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ABSTRACT

A standard approach to determining decision trees is to learn them from exampies. A disadvantage of this approach
is that once a decision tree is learned, it is difficult to modify it to suit different decision making situations. Such
problems arise, for example, when an autribute assigned 10 some node cannot be measured, or there is a significant
change in the costs of measuring attributcs or in the frequency distribution of events from different decision classes.
An atractive approach to resolving this problem is to learn and store knowledge in the form of decision rules, and 10
generate from them, whenever needed, a decision tree that is most suitable in a given situation. An additional
advantage of such an approach is that it [acilitates building compact decision trees, which can be much simpler than
the logically equivaleni conventional decision trees (by compact trees arc meant decision rees thal may contain
branches assigned a set of values, and nodes assigned derived attribules, i.e., atiributes thal are logical or
mathematical functions of the original oncs). The papcr describes an efficient method, AQDT-I, that takes decision
rules generated by an AQ-type learning system (AQ15 or AQ17), and builds from them a decision wree optimizing a
given optimality criterion. The method can work in two modes: the standard mode, which produces conventional
decision trees, and compact mode, which produces compact decision trees. The preliminary experiments with
AQDT-1 have shown that the decision trees generated by it (rom decision rules (conventuonal and compact) have
outperformed those generated frorn cxamples by the well-known C4.5 program both in terms of their simplicity and
their predictive accuracy.
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1. Introduction

Methods for learning decision trees from examples have been very popular in machine learning due to their
simplicity. Decision trees built this way can be quite efficient, as long as they are used in decision making situations
for which they are optimized and these situations remain relatively stable. Problems arise when these situations
significantly change and the assumptions under which the tree was built do not hold anymore. For example, in some
situations it may be difficult to determine the value of the attribute assigned to some node. One would like to avoid
measuring this attribute and still be able to classify the example, if this is potentially possible (Quinlan, 1990}, If the
cost of measuring vartous attributes changes, it is desirable to restructure the tree so that the “inexpenstve” attributes
are evaluated first, A tree restructuring is also desirable, if there is a significant change in the frequency of
occurrence of examples from different classes. A restructuring of a decision tree o suit the above requirements is,
however, difficult to do. The reason for this is that decision trees are a form of procedural knowledge representation,
and imposes constraints on the evaluation order of the attributes that are not logically necessary.

An attractive alternative that avoids such problems is to learn and store knowledge in the form of decision rules, and
to generate from them an appropriate decision tree “dynamically,” as needed. Decision rules represent knowledge
declaratively, and thus do not impose any order on the evaluation of the attributes. Duc to the lack of “order
constraints,” rules can be evaluated in many different ways, Since the number of rules per class i1s typically much
smaller than the number of examples per class, generating a decision tree from rulcs can potentially be done “on
line,” without a delay noticeable to the user. Such “virtual™ decision trees can be tailored 1o any given decision
making situation.

This approach may allow one, for example, to generate a decision tree that avoids evaluating an attribute that is
difficult or impossible to measure for some decision making situation, or that fits well a particular frequency
distribution of decision classes. In some situations, it may be unnecessary to generale a complete decision tree, but
instead to generate only the part of it, whose leaves are associated only with decision classes of interest. Thus, such
an approach has many potential advantages.

On the other hand, it has a disadvantage that il requires determining decision rules first. There exist, however,
efficient methods for generating decision rules from examples (rules can also be generated by an expert). The
nesded decision rules have to be generated only once, and then they can be used many times for generating decision
trees according to changing requirements of decision making situations.

This paper presents a simple and efficient method for generating decision trees from decision rules. i also reports
preliminary results from experiments comparing it with a well-known C4.5 method for learning decision trees from
examples.

2. A Brief Description of the AQ15 Rule Learning Program

The proposed method, called AQDT-1 (AQ-derived Decision Tree - 1}, generates decision trees from decision
rules. The decision rules used by the program are gencrated from examples by an AQ-type inductive lcarning
system, specifically, by AQ15 (Michalski et al., 1986) or AQ17-DCI (Bloedorn and Michalski, 1991 a,b). In order to
make the paper self-contained, we briefly describe the AQ15 and AQ17-DCI.

AQ15 learns decision rules for a given set of decision classes from examples of decisions, using the STAR
methodology (Michalski, 1983). The simplest algorithm based on this methodology, called AQ, starts with a “seed”
example of a given decision class, and generates a set of the most general conjunctive descriptions of the seed



(alternative decision rules for the seed example). Such a set is calied the “star” of the seed example. The algorithm
selects from the star a description that optimizes a criterion reflecting the needs of the problem domain. If the
criterion is not defined, the program uses a default criterion that selects the description that covers the largest
nomber of positive examples (to minimize the total number of rules needed) and, with the second priority, that
involves the smatlest number of attributes (to minimize the number of attributes necded for arriving at a decision).

If the selecied description does not cover ail cxamples of a given decision class, a new seed 18 selecied (rom
uncovered examples, and the process continues until a corhpletc class description is generated. The algorithm can
work with few examples or with many examples, and optimize the description according to a variety of easily-
modifiable hypothesis quality criteria.

The learned descriptions are represeﬁted in the form of a set of decision rules, expressed in an attributional logic
calculus, called variable-valued logic 1 or VL1 (Michalski, 1973). A distinctive feature of this representation is that
it employs, in addition to standard logic operators, the internal disjunction operator (a disjunction of values of the
same attribute in a condition) and the “range” operator (to express conditions involving a range of discrete or
continuous values). These operators help to simplify rules involving multivalued discrete attributes; the sccond
operator is also used for creating logical expressions involving continuous attributes.

