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ABSTRACT

BAYESIAN HIERARCHICAL POINT-PATTERN-BASED INTENSITY MODEL IN
PREDICTION OF HIGHWAY LOSSES

Yongping Yan, Ph.D.
George Mason University, 2013

Dissertation Director: Dr. Edward J. Wegman

Traditional spatial-temporal models either use separable models to separate spatial
processes from temporal processes, which often results in a loss of information, or use
nonseparable models through the introduction of correlation functions. These functions
typically have to be complicated enough to address the real problem and additionally the
implementation requires the integral of these functions. In this dissertation, with a focus
on contribution to the interdisciplinary area of statistics and GIS (geographic information
system), | have developed methods extending EM (expectation-maximization) algorithm
to Poisson point processes with incomplete data structure to undercover the underlying
components characterizing highway loss events. With component information in the
dissertation, | have developed methods that use classification and regression trees along
with visualization procedures to identify key features influencing highway loss

intensities, and detect key feature patterns of the “hot spot” loss areas. Instead of



examining the correlation between spatial space and temporal space, | have developed
methods using a k-means based algorithm and specially tailored distance functions to
partition the key feature space into homogeneous clusters, and map this partition to the
spatial space partition. Then, I have built the Bayesian hierarchical model (BHM) that use
the current time point loss information and most recent past loss information to predict
the future losses for each cluster. The BHM in this dissertation has a good updating
mechanism and is adaptive. Finally, | have successfully applied the methods to 2009-11
FARS (Fatality Analysis Reporting System) data of U.S. Department of Transportation.
The application is a good example that methods developed in this dissertation can be
widely used on any loss types whose events exhibit a Poisson-point-pattern.

Key words: spatio-temporal model, expectation maximization (EM), Poisson-point-

process, Bayesian hierarchical model (BHM)



1. Introduction

Every year, thousands of people died of traffic accidents or got injured and
billions of dollars were lost to individuals, institutes, and insurance industry.
Efforts and countermeasures that can reduce these losses will definitely benefit
the whole of society. This dissertation contributes to this mission by investigating
how highway crash events are distributed in spatial and temporal domains. In this
chapter, I introduce the dissertation topic, review literature of past research, and

set goals for this dissertation.

1.1 Highway Losses and Measurements

1.1.1 Highway Loss Types and Auto Insurance Coverage

Highway losses include deaths, injuries and property damage. The loss of lives is
almost always related to injuries and property damage. Injury and property losses
sustained on highways are relatively more complicated and a good way to
understand highway losses is through auto insurance claim data. Auto insurance
(also known as car insurance) is insurance purchased for automobiles. Auto
insurance provides protection against losses incurred as a result of traffic
accidents and against liability that could be incurred in an accident. There are two
insurance systems in United States, the Tort Insurance System and the No-Fault

Insurance System. Under Tort Insurance System (White, 2003), a person who



suffers legal damages (loss or injury) as the result of a crash may be able to use
tort law to receive compensation from someone who is legally responsible or
liable, for those losses or injuries. Generally speaking, tort law defines what
constitutes a legal loss or injury and establishes the circumstances under which
one person may be held liable for another's loss or injury. In contrast, under No-
Fault Insurance System (Insurance Information Institute, 2010) insureds are
indemnified for losses by their own insurance company, regardless of fault in the
incident generating losses; furthermore insureds are also restricted in the right to

seek recovery through the civil-justice system for losses caused by other parties.

Auto insurance coverages can be classified into two categories: coverages against
damages to a vehicle and other property, and coverages against injuries to
occupants and other people (Insurance Institute of Highway Safety, 2010). The

first category includes:

i. Collision coverage insures against physical damage sustained in a crash to the
insured people's own vehicles if they are at fault. The damage may occur from

striking another vehicle or an object such as a tree or pole.

ii. Property damage liability coverage insures against the physical damage that

at-fault people's vehicles inflict on other vehicles and property.

iii. Comprehensive coverage insures against losses from the theft of an insured
person's vehicle or vehicle damage for reasons other than crashes. It covers theft,
noncrash fire (fire not caused by a collision or vandalism), glass damage caused
by rocks and other objects, and other kinds of damage such as from hitting

animals, acts of nature, and vandalism.



Injury insurances include:

iv. Personal injury protection coverage insures against medical, hospital, and
other expenses for injuries sustained in crashes with insured drivers and other
people in their vehicle, regardless of who is at fault in the collision. This coverage
is sold in states with no-fault insurance systems. The upper limit of the amount

paid to insureds varies by state.

v. Medical payment coverage insures against injuries sustained by insured
people in crashes for which they are responsible. It also covers injuries to other
occupants in their vehicles. This coverage is only sold in states with a tort

insurance system.

vi. Bodily injury liability coverage insures against medical, hospital, and other
expenses for injuries that at-fault drivers inflict on occupants of other vehicles or

others on the road.

1.1.2 Measurements of Highway Losses

Highway Losses are usually measured by frequency (rate) and severity (size, not
applicable to deaths). Two main factors determine auto insurance losses; claim
frequency and claims severity. Claim frequency, which is how often claims are
filed, is usually measured in claims per 100 insured vehicle years. Claim severity,
which is how big the claim payments are, depending on the average loss payment
per claim, is measured in dollars. These two factors combine to indicate the
average loss payment per insured vehicle year, also known as overall loss. The
overall loss is the average cost of insuring a vehicle for one year, excluding

administrative costs.



Generalized linear models (GLM), as defined by Nelder and Wedderburn (1972),
have been commonly used to quantify the claim frequency and claim severity in

the auto insurance industry. The sense of linear lies in the form

9(yi) = =B + € (1.1)

where y; is the response variable for the ith observation. g is a monotonic
differentiable link function, z; is a column vector of covariates, or explanatory
variables, ( is a vector of unknown parameters, and ¢; is assumed to be
independent and identically distributed random variables with zero mean and
constant variance. In generalized linear models, the response is assumed to
possess a probability distribution of the exponential family. That is the probability

density of the response Y for continuous/discrete responses can be expressed as

f(y) = exp{ L5 +c(y, 9)} (1.2)

for some functions a, b, and ¢ that determine the specific distributions. Auto
insurance claims are widely accepted to have a Poisson distribution, while claim
severities have a Gamma distribution. Maximum likelihood fitting is used to
estimate 3. In the last decade, two well-developed extensions of GLM were also
introduced into auto insurance industry, one is the generalized linear mixed model
(GLMM) which first appeared in Laird and Ware (1982), which adds random
effects along with fixed effect into the model. The second extension is
Generalized Estimating Equations (GEESs), introduced by Liang and Zeger (1986),

which targeted handling correlated responses.



1.1.3 Highway Losses and Spatial-Temporal Patterns

The concept of spatial clusters or "hot spots” mainly arose from research in
criminal activity and disease incidence. It is well known that crimes tend to
cluster in so-called "hot spots” (e.g. convenience stores or bars). Crimes
committed by serial criminals often follow established spatial patterns. The "hot
spot™ phenomenon also exists in highway losses. Based upon the theft claim data
from the HLDI (Highway Loss Data Institute) database, for 2003 model year
vehicles during time period from 2002 to 2009, the zip code area with the highest
theft claim frequency was zip code 48205 of Detroit. This zip code area had theft
claim frequencies 24 times that of the national average. The 48205 zip code area
is blocks from 1-94 and is very close to Canada. An reasonable assumption is the

stolen vehicles can be easily transported, either by sea or highway.

In April 2008, HLDI produced an insurance special report on theft losses by
county comparing the 2006-07 result with that of 1998-99. Insurance loss results
from that report showed theft overall losses (average loss payment per insured
vehicle year) increased in the southwest and along the Mexican border. The seven
counties with the highest overall theft losses in 2006-07 all border Mexico and
they had loss results more than 5 times that of national average. Counties in the
Detroit, Miami and New Orleans areas also had theft overall losses much higher
than the national average. The report also showed that theft overall losses
declined in the New York and Philadelphia regions. Seven of the 10 counties with
the highest theft overall losses in 1998-99, all in the New York or Philadelphia

metropolitan areas, were no longer among the top 10 in 2006-07.



Another kind of auto insurance loss, animal strikes which are covered under
comprehensive coverage, shows not only spatial patterns but also temporal
patterns. Animal strike claim frequencies vary with calendar years as well as
seasons (HLDI, 2008). In April 2008 HLDI reported that national claim
frequencies for animal strikes were lowest in August (3.9 claims per 1,000
insured vehicle years) and highest in November (14.1 claims 1,000 insured
vehicle years), and claim frequencies in August were about one quarter of that in
November. Three states had the highest November claim frequencies (West
Virginia, Pennsylvania, and Kentucky) and two states had very low November
claim frequencies (Arizona and Florida). Claim frequencies for West Virginia,
Pennsylvania, and Kentucky followed the national seasonality trend. In contrast,

there was little variation in claim frequencies for Arizona and Florida.

Predicting and further controlling the death, injury and property damage
occurring in the "hot spots” of a hot area benefit both the public and the auto
insurance industry. For insurers, pricing insurance premiums in hot areas is of
special interest to the cost control and the marginal profit rate. Setting competitive
auto insurance premium while minimizing claim loss payments in a specific area,
especially an area with heavy vehicle density, is not only essential to an insurer's
core competence but also very important to public safety. Traditional claim
prediction models like the GLM model, with its extensions GLMM and GEE, and
GAM (Generalized Additive Models, Hastie and Tibshirani, (1986 and 1990))

have limited ability in dealing with this problem.



1.2  Introduction of Spatial-Temporal Models

Spatial-temporal models arise from analysis of data collected across time as well
as space. A typical example is the climate data collected from a network of
meteorological stations, at regular intervals, say every week, over decades. The
observed data at each monitor typically are not independent but form a time
series. At each time point the data collected from all monitors construct a spatial

structure and therefore spatial dependence must be taken into consideration.
1.2.1  Initial Spatial-Temporal Analysis of Acid Rain in New York

One early paper on spatial-temporal statistics was published by Bilonick and
Nichols (1983). The authors analyzed the rainfall data from 22 stations in or near
New York state, collected from 1965 to 1979. Variables measured included
acidity (pH), and concentrations of sulfates, nitrates, and calcium, as well as the
amount of rainfall, in milliequivalents per liter (meq [~!). The data were
summarized into monthly values at each station to perform a time series analysis
to determine whether an increasing trend existed over the time period for the

variables measured.

e ., total deposition of hydrogen ion in month ¢ at location x.
¢ S, ., total deposition of sulfate in month ¢ at location x.

e N, ., total deposition of nitrate in month ¢ at location z.

e (4, total deposition of calcium in month ¢ at location x.

These data were then aggregated across stations into monthly temporal data:

Ht - LZI—IQ:,IE

NHt



_ 1
St - nsttzsx,t
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_ 1
Nt - nN,tZNI’t
T
_ 1
Ct - nctt§cx,t

where ny ; denotes the number of stations reporting hydrogen ion deposition in
month ¢,and similarly for ng;,ny., and ncs. The authors applied ARIMA
model to the four time series and concluded "... there is no evidence for a long-
term change in the mean level of acidity. The observed patterns in the hydrogen

ion data can be completely explained in terms of a stationary ARIMA model."

In contrast with the initial temporal analysis looking at the trend over time,
Bilonick (1983) applied a pure spatial analysis on the same data to determine
whether a spatial pattern existed on the monthly precipitation P, . series and
deposition D, ; series. Bilonick created monthly semivariograms and aggregated
them across months, and then chose the parametric spherical model to fit the
empirical semivariograms, separately for P,; and D, .. Kriging point average
estimates and corresponding mean squared errors were derived based on the fitted
semivariograms and aggregated to get block average estimates, with each block
covering an area of 80 km?. Concentration of H+ was defined as D /P, and
approximation was used for the variance of the ratio. The resulting maps
predicted a "weak tendency" that concentrations decreased in moving from West

to East, and suggested this tendency was barely significant.

Bilonick (1985) continued the work done in the above analysis and extended it
into a fully spatial-temporal analysis. This time the variable of interest was either

sulfate concentration, measured in milligrams per liter (mg [~!), or sulfate



deposition, measured in kilograms per hectare per year (kg ha'y~'). For D,

series, a space-time semivariogram was computed of the form~(h, ¢), defined by
29(h,t) = E{Zunin — Zyoyo : l|lT1 — 22| = b, [t1 —t2| =t} (1.3)

where ||x; — z2|| denotes the Euclidean distance between z; and z», and it is

assumed that (1.3) is stationary and isotropic in space and stationary in time.

The sample semivariogram was computed using the Methods of Moments where
pairs of observations (Z, 1 , Z.2+2) Were grouped into bins according the values
of hand t. The author proposed a parametric model after examining the space-

time semivariogram graphically by form

Y=Y+t YP+Ys+L (1.4)

where

Yo = C'()7

vp = Cp{1 — 0.5cos(32)},

0 ift=0
s =1 Cs{3t(2as)™t — 27 3a5%) if0 <t <ag
vr = krh

e v, is the nugget effect,

e vp represents the periodic effect and ¢ is measured in days, consideration

of seasonality is reflected in this term,



e g Is interpreted as the aperiodic residual effect,

e ~;, is modeled as linear in h. This component reflects the spatial part of
the variogram.

Parameter estimates were C,, = 100, C,= 300, Cs = 150, ag = 30, k;, = 1.0. The

fitted semivariograms are shown in Figure 1.1 and Figure 1.2.
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Figure 1.1 Fitted semivariogram from equation (2.1).Bilonick (1985)

Point and block calculation procedures similar to that in the pure spatial analysis
were applied to the collected data to predict the sulfate deposition. The resulting

maps for each year from 1966 to 1975 showed clear differences in the spatial
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pattern of deposition from year to year, but no evidence of overall temporal trend
was found, though the deposition showed a small peak around 1972. Figure 1.2
illustrates the temporal variogram for a single location. The inclusion of a
periodic effect in equation (1.4) is distinctly reflected in the map, indicating

seasonality in the data.
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Figure 1.2 The temporal variogram for a single location, ~(0, ¢). Bilonick (1985)
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Biloncik (1988) applied "indicator kriging” (Cressie 1993, pp.281-283) to the
previous spatial-temporal model on other data collected from 35 stations in the
states of New York, Pennsylvania, West Virginia, Virginia, Ohio, Indiana,
Kentucky, Illinois plus Ontario (Canada), in the time period from July 1982 to
September 1984. The fitted semivariogram was composed of a pure temporal
semivariogram term, and another term that was effectively of a "geometrically
anisotropic"” form in the space and time variables. The estimated spatial-temporal
variogram can be used to construct maps of the estimated median, as well as other

quantiles, of hydrogen ion (H™), the main variable of interest.
1.2.2 Egbert and Lettenmaier’s Multivariate Space-Time Model

Egbert and Lettenmaier (1986) introduced a rather general class of multivariate
space-time models based upon the analysis of National Atmospheric Deposition
Program (NADP) data, produced from weekly observations of 10 ionic species of
the monitoring network. The featured data exhibited spatial dependence for both
the long-term and the short-term averages, plus seasonality, for multiple

components.

Egbert and Lettenmaier divided each year into four 3-month seasons and fitted the

following basic temporally stationary model to the data in each season,
Zy(x) = Wilz) + VP (z) + MP(x) (1.5)

where Z? (z) denotes the pth component of the observed process in year s, week ¢
and location z(1<p<P,1<s<S8,1<t<T);Wh(z)is the weekly
variation in year s, week ¢ and location x; Y?(x) is the yearly variation in year s

and location z; MP?(x) represents the long-term effect. Assumption are,

12



e means of W (z) and Y?(z) are 0,

) E{WS’;(:}:)WST;'(:E’)} = kap’ (z,2')is a smooth function of either x — 2’ for

stationary case or |z — 2’| for stationary and isotropic case,

o E{Wi(z )Wp (')} = 658/%’5/ (x —a',t —t"),in which 6,4 is the Kronecker

delta function, 6;¢ = (1if s = &, 0 otherwise),

. E{Yf(x)Yj” (")} = 658/k:§;’/ (x — 2'),in which &, is the defined the same as

above,
o E{M"(x)} = p”,

o SE{M(z) — MP(a")H{M" (z) = MY (2")}] = " (z — a').

Thus, the W and Y processes in different years are uncorrelated. Two scenarios

are discussed in fitting the model, with the first case assuming time-independent
kﬁf/ (x) fort+#0,

weekly effects, k7 (z,t) =
Y w (@ 0) {0 fort = 0.

The second case assumed temporal autocorrelation, but Egbert and Lettenmaier
assumed weekly independence after all lags greater than some 7}, and derived a
series of equations of the form

T—

S P D
E{Y 3 (20 — Z) (Z, Z’}—Zaﬁ”wkm( — @ t)

s=11'=1

w

_, XZy
for 0 <t < T}, where ZZ:’T—t T.; is the number of observed data points at z;

in year s, x; is the ¢th sampling location. Egbert and Lettenmaier developed

estimation techniques in analogous to the three-way analysis of variance to

13



estimate ké’é’ k{;’", ~PP and other parameters like a””.,, details of the exploitation

'tt"

can be found in their paper.

Egbert and Lettenmaier applied this method to the data collected from a network
of 51 sites in the northeast U.S. in years 1980 and 1981. The data were subdivided
into four seasons and three variables were considered, pH, precipitation and

sulfate acidity. Some of the main findings were:

e Some mild temporal autocorrelation was seen in the precipitation data, but no

autocorrelation was found in other two variables.

o Little "yearly" effect was found once masked by weekly and long-term effects.
e Seasonal effect was strong for spatial ranges.

e Spatial correlation for sulfate concentrations were stronger than for pH.

1.2.3 Empirical Orthogonal Functions

Cane et al. (1996) implemented a reduced dimension space-time dynamic model
using Kalman filter via empirical orthogonal function basis functions, in
simulating tropical Pacific sea level by linear wind driven models. The method of
empirical orthogonal function (EOF) analysis is a decomposition of a data set in
terms of orthogonal basis functions. The :th basis function is chosen to be
orthogonal to the basis functions from the first through ¢ — 1, and to minimize the
residual variance. It is the same as performing a principal components (PC)
analysis on the data, except that the EOF method finds both time series and
spatial patterns. The basis functions are typically found by computing the

eigenvectors of the covariance matrix of the data set. The dimension reduction in

14



Cane et al. (1996) made the calculation highly feasible. Cane et al. (1996)
compared the reduced state space filter with a full grid point Kalman filter using
the same dynamic model and concluded that results were not inferior to the full
grid point filter even when the reduced filter retained only nine EOFs from 297

time series.
1.2.4 Stein's Spatial Processes Model

Stein (1986) proposed a model with the form
z(x,t) = m(z) + p(t) + e(z,t) (1.6)

in which z(x,t) are nk observed space-time point values (x;t;),i=1,...,n,
j=1,..,k, u(t) are fixed time constants with unknown values p(t;), ..., u(tx)

while m (z) and e(x, t) are both random processes satisfying
E{e(x,t)} =0,
VE[e(z, t)-e(@, )} =~ (x —a'),
El{e(z, ti)-e(@,t)He(@" t)-e(@" 1)1 =0 fori # j,
E{m(x)} =0,
LEm(2)-m()}] = n(x —2).

Thus the model includes two noise processes with zero mean, one spatial process
m(z) with known semivariogram n independent of time point, and another spatial
process e(z,t) that is generated independently at each time point with known

semivariogram ~.
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Based upon this framework Stein simplified functions of the model into

prediction of 2 problems:

1. Predict z(xo, t3) for any arbitrary =y ¢ {x1, ..., z,,} for any observed time point

tg, tg € {t1, ..., tx}.
2. Predict differences of spatial averages across different time points
ﬁ Jp{z(z,ts) — 2(z,tp)} dz, where | R| denotes the area of R.

In the solution of the first problem Stein proved that the optimal predictor of
z(zo,1t8), Z(xo, t3), is a linear combination of z(¢3), the vector of observations at

time ¢, and the vector of time-averaged responses, z = +>° & 2(t;).

For problem 2, Stein showed that the optimal kriging solution is a function of
only pairwise differences, z(z,,t,) — z(xi,t3), i = 1,...,n. He also pointed out
the predictor based upon the pairwise differences was superior to the alternative

solution in which both
ﬁ [ {z(z,ts)dzand ITH [ {#(z,tg)dz were predicted respectively.
1.2.5 Cressie and Huang's Covariance Function Approach

Cressie and Huang (1999) proposed a generic approach, the nonseparable, spatio-
temporal stationary covariance function, which generalized the separable space-

time covariance structure of Matern (1986) used in pure spatial processes.

Cressie and Huang constructed a stationary spatio-temporal covariance function

from Bochner's theory (Bochner, 1955) of the form
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C(h,p) = [ [ ™ <t g(w, ) dwdr (1.7)

in which h is a d-dimensional vector serves as a spatial lag while x is a scalar
time lag, and g(w, 7) is the spectral density of the covariance function C', where w
is d-dimensional and 7 is scalar. C'( -; -) is further assumed to be integrable,

then

glw,7) = 5 [ e " h(w;p) dp (1.8)
where

hw; ) = (37)" [ e ™ <C(hs p) dh

= [ glu, T)dr,

by assuming that

h(w; p) = pw; p)k(w), (1.9)
which satisfies the following two conditions:

(C1) For each we R p(w; ) is a continuous autocorrelation function,

Jp(w; p)dp < oo and k(w) > 0.
(AC) [ k(w) < oo,
Then (1.8) can be written as
9w, 1) = 5 k(w) [ e " p(wip)dp >0

by (AC). Furthermore by
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(C2) [[g(w,7)dwdr = [ k(w) < .
Thus (1.7) becomes

C(h,u) = [ [ e “p(w; ) k(w)dw, (1.10)
where k(w) is the spectral density of a pure spatial process and p(w; i) is a valid
temporal autocorrelation function in . for each given w.

