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ABSTRACT 
 
 
 
HYBRID FILTERING IN SEMANTIC QUERY PROCESSING 
 
Hanjo Jeong, Ph.D. 
 
George Mason University, 2011  
 
Dissertation Director: Dr. Larry Kerschberg  
 
 
 
This dissertation presents a hybrid filtering method and a case-based reasoning 

framework for enhancing the effectiveness of Web search. Web search may not reflect 

user needs, intent, context, and preferences, because today’s keyword-based search is 

lacking semantic information to capture the user’s context and intent in posing the search 

query.  Also, many users have difficulty in representing such intent and preferences in 

posing a semantic query due to lack of domain knowledge and different schemas used by 

data providers. This dissertation introduces a hybrid filtering method, query-to-query 

hybrid filtering, which combines semantic content-based filtering with collaborative 

filtering to refine user queries based not only on an active user’s search history, but also 

on other users’ search histories. Thus, previous search experience not only of an active 

user, but also of the other users is used to assist the active user in formulating a query. In 

addition, a case-based reasoning framework with Semantic Web technologies is 

introduced to systematically/semantically manage and reuse user search histories for 



 

query refinement. Finally, ontologies are used for the hybrid filtering to mine preferable 

content patterns based on semantic match rather than just a keyword match. Validation of 

the query-to-query hybrid filtering method is performed on the GroupLens movie data 

sets. 
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1 Introduction and Overview 

Today’s search engines provide uniform search results for the entire user 

community with little regard for user intent, context and preferences. This may result in 

poor search performance in terms of both recall and precision; the search results do not 

take into account user intent and context. Also, this makes it difficult to provide users 

with information that is not only relevant to a user query, but also matches their 

preferences.  Most search engines rely solely on keyword search and have difficulty in 

obtaining user feedback on the perceived relevance of the search results.  A user may 

click on a few of the presented links, and this might be considered a form of user 

feedback.  One of the goals of this thesis is to improve the effectiveness of search by 

incorporating user preferences and user feedback.   

Another important challenge is to incorporate more meaning, or semantics, into a 

search query posed to a search engine.  It is important to capture user context and intent, 

as a way to focus, sift and winnow the results to reflect a user’s intent, whether it is to 

dine at a fine restaurant, lease an automobile, or purchase real estate.  While the addition 

of semantics to query terms should improve the effectiveness of the search results – we 

call this semantic content-based filtering, another important component of the proposed 

approach is the use of collaborative filtering whereby other users’ likes and dislikes in 

response to similar queries can be used to filter results presented to the current user.  The 
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approach is called “query-to-query hybrid filtering” that combines the best of semantic 

content-based search with collaborative filtering, thereby mitigating some of the issue of 

user preferences, intent, context, and feedback mentioned above. 

Finally, it is important to extend Web search to heterogeneous data sources such 

as XML-databases, multimedia, and the emerging Semantic Web, which relies on linked 

data, open standards, semantic ontologies expressed in RDF, and OWL, and Web 

services.  This extends the reach of search to semi-structured data as well as Semantic 

Web data/knowledge bases. 

This dissertation begins by providing an overview of Knowledge Sifter [37, 38]. 

Knowledge Sifter is an agent-based system that searches for information from 

heterogeneous data sources by incorporating semantic technology as well as user 

preferences, intent and context. In this research, the approach of using Semantic Web 

Services for materializing the Semantic Web [30] is used for the information search 

among heterogeneous data sources located both on the Web and the Semantic Web. 

Although Web Services are semantically well described in the Knowledge Sifter 

approach, there is still a problem of deciding which services to use due to the many 

services offerings. Clearly, the quality of search results depends on the quality of 

information contained in the data sources, and therefore, authoritative sources need to be 

identified and rated.  The judicious selection of appropriate Web Services (data sources) 

will increase both the effectiveness and the efficiency of the searches.  

Next, a hybrid filtering method - called “query-to-query hybrid filtering” - is 

introduced in order to refine a user search process based not only on the user’s feedback, 
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but also on other users’ feedback. Based on the hybrid filtering approach, this algorithm 

allows Knowledge Sifter to select user-preferable/suitable data sources for a user query 

semi-automatically. 

Finally, this thesis presents a case-based reasoning framework for systematically 

capturing, storing, retrieving and maintaining all of the artifacts produced during the user 

search process.  These are used to suggest refinements of search terms for user queries, 

data sources to be accessed, and presentation of initial results based on previously stored 

cases. In the case-based reasoning framework, the artifacts created by the agents during 

the formulation, refinement, processing, and result-rating of a user query are captured 

automatically, described in terms of a meta-schema, and indexed and stored in a 

repository as user-cases. The cases are 1) represented in terms of an XML-based schema 

(Extensible Markup Language) [1], 2) stored in a case repository, and 3) managed by a 

case management agent, which is introduced as part of the case-based framework. 

1.1 Information Search on the Web and the Semantic Web 

With the emergence of the World Wide Web, or simply the Web, individuals and 

organizations are able to publish information freely on the Web. This open and 

distributed nature of the Web makes it difficult for Web search engines to find 

information related to user information needs due to the immense amount of information 

published on the Web. It is also challenging because data or information is represented by 

the data providers’ own vocabulary, and many of the providers are unreliable due to their 
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lack of reputation. Lastly, today’s search engines use keyword-based search rather than 

semantic-based technologies. 

The semantic-based search using the emerging Semantic Web technologies such 

as XML, RDF/RDFS [50], and OWL [66] can help to mitigate the terminology ambiguity 

problems since the Semantic Web technologies are developed based on the idea of 

indexing information relying on semantics rather than just keywords. For example, a 

keyword “jaguar” can represent three different conceptual objects: “animal jaguar,” “car 

jaguar,” and “Mac OS Jaguar.” The semantic-based search can use hierarchical 

generalizations and distinguishing characteristic information to distinguish the jaguar 

concept objects. For the hierarchical information, one can specify that the domain of the 

jaguar object be related to animal, automobile, or operating system. For the characteristic 

information, one can specify whether the jaguar object has legs or wheels to represent 

animal jaguar or car jaguar, respectively. 

Even though the data is semantically well represented in the Semantic Web, 

assessing data quality may be problematic – data authenticity, data provenance, and data 

popularity – are not necessarily provided in the semantic markup of that data. The 

problem is that it is not practical to have one central authority assessing the aspects of the 

data in the distributed environment. By mining and interpreting the collections of user 

feedback (assessment) about the data, one can assess the relevance and quality of the data. 

The query-to-query hybrid filtering method introduced in this research semi-

automatically determines quality attributes by using the meta-data patterns and user 
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feedback patterns that can be found from the collection of the artifacts captured during 

the user search process, including user feedback. 

1.2 User Preferences in Information Search 

Given a particular user query, many information retrieval/search systems employ 

user preference to retrieve and filter the query results. This is done by filtering and/or 

ordering the immense amount of total search results in the order of the results’ similarity 

with the user preference. The user preferences are generally determined based on the 

entire user feedback by ignoring the topic or domain of the user queries for which the 

feedback has been made. However, the user preference in a general-purpose information 

search system is usually very dynamic and temporary, based on a user information need 

specified in the form of a query. In other words, only the user feedback obtained for an 

active query (i.e., a current query being posed by a user to specify the user’s immediate 

information need) can be used to mine such short-term user preference. User feedback 

previously obtained for the user’s other queries, which generally specify different 

information needs, cannot be used for the mining. Furthermore, most keyword-based 

information search/retrieval systems such as Google and Yahoo! obtain user feedback via 

click-throughs on links, for only a small number of data-items – typically less than 20. 

This is because the users only view the top N search results in general, where in N is 

small. Therefore, most information retrieval systems would have difficulty in providing 

the short-term user preference due to the lack of the user feedback.   
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On the other hand, information filtering systems use relatively static and long-

term-based user preferences, which can be mined from the entire, or a fairly large subset 

(e.g., by selecting only recent searches) of, user feedback. The user interests for an 

information filtering system need not be dynamic and temporary, as compared to an 

information retrieval system, because most information filtering systems deal with only 

one specific domain of information such as news articles, email, movie, etc., [10, 13, 56]. 

Information is pushed to users according to a user’s long-term information needs, while 

information is obtained from users in the retrieval systems via a query, which represents a 

user’s short-term information requirements. As a result, user preferences in information 

filtering systems are generally formed with a static set of data-item features, and only the 

values and weights of the features need to be updated over time.  

Some information retrieval/search systems also use such static and long-term user 

preference. In this case, such systems can obtain a sufficient amount of user feedback to 

mine user preference. However, since user preference should be matched with a topic or 

specific content of a data object for which a user query is posed, such static and long-

term user preference often would not be valid for a general-purpose search system. For 

example, a user preference mined from a user search for locating restaurants would not 

be valid for a user search to find movies since the features of the data objects are totally 

different. A user’s preferred feature weights and values from the restaurant search are of 

no use in predicting the user’s preferable feature weights and values for the movie search. 

Therefore, the amount of user feedback that can be used to mine user preferences for a 
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user search would also be insufficient if there were just a few search histories for the 

same domain or topic of the user search.  

An important issue is whether a user would have the patience to provide 

substantial feedback, given that they need a quick turnaround to their search query.  

There are circumstances, however, when users would provide such feedback.  Consider a 

situation in which a user is involved in intellectual property creation, and where 

specialized searches, e.g., for relevant patents, are essential for determining the merit of a 

discovery, and its technical, economic, and legal viability.  In such cases, users would 

gladly supply feedback in exchange for timely, high-quality, and pertinent results.  Also, 

the accumulation and refinement of user preference features and feedback can be done in 

an incremental and iterative manner via the case-based framework proposed in this thesis. 

1.3 Collaborative Information Search 

As introduced in the previous section, many of information search systems suffer 

from the lack of user feedback to enable user preference mining. This problem can be 

mitigated by employing a collaborative approach that uses other users’ feedback to mine 

the active user’s preferences. This collaborative approach provides not only novelty, but 

also serendipity in information search. The novelty occurs when a user is given a 

recommendation that comes as a surprise because he was not aware of it; the serendipity 

arises when the information provided would likely not have been ascertained by the user 

[32, 62]. For example, if a system recommends new information provided by a user’s 

favorite data sources, the information is novel, but not serendipitous. The information is 
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serendipitous if it were to come from a data source that was new to the user. Therefore, 

the novelty occurs if a system employs user preferences to predict the likelihood that the 

user would “like” certain information. However, the serendipity can only be obtained if a 

system mines a user’s preference not only from the user’s feedback, but also from 

neighbor users’ feedback. The neighbor users can be defined as other users who might 

have similar tastes. 

The novelty and serendipity in information search is useful not only for 

recommending new data or information, but also for refining user queries themselves. 

Unlike most recommender systems, Knowledge Sifter is a query-based information 

retrieval system, i.e., the data/information provided to a user will be heavily dependent on 

how a user query is specified. Therefore, if the novel and serendipitous collaborative 

aspects are added to specifying and refining user queries, the provision of novel and 

serendipitous information to the users can result. In this research, a collaborative 

approach is used to automatically specify user queries via emergent semantics. The 

emergent semantics are obtained from content patterns among data items that are 

preferred for a user query not only by the active user, but also by the neighbor users. 

Finally, the user query is refined with the emergent semantics. This collaborative query 

refinement would also assist the users in specifying their information needs as a query 

using the specification recommendations created by the neighbor users and data providers’ 

vocabulary found on the data content patterns. 
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1.4 Research Objectives 

According to the research motivations introduced in the previous sections, the 

main research objective of this thesis is to improve the effectiveness of search by 1) 

assisting users in formulating semantic queries that match the user’s search intent and 

context, 2) using Semantic Web technology and Web Services to access heterogeneous 

semantic content, and 3) taking advantage of other user queries and their associated result 

sets to mine a user’s short-term preference regarding the user’s current query. 

An information object, e.g., a search request, can be specified differently for 

distinct domains and views, specifically with regards to user intent and context. For 

example, a query “find a steakhouse near Washington Monument” can be formulated 

with two different search intents, “dining” and “starting a restaurant business”.  For the 

intent of dining, a semantic query can be specified with features, cuisine type, food cost, 

location, etc. For the intent of starting a restaurant business, the features will be business 

type, asking price, revenue, location, etc. Therefore, guiding users in formulating 

semantic queries based on their search intent and context should improve the search in 

terms of precision. 

As the Web and the Semantic Web are open and distributed environments, the 

information objects (search requests) can be processed by accessing heterogeneous data 

sources, as there are many providers and they use their own vocabularies to specify the 

objects. The Semantic Web ontologies represented in XML, RDF and the Web Ontology 

Language (OWL) can help to mitigate the semantic heterogeneity, while Web Services 

provide syntactic interoperability. Especially, using OWL to specify relationships 
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between concepts in an ontology or in multiple ontologies will improve the effectiveness 

of search by mitigating semantic heterogeneity. 

As addressed in Section 1.2, users provide relevance feedback implicitly or 

explicitly only for a few of the many items returned as a result of a search. Thus, most 

users can be regarded as new users because they provide feedback for a few search 

results and the feedback can be used only for an active (current) query. The proposed 

query-to-query hybrid filtering augments feedback information based on neighbor query 

cases, which have user queries similar to the active query, and then refine those queries 

based on the augmented feedback. This query refinement mitigates the new-user problem 

and improves the effectiveness of a search especially in the new-user situation that often 

occurs in a query-based search system. Also, the neighbor query cases can be found not 

only from the active user’s search history, but also from other users’ search history. Thus, 

the query refinement can be regarded as collaborative query refinement that uses opinions 

of a user community having similar search concepts and intent. 

1.5 Research Hypothesis 

Based on the research objectives, the main research hypothesis is “The query-to-

query hybrid filtering, which consists of semantic content-based search complemented 

with collaborative filtering, will improve the effectiveness of search, especially in the 

new-user situation.”  
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1.6 Research Approach 

A case-based reasoning framework is defined to assist users in formulating 

semantic queries based on user search concepts and intent including query-based case 

representation and ontology-index based case retrieval algorithm. The query-to-query 

hybrid filtering method is specified and developed for reusing previously-stored query 

cases in the collaborative query refinement process. I also validated and tested the query-

to-query hybrid filtering algorithm by using well-known MovieLens dataset created by 

the GroupLens research group. 

1.7 Overview of Dissertation 

An outline of the remainder of this dissertation is shown in Table 1. 
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Table 1 Overview of this Dissertation 
Chapter Chapter Description 

1 Introduction (this chapter) 
2 Related Research: this chapter describes other past research related in 

common to the area of this research. 
3 Knowledge Sifter: this chapter introduces Knowledge Sifter, an agent-based 

information search system which uses various Semantic Web technologies 
such as ontologies and Web Services to retrieve information from 
heterogeneous data sources. 

4 Case-Based Knowledge Sifter Framework: this chapter presents a case-
based framework for Knowledge Sifter which is designed to manage and reuse 
the previous user-query cases systematically and efficiently. An XML-based 
semantic representation of user-query cases, an ontology-based index structure, 
concept-based case-similarity calculation, a case retrieval algorithm, etc. are 
provided for the efficient retainment and retrieval of the cases. 

5 Collaborative Query Refinement: this chapter provides a collaborated query 
refinement process which is based on the case-based Knowledge Sifter 
framework and a hybrid filtering method combining both collaborative 
filtering and content-based filtering. The hybrid filtering method is called 
query-to-query hybrid filtering and it is used to refine a user query by using 
user rating patterns and content patterns found not only from an active user’s 
query case, but also from neighbor users’ query cases. 

6 Validation: details of various experiments for validating a primary method of 
this research, query-to-query hybrid filtering, such as experiment setup and 
results are described in this chapter. 

7 Conclusions 
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2 Related Research 

2.1 Semantic Search 

Most of the traditional Web search engines such as Google and Yahoo! use 

keyword search, which indexes Web documents using a set of keywords and retrieves the 

documents based on keyword match rather than semantic match. The traditional Web 

search also uses semantics implicitly represented by keyword patterns found via using 

statistical mining technologies such as LSI (Latent Semantic Indexing) [18, 33]. However, 

the implicit semantics found from the term and document matrix can still be somewhat 

ambiguous because the synonymous relationships among the terms are found based on 

co-occurrences of terms in documents, not based on explicit synonymous relationships as 

defined in an explicit ontology. Furthermore, the traditional Web search is document-

oriented while semantic search is object-oriented [26]. This characteristic of the 

traditional Web search also makes the statistically-mined synonym relationships from the 

term and document matrix ambiguous because a Web document can contain multiple 

objects and terms in a document can describe different objects. In addition, a synonym of 

a term is no longer synonymous to the term in different contexts (e.g., topic, 

temporal/spatial aspects, etc.) of a document. 

Therefore, the basic idea of semantic search is to improve the effectiveness of 

information search on the Web using neither keyword/s nor the implicit semantics, but 
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the explicit semantics via the Semantic Web and Semantic Web Services which provide a 

semantic indexing scheme and semantic data transfer, respectively. The roles of the 

Semantic Web, Semantic Web Services, and ontologies for semantic search are described 

in the following subsections along with related research. 

2.1.1 Information indexing via Semantic Web 

Given the difficulty of natural language processing and the unsatisfactory 

performance of keyword/s-based search, one of the goals of the Semantic Web is to 

improve the effectiveness of the Web search by providing an information indexing 

scheme based on the explicit semantics. The traditional Web can be regarded as a Web of 

documents because it is originally created for human navigation. This repository nature 

of the traditional Web thus requires ad hoc machine-processible indices such as 

keyword/s or metadata-based document indices in order to perform the Web search. The 

emerging Semantic Web can be viewed as a Web of data (objects) [14] in which the data 

represent real-world objects using explicit semantics via machine-processible formats 

such as XML, RDF/RDFS and OWL. Thus, the Semantic Web itself also can be regarded 

as a huge (very dense) index which represents and identifies Web resources with 

semantics because of the machine-processibility of the Semantic Web data.   

