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A CHANGE VECTOR METHOD TO STUDY BEHAVIORAL DEVELOPMENT 

 

David L. Cooper, PhD 

 

George Mason University, 2010 

 

Dissertation Director: Dr. James L. Olds 

 

 

 

Broca‘s Area was the first region in the human cortex to be tied definitively to a specific 

behavior—language.  However, structural, cytological and molecular peculiarities 

identified in Broca‘s Area are not unique to humans, and thus language appears to have 

emerged from other traits that were advantageous in the evolution of primates in general, 

such as fine motor control for gestures and vocalizations, and the so-called mirror system.  

One potential source of insight into the emergence of language is to study the correlation 

of brain structures with behavioral function.  This work capitalizes on the existence of a 

unique resource to undertake that study:  eight detailed cytological studies of the 

developing human cortex from birth through six years of age, accomplished by JL Conel 

from 1939 to 1967.  Conel‘s atlases provide a consistent methodology applied to 37 

cortical areas at each of the observations ages for neurons and 42 cortical areas for 

myelinated fibers, which further enables a quantitative comparison of change patterns 

during human cortical development.  The change vector method that was developed to 



 

 

 

conduct that investigation normalizes measures for the change steps that occur in the 

seven change intervals that occur in the Conel data, measures the statistical significance 

of any of those change steps, and permits the direct comparison of change trajectories 

using k-means cluster analysis.  This analysis reveals significantly correlated 

synchronized changes at different ages, linked to specific ―core‖ area/layer addresses that 

imply a clock-like coordination mechanism that appears to support sensorimotor 

developmental functions at the appropriate age.  Neither functional cores nor statistically 

significant change steps emerge when a similar analysis is applied to verbal behavior, 

where such a clock-like mechanism is unlikely.  In general for the cortex, and for 

language behavior related to Broca‘s Area in particular, the analysis supports innate 

architectural mechanisms that facilitate specific address level accommodation to external 

activity, whereas external behavioral evidence, as from language change, merely supports 

rapid evolution of the behavior itself to accommodate those same cortical mechanisms.  

That is, language evolves to enable the speaker to speak, just as writing evolves to enable 

the child to read.      

 

This dissertation research has complied with all George Mason University standards for 

the ethical conduct of research and for the appropriate use of human and animal subjects. 

 



 

1 

 

1.  Introduction:   Broca‟s Area, a neuroanatomical 

localization of a complex cognitive function 

 

 Paul Broca's 1861 demonstration of linguistic specialization in the left hemisphere 

of the human brain (Broca, 1861a-d) provided the first synthesis of the clinical 

description of a pathology with localization of brain function and neuroanatomy with 

sufficient precision to attract the attention of both scientists and the lay public (Kolb and 

Whishaw, 1990).  His association of stroke patient Tan's difficulties with the posterior 

half of the second and third left frontal gyri (circonvolutions) corresponds to Brodmann 

area 44 and 45.  His clear and compelling correlation of specific symptoms to identifiable 

structures has likewise been refined and expanded considerably, but remains justifiably 

famous as a critical tipping point in the history of neuroscience (Gazzaniga, et al., 2002).   

   Broca first encountered the victim as a 51-year old man named Leborgne, who 

was dying of cellulitis and gangrene, who had suffered epilepsy in his youth and had been 

hospitalized since losing the ability to speak at 31.  His speech capabilities were restricted 

to the syllable ‗tan‘ , which became his nickname, and various curse words (Finger, 

2004).  Broca called this pathology an apemia, meaning ―lack of speech‖ (Broca, 1861c). 

By 1863, Broca had identified a total of eight similar cases, all with left-frontal lesions 

(Finger, 2004).     
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Patients suffering from what is now called Broca‘s aphasiagenerally produce 

speech telegraphically, in very short bursts, and delivered with a great deal of effort.  In 

terms of comprehension, they have difficulty with repeating or understanding phrases 

with unusual or complex word order, such as the English passive, and they also have 

difficulty repeating long and complex words accurately (Gazzaniga et al., 2002).  Broca 

ascribed these problems to ―the motor image of the word.‖ (Kolb and Whishaw, 1990:  

580) 

 While evidence from patients with Broca's aphasia as well as evidence from brain 

activations indicate that Broca‘s Area is important for processing syntactic information 

(Caplan, et al., 2000), other areas in the brain, such as Wernicke's area, including portions 

of Brodmann areas 22, 41 and 42 (Just et al., 1996), or the anterior portion of the superior 

temporal gyrus (Dronkers, 1996), are also implicated.  These areas lie along the 

perisylvian area of the brain, which is a highly conserved area in terms of human genetic 

expression (Thompson, et al. 2000).  Their linkage overall has been taken as support for 

the classic Lichtheim-Geschwind triangle model with a motor processing area (Broca's), 

an auditory processing area (Wernicke's), and an unlocated conceptual area (Lichtheim, 

1885; Geschwind, 1967).  However, their common association with the task of 

processing syntactic information may also indicate that language processing is a very 

complex and multi-faceted task, and that the triangle model is too simple.  

 In fact, despite being the first such area identified and one of the most widely 

studied, the precise correlation of Broca‘s Area to language and language processing is 

still a matter of some controversy.  This is exacerbated considerably by the fact that 
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Broca‘s Area in humans corresponds to similar brain regions in primates.  Moreover, the 

famous foxp2 mutation in humans that reproduces symptoms very similar to Broca's 

aphasia also affects much wider areas in the human brain; while FOXP2 has nearly 

identical homologs not only in primates, but in vertebrates generally (Varga-Khadem, et 

al., 2005).   

  

1.1 Comparative anatomy and linguistic function 

 

1.1.1  Human anatomy and language function 

 In humans, Broca‘s Area includes portions of the pars triangularis (BA 45) and 

pars opercularis (BA 44) of the inferior frontal gyrus of the brain.  This lies across the 

anterior ascending ramus of the lateral, or Sylvian fissure opposite the temporal lobe, 

which is both an auditory and visual association area. It is adjacent to the premotor 

cortex, proximal to the areas that control oral and facial features, particularly the lips and 

tongue.  Many descriptions refer to the perisylvian area of the brain, a shorthand term for 

the areas astride the lateral fissure that includes Broca‘s Area rostrally and Wernicke's 

Area caudally.  When studying genetic expression in fraternal and identical twins, 

Thompson et al. (2001) showed very clearly that the perisylvian area is highly conserved 

in both groups, whereas many other regions co-expressed in identical twins show 

divergent genetic expression in the fraternal twins.    

 Wernicke himself noted the direct connection of Wernicke's area to Broca‘s Area 

by way of the angular gyrus and the arcuate fasciculus (Wernicke, 1874).  Because 
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Wernicke's area is adjacent to the auditory cortex in Heschl's gyri, he ascribed an auditory 

memory role to it.  Wernicke's aphasia describes a condition where the patient is fluent, 

but produces nonsensical insertions of word forms (Wernicke, 1874).  The two kinds of 

aphasia are contrasted here in examples drawn from Gazzaniga, et al. (2002:  385-387):   

 

  Broca's aphasia: 

  Spontaneous speech—―Son ... university ... smart ... boy ... good ... good‖ 

  Listening— Prompt:  ―The boy was hit by the girl.  Who hit whom?‖ 

    Response:  ―Boy hit girl‖ 

  Repeating— Prompt:  ―Chrysanthemum‖ 

    Response:  ―Chrysa...mum...mum...‖ 

 

  Wernicke's aphasia: 

  ―I called my mother on the television and did not understand the door‖ 

 

 Thus, we have physically connected areas in the brain, where damage to the 

endpoints corresponds to polar opposite dysfunction.  At one end, Broca's, the patient 

makes sense but has much difficulty with even short sequences, while at the other end, 

Wernicke's, the patient is completely fluent but makes no sense.    

 Using voxel-based lesion-symptom mapping, Bates et al. (2003) provides strong 

support for a functional connection along this neuroanatomical pathway.  Summing 

across 101 patients with lesions on the left side of their brains, they found that those who 

had difficulty with fluency in language showed a very high correlation between the 
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symptoms and their associated lesions along the gray matter connections in the insula and 

the arcuate fasciculus lying between Wernicke's and Broca‘s Areas.  Similarly, they 

found the highest correlation of symptoms to lesions for language comprehension in the 

middle temporal gyrus, in the vicinity of Wernicke's area.   These observations essentially 

confirm the association of Broca's aphasia to fluency and Wernicke's aphasia to word 

comprehension, but the highest symptom-location correlations for fluency lie on the fiber 

pathway itself, and posterior to Broca‘s Area in the cortex, while the correlation of 

cortical lesions to Wernicke's aphasia is much stronger.   

 This fiber pathway is also implicated in learning to read, which Dehaene (2009) 

attributes to the ―recycling‖ of neurons in the left occipito-temporal fissure to specialize 

in the distinction of letter and character shapes with outputs to language areas thereafter.  

Dahaene (2009) argues that reading is critically dependent on the ability to associate 

graphemes from the occipito-temporal fissure with phonemes in Wernicke‘s area, which 

is supported by the early maturation of activity in the intervening left superior temporal 

sulcus area in juvenile readers (Turkeltaub, et al., 2003).  In expert, adult readers, both 

the superior temporal sulcus and Broca‘s Area are active.  Dehaene (2009: 207) ascribes 

this pattern to the conscious ability to manipulate elementary speech sounds and 

describes these two brain regions as ―the anchor points for reading.‖  

 As for Broca‘s Area itself, using an observer-independent method for measuring 

cell densities, Amunts et al. (1999) focused on the detailed structure of the cortical layers 

in ten human brains, taking thousands of profiles across five male and five female 

subjects.  They confirmed the left-biased lateralization that is normally imputed to 
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language functions.  However, while all five male subjects showed a left over right 

asymmetry for area 44, which is adjacent to area 6 in the motor cortex, only three of the 

female subjects did.   Neither group showed a similar asymmetry for area 45.  Their other 

findings also show clear structural differences between areas 44 and 45 at the cellular 

level, but without large-scale landmarks marking their limits.  There are also significant 

differences between subjects.  Thus, the size of area 44 on the left could vary by a factor 

of ten between subjects, while the differences between subjects for both areas were 

greater than the differences between hemispheres in a single subject.        

 

1.1.2  Primate anatomy and function 

 Despite the association of Broca‘s Area with human language, there are 

homologous regions in other primates.  An area equivalent to area 45 is present in 

monkeys (Preuss and Goldman-Rakic, 1991).  Chimpanzees have equivalents to areas 44 

and 45 (Carroll, 2003), and a recent cytoarchitectural and electrostimulation study 

revealed an equivalent to area 44 in macaques as well (Petrides, et al., 2005).  Moreover, 

the Broca homolog in great apes shows the same kind of left over right asymmetry found 

in area 44 in humans (Cantalupo and Hopkins, 2001).   

 Consequently, this left-biased asymmetry clearly cannot be related just to human 

language.  In fact, there is evidence for left-hemispheric dominance in all the early 

hominins, as well as modern chimapanzees, bonobos and gorillas (Hopkins and Leavens, 

1998).  This dominance corresponds to right-handedness, pointing gestures, and 

vocalizations.  Similarly, there is a parallel left-asymmetrical extension of the planum 



 

7 

 

temporale, adjacent to Wernicke's area in humans, found in Homo habilis, Homo erectus, 

and Homo neanderthalensis (Holloway, 1980).  This left-asymmetric extension is also 

found in chimpanzees (Gannon et al., 1998; Hopkins et al., 1998).  Thus, the asymmetry 

probably existed throughout the perisylvian region prior to the appearance of hominids.   

 However, these left-biased asymmetries are not identical across primates.  For 

example, left lateralization in Broca‘s Area in great apes is evident down to the level of 

fine structure (Amunts et al., 1999), yet the lateralization in gross structure of the planum 

temporale does not correspond to a similar asymmetry in minicolumn size and 

connectivity in chimpanzees (Buxhoeveden et al., 2001).  Moreover, Fritz, et al (2005) 

reported that monkeys had deficits in responding to auditory stimuli when short-term 

memory areas in rostral superior temporal gyrus or the medial temporal lobe were 

lesioned, but no loss in performance when the lesions occurred in rhinal cortex.  Thus, 

they appear to be unable to form long-term memory of auditory stimuli.   

This produces an overall pattern that implies that the perisylvian area has been 

important to primates for millions of years, based on gross structure.  Homologous fine-

structure asymmetry appears in great apes for Broca‘s Area, while it does not at the 

planum temporale.  This would make the fine-structure changes near Wernicke's area, the 

planum temporale and the auditory cortex in general more likely locations for at least 

some language-specific changes such as long-term auditory memory than Broca‘s Area, 

where fine structure changes already took place before the appearance of language. 

 This leaves the corollary issue of what non-linguistic functions might be 

associated with Broca‘s Area.  Kohler and colleagues shed some important light on this 
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question by examining the firing patterns of individual visuo-motor ―mirror neurons‖ in 

area F5 of macaques, the homolog to Broca‘s Area in humans (Kohler et al., 2002).  

These mirror neurons were already associated with action-related perception that required 

viewing both an agent, such as a hand or a mouth, and an object manipulated by the agent 

(Gallese et al., 1996).  These neurons are thought to be important in planning and 

execution of movement.  Kohler and colleagues showed that these neurons are multi-

functional, and also react to the sounds produced by objects on which the monkey 

performed an action.   

 

1.1.3  Mirror neurons 

 Mirror neurons may have an even closer tie to linguistic performance than multi-

modal correlation.  These neurons in area F5 appear to code goal-oriented movement of 

the hand and mouth (Rizzolatti and Camarda et al., 1988; Murata et al., 1997; Rizzolatti 

and Fogassi et al., 2000).  Some of these mirror neurons are highly specific, coding 

particular types of grasping movements, for example, but most of them are active under 

much broader sets of stimuli, and appear to generalize across classes of particular 

instances (Rizzolatti, Fogassi, and Gallese, 2001).  Nelissen, et al., (2005) provided 

further functional magnetic resonance imaging (fMRI) evidence for the macaque 

homologs for BA 44 and BA 45.  These areas favor gestural information over object 

identification, but also distinguish their focus between hand gestures in the homolog to 

BA 45 and actions taken by an acting person in the homolog to BA 44, representing the 

action and its context, respectively.  Understanding of these gestures may very well be 
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accomplished by mapping the visual representations onto their motor representations, 

creating a type of ―motor knowledge.‖   

There is both direct and indirect evidence that humans have mirror neurons, and 

that Broca‘s Area responds similarly to area F5 when humans undergo experiments on 

arm and hand actions (Rizzolatti and Fadiga et al., 1996; Grafton et al., 1996; Decety, 

1997; Grèzes, 1998).  These experiments show the left over right asymmetry associated 

with primate anatomy already noted, and associate Broca‘s Area very clearly with 

―meaningful‖ rather than ―meaningless‖ gestures.  In assessing the evidence for and 

against competing hypotheses related to the primate mirror system, Rizzolatti, Fogassi 

and Gallese (2001) point out that the main weakness in the ―visual hypothesis‖--whereby 

actions are understood solely on the basis of their visual inputs, without reference to 

motor representations--is that there is no mechanism for validation of the meaning of the 

observed action.   By contrast, ―motor knowledge‖ provides the mechanism for validating 

and understanding gestures under the ―direct matching hypothesis.‖ 

Mirror system signals to Broca‘s Area from the parietal cortex (Rizzolatti, et al., 

2001) are associated both with language and non-linguistic motor function.  For example, 

BA 39 is related to language by lesion and cognitive deficit correlations, including 

deficits in active voice, agentless passives, subject relatives, object clefting, negative 

passives and object relatives (Dronkers, et al., 2004).  In reading tasks, BA 39 is 

correlated with BA 18 (r = 0.60) and BA 20 (r = 0.63), and is implicated in 

developmental dyslexia as well as acquired alexia (Horwitz, et al., 1998).  Similarly, BA 

7, which is generally associated with mental rotations, observation of tools, and 
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recognition of motor actions (Binkofski, et al, 1998), is also implicated in imitative 

learning (Iacoboni, et al., 1999; Iacoboni, 2005), and imitative learning is crucial to 

language acquisition (Tomasello, 2003).  In AIP, a macaque homolog to BA 7, neurons 

distinguish types of handgrips and particular shapes (Sakata, et al., 1992).  The co-

activations near Broca‘s Area for these functions include BA6 as well (Rizzolatti, et al., 

2001).  Neurons in macaque area PF, homologous to BA 7 and 40, are active for hand 

and eye movements (Nishitani, et al., 1999).
   
 

 

1.1.4  Non-linguistic functions and memory in humans 

 Besides language, meaningful patterns and sequences related to music also trigger 

responses to areas in human brains that are generally associated with language.  In an 

fMRI study, which provides spatial resolution on the order of 1-2 mm and temporal 

resolution on the order of a few seconds (Logothetis, et al., 2001), subjects exposed to 

musical sequences ending in discordant notes reacted significantly more throughout the 

perisylvian region than when exposed to note sequences that behaved according to rules 

of tonality with which they were familiar (Koelsch et al., 2002).  Magnetic 

encephalography (MEG), which has temporal resolution of a millisecond (Murakami and 

Okada, 2006), provides good evidence that Broca‘s Area is involved in processing this 

―musical syntax‖ at different timescales.  For example, ―in key‖ and discordant tones 

produce distinctly different levels of activity, and Broca‘s Area is particularly active in 

the case of discordant tones, with the reaction occurring approximately 200 msec after the 

tones are heard (Maess et al., 2001).  These are consistent with data on linguistic 
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perception, where gaps in a ―tone group‖ are perceived from 80 to about 240 msec, and 

ignored otherwise (Butcher, 1981).  In sequential processing, when confronted with a key 

phrase that was grammatical in a simple sentence, grammatical in an embedded sentence, 

and inserted ungrammatically into a third sentence, subjects showed a similar electrical 

activity (a P600 event-related potential/ERP) beginning at 200 to 300 msec, and reaching 

a maximum amplitude at 800 to 900 msec for the ungrammatical structure.  Incongruous 

tones in musical sequences showed a virtually identical pattern (Patel et al., 1998).  

Reaction times and amplitudes tend to be proportional to the ―distance‖ from anticipated 

musical values, similar to the hierarchy of reaction times in language as phrases become 

difficult or impossible to interpret (Patel, 2003; Koelsch et al., 2000).  

 Broca‘s Area also appears to have an important role in memory.  For language, 

bilingual subjects show distinctly different fMRI activation patterns for a given language 

depending on whether their second language was acquired simultaneously with their first 

one, or later when they were adults.  In the case of subjects who learned two languages at 

the same time, activation patterns in Broca‘s Area overlap considerably.  When the 

second language was acquired in adulthood, the two areas are distinct (Kim et al., 1997). 

 Broca‘s Area is also involved with a number of memory tasks apart from 

language.  This returns to the multi-modal associations with the area noted earlier in 

monkeys.  In humans, Broca‘s Area is involved in both spatial and object memory, in 

storage tasks and in executive tasks (Smith and Jonides, 1999). 
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1.2  Genetic evidence and a “clock” hypothesis 

 

1.2.1  Foxp2 

The foxp2 gene was isolated thanks to a point mutation in the KE family in which 

afflicted members have problems with fluency and grammar (Varga-Khadem, et al., 

2005).  However, just as the parallel anatomical patterns and behaviors related to Broca‘s 

Area in great apes and area F5 in monkeys rule out an exclusive tie between Broca‘s Area 

and human language, the evidence also rejects an exclusive tie between foxp2 and 

language.  The gene is highly conserved, among the five percent most highly conserved 

genes in human-rodent pairings, for example (Enard, et al., 2002).  Moreover, the human 

form of the gene differs from the chimpanzee version at only two amino acids.  The two 

changes occurred in the last 4 to 6 million years, after the branching of the hominid line 

from its common ancestor with the chimpanzee.  However, this is twice the expected 

mutation rate, providing evidence for intense evolutionary pressure on human ancestors 

at that time.  The two changes, in association with co-located alleles on the seventh 

chromosome, show evidence of an evolutionary ―sweep‖ no more than 200,000 years 

ago.   (Enard et al., 2002).   That is, the evidence points to a small, important change 

related to Broca‘s Area, language, and to the brain. 

 FOXP2 belongs to a family of ―forkhead box‖ proteins, which regulate the 

expression of their respective DNA sequences by means of a three-winged helical 

structure (Carlsson and Mahlapouu, 2002).  FOXP2 normally has arginine at site 553, 

while mutant FOXP2, as found in the KE family, substitutes histidine, which is adjacent 



 

13 

 

to another histidine in the third helix (Lai et al., 2001).  The analogous mutation at that 

site in FOXC1 causes a critical loss of function (Saleem et al., 2003). 

 There are only two differences between humans on the one hand and chimpanzees 

and gorillas on the other (threonine to asparagine at site 303 and asparagine to serine at 

site 325), three between humans and orangutans, and five between humans and mice 

(Zhang et al., 2002).  Of particular interest when we take up comparisons of functions at 

Broca‘s Area to similar functions in songbirds later, there are only eight differences 

between humans and zebra finches, making the protein 98 percent identical (Haesler et 

al., 2004).   

The human-specific change at site 325 probably created a substrate for 

phosphorylation by protein kinase C (Enard et al., 2002).  This particular prediction is 

based on an artificial neural network method that can estimate a protein's structure with 

an accuracy that exceeds 70 percent, and generally lies between 75 and 82 percent (Rost, 

1996; Sun, 1997).  This new substrate may well be the small but important change that 

enabled Broca‘s Area and related areas, particularly in the limbic system and cerebellum, 

to function as they do in language.  On the other hand, a new phosphorylation substrate 

may simply be an example of the general upregulation of gene expression in the brain 

that characterizes the differences between humans and chimpanzees (Preuss et al., 2004). 

Knockout mice lacking a form of protein kinase C (PKCγ) that occurs in climbing 

fiber cells are capable of learning simple motor skills, but are impaired in the smooth 

coordination of those same skills, such as in walking or balancing on a narrow object 

(Chen et al., 1995).  With these mice, the usual paring back of synapses between 
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climbing fiber cells and Purkinje cells does not take place during development, so that 

more than one climbing fiber cell will have synapses with the same Purkinje cell in 

adults.  In normal mature mice, there is a one to one correlation.  Mice lacking foxp2 do 

not reach maturity.  However, mice missing one copy of foxp2 experience altered 

ultrasonic vocalization, as well as cerebellar abnormalities associated with Purkinje cells 

(Shu, et al., 2005).  These results support the correlation of FOXP2, protein kinase C, and 

the smooth coordination of compound motor activity, such as that required for fluent 

speech, albeit outside the neocortex. 

 

1.2.2  Other fox genes 

 FOXP2 is one of a subfamily of FOXP proteins that has at least three other 

members.  Proteins in the subfamily contain four signature domains:  a DNA-binding 

winged-helix, a leucine zipper, a zinc finger, and a polyglutamine tract (Wang et al., 

2003).   All of them appear to be highly conserved, with the winged-helix the most 

divergent in structure.  Generally all seem to function by repressing genetic transcription, 

especially during development.  The leucine zipper appears to foster dimerization of 

FOXP proteins, and both DNA binding and dimerization may be required for these 

proteins to function.  Possibly as a result, FOXP1 and FOXP2 are expressed in mice in 

different ways in the epithelial tissue of airway branches in lungs, in motor pathways in 

the brain, in the outer mesoderm of the intestines, and in the outflow tract of the atria of 

the heart (Shu et al., 2001).  FOXP1 and FOXP3 are co-expressed in lymphoid cells.  
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FOXP4 overlaps the FOXP1/FOXP2 pattern in lung, intestine, and neural tissues as well, 

which further supports a complex pattern for transcription control (Lu et al., 2002).   

 The zinc finger domain that appears in FOX proteins in all species with fox genes 

can modify expression in either direction.  For example, while a zinc finger domain 

normally provides one of the mechanisms for repression, when tested in yeast cells, this 

domain seems to do the opposite:  FOXP2 transcription activity triples when fused to the 

GAL4 binding domain (Li et al., 2004).    The polyglutamine region, larger in FOXP2 

than FOXP1, seems to modulate repression activity as well.  The phosphorylation site in 

human FOXP2 provides yet more capacity for varying the activity of the forkhead 

domain.  In general, this set of complex interactions, whether by various combinations of 

dimerization, or by other means of cooperative or antagonistic control, is representative 

of the forkhead box family of genes.  In fact, the number of types of fox genes in an 

organism is directly correlated with that organism's complexity:  humans have more than 

40 kinds of fox genes overall.  They are related to a wide variety of developmental 

disorders, including the linguistic difficulties of the KE family stemming from a mutation 

in foxp2 (Carlsson and Mahlapuu, 2002). 

 

1.2.3  Foxp2 and anatomy in humans and songbirds 

 Much like humans, many songbirds learn their vocal patterns by copying the 

vocal cues they hear. Unlike humans, birds do not have a six-layered cortex, so there is 

no question of an exact homolog to Broca‘s Area, but they do express FOXP1 and 

FOXP2 in a manner strikingly similar to human fetuses (Teramitsu et al., 2004)   The 
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parallel structures for bird song are located in avian pallial and sub-pallial areas, as well 

as the homologous sets of nuclei within the dorsal thalamus.  These avian brain areas help 

provide sensorimotor integration, as well as skilled, coordinated movement, strikingly 

similar to the cognitive and motor capacities related to Broca‘s Area.  

 In humans, there are both cognitive and motor pathways associating the cortex 

with the basal ganglia and the cerebellum (Middleton and Strick, 2000).  Both are 

implicated in KE family sufferers from the foxp2 mutation (Varga-Khadem et al., 2005).   

The principal subcortical areas implicated in human cognitive and motor circuits by 

FOXP2 expression are the caudate nucleus and putamen, the substantia nigra pars 

reticulata and globus pallidus internal segment, as well as the medial dorsal, ventral 

anterior, and other nuclei of the thalamus on the cognitive loop; while the cerebellum 

(lobules VIIB, VIIIB, as well as the inferior olivary complex and red nucleus), the 

dentate nucleus and the medial dorsal, ventral lateral, and other  nuclei of the thalamus 

are on the motor loop.  

   As for songbirds, there are evident correspondences between these subcortical 

areas implicated by FOXP2 and the sub-pallial areas involved in the avian song cycle 

(Jarvis et al., 2005).  For example, the anterior (cognitive) loop in both involves the 

striatum and thalamus.  In birds, it contains the lateral Area X (LAreaX) in the striatum, 

which passes signals to the dorsal lateral nucleus of the medial thalamus (DLM).  In 

zebra finches, FOXP2 is expressed in Area X during the critical period for song learning.  

In adult canaries, it is expressed in Area X seasonally, when song production is unstable.  

Its expression in other birds varies similarly, indicating its association with vocal 
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plasticity (Haesler et al., 2004).  Similarly, the motor loop also contains the thalamus, in 

this case the nucleus uvaeformis.   

 Other correspondences are more notional, but the sub-cortical analogies to avian 

sub-pallial areas seem very strong.  To extend the analogies into the equivalent of the 

cortex for songbirds, there are also areas in the avian pallium that participate in both the 

auditory and motor pathways—the higher vocal center (HVC), and the robust nucleus of 

the arcopallium (RA).  Another key area in the cerebrum on the cognitive loop is the 

lateral magnocellular nucleus of the anterior nidopallium (LMAN).  These may play the 

computational role of Broca‘s Area.  They are involved in the moment-to-moment 

modulation of syllables in the songs of zebra finches (Kao et al., 2005).   

