
 

BAYESIAN HIERARCHICAL POINT-PATTERN-BASED INTENSITY MODEL IN 
PREDICTION OF HIGHWAY LOSSES 

by 
 

Yongping Yan 
A Dissertation 

Submitted to the 
Graduate Faculty 

of 
George Mason University 
in Partial Fulfillment of 

The Requirements for the Degree 
of 

Doctor of Philosophy 
Statistical Science 

 
Committee: 
 
  Dr. Edward J. Wegman, Dissertation 

Director 

  Dr. Daniel Carr, Committee Member 

  Dr. Clifton D. Sutton, Committee Member 

  Dr. David Wong, Committee Member 

_________________________________ Dr. William F. Rosenberger, Department 

Chair 

_________________________________ Dr. Kenneth S. Ball, Dean, Volgenau School 

of Engineering 

Date:   Fall Semester 2013  

George Mason University 

Fairfax, VA 

  
 



 

Bayesian Hierarchical Point-Pattern-Based Intensity Model in Prediction of Highway 
Losses 

A dissertation submitted in partial fulfillment of the requirements for the degree of 
Doctor of Philosophy at George Mason University 

by 

Yongping Yan 
Master of Science 

George Mason University, 2002 

Director: Edward J. Wegman, Professor 
Department of Statistics 

Fall Semester 2013 
George Mason University 

Fairfax, VA 



ii 
 

DEDICATION 

This dissertation is dedicated to my family, Lydia, Rebekah, Joshua, Chunqiu, Yaping, 
and my academic advisor, Dr. Edward J. Wegman. Their encouragement has made this 
dissertation possible. 



iii 
 

ACKNOWLEDGEMENTS 

Completing my PhD degree is probably the most challenging activity of my life in a time 
I need to balance roles as a father of two little kids, a full time employee, and a Ph.D. 
student, in my long doctoral journey. Fortunately, I have the privilege to study in 
Statistics Department of George Mason University where excellent professors not only 
teach and research but also help and encourage. 

First and foremost, I wish to thank my advisor, Professor Dr. Edward J. Wegman. He has 
taught me the very meaning of research and opened that door for me. He is a master in 
advising and has every skill to inspire, mentor, and support. 

I would also like to thank my committee member, Dr. Daniel Carr. He has offered 
precious guidance in clustering algorithm and visualization methodology. 

I also thank my committee member, Dr. Clifton Sutton. Materials from his class, 
Statistical Inference, were invaluable. 

A special thank to my committee member, Dr. David Wong. Because of his wisdom I 
have chosen a more appropriate data for the application. I also appreciate his help on the 
GIS software. 

I also acknowledge my organization, HLDI, which has funded this research. Especially, I 
would like to thank Mr. Matthew Moore, vice president of HLDI. Without his consistent 
support and encouragement I could not finish this dissertation. 
 



iv 
 

TABLE OF CONTENTS 

Page 
List of Tables ................................................................................................................... viii 

List of Figures .................................................................................................................... ix 

List of Equations ................................................................................................................ xi 

List of Abbreviations ........................................................................................................ xv 

Abstract ............................................................................................................................ xvi 

1   Introduction.....................................................................................................................1 

1.1   Highway Losses and Measurements ........................................................................1 

1.1.1   Highway Loss Types and Auto Insurance Coverage.........................................1 

1.1.2   Measurements of Highway Losses ....................................................................3 

1.1.3   Highway Losses and Spatial-Temporal Patterns ...............................................5 

1.2   Introduction of Spatial-Temporal Models................................................................7 

1.2.1   Initial Spatial-Temporal Analysis of Acid Rain in New York ..........................7 

1.2.2   Egbert and Lettenmaier's Multivariate Space-Time Model.............................12 

1.2.3   Empirical Orthogonal Functions......................................................................14 

1.2.4   Stein's Spatial Processes Model.......................................................................15 

1.2.5   Cressie and Huang's Covariance Function Approach......................................16 

1.3   Point-Pattern-Based Spatial-Temporal Transition Density Model ........................19 

1.3.1   Spatial Clustering in Point Processes ..............................................................20 

1.3.2   Definition of Brown and Liu's Point-Pattern-Based Density Model ...............21 

1.3.3   Brown and Liu's Point-Pattern-Based Transition Density Model ...................22 

1.3.3.1   Model Search Method...............................................................................22 

1.3.3.2   The Transition Density Model ..................................................................24 

1.3.4   Component Estimation of Liu and Brown's Model .........................................28 

1.3.4.1   Partition Event Feature Data .....................................................................28 

1.3.4.2   Estimate First-Order Spatial Transition Density and Spatial Interaction 
Probabilities ............................................................................................................29 



v 
 

1.3.4.3   Estimate Second-Order Spatial Transition Densities................................31 

1.3.4.4   Estimate Geographic-Space Feature Density............................................32 

1.4   Point-Pattern-Based Hierarchical Bayesian Intensity Model.................................33 

1.4.1   Limitations of Liu and Brown 's Model...........................................................33 

1.4.2   Bayesian Hierarchical Point-Pattern-Based Intensity Model ..........................35 

1.4.3   Analogue of terms in this dissertation to traditional spatial statistics .............36 

2   Theory of Point-Pattern Spatio-Temporal Model for Highway Loss ...........................37 

2.1   Spatio-Temporal Process of Highway Losses........................................................37 

2.1.1   Highway Loss Incidents ..................................................................................37 

2.1.2   Spatio-Temporal Process of Highway Losses .................................................38 

2.2   Finite Mixture Models and Highway Loss Incidents .............................................40 

2.2.1   Basic Definition ...............................................................................................41 

2.2.2   Component Parameters and the Likelihood Function .....................................42 

2.2.3   Incomplete Data Structure ...............................................................................43 

2.2.4   Component Parameter Estimate by Use of Direct Approach ..........................44 

2.3   EM Framework on Finite Mixture Model Fitting ..................................................44 

2.3.1   Definition of the EM Algorithm......................................................................44 

2.3.2   Finite Mixture Models under the EM Framework...........................................48 

2.4   Extension of EM on Highway Loss Incidents........................................................50 

2.4.1   Finite Mixture Model and Highway Loss Incidents ........................................50 

2.4.2   EM Algorithm with Known Number of Components .....................................52 

2.4.3   Component Estimation of Liu and Brown's Model .........................................53 

2.4.3.1   Criterion in Determining the Number of Components .............................53 

2.4.3.2   Prior Information of Components .............................................................54 

2.4.3.3   The Sequence of EM Algorithms of Model Fitting Computation ............55 

2.4.3.4   Model Selection and Decision of Order....................................................58 

2.5   Key Feature Space Formation and Hot-Spot Key Feature Patterns .......................59 

2.5.1   Feature Dimension Reduction .........................................................................59 

2.5.2   Initial Screen by Visualization.........................................................................61 

2.5.3   Feature Selection via Classification and Regression Trees .............................63 

2.5.3.1   Highway Loss Data Input to CART..........................................................64 

2.5.3.2   Mechanism of CART ................................................................................65 



vi 
 

2.5.3.3   Classification Tree Output and Regression Tree Validation.....................69 

2.5.4   Summary of chapter 2......................................................................................70 

3   Prediction of Highway Loss Incidents by the Use of Bayesian Hierarchical Spatio-
Temporal Model.................................................................................................................71 

3.1   Key Feature Space Partition and Study Area Partition ..........................................72 

3.1.1   K-means Clustering Algorithm........................................................................72 

3.1.2   Modification of the Distance Function ............................................................74 

3.1.3   Determination of Number of Clusters .............................................................75 

3.1.4   Mapping the Key Feature Space Partition to the Study Area Partition ...........78 

3.2   Bayesian Hierarchical Model on Spatio-Temporal Process...................................78 

3.2.1   Bayesian Hierarchical Model (BHM)..............................................................78 

3.2.2   Assumptions Made in the Bayesian Hierarchical Model ................................81 

3.2.3   Prior Information and Prior Distribution of the BHM.....................................82 

3.2.4   Design of the BHM..........................................................................................84 

3.2.4.1   Conjugacy .................................................................................................84 

3.2.4.2   Updating Mechanism ................................................................................86 

3.2.4.3   BHM Modeling at t-1................................................................................87 

3.2.4.4   Gibbs Sampling.........................................................................................93 

3.3   BHM-Based Highway Loss Event Intensity Prediction.........................................94 

3.3.1   Mid-Level Geographic Area Loss Intensity Prediction...................................94 

3.3.2   Loss Intensity Prediction of the Whole Study Area ........................................95 

3.3.3   Predicted Loss Centriod of the Whole Study Area..........................................96 

3.3.4   Summary of chapter 3......................................................................................96 

4   NHTSA FARS Data and Proposed Bayesian Hierarchical Spatio-Temporal Model ...98 

4.1   FARS Data and the Poisson Point Process.............................................................98 

4.1.1   FARS Data.......................................................................................................98 

4.1.2   Census Data and Geocoding..........................................................................100 

4.1.3   Fatal Crash Intensity and Poisson Point Process ...........................................103 

4.1.4   2010 Maryland Fatal Crash Intensity by Census Tract .................................105 

4.2   Finite Mixture Model on FARS Data...................................................................107 

4.2.1   Kernel Density Estimation of the Fatal Crash Intensity ................................108 

4.2.2   Decision on the Number of Components, g...................................................112 

4.2.3   Component Estimates and the Mixing Probabilities .....................................112 



vii 
 

4.3   Key Feature Selection and Feature Space Formation ..........................................115 

4.3.1   Data Source of Features.................................................................................115 

4.3.2   Initial Screen by Visualization.......................................................................116 

4.3.3   Population Density and the Observed Fatal Crash Intensity .........................121 

4.3.4   Classification and Regression Tree and Phase 2 Feature Selection ..............124 

4.3.4.1   Classification Tree ..................................................................................124 

4.3.4.2   Regression Tree.......................................................................................127 

4.3.4.3   "Hot Spot" Feature Pattern......................................................................130 

4.3.4.4   Key Feature Space Formation.................................................................132 

4.4   Key Feature Space Partition.................................................................................133 

4.4.1   Transformation and Imputation .....................................................................133 

4.4.2   Decision on the Number of Clusters, k0.........................................................134 

4.4.3   Study Area Partition ......................................................................................137 

4.5   Prediction of 2011 Maryland Fatal Crash Intensities...........................................140 

4.5.1   Settings of Priors............................................................................................140 

4.5.2   Posterior Results of Three Models/Comparison of the Three Models ..........142 

4.5.3   Predicted Fatal Crash Centroid Shift .............................................................144 

5   Conclusion, Summary and Future Work ....................................................................146 

5.1   Conclusion............................................................................................................146 

5.2   Summary ..............................................................................................................148 

5.3   Limitations ...........................................................................................................150 

5.4   Future work ..........................................................................................................153 

References........................................................................................................................155 

Curriculum vitae ..............................................................................................................165 

 
 
 

 



viii 
 

LIST OF TABLES 

Table Page 

Table 4.1  Partial attributes of 2010 Maryland census tracts...........................................101 

Table 4.2  Maximum likelihood estimate of 2010 Maryland fatal crash intensity ..........105 

Table 4.3  Percentiles of the observed MD 2010 fatal crash intensity by census tract....108 

Table 4.4  Model fitting statistics by number of components..........................................111 

Table 4.5  Estimates of identified of components............................................................113 

Table 4.6  Estimates for mixing probability ....................................................................113 

Table 4.7  Example of posterior probability an observation arose from a component ....115 

Table 4.8  Variables selected by the initial screen...........................................................119 

Table 4.9  Classification tree identified key features and importance scores ..................126 

Table 4.10  Regression tree identified key features and importance scores ....................129 

Table 4.11  Median and Mean of key features by fatal crash intensity level ..................116 

Table 4.12  Ranges for key features selected by regression tree .....................................133 

Table 4.13  Number of missing values for key features selected by regression tree.......134 

Table 4.14  Within-cluster sum of squares change for 1 cluster increase........................136 

Table 4.15  Statistics of census tract level observed intensity by clusters.......................138 

Table 4.16  Settings of prior parameters for half empirical and empirical model ...........141 

Table 4.17  Predictions on 2011 fatal crash intensity based upon 2010 posteriors .........143 



ix 
 

LIST OF FIGURES 

Figure Page 

Figure 1.1  Fitted semivariogram from equation Bilonick (1985) ....................................10 

Figure 1.2  The temporal variogram for a single location, , Bilonick (1985)....................11 

Figure 1.3  Normal density kernel with contour lines of Cardiff juvenile delinquents,  

                  Anselin (2003) .................................................................................................20 

Figure 1.4  Components of the transition density model, Liu and Brown (2003) .............25 

Figure 2.1  Demonstration of Crystal Vision parallel coordinate plot using ZIP level  

                  Maryland 2000 census data..............................................................................63 

Figure 2.2  A regression tree to explore relationships between ZIP level highway  

                 collision frequencies (artificial) and Maryland 2000 census data ....................66 

Figure 3.1  Graphic model of the Hierarchical model .......................................................88 

Figure 3.2  Graphic model of Empirical model 1 ..............................................................90 

Figure 3.3  Graphic model of Empirical model 2. .............................................................92 

Figure 4.1  Locations of MD 2010 fatal crashes..............................................................102 

Figure 4.2  The distribution of counts of fatal crashes of MD 2010 census tracts ..........104 

Figure 4.3  2010 Maryland fatal crash intensity distribution by census tract ..................106 

Figure 4.4  A thematic map on 2010 Maryland fatal crash intensity...............................107 

Figure 4.5  Distribution and kernel density for observed intensity of all census tracts...109 

Figure 4.6  Distribution and kernel density for observed intensities larger than 0..........110 

Figure 4.7  Parallel coordinate plot of the variables selected by the initial screen..........118 

Figure 4.8a  Scatter plot of fatal crash intensity by population density...........................122 

Figure 4.8b  Scatter plot of fatal crash intensity by population density. .........................123 

Figure 4.9  Classification tree analysis model results......................................................125 

Figure 4.10  Detailed classification tree ..........................................................................127 

Figure 4.11  Regression tree analysis model results ........................................................128 

Figure 4.12  Key feature medians by fatal crash intensity level ......................................132 

Figure 4.13  Partition of study area..................................................................................139 



x 
 

Figure 4.14  Maryland fatal crash intensity abstract centroid shift from 2010 to 2011...145 

 



xi 
 

LIST OF EQUATIONS 

Equation Page 

(1.1) .................................................................................................................................... 4 

(1.2) .................................................................................................................................... 4 

(1.3) .................................................................................................................................... 9 

(1.4) .................................................................................................................................... 9 

(1.5) .................................................................................................................................. 12 

(1.6) .................................................................................................................................. 15 

(1.7) .................................................................................................................................. 17 

(1.8) .................................................................................................................................. 17 

(1.9) .................................................................................................................................. 17 

(1.10) ................................................................................................................................ 18 

(1.11) ................................................................................................................................ 22 

(1.12) ................................................................................................................................ 23 

(1.13) ................................................................................................................................ 23 

(1.14) ................................................................................................................................ 23 

(1.15) ................................................................................................................................ 24 

(1.16) ................................................................................................................................ 24 

(1.17) ................................................................................................................................ 24 

(1.18) ................................................................................................................................ 26 

(1.19) ................................................................................................................................ 27 

(1.20) ................................................................................................................................ 28 

(1.21) ................................................................................................................................ 29 

(1.22) ................................................................................................................................ 29 

(1.23) ................................................................................................................................ 30 

(1.24) ................................................................................................................................ 30 

(1.25) ................................................................................................................................ 31 

(1.26) ................................................................................................................................ 31 



xii 
 

(1.27) ................................................................................................................................ 31 

(1.28) ................................................................................................................................ 31 

(1.29) ................................................................................................................................ 32 

(2.1) .................................................................................................................................. 39 

(2.2) .................................................................................................................................. 39 

(2.3) .................................................................................................................................. 40 

(2.4) .................................................................................................................................. 41 

(2.5) .................................................................................................................................. 42 

(2.6) .................................................................................................................................. 42 

(2.7) .................................................................................................................................. 42 

(2.8) .................................................................................................................................. 43 

(2.9) .................................................................................................................................. 43 

(2.10) ................................................................................................................................ 43 

(2.11) ................................................................................................................................ 44 

(2.12) ................................................................................................................................ 44 

(2.13) ................................................................................................................................ 44 

(2.14) ................................................................................................................................ 44 

(2.15) ................................................................................................................................ 45 

(2.16) ................................................................................................................................ 45 

(2.17) ................................................................................................................................ 45 

(2.18) ................................................................................................................................ 45 

(2.19) ................................................................................................................................ 46 

(2.20) ................................................................................................................................ 46 

(2.21) ................................................................................................................................ 46 

(2.22) ................................................................................................................................ 46 

(2.23) ................................................................................................................................ 46 

(2.24) ................................................................................................................................ 46 

(2.25) ................................................................................................................................ 47 

(2.26) ................................................................................................................................ 47 

(2.27) ................................................................................................................................ 48 

(2.28) ................................................................................................................................ 48 

(2.29) ................................................................................................................................ 48 



xiii 
 

(2.30) ................................................................................................................................ 48 

(2.31) ................................................................................................................................ 49 

(2.32) ................................................................................................................................ 49 

(2.33) ................................................................................................................................ 49 

(2.34) ................................................................................................................................ 50 

(2.35) ................................................................................................................................ 51 

(2.36) ................................................................................................................................ 52 

(2.37) ................................................................................................................................ 52 

(2.38) ................................................................................................................................ 52 

(2.39) ................................................................................................................................ 53 

(2.40) ................................................................................................................................ 53 

(2.41) ................................................................................................................................ 54 

(2.42) ................................................................................................................................ 55 

(2.43) ................................................................................................................................ 56 

(2.44) ................................................................................................................................ 58 

(2.45) ................................................................................................................................ 58 

(2.46) ................................................................................................................................ 65 

(2.47) ................................................................................................................................ 67 

(2.48) ................................................................................................................................ 67 

(2.49) ................................................................................................................................ 69 

(2.50) ................................................................................................................................ 69 

(3.1) .................................................................................................................................. 73 

(3.2) .................................................................................................................................. 73 

(3.3) .................................................................................................................................. 74 

(3.4) .................................................................................................................................. 75 

(3.5) .................................................................................................................................. 75 

(3.6) .................................................................................................................................. 76 

(3.7) .................................................................................................................................. 78 

(3.8) .................................................................................................................................. 80 

(3.9) .................................................................................................................................. 80 

(3.10) ................................................................................................................................ 80 

(3.11) ................................................................................................................................ 81 



xiv 
 

(3.12) ................................................................................................................................ 82 

(3.13) ................................................................................................................................ 83 

(3.14) ................................................................................................................................ 85 

(3.15) ................................................................................................................................ 86 

(3.16) ................................................................................................................................ 86 

(3.17) ................................................................................................................................ 89 

(3.18) ................................................................................................................................ 89 

(3.19) ................................................................................................................................ 89 

(3.20) ................................................................................................................................ 89 

(3.21) ................................................................................................................................ 89 

(3.22) ................................................................................................................................ 89 

(3.23) ................................................................................................................................ 90 

(3.24) ................................................................................................................................ 91 

(3.25) ................................................................................................................................ 91 

(3.26) ................................................................................................................................ 91 

(3.27) ................................................................................................................................ 91 

(3.28) ................................................................................................................................ 92 

(3.29) ................................................................................................................................ 93 

(3.30) ................................................................................................................................ 94 

(3.31) ................................................................................................................................ 94 

(3.32) ................................................................................................................................ 95 

(3.33) ................................................................................................................................ 95 

(3.34) ................................................................................................................................ 95 

(3.35) ................................................................................................................................ 95 

(3.36) ................................................................................................................................ 96 

(3.37) ................................................................................................................................ 96 

(3.38) ................................................................................................................................ 96 

(3.39) ................................................................................................................................ 96 

(3.40) ................................................................................................................................ 96 

(4.1) ................................................................................................................................ 103 

(4.2) ................................................................................................................................ 114 



xv 
 

LIST OF ABBREVIATIONS 

 

Bayesian Hierarchical Model....................................................................................... BHM 

Expectation Maximization ...............................................................................................EM 

Finite Mixture Model................................................................................................... FMM 

Classification and Regress Tree..................................................................................CART 

Completely Spatial Randomness ...................................................................................CSR 

Geographic Information System..................................................................................... GIS 

Fatality Analysis Reporting System.............................................................................FARS 

American Community Survey .......................................................................................ACS 

Highway Loss Data Institute........................................................................................HLDI 

National Highway Traffic Safety Administration.................................................... NHTSA 

 



xvi 
 

ABSTRACT 

BAYESIAN HIERARCHICAL POINT-PATTERN-BASED INTENSITY MODEL  IN 
PREDICTION OF HIGHWAY LOSSES 

Yongping Yan, Ph.D.  

George Mason University, 2013 

Dissertation Director: Dr. Edward J. Wegman 

 

Traditional spatial-temporal models either use separable models to separate spatial 

processes from temporal processes, which often results in a loss of information, or use 

nonseparable models through the introduction of correlation functions. These functions 

typically have to be complicated enough to address the real problem and additionally the 

implementation requires the integral of these functions. In this dissertation, with a focus 

on contribution to the interdisciplinary area of statistics and GIS (geographic information 

system), I have developed methods extending EM (expectation-maximization) algorithm 

to Poisson point processes with incomplete data structure to undercover the underlying 

components characterizing highway loss events.  With component information in the 

dissertation, I have developed methods that use classification and regression trees along 

with visualization procedures to identify key features influencing highway loss 

intensities, and detect key feature patterns of the “hot spot” loss areas.  Instead of 



xvii 
 

examining the correlation between spatial space and temporal space, I have developed 

methods using a k-means based algorithm and specially tailored distance functions to 

partition the key feature space into homogeneous clusters, and map this partition to the 

spatial space partition. Then, I have built the Bayesian hierarchical model (BHM) that use 

the current time point loss information and most recent past loss information to predict 

the future losses for each cluster. The BHM in this dissertation has a good updating 

mechanism and is adaptive. Finally, I have successfully applied the methods to 2009-11 

FARS (Fatality Analysis Reporting System) data of U.S. Department of Transportation. 

The application is a good example that methods developed in this dissertation can be 

widely used on any loss types whose events exhibit a Poisson-point-pattern. 

Key words: spatio-temporal model, expectation maximization (EM), Poisson-point-

process, Bayesian hierarchical model (BHM)

 



1

1. Introduction

Every year, thousands of people died of traffic accidents or got injured and

billions of dollars were lost to individuals, institutes, and insurance industry.

Efforts and countermeasures that can reduce these losses will definitely benefit

the whole of society. This dissertation contributes to this mission by investigating

how highway crash events are distributed in spatial and temporal domains.  In this

chapter, I introduce the dissertation topic, review literature of past research, and

set goals for this dissertation.

1.1 Highway Losses and Measurements

1.1     Highway Loss Types and Auto Insurance CoverageÞ"

Highway losses include deaths, injuries and property damage. The loss of lives is

almost always related to injuries and property damage. Injury and property losses

sustained on highways are relatively more complicated and a good way to

understand highway losses is through auto insurance claim data. Auto insurance

(also known as car insurance) is insurance purchased for automobiles. Auto

insurance provides protection against losses incurred as a result of traffic

accidents and against liability that could be incurred in an accident. There are two

insurance systems in United States, the Tort Insurance System and the No-Fault

Insurance System. Under Tort Insurance System ( , a person whoWhite, 2003)
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suffers legal damages (loss or injury) as the result of a crash may be able to use

tort law to receive compensation from someone who is legally responsible or

liable, for those losses or injuries. Generally speaking, tort law defines what

constitutes a legal loss or injury and establishes the circumstances under which

one person may be held liable for another's loss or injury. In contrast, under No-

Fault Insurance System (   insureds areInsurance Information Institute, 2010)

indemnified for losses by their own insurance company, regardless of fault in the

incident generating losses; furthermore insureds are also restricted in the right to

seek recovery through the civil-justice system for losses caused by other parties.

Auto insurance coverages can be classified into two categories: coverages against

damages to a vehicle and other property, and coverages against injuries to

occupants and other people ( . TheInsurance Institute of Highway Safety, 2010)

first category includes:

i Collision coverageÞ  insures against physical damage sustained in a crash to the

insured people's own vehicles if they are at fault. The damage may occur from

striking another vehicle or an object such as a tree or pole.

ii Property damage liabilityÞ  coverage insures against the physical damage that

at-fault people's vehicles inflict on other vehicles and propertyÞ

iii Comprehensive coverageÞ  insures against losses from the theft of an insured

person's vehicle or vehicle damage for reasons other than crashes. It covers theft,

noncrash fire (fire not caused by a collision or vandalism), glass damage caused

by rocks and other objects, and other kinds of damage such as from hitting

animals, acts of nature, and vandalism.
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Injury insurances include:

iv. Personal injury protection coverage insures against medical, hospital, and

other expenses for injuries sustained in crashes with insured drivers and other

people in their vehicle, regardless of who is at fault in the collision. This coverage

is sold in states with no-fault insurance systems. The upper limit of the amount

paid to insureds varies by state.

v. Medical payment coverage insures against injuries sustained by insured

people in crashes for which they are responsible. It also covers injuries to other

occupants in their vehicles. This coverage is only sold in states with a tort

insurance system.

vi. Bodily injury liability coverage insures against medical, hospital, and other

expenses for injuries that at-fault drivers inflict on occupants of other vehicles or

others on the road.

1.1.2     Measurements of Highway Losses

Highway Losses are usually measured by frequency (rate) and severity (size, not

applicable to deaths). Two main factors determine auto insurance losses; claim

frequency and claims severity. Claim frequency, which is how often claims are

filed, is usually measured in claims per 100 insured vehicle years. Claim severity,

which is how big the claim payments are, depending on the average loss payment

per claim, is measured in dollars. These two factors combine to indicate the

average loss payment per insured vehicle year, also known as overall loss. The

overall loss is the average cost of insuring a vehicle for one year, excluding

administrative costs.
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Generalized linear models (GLM), as defined by Nelder and Wedderburn (1972),

have been commonly used to quantify the claim frequency and claim severity in

the auto insurance industry. The sense of linear lies in the form

         1ÐC Ñ œ B  Ð"Þ"Ñ3 3 3
w" %

where  is the response variable for the th observation.  is a monotonicC 13 i

differentiable link function,   is a column vector of covariates, or explanatoryB3

variables,  is a vector of unknown parameters, and  is assumed to be" %3

independent and identically distributed random variables with zero mean and

constant variance. In generalized linear models, the response is assumed to

possess a probability distribution of the exponential family. That is the probability

density of the response  for continuous/discrete responses can be expressed as]

      0ÐCÑ œ /B:Ö  -ÐCß Ñ× Ð"Þ#ÑC ) )
9

,Ð Ñ
+Ð Ñ 9

for some functions , , and  that determine the specific distributions. Auto+ , -

insurance claims are widely accepted to have a Poisson distribution, while claim

severities have a Gamma distribution. Maximum likelihood fitting is used to

estimate .  In the last decade, two well-developed extensions of GLM were also"

introduced into auto insurance industry, one is the generalized linear mixed model

(GLMM) which first appeared in Laird and Ware (1982), which adds random

effects along with fixed effect into the model. The second extension is

Generalized Estimating Equations (GEEs), introduced by Liang and Zeger (1986),

which targeted handling correlated responses.
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1.1.3     Highway Losses and Spatial-Temporal Patterns

The concept of spatial clusters or "hot spots" mainly arose from research in

criminal activity and disease incidence. It is well known that crimes tend to

cluster in so-called "hot spots" (e.g. convenience stores or bars). Crimes

committed by serial criminals often follow established spatial patterns. The "hot

spot" phenomenon also exists in highway losses. Based upon the theft claim data

from the HLDI (Highway Loss Data Institute) database, for 2003 model year

vehicles during time period from 2002 to 2009, the zip code area with the highest

theft claim frequency was zip code 48205 of Detroit. This zip code area had theft

claim frequencies 24 times that of the national average. The 48205 zip code area

is blocks from I-94 and is very close to Canada. An reasonable assumption is the

stolen vehicles can be easily transported, either by sea or highway.

