
SYSTEM-LEVEL ENERGY MANAGEMENT FOR REAL-TIME SYSTEMS

by

Vinay Devadas�
A Dissertation�

Submitted to the�
Graduate Faculty�

of�
George Mason University�
in Partial Fulfillment of�

The Requirements for the Degree�
of�

Doctor of Philosophy�
Computer Science�

Committee:

Dr. Hakan Aydin, Dissertation Director

Dr. Fei 1i, Committee Member

Dr. Robert Simon, Committee Member

Dr. Brian Mark, Committee Member

Dr. Hassan Gomaa, Department Chair

Dr. Lloyd J. Griffiths, Dean, The Volgenau
School of Engineering

Date: _7--,--,-I_d~Oc......,/<--L../..I-[_� Summer Semester 2011
George Mason University
Fairfax, VA

System-Level Energy Management for Real-Time Systems

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Vinay Devadas
Master of Science

George Mason University, 2007
Bachelor of Science

Visveswaraiah Technological University, 2005

Director: Dr. Hakan Aydin, Professor
Department of Computer Science

Summer Semester 2011
George Mason University

Fairfax, VA

Copyright c© 2011 by Vinay Devadas
All Rights Reserved

ii

Table of Contents

Page

List of Tables . vii

List of Figures . viii

Abstract . x

1 Introduction . 1

1.1 Problem Statement . 3

1.1.1 Optimal Integration of DVS and DPM for a Frame-based Real-time

Application . 3

1.1.2 System-level Energy Management for Periodic Real-time Tasks . . . 3

1.1.3 Energy Management of Periodic Real-time Tasks

on Chip-Multiprocessors . 4

1.1.4 Competitive Analysis of Energy-Constrained Real-time Scheduling . 4

1.2 Contributions . 4

1.3 Dissertation Organization . 8

2 Background . 9

2.1 Real-Time Systems . 9

2.1.1 Previous Work on Hard Real-Time Systems 10

2.1.2 Previous Work on Soft Real-Time Systems 12

2.2 Energy Management for Real-Time Systems 14

2.2.1 Previous Work on Energy Management for Uniprocessor Hard Real-

Time Systems . 16

2.2.2 Previous Work on Energy Management for Multiprocessor and Mul-

ticore Real-Time Systems . 20

2.3 Competitive Analysis of Online Real-Time Scheduling 22

2.3.1 Previous Work on Competitive Analysis of Online Real-Time Scheduling 23

2.3.2 Previous Work on Competitive Analysis of Online Energy-Aware Real-

Time Scheduling . 24

3 Models and Assumptions . 25

3.1 Processor Model . 25

iii

3.2 Workload and Scheduling Model . 25

3.3 Device Model . 26

3.4 Energy Model . 27

4 Optimal Integration of DVS and DPM for a Frame-based Real-time Application 30

4.1 Introduction . 30

4.2 Single-Device Model . 32

4.2.1 System Energy Minimization in Region B 34

4.2.2 Finding the Global Optimal . 36

4.2.3 Experimental Evaluation . 38

4.3 Multiple-Device Model . 40

4.3.1 Computing the Optimal Frequency Efficiently 45

4.3.2 Experimental Evaluation . 47

4.4 Workload Variability . 51

4.4.1 Experimental Evaluation . 54

4.5 Chapter Summary . 57

5 System-level Energy Management for Periodic Real-time Tasks 58

5.1 Introduction . 58

5.2 Dynamic Power Management for Real-Time Systems 58

5.2.1 Next Device Usage Predictions . 59

5.2.2 Dynamic Device Power Management through Forbidden Regions . . 60

5.3 DFR-RMS: Integrated System-Level Energy Management Policy for Fixed-

Priority Systems . 63

5.3.1 RMS Schedulability Analysis for DFRs 63

5.3.2 Determining Forbidden Region Parameters for DFR-RMS 65

5.3.3 DFR-RMS Run-Time Management Routines 67

5.3.4 Experimental Evaluation . 72

5.4 DFR-EDF: A Unified Energy Management Framework for Dynamic-Priority

Systems . 77

5.4.1 EDF Schedulability Analysis with DFRs 77

5.4.2 Determining System Parameters for Effective Integration of DVS and

DPM . 78

5.4.3 Online Components . 84

5.4.4 Experimental Evaluation . 99

5.4.5 Integrating Resource Access Protocols to DFR-EDF 104

5.5 Chapter Summary . 107

iv

6 Energy Management of Periodic Real-time Tasks on Chip-Multiprocessors 108

6.1 Introduction . 108

6.2 CMP System Model . 109

6.2.1 Processor Model . 109

6.2.2 Power Model . 109

6.3 Global Energy-Efficient Frequency . 111

6.4 Components of Coordinated Power Management 113

6.4.1 Energy-efficient Core Activation and Task Allocation 113

6.4.2 Run-time Power Management of Active Cores 114

6.5 Run-time Coordinated Power Management 115

6.5.1 Exploiting Core Idle States at Run-time 115

6.5.2 Coordinated Voltage and Frequency Scaling (CVFS) Algorithm . . . 116

6.5.3 CVFS*: Adapting to Dynamic Load Conditions 117

6.5.4 Experimental Evaluation . 122

6.6 Energy-Efficient Core Activation and Task Allocation 125

6.6.1 Experimental Evaluation . 130

6.7 Chapter Summary . 132

7 Competitive Analysis of Energy-Constrained Real-Time Scheduling 134

7.1 Introduction . 134

7.2 Terminology and Assumptions . 134

7.3 Basic Results . 136

7.3.1 Algorithm EC-EDF . 138

7.3.2 A Semi-online Algorithm with a Constant Competitive Factor 141

7.4 Competitive Analysis for Non-idling and Non-preemptive Scheduling Algo-

rithms . 144

7.4.1 Non-Idling Execution Settings . 144

7.4.2 Non-Preemptive Execution Settings 146

7.4.3 Non-idling and Non-preemptive Execution Settings 147

7.5 Non-Uniform Value Densities . 148

7.6 DVS settings . 153

7.6.1 Semi-online Algorithm EC-DV S∗ 156

7.7 Resource Augmentation . 160

7.8 Chapter Summary . 161

8 Conclusion . 162

8.1 Summary of the Dissertation’s Contributions 162

v

8.1.1 Optimal Integration of DVS and DPM for a Frame-based Real-time

Application . 162

8.1.2 System-level Energy Management of Periodic Real-time Tasks 163

8.1.3 Energy Management of Periodic Real-time Tasks on Chip-Multiprocessors163

8.1.4 Competitive Analysis of Energy-Constrained Real-time Scheduling . 164

8.2 Future Work . 164

8.2.1 Energy-Efficient Real-Time Scheduling on Chip Multiprocessors . . . 164

8.2.2 Joint Temperature and Power Management for Real-Time Tasks . . 165

8.2.3 Energy Constrained Weakly Hard Real-Time Scheduling on Multicore

Systems . 166

A Proof of Theorem 1 . 167

B Proof of Theorem 3 . 179

C Proof of Theorem 4 . 183

D Proof of Theorem 5 . 185

E Proof of Theorem 6 . 188

F Proof of Theorem 8 . 191

Bibliography . 195

vi

List of Tables

Table Page

4.1 Device Specifications . 47

5.1 Notations . 61

5.2 Device Specifications . 72

6.1 Notations . 111

vii

List of Figures

Figure Page

4.1 DVS and DPM trade-off . 30

4.2 The break-even time and the impact of DVS 32

4.3 System Energy Consumption as a function of Processor Frequency 33

4.4 Example illustrating the position of global optimal 37

4.5 Impact of the worst-case execution time C 39

4.6 The ordering of the break-even times . 41

4.7 Algorithm to Compute the Optimal Frequency (Multiple-Device Case) . . . 46

4.8 Experimental evaluation for multiple device model 48

4.9 Impact of variations in device, processor and application characteristics . . 50

4.10 Experimental evaluation under dynamic workload variability 55

4.11 Impact of variations in device, processor and application characteristics . . 56

5.1 DFR Schedule . 62

5.2 The DFR-RMS Run-time Actions . 68

5.3 The DFR-RMS Run-time Routines . 70

5.4 The DFR-RMS Run-time Routines (Continued) 71

5.5 Energy consumption without DVS . 74

5.6 Energy consumption with DVS . 75

5.7 Energy consumption with Pa scaling . 75

5.8 Energy consumption with reclaiming enabled 76

5.9 Determining Energy-Minimal System Parameters 81

5.10 Determining Energy-Minimal System Parameters (continued) 82

5.11 Postponements of DFRs . 86

5.12 DFR-EDF DPM Component . 89

5.13 Reclaiming for both DVS and DPM . 93

5.14 DFR-EDF Run-Time Adjustments . 96

5.15 DFR-EDF Run-Time Adjustments (continued) 97

5.16 Impact of System Utilization and Workload Variability 100

viii

5.17 Impact of System Parameters . 102

6.1 T1, . . . , Tk running in parallel . 112

6.2 An example with four tasks and three cores 119

6.3 The pseudo-code of CVFS* . 121

6.4 Impact of Utilization . 123

6.5 Impact of workload variability (2 cores) . 124

6.6 Impact of workload variability (8 cores) . 124

6.7 Algorithm SS . 128

6.8 Algorithm GLB . 129

6.9 Algorithm TLB . 130

6.10 Comparing SS, GLB and TLB (4 cores) . 131

6.11 Comparing SS, GLB and TLB (8 cores) . 131

7.1 The worst-case instance for preemptive EDF 137

7.2 Schedules Generated by EC-EDF, EDF and Optimal 140

A.1 Maximum Contiguous Idle Interval for Critical Device 169

A.2 Z-Schedule . 170

A.3 Extended and Enclosed Intervals of N-tasks 173

A.4 Scheduling to Minimize Device Energy of the PRT-DPM Instance 174

B.1 EDF Schedule with worst-case FR enforcement for T2 180

ix

Abstract

SYSTEM-LEVEL ENERGY MANAGEMENT FOR REAL-TIME SYSTEMS

Vinay Devadas, PhD

George Mason University, 2011

Dissertation Director: Dr. Hakan Aydin

Energy management has recently become one of the key dimensions in the design of

real-time embedded systems. While early studies focused separately on individual energy

management techniques targeting different system components, there is growing interest

in system-level energy management frameworks that exploit multiple techniques simultane-

ously.

