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Abstract-This paper provides the initial results of a study 
on the applications of generative cellular automata-based 
representations in evolutionary structural design. First, recent 
developments in evolutionary design representations and an 
overview of cellular automata are presented. Next, a complex 
problem of topological design of steel structural systems in 
tall buildings is briefly described.  Further, morphogenic 
evolutionary design is introduced and exemplified by cellular 
automata representations.  The paper also reports the initial 
results of several structural design experiments whose 
objective was to determine feasibility of the proposed 
approach. Finally, initial research conclusions are provided. 

I.  INTRODUCTION 

Evolutionary computation is becoming an increasingly 
attractive paradigm for civil and structural engineers.  It 
offers a true potential of addressing two important 
objectives of engineering design. First, it provides 
structural engineers with a powerful optimization method 
that can be used to solve many difficult design problems.  
Second, it is suitable for developing novel/creative 
designs. This emerging paradigm shift reflects the 
ongoing transformation of computing in structural 
engineering from mostly analytical to more holistic 
aspects of design. 

Traditionally, applications of evolutionary methods in 
structural engineering were focused on structural 
optimization problems [1].  Currently, together with 
reported successes of creative evolutionary design [2], we 
are witnessing an emerging trend of using the 
evolutionary paradigm to discover novel/creative 
structural designs.  At the same time, complicated models 
of physical systems are being replaced with distributed 
models based on simple rules and interactions among 
elements.  It has been shown that even the systems based 
on very simple rules can produce very complex behavior 
[3].   

Thus, even though the models studied in structural 
design are becoming more and more complex, it is 
possible that this complexity can be simulated using only 
very simple rules and programs.  Hence, using cellular 
automata, one of the simplest examples of highly parallel 
systems based on rules, as generative representations of 
structural systems seems to be a plausible way of 
capturing the complex nature of the design process.  This 

approach also offers a potential of devising simple 
computational models of design processes.   

Presently available computing power opens new 
possibilities of applying this approach to designing 
engineering systems even as complex as steel structural 
systems in tall buildings. The research reported in this 
paper is a continuation of earlier work reported in [4].  
However, the structural design problem discussed here is 
much more complex than the one investigated previously 
in [4] where only a wind bracing subsystem was the 
subject of design and all other structural members were 
assumed fixed. 

II.  BACKGROUND 

A. Engineering Design Representations 
 

One of the key issues in evolutionary design, and in 
evolutionary computation in general, is the choice of an 
appropriate representation. It becomes even more 
important when creativity/novelty of generated solutions 
is one of the relevant research objectives. In the most 
straightforward evolutionary design applications, each 
gene represents a dimension of the solution space. In such 
direct representations each individual consists of a fixed-
length string of genes representing some subset of a given 
set of features. It has been argued that such direct 
mappings of the problem to its representation are not 
sufficient when creative/novel solutions are sought [5].  

Recently, significant research efforts in evolutionary 
design community were focused on studying alternative 
ways of representing designs. Several researchers 
investigated indirect and generative representations which 
do not encode complete design concepts but rather rules 
which define how to construct these designs [6, 7].  These 
types of representations are inspired by the processes of 
morphogenesis occurring in nature which manipulates the 
rules for growing complex objects, called genetic plans, 
rather than the complex objects themselves [8]. 

A representation of an engineering system is usually 
expressed in terms of attributes which can be either 
symbolic (when they take values from an unordered or 
partially ordered set) or numerical (when they take 
numerical values representing quantities or 
measurements). Design concepts produced in the 



conceptual design stage are typically described in terms of 
symbolic attributes.  On the other hand, numerical 
attributes are used mostly in the detailed design stage [9]. 

As discussed earlier, applications of evolutionary 
computation in structural engineering traditionally 
emphasized optimization side of an evolutionary design 
process. Hence, in a large majority of applications, 
structural systems were represented by simple 
parameterizations consisting of binary, real, or integer-
valued attributes [10, 11].  Recently, several interesting 
encodings of structural systems were proposed including 
Voronoi-based representations and IFS representations 
based on fractal theory [12]. 

