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THE PRAX APPROACH TO LEARNING
A LARGE NUMBER OF TEXTURE CONCEPTS

J. Bala, R. Michalski, and J. Wnek
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- Fairfax, VA 22030
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Abstract

This paper describes an approach, called
PRAX, to learning descriptions of a large
number of texture concepts from texture
samples. The learning process consists of
two phases: 1) learning descriptions of a
selected subset of texture classes, called
principal axes (briefly, praxes), and 2)
learning descriptions of other classes
(non-prax classes), by relating them to the
praxes. Descriptions of non-prax classes
are expressed in terms of the similarities
to praxes, and thus the second phase
represents a form of analogical learning,
While the first phase is done as a one-step
learning process, the second phase is
performed as an incremental learning
process. The method was applied to
learning texture concepts from texture
samples, and illustrated by an experiment
on learning 24 texture classes, using a
subset of 8 classes to learn praxes. After
acquiring all texture descriptions from
samples taken from a training area, the
implemented program, PRAX-2,
recognized texture samples from the
testing area without a single error.

Introduction

Most research on concept learning from
examples concentrates on algorithms for
generating concept descriptions of a relatively
small number of classes. In conventional
methods, when the number of classes if growing,
their descriptions become increasingly complex.
For example, Figure 1 depicts the growth of the
complexity of class descriptions (measured by
the number of rules) with the number of classes
and the number of training examples. The results
were obtained from texture data using eight
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attributes per example and applying the AQ rule
learning method [Michalski et al.,, 1983]. While
increasingly complex descriptions are usually
needed to cover more training examples, the
predictive accuracy of such descriptions on new
examples may actually decrease. This is due to
the so-called overfitting effect (Bergadano et al.,
1992). This effect may be particularly
pronounced in the case of learning texture
descriptions from texture samples, because of the
highly disjunctive nature of such descriptions.

In some computer vision applications, the number
of classes may be very large, and they may not be
known entirely in advance. Therefore, in such
situations, the learning method must be able to
learn incrementally new classes. Such a class-
incremental mode is different from the
conventional event-incremental mode, in which
examples of classes are supplied incrementally,
but the set of classes remains unchanged.

This paper presents a learning method that is
specifically oriented toward learning descriptions
of a large number of classes in a class-
incremental mode. The learning process consists
of two phases. In Phase 1, symbolic descriptions
of a selected subset of classes, called principal
axes (briefly, praxes) are learned from concept
examples (here, samples of textures). The
descriptions are expressed as a set of rules. In
Phase 2, the system incrementally learns
descriptions of other classes (non-prax classes).
These descriptions are expressed in terms of the
similarities to praxes, and thus the second phase
represents a form of analogical learning. To
utilize a uniform representation, the prax
descriptions are also transformed into a set of
similarities to the original symbolic descriptions.

The basic idea of the method is illustrated in
Figure 2. Suppose that the system already learned



the concepts of “orange” (Desl) and “lemon”
(Des2). A new concept "grapefruit" can be
learned in terms of basic properties (Des3'), the
same way as the previous concepts (orange and
lemon), or in terms of similarities (and/or
dissimilarities) between the new concept
(“grapefruit”) and previously learned concepts

(Des3").

No. of Examples
200

Method

As mentioned earlier, the underlying idea of the
PRAX approach is to determine descriptions of a
selected class of basic concepts called principal
axes (praxes or PXs), and then describe all classes
in terms of relations to the prax descriptions. An
early version of the method was described in
(Michalski et al., 1993).

Average Number
of Rules Per Class

120

Figure 1: Average number of rules per class

ORANGE

¢

Learning Basic Concepts

Desl = F (color, taste, etc.) Des2 = F (color, taste, etc)

LEMON

'

Learning New Concept

GRAPEFRUIT

O

Des3' =F (color, taste, etc.)  Des3" =F (Desl, Des2)

Figure 2: Two different ways of learning concept "grapefruit



Prax descriptions are learned using the AQ-
rule learning program (specifically, AQ-15). The
program learns descriminant descriptions of
praxes from given examples (Michalski, 1983).
Specifically, the AQ program is used to generate a
The concept descriptions are represented in VL1,
which is a simple version of the Variable-Valued
Logic System, In the application of the learning
method to texture recognition, a concept
description characterizes a single texture class.
The description (also called a cover) is in
disjunctive normal form, and is equivalent to a set
of rules. Below is an example of a cover
generated by the AQ program for some texture
class:

[x1=10..54] & [x3=18..54] & [x5=11..17] & [x6=6] or
[x3=18..53] & [x4=16..54] & [x6=0..6] & [x8=5..12]

The above cover consists of two disjuncts (rules).
Each rule describes one conjunctive set of
conditions for classifying a texture sample to the
given class. Attributes x1 to x8 represent certain
measurements of a texture sample (in experiments
presented in this paper x1 is the Laplacian edge
operator, x2 is the frequency spot, x3 is the
horizontal edge operator, x4 is the vertical edge
operator, xS is the horizontal V-shape operator,
x6 is the vertical V-shape operator, x7 is the
vertical line operator, and x8 is the horizontal line
operator). For example, suppose that a vector of
values of eight attributes characterizing an
unknown texture sample is <20, 10, 2§, 17, 1, 4,
30, 6>. Such a vector, called an event, satisfies the
second rule (disjunct), because the attribute values
specified in the event are within the ranges
indicated by the rule (e.g., x3=25 is within the
range 18..53; x5=1 satisfies the second rule
because there is no condition in it for x5),