A primary objective of this dissertation is the integration of two well-known energy

management techniques Dynamic Voltage Scaling (DVS) and Dynamic Power Management

(DPM). With DVS, the supply voltage and clock frequency of the processor can be scaled

down at run-time, to save CPU energy at the expense of increased task response times.

On the other hand, DPM targets reducing the energy consumption of idle off-chip system

devices such as disk and memory modules, by transitioning them to their low-power sleep

states. While effective system-level energy management mandates the use of both DVS and

DPM, their integration poses several challenges. For instance, minimizing device energy

requires running the processor at high clock frequencies to maximize the length of device

idle intervals in order to apply DPM, but minimizing CPU energy involves lowering CPU

clock frequencies.

This dissertation first illustrates how the DVS and DPM techniques can be integrated

optimally for a real-time application potentially using multiple devices during execution.

An exact characterization of the system-level energy as a function of the CPU frequency is

provided. Using this characterization, an efficient static algorithm is designed to determine

the CPU frequency and device transitioning decisions that minimize system-wide energy

without violating the timing constraints.

Second, the integration of DVS and DPM for real-time applications that consist of

multiple periodic tasks is considered. The problem of optimally using DPM for periodic real-

time tasks, even in the absence of DVS, is formally shown to be NP-Hard in the strong sense.

Then, a novel DPM framework called device forbidden regions is proposed and feasibility

tests for both fixed- and dynamic-priority periodic real-time systems are developed. Using

this framework as a building block, unified energy management frameworks that efficiently

combine DVS and DPM at the system level are proposed.

Third, the problem of managing system-wide energy for periodic real-time tasks running

on emerging chip-multiprocessor systems with global voltage and frequency constraint is

addressed. Contributions made in this area include selecting the number of cores to execute

the workload and managing the global frequency at run-time across all cores to reduce

dynamic energy while meeting the task deadlines.

A final contribution of this dissertation is the competitive analysis of online real-time

scheduling problems under a given hard energy constraint. Specifically, worst-case perfor-

mance bounds that apply to any online algorithm are derived, when compared to an optimal

algorithm that has the knowledge of the input sequence in advance. Focusing on uniform

value-density preemptive execution settings, optimal online and semi on-line algorithms

achieving the best competitive factors are proposed. A number of additional fundamen-

tal results are provided for non-uniform value density, non-preemptive, and DVS-enabled

execution settings.

Chapter 1: Introduction

Real-time embedded systems have become increasingly important in numerous application

domains such as automated control and manufacturing, robotics, telecommunication net-

works, multimedia and military systems. In these applications, timeliness is as crucial as

the correctness of results produced. More recently, energy-awareness has been promoted

to a prime design and operational objective in these systems. This is, in part, due to the

emergence of systems that have to rely on limited battery power. Also, with growing power

densities, energy management is a highly desirable feature from economic, environmental,

and system reliability perspectives. In real-time embedded systems, energy management

should be achieved without compromising the critical temporal predictability guarantees.

Energy management can be performed at the architecture, compiler, operating system

and application levels. Over the past decade, the research community has made significant

progress in the area of low-power system design [61,99]. On the industry side, the Advanced

Configuration and Power Interface (ACPI) standard has moved power management to the

operating system level by providing system calls for predictive shutdown of system com-

ponents [139]. Two well-established and widely-used energy management techniques for

real-time systems are Dynamic Voltage Scaling (DVS) and Dynamic Power Management

(DPM).

With DVS [11, 101, 103, 109, 124], the CPU clock frequency and supply voltage can be

adjusted dynamically on the fly. Due to the convex relationship between the CPU power

consumption and processor frequency, DVS helps to significantly reduce processor dynamic

energy consumption at the cost of increased task response times. On the other hand, DPM

[23,38,40,88,120] was proposed to reduce the off-chip device (primarily I/O device and main

memory) energy consumption by transitioning devices to low-power (sleep) states when not

1

in use. While it has an intuitive appeal, a primary challenge with DPM is to ensure that

the non-trivial energy overheads associated with device state transitions do not offset the

energy savings obtained during the device idle intervals.

While DVS and DPM are both important and each alone presents non-trivial difficulties

in real-time settings, there is a need for unified frameworks that contain both techniques as

essential components for system-level energy management. The proper integration of DVS

and DPM techniques poses several challenges due to the fact that aggressive DVS schemes

lead to short device idle intervals that limit the effectiveness of DPM solutions – similarly,

solutions with DPM as the primary focus may lead to excessive CPU power consumption.

Thus, there exists a trade-off spectrum between DVS and DPM at the system level.

The chip multiprocessors (CMPs) that offer multiple processing cores on a single chip

have quickly become prevalent in the computing landscape. Major chip makers (e.g., Intel,

AMD, Sun) have now several CMP lines with 2, 4 or 8 cores [48, 77, 95, 144]. Further,

extensive research activity is underway to build chips with potentially hundreds of cores

(or, many-core systems [26, 94]). This development has important implications for real-

time embedded applications that will execute on these high performance architectures.

Energy management has been a very active research area in the recent past and one of the

main motivating factors leading to CMP architectures was the unsustainable ever-increasing

frequency and power density trends of traditional single-core architectures [26]. As a result,

CMPs come equipped with a variety of advanced power management features (including

DVS and multiple idle states (e.g. Halt, Sleep, Off states)) [114] and most comply with

the ACPI standard [139] endorsed by the industry. Effective energy management of real-

time embedded applications on CMPs through coordinated DVS and core transitions is a

relatively new and unexplored area.

Online algorithms have to make run-time decisions without the knowledge of future

input. Competitive analysis is a well-known technique in theoretical computer science

to evaluate the performance of online algorithms [27]. In general, competitive analysis

aims at deriving worst-case performance guarantees of online algorithms by comparing it

2

against a clairvoyant scheme which knowns the future input in advance [27]. Energy-

constrained systems are those in which energy is a hard constraint (i.e. these systems have a

limited and fixed energy budget within which they have to operate). A primary objective in

energy-constrained systems is to effectively and efficiently utilize the available energy while

maximizing a certain performance metric. While the online real-time scheduling problem

has been analyzed using the competitive analysis framework [17,18,20,98], the competitive

analysis of energy-constrained online real-time scheduling has remained an open problem.

1.1 Problem Statement

In this dissertation, the following four problems are addressed.

1.1.1 Optimal Integration of DVS and DPM for a Frame-based Real-time

Application

Given a periodic real-time application with a worst-case execution time and deadline/period,

running on a DVS- and DPM-enabled platform, and using a set of devices during execution,

the problem of determining the CPU frequency and device transitioning decisions so as to

minimize the overall system energy is considered.

1.1.2 System-level Energy Management for Periodic Real-time Tasks

This dissertation considers also the system-level energy management problem for real-time

applications that consist of multiple periodic tasks. The problem has two main dimensions:

• Investigating the computational complexity and tractability of the problem.

• Developing unified system-level energy management frameworks that combine both

DVS and DPM components by considering their interplay across multiple tasks.

When exploring this problem, both fixed- and dynamic-priority real-time systems are

considered. The solution frameworks need to assume a general energy model where the

3

CPU and device power consumptions, as well as device break-even times and transition

overheads (in terms of both energy and time) are accounted for.

1.1.3 Energy Management of Periodic Real-time Tasks

on Chip-Multiprocessors

Assuming chip-multiprocessors with Global DVS feature (commonly found in many state-

of-art multi-core processor lines including Intel Itanium 2, Intel i5 series, Intel i7 series, Intel

Core Duo, IBM Power 6 and IBM Power 7 [90, 91, 140, 141, 143]) where all active cores are

constrained to operate at the same voltage and frequency level, the goal is to first statically

determine an energy-optimal number of processing cores and partition the workload upon

these. Then a comprehensive framework for run-time dynamic energy management of the

selected cores should be sought. The framework should involve both coordinated global

frequency scaling across active cores and performing core power state transitions when

appropriate.

1.1.4 Competitive Analysis of Energy-Constrained Real-time Scheduling

Another objective of this dissertation is to undertake a preliminary investigation of the

competitive analysis of energy-constrained online real-time scheduling for underloaded uni-

processor systems where energy is the main limiting factor to execute the workload. Target-

ing value-based real-time systems and preemptive EDF scheduling, the goal is to investigate

upper bounds on the competitive factor that can be achieved by any online algorithm,

and existence of online algorithms that can achieve these bounds for various fundamental

real-time workload models.

1.2 Contributions

For the problem of the optimal integration of DVS and DPM for frame-based real-time

applications, the following contributions are made:

4

• Formal analysis and an exact characterization of the interplay between DVS and DPM

for a frame-based real-time application that uses several devices is provided. By using

the results from this analysis, an O(m logm)-time algorithm (where m is the number

of devices used by the application) is proposed to determine the optimal processor

frequency and device transitioning decisions to minimize the system-wide energy con-

sumption. To the best of the author’s knowledge, this is the first research effort to

not only investigate the exact interplay between DVS and DPM, but to also provide

a provably optimal solution to the system-level energy management problem by tak-

ing into account DVS/DPM-related issues and device transition overheads under the

given energy model. The performance of the optimal scheme is evaluated over a wide

spectrum of system/application parameters using real device and CPU specifications.

It is shown that the optimal scheme yields significant energy gains when compared to

the existing sub-optimal approaches.

• The optimal solution is extended to deal with workload variability. The extended al-

gorithm requires the knowledge of average-case execution time and minimizes average-

case system energy while still guaranteeing the timing constraints. Through simula-

tions, it is shown that this extension helps achieve significant energy savings in the

presence of variability in dynamic execution behavior of the application.

The following contributions are made towards the system-level energy management prob-

lem for periodic real-time tasks:

• Optimally solving the DPM problem for periodic real-time tasks (even without DVS)

is shown to be NP-Hard in the strong sense, closing a long standing open problem.

• A novel DPM framework for periodic real-time tasks called device forbidden regions

(DFR) is proposed. In the DFR approach, devices are associated with long device

idle intervals that are frequently enforced at run-time to help transition devices to

their low-power states. Developing an exact feasibility test for the DFR framework is

shown to co-NP-Hard in the strong sense. Sufficient feasibility conditions are derived

5

to integrate the DFR-based DPM approach with both fixed- and dynamic-priority

real-time scheduling policies.

