasing the risk 

to the enterprise. 

There has been a lot of promising research into classifier-based intrusion 

detection systems (Bhuyan et al., 2014).  Network anomaly detection systems based on 

neural networks, in particular, have vastly improved the detection rate of new attacks.  

However, neural network-based systems still have unacceptably high false positive rates.  

They are also limited in their expressiveness.  While they can distinguish between 

legitimate and malicious traffic, they are unable to articulate how they arrived at a 

decision.  The inability to do so leaves the analyst with more investigative work. 

In order to improve the effectiveness of intrusion detection systems and reduce 

the cost of investigating security incidents, CSOCs require improvements in some key 

areas:   

• Accuracy of a CSOC’s detection of attacks, improving both detection rates for 

known and new attacks, and reducing false positive rates; 

• Enhancement of CSOC processes to increase the number of security events 

that can be investigated per day; 

• Rapid development and agility in automation and orchestration in tier 1 

incident triage and tier 2 incident response investigations; 

• Expressive intrusion detection systems that don’t just detect suspected 

malicious activity but provide detailed information to aid in the investigation. 
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1.3. Purpose of Research 

The purpose of this research was to determine if a knowledge-based learning 

assistant and evidence-based reasoning could be used to increase the effectiveness of 

attack detection and improve the efficiency of CSOC operations through orchestration 

and automation of security incident response.  During this research a prototype 

framework for a knowledge-based learning assistant was developed that can respond to 

security alerts, use abductive, inductive, and deductive reasoning to hypothesize 

intrusions, collect evidence about these hypotheses, analyze them based on the collected 

evidence, and present the results to a CSOC analyst to act upon.   

The system leveraged a scalable learning assistant platform to process many 

simultaneous alert investigations and interface, via a flexible JavaScript Object Notation 

(JSON) API, with a mix of commercial, open source, and custom collection and analysis 

agents to evaluate the elementary hypotheses.  Results of automated analysis were used to 

synthesize conclusions regarding the presence of intrusion activity and the scope of the 

intrusion.  The prototype platform provides CSOC analysts with a flexible environment 

to model their expertise in natural and flexible way that can be applied directly to the 

enterprise network environment to detect and respond to intrusion activity. 

The system addresses critical gaps in the current capabilities and workflow of 

modern CSOCs.  Leveraging a knowledge-based learning assistant to process security 

alerts both reduces the error rate resulting from human operators performing repetitive 

investigations and enables CSOCs to scale the system to process every alert, which is 

currently infeasible.  The system also adds value to existing security infrastructure and 
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threat intelligence services by tying together multiple, diverse, low-confidence security 

sensors to provide high-confidence detection using the expertise of security experts. 

The prototype system was used to model the methodology a skilled CSOC analyst 

would use to investigate a set of known APT malware, specifically the APT1 malware 

published by Mandiant (2013).  Experiments were conducted to show the system can be 

trained to both detect known threats and predict future attacks by the same APT group, as 

well outperform similar activity conducted in modern CSOCs.  Results of these 

experiments are included in this dissertation. 

1.4. Research Questions 

This research answers several questions regarding the ability of knowledge-based 

learning assistants and evidence-based reasoning to accurately model and detect APT 

intrusions and increase the accuracy and efficiency of cybersecurity operations centers.  

These questions are listed below, grouped into intrusion detection improvement, analyst 

support, and performance categories. 

1.4.1. Intrusion Detection Improvements 

A core goal of this study was to make improvements in the theoretical model used 

to detect computer intrusions, specifically those performed by APT groups.  Much of the 

effort in this research involved creation of a mathematical model, rooted in computational 

theory, to accurately detect APT activity through active network monitoring and 

automated computer forensics.  A primary objective of this work was to determine 

whether a knowledge-based learning assistant, using evidence-based reasoning is able to: 
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• effectively fuse evidence from multiple data sources, including host-based 

information, network information, and evidence collected from external 

sources such as domain registrars, IP address registrars, malware analysis 

services, and threat intelligence streams; 

• use explicit logic to aggregate weak intrusion indicators into strong ones, 

showing clearly all the reasoning steps and the evidence used. 

1.4.2. Analyst Support 

The functional questions regarding this study concern agent training with subject 

matter expertise, ease of knowledge base development, understandability of analysis, and 

ease of use by analysts.  The study determined that an agent can: 

• use mixed-initiative reasoning to assist CSOC analysts in identifying new 

attacker TTPs; 

• be trained to automatically detect threats based on CSOC analyst expertise 

and threat intelligence, such as the Mandiant report on the APT1 intrusion set; 

• support the analyst in identifying previously unknown threats, and learn to 

automatically detect future intrusion attempts of the newly discovered type; 

• exhibit flexible autonomy in its interactions with the CSOC operators, from 

being strictly guided by the operators, to mixed-initiative, and to full 

autonomy. 

1.4.3. Performance 

Wherever possible, the attributes of the system were measured through 

experimental testing and calculated from observed measurements.  In terms of measured 
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performance, this study determined that knowledge-based reasoning with evidence-based 

argumentation can: 

• improve the detection and false positive rates of intrusion detection systems; 

• improve the efficiency of CSOCs by using knowledge of cyber threats to 

automate repetitive investigative tasks on behalf of CSOC analysts; 

• scale efficiently, meaning the number of alerts analyzed scales linearly with 

respect to processing power and storage. 

1.5. Research Contributions 

This section provides an overview of the theoretical and architectural 

contributions produced by this research. 

1.5.1. Theoretical Contributions 

The theoretical contributions achieved center around development of a theoretical 

model allowing for the creation of autonomous agents to detect APTs through learned 

security orchestration and automation.  More specifically, the theoretical contributions 

from this research are: 

1. Conceptual modeling of the automatic APT detection process; 

2. Ontology design for APT detection; 

3. Automatic generation of abductive triggers from basic IDSs (e.g., BRO); 

4. Autonomous, hypothesis-driven search for evidence. 

1.5.2. Architectural Contributions 

Development of a system of agents allowing integration into a wide variety of 

CSOC environments in order to collect and evaluate digital artifacts in an autonomous 
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fashion required a substantial amount of design and development.  To this aim, the 

following architecture contributions were achieved: 

5. Selection and integration of multiple, collaborative, search and collection 

agents working together to detect and investigate threats; 

6. Development of the Collection Manager software for translating and 

optimizing abstract searches into searches executable by real collection 

agents. 

1.6. Importance of the Study 

Large corporations, particularly those in the retail, banking, and energy sectors, as 

well as government agencies have a vested interested in making their networks more 

secure.  As discussed above, numerous resources are expended by modern CSOCs to 

manually gather and analyze data in response to both true positive and false positive 

security alerts.  In both cases, the investigative and analytical work is repetitive because 

the breadth and scope of responses are finite.  Automating much of that repetitive work 

with a knowledge-based learning assistant and evidence-based reasoning will free CSOC 

analysts to pursue other important security tasks such as intelligence analysis, threat 

hunting, and improving network security posture. 

The Center for Strategic International Studies estimates that the net annual net 

losses to the global economy due to cybercrime are more than $400 billion (Center for 

Strategic International Studies, 2014).  Cybersecurity Ventures estimates that 

cybersecurity will be a $155 billion market by 2019 (Cybersecurity Ventures, 2015).  As 
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security budgets rise, an effective and efficient CSOC will be a competitive advantage.  

Resources saved on security can be used to fund the profit centers of the organization.  

This research successfully determined that much of the repetitive and analytical 

work can be automated by a knowledge-based learning assistant, which can learn from 

observing how skilled CSOC analysts respond to security events, increasing the 

efficiency of CSOCs, improving detection and false positive rates, and enabling CSOC 

analysts to pursue more creative and rewarding tasks. 

1.7. Scope of the Study 

Intrusion detection is a very large topic.  With the emergence of mobile platforms, 

embedded systems, and operational technology (OT) systems – including manufacturing, 

building controls, and other industrial control systems – there are dozens of potential 

platforms, techniques, and attack surfaces that can be explored.  The threat space is also 

very large.  Attacker motivation and skill varies wildly and there are hundreds of 

thousands of malware variants discovered in the wild.  It would be unreasonable to 

attempt to build a system to cover all intrusion detection problems.  In order to produce 

usable research results in a reasonable amount of time, the scope of the project must be 

limited.  This section describes the scope of the research project and the reasoning behind 

its scope limitations. 

1.7.1. Knowledge-Based Learning Agent Shell 

Ideally, a system that learns from demonstration by a subject matter expert (SME) 

would be able to observe the same intrusion detection events as the SME, watch 

everything they do in response to the event, analyze it to determine the effectiveness of 
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each action and learn from each demonstrated intrusion investigation to develop 

applicable rules and patterns.  Unfortunately, such a system would have required 

development of a substantial number of auxiliary technologies that do not directly 

support the stated goals of this research. 

Instead, the research was conducted using a more controlled environment: the 

Disciple knowledge-based learning agent shell.  Disciple is a tool developed and 

supported by the Learning Agent Center at George Mason University’s Volgenau School 

of Engineering.  It is a Java-based learning agent platform that facilitates creation of 

purpose-built knowledge bases and learning agents covering a wide variety of subject 

matter areas.  Disciple allows subject matter expertise to be modeled in the form of easily 

understandable reasoning trees, using natural language description.  Problems can be 

generalized by utilizing well-defined ontologies.  Disciple’s ability to elegantly handle 

the difficult aspects of creating a knowledge-based learning agent with evidence-based 

reasoning enabled a focus on modeling the intrusion detection and investigative processes 

and developing the required data stores and collection agents to support this research. 

1.7.2. Operating System Environment 

The software systems used in this research were developed for Microsoft 

Windows operating systems.  Due to sustained market dominance, Windows computers 

are the primary target of computer intrusions and the vast majority of malware is 

developed to target Windows (Symantec, 2015).  To have the largest potential impact, it 

made sense to develop a prototype system for Windows. 
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1.7.3. Attacker Profile 

This research project focused on detecting APT type intrusions into enterprise 

networks.  APT is loosely defined as sets of well-funded and well-organized actors who 

gain and maintain access to sensitive computer networks for long periods of time, 

exfiltrating intellectual property, personally identifying information (PII), and other 

sensitive records to fulfill their organization’s mission.  APT was chosen as the target 

attacker profile because it has become a serious problem for network defenders in the last 

several years.  As such, there was ample finished analysis of APT TTPs to facilitate 

development of a knowledge-based learning assistant capable of detecting APT activity. 

1.8. Limitations 

While this research involved a flexible solution applicable to a wide variety of 

investigative and analytical problems in intrusion detection and security incident response 

orchestration, there were limitations to the research. This section discusses identified 

limitations of the research, alternative approaches, and steps taken to mitigate those 

limitations. 

Ontology-based systems carry an authorship burden, as the system can only 

reason about the concepts and facts it is aware of.  Creation of a large, comprehensive 

ontology can take an extensive amount of time.  This challenge was overcome in two 

ways.  First, there is a fair amount of research published research into security 

taxonomies and ontologies.  These were used where applicable.  Second, because the 

focus of this research was to create an agent capable of intelligently responding to 

security alerts by conducting autonomous intrusion investigations, the ontology was built 
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incrementally as concepts required by the cognitive agent were discovered via research 

into APT malware and TTPs.  This limited the scope of the ontology and relieved the 

authorship burden. 

Intrusion detection requires analysis of multiple types of evidence, including 

captured network traffic, network flow data, volatile memory, Registry keys, executable 

binary files, data files, logs, and other non-volatile hard disk artifacts in a wide variety of 

formats.  While it is possible to automate much of this analysis given sufficient time and 

resources, it is infeasible to automate all possible types of analysis.  An example of this is 

live memory capture.  Available tools for capturing volatile memory are often expensive, 

error prone, and difficult to use over the network (Ligh et al., 2014).  For this research 

project, the priority was to automate analysis of data types applicable to the most possible 

use cases and the largest set of malware in the training and test data sets. 

There are no standard data sets for testing hybrid network-based and host-based 

intrusion detection systems.  Most network-based intrusion detection systems use the 

DARPA 99 data set (DARPA, 1999) or one derived from it.  Host-based systems and 

hybrid systems such as DIDS (Snapp et al., 1991) have yet to settle on a standardized 

dataset for testing.  As such, a new data set was created for this research that includes 

APT malware samples, published analytical research, and IOCs.  Since the training and 

test data sets for machine learning are a critical part of algorithm development, the 

research was limited by the assembled data set. 

Subject-matter expertise was also a limiting factor for this research.  System’s 

performance is heavily dependent on the quality of expertise the system is modeled after.  
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While I was able to develop a knowledge-based learning assistant that uses evidence-

based reasoning to accurately model one SME’s analytical approach, there likely exist 

analysts with different knowledge and experience, and therefore other effective ways of 

investigating, analyzing, and detecting intrusions.  The intent of this research was not to 

create the best possible agent, but to demonstrate that the knowledge-based approach is 

effective for modeling and automating the investigative and analytical tasks of CSOC 

analysts. 

Lastly, issues regarding secure collection of data from compromised computers 

was outside the scope of this research.  Sophisticated attackers routinely use techniques to 

hide the presence of their malware by overriding system calls, either by hooking exported 

functions in user-mode dynamic-linked libraries (DLLs) or by hooking calls in various 

system call tables in the operating system kernel (Hogland & Butler, 2005).  The 

problems related to collecting accurate data from an operating system compromised with 

one of these techniques is well-known and, in some cases, commercial products exist to 

help reveal these techniques or allow secure data collection.  Wherever possible during 

this research project, best practices were followed regarding collecting evidence from 

workstations.  However, novel solutions to this problem are outside of the scope of this 

research. 
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2.  RELATED WORK 

Intrusion detection is a broad, multi-disciplined area of computer security, the 

complexity of which is limited only by the knowledge, skill, and creativity of both 

attackers and defenders.  Attackers have learned to exploit almost every aspect of 

operating systems, leverage exploits in network protocols, and take advantage of 

weaknesses in human operators.  Likewise, successful defenders must become experts on 

operating systems, networks, forensics tools, scripting languages, and the specific TTPs 

used by attackers as they evolve their craft.  Due to the speed at which attacks happen, 

most of them are discovered after the fact by incident responders and forensic analysts 

(Verizon, 2014).  As such, knowledge about intrusions is accumulated relatively slowly.  

As repetitive tasks are identified or new technologies emerge, analysts and developers 

create tools to automate the detection of known threats, increasing over time the security 

posture of computer systems. 

This chapter provides a review of academic research to understand the methods 

used in the past to detect intrusions into computer networks by external attackers and the 

strengths and weakness of those approaches.  By examining those topics, research gaps 

were identified which were addressed by this research.  These topics will be addressed 

through a thorough review of the state-of-the-practice and state-of-the-art in automated 

intrusion detection.  It will describe the major sub-topics in intrusion detection, the types 

of data that must be examined to detect intrusions, architectural trade-offs in IDS design, 

and datasets used to evaluate intrusion detection systems.  A brief overview of machine 
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learning (ML) techniques will then be provided, along with recent developments in 

applying ML to various intrusion detection problems.  

2.1. Cybersecurity Operations Centers 

In organizations with large networks, the job of computer network defense (CND) has 

been consolidated within a CSOC, which contains the tools, expertise, network visibility, 

and authority to monitor, detect, and react to security events (Zimmerman, 2014).  While 

they can vary in size, scope, and specific construction, they generally have a workflow 

similar to Figure 1. 

 

 
Figure 1 CSOC workflow 

 

The Cyber Threat Intelligence component is responsible for understanding the 

network environment and the threats to it.  Its responsibilities include actively monitoring 

threat intelligence reports to understand trends in attack methodology.  Intelligence 

reports are published as subscription feeds by security companies including FireEye 
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(2015), Symantec (2015), and iSIGHT Partners (2015).  By monitoring, analyzing, and 

fusing information in these reports with information from the internal network, the CSOC 

intelligence component can effectively deploy and tune security infrastructure. 

In sophisticated CSOCs, the Cyber Threat Intelligence component operationalizes 

threat intelligence using a Threat Intelligence Platform (TIP).  Intelligence analysts 

examine incoming intelligence for relevance and accuracy and deploy curated sets of 

IOCs to sensors and the security information and event management system (SIEM) for 

use in threat detection.  When security sensors match an IOC against collected data, a 

security alert is sent to the SIEM for correlation. 

At the center of a CSOC is its SIEM, which is responsible for storing logs and 

network configuration information (Zimmerman, 2014).  The SIEM is the central tool 

used by analysts for organizing, tracking, and analyzing the information needed to 

identify and respond to attacks.  The databases can be in the form of object storage, 

relational database, or flat storage, although a recent trend is to use unstructured storage 

databases like Splunk (2015) and Elasticsearch (2015).   Analysts use the SIEM for 

correlation analysis, combining multiple alerts and raw logs to generate potential 

incidents that must be further examined. 

Tier 1 analysts are responsible for validating potential incidents using the 

historical data stored in the SIEM, along with open source information and external data 

sources.  The main objective of Tier 1 analysis is to quickly determine if a potential 

incident is a false positive or a true detection requiring triage analysis by a Tier 2 analyst. 



26 

 

Tier 2 analysts are more experienced in analysis and perform incident triage to 

quickly answer a few key questions about a validated incident: 

• Can they confirm the analysis performed by the Tier 1 analyst? 

• If it is a real security incident, what is the scope of the attack? 

• Is it possible to quickly recover from the attack? 

By answering these and other questions, the Tier 2 analyst will determine if they 

can remediate the attack or whether Tier 3 incident response is required. 

Tier 3 analysis is often called Incident Response.  Tier 3 analysts have a high 

level of expertise in incident investigations and are responsible for conducting in-depth 

analysis and forensics when an incident happens.  They perform costly and time-

consuming analysis of network data, logs, disk images, malware, and copies of volatile 

memory.  This analysis is done with a wide variety of commercial and open source tools.  

The results of this analysis determine the response from the organization, law 

enforcement, or outside parties. 

While the CSOC infrastructure provides a robust set of tools for data analysis, it 

still has limitations.  Most of the analytical work is done manually or automated with 

simple scripts.  In a large enterprise, thousands of alerts can be reported daily, and most 

organizations report they are able to investigate less than 50 in a typical work week 

(Ponemon Institute, 2017).  Therefore, even sensors with a false positive rate of one 

percent may have enough missed detections and false positives to be unmanageable by 

even mature CSOCs.  Increasing the efficiency and accuracy of Tier 1 and threat 
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intelligence tasks could drastically lower the cost of running a CSOC and reduce risk to 

the organization. 

2.2. Overview of Intrusion Detection Concepts 

An intrusion attempt is a deliberate attempt to gain unauthorized access to a 

computer system or network to compromise its confidentiality, availability, or integrity 

(Sabahi & Movaghar, 2008).  The confidentiality is the property of a system which 

ensures information be accessed only by those persons or entities explicitly authorized to 

do so.  A compromise of this property often manifests itself in the form of intellectual 

property, financial information, or PII being stolen from a computer network.  Denial of 

service (DoS) and distributed denial of service (DDoS) attacks impact the availability 

property of a system, consuming more resources than a system has or exploiting a defect 

to make the system unavailable to its intended users.  Integrity is the property of a system 

assuring that data stored on it remain in the state it was intended.  An integrity 

compromise might involve changing key words in a contract to change its meaning or 

modifying bank account records to facilitate theft (Zevin, 2009). 

In general, there are two venues for intrusion detection, defined by where an 

analyst or automated tool must look to identify the intrusion.  Host-based intrusion 

detection systems (HIDS) attempt to detect unauthorized access by examining programs 

running on computer or searching for artifacts in memory or non-volatile storage.  

Desktop anti-virus programs are the most commonly used HIDS.  They use static 

signatures, heuristics, and machine learning to identify attack tools as they are written to 

and read from hard disks.  Network-based intrusion detection systems (NIDS) detect 
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intrusions by examining network data in real-time or stored in a database.  The goal of a 

NIDS is to detect intrusion attempts, in near-real-time or real-time, before the attackers 

successfully compromise hosts.  Rare, but not uncommon, are hybrid intrusion detection 

systems that fuse both network-based and host-based information to more effectively 

detect intrusion activity. 

Intrusion detection systems are typically evaluated using three metrics: detection 

rate, false positive rate, and the receiver operating characteristic (ROC) curve (McHugh, 

2000). 

 

 

Figure 2 Receiver operating characteristic curve 

 

The detection rate is the percentage of real attacks that are detected by the system.  

The false positive rate is the percentage of events incorrectly flagged as attacks.  The 

ROC curve is a plot of detection rate versus false positive rate.  Figure 2 shows an 
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example of what a ROC curve looks like.  It can be difficult to quantitatively compare 

ROC curves.  Instead, they are often visually compared, with the curve of superior 

performing systems lying to the upper left of the curve of an inferior system. 

2.2.1. Cost Management in the CSOC 

A major factor of CSOC operations is the tradeoff between security value and 

cost.  The costs of operations can be measured in terms of money required to purchase 

security infrastructure and hire staff, as well as the time required to implement and 

maintain security controls and threat detection.  Since no security system can be perfect 

at defending against attacks, CSOC managers must decide how many resources to apply 

based on the value of the assets being protected and the overall assessed risk to those 

assets.   