2.1.2 Role of the (Semantic) Web Services in Semantic Search 

Data in the Semantic Web is basically specified by a graph-based framework, 

RDF (Resource Description Framework), which allows us to describe data in a machine-

processible format while providing a linking framework between data [50]. The linkages 
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represent semantic relationships among data with a set of controlled vocabulary. One of 

the semantic search approaches is to find RDF data representing user concepts from static 

Semantic Web documents [19, 26]. However, most semantic search engines still rely on 

the simple keyword search while such semantic search requires sophisticated reasoning 

on the RDF graph. Most of the Semantic Web reasoning engines such as Jena [16] and 

Pellet [64] provide inference and reasoning on the RDF dataset, but the reasoning engines 

would not be well suited for the semantic search engines because of the distributed nature 

of the Web and the immense amount of Web RDF data. A RDF crawler would be 

required to gather the RDF data on the Web, and a RDF database would need to be 

maintained to store all of the gathered RDF data. It can be easily predicted that the size of 

the RDF (index) database will be unmanageable because all of the actual RDF data would 

need to be stored on the Semantic Web. Unlike the traditional Web search engines, which 

store only metadata (a set of keyword/s) of Web sites with the goal of finding Web sites, 

the goal of the semantic search is to find data objects (Web sites also can be regarded as 

one of the objects). Also, the huge amount of data would degrade the performance of the 

reasoning engines in terms of both their efficiency and effectiveness. 

Another view of the Semantic Web considers it to be materialized by Semantic 

Web services. Many current Web sites use a back-end database, which allows users to 

access their data only from their customized Web application, because they do not want 

publish all of their data due to business and security issues [30]. Another reason is 

because their data is too massive to publish on the Web using static Web pages. For 

example, if Amazon.com were to use static Web pages to provide all their product data to 
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the customers and other vendors, the data would be unmanageable because of the 

immense number of the static Web pages required to present the data. Therefore, 

dynamic Web pages and Web Services access the back-end database to retrieve on-

demand product information to display to the customers and other venders, respectively. 

Furthermore, the current Web search usually finds only the Web sites which contain data 

related to the user query concept. Thus, the users further need to use the Web application 

of the retrieved sites to get the real data which they intended to search. For example, if a 

user wants to find a hotel in Paris whose price for a one night stay is under $100, the 

current Web search engines cannot directly answer the user query. This is not only 

because they cannot process such a complex query due to the limitation of the term-to-

document indexing, but also because there is no such data on the static Web. The search 

engines can find only some travel sites such as expedia.com and hotels.com, and the 

users are required to visit the Web sites in order to use a Web application provided by the 

travel sites to locate such hotels. This phenomenon supports using Semantic Web 

services approach to materialize the Semantic Web. For this research, the Semantic Web 

services approach has been chosen for materializing the Semantic Web for the semantic 

search. 

2.1.3 Role of Ontology in Semantic Search 

Ontology can be defined as “a specification of a shared conceptualization of a 

domain” [25]. OWL (Web Ontology Language) is a de facto standard language of 

representing ontologies for the emerging Semantic Web.  OWL is built on top of RDF 

and extends vocabularies for describing concepts and their relationships for forming 
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ontology of Web resources [66], i.e., while RDF/RDFS represents only the taxonomical 

knowledge of Web resources, OWL is created to support ontological knowledge of Web 

resources. There are two main roles of ontology for semantic search: one role is to 

disambiguate user queries by linking a user term to a specific ontology concept 

representing actual user query concept [26, 29, 65], and the other role is to modify user 

queries based on concept-hierarchies defined in ontology [9, 15]. Two types of ontologies 

are mainly used for the query refinement: one type is a general upper ontology such as 

WordNet, and the other type is a domain ontology which defines domain-specific 

concepts for the domain of search data. In this research, both the query disambiguation 

and the query augmentation using WordNet and domain ontologies are used to refine user 

queries. 

2.2 Recommender Systems 

Recommender systems are software systems whose purpose is to provide more 

preferable data items to a user by predicting the user’s preference of data items which the 

user has not yet seen, by analyzing and applying user rating patterns and data content 

patterns in user profiles. Recommender systems are based on three methodologies: 

content-based filtering, collaborative filtering, and hybrid filtering methods [12, 61]. 

Content-based filtering is a method of filtering unseen (technically, not yet rated by a 

user) items to an active user based on the similarity of the items to a query which is 

formulated by the content patterns mined from a set of items preferred only by the active 

user previously. On the other hand, collaborative filtering is a method of making 
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predictions of the active user’s preference for the unseen items based not only on the 

active user’s ratings, but also on neighbor users’ ratings. The neighbor users are a group 

of users who have tastes (technically, rating patterns on commonly rated items) similar to 

the user. The bottom-line idea of the collaborative filtering is that people who agreed in 

the past are likely to agree on the future. Lastly, the hybrid methods combine content-

based filtering and collaborative filtering to take advantages of their strength and mitigate 

their shortcomings. The following subsections describe these three methodologies in 

more detail. 

2.2.1 Content-Based Filtering 

Content-based filtering is a method for recommending the unseen items to a user 

based on the contents of items already in the user’s profile. The content-based filtering is 

similar to a personalization method in terms of using the user preference constituted by 

eliciting user-preferred contents of items (objects) based on the user’s relevance feedback. 

The main idea of this method is to find content patterns among the user-preferred items 

and to use those patterns to refine the user query so as to retrieve additional items 

relevant to the user-preferred items. This method is also similar to association rule 

mining [28, 67] in data mining because it discovers the features’ association patterns from 

the user-preferred items in terms of a feature vector. 

For example, the Multimedia Analysis and Retrieval System (MARS) [58, 63] 

incrementally learns a user’s intention for query refinement from the user’s profile. The 

query refinement method consists of query re-weighting and query modification 

techniques. These two techniques are based on relevance feedback in which a user 
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provides evaluations for result objects associated with the initial user query, in terms of 

multiple levels of relevance, e.g., highly relevant, relevant, no opinion, not relevant, or 

highly not relevant. The query re-weighting techniques adjust weights for each 

component (feature criterion) in multi-dimensional queries by calculating the weighted 

centroid of the result objects. The query modification techniques construct a multipoint 

query by clustering the result objects based on their points in the multi-dimensional 

feature space in order to expand the user query. The multipoint query is determined as a 

query which contains multiple values for each feature, i.e., it embraces multiple 

representations of the user query. The two refinement techniques are combined 

seamlessly and can be incrementally performed along with the updates of the relevance 

feedback. 

2.2.2 Collaborative Filtering 

Unlike content-based methods, collaborative filtering attempts to predict 

usefulness of as yet unseen items for an active user, who is currently using the system; 

the prediction is based on user rating values which have previously been given to the 

items not only by the active user, but also by the other users. Well-known recommender 

systems based on collaborative filtering are the GroupLens system [24, 31, 46, 59, 60] 

and the Amazon.com item-to-item collaborative filtering system [48]. The GroupLens 

system recommends items such as news articles and movies to the active user by filtering 

the items based on the predictions made for the active user regarding the user’s likeness 

on the unseen items. The user’s likeness of an unseen item is determined based on the 

user ratings of neighbor users on the unseen item. The neighbor users are selected if they 
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have similar rating patterns with the active users for the commonly-rated items in their 

profile. The Amazon.com item-to-item collaborative filtering finds the most popular co-

purchased items within the group of users who have purchased the active item, which an 

active user is currently viewing. This is done by simply counting the number of co-

occurrences on the group’s profile. The main concern of the Amazon.com’s methodology 

is to provide better performance and scalability enabling the system to perform real-time 

recommendations among the large collections of items. 

In general, the collaborative filtering algorithms can be categorized into two 

classes: memory-based algorithms and model-based algorithms. The memory-based 

algorithms employ a user rating-history database in order to find neighbor users who 

have similar rating patterns with the active user. Recommended items based on the 

neighbor users’ rating patterns using algorithms similar to those used in the GroupLens 

and Amazon.com recommender systems are then offered. The following equations are 

used to calculate a prediction for the active user’s rating for an unseen item based on the 

Pearson Correlation Coefficient used in GroupLens: 
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where ua dup ,
 represents a prediction for the active user ua for an unseen (unrated) item du. 

un represents a neighbor user who has a rating record for the unseen data item for the 

active user. na uuw ,
is the similarity (correlation) weight between the active user and a 

neighbor user in terms of rating patterns as defined by the Pearson Correlation 

Coefficient. ds is the commonly seen (rated) items between the active user and the 

neighbor. aur and nur  represents arithmetic means for the ratings of data items obtained 

from the active user and the neighbor, respectively. 

On the other hand, the model-based algorithms first cluster users into predefined 

classes based on user rating patterns. The usefulness (prediction of rating values) of items 

for the active user is evaluated by the overall ratings of one of the predefined classes in 

which the active user has been classified. Most algorithms in this approach are using a 

latent (hidden) class model based on Bayesian (Belief) Networks. Equation 3 is used to 

calculate the rating value for the latent class model (a) in which has strong assumptions 

that a user u and an item d are conditionally independent and a rating value r is also 

conditionally independent with the user and the item given a latent class z. 
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where the latent class variable z ∈ Z = {z1, z2, …, zk} is associated with each observation 

(u, d, r). P(z) stands for class prior probability, P(u|z) and P(d|z) stand for class 

dependent distributions for users and items, respectively. 

Generally, the memory-based algorithms are preferable to the model-based 

algorithms due to the limitation of clustering users and the lack of instances to cluster the 

users. However, the model-based algorithms can be more effective in terms of processing 

time because usefulness of items can be pre-calculated for the pre-defined classes so that 

the system only requires time to classify the active user. Hybrid algorithms that combine 

memory- and model-based algorithms are developed to use the best aspects of the two 

algorithms by clustering users while keeping the rating patterns in a database. This would 

make the recommendation process transparent, unlike the memory-based methods. 

Furthermore, the hybrid algorithms would allow a system to modify user classes over the 

entire user ratings unlike the model-based methods as in collaborative filtering by 

 
Figure 1 Graphical Model Representations of the Latent Class Model Examples 
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personality diagnosis approach [57]. However, this approach would have too many 

clusters because users are clustered by their rating patterns. At worst, the number of 

clusters could be the same as the number of users, which would be identical to the 

memory-based algorithms. 

2.2.3 Hybrid Filtering 

Content-based recommender systems recommend items that are similar to items 

liked in the past by a given user. When a new user uses such a system, the system might 

not work properly because the user’s profile does not contain a list of preferred items. 

This is called the new user problem [8, 59] which usually happens in the content-based 

recommender systems. Collaborative filtering alleviates the new user problem by 

allowing the system to refer to other users’ profiles in the recommendation process. 

Nevertheless, the collaborative systems also have a similar problem which is called the 

new item problem [8]. When a new item arrives in the system, it can never be retrieved 

and rated because the collaborative filtering is based on ratings of items in user profiles 

without considering the contents of the items. Therefore, hybrid filtering methods that 

combine the content-based filtering and the collaborative filtering would compensate for 

the new user and new item problems by allowing a recommender system to learn the 

content patterns of items preferable to an active user based not only on the active user’s 

own behaviors, but also on other users’ behaviors. 
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3 Knowledge Sifter 

The Knowledge Sifter (KS) project has as its primary goals: 1) to allow users to 

perform ontology-guided semantic searches for relevant information, both in-house and 

open-source, 2) to access heterogeneous data sources via agent-based knowledge services 

[37, 38], and 3) to refine searches based on user feedback. Increasingly, users seek 

information outside of their own communities to open sources such as the Web, XML-

databases, and the emerging Semantic Web. The Knowledge Sifter project also wishes to 

use open standards for both ontology construction and information search on 

heterogeneous data sources. For this reason OWL [21, 52] has been chosen to implement 

the specifications and data interchange, and Web Services [17] for communication among 

agents and information sources. 

3.1 KS Agent-Based Web Services Framework 

The rationale for using agents to implement intelligent search and retrieval 

systems is that agents can be viewed as autonomous and proactive. Each agent is 

endowed with certain responsibilities and communicates using an Agent Communication 

Language [23]. An agent architecture can be materialized as Web Services with ad hoc 

functionalities such as awareness of other agents in a meta-level, ontology reconciliation, 
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agent communication, and distributed coordination [34]. This is the approach taken to 

implement the agent community comprising Knowledge Sifter in this research. The 

family of agents presented here is a subset of those incorporated into the large vision for 

Knowledge Sifter. This work is motivated by earlier research into Knowledge Rovers [35, 

36] performed at GMU. This research is also informed by a research on WebSifter [41, 

42, 44], which is both a US patented invention [43] and a meta-search engine that gathers 

information from traditional search engines and ranks the results based on user-specified 

preferences and a multifaceted ranking criterion involving static, semantic, categorical, 

and popularity measures. 

The Knowledge Sifter architecture [37, 38] may be considered a service-oriented 

architecture consisting of a collection of cooperating agents. The application domain is 

that of Image Analysis. The Knowledge Sifter conceptual architecture is depicted in 

Figure 2. The architecture has three layers: User Layer, Knowledge Management Layer, 

and Data Layer. Specialized agents reside at the various layers and perform well-defined 

functions. This collection of cooperating agents supports interactive query specification 

and refinement, query decomposition, query processing, ranking, as well as result ranking 

and presentation. The Knowledge Sifter architecture is general and modular so that new 

ontologies and new information resources can be easily incorporated [55]. The various 

agents and services are described below. 
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3.1.1 User and Preferences Agents 

The User Agent interacts with the user to elicit user preferences that are managed 

by the Preferences Agent. These preferences include the relative importance attributed to 

terms used to pose queries, the perceived authoritativeness of Web search engine results, 

and other preferences to be used by the Ranking Agent. The Preferences Agent can also 

learn the user’s preference based on experience and feedback related to previous queries. 

The User Agent also takes responsibility for presenting results to the user in terms of an 

image visualization via its own visualization services and spatial visualization via 

external visualization services such as Google Maps API and Google Earth. 

 
Figure 2 Knowledge Sifter Agent-Based Web Services Architecture 
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3.1.2 Ontology Agent 

The Ontology Agent accesses an imagery domain model, which is specified in 

OWL and resides in the KS repository. In addition, there are three authoritative name 

services: Princeton University’s WordNet [54], the U.S. Geological Survey’s GNIS [2], 

and the GEOnet Names Server (GNS) [3]. They allow the Ontology Agent to use terms 

provided by the name services to suggest query enhancements such as generalization or 

specialization. 

For example, WordNet can provide a collection of synonyms for a term, while 

GNIS and GNS translate a physical place in the US and the Earth, respectively into 

latitude and longitude coordinates that are required by a data source such as TerraServer. 

Other appropriate name and translation services can be added in a modular fashion, and 

the domain model would be updated to accommodate new concepts and relationships. 

3.1.3 Imagery Domain Model and Schema 

The principal ontology used by Knowledge Sifter is the Imagery Domain Model, 

specified using OWL. A Unified Modeling Language (UML)-like diagram of the 

ontology is provided in Figure 3. The class Image is defined as having source, content, 

and file-descriptive features. Subcategories of content are person, thing, and place. Since 

satellite and geographic images are primary data objects of interest, the class place has 

two general attributes, name and theme, together with the subclasses region and address. 

The Region is meant to uniquely identify the portion of the Earth’s surface where the 

place is located, either by a rectangle or a circle. In the case of a rectangle two latitude 

values (north and south) and two longitude values (east and west) are needed, while the 
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latitude and longitude of its center point and a radius are needed to specify a circle. The 

address of our location is identified by country, state, city, zip code, and street. Each 

image belongs to a specific online source, the server and has URI-1 as a unique identifier, 

together with a secondary URI-2 for a thumbnail (if any). Some qualitative and 

quantitative attributes are also modeled as subclasses of the general class features, 

namely resolution (in square meters per pixel), projection and datum (for future GIS 

utilizations), a date range, and image size (with height and width expressed in pixels). 

 
Figure 3 Ontology Schema for the Image Domain Model 
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3.1.4 Authoritative Name Services 

The Ontology Agent accesses three authoritative name services. The first name 

service is WordNet, developed at Princeton University, which is a lexical database for the 

English language and provides senses (linguistic concepts) for a term and synonyms for a 

sense which allows KS to perform a broader search. The WordNet also provides 

hyponyms and hypernyms for a sense, which enhance queries in terms of specialization 

and generalization, respectively. 

The second name service is the USGS Geographic Names Information System 

(GNIS) which is a database of geographic features within the United States and its 

territories. GNIS was developed by the USGS and the U.S. Board on Geographic Names 

(US BGN) to meet major national needs regarding geographic names and their 

standardization and dissemination. It is an integration of three separate databases, the 

National Geographic Names Data Base, the USGS Topographic Map Names Data Base, 

and the Reference Data Base. Records within the database contain feature name, state, 

county, geographic coordinates, USGS Geographic Map name, and others. 

The last name service is the National Geospatial-Intelligence Agency (NGA) 

GEONet (GNS) which is also a geographic feature database for worldwide searches 

excluding the United States and Antarctica. GNS also integrates the NGA’s geospatial 

information and the US BGN’s database of foreign geographic feature names for the 

standardization and dissemination of foreign geographic feature names. 
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3.1.5 Query Formulation Agent 

The user indicates an initial query to the Query Formulation Agent. This agent, in 

turn, consults the Ontology Agent to refine or generalize the query based on the semantic 

mediation provided by the available ontology services. Once a query has been specified 

by means of interactions among the User Agent and the Ontology Agent, the Query 

Formulation Agent decomposes the query into subqueries targeted for the appropriate 

data sources. This involves semantic mediation of terminology used in the domain model 

ontology and name services with those used by the local sources. Also, query translation 

is needed to retrieve data from the intended heterogeneous sources. 

3.1.6 Web Services Agent 

The main role of the Web Services Agent is to accept a user query that has been 

refined by consulting the Ontology Agent and decomposed by the Query Formulation 

Agent. The Web Service Agent is responsible for the choreography and dispatch of 

subqueries to appropriate data sources, taking into consideration such facets as: user 

preference of sites; site authoritativeness and reputation; service-level agreements; size 

estimates of subquery responses; and quality-of-service measures of network traffic and 

dynamic site workload [53]. 

The Web Services Agent transforms the subqueries to XML Protocol (SOAP) 

requests to the respective local databases and open Web sources (TerraServer or Yahoo 

Images) that have Web Service published interfaces. 
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3.1.7 Ranking Agent 

The Ranking Agent is responsible for compiling the subquery results from the 

various sources, ranking them according to user preferences, as supplied by the 

Preferences Agent, for such attributes as: 1) the authoritativeness of a source which is 

indicated by a weight – a number between 0 and 10 – assigned to that source, or 2) the 

weight associated with a term comprising a query. 

3.1.8 Data Sources and Web Services 

At present, Knowledge Sifter consults two data sources: Yahoo Images and the 

TerraServer. Yahoo Images supports Representational State Transfer (REST) [22]-based 

Web Services which simply returns XML result data over HTTP. Yahoo Images supports 

the name and description for images; this allows the Ranking Agent to perform more 

precise evaluation for the semantic criteria. The Ranking Agent also uses the size of 

images contained in Yahoo Image’s metadata to filter images based on user preference. 