• Using the DFR framework as a building block, two unified system-level energy man-

agement frameworks DFR-RMS and DFR-EDF are developed for fixed- and dynamic-

priority real-time systems, respectively. The unified frameworks have both DVS and

DPM components and further integrate them by taking into account their interplay.

In the static phase, system-wide energy-efficient DFR parameters and CPU frequen-

cies are derived. The run-time routines extend the duration of device idle intervals

by combining DFRs and predictive techniques and exploit the run-time slack for both

DVS and DPM simultaneously. Experimental evaluations with realistic processor and

device specifications indicate that the proposed frameworks outperform the state-of-

art schemes by significant margins. Also, to allow for non-preemptable device accesses,

resource access protocols are integrated to the framework.

The following contributions are made towards the energy management of periodic real-

time tasks on chip-multiprocessors problem:

• The dissertation proposes and evaluates several effective schemes with varying levels

of complexity and performance for the problem of selecting the optimal number of

processing cores for the execution of the real-time workload. Experimental results

indicate that by limiting the number of cores to execute the workload, substantial

energy gains can be obtained.

• The time-dependent global energy-efficient frequency is introduced and quantified,

characterizing the boundaries of effective DVS when the voltage and frequency can

be only globally controlled on a chip multi-processor system. The dissertation shows

how to re-compute the global frequency at scheduling points, by taking into account

the active cores and characteristics of tasks that will run in parallel upon them during

the next execution interval. Deterministic rules are provided to put an idle core to

6

Sleep state and temporarily eliminate dynamic power, without violating the timing

constraints or incurring excessive state transition overhead.

• The Coordinated Voltage and Frequency Scaling (CVFS) algorithm is devised in or-

der to determine the feasible frequency while satisfying the energy-efficient execution

across all cores. An enhanced version CVFS* that adapts to the actual workload

conditions at run-time is also proposed. The feasibility of both algorithms is formally

demonstrated and their effectiveness in reducing the dynamic energy consumption is

shown through simulations.

For the competitive analysis of energy-constrained real-time scheduling problem, the

following contributions are made:

• For uniform value density settings where the value of a job is proportional only to

its execution time, an upper bound on the competitive factor that can be achieved

by any online algorithm is derived, and further, a variant of EDF algorithm called

EC-EDF that achieves this upper bound is developed. If the online algorithm has a

priori information about the largest job size in the actual input instance, then it is

shown that there is an optimal semi-online algorithm (EC-EDF ∗) with a competitive

factor of 0.5. Performances of online algorithms in non-idling and non-preemptive

execution settings are also analyzed, separately.

• The results are extended to more general settings with non-uniform value densities

where there need not be a one-to-one correspondence between the value of a job

and its execution time. Competitive analysis in settings where the processor has the

DVS capability is also addressed and a semi-online algorithm EC-DV S∗ is proposed.

EC-DV S∗ uses the additional knowledge of both the largest job size in the actual

input instance and the maximum loading factor β [16], [70]. It is shown that the

competitive factor of EC-DV S∗ is 0.5 times that of the optimal semi-online algorithm

in these settings. The problem is also investigated under the resource augmentation

technique [100],[72].

7

1.3 Dissertation Organization

This dissertation is organized as follows. Chapter 2 gives the relevant background and

related work in real-time systems, power management, and competitive analysis research

areas. Chapter 3 presents the fundamental system models and assumptions. Chapter 4

addresses the optimal integration of DVS and DPM for a frame-based real-time applica-

tion. In Chapter 5, first a novel DPM framework for periodic real-time tasks, called device

forbidden regions, is introduced. Using this framework, unified system-level energy man-

agement frameworks for both fixed- and dynamic-priority systems are developed. Chapter

6 explores the problem of system-wide energy minimization for periodic real-time tasks

on chip-multiprocessor systems. Chapter 7 presents the competitive analysis of energy-

constrained real-time scheduling and Chapter 8 gives the concluding remarks.

8

Chapter 2: Background

2.1 Real-Time Systems

In real-time systems preserving the timing constraints is of paramount importance. The

workload in real-time systems is usually modeled as a set of tasks, where a task represents

a unit of computation. A real-time task is characterized by a release time representing the

time it becomes available for execution, a worst-case execution time which is the maximum

amount of CPU time it requires, and a deadline indicating the time by which it must

complete.

Real-time tasks are categorized as either aperiodic or periodic. Aperiodic real-time tasks

are executed only once. On the other hand, periodic tasks consist of a stream of task

instances (or, simply jobs) which are invoked repetitively. Periodic tasks are characterized

by a period which represents the minimum separation time between two consecutive job

releases. Usually, the relative deadline of periodic task instances coincides with its period.

Most real-time systems are periodic in nature with examples including multimedia systems,

control systems, avionics, among others [83]. Real-time systems that consist of both periodic

and aperiodic tasks are called hybrid systems. Tasks in real-time systems may also have

precedence constraints which impose a partial order on their execution.

Real-time scheduling policies guarantee the temporal constraints of a real-time system

and can be classified as preemptive or non-preemptive depending on whether a running task

can be interrupted or not by another task at run-time.

Most real-time systems can be classified as hard or soft. A hard real-time system is

one where the temporal constraints cannot be compromised as doing so would have serious

(and sometimes catastrophic) consequences. Examples of hard real-time systems include

safety-critical control systems. In hard real-time systems timing guarantees are provided

9

based on worst-case scenarios. On the other hand, in a soft real-time system, violation

of the temporal constraints does not lead to very severe consequences, but degrades the

overall performance. Examples of soft real-time systems include multimedia applications

and on-line transaction systems.

A schedule is said to be feasible if and only if all tasks start execution no earlier than their

respective release times and complete execution no later than their respective deadlines,

while satisfying the precedence constraints (if any). A scheduling policy for real-time tasks

is said to be optimal if and only if it can generate a feasible schedule whenever at least one

such schedule exists.

2.1.1 Previous Work on Hard Real-Time Systems

Real-time scheduling of periodic tasks is a well-established area with two well-known strate-

gies: dynamic priority policies and fixed priority policies. With dynamic priority policies,

different task instances (jobs) of the same task may have different priority levels at run-

time. Earliest Deadline First (EDF) is a well-known dynamic priority policy. Among all

the ready jobs, EDF dispatches the one with the earliest deadline. Let Ci and Pi denote

the worst-case execution time and period of a periodic task Ti, respectively. The utiliza-

tion of the periodic task Ti is defined as Ui = Ci

Pi
. In one of the seminal works in real-time

scheduling [84], Liu and Layland established that a task set consisting of n periodic tasks

is schedulable by preemptive EDF if and only if the total utilization of the task set is no

more than unity (i.e.
n
∑

i=1
Ui ≤ 1). By achieving 100% system utilization, EDF is an optimal

real-time scheduling policy. Least-Laxity First (LLF) is another optimal dynamic priority

policy for hard real-time systems, though its run-time overhead is quite high [92].

On the other hand, with fixed priority policies, all jobs of a particular task have the

same priority level. A well-known example is Rate Monotonic Scheduling (RMS) wherein

tasks with smaller periods have higher priority. In [84] it was shown that given n periodic

tasks, RMS is guaranteed to schedule the task set in a feasible manner if the total utilization

10

is no more than n(2
1

n −1). Later in [25], this result was extended and a less pessimistic suf-

ficient condition for RM schedulability in the form of Πn
i=1(Ui + 1) ≤ 2 was derived. In [81],

Lehoczky et al. provided an exact characterization for RM schedulability through a neces-

sary and sufficient pseudo-polynomial schedulability test. The relative merits and demerits

of dynamic and fixed priority systems are discussed in [32] for multiple dimensions includ-

ing ease of implementation, overhead issues, system utilization, and resilience in overloaded

settings.

Several scheduling policies exist for hybrid systems consisting of both periodic and ape-

riodic tasks. In these solutions, the key idea is to allocate a periodic process (called server)

whose unique purpose is to execute aperiodic tasks. A certain time allocation (also called

its capacity or bandwidth) is made for the server such that the feasibility of the periodic

task set is not compromised. Several solutions for server capacity allocation and aperiodic

task scheduling have been developed, including Polling Server [83], Deferrable Server [80],

Sporadic Server [117], Constant Utilization Server [44] and Total Bandwidth Server [118].

[69] studies the problem of non-preemptive scheduling for periodic real-time tasks. Non-

preemptive periodic hard real-time scheduling is shown to be NP-Hard in the strong sense.

Further, its is also shown that EDF remains optimal even under non-preemptive settings

provided that the scheduler is work-conserving or non-idling (i.e. the CPU cannot idle

in the presence of ready jobs). Real-time tasks may also need to share system resources

which are non-sharable and non-preemptable. In such cases, coordinated access to resources

while guaranteeing system feasibility is necessary. Several resource access protocols such

as Priority Inheritance Protocol [112] Priority Ceiling Protocol [112] and Stack Resource

Policy [13] have been proposed to address this dimension.

Real-time scheduling on multiprocessor systems has been also extensively studied. In

[93], Mok and Dertouzos showed that real-time scheduling algorithms that are optimal for

uni-processor systems remain no longer optimal in multiprocessor environments. Further,

multiprocessor scheduling is known to be a NP-Hard problem [56]. Well-known approaches

to multiprocessor real-time scheduling are global and partition-based schemes. In global

11

scheduling all tasks are stored in a global queue and the same number of highest prior-

ity tasks as the number of processors are selected for execution at run-time [7, 57, 78].

With global scheduling tasks can start execution on one processor and resume execution

on another processor. In general, global scheduling based frameworks incur migration- and

cache-affinity-related problems.

On the other hand, with partitioned scheduling, tasks are allocated to processors and

each task executes only on its assigned processor [28,86,97]. Partitioned scheduling has low

run-time overhead and reduces multiprocessor scheduling problem to a set of uniprocessor

scheduling problems after task allocation. Optimal partitioning of tasks to processors is

a well-known NP-Hard problem [56]. It is known that there exist task sets with total

utilization slightly exceeding k
2 , and not admitting a feasible partition on k processors [33].

However, in the average-case several bin-packing heuristics (First-Fit, Next-Fit and Best-

Fit) perform reasonably well. A relative performance analysis of these heuristics is given in

[28, 86, 97].

