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A GENERAL CRITERION FOR MEASURING
QUALITY OF CONCEPT DESCRIPTIONS

ABSTRACT

An important aspect of any learning method is an evaluation of the learned knowledge, in
particular, an evaluation of the plausibility and usefulness of concept descriptions that are
being created. This paper presents a new, general method for evaluating concept descriptions.

The method applies not only to the conventional logic-style concept descriptions, but also to
two-tiered descriptions that characterize imprecise and/or context-dependent concepts, such
concepts are called as flexible. In such descriptions, the first tier specifies typical and idealized
concept properties, and the second tier describes the variability and allowed modifications of
these properties in different contexts, and exceptional cases. Another novel feature of the
measure is that it takes into consideration the typicality of cases covered by the description.

In the proposed measure, the quality of a concept description depends on three major criteria:
the accuracy, the comprehensibility and the cost. To illustrate the measure, two alternative
descriptions of the concept "chair" are evaluated . This work was done in the context of
research efforts to develop a general method for learning two-tiered concept description.
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1 INTRODUCTION

Inductive inference is one of the basic strategies of learning. Given examples, background
knowledge, and optionally, an initial concept descriptions, this strategy hypothesizes a general
concept description. Usually a large number of general descriptions can be generated for any
incomplete set of examples and/or initial concept descriptions. To choose among candidate
hypotheses one needs a criterion for preferring one description over the other.

This paper proposes a general measure for evaluating the quality of concept descriptions. The
measure applies to descriptions produced by an automated learning system, as well as to
descriptions created by a human. The measure was specifically designed for evaluating
descriptions of flexible concepts. Such concepts are described using a two-tiered concept
representation (Michalski, 1987). The results presented are part of a larger project on the
development of systems for inductive learning of two-tiered concept representations.

Inductive inference is not truth-preserving, but falsity-preserving. Thus, the correctness of
descriptions generated is uncertain. In evaluating these descriptions several factors can be
taken into consideration. One is the relationship between the learned description and initial
examples. Such a relationship may, for instance, show the completeness and consistency of
descriptions with regard to the examples from which it was generated.

Another factor is the predictive power of the description, i.e., a measure of the description
performance on new examples. One may also consider the simplicity of a description, and the
ease of explaining it in terms of concepts already known to the learner. These two factors
together affect what we call here the comprehensibility of a description. Finally, one may take
into consideration the cost of measuring variables and terms in descriptions, as well as the cos?
of storing, and evaluating the description in order to predict new facts.

The problem of evaluating descriptions is not new, and a number of measures of description
quality have been developed in the past. Some of them concentrate solely on the aspect of
completeness and consistency (e.g. Mitchell, 1977). Other measures include also other criteria,
such as the simplicity and the cost of evaluating the learned descriptions (Michalski, 1973).

A common assumption is that the simplicity of a hypothesis, and its performance on new facts
are primary factors in evaluating it. To determine the performance of a description on new facts
requires that new facts are available. Therefore, such a criterion is not applicable during



hypothesis learning, when the learner needs to choose among competing candidate hypotheses
before testing them on new data. This paper is concerned with such a situation, that is, with

determining the quality of a description during the process of learning.

The simplicity of a hypothesis has been traditionally the major criterion for choosing among
competing hypotheses (e.g., Kemeni, 1953). Popper (1968) pointed that simpler descriptions
are easier to refute, and therefore are preferable. Pearl (1978) indicated that there is a
connection between the simplicity and the probability of correctness of a hypothesis. Many
evaluation criteria related to simplicity have been employed in automated learning systems
(e.g., Michalski, 1980; Bergadano, Giordana, Saitta, 1988).

Broader aspects of the problem of what should be the preference criterion for judging
competing inductive hypotheses are discussed in (Mitchell, 1980; Michalski, 1983; Utgoff,
1986; Michalski, Carbonell, Mitchell, 1983) Recently, Medin, Wattenmaker and Michalski
(1986) presented results of psychological testing which indicated that humans use not only
simplicity but also other criteria for selecting inductive hypotheses.

