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ABSTRACT 

EVALUATION OF AIRBORNE LIDAR TO ESTIMATE TREE HEIGHT IN A DENSE 

FOREST CANOPY 

Jessica Mitchum, M.S. 

George Mason University, Spring 2018 

Thesis Director: Dr. Paul Houser 

 

The focus of this research will consider the application of Light detection and ranging 

(Lidar) to forestry and military terrain analysis.  Lidar is a remote sensing technology that 

uses light in the form of a pulsed laser to measure ranges; it can provide a three 

dimensional image into structures, providing information extraction opportunities for use 

in civilian and military settings.  Previous forestry Lidar research reports strong 

correlation and acceptable root mean squared error (RMSE) observations.  Much of this 

research was conducted in simple forest conditions and have not been rigorously assessed 

in areas of more complex plant morphology.  The primary objective of this thesis was to 

explore the suitability of an airborne, discrete return Lidar dataset to estimate tree heights 

in a dense, forested environment in Beltsville, MD using commercial software.  Linear 

regression was used to relate field to Lidar tree height data with an R2 correlation of 

0.0008.  Results comparing the Lidar canopy height model to field data by human 

interpretation had an R2 correlation of 0.33 and an RMSE of 6.54 meters.  The Lidar 

canopy height models explained little to none of the field-observed tree height 
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variation.  These results were unexpected considering previous research, but fall in line 

with recent discussions and efforts to address the complexities and sources of error 

associated with relating field data to airborne Lidar in dense forest canopies.  Future 

research should include exploration of different software, recently published standards of 

government agencies and professional societies, and altering data collection parameters. 
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CHAPTER ONE: INTRODUCTION 

Remote sensing has drastically changed the way humans observe and understand 

the environment.  Aerial and satellite imagery have assisted with many advances in 

modeling, mapping, and understanding natural processes on the earth’s surface.  While 

this technology has greatly assisted in areas such as military reconnaissance and 

interpretation of the environment, this information is only represented in a two 

dimensional or horizontal space.  With the advent and incorporation of Light Detection 

and Ranging (Lidar) sensors on aerial or satellite platforms, this technology has shown 

promise in providing a three dimensional look into natural phenomena for many 

application areas.  

The past few decades have seen an increase in developments of Lidar sensors, 

along with a variety of commercial software and algorithms to better manipulate the 

Lidar point cloud data and produce Digital Elevation Models (DEMs).  This technology 

has opened new opportunities for information extraction for use in civilian and military 

settings.  Today, airborne Lidar can be obtained from a number of providers with 

different system options depending on the application area for the data (E. P. Baltsavias, 

1999b; Evans, Hudak, Faux, & Smith, 2009; Vauhkonen, Maltamo, McRoberts, & 

Næsset, 2014).  Lidar can offer a cost-effective alternative to the traditional field based or 

two dimensional remote sensing methods (Jakubowski, Guo, & Kelly, 2013; Vauhkonen 
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et al., 2014).  Coupling this remote sensing technology with the growing number of 

options for analysis with different computer software, it is easy to see how Lidar can 

assist greatly in understanding the environment.  Application areas include topographic 

mapping, military terrain analysis, hydrology, archeology, forestry, and bathymetric and 

coastal mapping (Lim, Treitz, Wulder, St-Onge, & Flood, 2003; Meng, Currit, & Zhao, 

2010).  The focus of this research will consider the application to forestry and military 

terrain analysis. 

The primary objective of this thesis is to explore the suitability of an airborne, 

discrete return Lidar test dataset to estimate individual tree heights in a dense, forested 

environment.  This will be accomplished by utilizing tools for processing Lidar and 

review the limitations of these software tools, algorithms, and the data. The tree height 

extracted from Lidar data using ENVI Lidar 5.4 (Harris Geospatial Solutions, Inc, 2018a) 

will be compared to field collected data using regression analysis to evaluate the accuracy 

of the two data sets in deriving accurate tree characteristics. 

Chapter two will provide a description of the brief history and technical 

characteristics of a Lidar system.  It will also include an overview of Lidar application 

areas by foresters and the military and how some of the current and emerging technology 

is being used in these sectors. 

Chapter three will introduce in detail the study area and data sets to be analyzed.  

In Chapter four, the data analysis and descriptions of inputs, software tools, and 

evaluation techniques are discussed. 
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After discussing the results, Chapter five will provide an overall summary and 

commentary on the software, algorithms, and data used and provide suggestions for 

future work. 
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CHAPTER TWO: BACKGROUND 

Section 2.1: Basic Principles of Lidar 

Similar to radar, Light Detection and Ranging (Lidar) is an active remote sensing 

technology that is designed to transmit and receive backscattered energy to create an 

image of the earth’s surface (Campbell, 2011; National Oceanic and Atmospheric 

Administration (NOAA), 2012).  Unlike most optical sensors that only represent the 

horizontal distribution, Lidar can also directly measure the vertical (3-dimensional) 

distribution of surface features such as vegetation and/or buildings.  Lidar uses a pulse of 

laser light to measure the roundtrip time between the sensor and an object.  This elapsed 

time from the initial laser pulse to the return is converted into distance (Bachman, 1979; 

Baltsavias, 1999a).  The use of airborne Lidar can be traced back to the 1990s with the 

integration of GPS and INS used to accurately position and record data (Shan & Toth, 

2009; Vauhkonen et al., 2014). 
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Figure 1.  A representation of airborne Lidar data collection on bare earth (Reutebuch, Andersen, & 

McGaughey, 2005). 

 

Section 2.2: Technical components of Lidar systems 

Lidar systems can be either terrestrial, space borne, bathymetric, or airborne, but 

for the purposes of this paper, only airborne systems will be discussed in greater detail 

(Leeuwen & Nieuwenhuis, 2010).  The airborne platform is either a helicopter or fixed-

wing aircraft.  While there can be design variations in Lidar sensors, there is still a set of 

typical system components onboard the airborne platform.  This system typically consists 

of an inertial measurement unit (IMU) to record the orientation, a global positioning 

system (GPS), computer interface for data storage, and a laser scanner to measure 

distance to target (Reutebuch, Andersen, & McGaughey, 2005; Weng, 2011; Wulder et 

al., 2012).  Also required is a GPS base station on the ground nearby (within 50 km).  The 

laser beam is directed to its target by either rotating and/or oscillating mirrors or by a 

series of fiber optics (Leeuwen & Nieuwenhuis, 2010; Reutebuch et al., 2005; Shan & 
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Toth, 2009; Wehr & Lohr, 1999).  This creates a band or swath of sampled points that 

can be gridded into an image (Lefsky, Cohen, Parker, & Harding, 2002).  The following 

commercial scanners commonly used for Lidar systems are the Optech ALTM-series, 

Leica ALS-series, RIEGL LMSseries and the TopoSys Falcon series (Leeuwen & 

Nieuwenhuis, 2010; Wulder et al., 2012).  Figure 2 represents a typical airborne Lidar 

system, taken from Weng (2011). 

 

 
Figure 2.  Airborne Lidar unit, taken from Weng (2011). 

