

CYBERSECURITY INCIDENT RESPONSE ORCHESTRATION USING AGILE

COGNITIVE ASSISTANTS

by

Steven W. Meckl

A Dissertation

Submitted to the

Graduate Faculty

of

George Mason University

in Partial Fulfillment of

The Requirements for the Degree

of

Doctor of Philosophy

Computer Science

Committee:

_________________________________ Dr. Gheorghe Tecuci, Dissertation Director

_________________________________ Dr. Mihai Boicu, Committee Member

_________________________________ Dr. Xinyuan Wang, Committee Member

_________________________________ Dr. Sanjeev Setia, Committee Member

_________________________________ Dr. Huzefa Rangwala, Department Chair

_________________________________ Dr. Kenneth S. Ball, Dean, Volgenau School

of Engineering

Date:_____________________________ Fall Semester 2019

 George Mason University

 Fairfax, VA

Cybersecurity Incident Response Orchestration Using Agile Cognitive Assistants

A Dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at George Mason University

by

Steven W. Meckl

Master of Science

George Mason University, 2010

Bachelor of Science

University of Michigan, 1998

Director: Gheorghe Tecuci, Professor

Department of Computer Science

Fall Semester 2019

George Mason University

Fairfax, VA

ii

Copyright 2019 Steven W. Meckl

All Rights Reserved

iii

DEDICATION

This is dedicated to my father, Roger Meckl, whose clever sense of humor and seemingly

endless well of knowledge inspired in me a lifelong desire to learn.

iv

ACKNOWLEDGEMENTS

This research was sponsored by the Air Force Research Laboratory (AFRL) under

contract number FA8750-17-C- 0002, and by George Mason University. The views and

conclusions contained in this document are those of the author and should not be

interpreted as necessarily representing the official policies or endorsements, either

expressed or implied, of the U.S. Government.

v

TABLE OF CONTENTS

Page

List of Tables ... viii

List of Figures .. ix

List of Equations .. xi

List of Abbreviations .. xii

Abstract .. xiii

1. Introduction ... 1

1.1. Motivation ... 4

1.1.1. Intrusion Detection Overview ... 4

1.1.2. Threat-Driven Analysis and the Cybersecurity Operations Center 5

1.1.3. Advanced Persistent Threats ... 6

1.1.4. Evolution of Malware ... 8

1.2. Problem Statement .. 10

1.3. Purpose of Research .. 13

1.4. Research Questions ... 14

1.4.1. Intrusion Detection Improvements ... 14

1.4.2. Analyst Support .. 15

1.4.3. Performance .. 15

1.5. Research Contributions ... 16

1.5.1. Theoretical Contributions ... 16

1.5.2. Architectural Contributions .. 16

1.6. Importance of the Study .. 17

1.7. Scope of the Study .. 18

1.7.1. Knowledge-Based Learning Agent Shell.. 18

1.7.2. Operating System Environment .. 19

1.7.3. Attacker Profile ... 20

1.8. Limitations .. 20

2. Related Work ... 23

2.1. Cybersecurity Operations Centers .. 24

2.2. Overview of Intrusion Detection Concepts... 27

vi

2.2.1. Cost Management in the CSOC .. 29

2.2.2. Misuse Detection Systems .. 31

2.2.3. Anomaly Detection Systems ... 34

2.2.4. Hybrid Systems ... 36

2.2.5. Ontology-Based Intrusion Detection Systems .. 37

2.3. Forensic Methods: Investigating the Attacker Lifecycle 47

2.3.1. Collecting Against the Attacker Lifecycle .. 52

2.4. Knowledge-Based Learning and Evidence-Based Reasoning 54

2.4.1. Evidence in Search of Hypotheses .. 55

2.4.2. Hypotheses in Search of Evidence .. 56

2.4.3. Evidentiary Testing of Hypotheses ... 56

2.5. Ontologies and Learning ... 58

3. Research Overview .. 59

3.1. CAAPT Architecture Overview .. 60

3.2. Theoretical Model of Attacker Behavior .. 62

3.2.1. Ontology and Knowledge Requirements .. 63

3.2.2. Abductive Trigger Generation Using Threat Intelligence 70

3.2.3. Search Agents for Hypothesis-Driven Search .. 76

3.2.4. Automatic Analysis of Evidence .. 84

3.3. Integrating Cognitive Agents into a Cybersecurity Operations Center 90

3.3.1. Selection of Collection Agents ... 90

3.3.2. Collection Agent Architecture .. 94

3.3.3. The CAAPT Collection Manager ... 95

3.4. Automatic Generation and Use of Incident Investigation Playbooks 103

3.5. Development and Test Network Environment ... 106

3.5.1. Virtualization Platform ... 109

3.5.2. Network Design .. 111

4. Experimentation and Test Results ... 114

5.1. Use of APT1 for Experimentation .. 115

5.2. Auriga Experiment .. 119

5.3. Bangat Experiment.. 123

5.4. Seasalt Experiment.. 126

vii

5.5. Kurton Experiment.. 130

5.6. Detection of Real APT1 Malware ... 134

5.7. Summary of Experimental Results ... 137

5.7.1. Ability to Automatically Detect the Training Malware 138

5.7.2. Ability to Detect Variants of the Training Malware 138

5.7.3. Some Ability to Detect Evolved Malware .. 138

5.7.4. Limited Incremental Training Needed to Detect a New Malware Family 140

5.7.5. Efficient and High-Quality Analysis .. 140

6. Conclusions ... 143

6.1. Research Contributions ... 143

6.2. Status of Research Questions .. 146

6.2.1. Intrusion Detection Improvements ... 147

6.2.2. Analyst Support .. 148

6.2.3. CSOC Performance ... 149

6.3. Future Research .. 151

Appendix A – Autonomous Investigation of the Attacker Lifecycle 153

References ... 156

viii

LIST OF TABLES

Table Page

Table 1 Collection agents for CAAPT .. 93
Table 2 Auriga and Bangat experiment artifacts .. 120
Table 3 Auriga experiment results .. 122
Table 4 Bangat and Seasalt experiment artifacts .. 124
Table 5 Bangat experiment results .. 125

Table 6 Seasalt and Kurton experiment artifacts .. 127
Table 7 Seasalt experiment results .. 129

Table 8 Kurton experiment artifacts ... 132

Table 9 Kurton experiment results .. 134
Table 10 Real malware experiment artifacts .. 135
Table 11 Real malware experiment results ... 136

ix

LIST OF FIGURES

Figure Page

Figure 1 CSOC workflow ... 24
Figure 2 Receiver operating characteristic curve .. 28
Figure 3 Cost management using the ROC curve ... 30
Figure 4 Incident Response Process ... 48
Figure 5 Collecting against the Attacker Lifecycle .. 53

Figure 6 Evidence-based reasoning as the discovery of hypotheses, evidence, and

arguments .. 55

Figure 7 Probability scale ... 57

Figure 8 CAAPT system architecture overview ... 61
Figure 9 CAAPT ontology overview .. 63
Figure 10 Alert knowledge generated from BRO alert ... 64
Figure 11 Simplified ontology for network topology ... 65

Figure 12 Ontology for the Attacker Lifecycle ... 66
Figure 13 APT1 knowledge fragment ... 67

Figure 14 Forensic artifact knowledge ... 69
Figure 15 Generating alerts from threat intelligence .. 71
Figure 16 How a BRO alert becomes an abductive trigger .. 72

Figure 17 Trigger ontology fragment ... 74
Figure 18 Hypothesis generation process ... 75

Figure 19 AURIGA example of hypothesis-driven search ... 77

Figure 20 Search function example .. 78

Figure 21 Search for AURIGA program features ... 80
Figure 22 Search for AURIGA files ... 81

Figure 23 Search for AURIGA command shell and Registry keys 82
Figure 24 Automatic analysis of AURIGA files... 83
Figure 25 *-operator example ... 86

Figure 26 Automatic analysis of AURIGA command shell and Registry keys 87
Figure 27 Automatic analysis of AURIGA program features .. 88
Figure 28 Top-level automatic analysis for AURIGA .. 89

Figure 29 Collection agent taxonomy ... 91
Figure 30 CAAPT passive collection architecture.. 95
Figure 31 Collection Manager process ... 96

Figure 32 Synchronous wrapper flow ... 97
Figure 33 Asynchronous wrapper call flow .. 98
Figure 34 GRR asynchronous call flow example ... 99
Figure 35 Search example ... 101

Figure 36 Example of automatic generation of detection playbooks 105
Figure 37 Logical network topology for test environment ... 107
Figure 38 Virtualization platform usage in development and testing 110

https://d.docs.live.net/2ccd703c110fbd22/Documents/GMU%20PhD%20Work/Dissertation%20Research/Dissertation/Meckl%20Dissertation%20v1.10.docx#_Toc26297416

x

Figure 39 Overview of experiment protocol ... 118
Figure 40 Fragment of the analysis of the Auriga variant from Table 2 121

Figure 41 Fragment of the analysis of the Seasalt variant .. 128
Figure 42 Fragment of the analysis of the Kurton variant .. 133
Figure 43 Analysis fragment for all studied APT1 malware .. 141
Figure 44 Example of autonomous attacker lifecycle analysis 154

xi

LIST OF EQUATIONS

Equation Page

Equation 1 Ontology ... 38

xii

LIST OF ABBREVIATIONS

Advanced Persistent Threat ... APT

Application Programming Interface ... API

Cognitive Agents for APT Detection ... CAAPT

Cybersecurity Operations Center .. CSOC

Decision Support System ... DSS

Denial of Service.. DoS

Distributed Denial of Service...DDoS

Domain Name System ...DNS

Dynamic-Linked Library ... DLL

Endpoint Detection and Response ...EDR

Google Rapid Response .. GRR

Host Intrusion Detection System ... HIDS

Hypertext Transport Protocol ..HTTP

Incident Response ..IR

Indicator of Compromise .. IOC

Internet Protocol... IP

Intrusion Detection System ... IDS

JavaScript Object Notation .. JSON

Machine Learning ..ML

Managed Detection and Response ... MDR

Megabits Per Second.. Mbps

Network Intrusion Detection System ... NIDS

Operational Technology... OT

People’s Republic of China ... PRC

Personally-Identifiable Information .. PII

Receiver Operating Characteristic .. ROC

Representational State Transfer ... REST

Root to Local.. R2L

Secure Sockets Layer .. SSL

Security Information and Event Management System .. SIEM

Self-Organizing Map .. SOM

Subject Matter Expert ... SME

Threat Intelligence Platform ..TIP

Time To Live ... TTL

Tool, Technique, or Procedure... TTP

Transport Layer Security ... TLS

User to Root ... U2R

xiii

ABSTRACT

CYBERSECURITY INCIDENT RESPONSE ORCHESTRATION USING AGILE

COGNITIVE ASSISTANTS

Steven W. Meckl, Ph.D

George Mason University, 2019

Dissertation Director: Dr. Gheorghe Tecuci

In this work, I explore the problem of autonomously orchestrating cybersecurity

incident response using agile cognitive assistants. Detection of sophisticated cyber threat

activity has become more complex over time, as the threat landscape has shifted from

cyber vandals and pranksters to multi-billion-dollar criminal enterprises and state-

sponsored Advanced Persistent Threats. What was once the realm of criminals with a

small collection of easily discovered automated tools is now ruled by well-funded and

highly sophisticated sets of hackers carefully orchestrating intrusions as a means to

advance their criminal enterprise or intelligence collection mission. This research

identifies a new approach to intrusion detection and security incident response aimed at

leveraging advances in the field of artificial intelligence to improve the ability of a CSOC

to detect these sophisticated attacks. More specifically, it demonstrates how agile

cognitive assistants leveraging knowledge-based learning and evidence-based reasoning

xiv

can be used to improve the effectiveness of attack detection for both known and unknown

threats. Building on the Disciple learning agent theory and technology, I researched,

developed, and demonstrated a prototype framework for agile cybersecurity. The key

idea is to integrate a special type of a knowledge-based learning assistant into

cybersecurity operations centers. This cognitive assistant can be trained by cybersecurity

experts, based on threat intelligence, to automate the investigation of alerts from a variety

of intrusion detection devices, integrating multiple detection techniques with automated

network forensics, to significantly increase the probability of accurately detecting

intrusion activity while drastically reducing the workload of the operators of the

cybersecurity operations centers. This dissertation presents the following novel

contributions: (1) conceptual modeling of the automatic APT detection process; (2)

ontology design for APT detection; (3) automatic generation of abductive triggers from

basic intrusion detection systems; (4) autonomous, hypothesis-driven search for evidence;

(5) selection and integration of multiple, collaborative, search and collection agents

working together to detect and investigate threats; and (6) development of Collection

Manager software for translating and optimizing abstract searches into searches

executable by real collection agents.

1

1. INTRODUCTION

The field of cybersecurity has rapidly expanded over the last decade, evolving

into multiple disciplines including cryptography, intrusion detection, threat analysis,

managed detection and response (MDR), security orchestration and automation, and

intrusion tolerance. While the state of the art has seen steady progress, the volume and

sophistication of attacks have outpaced the rate at which network defenses have evolved

(Verizon, 2014). History has shown security to be a constant war of escalation between

attackers and defenders, and high-profile intrusions including attacks on Sony Pictures

Entertainment (USATODAY, 2015), the coordinated network exploitation campaign of

China’s People’s Liberation Army (Mandiant, 2013), and the alleged attacks on the

White House by Russian actors (CNN, 2015) show that attackers are still successful in

spite of record high cybersecurity budgets (Cybersecurity Ventures, 2015).

The science and art of intrusion detection and prevention has evolved over the last

decade, largely due to the shift from cyber vandals and pranksters to multi-billion-dollar

criminal enterprises and state-sponsored Advanced Persistent Threat (APT) intrusion

methodology (Zimmerman, 2014). What was once the realm of criminals with a small

collection of easily discovered automated tools is now ruled by well-funded and highly

sophisticated sets of hackers carefully orchestrating intrusions as a means to advance

their criminal enterprise or intelligence collection mission. State-sponsored attack groups

2

such as the People’s Republic of China’s (PRC) APT1 have demonstrated that

organization, funding, and lack of consequences can be more effective than use of

sophisticated intrusion tools (Mandiant, 2013).

Commercial intrusion detection tools have not adapted well to this shift in

attacker methodology. Attackers’ sophistication has outpaced that of network defenders.

This is most apparent in data analysis published in Verizon’s 2014 Data Breach

Investigations Report (Verizon, 2015). In 2013, the attacker’s time to compromise was

measured in days over 90% of the time while the defender’s time to detection was

measured in days less than 25% of the time, leaving large windows of time for attackers

to operate undetected. What’s worse is that the attackers’ time to compromise is

shrinking at a faster rate than defenders’ time to detection. Technological advances are

necessary to shrink the gap between the two.

Well-organized cybersecurity operations centers (CSOCs) leverage analysts with

a wide variety of skills to constantly monitor and adjust their security infrastructure to

adapt to intrusion methodology changes. Even advanced CSOCs, leveraging state-of-the-

art intrusion detection system (IDS) technology, receive too many alerts for their analysts

to handle. Investigation of each alert has a cost to the organization, measured in time,

man-hours, and infrastructure expenses. The cost of missed detections can range from

negligible to catastrophic. While many simple network compromises are routine and

easy to overcome, the average cost of a data breach has risen to nearly $4 million in

recent years (Ponemon Institute, 2017). False positives are also expensive (Zimmerman,

2014), as network defenders waste time investigating incorrectly identified security

3

incidents. In large enterprises, that see thousands of network events per day, even a 1%

false positive rate can be unmanageable.

This dissertation details a new approach to autonomous orchestration of security

incident response aimed at leveraging advances in the field of artificial intelligence and

machine learning. More specifically, this approach uses agile cognitive assistants

leveraging knowledge-based learning and evidence-based reasoning to improve the

effectiveness of a CSOC’s ability to detect both known and unknown sophisticated

threats. Building on the Disciple agents learning theory and technology (Tecuci et al.,

2016a), I researched, developed, and demonstrated a prototype framework for agile

cybersecurity. The key idea is to integrate a special type of a knowledge-based learning

assistant into CSOCs. This cognitive assistant is trained by cybersecurity experts, based

on threat intelligence, to automate the investigation of alerts from a variety of intrusion

detection devices, integrating multiple detection techniques with automated network

forensics, to significantly increase the probability of accurately detecting intrusion

activity while drastically reducing the workload of the operators of the CSOCs. This

approach is agile because these agents can rapidly learn the subject matter expertise of

skilled CSOC analysts to accurately identify both the existence and scope of network

intrusion events. They learn general models of threats in the form of explicit reasoning

patterns that are used to hypothesize intrusions, to direct the sensors to collect evidence

for these hypotheses, and to test the hypothesized intrusions based on the collected

evidence.

4

1.1. Motivation

This section provides more detail of the challenges modern CSOCs face, and why

advancements in the field are necessary.

1.1.1. Intrusion Detection Overview

Intrusion detection is typically done by searching through network data, host-

based data, or logs, either in real-time or after the fact, and applying detection algorithms

to the data to identify intrusion activity. In some cases, multiple types of data can be

fused to provide more robust detection capability, although there are not too many

capabilities to do data fusion at present.

Intrusion detection algorithms focus on two major approaches: anomaly detection

and misuse detection. Anomaly detection focuses on building a model of what is normal

and then using that model to identify behavior that is abnormal. It can work in real-time

and is capable of detecting new threats, but often has a high false positive rate. Misuse

detection uses information about attacks, often in the form of static signatures or

Indicators of compromise (IOCs), to detect malicious activity. It has a high detection rate

for existing threats and a low false positive rate, but normally cannot detect new threats

(Kemmerer & Vigna, 2002).

Machine learning, in the form of neural networks, statistical methods, or a

combination of learning models, is a major area of anomaly detection research. Bhuyan

et al. (2014) provides an excellent overview of the topic. While there have been some

improvements in the state of the art, machine learning methods still have not solved two

important problems for network defenders:

5

1. While machine learning methods (e.g., neural networks) perform well, they

cannot tell the user why they arrived at a conclusion.

2. They still have unacceptably high false positive rates for large CSOCs.

Misuse detection is a common approach used in production systems today.

Misuse detectors are designed to use IOCs to scan network, disk, or volatile memory to

detect known tools, techniques, or procedures (TTPs) used by attackers. Common

intrusion detection system (IDS) software packages, such as SNORT (Northcutt et al.,

2007) and BRO (Paxson, 1999), along with traditional antivirus programs, are misuse

detectors. Most desktop anti-virus programs also fall into this category. They are

popular because they are easy to implement and share indicators for. The general

weakness of misuse detection is the inability to detect new threats, although they have a

high detection rate for known threats (Kemmerer & Vigna, 2002).

1.1.2. Threat-Driven Analysis and the Cybersecurity Operations Center

CSOCs employ teams of network defense experts, analysts, system

administrators, and forensics experts. CSOCs leverage a rich tool set including intrusion

detection systems (IDSs), data collection tools, analysis tools, and visualization tools.

CSOCs receive incident information from high-value sources – law enforcement, user

reporting, or threat intelligence from other CSOCs – and unconfirmed alerts from

security infrastructure such as antivirus software, IDSs, heuristic alerts, or machine

learning algorithms. The analyst’s responsibility is to monitor alerts and logging

information from all available information sources, each having differing levels of

6

reliability, and use them to make a determination about the presence or absence of

intrusion activity (Zimmerman, 2014).

TTPs used by attackers change rapidly and can be discovered on almost any

network. In an effort to adapt, there has been a movement toward making the sharing of

indicators between CSOCs fast and easy. IOCs can now be shared among communities

of interest using multiple open formats and transports including OpenIOC (2015), created

by Mandiant, and the STIX/TAXII architecture (Barnum, 2014; Conolly et al., 2012),

created by The MITRE Corporation. Additionally, security companies have begun

publishing threat intelligence to customers and the public, such as the now famous

Mandiant report on the APT1 intrusion set (Mandiant, 2013), which attributed an

aggressive group of computer intrusion operators to China’s People’s Liberation Army.

While these initiatives can be effective in sharing signatures and other threat artifacts,

each receiving organization still must implement their own process to integrate the

information into their security infrastructure, using the myriad anomaly and misuse

detection systems on the market.

1.1.3. Advanced Persistent Threats

The most sophisticated type of attacker group is called the Advanced Persistent

Threat. APTs are characterized by the use of superior knowledge, resources, or tactics to

gain and maintain access to the networks of their intended victims to accomplish

missions ranging from information theft (Mandiant, 2013) to destruction of data

(Pagliery, 2015). Many APT groups are known or suspected to be large state-sponsored

7

teams of highly trained and well-funded hackers, following a structured attack process

called the Attacker Lifecycle (Mandiant, 2013).

APT groups have some distinct differences from traditional hackers making them

difficult to deal with. Due to the fact that they are often government employees or

contractors performing their attacks as a part of their job and have been authorized to

conduct such activity by their government, it is low risk/high reward activity. Unlike

criminal hackers, there is no risk of incarceration should they get identified. As such,

they can afford to optimize for volume over stealth, meaning they can attack a lot of

potential victims simultaneously, exhausting defenders’ resources. They are also often

acting to fulfill the intelligence requirements of their government. They are persistent in

pursuing that mission, frequently returning to previously compromised networks with

different apparent TTPs. Many organizations are not prepared for this level of

persistence.

The structured nature of APT activity also provides some opportunities defenders

can exploit. Since they are often large organizations, they are subject to the limitations of

large information technology teams, namely the slow evolution of their malware tools

and the predictability of their structured attacker lifecycle.

I use the APT attack model as a model for study in this research because prior

research into APT attackers has yielded important insights regarding the structured

approach many sophisticated attackers use, including modern criminal enterprises and

even some “lone wolf” attackers. While this research was built around the theoretical

8

model of APT detection, the developed approach is applicable to the autonomous

orchestration of security incident response to any modern cyber attacker profile.

1.1.4. Evolution of Malware

One of the main reasons that misuse detection fails is the reliance on matching

static IOCs in malware files, on disk, or in volatile memory. It is trivial for attackers to

change their malware to avoid signature-based detectors and it is done in many ways,

including the following:

• Packers/Obfuscators – Code packers or obfuscators are tools that can

compress, encrypt, or otherwise change the look of a compiled executable

program file. At run-time, the code is de-obfuscated in memory prior to

execution.

• Reconfiguration – Attackers often change the way artifacts of their malware

look when executed during an intrusion to evade static signature detection.

For example, the attacker may change the name of any domains, Internet

Protocol (IP) addresses, Registry keys, or file names used for each attack, but

the malware otherwise behaves the same.

• Evolutionary Development – Malware is written using the same techniques

as legitimate software systems. The tools evolve over time as malware

developers learn new techniques. Each incremental development step helps

evade static signatures developed to detect previous versions.

These phenomena have been observed many times over a long period of time

(Gupta et al., 2009). In their report on the APT1 intrusion set Mandiant (2013) describes

9

the set of malware programs used by the group of attackers over several years. It also

contains lists of domains, digital certificates, IP addresses, and accounts used by the

group. APT1 would use the same malware for multiple attacks, reconfiguring the

programs to communicate with different domains, register themselves as Windows

services with different display names, and use different file and process names. Heavy

use of reconfiguration is one of the factors allowing the group to be successful for so

long.

APT1, among other attacker groups, also practices evolutionary development to

adapt to changes in network defense technology or simply to increase efficiency.

Further analysis of APT1 by Mila (2013) at contagiodump.blogspot.com shows a

timeline of the attacker group’s tool usage from 2004 to 2012, including information on

dozens of samples of malware. The group evolved their tool set slowly over the course

of at least eight years.

These changes in the way malware presents itself on the network and on host

computers made it difficult for signature-based intrusion detection tools to detect attacks

because the attacks can change static information in their malware faster than defenders

can adapt. However, the patterns of behavior change more slowly and with less variance.

Analysis of the IOCs published by Mandiant (2013) shows that APT1 malware

demonstrates clusters of behavior. Subsets of the programs share sets of techniques for

communicating on the network, persisting through a reboot, or storing data on disk. One

example of this is the cluster of malware programs comprised of AURIGA, BANGAT,

SEASALT, and KURTON. While the features of the software changed fairly drastically

10

over time, the main differences in forensic evidence generated by those four tools is the

persistence mechanism used to survive a reboot, the strings used to register as a service or

device driver, and the names of files and Registry keys.

Clusters of malware programs are often called malware families in published

research. Each member of the family incrementally builds on previous versions as they

get detected and become less effective. The Sobig virus (Stewart 2003a; 2003b) is an

example of a malware family. It was used in 2003 in a widespread email phishing attack.

The Sobig virus evolved over five different revisions. Over the course of these revisions,

the author changed how the malware set its expiration timer, where the command-and-

control servers were located, and how encryption was used to improve the effectiveness

of the malware.

Security analysts and network defenders can take advantage of the slow evolution

of behavior in malware families to be more effective in detecting malware and

implementing new security controls. This uses the same methods I employed to train a

knowledge-based learning agent to improve the ability of a CSOC to detect attacks.

1.2. Problem Statement

The fast evolution of malware, increasing number of security events, and

relatively high false positive rates have become problematic for CSOC analysts and

network defenders. This combination of factors has resulted in increases in the number

of successful attacks, the number of attacks that go undetected, and an overwhelming

number of security events for CSOC analysts to investigate. Dealing with this complex

security environment has become very expensive for network defense organizations.

11

The evolution of malware and network intrusion TTPs has allowed attackers to

continue to evade security controls. Despite the tens of billions of dollars spent on

security every year, the number of successful attacks has increased steadily year over

year. According to Symantec’s 2019 Internet Security Threat Report (O’Gorman et al.,

2019), both the volume and sophistication of attacks continues to increase. To make

matters worse, the time required for attackers to compromise a network has gone down

while the time required for defenders to detect the intrusion has gone up. This means that

attackers have a larger window of time to accomplish their goals before detection.

There are several reasons why intrusion detection systems and CSOCs have

remained unsuccessful against evolving malware and TTPs. Most security systems

deployed today are simple rule-based misuse detection systems that rely on a current set

of IOCs to be effective. As TTPs change, the set of IOCs cannot be maintained fast

enough to keep up. Development of IOCs is a complicated process, first requiring

detection of an intrusion, then detailed analysis of the malware and attacker TTPs,

followed by careful development of signatures that can distinguish between legitimate

and malicious traffic. This is typically a time-consuming and manual process, requiring a

highly skilled analyst. Analysis of the rising number of new attacks has caused a

resource strain on network defense organizations. In a large enterprise thousands of

alerts can be reported daily, and most organizations report they are able to investigate less

than 50 in a typical work week (Ponemon Institute, 2017).

The large and increasing number of alerts and the time required for their manual

analysis creates a very complex, expensive, and non-sustainable security environment for

12

network defense organizations where most alerts are not investigated, increasing the risk

to the enterprise.

There has been a lot of promising research into classifier-based intrusion

detection systems (Bhuyan et al., 2014). Network anomaly detection systems based on

neural networks, in particular, have vastly improved the detection rate of new attacks.

However, neural network-based systems still have unacceptably high false positive rates.

They are also limited in their expressiveness. While they can distinguish between

legitimate and malicious traffic, they are unable to articulate how they arrived at a

decision. The inability to do so leaves the analyst with more investigative work.

In order to improve the effectiveness of intrusion detection systems and reduce

the cost of investigating security incidents, CSOCs require improvements in some key

areas:

• Accuracy of a CSOC’s detection of attacks, improving both detection rates for

known and new attacks, and reducing false positive rates;

• Enhancement of CSOC processes to increase the number of security events

that can be investigated per day;

• Rapid development and agility in automation and orchestration in tier 1

incident triage and tier 2 incident response investigations;

• Expressive intrusion detection systems that don’t just detect suspected

malicious activity but provide detailed information to aid in the investigation.

13

1.3. Purpose of Research

The purpose of this research was to determine if a knowledge-based learning

assistant and evidence-based reasoning could be used to increase the effectiveness of

attack detection and improve the efficiency of CSOC operations through orchestration

and automation of security incident response. During this research a prototype

framework for a knowledge-based learning assistant was developed that can respond to

security alerts, use abductive, inductive, and deductive reasoning to hypothesize

intrusions, collect evidence about these hypotheses, analyze them based on the collected

evidence, and present the results to a CSOC analyst to act upon.

The system leveraged a scalable learning assistant platform to process many

simultaneous alert investigations and interface, via a flexible JavaScript Object Notation

(JSON) API, with a mix of commercial, open source, and custom collection and analysis

agents to evaluate the elementary hypotheses. Results of automated analysis were used to

synthesize conclusions regarding the presence of intrusion activity and the scope of the

intrusion. The prototype platform provides CSOC analysts with a flexible environment

to model their expertise in natural and flexible way that can be applied directly to the

enterprise network environment to detect and respond to intrusion activity.

The system addresses critical gaps in the current capabilities and workflow of

modern CSOCs. Leveraging a knowledge-based learning assistant to process security

alerts both reduces the error rate resulting from human operators performing repetitive

investigations and enables CSOCs to scale the system to process every alert, which is

currently infeasible. The system also adds value to existing security infrastructure and

14

threat intelligence services by tying together multiple, diverse, low-confidence security

sensors to provide high-confidence detection using the expertise of security experts.

The prototype system was used to model the methodology a skilled CSOC analyst

would use to investigate a set of known APT malware, specifically the APT1 malware

published by Mandiant (2013). Experiments were conducted to show the system can be

trained to both detect known threats and predict future attacks by the same APT group, as

well outperform similar activity conducted in modern CSOCs. Results of these

experiments are included in this dissertation.

1.4. Research Questions

This research answers several questions regarding the ability of knowledge-based

learning assistants and evidence-based reasoning to accurately model and detect APT

intrusions and increase the accuracy and efficiency of cybersecurity operations centers.

These questions are listed below, grouped into intrusion detection improvement, analyst

support, and performance categories.