The problem of defining adequate preference criterion is a fundamental issue still unresolved in
machine learning. This paper presents a quality measure of a description that combines the
above mentioned three factors: accuracy, comprehensibility, and cost.

The accuracy of a concept description reflects the degree to which the description relates to the
concept it describes. In the case of concept learning from examples, accuracy depends on the
completeness and consistency of the description with regard to learning examples. It also
depends on the typicality of the examples it covers, and the justification that can be constructed
for the description. If the description can be plausibly justified in terms of the domain
knowledge, the confidence in its correctness increases.

When a two-tiered concept description is used (Michalski, 1987), the quality of a description
needs to relate to both the explicit representation (1st tier), and the implicit representation (2nd
tier). Thus, quality has to take into consideration the exceptions from the base concept, and its
admissible transformations.

The proposed quality measure has two novel aspects. First, it takes into account a number of
different criteria, such as the degree of consistency and completeness of the description, the
typicality of examples covered by it, its comprehensibility and the cost of storing and



evaluating the descriptions. Second, the measure can be applied to concepts represented in a

two-tiered form.
2 TWO-TIERED CONCEPT REPRESENTATION

Before we define the proposed description quality measure, let us first describe basic ideas
underlying the two-tiered concept representation. In the traditional representation ("one-
tiered"), any concept is defined by specifying basic features that cover all instances of the
concept. It is often assumed that these instances can be described by a single conjunct.

In a more general approach a description consists of several conjuncts linked by disjunction.
Each such conjunct contributes to the accuracy of the description, depending on how many
examples it covers or explains. If these conjuncts are put in the order of decreasing coverage
of examples (Michalski et al., 1986), the obtained description evokes an analogy with the
Taylor series expansion of a function. In such an expansion, consecutive terms contribute a
decreasing amount to the total value of the function. A concept description that includes rare or
exceptional events will typically have a number of conjuncts that cover only small number of
events. A complete description may therefore be overly complex, difficult to comprehend and
have high cost (as defined below).

To deal with this and related problems, Michalski (1987) has proposed a two-tiered concept
representation. The complete concept description is split into two-parts: the Basic Concept
Representation (BCR) and the Inferential Concept Interpretation (ICI). The BCR defines the
concept simply and explicitly by characterizing the typical or ideal concept cases either in terms
of attributes observed in the examples, or in terms that are constructively learned during
concept formation. The prototypical instances of the concept can therefore be classified by
simple matching with the BCR.

Anomalies, exceptions and context-dependent cases are handled by the ICI, which involves a
reasoning process. The ICI deals with exceptions by inferring that they are instances of the
concept (concept extending), or that they ought to be excluded from the description in the BCR
(concept shrinking). The ICI uses production rules which may be deductively chained. A
simple form of ICI is to define a certain similarity (or distance) measure to classify examples
that are similar to those covered by the BCR. (Such an approach is used in flexible matching
described in Michalski, Mozetic, Hong, Lavrac, 1986.)



Let us illustrate the idea of two-tiered representation with the concept of chair. The dictionary
(Random House) gives the following definition:

1. a seat, esp. for one person, usually having four legs for support and a rest for the back
and often having rests for the arms. 2. a seat of office or authority. 3. a position of
authority, as of a judge, professor, etc. 4. the person occupying a seat of office, esp. the

chairman of a meeting. 5. see electric chair. (...)

The description indicates several meanings, but does not tell when each meaning is applicable.
It makes no distinction between the typical meaning and context-dependent meaning. It is
rather hard to comprehend, and it is incomplete. A two-tiered representation of the chair

concept could have the following form:

BCR:
A piece of furniture typically used for sitting by one person. Usually consists of a seat,
four legs, and a backrest. (A picture of a typical chair, or a description of the relationship
among the parts may be included).

