HYBRID FILTERING IN SEMANTIC QUERY PROCESSING

by

Hanjo Jeong
A Dissertation
Submitted to the
Graduate Faculty
of
George Mason University
In Partial Fulfillment of
The Requirements for the Degree
of
Doctor of Philosophy
Information Technology

Committei:

Dr. Larry Kerschberg, Dissertation Director
d ’\L ’ C'? 5\»4""’»/’” Dr. Hassan Gomaa, Committee Member

Dr. Daniel Menascé, Committee Member

Dr. Amihai Motro, Committee Member

Dr. Daniel Menascé, Senior Associate Dean

M,// Dr. Lloyd J. Griffiths, Dean, The Volgenau

School of Information Technology and
Engineering

Date: 23 / ot /)“"" /1 Spring Semester 2011
George Mason University
Fairfax, VA

Hybrid filtering in Semantic Query Processing

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Hanjo Jeong
Master of Science
George Mason University, 2003

Director: Larry Kerschberg, Professor
Department of Computer Science

Spring Semester, 2011
George Mason University
Fairfax, Virginia

Copyright 2011 Hanjo Jeong
All Rights Reserved

i

DEDICATION

This dissertation is dedicated to my mother Ok-Hui So and my two siblings Kwang-Jo
Jeong and Young-Ok Jeong. I would also like to dedicate this dissertation in the memory
of my father Chan-Young Jeong.

il

ACKNOWLEDGEMENTS

I would like to express my profound thanks and appreciation to my advisor Dr. Larry
Kerschberg for his patient, thorough, and invaluable help for many years, from the
development of the idea for this dissertation to its conclusion. I would also like to thank
Dr. Hassan Gomaa, Dr. Daniel A. Menascé, and Dr. Amihai Motro for serving on my
committee.

v

TABLE OF CONTENTS

Page

LIST OF TABLES ...ttt ettt sttt ettt saenaeenaenseenneeneas viii
LIST OF FIGURES ...ttt sttt et sttt ix
ABSTRACT ...ttt ettt ettt s bt et e e st e bt et e eatesaeenbeeneeeaeenees X
Introduction and OVEIVIEWccccuiieeiiiieeiieeeiieeeieeeetee e e eereeeareeeaaeeeaaeesseeesnreeas 1

1.1 Information Search on the Web and the Semantic Webcccceeviieiinnnnnnen. 3
1.2 User Preferences in Information Search............cccoceeeiiiiiiiiiiiiiiiiieeeeeeeee, 5
1.3 Collaborative Information Search...........cccceevviieiiiiiiiiiecceeeeee e 7
1.4 ReSEArCh ODJECTIVES ..ueeeutieiieeiieiie ettt ettt et eete ettt e e e aeeeabeesaeesabeeenes 9
1.5 Research Hypothesiscccuiiiiiiiiiiiiieiieiieceeeee e 10
1.6 Research APProachcoccceoiiiiiiiiiiiieeeee e 11
1.7 Overview Of DISSEITationc.cceeruieieriinienienieeie ettt 11
Related ReSEArCh.........coouiiiiiieiieeeee e 13

2.1 Semantic SEATCHc.uviiiiii e e 13
2.1.1 Information indexing via Semantic Webccccevvieriiiiieniieeiieieeiene, 14
2.1.2 Role of the (Semantic) Web Services in Semantic Search 14
2.1.3 Role of Ontology in Semantic Search..........c..cccceevveriivenriinieneniiinienennne 16

2.2 RecOMMENAEr SYSIEIMSccueiiiieiieeiieiie et eiee et eiee ettt e ereesaeeeaeeseesnseeaee e 17
2.2.1 Content-Based Filtering.........c.cccocuieeriiieiiiiieiieeieecieeeeeeeee e 18
2.2.2 Collaborative FIlteringccccuieeiiieeiiieeiiie et 19
2.2.3 Hybrid FIIETINGccviiiiiiieiiecie ettt et 23
KNOWIEAZE STTEOT ...cvviiiiieiiieiie ettt e be e e enneens 24

3.1 KS Agent-Based Web Services Frameworkccccceeeeiiiniiieniie e, 24
3.1.1 User and Preferences Aentsccceecveeniieiiieniieniieiiecieeieeee e 26
3,12 ONtOlOZY AENL...ccuiiiiieeiiieiieeiieeieeeete ettt ettt e ebeeseeeebe e saeebeeseessseenneas 27
3.1.3 Imagery Domain Model and Schemaccccccouveeiiieeiiieiciiecee e, 27
3.1.4 Authoritative Name SEIVICESceevieriieriierieeriieeiienite e eiee e eaeeseneeneeas 29

3.1.5 Query Formulation Aent..........cccceeviieriieriieiiieniieeieeeee e 30

3.1.6 Web Services AZENL.....cccuieeiieeeiieeeiieecieeesieeerteeesireeeeveesaeeeeseeessseeessneeas 30
3.1.7 RanKING AGENLiiiiiiiiiiiiieiieeie ettt ettt et 31
3.1.8 Data Sources and Web SEIVICESceverierirriirieniienieeienieeie e sieeee e 31
3.2 Knowledge Sifter End-to-End Scenario..........ccccoeeuveeiiiieniiiiiniieeieeeee e 32
3.3 KS Agent Interactions and CommuniCationsecueereeeiveerieeieenvessreenneenns 40
3.4 Emergent Semantics in Knowledge Sifterccccooeviiviiiniienieniicieeieeee, 43
Case-Based Knowledge Sifter Framework...........c.cooovvveeiiiiiiiiicciiececeeeeee 47
4.1 Case-Based Knowledge Sifter Architecture.........cccueevieerieeiienieeieeiiesieeeeene 47
4.1.1 Case Management AZENtccccueeerieeerieeeiieeeieeeieeeeireesaeeesseeeeaeeesans 49
4.1.2 Web Services-Based Wrapper Component Repositoryccecveeeveennnee. 51
4.1.3 Use Cases and Sequence Diagramsccoceevuerrieneenienieneenieniieneenieneens 52
4.2 Semantic Case RePresentationcceceeeeuierieeiieenienieenieeeieesieeseeeseeseeeeneeens 57
4.2.1 Semantic Refinement of @ User QUETYcccuvveviieiniieeniieeieeeiee e 61
4.3 Case Retrieval via Ontology-Based Indices...........cocceeveriiniiniiniiiiniicnicienns 62
4.3.1 XML-based Representation of Ontology-Based Indices...........c.ccueennenee. 63
4.3.2 Case Retrieval Algorithm via Ontology Indexcccceevvviiiiiiiicieeeiieeee, 64
Collaborative Query Refinement.........c..ocoeviiiiiiiiiiiniiniiiceccneccceeeeeee 69
5.1 Initial Query Refinement without User Feedback..............ccccoeevieiiiniinciiennnnnn, 73
5.2 Immediate Data-Item Recommendation from Neighbor Cases............c........... 74
5.3 Query Refinement via Query-to-Query Hybrid Filteringc.cccoeveniinnenne. 77
ValidatioN. ..o ettt 82
T B & 1% 01011 1 ToTS) (USRS 83
0.2 EXPEIIMENLS. ..ccuiiitiiiiietieeie ettt ettt ettt e st e et e sate et essbeeseesaseeneeenne 84
6.2.1 Data SEICtIONccueeiiiiieiieiieeiieie et 85
6.2.2 Test Dataset SEleCtion.........c.eeviiiiiiiiiiiiieieeeee e 87
6.2.3 IMPlementationc.eeiuieiiieiiieiie et 92
6.2.4 Experiments and ReSults...........cccceiiiiiiiiiiiiiiiiecececeeee e 96
6.3 Conclusion of Validationc.ccoeiiiiiiiiiiiiiiiceee e 109
CONCIUSION ..eiiiiieeiiie ettt ettt e et e et e e et e e etbeeesabee e asee e taeeesseeesseesnsseesnseeessseeenes 111
T 1 CONEIIDULIONS ..ttt sttt ettt et st 111
7.2 Further REeSEarchcoccooiiiiiiiiiiie e 113

vi

Appendix A: XML Schemas for Data Specificationcccceevevoerieiinienennienieenne. 115

A.1 XML Schema of User Query: Managed by Query Formulation Agent........... 115
A.2 XML Schema of WordNet Concept: Managed by Ontology Agent................ 115
A.3 XML Schema of Source-Specific Query for GNIS: Managed by Ontology Agent
116
A4 XML Schema of Data Preference: Managed by Preference Agent 116
A.5 XML Schema of Search Result Retrieved from Various Sources: Managed by
WED SeIVICES AZENL...ccuuiiieiieiieiiiieiieeiie ettt see et e e bt e ete et e s saeebeesaeeenseensnesnseas 117
A.6 XML Schema of Source-Specific Query for Yahoo Image Search Engine:
Managed by Web Services AZent........ccceeierieriiriinieiienienienieeeeeeese e 118
A.7 XML Schema of Result Data from Yahoo Image Search Engine: Managed by
WED SEIVICES AZENL....ccuviiieiiieeeiieeeiie ettt et e et e e eeaeeesbeeessbeeesebeeessseeenneeas 118
A.8 XML Schema of Source-Specific Query for TerraServer: Managed by Web
SEIVICES AZENL ...eeviieiiieiiieiieeie ettt ette ettt e ete et e e beessaeesbeesseeesseenseesnseenseennns 118
A.9 XML Schema of Result Data from TerraServer: Managed by Web Services
F N {3 11 SRR 119
Appendix B: MySql Script File for KS Meta Schema............ccccooveveiiiiiiiieiieeeeee, 120
Appendix C: XML Schemas for Case-Based KS Framework..........c.cccccoevvniininncnenn. 124
C.1 XML Schema of User QUEry Case.......cccecvervieriieriieriienieenieesieesieeeneenenesveens 124
C.2 XML Schema of Ontology INdeX........cccecvuiieriiieriieeiieeieeceee e 125
REFERENCES ...ttt ettt ettt ettt e st essaeseenaasneeneas 126

vil

LIST OF TABLES

Table Page
1. Overview of this DIiSSErtationccceeiuieiiiiiiiiiiieierie e 12
2. A User Rating Prediction of Unseen Data Itemsccccceeeverienieneniieneenecieneenne, 77
3. Example Feature ValUescccoooiiiiiiiiiiiecee ettt 81
4. A Feature Weight Adjustment based on Data shown in Table 3..........cccccocveviieneen. 81
5. Sub-datasets of MLTest d2000cccceeiiiieiiieeeiiieeiee et seeeeeree e 90
6. Sub-datasets of MLTest U1000ccccueiiieriiiriieiieeieeieeee et 91
7. Experiment Metrics and TYPES ...c.ueeeruieeiiieeiiieeiieeeeee et e eire e ieeeeteeesteeesveeessvee e 98
8. Comparison between Query-to-Query Hybrid Filtering (HF) and Content-Based
Filtering (CBF) via the Spearman's rank correlation coefficient..............cccceeeuveenneen. 99
9. Comparison between Query-to-Query Hybrid Filtering (HF) and Content-Based
Filtering (CBF) via Precision and Recall............cccooeeiiiiiiiiiciiieieceeeee e 101
10. Comparison between Query-to-Query Hybrid Filtering (HF) and Collaborative
Filtering (CF) via the Spearman's rank correlation coefficient...........c..cccccveerneennnee. 102
11. Comparison between Query-to-Query Hybrid Filtering (HF) and Collaborative
Filtering (CF) VIa MAEoooiie ettt 105
12. Performance of Query-to-Query Hybrid Filtering Using Multi-Features (sim_all) or
UsINg Only ONe FEALUTEccocviiiiiiieiiieeiee ettt 107
13. Clusters of Countries based on Social/Cultural Similarities.............ccceeveerieenennne 107
14. Performance of Query-to-Query Hybrid Filtering (HF) With/Without Semantics .. 108

viil

LIST OF FIGURES

Figure Page
1. Graphical Model Representations of the Latent Class Model Examples 22
2. Knowledge Sifter Agent-Based Web Services Architecturecccccoceveeverienenne. 26
3. Ontology Schema for the Image Domain Model............cccceevvieeriiiiiieeeiie e, 28
4. RegiStration PAZEcocuiiiiiiiiiieiie ettt et et ens 33
5. Main Page before USer LOZINSc.cceeouiiiiiiiieiiieeeiie ettt eree e 33
6. Sign-in Problems Page..........ccccoeiiiiiiiiiiiiiicieeectee e 34
7. Data Preference Panecoocooiiiiiiiiiiiie e 35
8. Main Page After a Search for User Query “Rushmore in SD”........cccccoceviiniiniennnnn 37
9. GNIS Location Results Pageccocuviiiiiiiiiieeciie et 38
10. Google Earth with a place “Rushmore, Mount™ccccveviieiieniieeniienieeieesee e 39
11. ITmage ReSults PaAgecccuoiiiiiiiiiecee ettt e 40
12. A Flow Chart for KS Search Process via Agent Interaction............cccecceevveerueenenennnen. 41
13. Knowledge Sifter Agent Communication Diagram............cccceeeveeeriiennieeeneeesenneeeane 42
14. Knowledge Sifter Meta-Model Schema.............ccccoevieiiiiiieniieiceeeeeee e 44
15. Entity-Relationship Diagram of the Knowledge Sifter Meta Model.......................... 46
16. Knowledge Sifter Case-Based Architectureccceeevieviieniienieniieieeieeeeee e 48
17. Semantic Query Refinement Sequence Diagram.............cccccveeeviieiiieennieeeciee e, 54
18. Collaborative Query Refinement Sequence Diagram..........ccccoceveevieriieneenenieneenne. 55
19. Data Retrieval Sequence Diagram...........cccccueeeviieeniieiniieeiiiecice e 56
20. XML-based Semantic Representation of a User Query Case.........ccoceecvevvenuenvennenne. 59
21. An Example of Representing A User Query Using the User Query Case Representation....... 61
22. XML-Schema for Ontology INdeX.......cc.cecveriiiiiriiniiiiiiiinececeeeeeeee e 63
23. Case Retrieval Algorithm via Ontology IndeXccceviieviienieiiiienieciecee e 68
24. An Example of Collaborative Query Refinement for the Example in Figure 21 73
25. A database schema for user and item data with IMDB movie content information... 86
26. A database schema for a base and test dataset...........ccoocueeveeiiiiiiiiniienieceeeeeeen 87

X

ABSTRACT

HYBRID FILTERING IN SEMANTIC QUERY PROCESSING
Hanjo Jeong, Ph.D.
George Mason University, 2011

Dissertation Director: Dr. Larry Kerschberg

This dissertation presents a hybrid filtering method and a case-based reasoning
framework for enhancing the effectiveness of Web search. Web search may not reflect
user needs, intent, context, and preferences, because today’s keyword-based search is
lacking semantic information to capture the user’s context and intent in posing the search
query. Also, many users have difficulty in representing such intent and preferences in
posing a semantic query due to lack of domain knowledge and different schemas used by
data providers. This dissertation introduces a hybrid filtering method, query-to-query
hybrid filtering, which combines semantic content-based filtering with collaborative
filtering to refine user queries based not only on an active user’s search history, but also
on other users’ search histories. Thus, previous search experience not only of an active
user, but also of the other users is used to assist the active user in formulating a query. In
addition, a case-based reasoning framework with Semantic Web technologies is

introduced to systematically/semantically manage and reuse user search histories for

query refinement. Finally, ontologies are used for the hybrid filtering to mine preferable
content patterns based on semantic match rather than just a keyword match. Validation of
the query-to-query hybrid filtering method is performed on the GroupLens movie data

sets.

1 Introduction and Overview

Today’s search engines provide uniform search results for the entire user
community with little regard for user intent, context and preferences. This may result in
poor search performance in terms of both recall and precision; the search results do not
take into account user intent and context. Also, this makes it difficult to provide users
with information that is not only relevant to a user query, but also matches their
preferences. Most search engines rely solely on keyword search and have difficulty in
obtaining user feedback on the perceived relevance of the search results. A user may
click on a few of the presented links, and this might be considered a form of user
feedback. One of the goals of this thesis is to improve the effectiveness of search by
incorporating user preferences and user feedback.

Another important challenge is to incorporate more meaning, or semantics, into a
search query posed to a search engine. It is important to capture user context and intent,
as a way to focus, sift and winnow the results to reflect a user’s intent, whether it is to
dine at a fine restaurant, lease an automobile, or purchase real estate. While the addition
of semantics to query terms should improve the effectiveness of the search results — we
call this semantic content-based filtering, another important component of the proposed
approach is the use of collaborative filtering whereby other users’ likes and dislikes in

response to similar queries can be used to filter results presented to the current user. The

1

approach is called “query-to-query hybrid filtering” that combines the best of semantic
content-based search with collaborative filtering, thereby mitigating some of the issue of
user preferences, intent, context, and feedback mentioned above.

Finally, it is important to extend Web search to heterogeneous data sources such
as XML-databases, multimedia, and the emerging Semantic Web, which relies on linked
data, open standards, semantic ontologies expressed in RDF, and OWL, and Web
services. This extends the reach of search to semi-structured data as well as Semantic
Web data/knowledge bases.

This dissertation begins by providing an overview of Knowledge Sifter [37, 38].
Knowledge Sifter is an agent-based system that searches for information from
heterogeneous data sources by incorporating semantic technology as well as user
preferences, intent and context. In this research, the approach of using Semantic Web
Services for materializing the Semantic Web [30] is used for the information search
among heterogeneous data sources located both on the Web and the Semantic Web.
Although Web Services are semantically well described in the Knowledge Sifter
approach, there is still a problem of deciding which services to use due to the many
services offerings. Clearly, the quality of search results depends on the quality of
information contained in the data sources, and therefore, authoritative sources need to be
identified and rated. The judicious selection of appropriate Web Services (data sources)
will increase both the effectiveness and the efficiency of the searches.

Next, a hybrid filtering method - called “query-to-query hybrid filtering” - is

introduced in order to refine a user search process based not only on the user’s feedback,

but also on other users’ feedback. Based on the hybrid filtering approach, this algorithm
allows Knowledge Sifter to select user-preferable/suitable data sources for a user query
semi-automatically.

Finally, this thesis presents a case-based reasoning framework for systematically
capturing, storing, retrieving and maintaining all of the artifacts produced during the user
search process. These are used to suggest refinements of search terms for user queries,
data sources to be accessed, and presentation of initial results based on previously stored
cases. In the case-based reasoning framework, the artifacts created by the agents during
the formulation, refinement, processing, and result-rating of a user query are captured
automatically, described in terms of a meta-schema, and indexed and stored in a
repository as user-cases. The cases are 1) represented in terms of an XML-based schema
(Extensible Markup Language) [1], 2) stored in a case repository, and 3) managed by a

case management agent, which is introduced as part of the case-based framework.

1.1 Information Search on the Web and the Semantic Web

With the emergence of the World Wide Web, or simply the Web, individuals and
organizations are able to publish information freely on the Web. This open and
distributed nature of the Web makes it difficult for Web search engines to find
information related to user information needs due to the immense amount of information
published on the Web. It is also challenging because data or information is represented by

the data providers’ own vocabulary, and many of the providers are unreliable due to their

lack of reputation. Lastly, today’s search engines use keyword-based search rather than
semantic-based technologies.

The semantic-based search using the emerging Semantic Web technologies such
as XML, RDF/RDFS [50], and OWL [66] can help to mitigate the terminology ambiguity
problems since the Semantic Web technologies are developed based on the idea of
indexing information relying on semantics rather than just keywords. For example, a
keyword “jaguar” can represent three different conceptual objects: “animal jaguar,” “car
jaguar,” and “Mac OS Jaguar.” The semantic-based search can use hierarchical
generalizations and distinguishing characteristic information to distinguish the jaguar
concept objects. For the hierarchical information, one can specify that the domain of the
jaguar object be related to animal, automobile, or operating system. For the characteristic
information, one can specify whether the jaguar object has legs or wheels to represent
animal jaguar or car jaguar, respectively.

Even though the data is semantically well represented in the Semantic Web,
assessing data quality may be problematic — data authenticity, data provenance, and data
popularity — are not necessarily provided in the semantic markup of that data. The
problem is that it is not practical to have one central authority assessing the aspects of the
data in the distributed environment. By mining and interpreting the collections of user
feedback (assessment) about the data, one can assess the relevance and quality of the data.

The query-to-query hybrid filtering method introduced in this research semi-

automatically determines quality attributes by using the meta-data patterns and user

feedback patterns that can be found from the collection of the artifacts captured during

the user search process, including user feedback.

1.2 User Preferences in Information Search

Given a particular user query, many information retrieval/search systems employ
user preference to retrieve and filter the query results. This is done by filtering and/or
ordering the immense amount of total search results in the order of the results’ similarity
with the user preference. The user preferences are generally determined based on the
entire user feedback by ignoring the topic or domain of the user queries for which the
feedback has been made. However, the user preference in a general-purpose information
search system is usually very dynamic and temporary, based on a user information need
specified in the form of a query. In other words, only the user feedback obtained for an
active query (i.e., a current query being posed by a user to specify the user’s immediate
information need) can be used to mine such short-term user preference. User feedback
previously obtained for the user’s other queries, which generally specify different
information needs, cannot be used for the mining. Furthermore, most keyword-based
information search/retrieval systems such as Google and Yahoo! obtain user feedback via
click-throughs on links, for only a small number of data-items — typically less than 20.
This is because the users only view the top N search results in general, where in N is
small. Therefore, most information retrieval systems would have difficulty in providing

the short-term user preference due to the lack of the user feedback.

On the other hand, information filtering systems use relatively static and long-
term-based user preferences, which can be mined from the entire, or a fairly large subset
(e.g., by selecting only recent searches) of, user feedback. The user interests for an
information filtering system need not be dynamic and temporary, as compared to an
information retrieval system, because most information filtering systems deal with only
one specific domain of information such as news articles, email, movie, etc., [10, 13, 56].
Information is pushed to users according to a user’s long-term information needs, while
information is obtained from users in the retrieval systems via a query, which represents a
user’s short-term information requirements. As a result, user preferences in information
filtering systems are generally formed with a static set of data-item features, and only the
values and weights of the features need to be updated over time.

Some information retrieval/search systems also use such static and long-term user
preference. In this case, such systems can obtain a sufficient amount of user feedback to
mine user preference. However, since user preference should be matched with a topic or
specific content of a data object for which a user query is posed, such static and long-
term user preference often would not be valid for a general-purpose search system. For
example, a user preference mined from a user search for locating restaurants would not
be valid for a user search to find movies since the features of the data objects are totally
different. A user’s preferred feature weights and values from the restaurant search are of
no use in predicting the user’s preferable feature weights and values for the movie search.

Therefore, the amount of user feedback that can be used to mine user preferences for a

user search would also be insufficient if there were just a few search histories for the
same domain or topic of the user search.

An important issue is whether a user would have the patience to provide
substantial feedback, given that they need a quick turnaround to their search query.
There are circumstances, however, when users would provide such feedback. Consider a
situation in which a user is involved in intellectual property creation, and where
specialized searches, e.g., for relevant patents, are essential for determining the merit of a
discovery, and its technical, economic, and legal viability. In such cases, users would
gladly supply feedback in exchange for timely, high-quality, and pertinent results. Also,
the accumulation and refinement of user preference features and feedback can be done in

an incremental and iterative manner via the case-based framework proposed in this thesis.