Recently, semi-partitioned scheduling was proposed [1–3] where most tasks are stati-

cally allocated to processors through partitioned scheduling, while a few tasks are split to

sub-tasks and assigned to multiple processors. This improves the resource utilization and

feasibility bounds compared to partition-based schemes, at the cost of increased run-time

overhead.

2.1.2 Previous Work on Soft Real-Time Systems

For underloaded real-time systems, where a feasible schedule for the workload is known to

exist, the preemptive Earliest Deadline First (EDF) algorithm is optimal in the hard real-

time sense, meaning that it is guaranteed to meet all the deadlines even when it processes

and schedules jobs as they arrive, without any knowledge of future release times [45]. A real-

time system is said to be overloaded, if there does not exist a schedule where all jobs meet

their deadlines. In these settings where deadline misses are unavoidable, the goal is typically

to maximize a soft real-time performance metric which quantifies the quality degradation

12

with increasing number of deadline misses. There are several well-known paradigms in soft

real-time scheduling.

In value-based scheduling, each job is associated with a value which quantifies its con-

tribution to the overall system performance. The value of the job is added to the overall

performance metric (cumulative, or, total system value) if and only if it meets its deadline

– no value is accrued for partial executions that are not completed before the task deadline

[17,18,31]. The objective is to maximize the total value of jobs completed by their deadlines.

In reward-based scheduling, each task consists of mandatory and optional parts. While

completing the mandatory parts of tasks is crucial for proper functioning of the system,

execution of the optional parts is linked to the quality of the output. The quality of the

output is expressed as a reward function of the length of the executed optional task seg-

ments. Thus, the scheduling problem is to complete the mandatory execution segments

while maximizing the total reward from optional executions [43, 47, 51, 54].

The weakly-hard real-time model is motivated by the observation that for many real-time

applications some deadline misses are acceptable as long as they are spaced distantly/evenly.

Examples of such systems include multimedia and real-time communication. The general

(m, k)-firm deadline model requires that each task meets at least m deadlines in every k

consecutive instances [60, 104, 106].

The rate adaptation model (also known as the elastic model) provides flexibility to change

task execution rates to provide different quality of service. This model can handle overload

situation in a more flexible way by reducing task periods and provides an efficient method

to handle system quality of service as a function of the current load. The basic idea in

this framework is to model each task as a spring with a given rigidity coefficient and length

constraints [29, 30].

13

2.2 Energy Management for Real-Time Systems

Many embedded devices are battery-operated and hence, have limited energy supply. Due

to the growing demand for smaller devices with longer battery life, energy management has

become one of the major goals in embedded systems research. Many applications running

on power-limited systems (such as embedded controllers) are subject to timing constraints.

As a result, the real-time and energy-aware operation is a highly desirable and sometimes

critical feature of a real-time embedded system. Further, studies in [52,53] posit that power

management is both crucial and necessary in large server systems and data centers for

technical, financial, and environmental reasons. Leading companies such as IBM, Google,

Microsoft and Sun have already initiated and moved towards energy-efficient computing

(also called Green Computing), to reduce overall energy and cooling costs, and to minimize

the “carbon footprint”.

Dynamic Voltage Scaling [11, 101, 103, 109, 124] is a popular and widely-used technique

for power management in real-time embedded systems. With the DVS technique, one can

lower the supply voltage and operating clock frequency of the processor [124] to reduce CPU

dynamic energy. Most commercially available modern processors, including recent multicore

systems are equipped with DVS feature, such as Intel XScale, Transmeta Crusoe, Intel i-

series multicore processors, AMD Barcelona and Sun Nehalem based multicore processors.

Changing the processor voltage and frequency through DVS involves overheads both in

terms of time and energy. However, such overheads are low (in the order of µsecs and

µJoules [24]). Further, the technology trends indicate that these latencies are bound to

decrease [24].

Research studies dealing with DVS capable processors consider two models: continuous

speed and discrete speed. In the continuous speed model, the processor frequency f can be

adjusted up to a certain maximum frequency level fmax, while in the discrete speed model

the processor is provided with a finite set of k frequency values (f1, . . . , fk) in which it can

operate. The discrete speed model is more practical, but the results derived assuming the

14

continuous speed mode can be adapted to the discrete speed model in several ways [24, 67].

Dynamic Power Management [23,38,40,88,120] is another commonly used energy man-

agement technique, aiming at reducing energy consumption of off-chip devices such as main

memory and I/O modules. Typical devices have an active state in which they process

requests and at least one low-power sleep state. DPM involves transitioning devices to low-

power states when not in use so as to reduce the device energy consumption [88]. Memory

modules and I/O devices which consume significant energy have been the primary targets of

DPM. However, non-trivial time and energy overheads are associated with each device state

transition. As a consequence, transitioning devices to low-power states is energy-efficient

only when the device idle interval is guaranteed to be greater than a certain threshold

(typically called the device break-even time).

In real-time systems, meeting the timing constraints is of paramount importance. Ap-

plication of DVS results in increased execution times when reducing the processor frequency

for energy management. Similarly, on the DPM side, devices are associated with non-trivial

transition times that could lead to potential deadline violations if a real-time application

incurs delay while waiting for a transitioning device. Both these issues imply that provi-

sions must be taken to avoid deadline misses when applying DVS and/or DPM techniques

to minimize energy in real-time systems.

The trade-offs involved in the systems with both DVS and DPM features warrant a

detailed analysis. The DVS technique primarily targets CPU energy minimization, while

DPM policies aim at reducing device energy consumption. More recently the research

community has become more focused on minimizing the system-wide energy that includes

the energy consumed by both the CPU and system devices.

15

2.2.1 Previous Work on Energy Management for Uniprocessor Hard Real-

Time Systems

CPU Energy Management

The problem of minimizing the CPU dynamic energy consumption while guaranteeing the

timing constraints is known as the RT-DVS problem. For aperiodic tasks, Yao et al. [130]

proposed a polynomial optimal static offline solution assuming tasks execute their worst-case

workload. [64] provided heuristics for on-line scheduling of aperiodic tasks in the presence

of periodic tasks. Non-preemptive power-aware scheduling was investigated in [63]. Slowing

down the processor when a single task is available for execution was investigated in [113].

A static solution to the periodic model where tasks have different power characteristics is

given in [9].

Most of the above solutions assume that tasks exhibit their worst-case workload. How-

ever, in practice the actual execution behavior of real-time tasks are typically far from

worst-case [50]. As a consequence, at run-time, the unused CPU time (also called slack)

due to task early completions can be used to further reduce the CPU energy through ap-

plication of DVS. This dimension of reclaiming slack at run-time and using it for further

reducing the CPU frequency is called dynamic reclaiming. Research efforts in [11, 101]

studied this problem for the periodic task model and presented energy-efficient dynamic

reclaiming policies which preserve the system’s temporal constraints.

[11] suggested the Generic Dynamic Reclaiming Algorithm (GDRA) and Aggressive

Speed Adjustment (AGR) policies. In GDRA, the slack of high priority tasks were trans-

ferred to low-priority tasks which allowed further reduction in CPU operational frequency

at dispatch time. In the AGR scheme, the CPU frequency was set based on the execution

history of tasks. In [101], the Cycle-Conserving algorithm was based on the concept of dy-

namic utilization. In this scheme, the system’s dynamic utilization is updated at run-time

based on tasks’ actual execution times. This dynamic utilization value is then used to set

the CPU operational frequency. [101] also proposed the Look-Ahead algorithm which was

16

based on the concept that in the presence of slack, it is typically better to start out at low

frequencies and defer the use of high frequencies as much as possible.

[109] studies the problem of real-time power-aware scheduling in fixed-priority and pe-

riodic real-time systems. Static solutions assuming worst-case behavior and dynamic re-

claiming policies were proposed. [103] studies the problem of RT-DVS for the sporadic task

model. In [79], the authors present a dynamic reclaiming policy for the online scheduling

of aperiodic tasks. In [132], the authors consider the problem of RT-DVS and dynamic

reclaiming in the presence of shared resources and non-preemptable sections.

Most of the above studies apply DVS only at task dispatch times or completion times.

This paradigm is referred to as inter-task DVS. On the other hand, intra-task DVS provides

the flexibility of applying DVS during task execution. Intra-task DVS is usually effective

only when probabilistic information about the probabilistic distribution of task’s workload

is available. A number of research efforts have analyzed the problem of applying intra-task

DVS to hard real-time systems [87,127]. The major limitations of intra-task DVS are high

run-time overhead and the need for some kind of compiler support.

Device Energy Management

One of the primary difficulties associated with the use of DPM is to decide when to switch

a device to a low-power state. DPM techniques can be classified as stochastic, predictive

and timeout-based [23]. In real-time systems, the predictive DPM techniques are commonly

used. The predictive techniques involve making accurate predictions about the next usage

time of idle devices. As such, predicting the next device usage time is of critical importance

in real-time systems. Under-estimations may lead to inefficient energy management (as

devices would not be put to low-power states) and over-predictions may lead to potential

deadline misses (due to the non-trivial transition delays).

The problem of applying DPM techniques to minimize device energy in hard real-time

systems is known as the RT-DPM problem. A number of research groups recently tackled

the RT-DPM problem. For example, [119, 121] present heuristic-based RT-DPM schemes

17

that can be used with both EDF and RMS scheduling polices. However, the schemes con-

sider only non-preemptive real-time task execution. In [120] the same group of authors

present an offline scheme, called Maximum Device Overlap (MDO), for preemptive task

scheduling. MDO groups task executions such that tasks with common devices are exe-

cuted next-to-next. This provides both long device usage and idle periods thus helping

significantly reduce device energy consumption. MDO involves very high time complexity

and it cannot be successfully adapted to dynamic/online settings where job release and

execution times can vary considerably.

For such systems, the online dynamic power management becomes an imperative. The

University of Nebraska-Lincoln Real-Time Systems research group exploited various aspects

of this problem, mostly within the periodic EDF scheduling framework. In [38,41], the au-

thors proposed an online RT-DPM scheme Conservative Energy-Efficient Device Scheduling

(CEEDS) based on next device usage predictions. In CEEDS, when a device is no longer in

use, its next usage time is predicted as the minimum of the earliest next release times of all

the tasks using that device. Though conservative, this prediction mechanism provides an

effective tool for performing DPM at run-time. Further, CEEDS can be used in conjunc-

tion with DVS. In [40], the authors present a more sophisticated RT-DPM policy, Energy

Efficient Device Scheduling (EEDS), which exploits task and device slacks to create long

device idle intervals, again for preemptive EDF. EEDS is a DPM-only scheme with no DVS

component. In [39], EEDS is extended to include non-preemptive shared resources.