B. Cellular Automata 
 

Cellular automata (CAs) are one of the simplest models 
of highly parallel systems based on local rules.  They 
were initially proposed as models of systems and 
processes made up of identical, simple, and locally 
interacting components. Researchers in this field used the 
simple models to study pattern formation and self-
organization processes. It has been discovered that very 
complex patterns of behavior can be produced out of a set 
of very simple rules.  Recently, it has been suggested that 
cellular automata and other simple programs may better 
model nature’s most essential mechanisms than traditional 
mathematical equations [3]. 

A cellular automaton, contrary to an evolutionary 
algorithm, is a deterministic system.  It is completely 
defined by giving its initial configuration of cell values 
and an update rule (called in this paper a CA rule) that 
transforms a current configuration of cell values to a new 
one.  Each such transformation of the entire configuration 
of cell values defines one time step. Figure 1 shows how a 
simple cellular automaton works.   

 

 
Figure 1.  a) Process of iteration of a simple cellular automaton, 
b) Graphical representation of the CA rule used in part a). 

The process of iteration of a simple cellular automaton 
is shown in Figure 1a).  In this particular example, the 
individual cells can have only binary values, i.e. white 
squares denote cell values equal to 0 while black squares 
represents cell values equal to 1.  Local neighborhoods 
affecting the iteration of the currently considered cell are 
formed by this cell and its immediate left and right 
neighbors.  Therefore, three cells are considered in each 
local neighborhood and such neighborhoods are called 
‘local neighborhoods of size 3’.  The bottom row of 
Figure 1a) consists of 6 squares denoting cells in the 
initial configuration of a CA.  In this particular case, the 
initial configuration consists of cell state values 
0 0 0 1 1 0.   

The CA rule that transforms the initial configuration of 
cells (t=0) into a new one at time t=1, and all subsequent 
time steps is presented in Figure 1b).  It can be interpreted 
as a complete set of decision rules whose conditions 
incorporate all possible combinations of cell values in the 
given local neighborhoods and outcomes determine the 
values of the currently considered cells at the next time 
step. Details of the process of transformation of the 
current configuration of cells at subsequent time steps 
(t =1, 2,…) are illustrated graphically in Figure 2.   

 

 
Figure 2.  Graphical illustration of the mechanism that determines 
configurations of cell states at subsequent time steps. 

Bottom part of Figure 2 shows the same initial 
configuration (t=0) as in Figure 1a).  The process of 
transforming this initial configuration into a new one at 
time step (t=1) involves several operations. First, a set of 
local neighborhoods of size 3 is constructed by taking 
each cell from the initial configuration together with its 
left and right neighbors and placing them respectively in 
the middle, left, and right of the lattice defining each local 
neighborhood (see the set of 6 local neighborhoods of size 
3 placed above the initial configuration in Figure 2).  In 
this instance, so-called cyclic boundary conditions are 

 



used, meaning that the rightmost cell in the initial 
configuration becomes the left neighbor of the leftmost 
cell in the initial configuration, and vice versa (denoted by 
dashed lines in Figure 2). Second, the local neighborhoods 
created that way are compared to the local neighborhoods 
which define the conditions of the CA rule (see the 
bottom row of Figure 1b)).  When the two match, the 
value shown in the top row of Figure 1b) defines the new 
value of the central cell in the new configuration at the 
next time step.  This process is repeated for each local 
neighborhood and the obtained values are placed in 
appropriate positions of the new configuration of cells. In 
this way the new configuration is fully defined and at the 
same one iteration (one time step) of a cellular automaton 
is completed. The process can be repeated for an arbitrary 
number of iterations.  Figure 1a) shows the results of the 
iteration process for the first 10 steps.  On the other hand, 
Figure 2 presents a detailed graphical illustration of this 
process for the first 2 iterations only.   

The CA rule shown in Figure 1b) specifies all possible 
(8 in this case) cell values of a local neighborhood of size 
three (bottom row) and determines the values achieved by 
the central cells at the next time step (top row).  Thus, if 
we agree on the ordering of the local neighborhoods as 
shown in the bottom row of Figure 1b) and assume it 
fixed, then any elementary CA rule can be defined by a 
single eight-digit binary number specifying the values 
achieved by the central cells at the next time step for all 
local neighborhoods. 