ICI:

The number of legs may vary from 1 to 4

the shape, the size, the color and the material of all components can vary as long as the
function defined in the BCR is preserved

chair without the backrest ---> stool rather than chair

chair with arm-rests ---> chair specializes to armchair

context = museum exhibit --> chair is not used for seating any more

context = toys --> Dimensions can be much smaller, but other physical properties are
preserved. Does not serve for sitting by normal persons, but by correspondingly
small dolls.

context = execution --> specializes to electric_chair

This simple example illustrates several important features of the two-tiered representation.
Typical examples match the BCR, and therefore it is easy to identify them. The ICI involves
metaknowledge, e.g. showing which properties in the BCR are crucial and which are not; and
context-dependent knowledge, showing how the properties change in different contexts. In
general, contexts can be hierarchically organized, and the ICI inference rules may chain,
(although it is not shown in this simple example).



We argue that the "quality” of the two-tiered representation is higher than the quality of the
dictionary definition, if used in an Al system. First, the accuracy is improved, since the two-
tiered description is more complete and consistency has not changed. Second,
comprehensibility is somewhat greater, because the prototypical properties of the chair are
separated from its possible modifications and specializations.

A few systems that generate and use two-tiered representations have been described in the
literature (Michalski et al., 1986, Bergadano et al., 1988, Bergadano, Giordana, [to appear]).
Generally, two-tiered descriptions tend to be simpler, easier to understand and more efficient to
use than conventional ones. They may also have higher performance on the testing set. In the
systems developed so far, the ICI has been implemented in the form of flexible matching
(Michalski et al., 1986). Such a matching performs only a similarity-based determination of the
degree of match, but no rule-based reasoning. It is relatively fast, but not very deep. An
improvement in the quality of a description is therefore measured only by the improvement in
the first tier.

As with any measure of description quality, the final evaluation is only possible with the use of
a testing set. However, because the testing cases are assumed to be unavailable during
learning, it is necessary to evaluate them without testing cases. This paper defines a measure of
the quality of concept descriptions without the benefit of testing cases. General requirements
for such a measure are specified, and a specific measure is defined and illustrated by an
example.

3 CRITERIA AFFECTING QUALITY OF CONCEPT DESCRIPTIONS

As mentioned earlier, the quality of a concept description is influenced by three basic
characteristics: the accuracy, the comprehensibility, and the cost. This section discusses these

three components, and describes a mechanism for combining them into a single measure.
3.1 Accuracy

Accuracy represents the description's ability to produce correct classifications. The basic
criterion that relates to accuracy is the completeness and consistency of the description with
respect to the learning events (Michalski, 1973, Mitchell, 1977, Michalski, 1980). In order to

achieve completeness and consistency in presence of noise, one may have to generate overly



complex and detailed descriptions. Such descriptions, however, may not perform well in future
cases and examples. This is the well known phenomenon of overfitting (S. Watanabe, 1969;
E. Sturt, 1981).

If a description is incomplete and inconsistent, the relative number of uncovered positive
examples and the relative number of covered negative examples provide important information
for evaluating its quality. If the description is also sufficiently general and does not depend on
the particular characteristics of the learning events, these measures can be a meaningful estimate
of the accuracy of the description.

Completeness and consistency of a two-tiered description brings up additional requirements: a
good representation should cover the typical examples explicitly, and the non-typical ones
implicitly. Moreover, the coverage of typical negative examples in the BCR is particularly
detrimental to the quality of the representation. This is important to accuracy because the BCR
is mainly obtained or justified by the learning events. Therefore, one can be confident in the
information contained in the BCR only if a sufficient number of examples are available, or if

the examples are typical or representative for the domain.

On the contrary, the ICI, being generated by experts or derived from the available domain
knowledge, is appropriate to handle rare or exceptional events. In evaluating the accuracy ofa
two-tiered representation, we have to take into account the fact that degree of confidence in the
results of inference decreases when going from deduction to induction (Michalski, 1987).