In April 2008, HLDI produced an insurance special report on theft losses by

county comparing the 2006-07 result with that of 1998-99. Insurance loss results

from that report showed theft overall losses (average loss payment per insured

vehicle year) increased in the southwest and along the Mexican border. The seven

counties with the highest overall theft losses in 2006-07 all border Mexico and

they had loss results more than 5 times that of national average. Counties in the

Detroit, Miami and New Orleans areas also had theft overall losses much higher

than the national average. The report also showed that theft overall losses

declined in the New York and Philadelphia regions. Seven of the 10 counties with

the highest theft overall losses in 1998-99, all in the New York or Philadelphia

metropolitan areas, were no longer among the top 10 in 2006-07.
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Another kind of auto insurance loss, animal strikes which are covered under

comprehensive coverage, shows not only spatial patterns but also temporal

patterns. Animal strike claim frequencies vary with calendar years as well as

seasons (HLDI, 2008). In April 2008 HLDI reported that national claim

frequencies for animal strikes were lowest in August (3.9 claims per 1,000

insured vehicle years) and highest in November (14.1 claims 1,000 insured

vehicle years), and claim frequencies in August were about one quarter of that in

November. Three states had the highest November claim frequencies (West

Virginia, Pennsylvania, and Kentucky) and two states had very low November

claim frequencies (Arizona and Florida). Claim frequencies for West Virginia,

Pennsylvania, and Kentucky followed the national seasonality trend. In contrast,

there was little variation in claim frequencies for Arizona and Florida.

Predicting and further controlling the death, injury and property damage

occurring in the "hot spots" of a hot area benefit both the public and the auto

insurance industry. For insurers, pricing insurance premiums in hot areas is of

special interest to the cost control and the marginal profit rate. Setting competitive

auto insurance premium while minimizing claim loss payments in a specific area,

especially an area with heavy vehicle density, is not only essential to an insurer's

core competence but also very important to public safety. Traditional claim

prediction models like the GLM model, with its extensions GLMM and GEE, and

GAM (Generalized Additive Models, Hastie and Tibshirani, (1986 and 1990))

have limited ability in dealing with this problem.
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1.2 Introduction of Spatial-Temporal Models

Spatial-temporal models arise from analysis of data collected across time as well

as space. A typical example is the climate data collected from a network of

meteorological stations, at regular intervals, say every week, over decades.  The

observed data at each monitor typically are not independent but form a time

series. At each time point the data collected from all monitors construct a spatial

structure and therefore spatial dependence must  be taken into consideration.

1.2.1      Initial Spatial-Temporal Analysis of Acid Rain in New York

One early paper on spatial-temporal statistics was published by Bilonick and

Nichols (1983). The authors analyzed the rainfall data from 22 stations in or near

New York state, collected from 1965 to 1979. Variables measured included

acidity (pH), and concentrations of sulfates, nitrates, and calcium, as well as the

amount of rainfall, in milliequivalents per liter (meq ).  The data were6"

summarized into monthly values at each station to perform a time series analysis

to determine whether an increasing trend existed over the time period for the

variables measured.

   total deposition of hydrogen ion in month  at location .ñ L ß > BBß>

   total deposition of sulfate in month  at location .ñ W ß > BBß>

   total deposition of nitrate in month  at location .ñ R ß > BBß>

   total deposition of calcium in month  at location .ñ G ß > BBß>

 These data were then aggregated across stations into monthly temporal data:

  L œ L> Bß>
"

8
B

Lß>


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  W œ W> Bß>
"

8
B

Wß>


  R œ R> Bß>

"
8

B
Rß>


  G œ G> Bß>

"
8

B
Gß>


where denotes the number of stations reporting hydrogen ion deposition in8Lß> 

month and similarly for  and . The authors applied ARIMA>ß 8 ß 8 ß 8Wß> Rß> Gß>

model to the four time series and concluded "... there is no evidence for a long-

term change in the mean level of acidity. The observed patterns in the hydrogen

ion data can be completely explained in terms of a stationary ARIMA model."

In contrast with the initial temporal analysis looking at the trend over time,

Bilonick (1983) applied a pure spatial analysis on the same data to determine

whether a spatial pattern existed on the monthly precipitation  series andTBß>

deposition  series.  created monthly semivariograms and aggregatedHBß> Bilonick

them across months, and then chose the parametric spherical model to fit the

empirical semivariograms, separately for  and Kriging point averageT H ÞBß> Bß>

estimates and corresponding mean squared errors were derived based on the fitted

semivariograms and aggregated to get block average estimates, with each block

covering an area of 80 . Concentration of  was defined as / , and57 L H T# 
 

approximation was used for the variance of the ratio. The resulting maps

predicted a "weak tendency" that concentrations decreased in moving from West

to East, and suggested this tendency was barely significant.

Bilonick (1985) continued the work done in the above analysis and extended it

into a fully spatial-temporal analysis. This time the variable of interest was either

sulfate concentration, measured in milligrams per liter (  ), or sulfate71 6"
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deposition, measured in kilograms per hectare per year (   ). For 51 2+ C H" "
Bß>

series, a space-time semivariogram was computed of the form defined by#Ð2ß >Ñß

  {Z  # Ð2ß >Ñ œ I  ^ À llB  B ll œ 2ß l>  > l œ >× Ð"Þ$Ñ# B"ß>" " # " #B#ß>#

where  denotes the Euclidean distance between  and , and it isllB  B ll B B" # " #

assumed that  is stationary and isotropic in space and stationary in time.Ð"Þ$Ñ

The sample semivariogram was computed using the Methods of Moments where

pairs of observations (Z  , ) were grouped into bins according the valuesB"ß>" B#ß>#^

of and . The author proposed a parametric model after examining the space-2 >

time semivariogram graphically by form

       # # # # #œ    Ð"Þ%Ñ! T W P

where

  #! !ßœ G

  #T :
# >
$'&œ G Ö"  !Þ& -9=Ð Ñ×ß1

  
if 

if 0
if 

#W W W $ W
" " $

W

W W

œ

! > œ !

G Ö$>Ð#+ Ñ  # > + Ñ  >  +

G >   +




  #P Pœ 5 2

   is the nugget effect,ñ #!

   represents the periodic effect and  is measured in days, consideration   ñ >#T

of  seasonality is reflected in this term,
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   is interpreted as the aperiodic residual effect,ñ #W

   is modeled as linear in  This component reflects the spatial part ofñ 2Þ#P

the  variogram.

Parameter estimates were  = 100, = 300,  = 150,  = 30,  = 1.0. TheG G G + 5! : W W P

fitted semivariograms are shown in Figure 1.1 and Figure 1.2.

Figure 1.1 Fitted semivariogram from equation .Bilonick (1985)Ð#Þ"Ñ

Point and block calculation procedures similar to that in the pure spatial analysis

were applied to the collected data to predict the sulfate deposition. The resulting

maps for each year from 1966 to 1975 showed clear differences in the spatial
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pattern of deposition from year to year, but no evidence of overall temporal trend

was found, though the deposition showed a small peak around 1972. Figure 1.2

illustrates the temporal variogram for a single location. The inclusion of a

periodic effect in equation  is distinctly reflected in the map, indicatingÐ"Þ%Ñ

seasonality in the data.

 

Figure 1.2  The temporal variogram for a single location, . Bilonick (1985)#Ð!ß >Ñ
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Biloncik (1988) applied "indicator kriging" (Cressie 1993, pp.281-283) to the

previous spatial-temporal model on other data collected from 35 stations in the

states of New York, Pennsylvania, West Virginia, Virginia, Ohio, Indiana,

Kentucky, Illinois plus Ontario (Canada), in the time period from July 1982 to

September 1984. The fitted semivariogram was composed of a pure temporal

semivariogram term, and another term that was effectively of a "geometrically

anisotropic" form in the space and time variables. The estimated spatial-temporal

variogram can be used to construct maps of the estimated median, as well as other

quantiles, of hydrogen ion ( ), the main variable of interest.H

1.2.2      Egbert and Lettenmaier's Multivariate Space-Time Model

Egbert and Lettenmaier (1986) introduced a rather general class of multivariate

space-time models based upon the analysis of National Atmospheric Deposition

Program (NADP) data, produced from weekly observations of 10 ionic species of

the monitoring network. The featured data exhibited spatial dependence for both

the long-term and the short-term averages, plus seasonality, for multiple

components.

Egbert and Lettenmaier divided each year into four 3-month seasons and fitted the

following basic temporally stationary model to the data in each season,

      ^ ÐBÑ œ [ ÐBÑ  ] ÐBÑ Q ÐBÑ: :
=> =>

: :
= Ð"Þ&Ñ

where ^ ÐBÑ =ß >:
=>  denotes the th component of the observed process in year week p

and location ( ) is the weeklyB " Ÿ : Ÿ T ß " Ÿ = Ÿ Wß " Ÿ > Ÿ X à [ ÐBÑ:
=>

variation in year week  and location  is the yearly variation in year =ß > Bà ] ÐBÑ =:
=

and location   represents the long-term effect. Assumption are,Bà Q ÐBÑ:
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ñ  means of [ ÐBÑ ] ÐBÑ:
=>

:
= and  are 0,

ñ IÖ × œ 5 ÐBß B Ñ B  B  is a smooth function of either for[ ÐBÑ[ ÐB Ñ: :
=> =>

w
w

[
:: w w

w

stationary case or  for stationary and isotropic case,lB  B lw

ñ IÖ × œ 5 ÐB  B ß >  > Ñß  in which  is the Kronecker[ ÐBÑ[ ÐB Ñ: :
=> = >

w
w

' ' $ $== ==[
:: w w

w w

w

delta function, if  otherwise),$==
w

w œ Ð" = œ = ß !

ñ IÖ × œ 5 ÐB  B Ñß  in which is the defined the same as] ÐBÑ] ÐB Ñ: w
=

:
=

w

' $ $== ==]
:: w

w w

w

above,

ñ IÖ × œ ß  Q ÐBÑ: .:

ñ IÒÖ ×Ö ×Ó œ ÐB  B ÑÞ  "#
:: wQ ÐBÑ Q ÐB Ñ Q ÐBÑ Q ÐB Ñ: : w : : ww w
#

w

Thus, the  and processes in different years are uncorrelated. Two scenarios[ ]

are discussed in fitting the model, with the first case assuming time-independent

weekly effects,     for 
for 

5 ÐBß >Ñ œ
5 ÐBÑ > Á !ß

! > œ !Þ[
:: [

::
w

w
The second case assumed temporal autocorrelation, but Egbert and Lettenmaier

assumed weekly independence after all lags greater than some and derived aX ß!

series of equations of the form

  IÖ Ð ^ Ñ Ð ^ × œ + 5 ÐB  B >Ñ  
s=1

S

> œ" > œ!

X> X: :
=3 =3 33 >> [

:: ::
3 3 ß

w w

w

w w

w w

w^  ^ : :
=> 3 => 3w w

w

for = ,  is the number of observed data points at ! Ÿ > Ÿ X ß!
^

where ^ X B
:
=3 X =3 3


>

=3

:
=>3

in year  is the th sampling location. =ß B 33 Egbert and Lettenmaier developed

estimation techniques in analogous to the three-way analysis of variance to
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estimate 5 5 +[ ] 33 >>
:: :: ::::

w w ww

w w, , and other parameters like , details of the exploitation#

can be found in their paper.

Egbert and Lettenmaier applied this method to the data collected from a network

of 51 sites in the northeast U.S. in years 1980 and 1981. The data were subdivided

into four seasons and three variables were considered, pH, precipitation and

sulfate acidity. Some of the main findings were:

ñ Some mild temporal autocorrelation was seen in the precipitation data, but no

autocorrelation was found in other two variables.

ñ Little "yearly" effect was found once masked by weekly and long-term effects.

ñ Seasonal effect was strong for spatial ranges.

ñ Spatial correlation for sulfate concentrations were stronger than for pH.

1.2.3     Empirical Orthogonal Functions

Cane et al. (1996) implemented a reduced dimension space-time dynamic model

using Kalman filter via empirical orthogonal function basis functions, in

simulating tropical Pacific sea level by linear wind driven models. The method of

empirical orthogonal function (EOF) analysis is a decomposition of a data set in

terms of orthogonal basis functions. The th basis function is chosen to be3

orthogonal to the basis functions from the first through , and to minimize the3  "

residual variance.  It is the same as performing a principal components (PC)

analysis on the data, except that the EOF method finds both time series and

spatial patterns. The basis functions are typically found by computing the

eigenvectors of the covariance matrix of the data set. The dimension reduction in
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Cane et al. (1996) made the calculation highly feasible. Cane et al. (1996)

compared the reduced state space filter with a full grid point Kalman filter using

the same dynamic model and concluded that results were not inferior to the full

grid point filter even when the reduced filter retained only nine EOFs from 297

time series.

1.2.4     Stein's Spatial Processes Model

Stein (1986) proposed a model with the form

      DÐBß >Ñ œ 7ÐBÑ  Ð>Ñ  /ÐBß >Ñ. Ð"Þ'Ñ

in which DÐBß >Ñ 85 ÐB > Ñß 3 œ "ß ÞÞÞß 8ß are  observed space-time point values 3ß 4

4 œ "ß ÞÞÞß 5ß Ð>Ñ Ð> Ñßá ß Ð> Ñ  are fixed time constants with unknown values . . ." 5

while and  are both random processes satisfying7ÐBÑ /ÐBß >Ñ

  IÖ × œ/ÐBß >Ñ 0 ,

  [ - ]"
#

# wI Ö × œ ÐB  B Ñß/ÐBß >Ñ /ÐB ß >Ñ' #

  [ - - ] for I Ö ×Ö × œ ! 3 Á 4ß/ÐBß > Ñ /ÐB ß > Ñ /ÐB ß > Ñ /ÐB ß > Ñ3 3 4 4
w ww ww'

  IÖ × œ !ß7ÐBÑ

  [ - ]"
#

# wI Ö × œ ÐB  B ÑÞ7ÐBÑ 7ÐB Ñw (

Thus the model includes two noise processes with zero mean, one spatial process

7ÐBÑ with known semivariogram ( independent of time point, and another spatial

process /ÐBß >Ñ that is generated independently at each time point with known

semivariogram .#



16

Based upon this framework Stein simplified functions of the model into

prediction of 2 problems:

1. Predict for any arbitrary { } for any observed time pointDÐB ß > Ñ B Â B ß ÞÞÞß B! ! " 8"

> > − > ß ÞÞÞß > Þ" ", { }" 5

#. Predict differences of spatial averages across different time points

"
V V| |  where | | denotes the area of  ÖDÐBß > Ñ  DÐBß > Ñ× .Bß V VÞα "

In the solution of the first problem Stein proved that the optimal predictor of

DÐB ß > Ñ DÐB ß > Ñß DÐ> Ñs! !" " ", is a linear combination of , the vector of observations at

time , and the vector of time-averaged responses, > D œ DÐ> ÑÞ"
"
5 3œ"

5
3


For problem 2, Stein showed that the optimal kriging solution is a function of

only pairwise differences, . He also pointed outDÐB ß > Ñ  DÐB ß > Ñß 3 œ "ßá ß 8
3 α "3

the predictor based upon the pairwise differences was superior to the alternative

solution in which both

" "
V VV V| | | | and   were predicted respectively. ÖDÐBß > Ñ.B ÖDÐBß > Ñ.Bα "

1.2.5    Cressie and Huang's Covariance Function Approach

Cressie and Huang (1999) proposed a generic approach, the nonseparable, spatio-

temporal stationary covariance function, which generalized the separable space-

time covariance structure of Matern (1986) used in pure spatial processes.

Cressie and Huang constructed a stationary spatio-temporal covariance function

from Bochner's theory (Bochner, 1955) of the form
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     GÐ ß Ñ œ / 1Ð ß Ñ . . Ð"Þ(Ñ2 . 7 7  3Ð  Ñ2X= .7 = =

in which  is a -dimensional vector serves as a spatial lag while  is a scalar2 . .

time lag, and  is the spectral density of the covariance function where 1Ð ß Ñ Gß= =7

is -dimensional and  is scalar. ;  is further assumed to be integrable,. GÐ † † Ñ7

then

        1Ð ß Ñ œ / 2Ð à Ñ . Ð"Þ)Ñ= =7 . ."
#

3
1

.7
where

 2Ð à Ñ ´ Ð Ñ / GÐ à Ñ .2= . ."
#

. 3
1

 2X= 2

  ,œ / 1Ð ß Ñ. 3.7 = 7 7

by assuming that

       2Ð à Ñ œ Ð à Ñ5 ß Ð"Þ*Ñ= = =. 3 .  
which satisfies the following two conditions:

(C1) For each  is a continuous autocorrelation function,= =− ß Ð à † Ñe 3.

  3 . .Ð à Ñ.  ∞ 5  !Þ= = and 

(AC)  .  5  ∞=

Then  can be written asÐ"Þ)Ñ

     1Ð ß Ñ ´ 5 / Ð à Ñ .  != = =7 3 . ."
#

3
1

.7 
by (AC).  Furthermore by
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(C2)  .    1Ð ß Ñ . . œ 5  ∞= = =7 7

Thus ( ) becomes"Þ(

     GÐ ß Ñ œ / Ð à Ñ 5 . Ð"Þ"!Ñ2 . 3 .   32X= = = =,

where  is the spectral density of a pure spatial process and  is a valid5 Ð à Ñ = =3 .

temporal autocorrelation function in . for each given .=

Cressie and Huang developed seven models based upon the covariance function

structure built above and here I demonstrate one of them. The others are of similar

forms.

Model 1. Let

  3 . . $. $Ð à Ñ œ /B:Ö  ll ll Î%×/B:Ö  ×à  !ß= = # # #

and  exp{-  .5 œ - ll ll Î%×à -  ! = =! !
#

The construction of 3 .Ð à Ñ 5= = and  satisfies condition of (C1) and (C2), 
furthermore, from and Matern (1960, p.17),Ð"Þ"!Ñ

 } {  GÐ à Ñ º /B:Ö  /B:  ×à  !ß2 . $. $"
- Ñ

ll ll
- Ñ

#
( (. .# .Î#

!

#

#
!

2

is a continuous spatio-temporal covariance function in As 0, thee e $. ‚ Þ Ä

above formula evolves to

 | }G Ð à Ñ œ /B:Ö  ß!
+ "Ñ

, ll ll
+ "Ñ2 . ) 5

. .

#

# # .Î#

# #

# #( (
2
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where , 0 is the scaling parameter of time and  0 is the) œ Ð+ß ,ß5# XÑ +   ,  

scaling parameter of space, and ( ) here  is set to 0.5# !
!œ G à !l  !ß -! )

1.3. Point-Pattern-Based Spatial-Temporal Transition Density

Model

According to Diggle (2003, p.1), a spatial point pattern is a set of locations,

irregularly distributed within a designated region and presumed to have been

generated by some form of stochastic mechanism. Diggle (2003, p.42) further

defined spatial point process as a stochastic mechanism which generates a

countable set of events  in the plane. Stationarity and isotropy are oftenB3

assumed for these processes, which means all properties of the processes are

invariant under translation, and invariant under rotation. It should be noted that

these two assumptions do not rule out the random heterogeneity in the modeling.

The basic hypothesis for a spatial point pattern is complete spatial randomness

(CSR), Diggle (2003, p.6), which asserts that the number of events in any planar

region follows a Poisson distribution with mean and the given events E lElß 8 B- 3

are an independent random sample from the uniform distribution on EÞ
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1.3.1      Spatial Clustering in Point Processes

Figure 1.3  Normal density kernel with contour lines of Cardiff juvenile

delinquents. Anselin (2003)

A spatial cluster, also know as a "hot spot", is a common phenomenon of point

processes in fields like epidemiology and criminology. The normal density kernel

with contour lines of Cardiff juvenile delinquents shown in Figure 1.3 is a good

illustration of this concept. The plot was created by Anselin (2003) using Ned
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Levine's CrimeStat2.0 software package.  The spatial clustering formed a good

basis for the prevalent spatial forecasting. A widely used method is the Spatial

and Temporal Analysis of Crime program (STAC), which clusters crime points

within ellipses (Block,1995). Levine (1998) demonstrated the kernel density

estimation method shown in Figure 1.3, which extended STAC in a more

sophisticated way. Many researchers have investigated spatial decision making by

criminals and in their models spatial attributes or features (e.g. distance to a road,

type of residential community) serve as predictors to forecast criminal incident.

The underlying assumption is that the likelihood of a criminal incident at a

specified location is based upon the history of the same type of incident and

independent spatial features.

1.3.2 Definition of Brown and Liu's Point-Pattern-Based Density Model

Liu and Brown (2003) proposed a point-pattern-based transition density model

derived from the theory of point patterns (Diggle, 1983). Their model extends

crime clustering methods by incorporating offender's preferences in crime site

selection. The model represents criminal preferences as the functional relationship

between demographic, economic, social, victim, and spatial attributes and

measure of criminal activity. Liu and Brown gave a formal description of their

forecast model.

Denote the locations and times of criminal incidents as Ð ß > Ñß Ð ß > Ñßá ß= =" " # #

>  !  >  >  âß 3! " # 3 where  is the two-dimensional location of incident  of=

a given type of crime and  is the corresponding time of incident , > 3 0 ß 0 ßá ß 03 " # :

are measurable features that are believed to be associated with the occurrences:

of the incidents, is the feature vector consisting of values for  elements at timeB3 :
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> Þ − À − Hß > − X3 ß> Taken together, { } formed a marked space-time shockB == k

point process (Cressie, 1993), where and are all random quantities>ß ß= B=ß >

defined within study horizon a study region , and a featureX § ß H §e e #

space respectively. The reason that the point process is classified as ak e§ ß:

shock point process instead of a survival process is the events are considered

instantaneous.

The measurement of interest is the density of the process, which is the likelihood

that a criminal incident occurs within a study region at the future time given the

times, locations and features of the past criminal incident of the same type and

bounded by the same region and time range. Liu and Brown (2003) defined the

transition density in the following equation,

<8 8" 8" 8 8 8
Ð. Ñ.> Ä!

T<ÖRÐ.= ß .> Ñœ"lH ß X ß ×
Ð. Ñ.>Ð ß > lH ß X ß Ñ ´= k       lim

/ /= =
8" 8"

8" 8" 8 8 8

8" 8"

k

Ð"Þ""Ñ

where , in which X œ Ö> ß > ßá ß > ×à H œ Ö ß ßá ß × œ Ö ß ×à8 " # 8 8 " # 8 3" 3#= = = = = =3

k8 " # 8 3 3" 3# 3: 8" 8"œ Ö ß ßá ß ×ß œ Ö ß ßá ß × à >B B B B B B B =in which   and  are
w

the location and time of a future crime incident;  is the Lebesgue measure/Ð. Ñ=
8"

of the infinitesimal region ;  is the count of crime incidents. RÐ.= ß .> Ñ=
8" 8" 8"

within  and the infinitesimal time interval .. .>=
8" 8"

1.3.3 Brown and Liu's Point-Pattern-Based Transition Density Model

1.3.3.1 Model Search Method

Many factors are believed to be related to criminal preferences. Liu and Brown

initiate their model by specifying triplet (  to reduce the dimension of theJ ß -ß =Ñ
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features to form a key feature space, where is the initial feature set,  is aJ -

criterion function defined for subsets of and  is a subset search procedure. ToJ ß =

measure the cohesiveness of a point pattern observed in the independent variable

or defined subspace, they produced an inter-event distance  which is a distance.34,

between event  and  in the feature subspace defined by the feature subset to be3 4

evaluated, and then transformed into similarity  as follows.=34

         = œ Ð"Þ"#Ñ34
"

" .α 34

where and  is the average inter-event distance. Distance refers toα œ "Î. .

differences in value of an independent variable. They further define the Gini

index as,

        1 œ %= Ð"  = Ñ Ð"Þ"$Ñ34 34 34

for a data set of  events, the average Gini index is suitable to measure8

cohesiveness:

 .       M œ Ð"Þ"%Ñ1

# 1

8Ð8"Ñ

 
3œ" 4œ""

8" 8

34

The smaller the value the index is, the higher the level of point patternM1

cohesiveness or the better the set of features that define the point pattern. The

authors evaluate  for each individual feature and select a subset of featuresM1

based upon the  scores. Before the actual calculation of  scores, a ratio of  isM M <1 1 5

examined, in case the feature values for a large sample of locations uniformly

chosen over the study region, called a prior feature data set, are available.
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       < œ Ð"Þ"&Ñ5

7+B lB B l

7+B lB B l

B B35ß 45−I5

B B35ß 45−T5

35 45

35 45

where and  are the event and the prior feature data sets for feature ,I T5 5 50

respectively. If the ratio is sufficiently small,  won't be calculated for feature .M 01 5

Otherwise, adjusted  is calculated,M
Ð5Ñ
1

 Adjusted  =        M Ð"Þ"'Ñ
Ð5Ñ M ÐI Ñ
1 M ÐT Ñ

 1 5

1 5

where   and  are the  scores for  over the event feature data setM Ð Ñ M Ð Ñ M 01 1 1 5I T5 5

and the prior feature data set. is a indicator of how the prior distribution ofM Ð Ñ1 T5

0 M Ð Ñ5 1 deviates from the uniform distribution, and is designed to adjust .I5

1.3.3.2 The Transition Density Model

Liu and Brown (2003) develop the transition density model defined in equation

Ð"Þ""Ñ in a multi-step componentization and then estimated the corresponding

components. The model is schematically represented in Figure 1.4. In the process

of componentization Liu and Brown first separated spatial and temporal

transitions as follows,

 <8 8" 8" 8 8 8ÑÐ ß > lH ß X ß œ= k

   ,  < <
Ð"Ñ Ð#Ñ
8 88" 8 8 8 8" 8" 8Ð lH ß ß X ß > Ñ † Ð> lX Ñ Ð"Þ"(Ñ= k

the standard Bayesian decomposition of  is simplified to<
Ð#Ñ
8 8" 8ß 8 8Ð> lH ß X Ñk

<
Ð#Ñ
8 8" 8Ð> lX Ñ based upon the assumption that any inherently temporal features

(e.g., seasonality and holiday/non holiday) that are categorized as time instants

are excluded because this models deals with a short time period (e.g. one week or
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a few weeks). Also according to Cressie (1993), temporal transition of the marked

space-time shock point process is assumed not to depend on its spatial transition.

Figure 1.4  Components of the transition density model, Liu and Brown (2003)

The second step of the componentization is to model the spatial transition density

<
Ð"Ñ
8 8" 8 8 8 8"Ð lH ß X ß > Ñ= , , in other words, decide the likelihood of futurek

events occurring at certain locations based upon past site selection preferences.