To manage costs effectively, a CSOC must effectively balance use of automated 

and manual analysis.  Automated analysis, typically in the form of host-based or 

network-based threat detection systems, is used to quickly detect known threats or 

identify anomalies for further investigation by human analysts.  As discussed above, 

automated systems are measured by the ROC curve.  Automated systems are employed as 

much as possible because they scale well and, compared to human analysts, are low in 

cost.  In a sense, automated systems are designed to cover the area under the ROC curve, 

as shown in Figure 3. 
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Figure 3 Cost management using the ROC curve 

 

 

To address gaps in the detection and false positive rates of the CSOC security 

infrastructure, manual analysis is employed.  Effectively, manual analysis is responsible 

for the area above the ROC curve.  Human analysts follow up on alerts generated by 

automated analysis to verify their correctness prior to taking action.  They are also 

sometimes employed at “threat hunting,” where human analysts leverage their experience 

and knowledge of threats to manually search through all available data to look for attacks 

missed by automated analysis.  Manual analysis can reduce the overall false positive rate 

of the CSOC and find new attacks but is very costly and does not scale well. 

A common strategy in managing the cost of CSOC operations is to evaluate the 

cost of tuning automated analysis infrastructure to maximize detection rates (below the 

ROC curve) and the cost of manual analysis to address missed detections and false 
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positives (above the ROC curve).  Once those costs are understood, a CSOC manager can 

make informed decisions in balancing the two halves of their operation to minimize cost. 

2.2.2. Misuse Detection Systems 

Misuse detection is the most common technique in existing intrusion detection 

systems.  These techniques are designed to use knowledge of a threat, usually encoded in 

the form of static signatures, to detect known threats.  These signatures, often referred to 

as IOCs, come in three types, as described in (Hutchins, et al., 2011): 

• Atomic – Distinct indicators that cannot be broken down into smaller 

components 

• Computed – Indicators derived from threat data, including hashes, regular 

expressions, and anti-virus signatures 

• Behavioral – Collections of atomic and computed indicators, often tied 

together with combinatorial logic 

While NADIR (Hochberg et al., 1993) was one of the first automated misuse 

detection systems, many have been created since.  SNORT (Northcutt, et al., 2007) and 

BRO (Paxson, 1999) are two common network-based intrusion detection systems that 

detect misuse on a network.  Most desktop anti-virus programs also fall into this 

category.  These systems operate by loading them with signatures, or indicators, of 

malicious activity and are built to look through network- or host-based data for items 

matching those signatures.  They are popular because they are easy to implement, and the 

indicators are easy to share.  The general weakness of misuse detection is the inability to 
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detect new threats, although they have a high detection rate for known threats (Kemmerer 

& Vigna, 2002). 

Beyond the simple use of static signatures to detect computer system misuse 

based on simple events, there has been much research into better mechanisms for creating 

complex event signatures.  Lin et al. (1998) developed a system whereby abstract simple 

event signatures were used and reasoned with based on the context of the system objects 

they operated on.  The misuse signatures – or MuSigs – developed from their research, 

were designed to deal with situations where system objects could have multiple aliases 

that changed over time.  By tracking the history of events on the system, MuSigs could 

provide more accurate detection of system misuse.  Meier (2004) added enriched simple 

signatures with semantics about the system being protected.  While his research was 

constrained to the domain of active databases, the concepts are applicable to other 

domains.  Naldurg et al. (2004) presented a formalization and language for reasoning 

about temporal logic.  The language can correlate events over time and is best applied to 

the types of attacks that are distinguishable from normal use activity using temporal 

information. 

Many improvements on misuse detection systems came in the form of improved 

attack languages.  Attack languages combine atomic, computed, and heuristic IOCs into 

intuitive formal languages that can be used by a software system to detect intrusions.  

(Vigna et al., 2000) defined six different categories of attack languages: 

• Event languages are the basic input for analysis.  They describe atomic 

events that occur on a system. 
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• Response languages describe actions to be take in response to an intrusion.  

They describe modifications to the systems security controls to change its 

security posture. 

• Reporting languages are used to describe output formats for alerts and logs 

of security events. 

• Correlation languages are used to fuse alerts from different detection 

systems in order to gain a higher-level understanding of security events. 

• Exploit languages describe the steps taken by an attacker during an intrusion. 

• Detection languages describe the manifestation of an attack and are used by 

intrusion detection systems to create detection rules.  

STATL (Eckmann et al., 2002), SHEDEL (Meier et al., 2002), P-BEST 

(Lindqvist & Porras, 1999), as well as the popular NIDS software systems Bro and Snort, 

are examples of systems that leverage detection languages to detect misuse in networks 

and computer systems.  Over the years, there has been other research into attack 

languages for graph-based detection of intrusion events (Staniford-Chen, 1998), 

describing distributed patterns (Krügel & Toth, 2002), and detecting attacks involving 

multiple systems (Vorobiev et al. 2008). 

Misuse detection systems are useful for detecting known attacks because they can 

be programmed intuitively, the rules can be derived directly from intrusion analysis work, 

and the rule sets can be shared between organizations to spread intrusion detection 

knowledge and capability.  Misuse detection systems have a high detection rate against 

known attacks.  However, misuse detection systems are generally incapable of detecting 
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unknown threats.  If a new intrusion technique is not identified by the rule set, then no 

alert will be triggered. 

2.2.3. Anomaly Detection Systems 

In contrast to misuse detection systems, anomaly detection systems build a 

mathematical model of what normal behavior looks like, then use that model to detect 

abnormal behavior, or anomalies.  In an anomaly detection system, the detection engine 

is trained using labeled or unlabeled data from a training set using a wide variety of 

mathematical models.  Once trained, the anomaly detection system works by gathering 

data from live hosts or the network, processing that data through the trained mathematical 

model, and detecting events that are recognized as anomalies (Bhuyan, et al., 2014). 

In the context of intrusion detection, an anomaly detection system is a classifier-

based machine learning system that examines security-related information to determine if 

suspicious activity is present.  Such systems typically have the following components: 

• Raw input data – this is the data, either in the form of training data sets or 

real-time data that may or may not contain malicious activity. 

• Proximity measures – Statistical measures that take pairs of data objects and 

return a numerical value that is greater the more the two objects are alike 

• Labeled data – A set of data annotated with information denoting, for each 

record, whether it is normal or anomalous 

• Classification method – Depending on the availability of labeled data, this is 

either a supervised (there exists a labeled training data set), semi-supervised 
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(there is only training data for normal class of data), or unsupervised (no 

training data required) 

• Feature selection – A method of selecting which parts of the data will be 

used in the classification algorithm 

• Reporting method – The output when an anomaly is flagged, which typically 

includes a score or label, depending on the classification method 

In a network-based anomaly detection system, the raw input data consists of 

captured network data, in the case of training data, or live network traffic monitored in 

real-time, during active anomaly detection.  The most common data set used for network-

based anomaly detection is the KDD Cup data set published by DARPA in 1999 for 

evaluating network intrusion detection systems (DARPA, 1999).  Analysis of this data set 

(Tavallaee et al., 2009) reveals that this data set includes approximately 4,900,000 

network connections labeled as either normal or an attack.  There are four categories of 

attack present in the data: Denial of service (DoS), where the intent is to reduce the 

availability of the network system or service; User to root (U2R), where the attacker 

attempts to elevate privileges; Remote to local (R2L), where the intent is to gain remote 

access to local resources on a machine; and Probing attacks, which gather information 

about a system to learn how to circumvent security controls. 

In addition to describing the methods used, Bhuyan, et al. (2014) highlighted the 

overall strengths and weaknesses of network anomaly systems.  In general, these systems 

were judged to exhibit high performance and were capable of real- or near-real-time 

detection of anomalies, had reasonable detection rates for known attacks, and were 



36 

 

capable of detecting unknown attacks.  However, the vast majority of network anomaly 

detection methods reviewed had high false positive rates.  These systems used network-

only datasets, ignoring data from internal and external hosts that could improve detection 

rates or reduce false positive rates.  As such, most anomaly-based network intrusion 

algorithms are inadequate by themselves and would be more effective if incorporated into 

a system of algorithms that can exploit their strengths and minimize their weaknesses. 

Host-based anomaly detectors work in much the same way as network-based 

systems, except they examine different types of data, to include system call traces, audit 

log data, and command-line information (Yeung & Ding, 2003).  Although there is ample 

information on hosts – API call patterns, event logs, disk access patterns, memory usage, 

etc. – to train an anomaly detection engine, there is not much research into host-based 

anomaly detectors to date. 

2.2.4. Hybrid Systems 

In some cases, there can be advantages to combining techniques to build a 

stronger system.  The hybrid system can combine host- and network-based detection or 

anomaly and misuse detection (or some combination of all four) to make a system that is 

more accurate than each of the component parts individually.  Some examples of this 

type of system are described in this section. 

Depren et al. (2005) created a hybrid network-based IDS that uses both an 

anomaly detector and a misuse detector, running in parallel.  The anomaly detector used a 

self-organizing map (SOM) algorithm, and the misuse detector used a decision tree 

algorithm.  The input to these systems was network data from the KDD99 dataset.  The 
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output was sent through a rule-based decision support system (DSS), which was 

responsible for making a final decision on whether a specific network packet was 

malicious or not.  

DT-SVM (Peddabachigari et al., 2007) combined decision trees and support 

vector machines in a hybrid learning approach to network-based anomaly detection.  The 

system prototype was very limited, but it was successful in detecting some classes of 

attacks from network data. 

Although some improvement to detection or false positive rates can be achieved 

by mixing and matching different types of detection techniques, the research reviewed 

offered only incremental gains. 

2.2.5. Ontology-Based Intrusion Detection Systems 

Research into using ontologies for security began as an evolution of research into 

taxonomies, which are hierarchical structures for classifying things in a topic area.  

Taxonomies in computer security work in the same manner as the classification of plants 

and animals.  The taxonomy is a tree structure of mutually exclusive concepts and sub-

concepts, with leaf nodes consisting of buckets where individual items that fit the 

category are placed.  They are useful for understanding the depth and breadth of a 

research topic.   

There have been taxonomies published with relevance to many computer and 

network security topics.  Research spanning a decade described taxonomies for software 

security flaws (Landwehr et al., 1994; Aslam et al., 1996; Weber et al., 2005).  Hansman 

& Hunt (2005) developed a taxonomy of network and computer attacks.   Igure & 
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Williams (2008) published a taxonomy of attacks and vulnerabilities in computer 

systems.  Lindqvist & Jonsson (1997), building on prior research, refined a taxonomy of 

computer security intrusions.  None of these taxonomies are relevant to the problem of 

detecting APT intrusions. 

The most relevant taxonomy research was published by Killourhy, Maxion, and 

Tan.  In their paper “A defense-centric taxonomy based on attack manifestations” 

(Killourhy et al., 2004), they describe the creation of a system to test attack techniques 

versus known vulnerable programs and simulated a series of attacks.  After examining the 

artifacts and IOCs resulting from this testing, they created a defense-centric taxonomy 

with a focus on how the attacks manifested themselves in the system from a network 

defender's point of view.  The taxonomy was then used to predict whether or not an IDS 

would be able to successfully detect the intrusion based on the attack sequence's 

distinguishability from normal traffic. 

While these taxonomies, the research by Killhourny et al., in particular, provided 

some structure to the computer security and intrusion detection research spaces, it 

became clear that they were not expressive and detailed enough to describe the domain 

knowledge and reason about it.  This realization lead to research into ontologies. 

Gruber (1993) defines an ontology as an explicit specification of an abstract, 

simplified view of the world that is to be represented for some purpose.  Formally, it 

consists of sets of concepts (C) and attributes (A), a hierarchy of concepts (H), and a set 

of semantic relations (RT). 

Equation 1 Ontology 

𝑂 = {𝐶, 𝐴, 𝐻, 𝑅𝑇} 
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While there is some variation to this general model, an ontology formalized in this 

way is sufficient for representing the required elements of a knowledge base (Colace et 

al., 2012).  

Undercoffer et al. (2003) as well as Raskin et al. (2001) argued that taxonomies 

are insufficient for use in an intelligent IDS.  Taxonomies organize information and 

concepts with the goal of classifying them.  However, they do not provide a knowledge 

representation of a field of study, as ontologies do.  Because an ontology is a formalized 

knowledge representation of a topic area, it can allow a machine to reason about a 

collection of data by applying the concepts represented in that knowledge base. 

Security-related ontology research first developed from research into the 

Semantic Web.  Two review efforts from Gomes et al. (2009) and Blanco et al. (2008; 

2011) provide an overview of security ontology development.  Early security ontologies 

were used to describe many security-related domains, including the following: 

• Sharing access control information and normalizing database schemas to 

facilitate inter-organizational database sharing (Mitra et al., 2006) 

• Describing computer and network attacks (Vorobiev et al., 2008) 

• Defining and describing the trust relationships and security properties of 

Semantic Web services (Denker et al., 2003; 2005) 

• Firewall-based access to Semantic Web services (Ashri et al., 2004) 

• Assisting in security operations (Tsoumas & Gritzalis, 2006) 

• Describing security incidents (Martimiano & Moreira, 2005) 
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• Describing authorization and privacy policies for semantic web services 

(Kagal et al., 2004) 

Other efforts to create security ontologies have been published, but were not 

included in the review of Gomes, et al. (2009), only some of which are useful in 

informing creation of an ontology for this research.  

Schumacher (2003) published a core ontology for security, which contains a small 

number of key security concepts and relationships.  While small, this ontology or 

variations of it appear to be a central component of many of the ontologies described in 

this section. 

Fenz & Ekelhart (2009) describes a security ontology designed from the 

perspective of a security manager who needs to identify vulnerable assets and identify 

security gaps in their infrastructure.  While it appears comprehensive in that regard, it 

does not incorporate any of the operational concepts and relationships required for 

automated intrusion detection and network forensics. 

García-Crespo et al. (2011) outlines an ontology for adding access controls to 

semantic web applications. 

An Wang et al. (2010) created an ontology that allows software vendors, security 

researchers, and tool developers to reason about vulnerabilities and countermeasures to 

avoid or remediate them.  

The STUCCO project (Iannacone et al., 2015) includes an ontology intended to 

represent knowledge, from multiple information databases with differing formats, in one 

cohesive knowledge base.  It represents knowledge about attackers, hosts, the software 
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packages running on them, and other information valuable to security practitioners in 

identifying attacks and vulnerable systems.  While this ontology has a solid foundation, it 

does not represent many key concepts relevant to detection of APT-style attacks. 

OntoSec (Martimiano & Moreira, 2005; Martimiano & dos Santos Moreira, 2006) 

is a security incident ontology developed with the goal of describing security incidents.  

It is similar in structure to the ontology developed by Undercoffer et al. (2003).  Like that 

ontology, it does not contain concepts sufficient to represent the knowledge and expertise 

of a CSOC analyst.  Specifically, it lacks knowledge of the internal network, digital 

forensics concepts, and knowledge of APT TTPs.   

While many of these ontologies were useful in achieving the goals of the projects 

they were developed for, there are not sufficient for describing, in detail, knowledge of 

the security domain required to reason about APT activity and create a robust automated 

intrusion detection agent.  Researchers from the MITRE Corporation were the first to 

outline the knowledge requirements for such an ontology (Obrst et al., 2012).  A security 

ontology must be able to represent the properties of malware, languages for describing 

security incidents, attack patterns and process models including the attack kill-chain 

(Hutchins et al., 2011), persons and groups, time and geospatial information, events and 

situations, and network operations.  Their research was formalized in the form of the 

CybOX schema (MITRE, 2015) and the emerging STIX format (Barnum, 2014). 

Building on this research into security ontologies, several systems were developed 

that use ontologies to perform relevant security tasks, including intrusion detection, 

network forensics, or security event correlation. 
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One of the earliest systems built with this design was created by Undercoffer and 

his colleagues (Undercoffer et al., 2003b; 2004).  They created an ontology to describe 

attacks based on information that the attack target would be able to observe during the 

attack.  The ontology was created based on analysis of over 4000 attacks and was created 

using the DARPA agent markup language (DAML) and implemented using a Java-based 

knowledge base and agent shell (DAMLJessKB).  The system was used in a distributed 

IDS where each host had its own anomaly-detection IDS, with coalitions of host IDS's 

sharing an ontology and knowledge base.  The goal of the system was to reason over 

events triggered by the IDS's running on individual hosts to DDoS attacks.  While this 

system was successful in detecting a specific DDoS attack, it is limited to real-time 

detection of attacks based solely on network traffic analysis.  It did not have the ability to 

use host-based information or to detect the intrusion after it has occurred. 

Abdoli & Kahani (2008; 2009) created a distributed IDS that utilizes an ontology 

and standard messaging format to analyze intrusion reports from host-based network 

intrusion detection systems to determine if they are true positives or false positives, or if 

similar intrusion activity was seen on other machines in the network.  As an early 

example of this type of system, it provides a foundational design for more comprehensive 

ontology-based IDS's.  However, it has some key limitations.  While it uses host-based 

sensors, it only looks at network traffic and not at memory- or disk-based artifacts on the 

host computer.  It does correlate events from multiple systems but does not go as far as 

collecting further information that could aid in determining if the alert is a true or false 
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positive.  Finally, it does not incorporate the intrusion kill chain or information about 

attacker methodology that is useful in determining the scope and severity of the attack. 

Vorobiev et al. (2008) outlined an ontology and ontology-driven distributed IDS 

designed to detect simple distributed attacks.  The ontology described in this paper 

reduces to an attack language for detecting attacks comprised of events involving 

multiple computers.  While it may be useful for describing distributed attacks, it is 

unclear how the system would use the ontology to reason about events to detect attacks 

either in real-time or after the fact.  Further, the ontology includes no information about 

the network being protected by the distributed IDS, which would facilitate reasoning 

about the feasibility of attacks succeeding and removing false positives. 

Hung & Shing-Min Liu’s system (2008) uses the DAML+OIL security ontology 

to describe the intrusion detection strategy at an abstract level, without specific 

knowledge of the underlying network and security infrastructure.  It maps the concepts 

from this intrusion detection strategy onto specific security and network primitives used 

in the network the intrusion detection system will protect.  Then, the DAMLJessKB 

expert system shell (a Java-based expert system shell) is used to describe forward-

chaining reasoning rules to detect specific attacks.   

Isaza et al. (2009a; 2009b) created an intrusion detection and prevention system 

that models attack signatures and prevention actions using an ontology.  It then leverages 

multiple techniques, including neural networks, K-means clustering, and support vector 

machines to detect intrusion activity.  The system was tested using the DARPA KDD99 

dataset.  This system does not incorporate host-based intrusion artifacts or evidence-
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based reasoning into its learning model.  As such, it is best suited for classifier-based 

detection of malicious network events.  Also, given its use of the outdated DARPA 

KDD99 dataset, its relevance to modern attacks is limited. 

uCLAVS (Martinez et al., 2010) is a cloud-based system that uses multiple 

antivirus engines to scan potential malware.  This system uses an ontological approach to 

marry the antivirus results with data from other types of sensors, including firewalls and 

captured network traffic.  The ontology in this system is used to define attack signatures.  

The system does not use a learning approach.  Instead, the ontology is used to create 

more complex rules than would be possible in a normal rule-based antivirus system.  

Further, uCLAVS does not examine any host-based artifacts when determining if a file is 

malicious or not.  It makes its determination purely based on the contents of the file and 

network-based data. 

Li & Tian (2010) present an architecture for an ontology-based system to 

correlate alerts from multiple types of security sensors, including network- and host-

based sensors.  The aim of the system is to correlate many atomic alerts to describe a 

larger attack on the system.  While this paper describes similar architecture to other 

systems of its type, it is unique in that it uses a formal security state model to track the 

security of the system.  The system does not incorporate learning or evidence-based 

reasoning in its approach and limits what goes into the knowledge base to alert 

information collected from host- and network-based sensors.  It does not collect 

amplifying information useful in increasing accuracy of intrusion alerts. 
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Saad & Traore (2010a, 2010b) have conducted significant research into ontology-

driven systems.  They describe an ontology designed specifically to aid in automated 

computer and network forensics.  Their ontology contains 111 concepts, as well as a 

collection of binary and n-ary relations between those concepts.  The ontology supports 

deductive, abductive, and inductive reasoning.  Its unique contribution is its model of 

multi-stage attacks.  Saad & Traore's ontology can understand the different phases of an 

attack and use that knowledge to drive acquisition of forensic evidence.  While this 

approach is similar to the approach described in this research proposal, it does not go as 

far.  My approach models the APT group's multi-stage kill chain to drive the collection of 

forensic evidence to support intrusion detection.  While their ontology appears to 

adequately cover concepts related to attacks, at a basic level it does not incorporate 

formalized information regarding the internal network and assets that are being protected 

or concepts required to reason about information obtainable by examining external data 

sources (Domain Name System (DNS) records, network location, or geolocation), or 

threat intelligence feeds.  These sources of information, and the ontological concepts that 

are encompassed by them, did not mature until after the research was published. 