 

Airborne Lidar systems can be categorized as either discrete return or full 

waveform, each unique in how data is sampled.  While a brief description will be given 

concerning full waveform systems, discrete return systems are the focus of this thesis. 

The full waveform system collects all the reflected energy from a return, so it 

includes the entire record of all the vertical distribution information, including height 

(Hollaus, Mücke, Roncat, Pfeifer, & Briese, 2014; Mallet & Bretar, 2009).  Waveform 



7 

 

systems tend to be less common and did not gain much recognition in the literature until 

about a decade ago, and were not available for small-scale operational data acquisition 

until 2004 (Hollaus et al., 2014).  According to Anderson, Hancock, Disney, & Gaston, 

(2016) and Evans et al. (2009), this could be attributed to the lack of computer software 

and storage for the high data volumes associated with the higher number of returns and 

more dense point cloud.  According to Cao et al. (2014) and Lefsky et al. (2002), there 

are negligible differences in estimating heights of features and deriving elevation models 

from waveform versus discrete systems.  As mentioned by Chen, Gao, & Devereux 

(2017), this could likely be attributed to the fact that most researchers decompose the 

full-waveform into dense point clouds.  Both systems can associate the last returns with 

the ground, when it may in fact be the height of dense understory growth (Lefsky et al., 

2002).  Additionally, waveform data requires that the end user has a good understanding 

of the complex signal interactions the sensor pulse can have in different environments. 

Despite these inherent complexities, waveform data are likely to continue to gain more 

recognition as a research tool as more signal processing approaches are discovered and 

other application areas are identified (Anderson et al., 2016; Mallet, Bretar, Roux, 

Soergel, & Heipke, 2011). 

In contrast, discrete return systems allow for single/last returns or multiple returns 

to be recorded for each pulse (Evans et al., 2009; Lefsky et al., 2002).  The term “pulse” 

refers to the laser signal sent out from the Lidar system (Jakubowski, Guo, et al., 2013).  

As mentioned by Gatziolis & Andersen (2008), frequently used alternatives to the term 

“return”, are “point” and “echo”.  Each time the laser signal is reflected back to the 
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sensor, that return is considered to represent an object and recorded as a point in the 

system.  Evans et al. (2009) and National Oceanic and Atmospheric Administration 

(NOAA) (2012), provide a list of Lidar related terminology.  Figure 3 presents the 

differences between full waveform and discrete return Lidar collection.  

 

 
Figure 3. Representation of discrete return and full-waveform Lidar systems (Lefsky et al., 2002). 

 

Generally, each pulse from the discrete system allows up to four to five bright 

returns to be recorded (Campbell, 2011; Wulder et al., 2012).  These returns generate the 

final product: point clouds that represent different levels of intercepted features, such as 

the vegetation canopy, buildings, other intermediate surfaces, and the ground.  This point 

cloud data is representative of these reflected features in georeferenced x, y, and z 

coordinates (Hyyppä et al., 2008).  The data from the first return is representative of the 



9 

 

first morphologically complex surface (i.e., a tree canopy), while the last return is most 

likely to represent the ground surface, given that the vegetation is not overwhelmingly 

dense (Akay, Oğuz, Karas, & Aruga, 2009; Blundell, Guthrie, & Simental, 2004; Lefsky 

et al., 2002).  These point clouds can be of varying densities, as high as 50 points per 

meter squared or as low as 0.1 points per meter squared, which can total to several 

million points per kilometer at the higher densities (Jakubowski, Guo, et al., 2013; Lim et 

al., 2003; Reutebuch et al., 2005).  The complexity of the surface can also have an 

influence on the number of points in a point cloud dataset, with 200,000 points per square 

mile in sub-urban area, and 350,000 points per square mile in forestland (Campbell, 

2011; Reutebuch et al., 2005; Unger, Hung, Brooks, & Williams, 2014).  According to 

Lim et al. (2003), it is recommended that computer workstations have a minimum of one 

GB RAM, but preferably two GB, to further process the point cloud data, in addition to 

what is already required for the operating system. 

In using the point cloud data, researchers can create a number of widely 

recognized derived products, especially Digital Elevation Models (DEMs) (Reutebuch et 

al., 2005).  It is important to note that DEM is a more generic term for models that are the 

best estimate of either the bare ground or surface features, or any elevation model (Chen 

et al., 2017).  If the data collection was able to yield good last return data, then either 

automated or manual processing can be done to produce a Digital Terrain Model (DTM) 

that represents the earth surface and provides information on the terrain.  Creating an 

estimated representation of the surface features can be created by using the first return 

data, referred to as Digital Surface Model (DSM) (Chen et al., 2017).   
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Further manipulation of these two digital models can produce a Canopy Height 

Model (CHM), or normalized DSM, which represents the heights of surface vegetation.  

The CHM can be produced in two ways, one is by subtracting the DSM from the DTM 

and the difference of the two rasters is the CHM (Lim et al., 2003).  The second 

approach, accomplished by using the height above the DTM as the elevation (or z 

coordinate) subtract from the DTM  (Khosravipour, Skidmore, Wang, Isenburg, & 

Khoshelham, 2015).  Although both methods for calculating the CHM are conceptually 

simple, the accuracy of the CHM product is influenced by the acquired Lidar data, 

processing methods, and the conditions of the sampled area (Zhang, Zhou, & Qiu, 2015).  

Many studies over the past decade demonstrate that forest conditions such as site type, 

slope, density, species, and ages can influence the Lidar end products and performance of 

tree detection algorithms (Falkowski et al., 2008; Khosravipour et al., 2015; Vauhkonen 

et al., 2012; Yu, Hyyppä, Vastaranta, Holopainen, & Viitala, 2011).  A good review of 

these challenges and attempts to address them can be found in Næsset, (2014).  

There are a number of advantages to discrete return systems.  They are preferable 

for the detailed mapping of the ground and canopy surfaces due to their high repetition 

rates (Vauhkonen et al., 2014).  The result is high resolution data with dense distributions 

of sampled points, which is helpful when trying to amass data from different scales and 

areas, and in trying to pinpoint locations or features on the ground (Lefsky et al., 2002).  

Additionally, these discrete return systems tend to be more cost effective when the 

operation is over larger areas (Leeuwen & Nieuwenhuis, 2010).  Small footprint discrete 

return systems are between 0.2 to 1 meter, and large footprint are 10 meters or greater 
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(Duncanson, Cook, Hurtt, & Dubayah, 2014; Evans et al., 2009; Lim et al., 2003; 

Thenkabail, 2015; Wulder et al., 2012). 

Section 2.3: Selected applications--Military  

For military applications, there is a need to understand the terrain conditions and 

the spatial arrangement of features as they can affect military operations and decision 

making.  Historically, remotely sensed data has provided rapid assessment of the 

environment at high resolutions and still is an integral part of reconnaissance (Campbell, 

2011).   Many of the methods of terrain evaluation arose from mostly military needs, 

which can be further reviewed in Falls (1948), Whitmore (1960), Broughton & Addor 

(1968), Parry (1984), Rose & Nathanail (2000), and Harmon & McDonald (2014). 