1.3 Collaborative Information Search

As introduced in the previous section, many of information search systems suffer
from the lack of user feedback to enable user preference mining. This problem can be
mitigated by employing a collaborative approach that uses other users’ feedback to mine
the active user’s preferences. This collaborative approach provides not only novelty, but
also serendipity in information search. The novelty occurs when a user is given a
recommendation that comes as a surprise because he was not aware of it; the serendipity
arises when the information provided would likely not have been ascertained by the user
[32, 62]. For example, if a system recommends new information provided by a user’s

favorite data sources, the information is novel, but not serendipitous. The information is

7

serendipitous if it were to come from a data source that was new to the user. Therefore,
the novelty occurs if a system employs user preferences to predict the likelihood that the
user would “like” certain information. However, the serendipity can only be obtained if a
system mines a user’s preference not only from the user’s feedback, but also from
neighbor users’ feedback. The neighbor users can be defined as other users who might
have similar tastes.

The novelty and serendipity in information search is useful not only for
recommending new data or information, but also for refining user queries themselves.
Unlike most recommender systems, Knowledge Sifter is a query-based information
retrieval system, i.e., the data/information provided to a user will be heavily dependent on
how a user query is specified. Therefore, if the novel and serendipitous collaborative
aspects are added to specifying and refining user queries, the provision of novel and
serendipitous information to the users can result. In this research, a collaborative
approach is used to automatically specify user queries via emergent semantics. The
emergent semantics are obtained from content patterns among data items that are
preferred for a user query not only by the active user, but also by the neighbor users.
Finally, the user query is refined with the emergent semantics. This collaborative query
refinement would also assist the users in specifying their information needs as a query
using the specification recommendations created by the neighbor users and data providers’

vocabulary found on the data content patterns.

1.4 Research Objectives

According to the research motivations introduced in the previous sections, the
main research objective of this thesis is to improve the effectiveness of search by 1)
assisting users in formulating semantic queries that match the user’s search intent and
context, 2) using Semantic Web technology and Web Services to access heterogeneous
semantic content, and 3) taking advantage of other user queries and their associated result
sets to mine a user’s short-term preference regarding the user’s current query.

An information object, e.g., a search request, can be specified differently for
distinct domains and views, specifically with regards to user intent and context. For
example, a query “find a steakhouse near Washington Monument” can be formulated
with two different search intents, “dining” and “starting a restaurant business”. For the
intent of dining, a semantic query can be specified with features, cuisine type, food cost,
location, etc. For the intent of starting a restaurant business, the features will be business
type, asking price, revenue, location, etc. Therefore, guiding users in formulating
semantic queries based on their search intent and context should improve the search in
terms of precision.

As the Web and the Semantic Web are open and distributed environments, the
information objects (search requests) can be processed by accessing heterogeneous data
sources, as there are many providers and they use their own vocabularies to specify the
objects. The Semantic Web ontologies represented in XML, RDF and the Web Ontology
Language (OWL) can help to mitigate the semantic heterogeneity, while Web Services

provide syntactic interoperability. Especially, using OWL to specify relationships
9

between concepts in an ontology or in multiple ontologies will improve the effectiveness
of search by mitigating semantic heterogeneity.

As addressed in Section 1.2, users provide relevance feedback implicitly or
explicitly only for a few of the many items returned as a result of a search. Thus, most
users can be regarded as new users because they provide feedback for a few search
results and the feedback can be used only for an active (current) query. The proposed
query-to-query hybrid filtering augments feedback information based on neighbor query
cases, which have user queries similar to the active query, and then refine those queries
based on the augmented feedback. This query refinement mitigates the new-user problem
and improves the effectiveness of a search especially in the new-user situation that often
occurs in a query-based search system. Also, the neighbor query cases can be found not
only from the active user’s search history, but also from other users’ search history. Thus,
the query refinement can be regarded as collaborative query refinement that uses opinions

of a user community having similar search concepts and intent.

1.5 Research Hypothesis

Based on the research objectives, the main research hypothesis is “The query-to-
query hybrid filtering, which consists of semantic content-based search complemented
with collaborative filtering, will improve the effectiveness of search, especially in the

new-user situation.”

10

1.6 Research Approach

A case-based reasoning framework is defined to assist users in formulating
semantic queries based on user search concepts and intent including query-based case
representation and ontology-index based case retrieval algorithm. The query-to-query
hybrid filtering method is specified and developed for reusing previously-stored query
cases in the collaborative query refinement process. I also validated and tested the query-
to-query hybrid filtering algorithm by using well-known MovieLens dataset created by

the GroupLens research group.

1.7 Overview of Dissertation

An outline of the remainder of this dissertation is shown in Table 1.

11

Table 1 Overview of this Dissertation

Chapter

Chapter Description

1
2

Introduction (this chapter)

Related Research: this chapter describes other past research related in
common to the area of this research.

Knowledge Sifter: this chapter introduces Knowledge Sifter, an agent-based
information search system which uses various Semantic Web technologies
such as ontologies and Web Services to retrieve information from
heterogeneous data sources.

Case-Based Knowledge Sifter Framework: this chapter presents a case-
based framework for Knowledge Sifter which is designed to manage and reuse
the previous user-query cases systematically and efficiently. An XML-based
semantic representation of user-query cases, an ontology-based index structure,
concept-based case-similarity calculation, a case retrieval algorithm, etc. are
provided for the efficient retainment and retrieval of the cases.

Collaborative Query Refinement: this chapter provides a collaborated query
refinement process which is based on the case-based Knowledge Sifter
framework and a hybrid filtering method combining both collaborative
filtering and content-based filtering. The hybrid filtering method is called
query-to-query hybrid filtering and it is used to refine a user query by using
user rating patterns and content patterns found not only from an active user’s
query case, but also from neighbor users’ query cases.

Validation: details of various experiments for validating a primary method of
this research, query-to-query hybrid filtering, such as experiment setup and
results are described in this chapter.

Conclusions

12

2 Related Research

2.1 Semantic Search

Most of the traditional Web search engines such as Google and Yahoo! use
keyword search, which indexes Web documents using a set of keywords and retrieves the
documents based on keyword match rather than semantic match. The traditional Web
search also uses semantics implicitly represented by keyword patterns found via using
statistical mining technologies such as LSI (Latent Semantic Indexing) [18, 33]. However,
the implicit semantics found from the term and document matrix can still be somewhat
ambiguous because the synonymous relationships among the terms are found based on
co-occurrences of terms in documents, not based on explicit synonymous relationships as
defined in an explicit ontology. Furthermore, the traditional Web search is document-
oriented while semantic search is object-oriented [26]. This characteristic of the
traditional Web search also makes the statistically-mined synonym relationships from the
term and document matrix ambiguous because a Web document can contain multiple
objects and terms in a document can describe different objects. In addition, a synonym of
a term is no longer synonymous to the term in different contexts (e.g., topic,
temporal/spatial aspects, etc.) of a document.

Therefore, the basic idea of semantic search is to improve the effectiveness of

information search on the Web using neither keyword/s nor the implicit semantics, but

13

the explicit semantics via the Semantic Web and Semantic Web Services which provide a
semantic indexing scheme and semantic data transfer, respectively. The roles of the
Semantic Web, Semantic Web Services, and ontologies for semantic search are described

in the following subsections along with related research.

2.1.1 Information indexing via Semantic Web

Given the difficulty of natural language processing and the unsatisfactory
performance of keyword/s-based search, one of the goals of the Semantic Web is to
improve the effectiveness of the Web search by providing an information indexing
scheme based on the explicit semantics. The traditional Web can be regarded as a Web of
documents because it is originally created for human navigation. This repository nature
of the traditional Web thus requires ad hoc machine-processible indices such as
keyword/s or metadata-based document indices in order to perform the Web search. The
emerging Semantic Web can be viewed as a Web of data (objects) [14] in which the data
represent real-world objects using explicit semantics via machine-processible formats
such as XML, RDF/RDFS and OWL. Thus, the Semantic Web itself also can be regarded
as a huge (very dense) index which represents and identifies Web resources with

semantics because of the machine-processibility of the Semantic Web data.

2.1.2 Role of the (Semantic) Web Services in Semantic Search

Data in the Semantic Web is basically specified by a graph-based framework,
RDF (Resource Description Framework), which allows us to describe data in a machine-
processible format while providing a linking framework between data [50]. The linkages

14

represent semantic relationships among data with a set of controlled vocabulary. One of
the semantic search approaches is to find RDF data representing user concepts from static
Semantic Web documents [19, 26]. However, most semantic search engines still rely on
the simple keyword search while such semantic search requires sophisticated reasoning
on the RDF graph. Most of the Semantic Web reasoning engines such as Jena [16] and
Pellet [64] provide inference and reasoning on the RDF dataset, but the reasoning engines
would not be well suited for the semantic search engines because of the distributed nature
of the Web and the immense amount of Web RDF data. A RDF crawler would be
required to gather the RDF data on the Web, and a RDF database would need to be
maintained to store all of the gathered RDF data. It can be easily predicted that the size of
the RDF (index) database will be unmanageable because all of the actual RDF data would
need to be stored on the Semantic Web. Unlike the traditional Web search engines, which
store only metadata (a set of keyword/s) of Web sites with the goal of finding Web sites,
the goal of the semantic search is to find data objects (Web sites also can be regarded as
one of the objects). Also, the huge amount of data would degrade the performance of the
reasoning engines in terms of both their efficiency and effectiveness.

Another view of the Semantic Web considers it to be materialized by Semantic
Web services. Many current Web sites use a back-end database, which allows users to
access their data only from their customized Web application, because they do not want
publish all of their data due to business and security issues [30]. Another reason is
because their data is too massive to publish on the Web using static Web pages. For

example, if Amazon.com were to use static Web pages to provide all their product data to

15

the customers and other vendors, the data would be unmanageable because of the
immense number of the static Web pages required to present the data. Therefore,
dynamic Web pages and Web Services access the back-end database to retrieve on-
demand product information to display to the customers and other venders, respectively.
Furthermore, the current Web search usually finds only the Web sites which contain data
related to the user query concept. Thus, the users further need to use the Web application
of the retrieved sites to get the real data which they intended to search. For example, if a
user wants to find a hotel in Paris whose price for a one night stay is under $100, the
current Web search engines cannot directly answer the user query. This is not only
because they cannot process such a complex query due to the limitation of the term-to-
document indexing, but also because there is no such data on the static Web. The search
engines can find only some travel sites such as expedia.com and hotels.com, and the
users are required to visit the Web sites in order to use a Web application provided by the
travel sites to locate such hotels. This phenomenon supports using Semantic Web
services approach to materialize the Semantic Web. For this research, the Semantic Web
services approach has been chosen for materializing the Semantic Web for the semantic

search.

2.1.3 Role of Ontology in Semantic Search

Ontology can be defined as “a specification of a shared conceptualization of a
domain” [25]. OWL (Web Ontology Language) is a de facto standard language of
representing ontologies for the emerging Semantic Web. OWL is built on top of RDF

and extends vocabularies for describing concepts and their relationships for forming
16

ontology of Web resources [66], i.e., while RDF/RDFS represents only the taxonomical
knowledge of Web resources, OWL is created to support ontological knowledge of Web
resources. There are two main roles of ontology for semantic search: one role is to
disambiguate user queries by linking a user term to a specific ontology concept
representing actual user query concept [26, 29, 65], and the other role is to modify user
queries based on concept-hierarchies defined in ontology [9, 15]. Two types of ontologies
are mainly used for the query refinement: one type is a general upper ontology such as
WordNet, and the other type is a domain ontology which defines domain-specific
concepts for the domain of search data. In this research, both the query disambiguation
and the query augmentation using WordNet and domain ontologies are used to refine user

queries.

2.2 Recommender Systems

Recommender systems are software systems whose purpose is to provide more
preferable data items to a user by predicting the user’s preference of data items which the
user has not yet seen, by analyzing and applying user rating patterns and data content
patterns in user profiles. Recommender systems are based on three methodologies:
content-based filtering, collaborative filtering, and hybrid filtering methods [12, 61].
Content-based filtering is a method of filtering unseen (technically, not yet rated by a
user) items to an active user based on the similarity of the items to a query which is
formulated by the content patterns mined from a set of items preferred only by the active

user previously. On the other hand, collaborative filtering is a method of making

17

predictions of the active user’s preference for the unseen items based not only on the
active user’s ratings, but also on neighbor users’ ratings. The neighbor users are a group
of users who have tastes (technically, rating patterns on commonly rated items) similar to
the user. The bottom-line idea of the collaborative filtering is that people who agreed in
the past are likely to agree on the future. Lastly, the hybrid methods combine content-
based filtering and collaborative filtering to take advantages of their strength and mitigate
their shortcomings. The following subsections describe these three methodologies in

more detail.

2.2.1 Content-Based Filtering

Content-based filtering is a method for recommending the unseen items to a user
based on the contents of items already in the user’s profile. The content-based filtering is
similar to a personalization method in terms of using the user preference constituted by
eliciting user-preferred contents of items (objects) based on the user’s relevance feedback.
The main idea of this method is to find content patterns among the user-preferred items
and to use those patterns to refine the user query so as to retrieve additional items
relevant to the user-preferred items. This method is also similar to association rule
mining [28, 67] in data mining because it discovers the features’ association patterns from
the user-preferred items in terms of a feature vector.

For example, the Multimedia Analysis and Retrieval System (MARS) [58, 63]
incrementally learns a user’s intention for query refinement from the user’s profile. The
query refinement method consists of query re-weighting and query modification

techniques. These two techniques are based on relevance feedback in which a user
18

provides evaluations for result objects associated with the initial user query, in terms of
multiple levels of relevance, e.g., highly relevant, relevant, no opinion, not relevant, or
highly not relevant. The query re-weighting techniques adjust weights for each
component (feature criterion) in multi-dimensional queries by calculating the weighted
centroid of the result objects. The query modification techniques construct a multipoint
query by clustering the result objects based on their points in the multi-dimensional
feature space in order to expand the user query. The multipoint query is determined as a
query which contains multiple values for each feature, i.e., it embraces multiple
representations of the user query. The two refinement techniques are combined
seamlessly and can be incrementally performed along with the updates of the relevance

feedback.

2.2.2 Collaborative Filtering

Unlike content-based methods, collaborative filtering attempts to predict
usefulness of as yet unseen items for an active user, who is currently using the system;
the prediction is based on user rating values which have previously been given to the
items not only by the active user, but also by the other users. Well-known recommender
systems based on collaborative filtering are the GroupLens system [24, 31, 46, 59, 60]
and the Amazon.com item-to-item collaborative filtering system [48]. The GroupLens
system recommends items such as news articles and movies to the active user by filtering
the items based on the predictions made for the active user regarding the user’s likeness
on the unseen items. The user’s likeness of an unseen item is determined based on the

user ratings of neighbor users on the unseen item. The neighbor users are selected if they
19

have similar rating patterns with the active users for the commonly-rated items in their
profile. The Amazon.com item-to-item collaborative filtering finds the most popular co-
purchased items within the group of users who have purchased the active item, which an
active user is currently viewing. This is done by simply counting the number of co-
occurrences on the group’s profile. The main concern of the Amazon.com’s methodology
is to provide better performance and scalability enabling the system to perform real-time
recommendations among the large collections of items.

In general, the collaborative filtering algorithms can be categorized into two
classes: memory-based algorithms and model-based algorithms. The memory-based
algorithms employ a user rating-history database in order to find neighbor users who
have similar rating patterns with the active user. Recommended items based on the
neighbor users’ rating patterns using algorithms similar to those used in the GroupLens
and Amazon.com recommender systems are then offered. The following equations are
used to calculate a prediction for the active user’s rating for an unseen item based on the

Pearson Correlation Coefficient used in GroupLens:

Z(Fu",d” o ru") * Wu”,u"

u}’l

P T S
u’u
un

(1

20

L)

where p , , represents a prediction for the active user u” for an unseen (unrated) item d".
u®,

u" represents a neighbor user who has a rating record for the unseen data item for the

active user. w , , is the similarity (correlation) weight between the active user and a
u®u

neighbor user in terms of rating patterns as defined by the Pearson Correlation

Coefficient. &' is the commonly seen (rated) items between the active user and the

neighbor. » , and 7, represents arithmetic means for the ratings of data items obtained

from the active user and the neighbor, respectively.

On the other hand, the model-based algorithms first cluster users into predefined
classes based on user rating patterns. The usefulness (prediction of rating values) of items
for the active user is evaluated by the overall ratings of one of the predefined classes in
which the active user has been classified. Most algorithms in this approach are using a
latent (hidden) class model based on Bayesian (Belief) Networks. Equation 3 is used to
calculate the rating value for the latent class model (a) in which has strong assumptions
that a user u and an item d are conditionally independent and a rating value r is also

conditionally independent with the user and the item given a latent class z.

21

(a) (b) (c) (d)
o e e &

ofkolioghollofRolicfiBo
® o O o

Figure 1 Graphical Model Representations of the Latent Class Model Examples

P(u,d,r)=> P(z)P(u|z)P(d | z)P(r| z) 3)

zeZ

where the latent class variable z € Z = {z,, z,, ..., z;} is associated with each observation
(u, d, r). P(z) stands for class prior probability, P(u|z) and P(d|z) stand for class
dependent distributions for users and items, respectively.

Generally, the memory-based algorithms are preferable to the model-based
algorithms due to the limitation of clustering users and the lack of instances to cluster the
users. However, the model-based algorithms can be more effective in terms of processing
time because usefulness of items can be pre-calculated for the pre-defined classes so that
the system only requires time to classify the active user. Hybrid algorithms that combine
memory- and model-based algorithms are developed to use the best aspects of the two
algorithms by clustering users while keeping the rating patterns in a database. This would
make the recommendation process transparent, unlike the memory-based methods.
Furthermore, the hybrid algorithms would allow a system to modify user classes over the

entire user ratings unlike the model-based methods as in collaborative filtering by

22

personality diagnosis approach [57]. However, this approach would have too many
clusters because users are clustered by their rating patterns. At worst, the number of
clusters could be the same as the number of users, which would be identical to the

memory-based algorithms.

2.2.3 Hybrid Filtering

Content-based recommender systems recommend items that are similar to items
liked in the past by a given user. When a new user uses such a system, the system might
not work properly because the user’s profile does not contain a list of preferred items.
This is called the new user problem [8, 59] which usually happens in the content-based
recommender systems. Collaborative filtering alleviates the new user problem by
allowing the system to refer to other users’ profiles in the recommendation process.
Nevertheless, the collaborative systems also have a similar problem which is called the
new item problem [8]. When a new item arrives in the system, it can never be retrieved
and rated because the collaborative filtering is based on ratings of items in user profiles
without considering the contents of the items. Therefore, hybrid filtering methods that
combine the content-based filtering and the collaborative filtering would compensate for
the new user and new item problems by allowing a recommender system to learn the
content patterns of items preferable to an active user based not only on the active user’s

own behaviors, but also on other users’ behaviors.

23

3 Knowledge Sifter

The Knowledge Sifter (KS) project has as its primary goals: 1) to allow users to
perform ontology-guided semantic searches for relevant information, both in-house and
open-source, 2) to access heterogeneous data sources via agent-based knowledge services
[37, 38], and 3) to refine searches based on user feedback. Increasingly, users seek
information outside of their own communities to open sources such as the Web, XML-
databases, and the emerging Semantic Web. The Knowledge Sifter project also wishes to
use open standards for both ontology construction and information search on
heterogeneous data sources. For this reason OWL [21, 52] has been chosen to implement
the specifications and data interchange, and Web Services [17] for communication among

agents and information sources.

3.1 KS Agent-Based Web Services Framework

The rationale for using agents to implement intelligent search and retrieval
systems is that agents can be viewed as autonomous and proactive. Each agent is
endowed with certain responsibilities and communicates using an Agent Communication
Language [23]. An agent architecture can be materialized as Web Services with ad hoc

functionalities such as awareness of other agents in a meta-level, ontology reconciliation,

24

agent communication, and distributed coordination [34]. This is the approach taken to
implement the agent community comprising Knowledge Sifter in this research. The
family of agents presented here is a subset of those incorporated into the large vision for
Knowledge Sifter. This work is motivated by earlier research into Knowledge Rovers [35,
36] performed at GMU. This research is also informed by a research on WebSifter [41,
42, 441, which is both a US patented invention [43] and a meta-search engine that gathers
information from traditional search engines and ranks the results based on user-specified
preferences and a multifaceted ranking criterion involving static, semantic, categorical,
and popularity measures.

The Knowledge Sifter architecture [37, 38] may be considered a service-oriented
architecture consisting of a collection of cooperating agents. The application domain is
that of Image Analysis. The Knowledge Sifter conceptual architecture is depicted in
Figure 2. The architecture has three layers: User Layer, Knowledge Management Layer,
and Data Layer. Specialized agents reside at the various layers and perform well-defined
functions. This collection of cooperating agents supports interactive query specification
and refinement, query decomposition, query processing, ranking, as well as result ranking
and presentation. The Knowledge Sifter architecture is general and modular so that new
ontologies and new information resources can be easily incorporated [55]. The various

agents and services are described below.

25

User User Preferences
Layer Agent Agent
L4
: Query Imagery
Knowledge Rinkutg Formulation O?oiﬁ%y Domain
Management gen Agent & Model
Layer
WordNet GNIS GNS
Services

Agent
& Authoritative

Name Services

- / ~

Legend

» / S,
prail 4 ki
ls)ata +— Agent Interaction
ourees Halieo! TerraServer SO
Layer Images Web < --> Data Flow

Figure 2 Knowledge Sifter Agent-Based Web Services Architecture

3.1.1 User and Preferences Agents

The User Agent interacts with the user to elicit user preferences that are managed
by the Preferences Agent. These preferences include the relative importance attributed to
terms used to pose queries, the perceived authoritativeness of Web search engine results,
and other preferences to be used by the Ranking Agent. The Preferences Agent can also
learn the user’s preference based on experience and feedback related to previous queries.
The User Agent also takes responsibility for presenting results to the user in terms of an
image visualization via its own visualization services and spatial visualization via

external visualization services such as Google Maps API and Google Earth.

26

3.1.2 Ontology Agent

The Ontology Agent accesses an imagery domain model, which is specified in
OWL and resides in the KS repository. In addition, there are three authoritative name
services: Princeton University’s WordNet [54], the U.S. Geological Survey’s GNIS [2],
and the GEOnet Names Server (GNS) [3]. They allow the Ontology Agent to use terms
provided by the name services to suggest query enhancements such as generalization or
specialization.

For example, WordNet can provide a collection of synonyms for a term, while
GNIS and GNS translate a physical place in the US and the Earth, respectively into
latitude and longitude coordinates that are required by a data source such as TerraServer.
Other appropriate name and translation services can be added in a modular fashion, and

the domain model would be updated to accommodate new concepts and relationships.

3.1.3 Imagery Domain Model and Schema

The principal ontology used by Knowledge Sifter is the Imagery Domain Model,
specified using OWL. A Unified Modeling Language (UML)-like diagram of the
ontology is provided in Figure 3. The class Image is defined as having source, content,
and file-descriptive features. Subcategories of content are person, thing, and place. Since
satellite and geographic images are primary data objects of interest, the class place has
two general attributes, name and theme, together with the subclasses region and address.
The Region is meant to uniquely identify the portion of the Earth’s surface where the
place is located, either by a rectangle or a circle. In the case of a rectangle two latitude

values (north and south) and two longitude values (east and wes?) are needed, while the
27

latitude and longitude of its center point and a radius are needed to specify a circle. The
address of our location is identified by country, state, city, zip code, and street. Each
image belongs to a specific online source, the server and has URI-1 as a unique identifier,
together with a secondary URI-2 for a thumbnail (if any). Some qualitative and
quantitative attributes are also modeled as subclasses of the general class features,
namely resolution (in square meters per pixel), projection and datum (for future GIS

utilizations), a date range, and image size (with height and width expressed in pixels).