However, the metadata does not contain the creation time of images, which is a good 

measure of temporal aspect. 

The TerraServer is a technology demonstration for Microsoft. There is a Web 

Service API for TerraServer. TerraServer is an online database of digital aerial 

photographs (DOQs – Digital Orthophoto Quadrangles) and topographic maps (DRGs – 

Digital Raster Graphics). Both data products are supplied by the U.S. Geological Survey 

(USGS). The images are supplied as small tiles, and these can be made into a larger 

image by creating a mosaic of tiles. The demonstrator at terraserver-usa.com uses a 

mosaic of 2x3 tiles. 
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The purpose of this approach is to take the ontology-enhanced query and generate 

specific sub-queries for the TerraServer metadata. The resulting image identifiers and 

their metadata are wrapped into an instance of the Knowledge Sifter image-domain 

ontology, and an array of these is returned to the Web Service Agent to compile with 

other results. 

3.2 Knowledge Sifter End-to-End Scenario 

In this section, end-to-end scenarios of each process created and implemented in 

Knowledge Sifter system are described with screen shots. 

1. Registration: users are required to register first in order to use KS system because at 

present KS is implemented to support several users. The registration and login process 

allows KS to keep track of its users’ context to customize its services based on the 

context. 
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2. Login: there are three options for setting a cookie as follows: 1) set no cookie (always 

asks for my ID and password), 2) set cookie for only user id (save my ID only), and 3) set 

cookie for user id and password (save my ID and password). 

 

 

 

 

 

 

 

 

 

 
Figure 4 Registration Page 

 
Figure 5 Main Page before User Logins 
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3. Sign-in Problems: if users have forgotten their id and/or password, they can find their 

id or set new password for their account after they are authenticated by confirming their 

security answers which they set at registration time. Note that KS stores user passwords 

in the KS repository as a hash sum produced from a combination of multiple 

cryptographic hash functions. Therefore, users have no option except to create a new 

password if they forget their password. 

 

 

 

 

 
 

 

 

 

 

 

 

 

4. Preference Setup: after a user registers with KS, the Preference Agent automatically 

creates default data preferences for the user. Users can modify weights and values for 

each criterion such as semantic, spatial, temporal, and other features of an image. For 

default, the Preference Agent sets the default weight for a user term (1.0) and for user-

selected synonyms (0.8). 

 

 
Figure 6 Sign-in Problems Page 
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5. Sentence Search: KS can process simple natural language-like queries for spatial 

information. For example, if a user poses a text query on sentence search, “Rushmore in 

SD” to the User Agent, the User Agent passes the text query to the Ontology Agent. The 

Ontology Agent checks if the query has any words on a pre-specified list of prepositions 

for spatial information such as “in” and “within.” Based on the prepositions found in the 

query, the Ontology Agent parses user terms for search object and area of interest (AoI). 

5A. Object Search: users specifically can type terms for search object and AoI by using 

the object search option. Note that at present KS does not support either point of interest 

(PoI) or line of interest (LoI) options for spatial query processing. 

6. Google Spell Checking: after parsing user terms from the user query text in sentence 

search option or after getting user terms directly from object search option, the Ontology 

Agent requests spelling suggestions for the user terms using Google spell checking web 

 
Figure 7 Data Preference Pane 
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services. If there are any suggestions, KS shows them to users as an option to change 

their terms. 

7. WordNet: the Ontology Agent requests synonym senses from WordNet for user terms 

and displays the senses with a default selection. KS allows users to select only one sense 

for each term. For the default selection on the AoI term, the Ontology Agent performs the 

automatic selection by checking a term “location” in hypernyms which are more general 

terms of the user AoI term in terms of the spatial sense. For example, a term “DC” has as 

two senses: 1) District of Columbia, D.C., DC (the district occupied entirely by the city 

of Washington; chosen by George Washington as the site of the nation's capital and 

created out of land ceded by Maryland and Virginia) and 2) direct current, DC (an 

electric current that flows in one direction steadily). KS initially selects the first sense 

because the sense has a term “location” in its hypernyms set while the second sense does 

not. Users can change the sense selection corresponding to their intended concept. After 

users select the senses, the Ontology Agent presents to users a list of the synonyms of the 

user term in terms of the user-selected sense. 

8. GNIS: as a default, KS selects a state if any one of the user AoI terms and its synonyms 

is identical with a U.S. state name. Users can select multiple synonyms to find locations 

from GNIS, and a number of result locations for the term will be shown in brackets next 

to the term. The Ontology Agent poses refined queries to GNIS and shows the result by 

removing duplicated locations. Note that if there are more than 2000 locations for a term, 

GNIS returns no results. In this case, users need to try a more specialized query such as 

using more specific terms and/or states. 

8A. GNS: KS also supports GNS locations. GNS provides location data in the coverage 

of world-wide, whereas GNIS is strictly for US locations. For example, let’s suppose that 

a user types in the words ‘Lake Victoria’ and clicks the Sentence Search. KS will consult 

WordNet to get the synonym set: Lake Victoria and Victoria Nyanza. KS consults GNIS 

for the default term ‘Lake Victoria’ and finds locations in the US; GNS does not report 

any foreign locations for ‘Lake Victoria.’ However, if the user clicks the ‘Lake Nyanza’ 

button, KS re-consults both GNIS and GNS, and GNS presents two entries for ‘Lake 
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Nyanza’ in Uganda and Tanzania. This example shows the power of WordNet’s synonym 

sets. 

8B. Image Search Engine: if a user wants to search only for images of a person or thing, 

users can skip the access to TerraServer for searching images of place, because the 

coordinates are required to retrieve the images from the TerraServer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

9. Google Map & Google Earth: after KS receives the location information from 

GNIS/GNS, the Ontology Agent sends the location information to the User Agent; then 

the User Agent displays a location table with details of the location information via 

 

Figure 8 Main Page After a Search for User Query “Rushmore in SD” 
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Google Map API or Google Earth. For Google Earth, the Ontology Agent generates a 

geographic feature data set using Keyhole Markup Language (KML), which is an XML 

grammar and file format for modeling and storing geographic features such as points, 

lines, images, polygons, and models for display in Google Earth and Google Maps [4]. 

The User Agent then automatically invokes Google Earth on the user’s local machine 

with that data set passed from the Ontology Agent. For the default zoom level, the User 

Agent automatically calculates the zoom level based on the distribution of locations. If a 

user clicks on a location on the map, a small blowup map with the closest zoom level will 

appear. At present KS uses three map servers, Google, NASA, and USGS. Note that the 

USGS map layer only covers the Washington DC area. The User Agent can access any 

Web Map Services (WMS) server via Google Map API if needed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
  

 
Figure 9 GNIS Location Results Page 

http://maps.google.com/maps�
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10. TerraServer & Yahoo Images: the User Agent passes user-selected location 

information and a synonym set to the Web Services agent. Then, the Web Services agent 

formulates refined queries for each source and requests images from the sources. After 

KS receives the image information, the User Agent requests an evaluation of the image 

results by passing the results together with the original user query and user preferences to 

the Ranking Agent. Lastly, the User Agent displays a results table initially sorted by total 

similarity received from the Ranking Agent. In the results table, the user can do the 

following: 1) sort results for each criterion by clicking column name, 2) see the original 

image or be directed to an original web page of the image source by clicking thumbnails 

in the results table, and 3) be directed to a request page of refined queries for TerraServer 

and Yahoo Images. 

 
Figure 10 Google Earth with a place “Rushmore, Mount” 
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3.3 KS Agent Interactions and Communications 

As described in the previous sections, the KS system maintains various processes 

to achieve its goals, and KS Agents use Web Services to communicate with each other. 

The KS system also uses pre-specified workflows among agents based on scripts and 

protocols created for KS agent interchanges and communication. Figure 12 shows a flow 

chart that specifies a work flow of the user search process in terms of agent interaction, 

and it shows how each agent collaborates during the search process. 

 
   Figure 11 Image Results Page 
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Figure 12 A Flow Chart for KS Search Process via Agent Interaction 
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Figure 13 represents KS agent communication scenarios using XML schemas 

through Web Services. Each agent maintains XML-based schemas of the specifications 

of request and response messages required for data exchange during agent interactions. 

Thus, any agent that wants to invoke Web Services from other agents is required to 

obtain the XML schema of the request from the service-provider agent to invoke the 

service. The requester agent also is required to obtain a result XML schema to parse the 

information from the resulting XML obtained from the service-provider agent. This 

mechanism prevents schema mismatching which might be caused by managing data 

schemas in more than one place. For example, let’s assume a requester agent maintains 

an XML schema of data residing in a response agent. If the response agent changes the 

schema for some reason, the schema held by the request agent would no longer be valid. 

Therefore, the data schemas are better to be resident in only one agent that manages the 

data in order to remove the mismatch problem. Because of that, the schemas need to be 

requested by other agents every time when the data is requested to be exchanged. The 

XML schemas of representing data and its managing agents are provided in Appendix A. 

 

 

 

 

 

 

 
Figure 13 Knowledge Sifter Agent Communication Diagram 
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3.4 Emergent Semantics in Knowledge Sifter 

The previous sections have described how the cooperative agents and Web 

Services support the search for relevant knowledge from both local and open-source data 

sources. The end-to-end scenario shows how the various agents and sources interact. This 

section presents some notions related to emergent behavior and patterns that arise from 1) 

the functioning of Knowledge Sifter and 2) the use of composable Web Services to create 

a reusable search platform [39, 40]. The approach to emergent semantics in Knowledge 

Sifter is to collect, index, organize, and store significant artifacts created during the end-

to-end workflow for KS. The KS workflow manages the entire search process, including 

query specification, query reformulation, query decomposition, Web Service selection, 

data source selection, results ranking, and recommendation presentation. 

By stepping back and abstracting the agents, classes, their relationships, and 

properties, one can construct the Knowledge Sifter Meta-Model (KSMM). Figure 14 

depicts the Static Model for the KSMM. What follows is a brief overview of the classes 

and relationships shown in Figure 15. At the top is the Class Agent, which is specialized 

to those agents in the KS architecture, specifically the UserAgent, PreferencesAgent, 

OntologyAgent, QueryFormulationAgent, RankingAgent, and WebServicesAgent. These 

agents manage their respective object classes, process specifications, and WebServices. 

For example, the UserAgent manages the User Class, the UserInterfaceScenario, the User 

PatternMiningAlgorithm, and the WebServices. The User specifies User Preferences that 

can be specialized to Search Preferences and Source Preferences. The User poses 

UserQuery that has several QueryConcept, which in turn relates to an OntologyConcept. 
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The OntologyAgent manages both the UserQuery and the OntologyConcept that is 

provided by an OntologySource. Both OntologySource and DataSource are 

specializations of Source. Source is managed by the WebServicesAgent and has attributes 

such as provenance, coverage, access protocol, and history. DataSource has attributes 

such as Quality-of-Service Service-Level-Agreements (QoS-SLAS) and Certificate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14 Knowledge Sifter Meta-Model Schema 
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A UserQuery consists of several RefinedQuery, each of which is posed to several 

DataSource. DataSource provides one or more DataItem as the QueryResult in response 

to a RefinedQuery. Based on the returned QueryResult, the User may provide Feedback 

as to the result relevance and other comments. These may impact the evolution of 

metadata associated with UserPreference, query formulation, data source usage, and 

result ranking. The KSMM have been implemented as a relational database schema, 

which can be used to organize, store, and interrelate the artifacts associated with a user 

query. The data can be used for the collaborative query refinement, which is introduced 

in Chapter 5, by providing the relationships among the artifacts such as which users 

provided which feedback on which items in terms of which queries, and which were the 

preferred data sources. 

Figure 15 represents the Entity-Relationships (ER) model for the KSMM. The ER 

model is implemented by using the MySql server [54], and MySql script file for the 

relational version of this ER model is provided in Appendix B. An XML-based flexible 

structure is used to specify all of the data managing by the KSMM, e.g., specifications of 

data items are stored into specXML attribute in DataItem as an xml snippet instead of 

using a pre-specified attribute list such as title and resolution (for image data). The 

specifications of data can vary based on the type of data item and source and also the 

specifications can be changed over time. Therefore, using the flexible structure enables us 

to manage any types or domains of data retrieved from heterogeneous data sources. The 

XML-based data specifications, specXML would be governed by the KS Ontology Agent 

via using WordNet ontology and domain ontologies. The domain ontologies would have 
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information about restrictions for some attribute values, e.g., the values for type of data 

item would be determined as enumeration type having a set of pre-specified values such 

as image and web page. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
Figure 15 Entity-Relationship Diagram of the Knowledge Sifter Meta Model 
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4 Case-Based Knowledge Sifter Framework 
 
 
 

The original Knowledge Sifter [37, 38] described in Chapter 3 maintains a 

repository of user queries and artifacts produced during the search process. The case-

based reasoning methodology [7, 45] is adapted into the Knowledge Sifter framework to 

reuse knowledge contained in the repository of user queries and artifacts produced during 

the search process to improve its efficiency and effectiveness. In this chapter, a case-

based reasoning framework is presented for Knowledge Sifter in order to retrieve and 

reuse the previously-stored user queries in a systematic way by specifying them as cases. 

The previously-stored user-query cases are represented in XML, retrieved per ontology-

based concept indices, and reused to refine the specification of a user-query based on a 

hybrid filtering method combining collaborative filtering and content-based filtering. I 

call this process “query-to-query hybrid filtering.” The details of the query-to-query 

hybrid filtering are described in Chapter 5. 

4.1 Case-Based Knowledge Sifter Architecture 

Figure 16 shows an updated architecture representing the Case-Based Knowledge 

Sifter framework. A new agent, the Case Management Agent is introduced to manage 

processes and resources relating to the case-based reasoning methodologies used in the 

Case-Based Knowledge Sifter framework. The role of the Case Management Agent is to 
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communicate with the User Agent and retrieve those cases from the User Query Case 

Base that have the user relevance feedback. The Query Formulation Agent also 

communicates with the Case Management Agent in order to retrieve the cases of other 

user queries having concepts similar to the active user query (the query which is currently 

posed by the active user and targeted for the refinement). To efficiently and effectively 

retrieve such relevant cases, the Case Management Agent applies ontology-based indices 

to cases which index them based on one or more ontology concepts related to concepts of 

the user query cases. The details of the ontology-based indices are described in 

Section 4.3. 

 

 

 

 
Figure 16 Knowledge Sifter Case-Based Architecture 
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An active user query is refined based on other user query cases that are similar to 

the active query using query-to-query hybrid filtering.  Based on the specification of the 

refined query, Knowledge Sifter semi-automatically selects data sources and is 

dynamically configured with Web Services-based wrapper components for each selected 

data source. Knowledge Sifter also maintains a repository of the pre-compiled wrapper 

components for accessing data sources. The case-based Knowledge Sifter architecture 

inherits the general-purpose meta-model schema in Figure 14, and the XML-based 

flexible structure of the user query enables a system to manage many types of data 

retrieved from heterogeneous data sources. 

4.1.1 Case Management Agent 

The Case Management Agent, shown in Figure 16, has a role of managing the 

User Query Case Base by identifying user query cases from various agent interactions, 

storing to the User Query Case Base those cases having user relevance, and retrieving the 

cases based on ontology-based indices. The retrieved user query cases are sent to the 

Query Formulation agent upon its request. In other words, the Query Formulation Agent 

communicates with the Case Management Agent to retrieve cases according to user query 

and user preferences, and then uses the retrieved cases to refine user queries via the 

query-to-query hybrid filtering. 

The user query cases are created and maintained in the User Query Case Base 

only if a user provides relevance feedback for a query result. Whenever a user provides 

relevance feedback for one or more query results and sends a request to save the 

relevance feedback into the Knowledge Sifter system, the User Agent sends the feedback 
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information with identifiers of a data source-specific query and its results to the Case 

Management Agent. All required information is then retrieved for creating a user query 

case from the repository of user queries and artifacts. The created user query cases are 

kept in the Case Management Agent cache until the Case Management Agent receives a 

notice of the end of the user query session from the User Agent. Upon receiving the 

session ending notice, the Case Management Agent permanently saves the user query 

cases to the User Query Case Base. The Case Management Agent uses the cache to avoid 

the duplicate retrieval of all the required information if the user sends another request of 

saving new relevance feedback or changing previous relevance feedback. This would be 

employed for a user query, data source–specific queries, and query results having the 

relevance feedback already in the user query session. 

After the user gives relevance feedback, he is allowed to send a request to refine 

the query to the Knowledge Sifter system. When the user sends the request to refine the 

query, the Case Management Agent returns the cached user query case information, along 

with other user query cases in the User Query Case Base that are similar to the active user 

query case, to the Query Formulation Agent. The similar user query cases are selected 

based on the case retrieval algorithm that determines the similar query cases according to 

their similarity to the active user query case. This is accomplished in terms of the 

ontology-guided concept similarity as described in Section 4.3. When the user issues a 

new user query which is refined from the query-to-query hybrid filtering method and 

confirmed by the user, the Case Management Agent updates the user query in the cache. 

However, the Case Management Agent keeps the relevance feedback information 
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(identifiers of the active user and the query results) obtained from the previous versions 

of the user query because the relevance feedback would better represent the user’s true 

search intent. The query results most highly rated by the active user can represent the 

user’s search intent better than the user’s query. This is because the users have difficulty 

in specifying their information needs as a query, and thus a user query often does not 

sufficiently represent a user’s true information needs. All of the accumulated user 

feedbacks are used to refine an active user query incrementally. Lastly, the final version 

of the refined query and all the relevance feedback information in the user query session 

are stored in the User Query Case Base. 

4.1.2 Web Services-Based Wrapper Component Repository  

A wrapper component repository is created to maintain the pre-compiled Web 

Service-based wrappers, which are used to access heterogeneous data sources while 

providing a standard Application Programming Interface (API) to the Web Services 

Agent based on a Web Services standard. The wrappers provide a REST-based Web 

Services API, so that the Web Services Agent can retrieve data from the data sources 

through the wrappers with the simple and standardized syntax of data representation 

provided by the API. Therefore, using the Web Services API causes the Web Services 

Agent to consider only the semantic heterogeneity of the data representations created 

from heterogeneous data sources by removing the syntactic heterogeneity. 