 Birds are also capable of acquiring ―syntax.‖  White-crowned sparrows, when 

exposed to their native song in two syllable phrases, were able to learn the entire song 

sequence despite never hearing the entire song from end to end.  Exposed to the song 

when the syllable pairs were in reverse order, the sparrows learned the song backwards 

(Rose et al., 2004). 

 

1.2.4  FOXP2 expression in mammals 

 FOXP2 very likely plays a part in cell-to-cell interaction during development, and 

persists at a reduced levels in the adult, both in birds and in mammals.  Takahashi, et al., 

(2003) studied FOXP2 expression in rats, reporting initial expression by E13 in the lateral 

ganglionic eminence (LGE) and subsequent alignment in striosomal compartments of the 

striatum, in patches with high levels of mu-opioid receptors, and devoid of calbindin-
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D28K.  LGE is the source of migrating GABAergic interneurons (Nadarajah and 

Parnavelas, 2002).  This implies a role for FOXP2 in interneurons as well as the striatum.  

Embryonic neocortical development is ―inside-out‖ with lower layers preceding 

the upper for layers II – VI (Sidman and Rakic, 1973; Marin-Padilla, 1999).  FOXP2 

appears only in subgranular layers (Maviel, 2004), so it is expressed only during the first 

half of that process, and thus affects the layers that communicate across and outside the 

cortex. In Broca‘s Area, Layer V contains numerous and noticeably large pyramidal cells 

(Amunts et al., 1999).  If FOXP2 is always associated with GABAergic interneurons, 

however, it only accounts for modulation of the internal processing and outputs from 

Layers V and VI.   

Broca‘s Area is associated with language and non-linguistic memory functions as 

outlined in the previous section.  It thus makes associations over times less than a second, 

and stores patterns acquired over a lifetime.  This implies a function requiring both short- 

and (very) long-term memory.  Recent and remote memories have different processes 

associated with them.  In the case of episodic memories, these are related to cortical-

hippocampal networks (Frankland and Bontempi, 2005).  The expression of C-FOS, 

which is activity dependent, in cortical layers demonstrates these different processes, and 

shows distinct differences in storing spatial memories in the parietal cortex of mice 

(Maviel at el., 2004).  That pattern is essentially identical to the expression of FOXP2 

with respect to cortical layers:  FOXP2 is expressed predominantly in Layers V and VI, 

which are also the layers showing the greatest c-fos activation, and implying a tie to 

recent memories; FOXP2 is not expressed in Layers II and III, and hardly expressed in 
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Layer IV, where the lack of c-fos activity implied a significant relationship to remote 

memories. 

On the other hand, the association of Broca‘s Area with long term memory (Smith 

and Jonides, 1999) and especially differential storage of first and second languages (Kim, 

et al., 1997) as well as the association of Layers II and III with remote memories 

(Frankland and Bontempi, 2005) implies that other factors than foxp2 affect Broca‘s 

Area, even for language functions. 

 

1.2.5  Additional interacting change factors 

 Just as the differing evidence of left-biased asymmetry across humans and great 

apes for Broca‘s Area and the planum temporale indicates that more than one set of 

changes underlies the emergence of language, evidence of development in hominids and 

great apes also shows that other human traits emerged from more than just one change, 

no matter how important.  Compared to chimpanzees, for example, humans have an 

immature skull shape and size.  This accounts for its relatively large size in humans, but it 

is unlikely that these differences stem from a single source.  For example, human and 

chimpanzee growth rates differ substantially through adolescence (Gould, 1977).  

Humans likewise developed more slowly and had more immature features than the earlier 

hominids (Dean et al., 2001; Rice, 2001), and differences between humans and 

Neanderthals also arose early in child development (Ponce de León and Zollikofer, 

2001).  Generally, comparative evidence indicates a mosaic pattern of developmental 



 

20 

 

traits, and not a simple change of rates or the acquisition of a single new trait (Moggi-

Cecchi, 2001 

 Developmental changes of any kind, much less acquisition of complex traits such 

as language are thus very likely to involve the interaction of multiple factors.  During 

corticogenesis, known developmental patterns involve interacting factors, such as cellular 

precursors and cell cycle duration (Lukaszewicz, et al., 2005), or short and long-term 

control factors (Donoghue and Rakic, 1999).  Generally, mammalian neocortical 

development patterns conserve GABAergic transverse migration patterns, the 

transformation of cortical germinal zones and the striatocortical junction, and the 

amplification of the REELIN signal pathway (Molnár, et al., 2006).   

 In addition to reelin, the fate of cortical projection neurons, and thus of 

neocortical development is controlled by a number of other factors as well, such as emx2, 

pax6, lhx2, and foxg1.  Without emx2 or pax6, for example, the neocortex fails to form at 

the expense of the basal ganglia (Muzio, et al., 2002).  Similarly, without lhx2, the 

neocortex fails to form at the expense of the cortical hem and choroid plexus (Monuki, et 

al., 2001).  Suppression of foxg1 likewise suppresses the formation of both basal ganglia 

and neocortex at the expense of the cortical hem and the archicortex (Muzio and 

Mallamaci , 2005; Hanashima, et al., 2004).  Molyneaux, et al., (2007) have proposed a 

model whereby these four factors provide neocortical potential, which sets the stage for 

the generation of glutamatergic projection neurons of varying types.  

 FOXP2 exhibits region and layer-specific patterns of expression and function.  

FOXP2 is expressed in Broca‘s Area and Brodmann area 6 in the motor cortex, as well as 
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the caudate/putamen and inferior lobes of the cerebellum.  The KE-point mutation results 

in reduced gray matter connecting these areas to other areas in the brain, especially in the 

caudate nucleus, the cerebellum, and the left and right inferior frontal gyrus consistent 

with the KE family problems with fluency and fine motor movement in the face and 

mouth.  Conversely, it is also associated with increased gray matter in the planum 

temporale (Belton et al., 2003).   

 This pattern is further consistent with expression of FOXP2 in mammal fetuses, 

where the mRNA signal appears on the inner cortical plate and is limited to the tissue 

below the granule cells in Layer IV, and especially in Layer VI (Lai et al., 2003; Ferland 

et al., 2003; Takahashi et al., 2003).  Layer VI is principally involved in projections to the 

striatum and thalamus (Creuzfeldt, 2005), and mutant foxp2 disruption corresponds to the 

same areas.  KE family members with the point mutation show significant lack of activity 

in Broca‘s Area and the putamen between Broca‘s Area and the limbic system in verbal 

generation tasks.  Possibly in partial compensation, they show heightened activity in 

verbal tasks in the planum temporale, and in both hemispheres (Liégeois et al., 2003), 

consistent with added gray matter.    

 

1.2.6  Control of neocortical development in mammals 

 Neocortical development has unique features in primates, particularly in the 

development of the upper layers, where regulation of the G-1 portion of the cell cycle is 

especially important in determining the numbers and types of neurons in specific areas by 

controlling the rates of neuron production (Dehay and Kennedy, 2007).  At least two 
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dozen other proteins act as substrates to control the activity of cdk5, which regulates the 

cytoarchitecture of the central nervous system (Dhavan, et al., 2001). 

Postnatal development responds to comparable control.  Lamina-specific 

developmental control of thalamocortical projections, with thalamic projections to the 

cortex preceding projections back to thalamus, has been observed in rat and mouse 

neocortex.  Yamamoto, et al. (1997) and (2000) describe developmentally-regulated and 

lamina-specific expression of molecules in rat cortex that control axonal branching, 

particularly in Layer IV.  Jacobs, et al. (2007) reveals a post-natal pause at 10-14 days 

before early corticothalamic projections begin to invade their target nuclei in the 

thalamus.  Laminar distribution of NR1, NR2A and NR2B NMDA-receptor molecules 

differs systematically as ocular dominance columns develop in cats (Mower and Chen, 

2003).  All three types had low expressions in Layer IV and VI postnatally, but a 

complementary distribution between NR1 on the one hand and NR2A/NR2B emerged 

during the critical period, when NR1 appeared preferentially in Layer IV and the 

supragranular layers, while NR2A/NR2B did the converse.  NR1 declined in expression 

in adult cats after the formation of permanent dominance columns.  

Experience-dependent synaptogenesis is also subject to internal genetic control.  

For example, neurogenin2, lmo4 and neurod2 mediate the activity-dependent refinement 

of thalamocortical axon terminals (Polleux, et al., 2007).  Thus, internal control factors 

operate at all spatial scales from subcellular to tissue formations, and all ages from 

conception.  Penttonen and Buzsáki (2003) describe a hierarchy of cerebral oscillators 

related to cortical functions.  Buzsáki (2006) is a comprehensive synthesis and review of 
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related research that makes the case that oscillations provide the unifying mechanism for 

linking physically separate neural operations.  In this view, sensory inputs provide 

perturbations to self-organizing oscillatory signals.  These and subsequent down-stream 

perturbations are kept coherent by the underlying oscillatory patterns that ultimately 

enable learning and adaptive behaviors.  Llinás (2001) makes a similar argument.   

 These oscillations are embedded in slower cellular processes, particularly during 

development.  For example, Katz and Shatz (1996) demonstrate that patterned visual 

stimuli can transform intrinsic activity in cell assemblies into new patterns correlated 

with the stimuli.  Feldman et al. (1999) describe similar results for rat somatosensory 

cortex.  Khazipov, et al. (2004) further establish the correlation between local spindle 

activity in neonatal rat somatosensory cortex with episodic long-range Layer V and 

thalamocortical activity linked to spontaneous limb movements.   

 

1.2.7  Noise and differential genetic expression 

Gene transcription is subject to two principal sources of noise that can affect the 

gene regulation function—noise internal to the cell, and external noise.  Quantitative 

assessment of these two sources indicates that the internal noise is subject to very rapid 

decay, so that the principal influences on single gene regulation are the biochemical 

factors that trigger gene transcription, together with external noise and only those internal 

factors that change slowly relative to an entire cell cycle (Rosenfeld et al., 2005).  In gene 

networks, including the gene cascades that proceed as a cell develops, even the small 

perturbations at the local noise level, however, can have major effects downstream 
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(Pedraza and van Oudenaarden, 2005; Elowitz et al., 2002).  Translational noise is also a 

source of variation in phenotypes, so the combination of these factors probably led to 

selection pressure in favor of inefficient translation of genes even when efficient 

translation would consume less energy, since inefficient translation would lead to lower 

fluctuations (noise) in protein concentrations in the cell.  One well-known example of this 

inefficient translation is cyclic AMP (Ozbudak et al., 2002).   

 At the same time, cell-to-cell variations can depend on noise at the transcription 

level, so that cell populations demonstrate extended bistable states in gene expression.  

Thus, noise in genetic cascades may very well play a significant role in cell phenotype 

variation, or cell differentiation as well (Blake et al., 2003).  Taken further, this means 

that incorporation of noise in regulation is an evolvable trait that can help maintain a 

balance between the fidelity of gene expression and in creating cellular diversity (Raser 

and O'Shea, 2004).  Autocatalysis, or positive feedback, demonstrably contributes to 

control of cellular function in the context of these bistable states (Becskei et al. 2001), 

while negative feedback tends to function in homeostatic adjustments (Becskei and 

Serrano, 2000), and can produce effects five times faster than when negative 

autoregulation is absent (Rosenfeld et al., 2002).  Bistability of this sort essentially 

creates an all-or-nothing switching mechanism, illustrated in another well-known 

example by the activity of MAP Kinase in the cell cycle (Ferrell and Machleder, 1998). 
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1.2.8  A ―clock‖ hypothesis 

The remaining chapters in this thesis will focus on a unique set of data on the 

development of the neocortex in humans (Conel, 1939-1967).  It includes observations at 

eight ages from birth to six years old (N = 54) of neuron somal sizes and dimensions, 

layer depths, neuron densities from cresyl violet staining, and fiber densities from Golgi-

Cox and Weigert staining.   It is possible to calculate changes to local neuron populations 

for the left hemisphere in 37 neocortical areas, including BA 44 and 45.   As this review 

of observations on just Broca‘s Area illustrates, the underlying factors that produced 

these population changes in Conel‘s subjects are legion and only partially known.  

Nevertheless, it is possible to search for regularities across the neocortex, and then to 

assess some of the local peculiarities that underlie the postnatal development of human 

cognitive function.   

Given the interweaving of small-to-large scale spatial and temporal changes that 

determine individual cell fates and the gross organization of the brain, and given the 

evident utility of noise in the evolution and regulation of genetic cascades, one can 

postulate 1) a self-organizing and potentially hierarchical developmental ―clock‖ that 

paces the organization of neocortical regions (Brodmann Areas) needed for specific 

cognitive processes; and 2) differential heterogeneous response to the ―clock‖ at the level 

of area/layer combinations that is subject to evolutionary pressure.  Generalizing from the 

examples of left-over-right asymmetry in great ape and hominid perisylvian cortical areas 

and the extreme level of conservation in foxp2 in vertebrates, one can also posit 3) the 

conservation of proven hierarchical developmental sequences in the neocortex.   
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The remainder of this chapter will examine some of the concepts that will be used 

to probe this hypothesis in light of Conel‘s data. 

 

1.3  Bistability, attractor regimes, and network dynamics 

 

1.3.1  Multiple time scales 

While genes, by virtue of their control of cell differentiation and migration, set 

down a framework for data processing that specifies what data types interact with each 

other, the neural constituents of the brain must take that input, use it, and learn from it.  

Development sets the conditions, while the components of the active brain must then 

follow through to create an individual's actual competence at any given task.  Thus, 

genetic, epigenetic and environmental factors all interact during postnatal development. 

The timescale for this activity spans short and long-term processes over several 

orders of magnitude.  Migrating cerebellar neurons have average velocities of 3-4 µm per 

minute (Maviel et al., 2004).  Thus, migrating cells in rat neocortex could achieve their 

final position in several days (Bai et al., 2003). By contrast, the actual processing based 

on the results of all this movement and positioning takes place in 10s and 100s of 

milliseconds, while learning processes set in over different time courses from minutes to 

days, months and years for complex behaviors such as language. 

 

 

 



 

27 

 

1.3.2  Bistability at multiple levels 

 As described previously, noisy regulation of gene expression can lead to bistable 

regimes.  The processes for information processing and learning are very different from 

genetic regulation, but they also are essentially stochastic and lead to very similar 

patterns of stability.  For example, sensory changes that affect potassium conductances 

can shift Purkinje cells from a bistable spiking mode to either of two single stable spiking 

states (Loewenstein et al., 2005).  Bistable behavior is also easy to find in assemblies of 

neurons.  Networks with NMDA-mediated recurrent synapses, consisting of pyramidal 

cells and interneurons that provide the feedback show bistable behavior that shifts to a 

single stable state either when GABA conductance prompted by the interneurons shifts 

above a critical threshold, or when AMPA-mediated conductance shifts the state of the 

network in the other direction (Lisman et al., 1998).   

Models of working memory consisting of recurrent excitatory networks with 

simpler leaky integration neurons also produce this behavior (Durstewitz et al., 2000).  

Other studies of bistability in networks show that the hysteresis loops that create these 

bistable reactive regions, also allow sensitivity by the network to its recent history on 

input patterns (Pouget and Latham, 2002).  Maximization of Gaussian mutual 

information in the presence of noise turns out to provide the stable computational 

behavior and sparse coding found in biological neural networks as well (Linsker, 1993).   

 Activity-dependent processes in excitatory neurons show just this kind of bistable 

behavior in experimental studies of CA1 hippocampal neurons (Lisman et al., 2002).  

While the AMPA and NMDA receptors in these neurons function at time scales of far 
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less than a second, NMDA receptors, anchored by PSD95 connected to AMPA anchored 

by assemblies containing Actinin, Actin and SAP97, all phosphorylated by 

calcium/calmodulin-related kinase II (CaMKII) provide an energy-efficient,  bistable 

―switch‖ that persists on the order of days.  At normal local concentrations of Ca2+, this 

configuration, which relies on an autophosphorylated state of CaMKII, shows only 10 

percent dephosphorylation of the kinase after 45 hours (Lisman and Zhabotinsky, 2001).    

 In the case of Broca‘s Area, this NMDA-AMPA/CaMKII mechanism would be a 

reasonable one to impute within a larger framework for synpotogenesis to the numerous 

and prominently large pyramidal cells in Layer III (Amunts, et al., 1999).  Generally, 

Layer III is also predominantly involved in remote, rather than recent memories 

(Frankland and Bontempi, 2005), so activation of these neurons in language tasks would 

probably account for the fMRI patterns that can distinguish native from learned second 

languages (Kim, et al., 1997).  The fact that FOXP2 is subgranular may thus help explain 

why the KE family members with the foxp2 mutation show fewer difficulties with 

comprehension than with speech production (Belton et al., 2003). 

 

1.3.3  Dimensions and structure of neuron state and change spaces 

Interlinked processes that operated across spatial and temporal scales can be 

examined productively using techniques from fractal geometry and from attractor 

systems in dynamics (Buzsáki G, 2006).  One such technique is the use of correlation 

integrals to probe the dimensions and structure of a ―state space‖ (Grassberger and 

Procaccia, 1983).  While correlation integrals are most frequently used in the study of 
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time series, they have also been applied to examine temporal and spatial synchronization 

(Vasconcelos, et al., 2004).  Cooper (1999) applies them to language change.    

Dimensions and structures of spaces become meaningful if one can associate the 

idea of a distance to the data.  Shankle, et al, (1998) attempted to do this for the entire 

Conel neocortical data set, using an ordination technique called correspondence analysis 

to organize all of the data into profiles and then measuring concerted upward or 

downward changes across profiles.  They concluded first that Conel‘s data is remarkably 

consistent, and thus free from observational noise.  They also conclude that these 

combined profiles of neuron density, myelinated and non-myelinated fiber density, layer 

depth, somatal size, and somatal dimensions demonstrate a unified developmental 

process across the neocortex. This already supports the first premise of the clock 

hypothesis that such a unified process exists.  However, correspondence analysis, which 

is essentially a scale-free procedure, does not produce sufficient differences between 

neocortical areas to allow an examination of differential patterns within that process.  

Correlation integrals also rely upon scale-free behavior and are similarly limited. 

Microarray analysis provides the basis for an alternative analytic model that 

retains the scale of pairwise distinctions.  While there does not appear to be a rigid 

process for evaluating gene and protein expression (Ewens and Grant, 2001), the analysis 

of the conservation of regional genetic expression in human and mouse brains in Strand, 

et al. (2007) provides a good example for differential analysis of normalized genetic 

expression by brain region.  In comparing expressions of human and murine genes in 

motor cortex, striatum and cerebellum, they found that amino acid sequences for genes 
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with non-uniform, patterned distinctions between the three regions are conserved, while 

they are not for genes with uniform expression.   

As to method, after screening for significant regional expression levels, the 

relevant steps for comparing mouse to man consisted of creating ―probesets‖ of log ratios 

by area, correction for the variance of human or mouse data, as appropriate, and 

calculation of the resulting Euclidean distances to examine for clustering.  Since Conel 

provided eight sets of observations at standard locations for all of his subjects, 

comparable steps can be used as described in the following chapter to process Conel‘s 

data.  These sets provide an eight-dimensional state space that can be used in turn to 

create a seven-dimensional change space, where each neocortical area has its own vector, 

representing its trajectory during development.  It is then possible to use the distance 

metric, this time the correlation distance, to assess statistically significant clustering 

among the vectors.  Consequently, the correlation distance measures correlations between 

the vectors with greater precision than using correlation integrals.  These measures 

provide considerable information about the change vectors.  Each of these concepts will 

receive a precise definition in the next chapter. 

This thesis will employ two of Conel‘s sets of observations—layer depths and 

neuron density—to calculate changes to postnatal human neuron populations from birth 

to six years of age.  Neuron population changes probably correlate with general changes 

to cognitive processing.  For example, in plausible noisy neural networks with population 

recruitment and heterogeneous populations, increased neuron density can confer a 

learning advantage (Samengo and Treves, 2001; Sompolinsky, et al., 2001; Shamir and 
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Sompolinsky, 2006).  Poisson-like covariances in the firing rates of neuron populations 

appear to provide nearly optimal Bayes inference (Ma, et al., 2006).  Moreover, the stable 

neuron population at a given age appears to correlate well with generalized 

environmental demands.  Consequently, the results in this thesis could potentially be 

tested by imagery where structural and fMRI results are contrasted.  For example, the 

fMRI distinction in language areas in bilinguals in Kim, et al. (1997) provides a location 

for an on-going language task.  By contrast, Lee, et al., (2007) reveals that vocabulary 

size correlates with gray matter density, which could be estimated by structural MRI, but 

it is not correlated with fMRI activity. 

Figure 1-1 provides a sketch of the ―clock‖ hypothesis.  As outlined above, 

developmental inputs are quite complex and include genetic, epigenetic and 

environmental factors, all of which affect neuron population changes.  Those changes 

will be measured by population change vectors, and the population changes will reflect 

multistable conditions at each layer/area address.  The methods developed in the 

following chapter will be used to identify any significantly correlated developmental 

changes to neuron population. 
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Figure 1-1.  Sketch of the “clock” hypothesis for neurons.  Conel‘s data permits tests 

of developmental models at the level of neuron population changes.  We assume genetic, 

epigenetic and environmental factors act as inputs that effect cortical addresses 

differentially.  We will test emerging change patterns against the null hypothesis that the 

relative share of neurons at a given address at a given observation age is the same as at 

the prior observation age, going back to birth. We propose that correlated and statistically 

significant simultaneous change has a functional basis.   
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2.  A change vector method to assess longitudinal changes 

 

The clock hypothesis in the previous chapter has three components:  1) a self-

organizing and potentially hierarchical developmental clock that paces the 

neurodevelopment of neocortical regions (Brodmann Areas) needed for specific cognitive 

processes; and 2) differential heterogeneous response to the clock at the level of 

area/layer combinations that is subject to evolutionary pressure and thus leads to 3) the 

conservation of hierarchical developmental sequences in the neocortex that promote 

fitness.  The first step in applying this hypothesis to the specific cognitive functions 

related to Broca‘s Area, as well as to the human brain in general, is to find a method that 

can detect developmental changes at the level of area and layer combinations (defined as 

―addresses‖ for the remainder of this thesis).   In this chapter, we will accordingly derive 

the normalization steps and analytic methods needed to detect these developmental 

changes in the Conel (1939-1967) data set mentioned at the end of Chapter 1.  In Chapter 

3, this method will then be applied to neuron population changes in the developing 

human neocortex.  In Chapter 4, it will likewise be applied to changes to myelinated fiber 

densities during development.  In Chapter 5, the method will be extended to a second 

body of data related to language change—a complex behavior linked in part to Broca‘s 

Area. 
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2.1.  The change vector method 

 

Change vectors consist of normalized changes (change steps) derived from 

sequential observations.  The change vector method introduces a right-tailed test for 

statistical significance of these change steps, and applies k-means cluster analysis to 

determine significant correlations between change vectors.  The method provides a 

parametric statistical method for measurements of a single non-negative variable that can 

be ranked for each iteration of the sequence of observations.  In Chapter 3, the ranking 

will be of neuron populations evaluated across 37 Brodmann Areas and the six cortical 

layers (222 addresses).  In Chapter 4, the ranking will of myelinated fiber densities 

evaluated across 42 Brodmann Areas in ten layers (420 addresses).  In Chapter 5, the 

ranking will be of usage frequencies of English verbs that happen to use non-‗ed‘ forms 

for the past tense in different centuries.    For each data set, we first transform the 

rankable observations into normalized change steps to create the respective change 

vectors for each chapter.  Then we compare the change vectors by measuring their 

correlation with each other as described below.  This allows us to isolate which changes 

are statistically significant, and which sequence of changes are significantly correlated. 

 

 

2.1.1  Deriving change vector data 
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Begin with a table T(r, c) of r cases arranged as rows and c columns that record 

sequential observations of some variable for each of the r cases at common times t1 to tc.   

For Chapter 3, T(r, c) will be a 222 x 8 matrix of neuron populations where t1 to t8 

correspond to the eight observations ages in Conel‘s data described later.  Equation 1 

normalizes the value of the variable (neuron population for Chapter 3) at each time from 

t1 to tc and defines each member of the log ratio table R(r, c).   

Equation 1 

ijijiji crTcrTcrR ),(log),(log),(  

We next normalize R(r, c) between the times of observation by dividing out the 

pooled variance across each change step.  The sample variance in each column cj is given 

by  

Equation 2 

r

i
ijijij crTcrT

r
crs

1

2
2 ),(log),(log

1
),(  

In Equation 3 we then define the change C(r, c-1) for each of the r cases and each 

of the c-1 change steps defined by T(r, c) as the squared difference between R(r, cj) and 

R(r, cj+1) divided by the pooled variance as defined in Equation 2. 

Equation 3 
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As noted, Equation 3 is defined for c-1 change steps over a series of c-1 time 

intervals (or change intervals) pertaining to the initial observation table T(r, c).  For 



 

36 

 

consistency and simplicity, the three corresponding tables that contain all observations, 

normalized log ratios and normalized changes in a data set will be referred to as T(r, c), 

R(r, c) and C(r, c-1), respectively.  The functions in Equations 1 and 3 will be 

abbreviated as R for R(ri, cj) and C for C(ri, cj).  Times of observation t1 to tc correspond 

to the times in table T(r, c).  Change intervals will refer to the c-1 times at which the 

respective change steps end.   Thus, in the Conel data later, the 72 months change interval 

will be the period between the 48 and 72 month observation ages.  In the verbal data, the 

10
th

 century would be the change interval between 901 and 1000 AD, which is consistent 

with current usage. 

The normalized change function C has some useful properties.  Let us begin with 

the null hypothesis that R(ri,cj) = R(ri,cj+1), abbreviated below as R0 = R1.  This means 

that the relative magnitude of the variable in T(r, c) for each case does not change with 

respect to all the other cases during any change step.  Define the likelihood ratio λ 

Equation 4 

)(

)(

max

max

L

L
 

 

where Lmax(ω) is the maximum likelihood for the null hypothesis, and where Lmax(Ω) is 

the maximum likelihood of R(r, c) in general.  This is a case of a nested hypothesis as 

required by Wilks (1962:  419-421).  Then,  

Equation 5 
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where L is the likelihood of R(r, c).  Using the Cramér-Rao bound 

Equation 6 
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Equation 5 simplifies to 

Equation 7 
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RR
 

This is asymptotically chi-square with one degree of freedom with increasing n, where n 

= 222 for Conel for each change step and n = 1554 for the entire Conel neuron data set in 

Chapter 3, and n = 420 and n = 2940, respectively, for Conel‘s myelinated fiber data set 

in Chapter 4 (for a general discussion of the -2 log λ statistic see Ewens and Grant, 2001:  

section 8.4.2).  Using the pooled variance for each change step as defined in Equation 2, 

the -2 log λ statistic is approximately the function C in Equation 3, which is thus also 

approximately chi-square with one degree of freedom.  Since values of C > 3.9 have p < 

0.05 in a right-tailed test of significance against a chi-square distribution with one degree 

of freedom, it is possible to establish a threshold of statistical significance for changes 

embedded in any table of non-negative observations T(r, c). 

Equation 8 then defines a normalized (c-1)-dimensional ―change vector‖ that 

defines the successive change intervals in T(r, c) for each of the r cases.  
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Equation 8 

)1,()2,()1,()( crCrCrCrP iiii 
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These vectors are used in k-means cluster analysis as outlined below in section 

2.1.4.  First, however, we will examine the estimated right-tailed error associated with the 

normalized function C, as well as some implications to be drawn from the null hypothesis 

that R0 = R1. 