System-Level Energy Management

While DVS and DPM are popular techniques targeting energy minimization in CPU and

external devices respectively, a comprehensive system-level energy management policy is

likely to use both DVS and DPM. However, integrating DVS and DPM in a single framework

poses several challenges. With DVS, low processor frequencies lead to low CPU dynamic

energy consumption figures. However, this also results in elongated task execution times

and shortened device idle intervals. This not only forces devices to remain in active state

18

for longer periods but also limits the possibility of transitioning devices to sleep states (as

shortened idle intervals will tend to be smaller than the device break-even times). On

the other hand, running the processor at higher frequencies reduces the device energy and

creates more opportunities for transitioning devices to sleep states, at the cost of increased

CPU energy and transition energy. Thus, there is an intriguing trade-off spectrum covering

the benefit/cost spaces of DVS and DPM techniques.

Recently, a number of research efforts addressed system-wide energy consumption issues

for real-time embedded systems. In [71], the concept of critical frequency (or, energy-efficient

frequency) was introduced. This stems from the observation that lowering the processor

frequency below a certain threshold can have negative effects on the system-wide energy

consumption. This is because while lower frequencies provide significant reduction in CPU

energy, they also extend task execution times thereby increasing device energy as devices

used by tasks will need to remain in active mode for prolonged time intervals. Critical

frequency represents the CPU frequency below which the decrease in CPU energy is over

shadowed by the increase in device energy.

The energy-efficient frequency is calculated by considering both the device energy and

CPU energy consumed during task executions. Each task can potentially have a unique

energy-efficient frequency, depending on the devices it uses during its execution. In [71], the

authors provide a single policy to manage both processor leakage energy and device energy.

In [138], the authors propose a dynamic task scheduling algorithm using the concept of

critical frequency which minimizes the system-wide energy consumption.

In [10], the authors consider a generalized power model taking into account several fac-

tors such as workload characteristics, effective switching capacitance figures, and frequency-

dependent and frequency-independent power components. For this generalized power model,

the authors show how to derive the task-level energy-efficient frequencies and propose an

O(n3) algorithm to optimally solve the system-wide energy minimization problem for n

periodic hard real-time tasks. In [133], the authors address the energy minimization prob-

lem assuming a DVS processor with limited number of frequency values. Recently, other

19

research groups addressed the CPU and memory energy minimization problems [116, 134].

While the concept of critical frequency helps mitigate the negative impacts of DVS on the

system-wide energy, one major drawback of most system-level real-time energy management

research efforts is that they either assume negligible device transition overheads or provide

no DPM policies. A recent research effort that combines both DVS and DPM in the same

framework while taking into account the device transition overheads and DPM related issues

is given in [38], where the authors propose a practical system-level energy management

heuristic called SYS-EDF for periodic real-time tasks and discrete model DVS capable

processor. SYS-EDF performs DVS using the concept on energy-efficient speed scaling and

uses the prediction based CEEDS policy for DPM decisions.

2.2.2 Previous Work on Energy Management for Multiprocessor and

Multicore Real-Time Systems

Research studies on energy management for multiprocessor real-time systems are typically

based on independent DVS capabilities of individual processors. In [12], the authors con-

sidered the problem of minimizing CPU dynamic energy with partitioned multiprocessor

scheduling and EDF policy. They showed that the problem of energy-optimal partitioning

is NP-Hard in the strong sense even when the total workload can fit on a single CPU. The

same paper also indicated that more balanced partitions typically yield better energy sav-

ings and suggested the use of Worst-Fit Decreasing (WFD) partitioning scheme to balance

the load. [4] re-considered the problem for fixed-priority systems and RMS policy.

Exploiting potential and actual early task completions have been another focus point

for multiprocessor systems. In [135], the authors investigate dynamic reclaiming strategies

for global scheduling of frame-based tasks on homogeneous multiprocessors. [37] provides

a 1.13-approximation algorithm for the problem of partitioning tasks to minimize the ex-

pected energy consumption. In [128], the authors considered the problem of energy-efficient

partitioning in heterogeneous multiprocessor platforms.

20

The increasing frequency and power density trends of traditional single-core architec-

tures have led to multicore architectures with several processing units on a single chip.

These multi-core architectures (also called chip-multiprocessors (CMP)) are provided with

advanced features including DVS and multiple low-power states to facilitate effective power

management.

The emerging CMP platforms have a number of unique traits which make the problem

different from the multi-processor platforms. For example, while it is natural to have

different voltage levels per CPU (hence, per-CPU DVS capability) in a multi-processor

system, the tight coupling of cores on a single chip (CMP) implies that the per-core DVS

feature would come with severe additional circuit complexity, stability, and power delivery

problems [26, 62, 94]. In fact, in the state-of-the-art commercial CMP lines the processing

cores share a common voltage level. A recent study [62], based on detailed VLSI circuit

simulations, suggests that the potential energy gains of per-core DVS are likely to remain

too modest for justifying the complicated design problems. [66] independently reaches

the conclusion that per-core DVS’s additional energy gains would be not be substantial

for reasonably-balanced workload-to-core distributions. For the next-generation many-core

systems, it is likely that only a small number of clusters/blocks each with several cores and

independent voltage regulators, will be possible [26]. Independent and effective management

of such clusters (or, the so-called voltage islands) would be the ultimate objective in these

next-generation systems [26, 62, 105].

Energy management of real-time tasks on CMP under the global DVS constraint has

started to attract the attention of the research community more recently. In [129], assuming

a frame-based system where all tasks have the same deadline, the authors showed the

problem is NP-Hard and provided a 2.371-approximation scheme for this simple task model.

In [22], the authors proposed a power-aware scheduler for multicore systems executing a soft

real-time workload. In [73] the authors consider a CMP system running a single real-time

application modeled as a directed acyclic communication task graph (CTG). The authors

effectively deploy two techniques to save energy: DVS to reduce the dynamic energy and

21

power shutdown of the entire system to reduce static energy.

[110] considered the problem of energy-efficient scheduling for periodic hard real-time

tasks on CMP systems. The authors proposed a scheme to re-partition tasks at run-time by

resorting to task migrations, so as to create more balanced schedules that adapt to dynamic

workload variability. Further, they also proposed a dynamic core scaling algorithm adjust-

ing at run-time the number of active cores to reduce static power under the assumption

that transitions between off and active states can be done instantaneously and with no ad-

ditional overheads. However, in practice such transitions are rarely attractive or possible for

periodic real-time applications. Moreover, they do not consider the frequency-independent

component of dynamic power (effectively ignoring the energy-efficient frequency). Also, the

overhead of frequent task migrations may be a concern in practice.

2.3 Competitive Analysis of Online Real-Time Scheduling

An algorithm is said to be online if it must make its decisions at run-time, without having

any information about the future input. Design and analysis of online algorithms is a well-

established field with direct applications in a wide range of areas such as load balancing,

scheduling, circuit design, server performance evaluation, memory hierarchy design, search,

portfolio selection, and revenue management [27]. In online settings, the performance of an

algorithm is often assessed by comparing it to that of an optimal and clairvoyant algorithm

that knows the entire input in advance. This framework, known as competitive analysis, is

considered as a standard analysis and evaluation tool in Computer Science [27, 102].

An online scheduling algorithm is said to have a competitive factor r, 0 ≤ r ≤ 1, if

and only if it is guaranteed to achieve a cumulative value at least r times the cumulative

value achievable by a clairvoyant algorithm on any finite input job sequence [17],[31],[75].

Formally, if an online algorithm A has a competitive factor of r, then over any finite input

sequence I, the following holds:

Value of A over I
Value of Optimal Offline Algorithm over I ≥ r

22

An online algorithm is said to be competitive, if it has a constant competitive factor

strictly greater than zero. In general, the higher the competitive ratio, the better per-

formance guarantees provided by an online algorithm. As such, the competitive analysis

technique aims to establish performance bounds that hold even under worst-case scenarios

for online algorithms, when compared to an optimal clairvoyant algorithm [27],[102].

Another competitive analysis technique is to explore the impact of giving some (but

still limited) information to online algorithms about the actual input sequence (actual job

set), in an effort to improve its competitiveness. Such algorithms are known as semi-online

algorithms [102]. For example, a priori information about the largest job size that will

appear in the actual input sequence typically enables the design of semi-online algorithms

with improved competitive ratio [102].

2.3.1 Previous Work on Competitive Analysis of Online Real-Time Schedul-

ing

A significant body of research has been devoted to the analysis of online scheduling algo-

rithms for overloaded real-time systems, where the goal is to maximize the total system

value [17],[18],[20],[75]. In a seminal paper, Baruah et al. showed that no online algorithm

can achieve a competitive factor greater than 0.25 [17], in an overloaded real-time system.

This result holds for task systems with uniform density settings, where the value of a job

is proportional to its execution time. For more general non-uniform value density settings,

where different tasks may contribute different values per execution time, the bound is much

smaller. Consider a firm real-time task system where the job Ji accrues ki units of value per

execution time (value density), if it completes by the deadline. Then, no online algorithm

can achieve a competitive factor greater than 1
(1+

√
k)2

, where k = max(ki)
min(ki)

is the importance

ratio obtained through the largest and smallest value densities in the task set [17]. Note

that for k = 1 (uniform density settings), the bound evaluates to 0.25.

23

Koren and Shasha provided an optimal online algorithm Dover that achieves this up-

per bound [75]. The same authors also considered extensions to multiprocessor settings

[76]. Several other studies addressed competitive online real-time scheduling for imprecise

computation tasks [21], tasks with bounded slack factors [20], and tasks with given stretch

metrics [98].