It should come as no surprise that the impact of imperfect intelligence can be 

potentially disastrous and cost lives and resources.   The battlefield has demands for 

adaptive and predictive information flows, where time is the limiting factor (Hardaway, 

2011; Whitmore, 1960).  Information such as surface and terrain features can change 

dramatically between the time of data collection and data delivery.  For example, an 

artillery strike can create an impasse from what was once a bridge or road, or buildings 

can be leveled and obstruct movement of mounted/dismounted troops.  According to U.S. 

Army (2008), commanders and their staff must conduct continuous assessment of the 

factors of terrain, troops and mission objectives.  At the battalion and company level, 

being able to disseminate information directly to commanders can greatly improve 

situational awareness and tactical maneuvers (Blundell et al., 2004).  Evaluation of 

various biophysical and geophysical surface characteristics are a part of classical military 
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terrain analysis (Krause, Puffenberger, Graff, & Gard, 2003).  These characteristics 

include surface materials and configuration, water resources, soil type, and details about 

distinctive vegetation cover types.  Databases for terrain analysis have specifications for 

vegetation structural variables, such as tree height, canopy closure, stem spacing and 

diameter, to name a few (Krause et al., 2003).  This terrain and surface feature data are 

considered critical terrain elements and are provided to commanders to assist with 

mission planning details and generating analysis for line-of-sight, potential threats along 

supply routes, bivouac sites, and helicopter landing zone suitability (Blundell et al., 2004; 

Hardaway, 2011).  For example, if commanders are looking at areas for vertical or 

helicopter takeoff, knowledge of low-level areas protected by valleys, ridges and forests 

are especially helpful in producing products such as ‘air movement maps’ (Whitmore, 

1960). 

While traditional nadir remote sensing imagery has shown itself to be a useful aid 

for intelligence collection and mobility work over urban and/or complex terrain, there are 

still a number of biophysical parameters that are under taller/wider dominant features that 

cannot be measured directly with this technology (Krause et al., 2003).  High resolution 

Lidar data can assist with modeling terrain with vegetation to provide assessment of 

mobility and obstacle determination in a timely manner.  These terrain obstacles are 

considered to be ‘gaps’ in a commander’s knowledge and ability to accomplish tactical 

maneuvers over land.  Many of these ‘gaps’ fall within the error limits of standard 

elevation datasets such as the U.S. Geological Survey (USGS) Digital Elevation Models 

(Blundell et al., 2004).  In an attempt to fill these ‘gaps’, airborne Lidar has been used 
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more frequently to model complex terrains with a diversity of features (Lee et al., 2016).  

An example of complex terrain includes forested environments, which can have many 

effects on cross-country mobility, concealment for troops, airdrops, and construction 

materials (U.S. Army, 1990).  Along with providing camouflage, dense vegetation also 

creates problems for movement of wheeled vehicles, along with slowing down 

dismounted troops.  Understanding the spacing of trees is also advantageous, as some 

armor and wheeled vehicles can move between them if the understory is not impeding 

mobility (U.S. Army, 1972, 1990).  Figure 4 provides an example of a Lidar-based DEM 

compared to a USGS DEM created from the same forested area, as mentioned in Akay et 

al. (2009). 

 

 
Figure 4. USGS DEM in (a) and Lidar based DEM in (b) (Akay, et al. 2009). 

 

While airborne Lidar has shown to be more accurate in estimating terrain and 

vegetation surface features than optical remote sensing alone, it is important to note that 
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it can be less effective in terrain modeling in dense, interlocking forest canopies and/or 

topographically complex areas (Leitold, Keller, Morton, Cook, & Shimabukuro, 2015).  

Because of Lidar’s pointwise sampling nature, the laser data must be interpolated, which 

can introduce error into the DTM depending on the interpolation methods and the grid 

spacing chosen (Chen et al., 2017; Hyyppä et al., 2004; Suárez, Ontiveros, Smith, & 

Snape, 2005).  As stated by Andersen, Reutebuch, & McGaughey (2006), the local area 

directly below the tree crown can cause a reduction in the DTM quality, attributed to the 

lower number of pulses reaching the ground.  The authors also mention that ground 

vegetation and terrain relief can introduce variability of up to 0.5 meters in any 

measurements of height, especially in trees.  Any inaccuracies in the DTM will propagate 

into the CHM (Leitold et al., 2015; Vauhkonen et al., 2014).  Some researchers have 

attempted to improve the DTM accuracy by collecting during leaf-off conditions so 

pulses can better reach the ground and be intercepted only by tree branches (Gatziolis, 

Fried, & Monleon, 2010; Hawbaker et al., 2010) .  Research efforts have focused on 

addressing known issues with canopy penetration capability, where the resulting point 

cloud under samples the understory and DTM (Lee et al., 2016; Leitold et al., 2015).  For 

a more detailed comparison of DTM extraction methods from point clouds, the reader is 

pointed to Sithole & Vosselman (2004), Liu (2008), Meng et al. (2010), and more recent 

work by Chen et al. (2017). 

While these research efforts on improving accuracy of the DTM are promising, 

the commercial/business environments tend to favor interpolating the point cloud into 

rasters because of relatively faster processing speed and easier access to software well 
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suited to use rasters (Zhang et al., 2015).  Some drawbacks to using these licensed 

software suites in business environments include the use of proprietary methods to 

process the point cloud data into the various derived products (Lefsky et al., 2002; Lim et 

al., 2003; Sithole & Vosselman, 2003).  Additionally, many researchers develop and 

provide recommendations for DTM generation methods, but sometimes do not provide 

detailed explanation or feasible way to carry out these recommended algorithms or 

methods (Chen et al., 2017; Sithole & Vosselman, 2003; Unger et al., 2014).   

Section 2.4: Selected applications--Forestry 

Along with terrain visualization, it is possible for Lidar to produce point cloud 

data consisting of multiple returns that allow researchers to collect detailed information 

about the surface vegetation, especially in forests.  Lidar data collection, compared to 

traditional field survey methods, can be performed more rapidly and in a cost effective 

manner (Andersen et al., 2006; Kangas, Eid, & Gobakken, 2014; Sibona et al., 2016; 

Vauhkonen et al., 2014).  Typically, the systems used for forest inventory are airborne, 

discrete return systems and the common wavelength used is 1.064 m (Evans et al., 

2009; Leeuwen & Nieuwenhuis, 2010).   This wavelength is used due to its ability to 

penetrate the atmosphere and that vegetation reflects strongly in these wavelengths 

(Evans et al., 2009; Kumar, Schmidt, Dury, & Skidmore, 2002; Lefsky et al., 2002; Wehr 

& Lohr, 1999). For reference, Figure 5 presents a detailed look at the vegetation 

spectrum, taken from Harris Geospatial Solutions, Inc. (2018b). 
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Figure 5. Vegetation spectrum (Harris Geospatial Inc., 2018b). 