1.4.1. Intrusion Detection Improvements

A core goal of this study was to make improvements in the theoretical model used

to detect computer intrusions, specifically those performed by APT groups. Much of the

effort in this research involved creation of a mathematical model, rooted in computational

theory, to accurately detect APT activity through active network monitoring and

automated computer forensics. A primary objective of this work was to determine

whether a knowledge-based learning assistant, using evidence-based reasoning is able to:

15

• effectively fuse evidence from multiple data sources, including host-based

information, network information, and evidence collected from external

sources such as domain registrars, IP address registrars, malware analysis

services, and threat intelligence streams;

• use explicit logic to aggregate weak intrusion indicators into strong ones,

showing clearly all the reasoning steps and the evidence used.

1.4.2. Analyst Support

The functional questions regarding this study concern agent training with subject

matter expertise, ease of knowledge base development, understandability of analysis, and

ease of use by analysts. The study determined that an agent can:

• use mixed-initiative reasoning to assist CSOC analysts in identifying new

attacker TTPs;

• be trained to automatically detect threats based on CSOC analyst expertise

and threat intelligence, such as the Mandiant report on the APT1 intrusion set;

• support the analyst in identifying previously unknown threats, and learn to

automatically detect future intrusion attempts of the newly discovered type;

• exhibit flexible autonomy in its interactions with the CSOC operators, from

being strictly guided by the operators, to mixed-initiative, and to full

autonomy.

1.4.3. Performance

Wherever possible, the attributes of the system were measured through

experimental testing and calculated from observed measurements. In terms of measured

16

performance, this study determined that knowledge-based reasoning with evidence-based

argumentation can:

• improve the detection and false positive rates of intrusion detection systems;

• improve the efficiency of CSOCs by using knowledge of cyber threats to

automate repetitive investigative tasks on behalf of CSOC analysts;

• scale efficiently, meaning the number of alerts analyzed scales linearly with

respect to processing power and storage.

1.5. Research Contributions

This section provides an overview of the theoretical and architectural

contributions produced by this research.

1.5.1. Theoretical Contributions

The theoretical contributions achieved center around development of a theoretical

model allowing for the creation of autonomous agents to detect APTs through learned

security orchestration and automation. More specifically, the theoretical contributions

from this research are:

1. Conceptual modeling of the automatic APT detection process;

2. Ontology design for APT detection;

3. Automatic generation of abductive triggers from basic IDSs (e.g., BRO);

4. Autonomous, hypothesis-driven search for evidence.

1.5.2. Architectural Contributions

Development of a system of agents allowing integration into a wide variety of

CSOC environments in order to collect and evaluate digital artifacts in an autonomous

17

fashion required a substantial amount of design and development. To this aim, the

following architecture contributions were achieved:

5. Selection and integration of multiple, collaborative, search and collection

agents working together to detect and investigate threats;

6. Development of the Collection Manager software for translating and

optimizing abstract searches into searches executable by real collection

agents.

1.6. Importance of the Study

Large corporations, particularly those in the retail, banking, and energy sectors, as

well as government agencies have a vested interested in making their networks more

secure. As discussed above, numerous resources are expended by modern CSOCs to

manually gather and analyze data in response to both true positive and false positive

security alerts. In both cases, the investigative and analytical work is repetitive because

the breadth and scope of responses are finite. Automating much of that repetitive work

with a knowledge-based learning assistant and evidence-based reasoning will free CSOC

analysts to pursue other important security tasks such as intelligence analysis, threat

hunting, and improving network security posture.

The Center for Strategic International Studies estimates that the net annual net

losses to the global economy due to cybercrime are more than $400 billion (Center for

Strategic International Studies, 2014). Cybersecurity Ventures estimates that

cybersecurity will be a $155 billion market by 2019 (Cybersecurity Ventures, 2015). As

18

security budgets rise, an effective and efficient CSOC will be a competitive advantage.

Resources saved on security can be used to fund the profit centers of the organization.

This research successfully determined that much of the repetitive and analytical

work can be automated by a knowledge-based learning assistant, which can learn from

observing how skilled CSOC analysts respond to security events, increasing the

efficiency of CSOCs, improving detection and false positive rates, and enabling CSOC

analysts to pursue more creative and rewarding tasks.

1.7. Scope of the Study

Intrusion detection is a very large topic. With the emergence of mobile platforms,

embedded systems, and operational technology (OT) systems – including manufacturing,

building controls, and other industrial control systems – there are dozens of potential

platforms, techniques, and attack surfaces that can be explored. The threat space is also

very large. Attacker motivation and skill varies wildly and there are hundreds of

thousands of malware variants discovered in the wild. It would be unreasonable to

attempt to build a system to cover all intrusion detection problems. In order to produce

usable research results in a reasonable amount of time, the scope of the project must be

limited. This section describes the scope of the research project and the reasoning behind

its scope limitations.

1.7.1. Knowledge-Based Learning Agent Shell

Ideally, a system that learns from demonstration by a subject matter expert (SME)

would be able to observe the same intrusion detection events as the SME, watch

everything they do in response to the event, analyze it to determine the effectiveness of

19

each action and learn from each demonstrated intrusion investigation to develop

applicable rules and patterns. Unfortunately, such a system would have required

development of a substantial number of auxiliary technologies that do not directly

support the stated goals of this research.

Instead, the research was conducted using a more controlled environment: the

Disciple knowledge-based learning agent shell. Disciple is a tool developed and

supported by the Learning Agent Center at George Mason University’s Volgenau School

of Engineering. It is a Java-based learning agent platform that facilitates creation of

purpose-built knowledge bases and learning agents covering a wide variety of subject

matter areas. Disciple allows subject matter expertise to be modeled in the form of easily

understandable reasoning trees, using natural language description. Problems can be

generalized by utilizing well-defined ontologies. Disciple’s ability to elegantly handle

the difficult aspects of creating a knowledge-based learning agent with evidence-based

reasoning enabled a focus on modeling the intrusion detection and investigative processes

and developing the required data stores and collection agents to support this research.

1.7.2. Operating System Environment

The software systems used in this research were developed for Microsoft

Windows operating systems. Due to sustained market dominance, Windows computers

are the primary target of computer intrusions and the vast majority of malware is

developed to target Windows (Symantec, 2015). To have the largest potential impact, it

made sense to develop a prototype system for Windows.

20

1.7.3. Attacker Profile

This research project focused on detecting APT type intrusions into enterprise

networks. APT is loosely defined as sets of well-funded and well-organized actors who

gain and maintain access to sensitive computer networks for long periods of time,

exfiltrating intellectual property, personally identifying information (PII), and other

sensitive records to fulfill their organization’s mission. APT was chosen as the target

attacker profile because it has become a serious problem for network defenders in the last

several years. As such, there was ample finished analysis of APT TTPs to facilitate

development of a knowledge-based learning assistant capable of detecting APT activity.

1.8. Limitations

While this research involved a flexible solution applicable to a wide variety of

investigative and analytical problems in intrusion detection and security incident response

orchestration, there were limitations to the research. This section discusses identified

limitations of the research, alternative approaches, and steps taken to mitigate those

limitations.

Ontology-based systems carry an authorship burden, as the system can only

reason about the concepts and facts it is aware of. Creation of a large, comprehensive

ontology can take an extensive amount of time. This challenge was overcome in two

ways. First, there is a fair amount of research published research into security

taxonomies and ontologies. These were used where applicable. Second, because the

focus of this research was to create an agent capable of intelligently responding to

security alerts by conducting autonomous intrusion investigations, the ontology was built

21

incrementally as concepts required by the cognitive agent were discovered via research

into APT malware and TTPs. This limited the scope of the ontology and relieved the

authorship burden.

Intrusion detection requires analysis of multiple types of evidence, including

captured network traffic, network flow data, volatile memory, Registry keys, executable

binary files, data files, logs, and other non-volatile hard disk artifacts in a wide variety of

formats. While it is possible to automate much of this analysis given sufficient time and

resources, it is infeasible to automate all possible types of analysis. An example of this is

live memory capture. Available tools for capturing volatile memory are often expensive,

error prone, and difficult to use over the network (Ligh et al., 2014). For this research

project, the priority was to automate analysis of data types applicable to the most possible

use cases and the largest set of malware in the training and test data sets.

There are no standard data sets for testing hybrid network-based and host-based

intrusion detection systems. Most network-based intrusion detection systems use the

DARPA 99 data set (DARPA, 1999) or one derived from it. Host-based systems and

hybrid systems such as DIDS (Snapp et al., 1991) have yet to settle on a standardized

dataset for testing. As such, a new data set was created for this research that includes

APT malware samples, published analytical research, and IOCs. Since the training and

test data sets for machine learning are a critical part of algorithm development, the

research was limited by the assembled data set.

Subject-matter expertise was also a limiting factor for this research. System’s

performance is heavily dependent on the quality of expertise the system is modeled after.

22

While I was able to develop a knowledge-based learning assistant that uses evidence-

based reasoning to accurately model one SME’s analytical approach, there likely exist

analysts with different knowledge and experience, and therefore other effective ways of

investigating, analyzing, and detecting intrusions. The intent of this research was not to

create the best possible agent, but to demonstrate that the knowledge-based approach is

effective for modeling and automating the investigative and analytical tasks of CSOC

analysts.

Lastly, issues regarding secure collection of data from compromised computers

was outside the scope of this research. Sophisticated attackers routinely use techniques to

hide the presence of their malware by overriding system calls, either by hooking exported

functions in user-mode dynamic-linked libraries (DLLs) or by hooking calls in various

system call tables in the operating system kernel (Hogland & Butler, 2005). The

problems related to collecting accurate data from an operating system compromised with

one of these techniques is well-known and, in some cases, commercial products exist to

help reveal these techniques or allow secure data collection. Wherever possible during

this research project, best practices were followed regarding collecting evidence from

workstations. However, novel solutions to this problem are outside of the scope of this

research.

23

2. RELATED WORK

Intrusion detection is a broad, multi-disciplined area of computer security, the

complexity of which is limited only by the knowledge, skill, and creativity of both

attackers and defenders. Attackers have learned to exploit almost every aspect of

operating systems, leverage exploits in network protocols, and take advantage of

weaknesses in human operators. Likewise, successful defenders must become experts on

operating systems, networks, forensics tools, scripting languages, and the specific TTPs

used by attackers as they evolve their craft. Due to the speed at which attacks happen,

most of them are discovered after the fact by incident responders and forensic analysts

(Verizon, 2014). As such, knowledge about intrusions is accumulated relatively slowly.

As repetitive tasks are identified or new technologies emerge, analysts and developers

create tools to automate the detection of known threats, increasing over time the security

posture of computer systems.

This chapter provides a review of academic research to understand the methods

used in the past to detect intrusions into computer networks by external attackers and the

strengths and weakness of those approaches. By examining those topics, research gaps

were identified which were addressed by this research. These topics will be addressed

through a thorough review of the state-of-the-practice and state-of-the-art in automated

intrusion detection. It will describe the major sub-topics in intrusion detection, the types

of data that must be examined to detect intrusions, architectural trade-offs in IDS design,

and datasets used to evaluate intrusion detection systems. A brief overview of machine

24

learning (ML) techniques will then be provided, along with recent developments in

applying ML to various intrusion detection problems.

2.1. Cybersecurity Operations Centers

In organizations with large networks, the job of computer network defense (CND) has

been consolidated within a CSOC, which contains the tools, expertise, network visibility,

and authority to monitor, detect, and react to security events (Zimmerman, 2014). While

they can vary in size, scope, and specific construction, they generally have a workflow

similar to Figure 1.

Figure 1 CSOC workflow

The Cyber Threat Intelligence component is responsible for understanding the

network environment and the threats to it. Its responsibilities include actively monitoring

threat intelligence reports to understand trends in attack methodology. Intelligence

reports are published as subscription feeds by security companies including FireEye

25

(2015), Symantec (2015), and iSIGHT Partners (2015). By monitoring, analyzing, and

fusing information in these reports with information from the internal network, the CSOC

intelligence component can effectively deploy and tune security infrastructure.

In sophisticated CSOCs, the Cyber Threat Intelligence component operationalizes

threat intelligence using a Threat Intelligence Platform (TIP). Intelligence analysts

examine incoming intelligence for relevance and accuracy and deploy curated sets of

IOCs to sensors and the security information and event management system (SIEM) for

use in threat detection. When security sensors match an IOC against collected data, a

security alert is sent to the SIEM for correlation.

At the center of a CSOC is its SIEM, which is responsible for storing logs and

network configuration information (Zimmerman, 2014). The SIEM is the central tool

used by analysts for organizing, tracking, and analyzing the information needed to

identify and respond to attacks. The databases can be in the form of object storage,

relational database, or flat storage, although a recent trend is to use unstructured storage

databases like Splunk (2015) and Elasticsearch (2015). Analysts use the SIEM for

correlation analysis, combining multiple alerts and raw logs to generate potential

incidents that must be further examined.

Tier 1 analysts are responsible for validating potential incidents using the

historical data stored in the SIEM, along with open source information and external data

sources. The main objective of Tier 1 analysis is to quickly determine if a potential

incident is a false positive or a true detection requiring triage analysis by a Tier 2 analyst.

26

Tier 2 analysts are more experienced in analysis and perform incident triage to

quickly answer a few key questions about a validated incident:

• Can they confirm the analysis performed by the Tier 1 analyst?

• If it is a real security incident, what is the scope of the attack?

• Is it possible to quickly recover from the attack?

By answering these and other questions, the Tier 2 analyst will determine if they

can remediate the attack or whether Tier 3 incident response is required.

Tier 3 analysis is often called Incident Response. Tier 3 analysts have a high

level of expertise in incident investigations and are responsible for conducting in-depth

analysis and forensics when an incident happens. They perform costly and time-

consuming analysis of network data, logs, disk images, malware, and copies of volatile

memory. This analysis is done with a wide variety of commercial and open source tools.

The results of this analysis determine the response from the organization, law

enforcement, or outside parties.

While the CSOC infrastructure provides a robust set of tools for data analysis, it

still has limitations. Most of the analytical work is done manually or automated with

simple scripts. In a large enterprise, thousands of alerts can be reported daily, and most

organizations report they are able to investigate less than 50 in a typical work week

(Ponemon Institute, 2017). Therefore, even sensors with a false positive rate of one

percent may have enough missed detections and false positives to be unmanageable by

even mature CSOCs. Increasing the efficiency and accuracy of Tier 1 and threat

27

intelligence tasks could drastically lower the cost of running a CSOC and reduce risk to

the organization.

2.2. Overview of Intrusion Detection Concepts

An intrusion attempt is a deliberate attempt to gain unauthorized access to a

computer system or network to compromise its confidentiality, availability, or integrity

(Sabahi & Movaghar, 2008). The confidentiality is the property of a system which

ensures information be accessed only by those persons or entities explicitly authorized to

do so. A compromise of this property often manifests itself in the form of intellectual

property, financial information, or PII being stolen from a computer network. Denial of

service (DoS) and distributed denial of service (DDoS) attacks impact the availability

property of a system, consuming more resources than a system has or exploiting a defect

to make the system unavailable to its intended users. Integrity is the property of a system

assuring that data stored on it remain in the state it was intended. An integrity

compromise might involve changing key words in a contract to change its meaning or

modifying bank account records to facilitate theft (Zevin, 2009).

In general, there are two venues for intrusion detection, defined by where an

analyst or automated tool must look to identify the intrusion. Host-based intrusion

detection systems (HIDS) attempt to detect unauthorized access by examining programs

running on computer or searching for artifacts in memory or non-volatile storage.

Desktop anti-virus programs are the most commonly used HIDS. They use static

signatures, heuristics, and machine learning to identify attack tools as they are written to

and read from hard disks. Network-based intrusion detection systems (NIDS) detect

28

intrusions by examining network data in real-time or stored in a database. The goal of a

NIDS is to detect intrusion attempts, in near-real-time or real-time, before the attackers

successfully compromise hosts. Rare, but not uncommon, are hybrid intrusion detection

systems that fuse both network-based and host-based information to more effectively

detect intrusion activity.

Intrusion detection systems are typically evaluated using three metrics: detection

rate, false positive rate, and the receiver operating characteristic (ROC) curve (McHugh,

2000).

Figure 2 Receiver operating characteristic curve

The detection rate is the percentage of real attacks that are detected by the system.

The false positive rate is the percentage of events incorrectly flagged as attacks. The

ROC curve is a plot of detection rate versus false positive rate. Figure 2 shows an

D
et

ec
ti

o
n

 R
at

e

0 False Positive Rate

100

100

29

example of what a ROC curve looks like. It can be difficult to quantitatively compare

ROC curves. Instead, they are often visually compared, with the curve of superior

performing systems lying to the upper left of the curve of an inferior system.

2.2.1. Cost Management in the CSOC

A major factor of CSOC operations is the tradeoff between security value and

cost. The costs of operations can be measured in terms of money required to purchase

security infrastructure and hire staff, as well as the time required to implement and

maintain security controls and threat detection. Since no security system can be perfect

at defending against attacks, CSOC managers must decide how many resources to apply

based on the value of the assets being protected and the overall assessed risk to those

assets.

To manage costs effectively, a CSOC must effectively balance use of automated

and manual analysis. Automated analysis, typically in the form of host-based or

network-based threat detection systems, is used to quickly detect known threats or

identify anomalies for further investigation by human analysts. As discussed above,

automated systems are measured by the ROC curve. Automated systems are employed as

much as possible because they scale well and, compared to human analysts, are low in

cost. In a sense, automated systems are designed to cover the area under the ROC curve,

as shown in Figure 3.

30

Figure 3 Cost management using the ROC curve

To address gaps in the detection and false positive rates of the CSOC security

infrastructure, manual analysis is employed. Effectively, manual analysis is responsible

for the area above the ROC curve. Human analysts follow up on alerts generated by

automated analysis to verify their correctness prior to taking action. They are also

sometimes employed at “threat hunting,” where human analysts leverage their experience

and knowledge of threats to manually search through all available data to look for attacks

missed by automated analysis. Manual analysis can reduce the overall false positive rate

of the CSOC and find new attacks but is very costly and does not scale well.

A common strategy in managing the cost of CSOC operations is to evaluate the

cost of tuning automated analysis infrastructure to maximize detection rates (below the

ROC curve) and the cost of manual analysis to address missed detections and false

31

positives (above the ROC curve). Once those costs are understood, a CSOC manager can

make informed decisions in balancing the two halves of their operation to minimize cost.

2.2.2. Misuse Detection Systems

Misuse detection is the most common technique in existing intrusion detection

systems. These techniques are designed to use knowledge of a threat, usually encoded in

the form of static signatures, to detect known threats. These signatures, often referred to

as IOCs, come in three types, as described in (Hutchins, et al., 2011):

• Atomic – Distinct indicators that cannot be broken down into smaller

components

• Computed – Indicators derived from threat data, including hashes, regular

expressions, and anti-virus signatures

• Behavioral – Collections of atomic and computed indicators, often tied

together with combinatorial logic

While NADIR (Hochberg et al., 1993) was one of the first automated misuse

detection systems, many have been created since. SNORT (Northcutt, et al., 2007) and

BRO (Paxson, 1999) are two common network-based intrusion detection systems that

detect misuse on a network. Most desktop anti-virus programs also fall into this

category. These systems operate by loading them with signatures, or indicators, of

malicious activity and are built to look through network- or host-based data for items

matching those signatures. They are popular because they are easy to implement, and the

indicators are easy to share. The general weakness of misuse detection is the inability to

32

detect new threats, although they have a high detection rate for known threats (Kemmerer

& Vigna, 2002).

Beyond the simple use of static signatures to detect computer system misuse

based on simple events, there has been much research into better mechanisms for creating

complex event signatures. Lin et al. (1998) developed a system whereby abstract simple

event signatures were used and reasoned with based on the context of the system objects

they operated on. The misuse signatures – or MuSigs – developed from their research,

were designed to deal with situations where system objects could have multiple aliases

that changed over time. By tracking the history of events on the system, MuSigs could

provide more accurate detection of system misuse. Meier (2004) added enriched simple

signatures with semantics about the system being protected. While his research was

constrained to the domain of active databases, the concepts are applicable to other

domains. Naldurg et al. (2004) presented a formalization and language for reasoning

about temporal logic. The language can correlate events over time and is best applied to

the types of attacks that are distinguishable from normal use activity using temporal

information.

Many improvements on misuse detection systems came in the form of improved

attack languages. Attack languages combine atomic, computed, and heuristic IOCs into

intuitive formal languages that can be used by a software system to detect intrusions.

(Vigna et al., 2000) defined six different categories of attack languages:

• Event languages are the basic input for analysis. They describe atomic

events that occur on a system.

33

• Response languages describe actions to be take in response to an intrusion.

They describe modifications to the systems security controls to change its

security posture.

• Reporting languages are used to describe output formats for alerts and logs

of security events.

• Correlation languages are used to fuse alerts from different detection

systems in order to gain a higher-level understanding of security events.

• Exploit languages describe the steps taken by an attacker during an intrusion.

• Detection languages describe the manifestation of an attack and are used by

intrusion detection systems to create detection rules.

STATL (Eckmann et al., 2002), SHEDEL (Meier et al., 2002), P-BEST

(Lindqvist & Porras, 1999), as well as the popular NIDS software systems Bro and Snort,

are examples of systems that leverage detection languages to detect misuse in networks

and computer systems. Over the years, there has been other research into attack

languages for graph-based detection of intrusion events (Staniford-Chen, 1998),

describing distributed patterns (Krügel & Toth, 2002), and detecting attacks involving

multiple systems (Vorobiev et al. 2008).

Misuse detection systems are useful for detecting known attacks because they can

be programmed intuitively, the rules can be derived directly from intrusion analysis work,

and the rule sets can be shared between organizations to spread intrusion detection

knowledge and capability. Misuse detection systems have a high detection rate against

known attacks. However, misuse detection systems are generally incapable of detecting

34

unknown threats. If a new intrusion technique is not identified by the rule set, then no

alert will be triggered.

2.2.3. Anomaly Detection Systems

In contrast to misuse detection systems, anomaly detection systems build a

mathematical model of what normal behavior looks like, then use that model to detect

abnormal behavior, or anomalies. In an anomaly detection system, the detection engine

is trained using labeled or unlabeled data from a training set using a wide variety of

mathematical models. Once trained, the anomaly detection system works by gathering

data from live hosts or the network, processing that data through the trained mathematical

model, and detecting events that are recognized as anomalies (Bhuyan, et al., 2014).

In the context of intrusion detection, an anomaly detection system is a classifier-

based machine learning system that examines security-related information to determine if

suspicious activity is present. Such systems typically have the following components:

• Raw input data – this is the data, either in the form of training data sets or

real-time data that may or may not contain malicious activity.

• Proximity measures – Statistical measures that take pairs of data objects and

return a numerical value that is greater the more the two objects are alike

• Labeled data – A set of data annotated with information denoting, for each

record, whether it is normal or anomalous

• Classification method – Depending on the availability of labeled data, this is

either a supervised (there exists a labeled training data set), semi-supervised

35

(there is only training data for normal class of data), or unsupervised (no

training data required)

• Feature selection – A method of selecting which parts of the data will be

used in the classification algorithm

• Reporting method – The output when an anomaly is flagged, which typically

includes a score or label, depending on the classification method

In a network-based anomaly detection system, the raw input data consists of

captured network data, in the case of training data, or live network traffic monitored in

real-time, during active anomaly detection. The most common data set used for network-

based anomaly detection is the KDD Cup data set published by DARPA in 1999 for

evaluating network intrusion detection systems (DARPA, 1999). Analysis of this data set

(Tavallaee et al., 2009) reveals that this data set includes approximately 4,900,000

network connections labeled as either normal or an attack. There are four categories of

attack present in the data: Denial of service (DoS), where the intent is to reduce the

availability of the network system or service; User to root (U2R), where the attacker

attempts to elevate privileges; Remote to local (R2L), where the intent is to gain remote

access to local resources on a machine; and Probing attacks, which gather information

about a system to learn how to circumvent security controls.

In addition to describing the methods used, Bhuyan, et al. (2014) highlighted the

overall strengths and weaknesses of network anomaly systems. In general, these systems

were judged to exhibit high performance and were capable of real- or near-real-time

detection of anomalies, had reasonable detection rates for known attacks, and were

36

capable of detecting unknown attacks. However, the vast majority of network anomaly

detection methods reviewed had high false positive rates. These systems used network-

only datasets, ignoring data from internal and external hosts that could improve detection

rates or reduce false positive rates. As such, most anomaly-based network intrusion

algorithms are inadequate by themselves and would be more effective if incorporated into

a system of algorithms that can exploit their strengths and minimize their weaknesses.

Host-based anomaly detectors work in much the same way as network-based

systems, except they examine different types of data, to include system call traces, audit

log data, and command-line information (Yeung & Ding, 2003). Although there is ample

information on hosts – API call patterns, event logs, disk access patterns, memory usage,

etc. – to train an anomaly detection engine, there is not much research into host-based

anomaly detectors to date.

2.2.4. Hybrid Systems

In some cases, there can be advantages to combining techniques to build a

stronger system. The hybrid system can combine host- and network-based detection or

anomaly and misuse detection (or some combination of all four) to make a system that is

more accurate than each of the component parts individually. Some examples of this

type of system are described in this section.

Depren et al. (2005) created a hybrid network-based IDS that uses both an

anomaly detector and a misuse detector, running in parallel. The anomaly detector used a

self-organizing map (SOM) algorithm, and the misuse detector used a decision tree

algorithm. The input to these systems was network data from the KDD99 dataset. The

37

output was sent through a rule-based decision support system (DSS), which was

responsible for making a final decision on whether a specific network packet was

malicious or not.

DT-SVM (Peddabachigari et al., 2007) combined decision trees and support

vector machines in a hybrid learning approach to network-based anomaly detection. The

system prototype was very limited, but it was successful in detecting some classes of

attacks from network data.

Although some improvement to detection or false positive rates can be achieved

by mixing and matching different types of detection techniques, the research reviewed

offered only incremental gains.

2.2.5. Ontology-Based Intrusion Detection Systems

Research into using ontologies for security began as an evolution of research into

taxonomies, which are hierarchical structures for classifying things in a topic area.

Taxonomies in computer security work in the same manner as the classification of plants

and animals. The taxonomy is a tree structure of mutually exclusive concepts and sub-

concepts, with leaf nodes consisting of buckets where individual items that fit the

category are placed. They are useful for understanding the depth and breadth of a

research topic.

There have been taxonomies published with relevance to many computer and

network security topics. Research spanning a decade described taxonomies for software

security flaws (Landwehr et al., 1994; Aslam et al., 1996; Weber et al., 2005). Hansman

& Hunt (2005) developed a taxonomy of network and computer attacks. Igure &

38

Williams (2008) published a taxonomy of attacks and vulnerabilities in computer

systems. Lindqvist & Jonsson (1997), building on prior research, refined a taxonomy of

computer security intrusions. None of these taxonomies are relevant to the problem of

detecting APT intrusions.

The most relevant taxonomy research was published by Killourhy, Maxion, and

Tan. In their paper “A defense-centric taxonomy based on attack manifestations”

(Killourhy et al., 2004), they describe the creation of a system to test attack techniques

versus known vulnerable programs and simulated a series of attacks. After examining the

artifacts and IOCs resulting from this testing, they created a defense-centric taxonomy

with a focus on how the attacks manifested themselves in the system from a network

defender's point of view. The taxonomy was then used to predict whether or not an IDS

would be able to successfully detect the intrusion based on the attack sequence's

distinguishability from normal traffic.

While these taxonomies, the research by Killhourny et al., in particular, provided

some structure to the computer security and intrusion detection research spaces, it

became clear that they were not expressive and detailed enough to describe the domain

knowledge and reason about it. This realization lead to research into ontologies.

Gruber (1993) defines an ontology as an explicit specification of an abstract,

simplified view of the world that is to be represented for some purpose. Formally, it

consists of sets of concepts (C) and attributes (A), a hierarchy of concepts (H), and a set

of semantic relations (RT).

Equation 1 Ontology

𝑂 = {𝐶, 𝐴, 𝐻, 𝑅𝑇}

39

While there is some variation to this general model, an ontology formalized in this

way is sufficient for representing the required elements of a knowledge base (Colace et

al., 2012).

Undercoffer et al. (2003) as well as Raskin et al. (2001) argued that taxonomies

are insufficient for use in an intelligent IDS. Taxonomies organize information and

concepts with the goal of classifying them. However, they do not provide a knowledge

representation of a field of study, as ontologies do. Because an ontology is a formalized

knowledge representation of a topic area, it can allow a machine to reason about a

collection of data by applying the concepts represented in that knowledge base.

Security-related ontology research first developed from research into the

Semantic Web. Two review efforts from Gomes et al. (2009) and Blanco et al. (2008;

2011) provide an overview of security ontology development. Early security ontologies

were used to describe many security-related domains, including the following:

• Sharing access control information and normalizing database schemas to

facilitate inter-organizational database sharing (Mitra et al., 2006)

• Describing computer and network attacks (Vorobiev et al., 2008)

• Defining and describing the trust relationships and security properties of

Semantic Web services (Denker et al., 2003; 2005)

• Firewall-based access to Semantic Web services (Ashri et al., 2004)

• Assisting in security operations (Tsoumas & Gritzalis, 2006)

• Describing security incidents (Martimiano & Moreira, 2005)

40

• Describing authorization and privacy policies for semantic web services

(Kagal et al., 2004)

Other efforts to create security ontologies have been published, but were not

included in the review of Gomes, et al. (2009), only some of which are useful in

informing creation of an ontology for this research.

Schumacher (2003) published a core ontology for security, which contains a small

number of key security concepts and relationships. While small, this ontology or

variations of it appear to be a central component of many of the ontologies described in

this section.

Fenz & Ekelhart (2009) describes a security ontology designed from the

perspective of a security manager who needs to identify vulnerable assets and identify

security gaps in their infrastructure. While it appears comprehensive in that regard, it

does not incorporate any of the operational concepts and relationships required for

automated intrusion detection and network forensics.

García-Crespo et al. (2011) outlines an ontology for adding access controls to

semantic web applications.

An Wang et al. (2010) created an ontology that allows software vendors, security

researchers, and tool developers to reason about vulnerabilities and countermeasures to

avoid or remediate them.