The domain ontologies available to Knowledge Sifter, such as the image domain 

ontology, are used to mitigate the semantic heterogeneity for the image search from 

heterogeneous data sources such as TerraServer and Yahoo! Images. The Web Services-

http://en.wikipedia.org/wiki/Application_programming_interface�


52 

based wrappers are described by Web Services Definition Language (WSDL) with the 

domain ontology-guided semantic annotations on the WSDL elements, e.g., input and 

output elements of a Web Service. This approach of annotating WSDL elements by a 

domain-specific ontology is similar to the W3C approaches, SAWSDL [20, 47] and 

OWL-S [51]. In other words, each data source is endowed with a Semantic Web Service 

which annotates its data by concepts in a domain ontology shared among the agents in the 

Knowledge Sifter system. The domain ontology is also used to formulate user queries in 

the Knowledge Sifter system, so data sources can be dynamically bound to the Web 

Services Agent via a simple ontology-concept mapping. This is because the data schema 

of the data sources is semantically represented by using the shared domain ontology that 

are being used to formulate the user query by the Query Formulation Agent.    

4.1.3 Use Cases and Sequence Diagrams 

Knowledge Sifter has three main use cases: 1) semantic query refinement use case, 

2) collaborative query refinement use case, and 3) data retrieval use case. The semantic 

query refinement use case represents a process which semi-automatically refines a 

keyword-based user query with its user-confirmed related ontology concepts. The 

collaborative query refinement use case represents a process which refines the user-

confirmed domain-specific query by using the query-to-query hybrid filtering method. 

Lastly, the data retrieval use case represents a process which retrieves data from some 

external data sources related to the user-confirmed domain-specific query. A user search 

process can be materialized by combining either the semantic query refinement process 

or the collaborative query refinement with the data retrieval process. 
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Initially, if a user inputs a user query consisting of a set of keywords, the user 

query is refined with ontology concepts retrieved from external ontologies via the 

semantic query refinement process. A set of neighbor user query cases, which are 

semantically similar to the active user query, are found based on user-selected ontology 

concepts. Per the neighbor user query cases, a set of domain-specific queries are created 

and suggested to the active user. When the user selects a domain-specific query, results 

are retrieved from heterogeneous data sources by using data source-specific queries via 

the data retrieval process. After a set of sorted results is presented, the user can provide 

relevance feedback for top N results. KS then refines the user-selected domain-specific 

query via the collaborated query refinement process using the query-to-query hybrid 

filtering. Users are able to retrieve data again by modifying and posing the refined 

domain-specific query to the data retrieval process. Users can also repeat the query-to-

query hybrid filtering-based search cycle by providing relevance feedback and posing the 

further-refined query based on the relevance feedback repeatedly via the collaborative 

query refinement and data retrieval processes. Sequence diagrams of the three main 

processes are shown in Figures 17-19. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 17 Semantic Query Refinement Sequence Diagram 
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 Figure 18 Collaborative Query Refinement Sequence Diagram 
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Figure 19 Data Retrieval Sequence Diagram
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4.2 Semantic Case Representation 

Case-based Knowledge Sifter maintains cases representing a user query and its 

artifacts; these are required to recommend a refined query for a user-selected information 

domain. Basically, KS uses two types of user query; one is conceptual query, and the 

other is domain-specific query. As a case consists of a problem and its solution in a case-

based reasoning framework, the conceptual query is regarded as a problem and the 

domain-specific query is being regarded as the solution in the case-based Knowledge 

Sifter framework.  

The conceptual query represents user information needs via using a set of 

ontology concepts. A conceptual query will be generated after a keyword/s-based user 

query is semantically refined by specifying WordNet concepts and domain ontology 

concepts representing user concepts. This conceptual query will be used to find a 

candidate set of neighbor user query cases that might be similar to the active user query 

case in terms of general concepts similarity. A set of domain-specific queries is created 

from a clustering of the candidate set of neighbor user query cases based on information 

domains of the cases. A domain-specific query consists of a set of content features 

(metadata) and their associated values and weights. Multiple domain-specific queries can 

be generated for a conceptual query since two conceptual queries consisting of a similar 

set of general concepts might represent different information domains of user interest.  

Finally, the pre-filtering of the candidate set of neighbor user query cases by 

means of the conceptual query can reduce the significant number of user query cases 



58 

which are required to be navigated in performing query-to-query hybrid filtering. This 

process enhances the efficiency of the automatic query refinement overall because the 

hybrid filtering is expensive in terms of time and memory resources. Furthermore, using 

the domain-specific query enables KS to use hybrid filtering for query refinement. This is 

because queries of different information domains can have different lists of features for 

specifying the queries in which the hybrid filtering cannot be applied or would not be 

effective.  

Figure 20 shows an XML-based structure for the case representation, and the 

source code of its XML schema can be found in Appendix C.1. A case has its own 

identifier, caseID. A case also contains a UserName to identify its user, and this user 

identifier will be employed to perform the hybrid filtering and retrieve the user’s 

preferences. Each case includes an associated conceptual query and a domain-specific 

query. A conceptual query can have multiple concepts which consist of a user term, zero 

or more WordNet senses, zero or more domain ontology concepts, and a weight. The 

DomainConceptID is an identifier of a domain concept which has been found from the 

semi-automatic semantic refinement of user query. WordNet sense identifiers chosen by a 

user for specifying the user’s actual concepts of a search term are also included. WordNet 

is employed as a general upper ontology, and the referenced WordNet concepts and the 

referenced domain concepts serve as an index of the user query, as described in 

Section 4.3. The concept weight is the degree of importance the user assigns to a concept. 

A domain-specific query has exactly one information domain for which the query 

is specified. The domain-specific query is a weighted multi-dimensional/multi-valued 



59 

query. The feature name is also a variable since the schema of a domain-specific query 

will be determined by its information domain and the user-selected data sources. The data 

source information is also a feature of the domain-specific query and it be represented as 

“FeatureName: data-source, FeatureValue: imdb.com,” where IMDB denotes the Internet 

Movie Data Base. Thus, a feature can be not only content-based metadata, but also 

metadata created during the information object’s life-cycle [9]. The feature name may be 

standardized in the scope of KS to remove the ambiguity which can occur during the 

search and recommendation processes because KS retrieves data from multiple 

heterogeneous data sources. Some standardized metadata such as Dublin Core Metadata 

[6] can be used to describe feature attributes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 20 XML-based Semantic Representation of a User Query Case 
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Figure 21 represents an example that shows how a user query can be specified 

through using the semantic representation of user query cases. Let’s suppose one wishes 

to visit the Washington Monument and then dine at a steakhouse located near the 

Washington Monument. The keyword terms in a query might then be “steakhouse” and 

“Washington monument.”  Ontology concepts defining user concepts can be semi-

automatically found from referenced ontologies by using the keyword terms. The 

ontology concepts, “WN:steakhouse_1” and “WN:washington_moument_1”  denote 

WordNet concepts representing user concepts for the “steakhouse” and “Washington 

monument” keywords respectively. The “GNIS:Washington_monument” concept can be 

found by a direct search on the geographic-domain ontology, or GNIS using the 

“Washington monument” term, or by ontology reasoning using ontological relationships 

such as “OWL:equivalentClassOf” between the WordNet concepts and the GNIS 

concepts. 

An active user selects ontology concepts that match to the user’s intended 

concepts among the automatically retrieved concepts. Then, the candidate domain-

specific queries are created through an automatic domain-based accumulation of domain-

specific queries found from the other user query cases, having ontology concepts related 

to the ontology concepts chosen by the active user. Two candidate domain-specific 

queries can be generated for the example query as shown in Figure 21. One is for the 

food and restaurant domain, and the other is for the real estate domain. If the active user 

were to add either to concept “dining” or the concept “starting a restaurant business”, 
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then a candidate domain-specific query either for the food and restaurant domain or for 

the real estate domain would be generated, respectively. 

 

 

 

Figure 21 An Example of Representing A User Query Using the User Query Case Representation 
 

 

4.2.1 Semantic Refinement of a User Query 

The WordNet sense for a user term is created to relate domain ontology concepts 

to the user term, thereby enabling Knowledge Sifter to perform the semantic search rather 

than just the keyword/s-based search. WordNet is employed in order to avoid the 

semantic ambiguity of linguistic terms. WordNet is also regarded as a general upper 

ontology in Knowledge Sifter and several domain-specific ontologies such as places, 
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restaurants, and wines can be linked to the WordNet ontology. The linkages between 

WordNet concepts and domain ontology concepts are used to translate a user query into 

domain-specific queries and/or data source-specific queries. 

As described in the sequence diagram shown in Figure 17, a user is required to 

select one of the WordNet senses for the user-entered search term. Then, KS stores to the 

KS repository the user’s selected WordNet sense with the search term. The WordNet 

senses are used to enlarge the user’s vocabulary. Therefore, domain concepts related to 

the user search concepts are obtained from domain ontologies by using the enlarged 

vocabulary such as synonyms of the user terms found in WordNet. These obtained 

WordNet senses and domain concepts will be used to create domain-specific queries and 

be maintained as a user query case in the KS case base for a later use of refining other 

user’s queries. 

4.3 Case Retrieval via Ontology-Based Indices 

The Case Management Agent maintains ontology-based indices for entire cases. 

As represented in Figure 20, each user concept in a conceptual query can have zero or 

more ontology concepts related to the user concept. For each ontology concept, case 

identifiers referencing the ontology concept are stored as the indices. This ontology-based 

index approach allows for efficient retrieval of cases having similar search concepts 

because it explores related ontology concepts first, rather than navigating the large 

number of the user query cases. WordNet senses related to the user concept are also 

included and the senses are used as bridges between two different domain concepts which 
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are similar in semantics, as described in the previous section. Thus, this ontology index 

structure also assists KS to effectively find other similar user query cases in terms of 

using the virtual upper ontology approach.  

4.3.1 XML-based Representation of Ontology-Based Indices  

In this section, I describe the XML schema for the ontology-based index structure. 

Figure 22 represents the index structure which has domain concept-based indices 

consisting of a domain concept identifier, its related WordNet sense identifiers, and its 

corresponding case identifiers. The source code of XML-schema of the index structure 

can be found in Appendix C.2. 

 

 

 

 

 

 

 

 

As represented in Figure 22, the root element, OntologyIndices can have zero or 

more DomainConceptIDs which represent identifiers of domain ontology concepts. The 

identifiers are RDF-based concept identifiers, which also have the identifier information 

of their owner ontologies specified in OWL. Each domain concept has zero or more 

related WordNet senses, so the domain concepts and their related cases can be found by 

 
Figure 22 XML-Schema for Ontology Index 
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the referenced WordNet senses. Lastly, each domain concept has one or more of its 

corresponding case identifiers. The minimum cardinality of the case identifier is set to 

one because only the domain concepts having at least one related user query case are 

stored to the index structure. 

4.3.2 Case Retrieval Algorithm via Ontology Index 

As described in the previous section, WordNet concepts are used as the main 

ontology indices, and other user query cases consisting of concepts similar to the 

concepts of an active case can be retrieved by using the ontology indices. However, a 

user query case contains multiple WordNet concepts in general. For example, a user 

query {Washington Monument, steakhouse} has two concepts, “Washington Monument” 

and “steakhouse.” This approach is to create the ontology indices based on each atomic 

concept of a user query case. Thus, the case identifier of the user query case example will 

be stored into each ontology index for concepts, “Washington Monument” and 

“steakhouse.” This user query case can be retrieved as similar cases for user queries 

{Washington Monument}, {steakhouse}, and {Washington Monument, steakhouse}. 

This approach is computationally more efficient than creating an ontology index based on 

a set of all concepts in a user query case. It is preferable because if a conceptual query 

consists of n concepts, and indices are created for all of the concept combinations (the 

powerset of the set containing the all n concepts except the empty set), thus 2n-1 indices 

would need to be visited instead of n indices. Furthermore, if we assume that overall 

conceptual queries consist of n concepts, the size of the indices would be 2n times bigger 

than the size of the indices being created in this approach. 
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Figure 23 presents an algorithm for retrieving cases similar to the user query via 

ontology-based indices. First, the algorithm generates expanded queries of every possible 

combination of concepts, including their equivalent and generalized concept using the 

function, expandedQueries. The function uses Cartesian product to find the every 

possible combination. For example, a user query {Washington Monument, steakhouse} 

can be expanded via ontology navigation as: {Washington Monument, chophouse}, 

{Washington Monument, restaurant}, {DC, steakhouse}, etc. The DC concept is obtained 

from WordNet through the “Part Holonym” relationship of the “Washington Monument” 

concept to the “DC” concept, and this can be regarded as a spatial generalization. 

The algorithm then retrieves cases which are indexed by all the concepts of an 

expanded query, but limits the number of the cases retrieved to a pre-specified maximum. 

The maximum is bounded by the parameter maxnc in algorithm specification. For 

efficiency purposes, whether the pre-specified maximum number of cases is retrieved or 

not will be checked before expanding one element query of powerset of the user query. 

This is because the expanded queries cannot be more similar to the user query than the 

original element query. The weighted sum of each query can be calculated from Equation 

(4). Note that the original user query of the active case is also one of the expanded user 

queries. 

The sim(Ca, Ci) in the algorithm is a similarity between the expanded user query 

of the active case and the user query of the retrieved cases. The similarities are calculated 

by using the cosine correlation which is widely used for the vector model in the 

information retrieval area [11] as defined in Equation (5). This measure will be used in 
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Chapter 5 as the similarity measure between the active case and the retrieved cases in 

terms of the semantic relatedness among their conceptual user queries.   
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where eqa represents an extended query of the active user query, and twc represents a pre-

defined weight for a concept c in eqa as defined above. The terms syw and hyw denote the 

pre-defined weight for an equivalent (synonym) concept and a generalized (hypernym) 

concept of an original concept in the active user query, respectively. The term uwc is a 

user-defined weight for an original user concept of concept c. EC is the entire set of 

concepts consisting of a query eqa. 
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where 
aeqcw , and 

iuqcw , represent the weight for a concept c in an expanded user query of 

the active case eqa and the user query of the other retrieved case uqi, respectively. CC is a 

set of common concepts shared by eqa and uqi. 
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The similarities between user query cases are also used to terminate the case 

retrieval algorithm by using a threshold, simThreshold. Finding every possible expanded 

queries using the powerset and Cartesian product can be double exponential. This can be 

a burden to a system even though users use only a few concepts for creating a query in 

general. Thus, the maxnc and simThreshold bases are used to terminate the retrieval 

algorithm if the sufficient number of neighbor query cases are retrieved and expanding 

queries further does not preserve a certain level of similarity with the active user query. 

This will improve the efficiency of the case retrieval by not sacrificing its effectiveness, 

i.e., by finding expanded queries having the greatest similarity with the active user query 

at a given time. 
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Figure 23 Case Retrieval Algorithm via Ontology Index 



69 

 
 
 
 

5 Collaborative Query Refinement 

In the previous chapter, a Case-based Knowledge Sifter framework and detailed 

process sequences are introduced to reuse knowledge, which is obtained during user 

search processes. In this chapter, a hybrid filtering-based method, query-to-query hybrid 

filtering, is introduced. This method shows how the retrieved search cases can be 

collaboratively reused to refine user queries based on the artifacts captured during the 

user search processes, including user feedback. Technically, query-to-query hybrid 

filtering combines content-based filtering with collaborative filtering to use the search 

history obtained not only from an active user, but also from other users, for mining the 

active user’s preference and refining the active user’s query. Also, the query-to-query 

hybrid filtering approach is based on the ternary relationships among users, user queries, 

and data items. The relationships are maintained and provided from the KS repository via 

using KS meta-model schema shown in Figure 14. 

Content-based filtering is a method of recommending unseen (unrated) data items 

to a user based on the content patterns of data items preferred only by the active user. It 

can assist the user in refining a query based on the artifacts of their past queries that are 

similar to the active query. However, for a new user, the similar queries may not yet exist 

in the active user’s profile, or an acceptable number of data items preferred by the user 

are not available because most users do not take the time to provide feedback. This lack 
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of feedback is ameliorated by using collaborative filtering, which attempts to predict the 

usefulness of as yet unseen items for an active user, by proposing items based on those 

previously rated by other users. The basic idea of collaborative filtering is to recommend 

a set of unseen items that are preferred by other users who have tastes similar to the 

active user. Thus, by combining collaborative filtering with content-based filtering, the 

short-comings of each technique, when used separately, can be mitigated. 

Nevertheless, collaborative filtering cannot be applied directly to the case-based 

Knowledge Sifter framework because more than one user-query case per user, stored in 

the case repository, may be similar to the active user query. Most collaborative filtering-

based recommendation systems [46, 48, 60] are not query-based retrieval systems and 

they simply recommend data items which are predicted to be of interest to users without 

considering topics or subjects of user information needs. That is, they consider only the 

binary relationships between items and users while the ternary relationships among items, 

users, and user queries are considered in this research. 

A better approach is to recommend a single-aggregated domain-specific query 

from the search cases of other user queries that are similar to the active user query. 

Therefore, the query-to-query hybrid filtering that refines the active domain-specific 

query, based both on the active user query case and the neighbor user query cases, can be 

performed effectively. This is because the lists of the content features (metadata) for a 

data item are determined by the domain of the data, e.g., the price, cuisine, and location 

features can be used for restaurant search, and the genre, director, and actor features can 

be used for movie search. Thus, determining the domain of search prior to the hybrid 
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filtering-based query refinement helps our system to find metadata patterns preferable to 

the active user using the hybrid filtering. 

However, if there are no previously-stored user-query cases posed by the active 

user in the selected similar cases, the collaborative filtering cannot be directly used for 

refining the active user query. This situation occurs because no active user’s feedback 

exists for performing the collaborative filtering. To address this problem, a set of domain-

specific queries that can be simply aggregated from the domain-specific queries of the 

selected cases similar to the active query case can be recommended. The active user 

chooses one of the domain-specific queries having a domain of the user’s interest; then, 

the query becomes the active domain-specific query. During this confirmation step, the 

user can fine-tune the query parameters, e.g., for the data source feature, the user might 

add or remove data sources and adjust the weights for each data source. Then, KS 

retrieves results from the data sources in the user-confirmed domain-specific query by 

dynamically translating it to one or more queries according to each data source’s 

schema/ontology, as shown in the previous chapter.  

Finally, the active user can provide more feedback on some other results and 

request another recommendation of the query specification. At this time, the amount of 

user feedback for performing the hybrid filtering is incrementally enlarged with the new 

user feedback. The query refinement via the query-to-query hybrid filtering uses the 

entire user feedback obtained from all of the search processes during the multiple times 

of the query refinement requested by the active user. As described in the previous chapter, 

the final refined query will be stored in the case base as a new case with the entire user 
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feedback results provided by the active user during a session, which ends if the active 

user poses a new query representing different information needs or logs out from the KS 

system. 