 

   Traditionally, field surveys, along with aerial photos and photogrammetric 

techniques, were the primary method for collecting information related to forest 

characteristics.  While these methods can produce reliable information about the forest, 

they do have a few drawbacks (Næsset, 2014).  The primary disadvantage of these 

techniques is that they can be time and labor intensive, highly subjective, and difficult to 

carry out over a very large area (Falkowski et al., 2008; Sexton, Bax, Siqueira, Swenson, 

& Hensley, 2009), especially in areas where the forest canopy is dense and the bare 

ground cannot be viewed from aerial or satellite imagery (Lefsky et al., 2002).  Writing 

by Ackermann (1999) and Baltsavias (1999) provide a more detailed comparison of 

photogrammetry and airborne laser scanning. 

The early 1980s saw the first application of airborne Lidar for forest inventory, 

and by the early 2000s many foresters had adopted the use of airborne Lidar point cloud 

data and geographic information systems (GIS) to supplement information from field 
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sample surveys (Hyyppä et al., 2008; Leeuwen & Nieuwenhuis, 2010; Næsset, 2014).  In 

order to compare the ground truth data to the Lidar data, these studies use inventory 

techniques referred to as an area-based approach, an individual tree approach, or some 

combination (Kaartinen et al., 2012; Sačkov, Santopuoli, Bucha, Lasserre, & Marchetti, 

2016; Vauhkonen et al., 2014).  A few studies that used individual tree approach can be 

found in Persson, Holmgren, & Soderman (2002), Koch, Heyder, & Weinacker (2006), 

Jakubowski, Li, Guo, & Kelly (2013) and Hamraz, Contreras, & Zhang (2017).  Research 

by Næsset (2002), Hansen, Gobakken, Bollandsås, Zahabu, & Næsset (2015), Sibona et 

al. (2016), and Lindberg, Holmgren, Olofsson, Wallerman, & Olsson (2010) provide 

examples of area-based techniques.  An extensive discussion of these inventory 

techniques can be viewed in Næsset (2014) and Vauhkonen et al. (2014). 

In the typical Lidar point cloud for forested environments, the returns represent 

different levels of the canopy, intermediate growth, and ideally the ground surface (Akay 

et al., 2009; Dong & Chen, 2017).  Figure 6 represents an ideal situation in which Lidar 

scans a forested environment. 
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Figure 6. Lidar returns in a forested area (Akay, et al., 2009). 

 

Since forests are three-dimensional systems, Lidar point cloud data can capture 

information such as location of individual tree tops and individual tree height (Dong & 

Chen, 2017; Unger et al., 2014).  Segmenting the individual tree top and estimating 

height is useful to identify other information such as crown diameter, which in turn is 

helpful as input for growth estimation or allometric models, forest biomass, and carbon 

stocks (Andersen et al., 2006; Hansen et al., 2015; Lefsky et al., 2002; Mauya et al., 

2015; Vauhkonen et al., 2014).  Figure 7 presents a few fundamental tree parameters that 

can be estimated with Lidar, taken from Zhang et al. (2015).  
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Figure 7. Tree metrics that can be captured with Lidar point clouds (Zhang et al., 2015). 

 

All of the above are tied to understanding and monitoring forest health, 

photosynthetic activity, and carbon cycle processes (Hyyppä et al., 2012; Khosravipour et 

al., 2015).  Other information such as canopy disturbances, plant growth, leaf area index 

(LAI), and percent canopy cover can be well characterized at both the plot and 

individual-tree level (Cao et al., 2014; Dubayah & Drake, 2000; Trochta, Krůček, Vrška, 

& Král, 2017).  In some cases, Lidar can also measure sub-canopy topography and can 

increase the accuracy for topographic maps (Lee et al., 2016; Lefsky et al., 2002).   Lidar 

can also improve fire and fuel management plans, scheduling harvesting, and designing 

roads (Akay et al., 2009; Reutebuch et al., 2005).  Figure 8 provides a visual 

representation of the general categories of Lidar in forestry, as mentioned by Dong & 

Chen (2017). 
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Figure 8. Representation of Lidar for forestry applications (Dong and Chen, 2017). 

 

Much of the research conducted in the early 2000s demonstrated that 

incorporating Lidar technology greatly assisted forest researchers in measuring 

biophysical parameters such as mean height, basal area, and volume (Dong & Chen, 

2017; Lim et al., 2003; Sibona et al., 2016; Vauhkonen et al., 2012).  The regression 

models showed promising results with good r-squared and root mean squared error 

(RMSE) values areas where airborne Lidar was compared to plot level and/or individual 

tree biophysical characteristics (Næsset, 2014; Vauhkonen et al., 2014).  A table of the 

results of several studies are outlined in Leeuwen & Nieuwenhuis (2010).  A review and 

comparison on an international scale of Lidar-based tree detection methods can be found 

in Kaartinen et al. (2012).  Similar research from Vauhkonen et al. (2012) compares 

fewer algorithms, but has greater variation in forest type.  According to Falkowski et al. 

(2008), there are a handful of widely-used techniques used to automatically detect trees. 

These methods include: feature matching, local maximum filtering, object-based 

methods, variable window filters, and image segmentation.  Over time, studies have 

shown an increased complexity in approaches to increasing the accuracy of the results.  

That is to say, there has been an increase in the use of just Lidar point cloud to extract 
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individual trees instead of transforming the data into a raster (Jakubowski, Li, et al., 

2013).  A brief comparison of several automated segmentation methods can be found in 

Zhang et al. (2015).   

The drive for segmenting trees from the point cloud is that pixel-based CHMs 

introduce errors and uncertainties due to both the interpolation methods used in the DTM 

and also the spacing of each grid cell (Zhang et al., 2015).  According to Khosravipour et 

al. (2015) and Gatziolis et al. (2010) forest terrain/topography can also distort the CHM.   

Additionally, the scanning density and forest canopy structure can also mean that 

suppressed or intermediate growth trees are not usually detected (Hyyppä et al., 2012; 

Leeuwen & Nieuwenhuis, 2010; Lim et al., 2003; NOAA, 2012; Vauhkonen et al., 2012).  

Often, this is where the error comes from since tree delineation algorithms for Lidar data 

might not work on irregularly shaped and/or overlapping canopies (Unger et al., 2014).  

Many earlier studies (as early as 1995) using airborne Lidar were done in similar 

geographic regions (i.e., conifer-dominant forests), which facilitated easy comparison 

between studies (Hansen et al., 2015; Næsset, 2014).  As mentioned by Gatziolis et al. 

(2010) and Sačkov et al. (2016), nearly all evaluations of Lidar suitability have been 

carried out in simple forest conditions.  That is to say, areas of gentle topography, open 

canopy, homogenous species and/or age class, and/or little to no understory.  While these 

studies were helpful in demonstrating the usefulness of airborne Lidar, in the early 2000s 

there were many researchers that began investigating the errors from the DTM and how 

such artifacts effect the CHM (Gatziolis et al., 2010; Leeuwen & Nieuwenhuis, 2010).  A 

common issue is that the laser scanning samples the tree crown shoulder or various 
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positions along the canopy surface, causing the CHM to represent underestimated tree 

heights (Dorigo, Hollaus, Wagner, & Schadauer, 2010; Gatziolis et al., 2010; Hyyppä et 

al., 2012; Lim et al., 2003; Popescu, Wynne, & Nelson, 2002).  This has been an issue 

associated with, but not always limited to, Lidar systems that have footprints that are too 

small, presenting difficulties in detecting the true height of the tree canopy (Lefsky et al., 

2002; Lim et al., 2003).   