—

*

Content Image Features
has
A A
Person Source Pro_]ectlon Resoluhon
Place
Name ﬁ\\ Date >
Theme Region Address

/\/ \/\ \ Size
Circle Rectangle i ‘;

s

Legend @

Class Af‘ ISA Relationship
@ 1 * [-to-many Relationship

Figure 3 Ontology Schema for the Image Domain Model

28

3.1.4 Authoritative Name Services

The Ontology Agent accesses three authoritative name services. The first name
service is WordNet, developed at Princeton University, which is a lexical database for the
English language and provides senses (linguistic concepts) for a term and synonyms for a
sense which allows KS to perform a broader search. The WordNet also provides
hyponyms and hypernyms for a sense, which enhance queries in terms of specialization
and generalization, respectively.

The second name service is the USGS Geographic Names Information System
(GNIS) which is a database of geographic features within the United States and its
territories. GNIS was developed by the USGS and the U.S. Board on Geographic Names
(US BGN) to meet major national needs regarding geographic names and their
standardization and dissemination. It is an integration of three separate databases, the
National Geographic Names Data Base, the USGS Topographic Map Names Data Base,
and the Reference Data Base. Records within the database contain feature name, state,
county, geographic coordinates, USGS Geographic Map name, and others.

The last name service is the National Geospatial-Intelligence Agency (NGA)
GEONet (GNS) which is also a geographic feature database for worldwide searches
excluding the United States and Antarctica. GNS also integrates the NGA’s geospatial
information and the US BGN’s database of foreign geographic feature names for the

standardization and dissemination of foreign geographic feature names.

29

3.1.5 Query Formulation Agent

The user indicates an initial query to the Query Formulation Agent. This agent, in
turn, consults the Ontology Agent to refine or generalize the query based on the semantic
mediation provided by the available ontology services. Once a query has been specified
by means of interactions among the User Agent and the Ontology Agent, the Query
Formulation Agent decomposes the query into subqueries targeted for the appropriate
data sources. This involves semantic mediation of terminology used in the domain model
ontology and name services with those used by the local sources. Also, query translation

is needed to retrieve data from the intended heterogeneous sources.

3.1.6 Web Services Agent

The main role of the Web Services Agent is to accept a user query that has been
refined by consulting the Ontology Agent and decomposed by the Query Formulation
Agent. The Web Service Agent is responsible for the choreography and dispatch of
subqueries to appropriate data sources, taking into consideration such facets as: user
preference of sites; site authoritativeness and reputation; service-level agreements; size
estimates of subquery responses; and quality-of-service measures of network traffic and
dynamic site workload [53].

The Web Services Agent transforms the subqueries to XML Protocol (SOAP)
requests to the respective local databases and open Web sources (TerraServer or Yahoo

Images) that have Web Service published interfaces.

30

3.1.7 Ranking Agent

The Ranking Agent is responsible for compiling the subquery results from the
various sources, ranking them according to user preferences, as supplied by the
Preferences Agent, for such attributes as: 1) the authoritativeness of a source which is
indicated by a weight — a number between 0 and 10 — assigned to that source, or 2) the

weight associated with a term comprising a query.

3.1.8 Data Sources and Web Services

At present, Knowledge Sifter consults two data sources: Yahoo Images and the
TerraServer. Yahoo Images supports Representational State Transfer (REST) [22]-based
Web Services which simply returns XML result data over HTTP. Yahoo Images supports
the name and description for images; this allows the Ranking Agent to perform more
precise evaluation for the semantic criteria. The Ranking Agent also uses the size of
images contained in Yahoo Image’s metadata to filter images based on user preference.
However, the metadata does not contain the creation time of images, which is a good
measure of temporal aspect.

The TerraServer is a technology demonstration for Microsoft. There is a Web
Service API for TerraServer. TerraServer is an online database of digital aerial
photographs (DOQs — Digital Orthophoto Quadrangles) and topographic maps (DRGs —
Digital Raster Graphics). Both data products are supplied by the U.S. Geological Survey
(USGS). The images are supplied as small tiles, and these can be made into a larger
image by creating a mosaic of tiles. The demonstrator at terraserver-usa.com uses a

mosaic of 2x3 tiles.
31

The purpose of this approach is to take the ontology-enhanced query and generate
specific sub-queries for the TerraServer metadata. The resulting image identifiers and
their metadata are wrapped into an instance of the Knowledge Sifter image-domain
ontology, and an array of these is returned to the Web Service Agent to compile with

other results.

3.2 Knowledge Sifter End-to-End Scenario

In this section, end-to-end scenarios of each process created and implemented in

Knowledge Sifter system are described with screen shots.
1. Registration: users are required to register first in order to use KS system because at
present KS is implemented to support several users. The registration and login process

allows KS to keep track of its users’ context to customize its services based on the

context.

32

& Home

Knowledge Sifter A

Agent-Based Ontology-Driven Search Tool

New User Registration:

All persanal information will be kept strictly confidential and will not be given out under any circumstances.

First Name:

Last Name:

Industry:

Select an User ID:
Select a Password:
Confirm Password:
Your Security Guestion:

Your Answer:

heger |

Registration enables kKnowledge Sifter to provide maore accurate and reliable results though user identification and authentication via

Figure 4 Registration Page

2. Login: there are three options for setting a cookie as follows: 1) set no cookie (always
asks for my ID and password), 2) set cookie for only user id (save my ID only), and 3) set

cookie for user id and password (save my ID and password).

Knowledge Sifter

Agent-Based Ontology-Driven Search Tool

User ID:

Password:

Figure 5 Main Page before User Logins

33

3. Sign-in Problems: if users have forgotten their id and/or password, they can find their
id or set new password for their account after they are authenticated by confirming their
security answers which they set at registration time. Note that KS stores user passwords
in the KS repository as a hash sum produced from a combination of multiple
cryptographic hash functions. Therefore, users have no option except to create a new

password if they forget their password.

Knowledge Sifter Sign-in Problems Page

If von have forgotten yom nserid anil'or password to vonr account, please confirnn vour identity by fillmg ont Itema 1
below. Fost enter your fust and last name and click ou the button “Rehieve Yom: Secmaty Qnestion” Next. before
angwering the secmity question, please select vowr uger id fromn the sbop-down hist of wser ids. After confunng your
security samswer, von will be allowed to create 4 new password for yom accommt, Note that your secmity answer shoul
wlentical to the one you providedd duing the remstration procesa

1. Confuin Yom [dentity

Fost Name

Last Namne

Retrieve Your Se curity Question

2. Create Your New Password

Your User I

Select a Mew Passwmd

Confirm New Passworil

Create New Passwaerd |

Figure 6 Sign-in Problems Page

4. Preference Setup: after a user registers with KS, the Preference Agent automatically
creates default data preferences for the user. Users can modify weights and values for
each criterion such as semantic, spatial, temporal, and other features of an image. For
default, the Preference Agent sets the default weight for a user term (1.0) and for user-

selected synonyms (0.8).

34

= datapref - Microsoft Internet Explorer

[Drata Preference Setup]

Semantic (Name&Desc) 10 v
Location 1m -
Date From: January v |1 .\'51900 (ex 18999 10 |
To February % |23 ~ 2006 [¢x 1999)
Widih Heighi
Size ' 10 =
Themne Photograph m v m o~

Topogwaphic Map 0 ~

Drata Source Temxra Server |10 [1w v

Yahoo (10 +|

Update

Figure 7 Data Preference Pane

5. Sentence Search: KS can process simple natural language-like queries for spatial

information. For example, if a user poses a text query on sentence search, “Rushmore in
SD” to the User Agent, the User Agent passes the text query to the Ontology Agent. The
Ontology Agent checks if the query has any words on a pre-specified list of prepositions
for spatial information such as “in” and “within.” Based on the prepositions found in the

query, the Ontology Agent parses user terms for search object and area of interest (Aol).

S5A. Object Search: users specifically can type terms for search object and Aol by using
the object search option. Note that at present KS does not support either point of interest

(Pol) or line of interest (Lol) options for spatial query processing.

6. Google Spell Checking: after parsing user terms from the user query text in sentence
search option or after getting user terms directly from object search option, the Ontology

Agent requests spelling suggestions for the user terms using Google spell checking web

35

services. If there are any suggestions, KS shows them to users as an option to change

their terms.

7. WordNet: the Ontology Agent requests synonym senses from WordNet for user terms
and displays the senses with a default selection. KS allows users to select only one sense
for each term. For the default selection on the Aol term, the Ontology Agent performs the
automatic selection by checking a term “location” in hypernyms which are more general
terms of the user Aol term in terms of the spatial sense. For example, a term “DC” has as
two senses: 1) District of Columbia, D.C., DC (the district occupied entirely by the city
of Washington; chosen by George Washington as the site of the nation's capital and
created out of land ceded by Maryland and Virginia) and 2) direct current, DC (an
electric current that flows in one direction steadily). KS initially selects the first sense
because the sense has a term “location” in its hypernyms set while the second sense does
not. Users can change the sense selection corresponding to their intended concept. After
users select the senses, the Ontology Agent presents to users a list of the synonyms of the

user term in terms of the user-selected sense.

8. GNIS: as a default, KS selects a state if any one of the user Aol terms and its synonyms
is identical with a U.S. state name. Users can select multiple synonyms to find locations
from GNIS, and a number of result locations for the term will be shown in brackets next
to the term. The Ontology Agent poses refined queries to GNIS and shows the result by
removing duplicated locations. Note that if there are more than 2000 locations for a term,
GNIS returns no results. In this case, users need to try a more specialized query such as

using more specific terms and/or states.

8A. GNS: KS also supports GNS locations. GNS provides location data in the coverage
of world-wide, whereas GNIS is strictly for US locations. For example, let’s suppose that
a user types in the words ‘Lake Victoria’ and clicks the Sentence Search. KS will consult
WordNet to get the synonym set: Lake Victoria and Victoria Nyanza. KS consults GNIS
for the default term ‘Lake Victoria’ and finds locations in the US; GNS does not report
any foreign locations for ‘Lake Victoria.” However, if the user clicks the ‘Lake Nyanza’

button, KS re-consults both GNIS and GNS, and GNS presents two entries for ‘Lake

36

Nyanza’ in Uganda and Tanzania. This example shows the power of WordNet’s synonym

sets.

8B. Image Search Engine: if a user wants to search only for images of a person or thing,
users can skip the access to TerraServer for searching images of place, because the

coordinates are required to retrieve the images from the TerraServer.

& Home

Knowledge Sifter

Agent-Based Ontology-Driven Search Tool

Welcome, demo

Rushmare in 3D Sentence Search

WordNet Senses for "Rushmore”™

@ Rushmare, Mourt Rushmore, bt Rushmore (& mountain in the Black Hils of South Dakota, the likenesses of Washington and Jefferson and Lincoln
and Roozevelt are carved on it)
WordNet Senses for "SD "

@ South Dakata, Covote State, Mount Rushmore State, SD (& state in north central United States))

Rushmore [Mount Rushmore []Mt. Rushmore

GNIS Results: South Daketa [+]
Location Twpe County State Longitude Latitude
Rushmaore Airport airport - Pennington 3D 1034167 439167

Rushmore Mall locale Pennington 8D -103.2167 4410649
Rushmore Plaza Civic Center locale FPennington S0 -103.225 44.0881

Rushmaore Shadows Resort locale FPennington S0 -103.4552 439258

Rushmore, Mount summit Pennington 3D -103.4583 43.8803

GNS Results: Gaoogle
Location Type Country Longitude Latitude

Rushrnore FRM ZA 27 TBEBEGEEEEREEEE -15.8

| =TT ST = =1 ¥} =] A20 ORERRERERRERERERET DE IMERRRRERRERERREERE

Figure 8 Main Page After a Search for User Query “Rushmore in SD”

9. Google Map & Google Earth: after KS receives the location information from
GNIS/GNS, the Ontology Agent sends the location information to the User Agent; then

the User Agent displays a location table with details of the location information via

37

Google Map API or Google Earth. For Google Earth, the Ontology Agent generates a
geographic feature data set using Keyhole Markup Language (KML), which is an XML
grammar and file format for modeling and storing geographic features such as points,
lines, images, polygons, and models for display in Google Earth and Google Maps [4].
The User Agent then automatically invokes Google Earth on the user’s local machine
with that data set passed from the Ontology Agent. For the default zoom level, the User
Agent automatically calculates the zoom level based on the distribution of locations. If a
user clicks on a location on the map, a small blowup map with the closest zoom level will
appear. At present KS uses three map servers, Google, NASA, and USGS. Note that the
USGS map layer only covers the Washington DC area. The User Agent can access any
Web Map Services (WMS) server via Google Map API if needed.

gmap Micresaft Internct Explorer

Bl Edit ‘few Favoribas Took Halp

Q- © (=BG P Sy @3- 5 8- JH A

ardrass @ hitpflocahostLs srAgantz/ EMaP, aspe

Satellie QHASA modi

Figure 9 GNIS Location Results Page

38

http://maps.google.com/maps�

= Google Farth

in
Enshile the Geodle Earth
Community layer in the Layers

v® Site, Sudney ISW, Aus

et in the Layers
van, llew Delhi

Ensblz the Goodle Earth
Community layer inthe Layers

@ Reichstaq, Berlin, Germar
Enable the Google Earth
Community layer inthe Layers

@ Imperial Palace, Tokyo, Japan
Enable the Google Earth
Community layer inthe Layers

I~ le= Lodging I~ 1 Dining (]
I~ @ Roads I~ [Borders B
I~ 5 Terrain ¥ [Bukings e

o

Y Y Y Y Y YYYYYYYYYYYYY

Figure 10 Google Earth With a place “Rus.hmore, Mdunt”

10. TerraServer & Yahoo Images: the User Agent passes user-selected location
information and a synonym set to the Web Services agent. Then, the Web Services agent
formulates refined queries for each source and requests images from the sources. After
KS receives the image information, the User Agent requests an evaluation of the image
results by passing the results together with the original user query and user preferences to
the Ranking Agent. Lastly, the User Agent displays a results table initially sorted by total
similarity received from the Ranking Agent. In the results table, the user can do the
following: 1) sort results for each criterion by clicking column name, 2) see the original
image or be directed to an original web page of the image source by clicking thumbnails
in the results table, and 3) be directed to a request page of refined queries for TerraServer

and Yahoo Images.

39

[Bnage Search resulis From TetraServer amd Tahoo|

;Tllmfll:l]'l.s_lll HTII.'I.'I.E T].I.'I.'IE :LI:IE Lo

0623

07 Wit Bustmmore phata

phate

IatedTune
bato -103.4583, 199805
F 43 Ba03 12T03:00:00
b -103.4583, 1877-07-
P9 438303 01T03:00:00
it rushtnsre phota
meunt mishmore be
phate

Total
Bnralanty

Size Eesomce

200* 200 TEREA 0.57

200% 200TERRS D57

BO0* 600 TAHOO 0.43

200% 225 TAHOO 0.43

1024

263 TAHOD 043
1170
794 TAHOO 0.40

Figure 11 Image Results Page

3.3 KS Agent Interactions and Communications

As described in the previous sections, the KS system maintains various processes
to achieve its goals, and KS Agents use Web Services to communicate with each other.
The KS system also uses pre-specified workflows among agents based on scripts and
protocols created for KS agent interchanges and communication. Figure 12 shows a flow

chart that specifies a work flow of the user search process in terms of agent interaction,

and it shows how each agent collaborates during the search process.

40

84

User Agent

Preference Agent

Ontology Agent

Query Formulation Agent

WebServices Agent

Rating Agent

Sentence Search
Request

Parse Search

Search Ontology

Objects

» Concepts for the
Search Objects

:

Confirm ontology
concepts

Retrieve domain
knowledge relating

Search Related
Sources to the

"| to user confirmed
concepts

S

v

Retrieve Search
Preferences

v

Set General
Queries

domain

A

Retrieve schemas
for the sources

4

{

| | Retrieve Source

Preferences

Refine Queries 4

» Pose Queries

}

Rank Results

Display Ranked \ _
Results h

Figure 12 A Flow Chart for KS Search Process via Agent Interaction

Figure 13 represents KS agent communication scenarios using XML schemas
through Web Services. Each agent maintains XML-based schemas of the specifications
of request and response messages required for data exchange during agent interactions.
Thus, any agent that wants to invoke Web Services from other agents is required to
obtain the XML schema of the request from the service-provider agent to invoke the
service. The requester agent also is required to obtain a result XML schema to parse the
information from the resulting XML obtained from the service-provider agent. This
mechanism prevents schema mismatching which might be caused by managing data
schemas in more than one place. For example, let’s assume a requester agent maintains
an XML schema of data residing in a response agent. If the response agent changes the
schema for some reason, the schema held by the request agent would no longer be valid.
Therefore, the data schemas are better to be resident in only one agent that manages the
data in order to remove the mismatch problem. Because of that, the schemas need to be
requested by other agents every time when the data is requested to be exchanged. The
XML schemas of representing data and its managing agents are provided in Appendix A.

ANy, 2 get “Request XML Schema” T
Request Agent I SOAP __—— - Response Agent

3. “Request XML Schema”
1. Initialize “Request —_ <STIAR XML Schema
5. request “Request XML" F;rRRquL:T:)sttXI\;I(IML
[SOLP = and result Lata
4. formulate “Request
XNMIL” 8. response “Result XML"
—_— SOAP] 6. Parse “Request Data”
9. request “Result XML Schema”
11. Parse “Result Data I S T 7 Generate “Result Data”
10. “Result XML Schema”

_— STER]

Figure 13 Knowledge Sifter Agent Communication Diagram

42

3.4 Emergent Semantics in Knowledge Sifter

The previous sections have described how the cooperative agents and Web
Services support the search for relevant knowledge from both local and open-source data
sources. The end-to-end scenario shows how the various agents and sources interact. This
section presents some notions related to emergent behavior and patterns that arise from 1)
the functioning of Knowledge Sifter and 2) the use of composable Web Services to create
a reusable search platform [39, 40]. The approach to emergent semantics in Knowledge
Sifter is to collect, index, organize, and store significant artifacts created during the end-
to-end workflow for KS. The KS workflow manages the entire search process, including
query specification, query reformulation, query decomposition, Web Service selection,
data source selection, results ranking, and recommendation presentation.

By stepping back and abstracting the agents, classes, their relationships, and
properties, one can construct the Knowledge Sifter Meta-Model (KSMM). Figure 14
depicts the Static Model for the KSMM. What follows is a brief overview of the classes
and relationships shown in Figure 15. At the top is the Class Agent, which is specialized
to those agents in the KS architecture, specifically the UserAgent, PreferencesAgent,
OntologyAgent, QueryFormulationAgent, RankingAgent, and WebServicesAgent. These
agents manage their respective object classes, process specifications, and WebServices.
For example, the UserAgent manages the User Class, the UserInterfaceScenario, the User
PatternMiningAlgorithm, and the WebServices. The User specifies User Preferences that
can be specialized to Search Preferences and Source Preferences. The User poses

UserQuery that has several QueryConcept, which in turn relates to an OntologyConcept.
43

The OntologyAgent manages both the UserQuery and the OntologyConcept that is
provided by an OntologySource. Both OntologySource and DataSource are
specializations of Source. Source is managed by the WebServicesAgent and has attributes
such as provenance, coverage, access protocol, and history. DataSource has attributes

such as Quality-of-Service Service-Level-Agreements (QoS-SLAS) and Certificate.

WebService
Agent
identifier @ serviceName
reCondition
/ serviceList : WebService 1 * EostComljiltion
UserAgent PreferenceAgent OntologyAgent QueryFormulationAgent RankingAgent WebServicesAgent
/ userinfo : User / UPInfo : UserPreference | |/ OCInfo : OntologyConcept | |/ UQInfo : UserQuery / QRInfo : QueryResult | |/ sourcelnfo : Source
/ retrievedDatalnfo : Dataltem | |prefHeuristicsAlgorithm conceptMatchingAlgorithm QueryFormulationAlgorithm | |rankingAlgorithm sourceManagingProcess
userlnterfaceScenario mana
> X ges
userPatternMiningAlgorithm 1]
manages » 1
”””” 1 """"’7m§n§g§s’b’”””7777”””””* e
* —1 AccessProtocol
Source sourceURI
User specifies » UserPreference doni &' . [|protocolType
- entitier rotocolSpec
profile / user : User (A P
i " N provenance 1
/ feedback : Feedback | 1 0. [isUserSpecified manabes references coverage Event
« man;qes / accessinfo : AccessProtocol
1 1 =77 |/ nistory : Event eventName
. [|generator
* SearchPreference | | SourcePreference 4 timeStamp
criterion / source : Source
Feedback valueRange feature QoS-SLAS
0SES » weight weight —
p relevance ontal DataS availability
comments has : 9y it had minThroughput
. lontology Type / gosSlas : Q0S-SLAS 1 = |responseTime
relatedDomain |/ certificates : Certificate origin
. * - OntologyConcept
has A QueryConcept identifier 4/_/‘ provide: 1 Certificate
1/ query : UserQuery Hdescripticn certificateName
userFeedback : Feedback I/ relatedQuery : QueryConcept 1. 4 prgvides authority
; N « hatl reference : OntologySource (|ohade. + |expirationDate
0.* = 1 rating
1.*
UserQuery RefinedQuery
/ Ezers. Uescer |/ targetServer : DataSource . * isPosedTo »
querysp querySpec Dataltem
timeStamp . liimest . (dentifi
comments 1 clmr:m;l::s 0.. ! e"tl'_'e'
I/ refinedQuery : RefinedQuery o QueryResult dataType
T has » * (has 1 [|contents
I/ query : UserQuery creationTime
|/ result : Dataltem |lastUpdatedTime
similarity&ranking I/ source : DataSource
userFeedback : Feedback

Figure 14 Knowledge Sifter Meta-Model Schema

44

A UserQuery consists of several RefinedQuery, each of which is posed to several
DataSource. DataSource provides one or more Dataltem as the QueryResult in response
to a RefinedQuery. Based on the returned QueryResult, the User may provide Feedback
as to the result relevance and other comments. These may impact the evolution of
metadata associated with UserPreference, query formulation, data source usage, and
result ranking. The KSMM have been implemented as a relational database schema,
which can be used to organize, store, and interrelate the artifacts associated with a user
query. The data can be used for the collaborative query refinement, which is introduced
in Chapter 5, by providing the relationships among the artifacts such as which users
provided which feedback on which items in terms of which queries, and which were the
preferred data sources.

Figure 15 represents the Entity-Relationships (ER) model for the KSMM. The ER
model is implemented by using the MySql server [54], and MySql script file for the
relational version of this ER model is provided in Appendix B. An XML-based flexible
structure is used to specify all of the data managing by the KSMM, e.g., specifications of
data items are stored into specXML attribute in Dataltem as an xml snippet instead of
using a pre-specified attribute list such as title and resolution (for image data). The
specifications of data can vary based on the type of data item and source and also the
specifications can be changed over time. Therefore, using the flexible structure enables us
to manage any types or domains of data retrieved from heterogeneous data sources. The
XML-based data specifications, specXML would be governed by the KS Ontology Agent

via using WordNet ontology and domain ontologies. The domain ontologies would have

45

information about restrictions for some attribute values, e.g., the values for type of data
item would be determined as enumeration type having a set of pre-specified values such

as image and web page.

