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ABSTRACT

SNOW COVER AS A SOURCE OF CLIMATE PREDICTABILITY:
MECHANISMS OF SNOW-ATMOSPHERE COUPLING

Li Xu, PhD
George Mason University, 2011

Dissertation Director: Dr. Paul Dirmeyer

This study investigates the role of snow cover as a source of predictability at
seasonal time scales over the Northern Hemisphere. A global climate model is used,
consisting of the fully-coupled land and atmosphere components of the Community
Climate System Model. Ensembles of boreal spring-summer climate simulations are
made with specified climatological sea surface temperatures. Following the
methodology of the Global Land-Atmosphere Coupling Experiment (GLACE), a
control ensemble is created with perturbed initial atmospheric states and realistic
land surface initialization. In the test cases, snow cover fraction and snow water
equivalent are specified in all ensemble members based on model simulated snow
information or realistic snow data from remote sensing and an operational land

surface analysis. The snow-atmosphere coupling strength is quantified as in GLACE



as the degree to which identically constrained snow boundary conditions reduce the
ensemble spread of key meteorological variables like precipitation and near-surface
air temperature. The snow albedo effect, snow hydrological effect or mixed effects
are estimated by different experiments and snow stages. Metrics of potential
predictability and feedback are also investigated.

From spring to early summer, the snow-covered regions demonstrate
significant coupling to the atmosphere over large portions of the Northern
Hemisphere. The local coupling between snow state and atmosphere is found to
have three distinct stages: the stable-snow period before snowmelt when
interactions are through radiative processes controlled by albedo; the period after
snowmelt when interactions are through the delayed hydrologic effect of soil
moisture anomalies resulting from snow anomalies; and the intervening period
during snowmelt when both radiative and hydrologic effects are important. The
coupling strength is strongest during the snowmelt period along the transient zone
between snow-covered and snow-free areas, and migrates northward with the
retreating snow line. The coupling strength due to the hydrological effect (soil
moisture impact) after snowmelt is generally stronger than the coupling strength
due to the albedo effect (radiative impact) before snowmelt. The Tibetan Plateau is a
special snow-atmosphere coupling region due to its high incident solar radiation
caused by its high altitude and relatively low latitude. The potential predictably

from accurate knowledge of snow distribution is highly correlated with the snow-



atmosphere coupling strength. Conceptual models are proposed to explain the
mechanisms behind the timing and spatial distribution of snow-atmosphere

coupling.



CHAPTER 1. MOTIVATION

The cryosphere plays an important role in the earth climate system. In
particular, snow cover is a key component of the cryosphere, with high reflectivity
of sunlight, high infrared emissivity and low thermal conductivity compared to
other natural land units. It imposes a significant impact on the surface radiation
budget, turbulent energy fluxes and local hydrological fluxes to the atmosphere
[Cohen and Rind, 1991], and can further influence climate locally and downstream
[Clark and Serreze, 2000]. In addition, the positive snow-albedo feedback [Dickinson,
1983] can further amplify this impact as a strong forcing to the lower boundary of
the atmosphere. Furthermore, snow melt in the spring may impact local soil
moisture variability and further influence the local precipitation-soil moisture

feedback in the following summer [Cohen and Rind, 1991].

Due to the significant effects of the continental snowpack, accurate snow
simulation in a Land Surface Model (LSM) is critical to seasonal-interannual climate
prediction and retrospective climate studies. However, inhomogeneous
characteristics of continental snowpack on low resolution grids (roughly 100-200

km) makes it among the most difficult quantities to be modeled, especially during

1



accumulation and melt periods [Zaitchik and Rodell, 2008]. Inaccurate
representation of snow within a LSM could lead to substantial errors in the

atmospheric state in coupled simulations.

On the other hand, the degree to which the atmosphere responds to
anomalies in snowpack in a consistent manner, particularly at daily to monthly time
scales, can be referred to as the “snow-atmosphere coupling strength”. This coupling
phenomenon is a composite result of complicated interactions between numerous
land and atmospheric processes and feedbacks, such as snow hydrology, surface
albedo, snow sublimation and compaction, energy and water balance as well as

atmospheric boundary layer development and moisture convection.

How are the snow cover and atmosphere coupled? To what degree does the
atmosphere respond to anomalies in the snow cover, particularity at daily and
seasonal time scales? How much would this coupling strength contribute to climate
predictability? Quantifying and documenting the coupling strength of snow cover
with climate is also important to seasonal climate prediction. An objective
quantification and documentation of the coupling strength across the globe would

be valuable to our knowledge of snow-climate interaction.

Inspired by the Global Land-Atmosphere Coupling Experiment (GLACE)
[Koster et al., 2006], we propose to utilize climate model and observation-based
realistic snow information to study the snow-atmosphere coupling strength and its

potential application to short range climate prediction. A series of experiments, the



Global Snow Atmosphere Coupling Experiment (SACE), aims to show the extent to
which coupling strength varies between seasons, and more importantly, to
characterize different regions as having relatively strong, intermediate, or weak
coupling. The climate predictability due to improved representation of snow

coupling will also be investigated for the later application in climate prediction.



CHAPTER 2. BACKGROUND

2.1 Snow in the climate system

As a key component of the cryosphere, snow cover modifies the thermal
characteristics of land surfaces to modulate energy and moisture exchange with the
atmosphere above it [Cohen and Rind, 1991]. Because of their strong thermal forcing
to the lower atmosphere, snow cover anomalies potentially play an important role
in climate fluctuations and predictability. In general, snow cover’s influence on the
local atmosphere can be separated into two categories: direct impact and indirect
impact.

The direct impact includes:

e High reflectivity: Snow surface albedo ranges from 0.60 in wet and
melting snow to greater than 0.85 for fresh new snow. Snow cover
sharply increases the net surface albedo by 30-60%. The high albedo
of snow cover dramatically reduces absorbed and net surface

shortwave radiation.



e High emissivity: Snow also has a higher thermal emissivity than most
other natural surfaces; it tends to increase the loss of longwave
radiation over snow surface.

¢ Low thermal conductivity: Because a large fraction of the snow layer
is filled with pockets of air, snow cover has an extremely low thermal
conductivity. Snow cover acts as an excellent thermal insulator
between the atmosphere and the ground surface to prevent the flux of
heat out of the ground.

e Large latent heat sink: snow sublimation and melting require large
amounts of latent heat (Ls=2.8337x10¢]/kg and Lm= 3.337x10%]/kg

respectively), acting as a large heat sink during the ablation season.

The first item is the most important, and is known as the snow albedo effect.
It dramatically impacts the land surface energy budget and then influences air
temperature, density, pressure, etc. Walsh et al. [1982] demonstrated that the
presence of snow cover is associated with near-surface cooling of 5-10 K in the

lower troposphere.

The indirect impact, also known as the snow hydrological effect, is a result of
anomalous soil moisture from snowmelt that will later impact the atmosphere
through land-climate interactions. However, very few studies have investigated this
issue, partially due to the complicated snowmelt and runoff processes and the

unavailability of accurate snow water content datasets. Quiring and Kluver [2009]



found the maximum snow depth during the previous winter shows a good
correlation with soil moisture anomalies in the following summer, based on
snowfall observations. Positive (negative) snowfall anomalies are associated with
wetter (drier) than normal soil conditions during the summer (JJA) in the northern
Great Plains. However, the strength of the relationship between winter/spring
snowfall and summer soil moisture varies significantly over space and time, which

limits its utility for seasonal forecasting.

Besides the direct and indirect snow effects, positive and negative snow-
atmosphere feedbacks will further amplify or ameliorate anomalies. The feedback
refers to the modification of a process or state by changes resulting from the process
itself. Positive feedback will accelerate or amplify the process, while negative

feedback will slow it down to reach equilibrium.

The most important positive feedback is the snow albedo feedback shown in
Figure 2.1.a. Snow has the highest albedo in nature. This causes the land surface to
reflect more of the incoming solar radiation. With warmer temperatures, the area of
snow-cover decreases and land surfaces absorb an increasing fraction of solar
radiation. This increase of total absorbed solar radiation contributes to continued
and accelerated melting and warming. On the other hand, a colder climate will keep

more snow cover and sustain lower air temperatures [Wiscombe and Warren, 1980].

Another important but less known negative (self-regulating) feedback is the

snowfall-stability feedback, first suggested by Walland and Simmonds [1996]. With
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the sudden increase in snow cover after a snow storm, the air temperature in the
lower troposphere decreases and static stability of the atmosphere increases; this
reduces the probability of subsequent snowfall; reducing snowfall further results in
decreasing snow cover by snow sublimation and blowing snow event; decreasing
snow cover at the land surface increases the sensible heating to the atmosphere and
decreases the static stability, increasing the probability of snowstorms (figure
2.1.b). This negative feedback keeps the snow cover relatively stable over high

latitudes in the winter.

2.2 Snow observation and monitoring

Accurate observations or monitoring of the snow cover across the globe has
great potential applications to weather, climate and hydrology. Systematic
measurements of snow depth at meteorological observation stations have been
collected for over a century. At these stations, only the presence or absence of snow
along with snow depth is measured on a daily basis by a snow stick or stake. Due to
the sparseness of measuring stations, it is difficult to adequately capture the spatial
variability of snow cover on a global scale. Furthermore, most of these observations
are limited to snow depth, which is not suitable for snow modeling due to rapid
gravity compaction. In other words, density can vary greatly, making it difficult to
estimate the mass of water in the snow pack. Until the development of automatic
stations like SNOTEL (SNOw TELemetry) in recent decades, accurate real-time

measurement of snow water equivalent (SWE) was not available. However, the
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point measurements at stations can only give a potentially representative status in
the given locality. Also, the snow extent or snow cover fraction (SCF) cannot be

measured easily in-situ.

With developments in remote sensing, satellite-derived snow information
has become an important alternative data source. Weekly snow mapping of the
Northern Hemisphere using National Oceanographic and Atmospheric
Administration (NOAA) National Environmental Satellite, Data and Information
Service (NESDIS) data began in 1966 [Robinson et al., 1993]. However, the coarse
spatial resolution (1° over Northern Hemisphere) in the NESDIS data cannot well
represent the patchy and shallow snow cover at middle-latitudes. In recent decades,
the NOAA Interactive Multi-sensor Snow and Ice Mapping System (IMS) increased
spatial resolution of snow maps to 24km [Ramsay, 1998]. Besides visible images,
passive microwave SSMR-SMM/I [Chang et al, 1987] and AMSR-E [Chang and
Rango, 2000] also provide snow water estimation over the globe at low resolution,
although the accuracy still cannot reach the requirements for many modeling

applications.

With improvements in polar-orbiting satellites, the National Aeronautics and
Space Administration (NASA) Earth Observing System (EOS) Terra satellite was
launched on December 18, 1999 with a complement of five instruments, one of
which is Moderate Resolution Imaging Spectroradiometer (MODIS). Besides the

comprehensive observations of cloud, ocean, and earth surface characteristics



available from the Terra MODIS, a snow-cover product has been available since
February 2000. With substantially improved spatial resolution (500m globally),
high temporal frequency (daily), enhanced capability to separate snow and clouds
[Hall et al., 2001; Hall et al., 2002b] due to more spectral bands (particularly in the
short-wave infrared), as well as a consistently applied, automated snow-mapping
algorithm [Riggs and Hall, 2002], MODIS provides quantitative monitoring of global
snow extent, even in inaccessible regions such as the Tibetan Plateau (TP) and the
Himalayas. In particular, the single satellite platform provides excellent consistency

with MODIS snow data that are hard to obtain in previous satellite datasets.

It is still difficult to obtain a complete, accurate global SWE dataset only
based on in-situ observations, due to limited observational stations with SWE
measurements, as described earlier. Data assimilation incorporated with land
surface models has proved to provide the best estimation of SWE by optimally
merging observation and model information to minimize potential errors [Pan et al.,

2003; Rodell et al., 2004].

2.3 Observational studies

Observational studies have demonstrated that regional scale snow cover
anomalies are strongly linked with many large scale general circulation anomalies,
such as summer monsoon onset and intensity [Bamzai and Shukla, 1999], lagged

changes in the northern annual mode [Thompson et al., 2000], typhoons over the



western Pacific [Xie et al., 2005] and the outbreak of cold waves at middle-latitudes

[Vavrus, 2007].

Over one hundred years ago, Blanford [1884] first suggested that the
variability of continental snow cover might exert a thermal forcing on the land
surface and consequently influence the Asian summer monsoon and its rainfall.
Based on Blanford's Hypothesis, Walker [1910] found a negative correlation
between Himalayan snow depth at the end of May and the amount of summer
rainfall over India. Hahn and Shukla [1976] first used modern observations to
confirm an apparent relationship between the Eurasian snow cover and Indian
monsoon rainfall based on NOAA/NESDIS snow mappings derived from satellite
visible imagery. There have been many empirical studies focused on this
relationship between winter/spring snow cover and the Indian summer monsoon
rainfall [Hahn and Shukla, 1976; Dey and Kumar, 1983; Dickson, 1984; Parthasarathy
and Yang, 1995; Sankar-Rao et al, 1996; Yang, 1996; Bamzai and Shukla, 1999;
Kripalani and Kulkarni, 1999].

In particular, the snow cover over the Tibetan Plateau (TP) is believed to
exert a significant influence on the summer rainfall over East Asia (EA). As EA is
located in the downstream region of the TP, the snow cover anomalies over the TP
could exert a stronger thermal forcing on the East Asian Summer Monsoon (EASM).
Chen and Yan [1979; 1981] first found that positive snow depth anomalies over the

Tibetan Plateau in boreal winter-spring are accompanied by above normal May-June
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rainfall in southern China. Other observational studies [Chen et al., 2000; Wu and
Qian, 2003b], however, suggested a negative correlation between Tibetan winter
snow depth and subsequent summer precipitation over southern China, but
indicated a positive correlation over the Yangtze River Basin (YRB). Chen and Wu
[2000] obtained positive correlations over the Yangtze River region but negative
correlations in South China for JJA. It has also been found that the correlation of
rainfall with the Tibetan Plateau winter snow depth has a pronounced change from
July to August and the correlation for JJA rainfall differs from that for May-June
[Chen and Wu, 2000]. Although the snow cover connection with EASM is not very
robust, snow cover is applied as one of four key predictors besides ENSO,
subtropical high, and blocking for short range climate prediction at National Climate
Center of China [Zhao, 1999; Xu and Li, 2010].

Aside from the monsoon, other linkages between snow cover and
atmospheric circulation have been discovered by numerous observation studies.
Studies show that excessive summer-autumn snow coverage over Eurasia favors
unusually cold winters over Europe and US, due to forcing of the negative phase of
Arctic Oscillation [Cohen and Entekhabi, 1999]. Subsequent studies confirmed the
physical mechanism of this relationship [Saito et al., 2001; Gong et al., 2002; Cohen
and Saito, 2003; Gong et al., 2004a]: early-season snow cover anomalies trigger
vertically propagating planetary waves that quickly alter the stratospheric polar

vortex. These observational linkages between snow cover and atmospheric
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circulation have motivated efforts for seasonal climate forecasts based on snow
anomalies.

In addition to being a climate predictor, snow cover also has profound
ecological and societal impact on the hydrosphere since snowpack strongly affects
the underlying soil temperature and local river runoff. Groisman et al. [1994] found
a retreat of North American springtime snow associated with strong warming. The
extent of boreal snow during spring was significant lower during the 1990s than at
any time in the previous century [/IPCC, 2007]. Barnett et al. [2005] concluded future
water supplies may be hindered in a warmer climate with less snowfall and earlier
melting. In the background of global warming, how the snow cover will change is a

challenging scientific question.

2.4 Numerical simulations

Atmospheric general circulation models (AGCMs) coupled with various LSMs
are popular tools for examining the snow-atmosphere interaction studies, largely
because the numerical model can be easy manipulated via deliberate changes to
physics processes or parameterizations in controlled experiments. Numerical
simulations also provide a method to explore the climate system with some extreme
snow situations that could not happen in nature.

Various GCM modeling studies [Barnett et al., 1988; Vernekar et al., 1995;
Dong and Valdes, 1998; Bamzai and Marx, 2000; Dash et al., 2005] have been

conducted to support the snow-monsoon inverse relationship first suggested by
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Blanford [1884]. These studies indicate the GCMs are able to reproduce an inverse
snow-monsoon relationship and snow cover and snow mass impact on climate on a
seasonal time-scale. Ferranti and Molteni [1999] investigated the effect of
springtime snow conditions over Eurasia on the monsoon circulation by using
ensemble simulations. The results suggested Eurasian snow depth is
probabilistically predictable, and that it does influence the seasonal-mean monsoon
independently of the ENSO phase. As a result, proper observations and simulations
of the Eurasian snowfield can provide an additional and independent contribution
to monsoon prediction.

Several prior studies have attempted to quantify the snow role in the cold
region climate [Walsh et al., 1985; Watanabe and Nitta, 1998; Gong et al., 2004b;
Vavrus, 2007]. However, those earlier works have been limited in spatial and
temporal extent. Prescribed excessive or deficient snow over a specific region, such
as Eurasia, Siberia etc., has been investigated based on the observed fluctuation over
monthly to seasonal time scales.

Due to the limitation and imperfections of snow schemes in land surface
models, some simulation studies get conflicting results, even with the same model.
For example, Zhang and Tao [2001] created a conceptual model to explain the
possible mechanism on the impact of the in-phase change of snow cover over the TP
with the EASM and summer rainfall over Yangtze River Basin. They further verified

their conclusion by model simulations with excessive/deficient snow depth in the
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winter. However, with the same IAP-9L AGCM model and the updated snow data, Li

and Chen [2006] obtained an opposite result.

2.5 Global land atmosphere coupling experiment

Koster et al. [2002] designed a prototype of a numerical experiment to
examine and quantify the strength of the coupling between the land and
atmosphere; specifically, the degree to which precipitation-induced soil moisture
anomalies affect the overlying atmosphere. This experiment essentially consists of
one control ensemble experiment with initialized land surface anomalies compared
with another ensemble experiment where the land state is specified identically in
each ensemble member. The differences in atmospheric behavior between the two
experiments indicate the degree to which the state of the land surface controls
atmospheric processes. Based on this prototype, 12 weather and climate models
participated in the Global Land Atmosphere Coupling Experiment (GLACE) to
investigate land-atmosphere coupling characteristics [Guo et al., 2006; Koster et al.,
2006]. Despite notable differences among the 12 models, some common features,
“hot spots” of land-atmosphere coupling, were identified. The GLACE experiment
provides an approach for testing land-atmosphere coupling strength that cannot be
directly investigated by observational studies. The principles underlying the GLACE
experiment could also extend to other coupling phenomena, such as snow

atmosphere coupling.
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2.6 Summary

In summary, snow cover is an integral component of the earth climate
system. Observational studies have demonstrated strong snow impacts and
interaction with local weather and climate through both radiative and hydrological
effects. The numerical simulations provide a “virtual lab” to study snow-climate
interaction. Pervious numerical experiments illustrated some key aspects of snow-
atmosphere-coupling behavior even though these couplings and interactions are
difficult to investigate by only observation-based studies. However, some
fundamental questions about snow-atmosphere coupling are still unanswered.
Inspired by GLACE [Koster et al., 2006], we expand the GLACE-type experimental
framework to investigate snow-atmosphere coupling strength and its potential

application to short range climate prediction.
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a. Positive feedback b. Negative feedback

Figure 2.1 A schematic for snow albedo effect (left) and snowfall-stability feedback
(right).
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CHAPTER 3. SNOW ATMOSPHERE COUPLING EXPERIMENTS

3.1. Key questions

3.1.1 snow-atmosphere coupling and predictability
Although previous studies have demonstrated strong snow impact and
interaction with local and even remote climate, some key scientific questions

remain:

e How strong is the snow-atmosphere coupling?

e To what degree does the atmosphere respond to anomalies in the snow
cover?

e Where and when does the atmosphere respond most strongly to snow
anomalies?

e What is the relative importance of the snow direct impact (albedo

effect) and indirect impact (hydrological effect)?

Quantifying and documenting the coupling strength of snow cover with

climate is also important to seasonal climate prediction.
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e How do snow cover anomalies affect local and remote weather and
climate?
e How much would snow-albedo feedback and the hydrological effect

contribute to climate predictability?