AQ15 can generate decision rules that represent either characteristic or discriminant concept descriptions,
depending on the settings of its parameters (Michalski, 1983). A characteristic description states properties that are
true for all objects in the concept. The simplest characteristic concept description is in the form of a single
conjunctive rule (in general, it can be a set of such rules). The most desirable is the maximal characteristic
description, that is a rule with the longest condition part, i.., stating as many common properties of objects of the
given class as can be determined. A discriminant description states propertics that discriminaic a given concepl
from a fixed set of other concepts. The most desirable is the minimal discriminant descriptions, that is & rule with
the shortest condition part. For example, to distinguish a given set of tables from a sct of chairs, onc may only need
to indicate that tables “have large flat top.” A characteristic description of the tables would include also propertics
such as “have four legs, have no back, have four corners, etc.” Discriminant descriptions arce usually much shorter
than characteristic descriptions.

Another option provided in AQ15 controls the relationship among the generated descriptions (“rulesets” or
“covers”) of different decision classes. In the “IC” (Intersecting Covers) mode, rulesets of different classes may
logically intersect over areas of the description space in which there are no training exampies. In the “DC” (Disjoint
Covers) mode, descriptions of different classes are logically disjoint. The DC mode descriptions are usually more
complex, both in the number of rules and the number of conditions, There is alsc a “DL” mode (a Decision List
mode, also calied “VL” mode--for variable-valued logic mode), in which the program generates rulesets that are
linearly ordered. To assign a decision to an example using such rulesets, the program evaluates them in order. If
ruleset i is satisfied by the example, then the decision is made, otherwise, the program proceeds Lo the evaluation of
the ruleset i+Z. In IC and DC modes, rulesets can be evaluated in any order.

Alternatively, the system can use rules from the AQ17-DCI program for Data-driven Constructive Induction. AQ17-
DCI differs from AQ15 mainly in that it contains a module for generating additional auributes. These atributes are
various logical or mathematical combinations the original attributes. The Program generates a large number of
potential new attributes, and selects from them those most promising based on an “atiributc quality” cnterion.



To illustrate the format of rules generated by AQ15 (or AQ17-DCI), an exemplary ruleset is shown in Figure 1. The
ruleset (that can be re-represented as a disjunctive normal form expression) describes a voting record of Democratic

Representatives in the US Congress.

R1: [Gas_cont_ban = yes] & [Soc_sec_cul = no v not registered. |

R2: [Draft = Yes v not registered.]&[Alaska_parks = yes v not registered.| &
[Food_stamp_cap = no] & [State = northeast v northwest|

R3: [Chrysler = yes v not registered] & [Income = low]

R4: [Eduocation = yes] & [Occupation = yes]j
Figure I: A ruleset generated by AQ1S5 for the concept “Voting pattern of Democratic Representatives.”

Each rule is a conjunction of elementary conditions. Each condition cxpresses a simple relational statement. For
example, the condition [State = northeast v northwest| states that the attribute “State” (of the Representative) should
take the value ‘northeast’ or ‘northwest’ to satisfy the condition,

The above rules were generated from cxampies of the voting records. For illustration, below 1s an cxample of a
voting record by a Democratic representauve:

Draft registration=no; Ban of aid to Nicaragua=no, Cui expenditure on mx missiles=yes, Federal subsidy to
nuclear power stations=yes; Subsidy to national parks in Alaska=yes; Fair housing bill=yes; Limit on Pac
contributions=yes; Limit on food stamp program=no, Federal help to education=neo; StateFrom=north east; State
Population=large; Occupation=unknown; Cut in social security spending=no, Federal help to Chrysler corp=not
registered.

By expressing elementary statements in the example as conditions, and linking conditions by conjunction, the
examples can be re-expressed as decision rules. Thus, decision rules and examples formally differ only in the degree
of generality.

3. Generating Decision Trees from Decision Rules
3.1. Related research

Deciston trees are normally generated from examples, The essential aspect of any such method is the auribuie
selection criterion that is used for choosing attributes 1o be assigned 10 the nodes of the tree being built. Criteria for
that purpose include the entropy reduction measure (€.g.. Quinlan, 1979), the gini index of diversily (Breiman, ¢t al.,
1984), and many others (Cestnik & Karalic, 1991; Mingers, 198%a).

An early algorithm for generaling decision trees from examples was proposed by Hunt, Marin and Sionc (1966).
This algorithm was subsequently modified by Quinlan (1979, 1983), and improved and/or applied by many authors
to a variety of learning problems (e.g., Quinlan, 1983, 1985; Breiman, et al, 1984),

Later, Quinlan (1986) and Bratko and Kononeko (1987) extended the method to handle also data with noise (by
pruning}. Such a method consists of two phases: the creation of an initial decision tree, and “iree pruning,” done by
removing subtrees with small statistical validity, and replacing them by leaf nodes. More recently, pruning has atso
been used for simplifying decision trees even for noise-less problems (Cestnik & Bratko, 1991). Pruning decision
trees improves their simplicity, but reduces their predictive accuracy on the training cxampies. Quinlan (1990}
proposed alsc a method to handle the “unknown attribute value” problem, by exploring probabilities of an example
belonging 1o different classes.