 

2.1.2  Estimated error of the C(r, c - 1) approximation to a chi-square distribution with 

one degree of freedom 

To estimate the difference between C(r, c - 1) and the chi-square distribution with 

one degree of freedom we use a Monte Carlo simulation.  For the simulation, the mean 

cumulative distribution function (cdf) output from 100 iterations of Equation 3 for 

increasing numbers of standard normal random input variables with zero mean and 

standard deviation = 1 (i.e., N(0,1)) was compared to the cdf of the chi-square 

distribution with one degree of freedom.   

Figure 2-1 shows the difference between the two cdfs as a function of C(r, c – 1) 

(panel A), and the logarithm of the difference (base 10) (panel B).  N increases from 5 to 

37 (the number of Brodmann Areas or subareas described in Chapter 3 (neurons)), to 42 

(the number of Brodmann Areas or subareas described in Chapter 4 (myelinated fibers)), 

to 222 (the total number of addresses discussed in Chapter 3), and finally to 420 (the total 

number of addresses discussed in Chapter 4).  Generally, the difference between the C(r, 

c – 1) and chi-square cdfs decreases with increasing N and with increasing C(r, c – 1) 
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value, which means that the approximation is most valid for right-tail tests.  The 

difference, or error, is less than one percent when the C and chi-square statistics are 

greater than 5.  Convergence is generally faster with increasing N. 

Figure 2-2 shows the estimated discrepancy in p-value that results from using 

Equation 3 as an approximation for the chi-square distribution with one degree of 

freedom.  These are smaller than the differences in cdf values, with the greatest 

discrepancy in p-value at 8.1 percent for C ≈ 0.  For N > 5, the greatest discrepancy is 

less than one percent for C = 2.3.  For C = 3.9, used as the threshold for statistical 

significance in this thesis, the discrepancy is less than 7.6 x 10
-4

 for N = 222 and less than 

1.6 x 10
-3

 for N = 420. 

The data sets analyzed in Chapters 3, 4 and 5 have total n = 1554 (neurons), n = 

(2940 myelinated fibers), and n = 2280 (irregular verbs), respectively.  Figure 2-3 depicts 

the p-discrepancy for datasets of this size.  For C > 3.9, the discrepancy is approximately 

0.001.  The discrepancy decreases with increasing values of C to approximately 10
-5

 for 

the largest observed values. 
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Figure 2-1.  Discrepancy in cdf value between Equation 3 and the chi-square 

distribution with one degree of freedom.  A) Discrepancy for increasing N and 

increasing C.  B) Logarithm (base 10) of the discrepancy for increasing N and  
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increasing C. 
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Figure 2-2.  Discrepancy in p-value between Equation 3 and the chi-square 

distribution with one degree of freedom.  A) Discrepancy for increasing N and 
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increasing C.  B) Logarithm (base 10) of the discrepancy for increasing N and increasing 

C. 
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Figure 2-3.  Discrepancy in p-value between Equation 3 and the chi-square 

distribution with one degree of freedom for the datasets in Chapters 3, 4 and 5.  The 

estimated p-value for C > 3.9 is p < 0.05, based on the chi-square distribution with one 

degree of freedom.  The dashed line shows C = 3.9.  The discrepancy for the p-value at 

that point is approximately 0.001. 
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2.1.3  Interpretation of the R0 = R1  null hypothesis 

In Section 2.1.2 the null hypothesis that R0 = R1 leads to the statistic C having a 

distribution closely approximated by the chi-square distribution with one degree of 

freedom, especially for large n and for large values of C.   Here, Equation 1 will be used 

to show some useful situations where R1 = R0.  In addition, surrogate data will be used to 

show situations where R1 is approximately equal to R0 and where clearly R1 ≠ R0. 

For T(r, c) with values drawn from one distribution (analogous to Friedman 

(1937) for ranks), the value of the standard deviation for any row is the same by 

hypothesis, with the differences among the values arising solely from sampling 

fluctuations.  The relative magnitude for a particular address in a column of T(r, c) is then 

a matter of chance; repeated samples will eventually result in the same distribution at 

each address.  The values of R(r, c) will likewise have the same transformed distribution 

within each column and the distribution C(r, c - 1) is approximately chi-square with one 

degree of freedom. 

The next case of dependence on initial conditions is more interesting.  Consider 

T(r, c) where c1 is randomly distributed according to some distribution and c2 = ac1, c3 = 

bc2, and so on for each row.  That is, for each change step the end state is defined as the 

same as the initial state multiplied by a constant.  In Equation 1 the logratio is dependent 

on the ratio νx/νi, where νx is ν(x, cj) and νi is mean[ν(xi,cj)], where i ranges over all the 

values in column cj.  Clearly, νx/νi =aνx/aνi  =bνx/bνi =  …  Thus, R1 = R0 in all cases and 

the distribution of C(r, c) is approximately chi-square with one degree of freedom.  

Exponential growth and decay are two biologically significant special cases of this kind 



 

44 

 

of dependence:  When written in the form N0exp(γt) for growth and N0exp(-λt) for decay 

of an initial population N0, exp(γt) and exp(-λt) are multiplicative constants at each 

change step. 

For the next case, assume that the columns of T(r, c) are normally distributed with 

mean µi and standard deviation σi for columns i = 1, … N.  Thus, the overall distribution 

of T(r, c) constitutes a mixture of N normal distributions arrayed in N columns.  When 

the columns are independent and identically distributed, R1 = R0 as already discussed.  

When the columns contain different normal distributions, Equation 1 transforms the 

respective means to zero so that R1 - R0 = 0, but the standard deviation varies, as 

illustrated in Figure 2-4. 
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Figure 2-4.  Histogram of R1 – R0 when T0 and T1 are normally distributed with 

differing means and standard deviations.  Surrogate data consists of the mean of 100 

iterations of two sets of 1000 draws arranged in two columns, A and B.  Mean(A) = 

mean(T0) = 100, σ0 = 10.   Mean(B) = mean(T1)= 200.  The standard deviation of B = T1 

varies from σ = 10 to σ = 100.  When T0 and T1 are different normal distributions, but 

each of the 1000 elements in A and B are drawn from the same normal distribution 

respectively, R0 and R1 are almost the same, with the discrepancy increasing with 

variance. 

Thus, when only one normal distribution exists at each observation age, change 

steps are only sensitive to different normal distributions with increasing variance.  Figure 
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2-5 shows that Equation 3 does not distinguish these cases with much sensitivity either.  

A KS test for goodness-of-fit for the cumulative distribution function of C(r, c - 1) 

compared to a chi-square distribution with one degree of freedom fails to reject the null 

hypothesis that the two are the same until the number of observations n is large or until 

the variance of the underlying distributions is large. 
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Figure 2-5.  Cumulative probability distributions of C(r, c - 1) for the cases in 

Figure 2-4 compared to a chi-square distribution with one degree of freedom.  

Although the distributions for T0 and T1 are different, a KS test fails to reject the null 

hypothesis that C for the change step from T0 to T1 is the same as a chi-square 

distribution with one degree of freedom until values for C > 9.5 for 100 iterations of 

1000 observations.  At that point the simulation for σ(B) = 80 has a cumulative 
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probability of 1 and p < 0.05 for the KS test.  When all cumulative probability 

distributions have reached approximately 1, p for the KS test ranges from p < 0.05 for 

σ(B) = 20 to p < 10
-12

 for σ(B) = 100. 

Thus, a KS test of change steps does eventually distinguish between two different 

normal distributions when there is a single distribution in each column in T(r, c).  

However, when there is a mixture of normal distributions within a single column in T(r, 

c), the KS test is far more sensitive.  Figure 2-6 shows R1 – R0 for the same surrogate set 

A as used above, but this time the first 500 elements in a new surrogate D have increased 

from 100 to 150, and the second 500 elements in D have increased from 100 to 200.  The 

standard deviation is allowed to vary as before.  In this case, R1 – R0  is bi-modal.  If a 

third distribution is introduced into a surrogate set, the result is likewise tri-modal (not 

shown). 
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Figure 2-6.  Histogram of R1-R0 for a mixture of two normal distributions in T1.  The 

surrogate data setup is identical to the previous figures, except that set D is used for T1.  

D consists of 500 elements where the count increases from a mean of 100 in A (or T0) to 

a mean of 150, and a further 500 elements where the count increases from a mean of 100 

in A to a mean of 200.  Standard deviation of D is as shown. 

 

As expected, the cumulative distribution function of C(r, c1) for this change step 

is obviously not the same as a chi-square distribution with one degree of freedom as 

shown in Figure 2-7. 
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Figure 2-7.  Cumulative probability distributions for C(r, c - 1) for the case of a 

mixture of two normal distributions at T1, compared to a chi-square distribution 

with one degree of freedom.  The KS test in this case is much more sensitive than the 

previous one where there are no mixtures within the columns in T(r, c).  Although the 

effect of multiple mixtures diminishes with increased variance, p ranges from  p < 10
-6

 to 

p < 10
-12

 for the portions of the cdfs depicted on the graphs, where a comparable KS test 

in Figure 2-5 would fail to reject the null hypothesis in any of the cases. 

 

To summarize briefly, assume a table of observations T(r, c) with r rows and c 

columns.  It has a corresponding logratio table R(r, c) derived from Equation 1 and a 

table of change steps C(r, c-1) from Equation 3.  For any given change step, to a good 
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approximation the value of C(r, c-1) will follow a chi-square distribution with one degree 

of freedom when R0 at the beginning of the change step and R1 at the end of the change 

step are the same.  These demonstrations with surrogate data show that the null 

hypothesis that R0 and R1 are the same is most easily rejected using the KS test when the 

distribution of ci in T(r, c) consists of a mixture of multiple different normal distributions.  

Conversely, if for each row ci is a multiple of ci-1, R0 and R1 are automatically the same 

by Equation 1 and the C(r, c-1) statistic will follow the chi-square distribution with one 

degree of freedom.  This includes cases of exponential growth or decay where the 

relationship can be written in the form N0exp(γt) or N0exp(-λt), respectively.  For cases of 

linear dependence of the form y = ax + b, b will contribute to the variance of R(r, c), but 

this contribution from b would only be detectable for large b and with a large numbers of 

observations.  Thus, when C(r, c-1) does not have a chi-square distribution with one 

degree of freedom, the most likely reason is that the columns of T(r, c) contain mixtures 

of distributions within them.  In that case, the k-means cluster analysis can assist in 

isolating and identifying simultaneous changes among these mixtures. 

 

2.1.4  K-means cluster analysis 

The purpose of k-means cluster analysis is to separate a group of data points into 

k clusters, referred to as k-clusters, where the value of k is optimized given the definition 

of an appropriate separation distance.  The value of k is optimal when the mean k-cluster 

separation is maximal.   To associate correlated developmental trajectories in the clusters, 

the separation distance was calculated using the correlation distance between the P

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vectors defined by Equation 8.  The correlation distance between P


x and P


y is defined 

as 1 minus the sample correlation, r, between the points treated as sequences of values 

and is made explicit below in Equation 9.  By definition, when P


x and P


y are 

completely uncorrelated, r = 0 and D( P


x, P


y) = 1, abbreviated as D = 1.  When r = 1, D 

= 0.  When r = -1, D = 2. 

Equation 9 
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In Equation 9, the sums are taken over c - 1 change intervals corresponding to T(r, c).  

For Conel‘s data in Chapters 3 and 4, i ranges from 1 to 7.   For the verb data in Chapter 

5, i ranges from 1 to 10. 

Figure 2-8 shows that the optimal value for k for both neurons and myelinated 

fibers is 7.  This graph was calculated using 1000 replications for both data sets to avoid 

local minima.  The effect of replications and increasing k will be shown in Figure 2-9. 



 

52 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2 3 4 5 6 7 8 9 10 11 12

M
e

an
 c

lu
st

e
r 

se
p

ar
at

io
n

k = 

Neurons

Myelinated Fibers

 

Figure 2-8.  Estimation of the optimum value of k for k-means analysis of neurons 

and myelinated fibers.    The optimum value of k has the greatest mean separation 

between clusters.  In both cases, the optimum value is 7.  The separation distance is 

calculated using the correlation metric from Equation 9. 

 

The comparable figure for the verbal data in Chapter 5 appears in Figure 2-9.  It 

illustrates the effect of increasing the number of replications beyond the optimum value 

for k.  It also illustrates a case where the optimum value is not the same as the number of 

change intervals in the data (7 for neurons and myelinated fibers compared to 10 for the 

verbal data). 
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Figure 2-9.  Estimated optimal value for k for verbal data in Chapter 5.  The local 

maximum of 0.8722 for k = 13 emerged with 1000 replications.  To test whether the 

global maximum was the same, the number of replications was increased from 10,000 to 

100,000 as indicated in the legend.  The global maximum for 50,000 replications 

(0.8734) exceeded the local maximum at 1000 replications, but this occurred at k = 23, in 

a portion of the curve that was no longer stable.  Comparing the cluster separation values 

for the curves with increasing replications, the curves are identical for k up to 20 for 

10,000, 20,000, and 50,000 replications, and for k up to 21 for 50,000 compared to 

100,000 replications.  
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The set of k-clusters accounts for all developmental trajectories for the 222 

addresses in Conel‘s neuron data, as well as all 420 addresses in Conel‘s myelinated fiber 

data.  To analyze each k-cluster for potential biological function, we then examined the 

relational networks defined for D < 0.1 (or r > 0.9 within each cluster) in terms of the 

C(r, c - 1) components of their respective change vectors.  For the seven-dimensional 

change vectors derived from Conel‘s data, this relationship is statistically significant (p < 

0.01, two-tailed t-test).  Within these highly correlated relational networks, we further 

isolated the maximal ―cliques,‖ or totally connected networks that are subsets of the 

undirected network graph for D < 0.1 (Godsil and Royle, 2004).  In the neuron data but 

not in the myelinated fiber data, several k-clusters had more than one clique of maximal 

size.  In the following chapters, we refer to the addresses in the one or more maximal 

cliques as the ―core‖ for each respective k-cluster. 

 

2.2 Conel‟s data 

Ideally, any developmental hypothesis would be tested using large longitudinal 

data sets at the level of granularity relevant to the hypothesis, in this case at the level of 

individual neuron somata and myelinated fibers within a cortical column.  As such a data 

set does not yet exist for human development, the neuroinformatics analysis in this thesis 

depends instead on the massive dataset of post mortem histological observations 

collected by JL Conel (1939-1967).  Conel remains one of the few sources for 

histological data on a systematic, structural basis (Azevedo, et al., 2009).  However, his 
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data set is massive only in the sense of detail at each observation age, not in the sense of 

large numbers of subjects at each age.   

Notwithstanding his reputation as an accomplished clinical neuroanatomist, for 

his study of human neocortical development, Conel did not report the precise cause of 

death for any of the 54 subjects.  However, he did explicitly state that the cause of each 

subject‘s death was unrelated to neurodevelopment.  

 

Only those brains are accepted as normal which approximate the average weight 

for the age, which present no malformations or evidence of pathology, and are 

removed from well-formed, well-nourished infants who died from some disease 

which, in all probability, would not affect the nerve cells in the brain. 

Conel, 1939, p. 3 

 

 

While the field of human clinical neuroanatomy has changed since Conel collected his 

data, for the purposes of this dissertation we assume Conel‘s assertion to be valid.  

 

2.2.1.  Neuron somata 

Using classic histological techniques, Conel recorded a mean neuronal density 

value based on 30 separate cresyl violet-stained tissue samples from each subject within 

specific addresses.  In addition, he recorded the corresponding mean across individuals at 

each observation age (5 ≤ n ≤ 9; total N = 54), for 37 neocortical areas in the left cerebral 

hemisphere.    Conel‘s procedure avoids possible stereological error from a single soma 

contributing to adjacent slices (Abercrombie, 1946).  As has been reported, the number of 

cresyl violet-stained somata provides an accurate marker for the neuron population 
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(Pilati, et al., 2008).  Azevedo, et al. (2009) uses cresyl violet to calibrate an automated 

method for counting neurons using fluorescent DNA-tagged brain tissue.  Chapter 3 uses 

the Conel cresyl violet-stained human neocortical tissue to reveal information about 

neuron densities during the neurodevelopmental series of observations from birth to 72 

months.  Conel reported this data as densities for unit volumes of 100 μm
3
 for each of the 

six neocortical layers for a total of 222 addresses. 

For neuron populations, T(r, c) becomes ν(l, b, t), for neocortical layer l, 

Brodmann Area b (listing all 222 addresses) and observation age index t = 1, …, 8, 

corresponding to observation ages 0, 1, 3, 6, 15, 24, 48 and 72 months, respectively.   The 

reported variable is Conel‘s reported mean density for that address multiplied by the layer 

depth (in 0.1 mm increments).  Thus, ν represents the number of neurons in a ―sample 

count‖ with base 100 μm
2

 that spans the neocortical layer reported in that measurement.  

The six sample counts for the addresses in each Brodmann Area, when summed, 

constitute a sample column.  For each fixed t, Conel's data include observations on each 

of several individuals for various values of l and b.  The data at the different values of t, 

however, were from different subjects.   

Input values for ν(l, b, t) were carefully cross-checked for accuracy with the raw 

tabular values for neuron density, layer depth, and myelinated fiber density in the 

CYBERCHILD data base (Shankle, et al., 2000).  As noted in Cooper, et al., (2010), 

input neuron population values differ from CYBERCHILD for 72 month values, as 

CYBERCHILD lists an average of left and right hemisphere values for each address, 

whereas this thesis uses left hemisphere data exclusively because Conel did not make 
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observations on neuron density in the right hemisphere except at the 72 month time point 

in neurodevelopment.  In addition, as noted in Cooper, et al., (2010), calculated 

populations also differ from CYBERCHILD for Layer V because CYBERCHILD 

interpreted Conel‘s Layer V notations distributing small, large, and extra-large neurons to 

sublayers Va and Vb as creating separate sublayers for each cell size, whereas Cooper, et 

al., (2010) totals the cell somata of different sizes within two respective sub-layers.  

 

2.2.2.  Myelinated fibers 

Conel took his neuron counts from samples in the left hemisphere.  He took his 

Weigert-stained, myelinated fiber samples from the right hemisphere (Conel, 1939).  

Weigert staining is effective at highlighting extremely small-scale fiber structures 

(Sammet, 2008).  It is used as the standard by which to evaluate alternative methods for 

imaging neuron fibers.  For example, Richter and Warner (1974) compares the accuracy 

of assessments of unstained tissue to results from Weigert staining. 

Conel reported his myelinated fiber results as counts taken from a sample 50 x 50 

x 25 μm in volume.  These are listed on a table for each observation age (5 ≤ n ≤  9) as a 

range with a low and high value.  Whereas Conel normally listed neuron counts for 37 

areas and six neocortical layers, he listed the myelinated fiber counts in 42 areas for 10 

layers (using Arabic rather than Roman numerals to distinguish the list from the six 

cortical layers recorded for neurons):  1, 2, 3a, 3b, 3c-4, 5a, 5b-6a, 6b, subcortical and 

vertical.  The Brodmann areas for myelinated fibers omit BA 4 for the paracentral lobule 

that is included in Conel's counts for neurons, but differentiates BA 1 and BA 3 into 
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separate counts for leg, trunk, hand and head, while these are reduced to a single count 

for BA 1 and BA 3 for neurons.  As a consequence, myelinated fibers are counted at 420 

addresses at each observation age, rather than the 222 addresses Conel used for neuron 

somata. 

Given these differences in how Conel reported his results, and because Conel did 

not report layer depths for the ten layers used for myelinated fibers, fiber populations 

were not estimated.  Instead, for myelinated fibers ν(l, b, t) uses the mean fiber counts in 

a 50 x 50 x 25 μm sample volume.  Thus, these calculations pertain to changes revealed 

by samples of fiber density at each address, not fiber population within a volume that 

spans the respective layer. 

Just as neuron population calculations were cross-checked with CYBERCHILD, 

ν(l, b, t) for myelinated fiber densities were also checked.  As no assumptions about 

sublayers in Layer 5 occur with the myelinated fiber data, no adjustments were needed to 

verify myelinated fiber density accuracy.  There was missing data at 72 months for 

myelinated fibers for BA 29 and BA 30.  In these cases, the change vectors were 

calculated using the density data from 48 months. 

Note that for Conel‘s data on neuron populations and myelinated fiber densities, it 

has been convenient to differentiate the rows in T(r, c) into layer and Brodmann Area 

components, where l x b = r.  Likewise, it has been convenient to use t for the identity of 

the respective column, as a reminder that the columns reflect increasing observation age, 

or time.  Thus, in Chapters 3 and 4, T(r, c), R(r, c) and C(r, c-1) will be discussed as ν(l, 

b, t), R(l, b, t), and C(l, b, t) respectively, where t for the C function is taken as an index 



 

59 

 

for the endpoint of the seven defined change intervals.  In Chapter 5, the discussion will 

revolve around verbs on a numbered list and centuries, so mnemonics for these functions 

will be T(n, c), R(n, c) and C(n, c) respectively, where c now stands for century, and is 

interpreted for the C function as t is for the neurons and fibers.  When all three datasets 

are described together in Chaper 6, we will revert to the C(r, c-1), etc., nomenclature, 

where r is again a row index and c is again a column index. 

 

2.2.3 Conel‘s nomenclature 

Conel (1939) stated that he followed ―the method of von Economo,‖ which 

included his nomenclature for regions of the cortex.  Since both Conel and von Economo 

(and Koskinas, 1925) made extensive use of standard Latin terminology, it is possible to 

correlate these locations exactly with the Brodmann Areas used throughout this thesis.  

Table 2-1 provides a crosswalk of Conel‘s terminology with Brodmann Areas and sub-

areas.   

Table 2-1.  Correlation of Brodmann Areas  with Conel‟s terminology.    

BA von Economo Nomenclature from von Economo and Conel 
4L FAγ – L Area praecentralis gigantopyramidalis - leg 

4P FAγ – P Area praecentralis gigantopyramidalis - paracentral lobule 

4T FAγ – T Area praecentralis gigantopyramidalis - trunk 

4Hn FAγ – Hn Area praecentralis gigantopyramidalis - hand 

4Hd FAγ – Hd Area praecentralis gigantopyramidalis - head 

6 FB GFS p Area frontalis agranularis-gyrus frontalis superior posterior 

6 8 9 FB GFM p Area frontalis agranularis-gyrus frontalis medialis posterior 

44 FCBm GFI p Area frontalis intermedia- gyrus frontalis inferior 

posterior/pars opercularis 

8 FC GFS m Area frontalis intermedia-gyrus frontalis superior medialis 

8 9 FDm GFM m Area frontalis granularis, macrocellular part-gyrus frontalis 

medialis medialis 
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45 FDΓ GFI m Area frontalis granularis - gyrus frontalis medialis 

inferior/pars triangularis 

9 FDm GFS a Area frontalis granularis, macrocellular part-gyrus frontalis 

superior anterior 

46 FDΔ GFM a Area frontalis granularis media-gyrus frontalis medialis 

anterior 

45r FDp GFI a Area frontalis granularis, microcellular part-gyrus frontalis 

inferior anterior 

47 FF G Or Area orbitalis 

10 FE P F Area frontopolaris 

3 PB – T Area postcentralis oralis 

1 PC – T Area postcentralis intermedia 

7 PE s Area parietalis superior 

40 PF supra 

marginalis 

Area supramarginalis 

39 PG angularis Area angularis 

37 PH basalis Area parietalis basalis sive temporooccipitalis 

19 OA peristriata Area peristriata 

18 OB parastriata Area parastriata 

17 OC striata Area striata (calcarine cortex)    

22 TA Area temporalis superior 

42 TB Area supratemporalis simplex 

41 TC Area supratemporalis granulose 

21 TE Area temporalis propria 

36 TF Area fusiformis 

38 TG Area temporopolaris 

14 IA Area praecentralis insulae 

13 IB Area postcentralis insulae 

24 LA Gyrus cinguli - area limbica anterior agranularis 

23/31 LC Gyrus cinguli - area limbica superior posterior, granularis 

30 LD Area retrosplenialis agranularis 

29 LE Area retrosplenialis granularis 

 

This table lists the areas used in Conel‘s neuron data.  The myelinated fiber data added 

information for BA 1 and 3 for the hand, head, and leg, and did not contain any 

information for BA 4 for the paracentral lobule.  Abbreviations:  BA = Brodmann Area, 

Hd = head, Hn = hand, L = leg, P = paracentral lobule, T = trunk. 
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3.  Synchronized changes in neuron populations in the human 

neocortex 

 

The role of Layer I and reelin in the prenatal formation of mammalian neocortical 

laminae (Bar and Goffinet, 2000) is well known, as is the pattern of lateral migration of 

interneurons targeted to specific neocortical areas (Letinic, et al., 2002).  These and other 

control factors, such as bmp, shh, and the homeobox genes appear to follow a basic 

developmental template shared by vertebrates to which the mammalian modifications 

have been added (Gallego-Diaz, et al., 2002; Kolpak, et al., 2005; Holland and 

Takahashi, 2005).  Furthermore, the consensus is that the template employs highly 

conserved genetic and epigenetic factors to provide the necessary coordination of 

neurodevelopment (Noden, 1991).  Human neocortical development is consistent with 

this pattern to the extent that neuron vs. non-neuron cell counts in human brains have the 

same relationship to body weight as for primates in general, whereas the great apes such 

as gorillas apparently have over-sized bodies (Azevedo, et al., 2009).    

Developmental studies in animals with high temporal resolution reveal that a 

neuron‘s birth cohort is the best predictor of cell-fate during prenatal development 

(Takahashi, et al, 1999).   During postnatal development, neuron death (pruning) 

putatively replaces neurogenesis as the major factor defining the structure of cortical 
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neuronal populations (Stiles, 2008).  Postnatal histogenic cell death does not recapitulate 

the prenatal sequence of laminar development (Verney, et al., 2000), but rather seems to 

be a neurotrophin- and activity-dependent process in which neuron survival hinges on 

successful synapse formation with target cells (Huang and Reichardt, 2001).  This 

pruning, in conjunction with synapse elimination, might be an efficient developmental 

process that matches projection cells to target cell populations, but cell death may also 

serve other functions, such as the elimination of transient structures or error elimination 

(Stiles, 2008).   

Studies of animal postnatal development provide examples of so-called ―sensitive 

periods‖ when functions such as ocular dominance must be established (DiCristo, et al., 

2007).  Sensitive periods for complex cognitive functions such as human language are 

also well-reported (Ross and Bever, 2004; Marcotte and Morere, 1990).  In these 

examples, the animal or human subject interacts with external stimuli as cognitive 

resources (neurons) become committed to a particular function.  Insufficient stimulation 

can result in the diversion of cognitive resources to alternative functions (Michel and 

Tyler, 2005).   

In this chapter, the neuroinformatics analysis using the methods in Chapter 2 

supports the notion that functional, activity-based postnatal alignment of cortical areas 

occurs at the level of synchronized changes at specific addresses. By address, we mean a 

specific layer within a particular Brodmann area, e.g., BA 44 LV.  We suggest that both 

the area and layer component of the address are important.  Given the clear relationship 

between function and Brodmann Area (Rakic, 1988; 2001), one would hypothesize that a 
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Brodmann Area would be predictive of neuron population dynamics during postnatal 

cortical development.  At the same time, Nomura, et al. (2008), showed in a comparative 

study of the mammalian and avian pallium that most control mechanisms are highly 

conserved in evolution, including reelin-dependent neuronal migration in mammalian 

corticogenesis.  Thus, if the conserved neurogenetic and neuromigration factors that lead 

to laminar fate (Takahashi, et al., 1999) as well as to corollary cell death mechanisms 

(Gohlke, et al., (2007) continue to operate after birth, one would also hypothesize that the 

neocortical laminar identity would be a predictor of the course of postnatal neocortical 

neurodevelopment as well. 