In a follow-up paper (Saad & Traore; 2011), they proposed a method to aggregate 

multiple IDS alerts through semantic analysis to create meta-alerts.  The method relies on 

an intrusion detection domain ontology and groups alerts together based on semantic 

similarity using a simple algorithm.  The method only considers network-based 

information and was evaluated using the DARPA99 data set.   
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Later systems built upon this work to develop methods for extracting an attack 

scenario from a large volume of alerts by correlating the alerts based on semantic 

similarity (Ahmed, 2014; Saad et al., 2014).  These systems are designed to identify the 

steps taken by the attacker during the attack.  It does not incorporate any learning 

techniques and focuses solely on network-based data for alerts. 

Colace, et al. (2012) developed a system that uses multiple ontologies describing 

attacks, effects, actions, and the environment, to facilitate a slow intelligence approach to 

increasing the accuracy of an intrusion detection and prevention system.  In principle, the 

ontological approach taken by Colace and his colleagues is similar to my research 

project.  However, their system only examines network data processed by the Snort IDS 

and uses a Bayesian network for its learning approach.  Additionally, this system is 

focused on specific attack types and was tested using attacks from the BackTrack 

penetration testing tool set.  It does not incorporate knowledge of APT methodology and 

techniques. 

A system described by More et al. (2012) uses a knowledge-based architecture 

with three major components - a set of data streams, a knowledge-base, and a reasoning 

algorithm.  The data streams include network- and host- based logs and sensor data.  The 

knowledge-based reasoning engine leverages an attack language built using an extended 

version of the ontology proposed by Undercoffer.  The knowledge base is built using a 

series of OWL assertions.  The reasoning algorithm infers the existence of an attack by 

comparing information from the data streams to assertions in the knowledge base.  The 

system was able to detect a buffer overflow attack in Adobe Reader. 
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Finally, Salahi & Ansarinia (2013) describe a model whereby attacks are 

predicted by reasoning over ontological concepts.  Their ontology was built by 

incorporating concepts and knowledge from multiple taxonomies, including Capec, 

CWE, and CVE.  The approach focuses on a simplistic attack model, whereby an attack 

consists of an attack pattern defining the properties of a single attack, a set of weaknesses 

causing attacks to happen, and vulnerabilities.  Reasoning is done via OWL triples.  The 

system does not yet incorporate learning, but the authors proposed using machine 

classification in future research. 

2.3. Forensic Methods: Investigating the Attacker Lifecycle 

When a security incident is generated by an intrusion detection system, it is sent 

to an analyst in the CSOC, who is responsible for determining if it is a true detection or 

false positive, understanding the severity, scope, and scale of the attack, and executing 

containment, remediation, and recovery actions.  This part of the CSOC process is called 

Incident Response (IR) and is primarily driven by collection and analysis of digital 

forensic artifacts.   

At a high level, the IR process follows a structured analytical approach (see 

Figure 4) whereby the analyst begins with one or more investigative hypotheses, 

determines a plan to collect evidence to support or refute those hypotheses, based on their 

knowledge of attacker methodology, possible locations of relevant evidence, and 

available collection tools, executes the collection plan, and then analyzes the evidence to 

synthesize conclusions as to which, if any, of their hypotheses were likely to be true.  
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This final step often leads to additional hypotheses, leading this to be a cyclical process 

ending when all remaining hypotheses are addressed. 

 

 
Figure 4 Incident Response Process 

 

 

These processes are driven by both the investigator’s knowledge of specific attack 

methodologies, as well as the attack lifecycle.  There have been a few efforts to create 

abstract models of the process APT actors use to conduct hacking activity.  The two most 

noteworthy are the Kill Chain model developed by researchers at Lockheed Martin 

(Hutchins et al., 2011), which identifies seven phases of an attack, and the 

Mandiant/FireEye Attack Lifecycle (Mandiant, 2013), consisting of eight phases.  In the 

time since those two models were published, there has been much research into APT-

style attacks, revealing more granular detail about the phases of the attacks.   
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For this research, we used a nine-step attacker lifecycle based on the 

Mandiant/FireEye model.  Each step of the attacker lifecycle is a discrete step in the 

overall process APT actors use to gain unauthorized access to victim networks, find and 

gather information of interest, and exfiltrate it.  A brief overview of each phase of the 

attack lifecycle is below. 

1. Reconnaissance – During this phase, the attacker probes the target network 

and uses information available to the public – such as names, phone numbers, 

and email addresses from public web sites, social media sites, or public 

records databases – to learn as much as possible about the target network to 

make the attack more successful. 

2. Delivery – This is the phase where the exploit or malware is delivered to the 

target network.  Malware can be delivered to the victim network in a variety 

of ways.  The most popular include SQL injection, web server exploits, email 

messages with malicious links or attachments, or watering hole attacks where 

a web site the target is likely to view is compromised.   

3. Initial Compromise – When an external exploit works or the malicious email 

message is successful, the malware delivered is called the Stage 1 or initial 

compromise.  It is the initial foothold the attacker obtains on the target 

network.  The Stage 1 malware is typically a lightweight tool configured to 

communicate on a regular interval to a command and control (C2) server to 

ask for further instructions.  Often the instruction is to re-contact the C2 at a 
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later time or to move to another C2 server.  When the attack progresses, the 

C2 will tell the infected computer to download additional malware. 

4. Gain Foothold – In this phase, the attacker delivers more sophisticated 

malware capable of providing direct, remote access to the target network.  

Typically, this malware, also called Stage 2 malware, contains a reverse shell 

function, the ability to download additional tools, and other functions allowing 

surveillance of the target network. 

5. Escalate Privileges – When an attacker initially compromises the target 

network, it often has only normal user privileges.  During this next phase of 

the attack, the APT actor will seek to gain administrator rights on the network.  

Such access can be gained by executing a local privilege escalation attack or 

exfiltrating and cracking password hashes.  The result of this phase is often 

that the attacker will obtain legitimate credentials for logging into the 

network.  In this case, phases 6-9 will not require the use of malware to 

execute. 

6. Internal Reconnaissance – Once a foothold is gained and the attacker has 

sufficient privileges, they can begin to learn the layout of the target network.  

They will conduct network scans, locate critical servers (such as the domain 

controller, email server, and file servers), and identify security tools and 

infrastructure in place.  The internal reconnaissance will enable the next phase 

of attack. 
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7. Lateral Movement – The attacker will then move around the network, 

exploiting open file shares and network services, to increase their ability to 

surveil the network, evade network defenses, locate data to exfiltrate, and 

enable redundant access to the network.  Most networks do not monitor 

internal network communications, so it is common for this phase to go 

completely undetected. 

8. Maintain Presence – APT actors are professionals and often have long-term 

collection requirements against their targets.  As such, they have a vested 

interest in returning to the target network at a later time to collect additional 

data.  This phase enables that persistence by establishing multiple, redundant 

points of access on the network that can survive reboots, system updates, and 

forensic investigations. 

9. Complete Mission – There is always a specific mission purpose for an APT 

actor’s activity.  The last phase of the mission is to fulfill that purpose, often 

by collecting and exfiltrating information of value from the network through 

the attackers’ collection of C2 servers.  Exfiltration can be done in a wide 

variety of ways, often using the same methods that legitimate users would use 

to send information to external partners.  

In general, modern security infrastructure is good at detecting the Delivery, Initial 

Compromise, Gain Foothold, and Complete mission phases of the attack.  These phases 

of the attack cycle involve the use of malware, infected documents, delivery through 

email and compromised web sites, as well as bulk transfer of sensitive information out of 
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the victim network.  Traditional IOC-based firewalls, intrusion detection system and 

endpoint protection software can detect many of these types of techniques, assuming the 

tools are known, and valid IOCs are available.  Specialized tools like application aware 

network proxies and email scanning tools can detect delivery methods. 

2.3.1. Collecting Against the Attacker Lifecycle 

When collecting evidence to understand each phase of the attacker lifecycle, 

analysts must consider four major questions: 

• What are they collecting evidence of?  During each phase of the attacker 

lifecycle, different types of actions take place.   Understanding which kind of 

activity needs to be discovered is critical when establishing an investigative 

plan. 

• What is the location of the evidence?  Depending on the phase being 

investigated, evidence can reside in a wide variety of network locations in a 

myriad of formats. 

• What type of evidence must be collected?  This includes knowledge of the 

physical format and level of volatility of the evidence to be collected. 

• What tools or methods are required to collect and analyze the evidence?  

Answers to the other three questions and the level of human readability of the 

data help determine the tools and methods required to collect and analyze it. 

Experienced incident responders understand how to use this information to collect 

and analyze forensic evidence to investigate a wide variety of threats by methodically 

collecting and analyzing data against the attacker lifecycle.  Forensic collection and 
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analysis are large topics.  For brevity, a subset of the attack actions, evidence locations, 

evidence types, and collection tools required for collecting forensic evidence against the 

attacker lifecycle is shown in Figure 5. 

 

 

Figure 5 Collecting against the Attacker Lifecycle 

 

 

During a forensic investigation, an analyst will use the phases of the Attacker 

Lifecycle to guide collection of evidence of types of attack activity.  The type of activity 

to be collected against informs the investigator of where the evidence may be located in 

the network.  This in turn helps determine which evidence types to collect from those 

locations and which tool swill be needed to collect those evidence types.  Because 

specific attack activity can span across multiple Attacker Lifecycle phases and the 

evidence locations, types, and collection methods likewise have a many-to-many 

Attacker Lifecycle Phases Evidence Of Evidence Location Evidence Types Collection 
Methods/Tools

Reconnaissance Port Scanning Network Gateway Netflow Network Sensor

Delivery Phishing Email Email Server Server Logs Passive Network Tap

Initial Compromise Watering Hole Web Server PCAP Logical File Copy

Gain Foothold Malware Execution Compromised Host DNS Logs Log Search

Escalate Privileges C2 Activity Domain Controller Firewall Logs Raw Memory Copy

Internal Reconnaissance Service Install SIEM Email Server Logs Raw Disk Acquisition

Lateral Movement Temp File Creation Network Sensors Email Content Raw Artifact Parsers

Maintain Persistence Network Mapping File Server Endpoint Logs Host Collection Agent

Accomplish Mission Use of Admin Tools Database Server Memory Images Log Shippers

Admin Acct. Creation Filesystem Artifacts

Data Gathering File-based Artifacts

File Encrypt/Compress Authentication Logs

Data Exfiltration
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relationship with each other there is no strict segmentation between the columns.  For 

example, an incident responder looking for Gain Foothold phase activity may look for 

evidence of C2 Activity by collecting Firewall Logs from the Network Gateway using 

Logical File Copy.  She might also look for Gain Foothold phase activity by collecting 

evidence of Malware Execution from a Compromised Host, which might require a 

Memory Image to be collected and examined using Raw Memory Copy and a Raw 

Artifact Parser.  The combinations of collection and analysis capabilities an incident 

responder must leverage to identify sophisticated threats is very large, which is why their 

skillset is rare an in high demand. 

Our research leveraged a subset of this methodology to train cognitive agents to 

be able to orchestrate and automate the threat detection process.  The details will be 

discussed in Section 3.3.1. 

2.4. Knowledge-Based Learning and Evidence-Based Reasoning 

The learning model used in this research is rooted in the theory of knowledge-

based learning and evidence-based reasoning.  This is an area of research focusing on the 

creation of collaborative computational processes of evidence in search of hypotheses 

(through abductive reasoning which shows that something is possibly true), hypotheses in 

search of evidence (through deductive reasoning which shows that something is 

necessarily true), and evidentiary testing of hypotheses (through inductive reasoning 

which shows that something is probably true).  This section will summarize this area of 

theory, as published in Knowledge Engineering: Building Cognitive Assistants for 

Evidence-Based Reasoning (Tecuci et al., 2016a). 
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Figure 6 is a high-level overview of the framework for the evidence-based 

reasoning process (Tecuci et al., 2016a).  This framework is based on the work of 

intelligence analysis and is an iterative, collaborative process between an analyst and the 

knowledge-based learning assistant. 

 

 
Figure 6 Evidence-based reasoning as the discovery of hypotheses, evidence, and arguments 

 

 

2.4.1. Evidence in Search of Hypotheses 

The first step in the evidence-based reasoning process is evidence in search of 

hypotheses which involves abductive reasoning.  Formally, if a → b, and evidence b is 

observed, then a is possibly true.  We write: b → possibly a. It could also be true that c → 
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b, where c is some competing hypotheses explaining b.  The examination of multiple 

hypotheses that could explain the existence of evidence of a specific event is called 

abductive (or imaginative) reasoning.  Figure 6 shows an example of how this process 

works.  Given an item of evidence, multiple, competing hypotheses could explain its 

existence. 

2.4.2. Hypotheses in Search of Evidence 

Once a set of hypotheses are identified, they are used to generate searches for 

discrete elements of additional evidence that can be used to evaluate them.  This is a 

process of deductive reasoning.  Formally, if a → b & c and a is a hypothesis, then b and 

c must be true. We write: a → necessarily b & c.  b and c can be broken down further 

into a tree of sub-hypotheses until only elementary hypotheses, or observables remain.  

The leaves of the deductive reasoning tree drive searches, or collection tasks, to identify 

evidence that can be used to test the hypotheses, as discussed below. 

2.4.3. Evidentiary Testing of Hypotheses 

When evidence is found it is either stored as evidence and/or placed into the 

knowledge base as instances of concepts in the ontology.  This evidence is evaluated 

based on its credibility, or the degree to which it can be believed, relevance, or the 

probability of the hypotheses if the evidence were true, and the inferential force, or the 

probability of the hypothesis given only this evidence.  These values are represented on a 

probability scale, as shown in Figure 7. 
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Figure 7 Probability scale 

 

 

Once all sub-hypotheses of a node in the tree are evaluated, then their 

probabilities are combined to determine the overall probability of the parent hypotheses.  

This is an inductive reasoning process.  Formally, b → probably a. When there are 

multiple evidence items b1, b2, etc., their probabilities must be combined to calculate the 

probability of a.  This uses the min/max probability combination rules common to the 

Baconian probabilities (Cohen, 1977; 1989) and Fuzzy probabilities (Zadeh, 1983). In 

particular the probability of a conjunction of probabilities is the minimum of these 

probabilities, while the probability of a disjunction of probabilities is the maximum of 

these probabilities. 

The process of combining the probabilities of sub-hypotheses to calculate the 

probabilities of parent hypotheses continues until the probability of the root hypothesis is 

calculated.   
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2.5. Ontologies and Learning 

Once a reasoning tree has been created by an analyst, the agent will learn rules 

from it.  The rules are learned as generalizations of reasoning tree fragments, using the 

ontology as a generalization hierarchy for learning. The generalization of a reasoning tree 

fragment (or example) into a rule is also guided by the explanation of why that reasoning 

tree fragment is correct. The type of learning from examples and their explanations has 

advantages over other machine learning methods because the agent can learn from as few 

as one example where classifier methods such as neural networks or decision trees need 

many examples to learn a function.   

Evidence-based reasoning has been used successfully to aid analysis in multiple 

disciplines.  TIACRITIS (Tecuci et al., 2011), Disciple-CD (Tecuci et al., 2014; Tecuci et 

al., 2016b), and Cogent (Tecuci et al., 2015; 2018a) are all knowledge-based agents that 

assist in analysis or teach analysts critical thinking skills. 

While the demands of APT analysis and detection require much more automation 

than the agents created for other topics, it follows the same intelligence analysis 

methodology.  Rather than having an analyst manually searching for evidence, as is done 

in Disciple-CD, a robust search agent can be created, customized for a specific network 

environment, that can automate the search for and analysis of evidence required to reason 

about the presence and scope of an APT-style computer intrusion. 
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3. RESEARCH OVERVIEW 

The information in this chapter has been previously published in peer-reviewed 

conference proceedings (Meckl et al., 2015; Meckl et al., 2017; Meckl et al., 2018) and 

ACM’s Computing in Science and Engineering (Tecuci et al., 2018b). 

For this research, I developed and evaluated a prototype system capable of using 

cognitive agents to autonomously orchestrate security incident response and investigation 

for sophisticated cybersecurity threats.  It is a complex software system which required 

research and development of a theoretical model of APT detection, which uses 

knowledge-based learning agents with evidence-based reasoning, integrated into a CSOC 

environment using a custom-developed collection management system and a curated 

selection of collection and analysis agents to detect APT activity in an autonomous 

fashion.  At its core, this research built on top of the theoretical models of learning and 

reasoning of the Disciple approach described in Section 2.4 and extended it to leverage 

knowledge of cybersecurity, sophisticated attacker behavior models, and knowledge of a 

network environment to automate collection and analysis of digital evidence to detect 

threats in an agile manner.   

While this research is based on my original idea and vision, it was conducted as 

part of a larger team from the Learning Agents Center, with whom I built a system called 

Cognitive Agents for APT Detection (CAAPT).  The research was funded via a contract 

from Air Force Research Labs.  The research team contributed a substantial amount of 

research and development work on novel and necessary new learning and reasoning 
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capabilities required to support this research.  My primary role in the CAAPT project was 

to leverage my cybersecurity subject matter expertise to develop the theoretical model of 

APT detection, design the overall system architecture, develop the search, collection, and 

evidence gathering strategy (to include development of the novel Collection Manager 

system necessary to enable Disciple cognitive agents to integrate with CSOC 

infrastructure), design and build the test network environment, and design and execute 

the testing and evaluation protocol for CAAPT.  In this section, I will provide an 

overview of the CAAPT system, focusing primarily on my contributions to the research.  

3.1. CAAPT Architecture Overview 

At a high level, CAAPT is a collection of specialized agents, each designed to 

autonomously handle a specific phase of the detection process.  While each agent 

includes only the reasoning or processing modules required to carry out its specialized 

responsibility, the agents use shared knowledge bases as represented in the left-hand side 

of Figure 8.  The agents are integrated into a specific CSOC and collaborate in intrusion 

detection, as explained below. 

The Alert Generation Agent receives alerts from a variety of sources, such as a 

network IDS, network anomaly detection, or endpoint protection alerts.  In the current 

implementation, however, CAAPT only processes BRO (Paxson, 1999) alerts.   

The Trigger Agent represents each alert into a different knowledge base which 

inherits knowledge from the shared knowledge base (consisting of the General 

Knowledge Base and the APT1 knowledge base).  These knowledge bases are organized 
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into a hypotheses generation queue from which they are extracted by the Hypothesis 

Generation Agent.  

 

Figure 8 CAAPT system architecture overview 

 

The Hypotheses Generation Agent generates the hypotheses corresponding to a 

trigger and places the knowledge base into the hypotheses analyses queue from which 

they are extracted by an Automatic Analysis Agent.  

The Automatic Analysis Agent decomposes the hypotheses from such a 

knowledge base, as much as possible, down to the level of evidence collection requests. 
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Then it places the knowledge base into the evidence collection queue from where they are 

extracted by the Collection Manager.  

The Collection Manager invokes specialized collection agents to search for 

evidence on the network. Then it represents the retrieved evidence into the corresponding 

knowledge bases and places these knowledge bases back in the hypothesis analyses 

queue.  

When an automatic analysis agent has performed the most complete analysis 

possible of the alternative hypotheses corresponding to a trigger, it places the knowledge 

base into the user review queue, to be used by the Mixed-Initiative Analysis Assistant 

and the cyber analyst.  

The Mixed-Initiative Analysis Assistant interacts with the cyber analyst, either 

by alerting the analyst of a detected intrusion, or by collaborating with them to finalize 

the analysis. After an analysis corresponding to a trigger is completed and necessary 

actions have been taken by the cyber analyst, the knowledge base is placed into an 

archive by the mixed-initiative analysis assistant.  

The knowledge bases from the archive are used by the Learning Assistant and an 

expert cyber analyst to further refine the ontology and rules shared by the specialized 

agents. 

3.2. Theoretical Model of Attacker Behavior 

For an autonomous system to reason about and detect attack behavior it requires 

both knowledge describing attack activity and rules for applying that knowledge.  This 

information is stored in the knowledge base and is authored by a collaborative team 



63 

 

comprised of a knowledge engineer and a subject matter expert.  This section describes 

the theoretical model for attack detection, using the APT1’s AURIGA malware 

(Mandiant, 2013) as a case study. 

3.2.1. Ontology and Knowledge Requirements 

Cybersecurity experts intuitively use a variety of knowledge domains in their  

analysis of sophisticated threats.  For CAAPT, that knowledge is formalized into 

an ontology comprised of several knowledge domains.  An illustrative ontology fragment 

is shown in Figure 9.  This is the core knowledge generally used by a CSOC analyst to 

investigate the technical aspects of a sophisticated attack. 

 

 

Figure 9 CAAPT ontology overview 
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General Networking Knowledge involves understanding of network devices and 

protocols, and how they relate to each other in a modern networking environment.  This 

knowledge is used by the system, for example, to know what IP address a domain is 

mapped to and whether the IP address is a routable public IP address or non-routable 

internal IP address. 