An objective quantification and documentation of the coupling strength
across the globe would be valuable to our knowledge of snow-climate interaction.
Determining how snow anomalies contribute to seasonal forecast skill will improve

our understanding of climate predictability.

3.1.2 Snow Water Equivalent vs. Snow Cover Fraction

Snow Water Equivalent (SWE) is the equivalent water volume per unit area,
or depth of standing water, that snow cover would produce if melted immediately.
The Snow Depth (SD) is the thickness of the snow cover sitting on the ground. SD is
an alternate variable to SWE in some LSMs, equal to the SWE divided by the snow
density. Snow Cover Fraction (SCF) is defined as the fractional area of a region

covered by snow of any depth. In an LSM, the region is defined as each grid cell.

The limited meteorological observational stations provide SD or SWE
measurements four times daily across the globe for weather and climate services.
However, it is still difficult to obtain a complete, accurate global SWE dataset only
based on in-situ observations, due to the limited number of observation sites and
the inhomogeneous characteristics of snow distribution. In addition, difficulties in

obtaining representative SCF information by in-situ measurement have also been
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intensively discussed [Robinson et al., 1993; Brown, 2000]. However, SWE and SCF

are two key variables in any snow scheme or model.

Generally, SWE or SD is a prognostic variable in any LSM, which is explicitly

calculated by the snow water balance equation at each grid:

dw
~——=P+E-M
r EQ. 1.

where dW/dt is the snowpack water mass change rate (positive for accumulation); P
is the snowfall rate and M is snow melting rate; E is the sum of sublimation and
evaporation rate at the snow surface, which may contribute either positively or
negatively to the snow mass balance. In the snow ablation phase, generally from

later winter to spring, snowmelt will generate soil moisture anomalies.

Snow cover fraction, however, is always a diagnostic variable that is obtained
only by parameterization. SCF parameterizations usually are a function of SWE or
SD, and can vary from model to model. In the default snow scheme of CLM 3.0, the

relationship between snow cover fraction and snow depth in each grid is:

Z 110W
fS}lOu‘ = >
10Z

om,g + snow

EQ. 2.

where fsnow and Zsnow are the snow cover fraction (%) and the snow depth (m) and
Zomg=0.01 is the momentum roughness length for bare soil (Dai et al. 2004, section

7.2).
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Figure 3.1 shows the snow cover fraction observed from MODIS with respect
to in-situ snow observations over the Tibetan plateau, where the snow anomalies
are believed to exert an important forcing to the Asian monsoon (Wu et al. 1997; Wu
et al 2003). The blue error bars show the observational range of snow cover fraction
(%) for different depths of snow. The green dotted line indicates the computational
result from the parameterization of CLM 3.0. Due to the high elevation of this largest
plateau in the world, even shallow snowpack can persist for relatively long periods.
The parameterization from CLM 3.0 seriously underestimates snow cover fraction
over the Tibetan Plateau. Furthermore, observed snow cover fraction varies greatly
even for the same snow depth. In shallow snow pack, the SCF ranges from near 30 to
100 percent. The range of the variability of SCF generally decreases with increasing

SD until the snow depth reaches 15cm, where almost all land is buried by snow.

A new improved SCF parameterization has been developed for CLM 3.5 by
Niu and Yang (2007), which uses the snowpack density to account for the large-

scale depletion pattern and its temporal variability:

h
SCF - tanh{ e } EQ 3.

25 * ZO(psno /pnew)a

where hsno and Zo are the spatially averaged snow depth (rewritten to be a function
of SWE and snow density) and the ground roughness length, respectively. P new is a
prescribed fresh snow density with adjustable values depending on local conditions.

P sno is the model calculated snow density. The curve shape parameter a is tunable
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and assumed to be controlled by several factors including scale and, hypothetically,
grid-specific geographic properties such as vegetation and orographic variability.
The value 2.5 in this equation is a tunable parameter, but it is usually assumed to be
a constant for simplicity. This new parameterization depends on fresh snow density
that is highly variable in different regions and needs to be calibrated on the basis of

field measurements.

The left panel in Figure 3.2 shows the curves of snow cover fraction with
snow depth from the parameterization of CLM 3.5 [Niu and Yang, 2007] with
different fresh snow densities from 100 kg/m”3 to 400 kg/m”"3. Compared with the
default CLM 3.0 parameterization, the new formula greatly reduces the
underestimation of SCF, especially when the snow depth is above 20 cm. The
change of snow cover fraction with the snow depth (df/dh) is an important
parameter for indicating the variability of the snow albedo effect since the albedo of
a grid box is a linear function of snow cover fraction within all land surface models.
The sensitivity of SCF to SD is most serious for shallow snow and generally becomes
insensitive at large snow depth. This sensitivity also strongly depends on the snow
density (Figure 3.2.b). As the snow ages, the snow density increases and sensitivity
decreases for the same snow depth.

Both parameterizations could only represent the monotonic relationship
between the snow depth and snow cover fraction. In reality, however, the snow

cover fraction variability is large for most snow depths. The SCF depends on
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numerous factors, including elevation, slope and aspect, wind, sunshine, etc.
However, the small inaccuracies in this parameterization could trigger huge errors
in SCF that quickly cascade into larger inaccuracies in albedo, net radiation, energy
exchange and finally on atmospheric conditions. Consequently, these errors can lead

to serious uncertainty in seasonal to inter-annual climate prediction.

Finally, the ground albedo is linear function of snow cover fraction:

— EQ. 4.
ag_fv*as+(1_f;)*abg Q
= f;(as _abg)+abg
Where oy is net surface albedo for the ground; fs is the SCF; the os and owg are
albedos for snow and the snow-free background land surface respectively. The

snow albedo effect is strongly controlled by the SCF.

In this study, we pioneer the utilization of observed SCF information to
replace the SD-SCF parameterization and to study the separate impacts of
prescribed SWE and SCF on the atmosphere, based on observations or reanalysis
data. Under the assumption that the snow hydrological effect is initiated by the
snowmelt in spring and the snow albedo effect is linear function of SCF, the snow
albedo effect and hydrological effect could be careful separated in the experiment

design.
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3.2 Model setup

The recent stable version of the NCAR Community Atmospheric Model
(CAM) v 3.6.48 coupled with Community Land Model (CLM) is chosen as the main
study model. The land component, CLM 3.5 (Oleson et al. 2008), is a so-called “third
generation” land surface model that explicitly represents the role of carbon and
nitrogen in photosynthesis, unlike “the second generation” models that are built
only with the explicit description of soil and vegetation processes involved in the
surface energy and water budgets. CLM 3.5 employs 10 soil layers to resolve soil
moisture and temperature dynamics and uses plant functional types (PFTs) to

represent sub-grid vegetation heterogeneity.

The CLM model has up to 5 layers of snow depending on total SD, and
accounts for processes such as liquid water retention, diurnal cycling of thawing-
freezing, snow-melting, surface frost and sublimation. This multilayer approach is
found to significantly enhance the simulation quality, correcting the previously
underestimated snow mass and early time of melting that was obtained in a single
layer model [Dai et al., 2003]. Heat and water are transported between adjacent
snow layers, also between the top layer and the overlying canopy and/or the
atmosphere. CLM applies a two-stream approximation for radiative transfer
calculations over the snow surface. Snow albedo is based separately on the diffuse
and the direct radiation and also on snow age [Oleson et al, 2004a]. Snow layers

may be combined or divided every time step to ensure a realistic representation of
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snow physics and numerical stability. The CLM also explicitly incorporates
densification processes (e.g., destructive or equi-temperature metamorphism,
compaction by snow overburden, and melt metamorphism). The vegetation effect is
accounted for in snow accumulation, melt, interception, through-fall and canopy
drip. CLM calculates the water transfer between snow layers, infiltration, runoff, and
subsurface drainage, although water vapor transport within the snowpack is

neglected.

The model is set up as shown at Figure 3.3. The atmosphere is fully coupled
with the land surface component. The energy, mass and momentum fluxes are
exchanged between land and atmosphere at each time step. The ocean and sea ice
components are prescribed by the climatological cycle or from an observed dataset.
The dynamic vegetation parameterization is turned off in the LSM for these
experiments.

In this study, we choose the finite-volume dynamical core (FV dycore)
version of CAM that was originally developed during the 1990’s at the NASA
Goddard Space Flight Center [Lin and Rood, 1997]. FV dycore shows some benefits
for numerical simulation compared with traditional finite difference or spectral
methods. FV dycore is also more convenient to scale with parallel computation. The
pure spectral approach, due to its costly transforms, is known not to scale well with
horizontal resolution. The finite-volume approach completely conserves dry air

mass and the mass of transported atmospheric constituents such as water vapor,
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which is particularly important for climate simulations due to their long integration
times, and imperative for accurate representation of chemical interactions in
climate/chemistry simulations. In addition, the FV dycore greatly improves the
simulation of sharp gradients, which usually cannot be handled well in the finite

difference and spectral methods.

3.3 Global snow data

In spite of snow cover being important to climate modeling, in-situ snow
observations are very limited over the world, mainly restricted to snow depth at
weather and hydrological stations. High-quality continental-scale SWE data sets are
not available, although they would be so important for climate research and water
resources management. In addition, snow cover fraction cannot be measured easily
in-situ, only estimated by remote sensing.

Since neither observations nor LSMs alone are capable of providing adequate
information about the temporal-spatial variability of continental snow pack, it
becomes necessary to combine their information through Data Assimilation (DA)
algorithms, such as ensemble Kalman filters [Evensen and van Leeuwen, 1996]. Data
assimilation algorithms use the information from discontinuous observations by
integrating them into a numerical model. The physics-based LSMs provide a
continuous quantity to monitor the evolution of modeled variables. The observation
system provides reliable, independent information on a variable that the model

simulates imperfectly, preventing model drift and improving the accuracy of the
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simulation. Such assimilation can effectively reduce uncertainties in estimation
through optimally combining the information from both LSMs and observations.

In this study, we pioneer utilization of the most recent advancements in snow
remote sensing technology and the Global Land Data Assimilation System (GLDAS)
to study the snow-atmosphere coupling and predictability. Detailed information is

provided below:

3.3.1 MODIS SCF

NASA’s Earth Observing System (EOS) Moderate Resolution Imaging
Spectroradiometer (MODIS) instrument provides the capability to observe
snowpack based on a Normalized Difference Snow Index (NDSI), along with
threshold tests, to provide global, automated binary maps of snow cover. This
method takes advantage of the spectral differences of snow versus other features in
short-wave infrared and visible spectral bands to identify the area of snow cover. In
addition, the cloud-distinguishing algorithm in MODIS greatly reduces the cloud-
snow confusion that could not be eliminated in previous NOAA satellite snow maps.
In the most recent advance in MODIS snow monitoring, a new algorithm can
estimate the fraction of snow within a 500m MODIS pixel and thereby enhance the
monitoring of fractional snow cover (Salomonson and Appel, 2003). The evaluation
of MODIS snow maps against in-situ observations indicate robust accuracy globally

(Hall et al. 2001; Hall et al. 2002), and even relatively high accuracy over the Tibetan
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Plateau, where traditional observations are almost impossible to obtain due to the

harsh environment (Pu et al 2007).

With MODIS 500m pixel monitoring, MOD10C2-v4 products derived SCF at
0.05° climate modeling grids (CMG). Three parameters are provided in each CMG
grid, including snow cover fraction, cloud fraction and confidence index (CI).

The snow cover fraction (SCF) or snow percent in each CMG grid is defined as

Foro = 22085 100) EQ.S.
n

where n is the total number of pixels in this CMG grid:

M= N0 T Netear_tana T Petoud _obscured T Munknown EQ. 6.

Nsnow is the total number of pixels identified as snow in this grid, nciear iana for snow-
free land, ncioud obscured for cloud and nunknown for other types of land.

The fraction of the CMG grid obscured by cloud is

n
_ "Ycloud _obscured *
f;laad - n 100 EQ 7.

The Confidence Index (CI) is defined as the fraction of all pixels determined to be
cloud-free land

n +n
CI — snow clear _land %k 100 EQ 8
n

which is an index to express the confidence of information based on the number of

valid observations available in this CMG grid.
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The cloud mask in MODIS is a “double-edged sword”. It has greatly enhanced
the ability of MODIS to distinguish cloud from snow and significantly reduced error.
However, it also increases the cloud obscuration count, which cannot provide any
snow information below the cloud. In the daily snow map, a large portion of the
globe is obscured by cloud (cloud fraction range from 0-50% depending on the
season). To minimize loss of data due to cloud obscuration, 8-days composited snow
maps (MOD10C2) are used this study.

The expected value of SCF under cloud obscuration [Brubaker et al., 2005] is

E(SCF)=~(f,, +Juon

ow +f +Ff. EQ. 9.
3 Snow C I fmow f;loud ) Q

and the standard deviation:

1 Sonow Joow _ Sinow
Var(SCF) = — 2 T+ snow \2 +(f +f 2 _ snow __ J snow 4 f —(f +f ‘
( ) 1 8 [\fsnow ( CI ) (fsnow fcloud ) fsnow CI CI (fmow fcloud ) (f;now -fcloud )fsnow ]

EQ. 10.
We aggregate daily 0.25° MODIS snow cover fraction into the FV 1.9x2.5 grid by box

averaging.

3.3.2 GLDAS SWE

Observationally based global snow water equivalent maps are still
unavailable. SWE retrieved by microwave scattering signatures over snowpack from
the NASA Advanced Microwave Scanning Radiometer (AMSR-E) may provide useful
information about snowpack. However, sensitivity to weather conditions (such as

atmospheric water vapor) and snow evolution (mainly grain size growth and
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densification) make passive microwave retrievals still unable to satisfy the accuracy

required for land surface models or hydrological models (Zhang et al. 2005).

With advancements in remote sensing, land surface modeling and data
assimilation in recent years, NASA Global Land Data Assimilation System (GLDAS)
[Rodell et al., 2004] provides a potentially useful estimation of SWE over the globe.
The goal of the GLDAS is to generate optimal fields of land surface states and fluxes
by using advanced land surface models and data assimilation techniques with
satellite and ground based observational data. GLDAS has reanalyzed key land
surface states and fluxes using several different land surface models by constraining
them with all available observational data from 1979 to present, emphasizing the

satellite retrievals from NASA.

Compared to offline simulations, such as the Second Global Soil Wetness
Project (GSWP-2) [Dirmeyer et al., 2006] data set, GLDAS applied two constraints to
optimally merge model and observation data to obtain the best estimates. First, by
forcing the land surface models with observationally based meteorological fields,
bias on the atmospheric model-based forcing can be avoided. Second, by employing
data assimilation techniques, observations of land surface states can be used to curb
unrealistic model state. It has a longer period than the GSWP-2 data set, which only

covers 1986-1995.

In this study, 1x1 degree, 3-hourly output from a 1979-present run of the

same CLM model driven by GLDAS forcings is used. The usefulness of the GLDAS
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data set has been demonstrated in weather and sub-seasonal forecasts [Koster et al.,
2004; de Goncalves et al, 2006]. Although the quality and accuracy of SWE
information from GLDAS has only been validated at few sites, the observationally
based atmospheric forcing and available remote sensing snow information make the
GLDAS output useful for providing global SWE information at daily time scales

[Zaitchik and Rodell, 2008] .

3.4 The experiment design

Inspired by the GLACE-I project [Koster et al, 2006], this global Snow
Atmosphere Coupling Experiment (SACE) aims to show the extent to which coupling
strength varies between seasons, and more importantly, to characterize different
regions as having relatively strong, intermediate, or weak coupling, for later

application in climate prediction.

We have designed a series of experiments to quantify and document the
coupling strength of global snow cover variation and atmospheric conditions. In a
climate model, the degree to which the atmosphere responds to anomalies in
snowpack (the "coupling strength") is a composite result of complex interactions
between numerous snow processes, such as snow persistence, surface albedo,
sublimation and compaction, as well as boundary layer development and moisture
convection. We will also utilize MODIS SCF retrievals and GLDAS SWE estimates to
study the albedo effect and hydrological effect separately and investigate their

maximum potential contribution to the short-range climate predictability.
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3.4.1 Experiments

In this series of ensemble experiments, each ensemble run will include ten 6-
month simulations from March 1st to August 31st(figure 3.4). Since snow cover in
the NH is generally at a maximum in March and gradually depletes through May and
June, the snow albedo effect is mainly concentrated during spring and the snowmelt
hydrological effect contributes mostly after snow depletion. To concentrate only on
the snow-atmosphere coupling and eliminate the possible noise from ocean, all
ensemble experiments are forced by the same climatological SST cycle from Hadley

Centre SST data set [Rayner et al., 2006] .

The first ensemble experiment, called Control (the same as the ensemble W
in GLACE-I), is a typical climate simulation where sea surface temperatures are
prescribed at all time steps to climatological annual cycle (to eliminate possible
ENSO effects). The 10 different atmosphere and land initializations are obtained
from model restart files at March 1st from 2000 to 2009 from an Atmospheric Model
Inter-comparison Project (AMIP, [Hurrell et al., 2008]) style simulation (detailed
information about land and atmospheric initial conditions is described in the
following section). In each simulation, the LSM is fully coupled with the AGCM
without any constraints. The global grids of the prognostic variable SWE and
diagnostic SCF are recorded into a special data file (S_state) at every model time

step (Figure 3.5 Part 1). Because of the chaos in the climate system, the snow states
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in the different simulations in this Control experiment will evolve differently to

reflect the potentially broad range of snow states that are consistent with system.

In the remaining ensemble experiments (ModBoth, RealSCF, RealSWE,
RealBoth and RealClim), all atmosphere initial and SST boundary conditions are
the same as the first Control experiment. However, the original snow states (SCF
and SWE) in the model are replaced. Initial soil moisture is unified to the model
climatological mean values in the ModBoth, RealSCF, RealSWE and RealBoth

experiments to isolate the snow hydrological effect (details see sect. 3.4.2).

In the second ensemble experiment, named ModBoth (Model Both, similar to
ensemble R of the GLACE experiment), all member simulations are forced to
maintain precisely the same time series of key snow states (the S1_state SWE and
SCF) taken from one randomly chosen ensemble member in the Control experiment
(Figure 3.5 Part 2). To achieve this, the snow states in each simulation are read from
the previously recorded S1_state file. Koster et al. [2002] demonstrate that the
choice of the ensemble member used to write S1_state is not important (at least for
the one model examined); for the global average, any ensemble member should
produce approximately the same results in the later months of the experiment. Since
all ensemble members in ModBoth are forced to have identical model-generated
SWE and SCF, the atmospheric variability contributed by atmosphere internal chaos

versus snow state can be well quantified.
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The third experiment, RealSCF (realistic snow cover fraction) is similar to
the experiment ModBoth except the SCF in the ten ensemble members are read
from gridded observed MODIS SCF from 2000-2009 (Figure 3.5 Part 3). Each
ensemble member takes specified realistic surface SCF that is prescribed by the
remote sensing retrieval from MODIS. In the meantime, the SWE at each time step is
still read from the same S1_state data file written by one of member Control. The
main purpose of RealSCF is to investigate how the simulation is improved by using
realistic SFC without parameterization. Since ground albedo is a linear function of
SCF and all ensemble members are forced by same SWE, the RealSCF experiment
could precisely quantify the atmospheric variability contributed only by snow
albedo effect. Opposite to RealSCF, all members in experiment RealSWE (realistic
Snow Water Equivalent) are prescribed to have the realistic SWE obtained from
NASA Global Land Data Assimilation System (GLDAS) from 2000-2009 but with
same SCF read from S1_state (Figure 3.5 Part 4). Since the initial soil moisture of
each ensemble member is set to the climatological mean (for details, see next
section) and SCF are forced to same S1_state, the snow melt contribution to soil
moisture anomalies can emerge and the atmosphere variability via the snow

hydrological effect can be separately investigated.

Note that the SCF and SWE could be inconsistent at some locations and times
in experiments RealSCF and RealSWE, especially where S1_state disagrees with

MODIS or GLDAS about the presence of snow. Although these kinds of
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inconsistencies happen, the model will self adjust the snow state and converge
toward the observed value by continuous insertion of realistic snow information.
Inconsistencies like this would happen most in middle-latitude regions where snow
is unstable and not well simulated by model. Based on the comparison of
independent SCF from MODIS and SWE from GLDAS, there are only 2% of grid
points across the globe where SWE is equal to zero but the SCF is larger than zero,
or vice versa, during the ten-year period from 2000 to 2009. There are no serious
impacts on the high latitude regions where snow is stable and well simulated by
CLM model.