The above requirements are met by making the degree completeness and consistency dependent
on the typicality of the covered examples and on the way these examples are covered. We
assume that an expert can provide the typicality value of examples at the time they are presented
to the system responsible for creating the initial description.

The degree of generality is also related to accuracy, since it affects predictive power. Given the
same degree of completeness and consistency, a learning system should prefer maximally
specific characteristic descriptions or maximally general discriminant descriptions.
Characteristic descriptions are better if more specific, because they theoretically distinguish a
given set of concepts from the set of all the other possible concepts. For example, if we want to
characterize the concept of a cat, we will prefer the description "small feline" rather than the
description "animal", since the first one is more specific. On the contrary, if we were to
distinguish between cats and dogs, "feline" will be a better discriminant description of "cat"



than "small feline", since it is more general and still sufficient. The number of different events
that the description could possibly cover may be used to measure generality (Michalski, 1983).

The accuracy of a description can also be predicted by trying to justify the inductive hypotheses
on the basis of general and domain knowledge. Such knowledge can be used to evaluate
expressions. It may supply a measure of importance for the descriptors in the language, so that
expressions containing better descriptors will be chosen.

3.2 Comprehensibility

Comprehensibility of the acquired knowledge is related to subjective and domain-dependent
criteria. Because an Al system is often supposed to supply advice to humans, knowledge
used by such a system should be understandable by human experts. A black box classifier will
not be accepted by experts as a help in their work. Therefore, knowledge acquired by a
learning system should be related to terms, relations and concepts used by experts, and should
not be syntactically too complex. This is called the comprehensibility criterion (Michalski,
1983).

There is no, however, established measure of comprehensibility of a description. In our
method, we will approximate it by representational simplicity, that evaluates the syntactic
simplicity of the description's expression by counting the number of operators involved. The
complexity of operators has been taken into consideration also. For more detail, see sec. 4.4.

3.3 Cost

The cost captures the properties of a description related to its storage and use (computational
complexity). Other things being equal, descriptions which are easier to store and easier to use
for recognizing new examples are preferred. When considering the cost of a description, two
characteristics are of primary importance. The first one is the cost of measuring the values of
variables occurring in the description. In some application domains, €.g., in medicine, this may
be a very important consideration. The second one is the computational cost of evaluating the
description. Again, certain applications in real-time environment, €.g., speech or image
recognition, may impose constraints on the evaluation time of a description. The cost
(approximated by computational simplicity) and the comprehensibility (approximated by
representational simplicity) are usually related to each other, but in general there are different
criteria. In sec 4.5, we will give more detailed description.



3.4 Combining Several Criteria

The above criteria need to be combined into a single evaluation procedure that can be used to
compare different concept descriptions. A possible solution is to have an algebraic function
that, given the numeric evaluations of single criteria, produces a number that represents their
combined value. Examples of such functions are multiplication, weighted linear sum,
maximum/minimum, or t-normy/t-conorm (Weber, 1983). Although these approaches are often
appropriate, they have certain disadvantages. Firstly, they usually combine a set of
heterogeneous evaluations into a single number, and the meaning of this final number is hard to
interpret for a human expert. Secondly, they may force the system to evaluate all the criteria,
even if it would be sufficient to compare two given descriptions on the basis of the most
important one, if one is much better than the other. Thus, they may be overly complex if a large
number of criteria have to be evaluated.

Finally, because the goal of the evaluation is to determine the "best" description, it is sufficient
just to rank the candidate descriptions. Therefore, there is no necessity to assign some specific
value of "quality" to them. An attractive method that solve avoid the problem mentioned above
is to use the lexicographic evaluation functional (LEF) (Michalski, 1972, Michalski, 1983).
The LEF gives a general measure of description quality by combining accuracy,
comprehensibility and cost into a ranking function of description. The general description
quality (GDQ) measure is thus defined as:

GDQ(description) = <(Accuracy,t1), (Comprehensibility,t2), (Cost,t3)>

where 11, 12, and T3 are tolerance thresholds (which will be discussed later). In this evaluation
scheme, the criteria are ordered according to their importance, and a tolerance threshold (tj €
[0..100%]) is associated with each criterion. Given a set of descriptions, the LEF determines a
set of most preferable descriptions in the following ways.