Figure 24 shows an example representing how the query-to-query hybrid filtering 

works using the example shown in Figure 21. After the active user selects and poses an 

initial domain-specific query and provides relevance feedback for the first few results, 

collaborative filtering can be performed to obtain more data items from the neighbor user 

query cases. The combined resulting data items can be used to refine the active domain-

specific query by using semantic content-based filtering. As shown in the example, the 

active query is refined with new values such as “american” and “www.restaurantrow.com” 

for the cuisine type and data source features, respectively. In addition, the active query 

can be refined even with a new criterion, “feature” and its value.  

The following subsections describe in greater detail how to achieve the 

abovementioned recommendations. Section 5.1 describes how a domain-specific query is 

recommended to an active user without using any of the active user’s feedback. Section 

5.2 describes how previously found data items can be recommended to the active user 

from the neighbor users’ search cases based on a query-to-query hybrid filtering created 

primarily by using collaborative filtering. Section 5.3 introduces another query-to-query 

hybrid filtering method that refines the active user’s domain-specific query primarily 

based on content-based filtering. 
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Figure 24 An Example of Collaborative Query Refinement for the Example in Figure 21 
 

5.1 Initial Query Refinement without User Feedback 

As discussed above, query-to-query hybrid filtering cannot be applied without the 

user feedback (the active user’s ratings on items). In this case, a query specification can 

be generated by statistically aggregating the neighbor-refined queries, which can be 

found from the retrieved similar cases using the ontology-based indices. The aggregated 

feature weight can be found by a simple statistical mean determined in Equation (6). The 

value weight can also be determined in a similar way. However, the recommended 

specification can be meaningless if there are a number of significantly different domain-

specific queries in the set of similar cases. This can happen because a user’s conceptual 
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queries, which index the cases, are not specific enough. The problem can be alleviated by 

the query-to-query filtering approach described in the following sections. Further, this 

approach can provide most popular features and their values according to the user query, 

e.g., popular (meaning that data sources are reliable) data sources can be recommended 

based on their associated weights from the data source feature. 
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where
aqfw , represents a weight for a feature f in the active domain-specific query qa, and 

iqfw ,  is a weight for a feature f  in a neighbor domain-specific query qi found in a set of 

neighbor cases, NC. sim(Ca, Ci) represents the similarity between the active case and a 

neighbor case in terms of their conceptual user query and it can be calculated using 

Equation (5). 

5.2 Immediate Data-Item Recommendation from Neighbor Cases 

After an active user provides some ratings on resulting data items retrieved for a 

domain-specific query, the active user’s rating values on unseen data items can be 

predicted from a query-to-query hybrid filtering based on the rating patterns of the active 

user and neighbor users for domain-specific queries. The prediction can be calculated 
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from Equations (7) and (8), which are derived from the well-known collaborative 

filtering approach used in GroupLens [10]. 

This query-based hybrid filtering allows Knowledge Sifter to show the unseen 

data items immediately because the data items can be found in a neighbor’s search 

history in the KS repository. The mismatch problem between users’ conceptual queries 

and domain-specific queries can be alleviated by using a threshold for the similarity 

between the active user’s conceptual query and a neighbor user’s conceptual query. Only 

the domain-specific queries obtained from neighbor cases having a certain high similarity 

value in terms of the conceptual specification will be selected for this prediction process. 

It is a hybrid filtering-based technique that combines collaborative filtering and content-

based filtering and includes a content-based filtering-based similarity measure for the 

case similarities.  
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where 
ua dqp ,  represents a prediction for an unseen (unrated) data item du for the active 

domain-specific query qa. sim(qa, qi) is the correlation weight which shows the similarity 
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between the user rating patterns of the domain-specific queries qa and qi as defined by the 

Pearson Correlation Coefficient shown in Equation (7). sim(Ca, Ci) represents the 

similarity between the active case Ca and a neighbor case Ci  in terms of the conceptual 

query as defined in Equation (5). NC is a set of neighbor cases selected as similar to the 

active case. SD is a set of common seen (rated) data items between qa and qi. aqr  and 
iqr  

represent mathematical means for the ratings of the result data items of the domain-

specific queries qa and qi, respectively. 

Table 2 represents a user rating prediction of unseen data items using the query-

to-query hybrid filtering shown in Equations (7) and (8). The table depicts five seen items 

dsi, which the active user rated for the active domain-specific query qa. There are five 

unseen items dui, which do not have a rating value for the active domain-specific query 

from the active user, but have some rating values for the neighbor domain-specific 

queries qi not only by the active user, but also by other users. The unseen items are found 

via the case retrieval algorithm introduced in Section 4.3. The rating values of data items 

for each domain-specific query in the examples shown in Table 2 have only binary rating 

values, but the equations can also work using various other rating scales. The rating value 

1 represents that a user liked a data item and/or regarded the data item as relevant for a 

query, and 0 represents the dislike and/or the irrelevance of the data item. The sim(qa, qi) 

values are calculated using the user rating values as shown in Equation (8). The sim(Ca, 

Ci) values are given as shown in the table. Finally, the predicted rating values of the 

active domain-specific query qa for the unseen data items dui can be calculated using 

Equation (7). As can be seen from Table 2, neighbor domain-specific queries having 
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higher similarities with / higher similarity values with the active domain-specific query 

can have a greater influence in determining the prediction of the rating values. The 

absence of rating values for an unseen data item, (e.g., du5) show that the formulas can 

also work well with sparse data. 

 

Table 2 A User Rating Prediction of Unseen Data Items 
 q1 q2 q3 q4 qa 

ds1 1 1 1 0 1 
ds2 0 0 1 1 0 
ds3 1 1 0 0 1 
ds4 1 1 1 1 1 
ds5 0 1 1 0 0 
du1 1 1 0 0 0.87 
du2 1 1 1 1 0.78 
du3 0 0 0 0 0.33 
du4 0 0 1 1 0.24 
du5 1 N/A N/A 0 0.94 

sim(qa, qi) 5.00 3.06 -2.04 -0.83  
sim(Ca, Ci) 1 1 0.6 0.7  

 

5.3 Query Refinement via Query-to-Query Hybrid Filtering 

This section describes how the active user’s domain-specific query can be refined 

by a query-to-query hybrid filtering technique which also combines a content-based 

filtering technique and a collaborative filtering technique simultaneously. The main idea 

of this technique is to find the content patterns preferable to an active user by refining the 

active user’s domain-specific query in a collaborative manner; the list of features and 

their weights of representing the content patterns are determined by the hybrid filtering 
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technique based on the data items preferred not only by the active user, but also by the 

neighbor users who have rating patterns similar to the active user. 

First, the active user’s preferred set of data items are augmented by adding the 

neighbor users’ preferred set of data items with their rating values predicted from 

Equations (7) and (8) in the previous section for the active user. The active user’s 

domain-specific query is refined by content patterns of the augmented data items by 

using Equations (9) to (12).  If the active user confirms and poses the refined query to KS, 

a new result set can be retrieved from a new data source set according to the newly 

refined query. Then, more data items unseen by the active user can be found from the 

collaborative query refinement with the new search artifacts. Thus, the domain-specific 

query can be incrementally refined by aggregating the rated/predicted data items from the 

several iterations of the search and refinement processes. 

Equations (9) and (10) determine the value weight for each feature of the active 

domain-specific query simply based on the number of occurrences of values in the 

augmented data item set. The feature weight can be determined by Equations (11) and 

(12) which also uses the Pearson Correlation Coefficient. This is based on an idea that if 

the similarity value patterns for a criterion (feature) and the user rating patterns are 

similar, the feature would be an important factor (feature) for the user in determining his 

preference for the data. Therefore, this approach also takes into account the negative 

examples, which have a negative feedback from users whereas most content-based 

filtering systems [11, 12] consider only the positive examples to refine queries in terms of 

weight adjustments. Furthermore, the negative correlation weight will become zero via 
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the n(x) function (see Eq. (11)) because the negative correlation would not necessarily 

mean that the user rated a data item as a relevant one since it is dissimilar to his/her query 

in the dimension of the feature, or vice versa. 
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where 
aij qvw , represents the weight of a value j for a feature i in the query qa. MD is a set 

of data items representing the union of the set of the seen data items and the set of 

predicted unseen data items. 
aij qvr ,  represents an average rating value for data items in the 

set MD having a value j for a feature i. Occur(vij, dm) is a binary variable which represents 
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whether the data item dm has the value vij, and if yes, its value is 1, otherwise it is 0. 
ai qfw ,

represents the weight of a feature fi for the query qa. sim(fi, qa) represents the correlation 

weight between the criterion (feature) similarity and the original/predicted user ratings 

for the query qa. sim(fi, dm) represents the similarity value between the values of the query 

qa and the data item dm in terms of the dimension of the feature fi. 

Table 3 represents the feature vectors of an example query and data items. Table 4 

represents a feature weight adjustment based on the example data shown in Table 3. The 

feature weight adjustment uses the weighted multi-valued query, which can be generated 

only from the positive examples via using Equations (7) and (8) and increased user 

feedback information via the query-to-query hybrid filtering. The domain-specific queries 

and data items in the example have only binary values for each feature, but the equations 

would also work using the real-number values. Table 4 represents similarity values of the 

query and data items for each feature and rating values of the data items for the query. In 

this example, the similarity value of the query and a data item for a feature is 1 if they 

have same value, otherwise it is 0. From the values given in Table 3, it is desirable that 

the feature f1  would be regarded as an important criterion for which the user determines 

the relevance of the data items. Therefore, it would be beneficial to have a higher weight 

on the feature for the efficiency of the system’s automatic rating/search process. This 

approach would be advantageous for adjusting criterion weights for the systems using a 

multi-dimensional/multi-valued query and heterogeneous types of values in each criterion 

thereby requiring different metrics for evaluating the values. 
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The incrementally-specified query seems to degrade the prediction ratio and 

efficiency of the search process because it aggregates contents of multiple data items. 

However, it can clearly have a better recall ratio. The prediction ratio can be alleviated by 

using the weights so that the results can be automatically rated and sorted by a similarity 

measure based on the weights. The efficiency problem can occur if a refined domain-

specific query has more values because the number of data sources can be increased. 

Also, some data sources do not provide multi-valued queries so that the domain-specific 

query must be translated to a number of data source-specific queries. To address this 

problem, the translated queries having higher weight values can be posed in advance to a 

data source with a certain degree of parallel processing, and the partial results can be 

shown to the users. 

 

Table 3 Example Feature Values 
 f1 f2 f3 f4 

d1 1 0 1 0 
d2 0 0 0 1 
d3 1 1 1 0 
d4 0 1 1 0 
qa 1 0 1 0 

 

Table 4 A Feature Weight Adjustment based on Data shown in Table 3 

 d1 d2 d3 d4 sim(fi,qa) ai qfw ,  
sim(f1,di) 1 0 1 0 1.00 0.46 
sim(f2,di) 1 1 0 0 0.00 0.00 
sim(f3,di) 1 0 1 1 0.58 0.27 
sim(f4,di) 1 0 1 1 0.58 0.27 

ia dqr ,  1 0 1 0   
 

  



82 

 
 
 
 

6 Validation 

First of all, this research provides a case-based reasoning framework for the 

Knowledge Sifter system and collaborative query refinement based on the framework. To 

validate the entire framework and the collaborative query refinement, at least hundreds or 

thousands of users might be required to use the system, and a number of queries and 

feedback on result data items would also be required from each user as a recommender 

system using collaborative filtering generally requires a number of user rating data.  

Due to the limitations described above, I have focused on evaluating the new 

hybrid filtering method, called query-to-query hybrid filtering — one of main 

contributions of this research — by using a publically available user-rating dataset for 

academic research. The Movielens dataset, which has been created by the GroupLens 

research group in the Department of Computer Science and Engineering at the University 

of Minnesota, has been chosen for this validation. As the query-to-query hybrid filtering 

method combines both content-based and collaborative filtering, this validation has 

focused on the effect of hybrid filtering approach on: 1) the new-user problem and 2) the 

new-item problem of content-based filtering and collaborative filtering, respectively. The 

query-to-query hybrid filtering method mitigates the new-user problem because, unlike a 

simple content-based filtering method, it refines a query based not only on an active 

user’s feedback, but also on the neighbor users’ feedback. It also mitigates the new-item 
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problem because it recommends a data item based not only on user ratings of the item, 

but also on the similarity of the item to the user preference. 

To show the advantages of the query-to-query hybrid filtering approach for the 

new-user problem, I have compared the performance of the query-to-query hybrid 

filtering method to a general content-based filtering method based on the nearest 

neighbor algorithm for the new-user situation. For the new-item problem, I have 

performed another experiment which compares the performance of a general 

collaborative filtering algorithm and the query-to-query hybrid filtering for the new-item 

situation. Finally, two additional experiments have been performed to show the 

advantages of the query-to-query hybrid filtering method over the other hybrid filtering 

methods introduced in the literature. The query-to-query hybrid filtering method is 

assumed to be better than the other hybrid filtering methods since it uses multiple features, 

collaborative feature-weight distribution, and semantics of the data-item contents. 

6.1 Hypothesis 

The goal of this experiment is to test the following six hypotheses related to 

research questions: 

 

Hypothesis 1: The query-to-query hybrid filtering method performs better than a pure 

content-based filtering method overall in terms of precision and recall. 

Hypothesis 2: The query-to-query hybrid filtering method performs better than a pure 

content-based filtering method for the new-user problem in terms of precision and recall. 
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Hypothesis 3: The query-to-query hybrid filtering method performs better than a pure 

collaborative filtering method overall in terms of accuracy of predictions. 

Hypothesis 4: The query-to-query hybrid filtering method performs better than a pure 

collaborative filtering method for the new-item problem in terms of accuracy of 

predictions. 

Hypothesis 5: Semantically-enhanced search by using ontology performs better than the 

keyword-based search in terms of precision and recall. 

Hypothesis 6: The multi-feature-based query-to-query hybrid filtering method performs 

better than other hybrid filtering methods in terms of precision and recall. 

6.2 Experiments 

The query-to-query hybrid filtering approach was originally developed to improve 

the effectiveness of an active user’s search based not only on an active user’s search 

history, but also on other users’ search history. As Knowledge Sifter is a general-purpose 

search system, the query-to-query hybrid filtering can be applied to a search system for 

any data domain or application domain such as Web sites, movies, music, images, etc., as 

long as the content of the data can be explicitly represented by a set of metadata 

(features). The MovieLens dataset is selected for the experiments because there is no 

other data publicly available with the scale of explicit user feedback data.   
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6.2.1 Data Selection 

The Movielens dataset, widely used in academia for validating a recommender 

system using a collaborative filtering or a hybrid filtering technique, is used to perform 

this experiment. The Movielens dataset containing 1 million ratings for 3900 movies by 

6040 users has been chosen for this experiment, because it has a sufficient number of 

data items for this experiment. A relational database has been created to store the 

Movielens data by using the MySql database system with a database schema represented 

in Figures Figure 25 and Figure 26. The movie content data, except the genre data, is 

parsed from IMDB [5] because the Movielens datasets only have the genre information 

of movie data items.  

As represented in the database schema, a table is created for each feature of the 

movie data because a movie data item may have multiple values for each feature. The 

query-to-query hybrid filtering can use the multiple feature information of data items 

dynamically, i.e., the XML-based multi-dimensional query structure provides the 

flexibility of creating a query with a set of features found in real time during query 

refinement. The dynamic query refinement with the flexible query structure is useful for a 

general-purpose information search system, since the content features of data items are 

heterogeneous in the data domain and sources. Also, user preference on the content 

features may differ from user to user, e.g., a user chooses a movie based on genre feature 

(i.e., the user likes a movie because its genre is one of his or her favorites), and another 

user might choose a movie based on the director or actor feature. The variability of user 



86 

preference with respect to the content features requires that a system should not pre-

assume which features are important or unimportant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 25 A database schema for user and item data with IMDB movie content information 
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6.2.2 Test Dataset Selection 

As shown in Figure 26, MLBase and MLTest tables are created to store the base 

dataset and the test dataset, respectively. Initially, the MLBase table has one million 

rating values with corresponding pairs of ids of user and data item data. The MLTest 

table has all of the same million rating data copied from MLBase. Additionally, it has ad-

hoc attributes to manage prediction values and similarity values which are calculated 

from the query-to-query hybrid filtering approach, as well as other content-based filtering, 

or collaborative filtering techniques used for the comparisons. 