P DataPreference
KSUser PK | dataPrefiD AccessProtocol
PK |userlD B - PK.FK1 |sourcelD
< isUserSpecified PK ProtocollD
p N > specXML
firstName FK1 |useriD type
lastName spec
industry v creationTime
securityQuestion SourcePreference lastUpdateTime
securityAnswer | oK P Source
FK1 | currentDPID l sourcePreflD
FK2 | currentSPID > P p PK | sourcelD :_ QoS-SLAs
isUserSpecifie
F specxMLPe provenance ::’F'“ ﬂﬁ% D
QoS-SLAsID
UserQueryConcept FK2 |useriD AAA
PK | userQueryConecptiD FK1 | sourceld availability
A minThroughput
specxXML re_sponse‘rime
userComments angin
FK1 | userQuerylD
FK2 | sourcelD Event
+ PK,FK1 | sourcelD
RefinedQue
UserQuery il PK [eventD
PK |refinedQuerylD
PK |user rylD type
specXML spec
queryText < posedTime timeStamp
specXML endedTime
posedTime numOfResults Coverrage
numOfResults FK1 |userQuerylD
userComments FK2 |sourcelD PK.FK1 | sourcelD
FK1 |userlD ry PK overagelD
f domain
. class
UserQueryResult RefinedQueryResult Dataltern
PK |u ResultlD PK |refinedQueryResultlD PK | dataltemiD Certificate
userSimilarity systemSimilarity P . PK,FK1 | sourcelD
systemSimilarity rank ur PK certificatelD
rank FK1 | dataltemiD P L
userComments FK2 | refinedQuerylD :?e?lionTime type
FK1 | userQuerylD . authority
FK2 D » lastUpdatedTime expirationDate
FK3 |dataPreflD FK1 | sourcelD rating
FK4 | sourcePreflD

Figure 15 Entity-Relationship Diagram of the Knowledge Sifter Meta Model

46

4 Case-Based Knowledge Sifter Framework

The original Knowledge Sifter [37, 38] described in Chapter 3 maintains a
repository of user queries and artifacts produced during the search process. The case-
based reasoning methodology [7, 45] is adapted into the Knowledge Sifter framework to
reuse knowledge contained in the repository of user queries and artifacts produced during
the search process to improve its efficiency and effectiveness. In this chapter, a case-
based reasoning framework is presented for Knowledge Sifter in order to retrieve and
reuse the previously-stored user queries in a systematic way by specifying them as cases.
The previously-stored user-query cases are represented in XML, retrieved per ontology-
based concept indices, and reused to refine the specification of a user-query based on a
hybrid filtering method combining collaborative filtering and content-based filtering. I
call this process “query-to-query hybrid filtering.” The details of the query-to-query

hybrid filtering are described in Chapter 5.

4.1 Case-Based Knowledge Sifter Architecture

Figure 16 shows an updated architecture representing the Case-Based Knowledge
Sifter framework. A new agent, the Case Management Agent is introduced to manage
processes and resources relating to the case-based reasoning methodologies used in the

Case-Based Knowledge Sifter framework. The role of the Case Management Agent is to
47

communicate with the User Agent and retrieve those cases from the User Query Case
Base that have the user relevance feedback. The Query Formulation Agent also
communicates with the Case Management Agent in order to retrieve the cases of other
user queries having concepts similar to the active user query (the query which is currently
posed by the active user and targeted for the refinement). To efficiently and effectively
retrieve such relevant cases, the Case Management Agent applies ontology-based indices
to cases which index them based on one or more ontology concepts related to concepts of
the user query cases. The details of the ontology-based indices are described in

Section 4.3.

. User
User
A Preferences
Agent
Agent
/ $ N \\{—] =1
\‘ Case User
o ".;I Management Query
A ‘ N Agent Case Base
Ranking . Ouery. Ontology i
»| Formulation | L !
Agent Agent I
Agent !
. » v 1
- & NS !
i e - N :
A4 Ml “\ !
y -
W S-Based Web Ontology
Wrapper =] YQervices Repository | ~
Component Agent Repository of
Repository < ccoTTTTT User Queries
;F‘, and Artifacts
I
I
v Legend
External -«+— Agent Interaction
Sources i
<---=> Data Flow

Figure 16 Knowledge Sifter Case-Based Architecture

48

An active user query is refined based on other user query cases that are similar to
the active query using query-to-query hybrid filtering. Based on the specification of the
refined query, Knowledge Sifter semi-automatically selects data sources and is
dynamically configured with Web Services-based wrapper components for each selected
data source. Knowledge Sifter also maintains a repository of the pre-compiled wrapper
components for accessing data sources. The case-based Knowledge Sifter architecture
inherits the general-purpose meta-model schema in Figure 14, and the XML-based
flexible structure of the user query enables a system to manage many types of data

retrieved from heterogeneous data sources.

4.1.1 Case Management Agent

The Case Management Agent, shown in Figure 16, has a role of managing the
User Query Case Base by identifying user query cases from various agent interactions,
storing to the User Query Case Base those cases having user relevance, and retrieving the
cases based on ontology-based indices. The retrieved user query cases are sent to the
Query Formulation agent upon its request. In other words, the Query Formulation Agent
communicates with the Case Management Agent to retrieve cases according to user query
and user preferences, and then uses the retrieved cases to refine user queries via the
query-to-query hybrid filtering.

The user query cases are created and maintained in the User Query Case Base
only if a user provides relevance feedback for a query result. Whenever a user provides
relevance feedback for one or more query results and sends a request to save the

relevance feedback into the Knowledge Sifter system, the User Agent sends the feedback
49

information with identifiers of a data source-specific query and its results to the Case
Management Agent. All required information is then retrieved for creating a user query
case from the repository of user queries and artifacts. The created user query cases are
kept in the Case Management Agent cache until the Case Management Agent receives a
notice of the end of the user query session from the User Agent. Upon receiving the
session ending notice, the Case Management Agent permanently saves the user query
cases to the User Query Case Base. The Case Management Agent uses the cache to avoid
the duplicate retrieval of all the required information if the user sends another request of
saving new relevance feedback or changing previous relevance feedback. This would be
employed for a user query, data source—specific queries, and query results having the
relevance feedback already in the user query session.

After the user gives relevance feedback, he is allowed to send a request to refine
the query to the Knowledge Sifter system. When the user sends the request to refine the
query, the Case Management Agent returns the cached user query case information, along
with other user query cases in the User Query Case Base that are similar to the active user
query case, to the Query Formulation Agent. The similar user query cases are selected
based on the case retrieval algorithm that determines the similar query cases according to
their similarity to the active user query case. This is accomplished in terms of the
ontology-guided concept similarity as described in Section 4.3. When the user issues a
new user query which is refined from the query-to-query hybrid filtering method and
confirmed by the user, the Case Management Agent updates the user query in the cache.

However, the Case Management Agent keeps the relevance feedback information

50

(identifiers of the active user and the query results) obtained from the previous versions
of the user query because the relevance feedback would better represent the user’s true
search intent. The query results most highly rated by the active user can represent the
user’s search intent better than the user’s query. This is because the users have difficulty
in specifying their information needs as a query, and thus a user query often does not
sufficiently represent a user’s true information needs. All of the accumulated user
feedbacks are used to refine an active user query incrementally. Lastly, the final version
of the refined query and all the relevance feedback information in the user query session

are stored in the User Query Case Base.

4.1.2 Web Services-Based Wrapper Component Repository

A wrapper component repository is created to maintain the pre-compiled Web
Service-based wrappers, which are used to access heterogeneous data sources while
providing a standard Application Programming Interface (API) to the Web Services
Agent based on a Web Services standard. The wrappers provide a REST-based Web
Services API, so that the Web Services Agent can retrieve data from the data sources
through the wrappers with the simple and standardized syntax of data representation
provided by the API. Therefore, using the Web Services API causes the Web Services
Agent to consider only the semantic heterogeneity of the data representations created
from heterogeneous data sources by removing the syntactic heterogeneity.

The domain ontologies available to Knowledge Sifter, such as the image domain
ontology, are used to mitigate the semantic heterogeneity for the image search from

heterogeneous data sources such as TerraServer and Yahoo! Images. The Web Services-
51

http://en.wikipedia.org/wiki/Application_programming_interface�

based wrappers are described by Web Services Definition Language (WSDL) with the
domain ontology-guided semantic annotations on the WSDL elements, e.g., input and
output elements of a Web Service. This approach of annotating WSDL elements by a
domain-specific ontology is similar to the W3C approaches, SAWSDL [20, 47] and
OWL-S [51]. In other words, each data source is endowed with a Semantic Web Service
which annotates its data by concepts in a domain ontology shared among the agents in the
Knowledge Sifter system. The domain ontology is also used to formulate user queries in
the Knowledge Sifter system, so data sources can be dynamically bound to the Web
Services Agent via a simple ontology-concept mapping. This is because the data schema
of the data sources is semantically represented by using the shared domain ontology that

are being used to formulate the user query by the Query Formulation Agent.

4.1.3 Use Cases and Sequence Diagrams

Knowledge Sifter has three main use cases: 1) semantic query refinement use case,
2) collaborative query refinement use case, and 3) data retrieval use case. The semantic
query refinement use case represents a process which semi-automatically refines a
keyword-based user query with its user-confirmed related ontology concepts. The
collaborative query refinement use case represents a process which refines the user-
confirmed domain-specific query by using the query-to-query hybrid filtering method.
Lastly, the data retrieval use case represents a process which retrieves data from some
external data sources related to the user-confirmed domain-specific query. A user search
process can be materialized by combining either the semantic query refinement process

or the collaborative query refinement with the data retrieval process.
52

Initially, if a user inputs a user query consisting of a set of keywords, the user
query is refined with ontology concepts retrieved from external ontologies via the
semantic query refinement process. A set of neighbor user query cases, which are
semantically similar to the active user query, are found based on user-selected ontology
concepts. Per the neighbor user query cases, a set of domain-specific queries are created
and suggested to the active user. When the user selects a domain-specific query, results
are retrieved from heterogeneous data sources by using data source-specific queries via
the data retrieval process. After a set of sorted results is presented, the user can provide
relevance feedback for top N results. KS then refines the user-selected domain-specific
query via the collaborated query refinement process using the query-to-query hybrid
filtering. Users are able to retrieve data again by modifying and posing the refined
domain-specific query to the data retrieval process. Users can also repeat the query-to-
query hybrid filtering-based search cycle by providing relevance feedback and posing the
further-refined query based on the relevance feedback repeatedly via the collaborative
query refinement and data retrieval processes. Sequence diagrams of the three main

processes are shown in Figures 17-19.

53

125

UserAgent OntAgent QFAgent CMAgent KS_ CaseBase KS_Repository Ext. Ontology

User

|

|

1: User Query Input :

N |
1.1: A Set of Keyword/s

>

.1a: Store User Query
|

i
|
|
|
|
|
|
|
|
I d
1.2: Get Ontologif Concepts corresp'pnding to the keywords

| |
| |
i I
| |
| 1

1.3: Candidate Ontology Concept for Keyword/s
<

1.4: Candidate Ontology Concept

——

I
< I
2: Ontology Concept Input :

———— e e e e e A

|

|

|

|

I

|

|

I |
2.1: User Confirmed Ontology Concept |
| | |
—

: 2.1a: Store I;Jser Confirmed dntology Concept
1 1 1

|

|

|
2.3: Ontologly Concepts with tlhe keywords :

|
|
|
|
|
|
|
|
|
|
|
|
Il
| 2.2: (%et Related Ontoloqy Concepts
T
|
| |
2.4: Request of neighbor user query cases :
\ . !

|
|
I . .
: : 2.5: Get Neighbor User Query Case
|
|
|

|)
2.6: Neighbor User Query Cases
1
2.7: Domain-Specific Queries Suggesting to User !
~ 1
2.8: Domain-Specific Queries
|
|

|
|
|
|
|
|
|
|
|
|
|
|
N
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
A
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

}
|
|
|
|
|
|
|
|
|
|
|
|
N
|
|
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 17 Semantic Query Refinement Sequence Diagram

9

T
User :

1.10:

—
1: Rating Information Input

UserAgent OntAgent QFAgent CMAgent KS_CaseBase KS_Repository Ext. Ontology

T T T T
| | | |
| | | |
! | | | |
| | | |
! | | |
1.1: User Rating Information : : :
| | | |
1.1a: Store User Query Case with Rating Information :
| | | |
| | | |
1.2: Related Ontology Request | |

: : '1.3: Get Related dntology

| |

1.4: Ontology Snipbet
|

1.5: Reques't of neighbor user query cases

| |
S

1.7: Neighbor User Query Cases

1.6: Get Neighbor User Qulbry Case

1.8: Get Artifact for Neighbor' Query Cases

|
Refined Domain-Specifip Query

1.9: Refined Domain-Specific Query Recommending to User

i
|
)
1.10a: Data Items :
|
I
I

|
|
|
|
|
|
1.9a: Data Iltems Recommeng:iing to User :
|
|
|
|
|
|

Figure 18 Collaborative Query Refinement Sequence Diagram

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

A
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

9¢

User

[| il
1: Domain-Specific Query Input
|

UserAgent PrefAgent QFAgent WSAgent RankAgent KS_Repository Ext. Sources

| | | | |

| | | | |

> : : : : :
1.1: User Confirmed Domain-Specific Query ! ! !
N | | |

1.2:/'Domain-Specific Query | |

N | |

1.2a: Store Domain-Specific Query !

| N

|

1.3: Get data via using Data-Sou
|

rce Specific Queries

|
|
| |
1.4: Query Results
| |

1.4a: Store Query Results

1.5: User Preference Re'quest

1;6: User Preferencé—z

|
1.7: Sorted Results

N
|
|
|

1.8: Sorted Results

|
|
|
|
|
|
1
|
|

1.7a:

A
|
|
|
|
|
|
|
|
|

Store Rating Information

Figure 19 Data Retrieval Sequence Diagram

|

4.2 Semantic Case Representation

Case-based Knowledge Sifter maintains cases representing a user query and its
artifacts; these are required to recommend a refined query for a user-selected information
domain. Basically, KS uses two types of user query; one is conceptual query, and the
other is domain-specific query. As a case consists of a problem and its solution in a case-
based reasoning framework, the conceptual query is regarded as a problem and the
domain-specific query is being regarded as the solution in the case-based Knowledge
Sifter framework.

The conceptual query represents user information needs via using a set of
ontology concepts. A conceptual query will be generated after a keyword/s-based user
query is semantically refined by specifying WordNet concepts and domain ontology
concepts representing user concepts. This conceptual query will be used to find a
candidate set of neighbor user query cases that might be similar to the active user query
case in terms of general concepts similarity. A set of domain-specific queries is created
from a clustering of the candidate set of neighbor user query cases based on information
domains of the cases. A domain-specific query consists of a set of content features
(metadata) and their associated values and weights. Multiple domain-specific queries can
be generated for a conceptual query since two conceptual queries consisting of a similar
set of general concepts might represent different information domains of user interest.

Finally, the pre-filtering of the candidate set of neighbor user query cases by

means of the conceptual query can reduce the significant number of user query cases

57

which are required to be navigated in performing query-to-query hybrid filtering. This
process enhances the efficiency of the automatic query refinement overall because the
hybrid filtering is expensive in terms of time and memory resources. Furthermore, using
the domain-specific query enables KS to use hybrid filtering for query refinement. This is
because queries of different information domains can have different lists of features for
specifying the queries in which the hybrid filtering cannot be applied or would not be
effective.

Figure 20 shows an XML-based structure for the case representation, and the
source code of its XML schema can be found in Appendix C.1. A case has its own
identifier, caseID. A case also contains a UserName to identify its user, and this user
identifier will be employed to perform the hybrid filtering and retrieve the user’s
preferences. Each case includes an associated conceptual query and a domain-specific
query. A conceptual query can have multiple concepts which consist of a user term, zero
or more WordNet senses, zero or more domain ontology concepts, and a weight. The
DomainConceptID is an identifier of a domain concept which has been found from the
semi-automatic semantic refinement of user query. WordNet sense identifiers chosen by a
user for specifying the user’s actual concepts of a search term are also included. WordNet
is employed as a general upper ontology, and the referenced WordNet concepts and the
referenced domain concepts serve as an index of the user query, as described in
Section 4.3. The concept weight is the degree of importance the user assigns to a concept.

A domain-specific query has exactly one information domain for which the query

is specified. The domain-specific query is a weighted multi-dimensional/multi-valued

58

query. The feature name is also a variable since the schema of a domain-specific query
will be determined by its information domain and the user-selected data sources. The data
source information is also a feature of the domain-specific query and it be represented as
“FeatureName: data-source, FeatureValue: imdb.com,” where IMDB denotes the Internet
Movie Data Base. Thus, a feature can be not only content-based metadata, but also
metadata created during the information object’s life-cycle [9]. The feature name may be
standardized in the scope of KS to remove the ambiguity which can occur during the
search and recommendation processes because KS retrieves data from multiple
heterogeneous data sources. Some standardized metadata such as Dublin Core Metadata

[6] can be used to describe feature attributes.

it b
-+ WordMetSenselD
______________ D_ 5

[Case (== Conceptualuery FH=~—FH Concept BH=—FH _ .

1.0

" Info_Domain

—| DomainSpecificQuery [-] ==

=] -

Figure 20 XML-based Semantic Representation of a User Query Case

59

Figure 21 represents an example that shows how a user query can be specified
through using the semantic representation of user query cases. Let’s suppose one wishes
to visit the Washington Monument and then dine at a steakhouse located near the
Washington Monument. The keyword terms in a query might then be “steakhouse” and
“Washington monument.” Ontology concepts defining user concepts can be semi-
automatically found from referenced ontologies by using the keyword terms. The
ontology concepts, “WN:steakhouse 17 and “WN:washington moument 1” denote
WordNet concepts representing user concepts for the “steakhouse” and “Washington
monument” keywords respectively. The “GNIS:Washington monument” concept can be
found by a direct search on the geographic-domain ontology, or GNIS using the
“Washington monument” term, or by ontology reasoning using ontological relationships
such as “OWL:equivalentClassOf” between the WordNet concepts and the GNIS
concepts.

An active user selects ontology concepts that match to the user’s intended
concepts among the automatically retrieved concepts. Then, the candidate domain-
specific queries are created through an automatic domain-based accumulation of domain-
specific queries found from the other user query cases, having ontology concepts related
to the ontology concepts chosen by the active user. Two candidate domain-specific
queries can be generated for the example query as shown in Figure 21. One is for the
food and restaurant domain, and the other is for the real estate domain. If the active user

were to add either to concept “dining” or the concept “starting a restaurant business”,

60

then a candidate domain-specific query either for the food and restaurant domain or for

the real estate domain would be generated, respectively.

A User Query: ©

Conceptual Query:
Concept 1:

Concept 2:

Candidate Domain-Specific Query 1:
Info_domain:

Feature 1;

Feature 2:

Feature 3:
Feature 4:

Candidate Domain-Specific Query 2:
Info_domain:

Feature 1:
s

Feature 3:
Feature 4:

Figure 21 An Example of Representing A User Query Using the User Query Case Representation

4.2.1 Semantic Refinement of a User Query

The WordNet sense for a user term is created to relate domain ontology concepts

to the user term, thereby enabling Knowledge Sifter to perform the semantic search rather

than just the keyword/s-based search. WordNet is employed in order to avoid the

semantic ambiguity of linguistic terms. WordNet is also regarded as a general upper

ontology in Knowledge Sifter and several domain-specific ontologies such as places,

61

restaurants, and wines can be linked to the WordNet ontology. The linkages between
WordNet concepts and domain ontology concepts are used to translate a user query into
domain-specific queries and/or data source-specific queries.

As described in the sequence diagram shown in Figure 17, a user is required to
select one of the WordNet senses for the user-entered search term. Then, KS stores to the
KS repository the user’s selected WordNet sense with the search term. The WordNet
senses are used to enlarge the user’s vocabulary. Therefore, domain concepts related to
the user search concepts are obtained from domain ontologies by using the enlarged
vocabulary such as synonyms of the user terms found in WordNet. These obtained
WordNet senses and domain concepts will be used to create domain-specific queries and
be maintained as a user query case in the KS case base for a later use of refining other

user’s queries.

4.3 Case Retrieval via Ontology-Based Indices

The Case Management Agent maintains ontology-based indices for entire cases.
As represented in Figure 20, each user concept in a conceptual query can have zero or
more ontology concepts related to the user concept. For each ontology concept, case
identifiers referencing the ontology concept are stored as the indices. This ontology-based
index approach allows for efficient retrieval of cases having similar search concepts
because it explores related ontology concepts first, rather than navigating the large
number of the user query cases. WordNet senses related to the user concept are also

included and the senses are used as bridges between two different domain concepts which

62

are similar in semantics, as described in the previous section. Thus, this ontology index
structure also assists KS to effectively find other similar user query cases in terms of

using the virtual upper ontology approach.

4.3.1 XML-based Representation of Ontology-Based Indices

In this section, I describe the XML schema for the ontology-based index structure.
Figure 22 represents the index structure which has domain concept-based indices
consisting of a domain concept identifier, its related WordNet sense identifiers, and its
corresponding case identifiers. The source code of XML-schema of the index structure

can be found in Appendix C.2.

Figure 22 XML-Schema for Ontology Index

As represented in Figure 22, the root element, OntologyIndices can have zero or
more DomainConceptIDs which represent identifiers of domain ontology concepts. The
identifiers are RDF-based concept identifiers, which also have the identifier information
of their owner ontologies specified in OWL. Each domain concept has zero or more

related WordNet senses, so the domain concepts and their related cases can be found by
63

the referenced WordNet senses. Lastly, each domain concept has one or more of its
corresponding case identifiers. The minimum cardinality of the case identifier is set to
one because only the domain concepts having at least one related user query case are

stored to the index structure.

4.3.2 Case Retrieval Algorithm via Ontology Index

As described in the previous section, WordNet concepts are used as the main
ontology indices, and other user query cases consisting of concepts similar to the
concepts of an active case can be retrieved by using the ontology indices. However, a
user query case contains multiple WordNet concepts in general. For example, a user
query {Washington Monument, steakhouse} has two concepts, “Washington Monument”
and “steakhouse.” This approach is to create the ontology indices based on each atomic
concept of a user query case. Thus, the case identifier of the user query case example will
be stored into each ontology index for concepts, “Washington Monument” and
“steakhouse.” This user query case can be retrieved as similar cases for user queries
{Washington Monument}, {steakhouse}, and {Washington Monument, steakhouse}.
This approach is computationally more efficient than creating an ontology index based on
a set of all concepts in a user query case. It is preferable because if a conceptual query
consists of n concepts, and indices are created for all of the concept combinations (the
powerset of the set containing the all n concepts except the empty set), thus 2”-1 indices
would need to be visited instead of n indices. Furthermore, if we assume that overall
conceptual queries consist of n concepts, the size of the indices would be 2" times bigger

than the size of the indices being created in this approach.
64

Figure 23 presents an algorithm for retrieving cases similar to the user query via
ontology-based indices. First, the algorithm generates expanded queries of every possible
combination of concepts, including their equivalent and generalized concept using the
function, expandedQueries. The function uses Cartesian product to find the every
possible combination. For example, a user query {Washington Monument, steakhouse}
can be expanded via ontology navigation as: {Washington Monument, chophouse},
{Washington Monument, restaurant}, {DC, steakhouse}, etc. The DC concept is obtained
from WordNet through the “Part Holonym” relationship of the “Washington Monument”
concept to the “DC” concept, and this can be regarded as a spatial generalization.

The algorithm then retrieves cases which are indexed by all the concepts of an
expanded query, but limits the number of the cases retrieved to a pre-specified maximum.
The maximum is bounded by the parameter maxnc in algorithm specification. For
efficiency purposes, whether the pre-specified maximum number of cases is retrieved or
not will be checked before expanding one element query of powerset of the user query.
This is because the expanded queries cannot be more similar to the user query than the
original element query. The weighted sum of each query can be calculated from Equation
(4). Note that the original user query of the active case is also one of the expanded user
queries.