Cressie and Huang developed seven models based upon the covariance function
structure built above and here | demonstrate one of them. The others are of similar

forms.
Model 1. Let

plw; i) = exp{ — ||wl|*1? /4 exp{ — 6p°}; §>0,
and  k(w) = exp{-co||w|*/4}; ¢ > 0.

The construction of p(w; ) and k(w) satisfies condition of (C1l) and (C2),
furthermore, from (1.10) and Matern (1960, p.17),

2
C(h;p) o< Goreymerpi — (,LLTLO)}%]?{ —6pt}; 6> 0,

is a continuous spatio-temporal covariance function in R? x R.As § — 0,the

above formula evolves to

0_2 b2 h 2
CO(h; 1l6) = el — ((LQ/‘JZJUU}’
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where 8 = (a,b,0?)T, a > 0 is the scaling parameter of time and b > 0 is the

scaling parameter of space, and o> = C°(0;0|8) > 0, here ¢, is setto 0.

1.3. Point-Pattern-Based Spatial-Temporal Transition Density
Model

According to Diggle (2003, p.1), a spatial point pattern is a set of locations,
irregularly distributed within a designated region and presumed to have been
generated by some form of stochastic mechanism. Diggle (2003, p.42) further
defined spatial point process as a stochastic mechanism which generates a
countable set of events x; in the plane. Stationarity and isotropy are often
assumed for these processes, which means all properties of the processes are
invariant under translation, and invariant under rotation. It should be noted that
these two assumptions do not rule out the random heterogeneity in the modeling.
The basic hypothesis for a spatial point pattern is complete spatial randomness
(CSR), Diggle (2003, p.6), which asserts that the number of events in any planar
region A follows a Poisson distribution with mean A| A|, and the given n events z;

are an independent random sample from the uniform distribution on A.
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1.3.1  Spatial Clustering in Point Processes
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Figure 1.3 Normal density kernel with contour lines of Cardiff juvenile

delinquents. Anselin (2003)

A spatial cluster, also know as a "hot spot", is a common phenomenon of point
processes in fields like epidemiology and criminology. The normal density kernel
with contour lines of Cardiff juvenile delinquents shown in Figure 1.3 is a good

illustration of this concept. The plot was created by Anselin (2003) using Ned
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Levine's CrimeStat2.0 software package. The spatial clustering formed a good
basis for the prevalent spatial forecasting. A widely used method is the Spatial
and Temporal Analysis of Crime program (STAC), which clusters crime points
within ellipses (Block,1995). Levine (1998) demonstrated the kernel density
estimation method shown in Figure 1.3, which extended STAC in a more
sophisticated way. Many researchers have investigated spatial decision making by
criminals and in their models spatial attributes or features (e.g. distance to a road,
type of residential community) serve as predictors to forecast criminal incident.
The underlying assumption is that the likelihood of a criminal incident at a
specified location is based upon the history of the same type of incident and

independent spatial features.
1.3.2 Definition of Brown and Liu’'s Point-Pattern-Based Density Model

Liu and Brown (2003) proposed a point-pattern-based transition density model
derived from the theory of point patterns (Diggle, 1983). Their model extends
crime clustering methods by incorporating offender's preferences in crime site
selection. The model represents criminal preferences as the functional relationship
between demographic, economic, social, victim, and spatial attributes and
measure of criminal activity. Liu and Brown gave a formal description of their

forecast model.

Denote the locations and times of criminal incidents as (si,t1), (s9,%2),...,
to — 0 <ty <ty <---, Where s; is the two-dimensional location of incident i of
a given type of crime and ¢; is the corresponding time of incident ¢, fi, fo,..., f
are pmeasurable features that are believed to be associated with the occurrences

of the incidents, z; is the feature vector consisting of values for p elements at time
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t;. Taken together, {zs; € X : s € D,t € T} formed a marked space-time shock
point process (Cressie, 1993), where ¢,s, andx, are all random quantities
defined within study horizon T"c R*, a study region D C R?, and a feature
space X' C RP, respectively. The reason that the point process is classified as a
shock point process instead of a survival process is the events are considered

instantaneous.

The measurement of interest is the density of the process, which is the likelihood
that a criminal incident occurs within a study region at the future time given the
times, locations and features of the past criminal incident of the same type and
bounded by the same region and time range. Liu and Brown (2003) defined the

transition density in the following equation,

— 1 PT{N(dS'rH»l dtIL+l):1|DH T"u- ‘;Vn}
s the1|Dn, 1h, X)) = lim ’ —
77Z}n( n+1ls tntl ‘ nsLn; n) V(ds, )iy —0 v(ds, )t

(1.11)

where T, = {tl,tQ, e ,ﬁn}; D, = {81, S9,... ,Sn}, in which S, = {Sil, Sig};
X, = {171, o, ... ,wn}, in which T, = {(L‘il,wig, R ,a:ip}/; Sn+1 and typy1 are
the location and time of a future crime incident; v(ds, ) is the Lebesgue measure

of the infinitesimal region ds_ .; N(ds,1,dt,+1) is the count of crime incidents

n+11

within ds, , and the infinitesimal time interval dt,,. ;.

1.3.3 Brown and Liu's Point-Pattern-Based Transition Density Model

1.3.3.1 Model Search Method

Many factors are believed to be related to criminal preferences. Liu and Brown

initiate their model by specifying triplet (£, ¢, s) to reduce the dimension of the
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features to form a key feature space, where F'is the initial feature set, c is a
criterion function defined for subsets of F',and s is a subset search procedure. To
measure the cohesiveness of a point pattern observed in the independent variable
or defined subspace, they produced an inter-event distance d;; which is a distance
between event ¢ and j in the feature subspace defined by the feature subset to be

evaluated, and then transformed into similarity s;; as follows.

1
Sij = Trad, (1.12)

where o = 1/dand d is the average inter-event distance. Distance refers to
differences in value of an independent variable. They further define the Gini

index as,
gij = 4sij(1 = sij) (1.13)

for a data set of n events, the average Gini index is suitable to measure

cohesiveness:

[,= (1.14)

The smaller the value the I,index is, the higher the level of point pattern
cohesiveness or the better the set of features that define the point pattern. The
authors evaluate I, for each individual feature and select a subset of features
based upon the I, scores. Before the actual calculation of I, scores, a ratio of ry, is
examined, in case the feature values for a large sample of locations uniformly

chosen over the study region, called a prior feature data set, are available.

23



mog,  Ira—e
_ Tk Tjkely
Tk = Tax |3k — ji| (1'15)
ik, jke Py :

where E,and P, are the event and the prior feature data sets for feature f;,
respectively. If the ratio is sufficiently small, I, won't be calculated for feature f;..

Otherwise, adjusted I!Sk) is calculated,

Iy(Ey)

Adjusted 1" = L.

(1.16)

where I,(E;) and I,(P,) are the I, scores for f;, over the event feature data set
and the prior feature data set. I,(P,) is a indicator of how the prior distribution of

fx deviates from the uniform distribution, and is designed to adjust /,(E;).

1.3.3.2 The Transition Density Model

Liu and Brown (2003) develop the transition density model defined in equation
(1.11) in a multi-step componentization and then estimated the corresponding
components. The model is schematically represented in Figure 1.4. In the process
of componentization Liu and Brown first separated spatial and temporal

transitions as follows,
77/}n(3n+17 thi1 ‘Dm Tm A:‘n) =
D (841 Doy Xy Ty tsn) - O (bt | T, (1.17)

the standard Bayesian decomposition of zbﬁ?)(thIDn,Xn,Tn) is simplified to
1/1%2 ) (tn+1|T5) based upon the assumption that any inherently temporal features
(e.g., seasonality and holiday/non holiday) that are categorized as time instants

are excluded because this models deals with a short time period (e.g. one week or
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a few weeks). Also according to Cressie (1993), temporal transition of the marked

space-time shock point process is assumed not to depend on its spatial transition.

Transition Density

Geo-Space Feature Density Spatial Transition Density Temporal Transition Density
]
| |
| |
First Order Spatial Second Order Spatial Spatial Interaction
Transition Density Transition Densities Probabilities

Figure 1.4 Components of the transition density model, Liu and Brown (2003)

The second step of the componentization is to model the spatial transition density
1/;%1)(sn+1|Dn,Xn,Tn,tn+1), in other words, decide the likelihood of future
events occurring at certain locations based upon past site selection preferences.
The site selection preferences are defined by a distinct clustering pattern into key
feature space. Liu and Brown decomposed the key feature space X into C
disjoint continuums {XW :j= 1,2,...,C} in relation to some underlying
clustering pattern, which defines the set of preferences. Accordingly, X, is
partitioned into C' disjoint subsets {Xéj) :j=1,2,...,C} where x7 cxw,

{Xéj) :j=1,2,...,C} where & also defines the corresponding partition of
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D, and T, {D,flj) cj=12,...,C}, {T,(Lj) :j=1,2,...,C}, locations and times
of past events. Based upon the partition, Liu and Brown (2003) further define the

transition density as the following:
77/}$L1) (sn+17 tnt1 |Dn> Tm Xn) =

1/)7(112) (sn—‘rl |D7(’Lj)7 Tr(z]); tn—i—l )

)

(07 1/}7(111) (wn—&-1|‘k'n) : ‘

J

x Pr(z,., € X027 (1.18)

where x,, 1 is the feature vector at location s,, 1, ngl) (zn41]A) is called the
first-order spatial transition density (i.e., first-order effects), which is the event
intensity at x,,; in the key feature space, w&lz)(snﬂ |D7(lj), T,ﬁj), tni1)s
j=1,2,...C, are called the second order spatial transition density (i.e., second-
order effects). Pr(xz, 1 € X(ﬂ\Xn(j)) is the probability the next feature vector
falls in the same continuum of the key feature space XU as Xn(j) did, and« is a

normalizing factor.

In theory a spatial pattern can be regarded as the result of first-order effects
coupled with second-order effects. Equation (1.18) models first-order effectsas
event intensity in key feature space instead of in geographic space, and this is the
key point differentiating it from the traditional "hot spot” model in which event
intensity is the expected number of accumulated events at alterative sites. The
same site selection preferences are assumed to persist at ¢,,, 1 and will be captured

by feature space event density.

Liu and Brown model second-order effects in geographic space which only

examines spatial interaction among events in the same feature space cluster
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because these events are initiated with the same set of preferences. To deal with
the uncertainty associated with assigning a new event to a specific cluster they
weigh second-order effects pertaining to individual clusters by the probabilities
that quantify this uncertainty (i.e., the spatial interaction probabilities).
Technically speaking, the overall process is partitioned into C'sub-processes
based upon the partitioned Dﬁf), the consequent geographic partition defined by
Xéj) in the process of feature space partition, and the weighted average of the
second-order effects of C' thinned point processes in geographic space is

calculated.

The model presented in equation (1.18) is based upon the assumption that event
locations follow a homogeneous Poisson point process and are hence uniformly
and independently distributed in geographic space. However, this complete
randomness does not necessarily hold true in feature space due to the form of the
mapping from s, to x,,; and the possible inherent randomness of z,, ;. In

equation (1.19), a new item is introduced to adjust this nonuniformity,
77Z}£L1)(sn+17 tni1 |Dn> Tn; Xn) = ﬁ : (1//‘€n(mn+1|sn+1)>

C ) .
’ 1/}7(111) (wn-&-l | ‘k'w) ’ ng?) (37z,+1 |D£lj)’ Trgj) ? t”'H)
=1

X Pr(z,, € X927
(1.19)
where k,(x,11|8,+1) denotes the probability density function of =, ; given a
prior probability density function of s, .1 over the study region D. k,,(z,+1|8,+1)

is called the geographic-space feature density and 3 is a normalizing factor. By

including the reciprocal of x,(x,1|s,+1), individual locations with certain
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feature values that are more typical than others in the study region are adjusted

lower so that all locations are put on equal footing.

It should be noted that «,,(x,,+1|s,+1) does not depend on event feature &7, while
P (@41] X)) does. When £, (2,,11|8,.11) is uniformly distributed, the model in
equation (1.19) reduces to that in (1.18) and the model in (1.18) is used when
Kn(Zn+1|8n+1) 18 unknown. Liu and Brown (2003) implemented the estimation of
individual components in equation (1.17) to (1.19) using the following four

steps:

(1). Partition the event features into the best number of clusters (C) .

(2). Estimate ¥\ (z,41|&,) and Pr(z,.; € X9|x7) in the key feature

space.
(3). Estimate ¢\ 2 (s,+1|DY, T\, ¢,.1) in the partitioned geographic space.

(4). Estimate k,,(x,+1|s,+1) Where appropriate and feasible.

1.3.4 Component Estimation of Liu and Brown's Model

1.3.4.1 Partition Event Feature Data

Liu and Brown (2003) applies a hierarchical clustering algorithm to a data set of
size n and generates a succession of n partitionsP,,P,..., P, , where

P.,P,...,P

n—1

contains n,n — 1,..., 1 cluster(s), respectively. It merges the two
“closest” clusters in P; to P,,. The stop rule is a revision of Mojena (1977) and
the revised rule stops the merging clusters and select the first partition P;

satisfying

1 > Oé_] + k- Sa; (120)
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where a; is the shortest pair cluster distance in the partition P; and a; and s, are
the mean and unbiased standard deviation of ay, ai,..., a;, and k equals 1.25

according to Milligan and Cooper (1985).

1.3.4.2 Estimate First-Order Spatial Transition Density and Spatial

Interaction Probabilities

Liu and Brown (2003) considers two classes of models for estimating the first-
order spatial transition density and the corresponding spatial interaction

probabilities. The first class is finite mixture distributions, which has the form

Flaim®) = Somf(w:6) (1.21)
wherer; >0, j=1,...,C,m+m+ - +7mc=1,7=[m,m,...,7c|,

© =1[0,,0,,...,0¢]. fi(z;0;)is the jth component density with the set 6,
parameters and 7y, o, ..., are mixing weights and © is the collection of
component parameters. Gaussian mixture models (GMM) are used for continuous
feature space and Latent Class Models (LCM) (see Everitt, 1984) are used for
discrete feature space. The Expectation-Maximization (EM) algorithm is used to

quantify the parameters [y, 7o, ..., m¢] and (6,65, ..., 0¢].

Liu and Brown (2003) also applied the non-parametric techniques called filtered

kernel estimators (FKE) (see Marchette et al., 1996) which takes the form

3=
M=

(@) = S 4 K (A

)

c
> p,,-(z]-)K(H,—l(m —z))) (1.22)

where K(-) is a kernel function, H., j=1,2,...,C, are C' p x pnonsingular

local bandwidth matrices and p;(x), j=1,2,...,C, satisfying
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C
0 < pj(x) <land ) pj(x) =1
=1

for all «, are filtering functions. Liu and Brown assume that the kernel function
K(-) is the standard multivariate Gaussian density function. The filtering
functions p;(x) are prior weights over variations of local smoothness. The local
bandwidth matrices H contain posterior parameters settings that enforce
localized smoothness. H; = diag [hji, hjo,...,hl, j=1,2,...,C ,where hy
(j=1,2,...,C; 1=1,2,...,p) is a local bandwidth for the ith dimension [z,
of the jth region of support. Two assumptions of this filtered product kernel
(FPK) estimators are (1) All dimensions are mutually independent and (2) Kernel
functions follow a multivariate Gaussian distribution. Liu and Brown (2003)
derives the filtering functions based upon the data {z;;7 = 1,2, ..., n}, which has

been partitioned into C clusters. 21,,, ..., Q¢
e Let the indicator function 1<) be 1 if z € €2 and 0 otherwise. Set
p](x> = 1{x€Qj}?j: 1727"'70' (123)

The FPK estimators with the filtering functions defined in (1.23) are termed as
weighted product kernel (WPK) estimators. Denote n; as the number of data

points in €2;, the local bandwidths are estimated by the following solution,

hy = )V G M j= 12, C5l=1,2,..,p  (1.24)

where o is the standard deviation of the [/th variable [z]; estimated from the

unidimensional local data set {[z;];; zico, }, 7 = 1,2,...,C.

Spatial interaction probabilities correspond to either finite mixture or filtered

kernel estimators and are based upon the local structures specified by these
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estimators. The corresponding spatial interaction probabilities for finite mixture

distributions are given as
PT{$n+1 € X(j)’k}g])} = ij](xn+la 0])/f(xn+177r7 9)7 j - 17 27 s 70'
(1.25)

In case a filtered kernel estimator is used, spatial interaction probabilities take the

form
Pr{wn‘H € X(j)’k‘?g])} - /fj(xn+l)//f\<xn+1>7j = 1727 70 (126)

where

~

fil@nn) = 1% SEVK (H (- 27),j = 1,2, C. (1.27)

1.3.4.3 Estimate Second-Order Spatial Transition Densities

To estimate second-order spatial transition densities, Liu and Brown adapt two
models developed by Fiksel (1984) to their case based on two additional
assumptions. First, event initiators favor geographically closer location for the
next event, and second, event initiators tend not to wait long before they act

again. The first model, known as the order model, is described below.

Suppose there are m data units in cluster j. Let fo) = {s1,89,...,8m},
Trr(l]) = {tl,tQ, e ,tf,n}, and tl < tQ < o K< tWL and 81,82,...,8m be ordered
according to ¢y, to, ..., t,,. Liuand Brown postulate the following function for the

second order spatial transition density for cluster j

™m

Il/)%l?) (3|D’ELJ)7 Trgj); t) = 1/}7TL(3|317 327 sy SWL) = )\—2267)\”3731.“ (128)
1=1
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where ¢t and s are the time and location of a future event's occurrence
respectively, ¢t > t¢,, and ||s — s;|| is the distance from that future event's location
s to an older event location s; (i = 1,2,...,m). In this model, only the temporal

order of the events is considered.

The second model is called the instant model and it incorporates the values of the
time series ¢y, to, ..., t,,. Based upon this model Liu and Brown postulate that the

second-order spatial transition density takes the form
¢$L12)(3]D£f), TTSj), t) = nm(s|s1,82, ..., 8m,t1, to, ooy, t)

A2 RN A||s—sil|—r(i—t)
= —% Yoe i i), (1.29)
o2 e 1) i
i=1

A maximum likelihood method is used to estimate the parameters of A and 7 in

(1.28) and (1.29).
1.3.4.4 Estimate Geographic-Space Feature Density

To estimate the geographic-space feature density, when appropriate and feasible,
generally requires sampling over the study region. Liu and Brown obtain feature
values for sample locations chosen uniformly and independently over the study
region and then fit a density function to the sample applying either the finite

mixture or the filtered kernel method.
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1.4  Point-Pattern-Based Hierarchical Bayesian Intensity Model
1.4.1 Limitations of Liu and Brown ‘s Model

In section 1.3, | discussed Liu and Brown' successful theory framework of the
point-pattern transition density model. They established the procedure to
decompose the big model into components and then implemented the component
estimates. In addition, they applied their model to a sample of crime data, which
included 579 commercial and residential "breaking and entering” incidents in
Richmond, VA, between July 1,1997 and August 31,1997, and demonstrated its
superiority over the traditional "hot spot" model. Although their model is
complete and capable, it is still not enough to reach the goals this dissertation set

to resolve.

The first limitation arises from the partition of key feature space in Liu and
Brown's model. Liu and Brown decomposed the key feature space X into C'
subspaces, which defined the consequent partition of location space D,,. In other
words, the model neither considered nor recorded any geographic characteristic or
information of the sub feature space in the partition, and therefore by nature, it
"lost" the geographic information in the process and tended to be incapable of
detecting of any geographic pattern, if it exists. One can easily imagine if one or
more subspaces spanned the whole horizontal dimension or vertical dimension of
the study region the model would lose the ability to detect any geographic pattern

in that dimension.

Liu and Brown's model is designed to deal with short time periods, within a week
or a few weeks. Their model did consider any inherently temporal features, like

seasonality, day of week variation, etc. Liu and Brown also assumed that for a
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typical space-time point process the temporal transition is independent of its
spatial transition. In Liu and Brown's model, the temporal transition density
wﬁf) (t|T;,) is invariant over all locations within the study region at any given
instant ¢,.1. As a result they did not estimate this component because they
narrowed their goal to forecasting only the relative transition density in the study
region at any future time point. Although in this dissertation, | agree with the
invariance assumption, |1 mainly target forecasting annual auto insurance losses in
the region of interest based upon years of legacy data, and therefore I must

encompass the temporal component and the relevant temporal features.

Liu and Brown's model seems adapted to small study regions (in their application,
Richmond, VA). For highway losses we hope to predict the local density, usually
annually, as accurately as possible. This may require the partition of study regions
as micro as possible, but as for the geographic pattern, I need them to be
identified at a much more macro level, e.g., county or even state level. In the
study of geographic patterns, 1 am looking to determine whether the auto
insurance claim frequencies in subregions exhibit significantly high or low
values. Obviously Liu and Brown's model laid a solid foundation for density

estimation, but left the geographic pattern detection blank.