The STUCCO project (Iannacone et al., 2015) includes an ontology intended to

represent knowledge, from multiple information databases with differing formats, in one

cohesive knowledge base. It represents knowledge about attackers, hosts, the software

41

packages running on them, and other information valuable to security practitioners in

identifying attacks and vulnerable systems. While this ontology has a solid foundation, it

does not represent many key concepts relevant to detection of APT-style attacks.

OntoSec (Martimiano & Moreira, 2005; Martimiano & dos Santos Moreira, 2006)

is a security incident ontology developed with the goal of describing security incidents.

It is similar in structure to the ontology developed by Undercoffer et al. (2003). Like that

ontology, it does not contain concepts sufficient to represent the knowledge and expertise

of a CSOC analyst. Specifically, it lacks knowledge of the internal network, digital

forensics concepts, and knowledge of APT TTPs.

While many of these ontologies were useful in achieving the goals of the projects

they were developed for, there are not sufficient for describing, in detail, knowledge of

the security domain required to reason about APT activity and create a robust automated

intrusion detection agent. Researchers from the MITRE Corporation were the first to

outline the knowledge requirements for such an ontology (Obrst et al., 2012). A security

ontology must be able to represent the properties of malware, languages for describing

security incidents, attack patterns and process models including the attack kill-chain

(Hutchins et al., 2011), persons and groups, time and geospatial information, events and

situations, and network operations. Their research was formalized in the form of the

CybOX schema (MITRE, 2015) and the emerging STIX format (Barnum, 2014).

Building on this research into security ontologies, several systems were developed

that use ontologies to perform relevant security tasks, including intrusion detection,

network forensics, or security event correlation.

42

One of the earliest systems built with this design was created by Undercoffer and

his colleagues (Undercoffer et al., 2003b; 2004). They created an ontology to describe

attacks based on information that the attack target would be able to observe during the

attack. The ontology was created based on analysis of over 4000 attacks and was created

using the DARPA agent markup language (DAML) and implemented using a Java-based

knowledge base and agent shell (DAMLJessKB). The system was used in a distributed

IDS where each host had its own anomaly-detection IDS, with coalitions of host IDS's

sharing an ontology and knowledge base. The goal of the system was to reason over

events triggered by the IDS's running on individual hosts to DDoS attacks. While this

system was successful in detecting a specific DDoS attack, it is limited to real-time

detection of attacks based solely on network traffic analysis. It did not have the ability to

use host-based information or to detect the intrusion after it has occurred.

Abdoli & Kahani (2008; 2009) created a distributed IDS that utilizes an ontology

and standard messaging format to analyze intrusion reports from host-based network

intrusion detection systems to determine if they are true positives or false positives, or if

similar intrusion activity was seen on other machines in the network. As an early

example of this type of system, it provides a foundational design for more comprehensive

ontology-based IDS's. However, it has some key limitations. While it uses host-based

sensors, it only looks at network traffic and not at memory- or disk-based artifacts on the

host computer. It does correlate events from multiple systems but does not go as far as

collecting further information that could aid in determining if the alert is a true or false

43

positive. Finally, it does not incorporate the intrusion kill chain or information about

attacker methodology that is useful in determining the scope and severity of the attack.

Vorobiev et al. (2008) outlined an ontology and ontology-driven distributed IDS

designed to detect simple distributed attacks. The ontology described in this paper

reduces to an attack language for detecting attacks comprised of events involving

multiple computers. While it may be useful for describing distributed attacks, it is

unclear how the system would use the ontology to reason about events to detect attacks

either in real-time or after the fact. Further, the ontology includes no information about

the network being protected by the distributed IDS, which would facilitate reasoning

about the feasibility of attacks succeeding and removing false positives.

Hung & Shing-Min Liu’s system (2008) uses the DAML+OIL security ontology

to describe the intrusion detection strategy at an abstract level, without specific

knowledge of the underlying network and security infrastructure. It maps the concepts

from this intrusion detection strategy onto specific security and network primitives used

in the network the intrusion detection system will protect. Then, the DAMLJessKB

expert system shell (a Java-based expert system shell) is used to describe forward-

chaining reasoning rules to detect specific attacks.

Isaza et al. (2009a; 2009b) created an intrusion detection and prevention system

that models attack signatures and prevention actions using an ontology. It then leverages

multiple techniques, including neural networks, K-means clustering, and support vector

machines to detect intrusion activity. The system was tested using the DARPA KDD99

dataset. This system does not incorporate host-based intrusion artifacts or evidence-

44

based reasoning into its learning model. As such, it is best suited for classifier-based

detection of malicious network events. Also, given its use of the outdated DARPA

KDD99 dataset, its relevance to modern attacks is limited.

uCLAVS (Martinez et al., 2010) is a cloud-based system that uses multiple

antivirus engines to scan potential malware. This system uses an ontological approach to

marry the antivirus results with data from other types of sensors, including firewalls and

captured network traffic. The ontology in this system is used to define attack signatures.

The system does not use a learning approach. Instead, the ontology is used to create

more complex rules than would be possible in a normal rule-based antivirus system.

Further, uCLAVS does not examine any host-based artifacts when determining if a file is

malicious or not. It makes its determination purely based on the contents of the file and

network-based data.

Li & Tian (2010) present an architecture for an ontology-based system to

correlate alerts from multiple types of security sensors, including network- and host-

based sensors. The aim of the system is to correlate many atomic alerts to describe a

larger attack on the system. While this paper describes similar architecture to other

systems of its type, it is unique in that it uses a formal security state model to track the

security of the system. The system does not incorporate learning or evidence-based

reasoning in its approach and limits what goes into the knowledge base to alert

information collected from host- and network-based sensors. It does not collect

amplifying information useful in increasing accuracy of intrusion alerts.

45

Saad & Traore (2010a, 2010b) have conducted significant research into ontology-

driven systems. They describe an ontology designed specifically to aid in automated

computer and network forensics. Their ontology contains 111 concepts, as well as a

collection of binary and n-ary relations between those concepts. The ontology supports

deductive, abductive, and inductive reasoning. Its unique contribution is its model of

multi-stage attacks. Saad & Traore's ontology can understand the different phases of an

attack and use that knowledge to drive acquisition of forensic evidence. While this

approach is similar to the approach described in this research proposal, it does not go as

far. My approach models the APT group's multi-stage kill chain to drive the collection of

forensic evidence to support intrusion detection. While their ontology appears to

adequately cover concepts related to attacks, at a basic level it does not incorporate

formalized information regarding the internal network and assets that are being protected

or concepts required to reason about information obtainable by examining external data

sources (Domain Name System (DNS) records, network location, or geolocation), or

threat intelligence feeds. These sources of information, and the ontological concepts that

are encompassed by them, did not mature until after the research was published.

In a follow-up paper (Saad & Traore; 2011), they proposed a method to aggregate

multiple IDS alerts through semantic analysis to create meta-alerts. The method relies on

an intrusion detection domain ontology and groups alerts together based on semantic

similarity using a simple algorithm. The method only considers network-based

information and was evaluated using the DARPA99 data set.

46

Later systems built upon this work to develop methods for extracting an attack

scenario from a large volume of alerts by correlating the alerts based on semantic

similarity (Ahmed, 2014; Saad et al., 2014). These systems are designed to identify the

steps taken by the attacker during the attack. It does not incorporate any learning

techniques and focuses solely on network-based data for alerts.

Colace, et al. (2012) developed a system that uses multiple ontologies describing

attacks, effects, actions, and the environment, to facilitate a slow intelligence approach to

increasing the accuracy of an intrusion detection and prevention system. In principle, the

ontological approach taken by Colace and his colleagues is similar to my research

project. However, their system only examines network data processed by the Snort IDS

and uses a Bayesian network for its learning approach. Additionally, this system is

focused on specific attack types and was tested using attacks from the BackTrack

penetration testing tool set. It does not incorporate knowledge of APT methodology and

techniques.

A system described by More et al. (2012) uses a knowledge-based architecture

with three major components - a set of data streams, a knowledge-base, and a reasoning

algorithm. The data streams include network- and host- based logs and sensor data. The

knowledge-based reasoning engine leverages an attack language built using an extended

version of the ontology proposed by Undercoffer. The knowledge base is built using a

series of OWL assertions. The reasoning algorithm infers the existence of an attack by

comparing information from the data streams to assertions in the knowledge base. The

system was able to detect a buffer overflow attack in Adobe Reader.

47

Finally, Salahi & Ansarinia (2013) describe a model whereby attacks are

predicted by reasoning over ontological concepts. Their ontology was built by

incorporating concepts and knowledge from multiple taxonomies, including Capec,

CWE, and CVE. The approach focuses on a simplistic attack model, whereby an attack

consists of an attack pattern defining the properties of a single attack, a set of weaknesses

causing attacks to happen, and vulnerabilities. Reasoning is done via OWL triples. The

system does not yet incorporate learning, but the authors proposed using machine

classification in future research.

2.3. Forensic Methods: Investigating the Attacker Lifecycle

When a security incident is generated by an intrusion detection system, it is sent

to an analyst in the CSOC, who is responsible for determining if it is a true detection or

false positive, understanding the severity, scope, and scale of the attack, and executing

containment, remediation, and recovery actions. This part of the CSOC process is called

Incident Response (IR) and is primarily driven by collection and analysis of digital

forensic artifacts.

At a high level, the IR process follows a structured analytical approach (see

Figure 4) whereby the analyst begins with one or more investigative hypotheses,

determines a plan to collect evidence to support or refute those hypotheses, based on their

knowledge of attacker methodology, possible locations of relevant evidence, and

available collection tools, executes the collection plan, and then analyzes the evidence to

synthesize conclusions as to which, if any, of their hypotheses were likely to be true.

48

This final step often leads to additional hypotheses, leading this to be a cyclical process

ending when all remaining hypotheses are addressed.

Figure 4 Incident Response Process

These processes are driven by both the investigator’s knowledge of specific attack

methodologies, as well as the attack lifecycle. There have been a few efforts to create

abstract models of the process APT actors use to conduct hacking activity. The two most

noteworthy are the Kill Chain model developed by researchers at Lockheed Martin

(Hutchins et al., 2011), which identifies seven phases of an attack, and the

Mandiant/FireEye Attack Lifecycle (Mandiant, 2013), consisting of eight phases. In the

time since those two models were published, there has been much research into APT-

style attacks, revealing more granular detail about the phases of the attacks.

Generate
Hypotheses

Determine
Evidence

Collection Plan

Collect
Evidence

Synthesize
Conclusions

49

For this research, we used a nine-step attacker lifecycle based on the

Mandiant/FireEye model. Each step of the attacker lifecycle is a discrete step in the

overall process APT actors use to gain unauthorized access to victim networks, find and

gather information of interest, and exfiltrate it. A brief overview of each phase of the

attack lifecycle is below.

1. Reconnaissance – During this phase, the attacker probes the target network

and uses information available to the public – such as names, phone numbers,

and email addresses from public web sites, social media sites, or public

records databases – to learn as much as possible about the target network to

make the attack more successful.

2. Delivery – This is the phase where the exploit or malware is delivered to the

target network. Malware can be delivered to the victim network in a variety

of ways. The most popular include SQL injection, web server exploits, email

messages with malicious links or attachments, or watering hole attacks where

a web site the target is likely to view is compromised.

3. Initial Compromise – When an external exploit works or the malicious email

message is successful, the malware delivered is called the Stage 1 or initial

compromise. It is the initial foothold the attacker obtains on the target

network. The Stage 1 malware is typically a lightweight tool configured to

communicate on a regular interval to a command and control (C2) server to

ask for further instructions. Often the instruction is to re-contact the C2 at a

50

later time or to move to another C2 server. When the attack progresses, the

C2 will tell the infected computer to download additional malware.

4. Gain Foothold – In this phase, the attacker delivers more sophisticated

malware capable of providing direct, remote access to the target network.

Typically, this malware, also called Stage 2 malware, contains a reverse shell

function, the ability to download additional tools, and other functions allowing

surveillance of the target network.

5. Escalate Privileges – When an attacker initially compromises the target

network, it often has only normal user privileges. During this next phase of

the attack, the APT actor will seek to gain administrator rights on the network.

Such access can be gained by executing a local privilege escalation attack or

exfiltrating and cracking password hashes. The result of this phase is often

that the attacker will obtain legitimate credentials for logging into the

network. In this case, phases 6-9 will not require the use of malware to

execute.

6. Internal Reconnaissance – Once a foothold is gained and the attacker has

sufficient privileges, they can begin to learn the layout of the target network.

They will conduct network scans, locate critical servers (such as the domain

controller, email server, and file servers), and identify security tools and

infrastructure in place. The internal reconnaissance will enable the next phase

of attack.

51

7. Lateral Movement – The attacker will then move around the network,

exploiting open file shares and network services, to increase their ability to

surveil the network, evade network defenses, locate data to exfiltrate, and

enable redundant access to the network. Most networks do not monitor

internal network communications, so it is common for this phase to go

completely undetected.

8. Maintain Presence – APT actors are professionals and often have long-term

collection requirements against their targets. As such, they have a vested

interest in returning to the target network at a later time to collect additional

data. This phase enables that persistence by establishing multiple, redundant

points of access on the network that can survive reboots, system updates, and

forensic investigations.

9. Complete Mission – There is always a specific mission purpose for an APT

actor’s activity. The last phase of the mission is to fulfill that purpose, often

by collecting and exfiltrating information of value from the network through

the attackers’ collection of C2 servers. Exfiltration can be done in a wide

variety of ways, often using the same methods that legitimate users would use

to send information to external partners.

In general, modern security infrastructure is good at detecting the Delivery, Initial

Compromise, Gain Foothold, and Complete mission phases of the attack. These phases

of the attack cycle involve the use of malware, infected documents, delivery through

email and compromised web sites, as well as bulk transfer of sensitive information out of

52

the victim network. Traditional IOC-based firewalls, intrusion detection system and

endpoint protection software can detect many of these types of techniques, assuming the

tools are known, and valid IOCs are available. Specialized tools like application aware

network proxies and email scanning tools can detect delivery methods.

2.3.1. Collecting Against the Attacker Lifecycle

When collecting evidence to understand each phase of the attacker lifecycle,

analysts must consider four major questions:

• What are they collecting evidence of? During each phase of the attacker

lifecycle, different types of actions take place. Understanding which kind of

activity needs to be discovered is critical when establishing an investigative

plan.

• What is the location of the evidence? Depending on the phase being

investigated, evidence can reside in a wide variety of network locations in a

myriad of formats.

• What type of evidence must be collected? This includes knowledge of the

physical format and level of volatility of the evidence to be collected.

• What tools or methods are required to collect and analyze the evidence?

Answers to the other three questions and the level of human readability of the

data help determine the tools and methods required to collect and analyze it.

Experienced incident responders understand how to use this information to collect

and analyze forensic evidence to investigate a wide variety of threats by methodically

collecting and analyzing data against the attacker lifecycle. Forensic collection and

53

analysis are large topics. For brevity, a subset of the attack actions, evidence locations,

evidence types, and collection tools required for collecting forensic evidence against the

attacker lifecycle is shown in Figure 5.

Figure 5 Collecting against the Attacker Lifecycle

During a forensic investigation, an analyst will use the phases of the Attacker

Lifecycle to guide collection of evidence of types of attack activity. The type of activity

to be collected against informs the investigator of where the evidence may be located in

the network. This in turn helps determine which evidence types to collect from those

locations and which tool swill be needed to collect those evidence types. Because

specific attack activity can span across multiple Attacker Lifecycle phases and the

evidence locations, types, and collection methods likewise have a many-to-many

Attacker Lifecycle Phases Evidence Of Evidence Location Evidence Types Collection
Methods/Tools

Reconnaissance Port Scanning Network Gateway Netflow Network Sensor

Delivery Phishing Email Email Server Server Logs Passive Network Tap

Initial Compromise Watering Hole Web Server PCAP Logical File Copy

Gain Foothold Malware Execution Compromised Host DNS Logs Log Search

Escalate Privileges C2 Activity Domain Controller Firewall Logs Raw Memory Copy

Internal Reconnaissance Service Install SIEM Email Server Logs Raw Disk Acquisition

Lateral Movement Temp File Creation Network Sensors Email Content Raw Artifact Parsers

Maintain Persistence Network Mapping File Server Endpoint Logs Host Collection Agent

Accomplish Mission Use of Admin Tools Database Server Memory Images Log Shippers

Admin Acct. Creation Filesystem Artifacts

Data Gathering File-based Artifacts

File Encrypt/Compress Authentication Logs

Data Exfiltration

54

relationship with each other there is no strict segmentation between the columns. For

example, an incident responder looking for Gain Foothold phase activity may look for

evidence of C2 Activity by collecting Firewall Logs from the Network Gateway using

Logical File Copy. She might also look for Gain Foothold phase activity by collecting

evidence of Malware Execution from a Compromised Host, which might require a

Memory Image to be collected and examined using Raw Memory Copy and a Raw

Artifact Parser. The combinations of collection and analysis capabilities an incident

responder must leverage to identify sophisticated threats is very large, which is why their

skillset is rare an in high demand.

Our research leveraged a subset of this methodology to train cognitive agents to

be able to orchestrate and automate the threat detection process. The details will be

discussed in Section 3.3.1.

2.4. Knowledge-Based Learning and Evidence-Based Reasoning

The learning model used in this research is rooted in the theory of knowledge-

based learning and evidence-based reasoning. This is an area of research focusing on the

creation of collaborative computational processes of evidence in search of hypotheses

(through abductive reasoning which shows that something is possibly true), hypotheses in

search of evidence (through deductive reasoning which shows that something is

necessarily true), and evidentiary testing of hypotheses (through inductive reasoning

which shows that something is probably true). This section will summarize this area of

theory, as published in Knowledge Engineering: Building Cognitive Assistants for

Evidence-Based Reasoning (Tecuci et al., 2016a).

55

Figure 6 is a high-level overview of the framework for the evidence-based

reasoning process (Tecuci et al., 2016a). This framework is based on the work of

intelligence analysis and is an iterative, collaborative process between an analyst and the

knowledge-based learning assistant.

Figure 6 Evidence-based reasoning as the discovery of hypotheses, evidence, and arguments

2.4.1. Evidence in Search of Hypotheses

The first step in the evidence-based reasoning process is evidence in search of

hypotheses which involves abductive reasoning. Formally, if a → b, and evidence b is

observed, then a is possibly true. We write: b → possibly a. It could also be true that c →

Threat and non-threat hypotheses

Evidence of
suspicious activity

Probability of hypotheses

Which is the
evidence-based

probability of
each hypothesis?

Assuming that
this hypothesis

is true, what
evidence
should be

observable?

What
hypotheses
may explain

this suspicious
activity?

Hypotheses in
search of evidence

Evidence in search
of hypotheses

Evidentiary testing
of hypotheses

Relevant Evidence

InductionDeductionAbduction

56

b, where c is some competing hypotheses explaining b. The examination of multiple

hypotheses that could explain the existence of evidence of a specific event is called

abductive (or imaginative) reasoning. Figure 6 shows an example of how this process

works. Given an item of evidence, multiple, competing hypotheses could explain its

existence.

2.4.2. Hypotheses in Search of Evidence

Once a set of hypotheses are identified, they are used to generate searches for

discrete elements of additional evidence that can be used to evaluate them. This is a

process of deductive reasoning. Formally, if a → b & c and a is a hypothesis, then b and

c must be true. We write: a → necessarily b & c. b and c can be broken down further

into a tree of sub-hypotheses until only elementary hypotheses, or observables remain.

The leaves of the deductive reasoning tree drive searches, or collection tasks, to identify

evidence that can be used to test the hypotheses, as discussed below.

2.4.3. Evidentiary Testing of Hypotheses

When evidence is found it is either stored as evidence and/or placed into the

knowledge base as instances of concepts in the ontology. This evidence is evaluated

based on its credibility, or the degree to which it can be believed, relevance, or the

probability of the hypotheses if the evidence were true, and the inferential force, or the

probability of the hypothesis given only this evidence. These values are represented on a

probability scale, as shown in Figure 7.

57

Figure 7 Probability scale

Once all sub-hypotheses of a node in the tree are evaluated, then their

probabilities are combined to determine the overall probability of the parent hypotheses.

This is an inductive reasoning process. Formally, b → probably a. When there are

multiple evidence items b1, b2, etc., their probabilities must be combined to calculate the

probability of a. This uses the min/max probability combination rules common to the

Baconian probabilities (Cohen, 1977; 1989) and Fuzzy probabilities (Zadeh, 1983). In

particular the probability of a conjunction of probabilities is the minimum of these

probabilities, while the probability of a disjunction of probabilities is the maximum of

these probabilities.

The process of combining the probabilities of sub-hypotheses to calculate the

probabilities of parent hypotheses continues until the probability of the root hypothesis is

calculated.

58

2.5. Ontologies and Learning

Once a reasoning tree has been created by an analyst, the agent will learn rules

from it. The rules are learned as generalizations of reasoning tree fragments, using the

ontology as a generalization hierarchy for learning. The generalization of a reasoning tree

fragment (or example) into a rule is also guided by the explanation of why that reasoning

tree fragment is correct. The type of learning from examples and their explanations has

advantages over other machine learning methods because the agent can learn from as few

as one example where classifier methods such as neural networks or decision trees need

many examples to learn a function.

Evidence-based reasoning has been used successfully to aid analysis in multiple

disciplines. TIACRITIS (Tecuci et al., 2011), Disciple-CD (Tecuci et al., 2014; Tecuci et

al., 2016b), and Cogent (Tecuci et al., 2015; 2018a) are all knowledge-based agents that

assist in analysis or teach analysts critical thinking skills.

While the demands of APT analysis and detection require much more automation

than the agents created for other topics, it follows the same intelligence analysis

methodology. Rather than having an analyst manually searching for evidence, as is done

in Disciple-CD, a robust search agent can be created, customized for a specific network

environment, that can automate the search for and analysis of evidence required to reason

about the presence and scope of an APT-style computer intrusion.

59

3. RESEARCH OVERVIEW

The information in this chapter has been previously published in peer-reviewed

conference proceedings (Meckl et al., 2015; Meckl et al., 2017; Meckl et al., 2018) and

ACM’s Computing in Science and Engineering (Tecuci et al., 2018b).

For this research, I developed and evaluated a prototype system capable of using

cognitive agents to autonomously orchestrate security incident response and investigation

for sophisticated cybersecurity threats. It is a complex software system which required

research and development of a theoretical model of APT detection, which uses

knowledge-based learning agents with evidence-based reasoning, integrated into a CSOC

environment using a custom-developed collection management system and a curated

selection of collection and analysis agents to detect APT activity in an autonomous

fashion. At its core, this research built on top of the theoretical models of learning and

reasoning of the Disciple approach described in Section 2.4 and extended it to leverage

knowledge of cybersecurity, sophisticated attacker behavior models, and knowledge of a

network environment to automate collection and analysis of digital evidence to detect

threats in an agile manner.

While this research is based on my original idea and vision, it was conducted as

part of a larger team from the Learning Agents Center, with whom I built a system called

Cognitive Agents for APT Detection (CAAPT). The research was funded via a contract

from Air Force Research Labs. The research team contributed a substantial amount of

research and development work on novel and necessary new learning and reasoning

60

capabilities required to support this research. My primary role in the CAAPT project was

to leverage my cybersecurity subject matter expertise to develop the theoretical model of

APT detection, design the overall system architecture, develop the search, collection, and

evidence gathering strategy (to include development of the novel Collection Manager

system necessary to enable Disciple cognitive agents to integrate with CSOC

infrastructure), design and build the test network environment, and design and execute

the testing and evaluation protocol for CAAPT. In this section, I will provide an

overview of the CAAPT system, focusing primarily on my contributions to the research.

3.1. CAAPT Architecture Overview

At a high level, CAAPT is a collection of specialized agents, each designed to

autonomously handle a specific phase of the detection process. While each agent

includes only the reasoning or processing modules required to carry out its specialized

responsibility, the agents use shared knowledge bases as represented in the left-hand side

of Figure 8. The agents are integrated into a specific CSOC and collaborate in intrusion

detection, as explained below.

The Alert Generation Agent receives alerts from a variety of sources, such as a

network IDS, network anomaly detection, or endpoint protection alerts. In the current

implementation, however, CAAPT only processes BRO (Paxson, 1999) alerts.

The Trigger Agent represents each alert into a different knowledge base which

inherits knowledge from the shared knowledge base (consisting of the General

Knowledge Base and the APT1 knowledge base). These knowledge bases are organized

61

into a hypotheses generation queue from which they are extracted by the Hypothesis

Generation Agent.

Figure 8 CAAPT system architecture overview

The Hypotheses Generation Agent generates the hypotheses corresponding to a

trigger and places the knowledge base into the hypotheses analyses queue from which

they are extracted by an Automatic Analysis Agent.

The Automatic Analysis Agent decomposes the hypotheses from such a

knowledge base, as much as possible, down to the level of evidence collection requests.

C
lie

n
t

JS
O

N
 C

o
m

m
u

n
ic

a
ti

o
n

INTRANET

R

Servers

F/IDS

INTERNET

F/IDS Firewall / Intrusion
Detection System

R Router

WR Wireless Router

Users

R

CA CA CA

CA CA

WR

Users

CA Local Collection Agent

L Logs

L S S

S Network Capture Sensor

Users

In
te

rn
a

l R
M

I C
o

m
m

u
n

ic
a

ti
o

n

Log Data
Storage

Alert Generation
AgentHypotheses

Generation Agent

Collection
Manager

Automatic
Analysis Agent

Automatic
Analysis Agent

Automatic
Analysis Agent

Mixed-Initiative
Analysis Assistant

Mixed-Initiative
Analysis Assistant

Trigger
AgentHypotheses

generation
queue

Hypotheses
analyses

queue

Evidence
collection

queue

User
review
queue

CAAPT
Repository

Archive
Learning Assistant

Situation KB

APT1
Knowledge

Base

General
Knowledge

Base

62

Then it places the knowledge base into the evidence collection queue from where they are

extracted by the Collection Manager.

The Collection Manager invokes specialized collection agents to search for

evidence on the network. Then it represents the retrieved evidence into the corresponding

knowledge bases and places these knowledge bases back in the hypothesis analyses

queue.

When an automatic analysis agent has performed the most complete analysis

possible of the alternative hypotheses corresponding to a trigger, it places the knowledge

base into the user review queue, to be used by the Mixed-Initiative Analysis Assistant

and the cyber analyst.

The Mixed-Initiative Analysis Assistant interacts with the cyber analyst, either

by alerting the analyst of a detected intrusion, or by collaborating with them to finalize

the analysis. After an analysis corresponding to a trigger is completed and necessary

actions have been taken by the cyber analyst, the knowledge base is placed into an

archive by the mixed-initiative analysis assistant.

The knowledge bases from the archive are used by the Learning Assistant and an

expert cyber analyst to further refine the ontology and rules shared by the specialized

agents.

3.2. Theoretical Model of Attacker Behavior

For an autonomous system to reason about and detect attack behavior it requires

both knowledge describing attack activity and rules for applying that knowledge. This

information is stored in the knowledge base and is authored by a collaborative team

63

comprised of a knowledge engineer and a subject matter expert. This section describes

the theoretical model for attack detection, using the APT1’s AURIGA malware

(Mandiant, 2013) as a case study.

3.2.1. Ontology and Knowledge Requirements

Cybersecurity experts intuitively use a variety of knowledge domains in their

analysis of sophisticated threats. For CAAPT, that knowledge is formalized into

an ontology comprised of several knowledge domains. An illustrative ontology fragment

is shown in Figure 9. This is the core knowledge generally used by a CSOC analyst to

investigate the technical aspects of a sophisticated attack.

Figure 9 CAAPT ontology overview

has as
external

name has as
external

name

has as
external

name

source IP1

destination IP1

destination port 1

source port1

connection 1

outbound
connection

has as source IP

has as source port

has as destination port

has as destination IP

named port

port

DNS portIPv4 address

IP address

APT1

APT group

Bangat

malware

Seasalt

hacker group

address

domain

program 1

has as connection
has as external name

c:\windows\temp\svchost.exe

connection

has as path name

physical address

MAC address

General networking knowledge

Alert
knowledge

Forensic
artifact

knowledge

APT knowledge

Knowledge of network
environment

IPv6 address

svchost.exe

has as process ID 176

has as external name
10.10.1.10

has as external name
10.10.7.1

75611

has as external name
53

domain1
has as domain

has as
external

name

a-jsm.infobusinessus.org

Auriga

program

gain foothold phase

APT1 gain foothold phase
has as phase

network

Alpha Network

h
as

 a
s

su
b

n
et

DMZ subnet 1

Security subnet 1

Corporate subnet 1

corporate subnet1
starting IP

corporate subnet1
ending IP

subnet

has as starting IP address assignment

has as ending IP address assignment

10.10.1.10

10.10.1.255

64

General Networking Knowledge involves understanding of network devices and

protocols, and how they relate to each other in a modern networking environment. This

knowledge is used by the system, for example, to know what IP address a domain is

mapped to and whether the IP address is a routable public IP address or non-routable

internal IP address.

Alert Knowledge represents what specific information is learned when a security

alert is raised by a CSOC’s security infrastructure. Figure 10 shows an example of the

security knowledge learned when an alert is raised by the BRO intrusion detection

system. In this example, BRO triggered an intrusion alert because the computer with IP

address 10.10.1.11 (an internal, non-routable IP address) performed a DNS lookup for a

known APT1 domain. When the alert is ingested by CAAPT, the facts in the BRO alert

Figure 10 Alert knowledge generated from BRO alert

65

are mapped to the ontological concepts they are instances of. The result is an ontology

fragment representing the knowledge added to the knowledge base from the BRO alert.