The number of possible CA rules grows very rapidly 
with an increase of the number of cell values or the size of 
the local neighborhood.  For example, when the number 
of possible cell values is equal to 3, and the size of the 
local neighborhood is the same, there are 
7,625,597,484,987 possible CA rules compared to 256 CA 
rules for elementary CAs.  There is, however, a way to 
significantly reduce the space of possible CA rules by 
using so-called totalistic CAs.  The idea of a totalistic rule 
is to assume that the new value of the currently considered 
cell is determined by the average value of this cell and its 
neighbors, and not on their individual values. For 
example, a totalistic CA with 3 possible cell values has 
only 2187 possible CA rules compared to 
7,625,597,484,987 rules found in the corresponding 
standard CA. 

CAs have been a subject of significant research 
interests not only in general science but also in structural 
design. Self-organizations of topologies in mechanical 
structures was studied in Inou et al. [13].  Kundu et al. 
[14] applied CAs to shape optimization of structural 
plates.  Kita and Toyoda used CAs to shape and topology 
optimization of two-dimensional elastic structures [15] 
and sizing optimization of truss structures [16].  Hajela 
and Kim [17] applied genetic algorithms to search the 
space of CA rules in structural analysis of 2D elastic 
structures. 

C. Steel Structures in Tall Buildings 
 

Steel skeleton structures in tall buildings are considered 
the most complicated structures designed and built, 
comparable in their conceptual and physical complexity 
only with large span bridges.  Usually, such structures are 
designed as a system of vertical members called 
“columns,” horizontal members called “beams,” and 
various diagonal members called “wind bracings,” since 
they are added to columns and beams to increase the 
flexural rigidity of the entire system and that is driven 
mostly by stiffness requirements related to wind forces.  

Skeleton structures are designed to provide a structural 
support for tall buildings.  They have to satisfy numerous 
requirements regarding the building’s stability, transfer of 
loads, including gravity, wind and earthquake loads, 
deformations, vibrations, etc.  For this reason, the design 
of structural systems in tall buildings requires the analysis 
of their behavior under various combinations of loading 
and the determination of an optimal configuration of 
structural members, called a “design concept.” It is 
difficult, complex, and still not fully understood domain 
of structural engineering. 

III.  MORPHOGENESIS AND STRUCTURAL DESIGN 

Parameterized representations of engineering systems 
have been predominant in the applications of evolutionary 
methods to structural design. They proved to perform well 
when solutions to strictly optimization problems were 
sought. They are, however, not sufficient when the issues 
of inventive/creative design become equally important to 
the optimality of produced design concepts. Several types 
of types of generative representations have been proposed 
to remedy this problem.  In the previous work [4], the 
authors proposed generative representations of wind 
bracing systems in tall buildings based on one-
dimensional and two-dimensional  cellular automata.  
These representations were inspired by the process of the 
embryological development of the structure of an 
organism occurring in nature and called morphogenesis. 

A. Morphogenic Evolutionary Design 
 
In the morphogenic evolutionary design introduced in 

[4] a structural design concept is produced from a ‘design 
embryo’ using a ‘design rule’ which is applied to the 
design embryo to build the structure of a wind bracing 
system from it.  Figure 3 provides a simple example of 
this approach in which a design concept of a wind bracing 
subsystem is constructed from a generative representation 
encoding a design embryo (leftmost genes a-f in Figure 
3a)) and a design rule (rightmost genes 1-8 in Figure 3a)).   

This representation has been developed using the 
concept of division of the structural grid of a tall building 
(the system of vertical and horizontal lines of columns and 
beams, respectively) into cells.  A cell is understood here 

 



as a part of the structural grid contained within the 
adjacent vertical and horizontal grid lines.  Design embryo 
is formed by a one-dimensional lattice of cells 
representing the initial configuration of cell values and at 
the same time determines the configuration of the first 
story in a wind bracing system of a tall building (see the 
configuration at t=0 in Figure 3c)).  Design rule is 
simulated by a one-dimensional cellular automaton (1D 
CA) rule (see Figure 3b)).  It consists of a complete set of 
decision rules whose conditions (bottom part of Figure 
3b)) incorporate all possible combinations of cell values 
(in this example representing types of bracings) in the 
given local neighborhoods and outcomes specifying the 
values of the central cells of these neighborhoods at the 
next time step (top part of Figure 3b)).  The length of the 
design embryo is equal to the number of bays in a tall 
building (see Figure 3c)).  On the other hand, the length of 
the design rule simulated by a 1D CA depends on the 
number of possible cell values and the size of the local 
neighborhood.   