2.3.2 Previous Work on Competitive Analysis of Online Energy-Aware

Real-Time Scheduling

Theoretical investigation of online energy-aware real-time scheduling under the competitive

analysis framework has been addressed in several research efforts. In [130], the authors

study the problem of minimizing the total energy used to complete all tasks subject to

feasibility constraints. They give an offline greedy algorithm (YDS) that optimally solves

the problem. [130] also proposes two online schemes, Average Rate (AVR) which runs each

task in the optimal manner assuming that it is the only task in the system and Optimal

Available (OA) which at any point of time schedules the unfinished work optimally under

the assumption that no more tasks will arrive. While [130] presents the competitive analysis

of AVR, the competitiveness of OA is investigated in [15]. In [15], the authors introduce

an online algorithm BKP which has a better competitive factor compared to both AVR

and OA. [34] studies the competitive analysis of energy-efficient real-time scheduling in

overloaded conditions.

24

Chapter 3: Models and Assumptions

3.1 Processor Model

In this research, both uni-processor and emerging modern chip-multiprocessor systems are

considered. The platforms under consideration may or may not have DVS capability. If

DVS is not available, all tasks are executed at a constant frequency level. For DVS-enabled

systems, it is assumed that the frequency (f) can be adjusted up to a maximum level fmax.

For convenience, all frequency values are normalized with respect to fmax. Inter-task DVS

is assumed throughout this dissertation. When the CPU is active and executing tasks,

power consumption depends on the operational frequency level of the processor. On the

other hand, when the CPU is idle and not executing tasks, it enters a low-power (idle/sleep)

mode.

Chip-multiprocessors (CMPs) have several processing units (called cores) on a single

chip. All available cores are divided into groups called clusters (or blocks) and each cluster

is powered by an independent voltage regulator. In current technologies, all cores within a

given cluster are typically constrained to operate at the same supply voltage.

3.2 Workload and Scheduling Model

This dissertation considers both aperiodic and periodic task models. For the periodic task

model a task set ψ = {T1 . . . Tn} with n independent periodic tasks is considered. Pi denotes

the period of Ti. The relative deadline of Ti is assumed to be equal to its period and Ti,j

denotes the jth instance of task Ti. A task instance is referred to as a job. Ci denotes the

worst-case execution time of Ti at fmax. The base utilization of a periodic task set is given

25

by Utot =
n
∑

i=1

Ci

Pi
. The hyperperiod of the periodic task set is defined as the least common

multiple (LCM) of all the task periods.

On DVS-enabled systems, it is assumed that task execution times scale linearly with

CPU frequency. Thus, the worst-case execution time of Ti at frequency f is given by

Ci(f) = Ci

f . In this dissertation, preemptive scheduling is considered. It is assumed that

the task set ψ is feasible when executed at fmax. Preemption overheads are assumed to be

negligible; if not, they can be incorporated into the tasks’ worst-case execution times [83].

The aperiodic task model is considered in Chapter 7 at the beginning of which the

related terminology is presented.

3.3 Device Model

The system is assumed to have a set of m devices represented by D = {D1 . . . Dm}. Each

device is assumed to have (at least) two states: an active (working) state and a sleep

(low-power) state. In accordance with the previous RT-DPM research [38, 40, 120, 121],

throughout this research the inter-task device scheduling assumption is made. According to

this assumption, all devices needed by a task may be forced to remain in active state when

the task executes. As the exact times at which a running task generates a request for a

device cannot be known in advance and device state transition delays are often significant,

the inter-task device scheduling paradigm is considered realistic for energy modeling and

minimization in real-time systems research [38, 40, 120].

The following parameters are associated with each device Di:

• P ia: The device power consumption in active state

• P is : The device power consumption in sleep state

• T isd and T iwu: The device state transition times (from active to sleep, and from sleep

to active, respectively)

26

• Eisd and Ei
wu: The device transition energy overheads (from active to sleep, and from

sleep to active, respectively)

Let T isw = T isd + T iwu and Ei
sw = Eisd +Eiwu. Given that devices are associated with non-

zero transition costs, the device break-even time Bi denotes the minimum length of the idle

period which justifies a device transition from active to sleep state. B i
actual denotes the

minimum idle interval length during which keeping Di in active state consumes the same

amount of energy as transitioning Di from active to sleep and back from sleep to active.

Thus, Bi
actual =

Ei
sd

+Ei
wu−T i

sw .P
i
s

P i
a−P i

s
.

In other words, Bi
actual characterizes the minimum idle interval length for energy-efficient

device state transitions. Further, the device idle interval should be long enough to allow

the device transitions from active to sleep, and from sleep to active states, implying that

device break-even times cannot be shorter than T isw. Hence, the device break-even time Bi

is given as Bi = max(Bi
actual, T

i
sw) [40, 88], yielding:

Bi = max(
Eisd +Eiwu − T isw · P is

P ia − P is
, T isd + T iwu)

γi ⊆ D denotes the set of devices used by task Ti, while βi denotes the set of tasks

requiring device Di for execution. Thus, βi = {Tj | Di ∈ γj}.

3.4 Energy Model

System energy consumption can be divided into static energy and dynamic energy compo-

nents. The static power (Pstatic) is needed for purposes such as keeping the clock running,

maintaining the basic circuits and keeping the devices in sleep states. Due to the periodic

nature of real-time tasks and the significant delays involved in completely turning off CPU

and other components, static energy is considered to be not manageable for uni-processor

27

systems. However, on CMP platforms by keeping only a subset of the available cores ac-

tive, one can effectively manage the static energy. Below the energy model for uni-processor

systems is given. In Chapter 6, the model is extended to CMP platforms before presenting

the research results in that direction.

All system devices and CPU contribute to the overall dynamic energy consumption

(Esystem) which is expressed as:

Esystem = Ecpu +

m
∑

i=1

Eidevice

Ecpu represents the energy consumed by the processor while executing the real-time

tasks and Ei
device corresponds to the overall energy consumption due to a specific device Di.

The processor dynamic power consumption Pcpu depends and the supply voltage V

and the CPU clock frequency f . Specifically, Pcpu = a · V · f 2 where ’a’ is the switching

capacitance [124]. In DVS technique, V is adjusted alongside with f in linear fashion. Thus,

Pcpu is modeled as a cubic function of its clock frequency, i.e. P (f) = a · f 3 [11, 101, 103,

109, 124]. The energy Ei(f) consumed in executing task Ti for Ci units at frequency f is

thus given by: Ei(f) = Pcpu · Ci

f = a · f2 · Ci.

Eidevice includes three components:

• Eifixed: The energy consumed by Di when active and in use by tasks. This component

depends on the execution times of tasks using Di.

• Eitrans: The energy overhead involved in transitioning Di between active and sleep

states during execution.

• Eimod: The energy consumed by Di when active and not in use. As a consequence of

transition time/energy overheads, a device not in use may be forced to remain in active

state when the estimated length of the idle interval is shorter than its break-even time.

28

Thus, the overall system dynamic energy consumption can be expressed as:

Esystem = Ecpu +
m

∑

i=1

(Eifixed +Eimod +Eitrans)

29

Chapter 4: Optimal Integration of DVS and DPM for a

Frame-based Real-time Application

4.1 Introduction

This chapter considers the problem of optimally integrating DVS and DPM for a frame-

based real-time application. Specifically, given a real-time application which uses a certain

set of devices, the problem is to determine the optimal CPU clock frequency and device

transitioning decisions to minimize the system-wide energy consumption. The real-time

application has a worst-case execution time (WCET) of C units at maximum CPU frequency

fmax. It is assumed to be invoked periodically, where the period coincides with the relative

deadline P of the invocation. The interval [(k − 1) · P, k · P] is called the k th frame of the

execution [107, 126].

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

���
���
���
���

���
���
���
���

0 0
(a) (b)

PC/fC P

Device Break−even Time Device Break−even Time

Figure 4.1: DVS and DPM trade-off

When using DVS, the completion time of the task (Cf) falls in the interval [C,P] (Fig-

ure 4.1). This frequency assignment has obviously serious consequences for the applicability

of DPM, and hence for overall system energy. The slack refers to the unused CPU time

between the completion time of the application and the beginning of the next frame, at each

invocation. Formally, the slack of the application at frequency f is given by δ(f) = P − C
f .

In Figure 4.1(a), the application is executed at fmax resulting in maximum CPU energy

30

consumption and minimum device energy consumption. This scenario maximizes slack:

δ(fmax) = P −C. As the CPU processing frequency decreases below fmax, the CPU energy

decreases at the cost of simultaneously increasing device active energy because the devices

required by the application are forced to remain in active state for longer periods of time.

However, as long as the slack is larger than the device break-even time, the device can still be

transitioned, but by incurring transition energy overhead. At certain low frequency values,

DVS elongates application execution time to the extent the slack is no longer sufficient

to transition the associated device in energy-efficient manner (Figure 4.1(b)). In that case,

while device state transition energy disappears and the CPU energy is significantly reduced,

device active energy consumption is maximized. This results in maximum device energy

consumption over the frame. Thus, one can see an inherent trade-off between DVS and

DPM at the system level.

While the existence of multiple devices with different power characteristics and break-

even times complicate the problem, to better understand the DVS/DPM trade-offs, first

a simplified model where the real-time application uses a single device is considered and

several non-trivial observations are made that lead to the characterization of the exact

interplay between DVS and DPM. Section 4.3 extends these results to the case with multiple

devices. Section 4.4 extents the results to address dynamic workload variability and show

how to minimize average-case energy consumption.

Due to the periodic nature of real-time execution, devices cannot be completely turned

off at run-time; but they can be put to low-power (sleep) states whenever possible. As

a result, a device Di will always consume power at the rate of at least P i
s . Thus, for

simplicity, all power consumption rates for a device Di are given in excess of P i
s . In other

words, the following transformations are applied: P i
a ← P ia − P is , Eisd ← Eisd − (P is · T isd),

Eiwu ← Eiwu − (P is · T iwu) and P is ← 0. Notice that such a transformation does not change

the original value of the break-even time Bi.

31

4.2 Single-Device Model

This section considers a model where the real-time application uses a single device. Using

this simple model, the fundamental trade-offs involved in the imterplay of DVS and DPM are

quantified. Also, an O(1) algorithm is provided to calculate the frequency that optimizes the

system-wide energy while taking into account the DVS/DPM interplay and device transition

overheads. In Section 4.3, the results are extended to the general case with multiple devices.