Alert Knowledge represents what specific information is learned when a security 

alert is raised by a CSOC’s security infrastructure.  Figure 10 shows an example of the  

 

 

 

security knowledge learned when an alert is raised by the BRO intrusion detection 

system.  In this example, BRO triggered an intrusion alert because the computer with IP  

address 10.10.1.11 (an internal, non-routable IP address) performed a DNS lookup for a 

known APT1 domain.  When the alert is ingested by CAAPT, the facts in the BRO alert 

Figure 10 Alert knowledge generated from BRO alert 
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are mapped to the ontological concepts they are instances of.  The result is an ontology 

fragment representing the knowledge added to the knowledge base from the BRO alert. 

 

 

Figure 11 Simplified ontology for network topology 

 

Knowledge of the Network Environment covers information specific to the 

network the CSOC is charged with monitoring.  It includes knowledge about the network 
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describe the network topology, as shown in Figure 11.  The simplified ontology 

describes, at a high level, the subnets available on the network. 

An important aspect to detection of sophisticated threats is Knowledge of the 

Attacker Lifecycle.  As discussed previously, due to the organized nature of a 

sophisticated threat group’s operations, security researchers have been able to create a 

semi-formal model of their methodology, called the Kill Chain (Hutchins et al., 2011) or 

Attacker Lifecycle (Mandiant, 2013).  As shown in Figure 12, we have created a formal 

ontology for the attacker lifecycle, allowing CAAPT to reason about it. 

 

 

Figure 12 Ontology for the Attacker Lifecycle 

 

Figure 12 shows an ontology for the steps of the attacker lifecycle described in 

Section 2.3.  Generally speaking, an attacker must go through these steps to execute an 

attack on a target network.  It should be noted that once an attacker gains administrator 
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access to a network in the escalate privileges phase, and begins internal recon and lateral 

movement, the process becomes iterative.  To address this, the ontology includes has as 

next phase attributes from some of the attacker lifecycle phases pointing back to previous 

phases.  This construct allows the ontology to more accurately describe the methodology 

of a sophisticated attack. 

 

 

Figure 13 APT1 knowledge fragment 

 

Attacker Knowledge is based on either publicly available threat intelligence or is 

the result of manual analysis of a threat.  Formally, it is a description of a specific group’s 

attacker lifecycle, using the ontological construct from Figure 13.  Because this research 

primarily used APT1 as a case study, I have encapsulated attacker knowledge under the 

APT Group concept in the ontology.  APT Group is a sub-concept of the hacker group 

concept as shown in the top right of Figure 9.  Figure 13 shows a fragment of CAAPT’s 
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ontology for the attacker group APT1.  For each phase of the attacker lifecycle, we have a 

sub-concept for the attack group APT1.  In each of those phases, knowledge of malware, 

IOCs, or other methodology is encapsulated.  For example, we know from (Mandiant, 

2013) APT1 uses different malware and other tools for each phase of their attack.  

WEBC2-AUSOV, WEBC2-ADSPACE, and other Stage 1 malware is used during the 

APT1 initial compromise phase to gain initial access to a network.  BANGAT, AURIGA, 

SEASALT, KURTON, and other Stage 2 malware is used during the APT1 gain foothold 

phase of the attack. 

There is some knowledge of an attacker group, including people associated with 

it, IP addresses, and domains used for command and control, not specifically associated 

with phases of the attacker lifecycle.   To account for this type of attacker knowledge, the 

CAAPT ontology has some features associated directly with the APT Group concept.  In 

Figure 13, the domains associated with the group are associated with APT1 using the uses 

as domain feature. 

Finally, the CAAPT knowledge base includes Forensic Artifact Knowledge, 

also referred to as Malware Knowledge.  This includes knowledge of the data used or 

left behind by the malware used by an attacker group and where to look for it on a 

network.  In our ontology, specific forensic artifacts, often called indicators of 

compromise (IOCs), are mapped to the malware programs that generate them.  The 

malware programs, in turn, are mapped to the specific APT group or groups using them. 
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Figure 14 Forensic artifact knowledge 

 

Figure 14 above shows an ontology fragment describing the malware knowledge 

of the AURIGA malware used by APT1 during the APT1 gain foothold phase of their 

attack methodology.  Using threat intelligence published in (Mandiant, 2013), we have 

identified several forensic artifacts left behind by the malware, which are mapped to the 
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AURIGA malware are similarly associated with it in the ontology, including unique 

strings included in the malware file, Registry keys, temporary files, data files, library files 

installed with the malware, and the hash of the binary file itself. 

3.2.2. Abductive Trigger Generation Using Threat Intelligence 

This research is primarily focused on a use case where a security alert is generated 

by some part of the CSOC’s security infrastructure and an analyst is required to conduct 

follow-on analysis to determine whether a threat was accurately identified, the root cause 

of the attack, and the scope of the attack.  The first step in this process is to use one or 

more detection technologies to identify potential threats using available threat 

intelligence, and use the information provided to trigger the abductive reasoning process.  

This section describes the process CAAPT uses to generate abductive triggers from threat 

intelligence. 

At its core, security alerts are created by combining three things: 1) Data from the 

network or a host collected or scanned in real-time; 2) a Security Sensor, which applies 

an algorithm to the data collected or scanned; and 3) Threat Intelligence data, used by 

the Security Sensor to identify threats in the data.  An overview of this structure is shown 

in Figure 15. 

The output of this process is a set of Security Alerts which come in a variety of 

formats but are often sent to a SIEM system based on tools such as Elasticsearch, Splunk, 

or QRadar.  In the case of CAAPT, all security alerts are forwarded to our Elasticsearch 

server which is used as the central repository for all log data. 
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Figure 15 Generating alerts from threat intelligence 

 

For CAAPT’s development and test network, BRO (Paxson, 1999) was chosen as 

the IDS.  On top of its ability to easily consume threat intelligence and efficiently apply it 

to identify threats, it also generates logs for other data with security value, including DNS 

lookups, connection information (network flow data), HTTP connection, URL strings, 

and digital certificates used for SSL connections.  BRO logs all of this data into flat files 

in the comma-separated value (CSV) format.  Because the rest of CAAPTs collection 

systems use JSON as the standard format, the BRO log entries must be re-formatted for 

use.  Figure 16 shows an overview of the process by which a BRO alert log entry 

becomes an alert message sent to the CAAPT Trigger Agent. 

 

Data Collector
• Network data
• Log data
• Host information

Security Sensor
• IDS (BRO, etc.)
• Endpoint Detection

Threat Intelligence:
• Domains
• IP addresses

• Email addresses
• AV signatures
• File hashes

Security Alert



72 

 

 

Figure 16 How a BRO alert becomes an abductive trigger 

 

The first step in the process is to convert logs from the CSV format to a JSON 

message and transport the log entry to our Elasticsearch database.  This is done using a 

program called FileBeat (2018).  It is a program provided by Elasticsearch for log 

shipping, which constantly reads the end of specified files, looks for new entries, converts 

them to JSON, and sends them to Elasticsearch. 

Next, a process is required to look in Elasticsearch for new alerts and send them 

to the Trigger Agent.  I developed a custom Windows service program, called the CAAPT 

Alert Generation Agent to perform this task.  This agent simply polls Elasticsearch on a 

specified interval, looking for log entries generated by BRO.  For each one found, a new 

Trigger Agent message is created using relevant information from the BRO alert.  This 

new message is then sent to the Trigger Agent to start the abductive reasoning process. 

In the example in Figure 16, an alert was generated by BRO because a computer it 
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to be associated with APT1.  Filebeat is an open source application supporting a wide 

variety of uses.  As such, the message sent to Elasticsearch contains several 

extemporaneous data elements.  For the purposes of threat detection, the system is 

primarily concerned with the information contained in the message data element.  The 

Alert Generation Agent parses that field, converting the relevant data fields into 

appropriate data elements required for the JSON message on the right.   

When this message is received by the Trigger Agent, it is added to the knowledge 

base in the form of an ontology fragment, as shown in Figure 17.  Each field in the JSON 

message is ingested as an instance of a concept in the CAAPT ontology.  In this example, 

knowledge of the connection triggering the BRO alert is captured.  A connection has a 

source and destination IP address and port, and a timestamp.  By applying learned rules 

for what it should do when receiving a BRO alert of this type, the Trigger Agent goes 

further, identifying port 53 as a DNS port, associating the domain a-

jsm.infobusinessus.org with the connection, and further recognizing the domain’s 

association with APT1 using knowledge of the attacker group already in the knowledge 

base. 

When the process described in Figure 17 is complete, the Trigger Agent places a 

new knowledge base to be used for further analysis into the hypothesis generation queue.  

The Hypothesis Generation Agent then uses the new knowledge base for the abductive 

reasoning process, using learned rules to create a set of competing hypotheses which 

could explain why the alert was generated.  First, an indicator rule is matched, which 
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generates a hypothesis from the suspicious connection that there is an active APT1 

intrusion on the network.  Then a question rule is matched, to generate a question which 

 

 

Figure 17 Trigger ontology fragment 

 

the previously generated hypothesis could answer.  From the question rule, multiple 

competing plausible hypotheses are created, which also could answer the question.  This 

completes the first phase of the theoretical model of threat detection. 

Figure 18 shows an example of the abductive reasoning process.  Using an 

indicator rule, a plausible hypothesis is generated, based on new knowledge of a 

suspicious connection to an APT1 domain identified by BRO.  In this case, the 

hypothesis is the connection is part of an APT1 intrusion.  However, there are multiple 

hypotheses which could explain the connection, including those that would conclude the 

threat detection is a false positive.  In this example, we offer two plausible false positive 
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Figure 18 Hypothesis generation process 

 

hypotheses.  The first is the connection was generated as part of security intelligence 

gathering.  Security operations or research personnel often accidentally trigger security 

alerts performing their duties.  The second example is the situation where the C2 server is 

inactive.  Sophisticated threat actors often use dynamic DNS providers to “park” their C2 

domains (e.g., mapping them to localhost or a non-routable IP address) while not in use 

and then mapping them to a real C2 server when the group begins operations.  They will 

also abandon domains once they have been discovered by threat researchers to evade 

future discovery.  This false positive hypothesis encapsulates this scenario. 
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3.2.3. Search Agents for Hypothesis-Driven Search 

Once a set of hypotheses are generated, the next phase is the deductive reasoning 

process, where each top-level hypothesis is decomposed into one or more sub-

hypotheses.  The process continues until a set of leaf hypotheses are generated requiring 

one or more searches for evidence.  This overall process is called hypothesis-driven 

search.  

Figure 19 shows an example of the initial hypothesis decomposition tree used to 

for detection of an APT1 intrusion.  At the top level, we decompose the hypothesis 

stating the network connection which caused the BRO alert is the result of an APT1 

intrusion into two sub-hypotheses.  The sub-hypothesis on the left states the connection 

involves an active C2 server.  This hypothesis is further broken down to its two 

components: the domain a-jsm.infobusinessus.org was active at the time of the 

connection and was registered using a dynamic DNS provider.  These two sub-

hypotheses are typically true when there is an active APT1 attack.  The sub-hypothesis on 

the right states the program used in the attack is APT1 malware. 

The leaf nodes of the decomposition tree result in three different searches for 

evidence.  All three searches will eventually lead to evidence being added to the 

knowledge base for this security alert investigation.  The search for the program that 

made the network connection will result in that branch of the decomposition tree being 

further decomposed, asking more detailed questions about the behavior of the malware. 
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Figure 19 AURIGA example of hypothesis-driven search 

 

The abstract searches from the bottom of Figure 19 must be turned into concrete 

searches for real evidence on the network.  The Collection Manager is responsible for 

that process.  First, though, the Disciple agent must be able to request the search to be 

performed by the Collection Manager.  Let’s take, for example, the left-most search from 

Figure 19, which is a check to determine if the domain was mapped to an active IP 

address at the time the BRO alert was generated.  The Disciple analysis agent will create 

a JSON-formatted search message and send it to the Collection Manager, as shown in 

Figure 20.  When the Collection Manager receives this message, it will call the function 

CheckDomainMappedToActiveIP, which is one of the programmed search functions 

connection1 from 10.10.1.11 (port 75611) to 10.10.7.1 (port 53) 
at 12/23/2018 12:18:07 PM, using known APT1 domain 

a-jsm.infobusinessus.org, is part of APT1 intrusion

The domain registrar for 
a-jsm.infobusinessus.org is on a list 
of known dynamic DNS providers

*

The program that made connection1
from 10.10.1.11 (port 75611) to 

10.10.7.1 (port 53) at 12/23/2018 
12:18:07 PM is APT1 malware

a-jsm.infobusinessus.org is an active domain, mapped 
to a routable IP address and registered at a dynamic 

DNS provider, consistent with APT1 methodology

network-based indicators

connection1 involves an active APT1 C2 server

a-jsm.infobusinessus.org is registered 
at a dynamic DNS provider

a-jsm.infobusinessus.org
is an active domain at time 
12/23/2018 12:18:07 PM

*

Search the computer 
10.10.1.11 for the program 

that made connection1 using 
port 75611 to communicate 
with 10.10.7.1 on port 53 at 

12/23/2018 12:18:07 PM

Automatic
Analysis Agent

Collection
Manager

Partial Analyses 
with Collection

Hypotheses

Partial Analyses

Check whether the domain
a-jsm.infobusinessus.org is 

mapped to a routable IP address 
at time 12/23/2018 12:18:07 PM
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list of known dynamic DNS providers

69.195.129.72 dynadot.com

svchost.exe with
process ID 176
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supported by the Collection Manager, mapping data elements from the search into 

function parameters. 

 

 

Figure 20 Search function example 

 

When the Collection Manager completes the search, it will respond to the calling 

agent with a response message, which is also in the JSON format.  Using learned rules, 

the Disciple analysis agent will convert data elements from the response message into an 

ontology fragment and store it in the knowledge base as evidence.  An example of this is 

shown at the bottom of Figure 20. 

In addition to simply storing the search results as an ontology fragment in the 

knowledge base, evidence has a credibility value assigned to it.  For CAAPT, this is 

a-jsm.infobusinessus.org
is an active domain at time 
12/23/2018 12:18:07 PM

{
"requestID": 22124
"requestTime":"12/23/2018 12:18:17 PM",
"timeStamp":"12/23/2018 12:18:07 PM",
"requestType":

"CheckDomainMappedToActiveIPRequest",
 responseDestIP  ”10.10.5.30  
"responseDestPort":12345,
"domain":"a-jsm.infobusinessus.org” 

}

REQUEST (to Collection Manager)

{  
"requestID": 22124
"requestTime":"12/23/2018 12:18:17 PM",
"timeStamp":"12/23/2018 12:18:07 PM",
"requestType":

"CheckDomainMappedToActiveIPResponse",
"domain":"a-jsm.infobusinessus.org",     
 ipAddress   69.195.129.72” 
"evidenceDescription  “

Domain a-jsm.infobusinessus.org  is 
mapped to routable IP address 
69.195.129.72 at time12/23/2018 12:18:07 PM"

 evidenceCredibility   L11“  
“found” true

}

RESPONSE (from Collection Manager)

E1 evidence

a-jsm.infobusinessus.org
is an active domain at time 
12/23/2018 12:18:07 PM

L11

L11

IP address mapping1

has as IP address mapping

domain1

E1 evidence

Check whether the domain
a-jsm.infobusinessus.org is 

mapped to a routable IP address at 
time 12/23/2018 12:18:07 PM

Domain a-jsm.infobusinessus.org  
is mapped to routable IP address 

69.195.129.72 at time 
12/23/2018 12:18:07 PM 

L11

has as credibility

has as description

has as external name

Domain a-jsm.infobusinessus.org  is mapped to routable IP 
address 69.195.129.72 at time 12/23/2018 12:18:07 PM 

L11

69.195.129.72 
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handled using the has as credibility attribute with all instances of the evidence concept.  

In the example above, the credibility is L11, or certain. 

In some cases, such as the leftmost two searches in Figure 19, the search satisfies 

all evidence collection requirements for its branch in the tree and can be decomposed no 

further.  In other cases, such as the search for the program that generated the suspicious 

connection, the returned evidence will satisfy the conditions for the parent hypothesis to 

be further decomposed, driving further search for evidence in an autonomous fashion.  

This allows CAAPT to be trained to model the iterative Incident Response process 

outlined in Figure 4, where evidence found by a forensic analyst answers some questions 

only to reveal additional questions requiring investigation 

Further decomposing the right side of Figure 19 after finding the process that 

made the connection triggering the BRO alert, we get the deductive reasoning tree in 

Figure 21.  At the top level, the analysis requires reasoning about the features of the 

program that made the connection and their similarity to features we know AURIGA to 

have and file system artifacts created by the process.    
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Figure 21 Search for AURIGA program features 

 

Figure 21 shows the portion of analysis related to the persistence mechanism used 

and the attributes of the program including unique strings found inside the file and the 

MD5 hash of the file.  A persistence mechanism is a way for the malware to use 

operating system features to survive a reboot of the computer.  In this case, we have 

threat intelligence indicating the AURIGA malware creates a Windows service with the 

name riodrv32 to start itself again after reboot.  On the right side of the tree, analysis of 

the program executable file is required to determine if it includes any unique printable 

strings that can be found inside of it.  The MD5 hash is also examined to see if it matches 

the hash of a known sample of the AURIGA malware. 
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Figure 22 Search for AURIGA files 

 

When the right side of Figure 21 is further decomposed to look for file system 

artifacts, it yields the decomposition tree shown in Figure 22, where the cognitive agent 

must look for the presence of AURIGA files, its unique command shell TTP, and 

Registry keys associated with the malware.  Figure 22 shows the searches for AURIGA 

files, which I broke down into three categories:  temporary files, data files, and library 

files.  Temporary files are unique in that the file names are generated at run-time and 

always match the regular expression “~_MC_[2-7]~[0..9]*”.  Data files are used to store 

keystrokes and other data recorded by the malware.  Library files includes the DLLs, 

executables, and device driver binary executable files used by the malware. 
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Figure 23 Search for AURIGA command shell and Registry keys 

 

The tree shown in Figure 23 shows the decomposition of the other top-level 

hypotheses from Figure 22.  In the middle is the search for the unique command shell 

TTP used by APT1.  In some of their malware families, including AURIGA and 

BANGAT, they make a copy of the standard Windows command shell program 

(cmd.exe) with the path %SYSTEMROOT%\system3\ati.exe.  They then replace all 

instances of the string “Microsoft Corp.” with the string “Superhard Corp.”.  Figure 22 

also shows the searches for AURIGA-specific Registry keys. 

The massive amounts of data required to be examined by cybersecurity experts to 

detect threats has become a major problem as networks have become more complex and 

threats have been more sophisticated.  The state of a network can change billions of times 

per second as processes on thousands of machines perform their tasks.  It is infeasible to 

collect all possibly relevant data all the time due to prohibitively high storage costs.  The 
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hypothesis-driven search for evidence process can drastically reduce the amount of data 

that must be collected to detect threats.  Through the modeling process in Disciple, 

cognitive agents learn what data is important to subject matter experts, so only what is 

needed is collected. 

Furthermore, because of the abstraction layer the Collection Manager provides 

between abstract searches generated by Disciple agents and concrete searches of real 

security infrastructure, CAAPT can be more easily integrated into CSOCs with vastly 

different security tools and infrastructure available to the analysis team.  This will allow 

for easier adoption by transition partners. 

 

 

Figure 24 Automatic analysis of AURIGA files 
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3.2.4. Automatic Analysis of Evidence 

When the hypothesis tree cannot be decomposed any further and all the available 

evidence has been collected the Disciple agent will begin synthesizing a conclusion using 

inductive (probabilistic) reasoning.  This is a bottom-up approach, where favoring and 

disfavoring evidence for each hypothesis is evaluated to determine the probability of each 

leaf hypothesis. Then the probabilities of the upper-level hypotheses are determined by 

combining the probabilities of their sub-hypotheses. This section continues the AURIGA 

example and describes the automatic analysis process in depth. 

Starting with analysis of the presence of AURIGA files, Figure 24 shows how the 

automatic analysis process works.  At the leaf level of the tree, each item of evidence is 

evaluated based on its credibility (the probability that the evidence is true), and its 

relevance to the parent hypothesis (the probability of the hypothesis assuming that the 

evidence is true).  The combination of these two values is called the inferential force of 

the evidence (the probability of the hypothesis based only of this item of evidence) and is 

computed as the minimum between the credibility of evidence and its relevance.  In many 

areas of analysis, the credibility of evidence can be less than certain.  For example, it can 

be based the reliability of a witness, their skill at interpreting the observed event, or a host 

of other factors.  In computer forensics and threat detection, the credibility of found 

evidence is generally considered certain unless there is reason to believe an attacker 

falsifies evidence as a part of their attack methodology.  APT1 was not known to leave 

fake forensic artifacts on victim computers or generate artifacts to trick analysts into 
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believing the attack was conducted by a different attack group.  Therefore, the credibility 

of all evidence used in this work is considered to be certain. 