The sim(Ca, Ci) in the algorithm is a similarity between the expanded user query
of the active case and the user query of the retrieved cases. The similarities are calculated
by using the cosine correlation which is widely used for the vector model in the

information retrieval area [11] as defined in Equation (5). This measure will be used in

65

Chapter 5 as the similarity measure between the active case and the retrieved cases in

terms of the semantic relatedness among their conceptual user queries.

1.0 if cis an original user concept
” Syw if cis an equivalentconceptof the user concept (4)
< hyw if cis a generalized conceptof the user concept

sywx hyw if cis a generalized conceptof the equivalentconcept

where eq, represents an extended query of the active user query, and tw, represents a pre-
defined weight for a concept ¢ in eq, as defined above. The terms syw and hyw denote the
pre-defined weight for an equivalent (synonym) concept and a generalized (hypernym)
concept of an original concept in the active user query, respectively. The term uw, is a
user-defined weight for an original user concept of concept c. EC is the entire set of

concepts consisting of a query eq,.

Z Weeq, " Weuq,

ceCC (5)

) - 2 2
\/z Weeq, * \/ Z We.ug,
ceCC ceCC

sim(C,,C,

where w,,, and w,,, represent the weight for a concept ¢ in an expanded user query of

the active case eq, and the user query of the other retrieved case ug;, respectively. CC is a

set of common concepts shared by eq, and ug;.

66

The similarities between user query cases are also used to terminate the case
retrieval algorithm by using a threshold, simThreshold. Finding every possible expanded
queries using the powerset and Cartesian product can be double exponential. This can be
a burden to a system even though users use only a few concepts for creating a query in
general. Thus, the maxnc and simThreshold bases are used to terminate the retrieval
algorithm if the sufficient number of neighbor query cases are retrieved and expanding
queries further does not preserve a certain level of similarity with the active user query.
This will improve the efficiency of the case retrieval by not sacrificing its effectiveness,
i.e., by finding expanded queries having the greatest similarity with the active user query

at a given time.

67

SET maxnc TO 100

SET threshold TO 0.7

SET RCS TO the empty set

SET EQS TO the empty set

SET PCS TO the powerset of ug, excluding the empty set

ADD all elements of PCS TO EQS
SORT EQS in descending order of a weighted sum of concept weights in eg
FOREACH eg in EQS
IF eq isin PCS
ADD expandedQueries(eq) TO EQS
SORT EQS in descending order of a weighted sum of concept weights in eg
ENDIF
SET NCS TO a set of other query cases indexed by every concept in eg
FOREACH C;in NCS
IF sim(C,, G) > threshold
ADD G, TO RCS
IF COUNT(RCS) > maxnc
RETURN(RCS)
ENDIF
ELSE
RETURN(RCS)
ENDIF
ENDFOR
REMOVE eq FROM EQS
ENDFOR

FUNCTION expandQueries(query)
SET temp_EQS TO the empty set
SET ECSTO the empty set
FOREACH concept in query
ADD a set containing the concept and its equivalent concepts TO ECS
END FOR
SET CPECS TO Cartesian product of all sets in ECS
FOREACH cpec in CPECS
SET HCS TO the empty set
FOREACH concept in cpec
ADD a set containing the concept and its generalized concepts TO HCS
ENDFOR
SET CPHCS TO Cartesian product of all sets in HCS
FOREACH cpec in CPECS
ADD cphc TO temp_EQS
ENDFOR
ENDFOR
RETURN(temp_EQS)

Figure 23 Case Retrieval Algorithm via Ontology Index

68

5 Collaborative Query Refinement

In the previous chapter, a Case-based Knowledge Sifter framework and detailed
process sequences are introduced to reuse knowledge, which is obtained during user
search processes. In this chapter, a hybrid filtering-based method, query-to-query hybrid
filtering, is introduced. This method shows how the retrieved search cases can be
collaboratively reused to refine user queries based on the artifacts captured during the
user search processes, including user feedback. Technically, query-to-query hybrid
filtering combines content-based filtering with collaborative filtering to use the search
history obtained not only from an active user, but also from other users, for mining the
active user’s preference and refining the active user’s query. Also, the query-to-query
hybrid filtering approach is based on the ternary relationships among users, user queries,
and data items. The relationships are maintained and provided from the KS repository via
using KS meta-model schema shown in Figure 14.

Content-based filtering is a method of recommending unseen (unrated) data items
to a user based on the content patterns of data items preferred only by the active user. It
can assist the user in refining a query based on the artifacts of their past queries that are
similar to the active query. However, for a new user, the similar queries may not yet exist
in the active user’s profile, or an acceptable number of data items preferred by the user

are not available because most users do not take the time to provide feedback. This lack

69

of feedback is ameliorated by using collaborative filtering, which attempts to predict the
usefulness of as yet unseen items for an active user, by proposing items based on those
previously rated by other users. The basic idea of collaborative filtering is to recommend
a set of unseen items that are preferred by other users who have tastes similar to the
active user. Thus, by combining collaborative filtering with content-based filtering, the
short-comings of each technique, when used separately, can be mitigated.

Nevertheless, collaborative filtering cannot be applied directly to the case-based
Knowledge Sifter framework because more than one user-query case per user, stored in
the case repository, may be similar to the active user query. Most collaborative filtering-
based recommendation systems [46, 48, 60] are not query-based retrieval systems and
they simply recommend data items which are predicted to be of interest to users without
considering topics or subjects of user information needs. That is, they consider only the
binary relationships between items and users while the ternary relationships among items,
users, and user queries are considered in this research.

A better approach is to recommend a single-aggregated domain-specific query
from the search cases of other user queries that are similar to the active user query.
Therefore, the query-to-query hybrid filtering that refines the active domain-specific
query, based both on the active user query case and the neighbor user query cases, can be
performed effectively. This is because the lists of the content features (metadata) for a
data item are determined by the domain of the data, e.g., the price, cuisine, and location
features can be used for restaurant search, and the genre, director, and actor features can

be used for movie search. Thus, determining the domain of search prior to the hybrid

70

filtering-based query refinement helps our system to find metadata patterns preferable to
the active user using the hybrid filtering.

However, if there are no previously-stored user-query cases posed by the active
user in the selected similar cases, the collaborative filtering cannot be directly used for
refining the active user query. This situation occurs because no active user’s feedback
exists for performing the collaborative filtering. To address this problem, a set of domain-
specific queries that can be simply aggregated from the domain-specific queries of the
selected cases similar to the active query case can be recommended. The active user
chooses one of the domain-specific queries having a domain of the user’s interest; then,
the query becomes the active domain-specific query. During this confirmation step, the
user can fine-tune the query parameters, e.g., for the data source feature, the user might
add or remove data sources and adjust the weights for each data source. Then, KS
retrieves results from the data sources in the user-confirmed domain-specific query by
dynamically translating it to one or more queries according to each data source’s
schema/ontology, as shown in the previous chapter.

Finally, the active user can provide more feedback on some other results and
request another recommendation of the query specification. At this time, the amount of
user feedback for performing the hybrid filtering is incrementally enlarged with the new
user feedback. The query refinement via the query-to-query hybrid filtering uses the
entire user feedback obtained from all of the search processes during the multiple times
of the query refinement requested by the active user. As described in the previous chapter,

the final refined query will be stored in the case base as a new case with the entire user

71

feedback results provided by the active user during a session, which ends if the active
user poses a new query representing different information needs or logs out from the KS
system.

Figure 24 shows an example representing how the query-to-query hybrid filtering
works using the example shown in Figure 21. After the active user selects and poses an
initial domain-specific query and provides relevance feedback for the first few results,
collaborative filtering can be performed to obtain more data items from the neighbor user
query cases. The combined resulting data items can be used to refine the active domain-
specific query by using semantic content-based filtering. As shown in the example, the
active query is refined with new values such as “american” and “www.restaurantrow.com”
for the cuisine type and data source features, respectively. In addition, the active query
can be refined even with a new criterion, “feature” and its value.

The following subsections describe in greater detail how to achieve the
abovementioned recommendations. Section 5.1 describes how a domain-specific query is
recommended to an active user without using any of the active user’s feedback. Section
5.2 describes how previously found data items can be recommended to the active user
from the neighbor users’ search cases based on a query-to-query hybrid filtering created
primarily by using collaborative filtering. Section 5.3 introduces another query-to-query
hybrid filtering method that refines the active user’s domain-specific query primarily

based on content-based filtering.

72

User Selected
Domain-Specific Query Result 1
nfo_Domain: Food and Resta it q

Collaboratively Refined
Domain-Specific Query

Initial Search |

Cuisine_Type: steak, steakhouse,
chophouse

Location: Washington Monument, DC

Data_Source: restaurant.com
restaurantdb.net

Content-based

2

\
”’

”

Cuisine_Type: steak, steakhouse,
Chophouse,

Location: Washington Monument, DC

Data_Source: restaurant.com,
restaurantdb.net,

AY
——

Collaborative
Filtering

BLT Steak

The Great Steak & Fry Company

McFadden's Restaurant & Saloon
Charlie Palmer Steak

Old Homestead Steak House

Items rated by active user

I liems filtered by
Collaborative Filtering

Figure 24 An Example of Collaborative Query Refinement for the Example in Figure 21

5.1 Initial Query Refinement without User Feedback

As discussed above, query-to-query hybrid filtering cannot be applied without the

user feedback (the active user’s ratings on items). In this case, a query specification can

be generated by statistically aggregating the neighbor-refined queries, which can be

found from the retrieved similar cases using the ontology-based indices. The aggregated

feature weight can be found by a simple statistical mean determined in Equation (6). The

value weight can also be determined in a similar way. However, the recommended

specification can be meaningless if there are a number of significantly different domain-

specific queries in the set of similar cases. This can happen because a user’s conceptual

73

queries, which index the cases, are not specific enough. The problem can be alleviated by
the query-to-query filtering approach described in the following sections. Further, this
approach can provide most popular features and their values according to the user query,
e.g., popular (meaning that data sources are reliable) data sources can be recommended

based on their associated weights from the data source feature.

Z W, -sim(C,,C,)
Wf — q,eNC (6)

/e > sim(C,,C,)

q;eNC

wherew, represents a weight for a feature f'in the active domain-specific query ¢,, and

W is a weight for a feature /* in a neighbor domain-specific query ¢; found in a set of

neighbor cases, NC. sim(C,, C;) represents the similarity between the active case and a
neighbor case in terms of their conceptual user query and it can be calculated using

Equation (5).

5.2 Immediate Data-Item Recommendation from Neighbor Cases

After an active user provides some ratings on resulting data items retrieved for a
domain-specific query, the active user’s rating values on unseen data items can be
predicted from a query-to-query hybrid filtering based on the rating patterns of the active

user and neighbor users for domain-specific queries. The prediction can be calculated

74

from Equations (7) and (8), which are derived from the well-known collaborative
filtering approach used in GroupLens [10].

This query-based hybrid filtering allows Knowledge Sifter to show the unseen
data items immediately because the data items can be found in a neighbor’s search
history in the KS repository. The mismatch problem between users’ conceptual queries
and domain-specific queries can be alleviated by using a threshold for the similarity
between the active user’s conceptual query and a neighbor user’s conceptual query. Only
the domain-specific queries obtained from neighbor cases having a certain high similarity
value in terms of the conceptual specification will be selected for this prediction process.
It is a hybrid filtering-based technique that combines collaborative filtering and content-
based filtering and includes a content-based filtering-based similarity measure for the

case similarities.

> (50 — 1) sim(q,.q,) - sim(C,,C,)

:_ q;eNC 7
Poa, =10, Z|Sim(qaaqz')|'sim(caaci) 7

q;eNC

z(rqa,ds _rqa)'(rqux _rql-)
) d.eSD
sim(q,,q,) == ®)
04,94,

where p_, represents a prediction for an unseen (unrated) data item d, for the active

domain-specific query q,. sim(q,, g;) is the correlation weight which shows the similarity

75

between the user rating patterns of the domain-specific queries g, and g; as defined by the
Pearson Correlation Coefficient shown in Equation (7). sim(C, C;) represents the
similarity between the active case C, and a neighbor case C; in terms of the conceptual

query as defined in Equation (5). NC is a set of neighbor cases selected as similar to the

active case. SD is a set of common seen (rated) data items between g, and g;. 7, and 7,

represent mathematical means for the ratings of the result data items of the domain-
specific queries ¢, and g;, respectively.

Table 2 represents a user rating prediction of unseen data items using the query-
to-query hybrid filtering shown in Equations (7) and (8). The table depicts five seen items
dy, which the active user rated for the active domain-specific query ¢,. There are five
unseen items d,;, which do not have a rating value for the active domain-specific query
from the active user, but have some rating values for the neighbor domain-specific
queries ¢; not only by the active user, but also by other users. The unseen items are found
via the case retrieval algorithm introduced in Section 4.3. The rating values of data items
for each domain-specific query in the examples shown in Table 2 have only binary rating
values, but the equations can also work using various other rating scales. The rating value
1 represents that a user liked a data item and/or regarded the data item as relevant for a
query, and 0 represents the dislike and/or the irrelevance of the data item. The sim(q,, g;)
values are calculated using the user rating values as shown in Equation (8). The sim(C,,
C;) values are given as shown in the table. Finally, the predicted rating values of the
active domain-specific query ¢, for the unseen data items d,; can be calculated using
Equation (7). As can be seen from Table 2, neighbor domain-specific queries having

76

higher similarities with / higher similarity values with the active domain-specific query
can have a greater influence in determining the prediction of the rating values. The
absence of rating values for an unseen data item, (e.g., d,5) show that the formulas can

also work well with sparse data.

Table 2 A User Rating Prediction of Unseen Data Items

q1 q> q3 q4 qa
dy; 1 1 1 0 1
ds; 0 0 1 1 0
dg; 1 1 0 0 1
dyy 1 1 1 1 1
dgs 0 1 1 0 0
dy; 1 1 0 0 0.87
d, 1 1 1 1 0.78
d,; 0 0 0 0 0.33
dyy 0 0 1 1 0.24
dys 1 N/A N/A 0 0.94
sim(q., q;) 5.0 3.06 -2.04 -0.83
sim(C,, Cy) 1 1 0.6 0.7

5.3 Query Refinement via Query-to-Query Hybrid Filtering

This section describes how the active user’s domain-specific query can be refined
by a query-to-query hybrid filtering technique which also combines a content-based
filtering technique and a collaborative filtering technique simultaneously. The main idea
of this technique is to find the content patterns preferable to an active user by refining the
active user’s domain-specific query in a collaborative manner; the list of features and

their weights of representing the content patterns are determined by the hybrid filtering

77

technique based on the data items preferred not only by the active user, but also by the
neighbor users who have rating patterns similar to the active user.

First, the active user’s preferred set of data items are augmented by adding the
neighbor users’ preferred set of data items with their rating values predicted from
Equations (7) and (8) in the previous section for the active user. The active user’s
domain-specific query is refined by content patterns of the augmented data items by
using Equations (9) to (12). If the active user confirms and poses the refined query to KS,
a new result set can be retrieved from a new data source set according to the newly
refined query. Then, more data items unseen by the active user can be found from the
collaborative query refinement with the new search artifacts. Thus, the domain-specific
query can be incrementally refined by aggregating the rated/predicted data items from the
several iterations of the search and refinement processes.

Equations (9) and (10) determine the value weight for each feature of the active
domain-specific query simply based on the number of occurrences of values in the
augmented data item set. The feature weight can be determined by Equations (11) and
(12) which also uses the Pearson Correlation Coefficient. This is based on an idea that if
the similarity value patterns for a criterion (feature) and the user rating patterns are
similar, the feature would be an important factor (feature) for the user in determining his
preference for the data. Therefore, this approach also takes into account the negative
examples, which have a negative feedback from users whereas most content-based
filtering systems [11, 12] consider only the positive examples to refine queries in terms of

weight adjustments. Furthermore, the negative correlation weight will become zero via

78

the n(x) function (see Eq. (11)) because the negative correlation would not necessarily
mean that the user rated a data item as a relevant one since it is dissimilar to his/her query

in the dimension of the feature, or vice versa.

W, = o)

Z Void Occur (vl.j. ,d,)

_— _ d,.eMD 10
rv,/ a z Occur (V,‘j » dm) ()
d,,eMD
o n(sim(fi,qa)) ' n(x)z xifx>0 (11)
- z asim(f.) 5 0 otherwise

> (sim(f,,d,)—sim(f))(r, 4 —7,)
sim(f,,q,) == (12)

Oy -0y,

where w, - represents the weight of a value ; for a feature i in the query ga. MD is a set

of data items representing the union of the set of the seen data items and the set of

predicted unseen data items. r, ~ represents an average rating value for data items in the
ij>9a

set MD having a value j for a feature i. Occur(v;;, dn) 1s a binary variable which represents

79

whether the data item d» has the value vy, and if yes, its value is 1, otherwise it is 0. w,

represents the weight of a feature f; for the query q.. sim(f, g.) represents the correlation
weight between the criterion (feature) similarity and the original/predicted user ratings
for the query q.. sim(f;, dw) represents the similarity value between the values of the query
ge«and the data item d»in terms of the dimension of the feature f.

Table 3 represents the feature vectors of an example query and data items. Table 4
represents a feature weight adjustment based on the example data shown in Table 3. The
feature weight adjustment uses the weighted multi-valued query, which can be generated
only from the positive examples via using Equations (7) and (8) and increased user
feedback information via the query-to-query hybrid filtering. The domain-specific queries
and data items in the example have only binary values for each feature, but the equations
would also work using the real-number values. Table 4 represents similarity values of the
query and data items for each feature and rating values of the data items for the query. In
this example, the similarity value of the query and a data item for a feature is 1 if they
have same value, otherwise it is 0. From the values given in Table 3, it is desirable that
the feature /i would be regarded as an important criterion for which the user determines
the relevance of the data items. Therefore, it would be beneficial to have a higher weight
on the feature for the efficiency of the system’s automatic rating/search process. This
approach would be advantageous for adjusting criterion weights for the systems using a
multi-dimensional/multi-valued query and heterogeneous types of values in each criterion

thereby requiring different metrics for evaluating the values.

80

The incrementally-specified query seems to degrade the prediction ratio and
efficiency of the search process because it aggregates contents of multiple data items.
However, it can clearly have a better recall ratio. The prediction ratio can be alleviated by
using the weights so that the results can be automatically rated and sorted by a similarity
measure based on the weights. The efficiency problem can occur if a refined domain-
specific query has more values because the number of data sources can be increased.
Also, some data sources do not provide multi-valued queries so that the domain-specific
query must be translated to a number of data source-specific queries. To address this
problem, the translated queries having higher weight values can be posed in advance to a
data source with a certain degree of parallel processing, and the partial results can be

shown to the users.

Table 3 Example Feature Values

fi I I3 J4
d; 1 0 1 0
d; 0 0 0 1
ds 1 1 1 0
d, 0 1 1 0
qa 1 0 1 0

Table 4 A Feature Weight Adjustment based on Data shown in Table 3

d; d; ds dy sim(fq.) Wi,
sim(f1,d;) | 0 1 0 1.00 0.46
sim(f>,d;) 1 1 0 0 0.00 0.00
sim(f3,d;) | 0 1 1 0.58 0.27
sim(fd) 1 0 1 1 0.58 0.27
ry 1o | 1| o

81

6 Validation

First of all, this research provides a case-based reasoning framework for the
Knowledge Sifter system and collaborative query refinement based on the framework. To
validate the entire framework and the collaborative query refinement, at least hundreds or
thousands of users might be required to use the system, and a number of queries and
feedback on result data items would also be required from each user as a recommender
system using collaborative filtering generally requires a number of user rating data.

Due to the limitations described above, I have focused on evaluating the new
hybrid filtering method, called query-to-query hybrid filtering — one of main
contributions of this research — by using a publically available user-rating dataset for
academic research. The Movielens dataset, which has been created by the GroupLens
research group in the Department of Computer Science and Engineering at the University
of Minnesota, has been chosen for this validation. As the query-to-query hybrid filtering
method combines both content-based and collaborative filtering, this validation has
focused on the effect of hybrid filtering approach on: 1) the new-user problem and 2) the
new-item problem of content-based filtering and collaborative filtering, respectively. The
query-to-query hybrid filtering method mitigates the new-user problem because, unlike a
simple content-based filtering method, it refines a query based not only on an active

user’s feedback, but also on the neighbor users’ feedback. It also mitigates the new-item

82

problem because it recommends a data item based not only on user ratings of the item,
but also on the similarity of the item to the user preference.

To show the advantages of the query-to-query hybrid filtering approach for the
new-user problem, I have compared the performance of the query-to-query hybrid
filtering method to a general content-based filtering method based on the nearest
neighbor algorithm for the new-user situation. For the new-item problem, I have
performed another experiment which compares the performance of a general
collaborative filtering algorithm and the query-to-query hybrid filtering for the new-item
situation. Finally, two additional experiments have been performed to show the
advantages of the query-to-query hybrid filtering method over the other hybrid filtering
methods introduced in the literature. The query-to-query hybrid filtering method is
assumed to be better than the other hybrid filtering methods since it uses multiple features,

collaborative feature-weight distribution, and semantics of the data-item contents.

6.1 Hypothesis

The goal of this experiment is to test the following six hypotheses related to

research questions:

Hypothesis 1: The query-to-query hybrid filtering method performs better than a pure
content-based filtering method overall in terms of precision and recall.
Hypothesis 2: The query-to-query hybrid filtering method performs better than a pure

content-based filtering method for the new-user problem in terms of precision and recall.

83

Hypothesis 3: The query-to-query hybrid filtering method performs better than a pure
collaborative filtering method overall in terms of accuracy of predictions.

Hypothesis 4: The query-to-query hybrid filtering method performs better than a pure
collaborative filtering method for the new-item problem in terms of accuracy of
predictions.

Hypothesis 5: Semantically-enhanced search by using ontology performs better than the
keyword-based search in terms of precision and recall.

Hypothesis 6: The multi-feature-based query-to-query hybrid filtering method performs

better than other hybrid filtering methods in terms of precision and recall.

6.2 Experiments

The query-to-query hybrid filtering approach was originally developed to improve
the effectiveness of an active user’s search based not only on an active user’s search
history, but also on other users’ search history. As Knowledge Sifter is a general-purpose
search system, the query-to-query hybrid filtering can be applied to a search system for
any data domain or application domain such as Web sites, movies, music, images, etc., as
long as the content of the data can be explicitly represented by a set of metadata
(features). The MovieLens dataset is selected for the experiments because there is no

other data publicly available with the scale of explicit user feedback data.

84

6.2.1 Data Selection

The Movielens dataset, widely used in academia for validating a recommender
system using a collaborative filtering or a hybrid filtering technique, is used to perform
this experiment. The Movielens dataset containing / million ratings for 3900 movies by
6040 users has been chosen for this experiment, because it has a sufficient number of
data items for this experiment. A relational database has been created to store the
Movielens data by using the MySql database system with a database schema represented
in Figures Figure 25 and Figure 26. The movie content data, except the genre data, is
parsed from IMDB [5] because the Movielens datasets only have the genre information
of movie data items.