The AQDT-1 method proposed here generates decision trees from decision rules. As mentioned carlicr, decision
rules used in this method are obtained by an AQ-type inductive leamning program (AQ15 or AQI17-DCI). One
problem in developing a method for generating decision trees from decision rules 18 to design an attribute selection
criterion that is based on the properties of the rules, rather than of the training examples. A decision rule normally
describes a number of possible examples. Only some of them are examples that have actually been observed, ie.,
training examples. An attribute selection criterion needs to analyze the role of each attribute in the rules. It cannot
be based on counting the numbers of training examples “covered” by each attribute value, as done in learning
decision trees from examples, because training examples are assumed to be unavailable.

Another problem in learning decision rees from decision rules stems from the fact that decision rules constitute a
more powerful knowledge representation than decision trees. They can directly represent a4 description in an
arbitrary disjunctive normal form, while decision trees can represent dircclly only descriptions in the “disjoint”
disjunctive normal form. In such descriptions, all conjunctions arc mutually logically disjoint. Therefore, when
transforming a set of arbitrary decision rules into a decision tree, one faces an additional problem of handling
logically intersecting rules.

The solution of the first problem (attribute selection) in the AQDT-1 system is based on the earlier work by
Michalski (1978), which introduced a general method for generating decision trees from decision rules. The method
aimed at producing decision trees with the minimum number of nodes or the minimum cost (where the “cost™ was
defined as the total cost of classifying unknown examples, given the cost of measuring individual atiributes and the
expected probability distribution of examples of different decision classes). The method proposed scveral atiribute
selection algorithms of increasing power (the nh order cost cstimates, n=1, 2....), and analyzcd two specific criteria,
MAL and DMAL, for selecting the “optimal™ attribute for a node in the tree, based on rule propertics. The MAL
criterion (“minimizing added leaves™) seeks an autribute that minimizes the estimated number of additional nodes in
the decision tree being generated over a hypothetical minimal decision tree. The AQDT-1 uses an approximate
version of this criterion (the “attribute dominance™). The DMAL criterion (““dynamically minimizing added leaves™)
is based on the similar principle as MAL, bul is more powerful, because it takes into consideration additional
information. DMAL is more difficult to implement, and the current version of the program does not include it.

3.2 The AQDT-1 method for atiribute selection

In its basic form (the default version), the attribute sclection method cmployed in AQDT-1 sccks the simplest (i.c.,
with the minimum number of nodes) decision tree. In a more general Torm, the method sceks the minimum-cost
decision tree, that is, a tree that minimizes the overall cost of making classification decisions. If measuring different
attributes involves different costs, these costs are taken into consideration, If some decision classes occur much
more frequently than others, then the method should favor measuring first the attributes occurring in the rules for the
most frequent classes. The issue of producing the simplest trees is addressed first, and then it is shown how the
method is modified to address the minimum cost requirement.

The method for choosing attributes on the basis of rule properties is based on an autribute wiility ranking that is based
on three elementary criteria: 1) disjoininess~that captures the attribute effectivencss in discriminating among
decision rules of different decision classes, 2) dominance—that measures the auribute relevance by counting the
number of rules that contain the attribute, and 3) extent —that measures the number of different attribute values
present in the rules.



The disjointness of an attribute is defined as the sum of the attribute class disjointness—ihe disjointness of the
atiribute for each decision class. Suppose decision classes are Ct, C2,..., Cm, and decision rulesets for these classes
have been determined. Given attribute A, let V| V2,.....V iy, denote sets of the values of atribute A that are present
in rulesets for classes C1, C2,.... Cm. respectively. If a ruleset for some class, say, Ca contains a rule that does not
involve the attribule A, than Vg is the set of all possible values of A (the domain of A).

Definition 1. The degree of class disjeininess, D(A, Ci ) of attribuie A for the ruleset of class Cj, 1s the sum of the
degrees of disjointness, D(A, Cj, Cj), between the ruleset for Cj and rulesets for Cj, j=1,2,..m, j#i. The degree of
disjointness between the ruleset for Cj and the ruleset for C; is defined by:

2 ifVing

I, ifVi:JVj
D(A'Ci’cj)mi, if V; an Z ¢ orVioer

L3, if‘v’in‘vj=¢

where ¢ denotes the empty sel.

Definition 2. The disjointness of attribute A for evaluating a given set of decision rules is the sum of the degrees
of class disjointness for each decision class:

m m
D(A)= 2 D(A,Cj) where D(A, C) = 2, D(A, G;, Cj)
i=1 i=1, i)

The disjointness of an autribute ranges from 0, when the attribute values in rulesets of different classes are all the
same, to 3*m*(m-1), when every ruleset of a given class contains a different set of the attribute values. Selecting an
attribute with the maximum possible disjointness produces a node of the decision tree whose children can be
immediately assigned decision classes.

The second elementary criterion, dominance, prefers attributes that appear in large number of rules, as this indicates
their high relevance for discriminating among ruleset of given decision classes. Since some conditions in the rules
have values linked by internal disjunction, counting such rules directly would not reflect properly their relevance.
Therefore, for computing the dominance, the rules are counted as if they were converted to original rules that do not
have intermnal disjunction. Such a conversion is done by “multiplying out™ the condition parts of the rules containing
internal disjunction, For example, the condition part [x3=1 v 31&[x4=1] is “multiplied out” 10 1wo rules with
condition parts [x3=1}&[x4=1] and [x3=3]&[x4=1].

The third elementary criterion, extent, prefers attributes with fewer values in the rules. Nodes that arc assigned such
attributes will have a smaller fan out. When attributes are continuous, they ar¢ quamized into discrele units
representing ranges of values.

The above three elementary criteria are combined into one general atiribute ranking measure using the
“lexicographic evaluation functional with tolerances™ (LEF) (Michalski, 1973). The LEF allows tc combine the
elementary criteria in different ways. In the default combination, the LEF is defined as:

<Disjoinmness, T1; Dominance, 12; Extent, 13>
where 11,12, 13 are tolerance thresholds.