In the fifth ensemble experiment RealBoth (realistic Both), each ensemble
member has imposed both realistic SCF and SWE (Figure 3.5 Part 5). This
experiment examines the impact of realistic snow on the atmospheric variability by

well representing both the snow albedo effect and the hydrological effect.

In the last experiment named as RealClim (realistic climatology), the SCF
and SWE are replaced by the climatology values at each time step, based on MODIS
SCF and GLDAS SWE during 2000-2009. The model configuration, initial field (both
atmosphere and land) and SST forcing are same as RealBoth. This will effectively
remove the inter-annual variability of snow boundary forcing. In other words, the
atmosphere is uncoupled with snow boundary.

In these experiments, we ignore the small amount of snow intercepted by the

canopy although the CLM 3.5 has a greatly improved snow scheme with respect to
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vegetation. Snow through-fall can easily submerge below vegetation, greatly
changing the albedo and roughness of the surface. Moreover, intercepted snow on a
forest canopy has a large exposed surface area for sublimation, moistening and
cooling the air, whereas snow on the ground below the canopy is sheltered. We
don’t know how much would be the impact on model results by ignoring snow

within canopy.

3.4.2 Model run specifications

The criterion for the initial conditions of the ensembles is to sample the
possible range of snow (or land) and atmosphere states. The snow initializations are
not allowed to be artificially similar. The CAM model is run in multi-decadal AMIP
style simulations (forced by observed SST) from 1991 onward to extract 10
different restart initial fields of land and atmosphere states at 1 March for 2000 to
2009. Land initial fields obtained from this multi-decadal run should be spun-up as
they are nine or more years from the start of the integration.

Since we try to isolate the snow hydrological effect, soil moisture in each land
initial field is unified in all ensemble members to the model climatological mean
values (based on 2000-2009) in the ModBoth, RealSCF, RealSWE and RealBoth
experiments. Snowmelt in spring will suddenly increase the water infiltrating into
soil until the underlying soil become saturated. Until the top layer soil thaws and
becomes permeable, the melt water will form surface runoff and discharge directly
into the rivers. The SWE before melt is critical for the hydrological modeling of
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snowmelt. The soil moisture anomalies in these experiments will be initially
triggered by the snowmelt, then feedback to the atmosphere forming a positive
moisture-evaporation-precipitation feedback. If we define the snow hydrological
effect to include all composite climate effects due to snowmelt infiltration into soil
and then consequent soil moisture-evaporation-precipitation feedbacks, the
RealSWE experiment can well isolate the climate impact due to hydrological effect
by excluding the impact of albedo.

Note that given this design of the experiments, the initialization of snow
states for ModBoth, RealSCF, RealSWE and RealBoth is actually irrelevant because
these snow states will be replaced after first step during model integration. Note
also that in all the cases, the atmosphere may feel a “shock” at the beginning of
simulations because initially it is not in equilibrium with the prescribed surface
state [Koster et al., 2006].

One other problem may occur in the prescribed snow experiment (Such as
RealSCF, RealSWE and RealBoth): a relatively warm initial model surface
temperature may encounter a prescribed realistic observed snow that will cause
rapid snowmelt and dramatically increase the runoff. To eliminate this
phenomenon, when snow is present in the initial field we prescribe the soil
temperature at the top soil layer to be below the freezing point. With integration of

the model, the soil temperature profile will quickly adjust to reach equilibrium.
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In the ModBoth, RealSCF, RealSWE and RealBoth experiments, it is not
necessarily to maintain a strict energy and water balance below the snow interface.
However, the energy and water fluxes that cross the coupled interface to and from
the atmosphere are still exactly conserved; only the land reservoir is not conserving.
Since we focus on the sensitivity of the atmosphere response to the anomalous snow

states, the un-conserved land energy and water balance is acceptable.

3.5 Key diagnostics and analyses

We focus mainly on air temperature and precipitation in this study, using
subscripts T and P to indicate those variables accordingly. To examine the
mechanism of snow-atmosphere coupling, we also analyzed evaporation,
sublimation, boundary layer height, surface pressure etc. in the some experiments.
In the simulations, the model captures diurnal variations since we forced it at each
time step. In the computation and analysis, however, we only use daily mean time
series and focused on the daily to monthly time scales of snow-atmosphere

coupling. The key diagnostics and analysis are listed here.

3.5.1 Q Index

For key atmospheric variables, the “level of agreement” across ensemble
members of the time series can be determined. The comparison of these levels of
agreement obtained from different ensembles will allow the snow’s impact on the

atmosphere (SCF, SWE or both) to be directly and objectively quantified. A
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diagnostic index Q derived by Koster et al. [2006] will be used to quantify the

coupling strength by the phase and shape similarity of a forecast ensemble.

For one variable’s ensemble simulation time series X;;j (where i=1,2,...m is
ensemble member, j=1,2,...,n is time , following the notation from [Yamada et al.,

2007]), the ensemble mean bj at time j:

b. =

J

> X, EQ. 11.

l m

nm_ "

and the full ensemble mean over time:

— 1 n

x=—Yb, EQ.12.
nis

can be computed accordingly. Q is defined as:

_mo, -0’

~ (m-1g’ EQ. 13.

where 62 and op? are the full-sample variance and temporal variance of the

ensemble mean respectively

1 -
o, ==2,(b,—x ) EQ. 14.
nio
1 m n 2
o’=— X, — X EQ. 15.
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i=1 j=1
Theoretically, if all the ensemble members have identical time series, 6,2 will be
equal to 62 and Q will be 1. On the other extreme, if the ensemble time series are
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completely uncorrelated, o»? will equal to 62/m and Q will be 0. Without sample
error, the index Q varies from 0 to 1, with larger values indicating a greater degree
of similarity.

Under the assumption that both boundary forcings and atmospheric chaos
contribute to the value of a meteorological variable at a given time step, Q is
equivalent to the square of the correlation coefficient between the variable and the
forcing [Yamada et al., 2007]. On the other hand, €, mathematically, is associated
with two quantities: the average value of the anomaly cross correlation coefficient
(ACCC) and the average value of the variance ratio (AVR). The statistical
characteristics of Q reflect both phase similarity (correlation) and shape similarity

(mean value and amplitude).

Figure 3.6 shows an idealized time series of atmospheric states for different
ensemble members under four situations: (a) low temporal variability ¢ and low
similarity Q ,(b) low variability ¢ and high similarity €,(c) high variability ¢ and low
similarity Q and (d) high variability ¢ and high similarity Q. Clearly, in the high Q
cases, the atmosphere would show “robust” responses to the snow boundary forcing
across the ensemble members. On the other hand, when the atmosphere is
insensitive to snow, the time series of meteorological variables are different as

shown in the low Q cases.

To study air temperature coupling with snow cover in March, for example,

we could compute the Qr(Control) and Qr(ModBoth) for daily mean temperature at
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2m height from March 1st to 31st (the subscripts T indicates Temperature). The
Qr(Control) represents the fraction of temperature variance across ensemble
members that is “explained” (forced) by both initial and boundary (SST) conditions.
Since the snow and atmosphere are freely coupled without any constraint in each
ensemble member, Qr(Control) should be relatively low compared to other
experiments. Due to forcing each ensemble member to the same SWE and SCF,
however, Qr(ModBoth) should show relative larger values indicating that the air
temperature shows a more “robust” response to the prescribed snow boundary
conditions. The difference Qr(Control)-Qr(ModBoth) shows the suppression of
temperature variance by eliminating the free snow-atmosphere coupling, indicating

regions where the snow-atmosphere coupling is strong.

Similarly, Qr(RealSCF)-Qr(ModBoth) will indicate the snow-atmosphere
coupling strength due to the snow albedo effect, since both experiments are forced
to the same SWE. On the other hand, Qr(RealSWE)-Qt(ModBoth) indicate the snow-
atmosphere coupling strength due to the snow hydrological effect since both

experiments are forced to the same SCF.

3.5.2 Signal-to-Total Ratio (STR)

Based on the ensemble simulation, Signal-to-Total Ratio (STR) will be used to
diagnose the predictability associated with the coupling strength. Let the same
ensemble matrix be Xnr, where k is time and n is the ensemble member (following

the notation from [DelSole and Tippett, 2008] ). Then the forecast mean is:
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The Grand or Climatological mean is:
1 K N
C = N_Z zxnk
k=l n=1 EQ.17.

The difference between the ensemble mean and climatological mean is the

estimated signal. The estimated signal variance is:

N & PP
(@, - >=E2(uf<k>—uc> 0. 18

The difference between an individual member and its corresponding ensemble

mean is called the noise. The estimated noise variance is:

<(6-f2> = %z Z(an _.ﬂf(k))2

EQ. 19.

It follows that the estimated signal-to-noise ratio is:
NX (i, (k)—i1,)?
k

DY Kty (K))?
n k

SNR =

EQ. 20.
The f-statistic under the null hypothesis of no prediction information has the
following distribution [DelSole and Tippett, 2008]

K(N-1)
K-1

SNR o EQ. 21.

However, SNR ranges from 0 to infinity. The Signal-to-Total Ratio (STR)
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is a better measurement of potential predictability. STR always range from 0 to 1
with higher values indicate the larger potential predictability.

Signal-to-Total Ratio (STR) is a good quantitative measurement the potential
predictability associated within ensemble simulation. Comparing the STR between
the designed experiments will isolate the predictability contributed by snow
boundary information, such as snow albedo effect, snow hydrological effect or both.
For example, STRr(ModBoth)- STRr(Control) will provide a insight on the how much
temperature predictability is enhanced by perfect snow boundary information (the
subscript T indicates Temperature). This enhancement in the predictability is due

to the atmosphere’s “robust” response to snow boundary information.

3.5.3 Gain index

On the other hand, the temporal variability of a time series provides another
way to measure the land-atmosphere interaction and feedback. As discussed in the
background review, there are two feedbacks involved in the snow-atmosphere
coupling, one positive temperature-albedo feedback to amplify it and another
negative stability-snowfall feedback to stabilize it. An important question regarding
snow coupling is whether the feedbacks lead to a net damping or amplification of

climate variability. For example, the low temporal variability ¢ cases (a and b cases
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in Figure 3.7) show relative small variability (amplitude) due to prescribe snow
boundary forcing. However, high ¢ cases (c and d) demonstrate strong snow-
atmosphere coupling and interaction. We can define a Gain index G as the ratio of
mean temporal standard deviations of freely coupled ensemble and fixed snow

boundary ensemble experiments, as an indicator of the coupling feedback factor.

GCOM e
G = =2kl EQ. 24.
O-ﬂxed

where ¢ is temporal standard deviations of one ensemble member, the bar indicate
the mean over all ensemble members. G measures the gain (amplification factor) of
mean temporal variability of the simulated time series due to free snow-atmosphere
coupling and feedback compared with prescribing the snow boundary. The index G
varies from 0 to infinity, with larger values indicating a greater degree of coupling
feedback factor. When G is larger than 1, it indicates that the coupling will amplify
the interaction (positive feedback). Otherwise, the coupling feedback will stabilize
the coupled system (negative feedback).

For instance, Gr(Control, ModBoth) measures the amplification factor of the
temporal variability of air temperature comparing freely coupled snow-atmosphere
experiment (Control) with the fixed SCF and SWE experiment (ModBoth).
Similarly, the Gr(RealSCF,ModBoth) and Gr(RealSWE, ModBoth) will measure

feedback factor of snow albedo effect and hydrological effect separately.
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3.6 Evaluations

Besides coupling strength, we can also evaluate the effect of the realistic
snow information on climate prediction in the RealSCF, RealSWE, RealBoth
experiments. This will be the case even though these experiments do not utilize any
special initial information. Since realistic snow information is directly inserted into
these three experiments, we can regard them as representing hypothetically
“perfect” snow conditions. In addition, forced with the same SST climatological
cycle, these runs will isolate the possible snow impact from the robust ENSO
impacts. These evaluations can provide an insight how “perfect” snow boundary
information, in term of albedo effect, hydrological effect or both, contribute to
climate prediction without initial information and ENSO effect.

Four statistical parameters will be used to evaluate the predictive
performance of the model with prescribed snow boundary information. These
statistical indicators are: root mean square error (RMSE), the coefficient of
determination (squared correlation coefficient R?), percent of bias (PBIAS) and
Nash-Sutcliffe Coefficient of Efficiency (NSE: [Nash and Sutcliffe, 1970]). The

equations are given below:

EQ. 25.

EQ. 26.
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EQ. 27.
EQ. 28.

where O indicates the observed values, P is the predicted values, the bar indicates
the mean of value and n is the number of data records. The RMSE measures the
total magnitude of error between observed and predicted values. The R? is a
statistical measure of how well the simulated values correlate in time or space with
the observed data points. A value of 1 in R? represents a strong linear relationship
between the observed and predicted value while a value of 0 indicates no linear
relationship between observed and simulated values. The PBIAS valued indicate
whether the model is over-predicting or under-predicting the observed values.
Optimal value for PBIAS is 0; with negative values indicate over-prediction and
positive values indicate under-prediction.

Since the correlation coefficient is based on an assumed linear regression,
Nash and Suctliffe [1970] proposed an alternative index for goodness-of-fit, which is
often referred to as Nash-Sutcliffe Coefficient of Efficiency (NSE) and widely used as
a parameter to evaluate model performance. The NSE value ranges from -c- to 1. An
NSE value of 1 indicates a perfect agreement between the observed and predicted
values; a value of 0 means that the model is good predictor only for the mean
climatology; a negative value indicates that the climatology mean forecast is better

than the model.
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In the evaluation, we validated the model simulations with observation-based
dataset. The National Centers for Environmental Prediction (NCEP)-National Center
for Atmospheric Research (NCAR) reanalysis 1 data [R-1; Kalnay et al., 1996] were
used for the evaluation of temperature. Although NCEP-Department of Energy
(DOE) reanalysis 2 products [R-2;Kanamitsu et al., 2002] are updates of this widely
used R-1 data set, we still chose to use the R-1 data set because of the relatively
longer period of R-1 and for easy comparison with previous studies. For
precipitation validation, the Global Precipitation Climatology Project one-degree
daily (GPCP 1DD) precipitation dataset provides daily, global one-degree gridded
data for precipitation (available online at http://precip.gsfc.nasa.gov/
gpcp_daily_comb.html). This precipitation dataset is a combined observation-only
dataset based on satellite estimates of rainfall and is scaled to match the monthly
accumulation provided by the GPCP satellite-gauge (SG) product, which combines
monthly satellite and gauge observations [Huffman et al., 1997]. To match the CAM
model 1.9°X2.5°, the R1 reanalysis and GPCP 1DD data are interpolated to the CAM

grid by bi-linear interpolation.

3.7 Summary

All experiments in the SACE are summarized in Table 3.1. The key
diagnostics are also described in the table. Q(Control) represents the fraction of
variance across ensemble members that is “explained” (forced) by both boundary

and initial conditions, including snow cover. The difference 2(ModBoth)-Q(Control)
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is the enhancement of explained variance by prescribed snow boundary conditions,
and indicates the snow-atmosphere coupling strength. Similarly, the difference in
signal-to-total ratios STR(ModBoth)-STR(Control) measures the predictability
enhanced by prescribed snow boundary condition. The Gain index,
G(Control,ModBoth), represents the variability amplified by snow-atmosphere
interaction and feedback.

By importing realistic snow information such as MODIS SCF and GLDAS SWE,
we pioneer the investigation of the realistic snow albedo effect and hydrological
effect on atmosphere predictability. Since the surface albedo is a linear function of
snow cover fraction, the snow albedo effect is largely determined by the SCF.
Because the soil moisture anomalies are triggered by snowmelt, which are
correlated with maximum snow depth in winter, the snow hydrological effect in this
designed experiment can be isolated.

QQ(ModBoth)-Q(RealSCF) measures the fraction of variance explained by
prescribed realistic SCF information (snow albedo effects). Similarly,
STR(ModBoth)-STR(RealSCF) will measure the enhancement of predictability due to
prescribed realistic snow albedo effects. On the other hand, €(ModBoth)-
Q(RealSWE) will quantify the fraction of variance explained by prescribed realistic
SWE information (snow hydrological effects). STR(ModBoth)-STR(RealSWE) will
quantify the predictability enhanced by the prescribed realistic snow hydrological

effect.
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In the last experiment, Both SCF and SWE information are prescribed. The
Q(RealBoth)-Q2(ModBoth) represent the fraction of variance explained by
prescribed realistic snow information from both SWE and SCF. STR(RealBoth)-
STR(ModBoth) represents the predictability enhanced by realistic snow modeling.
In addition, Q2(RealBoth)-Q(RealSCF) provide another way to separate the variance
contributed by snow hydrological effect. Similarly, €(RealBoth)-€Q(RealSWE) gives
another estimation of the snow albedo effect. Also, STR(RealBoth)-STR(RealSCF)
and STR(RealBoth)-STR(RealSWE) measure the predictability enhancement due to
snow hydrological effect and snow albedo effect accordingly.

Finally, based on the RealSCF, RealSWE, RealBoth experiments, an
evaluation can be conducted to validate the “perfect” snow boundary information
contribution to the climate predictability. Four statistical indicators will be used to

evaluate the value of “perfect” snow simulation to climate prediction.
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Snow Depth and Snow Cover Fraction
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Figure 3. 1 In situ snow depth and snow cover fraction relationship over the Tibetan

Plateau. The error bars show the observational range of snow cover fraction (%) at

the different depth of snow. The green dotted line indicates the computation result
from the parameterization in the CLM 3.0 model.
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Figure 3. 2 The SCF parameterization of snow depth by CLM 3.5 with different snow
densities from fresh new snow 100 kg/m”"3 to 400 kg/m”3 compared to the default
CLM 3.0 parameterization (left panel) and SCF change with snow depth (dfs/dhs ) at
different snow densities (right panel).
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Figure 3. 3 The depiction of model setup for ocean, land and sea ice components.
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Figure 3. 4 A depiction of the model integration scheme. The background chart is a
typical snow evolution with snowfall, rainfall and soil moisture from winter to
summer obtained from the GSWP 2 dataset at a grid box in central Canada.
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Figure 3.5 The demonstration of the Snow-Atmosphere Coupling Experiment
(SACE).
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Figure 3.6 continued.
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a: low Q, low ¢, low STR c: high Q, low ¢ , middle STR
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d: high Q, high o , high STR
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Figure 3.7 Idealized time series of the atmospheric state for different ensemble
members under four situations: (a) low variability o, low similarity Q and low STR,
(b) high variability o, low similarity Q2 and middle STR, (c) low variability ¢, high
similarity Q2 and middle STR and (d) high variability o, high similarity € and high
STR.
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Table 3. 1 summary of the SACE experiments

Identifier | Description Key diagnostics

Control Standard AGCM Q(Control): fraction of variance “explained” by
simulation with fully all boundary and initial conditions
interactive LSM

ModBoth | The same as Control, | Q(ModBoth)-Q(Control): coupling strength by
except the snow model-simulated snow information
states are replaced by | STR(ModBoth)-STR(Control): Predictability
recorded data file enhanced by prescribed snow boundary
from one random Gain(Control,ModBoth): amplification by snow-
selected Control atmosphere interaction
simulation.

RealSCF The same as Q(RealSCF)-Q(ModBoth): coupling strength
ModBoth, except the contributed snow albedo effects
SCF are prescribed by | STR(RealSCF)-STR(ModBoth) : Predictability
realistic yearly enhanced by snow albedo effect
observations. Gain(RealSCF,ModBoth): amplification factor by

snow albedo effect

RealSWE | The same as Q(RealSWE)-Q(ModBoth): coupling strength by
ModBoth, except the snow hydrological effects
SWE are prescribed by | STR(RealSWE)-STR(ModBoth): Predictability
realistic yearly enhanced by snow hydrological effect
observations Gain(RealSCF,ModBoth): amplification factor by

snow hydrological effect

RealClim | The same as Gain(Control,RealClim): amplification by snow-
ModBoth, except both atmosphere interaction
SCF and SWE are Gain(RealBoth,RealClim): amplification by
prescribed by realistic | snow-atmosphere interaction
observed climatology

RealBoth | The same as Q(RealBoth)-Q(ModBoth): coupling strength by

ModBoth, except both
SCF and SWE are
prescribed by realistic
yearly observations.

realistic SWE and SCF info

Q(RealBoth)-Q(RealSCF): coupling strength by
snow hydrological effects

Q(RealBoth)-Q(RealSWE): coupling strength by
snow albedo effects

STR(RealBoth)-STR(ModBoth): Predictability
enhanced by realistic snow info

STR(RealBoth)-STR(RealSCF): Predictability
enhanced by snow hydrological effects

STR(RealBoth)-STR(RealSWE): Predictability
enhanced by snow albedo effects
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CHAPTER 4. SNOW SIMULATION IN THE NCAR CLM MODEL

COMPARED WITH OBSERVATIONS

In this chapter, we compare the land snow variability simulated by the NCAR
CLM 3.5 model at AMIP-style run (monthly mean) and Control experiment (daily
time series) to realistic snow information obtained from MODIS and GLDAS
accordingly. The main propose is to evaluate how well the current CLM model

simulates global-scale snow variability.