While algorithms for processing the point cloud data can perform well on a 

coniferous forest, it does not guarantee the same results in study areas with different plant 

morphology, such as a tropical mixed forest or broad-leaved deciduous forest (Maltamo 

et al., 2005; Unger et al., 2014).  As mentioned by Sačkov et al. (2016), performances of 

processing techniques and algorithms have not been assessed at great lengths in these 

areas of more complex plant morphology.  In more dense forests where the dominant or 

codominant trees clump together, the canopy can obscure the understory (shade-tolerant 

smaller trees) and ground (Dong & Chen, 2017; Hamraz et al., 2017; Lefsky et al., 2002).  

This is mostly attributed to the branches and leaves causing absorption or scattering of 

the laser pulse energy, which results in fewer, if any, backscatter returns from the actual 

ground (Dong & Chen, 2017; Shan & Toth, 2009).   

Being able to retrieve an accurate tree height from Lidar data is essential since it 

is an input for growth models, forest biomass, and terrain analysis, but easy to see how 

complicated such a task can be in dense, forest types of different age classes and areas of 

varying topography.  The necessary procedure of generating a reliable DTM can require 

extensive processing, somewhere between 60% to 80% of processing time (Chen et al., 
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2017; Evans et al., 2009; Sithole & Vosselman, 2003).  Despite these complexities, 

exploring the options for either a semi-automated or automated process for generating a 

reliable DTM and CHM is a worthwhile endeavor. 
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CHAPTER THREE: MATERIALS AND METHODS 

In reviewing the literature, it has been demonstrated that airborne discrete Lidar 

coupled with field data collection and different software packages can provide relatively 

good estimates in modeling terrain for the military or natural resource management.  In 

trying to explore the suitability of BuckEye Lidar test data in a dense, forested 

environment, the following questions were asked: 

1. Are ENVI and ENVI Lidar 5.4 viable options to produce DEMs and estimate 

individual tree heights in a forested environment when compared to field data 

processed in ArcGIS 10.5.1? 

2. Can the Lidar point cloud density be reduced (decimated) and still achieve the 

same results? 

A description of the study area, collection of the ground truth data, and software 

tools used are provided in the subsequent sections. 

Section 3.1: Study Area Description 

The study area falls within the Beltsville Agriculture Research Center (BARC) 

located in Beltsville, MD (Figure 9).   The land is owned by the U.S Department of 

Agriculture-Agriculture Research Service (USDA-ARS), but the surrounding forested 

areas have experienced little anthropogenic influence and are considered to be a mature 

forest. The area experiences a mean annual precipitation of 40 to 50 inches.  The 
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physiographic province at this location is best described as the upland coastal plain and 

the topography is generally flat.  The forest composition is best described as deciduous 

stands and mixed deciduous-coniferous stands of different age classes. 

 

 
Figure 9.  Study area in Beltsville, MD. Imagery from the BuckEye test data collection. 

 

Section 3.2: Ground reference data 

The ground truth data collection took place in the leaf-on season in late June 

2017.  The field data for the plots were collected in a 6.5 hectare area within the BARC.    

The location (x,y) of the plot center and each tree was determined by bearing and 

distance using a distance tape and a compass.  This method was chosen for a few reasons.  
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Taking the bearing and distance expedited the data collection while in the field and also 

are in line with basic forest inventory techniques found in The University of Tennessee 

Agricultural Extension Service (2009) and chapter four of Avery & Burkhart (2015).  

Alternative options, such as using a differential GPS, would take time to assess 

positioning accuracy, which could still suffer (up to several meters) with the dense 

canopy in the study area (Dorigo et al., 2010).  A discussion on GPS accuracy can be 

reviewed in Valbuena (2014).  Additionally, the plot centers are all reasonably accurate, 

since the first plot center uses a property corner easily seen from imagery, and all 

subsequent plots can be traced back to this with a known distance and azimuth. 

The first plot was established by walking 130 feet west of the northwest corner of 

the crop test field fence post.  Subsequent plots were between 125 to 150 feet apart from 

each other and were established at random while in the field at either a north, south, east 

or west bearing.  Each plot was assigned an identification number.  A small wire flag was 

placed in the center in the ground to mark each plot, along with ribbon tape to mark the 

closest tree (Figure 10). 
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Figure 10.   Example of marking field plots. 

 

Within each 10 meter fixed-radius plot, trees were tagged by using chalk to draw 

a unique identification number.  The following attributes were recorded for each tree 

using standard forestry measurement techniques shown in Avery & Burkhart (2015): 

• species 

• diameter at breast height (inches) [DBH] 

• height (feet) 

• canopy position 

• distance and bearing from plot center 

 

The estimated heights of all trees were measured using a Nikon Forestry PRO 

Laser Rangefinder/Hypsometer electronically measuring distance and angle (Nikon 

Corporation, 2011).  Because line of sight was somewhat obstructed for certain trees, this 

height measurement was taken by two individuals pacing the forested area in an attempt 

to record a more accurate individual tree height. 

Using tree diameter tape, DBH was recorded.  Within the 10 meter plots, only 

trees with a DBH of 4 inches or larger were included.  Within the 5 meter plots, only 

trees with a DBH of 3.9 inches or smaller were included.  Stem distance at DBH from the 

center of the plot was recorded, along with species.  The trees’ canopy position 
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(dominant, codominant, intermediate, and suppressed) was recorded according to 

definitions found in chapter seven of Avery & Burkhart (2015).  Figure 11 presents 

different canopy positions in a forest, taken from Smidt & Blinn (1995). 

 

 
Figure 11. Representation of dominant (D), codominant (C) intermediate (I), supressed (S), and advance 

regeneration and shrubs (ARS) (Smidt & Blinn, 1995). 

 

The following hardwood tree species were inventoried across the study area plots 

red maple (Acer rubrum L.), black oak (Quercus velutina L.), white oak (Quercus alba 

L.), red oak (Quercus rubra L.), and tulip poplar (Liriodendron tulipifera L.).  

Additionally, the following pine species were inventoried: Virginia pine (Pinus 

virginiana Mill.) and loblolly pine (Pinus taeda L.).  In total, 25 plots were sampled with 

a total number of sampled trees equaling 410.  The percentage of pine is 17.29% and the 

percentage of hardwood is 82.70%.  There is a time difference Lidar acquisition in July 

2012 and the field measurements in June 2017.  However, our study area consists of 
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mature forest and is not characterized by year-round high temperatures and rain, so we 

assume there is a relatively low tree growth rate (Johnson & Abrams, 2009; Waring & 

Running, 2007).  Also, we assume that the difference in tree height due to natural growth 

between the time of the Lidar survey and the acquisition of ground data is negligible.  

This time difference in data collection is not unique to this study, and can be found in, 

Gould, Glenn, Sankey, & McNamara (2013), Unger et al. (2014), and Khosravipour et al. 