In addition to the detection of a geographic pattern of annual auto insurance claim
frequencies, examining the evolution of geographic pattern is possible since
HLDI data span 10 years. The geographic pattern of annual auto insurance claims
changes over time and hence the interest of how to measure this pattern shift.
Again the method to measure pattern shift, and the corresponding visualization of
pattern evolution are far beyond Liu and Brown's model. Hopefully this work can

at least address the problem.
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Besides the gaps mentioned above between the goals set by this dissertation and
the coverage of Liu and Brown's model, the computation of large datasets is
another concern. Stratified by parameters used in the estimation of density
models, HLDI auto insurance loss data could easily reach 100 million records,

upon which Liu and Brown's model may either be inefficient or not viable.

1.4.2 Bayesian Hierarchical Point-Pattern-Based Intensity Model

Inspired by Liu and Brown's work, in this dissertation | design and build a spatial-
temporal Bayesian hierarchical model (BHM) aimed at predicting intensities of
highway losses whose spatial process follows a Poisson-point-pattern. The

proposed model has following functions,

Undercover latent subpopulations

The dissertation develops methods that can undercover latent distribution
components of highway loss events whose spatial process is characterized as
Poisson point process, but with an incomplete data structure. Methods developed
should be able to determine the finite mixture structure of the underlying Poisson
point process, and estimate the posterior probability from which subpopulation an

observation arises.

Identify key features having influence on highway losses

This dissertation also develops methods that can identify key features having
great influence over highway losses by filtering out irrelevant/uncritical ones

from a large pool of features.

Detect key feature patterns corresponding to "hot spot” areas
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Methods developed in this dissertation can also detect key feature patterns
corresponding to "hot spot" areas where loss event intensities are classified to be

highly risky.

Partition key feature space and study area

The dissertation also develops an algorithm that can partition key feature space to
detect homogeneous clusters and map this partition to the study area allowing

highway losses to be measured over clusters.

Predict future losses

This dissertation also develops a BHM model that can be practically used to
predict future highway losses based upon information of current losses and most
recent past losses. The methods can also detect and visualize the evolution of

"hot spot™ geographic patterns with time.

1.4.3 Analogue of terms in this dissertation to traditional spatial statistics

"Features" in this dissertation means independent variables could influence
highway losses and more traditionally they are "attributes” in the spatial statistics.
In spatial statistics, "feature™ means geometric objects, such as points, lines, and
polygons. "Distances™ in this dissertation are defined in feature space instead of in

geographic space unless otherwise stated.
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2. Theory of Point-Pattern Spatio-Temporal
Model for Highway Loss

In Chapter 2, a mixture model is proposed to model highway loss incidents in the
study area D, by extending the expectation maximization (EM) algorithm to this
new field. The proposed strategy can identify subpopulations of highway loss
incidents and use the Random Forest algorithm to identify features having key
influences on the distribution of highway loss incidents. It also quantifies the
importance level of each selected key feature. Then the patterns of the key feature

vectors associated with highway loss "hot spots™ can be detected.

2.1 Spatio-Temporal Process of Highway Losses

2.1.1 Highway Loss Incidents

Denote a series of highway loss incidents as (s1,t1), (82,%2), ..., (Sm,tm), Where
0<t; <---<tjy <tj<tj <---<tp, s; is the two-dimensional location
of incident j of a given type of loss and ¢; is the corresponding time of the jth
incident, X, X5, ..., X, are m p-dimension measurable feature vectors that are
believed to be associated with the occurrences of the incidents, where
xzj = (xj,xp,...,xj) is a realization of the feature vector corresponding to
incident (s;,¢;), then {z;; € X : s € D,,t € T} form a space-time shock point

process (Cressie, 1993), where ¢, s, and z, ; are all random quantities defined
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within study horizon T, C R*, a study region D, C R?, and a feature space
X C RP,respectively. Highway loss events are considered instantaneous so this
point process is classified as a shock point process instead of a survival process.
Furthermore, | assume that this point process is simple, which means at a given
time point, almost surely, either no incident or a single incident occurs at any
point on D,. The study region D, is partitioned into n disjoint geographic cells
{c1,¢9,...,¢, }. On 2-D space, a cell is a polygon. Typically, a cell can be a
census tract, a zip code area, or a grid defined in geographic information systems
(GIS). Incidents' locations, times, and associated attributes can be studied at cell

level, or higher level, according to the study interest.
2.1.2 Spatio-Temporal Process of Highway Losses

Highway loss incidents typically form stochastic spatio-temporal process, |
denote a spatio-temporal process model as Y(s;t: s € D5 t € T;), where the
study time range

T, C R*, the study region D, C R?. A spatio-temporal process can be
aggregated (sliced) into a pure spatial process, Y(s: s € D,), or a temporal
process. | write a temporal process model as Y (¢ : t € Ty), it can be either a point
process thus 7 is a random set made up of randomly occurring time points of

events on [0, 00), oratemporal discrete-time processthus 7 = {0, 1,2, ... }.

On a subset of A ¢ D, C R?, | define a stochastic highway loss spatial point
process Z, where A is a 2-dimensional Lebesgue measurable with defined area.
Let Z(A) denote the number of loss events in A and Z(:) the counting process

defined on the set of Lebesgue measurable subsets of D, with furthermore

38



assumption that D, is bounded and Z(A) is finite for all A C D, the expected

number of events E(Z(A)) is given by an intensity function A(s) defined on A.

Let s be a location s € D let ds be a small region located at s with area |ds|,
then the first-order intensity function of the Poisson point process Z(:) is defined

as,

Ns) = lim B(Z(d5))/|ds]. s C Dy, (2.1)

provided the limit exists. Hence,
E(Z(A)= [, A(s)ds, A C Ds.
An infinitesimal interpretation of A\(s) |ds] is,
\s) |ds| ~ P (Z(ds) = 1).

When Z exhibits completely spatial randomness (CSR) it is a homogeneous
Poisson point process. Whenever \(s) = \°, which is a constant. The number of

events over A follows a Poisson distribution

Z(A)N ~ Poisson (\°]A]), A C Dy,

where \° > 0 is the parameter of the Poisson point process, and |A| is the area of

A.

If Z(-) keeps independence for disjoint sets but A(-) varies over D, the Poisson

point process becomes an inhomogeneous one,

Z(A) ~ Poisson ( fA)\(x)dx>, A C D, (2.2)
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To further extend the highway loss spatial point process to a spatio-temporal point
process, | define a bounded subset Dg, of R? xR and define
Dsy = Ds x [0,T],where T € T, C R" and T is the largest time. Let A C D ;
and Z(A) be number of events in A then {Z(A):A C Ds x[0,T]}

characterized the spatio-temporal point process.

The whole spatio-temporal point process of highway lossescan be thought as a
temporal process of a spatial point process, and Cressie (2011) defined the

conditional intensity function of the above spatial-temporal point process as

. — H E(Z(ds;dr) |Hy
P(sit) = ‘(!:mo%. (2.3)
di—0

provided the limit exists. In (2.3), s € D, and d is a small region located at s
with area |ds|,t € T, and d; is a small time interval at ¢. H; contains all the
history information of spatial-temporal point process up to the time point ¢.

1 (s;t) is the frequency with which events occurs at (s;t).

2.2  Finite Mixture Models and Highway Loss Incidents

The use of mixture models can be traced back more than one century. Pearson
(1894) fitted a mixture of two normal distributions with different means 1; and
and variances o2 and o3 in proportions 7; and , to some biological data. From
the 1980s to the 1990s, the advent of high-speed computers and the maximum
likelihood estimation made mixture models practical. The Dempster et al. (1977)
paper on the expectation-maximization (EM) algorithm, the McLachlan and
Basford (1988) paper and the McLachlan and Peel (2001) paper on the use of EM
algorithm for the fitting of finite mixture model cleared main theoretical and

practical obstacles blocking the use of finite mixture models.
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2.2.1 Basic Definition

Let Y7,...,Y, denote a random sample of size n,where Y is a p-dimensional
random vector with probability function f(y;) on R?. Let Y = (Y/7,...,Y;1)7,
where Y, denotes the transpose of Y, and thus Y is the entire sample which is a
n-tuple of points in RP. We use y;to denote a realization of Y; so that y =
(yl,...,yl)"is an observed random sample. Suppose f(y;) originates from

multiple distributions and can be written in the form
g
f(y)) = (;Wifi(yj)a (2.4)

where f;(y;) is a probability density function and

0<m<1l (=1,...,9) and

_Zg:lm=1, g€ Zandg > 2.

iz
The nonnegative ; are called the mixing proportions or weights. f;(y;) is the ith
component density of the mixture and f(y;) is a g-component finite mixture
density; its corresponding distribution function F(y;) is referred to as a g-

component finite mixture distribution.

A mixture model can be viewed as a probabilistic model for representing the
presence of subpopulations within an overall population. In the context of
parametric methodology, | have to determine the following estimates to fit a
finite mixture model: the number of components; the weight of each component;
and parameters of each component. To identify from which components
observations are generated, let g be fixed and Z; be a g-dimensional component
vector, whose ith element, Z;; = (Z;);, valued in 1 or 0 according to whether Y is
generated from the ith component in the mixture. Thus Z; follows a multinomial

distribution consisting of one draw on g categories with probabilities 7y, ..., 7,
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Z; ~ Multinomial(1, 7r) (2.5)

where 7w = (y, ..., m,)T.

2.2.2 Component Parameters and the Likelihood Function

Suppose f;(y;) belongs to some parametric family and I specify the component
density functions as f;(y;;0;) where 8; are unknown parameters of the ith
component in the mixture. | rewrite the probability density function of the mixture

in (2.4) as
g
[y ®) = > mi fi(y;30i) , (2.6)
=1
where ¥ consists of all unknown parameters in the mixture model

v = (m,...,wg,o{’,...,eg’)T
and 6; are the parameters of the corresponding family of the ith component.
In most cases, component densities belong to the same parametric family. Thus

the mixture density in (2.6) has the form
9
f(y;¥®) = ;mf(yj;@)

where 8; € © and © denotes parameter space of (6,,...,6, ).

Assume Yi,...,Y, """ f(Y;|®),and w,,...,y, are observed values of
Yi,...,Y, from a parametric family P(Y;| W), based upon probability density

function of (2.6), corresponding likelihood function is in the form

L(®) = lif(yjiw) (2.7)

and log likelihood function is
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logL(¥) = ;logf(yj;‘l’)

— ;wg{imﬂwm } (2.8)

1=

2.2.3 Incomplete Data Structure

To identify the component of an observation is a task of EM algorithm. In the EM
framework, a random sample y,,...,y, is defined as incomplete because their

associated component indicators z,,...,z, remain unknown, or in terms of

n

observability, unobserved. Thus y = (y!, ..., yI) are observed data and

ye =", 2")"
are defined as complete data vector where
T T)

z2=(2{,...,2) )

The log likelihood function of the complete data structure can be written as

logL.(¥) = i i zii{logm; + logf (y;;0:)} (2.9)

i=1j=1
Under Bayesian definition, 7; in (2.4) can be viewed as the prior probability that
the observation belongs to the dth component of the mixture
F(Y;0;)(i =1,...,g9), denote 7; as the posterior probability that the observation
belongs to the ith component of the mixture
7 =pr(zi; = 1ly;)
= mif(y) /fly;) i =1,...,9:5=1,...,n) (2.10)
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2.2.4 Component Parameter Estimate by Use of Direct Approach

McLachlan and Krishnan (1997) gave a theoretical direct approach to estimate
unknown parameters in (2.6) where ¥ = (m,...,m, &%) T contains all
unknown parameters in the mixture model and § = (6,,...,6,)) Tare all
parameters known a priori to be distinct (7, =1—m —mo,..., —m, ).
Theoretically, the computation of the maximum likelihood estimator (MLE) of ¥

IS equivalent to solving the likelihood equation,

OlogL(¥w)/0 ¥ = 0. (2.11)
McLachlan and Krishnan (1997, Section 1.4) detailed the manipulation so that
the MLE of ¥, T , satisfies

-3 :j_ﬁln(yj;\i:)/n i=(1,...,9) (2.12)
and

333w ¥)0 1001 (3,70, 9 =0 (2.13)
where

U W) = 7 (055 0,) S 0) (2.14)

Unfortunately equation (2.13) is not always solvable and thus limits the use of

direct theoretical approach in many applications.

2.3 EM Framework on Finite Mixture Model Fitting

2.3.1 Definition of the EM Algorithm

The Dempster et al. (1977) paper demonstrated that solving the equations of

(2.12) and (2.13) formed an iterative computation solution whereby for the pth
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round of estimate W) of W in the right-hand side of these equations, a new
estimate W(**Y) can be computed for ¥ and the ¥(P*1) can be substituted into the
right-hand side equations to produce ¥**2) and so on until pis big enough and

W) converge.

Dempster et al. (1977) defined the EM algorithm first on regular exponential
families starting with two sample spaces ) and X and a many-to-one mapping
X —-Y(X) from X to )Y, where X and Y are random variables from
exponential families. The incomplete-data ¢, which were a realization from Y
were observed while corresponding complete-data = cannot be observed but only
indirectly through . Let f(z|®) be density functions for the family depending on
parameter W and its corresponding incomplete-data specification f(...|...) is

related to f(z|¥) by

g9(y|®) fX f(z|¥)dx (2.15)
and f(z|¥) has the form
f(=|®) = b(z) exp (¥t(x)")/a(F) (2.16)
where ¥ denotes a 1 x r vector parameter, and ¢(x) a 1 x r vector of complete-
data sufficient statistics, and W is restricted to an r-dimension convex set 2.

Suppose W) denotes the current value of W after p cycles of the algorithm, the

next cycle can be described in two steps,
E-step: Estimate the complete-data sufficient statistics ¢(x) by finding

t?) = E(t(x)|y, W) (2.17)

M-step: Determine ®&(»+1) as the solution of the following equations

E(t(x)|¥) =t (2.18)
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Equation (2.18) actually defines the MLE estimator of ¥ given ¢) in (2.17).
The sufficient statistics computed from an observed  from (2.16). It should be
noted in case of regular exponential family, maximizing logf(z|¥) is equivalent
to maximizing

log®t(z)” — loga(P).

To explain why repeated application of the E-steps and M-steps leads to the value

w*  which maximizes likelihood
L(¥) = logg(y|P) (2.19)

for exponential family, Dempster et al. (1977) introduced the conditional density

of z given y and W,
k(zly, @) = f(=®) /g(y|¥) (2.20)
in order to rewrite (2.19) into the form

L(¥) = logf(a|®) — logk(zly, ¥)

= — loga(¥) + loga(T|y), (2.21)
where
A(Tly) = [yyb(@) exp (Tt(z) ) (2:22)
and
(T = [yb(z)exp (Tt(z)")dx. (2:23)

To maximize (2.21), | need to set the derivative of (2.21) to 0, which produces

dL(T) = B(t(x)|®) + E(t(z)|¥,y) = 0. (2.24)
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Solving equation (2.24) leads to dL(¥)= 0 at ¥ = ¥*. Thus, if the algorithm

converges, then
v — ghtl) — =,
Dempster et al. (1977) then extended the above defined E-step and M-step to a

more general case, a curved exponential family for which ¥ lies in a curved

submanifold 2, of the r-dimension convex set €.
In this case the E-step (2.18) remains the same, but the M-step becomes:

Determine ¥®*+1) to be a value of ¥ in Q, which maximizes

log Tt?) (x)" — log a(®).
Demepster et al. (1977) further extended above definition of EM algorithms to all
densities by introduction of a new function

Q(¥'|w) = E(logf(z|¥)|y, ¥) (2.25)
under assumptions a) f(z|® )>0ae.in X forall ¥ € Q. b) Q(¥|¥) exists
for all pairs of (&', ). Then from pth cycle to (p + 1)st cycle
E-step: Compute  Q(¥|T®), (2.26)
M-step: Choose ®P+1) on () that maximizes Q (¥ | &),

It should be noted Q (¥ |¥()) must be computed for all & € (.

Dempster et al. (1977) also proved that the generalized EM algorithm likelihood
L(W) is non-decreasing on each iteration, and Q(¥ P+ |w®) > QT @ |wP)
on any iteration (strictly increasing). In addition, they discussed the convergence
of the generalized EM algorithm and also demonstrated methods to calculate the

rate of EM convergence.
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2.3.2 Finite Mixture Models under the EM Framework

Although Section 4.3 of Dempster et al. (1977) discussed the application of EM in
finite mixture models, McLachlan and Krishnan (1997) made substantial effort to
tailor EM algorithm for finite mixture models. McLachlan and Krishnan applied
EM to finite mixture models by treating the z;; defined in (2.9) as missing data the

iteration proceeds in two steps. E (expectation) and M (maximization)
E-step: Q(T[T") = E w (logLe(®)ly). (2.27)

The E-step computes the expectation of the complete-data log likelihood
logL.(¥) given the observed data y and the current estimates of ¥, ¥" . Here
w" | calculated from the kthEM iteration, serves as ¥. From (2.9), L,(®) is
linear in z;;, so the calculation of the Egm (logL.(¥)|y) is equivalent to
Eqw(Zijly) = Prywi{Zi; =1y}
= 7i(y; @) (2.28)
thus (2.14) transforms to

Prow (i = 1ly) = mf(y @) /fy @) (2.29)

= () (’yy )/ZWZ fl(yj’ )’

1=1,...,9;5=1,...,n

7i(yj; \Il(k)) is the posterior probability that the jthobservation y; is generated
from the 4thcomponent of the mixture given the observed y; and the current
estimate @, W"'. After kth iteration of the EM algorithm, (2.27) can be rewritten

to

n

QET") = 323 7y, ") {logm; + logf (;:6,)}. (2.30)

i=1j=1
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On the first iteration we assign @) = (7\” ... 7% (£O)T) T and

0 9 n 0
QE[E™) = 325> 7ily;; ") {logr: + logf,(y;:6,)}
i=1j=
M-step: Maximize Q(¥"'|®¥) of (2.30).

The maximization of Q(¥"|®) on the (k + 1)th iteration with respect to ¥

over its parameter space © globally will determine the updated &,

k+L I & k
W - S L w) flog + logf (y;6)} (231

i=1j=1

(k+1)

For finite mixture models the updating of = , the mixing proportions, is
independent of the updating of £€%+1) the density parameters of components.

McLachlan and Krishnan (1997) showed that parallel to MLE estimator of 7; =

Yzij/n(i=1,...,9),
=1
(k1) L *) i
o o= Ty ) /n(i=1,...,9). (2.32)
=1

Updating £ in the (k + 1)th iteration from £"' to £€*" needs to maximize

7i (Y \Il(k)) {logm; + logf,(y;:0;)} in (2.31) by solving the equation
i=1j=1

zzw o) dlogf (y;6:) / € =0 (2.33)
i=1j=

which often takes close form.Dempster et al. (1977) had shown that the
incomplete-data likelihood values L(®"“") > L(¥") and the repeating of the

(k+1)

above E-step and M-step leads to convergence of ¥ ¥" — " — @~

when k reaches some value.
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2.4 Extension of EM on Highway Loss Incidents
2.4.1 Finite Mixture Model and Highway Loss Incidents

We defined the point process of highway loss incidents in 2.1.1, and the counting
process of the Poisson point process in 2.1.2 and partitioned the study region D,
into ndisjoint geographic cells {ci,co,...,c,}. Assume complete spatial
randomness (CSR) for ¢;(j =1,...,n), at the specific time point ¢t € T}. Let YV’

be a discrete random variable, and let Y\cj be the number of events observed on

cj, and |c;| be the area of c; and ). be the underlying intensity dominating the

Poisson counting process on c¢;,
then
Y‘Cj ~ Poisson (X |c;|)
and the probability mass function of Y\Cj is

Flysid) =Pr(Y] =y = 226 0s ko, (2.34)

cj yj!

Here y; is a nonnegative integer and ., is found in a 1-dimension parameter
space R*. Although n is large many of the A\. s may be the same. So I let
Ae; € {1, Ag,y ..., Ag} Where g < . | now draw a sample according to Y. The
sample is a spatial sample and will come from known c;s. However, | do not

necessarily know which ); is appropriate.
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Because all components come from same family of distribution, for Poisson
counting process of highway loss incidents, the finite mixture model of (2.6) can

be rewritten to
g
fly;;®) = > mif(y i)
=1
L QaleD Y (e )
= Zlm e

where c; is the associated area on which y is observed. The log likelihood

function of the complete data structure can be written as

log L.(¥) =
i i zij{logm; + yilog(Aile;|) —log(y;!) — Ailej| 1. (2.35)

i=1j=1
To apply finite mixture model on highway loss incidents, three problems need to
be resolved.

1. to determine the number of components.

2. to estimate the mixing weight for each component.

3. to estimate parameters for each component.
Let g be the unknown number of components of the study subject, and let
U = (my,...,m, , &) T contains all unknown parameter in the mixture model
and
&= (Al,...,)\g)T are all parameters known a priori to be distinct for all
components. The whole process of applying the finite mixture model to highway
loss incidents is simply the process to decide W given each of the component

follows a Poisson distribution.
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2.4.2 EM Algorithm with Known Number of Components

Assume the finite mixture model for the study subject has g components and g is
known here. The EM algorithm on highway loss incidents also composes the E-
step and the M-step, from kth iteration to (k + 1)th iteration,

E-step: Rewrite the function in (2.30)

QE|T") = zz

7y @) {logm; + (ylog(N les]) = 1og(y,!) — Nile )} (2.36)
where
g ) (AilG c & 1le e
iy ") = w2 o O ) /(; JETCHEPSCCT)
g
= Qe e 0D /(om e meioD) (2.37)

M-step: Maximize the function in (2.36).