All credibility, relevance, and inferential force values in CAAPT use the 

probability scale in Figure 7.  To make the scale granular enough to allow for accurate 

modeling of sophisticated threats, a twelve-step probability model was chosen with 

assigned probability ranges.  For some probability ranges, special names have been 

chosen (e.g. “likely” and “almost certain”) to provide more clarity in the reasoning 

models. 

Once the inferential force of the evidence is computed for the leaf nodes it is 

assigned as the probability value of the parent nodes for use in computing the probability 

for hypotheses further up the synthesis tree.  When a hypothesis has two or more child 

hypotheses, the value of the hypothesis is calculated using one of three operators: min, 

max, and *.  Max, used for a parent hypothesis with alternative sub-hypotheses 

(arguments), takes the highest value of the inferential forces of all sub-hypotheses 

(arguments) and assigns it to the parent.  Min, denoted by the & symbol, uses the lowest 

value among the probabilities of the sub-hypotheses (representing the & argument) and 

the relevance of the & argumentto determine the parent hypothesis’ value.   

For CAAPT, the *-operator was created to allow the system to model the 

combinatorial force of the sub-hypotheses which are indicators of the hypothesis, which 

is a novel operator enabling CAAPT’s ability to analyze intrusion incidents.  In the 

analysis of sophisticated threats, it is common for one piece of evidence to have 

significance on its own, but when combined with other evidence to gain substantially 
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more significance.  It is also common for malware to leave behind multiple low-relevance 

artifacts that, when combined, result in high likelihood by the analyst that the threat is 

present.  The *-operator allows a subject matter expert to accurately model this in the 

Disciple learning agent shell to train cognitive agents how to autonomously apply the 

knowledge. 

 

 

Figure 25 *-operator example 

 

Figure 25 shows an example of the *-operator, taken from the left most branch of 

the inductive reasoning tree in Figure 19.  In this example, the system is required to 

determine how likely it is that an identified suspicious connection (connection1) is part of 

an active APT1 intrusion based on whether or not the domain is active at the time of the 

connection and the domain is registered by a dynamic DNS provider.  APT1 was known 

to park domains by mapping them to 127.0.0.1 (localhost) or some other non-routable IP 

when there was no active attack in progress.  Just before an attack, it would re-map the 
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domain to the IP address of a C2 server.  While this was a good indicator of an active 

APT1 attack, we cannot say for certain it indicates an attack on its own.  There are 

plausible explanations for why it would not indicate an attack on its own, such as the 

domain being taken over by a security researcher or law enforcement.  Likewise, while 

APT1 was known to use dynamic DNS providers for its C2 domains, dynamic DNS 

providers are popular for legitimate use cases.  Therefore, the relevance of dynamic DNS 

usage is low.  However, when you combine the two indicators, the likelihood of an active 

APT1 intrusion goes up substantially as the likelihood of someone legitimately mapping 

a known APT1 domain to an active IP address using a dynamic DNS provider becomes 

negligible.   

 

 

Figure 26 Automatic analysis of AURIGA command shell and Registry keys 
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The automatic analysis continues with Figure 26, which shows the analysis of the 

AURIGA command shell TTP and AURIGA Registry keys.  It is common that not all of 

the modeled forensic artifacts will be present on the infected computer.  In the case of 

Figure 26, only one of the Registry keys is present.  However, because a max operator 

was used, the probability that the presence of Auriga registry keys is L11. 

 

 

Figure 27 Automatic analysis of AURIGA program features 

 

The analysis of AURIGA program features in Figure 27 shows another unique 

and powerful aspect of the theoretical model of attack detection used in CAAPT.  In this 

case, the MD5 hash of the program that made the connection triggering the BRO alert did 
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not match the hash of any known samples of AURIGA. This is an example of where the 

attacker has made some sort of configuration change to the malware or used a different 

packer/obfuscator to evade detection.  In Figure 27, evidence E9 is disfavoring as a 

result.  However, we can still conclude with L08 probability that the program has 

AURIGA features because of the combination of the other indicators: unique strings and 

the persistence mechanism.  Because of the modeling used, even the absence of critical 

indicators like MD5 hashes will not cause a failure to detect the attack. 

 

 

Figure 28 Top-level automatic analysis for AURIGA 

 

At the top level, as shown in Figure 28, the modeling shows the probability that 

the BRO alert which triggered the process is L08.  In this example the analysis shows the 

left and right side of the analysis have equal probability. 
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3.3. Integrating Cognitive Agents into a Cybersecurity Operations Center 

The most significant architectural challenge in the CAAPT research is creation of 

a flexible design allowing the cognitive agents to integrate with a wide variety of 

hardware and software security sensors and controls.  There are hundreds of commercial 

security products on the market for CSOC managers to choose from and many more open 

source or homegrown solutions.  For CAAPT to be successful, it has to be designed for 

adaptability.  Solving this problem required two main architectural contributions: 1) 

selection and integration of multiple, collaborative, search and collection agents working 

together to support the evidence collection requirements of APT detection, and 2) 

development of a Collection Manager server application for translating and optimizing 

abstract searches into searches executable by real collection agents.  This section 

describes how CAAPT integrates into a CSOC and why this contribution is significant 

for enabling cognitive agents to work in real-world APT detection scenarios. 

3.3.1. Selection of Collection Agents 

The abstract searches requested by the analysis agents require evidence from 

multiple types of data sources available on a typical network.  There are hundreds of 

security appliances, log source, and data store combinations in real-world networks.  For 

abstract searches requested by the cognitive agents to be carried out, a diverse set of 

collection agents is required.  Gartner research (Chuvakin, 2018) has determined that the 

most critical technologies are a network detection/collection solution, and a host 

detection and query solution, and a SIEM, so the selection of the agents focused on those 
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areas.  I have chosen to use those critical technologies, as well as others, as needed, 

broken down into the following categories from the taxonomy in Figure 29.  

Passive collectors monitor raw data sources, such as network traffic or process 

activity, and forward it to a datastore such as Elasticsearch or Splunk to be searched for 

when it is needed later.  Data collected in this fashion is often needed for its historical 

value.  

On-demand search agents listen for requests to retrieve specific artifacts from a 

system. In response to those requests, they collect the specified information in a 

forensically sound way and send it to the requestor. 

 

 

Figure 29 Collection agent taxonomy 

 

Passive collectors include passive network monitors such as BRO (Paxson, 1999) 

for collecting network log data, Packetbeat (2019) and Symantec Security Analytics 
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which collect and store full packet data, and API-based systems such as VirusTotal which 

collects passive DNS and malware data.  Passive host monitors include tools such as 

Winlogbeat (2019), which collects Windows log data and forwards it to the Elasticsearch 

data store and endpoint detection and response (EDR) agents like Microsoft SYSMON, 

CarbonBlack (2019), and Symantec EDR, which monitor and log real-time process, file 

access, and connection information for storage in a central database. 

On-demand collection agents are primarily used for host data.  On-demand host 

agents including Google Rapid Response (GRR) (2017), Encase Endpoint Investigator 

(2017), and memory forensics tools such as Volatility (2015) are examples of on-demand 

search agents.  They are responsible for collecting and, in some cases analyzing, raw 

forensic artifacts from network hosts. 

For CAAPT, collection agents were chosen based primarily on their ability to 

query and collect the types of data required for detecting sophisticated attacks.  Based on 

the requirements for modeling detection for APT1 malware, we chose a collection of 

agents for netflow (network connection) data, full packet capture, DNS logs, volatile 

memory artifacts, Windows Registry keys and values, file-based artifacts, endpoint logs, 

domain controller logs, EDR logs, and passive DNS data.  Next, free or open source 

solutions were prioritized.  CAAPT must be integrated into a CSOC in order to perform 

its functions.  The choice of open source solutions reduces barriers to integration, as there 

is no cost for software licenses.  Lastly, I chose tools supporting a RESTful API 

(MuleSoft, 2016) for uniformity of integration.  A substantial portion of the Collection 

Manager code involves use of search or collection agent APIs.  Using agents with 
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RESTful APIs as much as possible simplified the Collection Manager code and 

minimizes future agent integration efforts.  Table 1 below shows the collectors or agents 

chosen for use in the CAAPT development and test network and for initial modeling of 

APT1 detection. 

 

Table 1 Collection agents for CAAPT 

Data Type Collector/Agent Type 

Netflow BRO Passive 

Packet Capture Packetbeat Passive 

DNS Logs BRO Passive 

Firewall/IDS Logs BRO Passive 

Volatile Memory Rekall and GRR On-demand search 

Registry Keys Google Rapid Response (GRR) On-demand search 

File-based Artifacts GRR On-demand search 

Host Logs Winlogbeat Passive 

Domain Logs Winlogbeat Passive 

EDR Logs SYSMON and Winlogbeat Passive 

Passive DNS VirusTotal On-demand search 

 

On top of being an efficient network-based intrusion detection system, BRO is 

also a passive network collection agent, monitoring network traffic and generating logs 

for different events including digital certificates used for SSL/TLS connections, HTTP 

connection strings, DNS requests and the IP addresses resolved, and netflow data.  It also 

has a flexible packet analysis programming language and interface, allowing for 

additional detection or logging features to be added, as needed. 

The developers of Elasticsearch have created a collection of passive log collection 

agents, called “Beats” (2019).  Beats are designed to collect specific types of log 

information and send the log entries to Elasticsearch as JSON documents.  For CAAPT, 
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Packetbeat is used for full packet data, Filebeat is used for collecting logs stored in flat 

files (such as those generated by BRO), and Winlogbeat enables collection of Windows 

Event logs, including those created by SYSMON.  All logs collected by Beats are sent to 

our Elasticsearch data store. 

SYSMON, a passive host monitor, is a system service and device driver designed 

to log system change activity to a Windows Event Log file.  It logs detailed information 

about process execution, network connections, and changes to the file system, including 

the Registry.  SYSMON log information provides the basic EDR functionality required to 

understand the behavior of malware on a host computer.  All SYSMON logs are 

forwarded to the Elasticsearch data store using Winlogbeat and can be searched using 

Elasticsearch’s RESTful API. 

3.3.2. Collection Agent Architecture 

Figure 30 shows a high-level overview of CAAPT’s passive collector 

architecture.  A BRO IDS box listens in promiscuous mode on the network segment 

between the border router of the network and the outermost internal router.  This allows 

the BRO server to see all network traffic passing through a network’s Internet egress 

point.  BRO generates several types of logs, including alerts of suspicious connections 

from threat intelligence, storing them in flat files on the server.  When full packet capture 

capability is required, Packetbeat can be run on the BRO server, taking advantage of its 

visibility on the network to capture all network data passing through the Internet egress 

point.  Microsoft SYSMON runs on every Windows endpoint on a network, logging real-
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time process activity to the Windows Event Log.  All logs stored in Elasticsearch can be 

queried using its RESTful API. 

 

 

Figure 30 CAAPT passive collection architecture 

 

Integration with on-demand search agents is simpler.  The search agent runs as a 

service on one or more computers on the network.  It can be queried using a search 

interface using either a synchronous or asynchronous call model.  An example of the on-

demand search agent architecture is described in more detail in Section 3.3.3. 

3.3.3. The CAAPT Collection Manager 

The Collection Manager is the main integration point between the agents and 

CSOC infrastructure.  The analysis agents know what information is needed to expand 

their analyses, but the search requests are in abstract form.  They are not tied to specific 

data sources. The primary function of the Collection Manager is translating high-level 

(abstract) search instructions into specific API calls to host and network agents, 

determining which such agent to send the search request to on behalf of the analysis 
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agents, and wrapping calls to specific search agents with a JSON API.  Results returned 

from a specific search agent to the Collection Manager are then converted into evidence 

and added to the knowledge bases of the analysis agents.  

 

 

Figure 31 Collection Manager process 

 

Figure 31 is an overview of the Collection Manger process.  When the analysis 

agents analyze competing hypotheses, the searches generated by the hypothesis-driven 

search process (such as the ones illustrated in Figure 19) are sent to the Collection 
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Manager and added to the request queue.  Requests are then dispatched for processing 

and a receipt message is sent back to the caller.  The receipt includes the requestID and 

the IP address and port the caller will listen on for the search response. 

The abstract searches requested by analysis agents require evidence from multiple 

types of data sources available to CSOC security infrastructure.  There are hundreds of 

security appliance, log source, and data store combinations in real-world networks.  In 

order for the analysis agents to integrate with real networks, the Collection Manager uses 

a plugin architecture with search agent wrappers, allowing it to easily translate abstract 

search requests into requests for information from real data stores.  

 

 

Figure 32 Synchronous wrapper flow 

 

Depending on the amount of time required to collect the information, requests to 

an on-demand search agent can be either synchronous or asynchronous.  From the 
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perspective of analysis agents, all requests to the Collection Manager are asynchronous, 

but internally, the Collection Manager supports both a synchronous and asynchronous 

call model.  Figure 32 is an overview of the synchronous call model flow.  The Dispatch 

Manager thread dequeues an abstract search request from the queue, formats and prepares 

a concrete search for a specific search or collection agent and forwards the request to the 

search or collection agent.  It then waits on the TCP connection for a synchronous 

response.  When it is received, the response is parsed to extract digital artifacts, formatted 

as evidence, and sent the response to back to the caller.  The entire call flow happens in a 

single thread. 

 

 

Figure 33 Asynchronous wrapper call flow 
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Figure 33 shows an overview of the asynchronous wrapper call model.  In 

contrast to the synchronous call model, the call happens in two threads.  In one thread, 

the abstract search request is received from the Dispatch Manager.  The request is parsed, 

and a concrete search request is prepared using relevant data from the abstract request.  

The concrete search request is then sent to the intended search target.  A second thread is 

responsible for polling the search target on an interval for the response.  When it is 

available, the response data is parsed, artifacts are extracted, and a response to the 

analysis agent is prepared and sent to the Dispatch Manager. 

 

 

Figure 34 GRR asynchronous call flow example 

 

GRR is the primary search agent where the asynchronous wrapper call model is 

used in the Collection Manager.  As shown in Figure 34, GRR Server software runs on a 
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server in the CSOC environment.  The GRR Agent is installed on all endpoints on the 

network.  When GRR Server receives a request for a host artifact, the request goes into a 

queue in its database.  GRR Agents poll GRR Server on an interval, looking for new 

requests.  When one is found, it retrieves the request and executes it.  When the request is 

complete, the response is sent to GRR Server and stored in its database.  The caller must 

poll GRR Server to determine when the request is complete.  The caller can then make a 

separate, synchronous call to retrieve the artifact from GRR Server’s database.  Using 

this model, we can query any host artifact supported by GRR. 

To illustrate the operation of the Collection Manger, let us consider the search 

from the right side of Figure 19.  This will lead to the invocation of the 

GetProgramByNetworkConnection search function.  An example of how this search is 

performed is shown in Figure 35. 

The request to the collection is in the form of a JSON document containing the 

name of the search to be performed and the input parameters required to carry out the 

search function.  Parameters are extracted and the GetProgramByNetworkConnection 

function is called.  To carry out this search, the Collection Manager must first connect to 

the Elasticsearch using its RESTful API.  It then searches the Elasticsearch datastore for 

the SYSMON log from the computer with the IP address in the sourceIP field matching 

the search parameters (sourceIP, destinationIP, sourcePort, destinationPort, and 

timestamp).  After receiving and processing the response from Elasticsearch, the 

Collection Manager generates the response JSON document shown in the bottom half of 

Figure 35, containing the name of the process, its process ID, and its full path on the file  
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Figure 35 Search example 

{

"requestID": 22124,
"requestTime":" 12/13/2017 7:46:56 PM ",
"requestType":"GetProgramByNetworkConnectionResponse",
"requesterSourceIP":"127.0.0.1",
"responseDestIP":"127.0.0.1",
"connectionName":"connection1",
"destinationIP":"69.195.129.70",
"destinationPort":53,
"sourceIP":"10.10.1.11",
"sourcePort":11234,
"timeStamp":"12/23/2017 7:46:56 PM“,
"processID":176,
"programName":”svchost.exe",
"programPath":"c:\\windows\\temp\\svchost.exe"

}

{
"requestID": 0,
"requestTime":"12/13/2017 7:46:56 PM",
"requestType":"GetProgramByNetworkConnectionRequest",
"responseDestIP":" 10.10.5.30 ",
"responseDestPort":12345,
"destinationIP":"69.195.129.70",
"destinationPort":53,
"sourceIP":"10.10.1.11",
"sourcePort":11234,
"timestamp”:”12/23/2017 7:46:56 PM“

}

REQUEST (to Collection Manager)

Search Process:
1. Connect to Elasticsearch via RESTful API
2. Search for the SYSMON log from computer with IP address sourceIP matching the 

search parameters
3. If the record exists:

1. Add the program name, process ID, and full path to the output parameters
4. The Collection Manager is alerted that the search request has been completed.

Search Function: GetProgramByNetworkConnection
Input Parameters… Output Parameters…

connection1

program1 “svchost .exe“

E4
credibility: certain

path1 “c:\\windows\\temp\\svchost.exe“

has as connection

has as external name

has as path
has as

external name

“176“
has as process ID
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system.  This JSON document is sent back to the calling analysis agent, which converts it 

into evidence with credibility certain, and adds it to the knowledge base.  The ontology 

fragment in the bottom of Figure 35 is the representation of evidence found by the 

GetProgramByNetworkConnection function. 

The selection of search and collection agents for CAAPT and the Collection 

Manager design offer key contributions to the state of the art for integration of cognitive 

agents into real-world CSOC environments: 

(1) The agents selected allow for effective detection of sophisticated threats 

with minimal network visibility and cost to the CSOC owner. 

(2) The Collection Manager provides seamless translation of abstract search 

requests generated by cognitive agents into concrete searches against real 

search agents and automatic conversion of digital artifacts and search 

results into evidence which can be used by cognitive agents to perform 

complex reasoning and generate conclusions about the probability of 

multiple hypotheses. 

(3) A centralized collection architecture will allow for caching of search 

results, reusing results from identical searches and reducing the time 

required to execute duplicate searches. 

(4) Centralizing integration between the Disciple agents and the CSOC 

security infrastructure will provide for other means of optimization, such 

as automatically scheduling large volumes of searches to reduce the 
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likelihood of overconsumption of network bandwidth of computing 

resources. 

3.4. Automatic Generation and Use of Incident Investigation Playbooks 

One of the key contributions of this research is the automatic generation and use 

of incident investigation playbooks.   Not only is CAAPT capable of learning from an 

expert cybersecurity analyst how to conduct autonomous analyses to detect sophisticated 

threats, but it is also able to help analysts detect new threats by suggesting analysis and 

collection playbooks as it encounters new threats. 

Sophisticated attackers’ malware evolves slowly over time.  Small configuration 

changes are made during use of a malware variant to make IOC-based detection difficult, 

and larger changes are made as the malware development teams add or remove features 

from the malware to make it better.  CAAPT can detect malware when configuration 

changes are made because sophisticated attackers don’t change everything from one 

attack campaign to the next.   

The new versions often contain some features of the old malware, adding new 

features on top of them.  From the perspective of a CSOC analyst, the new malware 

version still creates digital evidence consistent with old versions, making modeling 

detection for the new version much easier.  It also means CAAPT agents can use 

modeling of known malware from an attack group to suggest what analysis to perform 

and which evidence to collect to detect new malware version.  These suggested analyses 

are very similar to playbooks created in security orchestration products on the market.  

However, CAAPT advances the state of the art in this area because the playbooks are 
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generated by cognitive agents by applying rules learned from detection of known 

malware.  This means that as the system grows to learn to detect tens or hundreds of 

threats, analysts will not have to search through a huge library of reasoning trees to find 

one that works.  CAAPT will suggest a small set of playbooks likely to apply to the given 

detection task, drastically increasing efficiency of CSOC operations. 

As discussed previously, APT1 malware evolved over several years.  In this 

research, I have studied the evolution of APT1 malware starting with Auriga.  Based on 

analysis from contagiodump.blogspot.com (Mila, 2013) and my analysis of malware 

clusters, it appears the malware lineage progressed as follows: 

• Auriga is an early malware program used during the gain foothold phase of 

their attacker lifecycle. 

• Bangat was then developed, removing some features of the Auriga code and 

reducing the footprint of digital evidence created during an attack. 

• Seasalt was then created, containing shared features of Auriga and Bangat, but 

making the network communication cleartext, which enabled analysts to 

detect it using its HTTP user-agent and GET strings. 

• Kurton followed Seasalt, containing shared features of Auriga, Bangat, and 

Seasalt.  The ability to view the HTTP GET string was removed. 

Figure 36 shows an example of the CAAPTs ability to use rules learned from the 

analysis of a malware program to suggest playbooks for the analysis of a descendent in 

its evolution.  Step 1 shows a high-level overview of the process of learning to detect the 

Auriga malware.  When Auriga was analyzed for the first time, CAAPT had not been 



105 

 

trained to handle the security alert from the Trigger Agent.  The alert was presented to a 

CSOC analyst (me), who along with the CAAPT research team modeled the analysis and 

evidence collection in Disciple-EBR.  When modeling was complete, Disciple-EBR 

learned rules for automatic analysis and stored them in the knowledge base.  When 

Auriga was encountered in the future (Step 2), CAAPT applied the learned rules to detect 

the malware. 