 
Figure 26 A database schema for a base and test dataset 
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6.2.2.1 Test Dataset for the overall performance 

A rating dataset having users and items both with more than 1000 ratings is 

created from the MLTest table in order to test the overall performance of the query-to-

query hybrid filtering compared to pure content-based filtering and collaborative filtering 

as follows: 

CREATE TABLE MLTest_1000 LIKE MLTest;  
INSERT INTO MLTest_1000 SELECT * FROM MLTest  
WHERE userid IN (SELECT userid FROM MLBase GROUP BY userid HAVING 
COUNT(*)>1000) AND itemid IN (SELECT itemid FROM MLBase GROUP BY itemid 
HAVING COUNT(*)>1000); 
 

6.2.2.2 Test Dataset for the new-user problem 

The new-user problem is one of the main problems addressed in this research, 

since the goal of the query-to-query hybrid filtering method is to improve the 

effectiveness of information search and personalization by refining user queries via using 

content patterns and preference patterns found not only from an active user’s profile, but 

also from other users’ profiles collaboratively. Most information search systems using 

content-based filtering have difficulty in mining user preference due to the lack of user 

feedback. This is the case of the new-user problem which often occurs in information 

filtering systems. Thus, the test datasets are split into sub-datasets having different sets of 

users selected per the number of their ratings provided. Initially, the test dataset for this 

experiment is conditionally-selected based on the number of ratings on data items to 

remove un-expected side effects regarding the results of the experiments, such as those 
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arising from the new-item problem. The test data is filtered to obtain data items having at 

least 2000 ratings as follows: 

CREATE TABLE MLTest_d2000 LIKE MLTest;  
INSERT INTO MLTest_d2000 SELECT * FROM MLTest  
WHERE itemid IN (SELECT itemid FROM MLBase GROUP BY itemid HAVING 
COUNT(*)>2000);  

 

As specified in the above sql statements, the MLTest_d2000 has a test dataset 

only for data items having more than 2000 ratings on the base dataset. The 

MLTest_d2000 dataset also has a sufficient number of test data, which is 75,996 pairs of 

users and items. Finally, the MLTest_d2000 dataset is split into several sub-datasets 

having a set of users based on the number of their ratings as shown in Table 5. Thus, the 

sub-datasets are created to show how the query-to-query hybrid filtering works better 

than a pure content-based filtering mainly when an active user gives a small amount of 

feedback. 
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Table 5 Sub-datasets of MLTest_d2000 
Name of Sub-Table Sql Statements of Creating Sub-Tables 

MLTest_d2000_u20 CREATE TABLE MLTest_d2000_u20 LIKE MLTest_d2000; 
INSERT INTO MLTest_d2000_u20 SELECT * FROM 
MLTest_d2000 WHERE userid IN (SELECT userid FROM MLBase 
GROUP BY userid HAVING COUNT(*)<=20); 

MLTest_d2000_u50 CREATE TABLE MLTest_d2000_u50 LIKE MLTest_d2000; 
INSERT INTO MLTest_d2000_u50 SELECT * FROM 
MLTest_d2000 WHERE userid IN (SELECT userid FROM MLBase 
GROUP BY userid HAVING COUNT(*)>20 AND COUNT(*)<=50); 

MLTest_d2000_u100 CREATE TABLE MLTest_d2000_u100 LIKE MLTest_d2000; 
INSERT INTO MLTest_d2000_u100 SELECT * FROM 
MLTest_d2000 WHERE userid IN (SELECT userid FROM MLBase 
GROUP BY userid HAVING COUNT(*)>50 AND COUNT(*)<=100); 

MLTest_d2000_u500 CREATE TABLE MLTest_d2000_u500 LIKE MLTest_d2000; 
INSERT INTO MLTest_d2000_u500 SELECT * FROM 
MLTest_d2000 WHERE userid IN (SELECT userid FROM MLBase 
GROUP BY userid HAVING COUNT(*)>100 AND COUNT(*)<=500);  

MLTest_d2000_u1000 CREATE TABLE MLTest_d2000_u1000 LIKE MLTest_d2000; 
INSERT INTO MLTest_d2000_u1000 SELECT * FROM 
MLTest_d2000 WHERE userid IN (SELECT userid FROM MLBase 
GROUP BY userid HAVING COUNT(*)>500 AND 
COUNT(*)<=1000); 

MLTest_d2000_u1001 CREATE TABLE MLTest_d2000_u1001 LIKE MLTest_d2000; 
INSERT INTO MLTest_d2000_u1001 SELECT * FROM 
MLTest_d2000 WHERE userid IN (SELECT userid FROM MLBase 
GROUP BY userid HAVING COUNT(*)>1000); 

 
 

6.2.2.3 Test Dataset for the new-item problem 

As opposed to the pre-selection of the test dataset for the new-user problem 

experiments, only the test data with users providing more than a sufficient number of 

ratings are selected for this experiment as follows: 

CREATE TABLE MLTest_u1000 LIKE MLTest;   
INSERT INTO MLTest_u1000 SELECT * FROM MLTest  
WHERE userid IN (SELECT userid FROM MLBase GROUP BY userid HAVING 
COUNT(*)>1000); 
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A partial dataset with users providing more than 1000 ratings instead of users 

providing more than 2000 ratings are selected as a test dataset since there is only one user 

providing more than 2000 ratings. There are 40 distinct users providing more than 1000 

ratings, and the MLTest_u1000 has 49893 rating data. The following sql statements 

represent the test dataset split from the MLTest_u1000 dataset with items having 

different numbers of ratings on them: 

 

 

Table 6 Sub-datasets of MLTest_u1000 
Name of Sub-Table Sql Statements of Creating Sub-Tables 

MLTest_u1000_d20 CREATE TABLE MLTest_u1000_d20 LIKE MLTest_u1000; 
INSERT INTO MLTest_u1000_d20 SELECT * FROM 
MLTest_u1000 WHERE itemid IN (SELECT itemid FROM MLBase 
GROUP BY itemid HAVING COUNT(*)<=20); 

MLTest_u1000_d50 CREATE TABLE MLTest_u1000_d50 LIKE MLTest_u1000; 
INSERT INTO MLTest_u1000_d50 SELECT * FROM 
MLTest_u1000 WHERE itemid IN (SELECT itemid FROM MLBase 
GROUP BY itemid HAVING COUNT(*)>20 AND COUNT(*)<=50); 

MLTest_u1000_d100 CREATE TABLE MLTest_u1000_d100 LIKE MLTest_u1000; 
INSERT INTO MLTest_u1000_d100 SELECT * FROM 
MLTest_u1000 WHERE itemid IN (SELECT itemid FROM MLBase 
GROUP BY itemid HAVING COUNT(*)>50 AND COUNT(*)<=100);  
 

MLTest_u1000_d500 CREATE TABLE MLTest_u1000_d500 LIKE MLTest_u1000; 
INSERT INTO MLTest_u1000_d500 SELECT * FROM 
MLTest_u1000 WHERE itemid IN (SELECT itemid FROM MLBase 
GROUP BY itemid HAVING COUNT(*)>100 AND COUNT(*)<=500); 

MLTest_u1000_d1000 CREATE TABLE MLTest_u1000_d1000 LIKE MLTest_u1000; 
INSERT INTO MLTest_u1000_d1000 SELECT * FROM 
MLTest_u1000 WHERE itemid IN (SELECT itemid FROM MLBase 
GROUP BY itemid HAVING COUNT(*)>500 AND 
COUNT(*)<=1000);  

MLTest_u1000_d1001 CREATE TABLE MLTest_u1000_d1001 LIKE MLTest_u1000; 
INSERT INTO MLTest_u1000_d1001 SELECT * FROM 
MLTest_u1000 WHERE itemid IN (SELECT itemid FROM MLBase 
GROUP BY itemid HAVING COUNT(*)>1000); 
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6.2.3 Implementation 

To use the Movielens datasets for validating the query recommendation 

framework using query-to-query hybrid filtering, a user profile (a user’s all-time 

preference) is regarded as a user query because the datasets have user ratings on data 

items only by users, not by user queries. That is, it is assumed that each user has posed 

only one query representing the user’s long-term information need. I will refer to that 

user query as user-profile query from now on. As the goal of the query-to-query hybrid 

filtering is to refine user queries, an initial user-profile query needs to be generated prior 

to the refinement. Then, the initial query is used to calculate similarities of data items 

rated by neighbor queries with the initial query for each dimension. The neighbor queries 

are, in fact, the neighbor users as it is assumed that a user profile is a user query in this 

experiment. Thus, the neighbor queries (users) are selected if a user has rating patterns 

similar to the active user’s rating patterns in this experiment. Finally, the initial query is 

refined based on the content patterns of data items preferred not only by the active user, 

but also by the neighbor users. All of the methods used in this experiment including the 

query-to-query hybrid filtering tailored to the Movielens dataset as described as above are 

implemented by using JAVA, and MySql database is used to maintain the Movielens data 

and experiment results. 

6.2.3.1 Initial User Profile Query Generation 

As described as above, the initial profile query must be generated to use the 

Movielens dataset for validating the query-to-query hybrid filtering. To generate the 

initial query, a set of data items preferred by an active user having a rating value greater 
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than 4 (out of 5) is selected from the set of data items rated by the active user. Then, the 

entire list of values with a number of their occurrences is found from the preferred-item 

set for each feature. The weights of each value are determined by using the value list with 

the number of occurrences as in Equation 13. The weights of each feature of the initial 

query are evenly distributed with a value 1/n(f), where in n(f) is the number of features. 
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where 
ijvw  represents the weight for a value j of a feature i, and P is the set of data items 

preferred by an active user. ),( dvOccur ij  is a binary variable which represents whether 

the data item d  has the value ijv , and if yes, its value is 1, otherwise 0. n(d) is the total 

number of data items in the preferred-item set.  

6.2.3.2 Candidate User-Query Case Selection via Ontology-Based Indices 

In the case-based Knowledge Sifter framework, only the user query cases having 

a query consisting of topics and concepts similar to the active query are pre-selected by 

using the ontology-based indices. This pre-filtering helps us to reduce the number of user 

query cases that are employed to calculate similarity of their rating patterns with the 

active user’s rating patterns for selecting the neighbor user query cases. In this 

experiment, this pre-filtering is ignored because the Movielens dataset has ratings by 

users, not by user queries. Therefore, a user’s entire rating history is added to the 
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candidate user-query (user) cases if the user commonly rated at least a data item with the 

active user, for this experiment. 

6.2.3.3 Neighbor Query (User) Selection 

As I described in the previous sections, for this experiment, the neighbor users are 

employed instead of the neighbor queries to find the preferred data items. This neighbor 

user selection is based on the idea of collaborative filtering; that is, the neighbor users 

will be selected if the user’s rating patterns are similar to the active user’s rating patterns 

using the Pearson Correlation Coefficient (PMCC). Two parameter values are employed 

to find the neighbor users: one is a threshold of the minimum number of data items 

commonly rated by an active user; the other is a threshold of the PMCC value, which 

represents how user rating values of the active user and a neighbor user for the 

commonly-rated data items are related each other. The two thresholds have a significant 

effect on the performance of the query-to-query hybrid filtering, and a set of ideal 

thresholds is found based on statistics and the appropriate size of test dataset satisfying 

the thresholds - 20 and 0.7 which are the thresholds of the number of neighbor users and 

the PMCC value, respectively. The threshold 20 is not a small number of sample data for 

calculating a PMCC value, and the PMCC threshold 0.7 also indicates that there is a high 

correlation between the two datasets. The threshold pair is also tested with the two-tailed 

paired T-test with n-2 degrees of freedom and it turns out to be statistically significant at 

conservative significance level of 0.01. 

The query-to-query hybrid filtering actually pre-filters the other user queries 

based on the similarity of topics of user interest before the neighbor user selection 
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process using PMCC is performed. That is, an active user’s initial query is primarily 

compared to the other user’s query in terms of the similarity of topics contained in each 

query as described in Section 4.3.2. The ontology-based pre-filtering dramatically 

reduces the number of other query histories subjecting for the rating pattern comparison 

since there are an uncountable number of query histories in a search system (Google 

receives 400 million search queries per a day in US). However, it is assumed that a user 

is a candidate neighbor user if the user commonly-rated an item with the active user for 

these experiments using the Movielens dataset. 

6.2.3.4 Refined Query Generation based on Query-to-Query Hybrid Filtering 

After the neighbor users have been determined, the neighbor users’ rated data 

items having a prediction value higher than a threshold, 4 (out of 5) for the active user, 

are found by using Equations 7 and 8. The found data items are added to the active user’s 

preferred item set. Then, a domain-specific query is initially formulated with a set of 

content values and their weights for each criterion found by using Equations 9 and 10 on 

the extended preferred item set for the active user. Finally, the initial domain-specific 

query is refined by determining the weight of each feature using Equations 11 and 12. A 

feature weight is determined by a correlation value between the value similarity of the 

initial domain-specific query to a data item in terms of the feature and the actual or 

predicted rating values for the data item by the active user. Therefore, if the user rating 

values and the similarity values in terms of a criterion have similar patterns, the weight of 

the criterion would be higher. Otherwise, the weight would be lower. That is, each feature 
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weight actually represents that how a data item feature (dimension) is important to the 

users’ selectiveness of the data item. 

6.2.4 Experiments and Results  

6.2.4.1 Experiment Metrics and Types 

As shown in Table 7, I have performed various experiments for the validation. A 

Spearman's rank correlation coefficient (Spearman's Rho)-based metric was used for all 

of the experiments because the query-to-query hybrid filtering produces the similarity 

values of test data items for the refined domain-specific query, not the prediction values 

of user ratings on the items. That is because the goal of the query-to-query hybrid 

filtering method is to refine user queries, not to predict actual user rating values for the 

items. The Spearman's rank correlation coefficient metric measures the extent to which 

two different rankings agree independent of the actual values of the variables, but it does 

not handle weak (partial) orderings well [32]. Weak orderings occur in ranking items 

based on the actual user rating values since there would be many items in a rank due to 

the small variability of the user rating values (only five different values, 1 to 5 out of 5). 

On the other hand, the system may return a complete ordering of items because they are 

ranked by their similarity to a refined query. In this case, the Spearman's rank correlation 

metric will be penalized for every pair of items that the user has rated the same, but the 

system ranks at different levels. Therefore, the ranks obtained from the query-to-query 

hybrid filtering are normalized based on the actual user rating values. 

In detail, data items are grouped by their actual user rating values, and the number 

of items in each group is counted. Data items are ordered by similarity values calculated 



97 

from the query-to-query hybrid filtering. The ranks of the data items for the query-to-

query hybrid filtering are normalized based on the actual ranks given by the similarity 

values and the number of items in the groups created by the actual user rating values. For 

example, if a data item is ranked 40 based on the similarity value, and the total numbers 

of items in the groups for user rating values 5 and 4 (out of 5) are 20 and 100, 

respectively, the data item is given a normalized rank, 4 for ranking based on the 

similarity values. That is, the ranks of data items for the similarity values are re-scaled 

corresponding to the scale of the user rating values to avoid the penalty which might be 

given to using the Spearman's rank correlation metric on the weak ordering data. Finally, 

the correlation coefficient is calculated based on the actual user rating values and the re-

scaled rank values to represent the performance of the query-to-query hybrid filtering. 

Then, the Spearman's rank correlation-based metrics for measuring the performance of 

the comparing methods are also calculated in a similar way to evenly quantify their 

performance, including the methods which have a same range of prediction values with 

the actual user rating values. Furthermore, the two-tailed paired T-test with n-2 degrees 

of freedom was performed to test the hypothesis for the correlation coefficient, which is 

that the similarity values and the actual user rating values are correlated each other, at the 

various statistical significance levels such as the 0.10, 0.05, and 0.01 level. 
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Table 7 Experiment Metrics and Types 
Exp# Algorithm Comparing Algorithm Metrics 

1 Query-to-Query Hybrid 
Filtering 

Content-based Filtering 
based on a Nearest 
Neighbor algorithm 

Spearman's Rho, 
Precision/Recall 

2 Query-to-Query Hybrid 
Filtering 

GroupLens Collaborative 
Filtering 

Spearman's Rho, 
MAE 

3 Query-to-Query Hybrid 
Filtering using Multiple 
Features 

Query-to-Query Hybrid 
using only One Feature 

Spearman's Rho, 
Precision/Recall 

4 Query-to-Query Hybrid 
Filtering with concept 
generalization/specialization 
using ontology 

Query-to-Query Hybrid 
Filtering without concept 
generalization/specialization 

Spearman's Rho, 
Precision/Recall 

 

 

6.2.4.2 Comparison between Query-to-Query Hybrid Filtering and Content-Based 
Filtering 

As described in the previous section, a Spearman's rank correlation-based metric 

was basically used to compare the query-to-query hybrid filtering method and a pure 

content-based filtering method. Table 8 shows the results of the comparisons between the 

query-to-query hybrid filtering and a content-based filtering using the subsets of the 

million rating data. As shown in the results, the query-to-query hybrid filtering 

outperforms the content-based filtering technique using Euclidean distance overall. 

Furthermore, the query-to-query hybrid filtering does not seem to have the new-user 

problem while the content-based filtering performs poorly for users who provided a few 

ratings. All of the Spearman’s rank correlation coefficient (Spearman’s rho) values of the 

subsets obtained for testing the performance of the query-to-query hybrid filtering also 

turned out to be statistically significant at a conservative significance level of 0.01 from 
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the two-tailed paired T-test with n-2 degrees of freedom, i.e., it cannot be said that the 

similarity values found by the query-to-query hybrid filtering and the actual user rating 

values are not correlated with each other. 

 

 

Table 8 Comparison between Query-to-Query Hybrid Filtering (HF) and Content-Based 
Filtering (CBF) via the Spearman's rank correlation coefficient 

 d2000_ 
u20 

d2000_ 
u50 

d2000_ 
u100 

d2000_ 
u500 

d2000_ 
u1000 

d2000_ 
u1001 

d2000_
Overall 

Spearman's 
Rho_HF 0.638 0.640 0.625 0.606 0.592 0.614 0.609 

Spearman's 
Rho_CBF 0.505 0.523 0.571 0.563 0.543 0.558 0.555 

Improvement 26.49% 22.29% 9.46% 7.62% 9.02% 10.16% 9.70% 

 
 

 

For this comparison, the precision and recall metrics are also used, which have 

been widely employed in Information Retrieval [11], to measure the performance of 

movie-item retrieval done by both methods. To calculate the precision and recall metrics 

for the query-to-query hybrid filtering method, two sorted item-sets are created: one is 

ordered by actual user rating values and the other is ordered by the similarity values 

obtained from the query-to-query hybrid filtering. Items with the actual user rating value 

equal or higher than 4 (out of 5) were regarded as relevant, and other items having the 

actual user rating value lower than 4 were classified as non-relevant. Then, the number of 

the relevant items is found and use the number as a bound rank to decide whether a 

movie item was classified by the query-to-query hybrid filtering as relevant or not from 
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the ordered item set. Therefore, the precision and recall values can be calculated from 

Equations 13 and 14, respectively since the test datasets have a fixed number of data 

items [49].  

As shown in Table 9, the results are similar to the results of the comparisons using 

the Spearman's rank correlation-based metric, i.e., the query-to-query hybrid filtering 

performs better than a pure content-based filtering both for overall and for the new-user 

situation in terms of the precision and recall (for both measures, higher is better). 

Furthermore, the one-tailed paired T-test was performed to test the hypothesis. The null 

hypothesis, which is that there is no improvement in using query-to-query hybrid filtering, 

can be rejected in 95% confidence level for all of the test cases since the p-values are less 

than 0.05. Especially for the new-user situation, the null hypothesis can be rejected in 99% 

confidence level. 

 

 
fptp

tpprecision
+

=         (13)  

 

 
fntp

tprecall
+

=         (14) 

 

where tp (true positives) represents a number of relevant movie items also classified as 

relevant by the query-to-query hybrid filtering. fp (false positives) represents a number of 

non-relevant movie items classified as relevant by the query-to-query hybrid filtering.  fn 
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(false negatives) represents a number of relevant movie items classified as non-relevant 

by the query-to-query hybrid filtering. 