The maximization of Q(\If“)\\Il) on the (k + 1)th iteration will determine the

updated "

g:l(kﬂ) _ arg max Z Z Tz(yj; )

i=17j=

{logm; + y;log(N;lc;|) —log(y;!) — Ailej| }- (2.38)

Here the parameter space for 7r§k+1) iIs g-dimensional space (0,1]

g
x (0,1] x --- x (0,1] and > m; = 1. We further assume that intensities of the
1=1

Poisson point processes studied are all finite and parameter space §2 for 5(“1) is on

g-dimensional space (0,...,0) U RT x R*--- x R* and Q is a closure.

The updating of wl(k“), the mixing proportions, is independent of updating £*+1),

the mass function parameters of components.
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= Sy ) Ini=1,...,9). (2.39)
j=1

Updating & in the (k + 1)th iteration from £"' to £€*" needs to maximize

7:(y;; ®") {logm; + logf (y;0:)} in (2.36) by solving g equations
J i\d]

g
= 1

n

=1y

L (k) Yj
Zln(yj;‘lfk)(i—;—kﬂ) =0 (2.40)
‘7:

which often takes closed form. Solutions from (2.40) could be local or global
minima, or local or global maxima. When (2.40) does not take closed form or
fails to produce global maxima, I define a closure 2° C Q, 20 = [0, A\jae] % [0,
Amaz] X -+ X [0, Amaz], Where A, be the maximum intensity of the study

subject, then we maximize (2.36) on the closure Q°.

2.4.3 EM Algorithm when the Number of Components is Known

2.4.3.1 Criterion in Determining the Number of Components

Brooks et al. (2003) showed a complete scheme of Reversible Jump Markov
Chain Monte Carlo (RIMCMC) which can be used to determine the number of
components in the mixture model. However, just as Robert and Casella (2011)
said, the implementation of a complex algorithm like RIMCMC is somewhat of
an overkill for the comparison of a few models. For highway loss incidents
studied in this dissertation, the finite mixture model is used in a clustering context
to identify subpopulations (groups) rather than to model unknown distributional
shapes such as skewness and kurtosis, thus the number of components remains
unknown. For a given sample there may not be a one-to-one correspondence
between the mixture components and the groups even if we have the sample and

know the specification of the parametric family of its underlying distributions.
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Fitting finite mixture models using maximum likelihood methods may result in
multiple models each having a different number of components. The goal of
deciding number of components is to find the smallest value of g, gy, to fit the g-
component mixture model while being able to differentiate each of the
components from others and getting good performance in terms of likelihood.

McLachlan and Peel (2001) named g, as the order of mixture model.
2.4.3.2 Prior Information of Components

If no prior information is available about the component distributions, then
nonparametric methods of detecting number of modes might be more appropriate
for a given sample. According to the literature, the relationship between number
of modes and number of components has not been determined completely. Miguel
A. Carreira-Perpinan (1999) proved that the number of modes cannot be more
than the number of components in mixing Gaussian distributions and that they are
contained in the convex hull of the component centroids. In my case, | begin with
detecting the number of modes of observed samples in expectation that it will
help to define the range of number of components and thus makes computation in

fitting mixture model more efficient.

Let y; be the observed number of highway loss incidents on corresponding
geographic cell ¢; and let |c;| be area of ¢;, j =1,2,...,n. | assume CSR on ¢;

and define the observed intensity Xj as

E o (2.41)

Thus A}, Xy...., A, form a random univariate sample of size n. | use kernel

density estimation (KDE) to investigate the multimodality of this sample.

Silverman (1986) describes the kernel density estimator as
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! !/

HiX) = n—lhilK(“ )y (2.42)

where K () is a symmetric probability density function satisfies the condition
fj;OK(:E)dx =1,

and A is the bandwidth or smoothing parameter. The selection of A is key in
kernel density estimation. When h is chosen too small undersmoothing occurs
and spurious fine structure becomes visible. On the other hand, when A is chosen
too large, oversmoothing occurs so that multimodality of the distribution is
obscured. Jones et al. (1996) showed in case of a standard normal kernel function
rescaled by h and if A — 0 and nh — oo, the optimal bandwidth (asymptotic

mean integrated squared error) was
_ 1 1/5
hamise {Qﬁnﬂfﬁ)z}

which needs approximation methods. Sheather (2004) suggested a number of
bandwidth based around a "center point” bandwidth and recommends the
Sheather-Jones plug-in bandwidth be used due to its overall good performance. In

my case, although the density of A, \;...\,

n

is highly skewed and is at the
boundary, the Sheather-Jones plug-in bandwidth might have some bias, it is still
good enough to detect the number of modes to help the determination of number

of components.

2.4.3.3 The Sequence of EM Algorithms of Model Fitting Computation

I assume kernel density estimation (KDE) has determined a given sample has m
modes. Based upon m and the sample size, | suggest the numbers of components

between g;, the, lower bound, and gy, the upper bound. To be conservative I

suggest
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gr =min(2,|0.5m]), gv =maz (y/n,|1.5m]) (2.43)

I run a sequence of gy — g; + 1fittings looking for the one with best fitting from
the sequence to decide the order of the mixture model. The procedure of the

model finding algorithm is described as below,
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g
Inputs: Poisson mixture model defined by ", f(y;; \i)
i=1

Constants: ¢ «— 1078

Control parameters: k,,q. < 500, g;, < min (2,]0.5m]),

gu «— maz (\/n, |1.5m])
forg= gr,...,qv

set initial

v — (wgo), e wﬁfﬂ, (Ags .- 7)\g)T) " and

repeat E-step: rewrite ) function in (2.30)

o+ g .
M-step: @™ = 9 max 21 Zl (@|@") in (2.38)
i=1j=

__arg max zq: i (T
- v Tl(yja )

i=1j=1

(k+1)

v

k—k+1
until L&D — L#) < cor k = ks
output convergence status (yes or no)

W) composed of 2g — 1 parameters

logL™) or logL*+1) and other model fitting results

end for

Return
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2.4.3.4 Model Selection and Decision of Order

The repeated EM algorithms in section 2.4.3.3 produced a sequence of modeling
results composed of ¢y — g, +1 elements. Each element of the sequence
corresponds to a specific g taking values from g; to g;. To decide the order g, of
the mixture model, we want to maximize the likelihood resulted from the mixture
model while making the model as simplified as possible. To achieve this balance,
a concept of penalization was introduced such that as the likelihood increases
with the addition of a component to a mixture model, the likelihood (log
likelihood) is penalized by the subtraction of a term. This term measures the
complexity of the mixture model and often is a function of the numbers of

parameters used in the model.

Akaike (1974) developed a method of model selection following the above
concept and named it AIC (Akaike's Information Criterion). AIC selects the

model that minimizes
— 2logL(®) + 2d (2.44)

in which the first term measure the lack of fitting and the second term serves to
penalize the model complexity. L(\fl) is the likelihood corresponds to parameters
¥ estimated by a model and d is the total number of parameters in the model.
Smaller AIC means better model performance. Hurvich and Tsai (1989) proposed

another criterion AICC (AIC with a correction) which takes the form

AICC = AIC + 214t (2.45)
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where n is the sample size and d = 2g — 1. Thus, AICC applied greater penalty

for extra parameters than AIC.

I use AICC as the primary criterion in evaluating the sequence of models
produced in algorithms described in section 2.4.3.3. Compared with AICC, AIC is
more prone to overfitting which leads to including more components in a mixture
model. It should be noted that the Likelihood Ratio Test (LRT) is not used here
although it can produce exact p-values in model comparison. First, LRT demands
more complicated MCMC sampling in Bayesian framework; second, catching the
component with high incidents intensity is of interest in this dissertation. Minor

overfitting is not considered a disadvantage here.

2.5 Key Feature Space Formation and Hot-Spot Key Feature
Patterns

Let the finite mixture model

90 Yj
flyr®) = Y om el
i=1 a

be the selected mixture model in section 2.4.3.4, and g, be the order of the
mixture model and {(71, A1), (F2, A2 ), .-, (Ryys Agy ) } be estimated parameters
for each of the go components. Based upon these and the observed sample, 1 will
prepare input data to identify features having key influences on highway loss

incidents and detect key feature patterns associated with hot-spots.
2.5.1 Feature Dimension Reduction

Many factors are believed to influence highway losses. A recent hot topic in

highway safety is texting-while-driving, which has been proven to be associated
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with many cases of fatal crashes. Many states have passed laws banning texting-
while-driving to curb this dangerous and burgeoning distraction. Although it is
widely accepted that texting-while-driving bans are intuitive countermeasures, the
effectiveness of these laws has been debated in highway safety community,
largely because of difficulty enforcement of such laws. Police often complain
that lack of economic or human resources, difficulty to discern whether use of
cellphone is texting (typically illegal) or dialing (legal in some states), and other

factors, undermined their enforcementability.

Texting-while-driving bans are a good example to show the complication of
factors related to highway losses, which include deaths, injuries and property
damage. It is well known that demographic factors, social and economic factors,
and legislative factors contribute to highway losses at certain spatial levels.
Previous studies also have shown that roadway related factors, weather related
factors, vehicle related factors and driver related factors are also related to
highway losses. In addition, many of these factors may confound or interact with

each other, making prediction of highway losses even more difficult.

The high dimension of the multivariate data often bring side effects in the process
of prediction: first, many variables create noise in the process of prediction and
mask real discriminators; second, many variables exhaust the computation
resources and sometimes even make real-time systems infeasible. If data mining
is the first process of highway losses prediction, reduction of dimensions should

be resolved first. In other words, | need to identify the key predictors first.
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2.5.2 Initial Screen by Visualization

A three-phase procedure was applied to first classify the available feature set into
two subsets. One is a subset whose elements are homogeneous through a study
time period or at least their variation during the study time period are trivial so
that an independence from time can be assumed. Then, the feature subset not
sensitive to time is reduced to a dimension in order to make the further
computation feasible. Then quantitative solutions will be applied to further
suppress the dimension to form the final subset, the key feature subset. We initiate
the second process using a triplet (£, vy, F1), where F'is the initial non-time-
sensitive feature set, vy is a visualization screen procedure, and F7 is the subset of
F which is composed of elements chosen from F' in the procedure. Data in F'
come with the form (zj,z;p,...,xj)and data in F; have the form of

(zi1,zi2,...,x;) Wherep >0, 1 >0, and p > [.
J J J

In visualizing highway loss data, parallel coordinate plots (PCP) served as the
primary phase one tool in dimension reduction. The concept of PCP was invented
by the French mathematician d'Ocagne (d'Ocagne, 1885). Wegman (1990)
discussed the parallel coordinates geometry and demonstrated statistical
interpretations, which laid the foundation for applications of parallel coordinates.
Parallel coordinates maps a set of points on a line in a p-dimensional Cartesian
coordinate system to a set of polylines (or curves) in parallel coordinates all
intersecting at n — 1 points, thus overcomes the limitation that scatter diagrams
do not generalize readily beyond three dimensions. Wegman (1990) implemented
parallel coordinates in the way that n axes are drawn in parallel, and a vector

(zj1,xj2,..., ;) is created by plotting =, on axis1, x, on axis2, and so on

61



through z,, on axis p. These p points are joined by a broken line which intersects
with each axis, thus a point in the p-dimensional orthogonal coordinate system is
transformed to a set iof polylines in 2-dimensional coordinate system. Although
in the transformation some loss of information is expected, structures such as

linear or nonlinear features, clustering, and outliers can be detected.

Figure 2.1 is an example which represents 25-dimensional ZIP level census data
in a parallel coordinates plot based upon Maryland 2000 census data. Wegman
(2003) demonstrated the implementation of variable selection and dimension
reduction using Brush-Tour, Tour-Prune, color design and other strategies.
Moustafa (2011) further explored density estimation techniques to overcome the
visual cluttering limitations inherent in the plot and discussed the duality theorem
and its usability in identifying patterns visually or by automatic means. In another
article published in the same time period, Moustafa discussed space transformed
visualization (STV) techniques for visualizing multivariate data, which empowers
the discovery of correlated records, clusters and outliers based on the curve’s
intersections, gaps and isolations, respectively. By visualizing highway loss data

structure using above techniques, elements of F; can be decided.
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Figure 2.1 Demonstration of Crystal Vision parallel coordinate plot using ZIP

level Maryland 2000 census data

2.5.3 Feature Selection via Classification and Regression Trees

Although in phase 1 of variable selection a large number of predictors were
excluded, there are still difficulties in deciding the key features. First, to avoid the
case that a real predictor is accidentally eliminated, phase 1 tends to be
conservative so still a large number of predictors have been produced. Second,
complex interactions or patterns may exist in the data. For example, percent of
population with high school education or higher is correlated with per capita

income, and both variables could influence highway losses of a county.

(F1,Vvo) is defined as the phase 2 variable selection procedure where v, is the

feature search procedure which produces final key features. Classification and

63



Regression Trees, commonly referred as CART (CART is a registered trademark

of California Statistical Software, Inc.), serves as the tool in this process.
2.5.3.1 Highway Loss Data Input to CART

We sort component estimates { (71, A1 ), (F2, A2 ), -+, (Ryys Ago ) } by value of X,
in ascending order and denote the new set {(Fu),A\u)) (F@) Ao
)y eees (ﬁ(go),x(_%) ) }» R is the mixture weight corresponding to the component
with estimated parameter of A, thus N,y = max {A, ..., A, }, and Xq)= min

o~

(A1, A

Define )\, as a threshold such that if highway loss incidents intensity over c;
having underlying intensity greater than ), then c; are classified as "hot spots"
and they are cells considered to have high risk of highway losses. Setting of A,
often takes form of percentiles of A}, X, ..., \,, which are the observed highway

Y n?!

loss incidents intensity for the given sample ¥, ..., y,, a € [0,1]. For example,

!

Ao g5 IS the 95th percentile of A}, \,, ..., A

n*

Suppose a number, g, of components having estimated intensity higher than or
equal to A, and g, € {0,1, ..., go— 1}, let Iy = {Npy,---> Ay } and I
= {Xl, ,Xgo } respectively denote the high-risk intensity set and the whole
intensity set of components and 1, C I. If an observation is identified from the
component corresponds to X(i) € Iy, then | say this observation should be highly

risky.

First |1 form acategorical response variable z used to label the source component

of an observation so
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. ~ 90 ~ N
2= arg imax /7%(1')0‘(2') le; ) vie—(Ao Ic]'\)/(lzﬁ(l)()\(l) lci]) vie~(olel)y (2.46)
=1

I classify z as categorical. It has g levels of values: 1,2,...,gy,and forms a
sample ((X, z1), (X5, 22), ..., (X, z,) whose jth observation takes the form
(xj1,%j,...,zj 25)and (zj1,zj2,...,x;). These are the selected features

resulting from the initial screen in section 2.5.2.
2.5.3.2 Mechanism of CART

Using the samples formed in the previous section as input, |1 will use CART to
select key features and detect key feature patterns associated with "hot spots".
Figure 2.2 illustrates a regression tree used to explore relationships between
highway collision frequencies (counts of collisions de vided by registered
vehicles) and census data for some of Maryland ZIPs. The collision frequency
data in this illustration were artificial. All nodes with descendents are expressed
by blue rectangles in the diagram while nodes without descendents are named
leaves and are expressed by red rectangles. The target (dependent) variable in this
case is a numeric variable, collision frequency. Percentage of residents using
public transportation, population density (residents per square mile), percentage
of minorities, percentage of married registered drivers, and percentage of pickups
of the registered vehicles served as input variables. Conditions based upon values
of these inputs decides how to split a parent node into child nodes. Each leaf node
can be viewed as the final outcome following the decision path, which begins
with the root node and ends in the final position in the tree decided by the

regression tree algorithm.
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Figure 2.2 A regression tree to explore relationships between ZIP level highway
collision frequencies (artificial) with Maryland 2000 census data using Salford

CART

Breiman et al. (1984) laid the foundation of the mathematical theory and created
algorithms for the implementation of CART. With the whole dataset as the root
node in the tree structure, each parent node can be split into two child nodes
following certain "splitting rules”. The binary partitioning process can be applied

“recursively”, so the tree building process goes on until the process is stopped.

Typically CART analysis consists of four basic steps: tree building, tree building
stopping, tree pruning, and optimal tree selection. In the process of tree building,
the optimal split is selected so splitter and split point are both set by splitting

rules. Splitting rules are always in the form
An instance goes left if CONDITION, and goes right otherwise

where the CONDITION is generally expressed as "attribute X; < Xf Splitting

rules depend on algorithms. Typically these algorithms work top-down on a node
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by exhaustively searching over all X variables for the best split that minimizes
the total impurity of its two child modes. The measure of impurity, often referred
as the impurity function, depends on algorithms. When target variable is
categorical, one commonly used impurity function is the Gini measure which
takes the form

i(t) = > _p(klt)p(l[t) (2.47)
kAl

where tis the index of node, k£, I = 1,..., K are indexes of classes of the target
variable, p(l|t) is the conditional probability of class /given node ¢. For
regression, CART often uses least squares (LS, sum of squared prediction error)
or least absolute deviation (LAD, sum of absolute prediction errors) to measure

the improvement of each split.

The tree growing process stops when: (1) there is only one instance in each of the
child nodes so the recursion is impossible; (2) further splitting cannot bring any
gain for prediction following splitting rules; (3) the designed stop rule ends the
recursion, such as limit of number of levels in "maximal” trees, which are trees

grown to a maximal size without the use of a stopping rule.

In pruning the maximal tree, a sequence of simpler and simpler trees are
generated from which the final optimal tree is extracted. The CART pruning
mechanism begins with a cost-complexity measure based upon training data

defined in the form

R.(T) = R(T) + a|T] (2.48)
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where R(T) is the cost of the tree. For the maximal tree R(7") = 0 because there
is no prediction error. « is the complexity parameter and | 7' is the number of leaf
nodes in the tree. As « increases, the minimum cost-complexity tree will cut away
the bottom splits, which improve prediction the least. The selection of optimal
tree from the pruned sequence needs independent test data or cross validation to
the learning data. By setting the appropriate complexity parameter «, the
information in the learning dataset is fit but not overfit and the optimal tree

achieves minimum cost on the test data.

In the process of analysis, CART can rank predictor importance, which is based
upon the sum of the improvements in all nodes in which the predictor appears as a
splitter. Variable Importance (V1) is defined under the context of algorithms. For
the Random Forests algorithm, the most advanced VI is the "permutation
accuracy importance"”. By randomly permuting the values of a predictor variable,
its original association with the target is broken and thus there exists a difference
in prediction accuracy before and after permuting a variable. The permutation
accuracy importance is based on the average of these differences over all trees.

Breiman and Cutler (2008) define it as

Tree

VIO(X;)
VIX;)=+L—

Niree

where ¢denotes the index of a tree and ny.. IS the total number of trees

constructed. This can be rescaled to a "z-score"

2(X0) = VI(X)/(52-)

where \/ij is the standard error.
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2.5.3.3 Classification Tree Output and Regression Tree Validation

Let Xi,Xs,..., X,,be key features selected from the classification tree
described in the previous section, X, X5,..., X,, are in descending order of
their importance score and thus X; has the highest importance level. | define hot-

spot patterns first and then develop methods

The categorical response variable z defined in (2.46) denotes the source
component from which the jth observation originates, and thus z has levels
valued in 0,1,...,g0. In (2.46) the source component is already sorted by its
value from the least to the greatest, and thus for the observation y;, if z; €

{h,h+1,...,90} thenitis classified as highly risky.

Let Adenote the key feature space defined by X;,X,,..., X,, and their
corresponding domains. | partition key feature spacesuch that A =
AUAU---UA, and A;NA; =0 wherei,j € (1,2,...,g90) and ¢ # j, and
there exists a mapping F.(A;) — i, where F,. denotes the classification tree
prediction algorithm, thus we define the hot-spot key feature space (highly risky)

as
Agr :AhUAth]_U'--UAgO (2.49)

We denote P;be the path from the root node to the leaf corresponding to the
observation y;, and z; be its predicted component label, hot-spot patterns Py are

defined as

PHRjG{l,;,.,go} 1P} (2.50)
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2.5.4 Summary of Chapter 2

In this chapter, | have built methods extending EM (expectation maximization)
algorithm to Poisson point processes with incomplete data structure to undercover
the underlying components characterizing highway loss events. With component
information obtained, | have developed methods that use classification and
regression trees along with visualization procedures to identify key features
influencing highway loss intensities, and detect key feature patterns of the "hot

spot” loss areas.

70



3. Prediction of Highway Loss Incidents by the Use of
Bayesian Hierarchical Spatio-Temporal Model

In Chapter 2, methods for determining subpopulations of highway loss incidents
in the study area D, at time ¢ have been developed, and features having key
influences on the highway loss intensity have been identified. Meanwhile, key
feature vector patterns corresponding to "hot spots™ of losses also have been
defined. In this chapter, | start from clustering cells of the study area by mapping
the partition of the key feature space to the partition of the geographical space. By
doing so, cells in the key feature space "close™" to each other are aggregated so
that the homogeneity can be built and prediction of future losses on the study area
can be based upon aggregated cells instead of on each single cell. Then, for each
cluster, a Bayesian Hierarchical Model (BHM) is designed to predict losses at
t + 1 using the posterior of the current losses at time ¢, and the posterior of the
most recent past losses at time ¢ — 1 in the Bayesian modeling. The proposed
Bayesian model has an updating mechanism and thus adds adaptation to the

Bayesian approach.