The above LEF ranks attributes this way. First, attributes are evaluated on the basis of their dispointness. If two or
more attributes share the same top score, or their scores differ less than the assumed wlcrance threshold t1, the



method evaluates these attributes using the second (dominance) criterion. If again (wo or more attributes share the
same top score or their scores differ less than the tolerance threshold 12, then the third criterion, extent, is used. If
there is still a tie, the method selects the “best” attribute randomly. The system tries for maximize disjoininess and
dominance of an attribute, while minimizing the extent.

In the non-default version of the attribute ranking criterion, the above definition changes as follows. If the costs of
measuring atiributes are known and are non-uniform, then the aitribute selection method seeks the minimum cost
attribute. If an attribute cannot be measured, then its cost is assumed to be infinite (or very high). If there is & non-
uniform frequency distribution of examples of different classes, then the selection critcrion uscs a modificd
definition of the disjointness. Namely, the previously defined disjointness for each class is multiplied by the
frequency of the class occurrence. The class occurrence is the expected number of future ¢xamples that arc 1o be
classified to a given class. The attribute ranking criterion is defined by a LEF:

<Cost, t1; Disjointness*, T2; Dominance, 13; Extent, 14>

where the Cost denotes the evaluation cost of an attribute and is to be minimized, while other elementary criteria are

treated the same way as in the default version. The Disjointness* is calculated the same way as before, but with the
sam over (Frq(Ci) * D(A, Cj)), where Frq(C;) is the expected frequency of examples of class Cj.

3.3. The AQDT-1 Algorithm

AQDT-1 constructs a decision tree from decision rules by recursively sclecting at cach sicp the “best” attribute
according to the above-described altribute ranking measurc, and assigning it to the new node. The process stops
when the algorithm creates terminal branches that are assigned deciston classes.

To facilitate such a process, the system creales a special data structure for each concept description (rulesct). This
structure has fields such as the number of rules, the number of conditions in each rule, and the number of attributes
in the rules. The system also creates an array of attribute descriptions. Each attribute description contains the
attribute’s name, domain, type, the number of legal values, a list of the values, the number of rules that contain that
attribute, and values of that attribute for each rule. The attributes are arranged in the array in Lthe a |exicographic
order, first, in the descending order of the number of rules that conain that attribute, and second, in the ascending
order of the number of the attribule’s legal values.

The system can work in two modes. In the standard mode, the system generates standard decision trees, in which
each branch has a specific attribute value assigned. In the compact mode, the system builds a decision tree that may
contain:

A) “or” branches, i.e., branches assigned an internal disjunction of attribute values, whenever it leads to simpler
trees. For example, if a node assigned attribuie A has a branch marked by values “1 v 2,” then the control passes

along this branch whenever A takes valtue 1 or 2. The program creates “or” branches on the basis of the analysis of
the value sets Vi, while computing the degree of atwribute disjointness.

B) nodes that are assigned derived atiributes, thal is, attributes that arc certain logical or mathematical combinations
of the original attributes. To produce decision trees with derived attribules, the input decision rules are gencrated by
program AQ17-DCI (rather than AQ15). The AQI17-DCI rules may contain conditions involving attribules
constructed by the program, rather than those originally given. If a AQ17-DCI discovers a particularly useful



attribute, then the decision rules and consequently the derived from them deccision trees can be significantly
simplified (compare, for example, decision tree in Figure 9b with the one in Figure 11).

To generate decision trees from rules, the method uses characleristic descriptions generatced in the "DC” (disjoint
cover) mode of the AQ15 {or AQ17-DCI) program. The reason for using characlerisuc descriptions is that they offer
a greater choice of attributes in the process of building a decision tree, and this may lead to simpler decision trees.
The reason for disjoint rulesets is that they are more suitable for building decision Lrees, as the latier arc cquivalent
to sets of logically disjoint descriptions.

Assume thal the input contains characteristic descriptions of the given decision classes. The descripuion of cach class
is in the form of a ruleset. Assume that this set is the initial ruleset context.

Step 1: Evaluate each attribute occurring in the ruleset context using the LEF attribute ranking measure. Select the
highest ranked attribute. Suppose il is attribute A.

Step 2: Create a node of the tree (initially, the root, afterwards, a node attached to a branch), and assign to it the
attribute A. In the standard mode, create as many branches from the node, as there are legal values of the aitribute A,
and assign these values to the branches. In the compact mode, create as many branches as there are disjoint value
sets of this attribute in the decision rules, and assign these sets to the branches.

Step 3: For each branch, associate with it a group of rules from the ruleset context that contain a condition satisfied
by the value(s) assigned to this branch. For example, il a branch is assigned values i of aitribuie A, then associaie
with it all rules containing condition [A=iv ...]. If a branch is assigned values | v j, then associate with it all rules
containing condition [A=iv j v ...]. Remove from the rules these conditions. 1§ there are rules in the ruleset context
that do not contain atribute A, add these rules 10 all rule groups associated with the branches siwemming from the
node assigned attribute A. (This step is justified by the consensus law: {x=1]={ [x=1] & [y=a} v [x=1]| & [y=b] },
assuming that a and b are the only legal values of y,) All rules associated with the given branch constitutc a ruleset
context for this branch.

Step 4. If all the rules in a ruleset context for some branch belong 1o the same class, create a lcaf node and assign 0
it that class. If all branches of the trees have leal nodes, stop. Otherwise, repeat steps 1 to 4 for each branch that has
no leaf,

The algorithm was implemented in the C language on the SPARC II machinc. The average running tme of the
algorithm, for the experiments presented in this paper, was below one sccond.