(2015). 

Section 3.3: Data from BuckEye 

The BuckEye Lidar test data collection is a 2 by 2 km area in July 2012 and 

consists of about 98 million points (Figure 12). 
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Figure 12. Lidar collection extent, as provided by the vendor. 

 

The BuckEye system is intended for mapping/topographic data collection, so it 

has a relatively large footprint with a swath width of about 350 meters.  The spot size is 

an estimated 24 to 30 inches.  The aircraft was flying at 5500 feet AGL for this data 

collection.  The point density was, on average, 10 to 15 points per m2 with a distance 

between laser points (post-spacing) of 0.25 meters.  According to Mitchell, Fisk, Clark, & 

Rounds (2018) and Heidemann (2018), this density is representative of a quality level 1 

(Q1) dataset, suitable for forestry related acquisitions. 

Accuracies are approximately 0.5 meter horizontal and 0.3 meter vertical.  All 

data were delivered in the UTM 18N with respect to WGS84 G1674 ellipsoid, following 

the standard LAS format (American Society for Photogrammetry & Remote Sensing, 
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2015).  BuckEye context imagery is 3-band color imagery taken with 39 megapixel color 

EO camera.  



32 

 

 

 

 

CHAPTER FOUR: DATA PROCESSING AND ANALYSIS 

The field data discussed in Section 3.2: Ground reference data were visualized, 

processed, and analyzed primarily with ESRI’s ArcMap 10.5.1 (ESRI, 2017).  Statistics 

such as mean and standard deviation were calculated in Microsoft Excel. 

ENVI Lidar 5.4 was primarily used to manipulate the Lidar point cloud, 

especially when creating raster data and estimating the locations and height for individual 

trees to be imported into ArcMap for further analysis.   

Regression analyses were carried out in Excel using the output tables from the 

vector data in ArcMap. 

A subset of these processing techniques are carried out following suggestions by 

Mitchell, Jacokes-Mancini, Fisk, & Evans (2012) and chapter four of Dong & Chen 

(2017).  

Section 4.1: Using ENVI  and ENVI Lidar 5.4 

ENVI 5.4 and ENVI Lidar 5.4 are well-known software tools for image 

processing and visualization and are the primary software used for manipulation of the 

LAS file.  Figure 13 provides a representation of the point cloud in the study area: 
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Figure 13.  Study area point cloud as viewed in ENVI Lidar. 

 

Section 4.1.1: Assessing the quality of the Lidar data 

While quality assessment of Lidar data can vary case by case, methods used in 

this study were generally following suggestions by Dong & Chen (2017) and Mitchell et 

al. (2012), along with guidance from the BuckEye program’s data providers.  Once 

imported into ENVI Lidar, quality assessment of the point cloud was completed based on 

visual inspection within the study area.  This consisted of looking for elevation outliers, 

any voids, gaps or artifacts with the QA tool and 3D Viewer in ENVI Lidar, as shown in 

Figure 14.  No outliers were detected in the point cloud over the study area’s sample 

plots, so it was deemed unnecessary to remove points before proceeding to create the 

DEMs and tree shapefile. 
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Figure 14.  Using the 3D Viewer in ENVI Lidar. 

 

Section 4.1.2: Creating DEMs and estimated trees 

ENVI Lidar was used to create the DTM, DSM, and a point shapefile containing 

tree position (x, y location) and estimated height.  ENVI Lidar determines the points that 

represent the last returns and create the DTM from these ground points.  The methods in 

which the software calculates the DTM and DSM are not provided by the vendor, but is 

described as a combination of “crawling” and “sensitivity” algorithims according to 

online documentation (Harris Geospatial Solutions, Inc, 2018c).   It is speculated that 

they use a patented method such as USOO6654690B2 (2003) or US 20070265781A1 

(2007). 

The grid size was set to one meter resolution.  In creating the trees points, the 

software provides suggested default parameters for the height and DBH of the trees, and 

these defaults were used in this analysis.  The minimum and maximum height were set to 
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130 centimeters and 5000 centimeters, respectively.  The radius minimum for a tree was 

set to 200 cm and the maximum was 600 cm.  The production of these can be seen in 

Figure 15, Figure 16, and Figure 17. 

 

 
Figure 15.  Project outputs, as viewed in ENVI Lidar. 
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Figure 16.  Parameters for the project outputs. 
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Figure 17.  DSM, as viewed in ENVI Lidar. 

 

Section 4.2: Manipulating ground truth data  

 

The field data are digitized into ArcMap by using the Bearing Distance to Line 

tool.  This tool was used to import the spreadsheet of field data containing the 

information on the bearing and distance to each tree from the plot center.  From this, 

point shapefiles were created to represent the individual trees in each of the plots and the 

Add XY tool was used to append the latitude and longitude of each point.  Once the plot 

centers and sampled trees were digitized into point shapefiles, a 10 meter buffer was 

drawn from the center of each of the 25 sample 10 m plots.   

These 10 m buffers were used as an overlay to extract the tree point shapefile 

exported from ENVI Lidar.  The trees that overlapped with the 25 sample 10 m plots 

were exported to Excel for analysis and averages per plot were calculated.  The results 

indicate that the ENVI Lidar predicted tree height was consistently higher than the 
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ground truth data by 3.79 meters, on average.   Figure 18 presents the field data in 

ArcMap. 

 

 
Figure 18. The 25 sample plots.  Background imagery provided by the accompanying air photo from BuckEye. 

 

 

Section 4.3: Classifying height in ENVI 

The CHM was calculated by taking the difference of the DSM and DTM created 

in ENVI Lidar.  Tree points and buffers created in ArcMap were imported into ENVI to 

provide reference for assigning individual tree height. 

Out of the 410 sampled trees (distributed in the 25 sample plots), 90 trees were 

selected at random.  This selection was accomplished by using a random number 

generator within the Excel spreadsheet that contained the unique ID, heights, and location 

of each tree. 
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Heights of these 90 trees were assigned based on human interpretation.  This was 

accomplished by using the digitized field data, the accompanying BuckEye air photo, and 

the CHM.  Using the location of the tree as a guide, each of the 90 selected trees was 

assigned a height using the value of the CHM pixel at or nearby the location of the tree.  

This height was recorded in Excel for further analysis. Figure 19 presents an example of 

the field data and the CHM for assigning a height value. 

 

 
Figure 19. Zoom window displays the 10 meter sample plot with crosshairs representing trees. In the Cursor 

Location/Value window, ‘Data’ value represents the height at that cell in meters.  This value changes as the 

cursor hovers to a different pixel. 
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Section 4.4: Regression using Excel 

Linear regression was used to relate average tree height per plot for the 10 meter 

plots to the average ENVI Lidar prediction heights per plot.  The field data were entered 

into MS Excel, and contained information about the tree biophysical characteristics 

mentioned in Section 3.2: Ground reference data. The average height per plot was 

calculated for the field data and Lidar data.  These two data sets were compared using a 

scatter plot in Excel.  Figure 20 is the result from the ground truth versus the ENVI Lidar 

prediction for the trees; Figure 21 shows the dominant and codominant measurements 

compared to the ENVI Lidar prediction.  Figure 22 is the result from comparing the field 

height to the CHM height at the same location.  The root mean square error (RMSE) for 

the CHM comparison was calculated in Excel and is 6.54 meters. 
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Figure 20. Comparing height of trees sampled in the field to heights estimated by the software. 