71



3.1 Key Feature Space Partition and Study Area Partition

3.1.1 K-means Clustering Algorithm

The K-means clustering algorithm was named by MacQueen (1967) and Hartigan
and Wong (1979) detailed the algorithm in Fortran. It is old yet vigorous and
powerful. A more recent development was by Ahmad and Dey (2007), which
moved K-means clustering a big step forward by allowing the use of mixed

numerical and categorical data.

Let {ci co,...,c,} be the set of geographic cells, which partitioned the study
region Dy and {z1,x-,...,x, } be the n m-dimensional key feature vectors
corresponding to {c; cs,...,c,}. Here x;is the observed feature vectors on
c; and the mapping between x; and c; is a one-to-one mapping x; < c;. Each
element of the m-dimensional vector is a key feature identified by Section
2.5.3.3. | denote the key feature space £, C R™ and E, is a m-dimensional
Euclidean space. The jth observation of the feature vector set «; takes the form

(j1, Tjas -y Tjm)and j =1, 2,...,m.

To cluster (c¢1,c¢o,...,¢,) into K homogeneous disjoint partitions, Ci,
Cyy....,Cx (K <mn ), | use the K-means clustering method on n vectors
{x1,xs,...,x, } and partition them into K sets S = {S;, S, ..., Sk} Here
clustering is used to partition and assign a set of objects into homogeneous
clusters on the basis of measures of distance so that the objects (vectors/points) in
the same cluster are more similar/closer to each other than to those in other
clusters. In the Euclidean space E_, the distance between two vectors, x, and

x,, 1S measured by the distance function
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m

d(zy,x,) = d(@y, ) = | D (Tu; — Tyi)? (3.1)

i=1
where x; is the ith element of the vector x;.

The whole process of the partition can be described as to cluster n vectors
{x1,z9,...,2,} into K sets S = {5y, Sy,...,Sk} S0 as to minimize the

within-cluster sum of squares (WCSS)

. K
argmin S~ S ey — gl (3.2)

i=1 z;€S;

where u; is the mean of points within cluster S; and ||x; — ;|| denotes the

distance between z; and p; as defined in (3.1).

The nature of the k-means algorithm is to search for a k-partition with the locally
optimal within-cluster sum of squares by moving points from one cluster to
another. Other versions of k-means clustering followed the same idea and can be

summarized in two steps after setting the initial K means, uio), u§°>, . ,,u,gg),

Assignment- step: Assign each vector to the cluster whose mean is closest

to it.

S\ = {a; : ||lmj— il <lla;—pul| ¥ 141}
where Sgt) is the ith cluster at ¢th iteration, 1 < [ < K, each point can only be

assigned to one cluster

Update - step

1
plt = S g,
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where |5\")| is the cardinality of 5.

The algorithm repeats the Assignment- step and the Update - step until no further

change of assignments are made and thus converged.

3.1.2 Modification of the Distance Function

The key features X, Xs,...,X,, decided in Section 2.5.3.3 were sorted in
descending order by their importance level. Thus, the first element of the vector
x;, x; is a realization of the feature with the highest importance level, X, and
the last element z,, is a realization of the feature with the lowest importance
level, X,,. | make some modifications to the traditional Euclidean distance based
upon two considerations: first, | need to take into consideration influences of
scale of key features on distance functions; second, |1 want the features with

higher importance levels to contribute more to the distance function.

I apply the robust MAD standardization (median absolute deviation from median)

to X first. The median absolute deviation is defined as,
MAD.; = median;(|z, — median;(z;)|)

The MAD standardization uses median absolute deviation as scale and uses the

median as location, thus

P (3.3)

where z’; is the MAD standardized ;.
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Let VI, be the importance level of X; thus VI; > VI, > ... > VI, >0, and

define the relative variable importance level as w;, where

o= Y (3.4

Thus, the distance function is defined as

dz',z') = d(z',z’) = f:w?(%z — )2 (3.5)
i=1

3.1.3 Determination of Number of Clusters

The K-means algorithm needs the number of clusters, £, as input. There are no
completely satisfactory methods that can be used to determine the number of
population clusters for cluster analysis. Fang and Wang (2012) proposed a
method that selected the number of clusters via the bootstrap method. Liang et al.
(2012) developed a method determining the number of clusters using information
entropy for mixed data. Wang (2010) presented a method via cross-validation.
Typically the data used for testing the above methods contained no more than 10
clusters. It seems that there is no hypothesis test good enough to produce an exact

k.

Different criterion may produce different results in the number of clusters
selected. Wong and Shaack (1982) described the kth-nearest-neighbor density
estimate. Based upon this concept when varying values of k& yields a constant
number of modal clusters it is strong evidence that at least that many modes are in
the population. Here | use Hartigan's index defined in Hartigan (1975) to
determine the number of clusters to partition the key feature space. Let W(k)

denote the within-cluster sum of squares. Hartigan's index defined as following
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H(k) = y(k) s (3.6)

where (k) = n — k — 1. Hartigan (1975) showed that from kto k + 1, H,g’“(;)l) is
not monotone, thus by comparison of improvement, an optimal value of k£ can be

decided. Here I developed the following procedure,

76



Inputs

MAD standardized matrix of X’

nxm

Control parameters

90
n
Initialization

apply k-means clustering to X, ,, assuming g, clusters

Xm

compute W(go) and ~v(go)
fork = go,...,n

apply k-means clustering to X, ., assuming k + 1 clusters

compute W(k + 1), v(k + 1), and H(k)
if H(k — 1) exists

if H(k)/H(k — 1) no longer monotone, exit for loop
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3.1.4 Mapping the Key Feature Space Partition to the Study Area Partition

Let S = {51,95,, ...,Sk} be partitions decided by the k-means clustering

procedure in Section 3.1.4 and let u; be the mean of cluster S; thus

S = {a;: [l — pll < |lzj— gl V 1 # 1}

Based upon the one-to-one relationship of z; < ¢;, I map S; — Cj

Ci ={c: ey — pill <llws—ll V1 # i} (3.7)
The equation (3.7) partitions D, into K clusters (groups) of geographic cells thus

=1,....k i#l

7

3.2 Bayesian Hierarchical Model on Spatio-Temporal Process

3.2.1 Bayesian Hierarchical Model (BHM)

The whole Spatio-Temporal point process of highway losses can be thought as a
temporal process of spatial point processes, let Z(-;-) be the counting process
as described in Section 2.1 and its conditional intensity function is defined as

i E(Z(ds;dy) [He)
lim V(ds)’dt 2

¢(s’t) |ds|—0
dy—0

The BHM proposed here first separate spatial components from temporal
components (always discrete) to avoid the correlation entanglement between
these two kinds of components, and thenat a given time point ¢ partition the
nonstationary study area into subregions so that the stationarity can be well

assumed in each subregion.
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The term Hierarchical Model (HM) here means the uncertainty in data. The
uncertainty in the modeling has to be decomposed into two or more levels, and
hence involves several levels of conditional distributions. 1 follow the
terminologies that Berliner (1996) used to describe the levels of modeling

discussed in Chapter 2.

Data model [Z|Y, 0], the top level expresses the distribution of the data given a
hidden process, e.g., the observed number of events in certain areas at time point ¢

once the underlying Poisson point process is given.

Process model [Y'|0], underneath the top level is the process model level. This
level models the uncertainty of the hidden process in the above data model
through a conditional probability distribution, given that all parameters prior to
the hidden process are known. For example, in Section 2.4 the parameters of each
component of the mixture model have been decided, a multinomial distribution

"decides" the dominating Poisson process of sub regions/cells of the study area.

Parameter model [Y'|6], the bottom level models the uncertainty of parameters
prior to the process model, e.g., the parameters of components in the mixture

model in Section 2.4.

It should be noted that the parameter model can also be made up of submodels
through sublevel conditional prior distributions. Itis also possible that a
Hierarchical Model does not have the process model, but has the data model and

multilevel parameter models.

The Bayesian approach, which is fundamentally different from the classical

frequentist approach described in Chapter 2, is applied in the Hierarchical Model
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described above. The origin of the Bayesian approach comes from Bayes'

theorem,

P(A|B) = ZELEA, (3.8)

where P(A) and P(B) respectively denote the probabilities of event A and B
while P(A|B) and P(B|A) denote the conditional probability of event A given

event B, and the conditional probability of event B given event A, respectively.

I follow notations and definitions in Section 4.1 of Shao (2003) to introduce the
Bayesian approach under the context of decision theory. Let 6 be a realization of
a random vector @ whose prior distribution is IT on ©. A sample Y is drawn from
the conditional distribution of Y given @ = 0, Py = P4, the observed sample
Y =y is then used to obtain an updated prior distribution, the posterior

distribution, Pg‘y, and its density function takes the form

dPy, (6
Doy = —ga = f"ffj()y)( ., (3.9)
where P, is dominated by the o-finite measure v and fy(y) = % is a Borel

function on (Y x O, o(By x Bg)) and ) is the range of y; % = 7(0)is
dominated by the o-finite measure A and m(y) = f(_) fo(y)m(0)d\. The posterior

distribution Py, conditional on the observed Y = y, contains all the information

Y1
needed to make statistical decisions and inference. | define an action space A in a
decision problem and define L(6,a) > Oas a loss function (e.g. squared error

loss), for any y € ), a Bayes action with respect to ITis any 6(y) € A such that

E[L(O,6(y)Y = y] = min E[L(0,a)| Y = y] (3.10)

In
a €A
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where the expectation is with respect to the posterior distribution Pg,. In the
context of this dissertation, the Bayes action exists and is unique.

I use (fo(y) = dg;“’, m(0) = %)to denote the Bayesian statistical model, a

Bayesian Hierarchical Model is a Bayesian statistical model that has either three
layer models (data model, process model and parameter model) or two layer
models (data model and parameter model) whose parameter model is a multilevel
model, where the prior distribution m(6) is decomposed into conditional

distributions
m1(0]61), m2(01|02), ..., 7,(0,-110y)
and a marginal distribution ,, 1 (6,,) such that
T(0) = Jo,x0,¢...x0, T (01601) T2(01(02)- -7, (0-116) Ty s1(05)do, - -~y ,,
(3.11)
where ©; is the parameter space for ¢, andi = 1,2,...,n.
3.2.2 Assumptions Made in the Bayesian Hierarchical Model

I make two assumptions for the BHM proposed in this dissertation. The first is the
homogeneity assumption. At a certain time point ¢ of study interest, let C; be a
cluster generated from Section 3.1.4 based upon k-means clustering on the key

feature space, Completely Spatial Randomness (CSR) is assumed within C,.

The second is the first-order Markov property. Denote a time series by {Y; : ¢
=0,1,...,T}, and denote distribution of Y; as [Y;], then the joint distribution of

the time series is denoted as [Yp, Y1, ..., Y;].

| assume
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Yo, Yi,..., V] = [Yo]f[l Vilvia). (3.12)

It means only the most recent past of the whole past determines the conditional

probabilities about the present.
3.2.3 Prior Information and Prior Distribution of the BHM

In the Bayesian interpretation a probability measures a degree of belief while in
the frequentist interpretation it measures a proportion of outcomes. The prior
probability distribution, denoted by 7(#), is a hypothesis made on the uncertainty
of 0 before observed evidence is obtained from the distribution P, dominated by
6. The posterior distribution P9|y can be viewed as the result of the correction the
observed evidence made on the prior distribution. Thus, the posterior is
determined by two factors, the prior 7(#), and P,, also known as likelihood.
Under Bayesian approach, when a prior is known, the derivation of the posterior
is obtained by dividing the resulting joint distribution by its marginal distribution.
Once the posterior is produced, inference, estimation, and prediction can be made

based upon it. It is obvious the prior distribution is the key to Bayesian inference.

A convincing Bayesian inference to a large extent depends on making the right
decision in selecting an appropriate prior. Practically there are two difficulties in
the selection of the prior distribution: first, there is no prior information precise
enough to provide a basis for the selection; second, prior information is enough
while there are more than one distributions compatible with that prior information
which makes the selection not unique. Historically critics of Bayesian paradigm

have focused their criticisms on hypothesis of prior distributions. The recent
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developments in Bayesian robustness analysis and the introduction of hierarchical

modeling have largely quelled these criticisms.

In recent years, the objective Bayesian inference theory has made great progress.
This theory allows that prior distributions used to make an inference to be least
informative in a certain information-theoretic sense (Berger, 2009a, 2009b). In
contrast, Williamson (2010) agrees that priors usually represent subjective
judgments of opinion in practice that cannot be rigorously justified. | think in
practice the selection of priors is influenced by the research interest along with
the prior information. If prior information is available about 6, it should be taken
into consideration in the design of 7(#), especially when the present data are
related to previous data in a certain way, and noninformative priors can serve as a
validation in the belief that they should not produce results significantly
inconsistent. On the other hand, the indeterminacy in the selection of prior
distribution influences the posterior distribution, even if the prior information is
precise. Thus, ideal priors should be robust and the process of selection should
limit the arbitrariness. Additionally the resulting posterior should take close form

without adding complexity to the model.

Berger (1990) introduced the concept of classification into the robustness
analysis. In this paper, Berger proposed the uncertainty about the prior
distribution 7(#) could be represented by the assumption that 7(6) belonged to a
class of distributions P,. Berger (1990) recommended that conjugate prior classes
should be used when the likelihood was in an exponential family, which takes a

generic form £ (y|0) = h(y) e??~¢) then its priors can be expressed as

7(0|p,v) = K (p,v) er=ro0) (3.13)
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where K(u,v) is a normalizing constant, and the corresponding posterior
distribution takes form 7 (0| + y, v + 1). Here % = 7(0) is dominated by the

o-finite measure A and v > 0 and 5 e N holds.

The use of conjugate priors is desirable. When conjugacy holds, the posterior is in
the same family as the prior distribution, thus the evidence only corrects the
parameter of the hypothesis. Conjugate priors also have intuition and rationale
when showing how the evidence updates the priors. In addition, the computation

and the following inference are convenient.

The use of hierarchical models adds extra submodels to model the uncertainty of
parameters of priors, e.g., the first-level prior distribution can be denoted as Il,
and if necessary, the second-level distribution can be introduced, W, the
hierarchical levels can increase until it meets the demand of modeling. Because
misspecifying a second-level prior is much less serious than misspecifying a first-
level prior (Berger, 1985, Section 4.6), the multi-level model brings more
robustness, and the use of noninformative priors in the second-level prior is better

justified than in the first-level prior.
3.2.4 Design of the BHM

3.2.4.1 Conjugacy

Let Cybe the kth (k = 1,..., K)cluster determined in Section 3.1.4 resulting
from the partition of study region Dy at time ¢, and ¢ is discrete and ¢ — 1 be its
most recent past. At time ¢, letcy,, the cell indexed by k;, be the jth element of
Crwhere k; = ky,...,kyandlet J, denotes the dimension (number of cells) of

K
Ch, thus Jiy is decided by Cpand we have 3 .J;) = n, which is the total
k=1

84



number of cells of D,. Let Y}, a discrete stochastic random variable, be the
number of events observed on ¢, and |ckj] be the area of ¢, and let y,, be the
realization of Y}, thus yy,, ..., y, is a random sample of highway loss events in
C) at time ¢. Let Yk/j be the corresponding discrete stochastic random variable of
Y%, at the most recent past ¢ — 1and y}w be its realization, and y; , ..., y; form a

random sample of highway loss events in C}, at time ¢ — 1.

Based upon the CSR assumption made on Section 3.2.2, let \; denote the
intensity dominating the Poisson counting process on Cj, then the probability

mass function of Y3, on ¢, is

A |CL~ ykj —(\s. e
SyrlAe) =Pr (Yi, = uyi,) = Qo) =0l (3.14)

Here | propose a Gamma distribution 7w(\;) as the prior distribution of the
likelihood Pykjmwhose probability mass function is f(yx,|A\x), the density

function of the prior is

g

L
T(Aklaw, Br) = Fﬁggk)AZk_lefﬁm-

The likelihood is
k,] Yk .
()\' |C|) / — Cp. .
f(yklykJ|Ak) — H #6 (Mg | k7|)

Yk .+
kmky

k k
> kj:Jl"l Yk (> ch:Jkl |(‘7\‘]“ Ak

o (Ag) e
after omitting constants. The posterior

T(AklUry- - Uk, ) < f (Yhy- - Uiy [ M) T(Ak] o, Br)

85



ky o, 1 - ki e
ij:kl ykj"'ak 16 (Z kj:kl |(4\‘]-‘ +ﬂk))‘k

x (Ar) : (3.15)

and also takes the form of a Gamma distribution,

T(NklYky- - Yr, ) ~ Gamma( Zk]ijkl Yk, + ok, ijlgkjckj\ + Bk), it has
been shown in (3.15) that the proposed prior is a conjugate prior.

3.2.4.2 Updating Mechanism

Feature space formation (also known as the key feature selection) and the key
feature space partition are done at each time point ¢. Thus, they depend on t.
Bayesian Hierarchical Model is based on loss data ;. ,...,y;,0on Cy att — 1 first
using a Gamma-Poisson hierarchical model implemented by Gibbs sampler

(described in later section)

Let Xk denote the intensity on C}. at the most recent past ¢ — 1,and propose the
distribution density of )\, as

/
k

’ ’ ’ ﬂ’ta
T(Aplay, By) = p(ka;)

Its posterior distribution

TNy Yoy » Qs Br) 0 F (Y- Y, I TNl B7)

k k
Z "'j:Jkl yi:j+(12-_1 - (Z AJ:JI» |Ck'j| +ﬁ/7)l/c)/\2'

o (AL) e ! , (3.16)

serves as the prior distribution for present losses at ¢. The corresponding posterior
distribution of A, for the present ¢, denotes as f(Ax|yk,- .-y, ) in (3.15), serves as
the prior distribution in modeling the intensity distribution of the nearest future

t + 1. Thus an updating mechanism is well built.
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3.2.4.3 BHM Modelingat¢t — 1

The completely spatial randomness (CSR) assumption made in Section 3.2.2 is
based on time specific feature space formation and partition at time ¢. | extend
this assumption to ¢t — 1 which is justified for the following reasons. First,
changes in feature space formation and partition from ¢t — 1 to ¢ are expected to be
limited, thus, the compromise on CSR should not be beyond acceptance. Second,
even a compromise exists, the loss of precision is limited in the prior at ¢ (the
prior is by nature a hypothesis) and the prior will have a chance to be corrected
by observations (evidence) at ¢. Next, | propose one hierarchical model for the

most generic case and two empirical alternatives.
Hierarchical model

Figure 3.1 is the graphic model for the most generic case where all
hyperparameters (¢, 3) are unknown. Notations in Figure 3.1 follow the directed
acyclic graph (DAG) for the Bayesian network originally defined in Spiegelhalter
(1998). In DAGs, a node ¢, is referred to be a parent node of ¢ if an arrow
emanating from ¢ points to &, and £ is said to be a child node. Stochastic
dependencies are denoted by single-edged arrows while functional dependencies
are denoted by double-edged arrows. Rectangular nodes denote known constants
while elliptical nodes denote deterministic relationships or stochastic quantities.
Repetitive entities such as loops are denoted by overlapped plates. My interest is
primarily focused on stochastic nodes. Thus, constants are ignored and
deterministic relationships are collapsed in the description of probabilistic

relationships between stochastic nodes,

87



Figure 3.1 illustrates the two-stage BHM at time ¢ — 1 where «, 3y, v}, A are
all stochastic nodes having unknown parameters. \; is the first-stage prior with
unknown hyperparameters «/, and /3, while o, and /3, are second-stage priors
whose hyperparameters A,, B,,, and Bg are tuning parameters already known in

the implementation.

A Ba Bp

\t
Y

( Vi
Kj = Ky veey Ky \

A 4 \/4|\

Figure 3.1 Graphic model of the Hierarchical model

Aj. is the proposed intensity dominatingthe Poisson counting process on

Cr={Chys -1 Chjy v Chiy ) y;q is the number of loss events observed, conditional

on X, and the density mass function has the same form as in (3.13)
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: Ol e
FylXe) =Pr (Y, = ykj)%e Ol (3.17)

)\, is proposed to follow a Gamma distribution conditional on «'and 5'where both

hyperparameters unknown. It has the same form with (3.14)

/ / / ,‘0‘;\“ '—1 _pry\/
T(Aploy, By) = rﬂ(’a@ N e, (3.18)
' is proposed to follow an exponential distribution with a known parameter A,

m(a)) = Age4e%, (3.19)

' is proposed to follow a Gamma distribution with known parameters B,, and

Bg,
’ ByBe 1 By—1 _p
() =ty B e P (3.20)

Assuming independence between o'and 3, then n(a,, 8,) = m(a,)n(3,) and

oy >0and 8, >0,

To get the full conditional distribution for o, and 3, | began with the distribution

of o and /' conditional on X', after ignoring constants,

!

m(ag, BN o Fam e N (o, )

()
and

w0} Xy, BL) o B X (o) (3.21)
and

/

T( Bl N o) o B ke HN (). (3.22)
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It must be noted that \;, > 0in (3.18), (3.21) and (3.22).
Empirical model 1

The empirical model illustrated in Figure 3.2 is a simplified version of the above
hierarchical model. o/ becomes a constant, 3" takes the same prior distribution as

n (3.20), and the full conditional distribution of )\, in (3.17) simplifies to

TN B) o By N e (3.23)
d'x

\
S _
\75/-

1

Y

b
H_-j' = Kf! ey K.J (

\,/

Figure 3.2 Graphic model of Empirical model 1



T( Bl X o) o< B ke KN (). (3.24)

In an empirical Bayes spirit, | derive a}c by a method-of-moments empirical
argument. Let Yy ,...,Y; be random variables measuring highway loss events in
Cy at time ¢ — 1 from the distribution P), with density mass function of f(y;ﬁ|)\;€)
in (3.16), then the /th sample moment, ,?; Is an unbiased estimator of the [th
moment, 1; = E(Y})". Let 7 be theresultant loss event intensity on c;; at

Yr
5 then

7
|C]»"]'|

t—1landn, =

E(m,) =5 ~n, (3.25)
V() = VEG M) + EV (|3
= VE(5IM)) + EV(g41A)) = V) + g EO)

/!
@y

(8,)?