3.4. An example illustrating the algorithm

The following simple example illustrates the AQDT-1 algorithm. Suppose there are three decision classes, C1, C2 &
C3, described by the AQ15-derived ruleset shown in Figure 2,

Suppose that these rules constitute the initial ruleset context. Table 1 presents information on these rules and the
values of elementary criteria computed for all attributes. For each class, the row marked “Valucs™ lists values
occurring in the rulesel for this class. For evalualing the disjointness of an attribule, say A, cach rule in the rulesel
above that does not contain attribuie A is characterized as having an additional condition [A=a v b ...]. where a, b, ...
are all legal values of A,



{C1 <= [x1=2] & [x2=2] ., Cl1 <= [x1=3] & [x3=1 v 3] & {x4=1] }
{C2 <= [x1=1 v 2] & [x2=3 v 4] , C2 <= [x1=3] & |x3=1 v 2] & {x4=2] ]
{C3 <= [x1=1] & [x2=1] , C3 <= [x1=4] & [x3=2 v 3] & [x4=3] }

Figure 2: Rules used for illustrating the algorithm.

Table I: Determining values of the selection criteria for each atiribute.

The row “Class disjointness” specifies the class disjointness for each auribute. The attribute x1 has the highest
disjointness (11), and is assigned to the root of the tree. For simplicity, assume the tolerances for each elementary
criterion equal 0.

From the rules in Figure 2, we can also determing disjoint groupings of attributc values used for the compact mode
of the algorithm. This donc as follows: 1) deteemine [or cach atinbule the sets of valucs that the atiribute takes in
individual decision rules, and remove those value sets that subsume other vaiue sets. The remaining value sets are
assigned to branches siermming from the node marked by the given attribute. For example, x1 has the [ollowing
value sets in the individual decision rules: {2}, (3], {1, 2}, {1}, and [4) (Figure 2). Value s¢t {1, 2} is rcmoved as
it subsumes {2} and {1). In this case, branches are assigned individual valucs of the domain of x 1. For auribule x2,

the value sets are {1}, {2}, (3,4, and {1, 2, 3, 4}. In this case, branches are assigned value sets: {1], {2} and {3.4).

Attribute x1 ranks highest (as it is the highest disjointness), and is assigned to the root of the tree. Four branches are

created each one is corresponding to one of x1 possible values. Since all rules containing [x1=4} belong to class C3,
the branch marked by 4 is ended by a leaf C3. Rules containing other values of x1 belong to more than onc class.
This process is repeated for each subset of rules until the decision tree is completed. Figurc 3a shows a
conventional decision tree, and Figure 3b a compact decision treg learned from these rules. For combinations of
attribute values that do not lead to any leaf, the decision tree assigns no decision (“unknown” decision). Figure 4a
shows the diagrammatic visualization of the decision rules and Figure 4b of the derived decision trec.,

Each diagram in Figure 4 consists of cells represcnting one combination of auributc valucs. Attributes and their
legal values are shown on scales surrounding the diagram (e.g., the horizontal scale for x! shows values 1, 2, 3 and
4). Rules correspond Lo collections of cells in the intersection of the rows and columns corresponding Lo the
conditions in the rules. The shaded areas correspond 1o individual rules. Rules of the same class have the samce Lype
of shading. Empty cells correspond to combination of attribute values not assigned (o any class. For illustiration,
collections of cells corresponding 10 some of the iniual rules are marked Ry, R21,R31, and R32, Ry denotes the
first rule of Class C1, i.e., [x1=2] & [x2=2]; R2] denotes ihe [irst rule of class C2,i.e., {[xl=1v2] & [x2=3 v 4],
R31 the first rule of class C3, i.e., {x1=1] & [x2 =1]; and denotes R32 denotes the second rule of class C3, ie.,

10



[x1=4] & [x3=2 v 3] & [x4=3] ). Comparing diagrams in Figure 4a and 4b, one can sec that the derived decision tree
represents a slightly more general description of Concepts C1, C2, .and C3 than original rules.

a) Conventional Tree b) Compact Tree

x1 x1

Complexity Complexity
No. of nodes: 4 No. of nodes: 4
MNo. of leaves: 9 Na. of lcaves: 7

Figure 3: Decision tree generated for the rules in Figure 2.

a) Decision rules b) Derived decision Lree

R31 Rl R3 - = Tx
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{213 ]1t2]l311f21311]2]3 x3

1 2 3 4 1 2 X1

Ela Elcoc B

Figure 4: A diagrammatic visualization of the decision rules and the denved decision tree.

Let us assume that determining the value of x2 is impossible, which is indicated to AQDT-1 by assigning very high
cost to x2. The algorithm assigns again attribute x1 10 the rool of the tree. When x1 takes value 1 or 2, it is
impossible Lo assign a specific decision without measuring attribute x2. For the value 1 of x1, the decision class can
be C2 or C3 (see the diagram in Figure 4a), and for the value 2 of x1, the decision class can be C1 or C3. However,
for the value 3 of x1, one can make a specific decision after measuring attribute x4. For the value 1 of x4 decision is
C1, and for the value 2 of x4 the decision is C2. Figure 5 shows the obtained decision tree. Such a tree is called
indeterminate, because some of its leafs are assigned a disjunction of two or more class names. These leafs indicate
situations in which without measuring x2 one cannot make a specific decision.
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Complexity
No. of nodes: 2
No. of leaves: 5