4.1 Monthly mean climatology of SWE and SCF

Figures 4.1 and 4.2 show the monthly mean climatology of snow cover
fraction and snow water equivalent in the CLM model based on the multi-decadal
AMIP-style simulation during 2000-2009. From September to February, snows
accumulate in high-latitude Polar Regions and then gradually extend to the south.
The Tibetan Plateau, although located in the middle-latitudes (roughly 25-45°N),
begins to build up shallow snow cover in October due to its high elevation. During
the snow maximum (the end of February), more than half of the North American

continent and a large portion of Eurasia are covered by snow (SCF larger than 90%).
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The transition zone of the snow line (edge) reaches approximately 50°N. Tibet and
the Rocky Mountains are two noteworthy snow regions in the middle-latitudes.
From March to August, the snow cover gradually depletes toward the North Pole
due to the increase in solar energy. The moving of the snowline is generally parallel
with the latitude lines, except in mountainous regions where there exists some

patchy scattered snow at high elevations.

4.2 Annual Cycle

Figures 4.3 and 4.4 show the annual cycle of snow cover fraction (SCF) and
snow water equivalent (SWE) for the CLM model simulation compared with MODIS
satellite retrievals and GLDAS data assimilation products for four regions: 1)
Northern Hemisphere land, north of 20°N; 2) Eurasia, north of 20°N; 3) North
America, north of 20°N; and 4) all middle-latitude land between 40°N and 60°N.
Greenland is excluded from all four regions since there are very only small
variations of snow there. The error bars show the inter-annual variability
represented by standard deviation from 2000-2009.

Generally speaking, CLM overestimates the mean value of SWE and SCF in
the four regions, but underestimates the inter-annual variability of SWE and SCF.
The biases in the diagnostic variable SCF (through SD-SCF parameterization) are
more significant than for the prognostic variable SWE.

In the SCF, the MODIS satellite retrieval and CLM simulation show significant

differences. According to Hall et al. [2002a], the MODIS snow map estimated error,
58



annually averaged for the Northern Hemisphere, is approximately 8% in the
absence of forest and clouds. Due to cloud (almost all have been removed by using
8-day composited maps) and forest obscuration, the MODIS data have a slight
underestimate of the snow fraction in nature (less than 5% usually). Compared with
MODIS, the snow fraction parameterization in CLM shows serious overestimates of
the snow cover fraction. Direct insertion of SCF obtained from MODIS to the CLM
may cause serious bias in the temperature simulation. For the RealSCF experiment,
we should use a bias-removal technique, such as CDF-matching [Reichle and Koster,
2004], to reduce the potential bias in the simulation.

On the other hand, the underestimation of inter-annual variability of SWE
and SCF in CLM could cause weak snow-atmosphere coupling in the simulation.
Prescribing realistic SWE and SCF variability into the model in ensembles Real SWE
and RealSCF will be key to quantify the coupling strength and the contribution to
predictability.

In general, the snow simulation over the North American continent is much
better than over Eurasia, probably because the snow fraction parameterization was
constructed mainly based on available North American data. In addition, note that
the AGCM shows a slower accumulation process from October to December than
GLDAS reanalysis. This feature may be due to the snowfall parameterization in CAM

that produces weaker snowfall in early winter.
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Figures 4.5 and 4.6 show detailed maps of monthly mean differences of
model simulated SWE and SCF with GLDAS and MODIS during the snow depletion
period from March to June. The biases are not evenly distributed globally, but

gradually reduce as snow disappears.

4.3 Grid-point scale inter-comparison

Figure 4.7 and 4.8 show daily SWE and SCF evolution of the Control
simulation comparing with GLDAS reanalysis and MODIS snow retrievals at three
typical snow points: 1) Canada (87.5°W, 55.98°N); 2) Tibetan Plateau (90°E,
36.95°N); 3) Central Siberia (90°E, 71.05°N). The detailed information about the
three grid-points is shown in Table 4.1. In each panel, the ten lines represent ten
different year’s snow evolution during 2000-2009. The x-axis runs from March 1st
to August 31st in Julian days.

Table 4. 1 Detailed information about 3 selected typical snow grid-points

Site  Longitud Latitude Grid coordinate Dominated Summary
e (1.9x2.5 FV grid) land type
(units)
P1 87.5W 55.89N (78,110) Vegetated Stable middle-latitude
snowpack in Canada
P2 90.0E 36.94N (68,37) Vegetated Topographic unstable

snowpack at middle-
latitude Tibetan Plateau
P3 90.0E 71.05N (86,37) Vegetated Stable high-latitude
snowpack at central
Siberia

The CLM well represents the SWE depletion curve during March to August in
Canada and central Siberia, but not in the Tibetan Plateau (TP). GLDAS shows a

relatively large volume of snow during spring to summer in the TP, but the CLM
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model seriously underestimates this. Ma et al. [2008] pointed out that the Tibetan
Plateau, the roof of the world, is a challenge for land surface modeling not only due
to the highly complex terrain, vegetation, and land classification but also due to the
complicated permafrost over this region. However, the stronger incident solar
radiation due to its low latitude will cause the snow albedo effect to be more
sensitive to the snow cover variation.

Snow cover fractions computed by snow-depth parameterizations [Niu and
Yang, 2007] show relatively large disagreement with MODIS data. Due to quick
gravity compaction after fresh snowfall, the model snow depth shows a rapid
collapse in the first few days after snowfall, and then leads to substantial collapse in
the snow cover fraction beyond the first few days after new snowfall. These sudden
collapses in the SCF are not realistic in nature, partially due the problem that the
snow cover parameterization is based on snow depth that is over-compacted by
gravity. Using SWE to instead snow depth in this parameterization may eliminate

the problem.

4.4 Inter-annual variability of snow

Figure 4.9 shows the SWE variability represented by the monthly mean of
standard deviations of the daily SWE from the Control experiment. During the
boreal snow maximum period (March), there is considerable inter-annual variability
over the snow-buried regions (Figure 4.9.a). The snow over the Tibetan plateau,

Eastern Europe and the Far East show relatively larger values of inter-annual
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variability. When snow coverage shrinks from March to June, only limited high-
latitude regions and the margins of Greenland retain much inter-annual variability.
Note that there is still some SWE variability over the Tibetan plateau due to its high
elevation. Similarly, Figure 4.10 shows the snow cover fraction variability from the
Control experiment. During March, the snow fraction strongly varies at middle-
latitudes due to high sensitivity of SCF to the shallow snow (df/dh). The regions of
high variability of the SCF move northward with the edge of the snowpack from
March to June. There are still considerable variations at high-latitude regions during

June.

4.5 Snow anomaly memory

Due to positive snow-albedo feedback, snow anomalies can persist a
relatively longer period. We call this snow anomaly memory. This memory is
considerably longer than most atmospheric processes and impacts on local and
downstream weather and climate from weekly to seasonal time scales. To measure
the snow anomaly memory, a lagged autocorrelation coefficient is calculated at each
grid point, where the time series of SWE or SCF are correlated with themselves but
lagged at different time intervals. Based on the first order Markov framework, the e-
folding time scale t provides a single parameter of measurement of the snow
memory:

r(t)=exp(—t/7) EQ. 29.

where r(t) is the autocorrelation at lagged time t.
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Figure 4.11 shows the spatial mean lagged correlation r as a function of
lagged days t in different latitude zones. The top panel is for snow cover fraction
from GLDAS and bottom panel is for snow cover fraction from the Control
experiment. We used daily mean snow values and a 30-day window for computing
correlation. The thick dotted line indicates the e-folding time scale of the lagged
autocorrelation.

From the MODIS observed SCF (upper panel), the snow anomaly memories
persist through summer in the high latitude regions (lat > 80° and 80°>lat> 70°).
The positive or negative anomalies in these regions can also persist for relatively
long times in the regions between 60° and 70°, although the lagged autocorrelation
quickly decreases to 0.6 by summer. In contrast, the lagged autocorrelations
decease rapidly with lag in the middle-latitudes (40°<lat<60°). The e-folding time
scale of snow memory is only about 30 days in the middle latitudes.

Compared with the SCF simulation obtained from the CLM model Control
experiment ensemble (bottom panel), the snow anomaly memories in the high-
latitude regions are not well simulated. The lagged autocorrelation quickly
decreases below the e-folding scale within 30 days. The snow anomaly persistence
is simulated better at middle-latitude regions in the CLM model.

Figure 4.12 is similar to Figure 4.11, but for the SWE. Based on the GLDAS
estimated SWE (upper panel), the snow anomaly memories are strong at high-

latitude regions and slowly decrease with the lagged days. The e-folding time scale ©
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is roughly 120 days for the region between 60° to 70° 80 days for the region
between 50° and 60° and 30 days for the region between 40° and 50° accordingly.
The CLM well simulates these features (bottom panel), although the e-folding time
scale in the region between 50° and 60° is significantly shorter than observed.

The longer snow anomaly memories in the observed data also imply the CLM
may simulate weak snow-atmosphere coupling and interaction. Importing the
realistic snow data into the model may provide more accurate estimations of actual

snow-atmosphere coupling strength.

4.6 Summary

CLM 3.5 shows improvement over version 3.0 in the global snow simulation,
especially in the monthly climatology, in simple AMIP-style stimulations given the
absence of direct snow observations. However, there are still significant deficiencies
in the snow simulation made by CLM 3.5, including:

1. Overestimation of the monthly mean climatology with especially large
systemic bias in the SCF in the Eurasian continent. Bias removal is necessary
for importing satellite snow information in the prescribed observed snow
experiments (direct insertion), such as RealSCF.

2. Underestimation of the inter-annual variability of snow in the CLM model,
which may cause weaker snow-atmosphere coupling and interaction in the
ideal experiment ModBoth. Realistic snow information in RealBoth needs to

be implemented to quantify better the coupling strength.
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3. Shorter snow anomaly memory (persistence) in the model simulation
compared with realistic observations will also weaken the snow-atmosphere
coupling and interaction compared to reality. Importing realistic snow
variability into CLM becomes necessary and important for using the AGCM to

estimate actual snow-atmosphere coupling strength.
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Figure 4.1 The monthly climatology of Snow Cover Frication (FSNO) in the CLM
model based on the AMIP style simulation

66



AMIP FSNO [%] APR

AMIP FSNO [%] MAY

80

60

40

120

80

60

40

120

Figure 4.1 continued.
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Figure 4.1 continued.
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Figure 4.1 continued.
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Figure 4.2 The monthly climatology of Snow Water Equivalent (SWE) in the CLM
model based on the AMIP style simulation.
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Figure 4.2 continued.
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Figure 4.2 continued.
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Figure 4.2 continued.
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Figure 4.3 Monthly mean snow cover fraction (FSNO) for the CLM model simulation
and MODIS satellite retrieval for the 1) Northern Hemisphere land; 2) Eurasia, north
of 20°N; 3) North America, north of 20°N; and 4) middle-latitude land between 40
°N and 60°N. The error bars show the inter-annual variability represented by
standard deviation from 2000-2009.
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Figure 4.4 The same as Figure 4.3, but for Snow Water Equivalent (SWE).
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Figure 4.5 The monthly mean SWE difference between GLDAS and CLM simulation
from March to June.
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Figure 4.6 The monthly mean snow cover fraction difference between MODIS and
CLM simulation from March to June.
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Figure 4.7 The daily SWE evolution of the Control simulation and GLDAS reanalysis
at three typical snow grid-points: 1) Canada (87.5°W, 55.98°N); 2) Tibetan Plateau
(90°E, 36.95°N); 3) Central Siberia (90°E, 71.05°N). The ten lines represent ten
different year’s snow evolution during 2000-2009. The x-axis spans March 1st to
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Figure 4.8 The same as Figure 4.7, but for daily snow cover fraction evolution of the
Control simulation and GLDAS reanalysis at three typical snow grid-points.
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Figure 4.9 The monthly mean of the standard deviations of the daily snow water
equivalent (Kg/m2) from the Control experiment: a) March b) April c¢) May and d)
June.
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Figure 4.10 The monthly mean of the standard deviations of the daily snow cover
fraction (%) from the Control experiment: a) March b) April c) May and d) June.
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Figure 4.11 The mean lagged correlation r(t) in difference latitude bands: a) the
snow cover fraction from GLDAS; b) snow cover fraction from the CLM Control run.
The thick dotted line indicates the e-folding time scale of the lagged autocorrelation.

The x-axis extends from March 1stto August 31st. The autocorrelations are
computation over a 30-day window.
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Figure 4.12 The same as Figure 4.11, but for SWE lagged correlation r(t) in different
latitude bands: i) the SWE from GLDAS; ii) SWE from the CLM Control run.
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CHAPTER 5. COUPLING STRENGTH AND PREDICTABILITY BY

MODELLED SNOW EVOLUTION

5.1 Control and ModBoth experiment

In the ideal simulation Control, the land surface model is freely coupled with
the AGCM without any constraint in each ensemble member, including the
prognostic variable SWE and diagnostic variable SCF. The possible ENSO impacts
are also removed by forcing with the same climatological SST annual cycle. Because
of the chaos in the climate system, the snow states in the different ensemble
members in Control will evolve differently to reflect the potentially broad range of

snow values that are consistent with system.

In the second ensemble experiment ModBoth, all members are forced to
maintain precisely the same time series of key snow states (SWE and SCF) that were
generated by one randomly chosen ensemble member of the Control experiment.
All initial and boundary conditions in ModBoth, including atmosphere and SST

forcing, are the same as the Control, except that the original snow states (SCF and
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SWE) in the model are replaced. Thus, the coupling strength due to the snow forcing

can be investigated.

To quantify the coupling strength, Koster et al. [2002] illustrated that the
similarity of atmospheric states (such as temperature or precipitation) between the
ensemble members, marked as Q(ModBoth), has two distinct sources. In this
experiment they are: (a) the prescribed snow boundary forcing and (b) background
seasonal behavior that is measured by €Q(Control). Therefore, subtracting
()(ModBoth) from (Control) should isolate the impact of the prescribed snow
boundary variables on the atmosphere variability. The difference
Q(ModBoth)-Q(Control) is a good estimate of snow-atmosphere coupling strength.
Similarly, the difference of the Signal-Total-Ratio, STR(ModBoth)-STR(Control),
represents the increase of potential predictability due to snow-atmosphere

coupling.

5.2 Temperature and precipitation coupling with snow

We focus mainly on temperature and precipitation in this study. The
subscripts T and P represent air temperature and precipitation accordingly. We use
daily mean time series and focus on the daily to monthly time scales of snow-
atmosphere coupling.

Figure 5.1 shows the Northern Hemisphere Qr(Control) (the similarity
among time-series of daily air temperature from the members of the Control

ensemble) from March to June. In the Control experiment, the snow states are not
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prescribed. Therefore, the temperature variation reflects the extent of variability as
induced by the time variation of imposed boundary conditions or forcings (such as
snow and soil moisture etc.). The larger Qr(Control), the stronger the similarity
among the temperature time series. The largest values tend to cluster in eastern
Asia, India and the center of North America. The eastern European and Tibetan
regions show relative small values of Qr(Control), indicating the Ilarger
disagreement in the temperature evolution.

The change of temperature similarity from Control to ModBoth,
Qr(ModBoth)-Qr(Control), should isolate the impact of prescribed snow states on
the synoptic scale temperature variance. To quantify snow-atmosphere coupling
strength, we use this change in similarity.

Figure 5.2 shows the snow-atmosphere coupling strength over the NH.
During March (Figure 5.2.a), relative high values of Qr(ModBoth)-Qr(Control)
concentrate in Eastern Europe, the Tibetan Plateau and the middle latitudes of
North America. In contrast, the snow coupling strength in high-latitude regions is
weak. From March to April (Figure 5.2.b), the coupling strength is suddenly
weakened over most of the middle-latitudes. The possible reason for weaker
coupling strength is the rapid snowmelt that dramatic diminishes the albedo effect
while the lagged hydrological effect is still on the way. From May to June (Figure
5.2.c and 5.2.d), the coupling strengths generally move northward to the Polar

Regions.
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There are some slightly negative values of Qr(ModBoth)- Qt(Control) which
mainly cluster in the low-latitude regions. Spurious negative values may occur due
to the small ensemble size based on the random analysis. Koster et al. [2006]
estimated that less than 1% of grid cells may have negative values in consecutive 6-
day periods, based on a Monte Carlo method with 16-member ensembles. With ten
members, those odds increase.

According to Koster et al. [2006], Q2 can be interpreted as the fraction of the
total variance that is “explained” by the imposed boundary condition. The highest
values of Qr(ModBoth)-Qr(Control) are roughly 0.4, implying that snow cover
perturbations could explain as much as 40% of the synoptic scale temperature
variability in those regions.

Figure 5.3 shows the same quantity for precipitation Qp(ModBoth)-
Qp(Control). Comparing this figure with the previous figure reveals two features:
First and foremost, the snow cover’s control on precipitation is weaker in general
than its control on surface air temperature. This is no surprise, given that the snow
albedo effect has a much stronger impact on the air temperature than the snowfall-
stability feedback has on the precipitation. Secondly, the horizontal scale of snow
coupling on precipitation is much smaller than it is on temperature. The
distributions of Qp(ModBoth)-Qp(Control) are much more “spotty” than
temperature. In the early spring (Figure 5.3.a and 5.3b), the snow’s control on

precipitation is mainly based on the snowfall-stability feedback. Beginning in May
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(Figure 5.3.c and 5.3.d), the snow hydrological effect becomes the main impact on
the precipitation.

Note that the response of precipitation to snow conditions is more complex
than temperature. Although the surface energy and water fluxes are responsible for
communicating these snow states to the boundary layer, the precipitation will also
involve other processes, such as atmosphere stability, convective initialization and

transient weather systems.

5.3 Vertical propagation of the coupling strength

5.3.1 Coupling strength in the vertical dimension

[s this strong snow-temperature coupling strength as shown in the previous
section only limited to the surface layer? Could this coupling strength propagate in
the vertical to reach the middle-levels of the atmosphere?

The snow coupling strength of air temperature at 850 hPa, 700 hPa, 500 hPa,
and of surface pressure (PS) and planetary boundary layer height (PBLH) in March
are shown in Figure 5.4. The patterns of Qr(ModBoth)-Qr(Control) at different
pressure levels are similar to the pattern at the surface (Figure 5.2.a) although the
magnitude generally decreases with height. There are still significant coupling
strengths over the middle latitudes of Eurasia at 500 hPa (Figure 5.4.c). Although it

is not very obvious, the pattern of strong coupling has a slight shift to the east from
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lower to middle levels, indicating slight downstream advection by the prevailing
westerlies. The boundary layer height also shows significant coupling strength with
snow depth, especially near the Tibetan Plateau (Figure 5.4.e). However, the surface

pressure (PS) shows relative weaker coupling strength (Figure 5.4.d).

5.3.2 Significance testing

Is this coupling strength at 500 hPa statistically significant? To answer this
question, we implemented a simple re-sampling method to estimate the mean and
variance of 2, and then performed Student’s t-test significance testing.

Using a form of the bootstrapping technique called Jackknifing, we estimate
the precision of a sample statistic (medians, variances, percentiles) by constructing
a number of re-samples of the existing dataset, each of which is obtained by
randomly removing a subset of data from the original dataset. The advantage of
jackknifing is its great simplicity - it is straightforward to apply the bootstrap
method to derive estimates of standard errors and confidence intervals for complex
estimators of complex parameters of the distribution, such as Q. Disadvantages of
bootstrapping are that while (under some conditions) it is asymptotically
consistent, it does not provide general finite-sample guarantees, it assumes the
sample well represents the population, and it has a tendency to be overly optimistic.