 

 

Table 9 Comparison between Query-to-Query Hybrid Filtering (HF) and Content-Based 
Filtering (CBF) via Precision and Recall 

 
Precision Recall 

HF CBF Difference One-tailed 
T-test HF CBF Difference One-tailed 

T-test 
d2000_

u20 0.908  0.821 10.62%  < 0.005 0.908 0.821 10.62%  < 0.005 

d2000_
u50 0.905  0.842  7.53%  < 0.01 0.893 0.838 6.57%  0.016 

d2000_
u100 0.890  0.850  4.68%  0.039 0.882 0.849 3.85%  0.044 

d2000_
u500 0.883  0.838  5.38%  0.034 0.868 0.837 3.71%  0.043 

d2000_
u1000 0.879  0.832  5.62%  0.032 0.871 0.830 4.90%  0.039 

d2000_
u1001 0.879  0.831  5.74%  0.029 0.879 0.829 5.99%  0.027 

d2000_
overall 0.886  0.842  5.26%  0.031 0.874 0.840 4.07%  0.035 

 

 

6.2.4.3 Comparison between Query-to-Query Hybrid Filtering and Collaborative 
Filtering 

The Spearman's rank correlation-based metric was also basically used for this 

comparison between the query-to-query hybrid filtering and a pure collaborative filtering 

technique used in GroupLens [46, 60]. Table 10 shows the results of the comparisons 

between the query-to-query hybrid filtering and the pure collaborative filtering using the 

subsets of the million rating data. Unlike the previous results, the query-to-query hybrid 
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filtering does not outperform the pure collaborative filtering overall. Also, the pure 

collaborative filtering does not seem to have the new-item problem except for a test 

dataset selected from the million rating dataset, u1000_d10, which has items with a very 

small number (five) of user ratings. Such cases cannot be tested for the 100k rating 

dataset since there is no such test datasets having items with user ratings smaller than five. 

Nevertheless, it can be said that the query-to-query hybrid filtering is reasonably 

acceptable for the new-item situations from the results of the test datasets, u300_d10 and 

u1000_d10 selected from the 100k rating dataset and the million rating dataset, 

respectively. The results are similar or slightly better than the results of the pure 

collaborative filtering for such test datasets while its performance is not better overall. 

Furthermore, all of the Spearman’s rank correlation coefficient (Spearman’s rho) values 

of these test datasets representing the performance of the query-to-query hybrid filtering 

also turned out to be statistically significant at conservative significance level of 0.01 

from the two-tailed paired T-test with n-2 degrees of freedom. 

 

 

Table 10 Comparison between Query-to-Query Hybrid Filtering (HF) and Collaborative 
Filtering (CF) via the Spearman's rank correlation coefficient 

 u1000_
d10 

u1000_
d20 

u1000_
d50 

u1000_
d100 

u1000_
d500 

u1000_
d1000 

u1000_
d1001 

u1000_ 
overall 

Spearman's 
Rho_HF 0.508 0.581 0.575 0.585 0.576 0.576 0.599 0.584 

Spearman's 
Rho_CF 0.425 0.636 0.655 0.678 0.677 0.637 0.630 0.680 

Difference 19.44% -8.63% -12.15% -13.72% -14.93% -9.59% -4.90% -14.06% 
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In this experiment, the effectiveness of the query-to-query hybrid filtering method 

is tested by comparing it with the well-known pure collaborative filtering. As shown in 

the results, the pure collaborative filtering performs better than the query-to-query hybrid 

filtering. This result occurred because the performance was tested by comparing the 

predicted values to the actual user ratings. In addition, the goal of the query-to-query 

hybrid filtering is not to predict the user rating values for the items, but rather to refine 

user queries, while the pure collaborative filtering aims to predict the user rating values. 

Therefore, another experiment has been conducted to test the performance of the query-

to-query hybrid filtering. 

Initially, I found a way to use the query-to-query hybrid filtering for predicting 

the user rating values; that is, to complement the predictions of the pure collaborative 

filtering with the query-to-query hybrid filtering using Equations 14 and 15. The basic 

idea of this complement is to give more weights to a prediction of an active user’s rating 

value for a data item if the data item is found to be similar to an active query refined by 

the query-to-query hybrid filtering as shown in Equation 14. The prediction value of a 

data item is also penalized if the data item is not similar to the refined query. Equation 15 

denotes that the new prediction values are bounded with a scale of user rating values used 

in the Movielens dataset, 1 to 5 out of 5. The parameter α representing a weight of the 

hybrid filtering in the combination can be determined by heuristics, and 4 was found as 

an ideal value for α that maximize the effectiveness of the combining in predicting user 

rating values on data items. Table 11 shows the results of the comparisons between the 

complemented collaborative filtering by the query-to-query hybrid filtering and the pure 
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collaborative filtering using the subsets of the million rating data. The comparisons are 

done with Mean Absolute Error (MAE) since the prediction values produced from both 

methods have a same scale with the actual user rating values. As shown in the results, the 

complemented one is slightly better in performance (lower is better for MAE metrics). 
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where
ua dup ,  represents a prediction of rating value of an unseen data item, du for an 

active user, ua calculated by the pure collaborative filtering. sim(qa, du) represents a 

normalized similarity value of the unseen data item for an active query, qa refined by the 

query-to-query hybrid filtering. α is a parameter value representing a weight of the query-

to-query hybrid filtering ua dup ,
' represents a complemented prediction of an active user’s 

rating value for an unseen data item, du. 
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Table 11 Comparison between Query-to-Query Hybrid Filtering (HF) and Collaborative 
Filtering (CF) via MAE 

 u1000_
d10 

u1000
_d20

u1000_
d50

u1000_
d100

u1000_
d500

u1000_
d1000 

u1000_
d1001 

u1000_
overall

HF 0.748 0.664 0.685 0.690 0.698 0.689 0.690 0.682 
CF 0.832 0.672 0.677 0.696 0.693 0.702 0.718 0.699 

Difference -10.14% -1.25% 1.20% -0.83% 0.69% -1.79% -3.94% -2.43% 
One-tailed 

T-test < 0.01 0.35 0.56 0.38 0.52 0.29 0.041 0.18 

 

 

6.2.4.4 The Effectiveness of Collaborative Weight Determination of Query-to-
Query Hybrid Filtering 

Table 12 shows the result of an experiment testing the validity and effectiveness 

of the query-to-query hybrid filtering in terms of the weight determination for a multi-

dimensional query. The weight distribution is a key problem of information retrieval and 

Web search area as such systems suffer from the ordering of the immense amount of 

result data found by a query. Also, the weight distribution is a key issue of the data 

mining and machine learning area since the weights of dimensions actually represent 

which dimensions of a data item impacted, and by how much, on the users’ selectiveness 

of the data item.  

As shown in Table 12, the country and genre features have quite low correlation 

coefficient values which show that the features would not have any influence on 

determining users’ preference for movie data items. The director and actor features have 

relatively higher correlation values with the users’ actual ratings. This would mean that 

user queries may be answered more meaningfully, if they select movies based on their 

favorite directors or actors, rather than selecting movies based on genres or countries. 
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However, it would be inaccurate for the country feature because the Movielens dataset 

has very skewed data in terms of the country feature (e.g., about 65 percent of movies in 

the Movielens datasets are from only one specific country, USA). 

Even the country and genre features have such low correlation coefficient values, 

the similarity values obtained by using all features, e.g., sim_all have similar or higher 

correlation coefficient values compared to the coefficient values based on any of the 

features. Table 12 also shows the precision and recall values for this comparison. The 

results are quite similar to the results of the comparison using the correlation coefficient 

measure; the query-to-query hybrid filtering slightly degrades precision when it uses all 

the features instead of using only the director feature or the actor feature, but recall is 

noticeably improved when it uses all the features instead of using any of only one feature. 

Based on the results, it can be concluded that the weight distribution of the query-to-

query hybrid filtering works quite well. If a dimension reduction algorithm is used, it 

would have better performance. However, the dimension reduction algorithm only works 

for an information filtering system or an information retrieval system oriented toward 

only one domain of data and using a fixed feature list. Therefore, the weight distribution 

mechanism surely fits better in a dynamic environment in which an information retrieval 

system like Knowledge Sifter would deal in a dynamic way with different domains and 

different sets of information content features. 
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Table 12 Performance of Query-to-Query Hybrid Filtering Using Multi-Features (sim_all) 
or Using Only One Feature 

 sim_all sim_genre sim_ 
keyword 

sim_ 
country 

sim_ 
director sim_actor

Spearman’s Rho 0.576 0.02 0.421 0.114 0.557 0.532 
Precision 0.849 0.727 0.817 0.749 0.881 0.872 

Recall 0.848 0.526 0.779 0.116 0.667 0.76 
 
 
 

6.2.4.5 The Effectiveness of Using Ontology-based Concept 
Generalization/Specialization in Query-to-Query Hybrid Filtering 

This experiment validates the effectiveness of using semantics in the query-to-

query hybrid filtering. That is, to use ontologies for calculating similarities of data items 

to user profile queries. The linguistic ontology, WordNet, is used to extend the concepts 

in the user profile queries for the keyword feature, which has values which having 

general concepts. A cluster-based simple ontology for country feature was also created. 

The clusters of countries are created based on social and cultural similarities [27] as 

shown in Table 13. 

 

Table 13 Clusters of Countries based on Social/Cultural Similarities 
Clusters Countries 

Anglo Cultures "Australia," "Canada," "Ireland," "New Zealand," "South 
Africa," "UK," "USA." 

Confucian Asia "China," "Hong Kong," "Japan," "South Korea," "Taiwan." 
Eastern Europe "Algeria," "Georgia," "Greece," "Hungary," "Kazakhstan," 

"Poland," "Russia," "Slovenia." 
Germanic Europe "Austria," "Germany," "Netherlands," "West Germany," 

"Switzerland." 
Latin America "Argentina," "Brazil," "Mexico.” 
Latin Europe "France," "Israel," "Italy," "Portugal," "Spain." 
Nordic Europe "Denmark," "Finland," "Sweden." 
Southern Asia "India," "Iran," "Philippines." 
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Table 14 shows the precision and recall values of the query-to-query hybrid 

filtering both with and without using semantics by employing the MLTest_1000 dataset. 

As shown in the features, the precision values are a bit improved when the ontologies for 

keyword and country features are used, and the recall values are noticeably improved 

especially for the country feature. This would be because the social/cultural similarity-

based country clusters somewhat diminish the problem of the skewness of the test dataset 

for the country feature, which is caused by the USA dominance of producing the movies. 

A simple word matching employing synonyms and hypernyms found from WordNet was 

used for the keyword ontology. The improvement might be higher if a more robust 

domain ontology is used for the IMDB keyword tags. 

 

 

Table 14 Performance of Query-to-Query Hybrid Filtering (HF) With/Without Semantics 

 
Precision Recall 

Using only 
Keywords 

Using only 
Country 

Using all 
features 

Using only 
Keywords 

Using only 
Country 

Using all 
features 

HF w/ 
Semantics 0.864 0.805  0.866 0.868 0.780  0.898 

HF w/o 
Semantics 0.817 0.749 0.849 0.779  0.116  0.848 

Difference 5.71%  7.48%  1.90% 11.43%  572%  5.81% 

One-tailed 
T-Test 0.029  0.021  0.13 < 0.01  < 0.005  0.028 
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6.3 Conclusion of Validation 

As the goal of the query-to-query hybrid filtering is to improve the effectiveness of 

information search via collaborative query refinement, the comparison between the 

query-to-query hybrid filtering and the pure content-based filtering using the nearest 

neighbor algorithm is the primary experiment for the validation. As shown in the 

experimental results, the query-to-query hybrid filtering method performed better than a 

pure content-based filtering in terms of accuracy, both overall and for the new-user 

problem. In detail, the query-to-query hybrid filtering improved precision and recall by 

5.3% and 4.1% overall, respectively. For the new-user situation, the query-to-query 

hybrid filtering improved precision and recall by 10.6% for both. 

On the other hand, the query-to-query hybrid filtering did not perform better than 

the GroupLens collaborative filtering overall, but the query-to-query hybrid filtering 

performed better in the new-item situation. It would be because the other characteristics 

of movies such as quality and scenario perfectness would be more important factors for 

deciding the users’ likeness rather than the general movie content values such as genre 

and actor. For example, a user may like a particular drama movie, but does not 

necessarily like all drama movies. In addition, a result is presented, which shows the 

GroupLens collaborative filtering, when complemented by the query-to-query hybrid 

filtering improves predictability of user ratings overall. In this case, the complemented 

approach performed slightly better than the GroupLens collaborative filtering overall and 

improved the performance by 8 to 11% for the new item problem. 
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Lastly, the experiments on the Movielens datasets has shown the validity and 

effectiveness of the query-to-query hybrid filtering algorithm for the weight 

determination of a multi-dimensional query in terms of information search accuracy. The 

result of an experiment for evaluating the effect of using an ontology for the query-to-

query hybrid filtering is also presented. The result suggests that using the semantic 

technologies for hybrid filtering improves the accuracy of refining user queries in 

representing user information needs, as the accuracy of the movie retrieval increased by 

using the refined queries.  
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7 Conclusion 

This research is highly interdisciplinary since building an intelligent and 

personalizable information search system over heterogeneous data sources requires 

knowledge of many areas such as information retrieval, information systems, data mining, 

software engineering, artificial intelligence, statistics, etc. This research is also highly 

practical in designing and developing both a system and a methodology for searching 

information over heterogeneous sources while considering user preference and semantics 

of user queries. Most importantly, a new hybrid filtering method, which we call “query-

to-query hybrid filtering,” is introduced for automatic refinement of user queries based on 

opinions of a community of users who have similar preferences.  

7.1 Contributions 

First, I have developed a new hybrid filtering method which combines content-

based filtering and collaborative filtering to take advantage of the entire user search 

histories including user feedback for improving the effectiveness of information search in 

a collaborative manner. The hybrid filtering is called “query-to-query hybrid filtering,” 

and it refines a user query based on 1) emergent semantics via use cases 2) mined 

preferences based not only on an active user’s search history, but also on neighbor users’ 

search history who have similar preferences. Query-to-query hybrid filtering is developed 
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by taking into account the ternary relationships among users, their queries, and data items; 

other filtering systems use only the binary relationship between users and data items. An 

algorithm and methodology for query-to-query hybrid filtering are presented, together 

with the mathematical equations to determine the weights and statistics. The validity and 

effectiveness of query-to-query hybrid filtering, in providing more relevant and 

preferable information to users, have been validated with numerous experiments and 

comparisons.  

A case-based reasoning framework has been proposed for capturing, maintaining, 

and reusing the artifacts produced during the users’ entire session. An XML-based meta-

model is used to store all the artifacts produced during the search process including user 

query and its refined queries, user feedback, related ontology, data sources, etc. In the 

case-based reasoning framework, user query cases are created according to an XML-

schema which is used to represent user queries with the semantics of user concepts 

together with their related explicit ontology concepts. An ontology-based indexing 

scheme is also introduced to effectively and efficiently retrieve other user query cases 

related to concepts and topics of an active user query case. 

Semantic Web standards and technologies such as XML, RDF, OWL, and 

Semantic Web Services are used to implement semantic search. A prototype application, 

Knowledge Sifter, has been developed based on these open-standards and a service-

oriented architecture. The agent architecture implemented by using Semantic Web 

Services and the automatic refinement of user queries via the query-to-query hybrid 

filtering enable a system to be dynamically configured based on user preferences.  
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Finally, most of the information filtering and information retrieval systems having 

the ability to mine user preferences or profiles use a static structure (e.g., a pre-specified 

and fixed list of criteria/features) for representing content patterns of data items found 

preferable by a user. This is due to the difficulty of dealing with changes in such structure 

itself for the mining. The framework and methodologies presented in this research are 

developed to refine user queries in terms of modifying not only the feature values, but 

also the features of the user-preferable content patterns with emergent semantics found 

from query-to-query hybrid filtering. The following are the key aspects of the framework 

and methods that enable a system to handle the changes also on the query structure 

during the refinement: 

• The XML-based user-query case representation with a flexible query structure 

enables a system to refine user queries with the structure changes; 

• Emergent semantics via using query-to-query hybrid filtering can be formed not only 

with emergent feature (metadata) values, but also with emergent features; and 

• The dynamic feature-weight distribution, developed as a part of query-to-query 

hybrid filtering, works well with the flexible query structure. 