Figure 11 Simplified ontology for network topology

Knowledge of the Network Environment covers information specific to the

network the CSOC is charged with monitoring. It includes knowledge about the network

topology, what classes of users operate on segments of the network, critical assets, and

vulnerability data. For experiments with CAAPT, a simplified ontology was used to

network

object

Alpha Network

“10.10.4.1”

has as starting IP address

has as ending IP address

DMZ subnet

DMZ Subnet Starting IP
has as external name

has as external name
“10.10.4.255”DMZ Subnet Ending IP

Security subnet 1

“10.10.2.1”

has as starting IP address

“10.10.2.255”

has as ending IP address

Security Subnet Starting IP
has as external name

Security Subnet Starting IP
has as external name

Corporate subnet 1

“10.10.1.1”

has as starting IP address

“10.10.1.255”

has as ending IP address

Corporate Subnet Starting IP
has as external name

Corporate Subnet Ending IP
has as external name

subnet

has as subnet

has as subnet

66

describe the network topology, as shown in Figure 11. The simplified ontology

describes, at a high level, the subnets available on the network.

An important aspect to detection of sophisticated threats is Knowledge of the

Attacker Lifecycle. As discussed previously, due to the organized nature of a

sophisticated threat group’s operations, security researchers have been able to create a

semi-formal model of their methodology, called the Kill Chain (Hutchins et al., 2011) or

Attacker Lifecycle (Mandiant, 2013). As shown in Figure 12, we have created a formal

ontology for the attacker lifecycle, allowing CAAPT to reason about it.

Figure 12 Ontology for the Attacker Lifecycle

Figure 12 shows an ontology for the steps of the attacker lifecycle described in

Section 2.3. Generally speaking, an attacker must go through these steps to execute an

attack on a target network. It should be noted that once an attacker gains administrator

67

access to a network in the escalate privileges phase, and begins internal recon and lateral

movement, the process becomes iterative. To address this, the ontology includes has as

next phase attributes from some of the attacker lifecycle phases pointing back to previous

phases. This construct allows the ontology to more accurately describe the methodology

of a sophisticated attack.

Figure 13 APT1 knowledge fragment

Attacker Knowledge is based on either publicly available threat intelligence or is

the result of manual analysis of a threat. Formally, it is a description of a specific group’s

attacker lifecycle, using the ontological construct from Figure 13. Because this research

primarily used APT1 as a case study, I have encapsulated attacker knowledge under the

APT Group concept in the ontology. APT Group is a sub-concept of the hacker group

concept as shown in the top right of Figure 9. Figure 13 shows a fragment of CAAPT’s

68

ontology for the attacker group APT1. For each phase of the attacker lifecycle, we have a

sub-concept for the attack group APT1. In each of those phases, knowledge of malware,

IOCs, or other methodology is encapsulated. For example, we know from (Mandiant,

2013) APT1 uses different malware and other tools for each phase of their attack.

WEBC2-AUSOV, WEBC2-ADSPACE, and other Stage 1 malware is used during the

APT1 initial compromise phase to gain initial access to a network. BANGAT, AURIGA,

SEASALT, KURTON, and other Stage 2 malware is used during the APT1 gain foothold

phase of the attack.

There is some knowledge of an attacker group, including people associated with

it, IP addresses, and domains used for command and control, not specifically associated

with phases of the attacker lifecycle. To account for this type of attacker knowledge, the

CAAPT ontology has some features associated directly with the APT Group concept. In

Figure 13, the domains associated with the group are associated with APT1 using the uses

as domain feature.

Finally, the CAAPT knowledge base includes Forensic Artifact Knowledge,

also referred to as Malware Knowledge. This includes knowledge of the data used or

left behind by the malware used by an attacker group and where to look for it on a

network. In our ontology, specific forensic artifacts, often called indicators of

compromise (IOCs), are mapped to the malware programs that generate them. The

malware programs, in turn, are mapped to the specific APT group or groups using them.

69

Figure 14 Forensic artifact knowledge

Figure 14 above shows an ontology fragment describing the malware knowledge

of the AURIGA malware used by APT1 during the APT1 gain foothold phase of their

attack methodology. Using threat intelligence published in (Mandiant, 2013), we have

identified several forensic artifacts left behind by the malware, which are mapped to the

AURIGA concept instance in the ontology. AURIGA persists through a system reboot by

registering itself as a Windows service with name riodrv32. This is captured in the

knowledge base by associating the service name riodrv32 with AURIGA using the

attribute has as Windows service relationship. Other forensic artifacts associated with the

Auriga

has as Windows service

has as unique malware string

has as MD5 hash

has as temporary file

has as data file

has as library file

has as command shell file

has as Registry key

has as command shell file

has as temporary folder
has as specific string

has as external name

has as specific string

is isomorphic with

has as external name

has as external name

Auriga temporary file1

Auriga Windows service1
has as external name

has as external name matching

Auriga temporary folder1
has as external name

Auriga command shell file1

Auriga command shell file2

has as external name

has as path name

has as path name

Auriga data file1

has as external name

has as path name

Auriga library file1
has as external name

has as path name

Auriga data file1
has as external name

has as path name

Auriga library file1
has as external name

has as path name

Auriga Registry key1

Auriga Registry key2

riodrv32

superhard corp.

netui.dll 6B31344B40E2AF9C9EE3BA707558C14E

~_MC_[2-7]~[0-9]*

{USERLOCALDATA}\Temp

cmd.exe

%SYSTEMROOT%\system32\cmd.exe

microsoft corp.

ati.exe

%SYSTEMROOT%\system32\ati.exe

sam.sav superhard corp.

sam.dat

%USERPROFILE%\AppData\Local\Temp\sam.dat

riodrv32.sys

%SYSTEMROOT%\system32\drivers\riodrv32.sys

netui.dll

HKEY_LOCAL_MACHINE\SOFTWARE\riodrv32\DEL

HKEY_LOCAL_MACHINE\SOFTWARE\riodrv32\TEMP

%USERPROFILE%\sam.sav

%SYSTEMROOT%\system\netui.dll

malware

70

AURIGA malware are similarly associated with it in the ontology, including unique

strings included in the malware file, Registry keys, temporary files, data files, library files

installed with the malware, and the hash of the binary file itself.

3.2.2. Abductive Trigger Generation Using Threat Intelligence

This research is primarily focused on a use case where a security alert is generated

by some part of the CSOC’s security infrastructure and an analyst is required to conduct

follow-on analysis to determine whether a threat was accurately identified, the root cause

of the attack, and the scope of the attack. The first step in this process is to use one or

more detection technologies to identify potential threats using available threat

intelligence, and use the information provided to trigger the abductive reasoning process.

This section describes the process CAAPT uses to generate abductive triggers from threat

intelligence.

At its core, security alerts are created by combining three things: 1) Data from the

network or a host collected or scanned in real-time; 2) a Security Sensor, which applies

an algorithm to the data collected or scanned; and 3) Threat Intelligence data, used by

the Security Sensor to identify threats in the data. An overview of this structure is shown

in Figure 15.

The output of this process is a set of Security Alerts which come in a variety of

formats but are often sent to a SIEM system based on tools such as Elasticsearch, Splunk,

or QRadar. In the case of CAAPT, all security alerts are forwarded to our Elasticsearch

server which is used as the central repository for all log data.

71

Figure 15 Generating alerts from threat intelligence

For CAAPT’s development and test network, BRO (Paxson, 1999) was chosen as

the IDS. On top of its ability to easily consume threat intelligence and efficiently apply it

to identify threats, it also generates logs for other data with security value, including DNS

lookups, connection information (network flow data), HTTP connection, URL strings,

and digital certificates used for SSL connections. BRO logs all of this data into flat files

in the comma-separated value (CSV) format. Because the rest of CAAPTs collection

systems use JSON as the standard format, the BRO log entries must be re-formatted for

use. Figure 16 shows an overview of the process by which a BRO alert log entry

becomes an alert message sent to the CAAPT Trigger Agent.

Data Collector
• Network data
• Log data
• Host information

Security Sensor
• IDS (BRO, etc.)
• Endpoint Detection

Threat Intelligence:
• Domains
• IP addresses

• Email addresses
• AV signatures
• File hashes

Security Alert

72

Figure 16 How a BRO alert becomes an abductive trigger

The first step in the process is to convert logs from the CSV format to a JSON

message and transport the log entry to our Elasticsearch database. This is done using a

program called FileBeat (2018). It is a program provided by Elasticsearch for log

shipping, which constantly reads the end of specified files, looks for new entries, converts

them to JSON, and sends them to Elasticsearch.

Next, a process is required to look in Elasticsearch for new alerts and send them

to the Trigger Agent. I developed a custom Windows service program, called the CAAPT

Alert Generation Agent to perform this task. This agent simply polls Elasticsearch on a

specified interval, looking for log entries generated by BRO. For each one found, a new

Trigger Agent message is created using relevant information from the BRO alert. This

new message is then sent to the Trigger Agent to start the abductive reasoning process.

In the example in Figure 16, an alert was generated by BRO because a computer it

was monitoring made a DNS request to resolve a domain known, via threat intelligence,

#types time string src addr port dest addr port string enum enum source
1539721936.038446 CuNusc2j8mL2LV49tl 10.10.1.11 75611 10.10.7.1 53 app.blackcake.net Intel::DOMAIN DNS::IN_REQUEST APT1
1539721936.042493 CEFOnU2NzCPcTc9ta 10.10.1.11 49888 69.195.129.72 80 app.blackcake.net Intel::DOMAIN HTTP::IN_HOST_HEADER APT1

{ "requestID" : 35987,
"alertTime 12\/23\/2018 12:18:07 PM
"requestType":"IDSAlertTrigger",
"destinationIP ” 10.10.7.1
"destinationPort":{

"number":53,
"portType":"DNS port"},

 domain “a-jsm.infobusinessus.com”
"idsAlertType “ThreatIntel”
"sourceIP":"10.10.1.11",
"sourcePort":{

"number": 75611,
"portType": None},

"threatGroup APT1” }

{ "_type":"doc",
"_id":" flmXfmYB2KVvQijLavzR ",
"_source":{

"@timestamp":" 2018-12-23T 12:18:07.434Z",
"offset": 481,
"message":" 1539721936.038446 CuNusc2j8mL2LV49tl

10.10.1.10 75611 10.10.7.1 53 - - -
app.blackcake.net Intel::DOMAIN
DNS::IN_REQUEST bro APT1 ",

"prospector":{"type":"log” }
"source":"/var/log/bro/current/intel.log"

} }

Trigger

Agent

Alert

Generation

Agent
Elasticsearch

73

to be associated with APT1. Filebeat is an open source application supporting a wide

variety of uses. As such, the message sent to Elasticsearch contains several

extemporaneous data elements. For the purposes of threat detection, the system is

primarily concerned with the information contained in the message data element. The

Alert Generation Agent parses that field, converting the relevant data fields into

appropriate data elements required for the JSON message on the right.

When this message is received by the Trigger Agent, it is added to the knowledge

base in the form of an ontology fragment, as shown in Figure 17. Each field in the JSON

message is ingested as an instance of a concept in the CAAPT ontology. In this example,

knowledge of the connection triggering the BRO alert is captured. A connection has a

source and destination IP address and port, and a timestamp. By applying learned rules

for what it should do when receiving a BRO alert of this type, the Trigger Agent goes

further, identifying port 53 as a DNS port, associating the domain a-

jsm.infobusinessus.org with the connection, and further recognizing the domain’s

association with APT1 using knowledge of the attacker group already in the knowledge

base.

When the process described in Figure 17 is complete, the Trigger Agent places a

new knowledge base to be used for further analysis into the hypothesis generation queue.

The Hypothesis Generation Agent then uses the new knowledge base for the abductive

reasoning process, using learned rules to create a set of competing hypotheses which

could explain why the alert was generated. First, an indicator rule is matched, which

74

generates a hypothesis from the suspicious connection that there is an active APT1

intrusion on the network. Then a question rule is matched, to generate a question which

Figure 17 Trigger ontology fragment

the previously generated hypothesis could answer. From the question rule, multiple

competing plausible hypotheses are created, which also could answer the question. This

completes the first phase of the theoretical model of threat detection.

Figure 18 shows an example of the abductive reasoning process. Using an

indicator rule, a plausible hypothesis is generated, based on new knowledge of a

suspicious connection to an APT1 domain identified by BRO. In this case, the

hypothesis is the connection is part of an APT1 intrusion. However, there are multiple

hypotheses which could explain the connection, including those that would conclude the

threat detection is a false positive. In this example, we offer two plausible false positive

{
"requestID" : 35987,
"alertTime":"12\/23\/2018 12:18:07 PM",
"requestType":"IDSAlertTrigger",
"destinationIP":"10.10.7.1",
"destinationPort":{

"number":53,
"portType":"DNS port"},

"domain": “a-jsm.infobusinessus.org”,
"idsAlertType": “ThreatIntel”,
"sourceIP":"10.10.1.11",
"sourcePort":{

"number":75611,
"portType": None},

"threatGroup": "APT1"
}

10.10.1.11source IP1
has as external name

connection1

has as source IP

has as destination port

has as domain

has as source port
destination IP1

has as destination IP

has as external name
10.10.7.1

75611
has as external name

source port1

53
has as external name

destination port1

DNS port

port

a-jsm.infobusinessus.orghas as external name
domain1

IPv4 address

has as start time

12/23/2018 12:18:07 PMtime1
has as external name

uses as domain

IPv4 address

domain

time APT1

APT group

outbound connection

75

Figure 18 Hypothesis generation process

hypotheses. The first is the connection was generated as part of security intelligence

gathering. Security operations or research personnel often accidentally trigger security

alerts performing their duties. The second example is the situation where the C2 server is

inactive. Sophisticated threat actors often use dynamic DNS providers to “park” their C2

domains (e.g., mapping them to localhost or a non-routable IP address) while not in use

and then mapping them to a real C2 server when the group begins operations. They will

also abandon domains once they have been discovered by threat researchers to evade

future discovery. This false positive hypothesis encapsulates this scenario.

76

3.2.3. Search Agents for Hypothesis-Driven Search

Once a set of hypotheses are generated, the next phase is the deductive reasoning

process, where each top-level hypothesis is decomposed into one or more sub-

hypotheses. The process continues until a set of leaf hypotheses are generated requiring

one or more searches for evidence. This overall process is called hypothesis-driven

search.

Figure 19 shows an example of the initial hypothesis decomposition tree used to

for detection of an APT1 intrusion. At the top level, we decompose the hypothesis

stating the network connection which caused the BRO alert is the result of an APT1

intrusion into two sub-hypotheses. The sub-hypothesis on the left states the connection

involves an active C2 server. This hypothesis is further broken down to its two

components: the domain a-jsm.infobusinessus.org was active at the time of the

connection and was registered using a dynamic DNS provider. These two sub-

hypotheses are typically true when there is an active APT1 attack. The sub-hypothesis on

the right states the program used in the attack is APT1 malware.

The leaf nodes of the decomposition tree result in three different searches for

evidence. All three searches will eventually lead to evidence being added to the

knowledge base for this security alert investigation. The search for the program that

made the network connection will result in that branch of the decomposition tree being

further decomposed, asking more detailed questions about the behavior of the malware.

77

Figure 19 AURIGA example of hypothesis-driven search

The abstract searches from the bottom of Figure 19 must be turned into concrete

searches for real evidence on the network. The Collection Manager is responsible for

that process. First, though, the Disciple agent must be able to request the search to be

performed by the Collection Manager. Let’s take, for example, the left-most search from

Figure 19, which is a check to determine if the domain was mapped to an active IP

address at the time the BRO alert was generated. The Disciple analysis agent will create

a JSON-formatted search message and send it to the Collection Manager, as shown in

Figure 20. When the Collection Manager receives this message, it will call the function

CheckDomainMappedToActiveIP, which is one of the programmed search functions

connection1 from 10.10.1.11 (port 75611) to 10.10.7.1 (port 53)
at 12/23/2018 12:18:07 PM, using known APT1 domain

a-jsm.infobusinessus.org, is part of APT1 intrusion

The domain registrar for
a-jsm.infobusinessus.org is on a list
of known dynamic DNS providers

*

The program that made connection1
from 10.10.1.11 (port 75611) to

10.10.7.1 (port 53) at 12/23/2018
12:18:07 PM is APT1 malware

a-jsm.infobusinessus.org is an active domain, mapped
to a routable IP address and registered at a dynamic

DNS provider, consistent with APT1 methodology

network-based indicators

connection1 involves an active APT1 C2 server

a-jsm.infobusinessus.org is registered
at a dynamic DNS provider

a-jsm.infobusinessus.org
is an active domain at time
12/23/2018 12:18:07 PM

*

Search the computer
10.10.1.11 for the program

that made connection1 using
port 75611 to communicate
with 10.10.7.1 on port 53 at

12/23/2018 12:18:07 PM

Automatic
Analysis Agent

Collection
Manager

Partial Analyses
with Collection

Hypotheses

Partial Analyses

Check whether the domain
a-jsm.infobusinessus.org is

mapped to a routable IP address
at time 12/23/2018 12:18:07 PM

Check whether the domain registrar
for a-jsm.infobusinessus.org is on a

list of known dynamic DNS providers

69.195.129.72 dynadot.com

svchost.exe with
process ID 176

78

supported by the Collection Manager, mapping data elements from the search into

function parameters.

Figure 20 Search function example

When the Collection Manager completes the search, it will respond to the calling

agent with a response message, which is also in the JSON format. Using learned rules,

the Disciple analysis agent will convert data elements from the response message into an

ontology fragment and store it in the knowledge base as evidence. An example of this is

shown at the bottom of Figure 20.

In addition to simply storing the search results as an ontology fragment in the

knowledge base, evidence has a credibility value assigned to it. For CAAPT, this is

a-jsm.infobusinessus.org
is an active domain at time
12/23/2018 12:18:07 PM

{
"requestID": 22124
"requestTime":"12/23/2018 12:18:17 PM",
"timeStamp":"12/23/2018 12:18:07 PM",
"requestType":

"CheckDomainMappedToActiveIPRequest",
 responseDestIP ”10.10.5.30
"responseDestPort":12345,
"domain":"a-jsm.infobusinessus.org”

}

REQUEST (to Collection Manager)

{
"requestID": 22124
"requestTime":"12/23/2018 12:18:17 PM",
"timeStamp":"12/23/2018 12:18:07 PM",
"requestType":

"CheckDomainMappedToActiveIPResponse",
"domain":"a-jsm.infobusinessus.org",
 ipAddress 69.195.129.72”
"evidenceDescription “

Domain a-jsm.infobusinessus.org is
mapped to routable IP address
69.195.129.72 at time12/23/2018 12:18:07 PM"

 evidenceCredibility L11“
“found” true

}

RESPONSE (from Collection Manager)

E1 evidence

a-jsm.infobusinessus.org
is an active domain at time
12/23/2018 12:18:07 PM

L11

L11

IP address mapping1

has as IP address mapping

domain1

E1 evidence

Check whether the domain
a-jsm.infobusinessus.org is

mapped to a routable IP address at
time 12/23/2018 12:18:07 PM

Domain a-jsm.infobusinessus.org
is mapped to routable IP address

69.195.129.72 at time
12/23/2018 12:18:07 PM

L11

has as credibility

has as description

has as external name

Domain a-jsm.infobusinessus.org is mapped to routable IP
address 69.195.129.72 at time 12/23/2018 12:18:07 PM

L11

69.195.129.72

79

handled using the has as credibility attribute with all instances of the evidence concept.

In the example above, the credibility is L11, or certain.

In some cases, such as the leftmost two searches in Figure 19, the search satisfies

all evidence collection requirements for its branch in the tree and can be decomposed no

further. In other cases, such as the search for the program that generated the suspicious

connection, the returned evidence will satisfy the conditions for the parent hypothesis to

be further decomposed, driving further search for evidence in an autonomous fashion.

This allows CAAPT to be trained to model the iterative Incident Response process

outlined in Figure 4, where evidence found by a forensic analyst answers some questions

only to reveal additional questions requiring investigation

Further decomposing the right side of Figure 19 after finding the process that

made the connection triggering the BRO alert, we get the deductive reasoning tree in

Figure 21. At the top level, the analysis requires reasoning about the features of the

program that made the connection and their similarity to features we know AURIGA to

have and file system artifacts created by the process.

80

Figure 21 Search for AURIGA program features

Figure 21 shows the portion of analysis related to the persistence mechanism used

and the attributes of the program including unique strings found inside the file and the

MD5 hash of the file. A persistence mechanism is a way for the malware to use

operating system features to survive a reboot of the computer. In this case, we have

threat intelligence indicating the AURIGA malware creates a Windows service with the

name riodrv32 to start itself again after reboot. On the right side of the tree, analysis of

the program executable file is required to determine if it includes any unique printable

strings that can be found inside of it. The MD5 hash is also examined to see if it matches

the hash of a known sample of the AURIGA malware.

svchost.exe with process ID 176 that made connection1 from 10.10.1.11 (port

75611) to 10.10.7.1 (port 53) at 12/23/2018 12:18:07 PM is APT1 malware

The program that made connection1 from 10.10.1.11 (port 75611)

to 10.10.7.1 (port 53) at 12/23/2018 12:18:07 PM is APT1 malware

svchost.exe with process ID 176 and path

c:\windows\temp\svchost.exe on
10.10.1.11 is registered as Windows

service with Auriga specific name riodrv32

c:\windows\temp\svchost.exe on

10.10.1.11 has string superhard corp.
from Auriga string set

c:\windows\temp\svchost.exe on

10.10.1.11 has Auriga MD5 hash
6B31344B40E2AF9C9EE3BA707558C14E

Check whether svchost.exe with process ID 176

and path c:\windows\temp\svchost.exe on
10.10.1.11 is registered as Windows service

with Auriga specific name riodrv32

Check whether

c:\windows\temp\svchost.exe on
10.10.1.11 has string superhard

corp. from Auriga string set

Check whether

c:\windows\temp\svchost.exe on
10.10.1.11 has Auriga MD5 hash

6B31344B40E2AF9C9EE3BA707558C14E

svchost.exe with process ID

176 has Auriga features

svchost.exe with process ID 176 that made connection1

is the Auriga malware on the host computer 10.10.1.11

Auriga file system artifacts present

on the host computer 10.10.1.11

Auriga attributesAuriga persistence mechanism

*

*
…

svchost.exe with process ID 176 on
10.10.1.11 is registered as Windows

service with Auriga specific name

svchost.exe with process ID

176 on 10.10.1.11 has strings
from Auriga string set

svchost.exe with process ID 176 on

10.10.1.11 has Auriga MD5 hash

svchost.exe with process ID 176

on 10.10.1.11 has Auriga hash

L01

attrib
u

te
s

p
e

rs
is

te
n

ce

m
e

ch
an

is
m

L07 L05

L07

file syste
m

artifacts

m
al

w
ar

e

fe
at

u
re

s

L09 L08

81

Figure 22 Search for AURIGA files

When the right side of Figure 21 is further decomposed to look for file system

artifacts, it yields the decomposition tree shown in Figure 22, where the cognitive agent

must look for the presence of AURIGA files, its unique command shell TTP, and

Registry keys associated with the malware. Figure 22 shows the searches for AURIGA

files, which I broke down into three categories: temporary files, data files, and library

files. Temporary files are unique in that the file names are generated at run-time and

always match the regular expression “~_MC_[2-7]~[0..9]*”. Data files are used to store

keystrokes and other data recorded by the malware. Library files includes the DLLs,

executables, and device driver binary executable files used by the malware.

Auriga file system artifacts present

on the host computer 10.10.1.11

*

Auriga temporary files

are present on the host
computer 10.10.1.11

Auriga data files are

present on the host
computer 10.10.1.11

Auriga command

shell is present on
the host computer

10.10.1.11

Auriga files present

*

Auriga Registry keys

are present on the
host computer

10.10.1.11

Auriga library files are

present on the host
computer 10.10.1.11

Auriga temporary folder

{USERLOCALDATA}\ Temp is
present on the host computer

10.10.1.11

*

Auriga temporary files with names matching

the regular expression ~_MC_[2-7]~[0..9]*
are present in the folder {USERLOCALDATA}\

Temp on the host computer 10.10.1.11

Check whether Auriga temporary
folder {USERLOCALDATA}\Temp

Temp is present on the host
computer 10.10.1.11

Check whether Auriga temporary files
with names matching the regular

expression ~_MC_[2-7]~[0..9]* are
present in the folder

{USERLOCALDATA}\Temp \Temp on the
host computer 10.10.1.11

Check whether Auriga
data file

%USERPROFILE%\sam.sav
is present on the host
computer 10.10.1.11

Auriga data file

%USERPROFILE%\sam.sav
is present on the host
computer 10.10.1.11

Check whether Auriga
data file

SYSTEMROOT%\syste
m32\sam.sav is

present on the host
computer 10.10.1.11

Auriga data file

%SYSTEMROOT%\sys
tem32\sam.sav is

present on the host

computer 10.10.1.11

Check whether Auriga
library file

%SYSTEMROOT%\system
32\drivers\riodrv32.sys
is present on the host
computer 10.10.1.11

Auriga library file

%SYSTEMROOT%\system3
2\drivers\riodrv32.sys
is present on the host

computer 10.10.1.11

Check whether
Auriga library file

%SYSTEMROOT%\sys
tem32\netui.dll is

present on the host
computer 10.10.1.11

Auriga library file

%SYSTEMROOT%\sys
tem32\netui.dll is

present on the host

computer 10.10.1.11

… …
L05 L11 L08

L11

L05

L11L09

data files

library files

te
m

pora
ry

 fi
le

s

L01

te
m

p
o

rary fo
ld

e
r

w
ith

 file
s

te
m

p
o

ra
ry

fo
ld

e
r

L11 L07

L08 L08 L05

L11

L06

L09L09

command shell

Registry Key

fil
es

82

Figure 23 Search for AURIGA command shell and Registry keys

The tree shown in Figure 23 shows the decomposition of the other top-level

hypotheses from Figure 22. In the middle is the search for the unique command shell

TTP used by APT1. In some of their malware families, including AURIGA and

BANGAT, they make a copy of the standard Windows command shell program

(cmd.exe) with the path %SYSTEMROOT%\system3\ati.exe. They then replace all

instances of the string “Microsoft Corp.” with the string “Superhard Corp.”. Figure 22

also shows the searches for AURIGA-specific Registry keys.

The massive amounts of data required to be examined by cybersecurity experts to

detect threats has become a major problem as networks have become more complex and

threats have been more sophisticated. The state of a network can change billions of times

per second as processes on thousands of machines perform their tasks. It is infeasible to

collect all possibly relevant data all the time due to prohibitively high storage costs. The

Auriga file system artifacts present

on the host computer 10.10.1.11

Auriga command

shell is present on
the host computer

10.10.1.11

Auriga files present

*

Auriga Registry keys

are present on the
host computer

10.10.1.11

Check whether Auriga Registry key

HKEY_LOCAL_MACHINE\SOFTWAR
E\riodrv32\TEMP is present on the

host computer 10.10.1.11

Auriga Registry key

HKEY_LOCAL_MACHINE\SOFTWARE
\riodrv32\TEMP is present on the

host computer 10.10.1.11

Check whether Auriga Registry key

HKEY_LOCAL_MACHINE\SOFTWAR
E\riodrv32\DEL is present on the

host computer 10.10.1.11

Auriga Registry key

HKEY_LOCAL_MACHINE\SOFTWARE
\riodrv32\DEL is present on the host

computer 10.10.1.11

Host computer 10.10.1.11 has Auriga command shell

files %SYSTEMROOT%\system32\cmd.exe and
%SYSTEMROOT%\system32\ati.exe which are identical
except the string microsoft corp. in the first has been

replaced with superhard corp. in the second

Check whether host computer 10.10.1.11 has Auriga

command shell files %SYSTEMROOT%\system32\cmd.exe
and %SYSTEMROOT%\system32\ati.exe which are

identical except the string microsoft corp. in the first has

been replaced with superhard corp. in the second

*

L08 L08 L05

L11

L06

L09L09

command shell

Registry Key

fil
es

83

hypothesis-driven search for evidence process can drastically reduce the amount of data

that must be collected to detect threats. Through the modeling process in Disciple,

cognitive agents learn what data is important to subject matter experts, so only what is

needed is collected.

Furthermore, because of the abstraction layer the Collection Manager provides

between abstract searches generated by Disciple agents and concrete searches of real

security infrastructure, CAAPT can be more easily integrated into CSOCs with vastly

different security tools and infrastructure available to the analysis team. This will allow

for easier adoption by transition partners.

Figure 24 Automatic analysis of AURIGA files

Auriga file system artifacts present

on the host computer 10.10.1.11

*

Auriga temporary files

are present on the host
computer 10.10.1.11

Auriga data files are

present on the host
computer 10.10.1.11

Auriga command

shell is present on
the host computer

10.10.1.11

Auriga files present

*

Auriga Registry keys

are present on the
host computer

10.10.1.11

Auriga library files are

present on the host
computer 10.10.1.11

Auriga temporary folder

{USERLOCALDATA}\Temp is
present on the host computer

10.10.1.11

*

Auriga temporary files with names matching

the regular expression \~_MC_[2-
7]\~[0..9]* are present in the folder

{USERLOCALDATA}\ Temp on the host

computer 10.10.1.11

Auriga data file

%USERPROFILE%\sam.sav
is present on the host
computer 10.10.1.11

Auriga data file

%SYSTEMROOT%\sys
tem32\sam.sav is

present on the host

computer 10.10.1.11

Auriga library file

%SYSTEMROOT%\system3
2\drivers\riodrv32.sys
is present on the host

computer 10.10.1.11

Auriga library file

%SYSTEMROOT%\sys
tem32\netui.dll is

present on the host

computer 10.10.1.11

… …

L11
E1 evidence L11

E2 evidence

L11
E3 evidence L11

E4 evidence

L01

te
m

p
o

rary fo
ld

er
w

ith
 files

te
m

p
o

ra
ry

fo

ld
e

r

L11 L07

L11 L11

L11

L05 L11 L08

L11

L05

L11L09

data files

library files

te
m

pora
ry

 fi
le

s

L11 L11

L11 L11

L11
L08 L08 L05

L11

L06

L09L09

command shell

Registry Key

fil
es

84

3.2.4. Automatic Analysis of Evidence

When the hypothesis tree cannot be decomposed any further and all the available

evidence has been collected the Disciple agent will begin synthesizing a conclusion using

inductive (probabilistic) reasoning. This is a bottom-up approach, where favoring and

disfavoring evidence for each hypothesis is evaluated to determine the probability of each

leaf hypothesis. Then the probabilities of the upper-level hypotheses are determined by

combining the probabilities of their sub-hypotheses. This section continues the AURIGA

example and describes the automatic analysis process in depth.