Figure 5: The indeterminate decision tree generated from rules in Fig. 2 under the
assumption of unavailability of x2,

Let us now suppose that x1, which was determined as the highest ranked attribute, cannol be measured. Each of the
remaining attributes, x2, x3 and x4, has disjointness 0 and dominance 6. The exient of x3 and x4 is 3 (the number
of difference values in rules), and of x2 is 4. The algorithm selects randomly an attribute from among x3 and x4, and
assigns it to the root of the tree. Suppose it is x4. After continuing the algorithm, the tree in Figure 6 is obtained. The
nodes that are assigned one class indicate situations in which it is possible 10 make a specific decision without
knowing the value of attribute x1. Figure 7 shows a diagrammaltic visualization of each class individually without
using x1. The shades areas in these diagrams that do not have common cells indicate situations (combinations of
attribute values) for which it is possible'to make a specific decision without knowing the valuc of x1. If x1 can be
measured, bul measuring is very expensive, then the decision tree will have a node assigned x1 as far as possible
from the root,

x4
2
X2 x2 x2
Compiexity
N RN Y PN | Moot e 12

D /GD\ G| @O\ O [ &3
D GG TD O &

Figure 6 An indeterminate decision wree gencrated {rom rules in Fig. 2 under the
assumption that x1 cannol be mcasured.

C1 only C2 only C3 only DT AR
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Figure 7: A diagrammatic visualization of the individual classes and the decision trees that
do notcontain x1 node.




3.5. Experiment 1

This experiment illustrates the application of AQDT-1 1o the so-called MONK-1 problem (Thrun, Milchell &
Cheng, 1991). This problem is to learn a concept from 124 training exampies (62 positive and 62 negative)
expressed in terms of 6 multivalued attributes (see appendix A). These waining examples constitute 30% of the all
possible examples (432), thus the “density” of the training examples 1s relatively high. For comparison, the weli-
known program C4.5 for learning decision trees from examples was also applied to this same problem.

It was assumed that both programs should produce a complete and consistent decision tree with regard to the
training examples, i.¢., a decision tree that gives 100% correct performance on the training examples).

The C4.5 program has the capability of generating a decision tree for a “window” of examples (a randomly-sclected
subset of the training examples). It starts with a randomly selected window, generates a trial chéc, adds somc
unclassified objects, and continues until it all training examples are classified correculy, or it can not produce a better
tree. This entire process is repeated 10 umes. The results.presented here and for all experiments arc the best result
obtained when running C4.5 with both default windows (maximum of 20% and (wice the squarc root of No. of
examples) and 100% windows (i.¢., the entire set of training examples).

The AQDT-1 program, running in the conventional mode and with the optimality criterion sel 10 minimize the
number of nodes, produced a decision tree with 41 nodes. The C4.5 program did nol produce a consistenl and
complete decision tree when run with its default window size (max. of 20% and twice the square root of number of
examples) nor with 100% window size. After 10 trials with different window sizes, we succeeded in making C4.5
produce the same decision tree as AQDT-1 (using the window size of 72.5% ). The tree is presented in Figure 8,

By running AQDT-1 in “compact” mode, a simpler decision tree was produced (Figure 9a). In the linal cxpenment,
we used AQ17-DCI (Bloedorn & Michalski, 1991a,b) to derive decision rules. These rules were:

Pos <= [x5=1] v [x1=x2] and Neg<= [x5# 11 & [x1#x2]

x5
x1 2 ; 1 : x1
F)
L/ [2\3 x2 1 ’ 1 2 R
X.2 .. xz :':.2
3 2\3
3 ] 2 2 I 5 | 2\ 3 x2 | 2\ 3 | 2\ 3
@ CRVR0 ® O @ o¥elo
1/ R\3 17/ R\3 1/ P\3 1 3 DO E
Complexity
GRORC) N Q) @ ® @ @ ) No. of nodes: 13
P - Positive N - Negative No. of leaves: 28

Figure 8: The decision tree for the MONK-1 problem generated both by AQDT-1 {in conventional mode) and C4.3.
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Compiexity
(N} (P | No. of nodes: 5 Complexity
No. of leaves: 7 | No. of nodes: 2
P - Positive N - Negative P - Positive N - Negative | No. of leaves: 3

(a) Compact decision tree derived from AQ15 rules {b) Compact decision tree derived from AQ17-DCI rules

Figure 9: Compact decision trees generated by AQDT-1 for the MONK-1 probiem

From these rules, the system produced the compact decision tree presented in Figure 9b. 1t should be noted that
decision trees in Figure 8, 9a and 9b are all logically equivalent, and they all have 100% prediclion accuracy on
testing examples (which means that they represent exaclly the target concept).

3.6. Experiment 2

To test AQDT-1 on a real-world problem, it was applied to learning patterns in the U.S. Congress Voting Records-
1981. Again, for comparison, C4.5 was also applied to the same problem. There arc two decision classes: the
“Democratic Voting Pattern” and the “Republican Voting Pattern.” Each voting record of a Democrat or a
Republican is described in terms of 19 muliivalued awributes. Qur cxperiment used 51 voung records (31
Democratic and 20 Republican),

The AQ135 inductive Jearning program generated four rules for the “Democratic Voting Pattern,” and 7 rules for the
“Republican Voting Pattern.” Only 10 of 19 original atiributes were used in the learned rules. The AQDT-1

program, running in the conventional mode and with the optimality criterion set to minimize the number of nodes,
produced a decision tree with 20 nodes. The prediction accuracy of the tree on the testing examples was 21.8%.