7.2 Further Research 

In this research, a domain-specific query structure is introduced in order to 

represent the general user concepts specified in the conceptual query in terms of domain- 

specific concepts. The domain-specific queries are semi-automatically formulated and 

refined based on simple ontology-concept linkages found from the neighbor user query 
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cases. However, the ontology-concept linkages are created to represent only synonym 

and hypernym relationships for finding domain-specific concepts related to the general 

user concepts or vice versa. Therefore, if the case-based reasoning framework and the 

query-to-query hybrid filtering method were to incorporate more complex reasoning 

techniques, such as the rule-based inference providing by Jena [16] and Pellet [64], and 

take advantage of other ontological relationships among the domain concepts defined in 

domain ontologies were used in the query refinement process, than more accurate and 

serendipitous emergent semantics could be found. As a result, the effectiveness of 

information search in a system would be improved. 
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Appendix A: XML Schemas for Data Specification 

 

A.1 XML Schema of User Query: Managed by Query Formulation Agent 

<xs:schema xmlns="" xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
    <xs:complexType name="userTerm"> 
        <xs:sequence> 
            <xs:attribute name="domain" type="xs:integer" use="required"/> 
        </xs:sequence> 
    </xs:complexType> 
    <xs:element name="userQuerySpec"> 
        <xs:complexType> 
            <xs:sequence> 
                <xs:element name="SO" type="userTerm" minOccurs="1" maxOccurs="1"/> 
                <xs:element name="AoI" type="userTerm" minOccurs="0" maxOccurs="1"/> 
                <xs:element name="PoI" type="userTerm" minOccurs="0" maxOccurs="1"/> 
                <xs:element name="LoI" type="userTerm" minOccurs="0" maxOccurs="1"/> 
            </xs:sequence> 
        </xs:complexType> 
    </xs:element> 
</xs:schema> 

A.2 XML Schema of WordNet Concept: Managed by Ontology Agent 

<xs:schema xmlns="" xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
    <xs:complexType name="sense"> 
        <xs:sequence> 
            <xs:element name="senseIndex" type="xs:integer" maxOccurs="1"/> 
            <xs:element name="synonyms" type="xs:string" maxOccurs="unbounded"/> 
        </xs:sequence> 
    </xs:complexType> 
    <xs:element name="dataPrefSpec"> 
        <xs:complexType> 
            <xs:sequence> 
                <xs:element name="SOSyn" type="sense" minOccurs="1" maxOccurs="1"/> 
                <xs:element name="AoISyn" type="sense" minOccurs="0" maxOccurs="1"/> 
                <xs:element name="PoISyn" type="sense" minOccurs="0" maxOccurs="1"/> 
                <xs:element name="LoISyn" type="sense" minOccurs="0" maxOccurs="1"/> 
            </xs:sequence> 
        </xs:complexType> 
    </xs:element> 
</xs:schema> 
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A.3 XML Schema of Source-Specific Query for GNIS: Managed by Ontology Agent 

<xs:schema xmlns="" xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
    <xs:element name="GNISQuerySpec"> 
        <xs:complexType> 
            <xs:sequence> 
                <xs:element name="featureName" type="xs:string" minOccurs="1" maxOccurs="1"/> 
                <xs:element name="state" type="xs:string" minOccurs="0" maxOccurs="1"/> 
                <xs:element name="variant" type="xs:boolean" minOccurs="0" maxOccurs="1"/> 
            </xs:sequence> 
        </xs:complexType> 
    </xs:element> 
</xs:schema> 

A.4 XML Schema of Data Preference: Managed by Preference Agent 

<xs:schema xmlns='' xmlns:xs='http://www.w3.org/2001/XMLSchema'> 
    <xs:complexType name='weightedElement'> 
        <xs:sequence> 
            <xs:attribute name='weight' type='xs:double' use='required'/> 
        </xs:sequence> 
    </xs:complexType> 
    <xs:element name='dataPrefSpec'> 
        <xs:complexType> 
            <xs:sequence> 
                <xs:element name='term' type='weightedElement' maxOccurs='1'/> 
                <xs:element name='location' type='weightedElement' maxOccurs='1'/> 
                <xs:element name='date' type='weightedElement' maxOccurs='1'> 
                    <xs:complexType> 
                        <xs:sequence> 
                            <xs:element name='dateFrom' type='xs:date' maxOccurs='1'/> 
                            <xs:element name='dateTo' type='xs:date' maxOccurs='1'/> 
                        </xs:sequence> 
                    </xs:complexType> 
                </xs:element> 
                <xs:element name='size' type='weightedElement' maxOccurs='1'> 
                    <xs:complexType> 
                        <xs:sequence> 
                            <xs:element name='width' type='xs:integer' maxOccurs='1'/> 
                            <xs:element name='height' type='xs:integer' maxOccurs='1'/> 
                        </xs:sequence> 
                    </xs:complexType> 
                </xs:element> 
                <xs:element name='theme' type='weightedElement' maxOccurs='1'> 
                    <xs:complexType> 
                        <xs:sequence> 
                            <xs:element name='photoW' type='xs:double' maxOccurs='1'/> 
                            <xs:element name='topoW' type='xs:double' maxOccurs='1'/> 
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                        </xs:sequence> 
                    </xs:complexType> 
                </xs:element> 
                <xs:element name='source' type='weightedElement' maxOccurs='1'> 
                    <xs:complexType> 
                        <xs:sequence> 
                            <xs:element name='terraW' type='xs:double' maxOccurs='1'/> 
                            <xs:element name='yahooW' type='xs:double' maxOccurs='1'/> 
                        </xs:sequence> 
                    </xs:complexType> 
                </xs:element> 
            </xs:sequence> 
        </xs:complexType> 
    </xs:element> 
</xs:schema> 

A.5 XML Schema of Search Result Retrieved from Various Sources: Managed by Web 
Services Agent 

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
    <xs:complexType name="specType"> 
        <xs:attribute name="name" type="xs:string" use="required"/> 
    </xs:complexType> 
    <xs:element name="Search"> 
        <xs:complexType> 
            <xs:attribute name="source" type="xs:string" use="required"/> 
            <xs:element name="Request" maxOccurs="unbounded"> 
                <xs:complexType> 
                    <xs:attribute name="status" type="xs:string" use="required"/> 
                    <xs:attribute name="uri" type="xs:anyUri" use="required"/> 
                    <xs:attribute name="posedTime" type="xs:dateTime" use="required"/> 
                    <xs:attribute name="endedTime" type="xs:dateTime" use="required"/> 
                    <xs:sequence> 
                        <xs:element name="Spec" type="specType" maxOccurs="unbounded"/> 
                        <xs:element name="Result" maxOccurs="unbounded"> 
                            <xs:complexType> 
                                <xs:attribute name="uri" type="xs:anyUri" use="required"/> 
                                <xs:element name="Spec" type = "specType" maxOccurs="unbounded"/> 
                            </xs:complexType> 
                        </xs:element> 
                    </xs:sequence> 
                </xs:complexType> 
            </xs:element> 
        </xs:complexType> 
    </xs:element> 
</xs:schema> 
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A.6 XML Schema of Source-Specific Query for Yahoo Image Search Engine: Managed 
by Web Services Agent 

<xs:element name="Spec" maxOccurs="1"> 
    <xs:complexType>   
        <xs:sequence> 
            <xs:element name="query" type="xs:string" minOccurs="1" maxOccurs="1"/> 
            <xs:element name="format" type="xs:string" maxOccurs="1"/> 
            <xs:element name="coloration" type="xs:string" maxOccurs="1"/> 
            <xs:element name="site" type="xs:string" maxOccurs="unbounded"/> 
        </xs:sequence> 
    </xs:complexType> 
</xs:element> 

A.7 XML Schema of Result Data from Yahoo Image Search Engine: Managed by Web 
Services Agent 

<xs:element name="Spec" maxOccurs="1"> 
    <xs:complexType>   
        <xs:sequence> 
            <xs:element name="title" type="xs:string" minOccurs="1" maxOccurs="1"/> 
            <xs:element name="desc" type="xs:string" minOccurs="1" maxOccurs="1"/> 
            <xs:element name="thumbnailUri" type="xs:string" minOccurs="1" maxOccurs="1"/> 
            <xs:element name="width" type="xs:string" minOccurs="1" maxOccurs="1"/> 
        </xs:sequence> 
    </xs:complexType> 
</xs:element> 

A.8 XML Schema of Source-Specific Query for TerraServer: Managed by Web 
Services Agent 

<xs:element name="Spec" maxOccurs="1"> 
    <xs:complexType>   
        <xs:sequence> 
            <xs:element name="theme" type="xs:string" minOccurs="1" maxOccurs="1"/> 
            <xs:element name="centerLong" type="xs:string" minOccurs="1" maxOccurs="1"/> 
            <xs:element name="centerLat" type="xs:string" minOccurs="1" maxOccurs="1"/> 
            <xs:element name="scale" type="xs:string" minOccurs="1" maxOccurs="1"/> 
            <xs:element name="projection" type="xs:string" minOccurs="1" maxOccurs="1"/> 
            <xs:element name="width" type="xs:string" minOccurs="1" maxOccurs="1"/> 
            <xs:element name="height" type="xs:string" minOccurs="1" maxOccurs="1"/>   
        </xs:sequence> 
    </xs:complexType> 
</xs:element> 
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A.9 XML Schema of Result Data from TerraServer: Managed by Web Services Agent 

<xs:element name="Spec" maxOccurs="1"> 
    <xs:complexType>   
        <xs:sequence> 
            <xs:element name="thumbnailUri" type="xs:string" minOccurs="1" maxOccurs="1"/> 
            <xs:element name="centerLong" type="xs:string" minOccurs="1" maxOccurs="1"/> 
            <xs:element name="centerLat" type="xs:string" minOccurs="1" maxOccurs="1"/> 
            <xs:element name="eastLong" type="xs:string" minOccurs="1" maxOccurs="1"/> 
            <xs:element name="westLong" type="xs:string" minOccurs="1" maxOccurs="1"/> 
            <xs:element name="northLat" type="xs:string" minOccurs="1" maxOccurs="1"/> 
            <xs:element name="southLat" type="xs:string" minOccurs="1" maxOccurs="1"/>  
            <xs:element name="creationTime" type="xs:string" minOccurs="1" maxOccurs="1"/> 
            <xs:element name="scale" type="xs:string" minOccurs="1" maxOccurs="1"/> 
            <xs:element name="projection" type="xs:string" minOccurs="1" maxOccurs="1"/> 
            <xs:element name="width" type="xs:string" minOccurs="1" maxOccurs="1"/> 
            <xs:element name="height" type="xs:string" minOccurs="1" maxOccurs="1"/> 
        </xs:sequence> 
    </xs:complexType> 
</xs:element> 
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Appendix B: MySql Script File for KS Meta Schema 

 
 
 
CREATE TABLE KSUser ( 

userID VARCHAR(50), 
 password CHAR(40) NOT NULL, 

firstName VARCHAR(50), 
lastName VARCHAR(50), 

 industry VARCHAR(99), 
 secQ VARCHAR(99), 
 secA VARCHAR(99), 
 currentDPID INT REFERENCES DataPreference(dataPrefID), 
 currentSPID INT REFERENCES SourcePreference(sourcePrefID), 
 PRIMARY KEY (userID) 
); 
 
CREATE TABLE Source ( 

sourceID VARCHAR(50), 
provenance VARCHAR(100), 
PRIMARY KEY (sourceID) 

); 
                     
CREATE TABLE SourcePreference ( 

sourcePreferenceID INT NOT NULL AUTO_INCREMENT, 
isUserSpecified BOOLEAN NOT NULL, 
specXML VARCHAR(9999), 
userID VARCHAR(50), 
sourceID VARCHAR(50), 
PRIMARY KEY (sourcePreferenceID), 
FOREIGN KEY (userID) REFERENCES KSUser(userID), 
FOREIGN KEY (sourceID) REFERENCES Source(sourceID), 
UNIQUE (userID, sourceID, isUserSpecified) 

); 
 
CREATE TABLE DataPreference ( 

dataPreferenceID INT NOT NULL AUTO_INCREMENT, 
isUserSpecified BOOLEAN NOT NULL, 
specXML VARCHAR(9999), 
userID VARCHAR(50), 
PRIMARY KEY (dataPreferenceID), 
FOREIGN KEY (userID) REFERENCES KSUser(userID), 
UNIQUE (userID, isUserSpecified) 

); 
       
CREATE TABLE UserQuery ( 

userQueryID INT NOT NULL AUTO_INCREMENT, 
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queryText VARCHAR(100), 
specXML VARCHAR(9999), 
posedTime TIMESTAMP NOT NULL, 
numOfResults INT UNSIGNED, 
userComments VARCHAR(300), 
userID VARCHAR(50), 
PRIMARY KEY (userQueryID), 
FOREIGN KEY (userID) REFERENCES KSUser(userID), 
UNIQUE (queryText, posedTime, userID) 

); 
      
CREATE TABLE UserQueryConcept ( 

userQueryConceptID INT NOT NULL AUTO_INCREMENT, 
specXML VARCHAR(9999), 
userQueryID INT, 
sourceID VARCHAR(50), 
PRIMARY KEY (userQueryConceptID), 
FOREIGN KEY (userQueryID) REFERENCE UserQuery(userQueryID), 
FOREIGN KEY (sourceID) REFERENCES Source(sourceID), 
UNIQUE (userQueryID, sourceID) 

); 
 
CREATE TABLE RefinedQuery ( 

refinedQueryID INT NOT NULL AUTO_INCREMENT, 
specXML VARCHAR(9999), 
posedTime TIMESTAMP NOT NULL, 
endedTime TIMESTAMP NULL DEFAULT NULL, 
numOfResults INT UNSIGNED, 
userQueryID INT, 
sourceID VARCHAR(50), 
PRIMARY KEY (refinedQueryID), 
FOREIGN KEY (userQueryID) REFERENCES UserQuery(userQueryID), 
FOREIGN KEY (sourceID) REFERENCES Source(sourceID) 

); 
 
CREATE TABLE DataItem ( 

dataItemID INT NOT NULL AUTO_INCREMENT, 
uri VARCHAR(999), 
type VARCHAR(50), 
specXML VARCHAR(9999), 
creationTime TIMESTAMP NULL DEFAULT NULL, 
lastUpdatedTime TIMESTAMP NULL DEFAULT NULL, 
sourceID VARCHAR(50), 
PRIMARY KEY (dataItemID), 
FOREIGN KEY (sourceID) REFERENCES Source(sourceID) 

); 
 
CREATE TABLE UserQueryResult ( 
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userQueryResultID INT NOT NULL AUTO_INCREMENT, 
userSimilarity DOUBLE, 
systemSimilarity DOUBLE, 
rank INT UNSIGNED, 
userComments VARCHAR(300), 
userQueryID INT, 
dataItemID INT, 
dataPrefID INT, 
sourcePrefID INT, 
PRIMARY KEY (userQueryResultID), 
FOREIGN KEY (userQueryID) REFERENCES UserQuery(userQueryID), 
FOREIGN KEY (dataItemID) REFERENCES DataItem(dataItemID), 
FOREIGN KEY (dataPrefID) REFERENCES DataPreference(dataPrefID), 
FOREIGN KEY (sourcePrefID) REFERENCES SourcePreference(sourcePrefID), 
UNIQUE (userQueryID, dataItemID) 

); 
 
CREATE TABLE RefinedQueryResult ( 

refinedQueryResultID INT NOT NULL AUTO_INCREMENT, 
systemSimilarity DOUBLE, 
rank INT UNSIGNED, 
refinedQueryID INT, 
dataItemID INT, 
PRIMARY KEY (refinedQueryResultID), 
FOREIGN KEY (refinedQueryID) REFERENCES RefinedQuery(refinedQueryID), 
FOREIGN KEY (dataItemID) REFERENCES DataItem(dataItemID), 
UNIQUE (refinedQueryID, dataItemID) 

);          
CREATE TABLE AccessProtocol ( 

accessProtocolID VARCHAR(50), 
type VARCHAR(50), 
spec VARCHAR(1000), 
creationTime TIMESTAMP NOT NULL, 
lastUpdatedTime TIMESTAMP NULL DEFAULT NULL, 
sourceID VARCHAR(50), 
PRIMARY KEY (accessProtocolID), 
FOREIGN KEY (sourceID) REFERENCES Source(sourceID) 

);                                        
                     
CREATE TABLE QoSSLAs ( 

qosSlasID VARCHAR(50), 
availability DOUBLE, 
minThroughput DOUBLE, 
responseTime DOUBLE, 
authority VARCHAR(50), 
sourceID VARCHAR(50), 
PRIMARY KEY (qosSlasID), 
FOREIGN KEY (sourceID) REFERENCES Source(sourceID) 



123 

);                                        
 
CREATE TABLE Coverage ( 

coverageID VARCHAR(50), 
domain VARCHAR(300), 
class VARCHAR(300), 
refSource VARCHAR(50), 
sourceID VARCHAR(50), 
PRIMARY KEY (coverageID), 
FOREIGN KEY (sourceID) REFERENCES Source(sourceID), 
FOREIGN KEY (refSource) REFERENCES Source(sourceID) 

); 
 
CREATE TABLE Event ( 

eventID VARCHAR(50), 
type VARCHAR(50), 
spec VARCHAR(300), 
occuredTime TIMESTAMP NOT NULL, 
sourceID VARCHAR(50), 
PRIMARY KEY (eventID), 
FOREIGN KEY (sourceID) REFERENCES Source(sourceID) 

);   
                                      
CREATE TABLE Certificate ( 

certificateID VARCHAR(50), 
type VARCHAR(50), 
authority VARCHAR(1000), 
expirationDate DATE, 
rating VARCHAR(50), 
sourceID VARCHAR(50), 
PRIMARY KEY (certificateID), 
FOREIGN KEY (sourceID) REFERENCES Source(sourceID) 

); 
                     
INSERT INTO Source (sourceID) VALUES ('WORDNET2.1'); 
INSERT INTO Source (sourceID) VALUES ('GNIS'); 
INSERT INTO Source (sourceID) VALUES ('YAHOO'); 
INSERT INTO Source (sourceID) VALUES ('TERRA'); 
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Appendix C: XML Schemas for Case-Based KS Framework 

C.1 XML Schema of User Query Case 

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
    <xs:element name="Case"> 
        <xs:complexType> 
            <xs:sequence> 
                <xs:element name="CaseID" type="xs:string"/> 
                <xs:element name="UserName" type="xs:string"/> 
                <xs:element name="ConceptualQuery"> 
                    <xs:complexType> 
                        <xs:sequence> 
                            <xs:element name="Concept" maxOccurs="unbounded"> 
                                <xs:complexType> 
                                    <xs:sequence> 
                                        <xs:element name="UserTerm" type="xs:string"/> 
                                        <xs:element name="WordNetSenseID" type="xs:string" minOccurs="0"  
                                            maxOccurs="unbounded"/> 
                                        <xs:element name="ConceptWeight" type="xs:double"/> 
                                    </xs:sequence> 
                                </xs:complexType> 
                            </xs:element> 
                        </xs:sequence> 
                    </xs:complexType> 
                </xs:element> 
                <xs:element name="DomainSpecificQuery"> 
                    <xs:complexType> 
                        <xs:sequence> 
                            <xs:element name="Info_Domain" type="xs:string"/> 
                            <xs:element name="Feature" maxOccurs="unbounded"> 
                                <xs:complexType> 
                                   <xs:sequence> 
                                        <xs:element name="FeatureName" type="xs:string"/> 
                                        <xs:element name="FeatureValue" maxOccurs="unbounded"> 
                                            <xs:complexType> 
                                                <xs:sequence> 
                                                    <xs:element name="value" type="xs:string"/> 
                                                    <xs:element name="valueWeight" type="xs:double"/> 
                                                </xs:sequence> 
                                            </xs:complexType> 
                                        </xs:element> 
                                        <xs:element name="featureWeight" type="xs:double"/> 
                                    </xs:sequence> 
                                </xs:complexType> 
                            </xs:element> 
                        </xs:sequence> 
                    </xs:complexType> 
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                </xs:element> 
            </xs:sequence> 
        </xs:complexType> 
    </xs:element> 
</xs:schema> 

C.2 XML Schema of Ontology Index 

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
    <xs:element name="OntologyIndices"> 
        <xs:complexType> 
            <xs:sequence> 
                <xs:element name="DomainConceptID" minOccurs="0" maxOccurs="unbounded"> 
                    <xs:complexType> 
                        <xs:sequence> 
                            <xs:element name="WordNetSenseID" type="xs:string" minOccurs="0"      
                                maxOccurs="unbounded"/> 
                            <xs:element name="CaseID" type="xs:double" maxOccurs="unbounded"/> 
                        </xs:sequence> 
                    </xs:complexType> 
                </xs:element> 
            </xs:sequence> 
        </xs:complexType> 
    </xs:element> 
</xs:schema> 
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