Prax descriptions could be viewed as constructed
intermediate attributes. Therefore, the PRAX
method can be viewed as a form of constructive
induction (Michalski, 1978). Once the prax
descriptions have been determined, all concept
descriptions are related to them. Specifically,
given examples of some concept, the system
determines a similarity vector (SV) for that
concept, in which each component represents the
average degree of similarity between the concept
examples and PX. A degree of similarity is
obtained by calculating the distance in the
attribute space from an example of a concept to a
single rule in prax description. The method uses a
non-linear distance metric to calculate values of
new attributes. The distance metric is based on the
idea of flexible matching. In flexible matching,
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the degree of closeness between the example and
the concept is determined, instead of a binary
decision as used in strict matching. Specifically,
the match of an example E to a disjunct D is
computed by the following formula:

MATCH(E,D) = H(I—M)
maxi-—mini

i

where Ej is the value of the i-th attribute of
example E, Dj is the condition involving the i-th
attribute in D, maxj and minj are the maximum
and minimum values of the i-th attribute, and m is
the number of attributes. The term dis(Ej, Dj)
depends on the type of the attribute involved in
the condition. An attribute can be one of two
types: nominal and linear. In a nominal condition,
the referent in a condition is a single value or an
internal disjunction of values, e.g., [color = red v
blue v green]. The distance is 1, if such a
condition is satisfied by an example, and 0 if it is
not satisfied. In a linear condition, the referent is a
range of values, or an internal disjunction of
ranges, e.g., [weight = 1.3 v 6..9). A satisfied
condition returns the value 1 for distance. If the
condition is not satisfied, the distance between an
example and the condition is the absolute of a
difference between the value of the example and
the nearest end-point of the interval of the
condition (normalized by the distance between the
farthest value and the condition). For example, if
the domain of x is [0 .. 10], the value of x for the
example E is Ex=4 and the condition is [x = 7 ..
9], then

J-4 _3
10-0°10

The flexible match method as described above is
used in generating the similarity vector (SV)
description, i.e. the concept description expressed
in the new representation space. The SV
description is obtained by applying the flexible
matching process to the examples of the new
concept and the previously learned Principal
Axes. Entries in the SV vector of a given class
represent average flexible matches (normalized to
range 0 to 100) for all examples of that class to
PXs.

dis(Ex, condition) =

In experimental testing of the method on the
problem of learning descriptions of a large
number of visual textures, PRAX significantly
outperformed the k-NN classifier often used for
such problems [Bala et al., 1992].



PRAX-2

The method described here (Figure 3) extends the
initial PRAX method by making it more space-
efficient. This is accomplished by reducing the
number of PXs in the changed representation.
The selection or deletion of a given PX is based on
its discriminatory power, measured as the standard
deviation of its values through all classes. In
experiments with 24 texture classes depicted in
Figure § (100 training examples per class and 100
testing examples per class) the number of PXs
generated from the initial 8 classes was reduced
from 170 to 17. Thus, all 24 classes were
recognized using only 17 PXs (rules). Figure 4
shows examples of one PX expressed as the
conjunction of attribute conditions and one of a
class description (SV) expressed as the vector of
17 similarity measures.

The ability of the method to describe many classes
while using a small set of rules, is a promising
result obtained in the initial experiments. The main
strength of the method lies in a problem-relevant
transformation of the descriptor space. The new
descriptors form generalized sub-spaces of the
initial training space.

PRAX-2 does not have the mechanism to decide
how to choose basic concepts. Choosing the
minimal subset of concepts to be used for
principal axes generation is crucial for method
optimization. The new version of the method
(PRAX-3) with automatic derivation of minimal
subsets of concepts is being currently developed.

Given:

M - number of principal axes
K - number of training classes

Do:

For each PX;e P
For each class k

For each PX; e P

For each PX; e P
If 6; < 9 then remove PXj from P

P - set of principal axes found by PRAX {PXi, PX2, ..., PXM}

9 - maximum discriminant standard deviation

Calculate average match to examples of classk  (Sy)

Calculate a standard deviation 6; = o{ Sx, k=1,.., K}

Figure 3: Algorithm for finding a minimal set of principal axes

PX = rule =>[x1=8..21] & [x3=15..22] & [x4=24..42] & [x5=19..37] & [x6=28..36] & [x7=28..36] & {x8=12..25]
SV(class C16) => {S.1, 57, 21, 51, 412, 6.2, 04 6.3, 04, 9.6, 95, 94, 89, 93, 87, 28, 0.3]
Values in the SV vector represent a normalized (range 0 to 100) average match of examples of the C16 class to 17 PXs

Figure 4: Examples of a PX and a class description
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Figure 5: Texture classes (C1 to C8 used to learn praxes)
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