For Student’s t-test, Ux and Ly are the nyxand ny years average of a specific
variable from any two cases, and Sx and Sy are the inter-annual variance of the

variables. Then the optimal Student’s t-test is given as
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with n-1 degrees of freedom. This hypothesis test examines the significance of two
variable mean differences relative to their own variances.

Figure 5.5.a shows the significant test for the difference of the Q between
ModBoth and Control experiments. The color shadings show the difference of the
Q of 500 hPa temperature from Fig 5.4c. The dots indicate that the difference of Q is
significant based on the jackknifing estimation. Generally speaking, if the difference
of Q is larger than 0.1, the difference is significant since the variance of ModBoth is
far smaller than for Control. Most regions with higher values in difference are
significant even in 500 hPa temperature. This significance test supports the
conjecture that signals from snow-atmosphere coupling could propagate to the

middle levels of the atmosphere.

5.3.3 Mechanism
By what mechanism is this coupling phenomenon propagated to the middle
levels of the atmosphere? The thermodynamic or heat budget equation in the

middle-lower levels of the atmosphere involves:

G2 S SN B

1 0. .
F'—F)+—(pK, — EQ. 31.
ot dz Cp pCpaz( )+pCp(ph8z)+Q Q
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where the terms on the right hand side are advection by the horizontal wind

oT
~U,oV,T subsidence due to vertical velocity — a)(a— + Ci)' the divergence of the
< P

d
net radiative flux — pTa—(F " —F") (both shortwave and longwave), thermal eddy
p Jz
e 1 00 . . : L
dlffuswn-pT(pKh 8_) and condensation heating -Q . Generally, radiation and
Y2 Z

turbulence are dominant processes in the boundary layer. The horizontal advection
is often significant above the boundary layer.

Figure 5.5.b shows the profile of each term in the heat budget equation at the
middle-lower level of atmosphere during typical deficient and excessive snow cover
situations at middle latitudes in March obtained from the Control experiment. The
deficient snow years were composited by the two lowest mean snow depth cases
during March within the 10 ensemble members. Similarly, the excessive snow years
are composed of the two largest mean snow depth cases in March. The temperature
tendencies due to eddy diffusion, both at vertical and horizontal direction, are very
close during deficient snow cases and excessive snow cases. The shortwave heating
rates have a clear difference but the magnitudes are relatively small (less than 0.05
K/day). In contrast, the longwave heating and condensation heating terms show
large differences. During excessive snow cases, the stability increases due to the
stable boundary layer, leading to less condensation heating at the lower levels of

atmosphere. Relatively colder air temperatures also lead to weaker longwave
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radiative cooling. On the other hand, there is more condensation heating and
stronger radiative cooling during the deficient snow cases. As a result, the
meridional heat transport is strong/weak during the deficient/excessive snow
cases.

The heat budget analysis indicates the lower boundary forcing induced by
anomalous snow cover influences the lower to middle level atmosphere mainly by
longwave radiation and condensation heating. This influence could reach the middle

levels of the atmosphere, as shown in Figure 5.4

5.4 Predictability associated with snow-atmosphere coupling

Signal-to-Total Ratio (STR) is a measurement of predictability by comparing
the signal to the total variability associated with the ensemble forecast. Similar to
the index €, STR also ranges from 0 to 1 with bigger values indicating the larger
predictability.

The enhancements of air temperature predictability due to prescribed snow
boundary conditions represented by the difference of STR between ModBoth and
Control (STRr(ModBoth)-STRr(Control)) are shown in Figure 5.6. The pattern of
enhancement is very similar to the coupling strength (Figure 5.2). In the regions of
higher values of Qr(ModBoth)-Qr(Control), the predictability differences

(STRr(ModBoth)-STRr(Control)) are also larger. These consistencies in
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predictability and coupling strength suggest the snow-atmosphere coupling can
enhance the potential predictability of the ensemble forecast.

Similarly, Figure 5.7 shows the predictability enhancement in precipitation
by prescribed snow boundary conditions. The enhancements are smaller than for
temperature, as expected.

In this series of experiments, we forced the model with exactly same
climatological SST cycle. The enhancements of potential predictability in STR with
boundary snow forcing are consistent with the snow-atmosphere coupling strength
as shown in the previous section, indicating this coupling contributes to the

potential climate predictability.

5.5 The Gain of snow-atmosphere interaction

Figure 5.8 shows the Gain of air temperature variability due to snow-
atmosphere coupling from March to June, by comparing the mean standard
deviations between Control and ModBoth. Where the Gain is larger than 1, it
indicates that the snow coupling or interaction will amplify the variability.
Otherwise, the snow coupling will suppress the climate variability. From March to
June, the Gain in the surface air temperature is larger than 1 over most of the mid-
latitudes of Eurasia and the North American continent. The large Gain areas are
consistent with strong snow-atmosphere coupling strength shown as Figure 5.2.

There are some scatter areas, mainly located over Scandinavia, Greenland and
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occasionally the eastern margins of Asia and North America, where the Gain is less
than 1.

Similar patterns of Gain also can be observed at difference pressure levels
(Figure not shown). Generally, the Gains decrease with height. However, the strong
couplings are still evident at the 500 hPa level. This feature further supports the
idea that the snow-atmosphere coupling signal propagates to the middle-levels of
the atmosphere as shown on Figure 5.4.

For precipitation, the Gain due to snow-atmosphere coupling displays a
complicated, irregular pattern as shown at Figure 5.9. During March and April,
there are significant areas at high-latitudes where the Gains of precipitation are less
than 1, indicating suppression of precipitation due to stability-snowfall feedback.
However, in the low and middle-latitudes, the Gains of precipitation are more than
1, reflecting the positive evaporation-precipitation feedback due to the snowmelt
hydrological effect. From May to June, the Gains in most areas are larger than 1,
suggesting the snow hydrological effect is mainly to amplify the precipitation
variability.

These results demonstrate contrasting impacts of snow-atmosphere coupling
on temperature and precipitation. For air temperature, whether it is the albedo
effect during the early ablation phase or the hydrological effect in the later stage, the
coupling will amplify the temperature variability. However, the snow atmosphere

coupling has a different impact on precipitation based on snowmelt timing. Before
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snow melt, the albedo effect induces negative stability-snowfall feedbacks that will
depress the variability. After the snow melts, the hydrologic effect induced by the

evaporation-precipitation feedback will amplify the variability.

5.6 Sensitivity to SCF parameterization

We have demonstrated strong snow-atmosphere coupling by the ideal snow
simulations Control and ModBoth. In any snow scheme, the SCF parameterization
is critical for computing the ground albedo.

Figure 5.10 demonstrates the sensitivity of albedo effect to the snow depth
that is derived from SWE. The panels 5.10.a and 5.10.b show the mean and standard
deviation of snow depth (SD) within the ten ensemble members for March in
experiment Control. The snow depths increase northward from the middle
latitudes except over the high terrain such as the Tibetan plateau and Rocky
Mountains. However, the standard deviations are relative larger at middle latitudes
indicating that there is considerable variability over these regions. Figure 5.10.c
shows the change of snow cover fraction with snow depth (df/dh, the slope of the
parameterization curve from Figure 3.2) at the climatological mean snow depth of
March. With relatively larger variability in snow depth, the snow cover fraction in
the middle latitudes experience large sensitivity to the change of snow depth.
Multiplied by the mean incident shortwave radiation (Figure 5.10.d), the

sensitivities of snow albedo effect to the change in snow depth are demonstrated in
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Figure 5.10.e. This sensitivity pattern is consistent with the snow-atmosphere
coupling pattern quantified by numerical experiments shown in Figure 5.2.a.

The slope of the SCF parameterization curve df/dh is a key factor controlling
variability of the snow albedo effect in any land model. The coupling strength
computed by ideal snow simulations is strongly impacted by this key
parameterization. Importing realistic SCF observed by satellite will remove this

model-dependent sensitivity.

5.7 Discussion

In general, impacts of snow anomalies on the atmosphere are strong only in
the unstable snow transition zone in middle latitudes, between stable snow-covered
high latitude region and snow-free subtropics (Figure 5.11). Model experiments
show that there are what we might call “cold spots” of snow-atmosphere coupling in
these unstable snow transition zones because there exists high sensitivity of the
albedo effect to the snow change and relatively large incident shortwave radiation.
In the high latitudes north of the edge where snow cover retreats to Polar Regions
from spring to summer, snow fractions are relative larger and less sensitive to snow
depth change. There the albedo effect is mainly controlled by the weak incident
solar radiation. There are no snow albedo effects in the low latitudes even though
there is plenty of incident solar radiation. Only in the transition zone between the

stable snow area and snow free area, where there are strong albedo changes
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induced by snow variations and relatively large incident radiation, do variations in
snow state have strong impacts on the atmosphere.

The Tibetan Plateau, located in the 25°-45° latitude band, demonstrates
strong snow atmosphere coupling due to its high elevation. Shallow snow can
persist for long periods in this elevated plateau. With strong incident solar
radiation, high elevations give the Tibetan Plateau a strong albedo effect.
Observational studies have found significant connections between snow anomalies
over Tibet and the Asian monsoon [Wu and Qian, 2003a; Xu et al., 2009b].

The snow-atmosphere coupling could propagate to the middle levels of
atmosphere (500 hPa) although the impact decreases with height. Longwave
radiation and convective heating are the main mechanisms for vertical propagation
of the impact of snow anomalies.

The enhancements of potential predictability due to the snow-atmosphere
coupling are very consistent in location with the strong coupling region; that implies
the contribution of snow-atmosphere coupling to climate predictability is mainly
local, without significant downstream effect as hypothesized by Xu et al. [2009a].

The coupling strength in March could be largely explained by the snow
albedo effect. The theoretical estimate of the sensitivity of the albedo effect from
observations is consistent with the numeric experiment results. However, the slope
of SCF parameterization df/dh is a model-dependent factor to control the sensitivity

of albedo effect.
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The snow atmosphere coupling and interaction will increase the variability
of air temperature (Gain > 1). However, the precipitation shows different features:
before snow melt, the negative feedback can suppress snowfall variation; after snow
melt, the snow hydrological effect with evaporation-precipitation feedback can
amplify the rainfall variability.

Missing from this idealized study, however, is an estimation of the degree to
which the experiment results are model dependent. In particular, the interannual
variability of snow, including both SWE and SCF, is underestimated by the CLM
model as analyzed in the previous chapter. These underestimations in the inter-
annual variability will weaken the snow-atmosphere coupling in the model
simulation. Importing realistic snow information based on satellite observations or

data assimilation into the model is the next step.
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MAY QT(ControI)

Figure 5. 1 The intra-ensemble similarity of surface air temperature time series Qr
within the Control experiment from March to June
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MAR QT(ModBoth) - QT(ControI)

Figure 5. 2 The coupling strength of surface air temperature (represented by the
change of similarity from ModBoth to Control experiments
Q(ModBoth)-Q(Control)) from March to June.

101



Figure 5. 3 As in Fig 5.2 for precipitation.
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Figure 5. 4 The coupling strength of air temperature at 850 hPa (T850), 700hPa
(T700), 500 hPa (T500), surface pressure (PS) and planetary boundary layer height
(PBLH) in March.
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MAR 500hPa Q. (ModBoth) - Q_(Control)

0.5
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Figure 5. 5.a The significance test for the difference of the Q2 between ModBoth and
Control. The shading shows the difference of the Q of 500 hPa temperature. The
dots indicate the difference of Q is significant according to the Student’s t-test based
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Figure 5.5.b The heat budget over the lower troposphere (500-1000 hPa) during
typical deficient snow and excessive snow at middle latitudes (30-60°) during

March.
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Figure 5. 6 The air temperature predictability enhanced by prescribed snow
boundary conditions (the difference of Signal-to-Total-Ratio between Control and
ModBoth experiment) from March to June.
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Figure 5. 7 As in Fig 5.6 for precipitation
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MAR GainT(ControI,ModBoth)

0.5

Figure 5. 8 The gain in air temperature variability due to snow-atmosphere coupling
between Control and ModBoth experiment.
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MAR GainP(Control,ModBoth)

Figure 5. 9 the same as Figure 5.8, but for the precipitation.
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Figure 5. 10 The sensitivity of net solar radiation to the snow albedo effect at March.
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Figure 5. 11 Schematic of the snow albedo effect. The right axis is the incident solar
radiation, the left axis indicate the snow depth and snow cover fraction. The
maximum snow albedo effect is located at the middle latitude transition zone
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CHAPTER 6. COUPLING STRENGTH AND PREDICTABLITY DUE TO

SNOW ALBEDO EFFECT

6.1 RealSCF experiment

The RealSCF experiment is similar to the ModBoth experiment except the
snow cover fraction is prescribed from realistic observations based on remote
sensing. Each ensemble member in RealSCF takes the specified realistic surface SCF
prescribed from MODIS remote sensing retrievals during 2000-2009. Meanwhile,
the SWE at each time step is still read from the same S1_state data file as in the
ModBoth experiment. The main purpose of the RealSCF experiment is to
investigate how the simulation will be improved by specified realistic SCF without
parameterization. Since the land surface albedo is a linear function of snow cover
fraction, the snow albedo effect is largely determined by the SCF. Then any
predictability enhancement of ensemble RealSCF compared with ensemble
ModBoth is due to the contribution of accurate representation of the snow albedo

effect.

112



6.1.1 CDF-matching

Comparing MODIS remote sensing and CLM land surface simulations, the
satellite retrieval of SCF shows a distinct systematic bias due to errors arising from
the SD-SCF parameterization in CLM (Figure 4.3). A statistical scaling approach bias
correction scheme, CDF-matching, is proposed and tested to remove the possible
bias in the RealSCF experiment. Comparing with the experiment ModBoth, we can
analyze the impact of model bias and the benefit from observational information.

To correct the systematic difference between the MODIS retrieved and the
model derived SCF, the CDF-matching approach of Reichle and Koster [2004] was
employed by scaling MODIS SCF mean and variability to match the climatology of
the CLM model. The strategy for this bias correction is to map the cumulative
distribution function (CDF) of the model to the CDF of the satellite retrieval by
scaling the satellite retrievals (Figure 6.1). All available MODIS observations are
used for the CDF-matching during a common training period (2000-2009). Note that
CDF-matching in theory can correct all moments of the distribution, but may be
subject to statistical errors due to the limited sample size.

Figures 6.2 and 6.3 show the difference in mean (top) and standard
derivation (bottom) of MODIS SCF minus CLM during March before and after CDF-
matching. Matching of the CDF is done separately at each grid point. All biases in the
climatology (monthly mean in the top panel) have been successfully removed.

Comparing the interannual variability (standard derivation in bottom panel), biases
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also have been greatly reduced. There are only some small differences in the

standard deviations in the middle-latitudes where the snows are unstable.

6.1.2 Sub-grid heterogeneity
To prescribe the MODIS SCF for each CLM grid-point, we must specify the
snow coverage at the sub-grid scale. A grid box in CLM is designed as a nested sub-
grid hierarchy composed of multiple land-units, snow/soil columns and Plant
Functional Types (PFT) in three sub-grid levels [Oleson et al, 2004b]. In the first
level, each grid cell has different land-units, which are intended to capture the
spatial pattern of sub-grid heterogeneity, including glacier, lake, wetland, urban, and
vegetated areas (figure 6.4). Based on the MODIS snow cover fraction, we
prescribed the SCF over each land-unit based on the following assumption:
e 100% SCF over glaciers
e 0% SCF over wetlands (all snowfall immediately melts)
e 100% SCF over frozen lakes and 0% SCF over non-frozen lakes, determined
by the lake surface temperature.
e 0% SCF over the urban fraction (all snowfall is immediately removed)
The remaining part of SCF in each grid-cell is ascribed to the vegetated land-unit. In

this experiment, we apply the same SCF over all PFTs in the vegetated land-unit.

6.1.3 Evaluation of bias-removing

Based on the four key criteria prescribed in section 3.6, we assess the effect

of bias-removal on the simulated temperature. The NCEP/NCAR reanalysis [Kalnay
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et al, 1996] air temperature data are used to evaluate the skill before and after the
CDF-matching.

Figure 6.5 shows the evaluation of the surface air temperature (T2m) of the
experiment with prescribed MODIS observed SCF without CDF matching (denoted
as F) against re-analysis 1 data (R1) using four different indices. In the root mean
square error (RMSE) map, the errors for temperature in the Tropics are smallest
and generally increase with latitude. In the high latitude regions of North America
and Eurasia, the RMSE is largest, reaching 6-8 K. There are relatively large RMSEs in
the major mountainous terrains, such as the Tibetan Plateau and the Rockies. In the
R square map, the lower values are also located in the topical and lower-latitude
regions and generally increase with latitude. In contrast, however, the higher R
square indicates the better agreement of inter-annual variability between
observations and simulations. This implies the simulation with prescribed snow
fraction performed better in the high latitudes, especially in the regions with large
annual cycle of temperature and precipitation. There is almost no correlation
between observed and simulated values in the tropics even though the RMSE is
lower in those regions. From the percent of bias map (PBIAS), over-predictions
(PBIAS > 1) dominate over the land except a few regions with slight under-
prediction (PBIAS <1). The Nash-Sutcliffe Coefficient of efficiency (NSE) in most
snow regions is close to the 1, which means there is agreement between the

observed and predicted values. In the tropical regions, however, the NSEs are less
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than 0 indicating prescribed snow fraction simulation imparts no skill in those
regions compared to a climatological forecast.

Figure 6.6 is the same as Figure 6.5, but using SCF adjusted by CDF-matching
(marked as NF simulation). All four parameters show similar patterns and
distributions as the F simulation. Figure 6.7 shows the difference of forecast skill
between F and NF simulations. In the RMSE difference map (upper panel), positive
values indicate a better simulation (smaller RMSE) by using adjusted SCF after CDF-
matching (NF experiment). On the other hand, the negative values indicate larger
RMSE (worse simulation) after CDF-matching. In the high-latitude regions of Siberia
and Greenland, the RMSE is reduced after bias correction. But over most of the
Eurasian continent and North America, the RMSE is slightly increased with bias
correction (NF case). Comparing with the map of differences of SCF in CLM with
MODIS (Figure 5.3), the RMSE improvements agree well with the region of larger
bias. Since the RMSEs increase with latitude and maximize over high-latitude
regions, the bias correction improves the simulation in these most erroneous
regions. However, bias corrections do not improve the simulation in middle-latitude
regions since the CDF-matching artificially adjusts the variability of snow (at daily,
weekly and seasonal time scales), although the mean climatology biases are
removed.

Based on the map of differences in percent of bias (PBIAS), however, the

bias-correction by CDF-matching shows obvious improvements at high-latitudes,
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but without significant effect at middle to lower-latitude regions. Since the CDF-
matching can reduce the bias in temperature between model simulation and
reanalysis data, we used MODIS SCF after CDF-matching in the RealSCF and

RealBoth experiments.

6.2 Coupling strength and predictability due to snow albedo effect

As mentioned previously, the only difference between RealSCF and
ModBoth is that the specified SCF is from different sources. The coupling strength
and predictability differences between ModBoth and RealSCF are contributed only
by the snow albedo effect.

Figure 6.8 shows the coupling strength (the difference of intra-ensemble
similarity between ModBoth and RealSCF experiments) for air temperature (2m
height) from March to June. During March and April, the coupling strengths are
relatively weak and concentrated in the middle latitudes. Only a few patches of
higher values are located in Eastern Europe, Tibet and the Great Lakes. Beginning in
May, the stronger couplings move to high latitudes and altitudes, inculding Siberia
and the Far East. One noteable feature is the Tibetan pleatau, displaying a strong
coupling during May. There is strong coupling over the Middle East in May and June
that cannot be explained by the snow albedo effect. Detailed investigation indicates
those false signals may be due to commission errors in MODIS retreivals that

mistake some clouds as the snow.
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Simaliar to the ideal snow evolution Control experiment, the coupling
strength of precipitation is very weak and scattered (Figure 6.9); far less robust than
the air temperature response.