Starting with analysis of the presence of AURIGA files, Figure 24 shows how the

automatic analysis process works. At the leaf level of the tree, each item of evidence is

evaluated based on its credibility (the probability that the evidence is true), and its

relevance to the parent hypothesis (the probability of the hypothesis assuming that the

evidence is true). The combination of these two values is called the inferential force of

the evidence (the probability of the hypothesis based only of this item of evidence) and is

computed as the minimum between the credibility of evidence and its relevance. In many

areas of analysis, the credibility of evidence can be less than certain. For example, it can

be based the reliability of a witness, their skill at interpreting the observed event, or a host

of other factors. In computer forensics and threat detection, the credibility of found

evidence is generally considered certain unless there is reason to believe an attacker

falsifies evidence as a part of their attack methodology. APT1 was not known to leave

fake forensic artifacts on victim computers or generate artifacts to trick analysts into

85

believing the attack was conducted by a different attack group. Therefore, the credibility

of all evidence used in this work is considered to be certain.

All credibility, relevance, and inferential force values in CAAPT use the

probability scale in Figure 7. To make the scale granular enough to allow for accurate

modeling of sophisticated threats, a twelve-step probability model was chosen with

assigned probability ranges. For some probability ranges, special names have been

chosen (e.g. “likely” and “almost certain”) to provide more clarity in the reasoning

models.

Once the inferential force of the evidence is computed for the leaf nodes it is

assigned as the probability value of the parent nodes for use in computing the probability

for hypotheses further up the synthesis tree. When a hypothesis has two or more child

hypotheses, the value of the hypothesis is calculated using one of three operators: min,

max, and *. Max, used for a parent hypothesis with alternative sub-hypotheses

(arguments), takes the highest value of the inferential forces of all sub-hypotheses

(arguments) and assigns it to the parent. Min, denoted by the & symbol, uses the lowest

value among the probabilities of the sub-hypotheses (representing the & argument) and

the relevance of the & argumentto determine the parent hypothesis’ value.

For CAAPT, the *-operator was created to allow the system to model the

combinatorial force of the sub-hypotheses which are indicators of the hypothesis, which

is a novel operator enabling CAAPT’s ability to analyze intrusion incidents. In the

analysis of sophisticated threats, it is common for one piece of evidence to have

significance on its own, but when combined with other evidence to gain substantially

86

more significance. It is also common for malware to leave behind multiple low-relevance

artifacts that, when combined, result in high likelihood by the analyst that the threat is

present. The *-operator allows a subject matter expert to accurately model this in the

Disciple learning agent shell to train cognitive agents how to autonomously apply the

knowledge.

Figure 25 *-operator example

Figure 25 shows an example of the *-operator, taken from the left most branch of

the inductive reasoning tree in Figure 19. In this example, the system is required to

determine how likely it is that an identified suspicious connection (connection1) is part of

an active APT1 intrusion based on whether or not the domain is active at the time of the

connection and the domain is registered by a dynamic DNS provider. APT1 was known

to park domains by mapping them to 127.0.0.1 (localhost) or some other non-routable IP

when there was no active attack in progress. Just before an attack, it would re-map the

a-jsm.infobusinessus.org is
mapped to a routable IP

address at time 12/23/2018
12:18:07 PM

a-jsm.infobusinessus.org is registered

at a dynamic DNS provider

*

L05

more
than
likely

d
yn

am
ic

D
N

S
ac

ti
ve

d

o
m

ai
n L08

very
likely

L03

likely

almost certain almost certain

. . .

APT1 would “park” domains, mapping
them to 127.0.0.1 and map them to

live domain when operational. An
active domain indicates APT1 is active.

APT1 used dynamic DNS providers
to register domains. It is a weak

indication of APT1 activity.

When evidence of both
hypotheses is present, the

relevance is increased.

87

domain to the IP address of a C2 server. While this was a good indicator of an active

APT1 attack, we cannot say for certain it indicates an attack on its own. There are

plausible explanations for why it would not indicate an attack on its own, such as the

domain being taken over by a security researcher or law enforcement. Likewise, while

APT1 was known to use dynamic DNS providers for its C2 domains, dynamic DNS

providers are popular for legitimate use cases. Therefore, the relevance of dynamic DNS

usage is low. However, when you combine the two indicators, the likelihood of an active

APT1 intrusion goes up substantially as the likelihood of someone legitimately mapping

a known APT1 domain to an active IP address using a dynamic DNS provider becomes

negligible.

Figure 26 Automatic analysis of AURIGA command shell and Registry keys

Auriga file system artifacts present

on the host computer 10.10.1.11

Auriga command

shell is present on
the host computer

10.10.1.11

Auriga files present

*

Auriga Registry keys

are present on the
host computer

10.10.1.11

Auriga Registry key

HKEY_LOCAL_MACHINE\SOFTWARE
\riodrv32\TEMP is present on the

host computer 10.10.1.11

Auriga Registry key

HKEY_LOCAL_MACHINE\SOFTWARE
\riodrv32\DEL is present on the host

computer 10.10.1.11

Host computer 10.10.1.11 has Auriga command shell

files %SYSTEMROOT%\system32\cmd.exe and
%SYSTEMROOT%\system32\ati.exe which are identical
except the string microsoft corp. in the first has been

replaced with superhard corp. in the second

*

L11
E5 evidence

L11
E6 evidence

L11

L11

L08 L08 L05

L11

L06

L09L09

command shell

Registry Key

fil
es

L11 L11 L11

L11

88

The automatic analysis continues with Figure 26, which shows the analysis of the

AURIGA command shell TTP and AURIGA Registry keys. It is common that not all of

the modeled forensic artifacts will be present on the infected computer. In the case of

Figure 26, only one of the Registry keys is present. However, because a max operator

was used, the probability that the presence of Auriga registry keys is L11.

Figure 27 Automatic analysis of AURIGA program features

The analysis of AURIGA program features in Figure 27 shows another unique

and powerful aspect of the theoretical model of attack detection used in CAAPT. In this

case, the MD5 hash of the program that made the connection triggering the BRO alert did

svchost.exe with process ID 176 that made connection1 from 10.10.1.11 (port
75611) to 10.10.7.1 (port 53) at 12/23/2018 12:18:07 PM is APT1 malware

The program that made connection1 from 10.10.1.11 (port 75611)

to 10.10.7.1 (port 53) at 12/23/2018 12:18:07 PM is APT1 malware

svchost.exe with process ID 176 and path
c:\windows\temp\svchost.exe on

10.10.1.11 is registered as Windows
service with Auriga specific name riodrv32

c:\windows\temp\svchost.exe on

10.10.1.11 has string superhard corp.
from Auriga string set

c:\windows\temp\svchost.exe on

10.10.1.11 has Auriga MD5 hash
6B31344B40E2AF9C9EE3BA707558C14E

svchost.exe with process ID

176 has Auriga features

svchost.exe with process ID 176 that made connection1
is the Auriga malware on the host computer 10.10.1.11

Auriga file system artifacts present

on the host computer 10.10.1.11

Auriga attributesAuriga persistence mechanism

*

*
…

svchost.exe with process ID 176 on

10.10.1.11 is registered as Windows
service with Auriga specific name

svchost.exe with process ID

176 on 10.10.1.11 has strings
from Auriga string set

svchost.exe with process

ID 176 on 10.10.1.11 has
Auriga MD5 hash

L11
E7 evidence

L11
E8 evidence

L11
E9 evidence

L11
L11 L00

L11

L11

L11 L00

L03

attrib
u

tes

p
er

si
st

en
ce

m

e
ch

an
is

m

L07 L05

L11L05

L05

L05

L07

file
 syste

m

artifacts

m
al

w
ar

e

fe
at

u
re

s

L09 L08

L11

L08

L08

L08

89

not match the hash of any known samples of AURIGA. This is an example of where the

attacker has made some sort of configuration change to the malware or used a different

packer/obfuscator to evade detection. In Figure 27, evidence E9 is disfavoring as a

result. However, we can still conclude with L08 probability that the program has

AURIGA features because of the combination of the other indicators: unique strings and

the persistence mechanism. Because of the modeling used, even the absence of critical

indicators like MD5 hashes will not cause a failure to detect the attack.

Figure 28 Top-level automatic analysis for AURIGA

At the top level, as shown in Figure 28, the modeling shows the probability that

the BRO alert which triggered the process is L08. In this example the analysis shows the

left and right side of the analysis have equal probability.

*

connection1
involves an active

APT1 C2 server

a-jsm.infobusinessus.org

is registered at a
dynamic DNS provider

a-jsm.infobusinessus.org is

mapped to a routable IP
address at time

12/23/2018 12:18:07 PM

connection1 from 10.10.1.11 (port 75611) to 10.10.7.1

(port 53) at 12/23/2017 12:18:07 PM, using known APT1 domain
a-jsm.infobusinessus.org, is part of APT1 intrusion

*

L11 L11

L08

L08

The domain registrar for

a-jsm.infobusinessus.org
is on a list of known

dynamic DNS providers
69.195.129.72 is mapped to domain

a-jsm.infobusinessus.org at time
12/23/2018 12:18:07 PM

a-jsm.infobusinessus.org has dynadot.com

as known dynamic DNS provider

L11

L11

L11

L08

very
likely A

P
T1

m
al

w
ar

e

N
e

tw
o

rk
in

d
ic

at
o

rs

L11

certain
L09

E10 evidence

E11 evidence
…

svchost.exe with process ID 176 that made connection1

from 10.10.1.11 (port 75611) to 10.10.7.1 (port 53) at
12/23/2018 12:18:07 PM is APT1 malware

The program that made connection1 from

10.10.1.11 (port 75611) to 10.10.7.1 (port 53)
at 12/23/2018 12:18:07 PM is APT1 malware

svchost.exe with process ID

176 has Auriga features

svchost.exe with process ID 176 that made connection1

is the Auriga malware on the host computer 10.10.1.11

Auriga file system artifacts present

on the host computer 10.10.1.11

*

…

L05
L07

file
 syste

m

artifacts

m
al

w
ar

e

fe
at

u
re

s

L09 L08
L11

L08

L08

L08

L01

d
yn

am
ic

D
N

S

ac
ti

ve

d
o

m
ai

n

L08 L03

90

3.3. Integrating Cognitive Agents into a Cybersecurity Operations Center

The most significant architectural challenge in the CAAPT research is creation of

a flexible design allowing the cognitive agents to integrate with a wide variety of

hardware and software security sensors and controls. There are hundreds of commercial

security products on the market for CSOC managers to choose from and many more open

source or homegrown solutions. For CAAPT to be successful, it has to be designed for

adaptability. Solving this problem required two main architectural contributions: 1)

selection and integration of multiple, collaborative, search and collection agents working

together to support the evidence collection requirements of APT detection, and 2)

development of a Collection Manager server application for translating and optimizing

abstract searches into searches executable by real collection agents. This section

describes how CAAPT integrates into a CSOC and why this contribution is significant

for enabling cognitive agents to work in real-world APT detection scenarios.

3.3.1. Selection of Collection Agents

The abstract searches requested by the analysis agents require evidence from

multiple types of data sources available on a typical network. There are hundreds of

security appliances, log source, and data store combinations in real-world networks. For

abstract searches requested by the cognitive agents to be carried out, a diverse set of

collection agents is required. Gartner research (Chuvakin, 2018) has determined that the

most critical technologies are a network detection/collection solution, and a host

detection and query solution, and a SIEM, so the selection of the agents focused on those

91

areas. I have chosen to use those critical technologies, as well as others, as needed,

broken down into the following categories from the taxonomy in Figure 29.

Passive collectors monitor raw data sources, such as network traffic or process

activity, and forward it to a datastore such as Elasticsearch or Splunk to be searched for

when it is needed later. Data collected in this fashion is often needed for its historical

value.

On-demand search agents listen for requests to retrieve specific artifacts from a

system. In response to those requests, they collect the specified information in a

forensically sound way and send it to the requestor.

Figure 29 Collection agent taxonomy

Passive collectors include passive network monitors such as BRO (Paxson, 1999)

for collecting network log data, Packetbeat (2019) and Symantec Security Analytics

92

which collect and store full packet data, and API-based systems such as VirusTotal which

collects passive DNS and malware data. Passive host monitors include tools such as

Winlogbeat (2019), which collects Windows log data and forwards it to the Elasticsearch

data store and endpoint detection and response (EDR) agents like Microsoft SYSMON,

CarbonBlack (2019), and Symantec EDR, which monitor and log real-time process, file

access, and connection information for storage in a central database.

On-demand collection agents are primarily used for host data. On-demand host

agents including Google Rapid Response (GRR) (2017), Encase Endpoint Investigator

(2017), and memory forensics tools such as Volatility (2015) are examples of on-demand

search agents. They are responsible for collecting and, in some cases analyzing, raw

forensic artifacts from network hosts.

For CAAPT, collection agents were chosen based primarily on their ability to

query and collect the types of data required for detecting sophisticated attacks. Based on

the requirements for modeling detection for APT1 malware, we chose a collection of

agents for netflow (network connection) data, full packet capture, DNS logs, volatile

memory artifacts, Windows Registry keys and values, file-based artifacts, endpoint logs,

domain controller logs, EDR logs, and passive DNS data. Next, free or open source

solutions were prioritized. CAAPT must be integrated into a CSOC in order to perform

its functions. The choice of open source solutions reduces barriers to integration, as there

is no cost for software licenses. Lastly, I chose tools supporting a RESTful API

(MuleSoft, 2016) for uniformity of integration. A substantial portion of the Collection

Manager code involves use of search or collection agent APIs. Using agents with

93

RESTful APIs as much as possible simplified the Collection Manager code and

minimizes future agent integration efforts. Table 1 below shows the collectors or agents

chosen for use in the CAAPT development and test network and for initial modeling of

APT1 detection.

Table 1 Collection agents for CAAPT

Data Type Collector/Agent Type

Netflow BRO Passive

Packet Capture Packetbeat Passive

DNS Logs BRO Passive

Firewall/IDS Logs BRO Passive

Volatile Memory Rekall and GRR On-demand search

Registry Keys Google Rapid Response (GRR) On-demand search

File-based Artifacts GRR On-demand search

Host Logs Winlogbeat Passive

Domain Logs Winlogbeat Passive

EDR Logs SYSMON and Winlogbeat Passive

Passive DNS VirusTotal On-demand search

On top of being an efficient network-based intrusion detection system, BRO is

also a passive network collection agent, monitoring network traffic and generating logs

for different events including digital certificates used for SSL/TLS connections, HTTP

connection strings, DNS requests and the IP addresses resolved, and netflow data. It also

has a flexible packet analysis programming language and interface, allowing for

additional detection or logging features to be added, as needed.

The developers of Elasticsearch have created a collection of passive log collection

agents, called “Beats” (2019). Beats are designed to collect specific types of log

information and send the log entries to Elasticsearch as JSON documents. For CAAPT,

94

Packetbeat is used for full packet data, Filebeat is used for collecting logs stored in flat

files (such as those generated by BRO), and Winlogbeat enables collection of Windows

Event logs, including those created by SYSMON. All logs collected by Beats are sent to

our Elasticsearch data store.

SYSMON, a passive host monitor, is a system service and device driver designed

to log system change activity to a Windows Event Log file. It logs detailed information

about process execution, network connections, and changes to the file system, including

the Registry. SYSMON log information provides the basic EDR functionality required to

understand the behavior of malware on a host computer. All SYSMON logs are

forwarded to the Elasticsearch data store using Winlogbeat and can be searched using

Elasticsearch’s RESTful API.

3.3.2. Collection Agent Architecture

Figure 30 shows a high-level overview of CAAPT’s passive collector

architecture. A BRO IDS box listens in promiscuous mode on the network segment

between the border router of the network and the outermost internal router. This allows

the BRO server to see all network traffic passing through a network’s Internet egress

point. BRO generates several types of logs, including alerts of suspicious connections

from threat intelligence, storing them in flat files on the server. When full packet capture

capability is required, Packetbeat can be run on the BRO server, taking advantage of its

visibility on the network to capture all network data passing through the Internet egress

point. Microsoft SYSMON runs on every Windows endpoint on a network, logging real-

95

time process activity to the Windows Event Log. All logs stored in Elasticsearch can be

queried using its RESTful API.

Figure 30 CAAPT passive collection architecture

Integration with on-demand search agents is simpler. The search agent runs as a

service on one or more computers on the network. It can be queried using a search

interface using either a synchronous or asynchronous call model. An example of the on-

demand search agent architecture is described in more detail in Section 3.3.3.

3.3.3. The CAAPT Collection Manager

The Collection Manager is the main integration point between the agents and

CSOC infrastructure. The analysis agents know what information is needed to expand

their analyses, but the search requests are in abstract form. They are not tied to specific

data sources. The primary function of the Collection Manager is translating high-level

(abstract) search instructions into specific API calls to host and network agents,

determining which such agent to send the search request to on behalf of the analysis

96

agents, and wrapping calls to specific search agents with a JSON API. Results returned

from a specific search agent to the Collection Manager are then converted into evidence

and added to the knowledge bases of the analysis agents.

Figure 31 Collection Manager process

Figure 31 is an overview of the Collection Manger process. When the analysis

agents analyze competing hypotheses, the searches generated by the hypothesis-driven

search process (such as the ones illustrated in Figure 19) are sent to the Collection

Search Processor

Request Queue

From Analysis Agents

Response Queue

To Analysis Agents

Dispatch To
Agent

Host Agent
Wrapper

Elasticsearch
Wrapper

Network Agent
Wrapper

From Collection Agent

Accept
Request

Parse
Response

Package
Response

Analyze
Response

Collection Agents

Generate
Receipt Msg.

Select Search
Processor

Process
Request

97

Manager and added to the request queue. Requests are then dispatched for processing

and a receipt message is sent back to the caller. The receipt includes the requestID and

the IP address and port the caller will listen on for the search response.

The abstract searches requested by analysis agents require evidence from multiple

types of data sources available to CSOC security infrastructure. There are hundreds of

security appliance, log source, and data store combinations in real-world networks. In

order for the analysis agents to integrate with real networks, the Collection Manager uses

a plugin architecture with search agent wrappers, allowing it to easily translate abstract

search requests into requests for information from real data stores.

Figure 32 Synchronous wrapper flow

Depending on the amount of time required to collect the information, requests to

an on-demand search agent can be either synchronous or asynchronous. From the

98

perspective of analysis agents, all requests to the Collection Manager are asynchronous,

but internally, the Collection Manager supports both a synchronous and asynchronous

call model. Figure 32 is an overview of the synchronous call model flow. The Dispatch

Manager thread dequeues an abstract search request from the queue, formats and prepares

a concrete search for a specific search or collection agent and forwards the request to the

search or collection agent. It then waits on the TCP connection for a synchronous

response. When it is received, the response is parsed to extract digital artifacts, formatted

as evidence, and sent the response to back to the caller. The entire call flow happens in a

single thread.

Figure 33 Asynchronous wrapper call flow

99

Figure 33 shows an overview of the asynchronous wrapper call model. In

contrast to the synchronous call model, the call happens in two threads. In one thread,

the abstract search request is received from the Dispatch Manager. The request is parsed,

and a concrete search request is prepared using relevant data from the abstract request.

The concrete search request is then sent to the intended search target. A second thread is

responsible for polling the search target on an interval for the response. When it is

available, the response data is parsed, artifacts are extracted, and a response to the

analysis agent is prepared and sent to the Dispatch Manager.

Figure 34 GRR asynchronous call flow example

GRR is the primary search agent where the asynchronous wrapper call model is

used in the Collection Manager. As shown in Figure 34, GRR Server software runs on a

100

server in the CSOC environment. The GRR Agent is installed on all endpoints on the

network. When GRR Server receives a request for a host artifact, the request goes into a

queue in its database. GRR Agents poll GRR Server on an interval, looking for new

requests. When one is found, it retrieves the request and executes it. When the request is

complete, the response is sent to GRR Server and stored in its database. The caller must

poll GRR Server to determine when the request is complete. The caller can then make a

separate, synchronous call to retrieve the artifact from GRR Server’s database. Using

this model, we can query any host artifact supported by GRR.

To illustrate the operation of the Collection Manger, let us consider the search

from the right side of Figure 19. This will lead to the invocation of the

GetProgramByNetworkConnection search function. An example of how this search is

performed is shown in Figure 35.

The request to the collection is in the form of a JSON document containing the

name of the search to be performed and the input parameters required to carry out the

search function. Parameters are extracted and the GetProgramByNetworkConnection

function is called. To carry out this search, the Collection Manager must first connect to

the Elasticsearch using its RESTful API. It then searches the Elasticsearch datastore for

the SYSMON log from the computer with the IP address in the sourceIP field matching

the search parameters (sourceIP, destinationIP, sourcePort, destinationPort, and

timestamp). After receiving and processing the response from Elasticsearch, the

Collection Manager generates the response JSON document shown in the bottom half of

Figure 35, containing the name of the process, its process ID, and its full path on the file

101

Figure 35 Search example

{

"requestID": 22124,
"requestTime":" 12/13/2017 7:46:56 PM ",
"requestType":"GetProgramByNetworkConnectionResponse",
"requesterSourceIP":"127.0.0.1",
"responseDestIP":"127.0.0.1",
"connectionName":"connection1",
"destinationIP":"69.195.129.70",
"destinationPort":53,
"sourceIP":"10.10.1.11",
"sourcePort":11234,
"timeStamp":"12/23/2017 7:46:56 PM“,
"processID":176,
"programName":”svchost.exe",
"programPath":"c:\\windows\\temp\\svchost.exe"

}

{
"requestID": 0,
"requestTime":"12/13/2017 7:46:56 PM",
"requestType":"GetProgramByNetworkConnectionRequest",
"responseDestIP":" 10.10.5.30 ",
"responseDestPort":12345,
"destinationIP":"69.195.129.70",
"destinationPort":53,
"sourceIP":"10.10.1.11",
"sourcePort":11234,
"timestamp”:”12/23/2017 7:46:56 PM“

}

REQUEST (to Collection Manager)

Search Process:
1. Connect to Elasticsearch via RESTful API
2. Search for the SYSMON log from computer with IP address sourceIP matching the

search parameters
3. If the record exists:

1. Add the program name, process ID, and full path to the output parameters
4. The Collection Manager is alerted that the search request has been completed.

Search Function: GetProgramByNetworkConnection
Input Parameters… Output Parameters…

connection1

program1 “svchost .exe“

E4
credibility: certain

path1 “c:\\windows\\temp\\svchost.exe“

has as connection

has as external name

has as path
has as

external name

“176“
has as process ID

102

system. This JSON document is sent back to the calling analysis agent, which converts it

into evidence with credibility certain, and adds it to the knowledge base. The ontology

fragment in the bottom of Figure 35 is the representation of evidence found by the

GetProgramByNetworkConnection function.

The selection of search and collection agents for CAAPT and the Collection

Manager design offer key contributions to the state of the art for integration of cognitive

agents into real-world CSOC environments:

(1) The agents selected allow for effective detection of sophisticated threats

with minimal network visibility and cost to the CSOC owner.

(2) The Collection Manager provides seamless translation of abstract search

requests generated by cognitive agents into concrete searches against real

search agents and automatic conversion of digital artifacts and search

results into evidence which can be used by cognitive agents to perform

complex reasoning and generate conclusions about the probability of

multiple hypotheses.

(3) A centralized collection architecture will allow for caching of search

results, reusing results from identical searches and reducing the time

required to execute duplicate searches.

(4) Centralizing integration between the Disciple agents and the CSOC

security infrastructure will provide for other means of optimization, such

as automatically scheduling large volumes of searches to reduce the

103

likelihood of overconsumption of network bandwidth of computing

resources.

3.4. Automatic Generation and Use of Incident Investigation Playbooks

One of the key contributions of this research is the automatic generation and use

of incident investigation playbooks. Not only is CAAPT capable of learning from an

expert cybersecurity analyst how to conduct autonomous analyses to detect sophisticated

threats, but it is also able to help analysts detect new threats by suggesting analysis and

collection playbooks as it encounters new threats.

Sophisticated attackers’ malware evolves slowly over time. Small configuration

changes are made during use of a malware variant to make IOC-based detection difficult,

and larger changes are made as the malware development teams add or remove features

from the malware to make it better. CAAPT can detect malware when configuration

changes are made because sophisticated attackers don’t change everything from one

attack campaign to the next.

The new versions often contain some features of the old malware, adding new

features on top of them. From the perspective of a CSOC analyst, the new malware

version still creates digital evidence consistent with old versions, making modeling

detection for the new version much easier. It also means CAAPT agents can use

modeling of known malware from an attack group to suggest what analysis to perform

and which evidence to collect to detect new malware version. These suggested analyses

are very similar to playbooks created in security orchestration products on the market.

However, CAAPT advances the state of the art in this area because the playbooks are

104

generated by cognitive agents by applying rules learned from detection of known

malware. This means that as the system grows to learn to detect tens or hundreds of

threats, analysts will not have to search through a huge library of reasoning trees to find

one that works. CAAPT will suggest a small set of playbooks likely to apply to the given

detection task, drastically increasing efficiency of CSOC operations.

As discussed previously, APT1 malware evolved over several years. In this

research, I have studied the evolution of APT1 malware starting with Auriga. Based on

analysis from contagiodump.blogspot.com (Mila, 2013) and my analysis of malware

clusters, it appears the malware lineage progressed as follows:

• Auriga is an early malware program used during the gain foothold phase of

their attacker lifecycle.

• Bangat was then developed, removing some features of the Auriga code and

reducing the footprint of digital evidence created during an attack.

• Seasalt was then created, containing shared features of Auriga and Bangat, but

making the network communication cleartext, which enabled analysts to

detect it using its HTTP user-agent and GET strings.

• Kurton followed Seasalt, containing shared features of Auriga, Bangat, and

Seasalt. The ability to view the HTTP GET string was removed.

Figure 36 shows an example of the CAAPTs ability to use rules learned from the

analysis of a malware program to suggest playbooks for the analysis of a descendent in

its evolution. Step 1 shows a high-level overview of the process of learning to detect the

Auriga malware. When Auriga was analyzed for the first time, CAAPT had not been

105

trained to handle the security alert from the Trigger Agent. The alert was presented to a

CSOC analyst (me), who along with the CAAPT research team modeled the analysis and

evidence collection in Disciple-EBR. When modeling was complete, Disciple-EBR

learned rules for automatic analysis and stored them in the knowledge base. When

Auriga was encountered in the future (Step 2), CAAPT applied the learned rules to detect

the malware.

Figure 36 Example of automatic generation of detection playbooks

Step 1) Instruct agent
to detect Auriga

Step 2) Use learned rules to
detect new Auriga event(s)

Step 3) Suggest Auriga detection as a playbook
for analyzing new APT1 malware (Bangat)

Step 4) Use learned rules to
detect new Bangat event(s)

KB

New rules learned
and added to

Knowledge Base

Expert cyber
analyst

Trigger
Agent

First APT1 trigger:
Auriga

Disciple

Auriga Modeling

No learned rule for
this event.

Requires new
modeling.

Expert cyber
analyst

Trigger
Agent

Second APT1 trigger:
Auriga

Disciple

Auriga Modeling

Reasoning rules
exist and are
automatically

applied

APT1
intrusion

using
Auriga!

Threat detected
using existing
learned rules

Expert cyber
analyst

Trigger
Agent

Third APT1 trigger:
Bangat

Disciple

Auriga Modeling

Only Auriga-based
rules learned.

Detection with low
probability.

Expert uses Auriga
playbook,

modifying it to
model Bangat

Disciple suggests Auriga
reasoning as “Playbook,”
guiding expert through

analysis of potential
APT1 intrusion.

Part of Auriga

KB

New reasoning
rules learned and

added to
Knowledge Base

Expert cyber
analyst

Trigger
Agent

Fourth APT1 trigger:
Bangat

Disciple

Reasoning rules
exist and are
automatically

applied

APT1
intrusion

using
Bangat!

Threat detected
using existing
learned rules

Bangat Modeling

106

Later, when Bangat was analyzed for the first time, CAAPT was not able to detect

it with high probability, causing it to send the alert to an analyst for modeling. Because

the rules learned from the analysis of Auriga also applied to the security alert from BRO,

Disciple suggested Auriga’s analysis trees as a possible solution. Since the analyses are

modeled using natural language and are easily understood by human analysts, the analyst

was able to use the suggested analysis trees to conduct the manual analysis required to

understand the new threat and model it in Disciple for use in detecting Bangat. The new

analysis and learned rules for Bangat were stored in the knowledge base for future use.

When Bangat was encountered again, CAAPT used what it had learned to

autonomously detect the malware. As the malware continued to evolve from Bangat to

Seasalt to Kurton, the same method allowed CAAPT agents to guide me through the

detection process and for me, in turn, to train the CAAPT cognitive agents to detect the

new malware.

By taking advantage of the mixed-imitative reasoning and learning in Disciple, I

can not only train cognitive agents to detect sophisticated threats but can also leverage

previously learned knowledge to guide me through the analytical process by using the

generated reasoning trees as detection and analysis playbooks. Because Disciple suggests

only applicable reasoning trees for use in new scenarios, it drastically speeds up the

manual analysis and modeling required to detect new threats.

3.5. Development and Test Network Environment

The CAAPT project required a simulated network environment to develop and

test the cognitive agents. The network was not required to be large in scope but needed

107

to contain a representative architecture and selection of computers similar to a real

network. Figure 37 shows the layout of the simulated network environment used for

development and testing of CAAPT.

Figure 37 Logical network topology for test environment

The cognitive agents we developed were required to represent and understand

real-world networks and be able to identify real threats on them. It was infeasible for

development and testing of the cognitive agents to be done on a real network because the

agents needed to be tested using real APT1 malware or simulated attack artifacts. This

represented myriad security concerns including:

108

• While APT1 malware is widely known to be manually operated and does not

spread from computer to computer in an automated fashion and it is unlikely to

represent a significant risk, use of real malware violates the security policy of

most real-world networks.