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

B0

P−B0 0 PC

Figure 4.2: The break-even time and the impact of DVS

The exact characterization of the trade-offs between DVS and DPM is critical for system-

wide energy minimization. Consider a real-time application with WCET of C units and

frame length of P units, using a device D0 with break-even time B0. By adjusting CPU

frequency, task completion time can be made to vary in the range [C,P] (Figure 4.2). Let U

denote the minimum frequency at which the task can still meet its deadline, that is, U = C
P

[24]. Further, the frequency which produces a slack of exactly B0 units is denoted by f ∗.

In other words, f ∗ = C
P−B0

. Note that in order to transition D0, the processor has to run

the real-time frame-based application at a frequency no less than f ∗.

Figure 4.3(a) shows the variations in device energy consumption (Edevice) and CPU

energy consumption (Ecpu) as a function of the processor frequency1. Note that Edevice

also includes device transition costs, when applicable. To start with, Ecpu increases with

increasing frequency in a quadratic manner. However, Edevice follows different patterns

in two different regions. In Region A where U ≤ f < f ∗, the device D0 cannot be tran-

sitioned (because the slack is smaller than B0) and it is forced to remain in active state

1For the purpose of presentation, Figure 4.3 is drawn assuming device break-even time
B = Bactual. The formal analysis does not make such an assumption.

32

f
f

(b)

Esystem

Energy

f=1f=f* Frequency

Energy

Frequency

E

E

f=1

Region B

cpu

device

f=f*

Region A

(a)

P Pa

sd

aC

P C+E +Ewua
2aCf

f=U f=U

optA
optB

Region A Region B

E()

E()

f optB

f optA

Figure 4.3: System Energy Consumption as a function of Processor Frequency

throughout the frame. As such, Edevice = Pa · P is constant in Region A. In Region B where

f∗ ≤ f ≤ fmax, the device can be transitioned to sleep state. Further, as the frequency in-

creases beyond f ∗ in Region B, the slack and hence, the length of the device sleep interval,

increases. Thus, in Region B, the total device energy consumption during the execution of

the application (Edevice) decreases with increasing frequency.

Figure 4.3(b) shows the variation of the system energy consumption, that is,

Esystem = Edevice +Ecpu, as a function of the frequency. Esystem exhibits varying trends

in Regions A and B. While Esystem increases in Region A with increasing frequency, the

local minimum of Esystem in Region B can lie anywhere in the range [f ∗, fmax = 1]. Also,

as additional plots with dashed lines in Region B illustrate, the minimum value of Esystem

in that region can have quite different values.

It is worthwhile to compare these trends to the results of prior energy management

studies. Region A is the spectrum where only the dynamic CPU power can be controlled.

In fact, this was precisely the assumption of the early real-time DVS literature [11, 101],

which effectively ignored Region B. Consequently, in Region A, the minimum frequency

that guarantees system feasibility (f = U) is optimal. Region B is somewhat similar to

the spectrum assumed by the recent system-level energy management papers [10, 71, 138],

33

which considered the CPU and device energy figures at the same time. But, these papers

neither accounted for energy transition overheads nor addressed the question of whether

DPM is justifiable at run-time, given the length of actual idle intervals. As a result, these

approaches ignored Region A. Thus, one really needs to consider both regions to analyze

(and get full benefits of) DVS and DPM, simultaneously.

The local optimal frequencies that minimize Esystem in Regions A and B are well defined.

However, there is no a priori reason why global optimal frequency that minimizes Esystem

should lie in Region A or Region B. Depending on the relative power consumption rates of

the device and CPU, the execution time of the application and the relative positions of U

and f∗, the global optimal may be in either Region A or Region B. In fact, foptB , which

optimizes Ecpu +Edevice and transitions the device to sleep state (by incurring the transition

energy) may possibly consume more system-wide energy compared to the frequency foptA,

which minimizes Ecpu and avoids device transition costs, without paying special attention

to Edevice. Consequently, exact evaluation and comparison of the local optimal values in

Regions A and B is necessary in order to determine the global optimal.

4.2.1 System Energy Minimization in Region B

While the local optimal in Region A is straightforward to find, the one in Region B requires

some elaboration. In Region B, all frequency values support energy-efficient device transi-

tions and the device will be transitioned at the end of task execution. Thus, in Region B

the system energy consumption can be expressed as:

Ē(f) = (af 3 + P 0
a) · C

f
+ (E0

sd +E0
wu)

Observe that Ē(f) is a strictly convex function. (E0
sd +E0

wu) appears as a constant

in Ē(f) and hence, the frequency fee that minimizes Ē(f) can be found by setting its

34

derivative to zero. This gives:

fee = (
P 0
a

2a
)1/3

This is, as expected, numerically equal to the energy-efficient speed value given in [10], that

did consider neither the transition energy, nor the DPM issues.

Remark 1. An energy-efficient device state transition as assumed by the operation in

Region B may not be possible by using the frequency fee, if fee lies outside the range

[f∗, fmax].

Remark 2. Even when fee is in the range [f ∗, fmax], in order to find the global optimal

frequency, one still needs to compare the minimum energy consumption in Region B which

incurs a device transition overhead with the minimum energy consumption in Region A

which does not incur a transition overhead. This will be fully analyzed in Section 4.2.2.

A strictly convex function with one variable has a single global optimal and its second-

derivative is always positive. Hence, the convex nature of Ē(f) justifies the following two

basic properties for any ε > 0.

Property 1. ∀f, f > fee, Ē(fee) < Ē(f) < Ē(f + ε)

Property 2. ∀f, f < fee, Ē(fee) < Ē(f) < Ē(f − ε)

Let fb denote the frequency that minimizes system energy in Region B. fb is determined

by considering 3 possible cases.

• Case 1: f ∗ ≤ fee ≤ fmax
In this case, D0 can be transitioned to sleep state at f = fee as δ(fee) ≥ B0. Also,

there is no other frequency which can transition D0 and yield better system energy

consumption in Region B. Thus, fb = fee.

• Case 2: fee > fmax

From Property 2, the system energy in Region B is minimized when f = fmax. Thus,

fb = fmax.

35

• Case 3: fee < f∗

This implies δ(fee) < B0 and D0 cannot be transitioned in energy-efficient fashion at

f = fee. Thus, in an effort to transition the device the frequency needs to be increased

beyond fee and towards f ∗, which represents the first instance when the device can

be transitioned. From Property 1, the system energy in Region B is minimized when

f = f∗. Hence, fb = f∗.

Based on the analysis above, fb can be expressed as:

fb = max(f ∗,min(fee, fmax))

Note that, this formulation covers the three cases examined for energy minimization in

Region B and also restricts fb to the range [f ∗, fmax]. Since 0 ≤ B0 < P , f∗ ≥ U and it

follows that fb ≥ U . Thus, fb preserves the system feasibility as well.

4.2.2 Finding the Global Optimal

The preceding analysis showed that U and fb are the local optimal values in Regions A

and B, respectively. But, depending on system parameters, the global optimal frequency

that minimizes system energy may be in either of these two regions. The example below

illustrates this fact.

Illustrative Example 1: Consider a real-time application with C = 10 and P = 42. Let

D0 have the parameters P 0
a = 0.5, E0

sd = E0
wu = 5 and T 0

sd = T 0
wu = 10. Assume switching

capacitance a = 1. From the data it can be seen that B0 = 20 and fee = 0.63. Observe that

δ(fee) > B0. Hence, it turns out that the device can be effectively put to sleep state and

run at f = fee. However, E(U = 10
42) = 21.57 and E(fb = fee) = 21.91. This shows that,

for the given settings, despite the fact that the device can be transitioned at fee, from the

system energy point of view it is better to keep D0 in active state throughout the frame

and run the application at f = U . This is shown through Case 1 in Figure 4.4. In the same

example, changing E0
sd = E0

wu = 1.25 and T 0
sd = T 0

wu = 5 gives B0 = 10. With these new

36

 10

 15

 20

 25

 30

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
E

n
e
rg

y
 E

(f
)

Frequency (f)

Case 1: B0 = 20
Case 2: B0 = 10

Figure 4.4: Example illustrating the position of global optimal

parameters, one can verify that E(fee) < E(U) as shown in Case 2 of Figure 4.4.

Thus, to determine the global optimal, it is essential to consider the local optimal values

in both Regions A and B and compare them. Determining E(U), E(fb) and comparing them

are all constant time operations. Hence, the overall complexity of the algorithm to determine

the global optimal (the frequency that minimizes the total system energy) is O(1).

A final observation is in order about the relative ordering of B0
actual and T 0

sw, whose max-

imum was defined as the break-even time B0. If B0 = B0
actual, since δ(f ∗) = B0 = B0

actual,

the following inequality holds:

E(U) ≤ E(f ∗) ≤ E(f∗ + ε)

This implies that, if fb = f∗, then for sure f = U is the global optimal and a comparison

between E(U) and E(fb = f∗) is not required. However, the above inequality may not hold

when B0 = T 0
sw > B0

actual. In this case, nothing can be said about the relative ordering of

E(U) and E(f ∗), as illustrated by the following example.

Illustrative Example 2: Let C = 5, P = 19, P 0
a = 0.25, T 0

sd = T 0
wu = 5 andE0

sd = E0
wu = 0.625.

For the given data, B0 = T 0
sw = 10 and f ∗ = 5

9 . Assume a = 1. It can be verifed that

37

E(f∗) = 5.04 < E(U) = 5.096. By setting E0
sd = E0

wu = 1 it can be verified that B0 and f∗

still remain the same. However, in these new settings, E(f ∗) > E(U).

4.2.3 Experimental Evaluation

This section performs an experimental evaluation using the actual CPU and device spec-

ifications taken from [40] and [127]. The CPU power consumption rate at the maximum

processing frequency (fmax) is modeled after Intel XScale at 1.6 Watts [127]. A real-time

application with a frame length of 44ms and using IBM Microdrive during its execution

is considered. IBM Microdrive has the following device specifications [40]: Pa = 1.3W ,

Ps = 0.1W , Psd(Pwu) = 0.5W , Twu(Tsd) = 12ms. Based on these parameters, the break-

even time of the device is computed to be 24ms. Observe that if the worst-case execution

time C of the real-time application at the maximum speed is greater than 20ms, then the

device can never be transitioned to sleep state as there is not enough slack to justify the

transition. Thus, when C > 20, the problem of system-wide energy minimization reduces

to minimizing CPU energy only and running the CPU at f = U is optimal. Hence, C is

only varied from 2-20ms in steps of 2ms. For each distinct utilization value, three schemes

are compared:

• OPT: Optimal scheme from Section 4.2.2.