For comparison, C4.5, was also run on exactly the same data. C4.5 produced a decision tree with 23 nodes, and is
prediction accuracy on the same testing examples was 85.7%. (Both programs run under the assumption that they

will produce a complete and consistent decision tree with regard to the training examples, i.c., a decision tree that
gives 100% correct recognition on the training examples).

To provide more details on this experiment, Table 2 presents attribules involved in the decision rules, and their legal
values (domains). For simplicity, original symbolic values have been mapped into isomorphic numerical values.
These numerical values correspond to the symbolic values listed in Table 2.

Figures 10 and 11 present decision trees generated by AQDT-1 for the above Congressional Voting-1981 problem,
Figure 10 shows a conventional decision tree, generated from AQ135 rules, and Figure 11 shows a compact decision
tree, generated from AQ17-DCI rules. The compact decision tree contains some nodes that are assigned constructed



attributes: y20, y 21 and y22. These atiributes represent simple mathematical relations on the initial attributes. The
attribute y20 is defined by the relation y7+y3=1 v 2 {The attribute takes value T {true) whenever the sum of the
numeric values of y7 and y3 equals one or two, and value F (false), otherwise.} Attribute y21 is defined by the
relation y12+y9 <3, and attribute y22 is defined by the relation y12-y4=Qv 1,

0 - no 2- nol registere
( - known I - unknown
0-no 1 - yes 2 - not registered
0 - low 1 - medium 2 - high

0-no 1 - ves 2 - nol registered
0-no | - yes 2 - not registered
0-no 1 - yes 2 - not registered
0 - northwest 1 - northeast 2 - not registered
0-no 1-ves 2 - not registered
Q-no 1-ves 2 - not registered
0-no 1 - yes - 2 - not registered
0-no 1 - yes 2 - not registered
0 -no ] - yes 2 - not registered
0-no 1 - yes 2 - not registered
0 -no 1 -yes 2 - not regisiered
O-no_ 1-yes 2 - nol registered
(- no ] - yes 2 - not registered
0-no 1 - yes 2 - not registered

40 - small 1 - medium 2 - lar

"Conventional Tree
Complexity

No. of nodes: 7

No. of leaves: 13

y1 - Food_stamp_cap y5 - Education y9 - Soc_sec_cut  D- Democrat
y3 - Gas_coni_ban y7 - Draft R. Republican

The predictive accuracy on testing examples is 91.8%.
Figure 10: A conventional decision trees obtained by AQDT-1 for the Congressional Voting-1981 problem.



y20
E T
y! y6
4 1v2
! 1v2
8 (D) y15 y21
0 1v2
0 1v2 F T
10
" O ® © ® ©
0 1v2 Complexity
No. of nodes: 7

0 e No. of lcaves: §
y3 - Gas_cont_ban y7 - Draft v9 - Soc_scc_cul y12 - Nicaragua_ban D- Democral
y6 - Chrysler v8 - State y10 - Alaska_park y15 - Pac_limit R- Republican
y20=(y7 +y3 =1.2) y21 ={yl12+y9< 3

The predictive accuracy on testing examples is 91.8%.

Figure 11: A compact decision trees obtained by AQDT-1 for the Congressional Voting-1981 problem.

For comparison, Figure 12 presents a decision tree generated by C4.5 for the sam¢ problem.
yll

§ 0
yl3
} 1 @
e b 10
0 \ Camplexity
No. of nodes: 8
e @ No. of leaves 15

y2 - Occupation yS5 - Education y10 - Alska_parks y12 - Nicaragua_ban D- Democrat
y4 - Income y6 - Chrysier y11 - Wind_tax_limit y13 - Fair_housing R- Republican

The predictive accuracy on testing examples is 85.7%.
Figure 12: Decision tree obtained by C4.5 for the Congressional Voting-1981 problem.

Comparing decision trees in Figures 10, 11 and 12, one can notice that the trees generated from decision rules
(conventional and compact) had a higher predictive accuracy (91.8% vs. 85.7%) on lesting examples and were
simpler that the tree generated directly from examples by C4.5.
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3.7. Pruning AQDT-1 Decision Trees

When input data may contain errors (noise), it is often useful to “prune” parts of the (consistent and complete)
decision tree that have small statistical significance. Such pruning protects the tree from over fitting. Various
approaches to such “tree pruning” have been described in (Mingers, 1989b; Breiman, et al, 1984; Quinlan, 1986,
1987; Niblett & Bratko, 1986; Cestnik & Karalic, 1991; Clark & Niblett, 1987; Smyth et al, 1990; Cestnik & Bratko,
1991). These approaches differ in the criteria for deciding whether or not to prune the tree at some level. A
comparison of these pruning approaches is in (Mingers, 1989b).

When decision trees are generated from decision rules, it is better to prune the rules before they are used for
determining the tree. Pruning decision rules is done on basis of the “rule strength.” The rule strength is
characterized by its i~weight and u-weight. The t-weight (total-weight) of a rule for some class is the number of
examples of that class covered by the rule. The u-weight (unique-weight) of a rule for some class is the number of
examples of that class covered only by this rule.

The proposed method follows ideas presented in (Michalski et al., 1986), namely, to prune rules of small swength,
specifically, the rules with the t-weight or the u-weight below certain threshold. So pruned rules are used for
determining a decision tree. For examble, in the Congressional voling domain, 4 rules characterize Democratic
records and 7 rules characterize Republican records. Of these 11 rules in 1oto0, live rules have t-weight cqual 1,
These five rules (one for the Democratic vote class and (our for the Republican vote class) arc pruncd (truncated).
The remaining rules are used for creating decision tree using the AQDT-1 algorithm. The decision tree learned this
way had 18 nodes (vs. 20 nodes in the decision tree oblained from the unpruned ru'les), and the prediction accuracy
of 91.8% on the testing examples (no change), and 94.1% on wzining examples (vs. 100%). The results of further
pruning are presented in Figure 13.