[0

>~

1
T o

i,

~ Q2

(S}
==

Py

where ﬁ and 55;. are respectively the sample mean and sample variance of the
i i I = L ki 2 1 ks
resultant loss event intensity n;, 7/ = 7o (Zk,,-:kl n,) and Sy = J(,@(ij:kl

(mh, — m)%), Jay is number of ¢, s in Cr.

From (3.25) and by further averaging (3.26),

o ~ - : (3.27)
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Empirical model 2

This proposed empirical model, as illustrated in Figure 3.3, is a further simplified
version of the above empirical model shown in Figure 3.2. In addition to the
change of o' from a stochastic node, which is unknown, to a constant node, 3

also changes from a stochastic node to a constant node.

In this model, the value of o/ is determined in the same way as in (3.27), and

from (3.25) and (3.27),

7=~

By ~ 4~ e o (3.28)
s B
|5
A AN /ﬂ’ >

Figure 3.3 Graphic model of Empirical model 2
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3.2.4.4 Gibbs Sampling

Gibbs sampling, detailed in Geman and Geman (1984), Gelfand and Smith
(1990), and Bolstad (2010), is a Markov Chain Monte Carlo (MCMC)
randomized algorithm used for obtaining a sequence of samples from multivariate
probability distributions where direct sampling is difficult. Gibbs sampling has
two advantages. First, it is simpler to sample from the distribution of one variable
conditional on all other variables (full conditional distribution) than to sample
from the marginal distribution of that variable by integrating over the joint
distribution of all variables. Second, Gibbs sampler only requires the conditionals
up to proportionality, the procedure of normalization, often the most difficult step,

is not needed.

Let {zi,...,z,}be a sample from a joint distribution f(zy,...,z,), the full

conditional distribution of x; takes the form

f($j|131, ceey L1y Tjtpls 1y .- 7$n) = ]‘(a:lJ,;(il;x;f]”,)l,,xn)
X f(x1y.. @) (3.29)

Suppose | want to get 7 samples from the joint distribution, the Gibbs sampler

proceeds as follows:

1. Begin with initial values {x&o), e x%o)} for each variable.

2

2. For each sample i = {1,..., I}, sample each :1:5 ) from the full conditional
distribution f(z\"|, (", ..., 2", {7V, 1, ..., 2{"") . The whole process uses

the most current value of one variable once it's sampled.
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As i — oo, f(xgi),...,ng)) 9, flxy, ..., x,).

3.3 BHM-Based Highway Loss Event Intensity Prediction
3.3.1 Focused Area Loss Intensity Prediction

Let A be a focused area of study interest between D, and its elements (cells). A is
composed of cells in D, and the set of cells of A is a subset of cells of D;. If
Dy is a state and each cell is a census tract, a good example of such an area of
study interest could be a city or a county. Let ¢, be a cell of A indexed by a;,
aj=1,...,ay;. A ={ca-- s}, oy €{C1,62, .0, }, ay <, and

{Cays---sca,} CT{er,ca,.ien}

Denote &, 3, as the BHM estimators of o, and 3, defined in Section 3.2.4.3 and
determined in Section 3.2.4.4 by use of Gibbs sampler. The prior of loss intensity

on (). at time t — 1 follows a Gamma distribution,

Al
~ 1O

PN ~1 d\/_ _/\/ ,
Tl Br ) = S M e A (3.30)

and its posterior distribution takes the form

oy / AR ﬁkd\k ’ (/J\(k—l 7/3’\]\‘)\/
W(Ak|yk17“'aykﬂak ) 5/& ) = F(&))\k € " (331)

A _ k’ ’ ! N _ k ~!
where aj. =3, ¥y, +ap,and 5, =30, Y e | + By
TNl - Y, &), Br ), the posterior loss intensity distribution on C;, at time
t — 1, also serves as the prior distribution of the loss intensity A, at time ¢, and its

- A - - -
posterior, T(A\i|&,, B, Yr,» - Yy, ), Serves as the predicted intensity on Cj, at the

nearest future ¢t + 1.
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o

A N
71'()\“0[, ﬁ: Ygyo oo ’yk’,]) = F(;{é\k)

IS

)\k“N‘f‘le‘ﬁW (3.32)
Where o = Z kj:Jkl yk] -+ &, and ﬂk - Z kj:kl |ij‘ + /8/€ .

For the convenience of predicting the loss intensity on A at time ¢+ 1, the
predicted intensity on C} at time ¢+ las is denoted as X, and the predicted

intensity on A at time ¢ + 1 is denoted as X(A).

Letw,, = %,Which is the proportion of the area of the cell ¢,, on A, be
~ ag K _
AMA) =22 wa; - (32 A+ Lo(cqy)) (3.33)
a;=a k=1
1 ifca, € {cryseoyChyyereyCryt
where ¢, (ca, ){ 0 otherwise '

Thus, the predicted loss intensity at time ¢ + 1 takes the form of a mixture Gamma

distribution, and it has an expectation of

- ay K
EA(A)) =3 wy - (k; 5 - laea)), (3.34)
and a variance of
~ ay 5 K &
V(A(A)) =20 wy - (2 A Iy (cq;))- (3.35)

1 (

aj:al ]{,’

3.3.2 Loss Intensity Prediction of the Whole Study Area

Dy is the study area with jth cell ¢;,j=1,...,n,and Dy = {c1,¢z,..., ¢, }. Let

wj = % be the proportion of the area of the cell ¢; on D, , the predicted loss
j=11Cj

intensity of D, attime ¢+ 1is
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X(D.) =3 w- (5 R To(er) (3.36)

k=1
1 ifc; € {cryeeeyChiyerycr,}
where Ick(cj){ 0 othérwise j o

Similarly, the predicted loss intensity of D, at time ¢ + 1 also takes the form of a

mixture Gamma distribution, and has an expectation of

~ n K
BO(D,) = L i+ (L &+ Ta(e), (3.37)
and a variance of
- n 5 K
VD)) =Y - (X & - Ia(e). (3.38)
j=1 k=1 \Pk

3.3.3 Predicted Loss Centroid of the Whole Study Area

K
Let s, = (s, , 592, ) be the geographic centroid of ¢, and let > A, - Ic,(¢;)) - |¢j]
J J ] k=1

be the predicted number of events at time ¢+ 1 with an abstract centroid of

(slcj, 5207_). | abstract the loss centroid of D, attimet + 1 to

S1p, = T -, (3.39)
jzl((;:l)\k-'fq(f;)) lesl )
n K _
2 (2 M Ioy (e))) el -sae;)
SQDS = JZ]'nk:lK _ ° (3'40)
; 1((;:1)\A-'ICA(M)) lesl )

3.3.4 Summary of Chapter 3

In this chapter, | have developed methods using a k-means based algorithm and

specially tailored distance functions to partition the key feature space into
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homogeneous clusters, and map this partition to the geographical space partition.
Then, I have developed theory and methods of a Bayesian hierarchical model
(BHM) that uses the current time point loss information and most recent past loss
information to predict the future losses for each cluster. The BHM has a good

updating mechanism and adds adaptation to the Bayesian approach.
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4, NHTSA FARS Data and Proposed Bayesian
Hierarchical Spatio-Temporal Model

In Chapter 2 and Chapter 3, | have built the methodology framework composed
of the following components: the selection of key features, "hot spots” pattern
detection, key feature space and geographical space partition, and the Bayesian
Hierarchical Model (BHM) with adaptation in the prediction of future losses. In
this chapter, | apply these methods to 2009, 2010 and 2011 Fatality Analysis
Reporting System (FARS) data published by National Highway Traffic Safety
Administration (NHTSA) of U.S. Department of Transportation. The 2009-11
FARS data are the most current data available for this dissertation. It should be

noted the software used in this chapter is SAS 9.3 unless otherwise stated.

4.1 FARS Data and the Poisson Point Process

4.1.1 FARS Data

FARS is a census of all crashes of motor vehicles traveling on public roadways in
which a person died within 30 days of the crash (NHTSA, 2012). The deceased
person can be either an occupant of a vehicle or a non-motorist. FARS was
created by NHTSA and has been operational since 1975. According to NHTSA
(NHTSA, 2010), FARS is the only source of U.S. real-world fatal crash data to

serve the public use in "conducting basic research, identifying problem areas,
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developing effective countermeasures, identifying program and rulemaking needs,
developing and evaluating programs, rules, and standards...” by legislature
institutes, governments, academic researchers, medical community, automotive

industry, insurance industry and other traffic safety stakeholders.

FARS data originate from police-reported fatal motor vehicle traffic crashes
within the 50 States, the District of Columbia, and Puerto Rico. Data are input by
FARS analysts in each state and are then transmitted to DOT for quality
assurance and analysis. Data sources include: police accident reports, state
vehicle registration files, state driver license files, state highway department data,
vital statistics data, death certificates, etc. (NHTSA, 2010a). The collection,
standardization, quality control and analysis process lead to the lag in FARS data.
Typically after September, NHTSA publishes the FARS data and initial analysis

for the previous year.

The content of FARS data collected includes, but not limited to: the time and
location of the crash, number of people and vehicles involved, vehicle type(s),
impact points, driver's license status of all drivers, demographics of all persons
involved, their role in crash (driver, passenger, etc), injury severity, and seatbelt
restraint use. Driver and nonoccupant blood alcohol content measures are also

collected (NHTSA, 2010b).

The time and location of the crash is of greatest interest in this dissertation. The
date of the crash has been included in the data since 1975 and from 1999 on the
exact location of the crash was added to FARS data (NHTSA, 2013). The exact
geographic location of a crash is expressed by its "Global Position™ in the latitude

and the longitude, and is often collected either by GPS systems on the site of the
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crash or by Geographic Information Systems (GIS) after the crash. The format for
the latitude is: dd mm ss.ss (Degrees/Minutes/Seconds) and the format for the

longitude is: ddd mm ss.ss (Degrees/Minutes/Seconds).

Although FARS data quality has been improving over time, users still may face
difficulties, e.g. missing values of variables used. In Maryland, 5 out of 515 fatal
events in 2009, 3 out of 463 fatal crashes in 2010, and 5 out of 455 fatal crashes

in 2011, had missing GPS coordinates and thus lost exact locations.

4.1.2 Census Data and Geocoding

Table 4.1 is a simplified sample of 2010 census tract attributes. The 2010 census
defined 1406 census tracts and 12 of them are pure water area and thus are

excluded from consideration in this dissertation. It should be noted that the land

area was in square meters instead of square miles.
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Table 4.1 Partial attributes of 2010 Maryland census tracts

STATEFP10 COUNTYFP10 | TRACTCE10 | GEOID10 NAME10 ALAND10 AWATER10 INTPTLAT10 INTPTLON10
24 029 950100 24029950100 9501 170,616,683 5,541,577 | +39.3006660 | -075.8425009
24 029 950200 24029950200 9502 279,186,393 29,289,092 | +39.3109363 | -076.0379468
24 017 850600 24017850600 8506 60,285,332 17,307 | +38.5266341 | -077.0933062
24 017 850600 24017850600 8506 60,285,332 17,307 | +38.5266341 | -077.0933062
24 017 851002 24017851002 8510.02 42,640,094 225,588 | +38.5370101 | -076.9541185
24 017 850300 24017850300 8503 34,111,856 3,466,222 | +38.5530041 | -077.1569782
24 011 955600 24011955600 9556 88,677,690 427,648 | +38.7068793 | -075.7661753
24 011 955600 24011955600 9556 88,677,690 427,648 | +38.7068793 | -075.7661753
24 011 955600 24011955600 9556 88,677,690 427,648 | +38.7068793 | -075.7661753
Field Name Definition

STATEFP10 State code (Maryland = 24)

COUNTYFP10 County code, three characters

TRACT10 2010 Tract code, with leading zeroes and two implied decimal places (e.g. Tract "000302" = Tract 3.02)

GEOID10 Unique geographic ID (concatenated State + County + Tract codes)

NAME10 2010 Tract code, formatted for labeling

BLKGRP10 2010 block group

BLOCK10 2010 block

LOGRECNO Logical record number

ALAND10 2010 Census land area in square meters

AWATER10 2010 Census water area in square meters

INTPTLAT10 Latitude in degrees of a point within the tract

INTPTLON10 Longitude in degrees of a point within the tract

The path to link the census tract dataset to FARS dataset is via geocoding.
Geocoding is the process of assigning a location, in my case, the latitude and the
longitude, to an address by comparing the descriptive location elements in the
address to those present in the reference material. The address here has a variety
of forms. It could be a narrow term such as a normal postal address, or a general
term which could be a postal zone or a census tract. In this dissertation geocoding
specifically means assigning the exact location described by the latitude and the

longitude of a fatal crash to the 2010 census tracts.

In this dissertation, Esri ArcMap 10.0 is used for geocoding and other GIS

practice such as mapping. The following graph is the geocoding results of MD

2010 fatal crash locations.
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Figure 4.1 Locations of MD 2010 fatal crashes, map is created using ArcMap
10.0

Figure 4.1 shows that MD 2010 fatal crashes concentrate in outskirt census tracts
of Washington D.C. and Baltimore. The source of the location coordinates was
from the FARS data and the census tract definitions were from 2010 census

tiger/line shapefiles published by the U.S. Census Bureau.

Point to polygon spatial join operations were conducted to join attributes of the
fatal crashes to attributes of the census tracts. According to ESRI definitions,

spatial join operation is used to combine two or more datasets with respect to a
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spatial predicate. The predicate can be a combination of directional, distance, and
topological spatial relations. The topological predicate here is if a point (the crash
location) falls inside of a polygon (the census tract), attributes of that crash is

appended to that census tract.

4.1.3 Fatal Crash Intensity and Poisson Point Process

Following the first-order intensity function of the Poisson point process Z(:)
defined in Chapter 2 here the unit for the time ¢, is year, thus A, ;, the fatal crash
intensity at ¢ for the jth census tract c¢; (j = 1...1,394), which is the most basic
spatial element in this dissertation, is defined as the number of fatal crashes
occurring in ¢; at ¢ divided by |c;|, the area (measured in square miles) of c;

assuming completely spatial randomness (CSR) of ¢;.

Aoy = 2D (4.1)

le;l

Following the definition in (2.41) the observed intensity Xj is calculated as

! - Yiit
>\.th le; |

where ;. is the observed number of fatal crashes at ¢ for the census tract c;.
It should be noted that the number of fatal crashes is different from the number of

deaths since a fatal crash could result in more than 1 death. For example in 2010,

Maryland had 493 fatalities in comparison to 463 fatal crashes.

Figure 4.2 illustrates the distribution of the counts of fatal crashes by MD 2010
census tracts. The distribution is highly skewed, 1,039 of the 1,394 Maryland

census tracts did not have fatal crashes in 2010.
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Figure 4.2 The distribution of counts of fatal crashes of MD 2010 census tracts

A Poisson regression was fitted to 2010 Maryland census tract level number of
fatal crashes. The number of fatal crashes served as the event and the land area in
square miles served as the trials. Maximum likelihood estimator was computed
using logarithm as the link function. The regression estimated that the intensity of

2010 MD fatal crashes had a 95% confidence interval of (0.030, 0.037). Roughly
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a fatal crash occurred every 30 square miles. Detailed regression results are

presented in the following table.

Table 4.2 Maximum likelihood estimate of 2010 Maryland fatal crash intensity

Maximum likelihood parameter estimates of MD 2010 crash intensity

Parameter DF Estimate Standard Likelihood Ratio 95% Wald Chi- Pr > ChiSq
Error Confidence Limits Square

Intercept 1 -3.4015 0.0558 -3.5112 -3.296 3714.14 <.0001

Exponent 0.0333 0.0298 0.0370

4.1.4 2010 Maryland Fatal Crash Intensity by Census Tract

Figure 4.3 describes the distribution of the observed intensity of the 2010

Maryland fatal crashes at the census tract level. The underlying dataset had 1,394

observations corresponding to the 1,394 census tracts. The distribution of the

observed intensity was highly skewed. One thousand and thirty nine of the 1,394

Maryland census tracts had 0 intensity while the Census Tract 1901 had an

intensity as high as 13.5 fatal crashes per square mile in 2010.
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Figure 4.3 2010 Maryland fatal crash intensity distribution by census tract

To make it more intuitive, the observed intensity is further illustrated on a
thematic map on which the darker color means higher value. Although census
tracts close to a metropolitan center had higher intensity, there were exceptions as

indicated by the highlighted area.
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Figure 4.4 A thematic map on 2010 Maryland fatal crash intensity, created using

ArcMap 10.0

4.2 Finite Mixture Model on FARS Data
4.2.1 Kernel Density Estimation of the Fatal Crash Intensity

In this section, | applied the methodology proposed in Chapter 2 to identify the
sub populations (components) which dominated the 2010 Maryland fatal crashes.
Before using kernel density estimation (KDE) to investigate the multimodality of
the MD 2010 observed fatal crashes, I first explored the percentile of the observed

intensity.
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Table 4.3 Percentiles of the observed MD 2010 fatal crash intensity by census

tract
MD 2010 fatality intensity quantile estimates
Quantile | 9% | 99% 95% 90% 73;‘ e | 25% @1 | 10% 5% | 1% | 0% Min
Estimate | 13.5203 | 4.7845 | 15135 | 0.6181 | 0.0141 0 0 0 0 0 0

More than half census tracts had O intensity which makes the KDE very hard to
choose the right Sheather-Jones plug-in bandwidth. First 1 demonstrated the

intensity distribution for all observations in the following figure.
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Figure 4.5 Distribution and kernel density for observed intensity of all census

tracts

Here the bandwidth is 0.8 and a unimodal distribution is shown which is very
close to 0. In the application of KDE the choice of bandwidth had a great
influence on the number of modes detected. In this case, the mode close to 0
masked all other potential modes. Thus a second KDE was conducted over the
census tracts having positive intensities.

In Figure 4.6 two obvious modes can be identified plus another potential

candidate. The first one is very close to 0 from the right side, another one is larger
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than 1.0 but smaller than 1.5. | lack the confidence to claim the third mode
existing between 2.0 and 3.0, just like I did for the first two modes.
As for the multimodality, it's safe to say there might be three or four modes that

can be obviously identified by Kernel density estimate visualization. This finding

provides preliminary estimate to tune the algorithm to identify the exact number

of components in the finite mixture model.