 

 
Figure 3.  Process of constructing a design concept of a wind 
bracing system in a tall building from a design embryo and using 
a design rule applied to this embryo. 

The example of design rule simulated by a 1D CA 
shown in Figure 3b) is extremely simple and based on two 
possible cell values (representing no bracing and X 
bracing), and neighborhood of size 3.  The process of 
building a design concept of a wind bracing subsystem 
from the design embryo and using the design rule is 
shown in Figure 3c).  The design rule is iterated for the 
number of steps that is one less than the number of stories 
in a tall building and thus forms a design concept which is 
subsequently evaluated. 

Bottom part of Figure 3b) shows all possible 
combinations of conditions for this design rule.  In this 
particular example, they are ordered from 1 to 8.  If this 
ordering is assumed fixed for the entire class of design 
rules with binary cell state values and local neighborhood 
of size 3, then the outcome values (shown in the top part 
of Figure 3b)) uniquely define every rule belonging to this 
class.  This fact has been used in the definition of the 
structure of the genome shown in Figure 3a).  Here, genes 
1-8 encode the outcome values produced by the design 
rule presented in Figure 3b) and, given the assumed 
ordering, uniquely define it.  

B. Generative Representations of Steel Structures 
 
Generative representations of steel structural systems 

investigated in [4] and briefly introduced in the previous 
section were focused only on one, albeit important, part of 
the system, i.e., on a subsystem of wind bracings in a tall 
building.  A complete design concept of a steel structural 
system, however, should contain not only wind bracings, 
but also beams, columns, and supports.  

An approach to encode complete design concepts of 
steel structures in tall buildings is introduced in this 
section.  It utilizes an idea of combining several 
generative representations of various subsystems of a steel 
structure in one genome. To achieve it, an approach 
similar to the one described in the previous section is 
employed.  Figure 4 shows the schematic view of the 
structure of a linear genome representing a complete 
design concept. 

 

 
Figure 4.  A schematic view of a generative representation of a 
complete design concept of a steel structural system in a tall 
building. 

 



 

 
Figure 5.  Process of constructing a complete design concept of a steel structural system in a tall building from the generative 
representation. 

 
The genome encodes design embryos of wind bracing 

subsystem, beam subsystem, and column subsystem (gray 
cells) and design rules simulated by 1D CA rules (white 
cells).  The design rules are applied to their corresponding 
design embryos and build subsystems of wind bracings, 
beams, and columns from them. A configuration of 
supports in a tall building is encoded at the end of the 
linear genome (gray cells).  The support configuration, 
however, is not iterated. 

Each design rule is applied to its corresponding design 
embryo and iterated the number of times that is one less 
than the number of stories in a tall building.  In this way, 
systems of wind bracing, beams, and columns are formed.  
Once the complete configurations of all subsystems of a 
steel structure are constructed they are assembled together 
to form a complete representation of a design concept 
which is subsequently evaluated.  The process of 

constructing a complete design concept from this 
representation is presented in Figure 5. 

Significant difference of this representation compared 
to the generative representation of a wind bracing 
subsystem discussed in the previous section is that the 
genome is no longer homogenous.  Various parts of the 
genome encode different subsystems of the steel structure 
and hence different attributes are used to represent them.  
These attributes, in general, can have different number of 
possible values.  

The advantages of this approach are similar to the ones 
described in [4], namely compactness and excellent 
scalability.  A genome encoding a complete design 
concept of a structural system with 30 stories and 6 bays 
and consisting of a wind bracing system with 7 types of 
bracings, a beam system with 2 types of beams, a column 
system with 2 types of columns, and with 2 types of 

 



supports has 365 genes compared to 576 genes in standard 
parameterized representations. In the case when the 
design rules are simulated by the totalistic 1D CA rules, 
the genome is even more compact and its length is 
reduced to  33 genes. 