 

 

Figure 36 Example of automatic generation of detection playbooks 

 

Step 1) Instruct agent 
to detect Auriga

Step 2) Use learned rules to 
detect new Auriga event(s)

Step 3) Suggest Auriga detection as a playbook 
for analyzing new APT1 malware (Bangat)

Step 4) Use learned rules to 
detect new Bangat event(s)

KB

New rules learned 
and added to 

Knowledge Base

Expert cyber 
analyst

Trigger 
Agent

First APT1 trigger:
Auriga

Disciple

Auriga Modeling

No learned rule for 
this event.  

Requires new 
modeling.

Expert cyber 
analyst

Trigger 
Agent

Second APT1 trigger:
Auriga

Disciple

Auriga Modeling

Reasoning rules 
exist and are 
automatically 

applied

APT1 
intrusion 

using 
Auriga!

Threat detected 
using existing 
learned rules

Expert cyber 
analyst

Trigger 
Agent

Third APT1 trigger:
Bangat

Disciple

Auriga Modeling

Only Auriga-based 
rules learned.  

Detection with low 
probability.

Expert uses Auriga 
playbook, 

modifying it to 
model Bangat 

Disciple suggests Auriga 
reasoning as “Playbook,” 
guiding expert through 

analysis of potential 
APT1 intrusion.

Part of Auriga

KB

New reasoning 
rules learned and 

added to 
Knowledge Base

Expert cyber 
analyst

Trigger 
Agent

Fourth APT1 trigger:
Bangat

Disciple

Reasoning rules 
exist and are 
automatically 

applied

APT1 
intrusion 

using 
Bangat!

Threat detected 
using existing 
learned rules

Bangat Modeling



106 

 

Later, when Bangat was analyzed for the first time, CAAPT was not able to detect 

it with high probability, causing it to send the alert to an analyst for modeling.  Because 

the rules learned from the analysis of Auriga also applied to the security alert from BRO, 

Disciple suggested Auriga’s analysis trees as a possible solution.  Since the analyses are 

modeled using natural language and are easily understood by human analysts, the analyst 

was able to use the suggested analysis trees to conduct the manual analysis required to 

understand the new threat and model it in Disciple for use in detecting Bangat.  The new 

analysis and learned rules for Bangat were stored in the knowledge base for future use.   

When Bangat was encountered again, CAAPT used what it had learned to 

autonomously detect the malware.  As the malware continued to evolve from Bangat to 

Seasalt to Kurton, the same method allowed CAAPT agents to guide me through the 

detection process and for me, in turn, to train the CAAPT cognitive agents to detect the 

new malware. 

By taking advantage of the mixed-imitative reasoning and learning in Disciple, I 

can not only train cognitive agents to detect sophisticated threats but can also leverage 

previously learned knowledge to guide me through the analytical process by using the 

generated reasoning trees as detection and analysis playbooks.  Because Disciple suggests 

only applicable reasoning trees for use in new scenarios, it drastically speeds up the 

manual analysis and modeling required to detect new threats. 

3.5. Development and Test Network Environment 

The CAAPT project required a simulated network environment to develop and 

test the cognitive agents.  The network was not required to be large in scope but needed 
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to contain a representative architecture and selection of computers similar to a real 

network.  Figure 37 shows the layout of the simulated network environment used for 

development and testing of CAAPT. 

 

 

Figure 37 Logical network topology for test environment 

 

The cognitive agents we developed were required to represent and understand 

real-world networks and be able to identify real threats on them.  It was infeasible for 

development and testing of the cognitive agents to be done on a real network because the 

agents needed to be tested using real APT1 malware or simulated attack artifacts.  This 

represented myriad security concerns including: 
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• While APT1 malware is widely known to be manually operated and does not 

spread from computer to computer in an automated fashion and it is unlikely to 

represent a significant risk, use of real malware violates the security policy of 

most real-world networks. 

• APT1 malware is configured to call out to command-and-control (C2) servers.  

Those servers are believed to have been abandoned by the APT1 threat group, but 

it is unknown if security researchers or law enforcement continue to surveil those 

servers.  Connections to the domains and IP addresses may trigger security alerts 

or unintended action by security researchers or law enforcement.   

• Simulated attack artifacts, including files, registry keys, or network connections, 

may trigger the same types of security events or unintended security researcher or 

law enforcement response. 

For this research, I have created a small-scale network, in a virtual environment, 

representative of a small corporate network, for these purposes.  This virtual network 

contains all of the relevant network services, including workstations, domain controllers, 

and network security appliances.   The key components of the development and test 

network are: 

• Virtualization Platform used to host the virtual environment. 

• Network Design, including networking infrastructure, operating systems and 

enterprise infrastructure. 

• Simulated CSOC, which contains a security alert and data repository and the 

CAAPT cognitive assistants. 
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• Simulated Internet Services, allowing realistic network traffic to occur without 

providing malware access to the Internet. 

• Simulated Attacker Network, which was used during testing and evaluation of the 

system. 

Each of these subsystems will be discussed in detail in this section. 

3.5.1. Virtualization Platform 

Modern virtualization software is capable of simulating not just single 

workstations, but large-scale network environments for development, testing, and large 

simulated exercises.  They provide a safe, isolated environment for testing software such 

as CAAPT.  One of the most common software platforms for this type of testing is 

VMWare’s vSphere environment.  Depending on the hardware it is running on, it can be 

used to simulate dozens, hundreds, or thousands of computers in complex network 

environments.  Through the use of “DevOps” (development operations) technology built 

into the vSphere tool set, it is also capable of standing up new, clean versions of an 

environment quickly, so the network environment can be reset repeatedly during a 

development and testing cycle. 

Many of the key features of vSphere – virtualized computers, virtual networking 

and routing, etc. – can be done in VMWare Workstation, which is a desktop 

virtualization product.  It is a mature product used by software engineers for testing and 

by malware analysts for examining malicious software.  However, since it is designed to 

run on workstations or developer laptops, it cannot be used to simulate a large network 

environment necessary for full-scale development and testing of the system. 



110 

 

 

Figure 38 Virtualization platform usage in development and testing 

 

To bridge the gap between the two needs, I combined usage of these virtualization 

tools throughout the development and testing process, as shown in Figure 38.  For the 

early phases of the research project – Research and Analysis, Initial Component 

Development, and Initial Integration Testing – VMWare Workstation was appropriate 

because it could be used on the smaller developer workstations used for this early work: 

• Research and Analysis – small-scale evaluation of network traffic, malware, or 

individual collection agents prior to development or selection of system 

components. 

• Initial Component Development – Creation of new software components, such as 

the Hypothesis Generation Agent or host-based collection agents, was created on 

developer workstations and laptops and tested in a single virtual machine in 

VMWare Workstation. 

• Initial Integration Testing – VMWare Workstation was used to test component 

integration on a smaller scale, prior to full-scale development. 

Once development of most of the individual components was completed, I 

proceeded to Full-Scale Development and Testing of the system, followed by Final 

Testing and Evaluation.  For this work, the CAAPT team needed a network similar to the 
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one shown in Figure 37, which required a larger server running VMWare vSphere to 

simulate. 

By leveraging the different VMWare packages in this way, I was able to quickly 

start initial analysis, development, and testing prior to purchase of a server.  The virtual 

machines are compatible across the different tools, so work done using VMWare 

Workstation was easily ported to the larger VMWare vSphere environment when it was 

ready. 

3.5.2. Network Design 

The development and test network was created inside of a VMware vSphere 6.5 

server and its architecture is similar to Figure 37.  In total, 18 virtual machines were 

created for the purposes of simulating a simple corporate network, implementing the 

collection agents, and testing the system: 

• Two virtual machines (VMs) were used as virtual router appliances.  This 

was done using Linux’s built-in routing features.  One of the routers is the 

gateway router, responsible for routing network traffic between the 

internal network and the Internet.  The other is an internal router, 

responsible for routing traffic between the different subnets in the 

development and test network. 

• GRR was installed on a standalone Linux server and was used to manage 

the GRR agents installed on Windows workstations. 

• Elasticsearch was installed in its own virtual machine, along with the 

Kibana front end.  Kibana was primarily used for manual analysis during 
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development and testing of the system.  It was also an invaluable resource 

in debugging. 

• One VM was used as a DNS server so that we could spoof DNS 

resolutions of APT1 domains.  This was necessary because the university 

network our research server was connected to also has the ability to detect 

APT1 threats and I did not want to trigger security alerts in the university 

network. 

• I used two VMs for BRO.  One was placed behind the gateway router 

appliance so it could see all traffic exiting the test network.  One 

additional BRO server was used on the 10.10.4.0/24 network so it could 

monitor traffic going to and from the DNS server.  This was required 

because spoofed DNS queries would not exit the test server, preventing 

the original BRO server from seeing the traffic. 

• The Collection Manager and Alert Generation Agent software required 

one VM.  Both server software programs ran on a Windows Server 2016. 

• The Disciple agents ran on one virtual machine. 

• Nine VMs were configured as corporate workstations and were used to 

simulate intrusions supporting the testing use cases described below. 

While the average corporate network is more complex than what was simulated in 

the development and test network, I created a network architecture that captures the 

critical issues involved in simulating, monitoring, and detecting APT intrusions in the 

early stages. Additional issues arise as APT intrusions progress and the attackers gain 
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administrator privileges on the network, move laterally, and complete their mission.  The 

development and test network, along with the selected set of collection agents may not be 

sufficient to detect these later stages of the attacker lifecycle.  However, with additional 

research, the system could be expanded to include the features required to detect the later 

stages of the attack. 
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4. EXPERIMENTATION AND TEST RESULTS 

This chapter expands upon information previously published in peer reviewed 

conference proceedings (Tecuci et al., 2019a; 2019b). 

Testing and validation of a system like CAAPT is challenging due to a lack of 

standardized data for use in comparing it against other systems or approaches.  It is also 

challenging due to a lack of like systems to compare CAAPT to.  It is a novel approach to 

the problem of APT detection and autonomous analysis of security incidents.  As such, 

the only reasonable approach to compare CAAPT to is manual analysis by an expert.  As 

such, a series of experiments was planned and executed to demonstrate the value of the 

contributions of this research by testing the following claims:  

1. Ability to automatically detect the training malware: Once trained to detect a 

malware program, CAAPT is able to detect the same malware program when 

it is used again on the network.  This creates a baseline for the evaluation. 

2. Ability to detect variants of the training malware: Once CAAPT has been 

trained to detect a malware program, it is able to detect variants of the 

malware with different configurations (i.e. it will create a different set of 

forensic evidence on the network).  

3. Some ability to detect evolved malware: Once it is trained to detect one 

malware family from an APT group (e.g. Auriga and Bangat of APT1), it may 

be able to detect an intrusion by a new malware family from the same APT 

group.  
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4. Limited incremental training needed to detect a new malware from the same 

group: Once CAAPT is trained to detect one malware family from an APT 

group, only incremental training is required to train it to detect a later malware 

family from the same APT group (e.g., limited incremental training needed to 

detect the Bangat family, after it was trained to detect the Auriga family). 

5. Efficient and high-quality analysis: CAAPT can rapidly detect APT1 

intrusions through a rigorous and transparent analysis, as judged by the 

training expert.  

The first three objectives show CAAPT’s ability to detect malware from the same 

APT group.  The fourth shows efficiency in training, allowing CSOCs to be more agile in 

responding to new threats.  The fifth shows CAAPT’s ability to increase efficiency of 

CSOC operations.  The following sections will detail the testing approach and the 

experimental results that justify the above claims.  

5.1. Use of APT1 for Experimentation 

This research used APT activity as a case study for orchestration and automation 

of cybersecurity incident response because APT groups follow a rigorous attack 

methodology and, as they are likely state-sponsored and part of a large organization, their 

malware and attack techniques change slowly over time compared to criminal or 

hacktivism attacks, allowing analysts time to adapt to the changes and put detection 

mechanisms in place. The evolution of an APT group’s methodology and malware is an 

ideal case study for this research as it allows, during modeling and testing, to show the 

system’s ability to predict changes in attack behavior and cope with a changing threat.    



116 

 

APT1 was chosen specifically as the attack group for this study primarily because 

of the abundance of freely available information about it.  Freely available intelligence 

regarding APT groups, most of which is either classified or only offered by paid 

commercial subscription services, is rare.  APT1 was outed publicly in 2013.  Of all the 

known APT groups, it is the group with the largest amount of publicly available 

intelligence, including IOCs, malware samples, and details of how the group operated. 

Included in the detailed knowledge of APT1 activity are details about the 

evolution of APT1 malware, which was used in demonstrating CAAPT’s ability to adapt 

to changing APT methodology.  Reporting on APT1 shows an evolution of malware used 

by them over the eight years they were known to operate, including the malware 

evolution chain used for CAAPT, which started with the Auriga implant, and then 

evolved over time to Bangat, Seasalt, and Kurton. 

The biggest challenge with using APT1 in this study is that the group is either no 

longer active or is not using the malware and techniques that were made public in 2013. 

While APT1 malware was run in VMs to simulate attacks, and threat intelligence was 

used in other cases to simulate attacks, it is not possible to test the learning and reasoning 

models against real attacks by APT1.  So, while we can test the system against APT1 

technology and processes, I could not test it against the people who used to conduct the 

attacks. 

APT1’s dormancy also led to difficulties with CAAPT’s false positive 

hypotheses.  False positive scenarios related to APT detection, similar to what has been 

modeled in CAAPT, have to do with whether or not the C2 server is active or not.  Since 
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APT1 has not been active for several years, all of their C2 domains have been dormant.  

While I could simulate aspects of an attack using data sources within the development 

and test network, the data sources used in the false positive hypotheses are provided by 

external providers, such as VirusTotal and public Whois servers, and are outside of my 

control.  As a result, the false positive hypotheses had high probability even in simulated 

attack scenarios. 

Lastly, simulating APT attacks was challenging because simulated connections to 

APT1 domains triggered security alerts in university security infrastructure, such as the 

FireEye network IDS appliance in use, even though the domains are dormant.  Prior to 

implementing DNS spoofing inside of the development and test network, I accidentally 

triggered security alerts, resulting in access to the server being shutoff temporarily by the 

university’s security team.  This was overcome via DNS spoofing, which I implemented 

in the development and test network prior to final testing of the system.  

For most of the experiments, attacks were simulated by planting forensic artifacts 

on Windows hosts consistent with those generated by real APT1 malware.  Available 

threat intelligence provides very detailed information on the files, unique strings, 

Registry keys, persistence mechanisms, and network indicators created during an attack.  

When that information was unavailable or insufficient, I used both static and dynamic 

techniques to reverse engineer the malware binaries to identify forensic artifacts created 

by them.  Using this information, I manually created attack scenarios recreating the 

patterns of indicators created by each malware program.  Network-based artifacts, such as 

DNS requests, network connections, and HTTP User Agent strings, were created using 
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tools such as nslookup or the User Agent Switcher extension for the Chrome web 

browser.  Attack models were then tested in isolated VMs by infecting hosts with APT1 

malware and running CAAPT against them. 

 

 

Figure 39 Overview of experiment protocol 

 

I performed an experiment to test both the training of CAAPT to detect APT1 

malware and the use of CAAPT to detect such intrusions.  As shown in Figure 39, 

experiments were designed to test CAAPT’s ability to detect configuration changes in the 

same malware and new malware versions as the attackers’ tool set evolves over time.  

The experiment simulated the following evolution of APT1: Auriga → Auriga variants 

→ Bangat → Bangat variants → Seasalt → Seasalt variants → Kurton → Kurton 

variants. 
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For this experiment only one running instance of the Automatic Analysis agent 

was used. 

5.2.Auriga Experiment 

First, detection of an Auriga intrusion was modeled along with the corresponding 

ontology.  Based on the developed Auriga modeling, CAAPT learned 31 context-

independent hypothesis patterns, two trigger rules, two indicator rules, 16 hypothesis 

analysis rules, 15 collection tasks, and 15 collection rules.  Eight collection agents were 

also defined.  CAAPT’s detection capabilities were then tested in three scenarios: 

• with the Auriga intrusion used in training (to test the system; 

• with an intrusion by a variant of Auriga (to test system’s capability of 

detecting such variants); 

• with a Bangat intrusion (to test system’s ability of detecting a new malware 

from the same family). 

Table 2 provides an overview of the artifacts related to each malware variant 

tested in the Auriga experiment. 

The variant of Auriga in the second test used a different APT1 domain to trigger 

the security alert and the malware process %SYSTEMROOT%\Temp\svchost.exe did not  

contain unique APT1 strings.  Figure 40 shows a fragment of the analysis automatically 

generated by CAAPT when it investigated an intrusion with a variant of Auriga. 

Table 3 summarizes the results of this experiment.  Notice in column 3 that 

CAAPT succeeded in detecting the simulated attack using a variant of Auriga with the 

same probability as the training example. 
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Bangat, the next malware program in APT1 malware evolution was then tested to 

see if it could be detected even though CAAPT was not yet trained to detect it.  As shown  

 

Table 2 Auriga and Bangat experiment artifacts 

 

in Table 2, the main differences between Auriga and Bangat are that Bangat: (a) does not 

have the library files riodrv32.sys and netui.dll; (b) uses a different regular expression for 

its temporary file names; and (c) stores its data files in different folders. Bangat also uses 

different Windows Service names for its persistence mechanisms. 

Notice in column 4 of Table 3 that CAAPT determined the probability L06 (75-

80%) that there is an APT1 intrusion with the same probability of being Auriga intrusion.  

Artifact Type Auriga (Training) Auriga (Variant) Bangat 
C2 Domain a-jsm.infobusinessus.org app.blackcake.net canada.cnndaily.com 
Service Name riodrv32 riodrv32 (svchost) iprip 
Service Display 

Name N/A N/A Remote Access Auto 

Connection Manager 
Service 

Description 
N/A N/A N/A 

Service Binary N/A N/A %SYSTEM32%\rasauto32.dll 
Temp File(s) %TEMP%\~_MC_3~327 %TEMP%\~_MC_4~436 %TEMP%\~_MC_4~ 
Data File(s) %TEMP%\sam.dat 

%USERPROFILE%\sam.sav 
%TEMP%\sam.dat 
%USERPROFILE%\sam.sav %TEMP%\sam.sav 

Executable File %WINDIR%\temp\svchost.exe %WINDIR%\temp\svchost.exe  %WINDIR%\temp\svchost.exe 

Auxiliary 

Program 
N/A N/A N/A 

Unique 

String(s) superhard corp. Not Present superhard corp. 

Library File(s) %SYSTEM32%\drivers\riodrv32.sys 
%SYSTEM16%\netui.dll %SYSTEM32%\drivers\riodrv32.sys %SYSTEM32%\rasauto32.dll 

Registry Key(s) HKLM\SOFTWARE\riodrv32\TEMP 
HKLM\SOFTWARE\riodrv32\DEL 

HKLM\SOFTWARE\riodrv32\TEMP 
HKLM\SOFTWARE\riodrv32\DEL N/A 

User Agent 

String 
N/A N/A N/A 
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This is because detection of an APT1 intrusion is based on network IOCs attributed to the 

APT1 group, but not necessarily to a specific malware program.  By structuring the 

modeling in this way, the system can detect unknown APT1 malware even if all they do 

in a new attack is reuse old C2 infrastructure.    

 

 

Figure 40 Fragment of the analysis of the Auriga variant from Table 2 
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Notice also the sum of the probabilities of “Auriga intrusion” and “APT1 

intrusion” is over 100%. This is because these two hypotheses are not disjoint. Indeed, 

“APT1 intrusion” means any intrusion performed by the APT1 attacker group, using any 

of their malware tools, including Auriga. 

The last row in Table 3 shows the duration of each experiment.  The run time for 

the development and evaluation of the reasoning trees is 1 to 3 seconds.  Most of the time 

is spent by waiting for the Collection Manager to return the results requested by the 

collection agents. 

 

Table 3 Auriga experiment results 

Experiment 

With the Auriga 

intrusion used in 

training 

With an intrusion by a 

variant of Auriga 

With a Bangat 

intrusion 

APT1 intrusion L08 (85-90%) very likely L08 (85-90%) very likely L06 (75-80%)  

Auriga malware L08 (85-90%) very likely L08 (85-90%) very likely L06 (75-80%) 

Duration 132 seconds 174 seconds 185 seconds 

 

External dependencies, such as GRR, Elasticsearch, and VirusTotal, take time to 

perform searches and checks and some Collection Manager searches or checks require 

multiple calls to external agents.  While these systems (particularly GRR and 

Elasticsearch) have been optimized to return results quickly, the time required to perform 

Auriga analysis was primarily made up of Collection Manager tasks. 
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5.3. Bangat Experiment 

In the second experiment, detection of the Bangat intrusion from the first 

experiment was modeled, along with an extended APT1 ontology with the representation 

of Bangat malware as follows: 

• Modeling began with the knowledge base generated by the last Auriga 

experiment (Bangat intrusion with the Auriga representation and the rules 

learned from the Auriga modeling). 