The site selection preferences are defined by a distinct clustering pattern into key

feature space. Liu and Brown decomposed the key feature space k  into G

disjoint continuums  in relation to some underlyingÖ ×k Ð4Ñ À 4 œ "ß #ßá ßG 

clustering pattern, which defines the set of preferences. Accordingly, k8 is

partitioned into  disjoint subsets  ,G À 4 œ "ß #ßá ßG §Ö ×k k k8 8
Ð4Ñ Ð4Ñ Ð4Ñ where 

Ö ×k k8 8
Ð4Ñ Ð4Ñ

À 4 œ "ß #ßá ßG  where  also defines the corresponding partition of
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H X À 4 œ "ß #ßá ßG À 4 œ "ß #ßá ßG8 8 8 8
Ð4Ñ Ð4Ñ and , ÖH × ÖX ×, , locations and times

of past events.  Liu and Brown (2003) further define theBased upon the partition, 

transition density as the following:

 <
Ð"Ñ
8 8" 8" 8 8 8ÑÐ ß > lH ß X ß œ= k

   α < <† Ð l Ñ † Ð lH ß X ß > Ñ
Ð" Ñ Ð"#Ñ Ð4Ñ Ð4Ñ
8 8 8 88" 8 8" 8"

4œ"

G
1
B =k 

       ‚ T<Ð − l Ñ Ð"Þ")ÑB8"
Ð4Ñ

8
Ð4Ñ

k k

where  is the feature vector at location   is called theB = B8" 8" 8" 8
Ð" Ñ
8ß Ð l Ñ<

1
k

first-order spatial transition density (i.e., first-order effects)  which is the eventß

intensity at  in the key feature space, B =8" 8" 8"
Ð"#Ñ Ð4Ñ Ð4Ñ
8 8 8< Ð lH ß X ß > Ñß

4 œ "ß #ß ÞÞÞGß are called the second order spatial transition density (i.e., second-

order effects).  is the probability the next feature vectorT<Ð − l ÑB8"
Ð4Ñ

8
Ð4Ñ

k k

falls in the same continuum of the key feature space  as  did, and  is ak kÐ4Ñ
8
Ð4Ñ

α

normalizing factor.

In theory a spatial pattern can be regarded as the result of first-order effects

coupled with second-order effects. Equation  models first-order effects asÐ"Þ")Ñ

event intensity in key feature space instead of in geographic space, and this is the

key point differentiating it from the traditional "hot spot" model in which event

intensity is the expected number of accumulated events at alterative sites. The

same site selection preferences are assumed to persist at and will be captured>8"

by feature space event density.

Liu and Brown model second-order effects in geographic space which only

examines spatial interaction among events in the same feature space cluster
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because these events are initiated with the same set of preferences. To deal with

the uncertainty associated with assigning a new event to a specific cluster they

weigh second-order effects pertaining to individual clusters by the probabilities

that quantify this uncertainty (i.e., the spatial interaction probabilities).

Technically speaking, the overall process is partitioned into sub-processesG

based upon the partitioned , H8
Ð4Ñ the consequent geographic partition defined by

k8
Ð4Ñ in the process of feature space partition, and the weighted average of the

second-order effects of  thinned point processes in geographic space isG

calculated.

The model presented in equation  is based upon the assumption that eventÐ"Þ")Ñ

locations follow a homogeneous Poisson point process and are hence uniformly

and independently distributed in geographic space. However, this complete

randomness does not necessarily hold true in feature space due to the form of the

mapping from  to and the possible inherent randomness of .  n= B B8" 8" 8" I

equation , a new item is introduced to adjust this nonuniformity,Ð"Þ"*Ñ

 < " ,
Ð"Ñ
8 8" 8" 8 8 8 8" 8"8ÑÐ ß > lH ß X ß œ † Ð"Î Ð l ÑÑ= B =k

   † Ð l Ñ † Ð lH ß X ß > Ñ< <
Ð" Ñ Ð"#Ñ Ð4Ñ Ð4Ñ
8 8 8 88" 8 8" 8"

4œ"

G
1
B =k 

        ‚ T<Ð − l ÑB8"
Ð4Ñ

8
Ð4Ñ

k k

Ð"Þ"*Ñ

where  denotes the probability density function of  given a,8 8" 8" 8"Ð l ÑB = B

prior probability density function of  over the study region . = B =8" 8 8" 8"H Ð l Ñ,

is called the geographic-space feature density and  is a normalizing factor. By"

including the reciprocal of , individual locations with certain,8 8" 8"Ð l ÑB =
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feature values that are more typical than others in the study region are adjusted

lower so that all locations are put on equal footing.

It should be noted that  does not depend on event feature  while,8 8" 8" 8Ð l ÑB = k

< ,
Ð" Ñ
8 8" 8 8 8" 8"

1
Ð l Ñ Ð l ÑB B =k  does. When  is uniformly distributed, the model in

equation  reduces to that in  and the model in  is used whenÐ"Þ"*Ñ Ð"Þ")Ñ Ð"Þ")Ñ

,8 8" 8"Ð l ÑB =  is unknown. Liu and Brown (2003) implemented the estimation of

individual components in equation  to  using the following fourÐ"Þ"(Ñ Ð"Þ"*Ñ

steps:

(1). Partition the event features into the best number of clusters ( ) .G

(2). Estimate  and  in the key feature<
Ð" Ñ Ð4Ñ
8 88" 8 8"

Ð4Ñ1
Ð l Ñ T <Ð − l ÑB Bk k k

space.

(3). Estimate  in the partitioned geographic space.<
Ð"#Ñ Ð4Ñ Ð4Ñ
8 8 88" 8"Ð lH ß X ß > Ñ=

(4). Estimate  where appropriate and feasible.,8 8" 8"Ð l ÑB =

1.3.4 Component Estimation of Liu and Brown's Model

1.3.4.1 Partition Event Feature Data

Liu and Brown (2003) applies a hierarchical clustering algorithm to a data set of

size  and generates a succession of  partitions where8 8 T ß T ßá ßT ß
! " 8"

T ß T ßá ßT 8ß 8  "ßá ß "
! " 8"

contains cluster(s), respectively. It merges the two

"closest" clusters in  to  The stop rule is a revision of Mojena (1977) andT T Þ4 4"

the revised rule stops the merging clusters and select the first partition T4

satisfying

        α α4" 4 +  5 † = Ð"Þ#!Ñ
4
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where  is the shortest pair cluster distance in the partition  and   and  are+ T =4 4 4 +α
4

the mean and unbiased standard deviation of     and  equals 1.25+ ß + ßá ß + ß 5! " 4

according to Milligan and Cooper (1985).

1.3.4.2 Estimate First-Order Spatial Transition Density and Spatial

Interaction Probabilities

Liu and Brown (2003) considers two classes of models for estimating the first-

order spatial transition density and the corresponding spatial interaction

probabilities. The first class is  which has the formfinite mixture distributions,

 ; ,       0Ð Ñ œ 0 à Ð"Þ#"Ñs B B1 @ )  
4œ"

G

4 41 4

where1 1 1 1 1 1 14 " # G " # G
w !ß 4 œ "ßá ßGß  â œ "ß œ Ò ß ßá ß Ó ß1

@ ) ) ) ) )œ Ò ßá ß ÓÞ" # G 4 4ß B0 à 44  is the th component density with the set 

parameters and is the collection of1 1 1" # Gß ßá ß  are  and mixing weights @ 

component parameters. Gaussian mixture models (GMM) are used for continuous

feature space and Latent Class Models (LCM) (see Everitt, 1984) are used for

discrete feature space. The Expectation-Maximization (EM) algorithm is used to

quantify the parameters .Ò ß ßá ß Ó1 1 1" # G
w  and Ò ßá ß Ó) ) )" # Gß

Liu and Brown (2003) also applied the non-parametric techniques called filtered

kernel estimators (FKE) (see Marchette et al., 1996) which takes the form

     0Ð Ñ œ OÐ Ñ Ð"Þ##Ñs B "
8 l l
3œ"4œ"

8 G 34 B4

L4
L B B"

4 3Ð  Ñ

where ( ) is a kernel function, O † L4, are  nonsingular4 œ "ß #ßá ßGß G : ‚ :

local bandwidth matrices and satisfying34Ð ÑßB 4 œ "ß #ßá ßGß
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 and ! Ÿ Ð Ñ Ÿ " Ð Ñ œ "3 34 4
4œ"

G

B B
for all , are . Liu and Brown assume that the kernel functionB filtering functions

O †( ) is the standard multivariate Gaussian density function. The filtering

functions  are prior weights over variations of local smoothness. The local34Ð ÑB

bandwidth matrices contain posterior parameters settings that enforceL4 

localized smoothness. L4 4" 4# 4: 46 diag  where œ Ò2 ß 2 ßá ß 2 Óß 4 œ "ß #ßá ßG ß 2

Ð4 œ "ß #ßá ßGà 6 œ "ß #ßá ß :Ñ 6 Ó  is a local bandwidth for the th dimension [B 6

of the th region of support. Two assumptions of this 4 filtered product kernel

(FPK) estimators are (1) All dimensions are  mutually independent and (2) Kernel

functions follow a multivariate Gaussian distribution. Liu and Brown (2003)

derives the filtering functions based upon the data { } which hasB3à 3 œ "ß #ßá ß 8 ß

been partitioned into  clusters. G ßH H H" # GÞßá ß

ñ − Let the indicator function  be 1 if  and 0 otherwise. Set1Ö − ×B Hj
B Hj

 .     34 Ö − ×Ð Ñ œ ß 4 œ "ß #ßá ßG Ð"Þ#$ÑB 1 B Hj

The FPK estimators with the filtering functions defined in  are termed asÐ"Þ#$Ñ

weighted product kernel (WPK) estimators.  Denote  as the number of data84

points in the local bandwidths are estimated by the following solution,Hj, 

  2s œ Ð Ñ 8 6 œ "ß #ßá ß :s46
%

:#
"ÎÐ:%Ñ

46
"ÎÐ:%Ñ
45 4 œ "ß #ßá ßGà Ð"Þ# Ñ4

where 5s 6 Ò Ó46 6 is the standard deviation of the th variable  estimated from theB

unidimensional local data set ÖÒ Ó à ×ßB B3 6 3−Hj 4 œ "ß #ßá ßGÞ

Spatial interaction probabilities correspond to either finite mixture or filtered

kernel estimators and are based upon the local structures specified by these
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estimators. The corresponding spatial interaction probabilities for finite mixture

distributions are given as

    .  T<Ö − l × œ 0 Ð à ÑÎ0Ð à Ñß 4 œ "ß #ßá ßGB B B8" 4 4 8" 4 8"
Ð4Ñ

8
Ð4Ñ

k k ) 1 @1 ß

          Ð"Þ#&Ñ

In case a filtered kernel estimator is used, spatial interaction probabilities take the

form

 T<Ö − l × œ 0 Ð ÑÎ 0 Ð Ñß 4 œ "ß #ßá ßG Ð"Þ#'Ñs sB B B8" 8" 8"
Ð4Ñ

8
Ð4Ñ

4k k  

where

  .  0 Ð Ñ œ OÐ Ñß 4 œ "ß #ßá ßG Ð"Þ#(Ñs
4

"
8 l l
3œ"

8

B8"  34 B4

L4
L B B"

4 3Ð  Ñ

1.3.4.3 Estimate Second-Order Spatial Transition Densities

To Liu and Brown adapt twoestimate second-order spatial transition densities, 

models developed by Fiksel (1984) to their case based on two additional

assumptions. First, event initiators favor geographically closer location for the

next event, and second, event initiators tend not to wait long before they act

again. The first model, known as the order model, is described below.

Suppose there are  data units in cluster  Let , ,7 4Þ H œ Ö ß ßá ×
Ð4Ñ
8 " # 7= = =

X œ Ö × ß ßá ß
Ð4Ñ
8 " # 7> ß > ßá ß > >  >  â  >" # 7 " # 7, and  be ordered and = = =

according to > ß > ßá ß >" # 7. Liu and Brown postulate the following function for the

second order spatial transition density for cluster 4

 < <
Ð"#Ñ Ð4Ñ Ð4Ñ
8 8 8 7 " # 7 # 7

3œ"

7
 ll  llÐ lH ß X ß >Ñ œ Ð l ß ßá ß Ñ œ / Ð"Þ#)Ñ= = = = = -

1
-#  = =3  



32

where  and > = are the time and location of a future event's occurrence

respectively, and >  >7 ll  ll= =3  is the distance from that future event's location

= = to an older event location   In this model, only the temporal3 Ð3 œ "ß #ßá ß7ÑÞ

order of the events is considered.

The second model is called the instant model and it incorporates the values of the

time series . Based upon this model Liu and Brown postulate that the> ß > ßá ß >" # 7

second-order spatial transition density takes the form

 < (
Ð"#Ñ Ð4Ñ Ð4Ñ
8 8 8 7 " # 7Ð lH ß X ß >Ñ œ Ð l ß ßá ß ß Ñ= = = = = > ß > ßá ß > ß >" # 7

    .   œ / Ð"Þ#*Ñ-

1

- 7#

3œ"

7
 Ð>> Ñ3

3

# / 3œ"

7
 ll  ll Ð>> Ñ 7

 = =3

A maximum likelihood method is used to estimate the parameters of  and  in- 7

Ð"Þ#)Ñ Ð"Þ# Ñ and 9 .

1.3.4.4 Estimate Geographic-Space Feature Density

To estimate the geographic-space feature density, when appropriate and feasible,

generally requires sampling over the study region. Liu and Brown obtain feature

values  for sample locations chosen uniformly and independently over the study

region and then fit a density function to the sample applying either the finite

mixture or the filtered kernel method.
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1. Point-Pattern-Based Hierarchical Bayesian Intensity Model4  

1.4.1     Limitations of Liu and Brown 's Model

In section 1.3, I discussed Liu and Brown' successful theory framework of the

point-pattern transition density model. They established the procedure to

decompose the big model into components and then implemented the component

estimates. In addition, they applied their model to a sample of crime data, which

included 579 commercial and residential "breaking and entering" incidents in

Richmond, VA, between July 1,1997 and August 31,1997, and demonstrated its

superiority over the traditional "hot spot" model. Although their model is

complete and capable, it is still not enough to reach the goals this dissertation set

to resolve.

The first limitation arises from the partition of key feature space in Liu and

Brown's model.  Liu and Brown decomposed the key feature space k  into G

subspaces, which defined the consequent partition of location space . In otherH8

words, the model neither considered nor recorded any geographic characteristic or

information of the sub feature space in the partition,  and therefore by nature, it

"lost" the geographic information in the process and tended to be incapable of

detecting of any geographic pattern, if it exists. One can easily imagine if one or

more subspaces spanned the whole horizontal dimension or vertical dimension of

the study region the model would lose the ability to detect any geographic pattern

in that dimension.

Liu and Brown's model is designed to deal with short time periods, within a week

or a few weeks. Their model did consider any inherently temporal features, like

seasonality, day of week variation, etc. Liu and Brown also assumed that for a
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typical space-time point process the temporal transition is independent of its

spatial transition. In Liu and Brown's model, the temporal transition density

<
Ð#Ñ
8 8Ð>lX Ñ is invariant over all locations within the study region at any given

instant . As a result they did not estimate this component because they>8"

narrowed their goal to forecasting only the relative transition density in the study

region at any future time point.  Although in this dissertation, I agree with the

invariance assumption, I mainly target forecasting annual auto insurance losses in

the region of interest based upon years of legacy data, and therefore I must

encompass the temporal component and the relevant temporal features.

Liu and Brown's model seems adapted to small study regions (in their application,

Richmond, VA). For highway losses we hope to predict the local density, usually

annually, as accurately as possible. This may require the partition of study regions

as micro as possible, but as for the geographic pattern, I need them to be

identified at a much more macro level, e.g., county or even state level. In the

study of geographic patterns, I am looking to determine whether the auto

insurance claim frequencies in subregions exhibit significantly high or low

values. Obviously Liu and Brown's model laid a solid foundation for density

estimation, but left the geographic pattern detection blank.

In addition to the detection of a geographic pattern of annual auto insurance claim

frequencies, examining the evolution of geographic pattern is possible since

HLDI data span 10 years. The geographic pattern of annual auto insurance claims

changes over time and hence the interest of how to measure this pattern shift.

Again the method to measure pattern shift, and the corresponding visualization of

pattern evolution are far beyond Liu and Brown's model. Hopefully this work can

at least address the problem.
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Besides the gaps mentioned above between the goals set by this dissertation and

the coverage of Liu and Brown's model, the computation of large datasets is

another concern. Stratified by parameters used in the estimation of density

models, HLDI auto insurance loss data could easily reach 100 million records,

upon which Liu and Brown's model may either be inefficient or not viable.

1.4.2 Bayesian Hierarchical Point-Pattern-Based Intensity Model

Inspired by I design and build a Liu and Brown's work, in this dissertation spatial-

temporal Bayesian hierarchical model (BHM) aimed at predicting intensities of

highway losses whose spatial process follows a Poisson-point-pattern.  The

proposed model has following functions,

Undercover latent subpopulations

The dissertation develops methods that can undercover latent distribution

components of highway loss events whose spatial process is characterized as

Poisson point process, but with an incomplete data structure. Methods developed

should be able to determine the finite mixture structure of the underlying Poisson

point process, and estimate the posterior probability from which subpopulation an

observation arises.

Identify key features having influence on highway losses

This dissertation also develops methods that can identify  key features having

great influence over highway losses by filtering out irrelevant/uncritical ones

from a large pool of features.

Detect key feature patterns corresponding to "hot spot" areas
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Methods developed in this dissertation can also detect key feature patterns

corresponding to "hot spot" areas where loss event intensities are classified to be

highly risky.

Partition key feature space and study area

The dissertation also develops an algorithm that can partition key feature space to

detect homogeneous clusters and map this partition to the study area allowing

highway losses to be measured over clusters.

Predict future losses

This dissertation also develops a BHM model that can be practically used to

predict future highway losses based upon information of current losses and most

recent past losses.  The methods can also detect and visualize the evolution of

"hot spot" geographic patterns with time.

1.4.3 Analogue of terms in this dissertation to traditional spatial statistics

"Features" in this dissertation means independent variables could influence

highway losses and more traditionally they are "attributes" in the spatial statistics.

In spatial statistics, "feature" means geometric objects, such as points, lines, and

polygons. "Distances" in this dissertation are defined in feature space instead of in

geographic space unless otherwise stated.
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2. Theory of Point-Pattern Spatio-Temporal
Model for Highway Loss

In Chapter 2, a mixture model is proposed to model cidents in thehighway loss in

study area  by extending the expectation maximization (EM) algorithm to thisH=

new field. The proposed strategy can identify subpopulations of highway loss

incidents and use the Random Forest algorithm to identify features having key

influences on the distribution of highway loss incidents. It also quantifies the

importance level of each selected key feature. Then the patterns of the key feature

vectors associated with highway loss "hot spots" can be detected.

2.1 Spatio-Temporal Process of Highway Losses

2.1.1 Highway Loss Incidents

Denote a series of  incidents as  , wherehighway loss Ð ß > Ñß Ð ß > Ñßá ß Ð ß > Ñ= = =" " # # 7 7

!  >  â  >  >  >  â  > ß" 4" 4 4" 7 4=  is the two-dimensional location

of incident  of a given type of loss and  is the corresponding time of the th4 > 44

incident, are  -dimension measurable feature vectors that are\ \ \" # 7ß ßá ß 7 :

believed to be associated with the occurrences of the incidents, where

B4 4" 4# 4:œ ÐB ß B ßá ß B Ñ is a realization of the feature vector corresponding to

incident , then { } form a space-time shock pointÐ ß > Ñ − À − H ß > − X= B =4 4 ß> == =k

process (Cressie, 1993), where and  are all random quantities defined>ß ß= B=ß >
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within study horizon a study region , and a feature spaceX § ß H §=
 #e e=

k e§ ß: respectively. Highway loss events are considered instantaneous so this

point process is classified as a shock point process instead of a survival process.

Furthermore, I assume that this point process is simple, which means at a given

time point, almost surely, either no incident or a single incident occurs at any

point on . The study region  is partitioned into  disjoint geographic cellsH H 8= =

Ö- ß - ßá ß - ×" # 8 . On 2-D space, a cell is a polygon. Typically, a cell can be a

census tract, a zip code area, or a grid defined in geographic information systems

(GIS). Incidents' locations, times, and associated attributes can be studied at cell

level, or higher level, according to the study interest.

2 1 2 Spatio-Temporal Process of Highway LossesÞ Þ

Highway loss incidents typically form stochastic spatio-temporal process, I

denote a spatio-temporal process model as ( ) where the] à > À > X ß= = − −H=ß =

study time range

 the study region . A spatio-temporal process can beX § ß H §=
 #e e=

aggregated (sliced) into a pure spatial process, ( ), or a temporal] À= = − H=

process. I write a temporal process model as ( ), it can be either a point] > À > X− =

process thus  is a random set made up of randomly occurring time points ofX=

events on ,  or a temporal  discrete-time process thus  = .Ò!ß∞Ñ X Ö!ß "ß #ßá×=

On a subset of ,E § §H= e#  I define a stochastic highway loss spatial point

process where ^ß E is a 2-dimensional Lebesgue measurable with defined area.

Let ( (.^ ^E E) denote the number of loss events in  and ) the counting process

defined on the set of Lebesgue measurable subsets of H= , with furthermore
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assumption that  ) is finite for all H ^ H= = is bounded and ( the expectedE E § ß

number of events (IÐ E Ñ E^ )  is given by an intensity function  ( )  defined on .- =

Let  be a location small region located at |= = − =H .= = =ß  let be a with area    . lß

then the first-order intensity function of the Poisson point process ) is defined^(.

as,

 ( )  ) ,  - = =´ IÐ . ÑÎl. l §lim
l. lÄ!=

^ H Ð#Þ"Ñ( ,     = = =

provided the limit exists. Hence,  

 ( ))= ( )   I E . ß E §^ H( .
E- = = =

An infinitesimal interpretation of ( )  is,- = l. l=

  ( )  ) .- = l. l ¸ T Ð . œ "Ñ= =^(

When ^  exhibits completely spatial randomness (CSR) it is a homogeneous

Poisson point process. Whenever The number of- -( ) , which is a constant. = ´ !

events over E follows a Poisson distribution

 ( ,^ HE l T93==98 E E §)   ( | |),   - -! !µ =

where -! >  is the parameter of the Poisson point process, and |  is the area of! El

E.

If ( ( the . .^ H) keeps independence for disjoint sets but ) varies over Poisson- =ß

point process becomes an inhomogeneous one,

 ( .     ^ H Ð#Þ#ÑE T93==98 . E §)    ( ) ,µ  
E- x x =
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To further extend the highway loss spatial point process to a spatio-temporal point

process, I define a bounded subset H= ,> of  e e# ‚  and define

H œ H H= = =, , > >‚ Ò!ß Ó − X § E §T T T , where  and largest time. Let =
e is the 

and ( (^ ^ HE E Ö E À E ×§ ‚ Ò!ß Ó) be number of events in  then ) = T

characterized the spatio-temporal point process.

The whole spatio-temporal point process of highway losses can be thought as a

temporal process of a spatial point process, and Cressie (2011) defined the

conditional intensity function of the above spatial-temporal point process as 

 ;      .     <Ð >Ñ ´= lim
l. lÄ!
. Ä!>

> >

>=

=IÐ . à. l Ñ
Ð. Ñ.

^( ) [
/ = Ð#Þ$Ñ

provided the limit exists. In small region located at Ð#Þ$Ñ H .,  and is a = − == =

with area  |   and . lß − X= > . >= > > .  is a small time interval at contains all the[

history information of spatial-temporal point process up to the time point >.

<Ð >Ñ Ð à >Ñ= =;  .is the frequency with which events occurs at 

2 2 Finite Mixture Models and Highway Loss IncidentsÞ

The use of mixture models can be traced back more than one century. Pearson

(1894) fitted a mixture of two normal distributions with different means and . ." 2

and variances and  in proportions  and  to some biological data. From5 5 1 1# #
" "2 2

the 1980s to the 1990s, the advent of high-speed computers and the maximum

likelihood estimation made mixture models practical. The Dempster et al. (1977)

paper on the expectation–maximization (EM) algorithm, the McLachlan and

Basford (1988) paper and the McLachlan and Peel (2001) paper on the use of EM

algorithm for the fitting of finite mixture model cleared main theoretical and

practical obstacles blocking the use of finite mixture models.
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2 2 1 Basic DefinitionÞ Þ

Let  denote a random sample of size where  is a -dimensional] ] ]" 8 4ßá ß 8ß :

random vector with probability function ( ) on 0 ßá ßC ] ] ]4 e:Þ Let   = ( ) ,"
X X X

8

where denotes the transpose of  , and thus is the entire sample which is a] ] ]4
X

4   

8-tuple of points in to denote a realization of  =e:. We use C ] C4 4   so that 

( ) is an observed random sample. Suppose C C C"
X X X

8 4ßá ß 0Ð Ñ originates from

multiple distributions and can be written in the form

  =        0Ð Ñ 0 Ð Ñß Ð#Þ%ÑC C4 4
3œ"

1

3 31

where  is a probability density function and0 Ð Ñ3 C4

 0 1 ( )  andŸ Ÿ 3 œ "ßá ß 113

   =   2
3œ"

1

31 "ß 1 − 1  Þm and 

The nonnegative  are called the mixing proportions or weights.  is the th13 30 Ð Ñ 3C4

component density of the mixture and   is a -component finite mixture0Ð Ñ 1C4

density; its corresponding distribution function  is referred to as a -JÐ Ñ 1C4

component finite mixture distribution.

A mixture model can be viewed as a probabilistic model for representing the

presence of subpopulations within an overall population. In the context of

parametric methodology, I  have to determine the following estimates to fit a

finite mixture model: the number of components; the weight of each component;

and parameters of each component. To identify from which components

observations are generated, let  be fixed and 1 Z4 be a -dimensional component1

vector, whose th element,  = ( ) , valued in 1 or 0 according to whether is3 ^34 4 3 4Z ]  

generated from the th component in the mixture. Thus follows a multinomial3 Z4 

distribution consisting of one draw on  categories with probabilities 1 1 1" 1ßá ß ,
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 Z4 µ Ð"ß ÑMultinomial       1 Ð#Þ&Ñ

where = ( )1 1 1" 1ßá ß  X Þ

2 2 2 Component Parameters and the Likelihood FunctionÞ Þ

Suppose  belongs to some parametric family and I specify the component0 Ð Ñ3 C4

density functions as  where 0 Ð Ñ3 C4 3 3; are unknown parameters of the th) )  3

component in the mixture. I rewrite the probability density function of the mixture

in Ð#Þ%Ñ as

  =        0Ð Ñ 0 Ð Ñ ß Ð#Þ'ÑC C4 4 3; ;G 
3œ"

1

3 31 )

where G consists of all unknown parameters in the mixture model

 G  œ Ð Ñ1 1" 1ßá ß ß ) )X X
" 1ßá ß X

and )3 are the parameters of the corresponding family of the th component.3

In most cases, component densities belong to the same parametric family. Thus

the mixture density in Ð#Þ'Ñ has the form

  = 0Ð Ñ 0Ð ÑC C4 4 3; ;G 
3œ"

1

31 )

where ) ) )3 " 1  − K Kand   denotes parameter space of .Ð Ñßá ß

Assume ] ] ] C C" 8 4 " 8ßá ß ßá ßi.i.d.
µ  0Ð l ÑßG and  are observed values of

] ] ]" 8 4ßá ß  from a parametric family , based upon probability densitycÐ l ÑG

function of Ð#Þ'Ñ, corresponding likelihood function is in the form

 P CÐ Ñ œ Ð#Þ(ÑG G
4œ"

8

0Ð Ñ4;        

and log likelihood function is
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 logP CÐ Ñ œG G
4œ"

8

6910Ð Ñ4;  

  .     œ 691Ö × 
4œ" 3œ"

8 1

130Ð Ñ Ð#Þ)ÑC4 3;)  

2 2 3 Incomplete Data StructureÞ Þ

To identify the component of an observation is a task of EM algorithm. In the EM

framework, a random sample C C" 8ßá ß  is defined as incomplete because their

associated component indicators remain unknown, or in terms ofD D" 8ßá ß  

observability, unobserved. Thus C C C    = ( ) are observed data and"
X X X

8ßá ß

 C C D-   = ( )X X Xß

are defined as complete data vector where

 D œ D DÐ ÑÞX X
" 8ßá ß

The log likelihood function of the complete data structure can be written as

 log log logP C-Ð Ñ œ  0 Ð Ñ Ð#Þ*ÑG 
3œ"

1

3
4œ"

8

34D Ö ×1
3 4 3;)    

Under Bayesian definition, 13 in  can be viewed as the prior probability thatÐ#Þ%Ñ

the observation belongs to the th component of the mixture3

J Ð l Ñ]4 3) ( ) , denote as the posterior probability that the observation3 œ "ß ÞÞÞß 1 73

belongs to the th component of the mixture3

  = pr ( )73 34D œ "lC4

 ( )   œ 0 Ð 0Ð 3 œ "ß ÞÞÞß 1à 4 œ "ßá ß 8 Ð#Þ"!Ñ13 3
C C4 4Ñ Î Ñ  



44

2 2 4 Component Parameter Estimate by Use of Direct ApproachÞ Þ

McLachlan and Krishnan (1997) gave a theoretical direct approach to estimate

unknown parameters in  where Ð#Þ'Ñ ßá ß ßG  œ Ð Ñ1 1" 1"
0X X contains all

unknown parameters in the mixture model and 0 ) )  œ Ð Ñ" 1ßá ß X are all

parameters known  to be distinct ( .a priori 1 1 1 11 " # 1œ "   ßá ß 
"

)

Theoretically, the computation of the maximum likelihood estimator (MLE) of  G

is equivalent to solving the likelihood equation,

   ` `log .      PÐ ÑÎ œ ! Ð#Þ""ÑG G

McLachlan and Krishnan (1997,  Section 1.4) detailed the manipulation so that

the MLE of G Gß ßs satisfies

 1 7^       3 3
4œ"

8

œ Ð ÑÎ8 3 œ Ð"ßá ß 1Ñ Ð#Þ"#Ñ C4àGs

and

 log
3œ"4œ"

1 8

37 Ð Ñ 0 ÐC C œ !4 4 3à à ÑÎ Ð#Þ"$ÑsGs ` ` 
3

) 0     

where

 ; ;7 1 13 3 6 6
6œ"

1

Ð Ñ œ 0 Ð Ñ Î 0 Ð Ñ Ð#Þ"%ÑC C C4 4 3 4 6àG
3

) ) .     
Unfortunately equation Ð#Þ"$Ñ is not always solvable and thus limits the use of

direct theoretical approach in many applications.