Figure 6.10 shows the predictability enhancement (the difference of STR of
ModBoth and RealSCF experiments) for air temperature (2m height) from March to
June. The distribution patterns of predictability enhancement are very similar to the
coupling strength, although notably less in magnitude. The improvements in STR by
prescribing realistic SCF are mainly due to the snow albedo effect.

The gains of temperature variability due to the albedo variation by snow are
shown in Figure 6.11. During March, there is some small amplification in
variabilities of temperature (Gain>1) at middle latitudes corresponding to the
strong snow-atmosphere coupling regions. However, There are no significant gains
or even decreasing variabilities (Gain< 1) in the high latitude regions. From April to
June, the amplification regions move northward toward the pole. There are still
significant temperature gains over Tibet and its downstream region.

The decreasing temperature variabilities at high latitudes are probably due
to the high sensitivity of SCF to SD in the parameterization in ModBoth. In the high
latitudes, snow is relatively stable and keeps SCF steady before snowmelt; however,
the SCF will change via decreasing SD by gravity compaction in the model, even
while the SWE remains constant. This deficiency in SCF parameterization will

artificially produce some “albedo effect” noise at high latitudes. On the other hand,
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the SCF obtained from MODIS is very steady at high latitudes prior to snowmelt.
That will cause a decrease of air temperature variability at high latitudes.

Similarly, there are some small decreases of precipitation variability at high
latitudes (figure not shown). The reason is the stable boundary layer (SBL) that is a
ubiquitous feature over snow at high latitudes, due to the strong snow albedo
cooling effect. It is the combined effect of the strong reflection of shortwave (visible)
radiation and longwave (infrared) radiational cooling from the snow surface (high
emissivity). The net loss of radiation will further cool the atmosphere from below,
with low absolute humidity, increasing the stability of the boundary layer and then
frequently lead to cloud free conditions. This cloud-free condition will further

increase the longwave loss and reinforce the stability of boundary layer.

6.3 Snow albedo sensitivity index

In the previous analysis, we found that any variations in albedo, due to
change in SCF, will only have an effect when a sufficient supply of shortwave
radiation is available. We can define an index to quantify the climate forcing due to

the snow albedo effect.

d
SASI = SW | *d—];l *o(h, )* Ao for model SCF parameterization EQ. 32.

SASI = SW L *o(f, )* A for SCF observations EQ. 33.

sno
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where SW{ is the average incident solar radiation for each month, o(hsmow) and
O(fsnow) are the standard deviations of snow depth (or SWE depending on model) in
the model or SCF from observations for same period. Ac is the average albedo
difference of the snow surface with snow-free land surface (tunable, 0.4 in here).
The df/dh are the slope of SD-SCF parameterization.

Figures 6.12 and 6.13 show the snow albedo sensitive index obtained from
the CLM model Control run and MODIS SCF retrievals from March to June. The snow
albedo sensitivity index map obtained form the CLM model (Figure 6.12) displays
similar patterns compared to the snow-atmosphere coupling strength obtained
from Control and ModBoth (Figure 5.2). The region of strong coupling strength
shows reasonable movement from middle-latitudes to the polar region during the
snow ablation period from March to June. However, the snow albedo sensitivity
index obtained from MODIS SCF retrievals displays different patterns that agree
much more with the snow atmosphere-coupling strength obtained from RealSCF
(Figure 6.8). This simple snow albedo sensitivity index can capture major patterns
of the effects of snow albedo simulated by RealSCF experiment. We can use this
simple index based on model or observed data to get a rough insight into how
strong the albedo effect is without employing a complicated land-atmosphere

coupling model.
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6.4 Snow albedo effect

The land surface albedo with snow is given as:

@= (- 1)t 4 =00, + 10, @) Q. 34

where f,is SCF. To simplify, we assume the background albedo ¢, and snow albedo

o, are constant or do not change with latitude, then the change of albedo in the

meridional direction is

a’a d
fs( =) EQ. 35.
dy dy

The net shortwave energy input to the land surface is

E=(1-0)SW EQ. 36.
where the SW is the incident shortwave radiation. The net SW gradient in the

meridional direction is:

dE da dsw d asw

——=———SW+{d-a )—__i(as_abg)SW+[1_abg(1_f:v)_f‘sas]—

dy dy dy dy dy
EQ. 37.

Rearranging,

dE asw asw  df;

d—y:(l—abg)d—y—fs(as bg)d—y_ (x —O(bg)SW EQ. 38.

So the net SW change with latitude is composed of three components. The first

component is the SW radiation change with latitude multiplied by absorption with
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the background albedo. This component is the same as the land surface without

SNow.

dE dsw

- A

A s EQ. 39.

The remaining two components, both including the difference of the albedo between

snow and background land (o, — ,,), contribute to the snow albedo impact on the

change of meridional SW radiation input, defined as snow albedo effect (SAE).

d d
SAE =—f.(a, -, )ﬂ— U,
dy dy

(o, —a,, )SW EQ. 40.

The first term (Term1) is the SCF f; multiplied by meridional SW radiation

change and albedo difference (o, —¢,,) . This term indicates the SCF

dy
contribution to the SW energy input. The larger the SCF f;, the stronger the impact
on the SW energy. The sign of this term is negative, implying it always reduces the

SW energy.

df,

The second term (Term2) is the meridional gradient of SCF v multiplied
Y

by SW radiation and the albedo difference. This term measures the snow gradient

df,

, the
dy

contribution to the albedo effect. The larger the meridional gradient of SCF

A

stronger the impact on the SW radiation. Since the meridional gradient of SCF J
Y

could be either positive (increase) or negative (decrease), the contribution is
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d
depended on the sign of d—fs Since the SW is rather large in value, a small change in
Y

df,
dy

can cause a large change in the second term.

Figure 6.14 shows the zonal mean (line) and inter-annual variability
(shading, shown as the range) of the first term (Term1, red) and the second term
(Term2, blue) of the snow albedo effect (W/m?2/degree) based on the data from
March to June. The original data for computation are obtainted from MODIS and the
Control simulations. The magitude of Term1 in the mean are generally larger than
Term?2 for all months; however, the inter-annual variablity (shading) of Term1 is far
less than for Term2. During March, Term1 is generally increasing in magitude with
latitude and reaches a maximum at roughly 70°N. From April to June, this term
decreases quickly in magitude and moves northward toward the Pole. After May,
there is almost no impact by the first term south of 60°N. However, the second term
is generally small in the mean but shows relative larger range (variablity). The
maximum inter-annual variability moves from middle latitudes northward to high

latitudes from March to June. The Tibetan Plateau near 35°N still shows large inter-

S

dy

annual variablity even after May. The variblity in the zonal SCF gradient

contributes most of the inter-annual variability for the snow albedo effect.
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6.5 Discussion

Due to nonlinear interactions between snow and other hydrological
processes at the land surface, it is difficult to study the albedo changes due to snow
variations and their effect on energy and water balance at the lower boundary of
atmosphere. Any deficiency in the snow modeling or SD-SCF parameterization will
introduce large biases in ground albedo, affecting air temperature and other
atmosphere states. For example, a quick reduction in SCF (such as earlier snowmelt)
will lead to a subsequently lower albedo at the surface and quickly warm near
surface air temperatures, affecting the vertical stability and the general circulation
of the atmosphere. Prescribing realistic SCF observed from MODIS in RealSCF
eliminates errors in the snow albedo effect associated with imperfect snow
modeling and SCF parameterization. Forcing all ensemble members to the same
SWE in RealSCF also provides an approach to isolate the snow hydrological effect.
The RealSCF experiment provides a reasonable estimation of snow-atmosphere
coupling strength and potential predictability due solely to the snow albedo effect.

Although MODIS provides the most accurate SCF monitoring currently
available, it is still far from perfect. Errors of SCF across the Northern Hemisphere in
the absence of cloud are roughly 8% [Hall et al., 2002a]; highest in the middle-
latitude forest regions. The commission of errors due to misidentification of clouds
as snow adds artificial noise to the RealSCF simulation. On the other hand, omission

errors, where the sensor misses the shallow and short-term snow, will weaken the
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snow impact compared to reality. In addition, the 8-day composited snow maps
(MOD10C2) used in this study lack the high frequency snow variability on shorter
time scales, acting as a temporal filter to modulate the snow-atmosphere coupling.
Besides the SCF, snow albedo itself is also an important regulator of the
albedo effect. Although snow albedo at small spatial scales has been well studied in
terms of its dependence on spectral characteristics, snow grain size and type, and
solar zenith angle (SZA), grid-point scale spectrally averaged snow albedo is much
more complicated. Marshall [Marshall and Warren, 1986; Marshall, 1989] pointed
out that the spectrally averaged snow albedo varies with snow grain size, snow
cover depth, underlying background albedo (thin snow), solar zenith angle and
impurities absorbed in the snow (such as black carbon, etc.). Among these factors,
grain size is the most critical variable controlling snow albedo. However, the snow
grain size is so difficult to predict or simulate that it can be only roughly
parameterized by snow age and temperature history [Anderson, 1976]. Based on the
evaluation of the snow albedo parameterization in CLM, compared with four other
different weather and climate models [Wang and Zeng, 2010], CLM version 3 has
substantially improved the snow albedo simulation by use of a two-stream scheme
for radiative transfer, separating the calculation between direct beam and diffuse
albedo. The improved snow albedo estimation should improve the simulation of the
snow albedo effect. Furthermore, the vegetation fraction covered by intercepted

snow has also been reduced, addressing the albedo overestimation over the grass.
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Figure 6.1 A demonstration of CDF-matching. The solid line and the triangle-dash
line show the cumulative distribution function (cdf) of snow cover fraction obtained
from CLM simulation and MODIS retrieval respectively during 2000-2009.
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Figure 6.2 The differences of mean (top) and standard deviation (bottom) of model
simulated SCF [%] minus MODIS MOD10C2 retrievals during 2000-2009 in March.
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Figure 6.3 The same as Figure 6.2, except the MODIS retrievals were scaled by a
CDF-matching based on 10 years of model simulations (2000-2009).
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Figure 6.4 The current default configuration of the CLM sub-grid hierarchy [Oleson
etal., 2004c]
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Figure 6.5 Evaluation of the surface air temperature (T2m) of F simulations (directly
insert MODIS SCF without CDF-matching) against reanalysis 1 data (R1) : 1) root
mean square error (RMSE); 2)the coefficient of determination (squared correlation
R?); 3) percent of bias (PBIAS) and 4) Nash-Sutcliffe Coefficient of efficiency (NSE)
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Figure 6. 6 The same as Figure 6.5, but using adjusted MODIS SCF after CDF-
matching (NF simulation).
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Figure 6.7 The difference of forecast skill metrics between directly insert MODIS SCF
and adjusted SCF after CDF-matching.
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Figure 6.8 Coupling strength (the difference of similarity of ModBoth and RealSCF
experiments) for air temperature (2m height) from March to June.
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Figure 6.9 As in Figure 6.8, for precipitation.
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Figure 6.10 Predictability enhancement (the difference of STR of ModBoth and
RealSCF experiments) for air temperature (2m height) from March to June.
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Figure 6.11 Gain index (the ratio of Standard deviation of RealSCF and ModBoth
experiments) of air temperature (2m height) from March to June.
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Figure 6.12 Snow albedo sensitivity index from March to June based on the CLM
model.
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Figure 6.13 The same as Figure 6.12, but based on MODIS retrievals.
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Figure 6.14 Zonal mean (line) and inter-annual variability (shading, shown as the
range) of snow albedo forcing (W/m?/degree) in first term (term1) and second
term (term2) of EQ 40 from March to June. the data for computaiton obtainted from
MODIS and the Control simulation.
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CHAPTER 7. COUPLING STRENGTH AND PREDICTABILITY DUE TO

SNOW HYDROLOGICAL EFFECT

7.1 RealSWE experiment

All ensemble members in RealSWE are prescribed by the realistic SWE
obtained from GLADS during 2000-2009 but using the same SCF read from S1_state.
The only difference between ensemble RealSWE and ensemble ModBoth is the
SWE that is obtained from offline analysis GLDAS, which will eliminate the possible
errors in the SWE simulation. In other words, the SWE depletion curve at each grid-
point is precisely described by GLDAS SWE at each time step. As the most important
factor to determine the potential available water for melt, infiltration and runoff, the
more accurate the SWE depletion curve, the more precise in the simulation of snow

hydrological processes.

Although the AMIP-style simulation still shows a relative large difference
between CLM model and GLDAS reanalysis (Figure 4.4) we use the GLDAS SWE
directly inserted into the Ensemble RealSWE experiment without any bias-

correction.
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Generally speaking, the impact of snow on soil moisture anomalies has two
aspects: Firstly, snow cover insulates the soil from the atmosphere, decoupling the
soil-atmosphere interaction during the snow-covered periods. This process
prolongs the soil moisture memory throughout the snow season by preserving soil
moisture anomalies and increasing the redness of the soil moisture spectrum
[Delworth and Manabe, 1989]. Secondly, snowmelt infiltrates the underlying soil and
contributes to later soil moisture anomalies. This is what we call the snow

hydrological effect (SHE).

In CLM, any precipitation or dew in liquid form reaching the snow-capped
surface is assigned to liquid snow capped runoff, and then directly sent to the River
Transport Model (RTM) where it is routed to the ocean [Oleson et al., 2004d]. The
snow pack properties and soil moisture are unchanged during snow-covered
season. This is a manifestation of the first aspect, decoupling the soil-atmosphere

interaction.

Once snow begins to melt, the melt water infiltrates the soil triggering
anomalies in soil moisture. However, there are few previous studies that focus on
the SHE. Snowmelt in spring suddenly increases water infiltration until the
underlying soil becomes saturated. This is a two-step process. The excess will first
lead to Hortonian runoff (due to snowmelt excess over infiltration). Once the soil
becomes saturated, Dunne runoff (due to saturation excess) happens and water is

discharged into the river network. These processes are highly nonlinear, depending
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on many localizations, parameterizations and estimations. The snowmelt and

maximum soil infiltration capacity are critical parameters for studying this issue.

For the hydrological modeling of snowmelt, the maximum of SWE prior to
snowmelt is a key variable to quantify how much water is available to affect soil
moisture. On the other hand, the maximum soil infiltration capacity is determined
from soil texture and soil moisture [Entekhabi and Eagleson, 1989b] which are

computed based on the effective porosity and saturated fraction.

If we define the SHE to include all composited climate effects due to
snowmelt in the soil and subsequent soil moisture-evaporation-precipitation
feedbacks, the RealSWE experiment can be used to isolate the climate impact due to
snowmelt by excluding the climate effect associate with snow albedo. Since
atmosphere initial and boundary forcings are the same in the ensemble RealSWE
and ModBoth except for SWE, in particular prescribing the same SCF, the coupling
strength and predictability difference between RealSWE and ModBoth is largely

contributed by the SHE.

7.2 Coupling strength and predictability due to hydrological effect

Similarly to previous chapter, the only difference between RealSWE and
ModBoth is the SWE that is read from GLDAS from 2001 to 2009 and will trigger
different soil moisture anomalies after the snow melts. The coupling strength and
predictability differences between ModBoth and RealSWE are contributed only by

the snow hydrological effect (SHE).
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Figure 7.1 shows the coupling strength (the change of intra-ensemble
similarity from ModBoth to RealSWE experiments) for air temperature (2m height)
from March to June. During March and April, the coupling strengths are much
weaker than for the albedo effect (Figure 6.1), mainly concentrated on unstable
snow regions where the snow begins to melt after March 1st. The snow hydrological
effect is strongest in May, especially near the Tibetan Plateau. There are large areas
in both Eurasia and North America in June that show strong snow-atmosphere

coupling due to the lagged hydrological effect.

Simaliar to the ideal snow evolution Control experiment, the coupling
strength of precipitation due to SHE is very scattered and patchy as shown in Figure
7.2; However, the coupling strength increases slightly with time from March to June.
This feature agrees with the general hypothesis that the hydrological effect will be

delayed and will gradualy increase after snowmelt.

In terms of STR, the predicatablity enhancement due to SHE (the difference
of STR between ModBoth and RealSWE experiments) for air temperature and
precipitation are shown in Figure 7.3 and Figure 7.4. As expected, the patterns of
predictability enhancement are very similar to the coupling strength but notably
weaker in magnitude.

Similarly, the gains of temperature and precipitation variability due to the
hydrological effect are shown in Figure 7.5 and Figure 7.6. Note the significant
increases in the Gain of variability both in temperature and precipitation over the
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strong snow-atmosphere coupling regions. During March and April, there are some
obvious areas of suppression in variability of precipitation (Gain < 1) in the high-

latitude regions due to negative snowfall-instability feedbacks.

7.3 Snow hydrological sensitivity index

Similarly, we can define a Snow Hydrological Sensitivity Index (SHSI) to
quantitatively determine the climate forcing due to hydrological effect of snowmelt
as shown in Figure 7.7. To quantify this hydrological effect, snowmelt infiltration is
the key process that strongly depends on the surface infiltration-runoff
parameterization. The key concept underlying this parameterization is that of
fractional saturated or impermeable area which is determined by the topographic
characteristics and soil moisture, including overland flow due to both saturation

excess (Dunne runoff) and infiltration excess (Hortonian runoff).

Based on the parameterization of maximum infiltration capacity [Entekhabi

and Eagleson, 1989a], we define the Snow Hydrological Sensitivity Index (SHSI) as

SHSI = 6(W

sno) * Rinf
where 6(Wsno) is the standard deviation of SWE, and Rixf is the infiltration capacity
that is determined by soil texture and soil moisture, which could be empirically

estimated from observational data.

Figure 7.8 shows the fraction of snowmelt infiltrated into the soil from the

Control experiment during March to June. The infiltration ratio was computed as
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the water flux into the soil reported by CLM divided by the total model snowmelt. In
general, the infiltration is a maximum roughly along the edge of snowmelt, but
displays a sharp gradient toward stable snow regions. The sharp gradient is not only
due to the decreasing snowmelt but also to the increasing of the impermeable
fraction of the soil because of the prevalence of frozen ground. Multiplied by the
standard deviation of SWE obtained from GLDAS (Figure 7.9) the SHSI is shown in
Figure 7.10.

Comparing the SHSI (Figure 7.10) to the coupling strength (Figure 7.1 and
Figure 7.3), there are similarities in pattern but some large differences in
magnitude. The hydrological forcing due to snowmelt gradually decreases with
snow depletion, but the coupling strengths are mostly increasing. This indicates that
the snow hydrological effect will act later and increase the impact (magnitude) due

to soil moisture-evaporation-precipitation feedbacks.

7.3 Comparing with GLACE results

The snow hydrological effect is essential to the soil moisture-
evapotranspiration-precipitation interaction and feedback after snow has melted.
Classical land-climate interaction studies provide a useful conceptual framework to
explain the evapotranspiration regimes as a function of soil moisture, based on the
original idea of Budyko [1961] and recently improved by Koster [2002]. Three main

evapotranspiration regimes, characterized by the evaporative fraction and soil
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moisture, can be defined: two soil moisture-limited regimes (dry and transitional
regimes) and an energy-limited evapotranspiration regime (wet regime). In the
energy-limited evapotranspiration regime, the evaporative fraction is independent
of soil moisture content above a given critical soil moisture value. Below this critical
value, soil moisture content provides a first-order constraint on evapotranspiration
(soil moisture-limited evapotranspiration regime). Based on the wilting point,
another important threshold for whether or not evapotranspiration takes place
separates the soil moisture-limited regimes into the dry and transitional regimes. In
the wet (above a critical high soil moisture value) and dry (below the wilting point)
climate regimes, soil moisture anomalies do not greatly impact evapotranspiration
variability. In the transitional regime (between wilting point and critical high value),
however, soil moisture strongly constrains evapotranspiration variability and thus

the resulting feedbacks to the atmosphere.

Figure 7.11 shows the land-atmosphere coupling strength Q(R)-Q(W)
estimated from the CAM model coupled to CLM 3.0 using the same method as in
GLACE-I project (From Guo et al. 2006). Although this land-atmosphere coupling
strength is estimated during summer (JJA), we can compare it with the coupling
strength due to the snow hydrological effect during the spring transition to summer
(April, May, and June). The “hotspots” of land-climate interaction (strong coupling
regions of soil moisture-evapotranspiration-precipitation feedback) generally agree

with the regions with strong snow hydrological effects (SHE) as shown in Figure 7.1
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and Figure 7.2. SHE is basically land-climate interaction driven by available

snowmelt infiltration in spring.