• Within this knowledge base, the ontological representation of Bangat was 

developed. 

• Analysis of a Bangat intrusion was performed using the ontological 

representation of Bangat, and the rules learned from the Auriga modeling. 

• The generated analysis was refined and extended to accurately and completely 

analyze the Bangat malware intrusion. 

• New rules needed to analyze Bangat were learned. 

After learning the new rules, the CAAPT knowledge base was extended with six 

context-independent hypothesis patterns, five hypothesis analysis rules, three collection 

tasks, and three collection rules.  As expected, teaching CAAPT to detect Bangat required 

only an incremental extension of the modeling, once the system had already been trained 

to detect Auriga.   

After learning rules based on the new modeling, CAAPT’s detection capabilities 

were tested in three scenarios: 

• with the Bangat intrusion used in training; 
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• with an intrusion by a variant of Bangat; 

• with a Seasalt intrusion. 

Table 4 shows an overview of the simulated forensic artifacts used in the Bangat 

experiment.  The Bangat variant used for training was the same as the one used in the 

Auriga experiment.  The variant of Bangat used in the second run had three main 

differences.  The alert was triggered with a different domain, the data files used in the 

first Bangat scenario were not present, and a different temporary file matching the Bangat 

regular expression was present on the infected host. 

 

Table 4 Bangat and Seasalt experiment artifacts 

Artifact Type Bangat (Training) Bangat (Variant) Seasalt 
C2 Domain canada.cnndaily.com data.firefoxupdata.com mo.businessconsults.net 
Service Name (svchost) iprip (svchost) nwsapagent (svchost) SaSaut 
Service Display 

Name 
Remote Access Auto Connection 
Manager 

Remote Access Auto Connection 
Manager System Authorization Service 

Service 

Description 
N/A N/A 

Authorization and authentication 

service for starting and  
accessing machines. 

Service Binary %SYSTEM32%\rasauto32.dll %SYSTEM32%\rasauto32.dll %SYSTEM32%\svc.dll 
Temp File(s) %TEMP%\~_MC_4~ %TEMP%\~_MC_6~ N/A 
Data File(s) %TEMP%\sam.sav None %TEMP%\sam.dat 

%USERPROFILE%\sam.sav 
Executable File %WINDIR%\temp\svchost.exe %WINDIR%\temp\svchost.exe %WINDIR%\temp\svchost.exe 
Auxiliary 

Program 
 N/A N/A %USERPROFILE%\java.exe 

Unique 

String(s) superhard corp. superhard corp. 
fxftest 
upfileok 

ubuntuguru.strangled.net/postinfo.html 
Library File(s) %SYSTEM32%\rasauto32.dll 

%SYSTEM32%\rasauto32.dll 
%SYSTEMROOT$\temp\svchost.exe %SYSTEM32%\drivers\riodrv32.sys 

Registry Key(s) N/A N/A N/A 

User Agent 

String 
N/A N/A 

Mozilla/4.0 (compatible; MSIE 5.00; 

Windows 98) KSMM 
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Table 5 summarizes the results of this experiment.  Notice in column 3 that 

CAAPT succeeded to detect the intrusion with the variant of Bangat with the same 

probability as the detection of the intrusion with Bangat training example.  This result 

shows CAAPT’s ability to detect attacks that use the same malware with changes to the 

program’s configuration. 

 

Table 5 Bangat experiment results 

Experiment 

With the Bangat 

intrusion used in 

training 

With an intrusion by a 

variant of Bangat 
With a Seasalt intrusion 

APT1 intrusion L08 (85-90%) very likely L08 (85-90%) very likely L08 (85-90%) very likely 

Auriga malware L06 (75-80%) L06 (75-80%) L01 (50-55%) barely likely 

Bangat malware L08 (85-90%) very likely L08 (85-90%) very likely L01 (50-55%) barely likely 

Duration 327 seconds 285 seconds 275 seconds 

 

I then tested detection of the next malware from the APT1 family, Seasalt, for 

which CAAPT was not trained.  As shown in Table 4, Seasalt uses a specific name 

(SaSaut) to register itself as a Windows Service and has different unique strings 

associated with it.  It also does not use the command shell technique shared by Auriga 

and Bangat.  Seasalt added an auxiliary program, which the Seasalt Windows Service 

DLL starts, and the network protocol was changed so it can be detected using a unique 

HTTP User Agent String. 

Notice in column 2 that the probability of “Auriga intrusion” is L06 (75-80%) and 

the probability of “Bangat intrusion” is L08 (85-90%). This is not a contradiction because 

these two hypotheses are not disjoint. The Bangat malware is an evolution of the Auriga 

malware and therefore it has many features in common with Auriga. When checking for 
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an intrusion with Auriga, the system looks for the presence of the features of the Auriga 

malware on the infected computer, but some of these features are also the features of 

Bangat, so it is possible that the computer is infected by both Auriga and Bangat. 

Therefore, Auriga intrusion with probability L06 (75-80%) covers the case where the 

Auriga intrusion is accompanied by a Bangat intrusion. Similarly, Bangat intrusion with 

probability L08 (85-90%) is based on the detected Bangat features on the host computer 

which also includes some Auriga features. Thus, this probability also covers the case 

when there is both a Bangat an Auriga and intrusion. 

Notice also in column 4 of Table 5 that CAAPT detected that very likely (85-

90%) there is an APT1 intrusion, but the probability of being Auriga or Bangat is only 

barely likely 50-55%.  This result shows the theoretical model can both identify new 

attacks by the same attacker and distinguish between different malware tools used in the 

attacks. 

5.4. Seasalt Experiment 

In the third experiment CAAPT was trained to detect the Seasalt intrusion from 

the second experiment, and the APT1 ontology was extended with the representation of 

Seasalt as follows: 

• Modeling began with the knowledge base generated by the last Bangat 

experiment (Seasalt intrusion with the Auriga and Bangat representations and 

the rules learned from the Auriga and Bangat modeling). 

• Within this knowledge base the ontological representation of Seasalt was 

developed. 
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Table 6 Seasalt and Kurton experiment artifacts 

 

• Generation of the analysis of the Seasalt intrusion was then attempted using 

the ontological representation of Seasalt and the rules learned from Auriga 

and Bangat.  However, because the ontological representation of Seasalt is 

significantly different from those of Auriga and Bangat, many of the rules 

were not applicable.  

• A new modeling for Seasalt intrusion was then created. 

Artifact Type Seasalt (Training) Seasalt (Variant) Kurton 
C2 Domain mo.businessconsults.net kl-hqun.gmailboxes.com launch.todayusa.org 
Service Name (svchost) SaSaut (svchost) SaSaut (svchost) iprip 
Service Display 

Name System Authorization Service System Authorization Service 
Remote Access Auto Connection 
Manager 

Service 

Description 

Authorization and authentication 

service for starting and  

accessing machines. 

Authorization and 

authentication service for 
starting and  

accessing machines. 

N/A 

Service Binary %SYSTEM32%\svc.dll %SYSTEMROOT%\svc.dll %SYSTEM32%\svc.dll 
Temp File(s) N/A N/A N/A 

Data File(s) N/A N/A %SYSTEM32%\SvcHost.DLL.log 
Executable File N%WINDIR%\temp\svchost.exe %WINDIR%\temp\svchost.exe %WINDIR%\temp\svchost.exe 
Auxiliary 

Program 
%USERPROFILE%\java.exe  %USERPROFILE%\java.exe N/A 

Unique 

String(s) 
fxftest 

upfileok 

ubuntuguru.strangled.net/postinfo.html 

Same as Training Variant 

“you specify service name not in 

Svchost\netsvcs, must be one of 

following:” 
“CreateService(%s) SUCCESS. Config it” 

“Exception Catched 0x%X” 

“MyTmpFile.Dat” 
Library File(s) N/A N/A N/A 

Registry Key(s) N/A Not present 

HKLM\SOFTWARE\Microsoft\DirectT\d

wHighDateTime 

HKLM\SOFTWARE\Microsoft\DirectT\d
wLowDateTime 

User Agent 

String 

Mozilla/4.0 (compatible; MSIE 5.00; 

Windows 98) KSMM 
Not present 

Mozilla/4.0 (compatible; MSIE 7.0;)  
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• The new rules needed to analyze Seasalt were learned, reusing the applicable 

rules learned from Auriga and Bangat (for example the analysis of the 

persistence mechanism and of the Registry keys). 

 

 

Figure 41 Fragment of the analysis of the Seasalt variant 

 

Following rules learning, the CAAPT knowledge base was extended with 10 

context-independent hypotheses patterns, seven hypotheses analysis rules, five collection 

tasks, and five collection rules.  One new collection agent was also defined.  This was a 
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larger extension of the system due to a more drastic change in Seasalt’s features.  After 

that, CAAPT’s detection capabilities were tested in three scenarios: 

• with the Seasalt intrusion used in training; 

• with an intrusion by a variant of Seasalt; 

• with a Kurton intrusion. 

As shown in Table 6, the variant of Seasalt used in the second run showed 

CAAPT’s ability to handle variance in its detection model.  A different domain was used 

to trigger the BRO alert, the Windows Service DLL was in a different location than in the 

first run, the HTTP User Agent string was not present, and the Registry keys were not 

present. 

Figure 41 shows a fragment of the reasoning of CAAPT when it analyzed the 

variant of Seasalt. 

Table 7 summarizes the results of this experiment.  Notice in column 3 that 

CAAPT succeeded to detect the intrusion with the variant of Seasalt with the same 

probability as the detection of the intrusion with the Seasalt training example. 

 

Table 7 Seasalt experiment results 

Experiment 

With the Seasalt 

intrusion used in 

training 

With an intrusion by a 

variant of Seasalt 
With a Kurton intrusion 

APT1 intrusion L08 (85-90%) very likely L08 (85-90%) very likely L08 (85-90%) very likely 

Auriga malware L01 (50-55%) barely likely L01 (50-55%) barely likely L01 (50-55%) barely likely 

Bangat malware L01 (50-55%) barely likely L01 (50-55%) barely likely L03 (60-65%) likely 

Seasalt malware L08 (85-90%) very likely L08 (85-90%) very likely L00 (0-50%) lacking support 

Duration 382 seconds 406 seconds 344 seconds 
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I then tested the detection of the next malware from the APT1 family, Kurton, for 

which CAAPT was not trained.  Unlike Seasalt, which uses a single name for registering 

itself as a Windows Service, Kurton can be configured to use any name the user wants.  

However, threat intelligence (Mandiant, 2013) shows that the names iprip, nwsapagent, 

and iprip32 were the most common names.  Kurton also does not use an auxiliary 

program, but uses two different HTTP User Agent Strings, a data file located at 

%WINDIR%\System32\SvcHost.DLL.log, and unique Registry keys. 

Notice in column 4 of Table 7 that CAAPT detected that very likely (85-90%) 

there is an APT1 intrusion, but the probability of being Auriga is only barely likely 50-

55%, the probability of being Bangat is (60-65%) likely, and there is no evidential 

support that it is Seasalt.  This experiment further confirmed CAAPT’s ability to identify 

new attacks while distinguishing between specific malware programs. 

5.5. Kurton Experiment 

In the final simulated malware experiment I modeled detection of the Kurton 

intrusion from the third experiment, and extended the APT1 ontology with the 

representation of Kurton as follows: 

• Modeling started with the knowledge base generated by the last Seasalt 

experiment (Kurton intrusion with the Auriga, Bangat, and Seasalt 

representations and the rules learned from their modeling). 

• Within this knowledge base the ontological representation of Kurton was 

developed. 
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• Generation of the analysis of the Kurton intrusion was then attempted using 

the ontological representation of Kurton and the rules learned from the 

Auriga, Bangat, and Seasalt modeling.  However, because the representation 

of Kurton combines some aspects of Auriga and Bangat (for example, the 

presence of data file artifacts) with some aspects of Seasalt (for example, the 

presence of network artifacts) while excluding other aspects of 

Auriga/Bangat/Seasalt, the top parts from any of the previous analyses were 

not applicable.  

• A new modeling for Kurton was developed by combining the applicable parts 

from Auriga, Bangat, and Seasalt. 

• New rules needed to analyze Kurton were learned, reusing the applicable rules 

learned from Auriga, Bangat, and Seasalt. 

Following rules learning, the CAAPT knowledge base was extended with only 

one context-independent hypothesis pattern, and two hypotheses analysis rules.  This 

again shows CAAPT’s ability to adapt to learn new malware with only incremental 

changes.  After learning the new rules, CAAPT’s detection capabilities were tested in two 

scenarios: 

• with the Kurton intrusion used in training; 

• with an intrusion by a variant of Kurton. 
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Table 8 Kurton experiment artifacts 

 

As shown in Table 8, the variant of Kurton used in the second run used a different 

name for the Windows Service and DLL filename and had a different unique HTTP User 

Agent string present. 

Figure 42 shows a fragment of the reasoning of CAAPT when it analyzed the 

variant of Kurton. 

Table 9 summarizes the results of this experiment.  Notice in column 3 that 

CAAPT succeeded to detect the intrusion with the variant of Kurton with the same 

probability as the detection of the intrusion with the Kurton training example, L07 (80-

85%).  This is slightly lower than L08 (85-90%), the probability of being an APT1 

Artifact Type Kurton (Training) Kurton (Variant) 

C2 Domain launch.todayusa.org ail.defenceonline.net 

Service Name (svchost) iprip (svchost) nwsapagent 

Service Display 

Name Remote Access Auto Connection Manager System Authorization Service 

Service 

Description 
N/A 

Authorization and authentication service for starting and  

accessing machines. 

Service Binary %SYSTEM32%\svc.dll %SYSTEM32%\nwsapagent.dll 

Temp File(s) N/A N/A 

Data File(s) %SYSTEM32%\SvcHost.DLL.log %SYSTEM32%\SvcHost.DLL.log 

Executable File %WINDIR%\temp\svchost.exe %WINDIR%\temp\svchost.exe 

Auxiliary 

Program 
N/A N/A 

Unique 

String(s) 

“you specify service name not in Svchost\netsvcs, must be 

one of following:” 
“CreateService(%s) SUCCESS. Config it” 

“Exception Catched 0x%X” 

“MyTmpFile.Dat” 

CreateService(%s) SUCCESS. Config it 
Exception Catched 0x%X 

MyTmpFile.Dat 

Library File(s) N/A N/A 

Registry Key(s) HKLM\SOFTWARE\Microsoft\DirectT\dwHighDateTime 

HKLM\SOFTWARE\Microsoft\DirectT\dwLowDateTime 

HKLM\SOFTWARE\Microsoft\DirectT\dwHighDateTime 

HKLM\SOFTWARE\Microsoft\DirectT\dwLowDateTime 

User Agent 

String 

Mozilla/4.0 (compatible; MSIE 7.0;)  
 

Mozilla/4.0 (compatible; MSIE8.0; Windows NT 5.1)  
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Figure 42 Fragment of the analysis of the Kurton variant 

 

intrusion.  Compared to the other analyzed malware, Kurton has fewer forensic indicators 

to examine.  The largest subset of indicators are unique strings, which have less 

inferential force than other types of indicators.  As such, without a matching hash value 

(which is normal for APT1 intrusions) the highest expected probability for detection of 

Kurton is L07. 
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Table 9 Kurton experiment results 

Experiment 
With the Kurton intrusion 

used in training 

With an intrusion by a 

variant of Kurton 

APT1 intrusion L08 (85-90%) very likely L08 (85-90%) very likely 

Auriga malware L01 (50-55%) barely likely L01 (50-55%) barely likely 

Bangat malware L03 (60-65%) likely L03 (60-65%) likely 

Seasalt malware L00 (0-50%) lacking support L00 (0-50%) lacking support 

Kurton malware L07 (80-85%) L07 (80-85%) 
Duration 587 seconds 631 seconds 

  

5.6. Detection of Real APT1 Malware 

While the above experiments were conducted using attacks simulated by 

manually creating forensic artifacts, I also tested CAAPT’s ability to detect attacks 

simulated by infecting VMs with real APT1 malware, specifically Bangat and Seasalt.  

This was done by reverse engineering the malware samples for each to determine how to 

install them on Windows 7 (they were originally developed for various earlier versions of 

Windows and Windows Server).  Reverse engineering included both static and dynamic 

techniques to determine the malware samples’ behavior. 

In both cases, the malware is in the form of a Windows Service DLL.  Installation 

of the service is done by running the installation function using the program rundll32.exe, 

which is designed to load a DLL and run a specified DLL export function.  In the case of 

Bangat, the function is called RundllInstall, and the Seasalt function is called Install.  

Using this method, Seasalt installed and ran as expected.  Getting Bangat to run was more 

challenging because it used the same service display name as an existing service.  

Because I was unable to manually change the name of the existing service, I had to 

manipulate the Bangat installation function as it was running.  To do this I ran it in a 
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debugger, changing the display name in memory before the service registration function 

was executed.  Doing this caused Bangat to install correctly.  I then manually changed its 

display name to the original value using the Windows Registry. 

 

Table 10 Real malware experiment artifacts 

 

Table 10 shows the artifacts present after installation and execution of Bangat and 

Seasalt.  In both cases, only artifacts related to persistence and initial communication to 

the C2 servers were present.  Data files, temporary files, and HTTP user agent strings 

only present themselves on the network during later stages of an infection, when the 

attacker has an interactive remote connection to the malware.  I did not progress the 

Artifact Type Bangat Seasalt 

C2 Domain att.infosupports.com ubuntuguru.strangled.net 

Service Name (svchost) iprip (svchost) Sasaut 

Service Display 

Name 
Remote Access Auto Connection Manager System Authorization Service 

Service 

Description 

N/A Authorization and authentication service for starting and  
accessing machines. 

Service Binary c:\temp\bangat1.dll %USERPROFILE%\Documents\svc.dll 

Temp File(s) none N/A 

Data File(s) N/A N/A 

Executable File %WINDIR%\system32 \svchost.exe %WINDIR%\temp\svchost.exe 

Auxiliary 

Program 

N/A N/A 

Unique 

String(s) 
superhard corp. 

!b=z&7?cc,MQ> 

fxftest 

upfileok 
ubuntuguru.strangled.net 

Library File(s) N/A N/A 

Registry Key(s) none none 

User Agent 

String 

N/A 
 

None  
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attack to later stages during this testing as reproducing this level of interactivity is very 

difficult and beyond the scope of the research.   

 

Table 11 Real malware experiment results 

Experiment With real Bangat infection With real Seasalt infection 

APT1 intrusion L00 (0-50%) lacking support L00 (0-50%) lacking support 

Auriga malware L01 (50-55%) barely likely L01 (50-55%) barely likely 

Bangat malware L05 (70-75%) likely L01 (50-55%) barely likely 

Seasalt malware N/A L08 (85-90%) 
Duration 296 seconds 407 seconds 

 

Table 11 shows the results of the experiment.  In both cases, there was L01(50-50%) 

probability that there was an Auriga intrusion.  This was due to the presence of the 

c:\Windows\Temp directory, which is common on Windows 7 computers but may not 

exist on Windows XP.  In the Bangat experiment, the malware was detected with a L05 

(70-75%) probability.  While the probability is lower than that of the simulated 

experiments, the result is expected as there were fewer artifacts of the malware present as 

the attack had not progressed as far as in the simulated experiment.  This result shows the 

trained models are robust and can still detect the malware with reasonably high 

probability even in the early stages of infection. 

In the experiment using real Seasalt malware, it was detected with L08 (85-90%) 

probability, the same probability from the simulated experiment.  Seasalt has fewer 

detectable artifacts created during later attack stages.  Most of the modeled artifacts are 

either created during installation or present in the executable files.  This means detection 

probability for early and late stage Seasalt intrusions are similar. 
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The experimental results of testing against real malware infections clearly show 

the learning agents in CAAPT are not only capable of detecting simulated malware 

infections but are also effective in detecting real APT1 malware infections. 

5.7. Summary of Experimental Results 

The above sections summarized the results of each experiment, separate from 

each other.  In this section I consider all of these results together, in the context of the 

experimental goals I sought to achieve.   

Overall, CAAPT learned 40 context-independent hypothesis patterns, two trigger 

rules, two indicator rules, 23 hypothesis analysis rules (some of them with large pattern 

trees that contain many context-depended hypotheses), 23 collection tasks, and 23 

collection rules.  Ten collection agents were also defined.  They enabled CAAPT to 

detect intrusions from four families of the APT1 malware: Auriga, Bangat, Seasalt, and 

Kurton. 

APT1, like many other attacker groups, practiced evolutionary development to 

adapt its malware to changes in network defense technology or simply to increase 

efficiency.  These changes in the way malware presents itself on the network and on disk 

have made it difficult for signature-based intrusion detection tools to detect attacks 

because the attackers can change static information in their malware faster than defenders 

can adapt.  However, the patterns of behavior change more slowly and with less variance.  