2.3 EM Framework on Finite Mixture Model Fitting

2 3 1  Definition of the EM AlgorithmÞ Þ

The Dempster et al. (1977) paper demonstrated that solving the equations of

Ð#Þ"#Ñ Ð#Þ"$Ñ : and formed an iterative computation solution whereby for the th
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round of estimate G GÐ:Ñ  of in the right-hand side of these equations, a new

estimate can be computed for and the can be substituted into theG G GÐ: Ñ Ð: Ñ+ +1 1   

right-hand side equations to produce and so on until is big enough andGÐ: Ñ+2  :

GÐ:Ñ converge.

Dempster et al. (1977) defined the EM algorithm first on regular exponential

families starting with two sample spaces  and  and a many-to-one mappingl k

\ Ä \ \] ]( ) from  to , where are random variables fromk l  and  

exponential families. The incomplete-data which were a realization from C ], 

were observed while corresponding complete-data B cannot be observed but only

indirectly through C. Let be density functions for the family depending on0Ð l ÑB G

parameter  isG and its corresponding incomplete-data specification 0Ð l Ñá á

related to  by0Ð l ÑB G

 1 Ð#Þ"&ÑÐ l Ñ œ 0Ð l Ñ.C G G
k Ð Ñ] B x      

and  has the form0Ð l ÑB G

  = 0Ð l Ñ ,Ð Ñ ÐB B > BG G Gexp Ð Ñ ÑÎ+Ð ÑX      Ð#Þ"'Ñ

where denotes a 1 x vector parameter, and a 1 x vector of complete-G < <> BÐ Ñ 

data sufficient statistics, and is restricted to an -dimension convex set .G < H

Suppose  denotes the current value of after  cycles of the algorithm, theG GÐ:Ñ  :

next cycle can be described in two steps,

E- :  Estimate the complete-data sufficient statistics by findingstep  > BÐ Ñ

        > œ > BÐ:Ñ Ð:ÑIÐ Ñ Ð#Þ"(ÑÐ Ñ|C,G

M- :  Determine  as the solution of the following equationsstep GÐ:"Ñ 

         IÐ Ð#Þ")Ñ> B œ >Ð Ñl ÑG Ð:Ñ
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Equation  actually defines the MLE estimator of given in .Ð#Þ")Ñ Ð#Þ"(ÑG  >Ð:Ñ

The sufficient statistics computed from an observed from . It should beB Ð#Þ"'Ñ

noted in case of regular exponential family, maximizing  log0Ð l ÑB G  is equivalent

to maximizing

 logG G> BÐ Ñ  +Ð ÑÞX log  

To explain why repeated application of the E-steps and M-steps leads to the value

G‡ , which maximizes likelihood

 P CÐ ÑG Gœ Ð l Ñ Ð#Þ"*Ñlog        1

for exponential family, Dempster et al. (1977) introduced the conditional density

of B given and ,C G

  5Ð 1B B|C C,       G G GÑ œ 0Ð l Ñ Î Ð l Ñ Ð#Þ#!Ñ

in order to rewrite Ð#Þ"*Ñ into the form

   log  log ,P CÐ ÑG G Gœ 0Ð l Ñ B B5Ð |  Ñ

      œ +Ð Ñ  +Ð Ñ llog logG G C , Ð#Þ#"Ñ

where  

 +Ð Ñ œ Ð Ñ ÑG Gl ,Ð Ñ Ð .C B > B
k Ð Ñ] exp X

x    Ð#Þ##Ñ

and  

 exp .+Ð Ð Ñ ÑG GÑ œ B > B      
k ,Ð Ñ Ð .X

x Ð#Þ#$Ñ

To maximize , IÐ#Þ#"Ñ Ð#Þ#"Ñ need to set the derivative of  to 0, which produces 

 d  = PÐ ÑG G GIÐ IÐ Ð#Þ#%Ñ  > B Ñ  > B CÐ Ñ Ð Ñ ß Ñ œ !l l .   
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Solving equation leads to Thus, if the algorithm  Ð#Þ#%Ñ œd = 0 at PÐ ÑG G G . ‡

converges, then

   G G GÐ:Ñ Ð: "Ñœ + œ ‡ Þ

Dempster et al. (1977) then extended the above defined E-step and M-step to a

more general case, a curved exponential family for which G lies in a curved

submanifold  of the -dimension convex set .H H! <

In this case the E-step  remains the same, but the M-step becomes:Ð#Þ")Ñ

Determine  to be a value of  in  which maximizesG GÐ:"Ñ   H!

 log G G> BÐ:Ñ XÐ Ñ  +Ð ÑÞlog      

Dempster et al. (1977) further extended above definition of EM algorithms to all

densities by introduction of a new function

 logUÐ Ñ œ IÐ 0Ð ÑG G G G
w w
l ÑBl |      C, Ð#Þ#&Ñ

under assumptions a) b)  exists0Ð UÐ ÑB −l ÑG G G G  > 0 a.e. in  for all  k  H.  
w
l

for all pairs of st cycleÐ Ñ :  "ÑG G
w
, . Then from th cycle to : Ð

E- :  Compute        step UÐ ÑÞG Gl Ð:Ñ Ð#Þ#'Ñ

M- :  Choose on  that maximizes step G G GÐ:"Ñ Ð:Ñ H UÐ Ñl .

It should be noted  must be computed for all UÐ ÑG G Gl Ð:Ñ  − H.

Dempster et al. (1977)  also proved that the generalized EM algorithm likelihood

PÐ Ñ UÐ Ñ  UÐ ÑG G G G G is non-decreasing on each iteration, and Ð:"Ñ Ð:Ñ Ð:Ñ Ð:Ñl l

on any iteration (strictly increasing). In addition, they discussed the convergence

of the generalized EM algorithm and also demonstrated methods to calculate the

rate of EM convergence.
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2.3.2  Finite Mixture Models under the EM Framework

Although Section 4.3 of Dempster et al. (1977) discussed the application of EM in

finite mixture models, McLachlan and Krishnan (1997) made substantial effort to

tailor EM algorithm for McLachlan and Krishnan appliedfinite mixture models. 

EM to finite mixture models by treating the  defined in (2.9) as missing data theD34

iteration proceeds in two steps. E (expectation) and M (maximization)

E- :  step | .     UÐ Ñ œ I Ð Ð ÑG G Gl Ñ
Ð5Ñ

Ð5Ñ
G

logP C- Ð#Þ#(Ñ

The E-step computes the expectation of the complete-data log likelihood

logP C-Ð ÑG G G  given the observed data . Here  and the current estimates of ,
Ð5Ñ

G G G
Ð5Ñ

, calculated from the th EM iteration, serves as . From , is5 Ð#Þ*Ñ  P-Ð Ñ

linear in is equivalent toD34, so the calculation of the I Ð Ð Ñ
G

Ð5Ñ logP C- G |  Ñ

 PrI Ð^
G G

Ð5Ñ Ð5Ñ34|  C CÑ œ Ö^ œ "l ×34

   œ Ð#Þ#)Ñ73Ð ÑC4àG
Ð5Ñ

      

thus Ð#Þ"%Ñ transforms to

 Pr  ( )  
G

Ð5Ñ

Ð5Ñ Ð5Ñ
D œ "l œ 0 Ð 0Ð34 3C C C4 4 41

3
à Ñ Î à ÑG G    Ð#Þ#*Ñ

      œ 0 Ð Ñ Î 0 Ð Ñ ß1 1
Ð5Ñ Ð5Ñ Ð5Ñ
3

6œ"

1

6 63
C C4 4

Ð5Ñ
3 6; ;) )

3 œ "ßá ß 1à 4 œ "ßá ß 8Þ

73Ð Ñ 4C C4 4àG
Ð5Ñ

 is the posterior probability that the th observation  is generated

from the th component of the mixture given the observed and the current3 C4 

estimate , G G
Ð5Ñ

. After th iteration of the EM algorithm,  can be rewritten5 Ð#Þ#(Ñ

to

  logUÐ Ñ œ Ð Ñ  0 Ð ÑG G Gl
Ð5Ñ Ð5Ñ

3œ"

1

3 3
4œ"

8

7 1C C4 4 3à Ö × Ð#Þ$!Ñlog .   
3

;)
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On the first iteration we assign andGÐ!Ñ  œ Ð Ñ1 1
Ð!Ñ Ð!Ñ
" 1ßá ß ß Ð

"
0Ð!Ñ XÑ X

  logUÐ Ñ œ Ð Ñ  0 Ð ÑG G Gl
Ð Ñ Ð Ñ0 0

3œ"

1

3 3
4œ"

8

7 1C C4 4 3à Ö ×log  
3

;)

M- :  Maximize step UÐ ÑG G
Ð5Ñ
l  of  .Ð#Þ$!Ñ

The maximization of UÐ Ñ Ð5  "ÑG G G
Ð5Ñ
l   on the th iteration with respect to 

over its parameter space H globally will determine the updated .G
Ð5 Ñ+1

  logG G
Ð5 Ñ Ð5Ñ+1

œ Ð Ñ  0 Ð Ñarg max
G


3œ"

1

3 3
4œ"

8

7 1C C4 4 3à Ö × Ð#Þ$"Ñlog   
3

;)

For finite mixture models the updating of 1Ð5"Ñ
3 ß  the mixing proportions, is

independent of the updating of 0Ð5"Ñ, the density parameters of components.  

McLachlan and Krishnan (1997) showed that parallel to MLE estimator of  =13


4œ"

8

34D Î8 Ð3 œ "ßá ß 1Ñß

   .    1 73
4œ"

8

3
Ð5 Ñ Ð5Ñ+1

œ Ð Ñ Î8 Ð3 œ "ßá ß 1Ñ Ð#Þ$#Ñ C4àG

Updating 0 0 0  in the needs to maximizeÐ5  "Ñth iteration from  to 
Ð5Ñ Ð5 Ñ+1


3œ"

1

3 3
4œ"

8

7 1Ð Ñ  0 Ð ÑC C4àG
Ð5Ñ

 logÖ × Ð#Þ$"Ñlog  in  by solving the equation
3 4 3;)

  
3œ"

1

3
4œ"

8

7 Ð Ñ ` 0 Ð Ñ `C C œ !4 4 3à Ð#Þ$$ÑG
Ð5Ñ

 log
3

;     ) 0 Î 

which often takes close form. Dempster et al. (1977) had shown that the

incomplete-data likelihood values  and the PÐ Ñ   PÐ ÑG G
Ð5"Ñ Ð5Ñ

repeating of the

above E-step and M-step leads to convergence of G G G G
Ð5Ñ Ð5Ñ Ð5 Ñ

, Ä Ä
+1 ‡,

when  reaches some value5 .
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2 4 Extension of EM on Highway Loss IncidentsÞ

2.4.1  Finite Mixture Model and Highway Loss Incidents

We defined the point process of highway loss incidents in 2.1.1, and the counting 

process of the in 2.1.2 and  the Poisson point process partitioned study region H=

into disjoint geographic cells . Assume complete spatial8 Ö- ß - ßá ß - ×" # 8

randomness (CSR) for at the specific time point . Let - Ð4 œ "ßá ß 8Ñß > − X ]4 =

be  a discrete random variable, and let  be the number of events observed on] 
-4

- - l -4 4 4 -, , and |  be the area of  and be the underlying intensity dominating the -
4

Poisson counting process on ,-4

then

  |] µ
-4

T 93==98 Ð - lÑ-- 44

and the probability mass function of  ] 
-4

 is

 Pr 0Ð Ñ œ Ð Ñ œC ] C Ð#Þ$%Ñ4 4-4 C
; =--

- lÑ Ð - lÑ
4

- 44 - 44  
Ð- -| |

 C4

4x
/ .   

Here  is a nonnegative integer and C4 --4  is found in a 1-dimension parameter

space . Although  is large many of the s may be the same. So I lete -
-8
4

--4 − Ö ßá ß × 1 ¥ 8Þ ] Þ- - -" # 1ß  where  I now draw a sample according to  The

sample is a spatial sample and will come from known s. However, I do not-4

necessarily know which  is appropriate.-3
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Because all components come from same family of distribution, for Poisson

counting process of finite mixture model of  highway loss incidents, the Ð#Þ'Ñ can

be rewritten to

    0Ð Ñ œ 0Ð ÑC C4 4 3; ; G 
3œ"

1

31 -

   œ 
3œ"

1

3
Ð

1
- -3

C4

4

3
| |- lÑ Ð - lÑ4 4

 

C x /  

where og likelihood-4  is the associated area on which  observedC is . The l

function of the complete data structure can be written as

 log P-Ð Ñ œG

 log log
3œ"

1

3
4œ"

8

34D Ö ×log .   1  Ð Ð Ñ C C Ð#Þ$&Ñ4 3 4 3- -| |- lÑ  - l4 4x

To apply finite mixture model on highway loss incidents, three problems need to

be resolved.

 1. to determine the number of components.

 2. to estimate the mixing weight for each component.

 3. to estimate parameters for each component.

Let  be the unknown number of components of the study subject, and let1

G œ Ð Ñ1 1" 1ßá ß ß
"
0X  X contains all unknown parameter in the mixture model

and

0 œ ßáßÐ Ñ- -" 1
X  are all parameters known  to be distinct for alla priori

components  The whole process of applying the finite mixture model to highwayÞ

loss incidents is simply the process to decide G given each of the component

follows a Poisson distribution.
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2.4.2  EM Algorithm with Known Number of Components

Assume the finite mixture model for the study subject has  components and  is1 1

known here. The EM algorithm on highway loss incidents also composes the E-  

step and the M-step, from th iteration to ( )th iteration,5 5  "

 E- :  Rewrite the function in step Ð#Þ$!Ñ

 UÐ Ñ œG Gl
Ð5Ñ 

3œ"

1 
4œ"

8

 log  7 13 3Ð Ñ  Ð Ð Ð Ñ  ÑC4 4 3 4 3à C CG
Ð5Ñ

 log logÖ × Ð#Þ$'Ñ- -| |- lÑ  - l4 4x

where

 7 1 13
Ð5Ñ Ð Ð5Ñ Ð
3

6œ"

1

6Ð Ñ œ ÑC4 C C
àG

Ð5Ñ - -- -3 6
C C4 4

4 4

3 6
| || |- lÑ - lÑÐ - lÑ Ð - lÑ4 44 4

  

x x/ /ÎÐ
    œ Ð Ð Ñ1 1

Ð5Ñ Ð5Ñ
3

6œ"

1

6- -3 6
C C| |- lÑ ÎÐ - lÑ4 4

Ð - lÑ Ð - lÑ  4 3 4 6/ /- -| |4 4 Ð#Þ$(Ñ

 .M- :  Maximize the function in step Ð#Þ$'Ñ

The maximization of UÐ Ñ Ð5  "ÑG G
Ð5Ñ
l   on the th iteration will determine the

updated .G
Ð5 Ñ+1

 G G
Ð5 Ñ Ð5Ñ+1

œ Ð Ñarg max
G


3œ"

1

3
4œ"

8

7 C4à

   log logÖ × Ð#Þ$)Ñlog .  13  Ð Ð Ñ C C4 3 4 3- -| |- lÑ  - l4 4x

Here the parameter space for 13
Ð5"Ñ is -dimensional space (0,1]1

‚ ‚â‚ "(0,1] (0,1] and   = . We further assume that intensities of the
3œ"

1

31

Poisson point processes studied are all finite and rameter space for is onpa H 0
Ð5 Ñ+1

 

1 Ð ßá ß Ñ ∪ ‚ â‚-dimensional space 0  0 e e e   and H is a closure.

The updating of 1Ð5"Ñ
3 ß the mixing proportions, is independent of updating 0Ð5"Ñ,

the mass function parameters of components. 
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   .    1 73
4œ"

8

3
Ð5 Ñ Ð5Ñ+1

œ Ð Ñ Î8 Ð3 œ "ßá ß 1Ñ Ð#Þ$*Ñ C4àG

Updating 0 0 0  in the needs to maximizeÐ5  "Ñth iteration from  to 
Ð5Ñ Ð5 Ñ+1


3œ"

1

3 3
4œ"

8

7 1Ð Ñ  0 Ð ÑC C4 4 3àG
Ð5Ñ

 logÖ × Ð Ñ 1log  in 2.36  by solving equations
3

;)

  
4œ"

8

73Ð ÑÐ ÑC à ! Ð#Þ%!Ñ4
C

G
Ð5Ñ 4

3-
 - l| 4 œ      

which often takes closed form. Solutions from  could be local or globalÐ#Þ%!Ñ

minima, or local or global maxima. W  does not take closed form orhen Ð#Þ%!Ñ

fails to produce global maxima, I define a closure  H H H! !§ ß œ Ò!ß Ò!ß -7+BÓ ‚

- - -7+B 7+B 7+BÓ ‚â Ó‚ Ò!ß  where  be the maximum intensity of the study, 

subject, then we maximize Ð#Þ$'Ñ on the closure .H!

2.4.3  EM Algorithm when the Number of Components is Known

2.4.3.1 Criterion in Determining the Number of Components

Brooks et al. (2003) showed a complete scheme of Reversible Jump Markov

Chain Monte Carlo (RJMCMC) which can be used to determine the number of

components in the mixture model. However, just as Robert and Casella (2011)

said, the implementation of a complex algorithm like RJMCMC is somewhat of

an overkill for the comparison of a few models. For highway loss incidents

studied in this dissertation, the finite mixture model is used in a clustering context

to identify subpopulations (groups) rather than to model unknown distributional

shapes such as skewness and kurtosis, thus the number of components remains

unknown. For a given sample there may not be a one-to-one correspondence

between the mixture components and the groups even if we have the sample and

know the specification of the parametric family of its underlying distributions.
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Fitting finite mixture models using maximum likelihood methods may result in

multiple models each having a different number of components. The goal of

deciding number of components is to find the smallest value of to fit the -1ß 1 ß 1!

component mixture model while being able to differentiate each of the

components from others and getting good performance in terms of likelihood.

McLachlan and Peel (2001) named 1! as the order of mixture model.

2.4.3.2 Prior Information of Components

If no prior information is available about the component distributions, then

nonparametric methods of detecting number of modes might be more appropriate

for a given sample. According to the literature, the relationship between number

of modes and number of components has not been determined completely. Miguel

A. Carreira-Perpinan (1999) proved that the number of modes cannot be more~

than the number of components in mixing Gaussian distributions and that they are

contained in the convex hull of the component centroids. In my case, I begin with

detecting the number of modes of observed samples in expectation that it will

help to define the range of number of components and thus makes computation in

fitting mixture model more efficient.

Let  be the observed number of highway loss incidents on correspondingC4

geographic cell - - l - ß 4 œ "ß #ßá ß 8 -4 4 4 4 and let |  be area of . I assume CSR on 

and define the observed intensity -
w

4  as

  = .        -
w

4
C4

|  - l4
Ð#Þ%"Ñ

Thus form a random univariate sample of size  I use kernel- - -
w w w

" 8ß Þá ß 8Þ#

density estimation (KDE) to investigate the multimodality of this sample.

Silverman (1986) describes the kernel density estimator as
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       0 Ð Ñ œ OÐ Ñ Ð#Þ%#Ñs
2

"
82 2

4œ"

8
Ð Ñ

-
w

w w - - 4

where  is a symmetric probability density function satisfies the conditionOÐÑ

 
∞
∞

OÐBÑ.B œ "ß

and  is the bandwidth or smoothing parameter. The selection of  is key in2 2

kernel density estimation. When  is chosen too small undersmoothing occurs2

and spurious fine structure becomes visible. On the other hand, when  is chosen2

too large, oversmoothing occurs so that multimodality of the distribution is

obscured. Jones et al. (1996) showed in case of a standard normal kernel function

rescaled by 2 2 Ä ! 82 Ä ∞ß and if  and the optimal bandwidth (asymptotic

mean integrated squared error) was

 2 œ Ö ×AMISE
"

# 8 Ð0 Ñ
"Î& 1 ww #

which needs approximation methods. Sheather (2004) suggested a number of

bandwidth based around a "center point" bandwidth and recommends the

Sheather-Jones plug-in bandwidth be used due to its overall good performance. In

my case, although the density of - - -
w w w

" 8ß ÞÞÞ#  is highly skewed and is at the

boundary, the Sheather-Jones plug-in bandwidth might have some bias, it is still

good enough to detect the number of modes to help the determination of number

of components.

2.4.3.3 The Sequence of EM Algorithms of Model Fitting Computation

I assume kernel density estimation (KDE) has determined a given sample has 7

modes. Based upon  and the sample size, I suggest the numbers of components7

between  and 1 1P, the, lower bound, , the upper bound. To be conservative IU

suggest



56

 ,      1 1 Ð#Þ%$ÑP Yœ 738 Ð#ß œ 7+B Ð 8ßÚ!Þ&7ÛÑ Ú"Þ&7ÛÑ
I run a sequence of  1  1Y P  " fittings looking for the one with best fitting from

the sequence to decide the order of the mixture model. The procedure of the

model finding algorithm is described as below,
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 Inputs:  Poisson mixture model defined by  
3œ"

1

31 0Ð ÑC4 3; -

 :  Constants & Ã "!)

 : ,  Control parameters 5 Ã &!! Ã7+B 1P 738 Ð#ß Ú!Þ&7ÛÑ,

 1U Ã 7+B Ð 8ß Ú"Þ&7ÛÑ

  for 1 œ ßá ß 1 1P Y

  set initial

  5 Ã !

  GÐ!Ñ X  œ Ð Ñ1 1
Ð!Ñ Ð!Ñ
" 1ßá ß ß 

"
Ð ßá ß Ñ- -" 1

X and

  UÐ Ñ œG Gl
Ð Ñ0

   log log
3œ"

1

3 3
4œ"

8

7 1Ð Ñ  Ð Ð Ð Ñ  ÑC4 4 3 4 3à C CG
Ð Ñ0

Ö ×log  - -| |- lÑ  - l4 4x

  repeat E- : rewrite function in step U Ð#Þ$!Ñ

   M- : step G G G
Ð5 Ñ Ð Ñ+1 k

œ UÐ Ñarg max
G


3œ"

1 
4œ"

8

l  in Ð#Þ$)Ñ

   G G
Ð5 Ñ Ð5Ñ+1

œ Ð Ñarg max
G


3œ"

1

3
4œ"

8

7 C4à

   5 Ã 5  "

  untilP  P Ð5"Ñ Ð5Ñ & or 5 œ 57+B

   convergence status (yes or no)output 

   GÐ‡Ñ composed of 2 parameters1  "

   log or log  and other model fitting resultsP PÐ‡Ñ Ð5"Ñ
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2.4.3.4 Model Selection and Decision of Order

The repeated EM algorithms in section 2.4.3.3 produced a sequence of modeling

results composed of 1  1Y P  " elements. Each element of the sequence

corresponds to a specific to . To decide the order 1 1 1 1 taking values from , ofP Y !

the mixture model, we want to maximize the likelihood resulted from the mixture

model while making the model as simplified as possible. To achieve this balance,

a concept of penalization was introduced such that as the likelihood increases

with the addition of a component to a mixture model, the likelihood (log

likelihood) is penalized by the subtraction of a term. This term measures the

complexity of the mixture model and often is a function of the numbers of

parameters used in the model.

Akaike (1974) developed a method of model selection following the above

concept and named it AIC (Akaike's Information Criterion). AIC selects the

model that minimizes

 log          # Ñ  #. Ð#Þ%%ÑsLÐG

in which the first term measure the lack of fitting and the second term serves to

penalize the model complexity.  is the likelihood corresponds to parametersLÐGs Ñ

Gs . estimated by a model and  is the total number of parameters in the model.

Smaller AIC means better model performance. Hurvich and Tsai (1989) proposed

another criterion AICC (AIC with a correction) which takes the form

 AICC = AIC        Ð#Þ%&Ñ#.Ð."Ñ
8."
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where is the sample size and 2 . Thus, AICC applied greater penalty8 . œ 1  "

for extra parameters than AIC.

I use AICC as the primary criterion in evaluating the sequence of models

produced in algorithms described in section 2.4.3.3. Compared with AICC, AIC is

more prone to overfitting which leads to including more components in a mixture

model. It should be noted that the Likelihood Ratio Test (LRT) is not used here

although it can produce exact p-values in model comparison. First, LRT demands

more complicated MCMC sampling in Bayesian framework; second, catching the

component with high incidents intensity is of interest in this dissertation. Minor

overfitting is not considered a disadvantage here.

2.5   Key Feature Space Formation and Hot-Spot Key Feature
Patterns

Let finite mixture modelthe 

  0Ð Ñ œC4 C
;G 

3œ"
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3
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!
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| |- lÑ Ð - lÑ4 4

 

x /

be the selected mixture model in section 2.4.3.4, and 1! be the order of the

mixture model and ,  be estimated parametersÖÐ ß Ñ Ð ß Ñßá ß Ð ß Ñ ×s s s1 1 1" # 1 1- - -s s s
" # ! !

for each of the  components. Based upon these and the observed sample, I will1!

prepare input data to identify features having key influences on highway loss

incidents and detect key feature patterns associated with hot-spots.

2.5.1 Feature Dimension Reduction

Many factors are believed to influence highway losses. A recent hot topic in

highway safety is texting-while-driving, which has been proven to be associated
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with many cases of fatal crashes. Many states have passed laws banning texting-

while-driving to curb this dangerous and burgeoning distraction. Although it is

widely accepted that texting-while-driving bans are intuitive countermeasures, the

effectiveness of these laws has been debated in highway safety community,

largely because of difficulty enforcement of such laws.  Police often complain

that lack of economic or human resources, difficulty to discern whether use of

cellphone is texting (typically illegal) or dialing (legal in some states), and other

factors, undermined their enforcementability.