7.5 Discussion

In the climate model, soil hydrologic processes are strongly impacted by the
heterogeneity of soil hydraulic conditions. At the top soil layer, infiltration,
exfiltration and hence runoff depend on the nature of soil properties and states,
including soil type, texture, permeability, slope, elevation and water content. The
more accurate the representation of heterogeneous soil properties in the model, the
more precise the model will be in representing SHE. However, most land models or
hydrological models have focused efforts at improvement on the runoff scheme,
very little attention on snowmelt infiltration.

Snowmelt infiltration is the key process to determine SHE, which is also
strongly and nonlinearly dependent on the soil water content. The Hortonian
component of surface runoff is the residual of snowmelt intensity over the soil
infiltration, and is highly sensitive to soil moisture conditions. This infiltration will
further determine whether or not the topsoil becomes saturated, thus producing the
Dunne component of surface runoff. In this RealSWE experiment, we compare SHE
by unifying the model initial soil moisture to the climatological mean. This setup
effectively removes the possible impact of the soil moisture anomalies, but also
removes the possible variability in infiltration due to different soil moisture

conditions. How variations of soil moisture conditions impact snowmelt infiltration,
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such as by initializing the soil with GSWP-2 data [Dirmeyer et al., 2006], needs to be
investigated in future studies.

Frozen ground or permafrost is another key factor for SHE. The presence of
ice in the soil dramatically alters soil hydrological properties. If the topsoil is frozen,
the surface soil is impermeable. The frozen ground prevents any infiltration of
snowmelt, resulting in early and above-normal spring runoff. The CLM 3.5 model
has been greatly improved recently in the frozen soil scheme and has introduced
fractional permeable area [Niu and Yang, 2006]. Comparing with the previous
frozen soil scheme where ice content is solely determined by available energy, this
parameterization of hydraulic properties for frozen soil has shown superior results.
Due to the complicated nonlinear interaction between atmosphere, snowmelt and
underlying frozen soil, there are more uncertainties in the SHE at high-latitudes.

The RealSWE experiment is still far from perfect as a means to investigate
SHE. Experiments with different frozen ground and soil moisture conditions need to

be implemented to further study these uncertainties.
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Figure 7.1 Coupling strength (the difference of intra-ensemble similarity of ModBoth
and RealSWE experiments) for air temperature (2m height) from March to June.
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Figure 7.2 The same as Figure 7.1, but for precipitation.
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Figure 7.3 Predictability enhancement (the difference of STR of ModBoth and
RealSWE experiments) for air temperature (2m height) from March to June.
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Figure 7.4 As in Figure 7.3 for precipitation.
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Figure 7.5 Gain index (the ratio of standard deviation of RealSWE and ModBoth
experiments) for air temperature (2m height) from March to June.
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Figure 7.6 As in Fig 7.5 for precipitation.
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Figure 7.7 The monthly mean snowmelt (QMELT) climatology [mm/day] obtained
from the Control experiment during March to June.
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Figure 7.8 The fraction of snowmelt infiltrated into the soil obtained from the
Control experiment during March to June.
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Figure 7.9 The interannual variability (standard deviation) of monthly SWE
obtained from GLDAS during March to June.
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Figure 7. 10 Snow hydrological sensitivity index (SHSI) obtain from GLDAS during
March to June.
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Figure 7.11 the CAM/CLM model land-atmosphere coupling strength [Q2(R)-Q(W)]

for temperature (top) and precipitation (bottom) obtained from the GLACE I
experiment (From Guo et al. 2006).
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CHAPTER 8. COUPLING STRENGTH AND PREDICTABILITY DUE TO

REALISTIC SNOW FORCING

8.1 RealBoth experiment

As shown in Figure 4.3 and Figure 4.4, the CLM model seriously
overestimates the climatological mean of SCF and SWE in coupled AMIP-style
simulations, but it generally underestimates the interannual variability. The bias in
the mean SCF has been corrected by CDF-matching; however, the underestimation
of inter-annual variability remains and may lead to weak snow-atmosphere
coupling strength. Prescribing realistic variability for both SWE and SCF is key to
accurately quantifying realistic coupling strength and the contribution of snow to
predictability.

In the ensemble experiment RealBoth, both SCF and SWE are prescribed
from realistic values obtained from MODIS and the GLDAS dataset. In this sense, the
ensemble RealBoth is similar to an observational simulation with “perfect” snow
modeling. Compared with the ensemble Control experiment, in which the land

snow scheme is fully coupled with the atmosphere, the ensemble RealBoth
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experiment eliminates errors from snow modeling and provides a more realistic

estimation of snow’s effect on the atmosphere and predictability.

In addition, the difference between ensembles RealSCF and RealBoth
provides another way to estimate the contribution due to the SWE information,
which is strongly connected to the snow hydrological effect. On the other hand, the
difference of ensembles RealSWE and RealBoth will isolate the improvement due

to SCF and the snow albedo effect.

The RealBoth experiment will also provide a comprehensive survey of
climate predictability and forecast skill associated with “perfect” snow boundary
conditions, both in SWE and SCF, in CAM coupled with CLM. It is speculated that the
increase in potential predictability associated with realistic snow information is
strongly connected to snow-atmosphere coupling strength. It is essentially
negligible in the lower-latitudes and Polar regions that show weak coupling; in
contrast, it should be maximum in the transition zones in the middle-latitudes and
high elevation regions. The increase in potential predictability for air temperature

should be larger than precipitation with realistic snow boundary information.

8.2 Coupling strength and predictability due to realistic snow forcing

Figure 8.1 shows the snow-atmosphere coupling strength (the difference of
intra-ensemble similarity between ModBoth and RealBoth experiments) for air

temperature (2m height) from March to June. The coupling patterns are similar to
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the estimations based on the model snow simulations, with only slight difference in
magnitudes. Likewise, the coupling strength with precipitation (Figure 8.2) shows
the same characteristics as previous estimations by model. The differences in
coupling strength between realistic and model snow variability are plotted in Figure
8.3 and Figure 8.4. The positive anomalies indicate that CLM underestimates the
coupling strength and negative anomalies imply overestimation, compared to
realistic snow variability prescribed from MODIS and GLDAS data.

Regarding the temperature coupling strength (Figure 8.3), the CLM shows
uneven bias. During March, the areas downstream of Tibet and over Eastern Europe
are mainly overestimated while North America and Siberia are underestimated.
During April, most regions are underestimated except for a few scattered regions.
This underestimation could partially explain the sudden weakening in coupling
strength in April in Figure 5.2b. Due to the biases in the snow scheme, CLM seriously
underestimates the coupling strength during April. During May and June, CLM
underestimates the coupling strength in regions just after snowmelt. A possible
reason is underestimation of SWE that will lead to a weak snow hydrological effect.

For precipitation (Figure 8.4), the model underestimates coupling strength
almost everywhere over the NH, except for a few scatter spots with negative
anomalies. The possible reason is the underestimation of SWE by CLM 3.5 compared
to GLDAS data (Figure 4.4). Underestimation in SWE will cause a weak snow

hydrological effect and then reduce the snow-soil moisture-precipitation feedback.
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Over the Tibetan Plateau, the difference of coupling strengths shows obvious
negative biases, implying the overestimation of coupling strength.

Since the STR shows very similar patterns with coupling strength (Figure not
shown), the differences of Signal-to-Total-Ratio for temperature and precipitation
are shown in Figure 8.5 and Figure 8.6. Unsurprisingly, The CLM model shows a
similar predictability difference pattern with the coupling strength as shown at

previous experiment.

8.3 Second look at snow albedo effect and hydrological effect estimated by
RealBoth

Like in chapters 6 and 7, the difference between ensembles RealSCF and
RealBoth, where the only difference is the SWE, provides another way to estimate
the contribution due to the snow hydrological effect. Based on the same principle,
the difference of ensembles RealSWE and RealBoth, which vary in SCF, will isolate

the improvement due to the snow albedo effect.

The temperature coupling strength computed as Q(RealSWE)- QQ(RealBoth)
shows similar characteristics with the temperature coupling strength computed as
Q(ModBoth)-Q(RealSCF), except the magnitude is reduced (figure not shown). The
major strong coupling regions are located in middle-latitudes along the intense SCF
gradient (snow edge) and move northward over time with the snow edge withdraw.

The Q(RealSCF)-Q(RealBoth) also shows reasonable estimated coupling strength
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compared with Q(ModBoth)-Q(RealSWE). Both estimated coupling strengths are
less in magnitude and more vague in the distribution of features compared to the
results shown in Chapters 6 and 7, implying the original GLACE-type method

provides better picture of coupling strength.

8.4 Discussion

In the RealBoth experiment, we investigated the atmospheric response to
snow anomalies and interaction based on realistic observations of both SWE and
SCF. Detail of the differences of snow-atmosphere coupling strength in air
temperature at different regions is summarized in Table 8.1. Overall in the Northern
Hemisphere (> 20°N), the simulation by CLM coupled with CAM slightly
overestimates the coupling strength (negative difference) during spring, except
during March. There are slight underestimations of snow coupling strength during
March due to less snow variability simulated by CLM. In the continental average,
the coupling strength over Eurasia is stronger than over North American due to the
large land area at middle latitudes. The overestimation of coupling strength is most
significant over the Tibetan Plateau, implying that the CLM still needs to improve its
snow simulation over this complicated terrain.

As discussed in the experiment design section, there is roughly a 2% rate of
inconsistencies between the SCF obtained from MODIS and SWE obtained from

GLDAS, especially where SWE is equal to zero but the SCF is larger than zero, or vice
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versa, during the ten-year period from 2000 to 2009. These kinds of inconsistencies
happen most in middle-latitude regions where snow is unstable and not well
simulated by the model, but where snow atmosphere coupling is strong. How
important or significant these inconsistencies are to the results is unknown. There
are no serious impacts on the high latitude regions where snow is stable and well
simulated by CLM model.

In this experiment, we remove the possible ENSO effect by forcing all
ensembles to same climatological SST cycle. To compare the ENSO effect to the snow
boundary condition effect could reveal the relative roles of land versus ocean in
local climate during the snow accumulation or ablation period. In a future study,
comparing the snow contribution to forecast skill with the ocean contribution would

be advantageous.
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Table 8. 1 the regional means of coupling strength for temperature

Realistic snow forcing

Model snow variability

Difference: realistic-model

Northern Hemisphere (>20°)
Eurasia (>20°)

North American (>20°)
Middle-Lat. (40-60°)
Tibetan Plateau

(25-40°N, 70-110°E)

March  April

0.0899

0.1116

0.0748

0.123

0.1544

0.0796

0.0631

0.1154

0.0833

0.0943

May

0.1392
0.1549
0.117

0.1138

0.2063

June

0.0938
0.1097
0.0721

0.088

0.1254

March  April

0.0918

0.0846

0.0458

0.0963

0.0627

0.0708

0.0542

0.1047

0.0906

0.069

May

0.1041
0.1027
0.1071

0.1026

0.1572

June

0.0833
0.0895
0.0797

0.0539

0.1146

March

0.0019

-0.027

-0.029

-0.0267

-0.0917

April

-0.0088
-0.0089
-0.0107

0.0073

-0.0253

May

-0.0351
-0.0522
-0.0099

-0.0112

-0.0491

June

-0.0105
-0.0202
0.0076

-0.0341

-0.0108



MAR Q. (ModBoth) - O (RealBoth)

Figure 8.1 Coupling strength (the difference of intra-ensemble similarity of ModBoth
and RealBoth experiments) for air temperature (2m height) from March to June.
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Figure 8.2 The same as Figure 8.1, but for precipitation.
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MAR TEMP diff. of coupling strength: realistic-model

Figure 8.3 The differnce in coupling strength estimated by realistic snow forcing and
model snow variability for air temperature (2m height) during March to June ( the
difference between Q(ModBoth)-Q(RealBoth) and Q(ModBoth)-Q(Control) ) .
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Figure 8.4 The same as Figure 8.3, but for precipitation.
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MAR TEMP diff. of STR : realistic-model

Figure 8.5 The difference of Signal-to-Total-Ratio for temperature estimated
between realistic snow forcing and model predicted snow variability during March
to June( the difference between STR(ModBoth)-STR(RealBoth) and STR(ModBoth)-
STR(Control) ).
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Figure 8.6 Same as the Figure 8.5, but for precipitation.
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Figure 8.7 Gain index (the ratio of standard deviation of RealBoth and ModBoth
experiments) for air temperature (2m height) from March to June.

174



CHAPTER 9. COMPARISON OF COUPLING STRENGTH BEFORE,

DURING AND AFTER SNOWMELT

9.1 Three stages of snow evolution

Previous analyses are mainly organized by the calendar month. However,
due to the various latitudes and elevations, different grid points show large
variability in snow duration and melt timing. For example, the snow cover in the
Canada will melt much late than those in the Tibetan plateau, but earlier than those
in Siberia as shown at Figure 4.7 and Figure 4.8

Based on the typical SWE and SCF depletion curve (Figure 3.4), the snow
cover is relatively stable with low variability in both SWE and SCF in the weeks and
months before the annual snow melting. With increasing solar radiation and air
temperature in spring, the snow rapidly begins to melt after a certain threshold. The
snowmelt timing depends on several factors, but usually begins to accelerate at the
time when SWE reduces to roughly 80% of its peak value. After the snowmelt

begins, the snow quickly reduces in both the SWE and the SCF. After ablating 80% of
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SWE, the depletion curve becomes flatter and as some patchy scattered snow
persists in shadowed valleys.

Based on these features, we define the snowmelt begin date as the date when
SWE reduces to 80% of peak value and the snowmelt end date as the date when
SWE reduces to 20% of the peak. According to these two key thresholds, we can
separate snow evolution into three stages: a stable persistence period before
snowmelt, a rapid snowmelt period and an after snowmelt period. Figure 9.1 shows
the climatological snowmelt begin date and end date obtained from GLDAS SWE
depletion curves. The color scale is based on the Julian day. The snowmelt begins at
the end of February at low-latitudes and generally delays with increasing latitude.
The begin date and end dates are roughly parallel with latitude. The Tibetan Plateau
shows a relatively later begin date and correspondingly later end date due to its
high elevation. The snowmelt period, the interval between snowmelt begin and end
dates, is short at middle-latitudes and increases with latitude. Almost all snow will
melt after May.

Throughout this chapter, we locally define at each grid point the time periods
for these three stages. This illustrates the various impacts better than using
calendar months, especially in global maps. We have recomputed the coupling
strength at each stage for the different experiments. Note that there are some grid

points where the snowmelt is very rapid. If the snowmelt interval is less than 10
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days in a grid, we artificial extend 5 days before and after for stability of the Q

calculation.

9.2 Snow albedo effect vs. hydrological effect

The snow albedo effect will directly change the energy balance of the land
surface. The anomaly in albedo is a strong and fast forcing to the atmosphere. It will
disappear immediately after the snows melt. On the other hand, the hydrological
effect is a slow and persistent forcing to the atmosphere. Even after snow melt, the
hydrological effect will still impact the atmosphere through soil moisture-
evaporation-rainfall feedback. Table 9.1 summaries the differences between the
snow albedo and hydrological effect.

Table 9.1 The comparison of snow albedo effect and hydrological effect

Snow albedo effect Snow hydrological effect
Impact Direct Indirect
Time scale Instantly Delayed (week to months)
Mechanism Reflect more SW radiation Soil-moisture-evaporation-
precipitation feedback
Consequence Change net energy Change partitioning of sensible
heat and latent heat

Figure 9.2 shows the temperature coupling strength due to the albedo effect
before and during snowmelt. The snow and atmosphere show weak coupling before

snowmelt but quite strong coupling during snowmelt. Before the snowmelt, there
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are only a few regions, mainly located in Tibet, Alaska, Central and Eastern Europe,
that show even weak coupling with the atmosphere. Most stable snow regions, such
as Siberia and Canada, do not show substantial snow-atmosphere coupling. After the
snowmelt begins, the coupling strengths are significant increased. The coupling
strengths generally increase with latitude as shortwave radiation increases above
critical thresholds. This implies the large variability in SCF during snowmelt will
produce substantial albedo change then exert a strong forcing to the atmosphere
above.

On the other hand, the infiltrated water during snowmelt also produces
strong land atmosphere coupling as shown as Figure 9.3. The snow hydrological
effects are stronger during snowmelt than after snowmelt. The snowmelt process
requires a large amount of latent heat that maintains a relative stable low
temperature. Europe also shows strong coupling strength due to the hydrological
effect. The strong coupling in Siberia for the albedo effect is significantly weaker

than due to the hydrological effect.

9.3 Model vs. realistic snow evaluations

Figure 9.4 shows the temperature coupling strength estimated by CLM snow
evolution before, during, and after the snowmelt stage, including both the albedo
effect and the hydrological effect (Control). Before snowmelt, the coupling
strengths are generally weak. The stronger couplings are limited to the Tibetan

Plateau, some middle latitudes of Europe and Center Asia. In contrast, the snow
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coupling is stronger over Eurasia and North America during snowmelt. The
strongest couplings happen over Europe and Siberia. The Tibet and East China
regions also show relative stronger coupling. The weak coupling during snowmelt
is collocated with arid regions in Central Asia. After the snowmelt, the atmosphere
still shows considerable coupling due to the hydrological effect. The pattern of
coupling strength is similar to the land-atmosphere coupling strength during
summer shown in Figure 7.11.

On the other hand, the temperature coupling strengths estimated by realistic
snow evolution (RealBoth) are shown at Figure 9.5. The overall structure of
coupling strength estimated by realistic snow agrees well with the estimation by
model-simulated snow, except the magnitudes of coupling strength are slightly less.
The coupling strength in Siberia is less than for the model estimate. This implies

CLM can capture well the snow-atmosphere coupling phenomena.

9.4 Zonal mean

Figure 9.6 shows the zonal mean of temperature coupling strength over NH
snow regions estimated before, during and after snowmelt stage grouped by
sources: model snow, realistic snow, albedo effect and hydrological effect. In all
cases, the coupling strengths are strongest during the snowmelt period and weakest
before the snowmelt. Generally speaking, the coupling strengths increase poleward
with a maximum at around 50-65° and then sharply decrease to the north of 70°.

There is a local peak of coupling strength at rough 30° corresponding to the Tibetan
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Plateau. During the snowmelt period, both the albedo and hydrological effect
contribute to the coupling strength. The coupling strength due to the albedo effect
during snowmelt is almost triple than before snowmelt. The hydrological effect
during snowmelt is generally much stronger than after melting. Note that there are
few regions with stronger hydrological effect after snowmelt. Before snowmelt, the
model snow evolution slightly underestimates the coupling strength compared to
the realistic snow evolution. During snowmelt and after snowmelt, however, the

model snow evolution overestimates coupling strength.

9.5 summary

The snowmelt process and the evolution of snow-atmosphere coupling
strength can be separated into three stages: a stable stage before melt, a quick
reduction stage during snowmelt and a lagged impact stage after snowmelt. Table
9.2 summarizes the means of coupling strength over NH snow regions during these
three stages. Before snowmelt, the coupling strengths are weakest and the albedo
effect contributes to most of the coupling strength. CLM with prognostic snow
slightly underestimates the coupling strength compared to when realistic snow
forcing is specified. During snowmelt, the snow-atmosphere coupling is strongest;
the albedo effect contributes slight more to the coupling strength than the
hydrological effect. CLM slightly overestimates coupling strength during snowmelt.

After snowmelt, the hydrological effect contributes most of the coupling strength.
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Compared to the albedo effect before snowmelt (0.039), the hydrological effect after
snowmelt exhibits stronger coupling strength (0.080).