These characteristics of APT evolutionary development were successfully exploited by 

CAAPT, as shown by the experimental results.  
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5.7.1. Ability to Automatically Detect the Training Malware 

In all cases, CAAPT was able to detect the malware it was trained on with high 

(L08 (85-90%) very likely) probability.  This occurred even in the cases where real 

malware was used in the simulated attack.  The only exception was for Kurton, where its 

smaller set of indicators with weaker inferential force yielded a detection probability of 

L07 (80-85%).  This result, while expected, confirms the ability of agile cognitive agents 

to successfully orchestrate the incident response process in detection of known malware.   

 

5.7.2. Ability to Detect Variants of the Training Malware  

Next, after CAAPT was trained, based on one instance of the Auriga malware, it 

was able to also detect a variant of this malware.  This was also the case with the other 

three malware programs considered (Bangat, Seassalt, and Kurton) and is a consequence 

of the learning method employed by CAAPT.  Indeed, CAAPT generalizes a specific 

example and its explanation into a general rule that also cover similar examples that are 

likely to correspond to variants of the malware used in training.  This important result 

shows the orchestration and automation conducted by cognitive agents can be generalized 

to variations in a malware program’s configuration. 

5.7.3. Some Ability to Detect Evolved Malware 

Experimentation showed that CAAPT also succeeded in anticipating the 

evolutionary changes in the malware by learning patterns of IOCs in the form of 

hypothesis analysis rules.  If one aspect of the malware’s behavior changed and became 

undetectable by CAAPT, it was still detected with some probability based on the 

remaining observable evidence.  For example, as shown in Table 3, after being trained to 
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detect Auriga and invoked to analyze a simulated intrusion using Bangat, CAAPT still 

reported an APT1 intrusion with probability 85-90%, but the probability of being Auriga 

was lower (75-80%).  In the case of analyzing Seasalt after being trained on Auriga and 

Bangat, CAAPT still detected an APT1 intrusion with probability 85-90%, but the 

probability of being Auriga or Bangat was only 50-55% (see Table 5).  A similar result 

was obtained in the case of analyzing Kurton after being trained on Auriga, Bangat, and 

Seasalt. CAAPT still detected an APT1 intrusion with probability 85-90%, but the 

probability of being Auriga was 50-55%, of being Bangat was 60-65%, and of being 

Seasalt was 0-50% (see Table 7). 

These results showed two key novel features of CAAPT. First, it is capable of 

detecting new attacks by a sophisticated attacker even when they update their malware 

tools with new features and capabilities. The ability to detect previously unknown attacks 

is very difficult in cybersecurity and CAAPT’s ability to do it, even when constrained to 

the scope of a single APT group, is a major contribution to security research.  Second, 

this set of experiments showed CAAPT is capable of distinguishing between an APT 

group’s malware tools once CAAPT has learned to detect multiple malware programs.  

This is important because sophisticated attackers use different tools in different parts of 

their attacker lifecycle. The ability to distinguish between malware tools means CAAPT 

can also autonomously determine what phase of the attacker lifecycle the attack is in, 

which in turn can tell network defenders how severe the detected intrusion is.  It is a 

unique capability of this research. 
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5.7.4. Limited Incremental Training Needed to Detect a New Malware Family 

These results are also explained by the training methodology which exploits the 

evolutionary development of APT1.  Indeed, as discussed in the previous sections, 

modeling the detection of new malware is done based on the modeling of previous 

malware, and therefore shares many parts with the analyses of previous malware.  This 

also significantly simplifies and speeds up the training of the agent.  For example, as 

discussed previously, to train for Auriga detection, CAAPT had to learn 28 context-

independent hypothesis patterns, two trigger rules, two indicator rules, 13 hypothesis 

analysis rules, 15 collection tasks, and 15 collection rules.  Eight collection agents had 

also to be defined.  Many of these were also applicable for the detection of Bangat 

intrusions.  Therefore, to train for Bangat detection, a reduced number of knowledge 

elements needed to be learned: one context-independent hypothesis pattern, one 

hypotheses analysis rule, one collection task, and one collection rule.  The same is true 

for the training to detect Seasalt and Kurton.  The amount of knowledge elements that 

needed to be learned depended on the amount of change in the new malware.  Notice, for 

example, that the two trigger rules and the two indicator rules learned for Auriga were 

also applicable to Bangat, Seasalt, and Kurton.  Also, after defining eight collection 

agents to collect evidence for Auriga detection, only two more were needed to cover the 

collection needs for Bangat, Seasalt, and Kurton. 

 

5.7.5. Efficient and High-Quality Analysis 

While CAAPT coverage of malware detection is limited to APT1, and the 

increase in coverage will also increase the detection time, the times obtained in my 
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experiments are very small and support my hypothesis that a system like CAAPT will 

significantly speed–up the malware detection process.  The total runtime to detect an 

intrusion increased from around 2 minutes, when CAAPT was checking for Auriga 

intrusions only, to around 10 minutes when CAAPT was checking for Auriga, Bangat, 

Seasalt, and Kurton intrusions (see Figure 43).  However, the run time for the 

development and evaluation of the reasoning trees only increased from around 2 seconds, 

when CAAPT was checking for Auriga intrusions only, to around 6 seconds when 

CAAPT was checking for Auriga, Bangat, Seasalt, and Kurton intrusions. 

 

 

Figure 43 Analysis fragment for all studied APT1 malware 

 

As discussed previously, most of the time is spent waiting for the Collection 

Manager to return the results requested by the collection agents.  External dependencies, 

such as GRR, Elasticsearch, and VirusTotal, take time to perform searches and checks 

and some Collection Manager requests require multiple calls to external agents. 
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But time is only part one of advantages offered by a system like CAAPT.  While 

professional CSOCs have processes to be followed by analysts to ensure consistent 

analytical quality, it is natural for analysts to take shortcuts when they believe evidence 

examined early in the process leads to an obvious answer.  These analytical leaps can 

shorten analysis times but can also lead to errors.  CAAPT, on the other hand, will follow 

its learned processes fully every time.  This reduces error and provides consistent 

analytical results.  As the number of evaluated hypotheses grows and processing times 

increase, it can be mitigated with additional computing power, shortening the amount of 

time required to exhaustively evaluate all generated competing hypotheses. 

It is also possible to shorten the automated analysis time by restricting which 

analysis trees are used for which abductive triggers.  For example, APT1 has 17 known 

malware programs used in the initial compromise phase of the attacker lifecycle and 27 

malware programs used during the gain foothold phase (Mandiant, 2013).  This limits the 

computational requirements for APT1 to 44 analysis trees.  The APT1 hypotheses would 

likely be used for only abductive triggers generated from threat intelligence related to 

APT1.  If CAAPT were trained to detect intrusions from multiple APT groups, the 

automated analyses conducted would be restricted to abductive triggers related to that 

APT group.  This strategy places a cap on the computational requirements for CAAPT’s 

autonomous analysis. 
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6. CONCLUSIONS 

 This section provides a summary of the major contributions of this research, 

status of the research with regard to the research questions described in Section 1.4, and 

possible future directions of the research. 

6.1. Research Contributions 

In this dissertation, I have described several novel contributions achieved in this 

research, including the following major contributions. 

Ontology design for APT detection.  First, I developed the ontological 

framework for describing the knowledge required to model the detection process for 

sophisticated threats, including APTs.  For this research, I modeled knowledge of APT 

activity, the attacker lifecycle, the network environment, security alerts, and host-based 

IOCs used to detect malware.  The ontological modeling is described in Section 3.2.1 and 

represents an advancement in modeling cybersecurity threat intelligence for use by 

cognitive agents to reason about sophisticated cyber threats. 

Conceptual modeling of the automatic APT detection process.  The second 

part of creating a theoretical model of APT detection was modeling the abductive, 

deductive, and inductive reasoning processes required to detect sophisticated threats.  

This included the modeling of all of the hypotheses required for detecting APT1 activity, 

including the four malware programs studied in this research (Section 3.2.2), the 

deductive process required to detect APT intrusions, decomposing the high-level 

hypotheses into sub-hypotheses until there was a requirement to search for specific IOCs 
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(Section 3.2.3), and the inductive process of using found evidence to derive conclusions 

as to the probability that a given hypothesis was true (Section 3.2.4).  In total, this 

represents the first theoretical model of APT detection.  

In addition to the fact that the APT detection model created in this research is 

novel, it is powerful for a few key reasons: 

• The model uses the combined inferential force of weak indicators to 

synthesize, with high probability, conclusions about the presence of an 

APT attack.  As such is robust, meaning it can detect APT intrusion 

activity even if some of the IOCs it searches for are missing. 

• It is capable of detecting intrusions by an APT group when they change 

the configuration of their malware, which is unique in the security 

industry. 

• It is capable of detecting APT intrusions even when they use new or 

evolved versions of malware.  This predictive detection capability allows 

the cognitive agents, in collaboration with CSOC analysts, to cope with 

the evolution of sophisticated attackers’ TTPs.  

Automatic generation of abductive triggers from basic IDSs (e.g., BRO).  

While creation of abductive triggers from observations is a well-established technique in 

the field of cognitive AI, and is a core feature of Disciple, this research extended the 

capability of Disciple to automatically generate abductive triggers based on alerts from 

security devices.  Specifically, the BRO IDS was used in this research to generate 

abductive triggers based on security alerts generated when a computer attempted to 
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contact a known APT1 domain.  This contribution, described in detail in Section 3.2.2, 

required the theoretical model described above, along with custom software capable of 

identifying new security alerts from cyber threat intelligence and transforming them into 

messages understandable by the Trigger Agent.  The final result of this contribution is a 

system which can automatically react to new security alerts and begin the abductive 

reasoning process.  While this research focused specifically on the BRO IDS as a security 

sensor, both the theoretical model and the software developed during this study are 

broadly applicable, meaning any host-based or network-based detection system can be 

used to automatically generate abductive triggers. 

Autonomous, hypothesis-driven search for evidence.  Using APT1 as a case 

study, I created a theoretical model that, when implemented in Disciple, allowed 

cognitive agents to search for digital evidence in an autonomous manner.  Furthermore, 

the hypothesis-driven search for evidence was done in an abstract manner, meaning the 

evidence requirements of the cognitive agents is decoupled from the specific search or 

collection agents used to satisfy the searches.  This contribution is important because it 

allows for the cognitive agents to act in an autonomous manner to collect and reason 

about digital evidence in a CSOC environment (the key feature for security incident 

response orchestration), but also to collect much of the evidence in an on-demand 

fashion, reducing the data storage and network bandwidth requirements of the system. 

Selection and integration of multiple, collaborative, search and collection 

agents working together to detect and investigate threats.  In order to apply the 

theoretical model of APT detection to a real CSOC environment, a set of search and 
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collection agents was needed to satisfy the requirements of hypothesis-driven search for 

evidence.  A major architectural contribution of this research was the identification of the 

types of data sources required for CSOC integration and selection of specific search and 

collection agents for use in the research.  A contribution is also the deployment and 

configuration of these agents so the cognitive agents could use live data sources in their 

analyses.  The search agent selection and architecture were described in Sections 3.3.1 

and 3.3.2. 

Development of the Collection Manager software for translating and 

optimizing abstract searches into searches executable by real collection agents.  

Lastly, this research led to development of the Collection Manager software, which is 

primarily responsible for translating abstract search requests from Disciple agents into 

concrete searches using real search and collection agents, and then translating the search 

results into evidence usable in the automatic analysis process.  The Collection Manager is 

designed to provide an abstraction layer between the knowledge of the cognitive agents 

and the specific CSOC infrastructure.  As described in Section 3.3.3, the architecture of 

the Collection Manager makes CAAPT easy to integrate with new CSOC environments, 

meaning the knowledge of the trained cognitive agents can be transplanted from CSOC to 

CSOC with minimal re-engineering of the system.  

6.2. Status of Research Questions 

As described in detail in Section 1.4, this study aimed to answer key research 

questions about improving the quality of intrusion detection for modern threats, 

supporting analysts in understanding and detecting both known and unknown attacks, and 



147 

 

increasing CSOC accuracy and efficiency.  This section focuses on how well my research 

address each of these questions. 

6.2.1. Intrusion Detection Improvements 

The research questions around improving intrusion detection centered around 

whether or not cognitive agents using evidence-based reasoning could improve on the 

state of the art regarding two key aspects: 1) the ability to fuse data from multiple 

sources, both real-time and on-demand, to provide better threat detection than traditional 

IDSs and 2) using explicit logic to combine the strength of multiple weak IOCs into 

strong detections.  This research answered both of these questions in the affirmative.   

As discussed in depth in Section 3.3, CAAPT fuses data from a variety of passive 

and on-demand collection agents to detect intrusions.  The research has demonstrated that 

combining data from internal data sources such as GRR, SYSMON, BRO, and 

Elasticsarch with data from external sources such as VirusTotal and WHOIS can yield 

detection capabilities more robust against evolving attacks than individual security tools 

can do on their own.  The explicit logic described in Section 3.2 demonstrates this robust 

detection model where the combined inferential force of weak IOCs such as unique 

strings, filenames, and Registry keys can be used to detect, with high probability, 

sophisticated threat activity even when strong IOCs such as file hashes are not present.  

This key finding is critical to the ability to orchestrate security incident response using 

cognitive agents.  



148 

 

6.2.2. Analyst Support  

The second category of research questions was whether or not CAAPT can 

support CSOC analysts in their intrusion analysis tasks by: 

• being able to be trained to detect known threats based on CSOC expertise;  

• supporting analysts in detecting previously unknown attacks through 

mixed-initiative reasoning; 

• exhibiting flexible autonomy (strictly-guided, mixed-initiative, and full 

autonomy); 

The theoretical model of threat detection described in Section 3.2 show how the 

system can be trained to detect known threats.  A core design characteristic of the system 

is its ability to be trained by an expert CSOC analyst to detect threats using available 

threat intelligence.  As the experimental results show how the system was trained to 

detect the Auriga malware used by the attacker group APT1.  As was further shown in 

my experiments, the system is able to detect attacks by the same attacker group using 

previously unknown malware.  This ability is rooted in a robust detection model which 

separates the probability of an attack being conducted by the attacker group (the left 

branch of the top-level analysis tree in Figure 19) and the probability that a specific 

malware program was used.  As the experiments show, the system was able to detect not 

only variants of the same malware, but also new malware created as the group’s malware 

arsenal evolved. 

The mixed-initiative analysis process described in Section 3.4 shows how the 

system supports analysts in detecting previously unknown attacks.  Once trained to detect 
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one or more attacks by an attack group, the system will autonomously detect the same or 

similar attacks.  If the system encounters an attack it does not understand, the alert is sent 

to an analyst for additional training.  Using previously learned reasoning rules, the system 

will suggest reasoning strategies to the analyst to guide them through the manual analysis 

process.  These suggested reasoning strategies act as playbooks for analysis.  This 

process also demonstrates flexible autonomy, where the cognitive agents are strictly-

guided when being trained to detect new threats, use mixed-initiative reasoning when 

potentially new attacks are discovered which are similar to attacks the agents have been 

trained to detect, and fully autonomous when detecting attacks for which the agents have 

been trained to detect. 

6.2.3. CSOC Performance 

The final category of research questions involves whether security incident 

response orchestration using cognitive agents can improve CSOC performance.  CSOCs 

generally use detection rate, false positive rate, and speed to determine the effectiveness 

and efficiency of the CSOC.  The results of this research show CAAPT can help a CSOC 

improve all of these metrics. 

Improvement in detection rates for sophisticated threats is a key contribution of 

this research.  CSOCs often rely on high-quality IOCs from threat intelligence to detect 

threats, meaning someone must have previously discovered the threat, analyzed it, and 

published the IOCs to the security community in order for the threat to be detected.  

While CAAPT also relies on this same model for initial training, its ability to predict 

attacks by the same attacker group using new TTPs, as shown through experimentation 
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drastically improves detection rates for previously unknown attacks.  CSOCs are also 

vulnerable to evolving threats.  If an attacker group were to change one high-quality IOC 

in a new attack, many CSOCs would fail to detect it.  Because CAAPT uses explicit logic 

to combine multiple weak IOCs into strong detection models, it can cope with changing 

attacker TTPs much better than traditional tools.  An attacker would have to change their 

attack methodology much more radically to evade detection by CAAPT. 

Improving false positive rates is another area where CAAPT can help improve 

CSOC effectiveness.  False positive use cases are often CSOC-specific and fairly static, 

meaning they don’t change frequently.  While it was not shown through experimentation, 

the cognitive agents designed in this research can be trained to understand false positive 

use cases and apply them autonomously, reducing the overall false positive rate of the 

CSOC. 

The cognitive agents developed for this research can also speed up CSOC 

operations.  While the sample size in the experiments I performed is not large enough to 

show how CAAPT behaves when trained to detect dozens or hundreds of threats, initial 

testing shows it scales efficiently even using a single server to run the system.  Adding 

additional computing power will allow the system to perform efficiently as the size of the 

knowledge base increases.  More importantly, because the cognitive agents can automate 

repetitive CSOC work, it frees up valuable analysts to perform more impactful tasks such 

as threat hunting and intelligence analysis, improving the overall usage of CSOC 

resources. 
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6.3.  Future Research 

While the early results from this research are exciting, the possible future 

applications of the research are just as promising.  This section provides a brief 

description of future directions I envision for this research. 

Autonomously Investigating the Attacker Lifecycle.  One of the key aspects of 

the theoretical model of sophisticated threat detection is modeling of the attacker 

lifecycle, when the system not only detects a threat, but also knows how far into the 

attacker lifecycle the attack has progressed.  In future research, this context could be used 

to perform root cause analysis or to discover evidence of previous stages of the attack 

that may have been missed.  This approach is described in more detail in Appendix A. 

Improving Scalability of the Collection Manager.  Because this was basic 

research, I was not able to explore how the system would perform at scale, on networks 

with tens of thousands of nodes, complex network topologies, and trained to detect 

dozens of threats.  Collection Manager performance can be improved through caching of 

search to speed up responses, scheduling of searches of multiple machines to reduce 

network bandwidth and CPU usage, and load-balancing multiple Collection Manager 

servers to increase capacity. 

Autonomous Threat Hunting.  Detection of threat in near-real-time is just one 

aspect of the detection requirements of CSOCs.  More mature organizations employ very 

experienced analysts to hunt for signs of stealthy threats on their network, leveraging 

intelligence on emerging threats or newly-discovered tactics.  CAAPT could be trained to 
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leverage the same intelligence, and tactics repositories such as MITRE ATT&CK 

(attack.mitre.org) to autonomously hunt for threats on the network. 
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APPENDIX A – AUTONOMOUS INVESTIGATION OF THE ATTACKER 

LIFECYCLE 

In previous applications of Disciple to other analytical domains, synthesis of a 

conclusion was the end of the analytical process.  In future research, I can extend the 

analytical workflow by allowing autonomously synthesized conclusions to analytical 

scenarios to generate triggers for new analytical scenarios to evaluate.  This chaining of 

autonomous analyses allows for emergent analysis to take place, including autonomous 

analysis of the attacker lifecycle. 

The first step in this process is to model the attacker lifecycle in the knowledge 

base.  Figure 12 showed how the concept of the attacker lifecycle and its phases can be 

modeled as an ontology fragment.  In Figure 13, these concepts are extended by mapping 

APT1 activity to its own instance of the attacker lifecycle for the APT1 initial 

compromise and APT1 gain foothold phases. 

For each phase of the attacker lifecycle, specific APT1 malware is associated to it.  

By further associating malware knowledge (Figure 14) with each piece of malware, I can 

further extend this ontology fragment until we have a detailed model of APT1’s entire 

attacker lifecycle and can then use this knowledge to perform follow-on analysis when 

one phase of an attack is detected. 

Generally speaking, the phases of the attacker lifecycle must progress in order.  It 

is not uncommon for some phases to be skipped, but it is very rare for all of them to be 

skipped.  This means if a later phase of the attacker lifecycle is detected, it increases the 

likelihood evidence of previous phases exist on the network.  Analysis of previous phases 
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must be conducted, giving more weight to the evidence because of confirmed existence 

of a later attacker lifecycle phase.  If the analysis scenarios are chained back to the 

reconnaissance phase, the root cause of the attack can be identified. 

When a phase of an attack is detected it also means there may be evidence of later 

phases of the attack.  Analysis of later phases should be run, using the likelihood of the 

detected phase as the maximum likelihood of the later phase.  If this analysis is followed 

to the complete mission phase, it can be determined whether or not damage has occurred 

as a result of the attack.  An overview of this process is shown in Figure 44. 

 

 

Figure 44 Example of autonomous attacker lifecycle analysis 

 

A beneficial side effect of this analysis is the automatic identification of new 

threat intelligence.  If the cognitive agents conduct analysis of earlier or later phases of 
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the attack and determine with high probability they occurred, any evidence which was 

found but did not match evidence already known as being associated with an APT group 

can now be associated with the APT group and published as threat intelligence.  This 

means this new evidence can be used as primary indicators for detection of attacker 

activity using security tools such as BRO. 
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