The disadvantages of this representation include the 
lack of diversification of the design rules. Each subsystem 
in a steel structure is designed using a single design rule 
which is applied at each story.  Hence, it is impossible to 
diversify design rules for various parts of the subsystem, 
e.g. in traditional design different design rules may be 
used in the bottom part of the structure, where internal 
forces are the largest, compared to the upper part of the 
structure where internal forces are the smallest but local 
stiffness requirements are the same. Additional drawback 
includes a necessity to create a specialized mutation 
operator that would manipulate non-homogeneous 
genomes.  The modifications required in adapting a 
standard mutation operator to this representation should 
be minimal, though. 

IV.  EXPERIMENTAL RESULTS 

Initial experiments reported in this paper were aimed to 
determine the feasibility of morphogenic evolutionary 
design of complex structural systems.   This objective has 
been realized through the analysis of the results of a 
number of experiments in which the generative 
representation described in the previous section was used 
and through the comparison with the results produced 
using the parameterized representations similar to those 
used in [18]. Design experiments were conducted using an 
experimental research and design tool, called Emergent 
Designer, developed at George Mason University [4].  It 
is a Java-based system intended for both the design 
experiments in the area structural design as well as the 
analysis of the design processes from the perspective of 
complex adaptive systems and dynamical systems. 

A. Experimental Design 
 
Table 1 shows assumed parameters and their values 

used in the experiments.  The subject of design were steel 
structures of a 30-story building with 6 bays. The 
following subsystems of steel structures were evolved: 
wind bracing subsystem, beam subsystem, and supports. 
Column subsystem was not evolved and all column 
members in steel structures were assumed the same during 
the entire design process.  

 Seven types of wind bracing members were considered 
in the design of a wind bracing subsystem. Their 
phenotypic, symbolic, and genotypic representations are 
shown in Figure 6.  Beam subsystem was constructed 
using two types of beam members presented in Figure 
7a)-c).  Genes representing supports had two possible 
values as it is shown in Figure 7d)-f).  

 

TABLE 1. EXPERIMENTAL PARAMETERS AND THEIR VALUES 

Parameter Value(s) 

Domain parameters: 
Number of bays 6 
Number of stories 30 
Bay width 20 feet (6.01 m) 
Story height 14 feet (4.27 m) 
Distance between  
transverse systems 20 feet (6.01 m) 

Structural analysis method first order 
Beams pinned, fixed 
Column fixed 
Supports pinned, fixed 
Wind bracings no bracing, diagonal bracing 

(/), diagonal bracing (\), K 
bracing, V bracing, simple X 
bracing, and X bracing 

CA representation parameters: 
CA type 1D, 1D totalistic 
CA neighborhood radius 1 
Number of CA cell values 7 (bracings), 2 (beams) 
Evolutionary algorithm parameters: 
EA ES 
Pop. sizes (parent, offspring) (1,25), (5,25), (1,125), 

(5,125) 
Generational model overlapping 
Selection (parent, survival) (uniform stoch., truncation) 
Mutation rate 1/L (L- length of genome) 
Crossover (type, rate) (uniform, 0.2) 
Fitness weight of the steel structure 

(minimization problem) 
Initialization method random 
Constraint handling method death penalty (infeasible 

designs assigned 0 fitness) 
Simulation parameters: 
Termination criterion  1000 fitness evaluations 
Number of runs 5 (in each experiment) 

 
Two types of generative representations of steel 

structural systems were experimentally investigated. In 
the first type, encoded design rules were simulated by 
standard 1D CA rules and the length of the genome was 
equal to 370. In the second type, totalistic 1D CA rules 
were used and, in this case, the genome consisted of 42 
genes. The results obtained using both types of generative 
representations were subsequently compared to the results 
produced using parameterized integer-valued 
representations, similar to those used in [18].  
Parameterized representations were 367 genes long.  As 
mentioned before, the genomes were non-homogeneous 
for all types of representations discussed above. 

Evolution strategies (ES) were used to evolve 
representations of steel structures in tall buildings.  Four 
combinations of parent and offspring population sizes 
(involving either 1 or 5 parents and 25 or 125 offspring) 
were studied for all 3 types of representations.  All other 
EA parameters were held constant as shown in Table 1.  