Here, the human developmental data in Conel (1939-1967) described in Chapter 2 

provides evidence that synchronized neurodevelopmental changes occur at the address 

level in cortical neuron populations. These results support the hypothesis that for human 

subjects postnatal activity-dependent mechanisms (laminar-neocortical area interactions) 

are superimposed on a combination of the previously established animal model pre-natal 

control mechanisms (such as laminar development) to coordinate neocortical neuronal 

populations over the neurodevelopmental time course from birth to six years.  Moreover, 

the emergence of functionally related neuron changes prior to much of the overt cognitive 

activity related to those functions implies that these synchronized changes have both an 

internal, clock-like, basis as well as an activity basis. 
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3.1 Neuron population results from change vector analysis 

 

3.1.1  Raw neuron population data from Conel 

Figure 3-1A shows the mean sample count, or mean neuron population by layer 

and observation age in Conel, uncorrected for shrinkage.  Figure 3-1B shows the 

corresponding mean neuron population for each layer as calculated from values for each 

of the 37 Brodmann Areas in the dataset.  A sample count is calculated for a volume with 

a base of 100 µm
2
 that spans the respective cortical layer (see Chapter 2).   
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Figure 3-1.  Mean raw neuron population by area, layer and age in Conel.  Raw 
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population values have not been adjusted for shrinkage in either panel.  A)  Mean sample 

column neuron population by Brodmann Area by observation age, with the mean taken 

over the six layer samples in the respective Brodmann Area.  The curve for zero months 

reflects missing data, since Conel did not report values for BA 29 and 30 at that age.  The 

raw mean neuron population over all sample columns declines from 463.5 at birth to 

249.5 at 48 months.  At 72 months it is 266.3.  The greatest absolute decline in mean 

neuron population, 95.9 per sample column, takes place between 3 and 6 months.  The 

greatest relative decline in mean neuron population, 24.55 percent, takes place between 6 

and 15 months.  B) Mean raw sample counts averaged over each neocortical layer by 

observation age, with the mean taken over the samples of all Brodmann Areas within a 

given layer.  The mean declines from 438.4 at birth to 192.3 at 48 months.  At 72 months 

it is 266.5.  The greatest absolute decline in mean neuron sample count, 92.9 per layer, 

takes place between 3 and 6 months.  The greatest relative decline in mean neuron sample 

count, 29.91 percent, takes place between 6 and 15 months.   

 

3.1.2  Neuron population change intervals 

Figure 3-2 shows the distribution resulting from the normalization steps in 

Equations 1-3 in Chapter 2.  It depicts the distribution of all C(l, b, t) values except nine 

values greater than 5.5 that are included in Table 1, which lists all 24 statistically 

significant addresses with C(l, b, t) > 3.9.  The distribution of C(l, b, t) in Figure 2 is not 

the expected chi-square distribution with one degree of freedom (p = 0.0112, KS test).  
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As noted in Chapter 2, this supports the alternative hypothesis that C(l, b, t + 1) is 

different from C(l, b, t) for some addresses (l, b) for at least one change interval. 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 1 2 3 4 5

P
ro

p
o

rt
io

n

C(l, b, t)

Conel C(l, b, t)

Chi-square

 

Figure 3-2.  Distribution of normalized change interval magnitudes.  Distribution of 

C(l, b, t) values for all seven change intervals.  N = 1554 overall, N = 9 for C(l, b, t) > 

5.5 (not shown).  Histogram bins are in increments of 0.1 units.  Rather than the predicted 

chi-square distribution with one degree of freedom (also shown), the histogram in this 

figure is well-described by a gamma distribution (p = 0.99997, Kolmogorov-Smirnov 

test; parameters α = 0.3638, β = 1.6570 and mean = 0.6028).     
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3.1.3  K-means cluster analysis of neuron population change vectors 

Chapter 2 showed that neuron population change vectors that result from 

respective sequences of change intervals for each address (l, b), are optimally separated 

into seven k-clusters.  Figure 3-3 shows the distribution of all 222 addresses into these 

seven k-clusters.  The number of each cluster is arbitrary, assigned by the k-means 

algorithm during 1000 replications as described in Chapter 2. 
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Figure 3-3.  Distribution of neocortical addresses into seven k-clusters (N = 222).  

Chapter 2 showed that the optimal number of clusters for the k-means algorithm was 7.  

The distribution of the 222 change vectors in Conel‘s data from Equation 8 was then 
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sorted into seven k-clusters by the algorithm using Equation 9 as the distance metric for 

cluster membership and separation of the clusters.   Addresses with the most highly 

correlated changes in their respective values for C(l, b, t) were assigned to the same k-

cluster.  Cluster number was assigned arbitrarily by the k-means algorithm. 

A maximal clique in a k-cluster is the largest set of totally connected addresses in 

the cluster.  Defining a connection as a relationship between addresses x and y, where 

D(x,  y) < 0.1  in Equation 9 in Chapter 2 (or correlation rxy  > 0.9), 11 of the 24 outliers 

in Table 3-1 belong to the maximal clique in their respective k-cluster, indicated by an 

asterisk (sample correlation r = 0.8192, p = 0.0242, two-tailed t-test against the null 

hypothesis that the distribution by change interval of the 11 maximal clique members and 

the 24 significant C(l, b, t) values are from different distributions).   
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Table 3-1.  Statistically significant values of C(l, b, t).    

1 Mo 29 LI 29 LIV       

4.4938 4.1803       

3 Mo 17 LIII 17 LV 38 LI* 4T LV     

10.8246 7.0145 4.9739 4.239     

6 Mo 29 LVI* 17 LIII 17 LI*      

16.6004 6.4275 6.254      

15 Mo 4P LVI* 29 LV* 18 LII* 41 LI 8 LIII* 4Hd LVI* 10 LI 21 LII* 

7.1081 6.6642 6.5119 4.8475 4.8088 4.7902 4.4962 4.3299 

24 Mo 14 LI* 42 LVI*       

5.7625 4.442       

48 Mo 45r LI        

4.7949        

72 Mo 45r LI 10 LI 22 LVI 23/31 LIII     

4.7137 4.4902 4.267 4.0839     
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Change interval, address (Brodmann Area and layer) and C(l, b, t) value are indicated.  

Asterisks denote the addresses that belong to a maximal clique in a k-cluster.  Nine 

addresses with C(l, b, t) > 5.5 were not included in Figure 3-2.  Altogether, 24 values of 

C(l, b, t) were statistically significant (p < 0.05, one-tailed test against chi-square cdf, one 

degree of freedom).   Abbreviations:  T = trunk, P = paracentral lobule, Hd = head, r = 

rostral. 

 

  Figure 3-4 shows the mean value of C(l, b, t) for each of the seven k-clusters as a 

radar plot graph.  There is a one-to-one correspondence between a maximum change 

vector component in a k-cluster and each of the seven change intervals.  To test whether 

the single spike per k-cluster pattern in the radar plot was an artifact of the k-means 

method applied to seven change intervals, an empirical cumulative distribution function 

(cdf) was constructed using a Monte Carlo process using 1000 iterations, which is  more 

than sufficient (Gentle, 2002).  Each iteration began with a 222 x 8 table of random 

numbers drawn from the unit interval, corresponding to a null hypothesis that neuron 

populations are equiprobable.  Equations 1 to 3 from Chapter 2 were then applied to the 

table and the resulting change vectors were clustered using the k-means algorithm with k 

= 7 using Equation 9 to define the distance metric.  Let m(k,t) = mean[C(l, b, t)] for each 

of the k-clusters in a given change interval resulting from these calculations.  After 

sorting, the statistic s(t) = max[m(k,t)]/mean[m(k,t)] characterizes each change interval in 

the graph, and mean(s) to characterizes each graph across all change intervals.   Using the 
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results from 1000 iterations, the surrogate cdf then allowed us to estimate a p-value for 

the actual Conel data (p ≈ 0.001). 
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Figure 3-4.  Correspondence of k-cluster to change interval.  Radar plot axes indicate 

mean C(l, b, t) values for the respective k-clusters.  Radial axes are the seven change 

intervals.  Each of the k-clusters has a maximum on a unique change interval axis.  Using 

a Monte Carlo process to construct an empirical cumulative probability distribution 

function (cdf) for randomly generated graphs of seven k-clusters using a ―mean max-

over-mean‖ statistic for each graph, the relative size of the maxima and their one-to-one 

distribution across the change intervals in this figure is statistically significant (p ≈ 0.001 

from the empirical cdf; the sample mean Monte Carlo graph statistic was 2.845 ± 0.104 
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(sample standard deviation for n = 1000).  The same statistic for the Conel data was 

3.180). 

 

3.1.4.  Relational network diagrams and maximal cliques for the seven neuron population 

k-clusters 

Figure 3-5 shows the relational network for the first k-cluster (K-1), where D < 

0.1.  The figure depicts all members of K-1.  Defining the D < 0.1 criterion is a 

relationship between two addresses, Figure 3-5 also illustrates each of those relationships.  

There is only one totally connected maximal clique (with nomenclature from Conel):  BA 

6 LVI (posterior supplemental motor area of the gyrus frontalis superior), BA 45 LIV 

(inferior gyrus frontalis medialis /pars triangularis), BA 22 LI (area temporalis superior), 

and BA 24 LIII (area limbica anterior agranularis of the gyrus cinguli). 
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Figure 3-5.  Relational graph and maximal clique of the first k-cluster (K-1) for D < 

0.1.  The 33 addresses in K-1 are listed in clockwise order from BA 4L Layer I at the top 

to BA 30 Layer V.  The order is the one used by Conel, generally proceeding from frontal 

lobe to the parietal, occipital, temporal lobes, and then medial cortical areas.  Lines show 

all instances where D < 0.1.   The bolded solid lines show the maximal clique for the 

cluster, which has size four.  Only K-1 and K-4 have single maximal cliques of size 4.  

K-5 and K-6 have more maximal cliques of size 4.  K-2 and K-7 have two overlapping 
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maximal cliques of size 6, and K-3 has two overlapping maximal cliques of size 9.  

Abbreviations:  L = leg; Hd = head; r = rostral. 

 The ―core‖ of a k-cluster is defined to be the set of addresses contained in its 

maximal cliques.  In the case of K-1, the core consists of a single maximal clique of size 

4.  Figure 3-6 reveals the C(l, b, t) values for the core, as well as the mean core values 

compared to the entire cluster.  The mean cluster C(l, b, t) values are the same as those as 

in Figure 3-4, where the maximal values for C(l, b, t) occur in the 72 month change 

interval. 
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Figure 3-6.  C(l, b, t) values for K-1 and the K-1 core.  A) C(l, b, t) for the four 

members of the single maximal clique.  This is a graph of the entire trajectory for each of 

the four addresses in the K-1 core, by C(l, b, t) and change interval.  The secondary peak 
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C(l, b, t) values for 1 month provide a relatively complex overall trajectory for this group 

of addresses.  B) Mean C(l, b, t) for the core compared to mean C(l, b, t) for the entire 

cluster.  The mean trajectory for the entire k-cluster has a much lower value for 1 month 

compared to the mean for the core addresses, making the core addresses a relatively 

distinct sub-set of the k-cluster that has correlated maximal C(l, b, t) values at 72 months. 

 

The largest k-cluster in the Conel data is K-3.  It also has the largest core, with 

two maximal cliques of size 9.  Eight of the addresses in these maximal cliques overlap, 

as shown in Figure 3-7.  Thus, the core contains 10 addresses.  The ―unique‖ nodes on 

this graph are BA 29 LV (area retrosplenialis granulosa) and BA 8 LIII (medial gyrus 

frontalis superior in von Economo‘s area frontalis intermedia).  They are ―unique‖ in the 

sense of being totally connected to eight other addresses, but not to each other. 
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Figure 3-7.  Relational graph and maximal cliques for K-3 for D < 0.1.  The 43 

addresses in K-3 are listed in clockwise order from BA 4L Layer III at the top to BA 29 

LV.  The order is the one used by Conel.  Solid red lines indicate relationships common 

to both of the two maximal cliques in the K-3 core.  Solid blue lines show the relational 

links for BA 29 Layer V, which is the unique address in one of the two maximal cliques.  

Solid green lines show the relational links for BA 8 Layer III, the unique address for the 

second of the two maximal cliques.  Including common and unique nodes, the two 

maximal cliques have size nine.  Dashed blue lines indicate the remaining correlation 

distances with D < 0.1.  Abbreviations:  P = paracentral lobule, T = trunk, Hn = hand. 
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Figure 3-8. C(l, b, t) values for K-3 and the K-3 core.   A) C(l, b, t) by change interval 

for the ten change vector trajectories of the core addresses in K-3.  BA 29 LV and BA 8 

LIII are the unique nodes in Figure 7.  The eight common addresses in the core are listed 
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between them on the right.  The correlated maximum C(l, b, t) values at 15 months occur 

at multiple scales.  B) Mean C(l, b, t) for the core addresses compared to the mean C(l, b, 

t) values for the entire k-cluster by change interval.   

 

Figure 3-8 shows the core C(l, b, t) and mean C(l, b, t) values for K-3.  The two 

maximum values in Figure 3-8A, BA 4P LVI (the paracentral lobule portion of BA 4) 

and BA 29 LV are both outliers in Table 3-1.  However the correlated trajectories in the 

K-3 core also include BA 19 LIV (area peristriata) which also has a maximum of 0.7003 

at 15 months.  The remaining core areas have C(l, b, t) maxima at 15 months between 

0.7003 and 7.1076, reflecting correlations on multiple change scales.  The comparison of 

mean C(l, b, t) values for the core and the k-cluster as a whole in Figure 3-8B reflects 

greater homogeneity among the change vector trajectories than in K-1. 

Maximal clique sizes and descriptions for all clusters are summarized in Table 3-

2.  There are seven maximal cliques of size four distributed among four of the k-clusters.  

There are four maximal cliques of size six, two in K-2 and two in K-7.  There are two 

maximal cliques of size nine in K-3.  Thus, there are 47 addresses in the seven k-cluster 

cores.  They belong to 27 Brodmann Areas.  BA 6 has four addresses in different cores.  

No other Brodmann Area has more than two addresses in any core. 
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Table 3-2  Summary of k-cluster cores.   

Cluster Maximum 

clique size 

Number Overlap Partial overlap Non-overlap Maximum  

C(l, b, t) in 

change 

interval: 

1 4 1 6 LVI 

45 LIV 

22 LI 

24 LIII 

-- -- 72 Mo 

2 6 2 46 LV 

45r LV 

40 LIII 

37 LI 

42 LIII 

-- 41 LIII 

10 LIII 

1 Mo 

3 9 2 4L LIII 

4P LVI* 

4Hd LVI* 

6 LIV 

8 9 LV 

19 LIV 

18 LII* 

21 LII* 

-- 29 LV* 

8 LIII* 

15 Mo 

4 4 1 7 LIII 

40 LIV 

22 LIV  

21 LVI 

-- -- 48 Mo 

5 4 3 29 LVI (gp 

1/2/3)* 

17 LIV (gp 1/3) 

17 LI (gp 1/3)* 

37 LII (gp 1) 

14 LIII (gp 2) 

6 Mo 
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45r LVI (gp 2/3) 7 LII (gp 2) 

6 4 2 -- -- 44 LV (gp 1) 

45 LVI (gp 1) 

42 LVI (gp 1)* 

13 LI (gp 1) 

4P LI (gp 2) 

41 LV (gp 2) 

38 LVI (gp 2) 

14 LI (gp 2)* 

24 Mo 

7 6 2 6 LIII 

6 LV 

39 LIV 

38 LI* 

13 LIV 

-- 44 LII 

39 LVI 

3 Mo 

 

Addresses in bold and marked by an asterisk indicate C(l, b, t) > 3.9 (p < 0.05, chi-square 

test).  For K-5, there are three maximal cliques of size four, each partially intersecting the 

others.  The three components are grouped as ―gp 1‖ to ―gp 3.‖  K-6 has two maximal 

cliques of size four that do not intersect, grouped as ―gp 1‖ and ―gp 2.‖   Abbreviation:  L 

= leg. 
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3.2  Discussion of results from neuron population change vector analysis 

 

The principal result in this chapter is the one-to-one correlation between large 

change steps in successive neuron populations and observation age in human neocortical 

development to age six.  Change steps are normalized measures of relative neuron 

population shares at individual area/layer addresses.  The pattern of synchronized change 

in Figure 3-4 emerges when 222 neurodevelopmental trajectories for each of the six 

cortical layers in 37 Brodmann areas or subareas are parsed into optimal k-clusters using 

k-means cluster analysis with the correlation distance as the metric.  In this section, we 

will discuss the members of these k-clusters in terms of two distinctive types of members:  

those individual addresses that have a statistically significant magnitude of change as 

defined by the expected chi-square distribution of change steps from random mixtures 

(i.e., C(l, b, t) > 3.9), and those addresses whose developmental trajectories define them 

as part of a totally connected, maximal clique in a given k-cluster (Table 3-2).  As noted 

at Table 3-1, maximal clique membership and large magnitude change steps are 

significantly correlated.  

Previous neuroinformatic analysis of Conel‘s data (Shankle and Romney, et al., 

1998, Shankle, et al., 2002) employed the statistical methodology known as 

correspondence analysis across all six types of data reported in Conel:  layer width and 

neuron density (also used in this chapter) as well as somal height and width, large fiber 

density resulting from Cajal staining and myelinated fiber density resulting from Weigert 

staining (Shankle and Romney, et al., 1998; used in the next chapter). Their method is 
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scale-free and shows a regular developmental pattern from birth to 72 months, with 99-

percent confidence intervals for each cortical area in neocortex overlapping almost 

completely (Shankle and Romney, et al., 1998).  By contrast to Shankle et al., the C(l, b, 

t) transformed measurement in the change vector method is normalized across cortical 

areas and layers and between ages, but is not scale-free. 

The evidence for synchronized change in the Conel data comes from three 

arguments.  First, the relative magnitude of the radial spikes in Figure 4 is not likely an 

artifact of randomly distributed neuron populations.  As described in section 3.1.3 above, 

we tested the contrary by making 1000 random draws from the unit interval for 222 

surrogate addresses and 8 surrogate observation ages, used Equations 1 to 9 to construct 7 

k-clusters, and measured the relative size of the spike for each k-cluster to the average 

change step magnitude for that k-cluster.  Comparing the Conel result to the empirical cdf 

from this process, the estimated probability of an artifact is rejected with p ≈ 0.001.  

Second, we expect a chi-squared distribution with one degree of freedom to emerge from 

Equations 1 and 3 based on the reasoning and error estimates in Chapter 2.   This 

contrasts with Conel‘s data in Figure 3-2, where the distribution mean for C(l, b, t) across 

all ages is 0.6028 rather than 1 expected from the chi-square distribution, and the KS test 

for goodness-of-fit to the chi-square is rejected with p = 0.0112.  Finally, The KS test was 

performed against the null hypothesis that the normalized neuron population C(l, b, t) is 

drawn from the same distribution as the previous C(l, b, t – 1) at each address.  

Occurrences of C(l, b, t) that negate this null hypothesis are the statistically significant 

change step magnitudes that co-occur within the same change step.  That is, the null 
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hypothesis is negated by statistically significant synchronized changes to relative neuron 

population for successive groups of addresses during development.  While neuron counts 

alone are silent as to a potential mechanism, these synchronized changes visible in Figure 

3-4 at specific addresses that are significantly correlated with k-cluster cores (r = 0.8192, 

p = 0.0242, two-tailed t-test) imply a clock-like process that produces the 

synchronization. 

The observed synchrony in Figure 3-4 is not between selected areas and age, nor 

selected layer and age, but rather between specific addresses and age.  Thus, only BA 6 

has four addresses that appear in the maximal clique catalog at Table 3-2, distributed 

across three k-clusters.  Only BA 17 and BA 29 have four addresses, likewise distributed 

across three k-clusters, in Table 3-1 where large magnitude change steps and maximal 

clique membership are crosswalked.   Thus, in addition to area-to-area adjustments 

known to be significant in postnatal development (Verney, et al., 2000), the data also 

indicate the continued importance of the layer-dominated mammalian prenatal pattern 

(Butler and Hodos, 2005; Noden, 1991; Takahashi, et al., 1999, etc.), revealing a highly 

conserved evolutionary pattern (Finlay, et al., 2001). 

BA 6 is supplementary motor cortex , BA 17 is primary visual cortex (Gazzaniga, 

et al., 2002), and BA 29 (granular retrosplenial cortex) may be involved with the 

integration of egocentric inputs from the parietal lobe and allocentric representations 

from the hippocampus and medial temporal lobe (Burgess, 2008).  This suggests a 

potential functional role for maximal cliques and the set of unusually large change step 

addresses that we will take up next. 
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As noted with Figure 3-1, the largest absolute change in raw neuron populations 

in Conel‘s data is the drop of 95.9 neurons per sample column that takes place during the 

change step from 3 to 6 months.  The largest relative drop across the cortex (24.55 % per 

sample column) takes place during the next change step from 6 to 15 months.  After 

normalization, the largest values for C(l, b, t) likewise occur during these change steps, as 

revealed in Table 3-1.  K-3, the largest k-cluster with the largest maximal cliques has its 

maximal changes during the 6 to 15 month change step.  Taking neuron cell death as 

symptomatic of assimilation and commitment (Stiles, 2008), these changes should be 

consistent with corresponding sensitive periods (e.g., Marcotte and Morere, 1990; Ross 

and Bever, 2004; DiCristo, et al., 2007).   

In humans, these sensitive periods would reasonably be correlated with Piaget‘s 

sensorimotor stage, which extends from birth to 2 years (Piaget, 1952), particularly since 

this is the Piaget stage that is least subject to environmental factors such as family income 

or education (Renner, et al., 1976).  In this context, the change step for 6 months is not 

surprising.  Its three maximal cliques all involve BA29 LVI which has the largest 

magnitude for C(l, b, t) of any address at any change step.  Two of the three maximal 

cliques contain primary vision address BA17 LI, which also has a large magnitude 

change value, as well as BA17 LIV.  BA17 LIII, associated with color vision processing 

(Gazzaniga, et al., 2002) has statistically significant C(l, b, t) magnitudes in this change 

step as well as the prior change step at 3 months, where it is a member of the k-cluster.  

According to Piaget (1952), vision is not especially important during the reflex stage 

immediately after birth, but infants begin to ―really look‖ at things after 1 month, and 
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actively track objects by 2 months.  These remaining associations to 6 months remain 

consistent with continued adaptation and assimilation as called for in Piaget (1952). 

This sensorimotor theme continues into the 15 month change interval, where the 

maximal cliques include addresses from primary motor cortex (4L LIII, 4P LVI, 4Hd 

LVI; Gazzaniga, et al., 2002), supplementary motor cortex (BA6 LIV), secondary vision 

(BA19 LIV and BA18 LII), and the area associated with the frontal eye fields (BA8 LIII; 

Berman, et al., 1999).  Retrosplenial cortex also appears in this set (BA29 LV).  Primary 

audition (BA41 LI; Gazzaniga, et al., 2002) appears among the large magnitude C(l, b, t) 

set as well.  Six of the ten maximal clique members also have large magnitude change 

steps. 

Mandler (1999) contends that such pre-linguistic primitive steps, particularly 

kinetic ―image-schemas‖ provide a sufficient conceptual basis on which to build 

language proper, including such abstract notions as agents, patients, permanent objects, 

and causation.  Tracing backwards from childhood and adult imaging studies to identify 

key cortical areas for language functions, the k-cluster evidence from Conel indicates that 

these foundations are sometimes laid extremely early during development.   Broca‘s Area 

(BA 44 and 45), associated with language (Broca, 1861a), appears in three cores with 

peak C(l, b, t) ranging from 3 months (K-7), very early in language acquisition, to 24 (K-

6) and 72 months (K-1), when children can speak increasingly sophisticated sentences 

(Tomasello, 2003).  The earliest of these cores associates BA 44 LII with BA 6 LIII and 

LV, BA 13 LIV, BA 39 LIV and LVI (area angularis) and BA 38 LI (area 

temporopolaris).  These additional parietal and temporal association areas also show 
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significant activations in fMRI during verb generation tasks (Le Bihan, et al., 1993; Cao, 

et al., 1999).  BA 39 is associated with Broca‘s Area in word-picture matching among 

children from 5 to 18 years old (Schmithorst, et al., 2007), and semantic processing 

(Binder, et al., 1996).  Moreover, BA 39 and superior frontal gyrus, from which the BA 6 

samples were drawn in Conel‘s subjects, form part of a complementary network to the 

human mirror system, which focuses on the ―end‖ or goal of an action, while the human 

mirror system appears to focus on the ―how‖ of an action (Hesse, et al. , 2009).  In K-7, 

BA 44 LII is one of the two non-overlapping addresses, and BA 39 LVI is the other.  BA 

44 is a recipient of mirror neuron projections (Cadoret, et al., 2005).  The portion of BA 6 

that would have been part of the ―classical‖ human mirror system (Hesse, et al., 2009) is 

von Economo‘s area FBop, which was not included in Conel‘s data.  In all of these cases, 

the timing of the maximum change for the change vectors in K-7 is the 3 month change 

interval.  This is well before most overt manifestations of language or mirror functions, 

and in agreement with Mandler (1999). 

In the remaining cores associated with Broca‘s Area, at 24 months BA 44 LV and 

BA 45 LVI co-occur with secondary auditory cortex (BA 42, Gazzaniga, et al., 2002) and 

BA 13 (area postcentralis insulae).  Direct electrostimulation connects Broca‘s Area with 

BA 42 (Matsumoto, et al., 2004), as does Bayesian analysis of BOLD signals from fMRI 

for speaker and sentence distinction tasks (Patel, et al., 2006).  Broca‘s Area and BA 13 

are associated in the retention phase of a delayed match-to-sample working memory task 

(Habeck, et al., 2005).  Similarly, at 72 months, BA 45 LIV is associated with 

Wernicke‘s Area (BA 22 LI; Wernicke, 1874), supplementary motor (BA 6 LVI, 
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Gazzaniga, et al., 2002) and anterior cingulate cortex (BA 24).  Broca‘s Area and 

supplementary motor areas are associated in functional magnetic resonance imaging 

(fMRI) for noun generation (Cuneod, et al., 1995; McCarthy, et al, 1993), and orthogonal 

lexical retrieval (Blacker, et al., 2006).  BA 6 and anterior cingulate cortex are associated 

for the stimulus and retention phases of delayed match-to-sample working memory 

(Habeck, et al., 2005).  BA 22 is also involved in the retention phase (Habeck, et al., 

2005; Woodward, et al., 2006).  Broca‘s and Wernicke‘s Area are both involved in word-

picture matching in children between 5 and 18 years old (Schmithorst, et al., 2007).  

Broca‘s area is associated with supplementary motor and anterior cingulate cortex in 

morphological tasks related to irregular verbs as well (Sahin, et al., 2006).  In direct 

electrostimulation of the cortex in epileptic patients, Broca‘s and Wernicke‘s Areas 

demonstrate bidirectional connectivity (Matsumoto, et al., 2004). 

All of these cited studies associate additional areas outside the k-cluster cores, and 

none has the resolution of an individual cortical address.  However, these functional 

circuits in adult and older juvenile subjects do correspond to the present correlated 

changes in Conel‘s neuron population data.  We suggest that these patterns in human 

postnatal neocortical development reflect conserved mechanisms for synchronized 

functional change steps in postnatal mammalian brain development that are later 

manifested in behavior.   