Kernel Density for INTENSITY
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Figure 4.6 Distribution and kernel density for observed intensities > 0
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Table 4.4 Model fitting statistics by number of components

Model
ID

0 N O g A WODN -

W W W WWwWOWWNDNDNDNDNDNDDNDNDNDNDDED-=S=2 Qa2 a2 a2
N OO g bh ON =22 O O 00N A WON=_2 0 O 0o NO G A~ ODN =20

Component Evaluation for Mixture Models

Number of
Components Parameters
Total Eff. Total Eff.
1 1 1 1
2 2 3 3
3 3 5 5
4 4 7 7
5 5 9 9
6 6 11 11
7 7 13 13
8 8 15 15
9 9 17 17
10 10 19 19
11 1 21 21
12 12 23 23
13 13 25 25
14 14 27 27
15 15 29 29
16 16 31 31
17 17 33 33
18 18 35 35
19 19 37 37
20 20 39 39
21 21 41 41
22 22 43 43
23 23 45 45
24 24 47 47
25 25 49 49
26 26 51 51
27 27 53 53
28 28 55 55
29 29 57 57
30 30 59 59
31 31 61 61
32 32 63 63
33 33 65 65
34 34 67 67
35 35 69 69
36 36 71 71
37 37 73 73

2loglL

2501.17
2255.58
2209.89
2208.13
2208.13
2208.13
2208.13
2208.13
2208.13
2208.13
2208.13
2208.13
2208.13
2208.13
2208.13
2208.13
2208.13
2208.13
2208.13
2208.13
2208.13
2208.13
2208.13
2208.13
2208.13
2208.13
2208.13
2208.13
2208.13
2208.13
2208.13
2208.13
2208.13
2208.13
2208.13
2208.13
2208.13

AIC

2503.17
2261.58
2219.89
2222.13
2226.13
2230.13
2234.13
2238.13
2242.13
2246.13
2250.13
2254.13
2258.13
2262.13
2266.13
2270.13
227413
2278.13
2282.13
2286.13
2290.13
2294.13
2298.13
2302.13
2306.13
2310.13
2314.13
2318.13
2322.13
2326.13
2330.13
2334.13
2338.13
2342.13
2346.13
2350.13
2354.13

AICC

2503.17
2261.6
2219.93
2222.21
2226.26
2230.32
2234.39
2238.48
2242.57
2246.68
2250.8
2254.94
2259.08
2263.24
2267.41
2271.59
2275.78
2279.98
2284.2
2288.43
2292.68
2296.93
2301.2
2305.48
2309.78
2314.08
2318.4
2322.73
2327.08
2331.44
2335.81
2340.19
2344.59
2349
2353.43
2357.86
2362.31

BIC

2508.41

2277.3
2246.09
2258.81
2273.29
2287.77
2302.25
2316.73
2331.21
2345.69
2360.17
2374.65
2389.13
2403.61
2418.09
2432.57
2447.05
2461.53
2476.01
2490.49
2504.97
2519.45
2533.93
2548.41
2562.89
2577.37
2591.85
2606.33
2620.81
2635.29
2649.77
2664.25
2678.72

2693.2
2707.68
2722.16
2736.64

Pearson

9100.65
2394.17
1981.5
1976.7
1976.69
1976.9
1976.69
1976.84
1976.68
1976.59
1976.72
1976.68
1976.73
1976.69
1976.69
1976.93
1976.95
1976.67
1976.7
1976.79
1976.26
1976.79
1976.68
1976.51
1976.45
1976.78
1976.68
1976.69
1976.73
1977
1976.08
1976.84
1976.47
1976.78
1976.61
1976.72
1976.66

Max
Gradient

5.12E-06
0.0036
0.0002
0.0008
0.0008
0.0067
0.0022
0.0088
0.0029
0.0057
0.0027
0.0025
0.0032
0.0032
0.0180
0.0220
0.0067
0.0024
0.0020
0.0046
0.0150
0.0042
0.0017
0.0110
0.0130
0.0049
0.0059
0.0027
0.0023
0.0120
0.0370
0.0089
0.0085
0.0061
0.0037
0.0010
0.0014
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4.2.2 Decision on the Number of Components, g

The 2010 Maryland FARS data had a sample size of 1,394 and the above
multimodality examination suggested 3 or 4 modes. Thus according to (2.43) the
lower bound of the number of components, g;, was set to be 2 and the upper
bound, g;;, was set to be 37 (square root of sample size n). Finite mixture models
were run 37 times for each g. Each model fit the variable COUNT to a Poisson
distribution in which the number of fatal crashes served as events and the land
area, ALAND, measured in square miles, served as trials. Modeling fitting
statistics for 37 runs were compared to decide the exact number of components of

the underlying Poisson point process.

Table 4.4 lists the results for 37 runs. The AIC (Akaike's Information Criterion),
AICC (AIC with a correction) and BIC (Bayesian information criterion) all

suggests a clear cut of 3 components.

4.2.3 Component Estimates and the Mixing Probabilities

Table 4.5 are the results of the finite mixture model with 3 components. The
model was implemented assuming Poisson distribution using logarithm as the link

function, and the intensity estimates were listed in the last column.
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Table 4.5 Estimates of identified components

Parameter Estimates for 'Poisson’ Model
Component | Parameter | Estimate | Standard z Pr> |z Inverse
Error | Value Linked
Estimate
1 Intercept | 0.1376 0.1837 0.75 0.454 1.1475
2 Intercept | -2.1868 | 0.2087 | -10.48 | <.0001 0.1123
3 Intercept | -4.1285 0.1785 | -23.13 | <.0001 0.0161

The three components (intensity of underlying Poisson point processes) were

respectively estimated to be 1.1475, 0.1123 and 0.0161.

Table 4.6 Estimates of mixing probabilities

Parameter Estimates for Mixing Probabilities
Component | Parameter Linked Scale Probabil
Estimate | Standard | z Pr>z| ity
Error Value
1 Probability | -1.9063 0272 | -7.01| <.0001 0.0855
2 Probability | -0.5287 03133 | -1.69 | 0.0915 0.3391

The finite mixture model also estimated the mixing probability for each
component. The mixing probability was 0.0855 for Component 1, 0.3391 for
Component 2 and 0.5754 for Component 3. Based upon Table 4.5 and Table 4.6,

the underlying Poisson point process dominating the 2010 Maryland census tracts

took the form,
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90
fly;®) = S mif(y; \i) = 0.0855 % Poi(1.1475) +
=1

0.3391%P0i(0.1123) + 0.5784 % P0i(0.0161) (4.2)
In addition the model also calculated the posterior probability,

g
Ti(y;; W) =mif.(y;; 0;) /> mfi(y;6;) which is the probability the jth
=1

observation originated from the ith component which was defined in (2.14) of
Chapter 2.

Table 4.7 lists observed intensity and the posterior probabilities of components
from which this observation likely arose. Census Tract 1505 had an observed
intensity of 2.7275 and the likelihood it originated from the first component was

0.5838, thus it was most likely arose from the first component.

According to posterior probability 101 census tracts were most likely from the
first component which was estimated having the highest fatal crash intensity, 180
census tracts were most likely from the second component, and the rest 1,113
census tracts were most likely from the third component which had the lowest

estimate of the fatal crash intensity.
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Table 4.7 Example of posterior probability an observation arose from a component

NAMELSAD10 | COUNT ALAND | INTENSITY | POST_1 POST_2 | POST_3 | COMPONENT
ID

Census Tract 0 37.912 0 0 0.0152 0.9849 3

8505

Census Tract 3 23.276 0.1289 0 0.9551 0.0449 2

8506

Census Tract 0 16.463 0 0 0.1079 0.8921 3

8510.02

Census Tract 0 27.666 0 0 0.0396 0.9604 3

8511

Census Tract 1 13.171 0.0759 0 0.5365 0.4635 2

8503

Census Tract 0 68.331 0 0 0.0008 0.9992 3

8504

Census Tract 0 0.135 0 0.07465 0.3403 0.5850 3

805

Census Tract 1 0.367 2.7275 0.5848 0.3316 0.0836 1

1505

4.3 Key Feature Selection and Feature Space Formation
4.3.1 Data Source of Features

All independent variables used in this chapter were from the U.S. Census Bureau.
The Census 2010 is the most recent national census of the United States. Different
from the 2000 decennial census, for which some homes received a "long form"
(U.S. Census Bureau, 2000) questionnaire and most homes received a "short
form™ questionnaire, the 2010 Census only sent "short form™ questionnaire that
should take about ten minutes to complete. The questions included: name, age,
sex, date of birth, Hispanic origin, race, ethnicity, relationship (to the first name
listed on the form), and housing tenure (whether a family owns or rents their

home).

The "long form" was replaced by the American Community Survey (ACS), which

samples approximately 3 million housing unit addresses across the country on a
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regular basis to obtain important data on demographic, economic, social and
housing information. ACS datasets are combined to produce 12 months, 36
months or 60 months of data. The following table describes the availability of
ACS period estimates for geographic areas by population size (US Census

Bureau, 2009).

Availability of ACS data.

Data pooled to produce | Data published for areas with
1-year data sets populations of 65,000 or more
3-year data sets populations of 20,000 or more
5-year data sets populations of almost any size*

The 2010 decennial census provides demographic and household data at the
census tract and the lower geography level while the census tract level economic,
social and housing data can only be obtained from the 5-year ACS data because
most of the census tracts have populations less than 20,000. In this dissertation all
demographic and household data were from the 2010 decennial census and all

other economic, social and housing data were from the 2006-10 ACS data.
4.3.2 Initial Screen by Visualization

First, only variables at least to some extent relevant to this research were kept and

all other variables obviously irrelevant were filtered out from the demographic,
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economic, social and housing data sets. As a result, 47 out of 372 demographic
variables, 9 out of 597 social variables, 62 variables out of 549 economic
variables, and 47 out of 565 housing variables, besides 3 identity and label

variables, were selected as candidates for the initial screening.

Let F' be the initial feature set before the visualization screen procedure which
had 174 variables including the above selected variables and 9 variables in Table
4.1 which was also selected from the geography definition table from 2010 census
data. The initial screen is defined by the triplet (F',vy, Fy), where vy is the
visualization screen procedure, and Fj is the subset of £ which is composed of
the elements chosen from F' in the procedure. Data in F' come with the form
(zj1,2j,...,2;)and data in Fy have the form of (zji,zj,...,z;) where
p>0, [ >0,and p > [. Parallel coordinate plot served as the main tool of this
visualization procedure and only variables showed association with loss
intensities were chosen. Here | omitted the details of the visualization procedure

and gave a summary parallel coordinate plot shown in Figure 4.7.

The 31 variables in F; were listed in Table 4.8 in which every variable has a

detailed description.
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Figure 4.7 Parallel coordinate plot of the variables selected by the initial

screen
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Table 4.8 Variables selected by the initial screen

Variable |Variab|e description

Economic

COMPCTDRIVEALONE Percent; COMMUTING TO WORK - Car, truck, or van - drive alone
COMMEANMINUTES Estimate; COMMUTING TO WORK - Mean travel time to work (minutes)
COMPCTOTHERS Percent; COMMUTING TO WORK - Other means

COMPCTPUBTRANS Percent; COMMUTING TO WORK - Public transportation (excluding taxicab)
EMPPCTUMEMP Percent; EMPLOYMENT STATUS - Percent Unemployed

INCFAMPCT10_15K Percent; FAMILY INCOME AND BENEFITS (IN 2010 INFLATION-ADJUSTED DOLLARS) - $10,000 to $14,999

INCHHPCT10_15 Percent; HOUSEHOLD INCOME AND BENEFITS (IN 2010 INFLATION-ADJUSTED DOLLARS) - $10,000 to $14,999

INCNONFAMMEAN Estimate; INCOME AND BENEFITS (IN 2010 INFLATION-ADJUSTED DOLLARS) - Mean nonfamily income (dollars)

INCPERCAPITA Estimate; INCOME AND BENEFITS (IN 2010 INFLATION-ADJUSTED DOLLARS) - Per capita income (dollars)
Percent; INCOME AND BENEFITS (IN 2010 INFLATION-ADJUSTED DOLLARS) - With Food Stamp/SNAP benefits in the

INCHHPCTFOODS past 12 months

OCCPCTMANAGE Percent; OCCUPATION - Management, business, science, and arts occupations

OCCPCTSERVICE Percent; OCCUPATION - Service occupations

Housing

HSPCT1VEH Percent; VEHICLES AVAILABLE - 1 vehicle available

HSPCT2VEH Percent; VEHICLES AVAILABLE - 2 vehicles available

HSPCTGE3VEH Percent; VEHICLES AVAILABLE - 3 or more vehicles available

HSPCTNOVEH Percent; VEHICLES AVAILABLE - No vehicles available

HSPCT1UNIT

Demographic and household

PCTLTS Percent; SEX AND AGE - Total population - Under 5 years

PCT5_9 Percent; SEX AND AGE - Total population - 5 to 9 years

PCTMALE Percent; SEX AND AGE - Male population

PCTFEMALE Percent; SEX AND AGE - Female population

MEDIANAGEM Number; SEX AND AGE - Male population - Median age (years)

PCTWHITE Percent; RACE - Total population - One Race - White

PCTOCCPHU Percent; HOUSING OCCUPANCY - Total housing units - Occupied housing units
PCTVACANTHU Percent; HOUSING OCCUPANCY - Total housing units - Vacant housing units
PCTOWNEROCCP

Social

PCTHIGHER Percent; EDUCATIONAL ATTAINMENT - Percent high school graduate or higher
PCTSCHOOLGE3YR Percent; SCHOOL ENROLLMENT - Population 3 years and over enrolled in school
Derived

POPDEN3 TRANSFORMED POPULATION DENSITY (cubic root of population density (population per square mile))

Dependent variables

COMPONENT

INTENSITY

OBSERVED FATAL CRASH INTENSITY
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Economic

COMPCTDRIVEALONE Percent; COMMUTING TO WORK - Car, truck, or van - drive alone
COMMEANMINUTES Estimate; COMMUTING TO WORK - Mean travel time to work (minutes)
COMPCTOTHERS Percent; COMMUTING TO WORK - Other means

COMPCTPUBTRANS Percent; COMMUTING TO WORK - Public transportation (excluding taxicab)
EMPPCTUMEMP Percent; EMPLOYMENT STATUS - Percent Unemployed

INCFAMPCT10_15K

Percent; FAMILY INCOME AND BENEFITS (IN 2010 INFLATION-ADJUSTED DOLLARS) - $10,000 to $14,999

INCHHPCT10_15

Percent;, HOUSEHOLD INCOME AND BENEFITS (IN 2010 INFLATION-ADJUSTED DOLLARS) - $10,000 to $14,999

INCNONFAMMEAN Estimate; INCOME AND BENEFITS (IN 2010 INFLATION-ADJUSTED DOLLARS) - Mean nonfamily income (dollars)

INCPERCAPITA Estimate; INCOME AND BENEFITS (IN 2010 INFLATION-ADJUSTED DOLLARS) - Per capita income (dollars)
Percent; INCOME AND BENEFITS (IN 2010 INFLATION-ADJUSTED DOLLARS) - With Food Stamp/SNAP benefits in the

INCHHPCTFOODS past 12 months

OCCPCTMANAGE Percent; OCCUPATION - Management, business, science, and arts occupations

OCCPCTSERVICE Percent; OCCUPATION - Service occupations

Housing

HSPCT1VEH Percent; VEHICLES AVAILABLE - 1 vehicle available

HSPCT2VEH Percent; VEHICLES AVAILABLE - 2 vehicles available

HSPCTGE3VEH Percent; VEHICLES AVAILABLE - 3 or more vehicles available

HSPCTNOVEH Percent; VEHICLES AVAILABLE - No vehicles available

HSPCTL1UNIT

Demographic and househol

d

PCTLT5 Percent; SEX AND AGE - Total population - Under 5 years

PCT5_9 Percent; SEX AND AGE - Total population - 5 to 9 years

PCTMALE Percent; SEX AND AGE - Male population

PCTFEMALE Percent; SEX AND AGE - Female population

MEDIANAGEM Number; SEX AND AGE - Male population - Median age (years)

PCTWHITE Percent; RACE - Total population - One Race - White

PCTOCCPHU Percent; HOUSING OCCUPANCY - Total housing units - Occupied housing units
PCTVACANTHU Percent; HOUSING OCCUPANCY - Total housing units - Vacant housing units
PCTOWNEROCCP

Social

PCTHIGHER Percent; EDUCATIONAL ATTAINMENT - Percent high school graduate or higher
PCTSCHOOLGE3YR Percent; SCHOOL ENROLLMENT - Population 3 years and over enrolled in school
Derived

POPDEN3 TRANSFORMED POPULATION DENSITY (cubic root of population density (population per square mile))

Dependent variables

COMPONENT

SUB POPULATION (COMPONENT) a census tract was assigned by posterior probability

INTENSITY

OBSERVED FATAL CRASH INTENSITY
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4.3.3 Population Density and the Observed Fatal Crash Intensity

The thematic map of the 2010 Maryland fatal crash intensity in Figure 4.4, along
with previous research, suggests population density, population per square mile,
had sizeable influence on fatal crash intensity. This relationship was examined
between two variables and their transformations. Two transformations take the

following form,

INT2 = log (1 + sqrt(INTENSITY ))

POPden3 = \/POPden

The relationships were visualized in Figure 4.8a and Figure 4.8b.
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Figure 4.8a Scatter plot of fatal crash intensity by population density

122



Distribution of POPden3 by INT2
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Figure 4.8b Scatter plot of fatal crash intensity by population density, both

transformed.

In Figure 4.8b a linear relationship between two transformed variables is clear for
some census tracts while for others intensity remains constant at 0 however

population density varies.
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4.3.4 Classification and Regression Tree and Phase 2 Feature Selection

4.3.4.1 Classification Tree

The Salford SPM software was used to conduct classification and regression trees
analysis for key feature selection and key feature space formation. In the
classification tree analysis, the variable COMPONENT, a categorical variable
which had been decided in the finite mixture model, was used as the target
variable. COMPONENT had three values, 1, 2 and 3, respectively representing
the first component (with the highest intensity estimate), the second component
and the third component (with the lowest intensity estimate). All other variables
except another target variable INTENSITY and its transformation were used as

predictors. Gini measure served as the impurity function in splitting the nodes.

The classification tree analysis aimed at finding the feature pattern(s) of "hot
spot” and thus focused on correctly predicting the first component, and 90% of
the sample was used for training and 10% of the sample was used for testing in
this case. This ratio was purposely set lower than usual case which is 75-80% vs.

20-25%.
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Figure 4.9 Classification tree analysis model results, produced using Salford

SPM 7.0

Figure 4.9 shows the classification tree analysis that produced the best tree with
10 nodes. In the training sample of 97 census tracts, it predicted 89 correctly with
a success rate of 91.75%. It predicted correctly for the whole testing sample
which contained 4 randomly selected observations. It also had high accuracy to

predict the testing sample for the second component.
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Table 4.9 Classification tree identified key features and importance scores,

produced using Salford SPM 7.0

Variable Score
POPDEN3 100.00 | (HIHAAAAARARARARAOAR AR
HSPCTGE3VEH 46.49 | [l
COMPCTPUBTRANS 36.67 | Ml
HSPCT1VEH 35.13 |
HSPCT2VEH 33.72 | [
PCTWHITE 31.20 | (Il
PCTOCCPHU 23.97 | [l
PCTHIGHER 13.52 | il

The model also identified 8 variables from the 29 candidates and it also produced
importance score for each variable for which the most important variable,
POPen3, was set to have an importance score of 100. The list of variable and
importance score was in Table 4.9. The detailed best classification tree was
shown in Figure 4.10 to help some readers to understand the concept of a

classification tree.
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Figure 4.10 Detailed classification tree, produced using Salford SPM 7.0

4.3.4.2 Regression Tree

In the regression tree analysis, the variable INT2, the transformed fatal crash
intensity, was used as the target variable. All other variables except the
INTENSITY and the COMPONENT were used as predictors. Least squares
served as the impurity function in splitting decisions. The regression tree model

statistics and the model summary are shown in Figure 4.11. The resulted best tree
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had 182 nodes and the root mean square of error (RMSE) and the mean square

error of the prediction can also be found in that figure.
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Figure 4.11 Regression tree analysis model results, produced using Salford SPM

7.0
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The regression tree analysis model also identified 10 variables from the 29
candidates. The most important variable, POPden3 again, was set to have an
importance score of 100. The selected variables and their importance scores are

presented in Table 4.10.

Table 4.10 Regression tree identified key features and importance scores

Variable Score
POPDEN3 100.00 | [IHHAAIARARARAARARARARO OO
PCTHIGHER 75.63 | [
EMPPCTUMEMP 73.59 | [
HSPCTGE3VEH 68.87 | [l
INCNONFAMMEAN 60.61 | [
INCHHPCTFOODS 52.56 | I
PCTWHITE 51.04- | [
HSPCT2VEH 50.71 | [(HHHmm
COMMEANMINUTES 48.95 | [l
INCHHPCT10_15 40.35 | [l

Although the best regression tree took the same form as in Figure 4.10, it had 182
nodes, which were too many to be presented in a figure. It should be noted that

the regression tree here served for key feature selection instead of for real
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prediction. A recent successful use of regression tree can be found in Falcone and

Wong (2012).

4.3.4.3 ""Hot Spot"" Feature Patterns

Classification tree analysis was conducted mainly aiming at the detection of the
"hot spots" key feature patterns. However, the resulted detailed tree was too big to
examine "hot spots" feature patterns by visualization. Here | used the three
components identified in finite mixture model to represent the level of the fatal
crash intensity, with 1 for high risk, 2 for middle risk and 3 for low risk. Means
and medians of key features identified by the classification tree are computed by
these 3 levels for comparison in Table 4.11. In addition, the medians of these
features by fatal crash intensity level are illustrated in Figure 4.12. The means of
these features by the fatal crash intensity levels showed approximately the same

pattern and hence are omitted.

The population densities, the percent of households owning 3 or more vehicles,
the percent of workers commuting to work by public transportation, and the
percent of white exhibited different patterns as the intensity levels varied. More
expertise and further explorations are needed to give in depth interpretation on

what these features really mean and how these features affect the traffic safety.
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Table 4.11 Median and Mean of key features by fatal crash intensity level

Label Median Mean
COMPONENT 1 2 3 1 2 3
INTENSITY 1.92 0.26 0.00 2.74 0.38 0.00
POPDEN3 18.16 10.35 15.09 18.80 10.66 14.79
HSPCTGE3VEH 11.40 28.50 19.20 13.17 28.66 20.91
COMPCTPUBTRANS 15.10 2.80 5.40 16.35 5.16 9.83
HSPCT1VEH 41.10 26.90 32.25 40.71 27.11 32.14
HSPCT2VEH 30.00 38.80 37.90 29.30 39.22 36.47
PCTWHITE 37.60 79.00 67.10 39.28 66.57 57.36
PCTOCCPHU 92.90 94.95 93.70 90.17 93.55 91.11
PCTHIGHER 84.10 90.80 89.60 81.08 90.47 86.78
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Figure 4.12 Key feature medians by fatal crash intensity level

4.3.4.4 Key Feature Space Formation

The fatal crash intensity to be predicted for time ¢ + 1 will be in numeric form,

and the 10 variables identified by regression tree will be used to form a 10-D key
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feature space for the prediction. The domain of each variable is listed in Table

4.12.