 

 



 
Figure 6.  a) Phenotypic representation of the evolved wind 
bracing members, b) Their symbolic values, c) Genotypic values 
corresponding to appropriate wind bracing types. 

 

 
Figure 7. a)-c) Phenotypic, symbolic, and genotypic 
representation of the evolved beam members, d)-f) Phenotypic, 
symbolic, and genotypic representation of the evolved supports. 

The fitness of individual designs was determined by the 
total weight of the steel structure. It was calculated using a 
structural analysis, design and optimization package 
called SODA, developed by Waterloo Systems in 
Waterloo, Ontario, Canada, which forms one of the 
components of Emergent Designer. The optimization 
(minimization) of weight of steel skeleton structures was 
conducted in two stages.  In the first stage, evolutionary 
algorithm optimized the topology of steel structural 
systems in tall buildings as discussed earlier. The second 
stage of optimization (sizing optimization) was conducted 
by SODA.  Here, cross-sections of all structural members 
(including beams, columns, and wind bracings) were 
optimized with respect to the total weight of the steel 
structure. 

All design experiments reported in this paper consisted 
of 5 runs, each started with a different random seed value.  
Each run involved a fixed budget of 1000 fitness 
evaluations. 

B. Initial Design Experiments 
 
The conducted experiments have shown that the best 

results in terms of fitness were obtained when the parent 
population size consisted of more than one individual, no 
matter what type of representation was used. The overall 
best results were produced by totalistic 1D CA 
representations with parent and offspring population sizes 
equal to 5 and 25, respectively. Figure 8 shows the 
average best-so-far fitness obtained in these experiments 
for all 3 types of representations (vertical bars denote 95% 
confidence intervals calculated using Johnson’s modified t 

test). It is clearly visible, and at the same time statistically 
significant, that totalistic 1D CA representations 
outperformed the other two types of representations which 
is in concordance with authors' previous  findings reported 
in [4].  

 

 
Figure 8. Average best-so-far fitness for 1D CA, totalistic 1D CA, 
and parameterized representations with parent and offspring 
population sizes equal to 5 and 25, respectively. 

Parameterized representations produced the best results 
when population sizes of 5 and 125 were used. Even in 
this case, totalistic 1D CA representations generated better 
results, as it is shown in Figure  9. 

 

 
Figure  9. Average best-so-far fitness for 1D CA, totalistic 1D 
CA, and parameterized representations with parent and offspring 
population sizes equal to 5 and 125, respectively. 

Figure 10a) shows the best design produced in the 
reported experiments.  It was generated using the totalistic 
1D CA representation. Its fitness (the total weight of the 
structural system) is about 13% better than for the best 
design produced using parameterized representations.  It is 
a significant improvement rarely possible when using 
parameterized representations. The produced design 
strongly resembles a traditional structural system in the 
form of the rigid braced frame with the exception of the 
ground floor bracings. In this design, a wind bracing 
subsystem is incrementally developed, beginning at the 

 



ground level, using a design rule which places K bracings 
in all bays while at the same time another design rule 
constructs a beam subsystem using exclusively fixed 
beams.  

The experiments produced several interesting structural 
shaping patterns, found using both totalistic 1D CA 
representations (see Figure 10b)) and standard 1D CA 
representations (see Figure 10c)).  These structural 
shaping patterns are qualitatively different than the ones 
generated by parameterized representations (see Figure 
10d)). 
 

  
 a) b) c) d) 

Figure 10. a) Best design produced in the reported experiments, 
b-c) Examples of interesting structural shaping patterns generated 
by the generative representation, d) Best design produced by the 
parameterized representation. 

V.  CONCLUSIONS 

Research reported in this paper is the continuation of 
the previous work on the morphogenic evolutionary 
design. Here, the preliminary results are provided 
concerning the use of this new design paradigm applied to 
much more complex structural design problems than 
previously reported. The initial findings are encouraging 
and confirm our previous conclusions regarding the 
feasibility of cellular automata-based generative 
representations in structural design.  These representations 
proved to perform well both in generating optimal design 
concepts as well as in producing interesting structural 
shaping patterns. 
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