Keeping in mind the small sample sizes in Conel‘s work at each observation age 

(see Chapter 2) despite the detail he reported at each age, we suggest that similar results 

can be obtained from animal models.  For example, paternally expressed gene 3 (Peg3) 
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mutant mice have a range of deficits, including olfactory function.  Inactivation of this 

gene reduces the incidence of caspase 3 positive cells at 4 to 6 days postpartum, 

indicating a reduction in neuron apoptosis.  Affected areas in these mice include the bed 

nucleus of the stria terminalis, nucleus accumbens, caudate putamen, medial pre-optic 

area, arcuate nucleus, medial amygdala, anterior cortical and posteriodorsal amygdaloid 

nuclei  (Broad, et al., 2009).  We hypothesize that at least some of these areas would 

constitute a maximal clique in mice between P4 and P6 if the analogous murine values 

for C(l, b, t) were calculated from birth to an observation age greater than P6.  The 

associated deficits would emerge later as the mice develop. 
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4. Synchronized change to myelinated fiber density during 

human neurodevelopment  

 

Chapter 3 showed that human neocortical neuron population changes from birth 

to six years   demonstrate a series of synchronized changes consistent with sensorimotor 

developmental stages.  Functionally-relevant synchronized change is a necessary 

condition for some form of clock mechanism.  This is bolstered by the evidence in 

Renner, et al., (1976) that environmental conditions have the least effect on sensorimotor 

development, leaving genetic and epigenetic factors under the clock hypothesis 

introduced in Chapter 1.  A similar demonstration of synchronized change in Conel's 

myelinated fiber data would provide more support for an underlying genetic/epigenetic 

developmental clock, since environment effects would be identical for both sets of data.  

As discussed in Chapter 3, neuron population change is likely to be neurotrophin 

and activity-based (Huang and Reichardt, 2001).   While the molecular mechanisms 

differ, the common locus for genetic/epigenetic and activity-based signals for 

synchronized change to myelinated cortical axons remains within the neuron.  First, the 

progress of axon myelination in the cortex depends on oligodendrocyte development, 

controlled in turn by neuron secretions such as insulin-like growth factor and fibroblast 

growth factor, which play different roles in oligodendrocyte differentiation, survival, and 
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development (Butt and Berry, 2000).  In addition, cell adhesion molecules differentially 

suppress or enhance myelination at different times during development (Coman, et al., 

2005).  Finally, myelination is promoted by electrical activity in the neuron (Sanchez, et 

al., 1998; Sirevaag and Greenough, 1987; Szeligo and Leblond, 1977).   

Generally, the completion of myelination is a signal of the onset of full functional 

capacity (Flechsig, 1920; Yakovlev and Lecours, 1967).  Collectively, these factors 

interact so that different cortical areas begin to myelinate at different times during 

development and have different characteristic myelination rates (Yakovlev and Lecours, 

1967; Sampaio and Truwit, 2001).  Thus, Conel's myelinated fiber data is an appropriate 

set for the change vector method, as well as a useful test for the existence of a 

functionally-related clock mechanism. 

As discussed in Chapter 2, the neuron population and myelinated fiber data are 

not directly comparable.  Conel's neuron data come from the left hemisphere, while the 

myelinated fiber data come from the right.  Moreover, Conel provided layer depth 

information so that neuron population could be calculated for each of the six layers in the 

neocortex, whereas Conel reported his myelinated fiber data in ten layers where there is 

no layer depth information available so that only density information is available.  

Nevertheless, the change vector method can be applied to the myelinated fiber data.  This 

enables a comparison of the two data sets at the level of change step populations, as well 

as a comparison of prospective functions when the respective neuron and myelinated 

fiber k-clusters are compared at each developmental age.  This will reveal further 
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evidence for a functionally-related mechanism to synchronize cognitive development that 

is located within the neuron. 

 

4.1  Myelinated fiber results 

 

4.1.1  Density increases monotonically with age, rank-ordered by layer 

Figure 4-1 shows a general increase in myelinated fiber density with age in 

human cortical development.  Figure 4-1A reveals that increases in mean myelinated 

fiber density vary by Brodmann Area and that the highest densities at one month are not 

necessarily the same areas with the highest densities at 72 months.  By contrast, Figure 4-

1B shows that with the exception of Layer 1 and Layer 5a, the onset of myelination and 

increase in mean density is greatest progressing from vertical fibers that exit the cortex, 

followed by subcortical connections, and then progressively from inferior to superior 

layers up to Layer 2 in the cortex.  Including the exceptions, the rank order of mean 

density by layer is essentially retained in the order in which the respective layers begin to 

show an increase. 



 

94 

 

0

5

10

15

20

25

4
L

4
T

4
H

n

4
H

d 6

6
_

8
_

9

4
4 8

8
_

9

4
5 9 4
6

4
5

r

4
7

1
0 3
L

3
T

3
H

n

3
H

d 1
L

1
T

1
H

n

1
H

d 7 4
0

3
9

3
7

1
9

1
8

1
7

2
2

4
2

4
1

2
1

3
6

3
8

1
4

1
3

2
4

2
3

/3
1

3
0

2
9

M
e

an
 m

ye
lin

at
e

d
 f

ib
e

r 
d

e
n

si
ty

Brodmann Area

0 Mo

1 Mo

3 Mo

6 Mo

15 Mo

24 Mo

48 Mo

72 Mo

0

5

10

15

20

25

30

35

0 Mo 1 Mo 3 Mo 6 Mo 15 Mo 24 Mo 48 Mo 72 Mo

M
e

an
 m

ye
lin

at
e

d
 f

ib
e

r 
d

e
n

si
ty

Observation age in months

I

II

IIIa

IIIb

IIIc-IV

Va

Vb-VIa

VIb

Subcortical

Vertical

A)

B)

 

Figure 4-1.  Mean myelinated fiber density by layer during human 

neurodevelopment.  Myelinated fiber density is Conel‘s mean count of Weigert-stained 

axons present in 50 x 50 x 25 µm samples at each observation age.  At birth, no 
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myelination is observed.  A) Mean myelinated fiber density by Brodmann Area and 

observation age.  At 1 month, the highest mean density occurs at BA 3Hd, followed by 

BA 4T, BA 3Hn, and BA 4 Hn and Hd with the fourth highest.  BA 17 has the 7
th

 highest 

mean density.  By 72 months, BA 17 has the highest mean density in the cortex, followed 

by BA 41, BA 4T, BA 4Hn and BA 19.  BA 3Hd has the 8
th

 highest mean density, tied 

with BA 3Hn; BA 4 Hd has the 14
th

 highest density. B)  Mean myelinated fiber density 

by layer and observation age.  Generally, myelination onset and myelination rate are 

greatest for vertical axons that exit the cortex ranging to the latest onset and slowest rate 

for Layer 2.  The onset and myelination rate for Layer 1 and Layer 5a do not fit this 

sequence.  Layer 1 increases faster and falls between Layer 3c-4 and Layer 5b-6a.   Layer 

5a falls between Layer 3c-4 and Layer 3b.  Abbreviations:  Hd = head, Hn = hand, L = 

leg, T = trunk, r = rostral. 

 

4.1.2  Mean C(l, b, t) for myelinated fiber density decreases exponentially with 

observation age 

 

Chapter 2 showed that the optimum number of k-clusters for neuron populations 

and myelinated fiber densities was the same:  seven.  Figure 4-2 compares mean C(l, b, t) 

for neuron population k-clusters and the k-clusters for myelinated fibers.  Whereas the 

mean value for neurons is approximately constant for all seven clusters (R
2
 = 0.114 

which means that the change interval explains only 11.4% of the variation in mean C(l, b, 

t) about a mean defined by a line with slope -0.0038), a least squares fit of the myelinated 
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fiber data to an exponential decrease shows the two are well-correlated (R
2
 = 0.9131, 

with change interval explaining 91.31% of the variation).   
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Figure 4-2.  Mean k-cluster C(l, b, t) values do not change identically with age for 

neuron population and myelinated fiber density changes.  Regression using least 

squares reveals a nearly horizontal line for change to neuron C(l, b, t) values, with y = -

0.0038x.  By contrast, mean k-cluster C(l, b, t) for myelinated fiber density is 

approximately y = 4.2131 exp(-0.029x), where y is the mean k-cluster C(l, b, t) value, and 

x is the change interval in months. 
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4.1.3 Myelinated fiber changes are subgranular from birth and shift to supragranular 

after the 15 month change interval 

Of the 420 addresses in Conel‘s myelinated fiber data, Conel reported no fibers in 

five through 72 months:  BA 45r 2 and 3a, and BA 10 2, 3a and 3b.  As noted in Chapter 

2 and Figure 4-2, the remaining 415 addresses fall into seven k-clusters, each with a 

maximum k-cluster mean C(l, b, t) in a unique change interval.  When the k-clusters are 

organized according to the change interval with maximum C(l, b, t), Figure 4-3 shows 

that maximal changes are subgranular (inferior to Layer IV) initially, and shift to 

supragranular after the 15 month change interval.  Figure 4-3 does not depict C(l, b, t) 

data for Layer 3c-4, the closest approximation to neuron Layer 4 in Conel‘s data, which 

will be described below. 
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Figure 4-3.  Number of sub- and supragranular addresses in myelinated fiber k-

clusters.  The 373 members of k-clusters that are superior to Layer 3c-4 (supragranular) 

or inferior to Layer 3c-4 (subgranular) are counted in the change interval for which the 

mean k-cluster C(l, b, t) value is maximal, as in Figure 4-2 for total k-cluster 

membership.  Subgranular changes are predominant until the 15 month change interval, 

then supragranular changes thereafter.  The five supragranular addresses with no fiber 

density reported to 72 months remain unallocated. 
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4.1.4  Fiber Layer 3c-4 demonstrates statistically significant correlations with neuron 

population changes 

Table 4-1 compares neuron population and myelinated fiber k-cluster counts, 

sorted by sub-, supra- and granular address. 

 

Table 4-1.  Neuron population and myelinated fiber k-cluster membership by layer 

and change interval.     

 NCsup NCIV NCsub FCsup FC3c-4 FCSub Nsup NIV Nsub Fsup F3c-4 Fsub 

1 Mo 5 0 6 0 0 20 11 5 8 0 0 5 

3 Mo 7 2 3 4 7 32 12 5 8 0 0 7 

6 Mo 5 1 2 20 7 42 6 1 4 2 1 12 

15 Mo 8 7 11 18 7 11 9 5 3 1 5 16 

24 Mo 8 1 7 32 8 27 5 1 5 3 1 7 

48 Mo 3 3 3 69 1 22 9 3 7 2 1 0 

72 Mo 5 1 3 8 1 4 18 2 4 4 3 5 

 

Core and non-core membership is defined in Chapter 2.  Abbreviations:  N = neuron, F = 

myelinated fiber, C = core, sub = subgranular, sup = supragranular, IV = neuron Layer 

IV, 3c-4 = fiber Layer 3c-4.  To avoid ambiguity, neuron and myelinated fiber layers are 

distinguished by Roman and Arabic numerals, respectively. 

 

Table 4-2 shows the sample correlation r and p-values for the 66 pairs contained 

in Table 4-1.   There are only four significant correlations based on a two-tailed t-test:  

neuron core supragranular members with fiber core Layer 3c-4 (r = 0.7657, p = 0.0448), 

neuron core Layer IV with myelinated fiber non-core Layer 3c-4 (r = 0.7634, p = 

0.0458), neuron non-core Layer IV with myelinated fiber non-core supragranular  (r = -
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0.8195, p = 0.0241), and  neuron subgranular with myelinated fiber non-core Layer 3c-4 

(r = -0.8121, p = 0.0265).   

 

Table 4-2.  The sample correlation r and p-values for the 66 pairs contained in Table 

4-1. 

r = NCIV NCsub FCsup FC3c-4 FCSub Nsup NIV Nsub Fsup F3c-4 Fsub 

NCsup 0.3493 0.6674 -0.4151 0.7657 -0.01 -0.2483 0.1507 -0.3208 -0.1366 0.3241 0.6617 

NCIV  0.6425 0.234 0.3122 -0.3278 -0.1154 0.4147 -0.4325 -0.1768 0.7634 0.5291 

NCsub   -0.11 0.2773 -0.4156 -0.252 0.3893 -0.3506 -0.2079 0.6007 0.5493 

FCsup    -0.0831 0.0954 -0.4174 -0.3398 -0.001 0.308 -0.0089 -0.411 

FC3c-4     0.5061 -0.5864 -0.1869 -0.3788 -0.0672 0.1368 0.6842 

FCSub      -0.6669 -0.2709 0.2639 -0.3051 -0.6523 0.0991 

Nsup       0.2897 0.0932 0.1547 0.1915 -0.2972 

NIV        0.4503 -0.8195 0.0705 0.0959 

Nsub         -0.5843 -0.8121 -0.6624 

Fsup          0.3161 -0.1747 

F3c-4           0.5718 

            

p =  NCIV NCsub FCsup FC3c-4 FCSub Nsup NIV Nsub Fsup F3c-4 Fsub 

NCsup 0.4426 0.1014 0.3544 0.0448 0.983 0.5914 0.7471 0.483 0.7703 0.4783 0.1055 

NCIV  0.1196 0.6135 0.4954 0.4729 0.8054 0.3549 0.3325 0.7045 0.0458 0.222 

NCsub   0.8144 0.5471 0.3538 0.5856 0.388 0.4407 0.6546 0.1538 0.2016 

FCsup    0.8595 0.8387 0.3514 0.4559 0.9983 0.5016 0.9849 0.3596 

FC3c-4     0.2464 0.1664 0.6882 0.4021 0.8862 0.7699 0.09 

FCSub      0.1018 0.5567 0.5674 0.5057 0.1123 0.8326 

Nsup       0.5286 0.8425 0.7405 0.6808 0.5174 

NIV        0.3106 0.0241 0.8807 0.8379 

Nsub         0.1684 0.0265 0.105 

Fsup          0.4898 0.7079 

F3c-4           0.1799 

 

Figures 4-4 and 4-5 show the positively correlated neuron and myelinated fiber counts 

from Table 4-1.  Figure 4-4 depicts the supragranular addresses in the core neuron 

population change k-clusters compared to the core myelinated fiber address counts for 

Layer 3c-4. 
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Figure 4-4.  Number of addresses in core neuron supragranular populations 

compared to core myelinated fiber members in Layer 3c-4.  Because neuron and 

myelinated fiber data are not directly comparable, counts are at the level of Brodmann 

Areas, without sub-areas.  That is, core membership is based on whether an address is 

within a k-cluster core or whether an address in a given Brodmann Area occurs within a 

Brodmann Area that also has a k-cluster core address.  The correlation of these two 

trajectories is statistically significant (r = 0.7657, p = 0.0448, two-tailed t-test).   These 

relationships are detailed in Table 4-3. 
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Table 4-3 shows all addresses in Figure 4-4.  None of the neuron addresses is the 

same as the myelinated fiber addresses at the corresponding change interval.  

Consequently, the right-hand column in Table 4-3 also shows the age the myelinated 

fiber core address demonstrated the greatest change to its myelinated fiber count. 

Table 4-3.  Neuron and myelinated fiber addresses included in Figure 4-4.   

 Neuron Core 

contains LI - III 

Neuron Core in other 

layers than LI to LIII 

Fiber Core 

contains  L3c-4 

Fiber Core in 

another layer than 

L3c-4  

Age for Corresponding 

Fiber 

1 Mo 10_III    Post 72 months for 10 3a 

and 3b 

 40_III    40 3b at 24; 40 3a at 48 

 37_I    37_1 at 6 

 42_III    42 3a and 3b at 24 

 41_III    41 3a and 3b at 24 

3 Mo 6_III 6_II 4Hn_3c-4 4L_3c-4 6 2 and 3a at 24; 6 3b (non-

core) at 48 

 44_II 44_III 4Hd_3c-4  44 3b at 24; 44 2 and 3a at 

48 

  39_II 3Hn_3c-4 3T_3c-4 39 2 at 48 

 38_I 38_III  1L_3c-4 38 1 at 6 Mo; 38 3a at 72, 

3b (non-core) at 48 

   17_3c-4   

6 Mo 7_II  4T_3c-4  7 2 at 48 

 37_II   3L_3c-4 37 2 at 48 

 17_I 17_II 40_3c-4  17 1 and 2 at 48 

 14_III  39_3c-4  14 3a and 3b at 48 

   22_3c-4   

   41_3c-4   

   23/31_3c-4   

15 Mo 4L_III 4Hn_II  9_3c-4 4L 3a and 3b at 15; 4 Hn 2 
and 4 Hd 2 at 24 

  4Hd_II  46_3c-4  

 8_III  45r_3c-4  8 3b at 15; 8 3a at 48 

  6_I 47_3c-4  6 1 at 3 

  19_I 1T_3c-4  19 1 at 24 

 18_II  1Hn_3c-4  18 2 at 48 

 21_II  7_3c-4  21 2 at 48 

24 Mo 4P_I 4T_I  44_3c-4 4T 1 at 3  

  4T_III  45_3c-4 4T 3b at 6; 3a at 15 

  4P_III 10_3c-4   

  45_I  1Hd_3c-4 45 1 at 24 
 14_I  36_3c-4  14 1 at 6 

 13_I 13_II  37_3c-4 13 1 at 6; 13 2 at 48 

    19_3c-4  

    13_3c-4  

48 Mo 7_III   8_3c-4 7 3a at 48; 3b at 72 (non-

core) 

  40_I   40 1 at 6 

  40_II   40 2 at 48 

72 Mo  45_III 3Hd_3c-4  45 3a at 48; 3b at 72 

 22_I 22_III   22 1 at 48;  3a and 3b at 

24 

 24_III    24 3b at 24; 3a at 48 
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The column entitled ―age for corresponding fiber‖ refers to the change interval in which 

Conel‘s observations of myelinated fiber density has the greatest C(l, b, t) value 

corresponding to the neuron population core k-cluster address.  Red values are those for 

which the myelinated fiber change interval precedes the respective neuron change 

interval.  Blue values are those for which the change intervals are in the same change 

interval.  These begin at the 15 month change interval and then predominate. 

Figure 4-5 shows the relationship of neuron core Layer IV k-cluster members with 

myelinated fiber non-core Layer 3c-4 k-cluster members.  Whereas the correlation of 

these two populations is positive (r = 0.7634, p = 0.0458), non-core fiber Layer 3c-4 

members have a statistically significant negative correlation with non-core neuron Layer 

V and VI as well (r = -0.8121, p = 0.0265).    
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Figure 4-5.  Neuron core Layer IV k-cluster members are significantly correlated 

with myelinated fiber non-core k-cluster members from Layer 3c-4.  Of the neuron 

population k-clusters, membership included 15 Layer IV addresses that fell into the core 

as defined in Chapter 2.  Similarly, 11 addresses in Layer 3c-4 fell into a fiber k-cluster 

core.  The trajectories of the two sets distributed into their respective change interval are 

significantly correlated (r = 0.7634, p = 0.0458, two-tailed t-test).  Details of the two sets 

appear at Table 4-4. 
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Table 4-4.  Correlation of neuron core Layer IV with non-core myelinated fiber 

Layer 3c-4. 

 Neuron Core contains  LIV LIV in Neuron Core Fiber Non-core 3c-4 

3 Mo  44_IV  

 39_IV   

6 Mo 17_IV  24_3c-4 

15 Mo  4L_IV 6_3c-4 

  4T_IV 6_8_9_3c-4 

  4P_IV 18_3c-4 

 6_IV  21_3c-4 

  8_IV 14_3c-4 

 19_IV   

  18_IV  

24 Mo  42_IV 38_3c-4 

48 Mo 40_IV  42_3c-4 

 22_IV   

  21_IV  

72 Mo 45_IV  8_9_3c-4 

   30_3c-4 

   29_3c-4 

 

 

4.1.5  Neuron population and myelinated fiber k-cluster cores do not have the same 

distribution 

Figure 4-6 shows that the core members of the k-clusters to not have the same 

relationship to the overall k-cluster membership when neuron population and myelinated 

fiber density data are compared. 
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Figure 4-6.  Comparison of neuron population and myelinated fiber core and non-

core k-cluster membership.  K-clusters are characterized by the respective change 

interval in which they have they maximum mean value for C(l, b, t).  Neuron non-core 

membership in a given k-cluster is consistently greater than the core membership.  This is 

generally the case for myelinated fibers, except during the 48 month change interval.  The 

ratio of core/non-core membership is consistently greater for myelinated fiber density 

changes, exceeding 1 during the 48 month change interval. 

 

Table 4-5 shows the correspondence of core neuron and core myelinated fiber k-

cluster membership. 
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Table 4-5.  Correspondences of core neuron and core myelinated fiber k-cluster 

members hip at successive change intervals.   

 

Max C(l, b, 

t) 

BA Neuron  Myelinated Fiber Comment 

  Supra- 

granular 

Granular  

(IV) 

Sub- 

granular 

Supra- 

granular 

Granular 

 (3c-4) 

Sub- 

granular 
 

1 Mo 45r 0 0 1 0 0 1 N V* to F Vert* 
3 Mo 6 2 0 1 1 0 2 N II/III*/V* to F 1*/Va/Vib 

 44 2 1 0 0 0 2 N II*/III/IV F Vib*/Vert 

6 Mo 45r 0 0 1 0 0 1 N VI* to F 5b-6a* 

 7 1 0 0 1 0 1 N II* to F 1*/6b 

 37 1 0 0 1 0 3 N II* to F 1*/5a*/5b-6a/6b 

 17 2 1 0 0 0 2 N I*/II/IV to F 5b-6a*/6b* 
 14 1 0 0 1 0 2 N III* to F 1*/5b-6a*/6b 

15 Mo 4 3 2 5 3 0 0 4L N III* to F 3a*/3b*; 4Hd N VI*, 4P 

N VI* 
 8 1 1 1 1 0 0 N III*/IV/V to F 3b* 

 29 0 0 1 0 0 1 N V* to F 5a* 

24 Mo 4 4 0 1 5 0 1 4Hn N VI to F 2*/3a*/3b; 4P N I is core 
 44 0 0 1 1 1 0 N V* to F 3b*/3c-4 

 45 1 0 1 1 1 0 N I/VI* to F1*/3c-4/5a* 
 42 0 1 1 3 0 0 N IV/VI* to F 2*/3a*/3b* 

 41 0 0 2 3 0 1 N V*/VI to F 2*/3a*/3b/Sub 

 13 2 0 0 2 0 1 N I*/II to F 3b/3c-4/Va* 
48 Mo 7 1 0 1 2 0 1 N III*/VI to F 2*/3a*/Vert 

 40 2 1 1 2 0 0 N I/II/IV*/V to F 2*/3a* 

 22 0 1 0 1 0 2 N IV* to F 1/Sub*/Vert* 
 21 1 0 1 3 0 1 N IV/VI* to F 2*/3a*/3b*/5b-6a/Vert* 

 

Asterisks  indicate the respective neuron or fiber address is core, as defined in Chapter 2.   

Addresses for sub-areas in BA 4 are compared in a single row.  In Chapter 3, 47 core 

areas appeared in the k-cluster cores, distributed across 41 different Brodmann Areas, 

ignoring sub-areas.  Of these 41 Brodmann Areas, 21 (51.2%) appear on this table.  In 

eight of these areas (38.1%) the myelinated fiber cores are contrary to the subgranular to 

supragranular pattern in Figure 4-3 (in red).  In five of these eight cases (62.5%) the 

respective neuron and myelinated fiber layers are adjacent.  In five additional cases 

(23.8%), the neuron and myelinated fiber cores occur in the same layer (in blue).  

Abbreviations:  N = neuron population; F = myelinated fiber density. 
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4.1.6 Within k-clusters, mean C(l, b, t) for myelinated fibers is significant only for BA 1, 3 

and 4 

Figure 4-7 shows the mean value of C(l, b, t) for addresses in respective 

Brodmann Areas when those areas are members of a k-cluster.  This incorporates C(l, b, 

t) values for all 415 addresses where those values exist, but excludes the C(l, b, t) values 

for those addresses during change intervals when they are not part of the k-cluster.  There 

are only six cortical areas where this mean C(l, b, t) > 3.9, which is the threshold for p < 

0.05 as shown in Chapter 2.  Four of these are subareas within BA 4, the remaining two 

fall into BA 3 and BA1. 
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Figure 4-7.  Mean values of C(l, b, t) within k-clusters by Brodmann Area.    Mean 

C(l, b, t) for each Brodmann Area/Sub-area is calculated on the ten C(l, b, t) occurrences 

for each area when that address falls within a k-cluster.  As noted earlier, there are only 

eight occurrences for BA 45r, and seven for BA 10, as Layer 2 and 3a densities are still 

zero through age six in Conel‘s myelinated fiber data.  As noted in Chapter 2, when C(l, 

b, t) > 3.9, p < 0.05 based on the chi-square distribution for one degree of freedom.  C(l, 

b, t) = 3.9 is shown as the blue line.  BA 4 values for the leg, trunk, hand and head 

exceed this threshold, as do BA 3 for the head and BA 1 for the head.   
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4.2 Discussion 

 

Myelinated fiber neocortical change patterns during postnatal human development 

are dependent on age and layer.  Onset age for myelinated fiber counts and the monotone 

increasing pattern in Figure 4-1B recapitulate almost exactly the ―inside-out‖ pattern for 

pre-natal laminar development in the cortex (Bar and Goffinet, 2000) with the exception 

of Layer 5a.  This is also evident in the change from sub-granular to supra-granular 

membership of myelinated fiber k-clusters in Figure 4-3.  The transition from sub- to 

supragranular majorities occurs during the 15 month change interval, which is precisely 

the time that changes in Layer 3c-4 non-core myelinated fibers are significantly 

correlated with changes to core neuron population changes in Layer IV, as shown in 

Figure 4-5.   Myelinated fiber Layer 3c-4 non-core changes are also significantly 

correlated with core neuron supragranular layers as shown in Figure 4-4 ( r = 0.7634, p = 

0.0458, two-tailed t-test), and significantly anti-correlated (r = -0.8121, p = 0.0265, two-

tailed t-test) with non-core neuron subgranular change patterns.  The age-dependence of 

myelinated fiber C(l, b, t) magnitudes is evident in Figure 4-2 as well, where the mean 

magnitude of changes to fiber counts declines exponentially with increasing age in 

months. 

As Figure 4-2 shows, these myelinated fiber results are directly contrasted with 

the change patterns for neuron populations examined in Chapter 3.  For neuron 

populations, the mean magnitude of C(l, b, t) values in the k-clusters is approximately 

constant across all seven observed change intervals, and thus dependent on the k-cluster 
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membership and not on the observation ages themselves.  Moreover, the obvious laminar 

pattern in the myelinated fiber data is not evident when k-cluster membership is 

compared.   

Within the basic myelinated fiber age and layer-dependent pattern, statistically 

significant magnitudes for C(l, b, t) correspond to sensorimotor functions, as revealed by 

Figure 4-7.  Addresses in all four sub-areas of BA 4 (primary motor cortex, Gazzaniga, et 

al., 2002) recorded in Conel‘s data have a mean magnitude in their respective k-cluster 

above the 3.9 threshold for significance.  Likewise, the addresses for BA 3 for the head 

and BA 1 for the head (primary sensory cortex, Gazzaniga, et al., 2002), have mean C(l, 

b, t) magnitude greater than 3.9. 

Table 4-5 lists all Brodmann Areas where there is a core neuron address and a 

core myelinated fiber address.  In Chapter 3, core neuron addresses were shown to be 

consistent with human sensorimotor development.  As noted in section 4.1.5, the majority 

of the core neuron addresses also have corresponding myelinated fiber core addresses.  