As represented in the database schema, a table is created for each feature of the
movie data because a movie data item may have multiple values for each feature. The
query-to-query hybrid filtering can use the multiple feature information of data items
dynamically, i.e., the XML-based multi-dimensional query structure provides the
flexibility of creating a query with a set of features found in real time during query
refinement. The dynamic query refinement with the flexible query structure is useful for a
general-purpose information search system, since the content features of data items are
heterogeneous in the data domain and sources. Also, user preference on the content
features may differ from user to user, e.g., a user chooses a movie based on genre feature
(i.e., the user likes a movie because its genre is one of his or her favorites), and another

user might choose a movie based on the director or actor feature. The variability of user

85

preference with respect to the content features requires that a system should not pre-

assume which features are important or unimportant.

CREATE TABLE User (
userid INTEGER.
age INTEGER,
gender CHAR(1),
occupation INTEGER,
zipcode CHAR(10),
numOfRatings INTEGER,
PRIMARY KEY (userid));

CREATE TABLE Item (
itemid INTEGER.
title CHAR(100).
imdb_1d CHAR(9).
numOfRatings INTEGER,
PRIMARY KEY (itemid));

CREATE TABLE TtemGenre (
itemid INTEGER.
genre CHAR(11),
PRIMARY KEY (itemd, genre),
FOREIGN KEY (itemid) REFERENCES Ttem);

CREATE TABLE ItemDirector (
itemid INTEGER.
director CHAR(50),
PRIMARY KEY (itemud, director),
FOREIGN KEY (itemid) REFERENCES Item);

CREATE TABLE ItemActor (
itemid INTEGER.
actor CHAR(50),
PRIMARY KEY (itemid, actor),
FOREIGN KEY (itemid) REFERENCES Item);

CREATE TABLE TtemKeyword (
itemid INTEGER.
keyword CHAR(50),
PRIMARY KEY (itemd, keyword),
FOREIGN KEY (itemid) REFERENCES Ttem);

CREATE TABLE ItemCountry (
itemid INTEGER.
country CHAR(21),
PRIMARY KEY (itermid, country),
FOREIGN KEY (itemid) REFERENCES Item);

Figure 25 A database schema for user and item data with IMDB movie content information

86

CREATE TABLE MLBase (
userid INTEGER,
itemid INTEGER,
rating INTEGER,
PRIMARY KEY (userid, itemid),
FOREIGN KEY (userid) REFERENCES User,
FOREIGN KEY (itemid) REFERENCES Item);

CREATE TABLE MLTest (
userid INTEGER,
itemid INTEGER,
rating INTEGER,
ef prediction DOUBLE,
cbf sim_all DOUBLE,
kshf sim all DOUBLE,
kshf sim genre DOUBLE,
kshf sim keyword DOUBLE,
kshf sim country DOUBLE,
kshf sim director DOUBLE,
kshf sim actor DOUBLE,
PRIMARY KEY (userid, itemid),
FOREIGN KEY (userid) REFERENCES User,
FOREIGN KEY (itemid) REFERENCES Item);

Figure 26 A database schema for a base and test dataset

6.2.2 Test Dataset Selection

As shown in Figure 26, MLBase and MLTest tables are created to store the base
dataset and the test dataset, respectively. Initially, the MLBase table has one million
rating values with corresponding pairs of ids of user and data item data. The MLTest
table has all of the same million rating data copied from MLBase. Additionally, it has ad-
hoc attributes to manage prediction values and similarity values which are calculated
from the query-to-query hybrid filtering approach, as well as other content-based filtering,

or collaborative filtering techniques used for the comparisons.

87

6.2.2.1 Test Dataset for the overall performance

A rating dataset having users and items both with more than 1000 ratings is
created from the MLTest table in order to test the overall performance of the query-to-
query hybrid filtering compared to pure content-based filtering and collaborative filtering

as follows:

CREATE TABLE MLTest 1000 LIKE MLTest;

INSERT INTO MLTest 1000 SELECT * FROM ML Test

WHERE userid IN (SELECT userid FROM MLBase GROUP BY userid HAVING
COUNT(*)>1000) AND itemid IN (SELECT itemid FROM MLBase GROUP BY itemid
HAVING COUNT(*)>1000);

6.2.2.2 Test Dataset for the new-user problem

The new-user problem is one of the main problems addressed in this research,
since the goal of the query-to-query hybrid filtering method is to improve the
effectiveness of information search and personalization by refining user queries via using
content patterns and preference patterns found not only from an active user’s profile, but
also from other users’ profiles collaboratively. Most information search systems using
content-based filtering have difficulty in mining user preference due to the lack of user
feedback. This is the case of the new-user problem which often occurs in information
filtering systems. Thus, the test datasets are split into sub-datasets having different sets of
users selected per the number of their ratings provided. Initially, the test dataset for this
experiment is conditionally-selected based on the number of ratings on data items to

remove un-expected side effects regarding the results of the experiments, such as those

88

arising from the new-item problem. The test data is filtered to obtain data items having at
least 2000 ratings as follows:

CREATE TABLE MLTest d2000 LIKE MLTest;

INSERT INTO MLTest d2000 SELECT * FROM MLTest

WHERE itemid IN (SELECT itemid FROM MLBase GROUP BY itemid HAVING

COUNT(*)>2000);

As specified in the above sql statements, the MLTest d2000 has a test dataset
only for data items having more than 2000 ratings on the base dataset. The
MLTest d2000 dataset also has a sufficient number of test data, which is 75,996 pairs of
users and items. Finally, the MLTest d2000 dataset is split into several sub-datasets
having a set of users based on the number of their ratings as shown in Table 5. Thus, the

sub-datasets are created to show how the query-to-query hybrid filtering works better

than a pure content-based filtering mainly when an active user gives a small amount of

feedback.

&9

Table 5 Sub-datasets of MLTest d2000

Name of Sub-Table Sql Statements of Creating Sub-Tables
MLTest d2000 u20 CREATE TABLE MLTest_d2000_u20 LIKE MLTest_d2000;
INSERT INTO MLTest_d2000_u20 SELECT * FROM
MLTest_d2000 WHERE userid IN (SELECT userid FROM MLBase
GROUP BY userid HAVING COUNT(*)<=20);
MLTest d2000 u50 CREATE TABLE MLTest_d2000_u50 LIKE MLTest_d2000;
INSERT INTO MLTest_d2000_u50 SELECT * FROM
MLTest_d2000 WHERE userid IN (SELECT userid FROM MLBase
GROUP BY userid HAVING COUNT(*)>20 AND COUNT(*)<=50);
MLTest d2000 ul00 | CREATE TABLE MLTest_d2000_u100 LIKE MLTest_d2000;
INSERT INTO MLTest_d2000_u100 SELECT * FROM
MLTest_d2000 WHERE userid IN (SELECT userid FROM MLBase
GROUP BY userid HAVING COUNT(*)>50 AND COUNT(*)<=100);
MLTest d2000 u500 | CREATE TABLE MLTest_d2000_u500 LIKE MLTest_d2000;
INSERT INTO MLTest_d2000_u500 SELECT * FROM
MLTest_d2000 WHERE userid IN (SELECT userid FROM MLBase
GROUP BY userid HAVING COUNT(*)>100 AND COUNT(*)<=500);
MLTest_d2000 u1000 | CREATE TABLE MLTest_d2000_u1000 LIKE MLTest_d2000;
INSERT INTO MLTest_d2000_u1000 SELECT * FROM
MLTest_d2000 WHERE userid IN (SELECT userid FROM MLBase
GROUP BY userid HAVING COUNT(*)>500 AND
COUNT(*)<=1000);
MLTest d2000 ul001 | CREATE TABLE MLTest_d2000_u1001 LIKE MLTest_d2000;
INSERT INTO MLTest_d2000_u1001 SELECT * FROM
MLTest_d2000 WHERE userid IN (SELECT userid FROM MLBase
GROUP BY userid HAVING COUNT(*)>1000);

6.2.2.3 Test Dataset for the new-item problem

As opposed to the pre-selection of the test dataset for the new-user problem
experiments, only the test data with users providing more than a sufficient number of
ratings are selected for this experiment as follows:

CREATE TABLE MLTest ul000 LIKE MLTest;

INSERT INTO MLTest ul000 SELECT * FROM MLTest

WHERE userid IN (SELECT userid FROM MLBase GROUP BY userid HAVING
COUNT(*)>1000);

90

A partial dataset with users providing more than 1000 ratings instead of users
providing more than 2000 ratings are selected as a test dataset since there is only one user
providing more than 2000 ratings. There are 40 distinct users providing more than 1000
ratings, and the MLTest ul000 has 49893 rating data. The following sql statements
represent the test dataset split from the MLTest ul000 dataset with items having

different numbers of ratings on them:

Table 6 Sub-datasets of MLTest ul000

Name of Sub-Table Sql Statements of Creating Sub-Tables
MLTest ul000 d20 CREATE TABLE MLTest_u1000_d20 LIKE MLTest_u1000;
INSERT INTO MLTest_u1000_d20 SELECT * FROM
MLTest_u1000 WHERE itemid IN (SELECT itemid FROM MLBase
GROUP BY itemid HAVING COUNT(*)<=20);
MLTest ul000 _d50 CREATE TABLE MLTest_u1000_d50 LIKE MLTest_u1000;
INSERT INTO MLTest_u1000_d50 SELECT * FROM
MLTest_u1000 WHERE itemid IN (SELECT itemid FROM MLBase
GROUP BY itemid HAVING COUNT(*)>20 AND COUNT(*)<=50);
MLTest ul000 d100 | CREATE TABLE MLTest_u1000_d100 LIKE MLTest_u1000;
INSERT INTO MLTest_u1000_d100 SELECT * FROM
MLTest_u1000 WHERE itemid IN (SELECT itemid FROM MLBase
GROUP BY itemid HAVING COUNT(*)>50 AND COUNT(*)<=100);

MLTest_ul000_d500 | CREATE TABLE MLTest_u1000_d500 LIKE MLTest_u1000;
INSERT INTO MLTest_u1000_d500 SELECT * FROM
MLTest_u1000 WHERE itemid IN (SELECT itemid FROM MLBase
GROUP BY itemid HAVING COUNT(*)>100 AND COUNT(*)<=500);
ML Test ul000_d1000 | CREATE TABLE MLTest_u1000_d1000 LIKE MLTest_u1000;
INSERT INTO MLTest_u1000_d1000 SELECT * FROM
MLTest_u1000 WHERE itemid IN (SELECT itemid FROM MLBase
GROUP BY itemid HAVING COUNT(*)>500 AND
COUNT(*)<=1000);

ML Test ul000_d1001 | CREATE TABLE MLTest_u1000_d1001 LIKE MLTest_u1000;
INSERT INTO MLTest_u1000_d1001 SELECT * FROM
MLTest_u1000 WHERE itemid IN (SELECT itemid FROM MLBase
GROUP BY itemid HAVING COUNT(*)>1000):

91

6.2.3 Implementation

To use the Movielens datasets for wvalidating the query recommendation
framework using query-to-query hybrid filtering, a user profile (a user’s all-time
preference) is regarded as a user query because the datasets have user ratings on data
items only by users, not by user queries. That is, it is assumed that each user has posed
only one query representing the user’s long-term information need. I will refer to that
user query as user-profile query from now on. As the goal of the query-to-query hybrid
filtering is to refine user queries, an initial user-profile query needs to be generated prior
to the refinement. Then, the initial query is used to calculate similarities of data items
rated by neighbor queries with the initial query for each dimension. The neighbor queries
are, in fact, the neighbor users as it is assumed that a user profile is a user query in this
experiment. Thus, the neighbor queries (users) are selected if a user has rating patterns
similar to the active user’s rating patterns in this experiment. Finally, the initial query is
refined based on the content patterns of data items preferred not only by the active user,
but also by the neighbor users. All of the methods used in this experiment including the
query-to-query hybrid filtering tailored to the Movielens dataset as described as above are
implemented by using JAVA, and MySql database 1s used to maintain the Movielens data

and experiment results.

6.2.3.1 Initial User Profile Query Generation
As described as above, the initial profile query must be generated to use the
Movielens dataset for validating the query-to-query hybrid filtering. To generate the

initial query, a set of data items preferred by an active user having a rating value greater

92

than 4 (out of 5) is selected from the set of data items rated by the active user. Then, the
entire list of values with a number of their occurrences is found from the preferred-item
set for each feature. The weights of each value are determined by using the value list with
the number of occurrences as in Equation 13. The weights of each feature of the initial

query are evenly distributed with a value I/n(f), where in n(f) is the number of features.

Z Occur (v, d)

w, = < () (13)

where w, represents the weight for a value j of a feature i, and P is the set of data items

preferred by an active user. Occur(v,,d) is a binary variable which represents whether

[j,

the data item d has the value v, , and if yes, its value is 1, otherwise 0. n(d) is the total

number of data items in the preferred-item set.

6.2.3.2 Candidate User-Query Case Selection via Ontology-Based Indices

In the case-based Knowledge Sifter framework, only the user query cases having
a query consisting of topics and concepts similar to the active query are pre-selected by
using the ontology-based indices. This pre-filtering helps us to reduce the number of user
query cases that are employed to calculate similarity of their rating patterns with the
active user’s rating patterns for selecting the neighbor user query cases. In this
experiment, this pre-filtering is ignored because the Movielens dataset has ratings by

users, not by user queries. Therefore, a user’s entire rating history is added to the

93

candidate user-query (user) cases if the user commonly rated at least a data item with the

active user, for this experiment.

6.2.3.3 Neighbor Query (User) Selection

As I described in the previous sections, for this experiment, the neighbor users are
employed instead of the neighbor queries to find the preferred data items. This neighbor
user selection is based on the idea of collaborative filtering; that is, the neighbor users
will be selected if the user’s rating patterns are similar to the active user’s rating patterns
using the Pearson Correlation Coefficient (PMCC). Two parameter values are employed
to find the neighbor users: one is a threshold of the minimum number of data items
commonly rated by an active user; the other is a threshold of the PMCC value, which
represents how user rating values of the active user and a neighbor user for the
commonly-rated data items are related each other. The two thresholds have a significant
effect on the performance of the query-to-query hybrid filtering, and a set of ideal
thresholds is found based on statistics and the appropriate size of test dataset satisfying
the thresholds - 20 and 0.7 which are the thresholds of the number of neighbor users and
the PMCC value, respectively. The threshold 20 is not a small number of sample data for
calculating a PMCC value, and the PMCC threshold 0.7 also indicates that there is a high
correlation between the two datasets. The threshold pair is also tested with the two-tailed
paired T-test with n-2 degrees of freedom and it turns out to be statistically significant at
conservative significance level of 0.01.

The query-to-query hybrid filtering actually pre-filters the other user queries

based on the similarity of topics of user interest before the neighbor user selection

94

process using PMCC is performed. That is, an active user’s initial query is primarily
compared to the other user’s query in terms of the similarity of topics contained in each
query as described in Section 4.3.2. The ontology-based pre-filtering dramatically
reduces the number of other query histories subjecting for the rating pattern comparison
since there are an uncountable number of query histories in a search system (Google
receives 400 million search queries per a day in US). However, it is assumed that a user
is a candidate neighbor user if the user commonly-rated an item with the active user for

these experiments using the Movielens dataset.

6.2.3.4 Refined Query Generation based on Query-to-Query Hybrid Filtering

After the neighbor users have been determined, the neighbor users’ rated data
items having a prediction value higher than a threshold, 4 (out of 5) for the active user,
are found by using Equations 7 and 8. The found data items are added to the active user’s
preferred item set. Then, a domain-specific query is initially formulated with a set of
content values and their weights for each criterion found by using Equations 9 and 10 on
the extended preferred item set for the active user. Finally, the initial domain-specific
query is refined by determining the weight of each feature using Equations 11 and 12. A
feature weight is determined by a correlation value between the value similarity of the
initial domain-specific query to a data item in terms of the feature and the actual or
predicted rating values for the data item by the active user. Therefore, if the user rating
values and the similarity values in terms of a criterion have similar patterns, the weight of

the criterion would be higher. Otherwise, the weight would be lower. That is, each feature

95

weight actually represents that how a data item feature (dimension) is important to the

users’ selectiveness of the data item.

6.2.4 Experiments and Results

6.2.4.1 Experiment Metrics and Types

As shown in Table 7, I have performed various experiments for the validation. A
Spearman's rank correlation coefficient (Spearman's Rho)-based metric was used for all
of the experiments because the query-to-query hybrid filtering produces the similarity
values of test data items for the refined domain-specific query, not the prediction values
of user ratings on the items. That is because the goal of the query-to-query hybrid
filtering method is to refine user queries, not to predict actual user rating values for the
items. The Spearman's rank correlation coefficient metric measures the extent to which
two different rankings agree independent of the actual values of the variables, but it does
not handle weak (partial) orderings well [32]. Weak orderings occur in ranking items
based on the actual user rating values since there would be many items in a rank due to
the small variability of the user rating values (only five different values, 1 to 5 out of 5).
On the other hand, the system may return a complete ordering of items because they are
ranked by their similarity to a refined query. In this case, the Spearman's rank correlation
metric will be penalized for every pair of items that the user has rated the same, but the
system ranks at different levels. Therefore, the ranks obtained from the query-to-query
hybrid filtering are normalized based on the actual user rating values.

In detail, data items are grouped by their actual user rating values, and the number

of items in each group is counted. Data items are ordered by similarity values calculated
96

from the query-to-query hybrid filtering. The ranks of the data items for the query-to-
query hybrid filtering are normalized based on the actual ranks given by the similarity
values and the number of items in the groups created by the actual user rating values. For
example, if a data item is ranked 40 based on the similarity value, and the total numbers
of items in the groups for user rating values 5 and 4 (out of 5) are 20 and 100,
respectively, the data item is given a normalized rank, 4 for ranking based on the
similarity values. That is, the ranks of data items for the similarity values are re-scaled
corresponding to the scale of the user rating values to avoid the penalty which might be
given to using the Spearman's rank correlation metric on the weak ordering data. Finally,
the correlation coefficient is calculated based on the actual user rating values and the re-
scaled rank values to represent the performance of the query-to-query hybrid filtering.
Then, the Spearman's rank correlation-based metrics for measuring the performance of
the comparing methods are also calculated in a similar way to evenly quantify their
performance, including the methods which have a same range of prediction values with
the actual user rating values. Furthermore, the two-tailed paired T-test with n-2 degrees
of freedom was performed to test the hypothesis for the correlation coefficient, which is
that the similarity values and the actual user rating values are correlated each other, at the

various statistical significance levels such as the 0.10, 0.05, and 0.01 level.

97

Table 7 Experiment Metrics and Types

Exp# Algorithm Comparing Algorithm Metrics

1 Query-to-Query Hybrid Content-based Filtering Spearman's Rho,

Filtering based on a Nearest Precision/Recall
Neighbor algorithm

2 Query-to-Query Hybrid GroupLens Collaborative Spearman's Rho,
Filtering Filtering MAE

3 Query-to-Query Hybrid Query-to-Query Hybrid Spearman's Rho,
Filtering using Multiple using only One Feature Precision/Recall
Features

4 Query-to-Query Hybrid Query-to-Query Hybrid Spearman's Rho,
Filtering with concept Filtering without concept Precision/Recall
generalization/specialization | generalization/specialization
using ontology

6.2.4.2 Comparison between Query-to-Query Hybrid Filtering and Content-Based
Filtering

As described in the previous section, a Spearman's rank correlation-based metric
was basically used to compare the query-to-query hybrid filtering method and a pure
content-based filtering method. Table 8 shows the results of the comparisons between the
query-to-query hybrid filtering and a content-based filtering using the subsets of the
million rating data. As shown in the results, the query-to-query hybrid filtering
outperforms the content-based filtering technique using Euclidean distance overall.
Furthermore, the query-to-query hybrid filtering does not seem to have the new-user
problem while the content-based filtering performs poorly for users who provided a few
ratings. All of the Spearman’s rank correlation coefficient (Spearman’s rho) values of the
subsets obtained for testing the performance of the query-to-query hybrid filtering also

turned out to be statistically significant at a conservative significance level of 0.01 from

98

the two-tailed paired T-test with n-2 degrees of freedom, i.e., it cannot be said that the

similarity values found by the query-to-query hybrid filtering and the actual user rating

values are not correlated with each other.

Table 8 Comparison between Query-to-Query Hybrid Filtering (HF) and Content-Based
Filtering (CBF) via the Spearman's rank correlation coefficient

d2000_ | d2000_ | d2000_ | d2000_ | d2000_ | d2000_ | d2000_
u2(u50 ul00 u500 ul1000 ul001 | Overall
Spearman's
Rho HF 0.638 0.640 0.625 0.606 0.592 0.614 0.609
Spearman's
Rho CBF 0.505 0.523 0.571 0.563 0.543 0.558 0.555
Improvement | 26.49% | 22.29% | 9.46% 7.62% 9.02% 10.16% | 9.70%

For this comparison, the precision and recall metrics are also used, which have
been widely employed in Information Retrieval [11], to measure the performance of
movie-item retrieval done by both methods. To calculate the precision and recall metrics
for the query-to-query hybrid filtering method, two sorted item-sets are created: one is
ordered by actual user rating values and the other is ordered by the similarity values
obtained from the query-to-query hybrid filtering. Items with the actual user rating value
equal or higher than 4 (out of 5) were regarded as relevant, and other items having the
actual user rating value lower than 4 were classified as non-relevant. Then, the number of
the relevant items is found and use the number as a bound rank to decide whether a

movie item was classified by the query-to-query hybrid filtering as relevant or not from

99

the ordered item set. Therefore, the precision and recall values can be calculated from
Equations 13 and 14, respectively since the test datasets have a fixed number of data
items [49].

As shown in Table 9, the results are similar to the results of the comparisons using
the Spearman's rank correlation-based metric, i.e., the query-to-query hybrid filtering
performs better than a pure content-based filtering both for overall and for the new-user
situation in terms of the precision and recall (for both measures, higher is better).
Furthermore, the one-tailed paired T-test was performed to test the hypothesis. The null
hypothesis, which is that there is no improvement in using query-to-query hybrid filtering,
can be rejected in 95% confidence level for all of the test cases since the p-values are less
than 0.05. Especially for the new-user situation, the null hypothesis can be rejected in 99%

confidence level.

.. tp
recision = 13
p P—_ (13)
U4
recall = (14)
ip+ fn

where #p (true positives) represents a number of relevant movie items also classified as
relevant by the query-to-query hybrid filtering. fp (false positives) represents a number of

non-relevant movie items classified as relevant by the query-to-query hybrid filtering. fn

100

(false negatives) represents a number of relevant movie items classified as non-relevant

by the query-to-query hybrid filtering.

Table 9 Comparison between Query-to-Query Hybrid Filtering (HF) and Content-Based

Filtering (CBF) via Precision and Recall

Precision Recall
HF | CBF | Difference St HF | CBF | Difference St
T-test T-test
d2000
w20 — 1 0.908 | 0.821 10.62% <0.005 0.908 | 0.821 10.62% <0.005
d2l105000_ 0.905 | 0.842 7.53% <0.01 0.893 | 0.838 6.57% 0.016
dlzl(l)gg_ 0.890 | 0.850 4.68% 0.039 0.882 | 0.849 3.85% 0.044
diggg— 0.883 | 0.838 5.38% 0.034 0.868 | 0.837 3.71% 0.043
(121000000— 0.879 | 0.832 5.62% 0.032 0.871 | 0.830 4.90% 0.039
121000001— 0.879 | 0.831 5.74% 0.029 0.879 | 0.829 5.99% 0.027
gigggﬁ 0.886 | 0.842 5.26% 0.031 0.874 | 0.840 4.07% 0.035

6.2.4.3 Comparison between Query-to-Query Hybrid Filtering and Collaborative

Filtering
The Spearman's rank correlation-based metric was also basically used for this
comparison between the query-to-query hybrid filtering and a pure collaborative filtering
technique used in GroupLens [46, 60]. Table 10 shows the results of the comparisons
between the query-to-query hybrid filtering and the pure collaborative filtering using the

subsets of the million rating data. Unlike the previous results, the query-to-query hybrid

101

filtering does not outperform the pure collaborative filtering overall. Also, the pure
collaborative filtering does not seem to have the new-item problem except for a test
dataset selected from the million rating dataset, ul000 d10, which has items with a very
small number (five) of user ratings. Such cases cannot be tested for the 100k rating
dataset since there is no such test datasets having items with user ratings smaller than five.
Nevertheless, it can be said that the query-to-query hybrid filtering is reasonably
acceptable for the new-item situations from the results of the test datasets, u300_d10 and
ul000 d10 selected from the 100k rating dataset and the million rating dataset,
respectively. The results are similar or slightly better than the results of the pure
collaborative filtering for such test datasets while its performance is not better overall.
Furthermore, all of the Spearman’s rank correlation coefficient (Spearman’s rho) values
of these test datasets representing the performance of the query-to-query hybrid filtering
also turned out to be statistically significant at conservative significance level of 0.01

from the two-tailed paired T-test with n-2 degrees of freedom.