 

As shown in Figure 20, R2 is 0.0008 and the p-value is 0.89, at a confidence 

interval of 95%. With such a low R2 and a high p-value, this means that little to none of 

the variation is explained by the field data compared to the Lidar predicted height. 
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Figure 21. Comparing height of dominant and codominant trees sampled in the field to the software estimate. 

 

Considering only the average field height per plot for dominant and codominant 

trees, the R2 was 0.0051 with a p-value of 0.73 at a confidence interval of 95%.  

Compared to the results shown in Figure 21, the R2 is only slightly larger and a p-value 

that is slightly smaller.  This indicates that little to none of the variation is explained in 

the model. 
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Figure 22. Randomly selected sample trees versus CHM, based on human interpretation. 

 

As shown in Figure 22, R2 was 0.33 and the p-value was 3.1289E-9 at a CI of 

95%. While there is high variance around the mean, this statistically significant 

relationship indicates that using human interpretation to relate the field data measurement 

does help in finding a reliable height for the selected tree in the CHM. 

Based on these results, it was determined that decimating the point cloud was not 

an option worth pursuing. 
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CHAPTER FIVE: DISCUSSION 

Section 5.1: Discussion of results  

 

In summarizing this research, the results indicate that relying on the parameters in 

ENVI Lidar and the Lidar data did not produce a strong correlation.  The results from 

human visual interpretation produced a comparatively higher R2, but still had an RMSE 

of 6.54 m.  These results were unexpected, considering previous research mentioned in 

Section 2.3: Selected applications--Military and Section 2.4: Selected applications--

Forestry, reported very strong correlations and low RMSEs.  However, many previous 

researchers discuss issues with dense forest canopies influencing the DTM and biasing 

the CHM towards lower values.  In a review of different effects of DTM quality, Hyyppä 

et al. (2004) states that accuracies vary as a function of site conditions such as slopes, 

undergrowth, and forest cover.  Here, the USDA-ARS study area did include a deciduous 

forest with a dense canopy and different age classes.   Further exploration of the data is 

warranted in an attempt to address these unexpected findings.   

Section 5.1.1: Reviewing the point cloud data 

As mentioned by Silva et al. (2018), Chen et al. (2017), Dong & Chen (2017), 

Falkowski et al. (2008), and Sithole & Vosselman (2004), classifying last returns to 

represent the actual bare earth surface is still challenging even though many algorithms 

have been proposed and implemented in various software packages.  In chapter three of 
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their book, Dong & Chen (2017) point out that the methods of filtering for ground returns 

are unsupervised classifiers which predict the elevation at unsampled locations, typically 

using a surface-based approach such as a raster or triangulated irregular network (TIN).  

Even though the methods in which ENVI Lidar creates the DTM are unknown, it could 

be reasonably assumed the software implements some interpolating technique to estimate 

the elevation of unsampled locations in order to create an elevation model.  In reviewing 

a four meter cross section of the point cloud (Figure 23 and Figure 24), it can be seen that 

the last returns are between 5 to 10 meters apart.  This is a relatively large gap to rely on 

an algorithm to create a reliable DTM, which could cause estimation errors. 

 

 
Figure 23.  A screenshot of the cross section example, location indicated by the red box and arrow.  
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Figure 24. A view from the ground, looking into the four meter cross section. 

 

Section 5.1.2: Reviewing the ENVI Lidar tree output 

ENVI Lidar did not perform well in delineating individual trees in the sample 

plots, which had an influence on the average height per plot.  This is similar to results in 

Unger et al. (2014), where the two software packages also struggled to delineate 

individual hardwood trees and produce tree count comparable to their field count.  As 

mentioned by Falkowski et al. (2008), areas with overlapping or interlocking crowns can 

make it difficult to isolate an individual tree.  In trying to examine the canopy surface, a 

horizontal profile was created in ENVI (Figure 25). 
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Figure 25. Horizontal profile across Plot 08 in ENVI, with the cross hairs at the center of the plot. Dark black 

pixel represents an elevation (height) of zero, and white represents a higher elevation (height).  Grey represents 

elevations in between these values.   

 

Inspecting the profile in ENVI and photos taken in the field, the canopy surface is 

fairly continuous and could be difficult to discern one tree from another while trying to 

detect an individual tree using an automated algorithim.  This can also be seen by looking 

at the photos taken in the field, where very little light penetrates the canopy (Figure 26). 
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Figure 26. Left, center of plot facing east. Right, center looking directly above at the canopy. 

 

  Field plot 08 is shown in Figure 27, where the sample trees and the Lidar 

predicted trees are displayed within the plot.  The tree detection algorithim does not 

match up well with the sample trees in this plot, but does seem to perform better on the 

edges of the forest, shown in Figure 28, near field plots 01 and 06.  There are no field 

measurements of the trees outside of the plots to compare the heights, but based on visual 

interpretation, the algorithim appears to perform better in areas where the canopy is open.  
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Figure 27. Plot 08 with trees sampled in the field and the trees output from ENVI Lidar.  
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Figure 28.  Plot 01 and 06 with trees sampled in the field and the trees output from ENVI Lidar. 

 

Section 5.1.3: Evaluating field methods 

In reviewing the height measurements from the field, the Lidar measurements 

consistently overestimate heights from ground truth.  This result is inconsistent with what 

previous researchers mention that Lidar typically will underestimate height of trees 

(Dorigo et al., 2010; Gatziolis et al., 2010; Hyyppä et al., 2012; Lim et al., 2003; Popescu 

et al., 2002).  According to Andersen et al. (2006), using a laser rangefinder is common 

practice for measuring tree heights, but is difficult to obtain a reliable height if treetops 

are not visible.  Even though two individuals used a laser rangefinder using standard 

techniques to find tree heights, there is some level of error in field measurements due to 

the canopy cover and limited visibility of treetops.  Markku & Muller-Landau (2013) 

discuss similar issues, stating that the performance of rangefinders have not been carried 
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out in typical forest conditions with varying visibility and leaning trees.  In the authors’ 

quantitative comparison of field methods for measuring tree height, they concluded that 

laser rangefinders can result in systematic underestimation of heights by 20%.  Williams, 

Bechtold, & LaBau (1994) compared instruments for measuring tree height, and found 

that for trees under 40 feet (12 meters), laser rangefinders were accurate within 2-5 feet.  

The study area trees were 19.8 m tall on average, so it is possible measurements were off 

by 5 feet (1.5 m) or higher, based on this information.  Similar issues with field data 

underestimating height can be found in Sadadi (2016).  

It is worth mentioning that there are differences in the definition of height 

measurements among different studies, which should be considered when comparing 

research results to one another.  The term height can be defined as Lorey’s mean height, 

predominant tree height, average tree height, or estimated tree height, which was used in 

this study (Leeuwen & Nieuwenhuis, 2010; Lovell, Jupp, Newnham, Coops, & Culvenor, 

2005).  As noted in Leeuwen & Nieuwenhuis (2010), some define average tree height to 

only include dominant and codominant trees, whereas other studies include intermediate 

and suppressed trees as well.   