Of those corresponding addresses, 61.9% co-occur in the same layer, or the fiber layer 

occurs contrary to the subgranular to supragranular pattern in Figure 4-3.  Since the 

remaining myelinated fiber addresses could be predicted on the basis age dependence 

alone, it is not possible to infer dependence on neuron function or age in the remaining 

cases. 

Table 4-3 lists 22 Brodmann Areas with a core neuron address in Figure 4-4, as 

well as seven additional Brodmann Areas where a core neuron address occurs somewhere 

else in the respective column (ten addresses including three in BA 4).  These are the core 
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supragranular neuron addresses in Figure 4-4 that are significantly correlated with core 

Layer 3c-4 myelinated fiber densities.   

Table 4-3 shows first that the correlations between neuron-related cores and fiber-

related cores do not occur in the same Brodmann Area at each change interval.  Thus, if 

any particular function is the reason for this correlation, significant neuron population 

changes in supragranular layers during any particular change interval  would be 

correlated with significant changes to myelinated fibers in core-related Layer 3c-4 in 

different cortical areas in that interval.  For example, the first change interval in which 

this situation arises is for 3 months, where Table 4-3 associates neuron population 

changes in Layer I to III in BA 6, 38, 39 and 44 (supplemental motor cortex, the temporal 

pole, the angular gyrus and Broca‘s Area, respectively, Gazzaniga, et al., 2002) with 

myelinated fiber density changes in BA 1, 3, 4, and 17 (primary and secondary sensory 

cortex for the leg, trunk and hand; primary motor cortex for the leg, hand, and head; and 

primary visual cortex, respectively; Gazzaniga, et al., 2002).   In Chapter 3, the neuron 

core-related areas were associated with verb generation in adolescent and adult subjects 

(Le Bihan, et al., 1993, Cao, et al., 1999), semantic processing in adults (Binder, et al., 

1996), word-picture matching among children from 5 to 18 (Schmithorst, et al., 2007), as 

well as perception of the ―end‖ goal of an action (Hesse, et al., 2009) and at least one 

component of the primate ―mirror‖ system (Cadoret, et al., 2005).  The corresponding 

myelinated fiber core areas in Table 4-3 provide primary vision inputs at 1 month, when 

children begin to focus on external objects (Piaget, 1952), as well as somatosensory 

inputs for the respective motor areas in the neuron core.  Thus, the functional associations 
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continue to be consistent with the overall sensorimotor themes in neuron population 

changes noted in Chapter 3, including the ―motor schema‖ construct advocated by 

Mandler (1999).  Similarly, the association of core neuron Layer IV addresses with non-

core myelinated fiber core Layer 3c-4 in Table 4-4 appears to show a similar correlation 

of different cortical areas with the neuron-related functions in those change intervals. 

Chapter 3 also noted that neuron population changes occur in these areas well before the 

corresponding cognitive functions manifest themselves during later childhood and 

adulthood.  The ―corresponding fiber‖ column in Table 4-3 shows one possible basis for 

this delay.  Relatively large changes to myelinated fiber densities for each of the 

supragranular neuron layers for the 3 month change interval did not appear until 24 and 

48 months for most cases, and not until 72 months for BA 38 3a.   Since the completion 

of myelination is a signal of the onset of full functional capacity (Flechsig, 1920; 

Yakovlev and Lecours, 1967), the occurrence of relatively large changes at these 

addresses at later change intervals is a sign that these circuits were not complete until 

much later than the neuron population changes.  This is an example of the second major 

pattern that appears in Table 4-3.  Prior to 15 months, the corresponding age for changes 

to the respectively supragranular address is invariably from 24 to 72 months.  Beginning 

at 15 months, the fiber changes are simultaneous or occur earlier than the neuron 

population changes.  This reflects the general subgranular to supragranular shift in Figure 

4-3. 

This age dependence raises an important factor in interpreting core k-cluster 

membership for myelinated fibers.  As demonstrated in Chapter 2, changes that depend 



 

114 

 

on exponential decay such as the curve in Figure 4-2 for myelinated fiber will have C(l, 

b, t) approximately zero, except for noise.  Such a pattern would result in large numbers 

of highly correlated changes that all have small C(l, b, t) magnitudes.  Once divided into 

k-clusters, this would result in maximal cliques that approach the size of the entire k-

cluster.  This is very probably the reason for the difference in relative size of k-cluster 

core membership evident in Figure 4-6.  Core membership for neurons is rare and 

relatively interesting as a result.  As noted in results, mean neuron C(l, b, t) in Figure 4-2 

is not dependent on age.  Conversely, if core membership is explained by dependence on 

age in myelinated fibers, the addresses that are not dependent become more interesting, 

as are the C(l, b, t) magnitudes that are statistically significant. 
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5.  Evolution of preterit forms in English is heterogeneous and 

discontinuous 

 

Chapter 1 introduced a clock hypothesis for neocortical development given the 

following elements:  1) a self-organizing and potentially hierarchical developmental 

―clock‖ that paces the organization of neocortical regions (Brodmann Areas) needed for 

specific cognitive processes; 2) differential heterogeneous response to the ―clock‖ at the 

level of area/layer combinations that is subject to evolutionary pressure; and 3) the 

conservation of proven hierarchical developmental sequences in the neocortex.  We 

assumed genetic, epigenetic and environmental factors acting as inputs that effect cortical 

addresses differentially, and predicted that correlated and statistically significant 

simultaneous change would have a functional basis. 

Chapter 3 showed that neurotrophin- and activity-based neuron population 

changes induce unique k-clusters at each change interval that are consistent with 

sensorimotor development in young children (Piaget, 1952).   K-clusters emerged at the 

area/layer address level, indicating the conservation of layer-based control in addition to 

activity-based inputs at the level of Brodmann Areas.  Each k-cluster had a small core, 

consisting of the members of one or more maximal cliques of highly correlated addresses 

at each successive change interval.  Core membership and statistically significant 
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magnitudes of C(l, b, t) were significantly correlated.  These cores were consistent with 

sensorimotor development,  a hierarchical process of continued adaptation and 

assimilation (Piaget, 1952), and coincided with subsequent linguistic function in older 

subjects in the case of Broca‘s Area, but the age at which sophisticated cognitive 

functions such as language or participation in the primate mirror system were well in 

advance of when that behavior normally emerges.  The mean magnitude of C(l, b, t) in 

each k-cluster was relatively constant across change intervals, or independent of 

increasing age. 

In Chapter 4, change to myelinated fiber density was shown to be dependent on 

age and layer.  While time dependence is likely the result of temporal control, and layer 

dependence is symptomatic of the conservation of the prenatal ―inside-out‖ development 

of cortical layers, the pattern of exponentially declining C(l, b, t) magnitudes and 

proportionally large k-cluster core membership contrasts with neuron population changes.  

This may reflect a situation where control of oligodendrocytes is correlated most closely 

with neuron secretions (Butt and Berry, 2000), then by expression of cell adhesion 

molecules (Coman, et al., 2005), and then finally by electrical activity in the neuron 

(Sanchez, et al., 1998; Sirevaag and Greenough, 1987; Szeligo and Leblond, 1977).  As 

noted in Chapter 4, temporal dependence is likely to result in very small C(l, b, t) 

magnitudes and larger k-cluster cores.  Nevertheless, significant correlations between 

neuron population and myelinated fiber density change continued to be consistent with 

sensorimotor development.  Moreover, the layer-dependent pattern in myelinated fiber 
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change helps to explain completion of cognitive functional development months or years 

after the initial neuron population change. 

For both neuron populations and myelinated fiber densities, the three elements of 

genetic, epigenetic, and environmental factors were present for the operation of a self-

organizing clock.  What happens when there is no obvious means by which genetic and 

epigenetic factors can operate?  To answer that question, we can turn to an example from 

linguistic evolution, reflecting a complex cognitive behavior where the changes occur 

solely in the outputs of the humans that comprise the speech community.       

 

5.1  A complex cognitive behavior:  evolution of irregular verb forms in English 

 

5.1.1  Background from linguistics 

Since the days of the Neogrammarians and their critics, theories of linguistic 

change have alternated between two formulae:  ―exceptionless‖ laws on the one hand, 

and the dictum that ―every word has its own history‖ on the other.  Dialect evidence from 

both historic sound changes and from sound changes in progress supports both (Labov, 

1994).  Nevertheless, Lieberman, et al. (2007) claim to have discovered an exceptionless 

law, hereinafter called the L-M Hypothesis (for Lieberman-Michael):  in terms of 

Modern English, non-‗ed‘ preterits have been ―decaying‖ since the Old English period, 

with a half-life inversely proportional to the square-root of the usage frequency.  Thus, 

‗be‘, which has the highest usage frequency in the CELEX corpus (van der Wouden, 



 

118 

 

1988) used in support of the L-M Hypothesis, has a tremendously long half-life, at least 

38,800 years.  

The L-M Hypothesis is morphological and thus focused at a word level.  It 

implies that a common default attractor has operated since pre-1066 days until the 

present.  In Old English, the putative default attractor was a transform that operated on 

the so-called ‗weak‘ verbs, using dental suffixes (e.g., ‗-de‘ or ‗-te‘ depending on the 

voicing environment) to form the preterit.  For example, the transform took ‗I judge‘ 

from ‗iċ dēme‘ to ‗iċ dēmde‘.  Weak verbs like ‗iċ dēmde‘ constituted approximately 

three quarters of the verbs in Old English (Quirk and Wrenn, 1994).  In Modern English 

the default attractor, which is more or less the direct descendent of the Old English 

version, consists of a dental suffix (‗-ed‘) that likewise transforms ‗I deem‘ to ‗I deemed‘ 

now.  As in Old English, the suffix is pronounced as /t/ in voiceless environments, such 

as ‗laugh/laughed‘.  Under the L-M Hypothesis, all other preterit transforms are decaying 

to this default at a regular rate.   

In Old English, this transform competed with ‗strong‘ verbs that used vowel 

alternations (e.g., ‗beran/bær‘ ‗bear/bore‘), descended from alternated thematic stem 

vowel –e– with –o– found in earlier Germanic and Indo-European forms.  Other verbs, 

such as ‗eom/wæs‘ were simply irregular, then as now (‗am/was‘).  Old English also had 

a few, but very frequently used pretero-presents, where preterit forms appeared in present 

contexts, such as ‗might‘ does now.  Old English weak verbs themselves fell into 

different classes.   The example above, ‗iċ dēme/dēmde‘, was Type I, but others fell into 

Type II (with suffix‗-ode‘), such as ‗iċ lufiġe/lufode‘ for ‗I love/loved‘, which we can 
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safely group as ‗regular‘ in a loose sense.  However, other weak verbs demonstrated 

alternations in the root consonant, such as ‗iċ hæbbe/hæfde‘ for ‗I have/had‘, which will 

be counted in this paper as non-‗ed‘ forms (Campbell, 1959).  One should remember that 

multiple preterit attractors existed and continue to exist, and that a contrast between a 

single ―regular‖ form and all the others is really an oversimplification.  Old English also 

distinguished between preterits and past participles, but for simplicity we will focus 

exclusively on the preterits.   

Here we examine whether this putative default transform, embodied in the various 

cognates of the (unchanged) stem + ed form, represents the sole active attractor for 

preterit formation in English since Old English.  If it is, under the L-M Hypothesis we 

would expect a monotone decreasing share of English verbs to follow alternative 

patterns, with the most frequently used verbs most resistant to this change.  We will show 

that relative usage frequency bears a different relationship to accessions and decrements 

from the population of non-‗ed‘ verbs over time.  In fact, change patterns for the 

population of high relative frequency and low relative frequency non-‗ed‘ verbs are 

approximate mirror images.  Finally, the change patterns for these two groups of verbs 

appear to reflect distinct Middle English and Modern English phases, as well as highly 

significant cluster changes related to the completion of the Great Vowel Shift.  These 

reveal changes tied to individual word histories, as well as the systemic operation of 

changes to the overall population of English verbs, but not a single monotone decreasing 

population of non-default verbs. 
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5.1.2  Modifications to data and methods in Chapter 2 

The Lieberman, et al. (2007) quantification of a regularized transition process 

relies on elements that are subject to some criticism.  First, they restrict their analysis of 

change steps to just the two steps from Old to Middle and from Middle to Modern 

English based on compilations from handbooks.  This is less than precise in assigning the 

dates of verb transitions.  Second, while their assignment of current usage frequency from 

the CELEX corpus was a pragmatic decision made necessary by the lack of similar 

corpora for earlier stages of English, their representation of verbs from the CELEX 

corpus had errors and omissions.  For example, ‗become‘ is not listed in their 

supplemental data until Modern English, but actually occurred in Old English.  Other Old 

English strong verbs are not listed, including all the modal auxiliaries (‗shall‘, ‗will‘, 

‗can‘, ‗may‘), which belong to the exceptional pretero-present class.  An additional group 

appears to have been weak (equivalent to the ‗-ed‘ ending), or foreign verbs borrowed 

with the ‗-ed‘ ending applied all along.  Altogether, these amount to more than 10% of 

their 249 item list.  Moreover, many forms (‗sneaked/snuck‘) are now or were co-

extensive.  Finally, their decision to focus exclusively on the set of Old English non-‗ed‘ 

verbs eliminated most of the data that would have negated their hypothesis, whether or 

not the list was accurate.  

To correct these inconsistencies, we deleted verbs without a non-‗ed‘ phase, and 

included the pretero-present class for a revised total of 228 verbs that includes additions 

to the non-‗ed‘ set between the 10
th

 and 20
th

 centuries.  To refine the transition data in the 
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verb lists beyond two change steps, we used the Oxford English Dictionary (OED, 1971) 

to create a table of transitions across the 11 centuries ending between 1000 and 2000 AD.  

For each verb, the OED cites forms and dates.  We define a set S of verbs that do not use 

the stem + ed transform to form a preterit.  For each verb n in S in century c, we assign 

the usage frequency ν from the CELEX corpus, in common with Lieberman, et al.  This 

presumes that usage is constant over all 11 centuries, which we provisionally accept as a 

working hypothesis.  We also note that this hypothesis is technically negated by co-

extensive forms and by wholesale substitution of roots (e.g., ‗take‘ rather than niman).  

We return to these points in the discussion later. 

The L-M Hypothesis is based on usage frequency.  It is difficult to envision a 

mechanism in which a language learner (especially an infant or toddler) examines a body 

of data for frequency of occurrence, so we substitute the notion that the child responds to 

the relative frequency of forms in given contexts:  greater frequency implies greater 

probability that a rule or construction will be adopted in each learning context (see 

Tomasello, 2003).  

As there are no cortical layer or Brodmann Area distinctions in the data, to 

calculate the relationships in Chapter 2 we will return to the table of observations T(r, c) 

for r rows and c columns, redesignated in this chapter as T(n, c) for n verbs numbered 

from 1 to 228 and 11 centuries c corresponding to the 10th to the 20th centuries for which 

the English data are available.     Equation 1 then produces R(n, c) for the n verbs and c 

centuries and Equation 3 produces C(n, c-1) for the n verbs and c-1 change intervals 
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between the 11 centuries.  Similarly, c -1 = 10 for the indices in Equation 8 for the 

correlation distance used to identify the k-clusters in the verb data.   

 

As noted in Chapter 2, we tested for the optimal value of k up to 100,000 

replications, which proved to be subject to diminishing returns as shown in Figure 2-5.  

As noted there, optimum k = 13 for this set of data. 

 

5.2  Results for the set S of non-„ed‟ forms 

 

5.2.1  Log frequency results 

For a given verb, if the usage frequency is the average for the set S in that 

century, R(n, c) = 0.  If the usage frequency is greater than average for S in that century, 

R(n, c) > 0.  A histogram of R(n, c) for all verbs that belonged to the set S of non-‗ed‘ 

verbs is shown in Figure 5-1.  Between the 10
th

 and 20
th

 centuries S was not fixed in size.  

In the 10
th

 century, it included 188 of the 228 corpus verbs, and increased to 214 in the 

13
th

 century, and thus fails to support the L-M half-life model since the set was not 

monotone decreasing.  It has undergone a net loss in membership thereafter, decreasing 

to 157 verbs in the 20
th

 century.  Between the 10
th

 and 20
th

 century, S included a ‗stable‘ 

membership of 125 verbs.  A total of 40 ‗accessions‘ occurred of which 32 remain in the 

set.  A total of 71 verbs ‗decayed‘ to the equivalent of a stem + ed form, including 8 of 

the 40 accessions.  We call these ‗deletions‘ from the set S.  The set of 8 verbs that were 

both accessions and then later deletions are called ‗transitions‘ in Figure 5-1.  Most 
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(64.8%) of the stable set have R(n,c) > 0, while nearly all (84.9%) of the deletions have 

R(n,c) < 0.  Nearly half (43.8%) of the accessions have R(n,c) > 0.  Since we do not have 

usage frequencies for all verbs in each century, we cannot assert that R(n,c) = 0 implies 

the average for all verbs.  R(n, c) = 0 is simply the average usage frequency in a given 

century for the verbs that happened to be in set S in that century.  That list was different 

from one century to the next. 
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Figure 5-1.  Histogram of all values of R(n, c) for the set S of non-„ed‟ verbs from 

the 10
th

 to the 20
th

 century.  The figure is a histogram of relative usage frequencies for 

the 228 verbs in the corpus for S, normalized by Equation 1.  At R(n1, c2) = 0, a verb n1 

in century c2 has the average usage frequency for a member of set S in century c2.  While 
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the set S shows an approximately normal distribution, the constituents of S representing 

the stable non-‗ed‘ verb population, accessions, deletions and transitions do not.  N for 

the histogram represents numbers of occurrences of R values in bins of 0.25 nats without 

regard to the century.  Thus, for ‗take/took,‘ the highest frequency verb in the accession 

set with the first attestation in the 11
th

 century, the histogram contains the 9 occurrences 

of R(n, c) between 3.50 and 3.75, and another less than 3.50  since R(n, c) is not generally 

constant from century to century, even for the stable verbs.  S is nearly symmetric, with 

48.6% of all non-‗ed‘ instances with R(n, c) > 0 (sample skewness = 0.236).  R(n, c) > 0 

for 60.9% of the stable verbs (sample skewness = 0.105), for 39.1% of the accessions 

(sample skewness = 0.234), for 25.9% of the transitional verbs (sample skewness = 

0.713), and for 12.2% of the deletions (sample skewness = 0.477).  Transitional verbs 

were not double counted with the accessions and deletions. 

 

To examine for discontinuities between the accession and deletion subsets of S, 

Figure 5-2 shows the mean R(n, c) score for both categories by century.  The mean 

accession R-values in the 11
th

, 12
th

 and 19
th

 centuries are significant (p = 2.39 x 10
-5

, p = 

3.80 x 10
-4

 and p = 3.20 x 10
-7

, respectively, two-tailed t-test with a Bonferroni correction 

for n = 16). 
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Figure 5-2.  Mean values of R(n, c) for verbs in the accession and deletion subset of S 

by century.  The 10
th

 century is not depicted as these subsets appear during the change 

intervals from the 10
th

 century baseline.  While coextensive statistically, the two subsets 

are not coextensive by century.  The early high frequency accessions in the 11
th

 and 12
th

 

century include ‗take/took‘ (R = 3.714), ‗put/put‘ (R = 2.496), and ‗spend/spent‘ (R= 

1.487) in the 11
th

; and ‗get/got‘ (R = 3.635), ‗build/built‘ (R = 1.279), ‗strike/struck‘ (R = 

0.557), and ‗spread/spread‘ (R = 0.407) in the 12
th

.  The only subsequent accession verbs 

with R(n, c) > 0.4 were ‗cut/cut‘ (R = 1.092), ‗catch/caught‘ (R = 0.984), and ‗hit/hit‘ = 

(R = 0.526), all in the 13
th

 century.  The low frequency accession to S in the 19
th

 century 

was ‗wed/wed‘ (R = -5.288), which is the accession outlier in Figure 5-1.  Altogether, 13 
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(40.6%) of non-transitory accessions are of the ‗wed/wed‘ type:  monosyllabic, ending in 

a dental, with identical present and preterit.  Including three cases like ‗build/built‘ where 

the preterit shifts from –d to –t, the percentage increases to 53.1%. 

 

5.2.2 K-means cluster analysis results 

 5.3.2.1  Changes to S depend on the usage frequency; there is only one verb with 

a statistically significant change step 

Figure 5-3 shows that maximum C(n, c-1) for each of the 228 verbs is dependent 

on R(n, c) rather than on time.   Moreover, only one verb, ‗wed/wed‘, has a statistically 

significant value for C(n, c-1). 
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Figure 5-3.  Max C(n, c-1) as a function of R(n, c).  The value of R(n, c) is logratio at 

the time the respective verb achieves its maximum value for C(n, c-1).  C(n, c-1) as 

defined in Chapter 2 follows a chi-square distribution with one degree of freedom, 

against the null hypothesis that R0 at time zero is the same as R1 at time one.  This is 

approximately true for the stable verbs, which fall along the horizontal axis.  By the 

working hypothesis in 5.2.1, usage frequency in any century is assumed constant.  Since 

this frequency appears in T(n, c) in the centuries when a given verb is in set S, and the 

entry is otherwise zero, which applies to R(n, c) as well.  C(n, c-1) will thus be 

approximately zero except in the century when a verb is accessed or deleted, and it will 
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be proportional to the square of R(n, c) at that time according to Equation 3.  Thus, 

transitional verbs follow a parabola in the figure.  The k-clusters follow slightly different 

parabolic paths.  Only one verb, ‗wed/wed‘ has a statistically significant value for C(n, c-

1).  It is the only point above the threshold for significance, where C(n, c-1) = 3.9 and p 

= 0.5 (one-tailed chi-square with one degree of freedom).  For ‗wed/wed‘ C(n, c-1) = 

4.4745 and p = 0.0344.  This verb was accessed into set S in the 19
th

 century. 

 

Figure 5-4 provides details of the 13 k-clusters.  Mean C(n, c-1) values are similar 

to neuron and myelinated fiber k-clusters in showing a unique period in which the value 

is maximal; however, the values do not show a dependence on the century related to the 

k-cluster.  Ten of the k-clusters contain all but four of the verbs accessed into or deleted 

from the set S during the preceding century, as well as 17 of the stable non-‗ed‘ preterit 

verbs that were always members of S.  The remaining three k-clusters—k-3, k-11, and k-

13 in the random assignment of numbers to k-cluster—contain the remaining 112 of the 

125 stable verbs.  K-13 contains 81 of the stable verbs as well as four accessions into the 

set S:  ‗bend/bent‘ (11
th

 century), ‗cost/cost‘ (14
th

 century), ‗hurt/hurt‘ (12
th

 century), and 

‗withdraw/withdrew‘ (13
th

 century).   All three of these stable k-clusters have values of 

C(n, c-1) that are not visible at the scale depicted in Figure 5-3.  We will take these stable 

k-clusters up shortly. 
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Figure 5-4.  Mean change step magnitude C(n,c-1) by k-cluster.  The mean value of 

C(n, c-1) for each 13 k-clusters is shown for each century.  The value for the 11
th

 century 

represents the normalized change step for verbs between 1000 AD and 1100 AD, and so 

on.  All 13 k-clusters are depicted on the graph, but only the ten with large change steps 

in a single century are visible because of the scale of that change.  These large magnitude 

values for C(n, c-1) result from transitions into or out of the set S of non-‗ed‘ preterit 

verbs.  The extreme value in the 19
th

 century comes from C(n, c-1) = 4.4745 for 

‗wed/wed‘. 
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 5.2.2.2  Nearly all k-clusters members are part of the k-cluster core 

By contrast to changes to neuron populations or myelinated fiber densities, 84.6% 

of all 228 verbs fall into their respective k-cluster core.  Figure 5-5 contrasts the three sets 

of data with respect to proportional core membership and proportion of data elements that 

are statistically significant in terms of C(n, c-1) (or C(l, b, t) for neurons and fibers). 
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Figure 5-5.  Proportion of k-cluster members that are in the k-cluster core or are 

statistically significant for neuron populations, myelinated fiber densities are 

changes to irregular verbs in English.  Chapter 3 showed a functional developmental 

basis for synchronized changes to neuron populations in the cortex.  For this data set, 

20.7% of the 222 addresses belonged to one of the seven k-cluster cores.  Of the 222 
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addresses, 9.5% had at least one value of C(l, b, t) > 3.9.  Statistical significance of C(l, 

b, t) was significantly correlated with core k-cluster membership.  Chapter 4 showed an 

age-related decline in C(l, b, t) for myelinated fiber density changes that explained 91.3% 

of the variance in C(l, b, t) for the 415 addresses where this was defined.  For this data 

set, 47.5% of the 415 addresses were members of the seven k-cluster cores.  For 

myelinated fiber density, statistical significance of C(l, b, t) was not  significantly 

correlated with core membership; 16.4% of the addresses had significant C(l, b, t) values.  

For irregular English verbs, where membership in S depends on R(n, c) rather than time, 

84.6% of the 228 verbs are members of one of the 13 k-cluster cores, and only one of 

those verbs had a statistically significant transition. 

 

 5.2.2.3  K-clusters and individual word histories 

Table 5-1 summarizes the remaining 10 k-clusters, listing the century in which 

their greatest changes occurred, the number of verbs accessed or dropped by S during that 

century, their mean change step over all 10 centuries, and the mean relative usage 

frequency for the k-cluster.     

Table 5-1.  Statistics for the 10 “transition” verb clusters 

Transition 

Century 

k-

Cluster 

Number of 

accessions to 

S 

Number of 

deletions 

from S 

Mean C(n,c-1) 

over 10 

centuries 

Mean 

R(n,c) ± 

s.d 

11
th

 k-5 5 1
1
 0.0180 

-0.8660 ± 

1.2529 

12
th

 k-9 5 0 0.0450 
0.6500 ± 

1.2744 

13
th

 k-7 10 1 0.0320 
-0.8032 ± 

1.1340 



 

132 

 

14
th

 k-8 4 15 0.0752 
-1.7392 ± 

1.3184 

15
th

 k-12 1 11
2
 0.0374 

-1.0079 ± 

1.0547 

16
th

 k-1 1 8 0.0762 
-1.9172 ± 

0.5764 

17
th

 k-4 2 15
3
 0.0878 

-1.3723 ± 

1.2968 

18
th

 k-6 0 10
4
 0.0957 

-1.4018 ± 

1.0086 

19
th

 k-2 1 5
5
 0.1869 

-1.1140 ± 

1.9208 

20
th

 k-10 0 2 0.0229 
-0.5795 ± 

0.4819 
1'walk' subsequently deleted from S in the 18th century; k-5 has 17 stable verbs with a similar change profile 

2'dream' and ‗yell‘ were accessed in the 13th century, 'scrape' in the 14th century, before deletion in the 15th 

3'blend' accessed in the 13th century, 'span' in the 14th, both deleted in the 17th 

4'cringe' was accessed by S in the 13th century before deletion in the 18th 

5'sneak/snuck' was an accession to S in the 16th century and a deletion in the 19th; ‗snuck‘ is still a regional variant 

 

These k-clusters contain the entire span for Middle English from 1100 – 1500 

(Pyles, 1971; Fischer, et al., 2000) and the subsequent development of Modern English.  