First, all descriptions are evaluated from the viewpoint of accuracy, and those which score
best, or within the range defined by the threshold t1 from the best, are retained. Next the
retained descriptions are evaluated from the viewpoint of comprehensibility and reduced
similarly as above, using tolerance 12. Finally the same process repeats from viewpoint of
cost. All descriptions retained now are equivalent from the viewpoint of the LEF. It worth to
mention that whenever only one description is retained, the evaluation terminates.



The LEF evaluation scheme is not affected by the main problems which affect algebraic
functions which we have discussed above. The importance of a criterion depends not only on
the order in which it is evaluated in LEF evaluation scheme, but also on its tolerance. It may be
difficult to determine this tolerance. If the tolerance is too small, we have very little chance of
using the other criteria. If the tolerance is too large, some important criterion might be
underestimated. Furthermore, in the case of a large tolerance, many descriptions might be
equivalent under the LEF evaluation scheme. In order to avoid this problem, the LEF measure
can be extended in the following way: LEF is first applied with larger tolerances, in such a way
that all the relevant criteria are taken into account. If the comparison still results in a tie, a
Weighed Evaluation Functional (WEF) is used to combine the measures (i.e. the description
having the maximum weighted sum of the measures is preferred). The weights for WEF are

determined by user.

The above criteria can also be applied to two-tiered descriptions. The accuracy of the acquired
knowledge does not depend only on the explicit information, but also on implicit reasoning
abilities. Inferential Concept Interpretation also affects cost, since it allows the performance
system to use a simpler BCR, and reason about special details only in exceptional cases.
Finally, the comprehensibility of a two-tiered representation must be carefully evaluated, since
one of its implied goals is to state a clear and simple concept description in the BCR and to
account for meaningful special cases through a reasoning process.

4 THE QUALITY MEASURE
In the previous section, we proposed a general framework for evaluating the quality of concept
descriptions. In this section, we present a more precise and slightly simplified measure based
on the scheme mentioned above:

Quality(description) = <(Accuracy, 71), (Comprehensibility, 12), (Cost, 3)>
which is evaluated using LEF/WEF introduced in the previous section.

4.1 Types of Description Matching

An event can be covered by a two-tiered description through the following three types of
matching:



1. Strict matching: the event matches the BCR exactly that is satisfies the conditions
stated in BCR, in which case we say that the event is S-covered,

2. Flexible matching: the event matches the BCR through a flexible matching function,
and we say the event is F-covered.

3. Deductive matching: the event matches the concept through deductive reasoning by
using the ICI Rules, and we say the event is D-covered.

These three sets of events are mutually exclusive. S-covered events are explicitly covered, and
F-covered and D-covered events are implicitly covered.

42 A Measure of Completeness Consistency in the Case of Examples of
Different Typicality

Before we define accuracy, we first introduce Typicality-dependent Completeness (TYCOM)
and Typicality-dependent Consistency (TYCON), and we discuss some issues related to these

concepts.

The degree of completeness of a description is defined as the ratio of the number of positive
examples covered by the description and the number of total positive examples supplied. The
degree of consistency of a description is defined as 1 minus the ratio of the number of negative
examples covered by the description and the number of total negative examples supplied. In the
case that a description is incomplete and inconsistent, The degree of completeness and
consistence is a important measure of the quality of a description. Such a measure has to take
the typicality of examples covered and not covered by the description into consideration. These
degrees are called TYCOM and TYCON respectively.

In general, descriptions that cover many typical positive events are most preferred. The degree
of completeness should therefore be proportional to the typicality of the events covered.
Moreover, if negative events are covered, the degree of consistency of the description should
be inversely proportional to the typicality of the negative events covered.