Texting-while-driving bans are a good example to show the complication of

factors related to highway losses, which include deaths, injuries and property

damage. It is well known that demographic factors, social and economic factors,

and legislative factors contribute to highway losses at certain spatial levels.

Previous studies also have shown that roadway related factors, weather related

factors, vehicle related factors and driver related factors are also related to

highway losses. In addition, many of these factors may confound or interact with

each other, making prediction of highway losses even more difficult.

The high dimension of the multivariate data often bring side effects in the process

of prediction: first, many variables create noise in the process of prediction and

mask real discriminators; second, many variables exhaust the computation

resources and sometimes even make real-time systems infeasible. If data mining

is the first process of highway losses prediction, reduction of dimensions should

be resolved first. In other words, I need to identify the key predictors first.
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2.5.2 Initial Screen by Visualization

A three-phase procedure was applied to first classify the available feature set into

two subsets. One is a subset whose elements are homogeneous through a study

time period or at least their variation during the study time period are trivial so

that an independence from time can be assumed. Then, the feature subset not

sensitive to time is reduced to a dimension in order to make the further

computation feasible. Then quantitative solutions will be applied to further

suppress the dimension to form the final subset, the key feature subset. We initiate

the second process using a triplet ( , where is the initial non-time-J ß ß J Ñ Jv" "

sensitive feature set, is a visualization screen procedure, and  is the subset ofv" J"

J J J which is composed of elements chosen from  in the procedure. Data in 

come with the form ( and data in  have the form ofB ß B ßá ß B Ñ J4" 4# 4: "

(  where  and B ß B ßá ß B Ñ :  !ß 6  !ß :  6Þ4" 4# 46

In visualizing highway loss data, parallel coordinate plots (PCP) served as the

primary phase one tool in dimension reduction. The concept of PCP was invented

by the French mathematician d'Ocagne (d'Ocagne, 1885). Wegman (1990)

discussed the parallel coordinates geometry and demonstrated statistical

interpretations, which laid the foundation for applications of parallel coordinates.

Parallel coordinates maps a set of points on a line in a -dimensional Cartesian:

coordinate system to a set of polylines (or curves) in parallel coordinates all

intersecting at  points, thus overcomes the limitation that scatter diagrams8  "

do not generalize readily beyond three dimensions. Wegman (1990) implemented

parallel coordinates in the way that  axes  are drawn in parallel, and a vector8

( ) is created by plotting  on axis   on axis and so onB ß B ßá ß B B "ß B #ß4" 4# 4: " #
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through  on axis These  points are joined by a broken line which intersectsB :Þ ::

with each axis, thus a point in the -dimensional orthogonal coordinate system is:

transformed to a set iof polylines in 2-dimensional coordinate system. Although

in the transformation some loss of information is expected, structures such as

linear or nonlinear features, clustering, and outliers can be detected.

Figure 2.1 is an example which represents 25-dimensional ZIP level census data

in a parallel coordinates plot based upon Maryland 2000 census data. Wegman

(2003) demonstrated the implementation of variable selection and dimension

reduction using Brush-Tour, Tour-Prune, color design and other strategies.

Moustafa (2011) further explored density estimation techniques to overcome the

visual cluttering limitations inherent in the plot and discussed the duality theorem

and its usability in identifying patterns visually or by automatic means. In another 

article published in the same time period, discussed space transformedMoustafa 

visualization (STV) techniques for visualizing multivariate data, which empowers

the discovery of correlated records, clusters and outliers based on the curve’s

intersections, gaps and isolations, respectively. By visualizing highway loss data

structure using above techniques, elements of  can be decided.J"
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Figure 2.1 Demonstration of Crystal Vision parallel coordinate plot using ZIP

level Maryland 2000 census data

2.5.3  Feature Selection via Classification and Regression Trees

Although in phase 1 of variable selection a large number of predictors were

excluded, there are still difficulties in deciding the key features. First, to avoid the

case that a real predictor is accidentally eliminated, phase 1 tends to be

conservative so still a large number of predictors have been produced. Second,

complex interactions or patterns may exist in the data. For example, percent of

population with high school education or higher is correlated with per capita

income, and both variables could influence highway losses of a county.

( )  is defined as the phase 2 variable selection procedure where  is theJ ß" # #v v

feature search procedure which produces final key features. Classification and



64

Regression Trees, commonly referred as CART (CART is a registered trademark

of California Statistical Software, Inc.), serves as the tool in this process.

2.5.3.1 Highway Loss Data Input to CART

We sort component estimates ÖÐ ß Ñ Ð ß Ñßá ß Ð ß Ñ ×s s s s1 1 1 -" # 1 1 3- - -s s s
" #,  by value of 

! !

in ascending order and denote the new set ,ÖÐ ß Ñ Ð ßs s1 1Ð"Ñ Ð#Ñ- -s s
Ð"Ñ #ÑÐ

Ñßá ß Ð ß Ñ ×ßs s1 1Ð1 Ñ 1 Ñ Ð3Ñ! !
-sÐ is the mixture weight corresponding to the component

with estimated parameter of  = max and = min- - - - -s s s s s
Ð3Ñ 1 1, thus ( (! !) 1)Ö ßá ß ×ß"

Ö ßá ß ×- -s s
" 1! .

Define -α as a threshold such that if highway loss incidents intensity over -4

having underlying intensity greater than  are classified as "hot spots"-α, then -4

and they are cells considered to have high risk of highway losses. Setting of -α

often takes form of percentiles of , which are the observed highway- - -
w w w

" 8ß #ßá ß

loss incidents intensity for the given sample  For example,C C" 8ß − Ò!ß "Óá ß ß α . 

- - - -!Þ*& " 8 is the 95th percentile of .
w w w
ß ßá ß#

Suppose a , of components having estimated intensity higher than ornumber, 12

equal to   {   }, l  and - - -α and et   1 − !ß "ß á ß 1  " Ö ßá ß × M2 ! 1M œ2 2
s s( ) ( !)

œ Ö ×- -s s
"ßá ß 1!  respectively and the wholedenote the high-risk intensity set 

intensity . If an observation is identified from theset of components and  M §2 M

component corresponds to -s( )3 2− M , then I say this observation should be highly

risky.

First I form a categorical response variable  used to label the source componentD

of an observation so
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  =  D Ð#Þ%'Ñ4 3 6
C Carg max

3 1 1s sÐ Ð Ñ( ) ( )3 6
6œ"

1

- -s s( ) ( )| |- lÑ ÎÐ - lÑ4 4
Ð - lÑ Ð - lÑ  4 3 4 6/ /- -s s( ) ( )| |4 4!

 

I classify  as categorical. It has D 1 À "ß #ßá ß 1! ! levels of values  , and forms a

sample ÐÐ\ \ \" " 88ß D Ñ Ð ß D Ñßá ß Ð ß D Ñ 4,  whose th observation takes the form  2 2

 B ß B ßá ß B B ß B ßá ß B Ñ4" 4# 46 ß 4" 4# 46D Ð4 and . These are the selected features

resulting from the initial screen in section .2.5.2

2.5.3.2 Mechanism of CART

Using the samples formed in the previous section as input, I will use CART to

select key features and detect key feature patterns associated with "hot spots".

Figure 2.2 illustrates a regression tree used to explore relationships between

highway collision frequencies (counts of collisions de vided by registered

vehicles) and census data for some of Maryland ZIPs. The collision frequency

data in this illustration were artificial.  All nodes with descendents are expressed

by blue rectangles in the diagram while nodes without descendents are named

leaves and are expressed by red rectangles. The target (dependent) variable in this

case is a numeric variable, collision frequency. Percentage of residents using

public transportation, population density (residents per square mile), percentage

of minorities, percentage of married registered drivers, and percentage of pickups

of the registered vehicles served as input variables.  Conditions based upon values

of these inputs decides how to split a parent node into child nodes. Each leaf node

can be viewed as the final outcome following the decision path, which begins

with the root node and ends in the final position in the tree decided by the

regression tree algorithm.
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Figure 2.2 A regression tree to explore relationships between ZIP level highway

collision frequencies (artificial) with Maryland 2000 census data using Salford

CART

Breiman et al. (1984) laid the foundation of the mathematical theory and created

algorithms for the implementation of CART. With the whole dataset as the root

node in the tree structure, each parent node can be split into two child nodes

following certain "splitting rules". The binary partitioning process can be applied

“recursively”, so the tree building process goes on until the process is stoppedÞ

Typically CART analysis consists of four basic steps: tree building, tree building

stopping, tree pruning, and optimal tree selection. In the process of tree building,

the optimal split is selected so splitter and split point are both set by splitting

rules. Splitting rules are always in the form

 An instance goes left if , and goes right otherwiseCONDITION

where the CONDITION is generally expressed as "attribute ". Splitting\ Ÿ \4
V
4

rules depend on algorithms. Typically these algorithms work top-down on a node



67

by exhaustively searching over all  variables for the best split that minimizes\

the total impurity of its two child modes. The measure of impurity, often referred

as the impurity function, depends on algorithms. When target variable is

categorical, one commonly used impurity function is the Gini measure which

takes the form

       3Ð>Ñ œ :Ð5l>Ñ:Ð6l>Ñ
5Á6

Ð#Þ%(Ñ

where is the index of node, > 5 6 œ "ßá ßO, are indexes of classes of the target

variable,  is the conditional probability of class given node  For:Ð6l>Ñ 6 >Þ

regression, CART often uses least squares (LS, sum of squared prediction error)

or least absolute deviation (LAD, sum of absolute prediction errors) to measure

the improvement of each split.

The tree growing process stops when: (1) there is only one instance in each of the

child nodes so the recursion is impossible; (2) further splitting cannot bring any

gain for prediction following splitting rules; (3) the designed stop rule ends the

recursion such as limit of number of levels in "maximal" trees, which are treesß

grown to a maximal size without the use of a stopping rule.

In pruning the maximal tree, a sequence of simpler and simpler trees are

generated from which the final optimal tree is extracted. The CART pruning

mechanism begins with a cost-complexity measure based upon training data

defined in the form

        V ÐXÑ œ VÐXÑ  l X lα α Ð#Þ%)Ñ
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where  is the cost of the tree. For the maximal tree = 0 because thereVÐXÑ VÐXÑ

is no prediction error.  is the complexity parameter and  is the number of leafα l X l

nodes in the tree. As  increases, the minimum cost-complexity tree will cut awayα

the bottom splits, which improve prediction the least. The selection of optimal

tree from the pruned sequence needs independent test data or cross validation to

the learning data. By setting the appropriate complexity parameter , theα

information in the learning dataset is fit but not overfit and the optimal tree

achieves minimum cost on the test data.

In the process of analysis, CART can rank predictor importance, which is based

upon the sum of the improvements in all nodes in which the predictor appears as a

splitter. Variable Importance (VI) is defined under the context of algorithms. For

the Random Forests algorithm, the most advanced VI is the "permutation

accuracy importance". By randomly permuting the values of a predictor variable,

its original association with the target is broken and thus there exists a difference

in prediction accuracy before and after permuting a variable. The permutation

accuracy importance is based on the average of these differences over all trees.

Breiman and Cutler (2008) define it as

 Z MÐ\ Ñ œ3

Z M Ð\ Ñ

8


>œ"

8><//
Ð>Ñ

3

><//

where denotes the index of a tree and   is the total number of trees> 8><//

constructed. This can be rescaled to a " -score"D

 DÐ\ Ñ œ Z MÐ\ ÑÎÐ Ñ3 3
s58
><//

where  is the standard error.5s8
><//
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2.5.3.3 Classification Tree Output and Regression Tree Validation

Let \ ß\ ßá ß \" # 7 be key features selected from the classification tree

described in the previous section,  are in descending order of\ ß\ ßá ß \" # 7

their importance score and thus  has the highest importance level. I define hot-\"

spot patterns first and then develop methods

The categorical response variable  defined in  denotes the sourceD Ð#Þ%'Ñ

component from which the th observation originates, and thus  has levels4 D

valued in In  the source component is already sorted by its!ß "ßá ß Ð#Þ%'Ñ1 Þ!  

value from the least to the greatest, and thus for the observation if  C ß D4 4 −

Ö ×2ß 2  "ßá ß 1! , then it is classified as highly risky.

Let denote the key feature space defined by E \ ß\ ßá ß \" # 7 and their

corresponding domains. I partition key feature space such that  =E

E E E E E œ g 3ß 4 − Ð"ß #ßá ß" # 1 3 4∪ ∪â∪ ∩
!
 and  where 1 Ñ 3 Á 4!  and , and

there exists a mapping  denotes the classification treeJ Ð J- -E Ñ 3ß3 Ä where 

prediction algorithm, thus we define the hot-spot key feature space (highly risky)

as

 E œ E E ELV 2 2 1∪ ∪â∪+1 !
     Ð#Þ%*Ñ

We denote be the path from the root node to the leaf corresponding to theT4

observation  , and  be its predicted component label, hot-spot patterns C D4 4 TLV are

defined as

 T ÖLV
œ

4−Ö"ß #ßá1 ×!
T × Ð#Þ&!Ñ4        
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2.5.4 Summary of Chapter 2

In this chapter, I have built methods extending EM (expectation maximization)

algorithm to Poisson point processes with incomplete data structure to undercover

the underlying components characterizing highway loss events.  With component

information obtained, I have developed methods that use classification and

regression trees along with visualization procedures to identify key features

influencing highway loss intensities, and detect key feature patterns of the "hot

spot" loss areas.
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3. Prediction of Highway Loss Incidents by the Use of

Bayesian Hierarchical Spatio-Temporal Model

In Chapter 2, methods for determining subpopulations of cidentshighway loss in

in the study area  at time  have been developed, and features having keyH >=

influences on the highway loss intensity have been identified. Meanwhile, key

feature vector patterns corresponding to "hot spots" of losses also have been

defined. In this chapter, I start from clustering cells of the study area by mapping

the partition of the key feature space to the partition of the geographical space. By

doing so, cells in the key feature space "close" to each other are aggregated so

that the homogeneity can be built and prediction of future losses on the study area

can be based upon aggregated cells instead of on each single cell. Then, for each

cluster, a Bayesian Hierarchical Model (BHM) is designed to predict losses at

>  " > using the posterior of the current losses at time , and the posterior of the

most recent past losses at time  in the Bayesian modeling. The proposed>  "

Bayesian model has an updating mechanism and thus adds adaptation to the

Bayesian approach.
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3.1 Key Feature Space Partition and Study Area Partition

3.1.1 -means Clustering AlgorithmK

The K-means clustering algorithm was named by MacQueen (1967) and Hartigan

and Wong (1979) detailed the algorithm in Fortran. It is old yet vigorous and

powerful. A more recent development was by Ahmad and Dey (2007), which

moved K-means clustering a big step forward by allowing the use of mixed

numerical and categorical data.

Let  { } be the set of geographic cells, which partitioned the study- - ßá ß -"ß # 8

region  and { } be the  - dimensional key feature vectorsH ß 8 7= B B B1 # 8ßá ß

corresponding to { }. Here is the observed feature vectors on- - ßá ß -"ß # 8 4B

- - Ç -4ß 4 4 4 4and the mapping between  and  is a one-to-one mapping . EachB B

element of the - dimensional vector is a key feature identified by Section7

2.5.3.3.  I denote the key feature space I IB B§ 7e7 and   is a -dimensional

Euclidean space. The th observation of the feature vector set  takes the form4 B4

Ð ß ßá ß Ñ 4 "ß #ßá ß 8ÞB B B4" 4# 47 and  =  

To cluster  into  homogeneous disjoint partitions, Ð- ß - ßá ß - Ñ O G ß" # 8 "

G ßá ßG O Ÿ 8# O  ( I use the  ), -means clustering method on  vectorsK 8

{ }  and partition them into  sets  = {    } HereB B B W1ß ßá ß O W ß W ß á ß W Þ# 8 " # O

clustering is used to partition and assign a set of objects into homogeneous

clusters on the basis of measures of distance so that the objects (vectors/points) in

the same cluster are more similar/closer to each other than to those in other

clusters.  Euclidean space , the distance between two vectors,  andIn the I BB ?

B@, is measured by the distance function
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 ,d( ) = d( , ) =      B B B B? @ @ ? ? @
3œ"

7

3 3
#Ð  Ñ Ð$Þ"ÑB B

where  is the th element of the vector B43 43 B .

The whole process of the partition can be described as to cluster  vectors8

{ }   into  sets  = { } so as to minimize theB B B1ß ßá ß O# 8 W W ß W ßá ßW" # O 

within-cluster sum of squares (WCSS)

        arg min
S

 O

3œ" −
4 3

#

B4 3S
ll  ll Ð$Þ#ÑB .

where  is the mean of points within cluster S  and  denotes the. .3 3 4 3ll  llB

distance between  and  as defined in .B4 3. Ð$Þ"Ñ

The nature of the -means algorithm is to search for a -partition with the locallyk k

optimal within-cluster sum of squares by moving points from one cluster to

another. Other versions of  -means clustering followed the same idea and can bek

summarized in two steps after setting the initial  means, K . . .
Ð!Ñ Ð!Ñ Ð!Ñ
" # Oß ß ßá ß

 - : Assign each vector to the cluster whose mean is closestAssignment step

to it.

  W
Ð>Ñ
3 4 4 3 4 6œ Ö À ll  ll Ÿ ll  ll a 6 Á 3×B B B. .

where S  is the th cluster at th iteration, each point can only beÐ>Ñ
3 3 > " Ÿ 6 Ÿ Oß

assigned to one cluster

  -Update step

  .
Ð>"Ñ
3

"

lW l
−

4œ Ð>Ñ
3

4
Ð>Ñ
3


B S

B
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where  is the cardinality of .l lW W
Ð>Ñ Ð>Ñ
3 3

The algorithm repeats the Assignment- step step and the until no furtherUpdate -

change of assignments are made and thus converged.

3.1.2 Modification of the Distance Function

The key features \ ß\ ßá ß\" # 7 decided in Section 2.5.3.3 were sorted in

descending order by their importance level. Thus, the first element of the vector

B4 4" ", is a realization of the feature with the highest importance level, , andB \

the last element is a realization of the feature with the lowest importanceB47

level,  Euclidean distance based\ Þ7 I make some modifications to the traditional 

upon two considerations: first, I need to take into consideration influences of

scale of key features on distance functions; second, I want the features with

higher importance levels to contribute more to the distance function.

I apply the robust MAD standardization (median absolute deviation from median)

to  first. The median absolute deviation is defined as,\3

 MAD median median†3 4 6 6œ ÐlB  ÐB ÑlÑ
43 3

The MAD standardization uses median absolute deviation as scale and uses the

median as location, thus

         B œ Ð$Þ$Ñ43
w B  ÐB Ñ median

MAD
43 6 6

3

3

†

where   is the MAD standardized  .B B43
w

43
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Let be the importance level of  thus andZ M \ Z M   Z M   á   Z M  !ß3 3 " # 7 

define the relative variable importance level as , where=3

  .        =3
Z M
Z Mœ Ð$Þ%Ñ3

"

 Thus, the distance function is defined as

 ,d( )  d( )  .   B B B B
? @ @ ?

w w w w

3œ"

7
#
3 3 3

#œ ß œ Ð  Ñ Ð$Þ&Ñ= B Bw w
? @

3.1.3 Determination of Number of Clusters

The , K-means algorithm needs the number of clusters,  as input. 5 There are no

completely satisfactory methods that can be used to determine the number of

population clusters for cluster analysis. Fang and Wang (2012) proposed a

method that selected the number of clusters via the bootstrap method. Liang et al.

(2012) developed a method determining the number of clusters using information

entropy for mixed data. Wang (2010) presented a method via cross-validation.

Typically the data used for testing the above methods contained no more than 10

clusters. It seems that there is no hypothesis test good enough to produce an exact

5.

Different criterion may produce different results in the number of clusters

selected. Wong and Shaack (1982) described the th-nearest-neighbor density5

estimate. Based upon this concept when varying values of yields a constant5 

number of modal clusters it is strong evidence that at least that many modes are in

the population.  Here I use Hartigan's index defined in Hartigan (1975) to

determine the number of clusters to partition the key feature space. Let W( )5

denote the within-cluster sum of squares. Hartigan's index defined as following
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 H( ) = ( )       5 5# W( ) - W( +1)
W( +1)
5 5

5 Ð$Þ'Ñ

where rom to , is#( ) =  5 8  5  "ÞHartigan (1975) showed that f 5 5  " H( + )
H( )
5
5

1

not monotone, thus by comparison of improvement, an optimal value of  can be5

decided. Here I developed the following procedure,



77

 Inputs

  MAD standardized matrix of \w
8‚7

 Control parameters

  1!

  8

 Initialization

  -means clustering to  assuming  clustersapply  5 1\w
8‚7 !

    compute W( ) ( )1 1! ! and #

  for 5 œ ßá ß 1 8!

  apply  5-means clustering to  assuming \w
8‚7 5  " clusters

  compute  W , ,  HÐ Ñ Ð5Ñ5  " 5  "#( ) and

  H  if existsÐ5  "Ñ

   H Hif  ( )/ ( 1)  no longer monotone, exit for loop5 5 

   end if

   end if

  5 Ã 5  "

  end for 

 Return
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3.1.4 Mapping the Key Feature Space Partition to the Study Area Partition

 Let  = {  } be partitions decided by the W W ß W ß á ßW" # 5 5-means clustering

procedure in Section 3.1.4 and let  .3 3 be the mean of cluster S  thus

 .W
Ð>Ñ
3 4 4 3 4 6œ Ö À ll  ll Ÿ ll  ll a 6 Á 3×B B B. .

Based upon the one-to-one relationship of B4 4 33Ç - ß ÄI map W G

 G3 4 4 3 4 6œ Ö À ll  ll Ÿ ll  ll a 6 Á 3× Ð$Þ(Ñ- B B. . .   

The equation  partitions into  clusters (groups) of geographic cells thusÐ$Þ(Ñ H O=

  = and .H ∪ ∪ œ g=
3œ"ßáß 3 3 3Á6 65

G G G

3.2 Bayesian Hierarchical Model on Spatio-Temporal Process

3.2.1  (BHM)Bayesian Hierarchical Model

The whole Spatio-Temporal point process of highway losses can be thought as a

temporal process of spatial point processes, let  ^ † †( ; )  be the counting process

as described in Section 2.1 and its conditional intensity function is defined as

      .<Ð >Ñ ´=; lim
l. lÄ!
. Ä!>

> >

>=

=IÐ . à. l Ñ
Ð. Ñ.

^( ) [
/ =

The separate spatial components from temporalBHM proposed here first 

components (always discrete) to avoid the correlation entanglement between

these two kinds of components, and then at a given time point  partition the>

nonstationary study area into subregions so that the stationarity can be well

assumed in each subregion.
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The term Hierarchical Model (HM) here means the uncertainty in data. The

uncertainty in the modeling has to be decomposed into two or more levels,  and

hence involves several levels of conditional distributions. I follow the

terminologies that Berliner (1996) used to describe the levels of modeling

discussed in Chapter 2.

Data model the top level expresses the distribution of the data given aÒ^l] ß Óß)

hidden process, e.g., the observed number of events in certain areas at time point >

once the underlying Poisson point process is given.

Process model , underneath the top level is the process model level. ThisÒ] l Ó)

level models the uncertainty of the hidden process in the above data model

through a conditional probability distribution, given that all parameters prior to

the hidden process are known. For example, in Section 2.4 the parameters of each

component of the mixture model have been decided, a multinomial distribution

"decides" the dominating Poisson process of sub regions/cells of the study area.

Parameter model , the bottom level models the uncertainty of parametersÒ] l Ó)

prior to the process model, e.g., the parameters of components in the mixture

model in Section 2.4.

It should be noted that the parameter model can also be made up of submodels

through sublevel conditional prior distributions. It is also possible that a

Hierarchical Model does not have the process model, but has the data model and

multilevel parameter models.

The Bayesian approach, which is fundamentally different from the classical

frequentist approach described in Chapter 2, is applied in the Hierarchical Model
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described above. The origin of the  Bayesian approach comes from Bayes'

theorem,

 ,      TÐElFÑ œ TÐFlEÑT ÐEÑ
TÐFÑ Ð$Þ)Ñ

where  and  respectively denote the probabilities of event  and TÐEÑ T ÐFÑ E F

while ( | ) and ( | )  denote the conditional probability of event  givenT EF T F E E

event and the conditional probability of event  given event , respectivelyFß F E Þ

I follow notations and definitions in Section 4.1 of Shao (2003) to introduce the 

Bayesian approach under the context of decision theory. Let  be a realization of)

a random vector  whose  distribution is  on . A sample  is drawn from)  prior C @ ]

the conditional distribution of  given  the observed sample] ß T œ T ß) œ ) ) )Cl

] œ C is then used to obtain an updated prior distribution, the posterior

distribution , and its density function takes the formß T )lC

 ,: œ œ)
1 )

lC
Ð Ñ.T

. 7ÐCÑ
0 ÐCÑ) )lC

-       Ð$Þ*Ñ

where  is dominated by the -finite measure  and  =  is a BorelT 0 ÐCÑCl
.T

.) ) /5 / Cl)

function on ,   and  is the range of ; isÐ Ð ‚ ÑÑ C œ Ð Ñl @ 5 U U l 1 )‚ l @
C.
.

 
-

dominated by the  -finite measure  and  The posterior5 - 1 ) -7ÐCÑ œ 0 ÐCÑ Ð Ñ. Þ
@

)

distribution , conditional on the observed , contains all the informationT ] œ C)lC

needed to make statistical decisions and inference. I define an action space  in a

decision problem and define as a loss function (e.g. squared errorPÐ ß +Ñ   !)

loss), for any a Bayes action with respect to   is any such thatC − ß ÐCÑ −l C $ 

    minIÒPÐ ß ÐCÑÑl ] œ CÓ œ IÒPÐ ß +Ñl ] œ CÓ) $ )
+ − 

Ð$Þ"!Ñ
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where the expectation is with respect to the posterior distribution T )lC. In the

context of this dissertation, the Bayes action exists and is unique.

I use  = to denote the , aÐ0 ÐCÑ ß Ð Ñ œ Ñ) /
C.T

.
.
.

Cl) 1 )  
- Bayesian statistical model

Bayesian Hierarchical Model is a Bayesian statistical model that has either three

layer models (data model, process model and parameter model) or two layer

models (data model and parameter model) whose parameter model is a multilevel

model, where the prior distribution 1 )Ð Ñ is decomposed into conditional

distributions

 1 ) ) 1 ) ) 1 ) )" " # " # 8 8" 8Ð l Ñß Ð l Ñßá ß Ð l Ñ

and a marginal distribution such that1 )8" 8Ð Ñ

1 ) 1 ) ) 1 ) ) 1 ) ) 1 )Ð Ñ œ Ð l Ñ Ð l Ñâ Ð l Ñ Ð Ñ. â.
@ @ @ ) )

" # 8 " 8"‚ ‚â‚ " " # " # 8 8" 8 8" 8 

          Ð$Þ""Ñ

where @ )3 3is the parameter space for  and 3 œ "ß #ßá ß 8Þ

3.2.2 Assumptions Made in the Bayesian Hierarchical Model

I make two assumptions for the BHM proposed in this dissertation. The first is the

homogeneity assumption. At a certain time point et > of study interest, l  be aG3

cluster generated from Section 3.1.4 based upon -means clustering on the key5

feature space,  (CSR) is assumed within Completely Spatial Randomness G3Þ

The second is the first-order Markov property. Denote a time series by Ö] À >>

œ !ß "ßá ß X× ] ], and denote distribution of  as [ ], then the joint distribution of> >

the time series is denoted as [ ].] ß ] ßá ß ]! " >

I assume
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 [ ]  [ ] .     ] ß ] ßá ß ] œ ] Ò] l] Ó Ð$Þ"#Ñ! " > ! > >"
>œ"

X

It means only the most recent past of the whole past determines the conditional

probabilities about the present.