Table 10 Comparison between Query-to-Query Hybrid Filtering (HF) and Collaborative
Filtering (CF) via the Spearman's rank correlation coefficient

ul000_ | ul000_ | ul000_ | ul000_ | ul000_ | ul000_ | ul000_ | ul000_
d1o d20 ds0 d100 d500 | d1000 | d1001 | overall

Spearman's
Rho HF 0.508 0.581 0.575 0.585 0.576 0.576 0.599 0.584

Spearman's

Rho CF 0.425 0.636 0.655 0.678 0.677 0.637 0.630 0.680

Difference 19.44% | -8.63% | -12.15% | -13.72% | -14.93% | -9.59% | -4.90% | -14.06%

102

In this experiment, the effectiveness of the query-to-query hybrid filtering method
is tested by comparing it with the well-known pure collaborative filtering. As shown in
the results, the pure collaborative filtering performs better than the query-to-query hybrid
filtering. This result occurred because the performance was tested by comparing the
predicted values to the actual user ratings. In addition, the goal of the query-to-query
hybrid filtering is not to predict the user rating values for the items, but rather to refine
user queries, while the pure collaborative filtering aims to predict the user rating values.
Therefore, another experiment has been conducted to test the performance of the query-
to-query hybrid filtering.

Initially, I found a way to use the query-to-query hybrid filtering for predicting
the user rating values; that is, to complement the predictions of the pure collaborative
filtering with the query-to-query hybrid filtering using Equations 14 and 15. The basic
idea of this complement is to give more weights to a prediction of an active user’s rating
value for a data item if the data item is found to be similar to an active query refined by
the query-to-query hybrid filtering as shown in Equation 14. The prediction value of a
data item is also penalized if the data item is not similar to the refined query. Equation 15
denotes that the new prediction values are bounded with a scale of user rating values used
in the Movielens dataset, 1 to 5 out of 5. The parameter o representing a weight of the
hybrid filtering in the combination can be determined by heuristics, and 4 was found as
an ideal value for o that maximize the effectiveness of the combining in predicting user
rating values on data items. Table 11 shows the results of the comparisons between the

complemented collaborative filtering by the query-to-query hybrid filtering and the pure

103

collaborative filtering using the subsets of the million rating data. The comparisons are
done with Mean Absolute Error (MAE) since the prediction values produced from both
methods have a same scale with the actual user rating values. As shown in the results, the

complemented one is slightly better in performance (lower is better for MAE metrics).

, P o ta(sim(q,,d,)— 0.5)* if sim(q,,d,)>0.5
Pu,d, = o 5 . (14)
D, 4 —a(sim(q,,d,)—0.5)" if sim(q,,d,) <0.5
5.0 if pu.a, >5.0
Dugd, =3 D uyd, if 1.0< plua, <5.0 (15)
1.0 if pu.a, <1.0

where p, , represents a prediction of rating value of an unseen data item, d, for an

active user, u, calculated by the pure collaborative filtering. sim(q, d,) represents a
normalized similarity value of the unseen data item for an active query, g, refined by the

query-to-query hybrid filtering. a is a parameter value representing a weight of the query-
to-query hybrid filtering p ., .4, represents a complemented prediction of an active user’s

rating value for an unseen data item, d,,.

104

Table 11 Comparison between Query-to-Query Hybrid Filtering (HF) and Collaborative
Filtering (CF) via MAE

ul000_ | ul000 | ul000_ | ul000_| ul000_| ul000_ | ul000_| ul000_

d10 d20 | d50 | d100 | d500 | d1000 | d1001 | overall
1) 0.743 | 0.064 | 0.685 | 0.690 | 0.698] 0.689 | 0.690 | 0.682
CF 0832 | 0.672 | 0.677 | 0.696 | 0.693 | 0702 | 0718 | 0.699
Difference | -10.14% | -1.25% | 1.20% | -0.83% | 0.69% | -1.79% | -3.94% | -2.43%
One-tailed | _) | 035 | 056 | 038 | 052 | 029 | 0041 | 0.8
T-test

6.2.4.4 The Effectiveness of Collaborative Weight Determination of Query-to-
Query Hybrid Filtering

Table 12 shows the result of an experiment testing the validity and effectiveness
of the query-to-query hybrid filtering in terms of the weight determination for a multi-
dimensional query. The weight distribution is a key problem of information retrieval and
Web search area as such systems suffer from the ordering of the immense amount of
result data found by a query. Also, the weight distribution is a key issue of the data
mining and machine learning area since the weights of dimensions actually represent
which dimensions of a data item impacted, and by how much, on the users’ selectiveness
of the data item.

As shown in Table 12, the country and genre features have quite low correlation
coefficient values which show that the features would not have any influence on
determining users’ preference for movie data items. The director and actor features have
relatively higher correlation values with the users’ actual ratings. This would mean that
user queries may be answered more meaningfully, if they select movies based on their

favorite directors or actors, rather than selecting movies based on genres or countries.

105

However, it would be inaccurate for the country feature because the Movielens dataset
has very skewed data in terms of the country feature (e.g., about 65 percent of movies in
the Movielens datasets are from only one specific country, USA).

Even the country and genre features have such low correlation coefficient values,
the similarity values obtained by using all features, e.g., sim_all have similar or higher
correlation coefficient values compared to the coefficient values based on any of the
features. Table 12 also shows the precision and recall values for this comparison. The
results are quite similar to the results of the comparison using the correlation coefficient
measure; the query-to-query hybrid filtering slightly degrades precision when it uses all
the features instead of using only the director feature or the actor feature, but recall is
noticeably improved when it uses all the features instead of using any of only one feature.
Based on the results, it can be concluded that the weight distribution of the query-to-
query hybrid filtering works quite well. If a dimension reduction algorithm is used, it
would have better performance. However, the dimension reduction algorithm only works
for an information filtering system or an information retrieval system oriented toward
only one domain of data and using a fixed feature list. Therefore, the weight distribution
mechanism surely fits better in a dynamic environment in which an information retrieval
system like Knowledge Sifter would deal in a dynamic way with different domains and

different sets of information content features.

106

Table 12 Performance of Query-to-Query Hybrid Filtering Using Multi-Features (sim_all)

or Using Only One Feature

. . sim sim sim .
sim_all | sim_genre kengr d | countr v director sim_actor
Spearman’s Rho 0.576 0.02 0.421 0.114 0.557 0.532
Precision 0.849 0.727 0.817 0.749 0.881 0.872
Recall 0.848 0.526 0.779 0.116 0.667 0.76

6.2.4.5 The Effectiveness of Using Ontology-based Concept
Generalization/Specialization in Query-to-Query Hybrid Filtering

This experiment validates the effectiveness of using semantics in the query-to-
query hybrid filtering. That is, to use ontologies for calculating similarities of data items
to user profile queries. The linguistic ontology, WordNet, is used to extend the concepts
in the user profile queries for the keyword feature, which has values which having
general concepts. A cluster-based simple ontology for country feature was also created.
The clusters of countries are created based on social and cultural similarities [27] as

shown in Table 13.

Table 13 Clusters of Countries based on Social/Cultural Similarities

Clusters Countries
Anglo Cultures "Australia," "Canada," "Ireland," "New Zealand," "South
Africa," "UK," "USA."
Confucian Asia | "China," "Hong Kong," "Japan," "South Korea," "Taiwan."

Eastern Europe "Algeria," "Georgia," "Greece," "Hungary," "Kazakhstan,"
"Poland," "Russia," "Slovenia."
Germanic Europe | "Austria," "Germany," "Netherlands," "West Germany,"

"Switzerland."
Latin America "Argentina," "Brazil," "Mexico.”
Latin Europe "France," "Israel," "Italy," "Portugal," "Spain."
Nordic Europe "Denmark," "Finland," "Sweden."
Southern Asia "India," "Iran," "Philippines."

107

Table 14 shows the precision and recall values of the query-to-query hybrid
filtering both with and without using semantics by employing the MLTest 1000 dataset.
As shown in the features, the precision values are a bit improved when the ontologies for
keyword and country features are used, and the recall values are noticeably improved
especially for the country feature. This would be because the social/cultural similarity-
based country clusters somewhat diminish the problem of the skewness of the test dataset
for the country feature, which is caused by the USA dominance of producing the movies.
A simple word matching employing synonyms and hypernyms found from WordNet was
used for the keyword ontology. The improvement might be higher if a more robust

domain ontology is used for the IMDB keyword tags.

Table 14 Performance of Query-to-Query Hybrid Filtering (HF) With/Without Semantics

Precision Recall
Using only | Usingonly | Usingall | Using only | Using only | Using all
Keywords Country features Keywords Country features
HEF w./ 0.864 0.805 0.866 0.868 0.780 0.898
Semantics
HF w/o 0.817 0.749 0.849 0.779 0.116 0.848
Semantics
Difference 5.71% 7.48% 1.90% 11.43% 572% 5.81%
One-tailed | 5>g 0.021 0.13 <0.01 <0.005 0.028
T-Test

108

6.3 Conclusion of Validation

As the goal of the query-to-query hybrid filtering is to improve the effectiveness of
information search via collaborative query refinement, the comparison between the
query-to-query hybrid filtering and the pure content-based filtering using the nearest
neighbor algorithm is the primary experiment for the validation. As shown in the
experimental results, the query-to-query hybrid filtering method performed better than a
pure content-based filtering in terms of accuracy, both overall and for the new-user
problem. In detail, the query-to-query hybrid filtering improved precision and recall by
5.3% and 4.1% overall, respectively. For the new-user situation, the query-to-query
hybrid filtering improved precision and recall by 10.6% for both.

On the other hand, the query-to-query hybrid filtering did not perform better than
the GroupLens collaborative filtering overall, but the query-to-query hybrid filtering
performed better in the new-item situation. It would be because the other characteristics
of movies such as quality and scenario perfectness would be more important factors for
deciding the users’ likeness rather than the general movie content values such as genre
and actor. For example, a user may like a particular drama movie, but does not
necessarily like all drama movies. In addition, a result is presented, which shows the
GroupLens collaborative filtering, when complemented by the query-to-query hybrid
filtering improves predictability of user ratings overall. In this case, the complemented
approach performed slightly better than the GroupLens collaborative filtering overall and

improved the performance by 8 to 11% for the new item problem.

109

Lastly, the experiments on the Movielens datasets has shown the validity and
effectiveness of the query-to-query hybrid filtering algorithm for the weight
determination of a multi-dimensional query in terms of information search accuracy. The
result of an experiment for evaluating the effect of using an ontology for the query-to-
query hybrid filtering is also presented. The result suggests that using the semantic
technologies for hybrid filtering improves the accuracy of refining user queries in
representing user information needs, as the accuracy of the movie retrieval increased by

using the refined queries.

110

7 Conclusion

This research is highly interdisciplinary since building an intelligent and
personalizable information search system over heterogeneous data sources requires
knowledge of many areas such as information retrieval, information systems, data mining,
software engineering, artificial intelligence, statistics, etc. This research is also highly
practical in designing and developing both a system and a methodology for searching
information over heterogeneous sources while considering user preference and semantics
of user queries. Most importantly, a new hybrid filtering method, which we call “query-
to-query hybrid filtering,” is introduced for automatic refinement of user queries based on

opinions of a community of users who have similar preferences.

7.1 Contributions

First, I have developed a new hybrid filtering method which combines content-
based filtering and collaborative filtering to take advantage of the entire user search
histories including user feedback for improving the effectiveness of information search in
a collaborative manner. The hybrid filtering is called “query-to-query hybrid filtering,”
and it refines a user query based on 1) emergent semantics via use cases 2) mined
preferences based not only on an active user’s search history, but also on neighbor users’
search history who have similar preferences. Query-to-query hybrid filtering is developed

111

by taking into account the ternary relationships among users, their queries, and data items;
other filtering systems use only the binary relationship between users and data items. An
algorithm and methodology for query-to-query hybrid filtering are presented, together
with the mathematical equations to determine the weights and statistics. The validity and
effectiveness of query-to-query hybrid filtering, in providing more relevant and
preferable information to users, have been validated with numerous experiments and
comparisons.

A case-based reasoning framework has been proposed for capturing, maintaining,
and reusing the artifacts produced during the users’ entire session. An XML-based meta-
model is used to store all the artifacts produced during the search process including user
query and its refined queries, user feedback, related ontology, data sources, etc. In the
case-based reasoning framework, user query cases are created according to an XML-
schema which is used to represent user queries with the semantics of user concepts
together with their related explicit ontology concepts. An ontology-based indexing
scheme is also introduced to effectively and efficiently retrieve other user query cases
related to concepts and topics of an active user query case.

Semantic Web standards and technologies such as XML, RDF, OWL, and
Semantic Web Services are used to implement semantic search. A prototype application,
Knowledge Sifter, has been developed based on these open-standards and a service-
oriented architecture. The agent architecture implemented by using Semantic Web
Services and the automatic refinement of user queries via the query-to-query hybrid

filtering enable a system to be dynamically configured based on user preferences.

112

Finally, most of the information filtering and information retrieval systems having
the ability to mine user preferences or profiles use a static structure (e.g., a pre-specified
and fixed list of criteria/features) for representing content patterns of data items found
preferable by a user. This is due to the difficulty of dealing with changes in such structure
itself for the mining. The framework and methodologies presented in this research are
developed to refine user queries in terms of modifying not only the feature values, but
also the features of the user-preferable content patterns with emergent semantics found
from query-to-query hybrid filtering. The following are the key aspects of the framework
and methods that enable a system to handle the changes also on the query structure
during the refinement:

o The XML-based user-query case representation with a flexible query structure
enables a system to refine user queries with the structure changes,

o Emergent semantics via using query-to-query hybrid filtering can be formed not only
with emergent feature (metadata) values, but also with emergent features,; and

o The dynamic feature-weight distribution, developed as a part of query-to-query

hybrid filtering, works well with the flexible query structure.

7.2 Further Research

In this research, a domain-specific query structure is introduced in order to
represent the general user concepts specified in the conceptual query in terms of domain-
specific concepts. The domain-specific queries are semi-automatically formulated and

refined based on simple ontology-concept linkages found from the neighbor user query

113

cases. However, the ontology-concept linkages are created to represent only synonym
and hypernym relationships for finding domain-specific concepts related to the general
user concepts or vice versa. Therefore, if the case-based reasoning framework and the
query-to-query hybrid filtering method were to incorporate more complex reasoning
techniques, such as the rule-based inference providing by Jena [16] and Pellet [64], and
take advantage of other ontological relationships among the domain concepts defined in
domain ontologies were used in the query refinement process, than more accurate and
serendipitous emergent semantics could be found. As a result, the effectiveness of

information search in a system would be improved.

114

Appendix A: XML Schemas for Data Specification

Al XML Schema of User Query: Managed by Query Formulation Agent

<xs:schema xmlns="" xmlns:xs="http://www.w3.0org/2001/XMLSchema">
<xs:complexType name="userTerm">
<xs:sequence>
<xs:attribute name="domain" type="xs:integer" use
</xs:sequence>
</xs:complexType>
<xs:element name="userQuerySpec">
<xs:complexType>
<xs:sequence>
<xs:element name="SO" type="userTerm" minOccurs="1" maxOccurs="1"/>
<xs:element name="Aol" type="userTerm" minOccurs="0" maxOccurs="1"/>
<xs:element name="Pol" type="userTerm" minOccurs="0" maxOccurs="1"/>
<xs:element name="Lol" type="userTerm" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

required"/>

A2 XML Schema of WordNet Concept: Managed by Ontology Agent

<xs:schema xmlIns="" xmlns:xs="http://www.w3.0org/2001/XMLSchema">
<xs:complexType name="sense">
<xs:sequence>
<xs:element name="senselndex" type="xs:integer" maxOccurs="1"/>
<xs:element name="synonyms" type="xs:string" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:element name="dataPrefSpec">
<xs:complexType>
<xs:sequence>
<xs:element name="SOSyn" type="sense" minOccurs="1" maxOccurs="1"/>
<xs:element name="AolSyn" type="sense" minOccurs="0" maxOccurs="1"/>
<xs:element name="PolSyn" type="sense" minOccurs="0" maxOccurs="1"/>
<xs:element name="LolSyn" type="sense" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

115

A3 XML Schema of Source-Specific Query for GNIS: Managed by Ontology Agent

<xs:schema xmlIns="" xmlns:xs="http://www.w3.0org/2001/XMLSchema">
<xs:element name="GNISQuerySpec">
<xs:complexType>
<xs:sequence>
<xs:element name="featureName" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="state" type="xs:string" minOccurs="0" maxOccurs="1"/>
<xs:element name="variant" type="xs:boolean" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

A4 XML Schema of Data Preference: Managed by Preference Agent

<xs:schema xmlns=" xmlns:xs="http://www.w3.0rg/2001/XMLSchema'>
<xs:complexType name='weightedElement™
<xs:sequence>
<xs:attribute name='weight' type='xs:double' use="required'/>
</xs:sequence>
</xs:complexType>
<xs:element name='dataPrefSpec'™
<xs:complexType>
<xs:sequence>
<xs:element name="term' type='weightedElement' maxOccurs='1'"/>
<xs:element name="location' type="weightedElement' maxOccurs='1'/>
<xs:element name='date' type='weightedElement' maxOccurs='1">
<xs:complexType>
<xs:sequence>
<xs:element name='dateFrom' type="xs:date' maxOccurs="1"/>
<xs:element name='dateTo' type="xs:date' maxOccurs='1"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name='size' type='weightedElement' maxOccurs='1">
<xs:complexType>
<xs:sequence>
<xs:element name='width' type='xs:integer' maxOccurs='1'"/>
<xs:element name="height' type="xs:integer' maxOccurs='1"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="theme' type="weightedElement’ maxOccurs='1">
<xs:complexType>
<xs:sequence>
<xs:element name="photoW' type='xs:double' maxOccurs='1'"/>
<xs:element name="topoW' type="xs:double' maxOccurs='1"/>

116

</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="source' type="weightedElement' maxOccurs='1">
<xs:complexType>
<xs:sequence>
<xs:element name="terraW' type="'xs:double' maxOccurs='1'/>
<xs:element name="yahooW' type="xs:double' maxOccurs='1'"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

A5 XML Schema of Search Result Retrieved from Various Sources: Managed by Web
Services Agent

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:complexType name="specType">
<xs:attribute name="name" type="xs:string" use="required"/>
</xs:complexType>
<xs:element name="Search">
<xs:complexType>
<xs:attribute name="source" type="xs:string" use="required"/>
<xs:element name="Request" maxOccurs="unbounded">
<xs:complexType>
<xs:attribute name="status" type="xs:string" use="required"/>
<xs:attribute name="uri" type="xs:anyUri" use="required"/>
<xs:attribute name="posedTime" type="xs:dateTime" use="required"/>
<xs:attribute name="endedTime" type="xs:dateTime" use="required"/>
<xs:sequence>
<xs:element name="Spec" type="specType" maxOccurs="unbounded"/>
<xs:element name="Result" maxOccurs="unbounded">
<xs:complexType>
<xs:attribute name="uri" type="xs:anyUri" use="required"/>
<xs:element name="Spec" type = "specType" maxOccurs="unbounded"/>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:complexType>
</xs:element>
</xs:schema>

117

A.6 XML Schema of Source-Specific Query for Yahoo Image Search Engine: Managed
by Web Services Agent

<xs:element name="Spec" maxOccurs="1">
<xs:complexType>

<xs:sequence>
<xs:element name="query" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="format" type="xs:string" maxOccurs="1"/>
<xs:element name="coloration" type="xs:string" maxOccurs="1"/>
<xs:element name="site" type="xs:string" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>

</xs:element>

A7 XML Schema of Result Data from Yahoo Image Search Engine: Managed by Web
Services Agent

<xs:element name="Spec" maxOccurs="1">
<xs:complexType>
<xs:sequence>
<xs:element name="title" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="desc" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="thumbnailUri" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="width" type="xs:string" minOccurs="1" maxOccurs="1"/>
</xs:sequence>
</xs:complexType>
</xs:element>

—"

A.8 XML Schema of Source-Specific Query for TerraServer: Managed by Web
Services Agent

<xs:element name="Spec" maxOccurs="1">
<xs:complexType>
<xs:sequence>
<xs:element name="theme" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="centerLong" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="centerLat" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="scale" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="projection" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="width" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="height" type="xs:string" minOccurs="1" maxOccurs="1"/>
</xs:sequence>
</xs:complexType>
</xs:element>

118

A9

XML Schema of Result Data from TerraServer: Managed by Web Services Agent

<xs:element name="Spec" maxOccurs="1">
<xs:complexType>

<xs:sequence>

<xs:element name="thumbnailUri" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="centerLong" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="centerLat" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="eastLong" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="westLong" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="northLat" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="southLat" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="creationTime" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="scale" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="projection" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="width" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="height" type="xs:string" minOccurs="1" maxOccurs="1"/>

</xs:sequence>

</xs:complexType>
</xs:element>

119

Appendix B: MySql Script File for KS Meta Schema

CREATE TABLE KSUser (
userID VARCHAR(50),
password CHAR(40) NOT NULL,
firstName VARCHAR(50),
lastName VARCHAR(50),
industry VARCHAR(99),
secQ VARCHAR(99),
secA VARCHAR(99),
currentDPID INT REFERENCES DataPreference(dataPrefID),
currentSPID INT REFERENCES SourcePreference(sourcePreflD),
PRIMARY KEY (userID)

);

CREATE TABLE Source (
sourceID VARCHAR(50),
provenance VARCHAR(100),
PRIMARY KEY (sourcelD)

)

CREATE TABLE SourcePreference (
sourcePreferencelD INT NOT NULL AUTO_INCREMENT,
isUserSpecified BOOLEAN NOT NULL,
specXML VARCHAR(9999),
userID VARCHAR(50),
sourceID VARCHAR(50),
PRIMARY KEY (sourcePreferencelD),
FOREIGN KEY (userID) REFERENCES KSUser(userID),
FOREIGN KEY (sourcelD) REFERENCES Source(sourcelD),
UNIQUE (userID, sourcelD, isUserSpecified)

)

CREATE TABLE DataPreference (
dataPreferencelD INT NOT NULL AUTO _INCREMENT,
isUserSpecified BOOLEAN NOT NULL,
specXML VARCHAR(9999),
userID VARCHAR(50),
PRIMARY KEY (dataPreferencelD),
FOREIGN KEY (userID) REFERENCES KSUser(userID),
UNIQUE (userID, isUserSpecified)

)