As mentioned before, it is preferred that the typical events be covered by the BCR, and non-
typical, or exceptional events be covered by the ICL In fact, the BCR is inductively learned
from the events provided by user, and it is more reliable when the learning events are typical.
The rules for ICI, on the contrary, are inherited from higher level concepts, or provided by a

10
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human expert, and rely more on general and domain knowledge. Typically the ICI plays the
most important role when dealing with special or rare cases. For these reasons, typical positive
events that are explicitly-covered should contribute to completeness more than those typical
events that are implicitly-covered. And vice-verse, nontypical positive events that are implicitly-
covered should contribute to completeness more than those non-typical positive events that are
explicitly-covered.

Furthermore, because ICI rules are obtained from background knowledge or from a human
expert, they are more reliable than the flexible matching function. Consequently, a positive D-
covered event should contribute to completeness more than F-covered. We may also observe
that flexible matching is not very useful for exceptions whose typicality is very small. This is
because that flexible matching is only useful for the events that are similar to the typical events.
For example, a typical chair has four legs. Some chairs have three or five legs, flexible
matching works fine with these chairs which have three or five legs. But it does not woke with
a wheel chair. In order to recognize a wheel chair, some ICI rules are needed. A similar
argument holds for consistency.

Now, we define the typicality-dependent completeness (TYCOM) of a description:

X we+Typicality(e) + 2 w*Typicalty(e") + 2 wq¥Typicality(e?)
etis S-oovered et is F-oovered et is Doovered

Typicality-dependent consistency (TYCON) of a description is defined as follow:

. werTypicality(e) -+ wi¥Typicality(@) + 2 w*Typicalty(e)
¢ is S-covered ¢ is F-oovered € is D-covered
TYCON=1 -

2. Typicality(e)
ee NegCov

where:

PosCov: set of positive events covered by a two-tiered concept description,
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NegCov: set of negative events covered by a two-tiered concept description,

Typicality(e): the degree of typicality of the event e specified by the expert when the
event is given.

wg: if typicality(e) 2 2 then 1, else w,

wf: if t2 2 typicality(e) 2 t] then 1, else w,

wd: if t 2typicality(e) then 1, else w,

where, t1 and t2 are thresholds, and 121 211 2 0, 12w>0.

4.3 Accuracy

Now accuracy can be defined as a weighted sum of typicality-dependent completeness and
typicality-dependent consistency.

Accuracy(description) = w1*TYCOM(description) +w2*TYCON(description)

where w] + w7 = 1 are accuracy weights, which can be determined by user. One can increase
the importance completeness by increasing w1. The defaults of both W1 and W2 are 0.5.

4.4 Comprehensibility

As described above, a measure of comprehensibility of a concept description is difficult to
define. We will approximate this measure by a computational simplicity, defined as:

viZCop + v22Cop)
opesBCR@dsp)  opeICi(dsp)

where:

BCR(dsp):  a set of all operator occurrences in the BCR
ICI(dsp): a set of all operator occurrences in the ICI
C(op): the complexity of an operator.

The complexity of operator on the list <interval, internal disjunction, =, <>, not, &, v,
implication, predicate> increases with its position on the list. According the order in the list, all
operators are assigned a different value as their default values. User can reassign different
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values to the operators based on the application domain. When an operator is a predicate, C
increases with the number of the arguments in the predicate. v1 and v are comprehensibility
weights, v1 + v2 = 1. The BCR should describe the general and easy-to-define meaning of the
concept, while the ICI is mainly used to handle nontypical or exceptional events, therefore the
BCR should be easier to comprehend than the ICL v] should therefore be larger than v2. By

default, we assume vi =0.8 and v2 =0.2
4.5 Cost

The cost consists of two parts:

Measurement-Cost - the cost of measuring the values of variables used in the concept
description, defined as the function mc

Evaluation-Cost--the computational cost of evaluating the concept description, defined as the

function ec.

mro{description) = 2 2. mov){Posl+ Neg)
ecPostNeg  vevars(©)

ec(description) = > ec(e)(Pos! + Neg)

ee Pos+Neg
where
vars(e) - set of all occurrences of variables used to evaluate the concept description or
classify the event e.
mc(v) --  the cost of measuring the values of the variable v,
ec(e) -  computational cost of evaluating concept description to classify the event e.