3.2.3 Prior Information and Prior Distribution of the BHM

In the Bayesian interpretation a probability measures a degree of belief while in

the frequentist interpretation it measures a proportion of outcomes. The prior

probability distribution, denoted by 1 )Ð Ñ, is a hypothesis made on the uncertainty

of  before observed evidence is obtained from the distribution  dominated by) T Cl)

). The posterior distribution  can be viewed as the result of the correction theT )lC

observed evidence made on the prior distribution. Thus, the posterior is

determined by two factors, the  ,  and , also known as .prior likelihood1 )Ð Ñ T Cl)

Under Bayesian approach, when a prior is known, the derivation of the posterior

is obtained by dividing the resulting joint distribution by its marginal distribution.

Once the posterior is produced, inference, estimation, and prediction can be made

based upon it. It is obvious the prior distribution is the key to Bayesian inference.

A convincing Bayesian inference to a large extent depends on making the right

decision in selecting an appropriate prior. Practically there are two difficulties in

the selection of the prior distribution: first, there is no prior information precise

enough to provide a basis for the selection; second, prior information is enough

while there are more than one distributions compatible with that prior information

which makes the selection not unique. Historically critics of Bayesian paradigm

have focused their criticisms on hypothesis of prior distributions. The recent
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developments in Bayesian robustness analysis and the introduction of hierarchical

modeling have largely quelled these criticisms.

In recent years, the objective Bayesian inference theory has made great progress.

This theory allows that prior distributions used to make an inference to be least

informative in a certain information-theoretic sense (Berger, 2009a, 2009b). In

contrast, Williamson (2010) agrees that priors usually represent subjective

judgments of opinion in practice that cannot be rigorously justified. I think in

practice the selection of priors is influenced by the research interest along with

the prior information. If prior information is available about ), it should be taken

into consideration in the design of , especially when the present data are1 )Ð Ñ

related to previous data in a certain way, and noninformative priors can serve as a

validation in the belief that they should not produce results significantly

inconsistent. On the other hand, the indeterminacy in the selection of prior

distribution influences the posterior distribution, even if the prior information is

precise. Thus, ideal priors should be robust and the process of selection should

limit the arbitrariness. Additionally the resulting posterior should take close form

without adding complexity to the model.

Berger (1990) introduced the concept of classification into the robustness

analysis. In this paper, Berger proposed the uncertainty about the prior

distribution  could be represented by the assumption that  belonged to a1 ) 1 )Ð Ñ Ð Ñ

class of distributions  Berger (1990) recommended that  prior classesc)Þ conjugate

should be used when the likelihood was in an exponential family, which takes a

generic form 0Ð l Ñ 2Ð Ñ ßC C)  = then its priors can be expressed as/)C Ð Ñ9 )

       1 ) . / . /Ð Ñ Ñ| , ,œ OÐ /). / Ð Ñ9 ) Ð$Þ"$Ñ
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where OÐ. /,  is a normalizing constant, and the corresponding posteriorÑ

distribution takes form | , . Here  is dominated by the1 ) . / 1 )Ð  C  "Ñ œ Ð Ñ.
.
C 
-

5 - /-finite measure  and and  holds. ! − R.
/

ð

The use of  priors is desirable. When conjugacy holds, the posterior is inconjugate

the same family as the prior distribution, thus the evidence only corrects the

parameter of the hypothesis.  priors also have intuition and rationaleConjugate

when showing how the evidence updates the priors. In addition, the computation

and the following inference are convenient.

The use of hierarchical models adds extra submodels to model the uncertainty of

parameters of priors, e.g., the first-level prior distribution can be denoted as C) 0l ß

and if necessary, the second-level distribution can be introduced, , theG0 (l

hierarchical levels can increase until it meets the demand of modeling. Because

misspecifying a second-level prior is much less serious than misspecifying a first-

level prior (Berger, 1985, Section 4.6), the multi-level model brings more

robustness, and the use of noninformative priors in the second-level prior is better

justified than in the first-level prior.

3.2.4 Design of the BHM

3.2.4.1  Conjugacy

Let be the th (  = cluster determined in Section 3.1.4 resultingG 5 5 "ßá ßOÑ5

from the partition of study region at time and is discrete and be itsH >ß > >  "=

most recent past. At time let , the cell indexed by be the >ß - 5 45 44
, th element of

G 5 œ 5 ßá ß 5 N5 4 " N Ð5Ñwhere and let denotes the dimension (number of cells) of

G N G N œ 8ß5 5Ð5Ñ Ð5Ñ
5œ"

O

, thus  is decided by and we have  which is the total
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number of cells of . Let H= ]54 , a discrete stochastic random variable, be the

number of events observed on be the- - l - C5 5 5 54 4 4 4
 and |  be the area of , and let  

realization of , thus is a random sample of highway loss events in ] ß5 5 54 N
C á ß C1  

G >5 5 at time . Let ] w
4
 be the corresponding discrete stochastic random variable of

] >  " ß5
w w w
5 5 54 4 N

 at the most recent past and  be its realization, and form a C C á ß C
1

random sample of highway loss events in G >  "Þ5  at time 

Based upon the CSR assumption made on Section 3.2.2, let -5  denote the

intensity dominating the Poisson counting process on , then the probabilityG5

mass function of  is]5 54 4
 on  -

 Pr 0Ð Ñ œ Ð Ñ œC C Ð$Þ"%Ñ5 5 5
- l Ñ

C
Ð - lÑ

4 4 4

5 54

C54

54

5 54| =-5 ]   
Ð- -  |  

 
|

  

x / .   

Here I propose a Gamma distribution 1 -Ð Ñ5  as the prior distribution of the

likelihood whose T C 554 4|-5
probability mass function is 0Ð ÑC |-5 , the density

function of the prior is

  1 - α " -Ð l ß Ñ œ /5 5 5 Ð Ñ
"

5
 ."

> α
α " -5

5

5

5 5 5

α

The likelihood is

  0Ð ÑC C5 5
5 œ5

5 - l Ñ

C
Ð - lÑ

1

 

á
N

4 "

N
5 54

C54

54

5 54|-5 œ  Ð- -  |  

 
|

 

x /  

      º Ð-5

C Ð - l Ñ
Ñ

  | 5 5N N
5 œ5 5 œ54 " 4 "

5 5 54 4
 
/

-
   

after omitting constants. The posterior  

 1 - - 1 - α "Ð Ñ 0Ð Ñ5 5 5 5 5| |C C C C5 5 5 51 1á á
N N

  º Ð l ß Ñ
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       º Ð$Þ"&ÑÐ-5

C Ð - l Ñ
Ñ

 5 5N N
5 œ5 5 œ54 " 4 "

5 5 54 4
α "5 5"

/
| -

,  

and also takes the form of a Gamma distribution,

 |1 - α "Ð Ñ µ Ð5 5 5|C C C - l 5 5 5 5
5 5

5 œ5 5 œ51á N 4 4
N N

4 " 4 "
 Gamma    ß Ñß  it has

been shown in  that the proposed prior is a conjugate prior.Ð$Þ"&Ñ

3.2.4.2  Updating Mechanism

Feature space formation (also known as the key feature selection) and the key

feature space partition are done at each time point . Thus, they depend on .> >

Bayesian Hierarchical Model is based on loss data at  first on C C Gw w
5 5 51
ßá ß

N
 >  "

using a Gamma-Poisson hierarchical model implemented by Gibbs sampler

(described in later section)

Let  at the most recent past and propose the-
w

5 denote the intensity on G >  "ß5

distribution density of  -
w

5  as

  1 - α " -Ð l ß Ñ œ /
w w w w w

5
w 5

w

5
w

5
w

5 5
5 5 5 Ð Ñ 5

w ""

> α

α " -
α

.

Its posterior distribution

 1 - α " - 1 - α "Ð Ñ 0Ð Ñw w w w w
5 5 5 5 55 5| |C C C Cw w w w

5 5 5 51 1
á ß á

N N

w w
ß º Ð l ß Ñ  

       º Ð$Þ"'ÑÐ-w
5

C Ð - l Ñ
Ñ

 | 5 5N N
5 œ5 5 œ54 " 4 "

w w
5 54 54
α "5 5

w w"
/

-
,  

serves as the prior distribution for present losses at . The corresponding posterior>

distribution of for the present , denotes as - -5 5 > C C0Ð Ñ| 5 51á N
 in Ð$Þ" Ñ5 , serves as

the prior distribution in modeling the intensity distribution of the nearest future

>  ". Thus an updating mechanism is well built.
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3.2.4.3  BHM Modeling at > "

The completely spatial randomness (CSR) assumption made in Section  3.2.2 is

based on time specific feature space formation and partition at time  I extend>Þ

this assumption to  which is justified for the following reasons. First,>  "

changes in feature space formation and partition from  to  are expected to be>  " >

limited, thus, the compromise on CSR should not be beyond acceptance. Second,

even a compromise exists, the loss of precision is limited in the prior at  (the>

prior is by nature a hypothesis) and the prior will  have a chance to be corrected

by observations (evidence) at  Next, I propose one hierarchical model for the>Þ

most generic case and two empirical alternatives.

Hierarchical model

Figure 3.1 is the graphic model for the most generic case where all

hyperparameters ( ) are unknown. Notations in Figure 3.1 follow the directedα "
w w
ß

acyclic graph (DAG) for the Bayesian network originally defined in Spiegelhalter

(1998). In DAGs, a node , is referred to be a parent node of  if an arrow' 0

emanating from  points to , and  is said to be a child node. Stochastic' 0 0

dependencies are denoted by single-edged arrows while functional dependencies

are denoted by double-edged arrows. Rectangular nodes denote known constants

while elliptical nodes denote deterministic relationships or stochastic quantities.

Repetitive entities such as loops are denoted by overlapped plates. My interest is

primarily focused on stochastic nodes. Thus, constants are ignored and

deterministic relationships are collapsed in the description of probabilistic

relationships between stochastic nodes,
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Figure 3.1 illustrates the two-stage BHM at time  where >  " Cα " -5 5
w
5

w w
ß ß w

5j
ß are

all stochastic nodes having unknown parameters. -w
5  is the first-stage prior with

unknown hyperparameters α " α "w
5 5 5 5 and  while  and  are second-stage priors

w w w

whose hyperparameters and  are tuning parameters already known inE ßF ß Fα α "

the implementation.

Figure 3.1  Graphic model of the Hierarchical model

-w
5  is the proposed intensity dominating the Poisson counting process on

G Ö- ßá ß - ßá - × C5 5 5 5
w
5= , . conditional

" 4 N j
 is the number of loss events observed, 

on , and the density mass function has the same form as in -w Ð$Þ"$Ñ
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  Pr 0Ð Ñ œ Ð ÑC Cw
5 5 5

- l Ñ

C
Ð - lÑ

j

 

j

| =-w
5 ]

w

4 4

w
w
5 54

Cw54

w
5

w
5 54  

Ð- -  |  |
 

x / .   Ð$Þ"(Ñ

- α "
w w w

5  is proposed to follow a Gamma distribution conditional on and where both

hyperparameters unknown. It has the same form with Ð$Þ"%Ñ

  .     1 - α " -Ð l ß Ñ œ / Ð$Þ")Ñ
w w w w w

5
w 5

w

5
w

5
w

5 5
5 5 5 Ð Ñ

w "
5

"
> α

α " -
α

α
w
 is proposed to follow an exponential distribution with a known parameter ,Eα

  .       1 αÐ Ñ œ E / Ð$Þ"*Ñ5
Ew

5

w

α
αα

"
w
 is proposed to follow a Gamma distribution with known parameters  andFα

F" ,

  .      1 " "Ð Ñ œ / Ð$Þ#!Ñ5 5
F
ÐF Ñ

F " Fw w wF
5"

α

α

α
"

>
"

Assuming  independence between and , then  andα " 1 α " 1 α 1 "
w w w w w w

Ð ß Ñ œ Ð Ñ Ð Ñ5 5 5 5

α "5 5

w w
 !  ! and .

To get the full conditional distribution for and , I began with the distributionα "5 5

w w

of   and   conditional on  , after ignoring constants,α " -
w w w

   1 α " - - 1 α "Ð ß l Ñ º / † Ð ß Ñ5 5 5 5 5Ð Ñ 5
w "w w w w w w ww 5

w

5
w

5
w

5 5
"
> α

α " -
α

and

       1 α - " - 1 αÐ l ß Ñ º † Ð Ñ Ð$Þ#"Ñ5 5 5 5Ð Ñ 5
w "w w w w

5
w 5

w

5
w

5
w"

> α
α

α

and

  .     1 " - α " 1 "Ð l ß Ñ º / † Ð Ñ Ð$Þ##Ñ5 5 5 55
w w w w w w w

5
w

5 5
α " -
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It must be noted that  in ,  and .-w
5  ! Ð$Þ")Ñ Ð$Þ#"Ñ Ð$Þ##Ñ

Empirical model 1

The igure 3.2 is a simplified version of the aboveempirical model illustrated in F

hierarchical model. α "
w w
 becomes a constant,  takes the same prior distribution as

in and the full conditional distribution of  in  simplifies toÐ$Þ#!Ñß Ð$Þ"(Ñ-
w

5

  .     1 - " " -Ð l Ñ º / Ð$Þ#$Ñ
w w w ww 5

w

5
w

5 5
5 5 5 5

w "α α " -

Figure 3.2  Graphic model of Empirical model 1
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1 " - α " 1 "Ð l ß Ñ º / † Ð ÑÞ Ð$Þ#%Ñ5 5 5 55
w w w w w w w

5
w

5 5       α " -

In an empirical Bayes spirit, I derive  by a method-of-moments empiricalα5

w

argument. Let ] ]w w
5 51
ßá ß

N
 be random variables measuring highway loss events in

G >  " T C5
w
5 at time from the distribution   with density mass function of -5

w 0 Ð Ñ
j
|-w

5

in Ð$Þ"'Ñ, then the th sample moment,  is an unbiased estimator of the th6 6.w
6

^  

moment,    at.w w
6 5 5œ ] -IÐ

j
Ñ6. Let be the resultant loss event intensity on (5

w
4 4

>  " ß and then (5
C

- l4

w
5

54

w œ j

|

        IÐ Ñ œ ¸ Ð$Þ#&Ñ( (w w
54

α
"
5
w

5
w 5

 Z Ð Ñ œ Z IÐ l Ñ  IZ Ð l Ñ( ( - ( -w w w w w
5 55 5 54 4 4

  œ Z IÐ l Ñ Ñ  IZ Ð l Ñ Ñ œ Z Ð Ñ  IÐ Ñ
C C

- l - l - l
"

w w
5 5

5 5 54 4 4

j j

| | |- - - -w w w w
5 5 5 5

       œ  ¸ W Ð$Þ#'Ñ
α α
" " (

5 5
w w

5 5
w w# wÐ Ñ

#"
- l| 54 5

where  and  are respectively the sample mean and sample variance of the(w #
5

wW(5

resultant loss event intensity ,   =  and = ( ( (w w #
5 5

w " "
4 45

wN 5 œ5 N 5 œ5
5 5

Ð5Ñ Ð5Ñ

N N

4 " 4 "5
Ð Ñ W Ð 

(

(  , ( (w #
5

w
4 5
 Ñ Ñ N - GÐ5Ñ 5 5 is number of s in .

4

From  and by further averaging ,Ð$Þ#&Ñ Ð$Þ#'Ñ

       αw Ð Ñ

W 

¸ Ð$Þ#(Ñ
(w
5

#

#
w

w
5 

(

(

5
N - lÐ5Ñ

5N
5 œ54 "

"

54
Ð Ñ

|
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Empirical model 2

This proposed empirical model, as illustrated in Figure 3.3, is a further simplified

version of the above empirical model shown in Figure 3.2. In addition to the

change of α "
w w
 from a stochastic node, which is unknown, to a constant node, 

also changes from a stochastic node to a constant node.

In this model, the value of  is determined in the same way as in , andαw Ð$Þ#(Ñ

from  and ,Ð$Þ#&Ñ Ð$Þ#(Ñ

      "5
W 

w
5
w

w
5

w
5

#
w

w
5

¸ ¸ Ð$Þ#)Ñ
α

(

(

 
  

(

(

5
N - lÐ5Ñ

5N
5 œ54 "

"

54
Ð Ñ

|

 

Figure 3.3  Graphic model of Empirical model 2
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3.2.4.4  Gibbs Sampling

Gibbs sampling, detailed in Geman and Geman (1984), Gelfand and Smith

(1990), and , is a Markov Chain Monte Carlo (MCMC)Bolstad (2010)

randomized algorithm used for obtaining a sequence of samples from multivariate

probability distributions where direct sampling is difficult. Gibbs sampling has

two advantages. First, it is simpler to sample from the distribution of one variable

conditional on all other variables (full conditional distribution) than to sample

from the marginal distribution of that variable by integrating over the joint

distribution of all variables. Second, Gibbs sampler only requires the conditionals

up to proportionality, the procedure of normalization, often the most difficult step,

is not needed.

Let be a sample from a joint distribution the fullÖB ßá ß B × 0ÐB ßá ß B Ñß" 8 " 8

conditional distribution of takes the formB4

 0ÐB lB ßá ß B ß B ß ßá ß B Ñ œ4 " 4" 4" " 8
0ÐB ßáßB Ñ

0ÐB ßáßB ß B ß ßáßB Ñ
" 8

" 4" 4" " 8

     .  º 0ÐB ßá ß B Ñ Ð$Þ#*Ñ" 8

Suppose I want to get samples from the joint distribution, the Gibbs samplerM

proceeds as follows:

1. Begin with initial values for each variable.ÖB ßá ß B ×
Ð!Ñ Ð!Ñ
" 8

2. For each sample sample each from the full conditional3 œ Ö"ßá ß M×ß B
Ð3Ñ
4

distribution 0ÐB lß B ßá ß B ß B ß ßá ß B Ñ Þ
Ð3Ñ Ð3Ñ Ð3Ñ Ð3"Ñ Ð3"Ñ
4 " 4" 4" " 8 The whole process uses

the most current value of one variable once it's sampled.
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As 3 Ä ∞ß 0ÐB ßá ß B Ñ Ä 0ÐB ßá ß B ÑÞ
Ð3Ñ Ð3Ñ
" 8 " 8

.

3.3 BHM-Based Highway Loss Event Intensity Prediction

3.3.1 Focused Area Loss Intensity Prediction

Let  be a focusedE  area of study interest between  and its elements (cells).  isH E=

composed of cells in  and the set of cells of  is a subset of cells of . IfH E H= =

H= is a state and each cell is a census tract,  area ofa good example of such an

study interest could be a city or a county. Let -+4 be a cell of E + ß indexed by 4

+ œ ßá ß E œ Ö ×ß4 1 + - ßá ß - - − Ö- ß - ß ÞÞÞß - ×ß +  8ßN + + + " # 8 N. and
" N 4

Ö × §- ßá ß - Ö- ß - ß ÞÞÞß - ×Þ+ + " # 8" N

Denote α " α "5 5
w w

5 5s ß s as the and defined in Section BHM estimators of 3.2.4.3 and
w w

determined in Section 3.2.4.4 by use of Gibbs sampler. The prior of loss intensity 

on  at time  follows a Gamma distribution,G >  "5

  ,    1 - α " -Ð l ß Ñ œ / Ð$Þ$!Ñs sw w
5

w 5
w

5
w

5
w

5

w

5
5 5 5

w w s

Ð Ñ 5
w ""

> α

α " -
α̂

^

^ ^

and its posterior distribution takes the form

  ,  1 - α " -Ð Ñ
w w ww

w

5
5

5 5 5
5 5 55

s

Ð Ñ

" |C C
w w

N5 51
ßá ß ß s ß œ / Ð$Þ$"Ñs  "

> α

α " -
α̂

^

^ ^

where  |α α " "5 5 5 5
^  = , and   = .^ 5 5

5 œ5 5 œ55 5
N N

4 " 4 "

w

4 4
C - l  s sw

w

1 - α "Ð Ñ
w w

w

5 5 5|C C G
w w

N5 5 51
ßá ß ß s ß s , the posterior loss intensity distribution on  at time

>  " >, also serves as the prior time , and itsdistribution of the loss intensity -5  at 

posterior,   at the1 - α "Ð l ß5 5
^ ^ , 

5
C C G5 5 51

ßá ß Ñß
N

serves as the predicted intensity on 

nearest future .>  "



95

 ,    ^ ^1 - α " -Ð l ß / Ð$Þ$#Ñ5

µ

Ð Ñ 5

µ" 
µ

C C5 51
ßá ß Ñ œ

N
 "

> α
α " -5

µ

5

5 5 5

α

^

where  |α α " "5 55
µ s

µ s = , and   = . 5 5
5 œ5 5 œ55 5

N N

4 " 4 "4 4
C - l 

5

For the convenience of predicting the loss intensity on  theE at time , >  "

predicted intensity , and the predicted
~

on G >  "5  at time as is denoted as -5

intensity .
~

on E ÐEÑ at time is denoted as >  " -

Let which is the proportion of the area of the cell =+
l

l4
œ ß

l

l

-

-
+

+4

+N
+ œ+4 "

+4
4 - Eß on be

      
~ ~
- = -ÐEÑ œ † Ð † M Ð ÑÑ Ð$Þ$$Ñ

+ œ+

+

G +
4 "

N

5 4+4

5œ"

O

5 -

where 
       if 

0 otherwise
M Ð Ñ Þ

"
G +

+ 5 5 5
5 4

4 " 4 N-
- − Ö- ßá ß - ßá ß - ×

Thus, the predicted loss intensity at time takes the form of a mixture Gamma>  "

distribution, and it has an expectation of

 ,    
~

IÐ ÐEÑÑ œ † Ð † M Ð ÑÑ Ð$Þ$%Ñ- =
+ œ+

+

G +
4 "

N

5 4+4

5œ"

O µ
µ
α

"
5

5
-

and a variance of

     
~

Z Ð ÐEÑÑ œ † Ð † M Ð ÑÑÞ Ð$Þ$&Ñ- =
+ œ+

+

G +
4 "

N

5 4
#

5œ"

O µ

Ð Ñ
µ+4

 α

"
5

5
#

-

3.3.2 Loss Intensity Prediction of the Whole Study Area

H 4 4 œ "ßá ß 8ß H œ= =is the study area with th cell , and Let- Ö- ß - ß ÞÞÞß - ×Þ4 " # 8

=4
l

l
œ H

l

l
=

-

-
4

4

8
4œ" 4  be the proportion of the area of the cell - ß on the predicted loss

intensity of H >  "=  at time  is
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~ ~
- = -ÐH Ñ œ † Ð † M Ð ÑÑ Ð$Þ$'Ñ= 5

5œ"
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4œ"

8

G 44 
5
-

where .
       if 

0 otherwise
M Ð Ñ

"
G 4

4 5 5 5
5

" 4 N-
- − Ö- á ß - ßá ß - × ,

Similarly, the predicted loss intensity  at time  also takes the form of aof H >  "=

mixture Gamma distribution, and has an expectation of

     
~

IÐ ÐH ÑÑ œ † Ð † M Ð ÑÑß Ð$Þ$(Ñ- ==
5œ"

O µ
µ

4œ"
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"
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-

and a variance of

     
~

Z Ð ÐH ÑÑ œ † Ð † M Ð ÑÑÞ Ð$Þ$)Ñ- ==
#

5œ"

O µ

Ð Ñ
µ

4œ"

8

G 44
 α

"
5

5
# 5

-

3.3.3 Predicted Loss Centroid of the Whole Study Area

Let  be the geographic centroid of let 
~

=
- - - 54 4 4
œ Ð= ß = Ñ † M Ð Ñ † l" # 5

5œ"

O

- - -4 G 4 4, and  - l

be the predicted number of events at time  with an abstract centroid of>  "

Ð= ß = Ñ H >  "" # =- -4 4
. I abstract the loss centroid of  at time  to 

      = œ ß Ð$Þ$*Ñ"

ÐÐ † M Ð ÑÑ†l †= Ñ

ÐÐ † M Ð ÑÑ†l Ñ
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4œ"

8 O

5œ"
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4œ"
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3.3.4 Summary of Chapter 3

In this chapter, I have developed methods using a -means based algorithm andk

specially tailored distance functions to partition the key feature space into
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homogeneous clusters, and map this partition to the  space partition.geographical

Then, I have developed theory and methods of a Bayesian hierarchical model

(BHM) that uses the current time point loss information and most recent past loss

information to predict the future losses for each cluster. The BHM has a good

updating mechanism and adds adaptation .to the Bayesian approach
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4. NHTSA FARS Data and Proposed Bayesian

Hierarchical Spatio-Temporal Model

In Chapter 2 and Chapter 3,  I have built the methodology framework composed

of the following components: the selection of key features, "hot spots" pattern

detection, key feature space and geographical space partition, and the Bayesian

Hierarchical Model (BHM) with adaptation in the prediction of future losses. In

this chapter, I apply these methods to 2009, 2010 and 2011 Fatality Analysis

Reporting System (FARS) data published by National Highway Traffic Safety

Administration (NHTSA) of U.S. Department of Transportation. The 2009-11

FARS data are the most current data available for this dissertation. It should be

noted the software used in this chapter is SAS 9.3 unless otherwise stated.

4.1 FARS Data and the Poisson Point Process

4.1.1 FARS Data

FARS is a census of all crashes of motor vehicles traveling on public roadways in

which a person died within 30 days of the crash (NHTSA, 2012). The deceased

person can be either an occupant of a vehicle or a non-motorist. FARS was

created by NHTSA and has been operational since 1975. According to NHTSA

(NHTSA, 2010), FARS is the only source of U.S. real-world fatal crash data to

serve the public use in "conducting basic research, identifying problem areas,
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developing effective countermeasures, identifying program and rulemaking needs,

developing and evaluating programs, rules, and standards..." by legislature

institutes, governments, academic researchers, medical community, automotive

industry, insurance industry and other traffic safety stakeholders.

FARS data originate from police-reported fatal motor vehicle traffic crashes

within the 50 States, the District of Columbia, and Puerto Rico. Data are input by

FARS analysts in each state and are then transmitted to DOT for quality

assurance and analysis. Data sources include: police accident reports, state

vehicle registration files, state driver license files, state highway department data,

vital statistics data, death certificates, etc. (NHTSA, 2010a). The collection,

standardization, quality control and analysis process lead to the lag in FARS data.

Typically after September, NHTSA publishes the FARS data and initial analysis

for the previous year.

The content of FARS data collected includes, but not limited to: the time and

location of the crash, number of people and vehicles involved, vehicle type(s),

impact points, driver's license status of all drivers, demographics of all persons

involved, their role in crash (driver, passenger, etc), injury severity, and seatbelt

restraint use. Driver and nonoccupant blood alcohol content measures are also

collected  (NHTSA, 2010b).

The time and location of the crash is of greatest interest in this dissertation. The

date of the crash has been included in the data since 1975 and from 1999 on the

exact location of the crash was added to FARS data (NHTSA, 2013). The exact

geographic location of a crash is expressed by its "Global Position" in the latitude

and the longitude, and is often collected either by GPS systems on the site of the
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crash or by Geographic Information Systems (GIS) after the crash. The format for

the latitude is: dd mm ss.ss (Degrees/Minutes/Seconds) and the format for the

longitude is: ddd mm ss.ss (Degrees/Minutes/Seconds).