• APT1 malware is configured to call out to command-and-control (C2) servers.

Those servers are believed to have been abandoned by the APT1 threat group, but

it is unknown if security researchers or law enforcement continue to surveil those

servers. Connections to the domains and IP addresses may trigger security alerts

or unintended action by security researchers or law enforcement.

• Simulated attack artifacts, including files, registry keys, or network connections,

may trigger the same types of security events or unintended security researcher or

law enforcement response.

For this research, I have created a small-scale network, in a virtual environment,

representative of a small corporate network, for these purposes. This virtual network

contains all of the relevant network services, including workstations, domain controllers,

and network security appliances. The key components of the development and test

network are:

• Virtualization Platform used to host the virtual environment.

• Network Design, including networking infrastructure, operating systems and

enterprise infrastructure.

• Simulated CSOC, which contains a security alert and data repository and the

CAAPT cognitive assistants.

109

• Simulated Internet Services, allowing realistic network traffic to occur without

providing malware access to the Internet.

• Simulated Attacker Network, which was used during testing and evaluation of the

system.

Each of these subsystems will be discussed in detail in this section.

3.5.1. Virtualization Platform

Modern virtualization software is capable of simulating not just single

workstations, but large-scale network environments for development, testing, and large

simulated exercises. They provide a safe, isolated environment for testing software such

as CAAPT. One of the most common software platforms for this type of testing is

VMWare’s vSphere environment. Depending on the hardware it is running on, it can be

used to simulate dozens, hundreds, or thousands of computers in complex network

environments. Through the use of “DevOps” (development operations) technology built

into the vSphere tool set, it is also capable of standing up new, clean versions of an

environment quickly, so the network environment can be reset repeatedly during a

development and testing cycle.

Many of the key features of vSphere – virtualized computers, virtual networking

and routing, etc. – can be done in VMWare Workstation, which is a desktop

virtualization product. It is a mature product used by software engineers for testing and

by malware analysts for examining malicious software. However, since it is designed to

run on workstations or developer laptops, it cannot be used to simulate a large network

environment necessary for full-scale development and testing of the system.

110

Figure 38 Virtualization platform usage in development and testing

To bridge the gap between the two needs, I combined usage of these virtualization

tools throughout the development and testing process, as shown in Figure 38. For the

early phases of the research project – Research and Analysis, Initial Component

Development, and Initial Integration Testing – VMWare Workstation was appropriate

because it could be used on the smaller developer workstations used for this early work:

• Research and Analysis – small-scale evaluation of network traffic, malware, or

individual collection agents prior to development or selection of system

components.

• Initial Component Development – Creation of new software components, such as

the Hypothesis Generation Agent or host-based collection agents, was created on

developer workstations and laptops and tested in a single virtual machine in

VMWare Workstation.

• Initial Integration Testing – VMWare Workstation was used to test component

integration on a smaller scale, prior to full-scale development.

Once development of most of the individual components was completed, I

proceeded to Full-Scale Development and Testing of the system, followed by Final

Testing and Evaluation. For this work, the CAAPT team needed a network similar to the

111

one shown in Figure 37, which required a larger server running VMWare vSphere to

simulate.

By leveraging the different VMWare packages in this way, I was able to quickly

start initial analysis, development, and testing prior to purchase of a server. The virtual

machines are compatible across the different tools, so work done using VMWare

Workstation was easily ported to the larger VMWare vSphere environment when it was

ready.

3.5.2. Network Design

The development and test network was created inside of a VMware vSphere 6.5

server and its architecture is similar to Figure 37. In total, 18 virtual machines were

created for the purposes of simulating a simple corporate network, implementing the

collection agents, and testing the system:

• Two virtual machines (VMs) were used as virtual router appliances. This

was done using Linux’s built-in routing features. One of the routers is the

gateway router, responsible for routing network traffic between the

internal network and the Internet. The other is an internal router,

responsible for routing traffic between the different subnets in the

development and test network.

• GRR was installed on a standalone Linux server and was used to manage

the GRR agents installed on Windows workstations.

• Elasticsearch was installed in its own virtual machine, along with the

Kibana front end. Kibana was primarily used for manual analysis during

112

development and testing of the system. It was also an invaluable resource

in debugging.

• One VM was used as a DNS server so that we could spoof DNS

resolutions of APT1 domains. This was necessary because the university

network our research server was connected to also has the ability to detect

APT1 threats and I did not want to trigger security alerts in the university

network.

• I used two VMs for BRO. One was placed behind the gateway router

appliance so it could see all traffic exiting the test network. One

additional BRO server was used on the 10.10.4.0/24 network so it could

monitor traffic going to and from the DNS server. This was required

because spoofed DNS queries would not exit the test server, preventing

the original BRO server from seeing the traffic.

• The Collection Manager and Alert Generation Agent software required

one VM. Both server software programs ran on a Windows Server 2016.

• The Disciple agents ran on one virtual machine.

• Nine VMs were configured as corporate workstations and were used to

simulate intrusions supporting the testing use cases described below.

While the average corporate network is more complex than what was simulated in

the development and test network, I created a network architecture that captures the

critical issues involved in simulating, monitoring, and detecting APT intrusions in the

early stages. Additional issues arise as APT intrusions progress and the attackers gain

113

administrator privileges on the network, move laterally, and complete their mission. The

development and test network, along with the selected set of collection agents may not be

sufficient to detect these later stages of the attacker lifecycle. However, with additional

research, the system could be expanded to include the features required to detect the later

stages of the attack.

114

4. EXPERIMENTATION AND TEST RESULTS

This chapter expands upon information previously published in peer reviewed

conference proceedings (Tecuci et al., 2019a; 2019b).

Testing and validation of a system like CAAPT is challenging due to a lack of

standardized data for use in comparing it against other systems or approaches. It is also

challenging due to a lack of like systems to compare CAAPT to. It is a novel approach to

the problem of APT detection and autonomous analysis of security incidents. As such,

the only reasonable approach to compare CAAPT to is manual analysis by an expert. As

such, a series of experiments was planned and executed to demonstrate the value of the

contributions of this research by testing the following claims:

1. Ability to automatically detect the training malware: Once trained to detect a

malware program, CAAPT is able to detect the same malware program when

it is used again on the network. This creates a baseline for the evaluation.

2. Ability to detect variants of the training malware: Once CAAPT has been

trained to detect a malware program, it is able to detect variants of the

malware with different configurations (i.e. it will create a different set of

forensic evidence on the network).

3. Some ability to detect evolved malware: Once it is trained to detect one

malware family from an APT group (e.g. Auriga and Bangat of APT1), it may

be able to detect an intrusion by a new malware family from the same APT

group.

115

4. Limited incremental training needed to detect a new malware from the same

group: Once CAAPT is trained to detect one malware family from an APT

group, only incremental training is required to train it to detect a later malware

family from the same APT group (e.g., limited incremental training needed to

detect the Bangat family, after it was trained to detect the Auriga family).

5. Efficient and high-quality analysis: CAAPT can rapidly detect APT1

intrusions through a rigorous and transparent analysis, as judged by the

training expert.

The first three objectives show CAAPT’s ability to detect malware from the same

APT group. The fourth shows efficiency in training, allowing CSOCs to be more agile in

responding to new threats. The fifth shows CAAPT’s ability to increase efficiency of

CSOC operations. The following sections will detail the testing approach and the

experimental results that justify the above claims.

5.1. Use of APT1 for Experimentation

This research used APT activity as a case study for orchestration and automation

of cybersecurity incident response because APT groups follow a rigorous attack

methodology and, as they are likely state-sponsored and part of a large organization, their

malware and attack techniques change slowly over time compared to criminal or

hacktivism attacks, allowing analysts time to adapt to the changes and put detection

mechanisms in place. The evolution of an APT group’s methodology and malware is an

ideal case study for this research as it allows, during modeling and testing, to show the

system’s ability to predict changes in attack behavior and cope with a changing threat.

116

APT1 was chosen specifically as the attack group for this study primarily because

of the abundance of freely available information about it. Freely available intelligence

regarding APT groups, most of which is either classified or only offered by paid

commercial subscription services, is rare. APT1 was outed publicly in 2013. Of all the

known APT groups, it is the group with the largest amount of publicly available

intelligence, including IOCs, malware samples, and details of how the group operated.

Included in the detailed knowledge of APT1 activity are details about the

evolution of APT1 malware, which was used in demonstrating CAAPT’s ability to adapt

to changing APT methodology. Reporting on APT1 shows an evolution of malware used

by them over the eight years they were known to operate, including the malware

evolution chain used for CAAPT, which started with the Auriga implant, and then

evolved over time to Bangat, Seasalt, and Kurton.

The biggest challenge with using APT1 in this study is that the group is either no

longer active or is not using the malware and techniques that were made public in 2013.

While APT1 malware was run in VMs to simulate attacks, and threat intelligence was

used in other cases to simulate attacks, it is not possible to test the learning and reasoning

models against real attacks by APT1. So, while we can test the system against APT1

technology and processes, I could not test it against the people who used to conduct the

attacks.

APT1’s dormancy also led to difficulties with CAAPT’s false positive

hypotheses. False positive scenarios related to APT detection, similar to what has been

modeled in CAAPT, have to do with whether or not the C2 server is active or not. Since

117

APT1 has not been active for several years, all of their C2 domains have been dormant.

While I could simulate aspects of an attack using data sources within the development

and test network, the data sources used in the false positive hypotheses are provided by

external providers, such as VirusTotal and public Whois servers, and are outside of my

control. As a result, the false positive hypotheses had high probability even in simulated

attack scenarios.

Lastly, simulating APT attacks was challenging because simulated connections to

APT1 domains triggered security alerts in university security infrastructure, such as the

FireEye network IDS appliance in use, even though the domains are dormant. Prior to

implementing DNS spoofing inside of the development and test network, I accidentally

triggered security alerts, resulting in access to the server being shutoff temporarily by the

university’s security team. This was overcome via DNS spoofing, which I implemented

in the development and test network prior to final testing of the system.

For most of the experiments, attacks were simulated by planting forensic artifacts

on Windows hosts consistent with those generated by real APT1 malware. Available

threat intelligence provides very detailed information on the files, unique strings,

Registry keys, persistence mechanisms, and network indicators created during an attack.

When that information was unavailable or insufficient, I used both static and dynamic

techniques to reverse engineer the malware binaries to identify forensic artifacts created

by them. Using this information, I manually created attack scenarios recreating the

patterns of indicators created by each malware program. Network-based artifacts, such as

DNS requests, network connections, and HTTP User Agent strings, were created using

118

tools such as nslookup or the User Agent Switcher extension for the Chrome web

browser. Attack models were then tested in isolated VMs by infecting hosts with APT1

malware and running CAAPT against them.

Figure 39 Overview of experiment protocol

I performed an experiment to test both the training of CAAPT to detect APT1

malware and the use of CAAPT to detect such intrusions. As shown in Figure 39,

experiments were designed to test CAAPT’s ability to detect configuration changes in the

same malware and new malware versions as the attackers’ tool set evolves over time.

The experiment simulated the following evolution of APT1: Auriga → Auriga variants

→ Bangat → Bangat variants → Seasalt → Seasalt variants → Kurton → Kurton

variants.

Test Ability to Detect Malware Variants

Te
st

 A
b

ili
ty

 t
o

 D
et

ec
t

M
al

w
ar

e
Ev

o
lu

ti
o

n

Auriga 1

a-jsm.infobusinessus.org

Source Dest

10.10.1.10 208.67.222.222

64123 53 (DNS)

10/28/2018 13:44:53

Auriga

Auriga 2

app.blackcake.net

Source Dest

10.10.1.12 208.67.222.222

61478 53 (DNS)

10/28/2018 14:50:15

Auriga N

a-jsm.infobusinessus.org

Source Dest

10.10.1.13 208.67.222.222

61626 53 (DNS)

10/28/2018 19:01:58

. . .

Bangat

Seasalt

Kurton

Bangat

Variant 1

Bangat

Variant 2
. . . Bangat

Variant K

Seasalt

Variant 1

Seasalt

Variant 2
. . . Seasalt

Variant L

Kurton

Variant 1

Kurton

Variant 2

Kurton

Variant M
. . .

119

For this experiment only one running instance of the Automatic Analysis agent

was used.

5.2.Auriga Experiment

First, detection of an Auriga intrusion was modeled along with the corresponding

ontology. Based on the developed Auriga modeling, CAAPT learned 31 context-

independent hypothesis patterns, two trigger rules, two indicator rules, 16 hypothesis

analysis rules, 15 collection tasks, and 15 collection rules. Eight collection agents were

also defined. CAAPT’s detection capabilities were then tested in three scenarios:

• with the Auriga intrusion used in training (to test the system;

• with an intrusion by a variant of Auriga (to test system’s capability of

detecting such variants);

• with a Bangat intrusion (to test system’s ability of detecting a new malware

from the same family).

Table 2 provides an overview of the artifacts related to each malware variant

tested in the Auriga experiment.

The variant of Auriga in the second test used a different APT1 domain to trigger

the security alert and the malware process %SYSTEMROOT%\Temp\svchost.exe did not

contain unique APT1 strings. Figure 40 shows a fragment of the analysis automatically

generated by CAAPT when it investigated an intrusion with a variant of Auriga.

Table 3 summarizes the results of this experiment. Notice in column 3 that

CAAPT succeeded in detecting the simulated attack using a variant of Auriga with the

same probability as the training example.

120

Bangat, the next malware program in APT1 malware evolution was then tested to

see if it could be detected even though CAAPT was not yet trained to detect it. As shown

Table 2 Auriga and Bangat experiment artifacts

in Table 2, the main differences between Auriga and Bangat are that Bangat: (a) does not

have the library files riodrv32.sys and netui.dll; (b) uses a different regular expression for

its temporary file names; and (c) stores its data files in different folders. Bangat also uses

different Windows Service names for its persistence mechanisms.

Notice in column 4 of Table 3 that CAAPT determined the probability L06 (75-

80%) that there is an APT1 intrusion with the same probability of being Auriga intrusion.

Artifact Type Auriga (Training) Auriga (Variant) Bangat
C2 Domain a-jsm.infobusinessus.org app.blackcake.net canada.cnndaily.com
Service Name riodrv32 riodrv32 (svchost) iprip
Service Display

Name N/A N/A Remote Access Auto

Connection Manager
Service

Description
N/A N/A N/A

Service Binary N/A N/A %SYSTEM32%\rasauto32.dll
Temp File(s) %TEMP%\~_MC_3~327 %TEMP%\~_MC_4~436 %TEMP%\~_MC_4~
Data File(s) %TEMP%\sam.dat

%USERPROFILE%\sam.sav
%TEMP%\sam.dat
%USERPROFILE%\sam.sav %TEMP%\sam.sav

Executable File %WINDIR%\temp\svchost.exe %WINDIR%\temp\svchost.exe %WINDIR%\temp\svchost.exe

Auxiliary

Program
N/A N/A N/A

Unique

String(s) superhard corp. Not Present superhard corp.

Library File(s) %SYSTEM32%\drivers\riodrv32.sys
%SYSTEM16%\netui.dll %SYSTEM32%\drivers\riodrv32.sys %SYSTEM32%\rasauto32.dll

Registry Key(s) HKLM\SOFTWARE\riodrv32\TEMP
HKLM\SOFTWARE\riodrv32\DEL

HKLM\SOFTWARE\riodrv32\TEMP
HKLM\SOFTWARE\riodrv32\DEL N/A

User Agent

String
N/A N/A N/A

121

This is because detection of an APT1 intrusion is based on network IOCs attributed to the

APT1 group, but not necessarily to a specific malware program. By structuring the

modeling in this way, the system can detect unknown APT1 malware even if all they do

in a new attack is reuse old C2 infrastructure.

Figure 40 Fragment of the analysis of the Auriga variant from Table 2

122

Notice also the sum of the probabilities of “Auriga intrusion” and “APT1

intrusion” is over 100%. This is because these two hypotheses are not disjoint. Indeed,

“APT1 intrusion” means any intrusion performed by the APT1 attacker group, using any

of their malware tools, including Auriga.

The last row in Table 3 shows the duration of each experiment. The run time for

the development and evaluation of the reasoning trees is 1 to 3 seconds. Most of the time

is spent by waiting for the Collection Manager to return the results requested by the

collection agents.

Table 3 Auriga experiment results

Experiment

With the Auriga

intrusion used in

training

With an intrusion by a

variant of Auriga

With a Bangat

intrusion

APT1 intrusion L08 (85-90%) very likely L08 (85-90%) very likely L06 (75-80%)

Auriga malware L08 (85-90%) very likely L08 (85-90%) very likely L06 (75-80%)

Duration 132 seconds 174 seconds 185 seconds

External dependencies, such as GRR, Elasticsearch, and VirusTotal, take time to

perform searches and checks and some Collection Manager searches or checks require

multiple calls to external agents. While these systems (particularly GRR and

Elasticsearch) have been optimized to return results quickly, the time required to perform

Auriga analysis was primarily made up of Collection Manager tasks.

123

5.3. Bangat Experiment

In the second experiment, detection of the Bangat intrusion from the first

experiment was modeled, along with an extended APT1 ontology with the representation

of Bangat malware as follows:

• Modeling began with the knowledge base generated by the last Auriga

experiment (Bangat intrusion with the Auriga representation and the rules

learned from the Auriga modeling).

• Within this knowledge base, the ontological representation of Bangat was

developed.

• Analysis of a Bangat intrusion was performed using the ontological

representation of Bangat, and the rules learned from the Auriga modeling.

• The generated analysis was refined and extended to accurately and completely

analyze the Bangat malware intrusion.

• New rules needed to analyze Bangat were learned.

After learning the new rules, the CAAPT knowledge base was extended with six

context-independent hypothesis patterns, five hypothesis analysis rules, three collection

tasks, and three collection rules. As expected, teaching CAAPT to detect Bangat required

only an incremental extension of the modeling, once the system had already been trained

to detect Auriga.

After learning rules based on the new modeling, CAAPT’s detection capabilities

were tested in three scenarios:

• with the Bangat intrusion used in training;

124

• with an intrusion by a variant of Bangat;

• with a Seasalt intrusion.

Table 4 shows an overview of the simulated forensic artifacts used in the Bangat

experiment. The Bangat variant used for training was the same as the one used in the

Auriga experiment. The variant of Bangat used in the second run had three main

differences. The alert was triggered with a different domain, the data files used in the

first Bangat scenario were not present, and a different temporary file matching the Bangat

regular expression was present on the infected host.

Table 4 Bangat and Seasalt experiment artifacts

Artifact Type Bangat (Training) Bangat (Variant) Seasalt
C2 Domain canada.cnndaily.com data.firefoxupdata.com mo.businessconsults.net
Service Name (svchost) iprip (svchost) nwsapagent (svchost) SaSaut
Service Display

Name
Remote Access Auto Connection
Manager

Remote Access Auto Connection
Manager System Authorization Service

Service

Description
N/A N/A

Authorization and authentication

service for starting and
accessing machines.

Service Binary %SYSTEM32%\rasauto32.dll %SYSTEM32%\rasauto32.dll %SYSTEM32%\svc.dll
Temp File(s) %TEMP%\~_MC_4~ %TEMP%\~_MC_6~ N/A
Data File(s) %TEMP%\sam.sav None %TEMP%\sam.dat

%USERPROFILE%\sam.sav
Executable File %WINDIR%\temp\svchost.exe %WINDIR%\temp\svchost.exe %WINDIR%\temp\svchost.exe
Auxiliary

Program
 N/A N/A %USERPROFILE%\java.exe

Unique

String(s) superhard corp. superhard corp.
fxftest
upfileok

ubuntuguru.strangled.net/postinfo.html
Library File(s) %SYSTEM32%\rasauto32.dll

%SYSTEM32%\rasauto32.dll
%SYSTEMROOT$\temp\svchost.exe %SYSTEM32%\drivers\riodrv32.sys

Registry Key(s) N/A N/A N/A

User Agent

String
N/A N/A

Mozilla/4.0 (compatible; MSIE 5.00;

Windows 98) KSMM

125

Table 5 summarizes the results of this experiment. Notice in column 3 that

CAAPT succeeded to detect the intrusion with the variant of Bangat with the same

probability as the detection of the intrusion with Bangat training example. This result

shows CAAPT’s ability to detect attacks that use the same malware with changes to the

program’s configuration.

Table 5 Bangat experiment results

Experiment

With the Bangat

intrusion used in

training

With an intrusion by a

variant of Bangat
With a Seasalt intrusion

APT1 intrusion L08 (85-90%) very likely L08 (85-90%) very likely L08 (85-90%) very likely

Auriga malware L06 (75-80%) L06 (75-80%) L01 (50-55%) barely likely

Bangat malware L08 (85-90%) very likely L08 (85-90%) very likely L01 (50-55%) barely likely

Duration 327 seconds 285 seconds 275 seconds

I then tested detection of the next malware from the APT1 family, Seasalt, for

which CAAPT was not trained. As shown in Table 4, Seasalt uses a specific name

(SaSaut) to register itself as a Windows Service and has different unique strings

associated with it. It also does not use the command shell technique shared by Auriga

and Bangat. Seasalt added an auxiliary program, which the Seasalt Windows Service

DLL starts, and the network protocol was changed so it can be detected using a unique

HTTP User Agent String.

Notice in column 2 that the probability of “Auriga intrusion” is L06 (75-80%) and

the probability of “Bangat intrusion” is L08 (85-90%). This is not a contradiction because

these two hypotheses are not disjoint. The Bangat malware is an evolution of the Auriga

malware and therefore it has many features in common with Auriga. When checking for

126

an intrusion with Auriga, the system looks for the presence of the features of the Auriga

malware on the infected computer, but some of these features are also the features of

Bangat, so it is possible that the computer is infected by both Auriga and Bangat.

Therefore, Auriga intrusion with probability L06 (75-80%) covers the case where the

Auriga intrusion is accompanied by a Bangat intrusion. Similarly, Bangat intrusion with

probability L08 (85-90%) is based on the detected Bangat features on the host computer

which also includes some Auriga features. Thus, this probability also covers the case

when there is both a Bangat an Auriga and intrusion.

Notice also in column 4 of Table 5 that CAAPT detected that very likely (85-

90%) there is an APT1 intrusion, but the probability of being Auriga or Bangat is only

barely likely 50-55%. This result shows the theoretical model can both identify new

attacks by the same attacker and distinguish between different malware tools used in the

attacks.

5.4. Seasalt Experiment

In the third experiment CAAPT was trained to detect the Seasalt intrusion from

the second experiment, and the APT1 ontology was extended with the representation of

Seasalt as follows:

• Modeling began with the knowledge base generated by the last Bangat

experiment (Seasalt intrusion with the Auriga and Bangat representations and

the rules learned from the Auriga and Bangat modeling).

• Within this knowledge base the ontological representation of Seasalt was

developed.

127

Table 6 Seasalt and Kurton experiment artifacts

• Generation of the analysis of the Seasalt intrusion was then attempted using

the ontological representation of Seasalt and the rules learned from Auriga

and Bangat. However, because the ontological representation of Seasalt is

significantly different from those of Auriga and Bangat, many of the rules

were not applicable.

• A new modeling for Seasalt intrusion was then created.

Artifact Type Seasalt (Training) Seasalt (Variant) Kurton
C2 Domain mo.businessconsults.net kl-hqun.gmailboxes.com launch.todayusa.org
Service Name (svchost) SaSaut (svchost) SaSaut (svchost) iprip
Service Display

Name System Authorization Service System Authorization Service
Remote Access Auto Connection
Manager

Service

Description

Authorization and authentication

service for starting and

accessing machines.

Authorization and

authentication service for
starting and

accessing machines.

N/A

Service Binary %SYSTEM32%\svc.dll %SYSTEMROOT%\svc.dll %SYSTEM32%\svc.dll
Temp File(s) N/A N/A N/A

Data File(s) N/A N/A %SYSTEM32%\SvcHost.DLL.log
Executable File N%WINDIR%\temp\svchost.exe %WINDIR%\temp\svchost.exe %WINDIR%\temp\svchost.exe
Auxiliary

Program
%USERPROFILE%\java.exe %USERPROFILE%\java.exe N/A

Unique

String(s)
fxftest

upfileok

ubuntuguru.strangled.net/postinfo.html

Same as Training Variant

“you specify service name not in

Svchost\netsvcs, must be one of

following:”
“CreateService(%s) SUCCESS. Config it”

“Exception Catched 0x%X”

“MyTmpFile.Dat”
Library File(s) N/A N/A N/A

Registry Key(s) N/A Not present

HKLM\SOFTWARE\Microsoft\DirectT\d

wHighDateTime

HKLM\SOFTWARE\Microsoft\DirectT\d
wLowDateTime

User Agent

String

Mozilla/4.0 (compatible; MSIE 5.00;

Windows 98) KSMM
Not present

Mozilla/4.0 (compatible; MSIE 7.0;)

128

• The new rules needed to analyze Seasalt were learned, reusing the applicable

rules learned from Auriga and Bangat (for example the analysis of the

persistence mechanism and of the Registry keys).

Figure 41 Fragment of the analysis of the Seasalt variant

Following rules learning, the CAAPT knowledge base was extended with 10

context-independent hypotheses patterns, seven hypotheses analysis rules, five collection

tasks, and five collection rules. One new collection agent was also defined. This was a

129

larger extension of the system due to a more drastic change in Seasalt’s features. After

that, CAAPT’s detection capabilities were tested in three scenarios:

• with the Seasalt intrusion used in training;

• with an intrusion by a variant of Seasalt;

• with a Kurton intrusion.

As shown in Table 6, the variant of Seasalt used in the second run showed

CAAPT’s ability to handle variance in its detection model. A different domain was used

to trigger the BRO alert, the Windows Service DLL was in a different location than in the

first run, the HTTP User Agent string was not present, and the Registry keys were not

present.

Figure 41 shows a fragment of the reasoning of CAAPT when it analyzed the

variant of Seasalt.

Table 7 summarizes the results of this experiment. Notice in column 3 that

CAAPT succeeded to detect the intrusion with the variant of Seasalt with the same

probability as the detection of the intrusion with the Seasalt training example.

Table 7 Seasalt experiment results

Experiment

With the Seasalt

intrusion used in

training

With an intrusion by a

variant of Seasalt
With a Kurton intrusion

APT1 intrusion L08 (85-90%) very likely L08 (85-90%) very likely L08 (85-90%) very likely

Auriga malware L01 (50-55%) barely likely L01 (50-55%) barely likely L01 (50-55%) barely likely

Bangat malware L01 (50-55%) barely likely L01 (50-55%) barely likely L03 (60-65%) likely

Seasalt malware L08 (85-90%) very likely L08 (85-90%) very likely L00 (0-50%) lacking support

Duration 382 seconds 406 seconds 344 seconds

130

I then tested the detection of the next malware from the APT1 family, Kurton, for

which CAAPT was not trained. Unlike Seasalt, which uses a single name for registering

itself as a Windows Service, Kurton can be configured to use any name the user wants.

However, threat intelligence (Mandiant, 2013) shows that the names iprip, nwsapagent,

and iprip32 were the most common names. Kurton also does not use an auxiliary

program, but uses two different HTTP User Agent Strings, a data file located at

%WINDIR%\System32\SvcHost.DLL.log, and unique Registry keys.

Notice in column 4 of Table 7 that CAAPT detected that very likely (85-90%)

there is an APT1 intrusion, but the probability of being Auriga is only barely likely 50-

55%, the probability of being Bangat is (60-65%) likely, and there is no evidential

support that it is Seasalt. This experiment further confirmed CAAPT’s ability to identify

new attacks while distinguishing between specific malware programs.

5.5. Kurton Experiment

In the final simulated malware experiment I modeled detection of the Kurton

intrusion from the third experiment, and extended the APT1 ontology with the

representation of Kurton as follows:

• Modeling started with the knowledge base generated by the last Seasalt

experiment (Kurton intrusion with the Auriga, Bangat, and Seasalt

representations and the rules learned from their modeling).

• Within this knowledge base the ontological representation of Kurton was

developed.

131

• Generation of the analysis of the Kurton intrusion was then attempted using

the ontological representation of Kurton and the rules learned from the

Auriga, Bangat, and Seasalt modeling. However, because the representation

of Kurton combines some aspects of Auriga and Bangat (for example, the

presence of data file artifacts) with some aspects of Seasalt (for example, the

presence of network artifacts) while excluding other aspects of

Auriga/Bangat/Seasalt, the top parts from any of the previous analyses were

not applicable.

• A new modeling for Kurton was developed by combining the applicable parts

from Auriga, Bangat, and Seasalt.

• New rules needed to analyze Kurton were learned, reusing the applicable rules

learned from Auriga, Bangat, and Seasalt.

Following rules learning, the CAAPT knowledge base was extended with only

one context-independent hypothesis pattern, and two hypotheses analysis rules. This

again shows CAAPT’s ability to adapt to learn new malware with only incremental

changes. After learning the new rules, CAAPT’s detection capabilities were tested in two

scenarios:

• with the Kurton intrusion used in training;

• with an intrusion by a variant of Kurton.

132

Table 8 Kurton experiment artifacts

As shown in Table 8, the variant of Kurton used in the second run used a different

name for the Windows Service and DLL filename and had a different unique HTTP User

Agent string present.

Figure 42 shows a fragment of the reasoning of CAAPT when it analyzed the

variant of Kurton.

Table 9 summarizes the results of this experiment. Notice in column 3 that

CAAPT succeeded to detect the intrusion with the variant of Kurton with the same

probability as the detection of the intrusion with the Kurton training example, L07 (80-

85%). This is slightly lower than L08 (85-90%), the probability of being an APT1

Artifact Type Kurton (Training) Kurton (Variant)

C2 Domain launch.todayusa.org ail.defenceonline.net

Service Name (svchost) iprip (svchost) nwsapagent

Service Display

Name Remote Access Auto Connection Manager System Authorization Service

Service

Description
N/A

Authorization and authentication service for starting and

accessing machines.