Table 4.12 Ranges for key features selected by regression tree

Variable Min Max
POPden3 0.0 44.3
PctHigher 19.3 100.0
EMPPctUmemp 0.0 40.8
HSpctGE3Veh 0.0 62.0
INCnonFamMean 9,694.0 251,267.0
INCHHpctFoodS 0.0 54.1
PctWhite 0.5 98.7
HSpct2Veh 0.0 62.9
COMmeanMinutes 10.5 50.2
INCHHpct10_15 0.0 63.6

4.4  Key Feature Space Partition
4.4.1 Transformation and Imputation

The standardization method described in section 3.3.1, robust MAD
standardization, is applied to the key feature vector. The MAD standardization

uses the median absolute deviation as scale and uses the median as location. The
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transformation of ith feature of the jth observation is done by taking z/;, =

xji— median; (z;;)
MAD.;

It should be noted that all features except POPden3 had missing values. An
imputation procedure is applied here to set the missing value of a feature to its

median. Table 4.13 lists the number of missing values for each feature.

Table 4.13 Number of missing values for key features selected by regression tree

Variable N N”mbf,;ﬁjfe':issmg
POPden3 1394 0
PctHigher 1389 5
EMPPctUmemp 1385 9
HSpctGE3Veh 1386 8
INCnonFamMean 1383 11
INCHHpctFoodS 1386 8
PctWhite 1390 4
HSpct2Veh 1386 8
COMmeanMinutes 1384 10
INCHHpct10_15 1386 8

4.4.2 Decision on the Number of Clusters, kg

In this research the distance function between two points (already standardized)

m
x',z, is defined as d(z’,z') = d(z’,z’) = | | Y wi(z), — x},;)? where w; is the
i=1

relevant variable importance score for which the most important feature
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POPden3 has the highest w, of 1.0 and the least important feature in Table 4.10,
INCHHPCT10_15, has the lowest w, of 0.40.

A distance matrix is computed for each pair of the 1,394 census tracts. Using the
median (mean) of this distance as radius, the cluster modality analysis suggest

number of clusters should not be smaller than 7.

Following the algorithm based upon Hartigan's index described in section 3.1.3,
WCSS (within-cluster sum of squares) of distances by each increase of number of
clusters was produced and compared. The procedure repeated 31 times with the
minimum cluster set to be 7 and the maximum number of cluster set to be 37

(square root of V)
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.Table 4.14 Within-cluster sum of squares change for 1 cluster increase

k1 WCSS k1 k2 WCSS k2 (‘:’:gnsgse
7 9,469.72 8 8,998.07 -471.64
8 8,998.07 9 8,172.11 -825.96
9 8,172.11 10 8,172.02 -0.09

10 8,172.02 11 7,957.79 -214.23
11 7,957.79 12 7,780.77 -177.02
12 7,780.77 13 7,229.25 -551.52
13 7,229.25 14 6,857.56 -371.69
14 6,857.56 15 6,796.65 -60.91
15 6,796.65 16 7,019.34 222.69
16 7,019.34 17 6,360.84 -658.50
17 6,360.84 18 6,319.46 -41.39
18 6,319.46 19 6,197.69 -121.77
19 6,197.69 20 5,900.30 -297.39
20 5,900.30 21 6,103.40 203.10
21 6,103.40 22 5,757.99 -345.41
22 5,757.99 23 5,812.12 54.12

23 5,812.12 24 5,730.47 -81.65
24 5,730.47 25 5,602.40 -128.07
25 5,602.40 26 5,402.17 -200.23
26 5,402.17 27 5,325.53 -76.64
27 5,325.53 28 5,524.50 198.97
28 5,524.50 29 5,305.91 -218.59
29 5,305.91 30 5,301.28 -4.63

30 5,301.28 31 5,259.50 -41.78
31 5,259.50 32 4,926.87 -332.63
32 4,926.87 33 5,008.44 81.57

33 5,008.44 34 4,922.44 -86.00
34 4,922.44 35 4,764.47 -157.97
35 4,764.47 36 4,872.86 108.39
36 4,872.86 37 4,687.27 -185.59

Typically WCSS decreases with the increase of &, the number of clusters, and
when k reaches the sample size n, WCSS becomes 0. When WCSS increased as k

increased to k + 1, it suggests £ might be the number of clusters sought. Table
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4.14 gives 4 candidates of kg, the optimal number of &, respectively at 15, 20, 22,
27, 32, 35. After compared the observed intensities by clusters from the
suggested k, with the component estimates resulted from the finite mixture model
and studied within cluster standard deviations of observed intensities, | set k; to

15.
4.4.3 Study Area Partition

Following the method described in section 3.1.4 and the one-to-one relationship
of x; < c; defined in (3.7), the key feature space key partition was mapped to the
study area partition. Figure 4.13 illustrates this partition. Each color in Figure
4.13 represents a specific cluster. The 12 census tracts in white are pure-water
area and were not included in the clustering. They are kept only to ensure the
integrity of the map. The statistics for the observed intensities are listed in Table

4.15.
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Table 4.15 Statistics of census tract level observed intensity by clusters

Cluster | Number of Mean | Std Dev
census tracts

1 164 0.43 1.08
2 35 0.75 2.59
3 404 0.06 0.17
4 125 0.44 1.49
5 4 0.00 0.00
6 56 0.31 0.93
7 1 0.00 | .

8 K| 0.60 2.25
9 2 0.00 0.00
10 4 0.00 0.00
1" 8 2.83 4.05
12 16 0.01 0.04
13 1 0.00 | .

14 330 0.28 0.70
15 213 0.09 0.22
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Figure 4.13 Partition of study area, map produced by use of ArcMap 10.0
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4.5 Prediction of 2011 Maryland Fatal Crash Intensities
45.1 Settings of Priors

In this section, the three approaches of BHM described in section 3.2.4 were
applied using 2009-10 Maryland FARS data as basis to predict the 2011 FARS
crash intensities. The actual 2011 FARS data were used to check the prediction
accuracy. The BHM modeling at ¢ — 1 for the kth cluster was implemented either
by a hierarchical model in which X}, ( prior distribution of fatal crash intensity of
t — 1) depended on the unknown o, /3,, or by a half empirical model in which
a',C became constant while 5}6 remained stochastic, or by a pure empirical model

in which both «;, and 3, became constant.

For hierarchical model, the hyperparameter «; followed an exponential

distribution with a known parameter A, here A, was tuned to be 2, thus
(o) = 2¢20%,

The hyperparameter 5 followed a Gamma distribution with known parameters

B, and B, B, and B were set to be 0.5 and 2.5 respectively, thus
/ = 0.5 r —0.5 _ /
m(B) = fombe e

The prior distribution followed a Gamma distribution conditioned on o, 3,,

A 8% \jah—1 _giy
W(Ak|ak7 /Bk) - %Alkk e Bk:/\kt_

The approach tuning of B,, and B was a technique similar to equation (3.27) and

(3.28), and the same setting was applied to all clusters.
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For the half empirical model, the setting of «, was different. In this case, a;
became a constant parameter for a given cluster. The calculation of a}c was
already shown in equation (3.27). Hence the value of o, varied with the clusters

but the setting of ﬂ}g remained the same across clusters.

For the empirical model, both «,, 3, became constant. The setting of a; was
exactly the same with the above half empirical model. 6; was computed by
equation (3.28). In the case of the empirical model, both a;,and 3, depended on

the clusters. Details of these settings were listed in Table 4.16.

Table 4.16 Settings of prior parameters for half empirical model and empirical

model
Number Obselrved 2.0.09 fatal Hfalf Empirical
of intensities empirical
Cluster census Standard | aprior | aprior | B prior
tracts | Mean | G| 009 | 2000 | 2009

1 164 0.4276 1.2383 0.5425 0.5425 1.2688
2 35 0.6250 1.7265 0.7726 0.7726 1.2362
3 404 0.0751 0.1870 0.6049 0.6049 8.0544
4 125 | 0.4452 1.8171 0.1098 0.1098 |  0.2467
5 4 1.6353 3.2706 0.0935 0.0935 | 0.0572
6 56 0.4554 1.2398 0.5495 0.5495 1.2066
7 0.0000 | . 0.0000
8 31 0.9763 2.1879 0.2089 0.2089 0.2140
9 2 2.4755 3.5009 0.0816 0.0816 |  0.0330
10 41 0.0000 0.0000
11 8 0.0000 0.0000
12 16 0.2617 0.5356 0.5270 0.5270 2.0137
13 1 0.0000 | .
14 330 0.2893 0.6542 0.7936 0.7936 2.7435
15 213 0.1464 0.4140 0.1779 0.1779 1.2153
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It should be noted that the methods described in equations (3.27) and (3.28) did
not apply to cluster 7, 10, 11 and 13 because these clusters had the 2009 intensity
mean (or standard deviation) valued at 0, which made (3.27)and (3.28)

mathematically invalid.
4.5.2 Posterior Results of Three Models / Comparison of the Three Models

Following the updating mechanism described in section 3.2.4, the posterior
estimates of 2009 parameters became the 2010 prior parameters and the 2010
posterior parameters served as the 2011 prior parameters. Based upon the 2010
posterior parameter estimates, the predicted cluster level fatal crash intensity
means and standard deviations are listed in Table 4.17. The third column of Table

4.17 are the observed results for comparison.
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Table 4.17 Predictions on 2011 fatal crash intensity based upon 2010 posterior

results
Cluster n Actual Hierarchical H?I.f Empirical
empirical

3 404 0.0419 0.0362 0.0362 0.0393
14 330 0.1861 0.2209 0.2222 0.2187
15 213 0.0233 0.0244 0.0244 0.0273
1 164 0.3427 0.5058 0.5068 0.4454
4 125 0.2438 0.3296 0.3257 0.2847
6 56 0.488 0.2542 0.2579 0.2927
2 35 0.186 0.2951 0.3087 0.3564
8 31 0.2841 0.7544 0.7188 0.8541
12 16 0.024 0.0278 0.0301 0.0564

11 8 0.6711 1.7574
5 4 0 0.7732 0.1428 1.0344

10 4 5.4054 0.5242
9 2 3.2258 1.1418 0.1838 1.6564

13 1 0 0.2717

7 1 0 0.2785

In Table 4.17, predictions for cluster 15, 3, 12, and 14 were closer to actual results
than other clusters. Number of census tracts of these 4 clusters accounted 69% of
all census tracts. For all three models, clusters with lower fatal crash intensities
and greater numbers of census tracts turned out to be ones with more accurate

predictions.
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Further comparison of the three models found that the hierarchical model did not
have an obvious advantage over the half empirical and the empirical model
models except that it could be applied to clusters to which the other two models

were inapplicable.

45.3 Predicted Fatal Crash Centroid Shift

Based upon the hierarchical model results and following equation (3.37)and
(3.38), the predicted fatal crash intensity for Maryland, all census tracts in 2011,
was estimated to be 0.0478 with a standard deviation of 0.0059. The abstract
intensity centroids for 2010, 2011 actual fatal crashes and the 2011 predicted fatal
crashes were obtained by applying equation (3.39) and (3.40). The abstract fatal

crash intensity centroid shift was presented in Figure 4.14.

In this chapter, | have applied the methods developed in previous two chapters to

FARS Maryland 2009-11 data.
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Figure 4.14 Maryland fatal crash intensity abstract centroid shift from 2010 to

2011, map produced by ArcMap 10.0
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5. Conclusion, Summary and Future Work

In Chapter 2 and Chapter 3, | have developed the methods of the Bayesian
hierarchical model for spatial-temporal processes whose spatial process is
characterized by a Poisson point process. In Chapter 4, | applied these methods on
Maryland 2009-11 fatal crash data over 1,394 census tracts. In this chapter, | draw
conclusions, summarize the research of this dissertation, discuss the limitations of

the methods and the application, and propose directions for future work.
5.1 Conclusion

In the proposal, | set three primary goals of this dissertation, to build a spatial-
temporal model on highway loss point processes that can: identify key features
associated with highway loss event intensities; detect the key feature patterns
related to "hot spot™ losses; and predict future losses based upon past highway
loss events. Based upon the application in Chapter 4 which implemented the
methods developed in Chapter 2 and 3, this dissertation has successfully
accomplished these goals, though methods built still have great potential for

improvement.

In recent years, spatial-temporal model theory in statistics has been gaining
momentum and to some extent become a cutting edge direction. To develop

methods to deal with the spatial-temporal loss data of highway safety will not
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only benefit the highway safety community but also the whole society. In this

dissertation, | have tried to focus my contribution efforts in two aspects.

First, 1 have made progress in interdisciplinary area of statistics and spatial point
processes. Although the application of GIS is limited in this dissertation, it has

shown great potential for future work.

Second, | find solutions from perspectives different from traditional statistical
models. Traditional spatial-temporal models either use a separable model to
separate spatial process from temporal process, or use nonseparable models
through the introduction of an correlation function, and often requires the process

to be stationary.

The first approach often simplified the problem at the risk of losing useful
information. The second approach often needs complicated equations to describe
the correlations and in implementation requires the integral of these functions. A
good example is the fatal crashes that occurred in Maryland. These crashes
concentrate around Washington, D.C., and Baltimore; thus the distribution

follows a two-mode pattern for which it is very hard to claim stationarity.

This dissertation differs in its approach by not defining the intensity function \(s)
on the whole study area Dg; rather | partitioned the study area into small cells,
c;s, and | quantified the A(c;)s. Instead of exploring the correlation between the
geographic space and temporal space, | explored the relationship between the

feature space and the temporal process.

Another advantage is that methods developed in this dissertation incorporate the

Bayesian approach. The BHM model has an updating mechanism that can make
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use of prior information of past events. More important, the development in
Bayesian computation has made the application of these methods practical. The
Bayesian approach also brings more flexibility so that models can be tailored to

meet the specific requirements of applications.

Methods developed in this dissertation have good scalability. For example the
application in Chapter 4 can be easily expanded. It can also be done in a small
area, say, a county, so long as cells can be formed and feature information can be

collected.

5.2 Summary

I summarize the contributions in this dissertation by chapter.
Chapter 2

The frame of Chapter 2 had two parts. In the first part, a mixture model was
proposed to model highway loss incidents in the study area D,. The theory of
extending the expectation maximization (EM) algorithm to highway loss Poisson
point process was first built for the scenario that the number of components was
known. Then, for the case the number of components was unknown, | gave the
criterion in determining number of components and described how to estimate the
range of number of components via prior information, and in the end of this part,

an algorithm was developed to determine the number of components.

In the second part of this chapter, | developed methods which can identify key
features first via a visualization procedure, then by using classification and

regression trees and the random forest algorithm to finalize the key feature vector
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whose elements had great influences on distribution of highway loss incidents. In
this part, feature patterns were defined and "hot spots" were characterized.
Methods of detect the key feature patterns corresponding to "hot spots" were
developed theoretically. It also introduced the concept and definition of variable

importance, and described how it was quantified thus could be used in Chapter 3.

Chapter 3

Similar to Chapter 2, Chapter 3 also has two parts. The first part is about
clustering, the second part is on the Bayesian model. In the first part, the mapping
between the study area partition (spatial partition) and the key feature space
partition was defined first. Then, a new distance function was defined for
variables selected based upon their relative importance scores. Methods were
developed to determine the optimal number of clusters according to changes of
within cluster sum of squares. After clustering and corresponding partition of
study area, cells in the key feature space "close™ to each other are aggregated into
clusters so that future losses can be measured and predicted in homogenous

clusters (partitions) instead of on each single cells.

The second part of Chapter 3 designed a Bayesian Hierarchical Model (BHM)
which can predict cluster level losses at ¢ + 1 using the posterior distribution of
current losses at time ¢. The posterior of the most recent past losses at time ¢t — 1
was used to provide prior information for losses at time ¢. The Poisson-Gamma
design had two advantages: the proposed prior is a conjugate prior, thus the
posterior of the gamma distribution also took the form of gamma distribution; the
proposed Bayesian model has updating mechanism thus adds adaptation to the

Bayesian approach. In addition to the hierarchical model, a half empirical model
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and a full empirical model were given as alternatives. Methods for estimating the

parameters of two empirical models were specified.

Chapter 4

In Chapter 4 methods developed in Chapter 2 and 3 were applied on 2009, 2010
and 2011 FARS data for 1,394 Maryland census tracts. FARS crash data which
contained the exact location (latitude and longitude) and time were first joined to
census tracts shape files via geocoding. The distribution of the 2010 (current time
t) observed fatal crash intensity was examined. Then finite mixture models were
applied to the 2010 sample which identified three underlying subpopulations. A
classification tree was used to decide variables which determine intensity levels
(categorical). A regression tree was then implemented to identify variables that
can predict the intensities in a quantitative way. Based upon the variables and
their importance levels decided in the regression tree, the key feature space was
partitioned using the clustering mechanism developed. Clusters formed in key
feature space were mapped to study area and all census tracts were grouped into
15 clusters. Three Bayesian approaches were applied to these clusters, using the
2009 posteriors as 2010 priors, and then use 2010 posteriors as estimates of 2011
losses, results of three approaches were evaluated for a brief comparison. At the

end of Chapter 4, the 2011 hierarchical model results were visualized.

5.3 Limitations

In this section | discuss the limitation of the application in Chapter 4 first, then

give details of limitations in methods.
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Limitations of the application

In Chapter 4 the prediction of 2011 fatal crash intensities had two limitations.
First, from 2008 on, fatal crashes in Maryland have been declining, and it is
consistent with all states trend. In the application, it was predicted that 2011
Maryland had 464 fatal crashes (stdev 21.5) which was higher than the actual
results, 455, thus, the model did not catch the decline trend. The inaccuracy was

largely caused by the lack of timeliness of key feature data used in the model.

The trend of fatal crash intensity was mainly influenced by two factors, in long
term by crash avoidance technology development, and in the mid term by
economic growth. Historically, three crash avoidance equipments effectively cut
the fatal crashes, seat belt, ABS (Anti-lock braking system), and ESC (electronic
stability control). In recent years the effort was shifted to active crash avoidance
technologies like automatic crash warning and braking system. In mid term, e.g. 5
years, which is of interest of this dissertation, the fluctuation of fatal crash
intensities to a large extent depends on economy performance. However, the best
economy growth indicator ready for use of this dissertation, unemployment rate,
was only available for 5-year period of 2006-10. This was also the case of all
other key features in Chapter 4, all of them took 2006-10 ACS values meaning
they were constant between 2006 to 2010. The lack of timeliness of predicting
variables directly led to the inaccuracy of prediction of 2011 fatal crash

intensities.
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Limitations of methods

In this dissertation cells in topology are polygons instead of points, and loss
intensities of cells are represented on abstract points instead of real points, thus
area of cells should be small enough. In other words, methods developed in this
dissertation must be put in the appropriate context. On the other hand, in the real
world the research interests in most cases focus on "hot spot" area instead of exact

point locations.

After key feature space and study area partition, within each cluster I assumed
completely spatial randomness at time t,and in the BHM model | further
extended this assumption to time ¢ — 1 for the same cluster. This assumption in
theory might be too strict. A random term might be needed so that the loss
intensities of cells in a cluster could have some random variation centered around

the cluster loss intensity.

In the application, the finite mixture model identified 3 subpopulations, and the
quantities of the estimated fatal crash intensities were in 3 different scales from
high to low, and the higher risk level subpopulation had a intensity about 10 times
that of next level. The proposed Poisson-Gamma BHM approach worked better
for low level fatal crash intensity clusters than for clusters having higher fatal
crash intensity. This is an indication that there might be better BHM updating
mechanism than the Poisson-Gamma setting for high risk clusters since the

Poisson model typically works better for rare events.
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5.4 Future work

I have planned three types of work for future improvement and development:
immediate work to extend and improve the application in Chapter 4; refinement

of current methods; and new development of current methods.

Immediate future work

The application in Chapter 4 has findings that were heretofore unknown by the
highway safety community: it identified three subpopulations characterized by
three underlying Poisson processes; it selected key features and detected "hot
spot™ patterns; it partitioned the study area, and it predicted the future loss based
upon current and past losses and showed accuracy. The highway safety
community would have interest to know above findings for all states, thus the
extension of the application to all states upon the most current FARS data would

be of interest of the highway safety community.

Refinement of current methods

There are ways to improve the methods developed in Chapter 2 and 3. First,
examine the correlation structure of variables selected in CART to exclude
"redundant” variables. If two variables have a correlation higher than a preset
threshold only one is kept. Second, add a within cluster random term to BHM
model so that the loss intensity of a cells can be expressed as a sum of two
components, cluster density and the random term. Third, find a more appropriate
prior-posterior setting for the BHM when clusters formed were classified as high
risk clusters. Fourth, more work can be done to find out better solutions that can

decide the exact number of clusters in the partition of key feature space. Besides,
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for applications losses with past loss information at ¢ — 2 or even earlier, new
way of prior parameter estimates should be constructed that can make full use of

all past information by assigning more current past information higher weight.

New development in methods

The following new developments will benefit highway safety and will be

welcomed.

First, the constraint of transportation network will be incorporated into the model.
The transportation network is a one-dimensional space that is only a subset of the
two-dimensional space and almost every all highway loss event occurs on the
transportation network (Yamada and Thill (2007)). Under this frame, the point
process and corresponding intensity functions will be redefined, and traffic

specific factors such as speed limit will be included as predictors.

Second, add seasonality to current models. The highway safety community would
be interested to know how the loss intensity vary with season to answer questions

like "Did the Maryland 2011 fatal crash intensity vary by month?".

Third, in addition to the current function that can predict the nearest future, | also
hope the model can answer the following question such as how did the intensity
vary within a relatively long study time period and what's the mechanism behind

this variation.
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