Although FARS data quality has been improving over time, users still may face

difficulties, e.g. missing values of variables used. In Maryland, 5 out of 515 fatal

events in 2009, 3 out of 463 fatal crashes in 2010, and 5 out of 455 fatal crashes

in 2011, had missing GPS coordinates and thus lost exact locations.

4.1.2 Census Data and Geocoding

Table 4.1 is a simplified sample of 2010 census tract attributes. The 2010 census

defined 1406 census tracts and 12 of them are pure water area and thus are

excluded from consideration in this dissertation. It should be noted that the land

area was in square meters instead of square miles.
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Table 4.1  Partial attributes of 2010 Maryland census tracts

STATEFP10 COUNTYFP10 TRACTCE10 GEOID10 NAME10 ALAND10 AWATER10 INTPTLAT10 INTPTLON10

24 029 950100 24029950100 9501  170,616,683      5,541,577 +39.3006660 -075.8425009

24 029 950200 24029950200 9502   279,186,393      29,289,092 +39.3109363 -076.0379468 

24 017 850600 24017850600 8506    60,285,332           17,307 +38.5266341 -077.0933062

24 017 850600 24017850600 8506    60,285,332           17,307 +38.5266341 -077.0933062

24 017 851002 24017851002 8510.02    42,640,094         225,588 +38.5370101 -076.9541185

24 017 850300 24017850300 8503    34,111,856      3,466,222 +38.5530041 -077.1569782

24 011 955600 24011955600 9556    88,677,690         427,648 +38.7068793 -075.7661753

24 011 955600 24011955600 9556     88,677,690           427,648 +38.7068793 -075.7661753 

24 011 955600 24011955600 9556    88,677,690         427,648 +38.7068793 -075.7661753

Field Name Definition 

STATEFP10 State code (Maryland = 24) 

COUNTYFP10 County code, three characters

TRACT10 2010 Tract code, with leading zeroes and two implied decimal places (e.g. Tract "000302" = Tract 3.02)

GEOID10 Unique geographic ID (concatenated State + County + Tract codes)

NAME10 2010 Tract code, formatted for labeling

BLKGRP10 2010 block group 

BLOCK10 2010 block 

LOGRECNO Logical record number 

ALAND10 2010 Census land area in square meters

AWATER10 2010 Census water area in square meters

INTPTLAT10 Latitude in degrees of a point within the tract

INTPTLON10 Longitude in degrees of a point within the tract
 

  

The path to link the census tract dataset to FARS dataset is via geocoding.

Geocoding is the process of assigning a location, in my case, the latitude and the

longitude,  to an address by comparing the descriptive location elements in the

address to those present in the reference material. The address here has a variety

of forms. It could be a narrow term such as a normal postal address, or a general

term which could be a postal zone or a census tract. In this dissertation geocoding

specifically means assigning the exact location described by the latitude and the

longitude of a fatal crash to the 2010 census tracts.

In this dissertation, Esri ArcMap 10.0 is used for geocoding and other GIS

practice such as mapping. The following graph is the geocoding results of MD

2010 fatal crash locations.
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Figure 4.1  Locations of MD 2010 fatal crashes, map is created using ArcMap

10.0

Figure 4.1 shows that MD 2010 fatal crashes concentrate in outskirt census tracts

of Washington D.C. and Baltimore. The source of the location coordinates was

from the FARS data and the census tract definitions were from 2010 census

tiger/line shapefiles published by the U.S. Census Bureau.

Point to polygon spatial join operations were conducted to join attributes of the

fatal crashes to attributes of the census tracts. According to ESRI definitions,

spatial join operation is used to combine two or more datasets with respect to a
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spatial predicate. The predicate can be a combination of directional, distance, and

topological spatial relations. The topological predicate here is if a point (the crash

location) falls inside of a polygon (the census tract), attributes of that crash is

appended to that census tract.

4.1.3 Fatal Crash Intensity and Poisson Point Process

Following the first-order intensity function of the Poisson point process )^(.

defined in Chapter 2 here the unit for the time is year, thus  fatal crash>ß -- ß>4
ß the

intensity at  for the th census tract the most basic> 4 - 4 œ "á4 ( 1,394), which is 

spatial element in this dissertation, is defined as the number of fatal crashes

occurring in  at  divided by the area (measured in square miles) of - - lß -4 4 4> l

assuming completely spatial randomness CSR) of .Ð -4

   = .       -- ß>
- à
- l4

4

4

^( >) 
l  Ð%Þ"Ñ

Following the definition in observed intensity Ð#Þ%"Ñ the  is calculated as-
w

4

   =  -
w

4à>
C4à>
|  - l4

where  is the observed number of fatal crashes a     C4à> t  for the census tract > -4.

It should be noted that the number of fatal crashes is different from the number of

deaths since a fatal crash could result in more than 1 death. For example in 2010,

Maryland had 493 fatalities in comparison to 463 fatal crashes.

Figure 4.2 illustrates the distribution of the counts of fatal crashes by MD 2010

census tracts. The distribution is highly skewed, 1,039 of the 1,394 Maryland

census tracts did not have fatal crashes in 2010.
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Figure 4.2  The distribution of counts of fatal crashes of MD 2010 census tracts

A Poisson regression was fitted to 2010 Maryland census tract level number of

fatal crashes. The number of fatal crashes served as the event and the land area in

square miles served as the trials. Maximum likelihood estimator was computed

using logarithm as the link function. The regression estimated that the intensity of

2010 MD fatal crashes had a 95% confidence interval of 0.030 0.037  RoughlyÐ ß ÑÞ
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a fatal crash occurred every 30 square miles. Detailed regression results are

presented in the following table.

 Table 4.2  Maximum likelihood estimate of 2010 Maryland fatal crash intensity

Maximum likelihood parameter estimates of MD 2010 crash intensity
Parameter DF Estimate Standard 

Error 
Likelihood Ratio 95%

Confidence Limits 
Wald Chi-

Square 
Pr > ChiSq

  Intercept  1 -3.4015 0.0558 -3.5112 -3.296 3714.14 <.0001 

Exponent  0.0333  0.0298 0.0370   

 

4.1.4 2010 Maryland Fatal Crash Intensity by Census Tract

Figure 4.3 describes the distribution of the observed intensity of the 2010

Maryland fatal crashes at the census tract level. The underlying dataset had 1,394

observations corresponding to the 1,394 census tracts. The distribution of the

observed intensity was highly skewed. One thousand and thirty nine of the 1,394

Maryland census tracts had 0 intensity while the Census Tract 1901 had an

intensity as high as 13.5 fatal crashes per square mile in 2010.
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    Figure 4.3  2010 Maryland fatal crash intensity distribution by census tract

To make it more intuitive, the observed intensity is further illustrated on a

thematic map on which the darker color means higher value. Although census

tracts close to a metropolitan center had higher intensity, there were exceptions as

indicated by the highlighted area.
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Figure 4.4  A thematic map on 2010 Maryland fatal crash intensity, created using

ArcMap 10.0

4.2 Finite Mixture Model on FARS Data

4.2.1 Kernel Density Estimation of the Fatal Crash Intensity

In this section, I applied the methodology proposed in Chapter 2 to identify the

sub populations (components) which dominated the 2010 Maryland fatal crashes.

Before using kernel density estimation (KDE) to investigate the multimodality of

the MD 2010 observed fatal crashes, I first explored the percentile of the observed

intensity.
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  Table 4.3  Percentiles of the observed MD 2010 fatal crash intensity by census

tract

MD 2010 fatality intensity quantile estimates 

Quantile 
100% 
Max 

99% 95% 90% 
75% 
Q3 

50% 
Median 

25% Q1 10% 5% 1% 0% Min 

Estimate 13.5203 4.7845 1.5135 0.6181 0.0141 0 0 0 0 0 0 

 

More than half census tracts had 0 intensity which makes the KDE very hard to

choose the right Sheather-Jones plug-in bandwidth. First I demonstrated the

intensity distribution for all observations in the following figure.
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   Figure 4.5  Distribution and kernel density for observed intensity of all census

tracts

Here the bandwidth is 0.8 and a unimodal distribution is shown which is very

close to 0. In the application of KDE the choice of bandwidth had a great

influence on the number of modes detected. In this case, the mode close to 0

masked all other potential modes. Thus a second KDE was conducted over the

census tracts having positive intensities.

In Figure 4.6 two obvious modes can be identified plus another potential

candidate. The first one is very close to 0 from the right side, another one is larger



110

than 1.0 but smaller than 1.5. I lack the confidence to claim the third mode

existing between 2.0 and 3.0, just like I did for the first two modes.

As for the multimodality, it's safe to say there might be three or four modes that

can be obviously identified by Kernel density estimate visualization. This finding

provides preliminary estimate to tune the algorithm to identify the exact number

of components in the finite mixture model.

       Figure 4.6  Distribution and kernel density for observed intensities  0
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Table 4.4  Model fitting statistics by number of components
Component Evaluation for Mixture Models

Model Number of 

-2 Log L AIC AICC BIC Pearson 

Max

ID Components Parameters Gradient

  Total Eff. Total Eff.

1 1 1 1 1 2501.17 2503.17 2503.17 2508.41 9100.65 5.12E-06

2 2 2 3 3 2255.58 2261.58 2261.6 2277.3 2394.17 0.0036

3 3 3 5 5 2209.89 2219.89 2219.93 2246.09 1981.5 0.0002

4 4 4 7 7 2208.13 2222.13 2222.21 2258.81 1976.7 0.0008

5 5 5 9 9 2208.13 2226.13 2226.26 2273.29 1976.69 0.0008

6 6 6 11 11 2208.13 2230.13 2230.32 2287.77 1976.9 0.0067

7 7 7 13 13 2208.13 2234.13 2234.39 2302.25 1976.69 0.0022

8 8 8 15 15 2208.13 2238.13 2238.48 2316.73 1976.84 0.0088

9 9 9 17 17 2208.13 2242.13 2242.57 2331.21 1976.68 0.0029

10 10 10 19 19 2208.13 2246.13 2246.68 2345.69 1976.59 0.0057

11 11 11 21 21 2208.13 2250.13 2250.8 2360.17 1976.72 0.0027

12 12 12 23 23 2208.13 2254.13 2254.94 2374.65 1976.68 0.0025

13 13 13 25 25 2208.13 2258.13 2259.08 2389.13 1976.73 0.0032

14 14 14 27 27 2208.13 2262.13 2263.24 2403.61 1976.69 0.0032

15 15 15 29 29 2208.13 2266.13 2267.41 2418.09 1976.69 0.0180

16 16 16 31 31 2208.13 2270.13 2271.59 2432.57 1976.93 0.0220

17 17 17 33 33 2208.13 2274.13 2275.78 2447.05 1976.95 0.0067

18 18 18 35 35 2208.13 2278.13 2279.98 2461.53 1976.67 0.0024

19 19 19 37 37 2208.13 2282.13 2284.2 2476.01 1976.7 0.0020

20 20 20 39 39 2208.13 2286.13 2288.43 2490.49 1976.79 0.0046

21 21 21 41 41 2208.13 2290.13 2292.68 2504.97 1976.26 0.0150

22 22 22 43 43 2208.13 2294.13 2296.93 2519.45 1976.79 0.0042

23 23 23 45 45 2208.13 2298.13 2301.2 2533.93 1976.68 0.0017

24 24 24 47 47 2208.13 2302.13 2305.48 2548.41 1976.51 0.0110

25 25 25 49 49 2208.13 2306.13 2309.78 2562.89 1976.45 0.0130

26 26 26 51 51 2208.13 2310.13 2314.08 2577.37 1976.78 0.0049

27 27 27 53 53 2208.13 2314.13 2318.4 2591.85 1976.68 0.0059

28 28 28 55 55 2208.13 2318.13 2322.73 2606.33 1976.69 0.0027

29 29 29 57 57 2208.13 2322.13 2327.08 2620.81 1976.73 0.0023

30 30 30 59 59 2208.13 2326.13 2331.44 2635.29 1977 0.0120

31 31 31 61 61 2208.13 2330.13 2335.81 2649.77 1976.08 0.0370

32 32 32 63 63 2208.13 2334.13 2340.19 2664.25 1976.84 0.0089

33 33 33 65 65 2208.13 2338.13 2344.59 2678.72 1976.47 0.0085

34 34 34 67 67 2208.13 2342.13 2349 2693.2 1976.78 0.0061

35 35 35 69 69 2208.13 2346.13 2353.43 2707.68 1976.61 0.0037

36 36 36 71 71 2208.13 2350.13 2357.86 2722.16 1976.72 0.0010

37 37 37 73 73 2208.13 2354.13 2362.31 2736.64 1976.66 0.0014
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4.2.2 Decision on the Number of Components, 1

The 2010 Maryland FARS data had a sample size of 1,394 and the above

multimodality examination suggested  3 or 4 modes. Thus according to  theÐ#Þ%$Ñ

lower bound of the number of components was set to be 2 and the upperß 1Pß

bound was set to be 37 (square root of sample size  Finite mixture modelsß 1 8ÑÞY ß

were run 37 times for each . Each model fit the variable 1 COUNT to a Poisson

distribution in which the number of fatal crashes served as events and the land

area, , measured in square miles, served as trials. Modeling fittingALAND

statistics for 37 runs were compared to decide the exact number of components of

the underlying Poisson point process.

Table 4.4 lists the results for 37 runs. The AIC (Akaike's Information Criterion),

AICC (AIC with a correction) and BIC (Bayesian information criterion) all

suggests a clear cut of 3 components.

4.2.3 Component Estimates and the Mixing Probabilities

Table 4.5  are the results of the finite mixture model with 3 components. The

model was implemented assuming Poisson distribution using logarithm as the link

function, and the intensity estimates were listed in the last column.
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       Table 4.5  Estimates of identified components

Parameter Estimates for 'Poisson' Model

Component Parameter Estimate Standard 
Error 

z 
Value 

Pr > |z| Inverse 
Linked 

Estimate
1 Intercept 0.1376 0.1837 0.75 0.454 1.1475 
2 Intercept -2.1868 0.2087 -10.48 <.0001 0.1123 
3 Intercept -4.1285 0.1785 -23.13 <.0001 0.0161 

 

The three components (intensity of underlying Poisson point processes) were

respectively estimated to be 1.1475, 0.1123 and 0.0161.

          Table 4.6  Estimates of mixing probabilities

Parameter Estimates for Mixing Probabilities

Component Parameter Linked Scale Probabil
ity Estimate Standard 

Error 
z 

Value 
Pr > |z|

1 Probability -1.9063 0.272 -7.01 <.0001 0.0855

2 Probability -0.5287 0.3133 -1.69 0.0915 0.3391

  

The finite mixture model also estimated the mixing probability for each

component. The mixing probability was 0.0855 for Component 1, 0.3391 for

Component 2 and 0.5754 for Component 3. Based upon Table 4.5 and Table 4.6,

the underlying Poisson point process dominating the 2010 Maryland census tracts

took the form,
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In addition the model also calculated the posterior probability,

7 1 13 3 6 6
6œ"

1

Ð Ñ œ 0 Ð Ñ Î 0 Ð Ñ 4C C C4 4 3 4 6àG
3

; ;) )   which is the probability the th
observation originated from the th component which was defined in  of3 Ð#Þ"%Ñ

Chapter 2.

Table 4.7 lists observed intensity and the posterior probabilities of components

from which this observation likely arose. Census Tract 1505 had an observed

intensity of 2.7275 and the likelihood it originated from the first component was

0.5838, thus it was most likely arose from the first component.

According to posterior probability 101 census tracts were most likely from the

first component which was estimated having the highest fatal crash intensity, 180

census tracts were most likely from the second component, and the rest 1,113

census tracts were most likely from the third component which had the lowest

estimate of the fatal crash intensity.
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Table 4.7  Example of posterior probability an observation arose from a component  
NAMELSAD10 COUNT ALAND INTENSITY POST_1 POST_2 POST_3 COMPONENT 

ID 

Census Tract 
8505 

0 37.912 0 0 0.0152 0.9849 3 

Census Tract 
8506 

3 23.276 0.1289 0 0.9551 0.0449 2 

Census Tract 
8510.02 

0 16.463 0 0 0.1079 0.8921 3 

Census Tract 
8511 

0 27.666 0 0 0.0396 0.9604 3 

Census Tract 
8503 

1 13.171 0.0759 0 0.5365 0.4635 2 

Census Tract 
8504 

0 68.331 0 0 0.0008 0.9992 3 

Census Tract 
805 

0 0.135 0 0.07465 0.3403 0.5850 3 

Census Tract 
1505 

1 0.367 2.7275 0.5848 0.3316 0.0836 1 

 

4.3 Key Feature Selection and Feature Space Formation

4.3.1 Data Source of Features

All independent variables used in this chapter were from the U.S. Census Bureau.

The Census 2010 is the most recent national census of the United States. Different

from the 2000 decennial census, for which some homes received a "long form"

(U.S. Census Bureau, 2000) questionnaire and most homes received a "short

form" questionnaire, the 2010 Census only sent "short form" questionnaire that

should take about ten minutes to complete. The questions included: name, age,

sex, date of birth, Hispanic origin, race, ethnicity, relationship (to the first name

listed on the form), and housing tenure (whether a family owns or rents their

home).

The "long form" was replaced by the American Community Survey (ACS), which

samples approximately 3 million housing unit addresses across the country on a
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regular basis to obtain important data on demographic, economic, social and

housing information. ACS datasets are combined to produce 12 months, 36

months or 60 months of data. The following table describes the availability of

ACS period estimates for geographic areas by population size (US Census

Bureau, 2009).

Availability of ACS data.

Data pooled to produce Data published for areas with
1-year data sets populations of 65,000 or more
3-year data sets populations of 20,000 or more
5-year data sets populations of almost any size*

The 2010 decennial census provides demographic and household data at the

census tract and the lower geography level while the census tract level economic,

social and housing data can only be obtained from the 5-year ACS data because

most of the census tracts have populations less than 20,000. In this dissertation all

demographic and household data were from the 2010 decennial census and all

other economic, social and housing data were from the 2006-10 ACS data.

4.3.2 Initial Screen by Visualization

First, only variables at least to some extent relevant to this research were kept and

all other variables obviously irrelevant were filtered out from the demographic,
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economic, social and housing data sets. As a result, 47 out of 372 demographic

variables, 9 out of 597 social variables, 62 variables out of 549 economic

variables, and 47 out of 565 housing variables, besides 3 identity and label

variables, were selected as candidates for the initial screening.

Let J  be the initial feature set before the visualization screen procedure which

had 174 variables including the above selected variables and 9 variables in Table

4.1 which was also selected from the geography definition table from 2010 census

data. The initial screen is defined by the triplet ( , where is theJ ß ß J Ñv v" ""

visualization screen procedure, and  is the subset of  which is composed ofJ J"

the elements chosen from  in the procedure. Data in  come with the formJ J

( and data in  have the form of (  whereB ß B ßá ß B Ñ J B ß B ßá ß B Ñ4" 4# 4: " 4" 4# 46

:  !ß 6  !ß :  6Þ and  Parallel coordinate plot served as the main tool of this

visualization procedure and only variables showed association with loss

intensities were chosen. Here I omitted the details of the visualization procedure

and gave a summary parallel coordinate plot shown in Figure 4.7.

The 31 variables in  were listed in Table 4.8 in which every variable has aJ"

detailed description.
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      Figure 4.7   Parallel coordinate plot of the variables selected by the initial

screen
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Table 4.8   Variables selected by the initial screen

Variable Variable description

COMPCTDRIVEALONE Percent; COMMUTING TO WORK - Car, truck, or van - drive alone

COMMEANMINUTES Estimate; COMMUTING TO WORK - Mean travel time to work (minutes)

COMPCTOTHERS Percent; COMMUTING TO WORK - Other means

COMPCTPUBTRANS Percent; COMMUTING TO WORK - Public transportation (excluding taxicab)

EMPPCTUMEMP Percent; EMPLOYMENT STATUS - Percent Unemployed

INCFAMPCT10_15K Percent; FAMILY INCOME AND BENEFITS (IN 2010 INFLATION-ADJUSTED DOLLARS) - $10,000 to $14,999

INCHHPCT10_15 Percent; HOUSEHOLD INCOME AND BENEFITS (IN 2010 INFLATION-ADJUSTED DOLLARS) - $10,000 to $14,999

INCNONFAMMEAN Estimate; INCOME AND BENEFITS (IN 2010 INFLATION-ADJUSTED DOLLARS) - Mean nonfamily income (dollars)

INCPERCAPITA Estimate; INCOME AND BENEFITS (IN 2010 INFLATION-ADJUSTED DOLLARS) - Per capita income (dollars)

INCHHPCTFOODS

Percent; INCOME AND BENEFITS (IN 2010 INFLATION-ADJUSTED DOLLARS) - With Food Stamp/SNAP benefits in the 
past 12 months

OCCPCTMANAGE Percent; OCCUPATION - Management, business, science, and arts occupations

OCCPCTSERVICE Percent; OCCUPATION - Service occupations

HSPCT1VEH Percent; VEHICLES AVAILABLE - 1 vehicle available

HSPCT2VEH Percent; VEHICLES AVAILABLE - 2 vehicles available

HSPCTGE3VEH Percent; VEHICLES AVAILABLE - 3 or more vehicles available

HSPCTNOVEH Percent; VEHICLES AVAILABLE - No vehicles available

HSPCT1UNIT

PCTLT5 Percent; SEX AND AGE - Total population - Under 5 years

PCT5_9 Percent; SEX AND AGE - Total population - 5 to 9 years

PCTMALE Percent; SEX AND AGE - Male population

PCTFEMALE Percent; SEX AND AGE - Female population

MEDIANAGEM Number; SEX AND AGE - Male population - Median age (years)

PCTWHITE Percent; RACE - Total population - One Race - White

PCTOCCPHU Percent; HOUSING OCCUPANCY - Total housing units - Occupied housing units

PCTVACANTHU Percent; HOUSING OCCUPANCY - Total housing units - Vacant housing units

PCTOWNEROCCP

PCTHIGHER Percent; EDUCATIONAL ATTAINMENT - Percent high school graduate or higher

PCTSCHOOLGE3YR Percent; SCHOOL ENROLLMENT - Population 3 years and over enrolled in school

POPDEN3 TRANSFORMED POPULATION DENSITY (cubic root of population density (population per square mile))

Dependent variables

COMPONENT SUB POPULATION (COMPONENT) a census tract was assigned by posterior probability

INTENSITY OBSERVED FATAL CRASH INTENSITY

Economic

Housing

Demographic and household

Social

Derived
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COMPCTDRIVEALONE Percent; COMMUTING TO WORK - Car, truck, or van - drive alone

COMMEANMINUTES Estimate; COMMUTING TO WORK - Mean travel time to work (minutes)

COMPCTOTHERS Percent; COMMUTING TO WORK - Other means

COMPCTPUBTRANS Percent; COMMUTING TO WORK - Public transportation (excluding taxicab)

EMPPCTUMEMP Percent; EMPLOYMENT STATUS - Percent Unemployed

INCFAMPCT10_15K Percent; FAMILY INCOME AND BENEFITS (IN 2010 INFLATION-ADJUSTED DOLLARS) - $10,000 to $14,999

INCHHPCT10_15 Percent; HOUSEHOLD INCOME AND BENEFITS (IN 2010 INFLATION-ADJUSTED DOLLARS) - $10,000 to $14,999

INCNONFAMMEAN Estimate; INCOME AND BENEFITS (IN 2010 INFLATION-ADJUSTED DOLLARS) - Mean nonfamily income (dollars)

INCPERCAPITA Estimate; INCOME AND BENEFITS (IN 2010 INFLATION-ADJUSTED DOLLARS) - Per capita income (dollars)

INCHHPCTFOODS

Percent; INCOME AND BENEFITS (IN 2010 INFLATION-ADJUSTED DOLLARS) - With Food Stamp/SNAP benefits in the 
past 12 months

OCCPCTMANAGE Percent; OCCUPATION - Management, business, science, and arts occupations

OCCPCTSERVICE Percent; OCCUPATION - Service occupations

HSPCT1VEH Percent; VEHICLES AVAILABLE - 1 vehicle available

HSPCT2VEH Percent; VEHICLES AVAILABLE - 2 vehicles available

HSPCTGE3VEH Percent; VEHICLES AVAILABLE - 3 or more vehicles available

HSPCTNOVEH Percent; VEHICLES AVAILABLE - No vehicles available

HSPCT1UNIT

PCTLT5 Percent; SEX AND AGE - Total population - Under 5 years

PCT5_9 Percent; SEX AND AGE - Total population - 5 to 9 years

PCTMALE Percent; SEX AND AGE - Male population

PCTFEMALE Percent; SEX AND AGE - Female population

MEDIANAGEM Number; SEX AND AGE - Male population - Median age (years)

PCTWHITE Percent; RACE - Total population - One Race - White

PCTOCCPHU Percent; HOUSING OCCUPANCY - Total housing units - Occupied housing units

PCTVACANTHU Percent; HOUSING OCCUPANCY - Total housing units - Vacant housing units

PCTOWNEROCCP

PCTHIGHER Percent; EDUCATIONAL ATTAINMENT - Percent high school graduate or higher

PCTSCHOOLGE3YR Percent; SCHOOL ENROLLMENT - Population 3 years and over enrolled in school

POPDEN3 TRANSFORMED POPULATION DENSITY (cubic root of population density (population per square mile))

Dependent variables

COMPONENT SUB POPULATION (COMPONENT) a census tract was assigned by posterior probability

INTENSITY OBSERVED FATAL CRASH INTENSITY

Economic

Housing

Demographic and household

Social

Derived
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4.3.3 Population Density and the Observed Fatal Crash Intensity

The thematic map of the 2010 Maryland fatal crash intensity in Figure 4.4, along

with previous research, suggests population density, population per square mile,

had sizeable influence on fatal crash intensity. This relationship was examined

between two variables and their transformations. Two transformations take the

following form,

 INT2 INTENSITY œ 691 Ð"  =;<>Ð ÑÑ

 POPden3  POPdenœ $
The relationships were visualized in  Figure 4.8a and Figure 4.8b.
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 Figure 4.8a  Scatter plot of fatal crash intensity by population density
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Figure 4.8b  Scatter plot of fatal crash intensity by population density, both

transformed.

In Figure 4.8b a linear relationship between two transformed variables is clear for

some census tracts while for others intensity remains constant at 0 however

population density varies.
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4.3.4 Classification and Regression Tree and Phase 2 Feature Selection

4.3.4.1 Classification Tree

The Salford SPM software was used to conduct classification and regression trees

analysis for key feature selection and key feature space formation. In the

classification tree analysis, the variable COMPONENT, a categorical variable

which had been decided in the finite mixture model, was used as the target

variable. COMPONENT had three values, 1, 2 and 3, respectively representing

the first component (with the highest intensity estimate), the second component

and the third component  (with the lowest intensity estimate). All other variables

except another target variable INTENSITY and its transformation were used as

predictors. Gini measure served as the impurity function in splitting the nodes.

The classification tree analysis aimed at finding the feature pattern(s) of "hot

spot" and thus focused on correctly predicting the first component, and 90% of

the sample was used for training and 10% of the sample was used for testing in

this case. This ratio was purposely set lower than usual case which is 75-80% vs.

20-25%.
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Actual 
Class 

Total  
 Class 

Percent  
 Correct 

1 
 N = 46 

2 
 N = 74 

3 
 N = 23 

1 4.00 100.00% 4.00 0.00 0.00 

2 25.00 92.00% 2.00 23.00 0.00 

3 114.00 20.18% 40.00 51.00 23.00 

Total: 143.00         

Average: 70.73%       

Overall % Correct: 34.97%       

 

Figure 4.9   Classification tree analysis model results, produced using Salford

SPM 7.0

Figure 4.9 shows the classification tree analysis that produced the best tree with

10 nodes. In the training sample of 97 census tracts, it predicted 89 correctly with

a success rate of 91.75%.  It predicted correctly for the whole testing sample

which contained 4 randomly selected observations. It also had high accuracy to

predict the testing sample for the second component.