This could depend on computation time or on the number of operators involved
in the evaluation.

We now define the cost of a description:

Cost(description) =  u1*MC(description) + u2*EC(description)

where ug and u) are cost weights.



With the exception of the weights which can be determined experimentally, we have already
defined all three components of the quality measure of concept descriptions: accuracy,
comprehensibility and cost. In the next section, we will show how the quality measure

evaluates a simple concept description.

5 AN EXAMPLE OF MEASURING QUALITY OF A TWO-TIERED
DESCRIPTION

This section provides an example to illustrate the quality measure defined above. The example
helps to understand the justification for the chosen criteria, and to compare the results with our

intuitive evaluation of the same description.

(a) sizezsmall & (Ix 3(4)y (seat(x) & legly) & ontop(x,y))) V
(b) Ix 33y (flatkd & size()=23 & legly) & ontoplx.y)) V
(0 3x 32y (seat(d & wheelly) & ontop(x,y))

Ix seat(x) & ~ Ix backrest(x) => stool
stool => ~ chair

Description 2
BCR:
3x 3(4)y (seatlx) & legly) & ontop(x.y))
ICI:
Ix seat(x) & ~Ix backrest(x) => stool
stool => ~ chair
3(2)x wheel(x) => Irrelevant(3(4)y legly))
Slatlx) & size(x)>2 => seat(x)

Fig. 1 - Two descriptions of the concept"chair" representing
different trade-off between the BCR and the ICIL.

14



This example involves measuring the quality of two discriminant descriptions of the concept of
"chair", seen as an abstract visual concept. This example is different from the one given in
Section 2, since it is based on specific instances of the "chair” concept (see Fig. 2) and is
defined in a formal way, as in the INDUCE system (Michalski 80). The instances of visual
concepts present a high degree of variability, and are affected by noise and context. For this
reason visual concepts can be better represented through a two-tiered scheme, that allows the
system to capture the stable characteristics and reason about the special cases in a unified

framework.

In particular, suppose that we want to evaluate and compare the quality of the two descriptions
given in Fig. 1, with respect to the examples given in Fig. 2. Examples e]-¢7 are instances of
the abstract "chair" concept, eg and e1( are instances of the "stool" concept and examples €9
and e11 are instances of the "sofa" concept. According to the evaluation scheme introduced in
the previous sections, we are to evaluate the accuracy of the two descriptions as a first
criterion. In order to do this we need to compute the Typicality-dependent Completeness
(TYCOM) and the Typicality-dependent Consistency (TYCON). Description 1

Symbol Examples Typicality
e: leg(a&b&e,&d) & seat(e) & flat(e) & areale)=3 & backrestl(f) 1.0
€ ’2r leg(a&b&c&d) & seat(e) & backrest(f) 1.0
€ g legla&b&c&d) & seat(e) & flat(e) & areale)=2 & backrest(f) 0.9
e Z leg(a&b&c&d) & seat(e) & size=small & backrest(f) 1.0
e g leg(a&b&c) & seat(d) & flat(d) & area(d)=2 & backrest(e) 0.6
€ E leg(a&b&c&d) & flat(e) & area(e)=3 & backrest(f) 0.8
€ 3 wheel(a&b) & seat(c) & backrest(d) 0.4
e é leg(a&b&c&d) & seat(e) 0.9
e- leg(a&b&c&d) & flat(e) & areale)=3 & flat(f) 0.9

9 & area(f)=3 & backrest(g)
€ o leg(a,b,c.d) & seat(e) & size=small 1.0
e- seat(a&b) & backrest(c) 1.0

Fig-2 Examples of Chairs

15
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covers positive examples e1+, ez+, e3+, e5+, e6+, e7+ and negative example eg’, and
description 2 covers positive examples e1+, e2+, e3+, e4+, 65+, e6+, e7+ and the negative
example eg”. The negative example eg- could be covered by the BCR part of description 1, but
an ICI rule prevents them from being covered by the two-tiered description. This ICI rule says

that if an object that would normally be recognized as a chair does not have a backrest, then it is
probably a stool, and hence it is not a chair. The same happens for description 2 and events eg”

andeqq .