Separating the snowmelt phase into three stages well distinguishes the different
mechanisms for snow coupling: by albedo effect, or hydrological effect or both.
However, each stage is different in length based on local geographic features that
may introduce some uncertainties in comparing the coupling strength. Longer
period data series tend to have less similarity and shorter data series have higher Q
values in general. However, the coupling strength is defined as the difference of Q
between two experiments that are computed from the same length of data. Thus the

uncertainties due to different lengths in horizontal comparison are reduced.
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Table 9. 2 the mean of coupling strength over NH snow regions during three stages

Model Albedo effect Hydrological effect Realistic
Stable snow before melt 0.059 0.039 N/A 0.066
During snowmelt 0.128 0.104 0.094 0.108
After snowmelt 0.086 N/A 0.080 0.081
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Figure 9.1 the climatological snowmelt begin date and end date based on the SWE
ablation curve obtained from GLDAS. The color scales indicate the Julian day.
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Before snowmelt : albedo effect
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Figure 9.2 The temperature coupling strength (the difference of Q2) due to snow
albedo effect before and during snowmelt stage.
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During showmelt : hydrological effect

0.2
0.1

0.2
0.1
0

Figure 9.3 Same as the Figure 9.2, but for the snow hydrological effect at during and

after snowmelt stage.
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Before snowmelt : model show

0.2
0.1
0

Figure 9.4 The temperature coupling strength (the difference of Q2) estimated by
model snow evolution before, during, and after snowmelt stage.
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Before snowmelt : realistic show

Figure 9.5 Same as the Figure 9.4, but for realistic snow evolution.
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Figure 9.6 The zonal means of temperature coupling strength (the difference of Q)
for different snowmelt stages.
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CHAPTER 10 THE EVALUATION OF FORECAST SKILL DUE TO

SNOW-ATMOSPHERE COUPLING

10.1 Evaluation

Previous chapters have demonstrated that the potential predictability
measured by STR is systematically enhanced by snow-atmosphere coupling. The
spatial distribution of the enhancement of STR is almost identical with the snow-
atmosphere coupling strength. How skillful is the climate simulation with and
without prescribed snow information? How much forecast skill comes from
snow atmosphere coupling? In this chapter, we determine the degree to which the
model can predict climate both with and without the realistic snow boundary
information. We try to reveal the geographical variation of the model’s forecast skill
at sub-seasonal timescales as produced by the albedo effect, the hydrological effect
or both.

In each ensemble experiment, the daily time series of atmospheric states,
such as temperature and precipitation, in the ten ensemble members are temporally

averaged to produce 8-day means (the same as the MODIS MOD10C2 data interval)
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from 1 March to June 30, and then evaluated against observed values during 2000-
2009. Since the temperature and precipitation have relatively larger annual cycles,
we evaluated the anomalies after removing the annual cycle. The key elements to
evaluate the forecast skill are R squared (R?), Root Mean Square Error (RMSE) and
Nash-Sutcliffe Coefficient of Efficiency (NSE) as described in Chapter 3.

The temperature data used in this validation come from NCEP/DOE
reanalysis data (R-2, [Kanamitsu et al., 2002]). The precipitation was obtained from
the NASA Global Precipitation Climatology Project (GPCP) Version 2.1 1-degree daily
(1DD) dataset [Huffman et al., 1997]. Both temperature and precipitation data were

bi-linear interpolated onto the native 1.9x2.5 CAM grid.

10.2 R squared (R?)

Figure 10.1 shows the difference of temperature forecast skill represented by
the R squared (R2?) among various experiments (RealSCF, RealSWE, RealBoth) and
the RealClim experiment. The correlations are calculated by 15 8-day periods and
then averaged over the 10 years at each grid-point. Since the RealClim experiment
removes all possible inter-annual variability of snow boundary forcing, the R
squared of RealClim could be considered as the baseline of predictability (forecast
skill) of the atmosphere model with minimal contribution from snow atmosphere
coupling. The difference of R squared between RealBoth and RealClim experiments
is a simple measure of how much forecast skill is due to the realistic snow cover

information.  Similarly, the differences R2Z(RealSCF)-R%(RealClim) and
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R?(RealSWE)-R?(RealClim) will assess separately how much forecast skill is due to
the accurate representation snow albedo effect and hydrological effect.

General speaking, the forecast skill represent by R squared over the majority
of NH snow regions is increased by prescribing realistic snow information in
RealSCF, RealSWE, RealBoth compared to the RealClim experiment. There are
some scattered regions, mainly located in the coastal regions and upstream of snow
regions, where forecast skill is degraded, although the magnitudes of the changes
are small. The biggest enhancements in forecast skill are located in the centers of
the mid-latitude continents where the snow-atmosphere coupling dominates
climate variability.

On the other hand, the difference of R squared between the three
experiments and RealClim for precipitation shows a much more complicated
structure (Figure 10.2). As with coupling strength, the forecast skill in precipitation
due to snow coupling is very patchy. Overall, the forecast skill is enhanced but with

sporadic distributions.

10.3 Nash-Sutcliffe Coefficient of Efficiency (NSE)

The Nash-Sutcliffe Coefficient of Efficiency (NSE) is similar to the skill score
used to quantitatively describe the accuracy of model predictions compared with
climatological forecasts. The closer the model NSE is to 1, the more accurate the
model is. If the NSE is below zero, it indicates the forecast does not show skill

compare to a climatological forecast. Figure 10.3 shows the difference of NSE for
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temperature. Compared to R squared, the overall enhancement in NSE is
significantly less for all three experiments. The skill is not improved over most
regions based on the albedo effect (RealSCF). The hydrological effect (RealSWE)
contributes more to the enhancement in the skill score. Combining both effects, the
RealBoth experiment shows the largest enhancement in skill score relative to a
climatological forecast.

However, in the NSE skill score for precipitation (Figure 10.4), all three
experiments show clear enhancement compared to RealClim. This indicates the
snow atmosphere coupling contributes more to the precipitation forecast skill by
this metric. The snow-atmosphere coupling will impact the atmospheric
temperature profile, in particular the lower to middle troposphere, and thus the

stability and convective development.

10.4 Root Mean Square Error (RMSE)

Root mean square error (RMSE) is another frequently used index to quantity
the differences between the prediction and observations, representing a measure of
precision. RMSE serves to aggregate all differences or residuals at each 8-day period
into a single measure of predictive power. Unlike the previous two parameters, the
lower the RMSE, the better prediction is.

Figures 10.5 and 10.6 show the difference of RMSE in temperature and
precipitation simulations for the different experiments against to the baseline

simulation RealClim. Similar to the NSE, the precipitation is improved almost
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everywhere over the NH. The RMSE during MAM] is reduced due to realistic snow
variability. However, the temperature forecasts are only improved over some
regions. In the center of the continents, the temperature forecast is improved due to
snow-atmosphere coupling. However, there are still large areas over the NH where
the temperature forecasts are not improved. The forecast improvement due to the
albedo effect, ie. RMSE(RealSCF)-RMSE(RealClim), is the weakest. The
hydrological effect contributes more forecast skill than the albedo effect overall.
Having both realistic SCF and SWE information in RealBoth provides the greatest

improvement in the temperature forecast skill.

10.5 Time evolution

To reveal the time variation of snow coupling contributions to predictability,
we analyze the time evolution of the spatial mean of forecast skill over the NH snow
region. The NH snow regions are defined as the areas where climatological MODIS
SCF is large than 1% on March 1st in the 10-year climatological map. The
temperature predictions are evaluated against the reanalysis data at each 8-day
period during 2000-2009, and then spatially average over specific regions, such as
the whole NH snow region, Eurasian continent, North American continent, NH
middle-latitudes and the Tibetan Plateau.

Figure 10.7 shows the spatial mean of Root Mean Square Error (RMSE) over
the NH snow region over the NH for Control, RealSCF, RealSWE and RealBoth

experiments. The RealBoth experiment has greatly reduced RMSE over the whole
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NH snow region compared to Control, which lacks realistic snow information.
Except for a few days around 145th-155t Julian Day, the RMSE is reduced during
the snow ablation period. The biggest improvement in RMSE occurs during 100th-
140th Julian Day, corresponding to the main snowmelt period, with the strongest
snow-atmosphere coupling strength. In contrast, before the snowmelt stage (60-
100t day) and after the snowmelt stage (140-180), the improvements are less.
Before the snowmelt (60-100t Julian day), the RealSCF experiment is dramatically
improved, but with little or no improvement for the RealSWE experiment. After the
snowmelt (140% Julian day), the RMSE is improved most in the RealSWE
experiment. In Figure 10.8, similar characteristics are shown for the 10-years mean
of spatial correlation R? over the snow region NH.

Figure 10.9 plots the spatial mean of RMSE over four particular snow
regions: Eurasia (the north of 20°N at Eastern Hemisphere), North America (the
north of 20°N at Western Hemisphere) , NH middle-latitudes (40-60°N) and the
Tibetan Plateau (25-45°N, 70-110°E). The forecast improvement from use of
realistic snow information measured by RMSE is larger over the Eurasia (EA) than
over North America (NA). During the snowmelt period (rough 100t — 140t Julian
day) the forecast improvements in RealSWE and RealBoth are most significant
over the NH middle latitudes (40-60°). The average RMSEs over the Tibetan Plateau
are smallest, but they do not show obvious improvement with prescribed realistic

snow information.
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10.6 Discussion

Although these experiments are mainly designed to reveal the snow-
atmosphere coupling strength, they also potentially provide some insight into the
predictability contributed by the snow boundary forcing. In all evaluated
experiments, RealSWE, RealSCF and RealBoth, the atmosphere initial conditions
come from the same restart files of the CAM GCM. They provide atmospheric
conditions that are well balanced and representative of that time, but without any
realistic information. In addition, the ocean boundary conditions are prescribed
from a climatological annual cycle that completely removes inter-annual SST
boundary information. The only predictability source in the evaluated experiment
comes from realistic snow boundary information.

In future study, the role of snow cover in climate predictability needs to be
investigated further. The second Global Land-Atmosphere Coupling Experiment
(GLACE-2) [Koster et al., 2010] provides a prototype to further quantify the degree
to which realistic land surface initialization contributes to the skill of sub-seasonal
precipitation and air temperature forecasts. An objective quantification and
documentation of the forecast skill enhancement (benefit) due to snow initiation
across the globe would be valuable to our knowledge of snow-climate interaction.
Determining how snow initialization contributes to seasonal forecast skill will

improve our understanding of climate predictability.
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Figure 10.1 The difference of R squared (R?) for temperature between the different
experiments.
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PRCP R?(RealSCF)-R%(RealClim)

Figure 10.2 The same as Figure 10.1, but for precipitation.
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TEMP NSE(RealSCF)-NSE(RealClim)

Figure 10.3 The difference of Nash-Sutcliffe Coefficient of Efficiency (NSE) for
temperature among the different experiments.
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PRCP NSE(RealSCF)-NSE(RealClim)

Figure 10.4 The same as Figure 10.3, but for precipitation.
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TEMP RMSE(RealSCF)-RMSE(RealClim)

Figure 10.5 The difference of Root Mean Square Error (RMSE) in temperature
among different experiments.
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PRCP RMSE(RealSCF)-RMSE(RealClim)

Figure 10.6 The same as Figure 10.5, but for precipitation.

201



RMS over snow region NH

7 . . . . .
— Control
6.5 ¢ ---RealSCF |
PR RealSWE
6 N T --'RealBoth |
o -
=
c g |
4.5t :
4+ .
3'%0 80 100 120 140 160 180

Julian day

Figure 10.7 The spatial mean of Root Mean Square Error (RMS) over the snow
region NH (defined by MODIS SCF > 1% at March 1st) for different experiments.
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Figure 10.8 the 10-yrs mean of spatial correlation R? over the snow region NH
(defined by MODIS SCF > 1% on March 15t) for different experiments.
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Figure 10. 9 Same as Figure 10.7, but for the four regions: Eurasia, North America,
all NH middle-latitudes (40-60°) and the Tibetan Plateau.
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CHAPTER 11. CONCLUSION AND DISCUSSION

In this study, a series of highly idealized numerical experiments have been
designed to illustrate some key aspects of snow-atmosphere coupling behavior and
its contribution to climate predictability. This series of experiments extend the
GLACE experimental framework substantially, especially as follows:

e Use of imported realistic snow information (SWE and SCF) obtained by
satellite or data assimilation. This approach neutralizes uncertainty within
snow schemes in the land model, especially the SCF parameterization.

e Separation of snow albedo and hydrological effects in designed experiments
and evaluation the snow-air coupling based on three distinct snow evolution
stages.

e Effect on climate variability and predictability. Based on estimates of Gain
and the STR index, the potential predictability and feedback factors
associated with boundary snow information are quantified.

However, an evaluation of the model-simulated coupling behavior against
observations could not be made, since the strength of coupling in the real world is

difficult to measure. In reality, direct estimates of coupling strength of this type from
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observations do not exist [Koster et al., 2006].
Based on this modeling investigation, the key scientific questions can be

addressed:

* To what degree does the atmosphere respond to anomalies in the snow

cover?

From spring to early summer, the snow regions over the Northern Hemisphere
(NH) demonstrate significant snow-atmosphere coupling with varying degrees
in different seasons and different regions. The ModBoth and RealBoth
experiments revealed the spatial and temporal distribution of coupling strength
during the snow depletion phase (March to June) with model simulated snow
and realistic snow forcing. The maximum coupling strength appears to explain

about 40% synoptic scale temperature variability.

* Where and when does the atmosphere respond most strongly to snow

anomalies?

The spatial and temporal distribution of coupling strength displays distinct
features linked with snow distribution and evolution stage. The strongest
coupling happens in the middle-latitude snow transient zone during the
snowmelt stage. The snow coupling is general weak over polar (high-latitude)
and low-latitude regions. There is a secondary peak of coupling strength around
the Tibetan Plateau due to its high elevation and incident solar radiation. The

overall coupling strength is strongest during snowmelt. After snowmelt, the
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coupling strength due to the hydrological effect (soil moisture impact) is
stronger than that due to the albedo effect (radiative impact) before snowmelt. A
conceptual model was proposed to explain the mechanism behind the spatial

distribution of coupling strength.

What is the relative importance of the snow direct impact (albedo effect)

and indirect impact (hydrological effect)?

We established that the coupling originates from two mechanisms, the snow
albedo effect and hydrological effect, which could be quantified separately by the
RealSCF and RealSWE experiments. We can also separate two mechanisms by
different snow evolution stages. Albedo effect mainly impacts before snowmelt,
and hydrological effect contributes after snowmelt. The hydrological effect

exerts stronger impacts than albedo effect.

How much would snow-albedo feedback and the hydrological effect
contribute to climate predictability?

The potential predictably measured by Signal-To-Total-Ratio (STR) show
identical pattern with coupling strength, implying the coupling contribute to
potential predictability. Evaluations show that SCF mainly improves simulation

before snowmelt and SWE mainly improves afterward.

207



This study has helped to improve our understanding of the interaction
between snow cover and the atmosphere. Determining the coupling strength and
seasonal forecast skill attributed to snow information has also increased our
knowledge of climate predictability. These experiments would also offer a prototype
for testing snow-atmosphere coupling strength that could be applied to other

weather and climate models in the future.

11.1 Model uncertainty

Although CLM 3.5 has greatly improved snow modeling, which is
concentrated on realistically capturing the high albedo and hydrological properties
of snow cover, other important thermodynamic properties of snow cover may still
not be well represented in the current CLM, including the high emissivity and low
thermal conductivity of snow cover as well as processes associated with melting and
runoff.

Moreover, CLM 3.5 represents spatial land surface heterogeneity by multiple
separate land-units, including glacier, lake, wetland, urban, and vegetated as shown
by Figure 5.5. However, snow cover often shows significant heterogeneity for mid-
latitude grid-boxes with relative larger contrasts based on the surface elevation,
even in the same land unit/type. This heterogeneity introduces remarkable
inhomogeneities in land surface properties, such as albedo, roughness and moisture

availability. Due to the non-linearity in the relationships between fluxes and
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gradients, gridbox-average fluxes are not simply related to gridbox-average
gradients over heterogeneous surfaces.

The coarse resolution of CAM/CLM (1.9x2.5°) in this study contributes to
uncertainties over complicated terrain. Since snow cover is highly sensitive to local
geographic features, such as elevation, slope, aspect and vegetation, the grid-
average SWE does not well represent sub-grid snow variation although remote
sensing MODIS data can provide high resolution snow monitoring as fine as 500m.
Higher resolution climate models are both necessary and possible for future study
of this coupling phenomenons [Shukla et al., 2009]. Increasing resolution of models
could reduce the uncertainty due to sub-grid heterogeneous of snow cover.

Furthermore, snow can easily submerge below vegetation, greatly changing
the net albedo and roughness of the surface, but dense forest canopies retain low
albedo even when snow is present. Moreover, intercepted snow on a forest canopy
has a large exposed surface area for sublimation, moistening and cooling the air,
whereas snow on the ground below the canopy is sheltered from wind and solar
radiation so sublimation is limited and melt is delayed. CLM 3.5 computes moisture
and heat fluxes separately for snow on the ground and snow held in vegetation
canopies, but we cannot distinguish the effects of snow on the ground or on
canopies in the design of this experiment.

Rain-on-snow events in spring [Putkonen and Roe, 2002] can drastically alter

snow cover distribution and stream runoff, but less is known about how such events
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will affect large-scale snow-atmosphere coupling strength. The CLM model still
cannot well simulate rain-on-snow events. Given the predicted effects of climate
change, these kind of rain-on-snow events will happen more frequently and will

need to be investigated in the future.

11.2 Multi-model inter-comparison

Modeling studies, of course, are far from perfect. The potential ability of
snow anomalies to affect the atmosphere in climate models could not be explicitly
prescribed or parameterized, but rather be a net result of complex interactions
between numerous physical process, including snow hydrology, water and energy
exchange, boundary layer and convective process.

Although snow-atmosphere coupling strength can be computed from the
SACE experiments, the results are strongly model-dependent, reflecting here the
behavior of the CAM model. Nevertheless, an inter-model comparison could
illustrate the uncertainty associated with specific models, particularly in the
atmospheric boundary layer and convective processes that control the coupling.
Therefore, further studies of coupling strength using multiple models are needed. A
similar GLACE-type multi-model inter-comparison project is needed to further
eliminate model dependence of results, to estimate the reliability or robustness of
these results, and to provide the best picture of the contribution of snow-

atmosphere coupling strength to climate predictability. The SACE experiment offers
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a prototype for testing snow-atmosphere coupling strength that could be

implemented in a multi-model inter-comparison in the future.

11.3 Future studies

To further the understanding of snow-atmosphere coupling strength, we
identify several additional issues that require investigation in the future. First, the
snow-atmosphere coupling needs to be quantified during the snow accumulation
season from September to February, to compare with snow ablation season in this
study. Second, a more complicated series of experiment with different model
configurations, such as changes to the boundary layer parameterization, snow
hydrological processes and convective schemes, maybe provide more insight into
the mechanisms of snow-atmosphere coupling. Third, a high-resolution land model
coupled to a relative coarser atmosphere could be set up to study the impact of
model resolution on the coupling strength. Finally, the strength of snow-atmosphere
coupling could be compared with other lower boundary processes in climate
system; For example, comparing with different SST boundary conditions could

establish the relative importance of land and ocean on the climate predictability.

As we have shown, snowmelt plays an essential role for the snow
hydrological effect. In the high latitude regions, snowmelt will impact river runoff
timing and magnitude, soil moisture anomalies and the regional hydrological cycle.
Microwave sensors operating at a higher frequency such as the Ku-band (13.4 GHz)

are especially sensitive to changes in snow. Although it was designed for ocean
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applications, SeaWinds on the QuikSCAT satellite provides assessment of seasonal
snowmelt (freeze/thaw detection) patterns. Almost ten years of data are now
available, which could give insights into the spatial variability of snowmelt on
circumpolar scales for future studies.

In this study, we focus on the snow-atmosphere coupling and interaction at
daily to monthly time scales. The diurnal variations in the atmosphere have been
filtered by use of daily mean time series. However, there exist some shorter scale
coupling phenomena, such as the diurnal shortwave radiation cycle, nocturnal
boundary layer (NBL) growth, etc. In the future, these shorter time-scale coupling
phenomenon also need to be considered.

Global warming also seriously impacts snow cover by reducing accumulation,
causing earlier spring melt and a shorter snow season. Shallow snow covers at low
elevations in middle latitudes are the most sensitive to temperature increases and
thus most likely to experience quick melt [Raisanen, 2008]. This change in snow
extent and snow depth will have major implications for weather, climate and
hydrological impacts. Based on the World Climate Research Programme (WCRP)
Third Coupled Model Inter-comparison Project (CMIP3), Raisanen [2008] evaluated
the change in snow on the warmer climate. Snow was significantly reduced at
middle- latitudes but increase in the high-latitudes. The average borderline for
decreasing and increasing SWE coincides with the -20° C isotherms in November-

March mean temperature. In the backdrop of global warming, how snow changes
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and its effect on the climate system still needs further investigation.
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