For comparison, C4.5 generated a consistent decision tree with 23 nodes before pruning (Figure 12). After pruning it

had 7 nodes and prediction accuracy of 88.2% on the raining examples and 83.1% with testing examples. Figure 13
presents the dependence of the predictive accuracy on the size (the number of nodes) of the pruned tree for the
Congressional voting-1981 problem. The experiment was done using training cxamples (Fig. 13a) and testing
examples (Fig. 13b).
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Explanation: The complete (unpruned) tree generated by AQDT-1 had 20 nodes, and the one
generated by C4.5 had 23 nodes.

Figure 13: The dependence of the predictive accuracy of the decision tree on the size of the trec afier pruning
for the Congressional voting-1981 problem.
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4, Comparing Learning Behavior of AQDT-1 and C4.5

This section presents experiments comparing the learning behavior of AQDT-1 and C4.5 when learning from the
training data sets of varying size. These experiments were performed for the U.S. Congressional voting-1984
problem, and the MONK-1 problem (described earlier).

There are many ways to lest the performance of leaming systems, such as hold-out, lcave-one-out, and cross-
validation (e.g., Arciszewski, Dybala &Wnek, 1992). In comparing lcarming sysiems, onc should apply them to
training datasets of diffcrent sizes. In this experiment, we applied a variation of the hold-out method, in which the
training set of examples varies from experiment [0 experiment,

Experiments were performed for two problems. One was the U.S. Congressional Voung-1984 problem. Each
example was described in terms of 16 attributes. There were two decision classes, and total 216 examples. The
experiments tested the change in the number of nodes and the predictive accuracy with varying the number of
training examples used for generating a decision tree by AQDT-1 and C4.5. The experiment was done with C4.5
using two window options, the default option (maximum of 20% the number of examples and twice the square root

the number of examples), and with 100% window size (one trial per each setling). In the Congressional Voling-

1984 problem, the sizes of the set of training examples were 8%, 16%, 24%, 31%, 39% and 52% of the touwl
number of training examples (216 examples in total; half of the examples were in onc class and the sccond half in
the other class).

Another problem used for testing was the MONKSs’ first problem. The MONK-1 data had in toto 432 examples, half
of them representing one decision class, and the other half representing the second class. In Monk-1 problem, the
sizes of the set of training examples were 5%, 10%, 15%, 20%, 25% and 34% of the total set of training examples
(100% stands for 432 examples). Table 3 shows these resuits.

Table 3: A tabular summary of the predictive accuracy of decision trees obtained by
AQDT-1 and (4.5 as shown in Figures 14 and 135.

8

Figures 14 a and b show the results graphically for the Congressional voting-1984 problem. Figures 15 a and b show the

results graphically for the MONK-1 problem.

Table 3 and Figures 14 and 13 indicate that AQDT-1 generated decision trees had a higher accuracy and were
simpler than decision trees produced by C4.5. Also, the variations of the size of the AQDT-1’s trees with the change
of the size of training example set were smatler.
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Figure 15: Comparing decision trees for MONK-1 data generated by C4.5 and AQDT-1.

5. Conclusion

The paper argues for generating decision trees from decision rules rather than from examples, as has been done
conventionally. The reason for the proposed approach is that it is easier (0 gencrate a decision tree tailored to any
given decision making situation from rules than to modify a decision tree once created. The presented method,
AQDT-1, efficiently determines a decision tree from decision rules generated by the AQ15 or AQ17-DCI inductive
learning programs. The paper introduced also the idea of a “compacl” decision tree, in which branches can be
associated with a set of attribute values and nodes with attributes derived from initial attributes via constructive
inducton, Compaclt decision threes generated by the method were consistently simpler than conventional trees.



The main difference between determining trees from decision rules and determining them from examples is in the
attribute selection criterion. In the former case, the attribute selection function needs to evaluate the roie of attributes
in the rules, while in the latter case, the criterion evaluates the way the altribule splits the raining cxamples. The
AQDT-1 method uses an attribute ranking criterion composed of three ¢clementary criteria: the dominance and the
extent of an attribute in the decision rules. Further research will investigate other attribute selection criteria for
generating decision trees from rules.

A disadvantage of the proposed method is that it requires a generation of decision rules first. However, there are
efficient rule learning systems. The AQDT-1 method uses the AQ15 or AQ17-DCI leaming programs for this
purpose. Since the method is independent on what rules are used as input, it could potentially be applied also with
other decision rule learning systems, or with decision rules acquired from an expert.

One advantages of the proposed method is that it allows one 10 efficiently determine a decision tree thal is optimized
for a given decision making situation. For exampie, when some attribute is difficult 10 measure, the method creates
a decision tree thal shows in which situations measuring this attribute can be avoided. The method is quite cfficient,
and the time of determining a decision tree from decision rules in the cases we investigated was negligible.
Therefore, it is easily 10 experiment with different criteria for tree generation in order to obtain the most desirable
iree.

Another advantage is that decision trees obtained this way tend to be simpler and have higher predictive accuracy. In
the experiments done so far, the AQDT-1 generated decision trees have consistently outperformed those generated
by C4.5 program both in terms of predictive accuracy and simplicity of the decision tree. In the experiments, the
program was applied to a made-up problem and a real-world problem.
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