K-5 has its largest magnitude values for C(n,c-1) from the interval from 1000 to 1100, 

and thus represents the transition from Old English to Middle English.  It is exceptional 

among the ―transitional‖ k-clusters in that it contains 17 of the stable verbs, but also has 

five accessions, of which four have such a high usage frequency that the entire cluster has 

a change profile resembling the other nine k-clusters containing only accessions and 

deletions.  In order of descending relative usage frequency at accession, the five 

accessions to k-5 are ‗take/took‘ (R = 3.1602) which displaced niman in the 11
th

 century; 

‗put/put‘ (R = 2.1238) which appeared about 1050 according to the OED, and may also 
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have displaced the Old English stellan;  ‗walke/wéolc‘ (R = 1.3979) but later deleted 

(18
th

 century) which represents a shift in meaning for this root from the sense of rolling in 

Old English to the current sense of moving about; ‗spend/spent‘ (R = 1.2656); and finally 

‗mislead/misled‘ (R = -0.7846).  As noted for Figure 2, the accessions for this century 

have a mean value for R(n, c) that is statistically significant.  They have the highest 

relative usage frequency of the accessions in this dataset, and none of these is a member 

of the k-5 core.  The continued active incorporation of strong preterits (‗took‘, ‗wéolc‘, 

and ‗misled‘) is evident.   

  As evident in Figure 5-2, the 12
th

 century accessions in k-9 continued to be 

unusual.  K-9 consists entirely of accessions, of which four of the five had above average 

relative usage frequency in S in the 12
th

 century:  ‗get/got‘ (R = 3.1880), possibly 

displacing abiddan (obtain); ‗build/built‘ (R = 1.1219); ‗strike/struck‘ (R = 0.4875); 

‗spread/spread‘ (R = 0.3523); and ‗thrust/thrust‘ (R = -0.9120).  The mean R(n,c) for high 

relative usage frequencies continued to be statistically significant, as noted previously.  

Unlike k-5, however, all members of k-9, including the accessions were part of the core.  

Active adoption of strong forms (‗got‘, ‗struck‘) also continues to be evident, as does the 

possible substitution of new roots for old.   

By contrast, the remaining k-clusters have lower relative usage frequencies.  For 

example, only three of the ten 13
th

 century accessions in k-7 have R(n,c) > 0: ‗cut/cut‘ 

(1.0248), ‗catch/caught‘ (0.9234), and ‗hit/hit‘ (0.4938), and mean R(n,c) < 0 from the 

13
th

 century for both accessions and deletions, as shown in Figure 5-2.  From the 14
th

 

century on, deletions outnumber the accessions to S. 
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Figure 5-6 shows all of the stable non-‗ed‘ verbs:  112 in the remaining three k-

clusters, and 17 in the stable set from k-5, labeled ‗k-5 (S)‘.   These were invisible due to 

scale in Figure 5-4.  The vertical markers indicate time references to which we will return 

in the Discussion.   
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Figure 5-6.  Mean C(n,c-1) by century for three stable k-clusters.  K-3 consists of 

nine stable non-‗ed‘ verbs.  K-11 consists of 22 stable non-‗ed‘ verbs.  K-13 consists of 

81 stable non-‗ed‘ verbs and 4 accessions to the set S of non-‗ed‘ verbs.  The 17 stable 

verbs from k-5 are also shown.  The vertical dashed lines indicate time references for 

Middle English and the transition to Modern English.  ‗Edward III‘ refers to Edward‘s 

first address to Parliament in English in 1362.  ‗Jespersen‘ refers to evidence in 
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Jespersen, 1909 for the initial changes in the Great Vowel Shift around 1500 that marked 

the end of Middle English.  Hart, Wallis, Cooper and Batchelor were all orthoepists or 

early phoneticians who reported on exact pronunciation in their respective times:  about 

1570 for Hart, 1653 for Wallis, 1687 for Cooper, and 1809 for Batchelor.  These were all 

cited in Chomsky and Halle (1968) among other works on the history of English.   

 

Figure 5-7 shows the usage frequencies for these k-clusters by century.  K-13 and 

k-3 had the highest and lowest mean values for R(n, c), respectively, and their trajectories 

are nearly mirror images.  Thus, k-13 had an increasing share of the set S until the 13
th

 

century that declined thereafter, while k-3 had a declining share of S until the 13
th

 century 

that increased thereafter.  
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Figure 5-7.  Mean relative usage frequency R(n,c) for the stable k-clusters.  K-13 has 

the highest relative usage frequency (1.3542 ± 1.1598), while K-3 has the lowest (-2.6780 

± 0.6048).  K-11 had a relative usage frequency near R(n,c)= 0 (-0.5838 ± 0.1583).  K-5 

(S) had lower relative usage frequency, with mean R(n,c) = -1.3989 ± 0.3358.  K-13 is 

the largest k-cluster with 85 members, and includes all the highest frequency stable verbs, 

such as ‗be‘. 
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5.3 Discussion 

 

The L-M Hypothesis does not describe the preterit formation data in English. 

When examined century-by-century instead of as a two step change process, the set S of 

non-‗ed‘ verbs is not monotone decreasing.  Instead, S increased until the 13
th

 century.  In 

fact, there were no deletions from S until the 13
th

 century, and the patterns of change 

from the Old English baseline in the 10
th

 century through the 12
th

 century evolution of 

Middle English demonstrate an active strong verb system and wholesale replacement of 

one root for another rather than the adoption of a single morpheme outside its normal 

range.  Moreover, by focusing only on the fate of non-‗ed‘ verbs from Old English, the L-

M Hypothesis does not account for accessions, which outnumbered deletions until the 

14
th

 century, continued until the 19
th

 in the CELEX list, and probably continue to this 

day, as we will see below.   

When we transform sequential observations into change vectors and test for 

correlated changes, the temporal changes alone divide the set S of verbs that at one time 

or another had a documented non-‗ed‘ preterit into ten sets (k-clusters) characterized by 

accessions into and deletions from S, as well as three k-clusters consisting almost entirely 

of stable verbs.  The initial k-cluster marking the transition from Old to Middle English in 

the 11
th

 century uniquely contains both stable verbs and accessions with very high 

relative usage frequencies.   

An examination of the verbs contained in the k-clusters suffices to show that the 

clustering does not distinguish accession from deletion verbs when they occur in the 
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same century, nor does it provide a natural grouping based on verbal morphology.  These 

k-clusters are simply correlated based on fluctuations in their relative usage frequency 

compared to their complement in the set S.  Because set S was different from one century 

to the next, this means that the complements to the stable k-clusters also changed, which 

explains the fluctuations in Figure 5-6, particularly for the k-13, the largest k-cluster 

containing most stable verbs with R(n, c) > 0, and k-3, with the stable verbs having R(n, 

c) << 0.  These are particularly useful as ―yardsticks‖ with fixed sets of usage 

frequencies against which to measure the changing usage frequencies in the remainder of 

S.  The respective magnitudes of C(n, c-1) for these two k-clusters change in synchrony 

in Figure 5-6, and help shed some light on the actual dynamics that appeared to affect 

verbal morphology, particularly as Middle English became Modern English. 

One interesting benchmark date, indicated in Figure 5-6, was Edward III‘s first 

address to Parliament in English in 1362.  This was significant because Edward III was a 

Plantagenet king, descended from Norman nobility that had used Norman French at court 

and in the conduct of their affairs from 1066 onward.  An address by the monarch to the 

ruling elite in Parliament in English clearly marks the emergence of English once again 

as the language of the ruling class in England.  Chaucer was a member of his court.  The 

low magnitude of C(n, c-1) in Figure 5 indicates very little change from the 13
th

 century, 

and thus a relatively stable century for the set S, regardless of the Black Death (1348) or 

the Hundred Years‘ War taking place at the time. 

By contrast, the 15
th

 century demonstrated increasing magnitudes in C(n, c-1) in 

Figure 5-6, reflecting changes in the membership of S.  The Great Vowel Shift, which 
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commenced the changes that produced Modern English, began during this century.  The 

initial sound shifts noted by Jespersen (1909), who coined the name for this vowel shift, 

were already complete by 1500.  John Hart, often cited in studies of the Great Vowel 

Shift by Labov (2001), Chomsky and Halle (1968) and others, was active until about 

1570, and captured the system in the very early Modern English that existed during the 

following century, which was relatively stable according to Figure 5-6.  John Hart‘s 

system is compared to Middle English in Table 5-2, which also lists the vowel systems 

reported by his successor English orthoepists, who all wrote on the correct pronunciation 

in their day. 

 

Table 5-2.  The vowel system in Middle English compared to four English 

orthoepists from 1570 to 1809.   

Middle English Hart Wallis Cooper Batchelor 

i: ey ey ʌy ʌy 

e: i: i: 
i: iy 

æ: e: e: 

a: a: æ: e: ey 

ɔ: o: o: o: ow 

o: u: u: u: uw 

u: ow ʌw ʌw ɔw 

e:w yu iw 

yuw yuw 
æ:w (y)e:w 

(iw) 

e:w 

(ye:w) 

æ:y e:y æy e: ey 

a:w a:w ɔ: ɔ: ɔ: 

ɔ:w o:w 

əw 

o: ow (ʌw) 

(o:) 

     

Middle English Hart Wallis Cooper Batchelor 
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ɔ:y o:y 
əy 

ɔy ɔy 
(ʌy) 

i i i i i 

e e e e e 

a a æ æ 
æ 

æ: 

o o ɔ ɔ 
ɔ 

ɔ: 

u u 
ʌ ʌ ʌ 

u u U 

 

Based on Chomsky and Halle (1968). 

 

By Hart‘s day, the value of the vowels in various words differed between Middle 

English and how Hart thought it best to pronounce them, but the systems themselves 

continued to distinguish the same words from each other.  In other words, there were no 

mergers, where two words such as ‗meed‘ (a field) and ‗mead‘ (a drink) could no longer 

be distinguished.  This is consistent with the relative stability indicated for the 16
th

 

century in Figure 5-6. 

The 17
th

 century, however, contained the largest magnitudes for stable verb C(n, 

c-1) in the dataset.  This indicates large-scale changes in the non-stable set S, and Table 1 

shows that there were 2 accessions and 15 deletions in this century.  One of the deletions, 

‗help‘, had a very high usage frequency (R = 1.4779).  Including ‗help‘, these were not 

obviously related to the vowel changes evident in John Wallis (1653-1699) who 

described more distinctions rather than mergers toward mid-century, and Christoper 

Cooper (1687) who described numerous mergers resulting from the changing vowel 

system by the end of the century.  Nevertheless, both sets of observations indicate large 
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scale changes going on at this time:  generally exceptionless changes, such as the Great 

Vowel Shift, and changes peculiar to particular verbs, as in k-4 and for ‗help‘ in 

particular.  In fact, London at the end of the 17
th

 century provided evidence for three 

competing vowel systems from rhymes and puns as well as Christopher Cooper.  These 

are sketched in Table 3.  Of the three systems, only two survived into the 18
th

 century 

(columns 2 and 3), of which the latter eventually predominated. 

Table 5-3.  Competing vowel systems in late 17th century London.   

 Cooper  1685 Rhymes and puns; 

 

Rhymes and puns; 

Cooper 1687 

meed i: i: 
i: 

mead e: 

e: made 
ε: e: 

maid 

 

 Based on Samuels (1972). 

 

Batchelor (1809) does not add appreciably to the possibilities for merger in 

Cooper (1687), but the magnitudes for C(n, c-1) for the 18
th

 century are still indicative of 

large-scale change within the verbal systems.  By Batchelor, the effects of the Great 

Vowel Shift were finally complete, including the diphthongs that replaced the original 

long vowels in Old and Middle English.  The verb systems, however continued to 

change, including the accession of ‗wed/wed‘, the final accession to S in the 19
th

 century.  

In fact, this is the lowest frequency outlier in the data and creates the statistically 

significant low frequency bar in Figure 5-2.  While Lieberman, et al., cite this particular 

verb as the next verb in danger of disappearance, it is actually the most recent to join S in 
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their corpus.  Here is a 21
st
 century example (‗net/net‘) to show that the monosyllabic 

verbs ending in dentals still appear to be joining this class: 

 

She [Hillary Clinton] net 200,000 votes on Tuesday, but they will likely be 

all-but-cancelled out by an Obama win in North Carolina two weeks from 

now.   

Loewe D (2008)   

 

Thus, the occurrence of ‗wed/wed‘ as a recent accession becomes significant 

because it is evidence for the continued existence of an alternative attractor for preterit 

formation besides the stem+ed transform, survivals from the older strong verb vowel 

stem alternation, and various less regular or irregular forms.  This alternative attractor 

may have occurred as early as the 13
th

 century, when ‗put/put‘ (replacing the weak Old 

English stellan) and ‗cut/cut‘ appeared in S (Campbell, 1959; OED, 1971).  From a 

language learner‘s perspective, weddings are important socially, but not nearly as 

frequent as situations for putting and cutting.  The statistical significance of ‗wed/wed‘ 

stems from this discrepancy in frequency that is also reflected by the relative infrequency 

of ‗wed‘ in the CELEX corpus.  The extremely low usage frequency, as well as 

situational frequency, argues for application of an otherwise viable paradigm rather than 

learning by example in this case. 

While an extremely low usage form like ‗wed/wed‘ is most likely related to 

adoption of an attractor that otherwise has much more frequent examplars, the highest 

frequency accession—‗take/took‘, which replaced  niman and was a statistically 

significant accession in the 11
th

 century—provides a useful illustration of potential 
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systemic mechanisms that could affect individual word choices.  Within a construction 

grammar context such as Tomasello‘s (2003), the frequency of a ‗take/took‘ scenario 

within households or neighborhoods presumably did not change significantly.  Yet the 

learned form changed nevertheless, implying that the adult role models for language 

acquisition had to change their behavior within previously familiar contexts that recur 

many times each day.  Frequencies of competing forms do not necessarily apply here, but 

shifts in social prestige and hypercorrection may very well perform that function.  Labov 

(1966) has shown these factors operate for sound change.  Stigma or prestige factors may 

also account for changes in verbal syntax (Cooper, 1999).  While Figure 5-2 shows that 

such high usage substitutions are significant only in the 11
th

 and 12
th

 centuries, high 

frequency deletions continued well beyond that time, including ‗lie‘ (R = 1.7385) in the 

15
th

, ‗help‘ (R = 1.4779) in the 17
th

, ‗walk‘ (R = 1.0213) in the 18
th

, and ‗show‘ (R = 

1.3847) in the 19
th

. 

These considerations, as well as the decidedly sawtooth form in Figure 5-6, point 

to a model similar to the punctuated equilibrium hypothesis in biology.  The analogy 

begins with the correspondence of R(n,c) with homogeneous gene-flow in Ernst Myer 

(1954).  Figure 5-1 shows that deletions from S generally occur when R(n,c) < 0, where 

87.8% of the deletion set falls in this range.  By contrast, R(n, c) > 0 for 39.1% of the set 

of accessions and 60.9% of the stable verbs.  The skewness for the deletion set (0.477) is 

more than twice as high as for the accessions (0.234), while the stable verbs have very 

slight skewness (0.105).  The L-M Hypothesis was an oversimplification of this basic 

pattern relating deletions with lower usage frequency.       
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The role of migration in Eldridge and Gould (1972; the E-G Hypothesis) would be 

played by prestige, stigma, and emulation of changing elite groups, whether or not 

supported by actual migration of human populations.  Particularly when magnified by 

hypercorrection (Labov, 1966), such factors would account for high frequency 

substitutions like ‗take‘ and ‗put‘, as well as significant changes in the 17
th

 century, 

whereas the L-M Hypothesis with its exceptionless and homogeneous assumption of 

usage frequency-dependent decay would not.  The L-M Hypothesis likewise fails to 

predict low-frequency accessions like ‗wed‘, as well as the alternating periods of change 

and stability evident in Figure 5-6.  

In general, the verbs in S, like all the others that have formed a part of English, 

have their own history.  Most words form statistical patterns that form default patterns, 

while others follow non-default patterns.  Even fully irregular verbs like ‗to be‘ follow 

patterns within particular tenses.  Both words and patterns have frequencies, and relative 

frequencies are sufficient to describe and predict most random shifts from one category to 

another.  Non-defaults need support, which probably requires R(n, c) > 0 for these classes 

of words, even though this is not necessary for all cases, as evidenced by ‗wed/wed‘.  

Even for the truncated set examined here, R(n, c) > 0 for 60.9% of the set of stable verbs.  

New social ―in-groups‖ similar to the ecological isolation of populations in the E-G 

Hypothesis can perform the same role for language (Labov, 2001).  Prestige or stigma 

then constitute the same conditions as migrations for evolving species, and can account 

for discontinuities among the general statistical regularities.  Certainly, the evolution of 
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English preterit forms was punctuated when viewed through the lens of relative usage 

frequency. 

 

With respect to a clock mechanism, there is very little support in the verbal data 

for a time-dependent process.  Instead, the change patterns were clearly related to usage 

frequency, which did not change at all by hypothesis, and probably did not change much 

in actual fact, especially for high-frequency social transactions like ‗put‘ and ‗take.‘  The 

large proportion of core members for the verbal data in Figure 5-3 is consistent with a 

frequency-dependent process in the speech community, rather than a time-dependent 

process whether internally or externally driven.  With frequencies held constant by 

hypothesis, both the large number of correlated changes evident in the core membership 

and the low number of statistically significant examples would be likely.  
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6.  FOXP2 and Broca‟s Area:  Complex cognitive function in 

light of change vector results 

 

6.1  The clock hypothesis and a biological development model for cognitive behavior 

 

Johnson and Morton‘s (1991) discussion of ocular dominance defines innate 

influence on emergent behavior as contingent on molecular and cellular influence.  By 

contrast, the species-typical environment external to the organism produces primal 

responses, and individual but external environment of an organism produces learning.  

These distinctions were retained in Elman, et al., (1996) in their re-evaluation of innate 

behavior.  They suggest that innate behavior can manifest itself at three levels as a set of 

constraints on what can be learned.  These levels are representational (at the level of 

synaptic connections), architectural (at the level of cross-cortical connections), and 

temporal.  This thesis provides results at the temporal level. 

 Stiles (2008) takes these observations into account in distinguishing between 

heritable and environmental factors in her biological development model.   A key concept 

in Stiles‘ model is the inseparability of inherited factors from their environment.  

Inherited factors are defined as those phenotypic variances that can be accounted for by 

genetic variances.   
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By this view, the emerging structures and functions of the brain are the 

product of the developmental processes created by the interaction of 

inherited and contextual factors.  Developmental processes, and the 

structures and functions that derive from them, rely upon but are distinct 

from the inherited and contextual factors that interact to create them.  This 

is a very different way of thinking about what it means for something to be 

innate.  Because developmental processes rely equally on inherited and 

contextual information, the attempt to categorize the origins of a brain 

structure as the product of nature or nurture is misdirected.  This model 

shifts the focus of inquiry to the question of development itself.  

Specifically, what set of developmental processes gives rise to a particular 

biological structure or neural mechanism, and what are the constraints on 

those developmental processes that lead, in most cases, to the typical 

trajectory of brain development? 

Stiles, 2008:  p. 15 

 

 Chapter 1 introduced a clock hypothesis for the change data reviewed in this 

thesis, reproduced here as Figure 6-1.  Chapters 3 to 5 provided three different aspects of 

this model, and provide a temporal component to both Elman, et al., (1996) and Stiles 

(2008).  As noted in Chapter 4, the neuron is the locus for genetic controls affecting both 

neuron populations and neuron myelination.  Accordingly, Conel‘s data for neurons 

applies to all three inputs levels in the clock hypothesis.  Genetic and epigenetic factors 

are innate according to Johnson and Morton (1991) and Elman, et al., (1996).  All three 

elements in combination are necessary to apply Stiles‘ (2008) perspective.  Similarly, all 

three elements are active for Conel‘s myelination data as noted in Chapter 4, but with 

epigenetic factors, principally neuron secretions as they affect the oligodendrocytes, 

being most important.   Stiles‘ (2008) model provides the greatest distinction for the verb 

data in Chapter 5.  For Johnson and Morton (1991), the verb dataset provides a clear 
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example of learned behavior.  For Stiles (2008) the verb dataset is a relevant 

environmental constraint that affected English speakers as they acquired their native 

language from the 10
th

 century forward.  In this case, since the normal human 

developmental trajectory cannot possibly depend on whether past tense forms end in ‗-

ed‘, the question becomes how relevant environmental phenomena with different 

frequencies of occurrence can influence that developmental trajectory. 

Developmental
Inputs

Developmental
Outputs

Cortical 
Address:

Layer within an area
(e.g., BA 44 LIV)

I

II

III

IV

V

VI

Genetic

Epigenetic

Environmental

Neurogenesis (+)

Migration (±)

Pruning (-)

 

Figure 6-1.  Sketch of the “clock” hypothesis for neuron populations.  Genetic and 

epigenetic factors are innate according to the framework in Johnson and Morton (1991) 

and Elman, et al., (1996).  In Stiles (2008) heritable and environmental factors are 

inseparable during development and must be taken into account at the same time.  

Developmental outputs for myelinated fibers would be changes to local density of those 
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fibers as described in Chapter 4, almost invariably increasing with age.  Varying verbal 

frequencies, as described in Chapter 5, provide an environmental influence on genetic 

and epigenetic outputs, but the interaction is more subtle. 

 

This chapter will retain Stiles‘ (2008) perspective, but employ the three levels of 

constraint discussed in Elman, et al., (1996) in reviewing the possible interaction of the 

speech environment on development of speech, particularly as it applies to Broca‘s Area 

as revealed in the results from Chapters 3 and 4.  In the next section, the focus will be on 

the level of representation.  The following section will explore architectural constraints.  

Finally, the temporal constraints that emerge from using the change vector method will 

be explored.   Since the principal results from Chapters 3 and 4 point to a generally 

vision-centered sensorimotor theme to development to six years old, this focus on speech 

and Broca‘s Area is but a subset of the overall developmental patterns revealed in 

Conel‘s data.  However, applying the verbal dataset will allow this discussion to explore 

both sides of Stiles‘ inseparable heritable/environmental model. 

 

6.1.1  FOXP2 and developmental constraints at the representational level 

 

Elman, et al., (1996: 25) define innateness at the representational level as ―in the 

form of fine-grained patterns of synaptic connectivity at the cortical level, i.e., cortical 

micro-circuitry.  To the best of our knowledge at the present time, this is how the brain 

stores its representations, whether they are innate or acquired.‖  As noted earlier, this 
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level incorporates both genetic and cellular activity.  Consequently, the effects of the 

foxp2 gene and the FOXP2 molecule, discussed in Chapter 1, would manifest themselves 

at this level.   

For Stiles (2008: 15), ―The specific causal role of a gene product in a biological 

process requires assessment at the molecular level, and at that level it is the interaction of 

inherited factors operating within specific contexts that ultimately defines a gene's 

function or functions and its role in development."  Enard, et al., (2009) studied the 

principal effects of substituting the two human FOXP2 amino acids that have undergone 

positive selection after divergence of the human and chimpanzee lines into mice, and thus 

provides an example at this level.  An assay of more than 300 phenotypic differences 

with wild type mice shows that the significant effects occur only in the brain.  These 

include increased dendrite lengths and greater long term depression (LTD) in medium 

spiny neurons in the striatum.  In addition, the mice, which grow into healthy adults 

unlike foxp2 knockout mice, have qualitatively different ultrasonic isolation calls, 

decreased exploratory behavior and decreased dopamine concentrations in the brain 

compared to wild type.  This suggests that the humanized foxp2 allele affects the basal 

ganglia.  Moreover, Enard, et al., (2009) show that humanized foxp2 affects medium 

spiny neurons with D1 dopamine receptors, which indicates that foxp2 functions within 

the direct dopaminergic pathways in the basal ganglia, and thus with disinhibition of 

thalamic inputs to the cortex (Parent and Hazrati, 1995).  The thalamo-cortical loop is an 

architectural level entity and will be discussed below in section 6.1.2. 
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As noted in Chapter 1, foxp2 is among the five percent most conserved genes in 

human-mouse pairings (Enard, et al., 2002).  Foxp2 was isolated because of a point 

mutation in a human family afflicted with inherited difficulties with pronunciation and 

grammar (Varga-Khadem, et al., 2005).  Enard, et al., (2009) duplicated this point 

mutation and confirm that humanized foxp2 effects are reversed when it is present.  

Similarly, their phenotypic assay confirms that the selective pressure for the human form 

of the gene in the past 200,000 years (Enard, et al., 2002) was likely the result of brain 

function, despite expression of FOXP2 in multiple other tissues, such as the epithelial 

tissue of airway branches in lungs, in the outer mesoderm of the intestines, and in the 

outflow tract of the atria of the heart (Shu et al., 2001).   

As pointed out in Chapter 1, there is a general upregulation of gene expression 

when humans are compared to chimpanzees (Preuss, et al., 2004), but foxp2 does not 

seem to be a clear example of this.  Konopka, et al., (2009) compared the transcriptional 

regulation by human and chimpanzee FOXP2 in vitro, and showed that FOXP2 is 

associated with genetic cascades in both species where some genes are significantly 

upregulated and some are significantly downregulated in humans compared to 

chimpanzees.  There was a function difference between up- and downregulation by 

FOXP2, however.  Genes upregulated by human FOXP2 compared to FOXP2
chimp

 were 

involved in transcriptional regulation of gene expression and in cell to cell signaling, 

whereas  downregulated genes were related to protein and cell regulation.  The potential 

creation of a phosphorylation site for protein kinase C at one of the two human sites (325) 

explored in Enard, et al., (2002) and noted in Chapter 1 has not yet been confirmed or 
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discounted.  If FOXP2 function were contingent on a conformal change triggered by 

protein kinase C, one would not necessarily expect it to have a converse effect on protein 

kinase C in Konopka, et al. (2009).  FOXP2 does upregulate two genes related to tyrosine 

kinases, however (Konopka, et al., 2009:  Suppl Table 5), consistent with cell signaling. 

   Chapter 1 pointed out numerous parallels between human and chimpanzee 

anatomical features related to Broca‘s Area.  Konopka, et al., (2009) adds another.  For 

the perisylvian cortex, both human and chimpanzee foxp2 have an accelerated conserved 

non-coding sequence associated with elevated FOXP2 levels (Konopka, et al., 2009:  

Suppl Table 5).  

    

6.1.2  Broca‘s Area and evidence for developmental constraints at the architectural level 

 Ullman (2004) has proposed a declarative/procedural model for human language 

that is written at the architectural level.  In this model, word-specific knowledge is 

learned and used in a declarative component that is distinct from a rule-based, procedural 

component.  The declarative component, related to declarative memory, is based on the 

medial temporal area of the brain, including the dentate gyrus, subiculum, the entorhinal 

perirhinal and parahippocampal cortex, and the hippocampus itself (Squire and 

Knowlton, 2000; Suzuki and Eichenbaum, 2000).  These regions form a hierarchy, with 

the hippocampus strongly connected to the entorhinal cortex, which is strongly connected 

in turn to the perirhinal and parahippocampal cortices, and ultimately to temporal and 

parietal areas in the neocortex (Suzuki and Amaral, 1994).     
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 These structures are implicated in general memory functions, including encoding, 

consolidation, and retrieval (Buckner and Wheeler, 2001; Eichenbaum and Cohen, 2001; 

Squire and Knowlton, 2000).  In humans, declarative memory becomes less dependent on 

the medial temporal structures and shifts to neocortical areas, especially in the temporal 

lobe (Hodges and Patterson, 1997; Squire, et al., 2001), where different areas may even 

specialize in different types of knowledge, such as tools or animals (Damasio, et al., 

1996; Martin, et al., 2000).  In addition, humans appear to have acquired the ability to 

remember sound sequences using these areas, whereas detailed auditory memory appears 

to be absent in macaques (Fritz, et al., 2005).  Thus, while all animals require an ability to 

remember, this portion of the neural architecture in humans is now adapted to support the 

―arbitrariness of the sign‖ needed to use vocabularies in the tens of thousands of words 

for normal human language,  where each of those words has no direct connection to that 

which it refers (Saussure, 1916; Hurford, 2004).   