Service Binary %SYSTEM32%\svc.dll %SYSTEM32%\nwsapagent.dll

Temp File(s) N/A N/A

Data File(s) %SYSTEM32%\SvcHost.DLL.log %SYSTEM32%\SvcHost.DLL.log

Executable File %WINDIR%\temp\svchost.exe %WINDIR%\temp\svchost.exe

Auxiliary

Program
N/A N/A

Unique

String(s)

“you specify service name not in Svchost\netsvcs, must be

one of following:”
“CreateService(%s) SUCCESS. Config it”

“Exception Catched 0x%X”

“MyTmpFile.Dat”

CreateService(%s) SUCCESS. Config it
Exception Catched 0x%X

MyTmpFile.Dat

Library File(s) N/A N/A

Registry Key(s) HKLM\SOFTWARE\Microsoft\DirectT\dwHighDateTime

HKLM\SOFTWARE\Microsoft\DirectT\dwLowDateTime

HKLM\SOFTWARE\Microsoft\DirectT\dwHighDateTime

HKLM\SOFTWARE\Microsoft\DirectT\dwLowDateTime

User Agent

String

Mozilla/4.0 (compatible; MSIE 7.0;)

Mozilla/4.0 (compatible; MSIE8.0; Windows NT 5.1)

133

Figure 42 Fragment of the analysis of the Kurton variant

intrusion. Compared to the other analyzed malware, Kurton has fewer forensic indicators

to examine. The largest subset of indicators are unique strings, which have less

inferential force than other types of indicators. As such, without a matching hash value

(which is normal for APT1 intrusions) the highest expected probability for detection of

Kurton is L07.

134

Table 9 Kurton experiment results

Experiment
With the Kurton intrusion

used in training

With an intrusion by a

variant of Kurton

APT1 intrusion L08 (85-90%) very likely L08 (85-90%) very likely

Auriga malware L01 (50-55%) barely likely L01 (50-55%) barely likely

Bangat malware L03 (60-65%) likely L03 (60-65%) likely

Seasalt malware L00 (0-50%) lacking support L00 (0-50%) lacking support

Kurton malware L07 (80-85%) L07 (80-85%)
Duration 587 seconds 631 seconds

5.6. Detection of Real APT1 Malware

While the above experiments were conducted using attacks simulated by

manually creating forensic artifacts, I also tested CAAPT’s ability to detect attacks

simulated by infecting VMs with real APT1 malware, specifically Bangat and Seasalt.

This was done by reverse engineering the malware samples for each to determine how to

install them on Windows 7 (they were originally developed for various earlier versions of

Windows and Windows Server). Reverse engineering included both static and dynamic

techniques to determine the malware samples’ behavior.

In both cases, the malware is in the form of a Windows Service DLL. Installation

of the service is done by running the installation function using the program rundll32.exe,

which is designed to load a DLL and run a specified DLL export function. In the case of

Bangat, the function is called RundllInstall, and the Seasalt function is called Install.

Using this method, Seasalt installed and ran as expected. Getting Bangat to run was more

challenging because it used the same service display name as an existing service.

Because I was unable to manually change the name of the existing service, I had to

manipulate the Bangat installation function as it was running. To do this I ran it in a

135

debugger, changing the display name in memory before the service registration function

was executed. Doing this caused Bangat to install correctly. I then manually changed its

display name to the original value using the Windows Registry.

Table 10 Real malware experiment artifacts

Table 10 shows the artifacts present after installation and execution of Bangat and

Seasalt. In both cases, only artifacts related to persistence and initial communication to

the C2 servers were present. Data files, temporary files, and HTTP user agent strings

only present themselves on the network during later stages of an infection, when the

attacker has an interactive remote connection to the malware. I did not progress the

Artifact Type Bangat Seasalt

C2 Domain att.infosupports.com ubuntuguru.strangled.net

Service Name (svchost) iprip (svchost) Sasaut

Service Display

Name
Remote Access Auto Connection Manager System Authorization Service

Service

Description

N/A Authorization and authentication service for starting and
accessing machines.

Service Binary c:\temp\bangat1.dll %USERPROFILE%\Documents\svc.dll

Temp File(s) none N/A

Data File(s) N/A N/A

Executable File %WINDIR%\system32 \svchost.exe %WINDIR%\temp\svchost.exe

Auxiliary

Program

N/A N/A

Unique

String(s)
superhard corp.

!b=z&7?cc,MQ>

fxftest

upfileok
ubuntuguru.strangled.net

Library File(s) N/A N/A

Registry Key(s) none none

User Agent

String

N/A

None

136

attack to later stages during this testing as reproducing this level of interactivity is very

difficult and beyond the scope of the research.

Table 11 Real malware experiment results

Experiment With real Bangat infection With real Seasalt infection

APT1 intrusion L00 (0-50%) lacking support L00 (0-50%) lacking support

Auriga malware L01 (50-55%) barely likely L01 (50-55%) barely likely

Bangat malware L05 (70-75%) likely L01 (50-55%) barely likely

Seasalt malware N/A L08 (85-90%)
Duration 296 seconds 407 seconds

Table 11 shows the results of the experiment. In both cases, there was L01(50-50%)

probability that there was an Auriga intrusion. This was due to the presence of the

c:\Windows\Temp directory, which is common on Windows 7 computers but may not

exist on Windows XP. In the Bangat experiment, the malware was detected with a L05

(70-75%) probability. While the probability is lower than that of the simulated

experiments, the result is expected as there were fewer artifacts of the malware present as

the attack had not progressed as far as in the simulated experiment. This result shows the

trained models are robust and can still detect the malware with reasonably high

probability even in the early stages of infection.

In the experiment using real Seasalt malware, it was detected with L08 (85-90%)

probability, the same probability from the simulated experiment. Seasalt has fewer

detectable artifacts created during later attack stages. Most of the modeled artifacts are

either created during installation or present in the executable files. This means detection

probability for early and late stage Seasalt intrusions are similar.

137

The experimental results of testing against real malware infections clearly show

the learning agents in CAAPT are not only capable of detecting simulated malware

infections but are also effective in detecting real APT1 malware infections.

5.7. Summary of Experimental Results

The above sections summarized the results of each experiment, separate from

each other. In this section I consider all of these results together, in the context of the

experimental goals I sought to achieve.

Overall, CAAPT learned 40 context-independent hypothesis patterns, two trigger

rules, two indicator rules, 23 hypothesis analysis rules (some of them with large pattern

trees that contain many context-depended hypotheses), 23 collection tasks, and 23

collection rules. Ten collection agents were also defined. They enabled CAAPT to

detect intrusions from four families of the APT1 malware: Auriga, Bangat, Seasalt, and

Kurton.

APT1, like many other attacker groups, practiced evolutionary development to

adapt its malware to changes in network defense technology or simply to increase

efficiency. These changes in the way malware presents itself on the network and on disk

have made it difficult for signature-based intrusion detection tools to detect attacks

because the attackers can change static information in their malware faster than defenders

can adapt. However, the patterns of behavior change more slowly and with less variance.

These characteristics of APT evolutionary development were successfully exploited by

CAAPT, as shown by the experimental results.

138

5.7.1. Ability to Automatically Detect the Training Malware

In all cases, CAAPT was able to detect the malware it was trained on with high

(L08 (85-90%) very likely) probability. This occurred even in the cases where real

malware was used in the simulated attack. The only exception was for Kurton, where its

smaller set of indicators with weaker inferential force yielded a detection probability of

L07 (80-85%). This result, while expected, confirms the ability of agile cognitive agents

to successfully orchestrate the incident response process in detection of known malware.

5.7.2. Ability to Detect Variants of the Training Malware

Next, after CAAPT was trained, based on one instance of the Auriga malware, it

was able to also detect a variant of this malware. This was also the case with the other

three malware programs considered (Bangat, Seassalt, and Kurton) and is a consequence

of the learning method employed by CAAPT. Indeed, CAAPT generalizes a specific

example and its explanation into a general rule that also cover similar examples that are

likely to correspond to variants of the malware used in training. This important result

shows the orchestration and automation conducted by cognitive agents can be generalized

to variations in a malware program’s configuration.

5.7.3. Some Ability to Detect Evolved Malware

Experimentation showed that CAAPT also succeeded in anticipating the

evolutionary changes in the malware by learning patterns of IOCs in the form of

hypothesis analysis rules. If one aspect of the malware’s behavior changed and became

undetectable by CAAPT, it was still detected with some probability based on the

remaining observable evidence. For example, as shown in Table 3, after being trained to

139

detect Auriga and invoked to analyze a simulated intrusion using Bangat, CAAPT still

reported an APT1 intrusion with probability 85-90%, but the probability of being Auriga

was lower (75-80%). In the case of analyzing Seasalt after being trained on Auriga and

Bangat, CAAPT still detected an APT1 intrusion with probability 85-90%, but the

probability of being Auriga or Bangat was only 50-55% (see Table 5). A similar result

was obtained in the case of analyzing Kurton after being trained on Auriga, Bangat, and

Seasalt. CAAPT still detected an APT1 intrusion with probability 85-90%, but the

probability of being Auriga was 50-55%, of being Bangat was 60-65%, and of being

Seasalt was 0-50% (see Table 7).

These results showed two key novel features of CAAPT. First, it is capable of

detecting new attacks by a sophisticated attacker even when they update their malware

tools with new features and capabilities. The ability to detect previously unknown attacks

is very difficult in cybersecurity and CAAPT’s ability to do it, even when constrained to

the scope of a single APT group, is a major contribution to security research. Second,

this set of experiments showed CAAPT is capable of distinguishing between an APT

group’s malware tools once CAAPT has learned to detect multiple malware programs.

This is important because sophisticated attackers use different tools in different parts of

their attacker lifecycle. The ability to distinguish between malware tools means CAAPT

can also autonomously determine what phase of the attacker lifecycle the attack is in,

which in turn can tell network defenders how severe the detected intrusion is. It is a

unique capability of this research.

140

5.7.4. Limited Incremental Training Needed to Detect a New Malware Family

These results are also explained by the training methodology which exploits the

evolutionary development of APT1. Indeed, as discussed in the previous sections,

modeling the detection of new malware is done based on the modeling of previous

malware, and therefore shares many parts with the analyses of previous malware. This

also significantly simplifies and speeds up the training of the agent. For example, as

discussed previously, to train for Auriga detection, CAAPT had to learn 28 context-

independent hypothesis patterns, two trigger rules, two indicator rules, 13 hypothesis

analysis rules, 15 collection tasks, and 15 collection rules. Eight collection agents had

also to be defined. Many of these were also applicable for the detection of Bangat

intrusions. Therefore, to train for Bangat detection, a reduced number of knowledge

elements needed to be learned: one context-independent hypothesis pattern, one

hypotheses analysis rule, one collection task, and one collection rule. The same is true

for the training to detect Seasalt and Kurton. The amount of knowledge elements that

needed to be learned depended on the amount of change in the new malware. Notice, for

example, that the two trigger rules and the two indicator rules learned for Auriga were

also applicable to Bangat, Seasalt, and Kurton. Also, after defining eight collection

agents to collect evidence for Auriga detection, only two more were needed to cover the

collection needs for Bangat, Seasalt, and Kurton.

5.7.5. Efficient and High-Quality Analysis

While CAAPT coverage of malware detection is limited to APT1, and the

increase in coverage will also increase the detection time, the times obtained in my

141

experiments are very small and support my hypothesis that a system like CAAPT will

significantly speed–up the malware detection process. The total runtime to detect an

intrusion increased from around 2 minutes, when CAAPT was checking for Auriga

intrusions only, to around 10 minutes when CAAPT was checking for Auriga, Bangat,

Seasalt, and Kurton intrusions (see Figure 43). However, the run time for the

development and evaluation of the reasoning trees only increased from around 2 seconds,

when CAAPT was checking for Auriga intrusions only, to around 6 seconds when

CAAPT was checking for Auriga, Bangat, Seasalt, and Kurton intrusions.

Figure 43 Analysis fragment for all studied APT1 malware

As discussed previously, most of the time is spent waiting for the Collection

Manager to return the results requested by the collection agents. External dependencies,

such as GRR, Elasticsearch, and VirusTotal, take time to perform searches and checks

and some Collection Manager requests require multiple calls to external agents.

142

But time is only part one of advantages offered by a system like CAAPT. While

professional CSOCs have processes to be followed by analysts to ensure consistent

analytical quality, it is natural for analysts to take shortcuts when they believe evidence

examined early in the process leads to an obvious answer. These analytical leaps can

shorten analysis times but can also lead to errors. CAAPT, on the other hand, will follow

its learned processes fully every time. This reduces error and provides consistent

analytical results. As the number of evaluated hypotheses grows and processing times

increase, it can be mitigated with additional computing power, shortening the amount of

time required to exhaustively evaluate all generated competing hypotheses.

It is also possible to shorten the automated analysis time by restricting which

analysis trees are used for which abductive triggers. For example, APT1 has 17 known

malware programs used in the initial compromise phase of the attacker lifecycle and 27

malware programs used during the gain foothold phase (Mandiant, 2013). This limits the

computational requirements for APT1 to 44 analysis trees. The APT1 hypotheses would

likely be used for only abductive triggers generated from threat intelligence related to

APT1. If CAAPT were trained to detect intrusions from multiple APT groups, the

automated analyses conducted would be restricted to abductive triggers related to that

APT group. This strategy places a cap on the computational requirements for CAAPT’s

autonomous analysis.

143

6. CONCLUSIONS

 This section provides a summary of the major contributions of this research,

status of the research with regard to the research questions described in Section 1.4, and

possible future directions of the research.

6.1. Research Contributions

In this dissertation, I have described several novel contributions achieved in this

research, including the following major contributions.

Ontology design for APT detection. First, I developed the ontological

framework for describing the knowledge required to model the detection process for

sophisticated threats, including APTs. For this research, I modeled knowledge of APT

activity, the attacker lifecycle, the network environment, security alerts, and host-based

IOCs used to detect malware. The ontological modeling is described in Section 3.2.1 and

represents an advancement in modeling cybersecurity threat intelligence for use by

cognitive agents to reason about sophisticated cyber threats.

Conceptual modeling of the automatic APT detection process. The second

part of creating a theoretical model of APT detection was modeling the abductive,

deductive, and inductive reasoning processes required to detect sophisticated threats.

This included the modeling of all of the hypotheses required for detecting APT1 activity,

including the four malware programs studied in this research (Section 3.2.2), the

deductive process required to detect APT intrusions, decomposing the high-level

hypotheses into sub-hypotheses until there was a requirement to search for specific IOCs

144

(Section 3.2.3), and the inductive process of using found evidence to derive conclusions

as to the probability that a given hypothesis was true (Section 3.2.4). In total, this

represents the first theoretical model of APT detection.

In addition to the fact that the APT detection model created in this research is

novel, it is powerful for a few key reasons:

• The model uses the combined inferential force of weak indicators to

synthesize, with high probability, conclusions about the presence of an

APT attack. As such is robust, meaning it can detect APT intrusion

activity even if some of the IOCs it searches for are missing.

• It is capable of detecting intrusions by an APT group when they change

the configuration of their malware, which is unique in the security

industry.

• It is capable of detecting APT intrusions even when they use new or

evolved versions of malware. This predictive detection capability allows

the cognitive agents, in collaboration with CSOC analysts, to cope with

the evolution of sophisticated attackers’ TTPs.

Automatic generation of abductive triggers from basic IDSs (e.g., BRO).

While creation of abductive triggers from observations is a well-established technique in

the field of cognitive AI, and is a core feature of Disciple, this research extended the

capability of Disciple to automatically generate abductive triggers based on alerts from

security devices. Specifically, the BRO IDS was used in this research to generate

abductive triggers based on security alerts generated when a computer attempted to

145

contact a known APT1 domain. This contribution, described in detail in Section 3.2.2,

required the theoretical model described above, along with custom software capable of

identifying new security alerts from cyber threat intelligence and transforming them into

messages understandable by the Trigger Agent. The final result of this contribution is a

system which can automatically react to new security alerts and begin the abductive

reasoning process. While this research focused specifically on the BRO IDS as a security

sensor, both the theoretical model and the software developed during this study are

broadly applicable, meaning any host-based or network-based detection system can be

used to automatically generate abductive triggers.

Autonomous, hypothesis-driven search for evidence. Using APT1 as a case

study, I created a theoretical model that, when implemented in Disciple, allowed

cognitive agents to search for digital evidence in an autonomous manner. Furthermore,

the hypothesis-driven search for evidence was done in an abstract manner, meaning the

evidence requirements of the cognitive agents is decoupled from the specific search or

collection agents used to satisfy the searches. This contribution is important because it

allows for the cognitive agents to act in an autonomous manner to collect and reason

about digital evidence in a CSOC environment (the key feature for security incident

response orchestration), but also to collect much of the evidence in an on-demand

fashion, reducing the data storage and network bandwidth requirements of the system.

Selection and integration of multiple, collaborative, search and collection

agents working together to detect and investigate threats. In order to apply the

theoretical model of APT detection to a real CSOC environment, a set of search and

146

collection agents was needed to satisfy the requirements of hypothesis-driven search for

evidence. A major architectural contribution of this research was the identification of the

types of data sources required for CSOC integration and selection of specific search and

collection agents for use in the research. A contribution is also the deployment and

configuration of these agents so the cognitive agents could use live data sources in their

analyses. The search agent selection and architecture were described in Sections 3.3.1

and 3.3.2.

Development of the Collection Manager software for translating and

optimizing abstract searches into searches executable by real collection agents.

Lastly, this research led to development of the Collection Manager software, which is

primarily responsible for translating abstract search requests from Disciple agents into

concrete searches using real search and collection agents, and then translating the search

results into evidence usable in the automatic analysis process. The Collection Manager is

designed to provide an abstraction layer between the knowledge of the cognitive agents

and the specific CSOC infrastructure. As described in Section 3.3.3, the architecture of

the Collection Manager makes CAAPT easy to integrate with new CSOC environments,

meaning the knowledge of the trained cognitive agents can be transplanted from CSOC to

CSOC with minimal re-engineering of the system.

6.2. Status of Research Questions

As described in detail in Section 1.4, this study aimed to answer key research

questions about improving the quality of intrusion detection for modern threats,

supporting analysts in understanding and detecting both known and unknown attacks, and

147

increasing CSOC accuracy and efficiency. This section focuses on how well my research

address each of these questions.

6.2.1. Intrusion Detection Improvements

The research questions around improving intrusion detection centered around

whether or not cognitive agents using evidence-based reasoning could improve on the

state of the art regarding two key aspects: 1) the ability to fuse data from multiple

sources, both real-time and on-demand, to provide better threat detection than traditional

IDSs and 2) using explicit logic to combine the strength of multiple weak IOCs into

strong detections. This research answered both of these questions in the affirmative.

As discussed in depth in Section 3.3, CAAPT fuses data from a variety of passive

and on-demand collection agents to detect intrusions. The research has demonstrated that

combining data from internal data sources such as GRR, SYSMON, BRO, and

Elasticsarch with data from external sources such as VirusTotal and WHOIS can yield

detection capabilities more robust against evolving attacks than individual security tools

can do on their own. The explicit logic described in Section 3.2 demonstrates this robust

detection model where the combined inferential force of weak IOCs such as unique

strings, filenames, and Registry keys can be used to detect, with high probability,

sophisticated threat activity even when strong IOCs such as file hashes are not present.

This key finding is critical to the ability to orchestrate security incident response using

cognitive agents.

148

6.2.2. Analyst Support

The second category of research questions was whether or not CAAPT can

support CSOC analysts in their intrusion analysis tasks by:

• being able to be trained to detect known threats based on CSOC expertise;

• supporting analysts in detecting previously unknown attacks through

mixed-initiative reasoning;

• exhibiting flexible autonomy (strictly-guided, mixed-initiative, and full

autonomy);

The theoretical model of threat detection described in Section 3.2 show how the

system can be trained to detect known threats. A core design characteristic of the system

is its ability to be trained by an expert CSOC analyst to detect threats using available

threat intelligence. As the experimental results show how the system was trained to

detect the Auriga malware used by the attacker group APT1. As was further shown in

my experiments, the system is able to detect attacks by the same attacker group using

previously unknown malware. This ability is rooted in a robust detection model which

separates the probability of an attack being conducted by the attacker group (the left

branch of the top-level analysis tree in Figure 19) and the probability that a specific

malware program was used. As the experiments show, the system was able to detect not

only variants of the same malware, but also new malware created as the group’s malware

arsenal evolved.

The mixed-initiative analysis process described in Section 3.4 shows how the

system supports analysts in detecting previously unknown attacks. Once trained to detect

149

one or more attacks by an attack group, the system will autonomously detect the same or

similar attacks. If the system encounters an attack it does not understand, the alert is sent

to an analyst for additional training. Using previously learned reasoning rules, the system

will suggest reasoning strategies to the analyst to guide them through the manual analysis

process. These suggested reasoning strategies act as playbooks for analysis. This

process also demonstrates flexible autonomy, where the cognitive agents are strictly-

guided when being trained to detect new threats, use mixed-initiative reasoning when

potentially new attacks are discovered which are similar to attacks the agents have been

trained to detect, and fully autonomous when detecting attacks for which the agents have

been trained to detect.

6.2.3. CSOC Performance

The final category of research questions involves whether security incident

response orchestration using cognitive agents can improve CSOC performance. CSOCs

generally use detection rate, false positive rate, and speed to determine the effectiveness

and efficiency of the CSOC. The results of this research show CAAPT can help a CSOC

improve all of these metrics.

Improvement in detection rates for sophisticated threats is a key contribution of

this research. CSOCs often rely on high-quality IOCs from threat intelligence to detect

threats, meaning someone must have previously discovered the threat, analyzed it, and

published the IOCs to the security community in order for the threat to be detected.

While CAAPT also relies on this same model for initial training, its ability to predict

attacks by the same attacker group using new TTPs, as shown through experimentation

150

drastically improves detection rates for previously unknown attacks. CSOCs are also

vulnerable to evolving threats. If an attacker group were to change one high-quality IOC

in a new attack, many CSOCs would fail to detect it. Because CAAPT uses explicit logic

to combine multiple weak IOCs into strong detection models, it can cope with changing

attacker TTPs much better than traditional tools. An attacker would have to change their

attack methodology much more radically to evade detection by CAAPT.

Improving false positive rates is another area where CAAPT can help improve

CSOC effectiveness. False positive use cases are often CSOC-specific and fairly static,

meaning they don’t change frequently. While it was not shown through experimentation,

the cognitive agents designed in this research can be trained to understand false positive

use cases and apply them autonomously, reducing the overall false positive rate of the

CSOC.

The cognitive agents developed for this research can also speed up CSOC

operations. While the sample size in the experiments I performed is not large enough to

show how CAAPT behaves when trained to detect dozens or hundreds of threats, initial

testing shows it scales efficiently even using a single server to run the system. Adding

additional computing power will allow the system to perform efficiently as the size of the

knowledge base increases. More importantly, because the cognitive agents can automate

repetitive CSOC work, it frees up valuable analysts to perform more impactful tasks such

as threat hunting and intelligence analysis, improving the overall usage of CSOC

resources.

151

6.3. Future Research

While the early results from this research are exciting, the possible future

applications of the research are just as promising. This section provides a brief

description of future directions I envision for this research.

Autonomously Investigating the Attacker Lifecycle. One of the key aspects of

the theoretical model of sophisticated threat detection is modeling of the attacker

lifecycle, when the system not only detects a threat, but also knows how far into the

attacker lifecycle the attack has progressed. In future research, this context could be used

to perform root cause analysis or to discover evidence of previous stages of the attack

that may have been missed. This approach is described in more detail in Appendix A.

Improving Scalability of the Collection Manager. Because this was basic

research, I was not able to explore how the system would perform at scale, on networks

with tens of thousands of nodes, complex network topologies, and trained to detect

dozens of threats. Collection Manager performance can be improved through caching of

search to speed up responses, scheduling of searches of multiple machines to reduce

network bandwidth and CPU usage, and load-balancing multiple Collection Manager

servers to increase capacity.

Autonomous Threat Hunting. Detection of threat in near-real-time is just one

aspect of the detection requirements of CSOCs. More mature organizations employ very

experienced analysts to hunt for signs of stealthy threats on their network, leveraging

intelligence on emerging threats or newly-discovered tactics. CAAPT could be trained to

152

leverage the same intelligence, and tactics repositories such as MITRE ATT&CK

(attack.mitre.org) to autonomously hunt for threats on the network.

153

APPENDIX A – AUTONOMOUS INVESTIGATION OF THE ATTACKER

LIFECYCLE

In previous applications of Disciple to other analytical domains, synthesis of a

conclusion was the end of the analytical process. In future research, I can extend the

analytical workflow by allowing autonomously synthesized conclusions to analytical

scenarios to generate triggers for new analytical scenarios to evaluate. This chaining of

autonomous analyses allows for emergent analysis to take place, including autonomous

analysis of the attacker lifecycle.

The first step in this process is to model the attacker lifecycle in the knowledge

base. Figure 12 showed how the concept of the attacker lifecycle and its phases can be

modeled as an ontology fragment. In Figure 13, these concepts are extended by mapping

APT1 activity to its own instance of the attacker lifecycle for the APT1 initial

compromise and APT1 gain foothold phases.

For each phase of the attacker lifecycle, specific APT1 malware is associated to it.

By further associating malware knowledge (Figure 14) with each piece of malware, I can

further extend this ontology fragment until we have a detailed model of APT1’s entire

attacker lifecycle and can then use this knowledge to perform follow-on analysis when

one phase of an attack is detected.

Generally speaking, the phases of the attacker lifecycle must progress in order. It

is not uncommon for some phases to be skipped, but it is very rare for all of them to be

skipped. This means if a later phase of the attacker lifecycle is detected, it increases the

likelihood evidence of previous phases exist on the network. Analysis of previous phases

154

must be conducted, giving more weight to the evidence because of confirmed existence

of a later attacker lifecycle phase. If the analysis scenarios are chained back to the

reconnaissance phase, the root cause of the attack can be identified.

When a phase of an attack is detected it also means there may be evidence of later

phases of the attack. Analysis of later phases should be run, using the likelihood of the

detected phase as the maximum likelihood of the later phase. If this analysis is followed

to the complete mission phase, it can be determined whether or not damage has occurred

as a result of the attack. An overview of this process is shown in Figure 44.

Figure 44 Example of autonomous attacker lifecycle analysis

A beneficial side effect of this analysis is the automatic identification of new

threat intelligence. If the cognitive agents conduct analysis of earlier or later phases of

155

the attack and determine with high probability they occurred, any evidence which was

found but did not match evidence already known as being associated with an APT group

can now be associated with the APT group and published as threat intelligence. This

means this new evidence can be used as primary indicators for detection of attacker

activity using security tools such as BRO.

156

REFERENCES

Abdoli, F., & Kahani, M. (2008). Using Attacks Ontology in Distributed Intrusion Detection

System. In T. Sobh (Ed.), Advances in Computer and Information Sciences and

Engineering (pp. 153–158). Springer Netherlands.

Abdoli, F., & Kahani, M. (2009). Ontology-based distributed intrusion detection system.

Computer Conference, 2009. CSICC 2009. 14th International CSI, 65–70.

https://doi.org/10.1109/CSICC.2009.5349372

Ahmed, S. S. (2014). Intrusion Alert Analysis Framework Using Semantic Correlation

(Thesis).

An Wang, J., Guo, M. M., & Camargo, J. (2010). An Ontological Approach to Computer

System Security. Inf. Sec. J.: A Global Perspective, 19(2), 61–73.

https://doi.org/10.1080/19393550903404902

Ashri, R., Payne, T., Marvin, D., Surridge, M., & Taylor, S. (2004). Towards a semantic web

security infrastructure. Proc. of Semantic Web Services, 49–64.

Aslam, T., Krsul, I., & Spafford, E. H. (1996). Use of a taxonomy of security faults.

Barnum, S. (2014). Standardizing Cyber Threat Intelligence Information with the Structured

Threat Information eXpression (STIXTM). MITRE Corporation.

Beats. (2019). Beats: Data Shippers for Elasticsearch | Elastic. Retrieved April 21, 2019, from

Beats website: https://www.elastic.co/products/beats

Bhuyan, M. H., Bhattacharyya, D. K., & Kalita, J. K. (2014). Network Anomaly Detection:

Methods, Systems and Tools. IEEE Communications Surveys Tutorials, 16(1), 303–336.

https://doi.org/10.1109/SURV.2013.052213.00046

Blanco, C., Lasheras, J., Valencia-Garcia, R., Fernandez-Medina, E., Toval, A., & Piattini, M.

(2008). A Systematic Review and Comparison of Security Ontologies. Third

International Conference on Availability, Reliability and Security, 2008. ARES 08, 813–

820. https://doi.org/10.1109/ARES.2008.33

Blanco, Carlos, Lasheras, J., Fernández-Medina, E., Valencia-García, R., & Toval, A. (2011).

Basis for an integrated security ontology according to a systematic review of existing

proposals. Computer Standards & Interfaces, 33(4), 372–388.

https://doi.org/10.1016/j.csi.2010.12.002

https://doi.org/10.1109/CSICC.2009.5349372
https://doi.org/10.1080/19393550903404902
https://www.elastic.co/products/beats
https://doi.org/10.1109/SURV.2013.052213.00046
https://doi.org/10.1109/ARES.2008.33
https://doi.org/10.1016/j.csi.2010.12.002

157

CarbonBlack. (2019). Carbon Black | Transforming Endpoint Security with Big Data

Analytics. Retrieved April 21, 2019, from Carbon Black website:

https://www.carbonblack.com/

Center for Strategic International Studies. (2014). Net Losses: Estimating the Global Cost of

Cybercrime. Intel Security.

Chuvakin, A. (2018, March 6). The Best Starting Technology for Detection? Retrieved March

6, 2018, from Anton Chuvakin website: https://blogs.gartner.com/anton-

chuvakin/2018/03/06/the-best-starting-technology-for-detection/

CNN. (2015). How Russians hacked the White House - CNN.com. Retrieved April 13, 2015,

from CNN website: http://www.cnn.com/2015/04/07/politics/how-russians-hacked-the-

wh/index.html

Cohen, L. J. (1977). The Probable and the Provable. Oxford: Clarendon Press.