According to the covered examples, and to their typicality, as given in Fig. 2, and if
wl=w2=0.5 and w=0.8, the TYCOM measure is 0.81 for the first description and 0.97 for the
second description, while the TYCON measure is 0.76 for the first description and 0.81 for the
second. The final accuracy measure is then 0.78 for the first description and 0.89 for the
second.

Description 1 Description 2

(1) (2)

Fig. 3 - The Coverage of Examples in Fig. 2 by Description 1 and Description 2 from fig. 1

This is because the second description is more complete, but also because the most typical
events are covered by the BCR, while the non-typical ones are covered through deductive
reasoning. The TYCON value of the two descriptions is different, although they cover the



same number of negative examples, because the second description does not cover them

explicitly.

Moreover, the second description is simpler. The comprehensibility is measured on the basis of
the syntactic complexity of the descriptions. The syntactic complexity is evaluated as in the
previous section, and is 20.8 for the first description and 18.3 for the second.
Comprehensibility would be considered (and measured) by the LEF evaluation scheme only if
the tolerance for the accuracy criterion is sufficiently high (higher than 1.1).

Above seems to agree with our intuitive evaluation of the two descriptions, since the second
one is shorter and more comprehensible. It covers exceptional examples (such as the wheel
chair - example e7+) through a reasoning process, rather than by a more complicated explicit

description, as the first one does.
6 CONCLUSIONS AND FUTURE WORK

The presented measure of quality of a concept description involves three basic criteria:
accuracy, comprehensibility, cost. It takes into account the interrelationships between these
criteria in order to capture aggregate characteristics that contribute to quality, but are not
measurable without providing more data. Thus, it does not include the predictive power of a
description, as discussed in sec. 3, because it is not measurable without more data.

The measure applies to concept descriptions expressed in a two-tiered representation.
Generally speaking, it prefers descriptions in which typical events are covered by assertions
that are explicit, simple, and efficient to evaluate, and non-typical events are covered through a
reasoning process based on the ICI knowledge.

Some experimental results have been obtained using the concept of an "acceptable labor-
management contract." The other case examined was the concept of a "chair" (sec. 5). Inthe
experiments, we used the quality measure as a heuristic to search for a better two-tiered concept
description starting from a concept description generated by AQ15 or INDUCE, which is
discriminant, complete and consistent. The measure was also used to select the final
description. The descriptions generated in this way indeed were better than the original ones.

Currently, a larger system that produces and evaluates two-tiered concept representations is
being developed. In its current form, the system accepts as input a discriminant, complete and
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consistent concept description, such as is generated by AQ15 or INDUCE. If the description
can be improved, The system produces a two-tiered description of this concept that is
qualitatively better. It does so by searching heuristically the space of all two-tiered descriptions.
The quality of concept descriptions is the heuristic driving the search. The search operators are
generalization and specialization of the description. In its current implementation, generalization
is realized by selector truncation, while specialization is realized by complex truncation. The
final concept description is selected on the basis of the quality measure.

A number of problems that stem from this work will have to be addressed in the future. First,
an integrated system that learns two-tiered concept descriptions from examples needs to be
designed and built. Currently, two-tiered descriptions are generated by improving previously
learned one-tiered descriptions. The quality of descriptions will then be integrated with the
learning algorithm of such a system.

Second, more attention should to be given to technical properties of the selected characteristics
of quality. Problems of quality contribution of the implicit part of the description have to be
researched in more detail. The question of comprehensibility of a description needs to be
investigated through experiments involving human subjects.
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