126

Table 4.9  Classification tree identified key features and importance scores,

produced using Salford SPM 7.0

Variable Score   

POPDEN3 100.00 |||||||||||||||||||||||||||||||||||||||||||||||| 

HSPCTGE3VEH 46.49 |||||||||||||||||||||| 

COMPCTPUBTRANS 36.67 ||||||||||||||||| 

HSPCT1VEH 35.13 |||||||||||||||| 

HSPCT2VEH 33.71 |||||||||||||||| 

PCTWHITE 31.20 |||||||||||||| 

PCTOCCPHU 23.97 ||||||||||| 

PCTHIGHER 13.52 |||||| 

 

The model also identified 8 variables from the 29 candidates and it also produced

importance score for each variable for which the most important variable,

POPen3, was set to have an importance score of 100. The list of variable and

importance score was in Table 4.9. The detailed best classification tree was

shown in Figure 4.10 to help some readers to understand the concept of a

classification tree.
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Figure 4.10   Detailed classification tree, produced using Salford SPM 7.0

4.3.4.2 Regression Tree

In the regression tree analysis, the variable INT2, the transformed fatal crash

intensity, was used as the target variable. All other variables except the

INTENSITY and the COMPONENT were used as predictors. Least squares

served as the impurity function in splitting decisions. The regression tree model

statistics and the model summary are shown in Figure 4.11. The resulted best tree



128

had 182 nodes and the root mean square of error (RMSE) and the mean square

error of the prediction can also be found in that figure.

Figure 4.11   Regression tree analysis model results, produced using Salford SPM

7.0
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The regression tree analysis model also identified 10 variables from the 29

candidates. The most important variable, POPden3 again, was set to have an

importance score of 100. The selected variables and their importance scores are

presented in Table 4.10.

Table 4.10   Regression tree identified key features and importance scores

Variable Score   

POPDEN3 100.00 |||||||||||||||||||||||||||||||||||||||||||||||| 

PCTHIGHER 75.63 |||||||||||||||||||||||||||||||||||| 

EMPPCTUMEMP 73.59 ||||||||||||||||||||||||||||||||||| 

HSPCTGE3VEH 68.87 ||||||||||||||||||||||||||||||||| 

INCNONFAMMEAN 60.61 ||||||||||||||||||||||||||||| 

INCHHPCTFOODS 52.56 ||||||||||||||||||||||||| 

PCTWHITE 51.04 |||||||||||||||||||||||| 

HSPCT2VEH 50.71 |||||||||||||||||||||||| 

COMMEANMINUTES 48.95 ||||||||||||||||||||||| 

INCHHPCT10_15 40.35 ||||||||||||||||||| 

 

Although the best regression tree took the same form as in Figure 4.10, it had 182

nodes, which were too many to be presented in a figure. It should be noted that

the regression tree here served for key feature selection instead of for real
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prediction. A recent successful use of regression tree can be found in Falcone and

Wong (2012).

4.3.4.3 "Hot Spot" Feature Patterns

Classification tree analysis was conducted mainly aiming at the detection of the

"hot spots" key feature patterns. However, the resulted detailed tree was too big to

examine "hot spots" feature patterns by visualization. Here I used the three

components identified in finite mixture model to represent the level of the fatal

crash intensity, with 1 for high risk, 2 for middle risk and 3 for low risk. Means

and medians of key features identified by the classification tree are computed by

these 3 levels for comparison in Table 4.11. In addition, the medians of these

features by fatal crash intensity level are illustrated in Figure 4.12. The means of

these features by the fatal crash intensity levels showed approximately the same

pattern and hence are omitted.

The population densities, the percent of households owning 3 or more vehicles,

the percent of workers commuting to work by public transportation, and the

percent of white exhibited different patterns as the intensity levels varied. More

expertise and further explorations are needed to give in depth interpretation on

what these features really mean and how these features affect the traffic safety.
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    Table 4.11 Median and Mean of key features by fatal crash intensity level

Label Median  Mean 

COMPONENT 1 2 3 1 2  3 

INTENSITY 1.92 0.26 0.00 2.74 0.38  0.00 

POPDEN3 18.16 10.35 15.09 18.80 10.66  14.79 

HSPCTGE3VEH 11.40 28.50 19.20 13.17 28.66  20.91 

COMPCTPUBTRANS 15.10 2.80 5.40 16.35 5.16  9.83 

HSPCT1VEH 41.10 26.90 32.25 40.71 27.11  32.14 

HSPCT2VEH 30.00 38.80 37.90 29.30 39.22  36.47 

PCTWHITE 37.60 79.00 67.10 39.28 66.57  57.36 

PCTOCCPHU 92.90 94.95 93.70 90.17 93.55  91.11 

PCTHIGHER 84.10 90.80 89.60 81.08 90.47  86.78 
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 Figure 4.12 Key feature medians by fatal crash intensity level

4.3.4.4 Key Feature Space Formation

The fatal crash intensity to be predicted for time  will be in numeric form,>  "

and the 10 variables identified by regression tree will be used to form a 10-D key
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feature space for the prediction. The domain of each variable is listed in Table

4.12.

Table 4.12 Ranges for key features selected by regression tree

Variable Min Max 
 POPden3 0.0 44.3 

 PctHigher 19.3 100.0 

 EMPPctUmemp 0.0 40.8 

 HSpctGE3Veh 0.0 62.0 

 INCnonFamMean 9,694.0 251,267.0 

 INCHHpctFoodS 0.0 54.1 

 PctWhite 0.5 98.7 

 HSpct2Veh 0.0 62.9 

 COMmeanMinutes 10.5 50.2 

 INCHHpct10_15 0.0 63.6 

 

4.4 Key Feature Space Partition

4.4.1 Transformation and Imputation

The standardization method described in section , robust MAD$Þ$Þ"

standardization, is applied to the key feature vector. The MAD standardization

uses the median absolute deviation as scale and uses the median as location. The
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transformation of th feature of the th observation is done by taking 3 4 B œ43
w

 median
MAD

B  ÐB Ñ43 6 6

3

3

†
.

It should be noted that all features except POPden3 had missing values. An

imputation procedure is applied here to set the missing value of a feature to its

median. Table 4.13 lists the number of missing values for each feature.

Table 4.13 Number of missing values for key features selected by regression tree

Variable N 
Number of missing 

values 
 POPden3 1394 0
 PctHigher 1389 5
 EMPPctUmemp 1385 9
 HSpctGE3Veh 1386 8
 INCnonFamMean 1383 11
 INCHHpctFoodS 1386 8
 PctWhite 1390 4
 HSpct2Veh 1386 8
 COMmeanMinutes 1384 10
 INCHHpct10_15 1386 8

 

4.4.2 Decision on the Number of Clusters, 5!

In this research the distance function between two points (already standardized)

B B B B B B
? ? @ @ ?@
w w w w w

3œ"

7
#
3 3 3 3, , is defined as d( ) d( )  where  is theœ ß œ Ð  Ñ= =B Bw w

? @
2

relevant variable importance score for which the most important feature
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POPden3 has the highest  of 1.0 and the least important feature in Table 4.10,=3

INCHHPCT10_15, has the lowest   of 0.40.=3

A distance matrix is computed for each pair of the 1,394 census tracts. Using the

median  (mean) of this distance as radius, the cluster modality analysis suggest

number of clusters should not be smaller than 7.

Following the algorithm based upon Hartigan's index described in section ,$Þ"Þ$

WCSS (within-cluster sum of squares) of distances by each increase of number of

clusters was produced and compared. The procedure repeated 31 times with the

minimum cluster set to be 7 and the maximum number of cluster set to be 37

(square root of )R
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.Table 4.14 Within-cluster sum of squares change for 1 cluster increase

k1 WCSS k1 k2 WCSS k2 
WCSS 
change 

7 9,469.72 8 8,998.07 -471.64 

8 8,998.07 9 8,172.11 -825.96 

9 8,172.11 10 8,172.02 -0.09 

10 8,172.02 11 7,957.79 -214.23 

11 7,957.79 12 7,780.77 -177.02 

12 7,780.77 13 7,229.25 -551.52 

13 7,229.25 14 6,857.56 -371.69 

14 6,857.56 15 6,796.65 -60.91 

15 6,796.65 16 7,019.34 222.69 

16 7,019.34 17 6,360.84 -658.50 

17 6,360.84 18 6,319.46 -41.39 

18 6,319.46 19 6,197.69 -121.77 

19 6,197.69 20 5,900.30 -297.39 

20 5,900.30 21 6,103.40 203.10 

21 6,103.40 22 5,757.99 -345.41 

22 5,757.99 23 5,812.12 54.12 

23 5,812.12 24 5,730.47 -81.65 

24 5,730.47 25 5,602.40 -128.07 

25 5,602.40 26 5,402.17 -200.23 

26 5,402.17 27 5,325.53 -76.64 

27 5,325.53 28 5,524.50 198.97 

28 5,524.50 29 5,305.91 -218.59 

29 5,305.91 30 5,301.28 -4.63 

30 5,301.28 31 5,259.50 -41.78 

31 5,259.50 32 4,926.87 -332.63 

32 4,926.87 33 5,008.44 81.57 

33 5,008.44 34 4,922.44 -86.00 

34 4,922.44 35 4,764.47 -157.97 

35 4,764.47 36 4,872.86 108.39 

36 4,872.86 37 4,687.27 -185.59 

  

Typically WCSS decreases with the increase of the number of clusters, and5ß

when reaches the sample size WCSS becomes 0. When WCSS increased as 5 8ß 5

increased to 5  ", it suggests  might be the number of clusters sought. Table5
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4.14 gives 4 candidates of , 5 ß! the optimal number of respectively at 15, 20, 22,5

27, 32, 35.  After compared the observed intensities by clusters from the

suggested  with the component estimates resulted from the finite mixture model5!

and studied within cluster standard deviations of observed intensities, I set   to5!

15.

4.4.3 Study Area Partition

Following the method described in section 3.1.4 and the one-to-one relationship

of B4 4Ç - Ð$Þ(Ñ defined in , the key feature space key partition was mapped to the

study area partition. Figure 4.13 illustrates this partition. Each color in Figure

4.13 represents a specific cluster. The 12 census tracts in white are pure-water

area and were not included in the clustering. They are kept only to ensure the

integrity of the map. The statistics for the observed intensities are listed in Table

4.15.
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Table 4.15 Statistics of census tract level observed intensity by clusters 

Cluster Number of
census tracts 

Mean Std Dev

1 164 0.43 1.08 

2 35 0.75 2.59 

3 404 0.06 0.17 

4 125 0.44 1.49 

5 4 0.00 0.00 

6 56 0.31 0.93 

7 1 0.00 . 

8 31 0.60 2.25 

9 2 0.00 0.00 

10 4 0.00 0.00 

11 8 2.83 4.05 

12 16 0.01 0.04 

13 1 0.00 . 

14 330 0.28 0.70 

15 213 0.09 0.22 
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Figure 4.13 Partition of study area, map produced by use of ArcMap 10.0
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4.5 Prediction of 2011 Maryland Fatal Crash Intensities

4.5.1 Settings of Priors

In this section, the three approaches of BHM described in section 3.2.4 were

applied using 2009-10 Maryland FARS data as basis to predict the 2011 FARS

crash intensities. The actual 2011 FARS data were used to check the prediction

accuracy. The BHM modeling at  for the th cluster was implemented either>  " 5

by a  prior distribution of fatal crash intensity ofhierarchical model in which -5
w (

>  ") depended on the unknown , or by a half α "5 5

w w
ß empirical model in which

α "5 5

w w
 became constant while  remained stochastic, or by a pure empirical model

in which both α "5 5

w w
 and  became constant.

For   followed an exponentialhierarchical model,  the hyperparameter α5

distribution with a known parameter , here  was tuned to be 2, thus  E Eα α

  .1 αÐ Ñ œ #/5
#w

5

w
α

The hyperparameter "
w
 followed a Gamma distribution with known parameters

F F F Fα " α " and ,  and  were set to be 0.5 and 2.5 respectively, thus

  . 1 " "Ð Ñ œ /5 5
#Þ&
Ð!Þ&Ñ

!Þ& #Þ&w w w!Þ&
5

>
"

The prior distribution followed a Gamma distribution conditioned on , α "
w w

5 5ß

1 - α " -Ð l ß Ñ œ /
w w w w w

5
w 5

w

5
w

5
w

5 5
5 5 5 Ð Ñ

w "
5 ."

> α

α " -
α

The approach tuning of  and  was a technique similar to equation andF F Ð$Þ#(Ñα "

Ð$Þ#)Ñ, and the same setting  was applied to all clusters.
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For the half empirical model, the setting of  was different. In this case, α α
w w

5 5

became a constant parameter for a given cluster. The  wascalculation of α
w

5

already shown in equation . Hence the value of  varied with the clustersÐ$Þ#(Ñ α
w

5

but the setting of  remained the same across clusters."5
w

For the empirical model, both  became constant. The setting of  wasα " α
w w w

5 5 5ß

exactly the same with the above half empirical model.  was computed by"5
w

equation . In the case of the empirical model, both and  depended onÐ$Þ#)Ñ α "
w w

5 5

the clusters. Details of these settings were listed in Table 4.16.

Table 4.16 Settings of prior parameters for half empirical model and empirical

model

Cluster 

Number 
of 

census 
tracts 

Observed 2009 fatal 
intensities 

Half 
empirical 

Empirical 

Mean 
Standard 
deviation 

α prior 
2009  

α prior 
2009  

β prior 
2009 

1 164 0.4276 1.2383 0.5425 0.5425 1.2688 

2 35 0.6250 1.7265 0.7726 0.7726 1.2362 

3 404 0.0751 0.1870 0.6049 0.6049 8.0544 

4 125 0.4452 1.8171 0.1098 0.1098 0.2467 

5 4 1.6353 3.2706 0.0935 0.0935 0.0572 

6 56 0.4554 1.2398 0.5495 0.5495 1.2066 

7   0.0000 .     0.0000 

8 31 0.9763 2.1879 0.2089 0.2089 0.2140 

9 2 2.4755 3.5009 0.0816 0.0816 0.0330 

10 4 0.0000 0.0000       

11 8 0.0000 0.0000       

12 16 0.2617 0.5356 0.5270 0.5270 2.0137 

13 1 0.0000 .       

14 330 0.2893 0.6542 0.7936 0.7936 2.7435 

15 213 0.1464 0.4140 0.1779 0.1779 1.2153 
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It should be noted that the methods described in equations and  didÐ$Þ#(Ñ Ð$Þ#)Ñ

not apply to cluster 7, 10, 11 and 13 because these clusters had the 2009 intensity

mean (or standard deviation) valued at 0, which made and Ð$Þ#(Ñ Ð$Þ#)Ñ

mathematically invalid.

4.5.2 Posterior Results of Three Models / Comparison of the Three Models

Following the updating mechanism described in section 3.2.4, the posterior

estimates of 2009 parameters became the 2010 prior parameters and the 2010

posterior parameters served as the 2011 prior parameters. Based upon the 2010

posterior parameter estimates, the predicted cluster level fatal crash intensity

means and standard deviations are listed in Table 4.17. The third column of Table

4.17 are the observed results for comparison.
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Table 4.17  Predictions on 2011 fatal crash intensity based upon 2010 posterior

results

Cluster n Actual  Hierarchical 
Half 

empirical  
Empirical 

3 404 0.0419 0.0362 0.0362 0.0393 

14 330 0.1861 0.2209 0.2222 0.2187 

15 213 0.0233 0.0244 0.0244 0.0273 

1 164 0.3427 0.5058 0.5068 0.4454 

4 125 0.2438 0.3296 0.3257 0.2847 

6 56 0.488 0.2542 0.2579 0.2927 

2 35 0.186 0.2951 0.3087 0.3564 

8 31 0.2841 0.7544 0.7188 0.8541 

12 16 0.024 0.0278 0.0301 0.0564 

11 8 0.6711 1.7574         

5 4 0 0.7732 0.1428 1.0344 

10 4 5.4054 0.5242         

9 2 3.2258 1.1418 0.1838 1.6564 

13 1 0 0.2717         

7 1 0 0.2785         

 

In Table 4.17, predictions for cluster 15, 3, 12, and 14 were closer to actual results

than other clusters. Number of census tracts of these 4 clusters accounted 69% of

all census tracts. For all three models,  clusters with lower fatal crash intensities

and greater numbers of census tracts turned out to be ones with more accurate

predictions.



144

Further comparison of the three models found that the hierarchical model did not

have an obvious advantage over the half empirical and the empirical model

models except that it could be applied to clusters to which the other two models

were inapplicable.

4.5.3  Predicted Fatal Crash Centroid Shift

Based upon the hierarchical model results and following equation andÐ$Þ$(Ñ

Ð$Þ$)Ñß the predicted fatal crash intensity for Maryland, all census tracts in 2011,

was estimated to be 0.0478 with a standard deviation of  0.0059. The abstract

intensity centroids for 2010, 2011 actual fatal crashes and the 2011 predicted fatal

crashes were obtained by applying equation 9 and 40 . The abstract fatalÐ$Þ$ Ñ Ð$Þ Ñ

crash intensity centroid shift was presented in Figure 4.14.

In this chapter, I have applied the methods developed in previous two chapters to

FARS Maryland 2009-11 data.
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Figure 4.14  Maryland fatal crash intensity abstract centroid shift from 2010 to

2011, map produced by ArcMap 10.0
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5. Conclusion, Summary and Future Work

In Chapter 2 and Chapter 3,  I have developed the methods of the Bayesian

hierarchical model for spatial-temporal processes whose spatial process is

characterized by a Poisson point process. In Chapter 4, I applied these methods on

Maryland 2009-11 fatal crash data over 1,394 census tracts. In this chapter, I draw

conclusions, summarize the research of this dissertation, discuss the limitations of

the methods and the application, and propose directions for future work.

5.1 Conclusion

In the proposal, I set three primary goals of this dissertation, to build a spatial-

temporal model on highway loss point processes that can: identify key features

associated with highway loss event intensities; detect the key feature patterns

related to  "hot spot" losses; and predict future losses based upon past highway

loss events. Based upon the application in Chapter 4 which implemented the

methods developed in Chapter 2 and 3, this dissertation has successfully

accomplished these goals, though methods built still have great potential for

improvement.

In recent years,  model theory in statistics has been gainingspatial-temporal

momentum and to some extent become a cutting edge direction. To develop

methods to deal with the highway safety will notspatial-temporal loss data of 
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only benefit the highway safety community but also the whole society.  In this

dissertation, I have tried to focus my contribution efforts in two aspects.

First, I have made progress in interdisciplinary area of statistics and spatial point

processes. Although the application of GIS is limited in this dissertation, it has

shown great potential for future work.

Second, I find solutions from perspectives different from traditional statistical

models. Traditional  models either use a separable model tospatial-temporal

separate spatial process from temporal process, or use nonseparable models

through the introduction of an correlation function, and often requires the process

to be stationary.

The first approach often simplified the problem at the risk of losing useful

information. The second approach often needs complicated equations to describe

the correlations and in implementation requires the integral of these functions. A

good example is the fatal crashes that occurred in Maryland. These crashes

concentrate around Washington, D.C., and Baltimore; thus the distribution

follows a two-mode pattern for which it is very hard to claim stationarity.

This dissertation differs in its approach by not defining the intensity function ( )- =

on the whole study area H=; rather I partitioned the study area into small cells,

- -4 4s, ( )s. Instead of exploring the correlation between theand I quantified the -

geographic space and temporal space, I explored the relationship between the

feature space and the temporal process.

Another advantage is that methods developed in this dissertation incorporate the

Bayesian approach. The BHM model has an updating mechanism that can make
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use of prior information of past events. More important, the development in

Bayesian computation has made the application of these methods practical. The

Bayesian approach also brings more flexibility so that models can be tailored to

meet the specific requirements of applications.

Methods developed in this dissertation have good scalability. For example the

application in Chapter 4 can be easily expanded. It can also be done in a small

area, say, a county, so long as cells can be formed and feature information can be

collected.

5.2 Summary

I summarize the contributions in this dissertation by chapter.

Chapter 2

The frame of Chapter 2 had two parts. In the first part, a mixture model was

proposed to model cidents in the study area . The theory ofhighway loss in H=

extending the expectation maximization (EM) algorithm to highway loss Poisson

point process was first built for the scenario that the number of components was

known. Then, for the case the number of components was unknown, I gave the

criterion in determining number of components and described how to estimate the

range of number of components via prior information, and in the end of this part,

an algorithm was developed to determine the number of components.

In the second part of this chapter, I developed methods which can identify key

features first via a visualization procedure, then by using classification and

regression trees and the random forest algorithm to finalize the key feature vector
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whose elements had great influences on distribution of highway loss incidents. In

this part, feature patterns were defined and "hot spots" were characterized.

Methods of detect the key feature patterns corresponding to "hot spots" were

developed theoretically. It also introduced the concept and definition of variable

importance, and described how it was quantified thus could be used in Chapter 3.

Chapter 3

Similar to Chapter 2, Chapter 3 also has two parts. The first part is about

clustering, the second part is on the Bayesian model. In the first part, the mapping

between the study area partition (spatial partition) and the key feature space

partition was defined first. Then, a new distance function was defined for

variables selected based upon their relative importance scores. Methods were

developed to determine the optimal number of clusters according to changes of

within cluster sum of squares. After clustering and corresponding partition of

study area, cells in the key feature space "close" to each other are aggregated into

clusters so that future losses can be measured and predicted in homogenous

clusters (partitions) instead of on each single cells.

The second part of Chapter 3 designed a Bayesian Hierarchical Model (BHM)

which can  predict cluster level losses at using the posterior distribution of>  " 

current losses at time . The posterior of the most recent past losses at time > >  "

was used to provide prior information for losses at time . The Poisson-Gamma>

design had two advantages: the proposed prior is a conjugate prior, thus the

posterior of the gamma distribution also took the form of gamma distribution; the

proposed Bayesian model has updating mechanism thus adds adaptation to the

Bayesian approach. In addition to the hierarchical model, a half empirical model
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and a full empirical model were given as alternatives. Methods for estimating the

parameters of two empirical models were specified.

Chapter 4

In Chapter 4 methods developed in Chapter 2 and 3 were applied on 2009, 2010

and 2011 FARS data for 1,394 Maryland census tracts. FARS crash data which

contained the exact location (latitude and longitude) and time were first joined to

census tracts shape files via geocoding. The distribution of the 2010 (current time

>Ñ observed fatal crash intensity was examined. Then finite mixture models were

applied to the 2010 sample which identified three underlying subpopulations. A

classification tree was used to decide variables which determine intensity levels

(categorical). A regression tree was then implemented to identify variables that

can predict the intensities in a quantitative way. Based upon the variables and

their importance levels decided in the regression tree, the key feature space was

partitioned using the clustering mechanism developed. Clusters formed in key

feature space were mapped to study area and all census tracts were grouped into

15 clusters. Three Bayesian approaches were applied to these clusters, using the

2009 posteriors as 2010 priors, and then use 2010 posteriors as estimates of 2011

losses, results of three approaches were evaluated for a brief comparison. At the

end of Chapter 4, the 2011 hierarchical model results were visualized.

5.3 Limitations

In this section I discuss the limitation of the application in Chapter 4 first, then

give details of limitations in methods.
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Limitations of the application

In Chapter 4 the prediction of 2011 fatal crash intensities had two limitations.

First, from 2008 on, fatal crashes in Maryland have been declining, and it is

consistent with all states trend. In the application, it was predicted that 2011

Maryland had 464 fatal crashes (stdev 21.5) which was higher than the actual

results, 455, thus, the model did not catch the decline trend. The inaccuracy was

largely caused by the lack of timeliness of key feature data used in the model.

The trend of fatal crash intensity was mainly influenced by two factors, in long

term by crash avoidance technology development, and in the mid term by

economic growth. Historically, three crash avoidance equipments effectively cut

the fatal crashes, seat belt, ABS (Anti-lock braking system), and ESC (electronic

stability control). In recent years the effort was shifted to active crash avoidance

technologies like automatic crash warning and braking system. In mid term, e.g. 5

years, which is of interest of this dissertation, the fluctuation of fatal crash

intensities to a large extent depends on economy performance. However, the best

economy growth indicator ready for use of this dissertation, unemployment rate,

was only available for 5-year period of 2006-10. This was also the case of all

other key features in Chapter 4, all of them took 2006-10 ACS values meaning

they were constant between 2006 to 2010. The lack of timeliness of predicting

variables directly led to the inaccuracy of prediction of 2011 fatal crash

intensities.
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Limitations of methods

In this dissertation cells in topology are polygons instead of points, and loss

intensities of cells are represented on abstract points instead of real points, thus

area of cells should be small enough. In other words, methods developed in this

dissertation must be put in the appropriate context. On the other hand, in the real

world the research interests in most cases focus on "hot spot" area instead of exact

point locations.

After key feature space and study area partition, within each cluster I assumed

completely spatial randomness at time and in the BHM model I further>ß

extended this assumption to time  for the same cluster. This assumption in>  "

theory might be too strict. A random term might be needed so that the loss

intensities of cells in a cluster could have some random variation centered around

the cluster loss intensity.

In the application, the finite mixture model identified 3 subpopulations, and the

quantities of the estimated fatal crash intensities were in 3 different scales from

high to low, and the higher risk level subpopulation had a intensity about 10 times

that of next level. The proposed Poisson-Gamma BHM approach worked better

for low level fatal crash intensity clusters than for clusters having higher fatal

crash intensity. This is an indication that there might be better BHM updating

mechanism than the Poisson-Gamma setting for high risk clusters since the

Poisson model typically works better for rare events.
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5.4 Future work

I have planned three types of work for future improvement and development:

immediate work to extend and improve the application in Chapter 4; refinement

of current methods; and new development of current methods.

Immediate future work

The application in Chapter 4 has findings that were heretofore unknown by the

highway safety community: it identified three subpopulations characterized by

three underlying Poisson processes; it selected key features and detected "hot

spot" patterns; it partitioned the study area, and it predicted the future loss based

upon current and past losses and showed accuracy. The highway safety

community would have interest to know above findings for all states, thus the

extension of the application to all states upon the most current FARS data would

be of interest of the highway safety community.

Refinement of current methods

There are ways to improve the methods developed in Chapter 2 and 3. First,

examine the correlation structure of variables selected in CART to exclude

"redundant" variables. If two variables have a correlation higher than a preset

threshold only one is kept. Second, add a within cluster random term to BHM

model so that the loss intensity of a cells can be expressed as a sum of two

components, cluster density and the random term. Third, find a more appropriate

prior-posterior setting for the BHM when clusters formed were classified as high

risk clusters. Fourth, more work can be done to find out better solutions that can

decide the exact number of clusters in the partition of key feature space. Besides,
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for applications losses with past loss information at  or even earlier, new>  #

way of prior parameter estimates should be constructed that can make full use of

all past information by assigning more current past information higher weight.

New development in methods

The following new developments will benefit highway safety and will be

welcomed.

First, the constraint of transportation network will be incorporated into the model.

The transportation network is a one-dimensional space that is only a subset of the

two-dimensional space and almost every all highway loss event occurs on the

transportation network (Yamada and Thill (2007)). Under this frame, the point

process and corresponding intensity functions will be redefined, and traffic

specific factors such as speed limit will be included as predictors.

Second, add seasonality to current models. The highway safety community would

be interested to know how the loss intensity vary with season to answer questions

like "Did the Maryland 2011 fatal crash intensity vary by month?".

Third, in addition to the current function that can predict the nearest future, I also

hope the model can answer the following question such as how did the intensity

vary within a relatively long study time period and what's the mechanism behind

this variation.
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