CREATE TABLE UserQuery (
userQueryID INT NOT NULL AUTO_INCREMENT,

120

)

queryText VARCHAR(100),

specXML VARCHAR(9999),

posedTime TIMESTAMP NOT NULL,

numOfResults INT UNSIGNED,

userComments VARCHAR(300),

userID VARCHAR(50),

PRIMARY KEY (userQueryID),

FOREIGN KEY (userID) REFERENCES KSUser(userID),
UNIQUE (queryText, posedTime, userID)

CREATE TABLE UserQueryConcept (

)

userQueryConceptID INT NOT NULL AUTO_INCREMENT,
specXML VARCHAR(9999),

userQueryID INT,

source]D VARCHAR(50),

PRIMARY KEY (userQueryConceptID),

FOREIGN KEY (userQuerylD) REFERENCE UserQuery(userQuerylID),
FOREIGN KEY (sourcelD) REFERENCES Source(sourcelD),

UNIQUE (userQueryID, sourcelD)

CREATE TABLE RefinedQuery (

)

refinedQueryID INT NOT NULL AUTO_INCREMENT,

specXML VARCHAR(9999),

posedTime TIMESTAMP NOT NULL,

endedTime TIMESTAMP NULL DEFAULT NULL,

numOfResults INT UNSIGNED,

userQueryID INT,

source]D VARCHAR(50),

PRIMARY KEY (refinedQueryID),

FOREIGN KEY (userQuerylD) REFERENCES UserQuery(userQueryID),
FOREIGN KEY (sourceID) REFERENCES Source(sourcelD)

CREATE TABLE Dataltem (

)

dataltemID INT NOT NULL AUTO INCREMENT,

uri VARCHAR(999),

type VARCHAR(50),

spec XML VARCHAR(9999),

creationTime TIMESTAMP NULL DEFAULT NULL,
lastUpdatedTime TIMESTAMP NULL DEFAULT NULL,
sourceID VARCHAR(50),

PRIMARY KEY (dataltemID),

FOREIGN KEY (sourcelD) REFERENCES Source(sourcelD)

CREATE TABLE UserQueryResult (

121

)

userQueryResultID INT NOT NULL AUTO INCREMENT,
userSimilarity DOUBLE,

systemSimilarity DOUBLE,

rank INT UNSIGNED,

userComments VARCHAR(300),

userQueryID INT,

dataltemID INT,

dataPrefID INT,

sourcePreflD INT,

PRIMARY KEY (userQueryResultID),

FOREIGN KEY (userQuerylD) REFERENCES UserQuery(userQueryID),
FOREIGN KEY (dataltemID) REFERENCES Dataltem(dataltemID),
FOREIGN KEY (dataPreflD) REFERENCES DataPreference(dataPrefID),
FOREIGN KEY (sourcePrefID) REFERENCES SourcePreference(sourcePreflID),
UNIQUE (userQueryID, dataltemID)

CREATE TABLE RefinedQueryResult (

)

refinedQueryResultID INT NOT NULL AUTO_INCREMENT,

systemSimilarity DOUBLE,

rank INT UNSIGNED,

refinedQueryID INT,

dataltemID INT,

PRIMARY KEY (refinedQueryResultID),

FOREIGN KEY (refinedQuerylD) REFERENCES RefinedQuery(refinedQueryID),
FOREIGN KEY (dataltemID) REFERENCES Dataltem(dataltemID),

UNIQUE (refinedQueryID, dataltemID)

CREATE TABLE AccessProtocol (

)

accessProtocollD VARCHAR(50),

type VARCHAR(50),

spec VARCHAR(1000),

creationTime TIMESTAMP NOT NULL,

lastUpdatedTime TIMESTAMP NULL DEFAULT NULL,
source]D VARCHAR(50),

PRIMARY KEY (accessProtocollD),

FOREIGN KEY (sourcelD) REFERENCES Source(sourcelD)

CREATE TABLE QoSSLAs (

qosSlasID VARCHAR(50),

availability DOUBLE,

minThroughput DOUBLE,

responseTime DOUBLE,

authority VARCHAR(50),

source]D VARCHAR(50),

PRIMARY KEY (qosSlasID),

FOREIGN KEY (sourcelD) REFERENCES Source(sourcelD)

122

)

CREATE TABLE Coverage (
coverageID VARCHAR(50),
domain VARCHAR(300),
class VARCHAR(300),
refSource VARCHAR(50),
source]D VARCHAR(50),
PRIMARY KEY (coveragelD),
FOREIGN KEY (sourcelD) REFERENCES Source(sourcelD),
FOREIGN KEY (refSource) REFERENCES Source(sourcelD)

);

CREATE TABLE Event (
event]D VARCHAR(50),
type VARCHAR(50),
spec VARCHAR(300),
occuredTime TIMESTAMP NOT NULL,
source]D VARCHAR(50),
PRIMARY KEY (eventID),
FOREIGN KEY (sourcelD) REFERENCES Source(sourcelD)

)

CREATE TABLE Certificate (
certificateID VARCHAR(50),
type VARCHAR(50),
authority VARCHAR(1000),
expirationDate DATE,
rating VARCHAR(50),
sourcelD VARCHAR(50),
PRIMARY KEY (certificateID),
FOREIGN KEY (sourcelD) REFERENCES Source(sourcelD)

)

INSERT INTO Source (sourcelD) VALUES (WORDNET?2.1");
INSERT INTO Source (sourceID) VALUES ('GNIS');

INSERT INTO Source (sourcelD) VALUES ('YAHOOQO");
INSERT INTO Source (sourcelD) VALUES ('TERRA");

123

Appendix C: XML Schemas for Case-Based KS Framework
C.1 XML Schema of User Query Case

<xs:schema xmlns:xs="http://www.w3.0org/2001/XMLSchema">
<xs:element name="Case">
<xs:complexType>
<xs:sequence>
<xs:element name="CaselD" type="xs:string"/>
<xs:element name="UserName" type="xs:string"/>
<xs:element name="ConceptualQuery">
<xs:complexType>
<xs:sequence>
<xs:element name="Concept" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="UserTerm" type="xs:string"/>
<xs:element name="WordNetSenselD" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>
<xs:element name="ConceptWeight" type="xs:double"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="DomainSpecificQuery">
<xs:complexType>
<xs:sequence>
<xs:element name="Info_Domain" type="xs:string"/>
<xs:element name="Feature" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="FeatureName" type="xs:string"/>
<xs:element name="FeatureValue" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name
<xs:element name
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="featureWeight" type="xs:double"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>

value" type="xs:string"/>
valueWeight" type="xs:double"/>

124

</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

C.2 XML Schema of Ontology Index

<xs:schema xmlns:xs="http://www.w3.0org/2001/XMLSchema">
<xs:element name="OntologyIndices">
<xs:complexType>
<xs:sequence>
<xs:element name="DomainConceptID" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="WordNetSenseID" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>
<xs:element name="CaselD" type="xs:double" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

125

REFERENCES

126

REFERENCES

[1] “Extensible Markup Language (XML),” http://www.w3.org/XML/.

[2] “USGS Geographic Names and Information System (GNIS),”
http://geonames.usgs.gov/.

[3] “NGA, The GEOnet Names Server (GNS),”
http://earth-info.nga.mil/gns/html/index.html.

[4] “KML - Google Code,” http://code.google.com/apis/kml/.
[5] “The Internet Movie Database (IMDD),” http://www.imdb.com/.
[6] “DCMI Metadata Terms,” 2008, http://dublincore.org/documents/dcmi-terms/.

[7] A. Aamodt and E. Plaza, “Case-based reasoning: foundational issues,
methodological variations, and system approaches,” AI Commun., vol. 7, no. 1, pp.
39-59, 1994.

[8] G. Adomavicius and A. Tuzhilin, “Toward the next generation of recommender
systems: a survey of the state-of-the-art and possible extensions,” Knowledge and
Data Engineering, IEEE Transactions on, vol. 17, no. 6, pp. 734-749, 2005.

[9] C. Amaral, D. Laurent, A. Martins, A. Mendes, C. Pinto, and P. Informatica,
“Design and Implementation of a Semantic Search Engine for Portuguese,” in In

Proceedings of 4th International Conference on Language Resources and
Evaluation (LREC 2004, pp. 26-28, 2004.

[10] G. Amato and U. Straccia, “User Profile Modeling and Applications to Digital
Libraries,” in Research and Advanced Technology for Digital Libraries, vol. 1696,
S. Abiteboul and A. Vercoustre, Eds. Springer Berlin / Heidelberg, 1999, pp. 670-
670.

[11] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval. ACM Press,
New York, 1999.

127

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

M. Balabanovi¢ and Y. Shoham, “Fab: content-based, collaborative
recommendation,” Commun. ACM, vol. 40, no. 3, pp. 66-72, 1997.

S. Berkovsky, T. Kuflik, and F. Ricci, “Mediation of user models for enhanced
personalization in recommender systems,” User Modeling and User-Adapted
Interaction, vol. 18, pp. 245-286, 2008.

T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web: A new form of
Web content that is meaningful to computers will unleash a revolution of new
possibilities,” Scientific American, vol. 284, no. 5, pp. 34-43, 2001.

A. Burton-Jones, V. C. Storey, V. Sugumaran, and S. Purao, “A Heuristic-Based
Methodology for Semantic Augmentation of User Queries on the Web,” in Lecture
Notes in Computer Science, vol. 2813, Springer Berlin / Heidelberg, 2003, pp. 476-
489.

J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K. Wilkinson,
“Jena: implementing the semantic web recommendations,” in Proceedings of the
13th international World Wide Web conference on Alternate track papers \&,
posters, pp. 74-83, 2004.

R. Chinnici, “Web services description language (WSDL) version 2.0 part 2:
Adjuncts,” W3C Candidate Recommendation, http://www. w3. org/TR/2006/CR-
wsdl20-adjuncts-20060327, 2006.

S. Deerwester, G. W. Furnas, T. K. Landauer, and R. Harshman, “Indexing by latent
semantic analysis,” Journal of the American Society for Information Science, vol.
41, no. 6, pp. 391-407, 1990.

L. Ding et al., “Swoogle: a search and metadata engine for the semantic web,” in
Proceedings of the thirteenth ACM international conference on Information and

knowledge management, pp. 652-659, 2004.

Farrell, Joel and Lausen, Holger, “Semantic Annotations for WSDL and XML
Schema,” 2007, http://www.w3.org/TR/sawsdl/.

D. Fensel, “Ontology-based knowledge management,” Computer, vol. 35, no. 11,
pp. 56-59, 2002.

R. T. Fielding, “Architectural Styles and the Design of Network-based Software
Architectures,” UNIVERSITY OF CALIFORNIA, 2000.

128

[23] T. Finin, R. Fritzson, D. McKay, and R. McEntire, “KQML as an agent
communication language,” in Proceedings of the third international conference on
Information and knowledge management, pp. 456-463, 1994.

[24] N. Good et al., “Combining Collaborative Filtering with Personal Agents for Better
Recommendations,” IN PROCEEDINGS OF THE SIXTEENTH NATIONAL
CONFERENCE ON ARTIFICIAL INTELLIGENCE, pp. 439--446, 1999.

[25] T. R. Gruber, “Toward Principles for the Design of Ontologies Used for Knowledge
Sharing,” in FORMAL ONTOLOGY IN CONCEPTUAL ANALYSIS AND
KNOWLEDGE REPRESENTATION, Deventer, The Netherlands: Kluwer Academic
Publishers, 1993.

[26] R. Guha, R. McCool, and E. Miller, “Semantic search,” in Proceedings of the 12th
international conference on World Wide Web, pp. 700-709, 2003.

[27] V. Gupta, P. J. Hanges, and P. Dorfman, “Cultural clusters: methodology and
findings,” Journal of World Business, vol. 37, no. 1, pp. 11-15, 2002.

[28] J. Han and M. Kamber, Data Mining: Concepts and Techniques. Morgan
Kaufmann, 2006.

[29] J. Heflin and J. Hendler, “Searching the Web with SHOE,” presented at the In
AAAI-2000 Workshop on Artificial Intelligence for Web Search, Menlo Park, CA,
pp- 35-40, 2000.

[30] M. Hepp, “Semantic Web and semantic Web services: father and son or indivisible
twins?,” Internet Computing, IEEE, vol. 10, no. 2, pp. 85-88, 2006.

[31] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl, “An algorithmic
framework for performing collaborative filtering,” in Proceedings of the 22nd
annual international ACM SIGIR conference on Research and development in
information retrieval, pp. 230-237, 1999.

[32] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl, “Evaluating
collaborative filtering recommender systems,” ACM Trans. Inf. Syst., vol. 22, no. 1,
pp. 5-53, 2004.

[33] T. Hofmann, “Probabilistic latent semantic indexing,” in SIGIR '99: Proceedings of
the 22nd annual international ACM SIGIR conference on Research and
development in information retrieval, pp. 50--57, 1999.

[34] M. Huhns, “Agents as Web services,” Internet Computing, IEEE, vol. 6, no. 4, pp.
93-95, 2002.

129

[35] L. Kerschberg, “The role of intelligent software agents in advanced information
systems,” in Advances in Databases, 1997, pp. 1-22.

[36] L. Kerschberg, “Knowledge Management in Heterogeneous Data Warehouse
Environments,” in Data Warehousing and Knowledge Discovery, 2001, pp. 1-10.

[37] L. Kerschberg et al., “Knowledge Sifter: Agent-Based Ontology-Driven Search over
Heterogeneous Databases Using Semantic Web Services,” in Semantics of a
Networked World, 2004, pp. 278-295.

[38] L. Kerschberg et al., “Knowledge Sifter: ontology-driven search over heterogeneous
databases,” in Scientific and Statistical Database Management, 2004. Proceedings.
16th International Conference on, pp. 431-432, 2004.

[39] L. Kerschberg, H. Jeong, and W. Kim, “Emergent Semantics in Knowledge Sifter:
An Evolutionary Search Agent Based on Semantic Web Services,” in Journal on
Data Semantics VI, 2006, pp. 187-209.

[40] L. Kerschberg, H. Jeong, Y. Song, and W. Kim, “A Case-Based Framework for
Collaborative Semantic Search in Knowledge Sifter,” in Case-Based Reasoning
Research and Development, 2007, pp. 16-30.

[41] L. Kerschberg, W. Kim, and A. Scime, “A semantic taxonomy-based personalizable
meta-search agent,” in Web Information Systems Engineering, 2001. Proceedings of
the Second International Conference on, vol. 1, pp. 41-50 vol.1, 2001.

[42] L. Kerschberg, W. Kim, and A. Scime, “Intelligent Web Search via Personalizable
Meta-search Agents,” in On the Move to Meaningful Internet Systems 2002
CooplS, DOA, and ODBASE, 2008, pp. 1345-1358.

[43] L. Kerschberg, W. Kim, and A. Scime, “Personalizable semantic taxonomy-based
search agent,” U.S. Patent 711720703-Oct-2006.

[44] W. Kim, L. Kerschberg, and A. Scime, “Learning for automatic personalization in a
semantic taxonomy-based meta-search agent,” Electronic Commerce Research and

Applications, vol. 1, no. 2, pp. 150-173, 2002.

[45] J. L. Kolodner, “An introduction to case-based reasoning,” Artificial Intelligence
Review, vol. 6, no. 1, pp. 3-34, Mar. 1992.

[46] J. A. Konstan et al., “Grouplens: Applying collaborative filtering to usenet news,”
1997, http://eprints.kfupm.edu.sa/43400/.

130

[47] J. Kopecky, T. Vitvar, C. Bournez, and J. Farrell, “SAWSDL: Semantic
Annotations for WSDL and XML Schema,” Internet Computing, IEEE, vol. 11, no.
6, pp. 60-67, 2007.

[48] G. Linden, B. Smith, and J. York, “Amazon.com recommendations: item-to-item
collaborative filtering,” Internet Computing, IEEE, vol. 7, no. 1, pp. 76-80, 2003.

[49] C. Manning, Foundations of statistical natural language processing. Cambridge
Mass.: MIT Press, 1999.

[50] F. Manola and E. Miller, “RDF Primer,” 2004, http://www.w3.org/TR/2004/REC-
rdf-primer-20040210/.

[51] D. Martin et al., “Bringing Semantics to Web Services with OWL-S,” World Wide
Web, vol. 10, no. 3, pp. 243-277, 2007.

[52] D. L. McGuinness and F. Van Harmelen, “Owl web ontology language overview,”
W3C recommendation, vol. 10, pp. 2004-03, 2004.

[53] D. Menasce, “QoS issues in Web services,” Internet Computing, IEEFE, vol. 6, no. 6,
pp. 72-75, 2002.

[54] G. A. Miller, “WordNet: a lexical database for English,” Commun. ACM, vol. 38,
no. 11, pp. 39-41, 1995.

[55] A. Morikawa and L. Kerschberg, “MAKO: Multi-Ontology Analytical Knowledge
Organization based on topic maps,” in Database and Expert Systems Applications,
2004. Proceedings. 15th International Workshop on, pp. 459-463, 2004.

[56] G. Paliouras, C. Papatheodorou, V. Karkaletsis, C. Spyropoulos, and V. Malaveta,
“Learning User Communities for Improving the Services of Information Providers,”
in Research and Advanced Technology for Digital Libraries, vol. 1513, Springer
Berlin / Heidelberg, 2009, pp. 508-508.

[57] D. Pennock, E. Horvitz, S. Lawrence, and C. L. Giles, “Collaborative Filtering by
Personality Diagnosis: A Hybrid Memory- and Model-Based Approach,” IN
PROCEEDINGS OF THE SIXTEENTH CONFERENCE ON UNCERTAINTY IN
ARTIFICIAL INTELLIGENCE, pp. 473--480, 2000.

[58] K. Porkaew and K. Chakrabarti, “Query refinement for multimedia similarity
retrieval in MARS,” in Proceedings of the seventh ACM international conference on
Multimedia (Part 1), pp. 235-238, 1999.

131

[59] A. M. Rashid et al., “Getting to Know You: Learning New User Preferences in
Recommender Systems,” 2002, http://eprints.kfupm.edu.sa/42983/.

[60] P. Resnick, N. lacovou, M. Suchak, P. Bergstrom, and J. Riedl, “GroupLens: an
open architecture for collaborative filtering of netnews,” in Proceedings of the 1994
ACM conference on Computer supported cooperative work, pp. 175-186, 1994.

[61] P. Resnick and H. R. Varian, “Recommender systems,” Commun. ACM, vol. 40, no.
3, pp. 56-58, 1997.

[62] B. Ricardo and R. Berthier, Modern information retrieval. Addison-Wesley, 1999.

[63] Y. Rui, T. Huang, M. Ortega, and S. Mehrotra, “Relevance feedback: a power tool
for interactive content-based image retrieval,” Circuits and Systems for Video
Technology, IEEE Transactions on, vol. 8, no. 5, pp. 644-655, 1998.

[64] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A practical
OWL-DL reasoner,” Web Semantics: Science, Services and Agents on the World
Wide Web, vol. 5, no. 2, pp. 51-53, Jun. 2007.

[65] N. Stojanovic, “On Analysing Query Ambiguity for Query Refinement: The
Librarian Agent Approach,” in Lecture Notes in Computer Science, vol. 2813,

Springer Berlin / Heidelberg, 2003, pp. 490-505.

[66] W3C OWL Working Group, “OWL 2 Web Ontology Language Document
Overview,” http://www.w3.org/TR/owl2-overview/.

[67] 1. H. Witten and E. Frank, Data mining: practical machine learning tools and
techniques. Morgan Kaufmann, 2005.

132

CURRICULUM VITAE

Hanjo Jeong received his Bachelor of Science in Industrial Engineering from Chonbuk
National University, South Korea in 2000. He received his Master of Science in
Information Systems from George Mason University in 2003.

He worked as a Research Assistant for the Knowledge Sifter project at E-Center for E-
Business (ECEB) at George Mason University, which was sponsored by the National
Geospatial-Intelligence Agency (NGA), for his first four years of PhD study. He also
served as a Graduate Teaching Assistant for the courses: Introduction to E-Commerce,
Software Engineering for World Wide Web, Information Retrieval, Advanced Database
Management, and Computer Networks.

His research interests are in Semantic Web, intelligent search systems, recommender

systems, and Web Services-based Software Architectures such as Service-oriented
Architecture and Cloud Computing.

133

	signature_sheet
	HanjoJeong_Dissertation
	1 Introduction and Overview
	1.1 Information Search on the Web and the Semantic Web
	1.2 User Preferences in Information Search
	1.3 Collaborative Information Search
	1.4 Research Objectives
	1.5 Research Hypothesis
	1.6 Research Approach
	1.7 Overview of Dissertation

	2 Related Research
	2.1 Semantic Search
	2.1.1 Information indexing via Semantic Web
	2.1.2 Role of the (Semantic) Web Services in Semantic Search
	2.1.3 Role of Ontology in Semantic Search

	2.2 Recommender Systems
	2.2.1 Content-Based Filtering
	2.2.2 Collaborative Filtering
	2.2.3 Hybrid Filtering

	3 Knowledge Sifter
	3.1 KS Agent-Based Web Services Framework
	3.1.1 User and Preferences Agents
	3.1.2 Ontology Agent
	3.1.3 Imagery Domain Model and Schema
	3.1.4 Authoritative Name Services
	3.1.5 Query Formulation Agent
	3.1.6 Web Services Agent
	3.1.7 Ranking Agent
	3.1.8 Data Sources and Web Services

	3.2 Knowledge Sifter End-to-End Scenario
	3.3 KS Agent Interactions and Communications
	3.4 Emergent Semantics in Knowledge Sifter

	4 Case-Based Knowledge Sifter Framework
	4.1 Case-Based Knowledge Sifter Architecture
	4.1.1 Case Management Agent
	4.1.2 Web Services-Based Wrapper Component Repository
	4.1.3 Use Cases and Sequence Diagrams

	4.2 Semantic Case Representation
	4.2.1 Semantic Refinement of a User Query

	4.3 Case Retrieval via Ontology-Based Indices
	4.3.1 XML-based Representation of Ontology-Based Indices
	4.3.2 Case Retrieval Algorithm via Ontology Index

	5 Collaborative Query Refinement
	5.1 Initial Query Refinement without User Feedback
	5.2 Immediate Data-Item Recommendation from Neighbor Cases
	5.3 Query Refinement via Query-to-Query Hybrid Filtering

	6 Validation
	6.1 Hypothesis
	6.2 Experiments
	6.2.1 Data Selection
	6.2.2 Test Dataset Selection
	6.2.2.1 Test Dataset for the overall performance
	6.2.2.2 Test Dataset for the new-user problem
	6.2.2.3 Test Dataset for the new-item problem

	6.2.3 Implementation
	6.2.3.1 Initial User Profile Query Generation
	6.2.3.2 Candidate User-Query Case Selection via Ontology-Based Indices
	6.2.3.3 Neighbor Query (User) Selection
	6.2.3.4 Refined Query Generation based on Query-to-Query Hybrid Filtering

	6.2.4 Experiments and Results
	6.2.4.1 Experiment Metrics and Types
	6.2.4.2 Comparison between Query-to-Query Hybrid Filtering and Content-Based Filtering
	6.2.4.3 Comparison between Query-to-Query Hybrid Filtering and Collaborative Filtering
	6.2.4.4 The Effectiveness of Collaborative Weight Determination of Query-to-Query Hybrid Filtering
	6.2.4.5 The Effectiveness of Using Ontology-based Concept Generalization/Specialization in Query-to-Query Hybrid Filtering

	6.3 Conclusion of Validation

	7 Conclusion
	7.1 Contributions
	7.2 Further Research

	REFERENCES