 Ullman (2004) also includes the ventro-lateral prefrontal cortex (VL-PFC) within 

this system.  This area includes Broca‘s Area and BA 47, and appears to be involved in 

working memory (Smith and Jonides, 1999; Braver et al., 2001).  With respect to 

language, the posterior portion of this region (BA 44/6) is associated with phonology, 

whereas the anterior region (BA 45/47) is implicated in semantic functions (Fiez, 1997; 

Poldrack, et al., 1999).  Generally, Ullman associates the declarative system with the so-

called ventral stream (Goodale & Milner, 1992; Ungerleider and Mishkin, 1982). 

 The procedural component of Ullman‘s model consists of Broca‘s Area, superior 

temporal cortex, the basal ganglia and cerebellum, as well as portions of the parietal lobe 
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related to the mirror neuron system (Ullman, 2004).  As noted in Chapter 1, mutant foxp2 

is implicated in KE family speech deficits, and FOXP2 is expressed in subgranular layers 

in Broca‘s Area.  In Section 6.1.1, foxp2 was also associated with medium spiny neurons 

in the direct pathway in the basal ganglia, which functions to disinhibit neocortical targets 

of the thalamocortical loop (Young and Penney, 1993).   The striatum is associated with 

sequences of stereotypical actions (Aldridge and Berridge, 1998), and the procedural 

system in Ullman‘s model is similarly stereotypical, slowly acquired and ―encapsulated.‖  

Language depends on the two systems inter-operating, possibly competing, and 

compensating for each other (Ullman, 2004).  

 Reading, which cannot have been the outcome of a biological evolutionary 

process, provides an interesting contrast to this kind of solution to the evolution of 

spoken language.  Dehaene (2009) ascribes the ability of humans to invent and teach 

reading to a ―letterbox‖ in the occipito-temporal cortex (BA 37) that allowed humans to 

map line junction combinations that occur in natural scenes to their arbitrary but 

systematic phonetic counterparts in any of a wide range of existing writing systems, thus 

enabling a linkage to the language system.  While reading is essentially an overlearned 

skill, it results in an automatic response to visual stimuli that is not normally subject to 

conscious intervention in skilled readers.  While all normal humans can distinguish 

between phonemes in their native language, they do not recognize ―phonemes‖ as 

discrete sound segments unless they can read (Morais, et al., 1986).  Thus, the phonemes 

that are among the traditional list of ―linguistic universals‖ (Chomsky and Halle, 1968) 

are not recognizable to human subjects as discrete entities unless the subject is literate.  
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By contrast, sequences of sounds or signs (as in American Sign Language) are ―easily‖ 

acquired, as opposed to reading and writing (Arbib, 2004).  This is an argument for 

language-related functions that are not ―encapsulated‖ to which we will return in Section 

6.3. 

 Like Ullman‘s declarative/procedural model, the motor theory of language 

originally developed in Liberman, et al., (1952) contained a ―speech is special‖ 

architecture.  However, the component of this theory whereby memory mediated between 

articulation and the perception of speech sounds was subsequently abandoned, as was a 

later modular version (Galantucci, et al., 2006).   Components of the motor theory of 

speech that did persist and appear to be well-founded are that speech perception is tied 

directly to perception of oral, facial, as well as manual gestures; and that the motor 

system is recruited to enable the perception of speech (Galantucci, et al., 2006).  These 

elements first emerged in trying to explain the effect of co-articulation of phonemes, 

which led to the generalization that when sequences of sounds that have different 

acoustic properties are produced by the same sequences of articulatory gestures, they are 

perceived to be the same (i. e., they are the same phonemes; Liberman, 1957).  Liberman, 

et al. (1967) concluded that these features were the result of unique human phylogenetic 

adaption.   

 The McGurk Effect, in which a subject hearing /ba/ but seeing /ga/ will interpret 

the sound to be /da/ (McGurk and MacDonald, 1976), provides an example of the linkage 

of speech perception to articulatory gestures.   Other supporting evidence includes better 

perception of speech in noisy environments when the listener can observe the speaker‘s 
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face (Sumby and Pollack, 1954), as well as superior speed in sound imitation when the 

face can be seen (Fowler, et al., 2003; Kozhevnikov and Chistovich, 1965; Porter and 

Castellanos, 1980; Porter and Lubker, 1980). 

 As to the involvement of the motor system with speech perception, Galantucci, et 

al., (2006) cite the mirror neuron system as one particularly important strand of evidence.  

In addition, they point out that the principle of parity in the most recent versions of the 

motor theory of speech perception requires the co-evolution of production and perception 

mechanisms.  Under the principle of parity, for any pair of conspecifics, a message for 

one is also a message for the other, and the content of the message one sends will be the 

same as the content the other perceives.  Whenever these parity conditions are violated in 

the co-evolution of the production and perception of communication, there is an 

opportunity for speciation (Ryan and Wilczynski, 1988; Shaw, 2000).   

 Sinha (2004) argues that communication behavior can provide a Baldwin effect 

on evolution, whereby the elaboration of symbols as in human language emerges from an 

initial, simpler signaling process.    The potential from speciation provided by the parity 

principle in Ryan and Wilczynski (1988) would provide a mechanism for this effect.  

Arbib (2004) further argues that neuron plasticity provided the needed connectivity 

among brain structures for spoken language, rather than the prewiring required at the 

representation level, just as Dehaene (2009) argued for plasticity providing the needed 

connectivity in reading.  This may suggest that future human evolution will also show a 

Baldwin effect for reading.  Moreover, with respect to spoken language again, Sinha 

(2004) contrasts his perspective with the ―nativist‖ construct that is more compatible with 
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innate representational structures.  Like Stiles (2008), Sinha (2004) emphasizes the co-

dependence of encoded genetic information and the external environment, which he 

claims results in a unidirectional developmental flow whereby the commitment of 

neurons to a particular path given a particular environment forecloses that possibility in 

the future.  Thus, first languages are acquired easily, but languages acquired after that 

sensitive period are not.    

As a counterpoint to development based on genetic information instantiated 

within an architecture, Sinha (2004) and Deacon (1997) have suggested that the arbitrary 

forms in spoken language have themselves evolved in accelerated fashion to favor 

structural constraints in the human brain, just as Dahaene (2009) suggests that arbitrary 

written forms have evolved to facilitate learning constraints in the reading circuits in the 

brain.  In the next section, we will take up the evidence in our change vector data for 

innate temporal patterns related to Broca‘s Area and spoken language.  In Section 6.2, we 

will then examine the contrasting pattern in change vector data that English irregular verb 

evolution shows. 

 

6.1.3  Neuron and myelinated fiber change vector data and evidence for developmental 

timing constraints and the clock hypothesis 

 The corollary to innate behavior emerging from architectural adjustments based 

on neural plasticity in the context of an organism interacting with its external 

environment is some mechanism to organize the architectural changes.  As noted earlier, 
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the Conel data on neuron populations and myelinated fiber densities are silent as to the 

precise nature of such a mechanism, but they do provide evidence for coordinated, 

simultaneous changes during development.  Chapter 3 provided evidence for relatively 

small and complex neuron population cores within k-clusters that had a one-to-one 

relationship with the seven change intervals in Conel‘s data.  Chapter 4 provided similar 

data for larger and simpler myelinated fiber density cores that also had a one-to-one 

relationship with the seven change intervals.  The neuron population cores and the 

statistically significant changes to specific neuron addresses showed a general correlation 

with sensorimotor functions centered on vision.  Likewise, the statistically significant 

fiber addresses occurred only in primary motor and primary sensory cortex, while the 

cores showed a systematic shift favoring subgranular layers at birth toward supragranular 

layers by six years.  One can surmise that the neuron pattern of smaller, complex cores 

reflects activity dependence whereas the myelinated fiber pattern with nearly fifty percent 

of each k-cluster also being part of a single large k-cluster core reflects greater internal, 

and thus, innate coordination.  The two datasets are not sufficient in themselves to 

evaluate this conjecture statistically.  

 Figure 6-2 shows the change trajectory for posterior Broca‘s Area (BA 44) at each 

of the addresses in a neuron or myelinated fiber sample column.  In each case, the k-

cluster membership of any address can be determined by its maximum value.  

Membership in a maximal clique ―core‖ is indicated by a filled circle at the appropriate 

apex.  Figure 6-3 shows the comparable figure for anterior Broca‘s Area (BA 45).  

Membership of the k-cluster cores for BA 44 and BA 45 is listed in Tables 6-1 and 6-2, 
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respectively.  In the figures and tables, layers for neuron populations are listed as Roman 

numerals, e.g., LIV, whereas the layers for the myelinated fibers are indicated by 

alphanumerics using Arabic numerals, e.g., L3c-4. 

 Both BA 44 and BA 45 have two neuron population core addresses.  BA 44 LII is 

the earlier core member at 3 months.  BA 44 LV and BA 45 LVI co-occur at 24 months 

and have the largest C(r, c-1) magnitudes for core addresses in Broca‘s Area.  BA 45 LIV 

is a core address at 72 months.  Both BA 44 and BA 45 have very large C(r, c-1) 

magnitudes for myelinated fibers at 6 and 15 months that do not reflect a general cortical 

pattern.  By contrast, both participate in a cortex-wide increase in myelinated fiber 

density for layers L2 and L3a at 48 months. 
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Figure 6-2.  Change vector components of all sample column addresses in BA 44.  

Core membership is indicated by a filled circle on the appropriate apex for a core address.  

A)  C(r, c-1) values for the six neuron population addresses by change interval.  Curves 



 

161 

 

for the supragranular layers are labeled with dashed lines and colors as indicated in the 

legend.  Layer IV and the subgranular layers have solid curves.  B)  C(r, c-1) values for 

the ten myelinated fiber addresses by change interval.  Curves for the supragranular 

layers, including Layer 3c-4, are labeled with dashed lines; subgranular layers have solid 

lines.  BA 44 has both a core neuron and core fiber address in the 3 month interval as 

well as the 24 month interval.    These are listed in Table 6-1, as well as the core 

membership of the core membership at 48 months that contains two BA 44 addresses.  

The neuron population core member at 3 months at LII is contemporary with maximal 

C(r, c-1) values for LIII and LIV as well.  The change pattern for LI is local to BA 44 and 

not common across the cortex.  The two core fiber addresses at 48 months are from two 

layers that comprise 73.7 percent of the k-cluster core during that change interval.  The 

double spike pattern for vertical fibers with peaks at 3 and 48 months is not a core 

pattern, and thus more peculiar to BA 44.  Similarly, the large-scale changes for L5b-6a 

at 6 and 15 months are echoed by BA 45, but not across the cortex.  
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Figure 6-3.  Change vector components of all sample column addresses in BA 45.  

Core membership is indicated by a filled circle on the appropriate apex for a core address.  

A)  C(r, c-1) values for the six neuron population addresses by change interval.  Curves 
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for the supragranular layers are labeled with dashed lines and colors as indicated in the 

legend.  Layer IV and the subgranular layers have solid curves.  B)  C(r, c-1) values for 

the ten myelinated fiber addresses by change interval.  Curves for the supragranular 

layers, including Layer 3c-4, are labeled with dashed lines; subgranular layers have solid 

lines.  BA 45 LVI is a neuron population core address that co-occurs at 24 months with 

BA 44 LV, as well as myelinated fiber core membership for L1 and L5a.  The two core 

myelinated fiber addresses at L2 and 3a for the 48 month change interval do not 

correspond to a neuron core and are part of a cortex-wide increase in C(r, c-1) magnitude 

for those fiber layers during that period. 

 

Table 6-1 lists the core membership for BA 44.  Both neuron cores correspond to 

a myelinated fiber core at 3 months and 24 months.  The two core addresses at 48 months 

for L2 and 3a are part of a general cortical pattern at period in development. 

 

Table 6-1.  Core membership for addresses in BA 44.     

BA 44 

change 

interval 

Type Core 

Member 

Other core members 

3 Mo Neuron LII 6 LIII & V; 39 LIV; 38 LI; 13 LIV 

Fiber L6b 4 Hn L1, 3c-4 & 5a; 4 Hd L1, 3c-4 & 5a; 4 T L6b; 6 

L1; 9 Sub; 3 T L5a & sub; 3 Hn L3c-4; 1 T L5a; 1 L 

L5a; 1 Hd L6b; 17 L3c-4 & 5a; 42 L5b-6a; 41 L5b-6a 

24 Mo Neuron LV 45 LVI; 42 LVI; 13 LI 

Fiber L3b 4 Hn L2 & 3a; 4 Hd L3b; 6 L2 & 3a; 8_9 sub; 45 L1 

& 5a; 10 L3c-4; 1 Hd L3a; 7 L5b-6a; 40 L3b; 39 L3b; 

37 L3b; 19 L1 & 5b-6a; 22 L2, 3a, 3b & 5b-6a; 42 L2, 

3a & 3b; 41 L2 & 3a; 36 L3c-4 & 6b; 13 L5a; 24 L3b 

& 6b; 23/31 L5b-6a; 30 L3b; 29 L3b 
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48 Mo Fiber L2 & 3a 4 Hd 3a; 6_8_9 L2 & 3a; 8 L2, 3a & 6b; 8_9 L2 & 

3b; 45 L2 & 3a; 9 L5a; 46 L3b; 45r L3b; 47 L2, 3a & 

3b; 3 Hd L3b; 1 L L3b;1 T L2 & 3b; 1 Hn L2; 7 L2 & 

3a; 40 L2 & 3a; 39 L2 & 3a; 37 L2 & 3a; 19 L3a; 18 

L2 & 3a; 17 L2, 3a & 3b;22 sub & vert; 21 L2, 3a, 3b 

& vert; 36 L2 & 3a; 14 L2, 3a & 3b; 13 L2; 24 L2 & 

3a; 23/31 L2 & 3a; 30 L2 & 3a; 29 L2 & 3a 

 

 ―BA‖ has been omitted from Brodmann Areas to avoid repetition.  Layers are listed after 

an ―L‖ which is also used for BA 1 for the leg in ―1 L L3b.‖  Bolded layers for fiber 

addresses at 48 months highlight the 18 occurrences of that pair during that change 

interval.  There are 57 addresses in the k-cluster core during that interval altogether.  

Other abbreviations:  Hd = head, Hn = hand, r = rostral, T = trunk, sub = subcortical, vert 

= vertical. 

 

 At 3 months, Broca‘s Area activates when the child is listening to sentences 

(Dehaene-Labertz and Dehaene, 1994; Cheour, et al., 1998; Dehaene-Lambertz, et al., 

2002; Pena, et al., 2003).  By this time the child is attending to the contours of the speech 

signal (Mehler, et al., 1988), and the capacity to distinguish sounds, such as /ba/ from /ga/ 

was established soon after birth, and thus in an earlier change interval (Kuhl, 2004).  

During the 3 month change interval, children are generally transitioning from non-speech 

sound production to production of vowel-like sounds.  This enables the child to produce 

language specific sounds during the next change interval to 6 months, based on statistical 

learning of the distributional frequencies in the child‘s environment according to Kuhl 

(2004). 
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 The Conel data show that this coincides with BA 44 LII as a core address, 

associated with BA 6 (supplementary motor), BA 39 (angular gyrus), BA 13 (insula), and 

BA 38 (temporal pole).  Like Broca‘s Area, in forward speech in the mother language, 

BA 39 is also activated in 3-month-old subjects listening to sentences (Dehaene-

Lambertz, et al., 2002).  While listening to delayed repetition or modification of 

sentences after intervals up to 14 seconds, infants at 3 months use Broca‘s Area to 

reinforce the repetition or to detect the change.  Moreover, there is a temporal gradient 

during this process that begins at Heschl‘s gyrus with significant time lags as activity 

moves posteriorly to the angular gyrus and anteriorly down the temporal lobe to Broca‘s 

Area (Dehaene-Lambertz, et al., 2006).  As is clear from Figure 6-2, there are no 

significant changes in myelination in the 1 month change interval, but the 3 month 

interval also has BA 44 L6b as a core address, corresponding to seven other addresses in 

primary motor cortex (BA 4), six in primary sensory cortex (BA 3 and 1), as well as two 

primary vision addresses (BA 17) and primary and secondary auditory addresses (BA 41 

and 42, respectively).  All of this is fully consistent with the sensorimotor pattern in 

Chapter 3 and 4, as well as the motor theory of speech production discussed earlier in this 

chapter.  In fact, learning patterns observed in children at this age suggest a ―magnet‖ or 

―prototype‖ mechanism for derivation of local language sounds (Kuhl, et al., 1992; Kuhl, 

1991; Rosch, 1975).  Moreover, as BA 44 L6b is subgranular, this address is also 

consistent with the articulatory issues related to the KE family foxp2 mutation described 

in Chapter 1, as well as the participation of Broca‘s Area in a language-related 

thalamocortical loop.  By the same token, BA 44 LII is supragranular, which potentially 
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implicates mirror neuron connections and processing in a different set of circuits as 

discussed in Chapters 1 and 3. 

 The two portions of Broca‘s Area have core addresses at 24 months, as shown 

above for BA 44 and in Table 6-2 for BA 45. 

 

Table 6-2.  Core membership for addresses in BA 45.   

BA 45 

change 

interval 

Type Core 

Member 

Other core members 

24 Mo Neuron LVI 44 LV; 42 LVI; 13 LI 

Fiber L1 & 5a 4 Hn L2 & 3a; 4 Hd L3b; 6 L2 & 3a; 8_9 sub; 44 L3b; 

10 L3c-4; 1 Hd L3a; 7 L5b-6a; 40 L3b; 39 L3b; 37 

L3b; 19 L1 & 5b-6a; 22 L2, 3a, 3b & 5b-6a; 42 L2, 3a 

& 3b; 41 L2 & 3a; 36 L3c-4 & 6b; 13 L5a; 24 L3b & 

6b; 23/31 L5b-6a; 30 L3b; 29 L3b 

48 Mo Fiber L2 & 3a 4 Hd 3a; 6_8_9 L2 & 3a; 8 L2, 3a & 6b; 8_9 L2 & 

3b; 44 L2 & 3a; 9 L5a; 46 L3b; 45r L3b; 47 L2, 3a & 

3b; 3 Hd L3b; 1 L L3b;1 T L2 & 3b; 1 Hn L2; 7 L2 & 

3a; 40 L2 & 3a; 39 L2 & 3a; 37 L2 & 3a; 19 L3a; 18 

L2 & 3a; 17 L2, 3a & 3b;22 sub & vert; 21 L2, 3a, 3b 

& vert; 36 L2 & 3a; 14 L2, 3a & 3b; 13 L2; 24 L2 & 

3a; 23/31 L2 & 3a; 30 L2 & 3a; 29 L2 & 3a 

72 Mo Neuron LIV 6 LVI; 22 LI; 24 LIII 

 

 At 24 months, BA 44 LV and BA 45 LVI are parts of a discrete 4-address 

component of the k-cluster core.  The other members of this group are BA 42 (secondary 

auditory cortex) and BA 13 (insular cortex).  At this change interval, BA 44 L3b and BA 

45 L1 and 5a form part of a myelinated fiber k-cluster core with a total of 32 members.  

The sensorimotor areas form a much smaller portion than at 3 months, including three 

addresses in primary motor cortex (BA 4), two in BA 6, and one in primary sensorimotor 
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cortex (BA 1 for the head).  There are four addresses in the parietal lobe (BA 7, 37, 39 

and 40), and nine from the auditory areas in the temporal lobe (BA 22, 41, and 42).  As 

noted previously in Chapter 1, the parietal areas are possibly linked to mirror neuron 

circuits, whereas most of the remaining neuron and myelinated fiber core areas are 

clearly relevant to audition and language.  By this point during development, both BA 44 

and 45 have undergone significant increases in myelinated fiber density, as shown on 

Figures 6-2 B and 6-3 B.  In addition, since both Broca‘s Area addresses are subgranular, 

the possibility that these core addresses would be affected by mutations in foxp2 exists 

for this change interval as well as the earlier one at 3 months.  By this stage in language 

development, children have learned the phonemes in their mother language, have ceased 

to distinguish phonemes in other languages, and have begun to produce words and 

sentences in their native language (Kuhl, 2004). 

 As mentioned previously, the two BA 44 and 45 addresses that occur in the 48 

month change interval appear to be part of a cortex-wide trend toward myelination of 

layers L2 and 3a.  These may thus not provide a functional clue for Broca‘s Area in 

particular.   

The neuron core address for BA 45 is linked to BA 6 (supplementary motor 

cortex), BA 22 (tertiary auditory cortex) and BA 24 (anterior cingulate).  These continue 

to be consistent with the linkage of audition, motor function, and language.    
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6.2  Inseparability of external and inherited factors:  possible effects on the verbal 

data 

 

According to Stiles (2008) neuron population changes are largely neurotrophin and 

activity-based, whereas changes to myelinated fiber densities is largely controlled by 

neuron secretions and driven by neuron firing activity only to a limited extent.  As we 

have seen, the cores for neuron populations are smaller compared to the respective k-

cluster than they are for myelinated fibers, and this relationship was maintained for 

Broca‘s Area in particular.  Moreover, as noted in Chapters 3 and 4, neuron cores were 

more complex than fiber cores, with one case of dual maximal cliques (where BA 44 and 

45 were in one of the two groups), as well as cores with overlapping and ―unique‖ 

members.  Finally, individual addresses for both neurons and myelinated fibers were not 

members of k-cluster cores, but did have significantly large values for C(r, c-1).   

For Broca‘s Area, there were no outlier addresses, but its addresses with core 

membership followed these patterns.  The individual subjects who contributed to Conel‘s 

datasets were likewise immersed in a speech environment that constituted the inseparable 

second half of an innate behavior according the Stiles‘ (2008) construct.  The verbal 

material described in Chapter 5 provides the other half.    

That dataset has three characteristics that distinguish it from the neuron and 

myelinated fiber sets.  First, only one of the 228 verbs had a statistically significant value 

for C(n, c-1).  That verb was ‗wed/wed‘ which appeared to be an instance of a new 

preterit attractor.  There was certainly no evidence that it was an internally driven shift of 
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pattern.  Second, k-clusters showed no evidence for coordinated shifts by members of 

particular morphological groups, except the wholesale replacement of ‗niman‘  by ‗take‘ 

in the late Old English/early Middle English period.  There is therefore almost no 

evidence to rule out a purely random process for accessions and deletions into the set S of 

non-‗ed‘ verbs.   It is interesting that k-cluster cores for the verb data comprise 84.6% of 

the k-clusters, by contrast to neuron populations, where the core is 20.7%, and 

myelinated fiber density, where it is 47.5%.  Finally, membership in the set S depended 

on usage frequency that was assumed to be reasonably stable, and thus independent of 

time.  This essentially rules out the operation of a clock mechanism, and is consistent 

with an independent stochastic process. 

For spoken language, Deacon (1997) has suggested that this kind of environment 

provided the opportunity to the speech communities to evolve their respective languages 

to match human learning constraints.  Cooper (1999) suggests an attractor-based 

mechanism for this process that conforms to ―ambiguity landscapes‖ that arise as random 

changes occur.  Dehaene (2009) suggests a similar mechanism for the evolution of 

writing systems in historical times that has resulted in relatively efficient methods for 

writing language despite the impossibility of evolutionary support for learning to read in 

that short period of time. 

 

6.3  Conclusions 

 

Broadly speaking, Chapter 1 described the puzzle of Broca‘s Area:  the first human 
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brain area to which a particular function could be ascribed, but where that linguistic 

function was impossible in non-human primates in which the equivalent to that area also 

appears.  Applying the change vector method introduced in Chapter 2 to Conel‘s neuron 

and myelinated fiber data in Chapters 3 and 4, it appeared that human cortical 

development in general appeared to be driven by a clock-like sensorimotor process that 

particularly favored vision.  This was consistent with primate development, perhaps 

including the crucial mirror neuron system, and also consistent with the details of the 

development of Broca‘s Area as reviewed in this chapter.   

 As noted in Galantucci, et al., (2006), the discovery of the mirror neuron system 

has resulted in wider acceptance of the motor theory of language perception outside of 

linguistics than within it, but that the theory has received a considerable amount of 

theoretical support, particularly in terms of architectural innateness in the framework 

described at the beginning of this chapter.  While many linguists have ignored all of these 

issues in favor of Chomsky‘s (1986) nativist argument (including Pinker, 1994), the 

branch of linguistics known as ―cognitive linguistics‖ (e.g., Taylor, 2002) provides a line 

of argument entirely consistent with a sensorimotor basis for language that also 

incorporate mirror neurons and a heavy reliance on thalamocortical pathways that 

appears to emerge for BA 44 at 3 months in the Conel data. 

 Figure 6-4 provides a final picture to show these linkages.  It is based on Croft 

(1991) who used this breakdown of cause and effect to explain thematic roles that 

produce such things as case systems (e.g., ‗he‘ for subjects, ‗him‘ for objects, ‗his‘ for 

possession, etc.) across hundreds of languages.  Figure 6-4 also provides a depiction of 
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how the sensorimotor perception system underlying the mirror system can also explain 

the fact that ―languages encode either experience or stimulus as the causally antecedent 

participant‖ (Croft, 2001: 164).  That is, languages either mark the object and leave the 

subject unmarked, such as English (contrast subject = ‗he‘, unmarked, and object = ‗him,‘ 

marked and therefore longer); or they have the opposite pattern.  The pattern in English is 

called ―accusative‖ where the object is marked (‗him‘), and the contrasting ergative 

pattern is called ―absolutive.‖  These terms appear in the figure below. 

 

Causation

Thematic Role

Cause Effect

Mental

Physical

Antecedent Verbal Segment Subsequent

Alternative Foci

Cause
Passive Agent

“Subject”
Comitative

Accusative “X”

Means
Manner

Instrument

“Object”
Absolutive “X”

Result
Benefactive/
Malefactice

Recipient

 

Figure 6-4.  Causal chains and linguistic phenomena. Perception of causation requires 

an initiator and endpoint, with no presumption of telekinesis. For mental events, which 
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requires a ―theory of mind,‖ it is possible for a mental stimulus to affect another mental 

state. A mental initiator can also affect a physical endpoint, which may initiate other 

physical effects. Similarly, physical causes can have an influence on mental states.  They 

sometimes operate by an intermediate physical mechanism, which may or may not be 

explicitly stated.  They also affect a physical endpoint.  These causal relationships are 

reflected directly in how human language describes the equivalent events.  Thematic 

roles are explicitly encoded in various human languages. The causal role immediately 

precedes the event described by the verbal segment. Passive agents are also expressed 

external to the verb segment when there is a passive construction. ―Subjects‖ are logical 

initiators of verbal actions. Their expression may vary by language. For example, in 

accusative languages such as English, or other European languages, ―X‖ indicates the 

unmarked form (lowest number of morphemes, or carriers of meaning).  The comitative 

role is performed by the entity that participates in this causal chain as the initiator. 

Means, manner, and instrumental roles are informative about how the verbal action is 

implemented. The ―object‖ is the logical recipient of the verbal action. In ergative 

languages, this role receives the lowest number of morphemes, indicated by absolutive 

―X.‖ Thus, across languages, either end of the verbal segment can receive the focus of the 

coding system. Result, benefactive (good result), malefactive (bad result), and recipient 

roles follow the span of the verbal segment. The observation of physical causation, which 

also corresponds to basic verbal descriptions, is common to the primate goal-oriented 

perception in mirror neurons. 
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