Cohen, L. J. (1989). An Introduction to the Philosophy of Induction and Probability. Oxford:

Clarendon Press.

Colace, F., De Santo, M., & Ferrandino, S. (2012). A Slow Intelligent Approach for the

Improvement of Intrusion Detection and Prevention System. 2012 Sixth International

Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS),

130–137. https://doi.org/10.1109/IMIS.2012.128

Conolly, J., Davidson, M., Richard, M., & Skorupka, C. (2012). The Trusted Automated

eXchange of Indicator Information (TAXIITM). MITRE Corporation.

Cybersecurity Ventures. (2015). The Cybersecurity Market Report covers the business of

cybersecurity, including market sizing and industry forecasts, spending, notable M&A

and IPO activity, and more. Retrieved March 14, 2015, from Cybersecurity Ventures

website: http://cybersecurityventures.com/cybersecurity-market-report/

CybOX. (2019). CybOX - About CybOX. Retrieved April 22, 2019, from CybOX website:

https://cybox.mitre.org/about/

DARPA. (1999). DARPA Intrusion Detection Evaluation. Retrieved from DARPA Intrusion

Detection Evaluation website: http://www.ll.mit.edu/ideval/index.html

Denker, G., Kagal, L., & Finin, T. (2005). Security in the Semantic Web using OWL.

Information Security Technical Report, 10(1), 51–58.

https://doi.org/10.1016/j.istr.2004.11.002

https://www.carbonblack.com/
https://blogs.gartner.com/anton-chuvakin/2018/03/06/the-best-starting-technology-for-detection/
https://blogs.gartner.com/anton-chuvakin/2018/03/06/the-best-starting-technology-for-detection/
http://www.cnn.com/2015/04/07/politics/how-russians-hacked-the-wh/index.html
http://www.cnn.com/2015/04/07/politics/how-russians-hacked-the-wh/index.html
https://doi.org/10.1109/IMIS.2012.128
http://cybersecurityventures.com/cybersecurity-market-report/
https://cybox.mitre.org/about/
http://www.ll.mit.edu/ideval/index.html
https://doi.org/10.1016/j.istr.2004.11.002

158

Denker, G., Kagal, L., Finin, T., Paolucci, M., & Sycara, K. (2003). Security for DAML Web

Services: Annotation and Matchmaking. In D. Fensel, K. Sycara, & J. Mylopoulos (Eds.),

The Semantic Web - ISWC 2003 (pp. 335–350). Springer Berlin Heidelberg.

Depren, O., Topallar, M., Anarim, E., & Ciliz, M. K. (2005). An intelligent intrusion detection

system (IDS) for anomaly and misuse detection in computer networks. Expert Systems

with Applications, 29(4), 713–722. https://doi.org/10.1016/j.eswa.2005.05.002

Eckmann, S. T., Vigna, G., & Kemmerer, R. A. (2002). STATL: An attack language for state-

based intrusion detection. Journal of Computer Security, 10(1), 71–103.

Elasticsearch. (2015). Elasticsearch: RESTful, Distributed Search & Analytics | Elastic.

Retrieved September 5, 2015, from Elasticsearch website:

https://www.elastic.co/products/elasticsearch

EnCase. (2017). EnCase Endpoint Investigator - Remote Digital Investigation Solution.

Retrieved July 20, 2017, from EnCase website:

https://www.guidancesoftware.com/encase-endpoint-investigator

Fenz, S., & Ekelhart, A. (2009). Formalizing Information Security Knowledge. Proceedings of

the 4th International Symposium on Information, Computer, and Communications

Security, 183–194. https://doi.org/10.1145/1533057.1533084

Filebeat. (2018). Filebeat. Retrieved July 4, 2018, from Filebeat website:

https://www.elastic.co/products/beats/filebeat

FireEye. (2015). Threat Intelligence – Malware Analysis. Retrieved September 5, 2015, from

FireEye website: https://www.fireeye.com/products/dynamic-threat-intelligence.html

García-Crespo, Á., Gómez-Berbís, J. M., Colomo-Palacios, R., & Alor-Hernández, G. (2011).

SecurOntology: A semantic web access control framework. Computer Standards &

Interfaces, 33(1), 42–49. https://doi.org/10.1016/j.csi.2009.10.003

Gomes, H., Zúquete, A., & Dias, G. P. (2009). An overview of security ontologies.

GRR. (2019). GRR Rapid Response: remote live forensics for incident response: google/grr

[Python, GRR]. GRR.

Gruber, T. R. (1993). A Translation Approach to Portable Ontology Specifications.

Knowledge Acquisition, (5.2), 199–220.

Gupta, A., Kuppili, P., Akella, A., & Barford, P. (2009). An empirical study of malware

evolution. Communication Systems and Networks and Workshops, 2009. COMSNETS

2009. First International, 1–10. https://doi.org/10.1109/COMSNETS.2009.4808876

https://doi.org/10.1016/j.eswa.2005.05.002
https://www.elastic.co/products/elasticsearch
https://www.guidancesoftware.com/encase-endpoint-investigator
https://doi.org/10.1145/1533057.1533084
https://www.elastic.co/products/beats/filebeat
https://www.fireeye.com/products/dynamic-threat-intelligence.html
https://doi.org/10.1016/j.csi.2009.10.003
https://doi.org/10.1109/COMSNETS.2009.4808876

159

Hansman, S., & Hunt, R. (2005). A taxonomy of network and computer attacks. Computers &

Security, 24(1), 31–43. https://doi.org/10.1016/j.cose.2004.06.011

Hochberg, J., Jackson, K., Stallings, C., Mcclary, J. F., Dubois, D., & Ford, J. (1993). NADIR:

An Automated System for Detecting Network Intrusion and Misuse. Comput. Secur.,

12(3), 235–248. https://doi.org/10.1016/0167-4048(93)90110-Q

Hogland, G., & Butler, J. (2005). Rootkits: Subverting the Windows Kernel. Addison-Wesley

Professional.

Hung, S.-S., & Shing-Min Liu, D. (2008). A User-oriented Ontology-based Approach for

Network Intrusion Detection. Comput. Stand. Interfaces, 30(1–2), 78–88.

https://doi.org/10.1016/j.csi.2007.07.008

Hutchins, E. M., Cloppert, M. J., & Amin, R. M. (2011). Intelligence-driven computer

network defense informed by analysis of adversary campaigns and intrusion kill chains.

Leading Issues in Information Warfare & Security Research, 1, 80.

Iannacone, M., Bohn, S., Nakamura, G., Gerth, J., Huffer, K., Bridges, R., … Goodall, J.

(2015). Developing an Ontology for Cyber Security Knowledge Graphs. Proceedings of

the 10th Annual Cyber and Information Security Research Conference, 12:1–12:4.

https://doi.org/10.1145/2746266.2746278

Igure, V., & Williams, R. (2008). Taxonomies of attacks and vulnerabilities in computer

systems. IEEE Communications Surveys Tutorials, 10(1), 6–19.

https://doi.org/10.1109/COMST.2008.4483667

Isaza, G. A., Castillo, A. G., & Duque, N. D. (2009). An Intrusion Detection and Prevention

Model Based on Intelligent Multi-Agent Systems, Signatures and Reaction Rules

Ontologies. In Y. Demazeau, J. Pavón, J. M. Corchado, & J. Bajo (Eds.), 7th

International Conference on Practical Applications of Agents and Multi-Agent Systems

(PAAMS 2009) (pp. 237–245). Springer Berlin Heidelberg.

Isaza, G., Castillo, A., López, M., & Castillo, L. (2009). Towards Ontology-Based Intelligent

Model for Intrusion Detection and Prevention. In Á. Herrero, P. Gastaldo, R. Zunino, &

E. Corchado (Eds.), Computational Intelligence in Security for Information Systems (pp.

109–116). Springer Berlin Heidelberg.

iSIGHT Partners. (2015). ThreatScape® Threat Intelligence Platform. Retrieved September 5,

2015, from iSIGHT Partners website:

http://www.isightpartners.com/products/threatscape/

Kagal, L., Finin, T., Paolucci, M., Srinivasan, N., Sycara, K., & Denker, G. (2004).

Authorization and privacy for semantic Web services. IEEE Intelligent Systems, 19(4),

50–56. https://doi.org/10.1109/MIS.2004.23

https://doi.org/10.1016/j.cose.2004.06.011
https://doi.org/10.1016/0167-4048(93)90110-Q
https://doi.org/10.1016/j.csi.2007.07.008
https://doi.org/10.1145/2746266.2746278
https://doi.org/10.1109/COMST.2008.4483667
http://www.isightpartners.com/products/threatscape/
https://doi.org/10.1109/MIS.2004.23

160

Kemmerer, R. A., & Vigna, G. (2002). Intrusion Detection: A Brief History and Overview

(Supplement to Computer Magazine). Computer, 35(4), 27–30.

Killourhy, K. S., Maxion, R. A., & Tan, K. M. C. (2004). A defense-centric taxonomy based

on attack manifestations. 2004 International Conference on Dependable Systems and

Networks, 102–111. https://doi.org/10.1109/DSN.2004.1311881

Krügel, C., & Toth, T. (2002). Distributed Pattern Detection for Intrusion Detection.pdf.

Proceedings of the Network and Distributed System Security Symposium. Presented at the

Proceedings of the Network and Distributed System Security Symposium.

Landwehr, C. E., Bull, A. R., McDermott, J. P., & Choi, W. S. (1994). A Taxonomy of

Computer Program Security Flaws. ACM Comput. Surv., 26(3), 211–254.

https://doi.org/10.1145/185403.185412

Li, W., & Tian, S. (2010). An ontology-based intrusion alerts correlation system. Expert

Systems with Applications, 37(10), 7138–7146.

https://doi.org/10.1016/j.eswa.2010.03.068

Ligh, M. H., Case, A., Levy, J., & Walters, A. (2014). The Art of Memory Forensics (1st ed.).

Wiley.

Lin, J.-L., Wang, X. S., & Jajodia, S. (1998). Abstraction-based misuse detection: high-level

specifications and adaptable strategies. 11th IEEE Computer Security Foundations

Workshop, 1998. Proceedings, 190–201. https://doi.org/10.1109/CSFW.1998.683169

Lindqvist, U., & Jonsson, E. (1997). How to systematically classify computer security

intrusions. , 1997 IEEE Symposium on Security and Privacy, 1997. Proceedings, 154–

163. https://doi.org/10.1109/SECPRI.1997.601330

Lindqvist, U., & Porras, P. A. (1999). Detecting computer and network misuse through the

production-based expert system toolset (P-BEST). Proceedings of the 1999 IEEE

Symposium on Security and Privacy, 1999, 146–161.

https://doi.org/10.1109/SECPRI.1999.766911

Mandiant. (2013). APT1 - Exposing One of China’s Cyber Espionage Units.

Martimiano, A. F. M., & Moreira, E. S. (2005). An owl-based security incident ontology.

Proceedings of the Eighth International Protege Conference, 43–44.

Martimiano, L. A. F., & dos Santos Moreira, E. (2006). The Evaluation Process of a Computer

Security Incident Ontology. WONTO.

Martimiano, L. A., & Moreira, E. S. (2005). Using ontologies to assist security management.

Proceedings of the 8th International Protégé Conference.

https://doi.org/10.1109/DSN.2004.1311881
https://doi.org/10.1145/185403.185412
https://doi.org/10.1016/j.eswa.2010.03.068
https://doi.org/10.1109/CSFW.1998.683169
https://doi.org/10.1109/SECPRI.1997.601330
https://doi.org/10.1109/SECPRI.1999.766911

161

Martinez, C. A., Echeverri, G. I., & Sanz, A. G. C. (2010). Malware detection based on Cloud

Computing integrating Intrusion Ontology representation. 2010 IEEE Latin-American

Conference on Communications (LATINCOM), 1–6.

https://doi.org/10.1109/LATINCOM.2010.5641013

McHugh, J. (2000). The 1998 Lincoln Laboratory IDS Evaluation. In H. Debar, L. Mé, & S. F.

Wu (Eds.), Recent Advances in Intrusion Detection (pp. 145–161). Springer Berlin

Heidelberg.

Meckl, S., Tecuci, G., Boicu, M., & Marcu, D. (2015). Towards an Operational Semantic

Theory of Cyber Defense Against Advanced Persistent Threats. Proceedings of the 10th

International Conference on Semantic Technologies for Intelligence, Defense, and

Security (STIDS), pp. 58–65, Fairfax, VA, 18-20 November.

http://lac.gmu.edu/publications/2015/APT-LAC.pdf

Meckl, S., Tecuci, G., Marcu, D., & Boicu, M. (2018). Integrating Collaborative Cognitive

Assistants Into Cybersecurity Operations Centers. Proceedings of the 2018 AAAI Fall

Symposium "Adversary-Aware Learning Techniques and Trends in Cybersecurity",

October 18-20, Arlington, VA, Technical Report, AAAI Press, Palo Alto, CA, CEUR

Workshop Proceedings, Vol.2269, pp.28-35, http://ceur-ws.org/Vol-2269/.

Meckl, S., Tecuci, G., Marcu, D., Boicu, M., & Zaman, A. B. (2017). Collaborative Cognitive

Assistants for Advanced Persistent Threat Detection. Proceedings of the 2017 AAAI Fall

Symposium "Cognitive Assistance in Government and Public Sector

Applications," pp.171-178, Arlington, VA, 9-11 November, Technical Reports FS-17-01-

FS-17-05, AAAI Press, Palo Alto, CA.. http://lac.gmu.edu/publications/2017/Cyber-

in%20vol%202017.pdf

Meier, M. (2004). A model for the semantics of attack signatures in misuse detection systems.

In Information Security (pp. 158–169). Springer.

Meier, M., Bischof, N., & Holz, T. (2002). SHEDEL—A Simple Hierarchical Event

Description Language for Specifying Attack Signatures. In Security in the Information

Society (pp. 559–571). Springer.

Mila. (2013, March 3). Mandiant APT1 samples categorized by malware families. Retrieved

April 5, 2015, from contagio website:

http://contagiodump.blogspot.com/2013/03/mandiant-apt1-samples-categorized-by.html

Mitra, P., Pan, C.-C., Liu, P., & Atluri, V. (2006). Privacy-preserving Semantic Interoperation

and Access Control of Heterogeneous Databases. Proceedings of the 2006 ACM

Symposium on Information, Computer and Communications Security, 66–77.

https://doi.org/10.1145/1128817.1128831

MITRE ATT&CKTM. (2019). Retrieved October 11, 2019, from https://attack.mitre.org/

https://doi.org/10.1109/LATINCOM.2010.5641013
http://lac.gmu.edu/publications/2015/APT-LAC.pdf
http://ceur-ws.org/Vol-2269/
http://lac.gmu.edu/publications/2017/Cyber-in%20vol%202017.pdf
http://lac.gmu.edu/publications/2017/Cyber-in%20vol%202017.pdf
http://contagiodump.blogspot.com/2013/03/mandiant-apt1-samples-categorized-by.html
https://doi.org/10.1145/1128817.1128831
https://attack.mitre.org/

162

More, S., Matthews, M., Joshi, A., & Finin, T. (2012). A Knowledge-Based Approach to

Intrusion Detection Modeling. 2012 IEEE Symposium on Security and Privacy

Workshops (SPW), 75–81. https://doi.org/10.1109/SPW.2012.26

MuleSoft. (2016, December 7). What is REST API Design? Retrieved July 4, 2018, from

MuleSoft website: https://www.mulesoft.com/resources/api/what-is-rest-api-design

Naldurg, P., Sen, K., & Thati, P. (2004). A Temporal Logic Based Framework for Intrusion

Detection. In D. de Frutos-Escrig & M. Núñez (Eds.), Formal Techniques for Networked

and Distributed Systems – FORTE 2004 (pp. 359–376). Springer Berlin Heidelberg.

Northcutt, S., Beale, J., Baker, A., Esler, J., & Kohlenberg, T. (2007). Snort: IDS and IPS

toolkit. Syngress Press.

Obrst, L., Chase, P., & Markeloff, R. (2012). Developing an Ontology of the Cyber Security

Domain. Proceedings of the Seventh International Conference on Semantic Technologies

for Intelligence, Defense, and Security, 966. George Mason University: CEUR.

O’Gorman, B., Wueest, C., O’Brien, D., Cleary, G., Lau, H., Power, J.-P., … Wallace, S.

(2019). Internet Security Threat Report. 24, 61.

OpenIOC. (2019). OpenIOC: Back to the Basics « OpenIOC: Back to the Basics. Retrieved

April 22, 2019, from OpenIOC website: https://www.fireeye.com/blog/threat-

research/2013/10/openioc-basics.html

Packetbeat. (2019). Packetbeat: Network Analytics Using Elasticsearch | Elastic. Retrieved

April 21, 2019, from Packetbeat website:

https://www.elastic.co/products/beats/packetbeat

Pagliery, J. (2015, August 5). The inside story of the biggest hack in history. Retrieved June

19, 2018, from CNNMoney website:

http://money.cnn.com/2015/08/05/technology/aramco-hack/index.html

Paxson, V. (1999). Bro: a system for detecting network intruders in real-time. Computer

Networks, 31(23–24), 2435–2463. https://doi.org/10.1016/S1389-1286(99)00112-7

Peddabachigari, S., Abraham, A., Grosan, C., & Thomas, J. (2007). Modeling intrusion

detection system using hybrid intelligent systems. Journal of Network and Computer

Applications, 30(1), 114–132. https://doi.org/10.1016/j.jnca.2005.06.003

Ponemon Institute. (2017, June). 2017 Cost of Data Breach Study. Ponemon Institute.

Raskin, V., Hempelmann, C. F., Triezenberg, K. E., & Nirenburg, S. (2001). Ontology in

Information Security: A Useful Theoretical Foundation and Methodological Tool.

https://doi.org/10.1109/SPW.2012.26
https://www.mulesoft.com/resources/api/what-is-rest-api-design
https://www.fireeye.com/blog/threat-research/2013/10/openioc-basics.html
https://www.fireeye.com/blog/threat-research/2013/10/openioc-basics.html
https://www.elastic.co/products/beats/packetbeat
http://money.cnn.com/2015/08/05/technology/aramco-hack/index.html
https://doi.org/10.1016/S1389-1286(99)00112-7
https://doi.org/10.1016/j.jnca.2005.06.003

163

Proceedings of the 2001 Workshop on New Security Paradigms, 53–59.

https://doi.org/10.1145/508171.508180

S. Staniford-chen, S. C. (1998). GrIDS--A GRAPH BASED INTRUSION DETECTION

SYSTEM FOR LARGE NETWORKS.

Saad, S., & Traore, I. (2010). Method ontology for intelligent network forensics analysis. 2010

Eighth Annual International Conference on Privacy Security and Trust (PST), 7–14.

https://doi.org/10.1109/PST.2010.5593235

Saad, S., Traore, I., & Brocardo, M. L. (2014). Context-aware intrusion alerts verification

approach. 2014 10th International Conference on Information Assurance and Security

(IAS), 53–59. https://doi.org/10.1109/ISIAS.2014.7064620

Saad, Sherif, & Traore, I. (2010). Ontology-based Intelligent Network-Forensics Investigation.

SEDE, 313–319.

Saad, Sherif, & Traore, I. (2011). A semantic analysis approach to manage ids alerts flooding.

Information Assurance and Security (IAS), 2011 7th International Conference On, 156–

161. IEEE.

Sabahi, F., & Movaghar, A. (2008). Intrusion Detection: A Survey. 2008 Third International

Conference on Systems and Networks Communications, 23–26.

https://doi.org/10.1109/ICSNC.2008.44

Salahi, A., & Ansarinia, M. (2013). Predicting Network Attacks Using Ontology-Driven

Inference. ArXiv Preprint ArXiv:1304.0913.

Schumacher, M. (2003). Toward a Security Core Ontology. In Lecture Notes in Computer

Science: Vol. 2754. Security Engineering with Patterns (pp. 87–96). Springer Berlin

Heidelberg.

Snapp, S. R., Brentano, J., Dias, G. V., Goan, T. L., Heberlein, L. T., Ho, C.-L., … others.

(1991). DIDS (distributed intrusion detection system)-motivation, architecture, and an

early prototype. Proceedings of the 14th National Computer Security Conference, 1, 167–

176. Citeseer.

Splunk. (2015). Operational Intelligence, Log Management, Application Management,

Enterprise Security and Compliance. Retrieved September 5, 2015, from Splunk website:

http://www.splunk.com/

Stewart, J. (2003a, July 8). Sobig.a and the Spam You Received Today. Retrieved May 15,

2015, from joestewart.org website: http://www.joestewart.org/sobig.html

https://doi.org/10.1145/508171.508180
https://doi.org/10.1109/PST.2010.5593235
https://doi.org/10.1109/ISIAS.2014.7064620
https://doi.org/10.1109/ICSNC.2008.44
http://www.splunk.com/
http://www.joestewart.org/sobig.html

164

Stewart, J. (2003b, July 8). Sobig.e - Evolution of the Worm. Retrieved May 15, 2015, from

joestewart.org website: http://www.joestewart.org/sobig-e.html

Symantec. (2015). DeepSight Intelligence. Retrieved from DeepSight Intelligence website:

http://www.symantec.com/deepsight-products/

Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A. (2009). A Detailed Analysis of the

KDD CUP 99 Data Set. Proceedings of the Second IEEE International Conference on

Computational Intelligence for Security and Defense Applications, 53–58. Piscataway,

NJ, USA: IEEE Press.

Tecuci, G., Schum, D. A., Boicu, M., & Marcu, D. (2011). Introduction to Intelligence

Analysis: A Hands-on Approach with TIACRITIS. Learning Agents Center, George

Mason University.

Tecuci, G., Schum, D. A., Marcu, D., & Boicu, M. (2014). Computational approach and

cognitive assistant for evidence-based reasoning in intelligence analysis. International

Journal of Intelligent Defence Support Systems, 5(2), 146–172.

https://doi.org/10.1504/IJIDSS.2014.059976

Tecuci, G., Schum, D. A., Marcu, D., & Boicu, M. (2015). COGENT: Cognitive Agent for

Cogent Analysis. Proceedings of the 2015 AAAI Fall Symposium. Presented at the

“Cognitive Assistance in Government and Public Sector Applications,” Arlington, VA.

http://lac.gmu.edu/publications/2015/Cogent-overview.pdf

Tecuci, G., Marcu, D., Boicu, M., & Schum, D. A. (2016a). Knowledge Engineering: Building

Cognitive Assistants for Evidence-based Reasoning. Cambridge University Press.

https://www.cambridge.org/core/books/knowledge-

engineering/B5D4AAED35FCEE759B79F9CF6A66FE06

Tecuci, G., Schum, D. A., Marcu, D., & Boicu, M. (2016b). Intelligence Analysis as

Discovery of Evidence, Hypotheses, and Arguments: Connecting the Dots, Cambridge

University Press. https://doi.org/10.1017/CBO9781316388488

Tecuci G., Kaiser L., Marcu D., Uttamsingh C., Boicu M. (2018a). Evidence-based Reasoning

in Intelligence Analysis: Structured Methodology and System, Computing in Science and

Engineering, 20(6) 9-21, November/December.

Tecuci G., Meckl S., Marcu D., Boicu M. (2018b). Evidence-based Detection of Advanced

Persistent Threats, Special Issue on Evidence-based Reasoning and Applications,

Computing in Science and Engineering, 20(6) 54-65, November/December.

Tecuci G., Meckl S., Marcu D., Boicu M. (2019a). Instructable Cognitive Agents for

Autonomous Evidence-Based Reasoning. Advances in Cognitive Systems, Vol. 8, 2019.

Also in Proceedings of the Seventh Annual Conference on Advances in Cognitive

http://www.joestewart.org/sobig-e.html
http://www.symantec.com/deepsight-products/
https://doi.org/10.1504/IJIDSS.2014.059976
http://lac.gmu.edu/publications/2015/Cogent-overview.pdf
https://www.cambridge.org/core/books/knowledge-engineering/B5D4AAED35FCEE759B79F9CF6A66FE06
https://www.cambridge.org/core/books/knowledge-engineering/B5D4AAED35FCEE759B79F9CF6A66FE06
https://doi.org/10.1017/CBO9781316388488

165

Systems, Technical Report Number COLAB2-TR-4, pp.183-204, August 2-5, 2019,

Massachusetts Institute of Technology, Cambridge, MA.

Tecuci G., Marcu D., Boicu M., Meckl S., Uttamsingh C. (2019b). Toward a Computational

Theory of Evidence-Based Reasoning for Instructable Cognitive Agents, Proceedings of

the 2019 AAAI Fall Symposium “Artificial Intelligence in Government and Public

Sector,” Arlington, VA, November 7-9. http://lac.gmu.edu/publications/2019/Tecuci-

EBR-2019.pdf

Tsoumas, B., & Gritzalis, D. (2006). Towards an Ontology-based Security Management. 20th

International Conference on Advanced Information Networking and Applications, 2006.

AINA 2006, 1, 985–992. https://doi.org/10.1109/AINA.2006.329

Undercoffer, J., Joshi, A., Finin, T., & Pinkston, J. (2003). Using DAML+OIL to classify

intrusive behaviours. The Knowledge Engineering Review, 18(03), 221–241.

https://doi.org/DOI:10.1017/S0269888904000049

Undercoffer, J., Joshi, A., & Pinkston, J. (2003). Modeling Computer Attacks: An Ontology

for Intrusion Detection. In G. Vigna, C. Kruegel, & E. Jonsson (Eds.), Recent Advances

in Intrusion Detection (pp. 113–135). Springer Berlin Heidelberg.

Undercoffer, J., Pinkston, J., Joshi, A., & Finin, T. (2004). A target-centric ontology for

intrusion detection. 18th International Joint Conference on Artificial Intelligence, 9–15.

USA TODAY. (2015). Timeline: North Korea and the Sony Pictures hack. Retrieved April 13,

2015, from USA TODAY website: http://www.usatoday.com/story/news/nation-

now/2014/12/18/sony-hack-timeline-interview-north-korea/20601645/

Verizon. (2015). Learn from Verizon’s 2014 Data Breach Investigations Report. Retrieved

March 9, 2015, from Verizon Enterprise Solutions website:

http://www.verizonenterprise.com/DBIR/2014/

Vigna, G., Eckmann, S., & Kemmerer, R. (2000). Attack Languages. Proceedings of the IEEE

Information Survivability Workshop Vol 366. Presented at the Proceedings of the IEEE

Information Survivability Workshop.

Volatility. (2015). volatilityfoundation/volatility. Retrieved May 15, 2015, from Volatility

website: https://github.com/volatilityfoundation/volatility

Vorobiev, A., Han, J., & Bekmamedova, N. (2008). An Ontology Framework for Managing

Security Attacks and Defences in Component Based Software Systems. 19th Australian

Conference on Software Engineering, 2008. ASWEC 2008, 552–561.

https://doi.org/10.1109/ASWEC.2008.4483245

http://lac.gmu.edu/publications/2019/Tecuci-EBR-2019.pdf
http://lac.gmu.edu/publications/2019/Tecuci-EBR-2019.pdf
https://doi.org/10.1109/AINA.2006.329
https://doi.org/DOI:10.1017/S0269888904000049
http://www.usatoday.com/story/news/nation-now/2014/12/18/sony-hack-timeline-interview-north-korea/20601645/
http://www.usatoday.com/story/news/nation-now/2014/12/18/sony-hack-timeline-interview-north-korea/20601645/
http://www.verizonenterprise.com/DBIR/2014/
https://github.com/volatilityfoundation/volatility
https://doi.org/10.1109/ASWEC.2008.4483245

166

Weber, S., Karger, P. A., & Paradkar, A. (2005). A Software Flaw Taxonomy: Aiming Tools

at Security. Proceedings of the 2005 Workshop on Software Engineering for Secure

Systems—Building Trustworthy Applications, 1–7.

https://doi.org/10.1145/1082983.1083209

Winlogbeat. (2019). Winlogbeat: Analyze Windows Event Logs | Elastic. Retrieved April 21,

2019, from Winlogbeat website: https://www.elastic.co/products/beats/winlogbeat

Yeung, D.-Y., & Ding, Y. (2003). Host-based intrusion detection using dynamic and static

behavioral models. Pattern Recognition, 36(1), 229–243. https://doi.org/10.1016/S0031-

3203(02)00026-2

Zadeh, L. A. (1983). The role of fuzzy logic in the management of uncertainty in expert

systems. Fuzzy Sets and Systems, 11(1–3), 197–198. https://doi.org/10.1016/S0165-

0114(83)80081-5

Zevin, S. (2009). Standards for security categorization of federal information and information

systems. DIANE Publishing.

Zimmerman, C. (2014). Ten Strategies of a World-Class Cybersecurity Operations Center.

MITRE Corporation.

https://doi.org/10.1145/1082983.1083209
https://www.elastic.co/products/beats/winlogbeat
https://doi.org/10.1016/S0031-3203(02)00026-2
https://doi.org/10.1016/S0031-3203(02)00026-2
https://doi.org/10.1016/S0165-0114(83)80081-5
https://doi.org/10.1016/S0165-0114(83)80081-5

167

BIOGRAPHY

Steven W. Meckl graduated from Owosso High School, Owosso, Michigan, in 1993. He

received his Bachelor of Science in Engineering from the University of Michigan in 1998

and a Master of Science in Information Security and Assurance from George Mason

University in 2010. Steve began his career as a software engineer, developing security

software with a focus on cryptography for companies such as Symantec. From 2005 to

2015, he served as a Special Agent with the Federal Bureau of Investigation (FBI) where

he spent his time investigating state-sponsored intrusions into critical US infrastructure.

While at FBI Headquarters at the end of his tenure, Steve created and led Cyber

Division’s technical operations program and led FBI Cyber Division’s incident response

team. Steve currently serves as Senior Director of Global Operations for Symantec’s

Cyber Security Services business, leading a global team of incident responders,

intelligence analysts, security incident analysts and security engineers who are

responsible for monitoring the networks of Fortune 2000 companies.