Section 5.2: Summary 

This project evaluated how suitable certain software coupled with an airborne 

discrete return Lidar can estimate tree height compared to traditional field plot sampling.  

Airborne Lidar is a suitable technology in determining certain tree parameters, but for the 

purposes of modeling the canopy height and bare earth, there are many inherent 

complexities, as mentioned in Chapter Two.  In line with many other research findings 



52 

 

and discussions, the results have shown that creating a reliable CHM and DTM can be a 

complicated undertaking when relying on computer software or automated methods.  

Based on the data collected and results for this thesis, the combination of ENVI Lidar 5.4 

and Lidar test data collected from the BuckEye sensor may not be the best combination in 

estimating individual tree height and creating a reliable bare-earth model (DTM) to use 

for terrain and feature analysis.  While the methods used in this study are generally 

accepted and used in many of the studies discussed in Chapter Two, the little to no 

correlation between the ground data and Lidar data demonstrates the need for 

considerable additional research in order to further examine the suitability of ENVI Lidar 

5.4 and BuckEye (or similar Lidar sensors) in dense, deciduous forests such as the one in 

the Beltsville, MD, study area. 

Section 5.3: Future work 

While the use of Lidar data has the potential to considerably increase information 

of forest structure, subsequent efforts should be aimed at exploring other software, 

adjusting Lidar data collection parameters, and altering methods in collecting field data. 

Section 5.3.1: Software and algorithms recommendations 

It is recommended to explore options within ENVI or alternative software tools 

and algorithms available for manipulating the Lidar point cloud and working with the 

derived products. The results of this study support what previous researchers have 

discussed that the DTM can be a source of error and the challenges associated with 

addressing this error, as discussed in Section 2.3: Selected applications--Military and 

Section 2.4: Selected applications--Forestry.  Some of these suggestions are based on 
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reviewing the methods used by research referenced in this writing, while also building off 

of tools used in this study.  

Software that could be explored includes ArcMap’s 3D Analyst extension (ESRI, 

2017), as there are a handful of parameters that can be adjusted to select an interpolation 

technique that the end user finds appropriate.  Additionally, LASTools could be explored 

as an option, as they offer extensions to work in concert with ArcMap (Isenburg, 2012).  

Also, ENVI could still be used in future work, but could explore the BCAL Lidar add-on 

(Boise State University, n.d.), as utilized in Gould et al. (2013), Yang et al. (2014), 

Leitold et al. (2015).  Also, ENVI Lidar allows for varying the minimum or maximum 

cutoff for trees.  The production parameters in Figure 16 demonstrate where these 

adjustments can be made.  Varying the minimum tree height is similar in concept to 

research by Wiggins (2017), but using the FUSION software.  FUSION is open-source 

and developed by the U.S. Department of Agriculture’s (USDA) Forest Service 

(McGaughey, 2018).  

 Other areas that could be explored is investigating just point cloud itself for 

individual segmentation of trees as a way to improve the height of the trees.  This 

individual tree detection approach uses the raw Lidar point cloud and is gaining more 

attention in the literature over the past few years.  Methods such as this have been used in 

research by Li, Guo, K Jakubowski, & Kelly (2012), Zhang et al. (2015), and  

Khosravipour, Skidmore, & Isenburg (2016). 

Efforts could be made to improve the accuracy of the DTM (and consequently the 

CHM) using different interpolation techniques and/or ground filtering algorithms (Liu, 
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2008; Meng et al., 2010).  Choosing such from the different ground filtering algorithms 

depends on the study site’s terrain and surface features, but in a review of DTM 

generation, Chen et al. (2017) and Dong & Chen (2017) recommend surface-based 

approaches for forested areas, based on using a raster or TIN.  The iterative process is 

best described as filtering out ground points that do not meet an error threshold 

established by the initial control ground points until a DTM with acceptable accuracy is 

achieved.  Silva et al. (2018) used four ground filtering algorithms available in FUSION 

(McGaughey, 2018).  The results showed that the algorithms performed well and 

produced accurate DTMs in closed and intermediate canopy forest, so similar methods 

could be followed.  Benefits of using FUSION include having open-source code for the 

end user to better understand the algorithms being used (Pacific Northwest Research 

Station, 2018; Remote Sensing Applications Center, 2018).   

Section 5.3.2: Lidar data acquisition 

It could be helpful to change some of the collection parameters for the Lidar data 

collection.  Some of these suggested parameters could come from reports by Federal 

Emergency Management Agency (2003) and USDA (Mitchell et al., 2018).  The option 

of a leaf-off Lidar and ground truth data collection could be explored, but should take 

into consideration research by DeWitt, Warner, Chirico, & Bergstresser (2017) and 

Gatziolis et al. (2010), where a leaf-off collection did not provide large improvements to 

the DTM errors.  However, taking measurements on the ground of tree heights during 

leaf-off could address the potential errors of measuring height in the field discussed in 

Section 5.1.3: Evaluating field methods as treetops are likely to be more visible.  Another 
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change in Lidar data acquisition could include an increase in point density.  A number of 

studies explore varying the densities of the point cloud; Jakubowski, Guo, et al. (2013) 

discuss the tradeoffs of cost and point density.  Other changes to data collection include 

trying to determine an optimal plot size for sampling.  Since field work is time 

consuming, this would require assessing travel costs for people and equipment, along 

with complications associated with making measurements of larger plots (Mauya et al., 

2015). 

Future research should consider the recently published standards of government 

agencies and professional societies.  Examples include reports from Heidemann (2018) 

and Mitchell et al. (2018, 2012).  The American Society for Photogrammetry and Remote 

Sensing (2017) acknowledges that although the technology and quality of Lidar data have 

improved in a short time frame, there is a lack of standardization for the QA/QC of the 

data, semantics, procedures for measurements, and metadata.  Publications and outreach 

campaigns from the Society’s working group with the U.S. Geological Survey are 

expected to continue, with the most recent guide published in March 2017 (American 

Society for Photogrammetry and Remote Sensing, 2017). 

Section 5.4: Conclusion 

This research emphasizes the need for continued work in understanding the 

uncertainties and biases associated with estimating tree height using airborne Lidar 

collection in dense forests such as the one in this study.  Any information extraction 

would be difficult in areas with features similar to the USDA-ARS study site when 

relying solely on automated methods.  These algorithms could perform better in more 
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open canopies.  Human interpretation can provide slightly better results, but is more time 

consuming and not necessarily repeatable.  While the results of this study were not 

entirely expected, there is room for continued work in producing more meaningful results 

for terrain analysis and forestry applications.  Lidar has progressed from the research 

realm to operational use, demonstrating its utility to many communities (Evans et al., 

2009; Hardaway, 2011; Lim et al., 2003).  This remote sensing technology is still 

expanding and maturing in practice and will continue to play an important role in 

understanding and observing the environment. 
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