• Aggressive Slow-Down (AG-SD): Run the processor at the lowest frequency f = C
P =

U that can still meet the deadline. In this scheme, the devices are never transitioned

to sleep state. The frequency f = U minimizes the CPU dynamic energy consumption

only [11, 101].

• Device-Aware Slow-Down (DA-SD): This scheme is based on the concept of energy-

efficient speed [10, 71, 138] and is adopted from [10], where the authors propose an

optimal solution to the system-wide energy minimization problem ignoring DPM is-

sues and device transition overheads. The energy-efficient speed (denoted by fee) is

computed as the speed that minimizes the system energy, by considering only CPU

38

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2 4 6 8 10 12 14 16 18 20
N

o
rm

a
liz

e
d
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

C

AG-SD
DA-SD

OPT

Figure 4.5: Impact of the worst-case execution time C

energy and device active energy consumption. Since fee can be less than the system

utilization, to preserve the feasibility, the task is executed at f = max(U, fee). If the

device can be transitioned at f = fee then it is transitioned; else the device remains

in active state throughout the frame.

Figure 4.5 shows the effect of varying worst-case execution time. The values are nor-

malized with respect to AG-SD when C = 20. For C ≤ 18, the system energy benefits from

running the processor at frequencies higher than U since the gain in device energy consump-

tion overshadows the loss in CPU energy. Hence, f = fb is optimal in this region. On the

other hand, for C > 18, at high frequencies the loss in CPU energy starts to overshadow the

gain in device energy. Consequently, running at frequencies higher than U starts to hurt

system energy and f = U is the optimal in this spectrum.

It can be seen that in the interval where C ≤ 12, OPT follows DA-SD while for C ≥ 18,

OPT follows AG-SD. However, for 12 < C < 18 OPT follows neither AG-SD nor DA-SD. In

this interval fb = f∗ and OPT represents E(f ∗) which is optimal in this spectrum. Notice

that for this example, the optimal frequency that minimizes the system-wide energy changes

from fopt = fee to fopt = f∗ and finally to fopt = U with increasing utilization values. As fopt

transitions from fee to f∗, the device can no longer be put to sleep state at f = fee. Thus,

39

running at f = fee consumes more system energy compared to f = U , explaining the sharp

increase in DA-SD at C = 14. The energy optimal scheme OPT avoids the sub-optimal

performances of AG-SD and DA-SD at low and high utilization values, respectively.

Note that there is an interval [12, 18] where fopt is neither U nor fee, but f∗, in the

above results. Thus, the optimal scheme (OPT) is more than just determining at every

point the better frequency in the set {U, fee}. In other words, there are regions where both

of these well-known frequencies fail to minimize the system-wide energy consumption as in

these regions the optimal frequency f ∗ differs from both U and fee.

4.3 Multiple-Device Model

This section generalizes the solution to the case of multiple devices. The real-time ap-

plication is assumed to use m different devices {D1 . . . Dm} during its execution. Each

device Di has its own parameters (P i
a, P

i
s , E

i
sd, E

i
wu, T

i
sd, T

i
wu) and is associated with the

corresponding break-even time denoted by Bi. First, the problem is formally defined.

Problem Statement: Given a frame-based real-time application using m different

devices, determine the CPU frequency and device transitioning decisions so as to minimize

the system-wide energy consumption.

Since each device can be put to sleep state at the end of the execution, or remain in

active state until the end of the frame, at first, it seems that there are 2m possibilities that

need to be examined. If true, this would imply an exponential-time algorithm. By careful

analysis, some important properties of the optimal solution are established, which enables

the design of an O(m logm)-time algorithm.

Let Ropt denote the response time of the real-time application in the optimal solution. It

is known that Ropt ∈ [C,P]. Without loss of generality, the break-even times are arranged in

non-decreasing order, i.e. 0 < B1 < . . . < Bm < d− c. With this ordering, the range [C,P]

is divided into m+ 1 intervals {[C, (P −Bm)] . . . [(P −Bi+1), (P −Bi)] . . . [(P −B1), P]}

denoted by {Im . . . I0}, respectively (Figure 4.6). If two devices have the same break-even

40

�	�	�	�	�	�	�	�	�
�	�	�	�	�	�	�	�	�
�	�	�	�	�	�	�	�	�
�	�	�	�	�	�	�	�	�

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

B1
B2

Bm
Bm−1

P−B P−B P−B P−B P

I I II

C

m m−1 1 0

0 2m−1m 1

Figure 4.6: The ordering of the break-even times

time, Bm = P − C, or B1 = 0, then there will be less than m + 1 intervals. The same

analysis can then be performed on this reduced interval set.

For convenience, the analysis will be divided into two steps that will eventually lead to

an O(m logm)-time algorithm.

• Step1: For each of these intervals, assuming that Ropt lies in that interval, the set of

devices to be transitioned at the end of task execution are determined which helps to

evaluate the exact system-wide energy consumption function. The exact form of the

system-wide energy in an interval is formulated, laying ground for energy minimization

in that interval.

• Step2: The analysis in Step1 is narrowed down to at most m+ 2 cases that have to

be examined. By comparing the energy consumption figures of these m+ 2 cases, an

optimal solution is determined.

Next, the full analysis for the above mentioned two steps are presented. By ordering

the devices in non-decreasing order of break-even times, Step1 can be addressed as follows.

If Ropt belongs to interval Ii, then devices {Di+1 . . . Dm} cannot be transitioned as the idle

time is smaller than their break-even times. However, all devices {D1 . . . Di} can and should

be transitioned. This is because if any device in the set {D1 . . . Di} is not transitioned

to sleep state at the end of task execution, then by transitioning that device, one could

effectively reduce device energy consumption and hence obtain a schedule with reduced

41

system energy consumption. Based on this, one can infer that if Ropt ∈ Im, all m devices

will be transitioned. Similarly, if Ropt ∈ I0, then none of the devices will be transitioned.

Based on the interval to which Ropt belongs, one can characterize the devices that

should be transitioned to sleep states at the end of task execution. With this information,

a characterization for the system energy consumption function when Ropt ∈ Ii is provided.

The number of devices transitioned to sleep states and hence the exact form of the system

energy consumption remains the same as Ropt varies within a given interval and changes only

whenRopt transitions between intervals. Let Ei(f) represent the system energy consumption

when Ropt ∈ Ii. Specifically,

Ei(f) = (af 3 +

i
∑

j=1

P ja) · C
f

+

m
∑

j=i+1

P ja · P +

i
∑

j=1

(Ejsd +Ejwu)

Notice that in the formulation ofEi(f), devices {D1 . . . Di} are transitioned while devices

{Di+1 . . . Dm} are kept in active state throughout the frame. For uniformity, the lower and

upper limits of interval Ii are denoted by LLi and ULi, respectively. That is, LL0 = P −B1,

UL0 = P , LLm = C, ULm = P −Bm, and, LLi = P −Bi+1; ULi = P −Bi, (i = 1 . . . m− 1).

The problem of minimization of Ei is formalized by enforcing that the response time of the

task falls in interval Ii. This leads to the following constrained convex optimization problem

for Ii, denoted by OPTi.

minimize Ei(f) (4.1)

subject to − C

f
+ LLi ≤ 0 (4.2)

C

f
− ULi ≤ 0 (4.3)

Constraints (4.2) and (4.3) make sure that the response time of the application does not

fall outside the range of interval Ii to which Ropt is assumed to belong.

42

Proposition 1. If the frequency f is the solution to the optimization problem OPTi, then,

U ≤ f ≤ fmax.

Proof. If f > fmax, from both (4.2) and (4.3) it follows that the response time at f > fmax

is in the range [LLi,ULi]. Since C = LLm, this implies C
fmax+ε ≥ C = C

fmax
, which is a

contradiction.

Similarly, if f < U , from both (4.2) and (4.3) it follows that the response time at f < U

is in the range [LLi, ULi]. Now, since UL0 = d, this implies C
U−ε ≤ P = C

U , which is again

a contradiction.

Let fi be the value that sets the derivative of Ei(f) to zero. This gives:

fi =

3

√

√

√

√

√

i
∑

j=1
P ja

2a

Lemma 1. If fi satisfies conditions (4.2) and (4.3) then it is the solution to OPTi. Else,

in the solution to OPTi either f = C
LLi

or f = C
ULi

.

Proof. By definition, the response time of the application in OPTi must be in interval Ii

(i.e. in the interval [LLi, ULi]). As a consequence, it follows that the frequency at which

the application is executed is in the range [C
LLi

, C
ULi

]. In other words, if f ∈ [C
LLi

, C
ULi

] then

conditions (4.2) and (4.3) will be satisfied.

Since Ei(f) is strictly convex, it is minimized at fi. Thus, if fi ∈ [C
LLi

, C
ULi

] then it is

the solution to OPTi. On the other hand, if fi /∈ [C
LLi

, C
ULi

] then due to convexity of Ei(f)

either f = C
LLi

or f = C
ULi

is the solution to OPTi [89].

Observe that when Ii = Im, fm is found equal to fee, which is the traditional energy-

efficient frequency for a task usingm devices derived by ignoring DPM issues [10]. Assuming

43

that fee satisfies the response time constraints for interval Im, an interesting observation at

this point is that fee is only the local optimal solution for the interval Im.

While Lemma 1 solves Step1 of the analysis, the following Corollary connects Step1 and

Step2.

Corollary 1. If the response time under frequency fi lies outside the interval Ii (∀i = 0 . . . m)

then in the optimal solution, Ropt ∈ {C, (P −Bm), . . . , (P −B1), P}.

Corollary 1 states that if for all the (m+1) intervals, Ii, fi does not satisfy the conditions

(4.2) and (4.3) of the optimization problem OPTi, then in the optimal solution the response

time of the application is limited to the set {C, (P −Bm), . . . , (P −B1), P}. That is, if the

given conditions hold, in the optimal solution, the slack of the application should be exactly

equal to 0, P − C or one of the break-even times {Bi}.

If Ropt = P − Bi, technically it falls in two intervals and one may tend to think that

there is a need for evaluating two cases: one in which Di is not transitioned (as part of the

interval Ii−1) and another is which Di is transitioned (as part of interval Ii). However, as

the following observation states, one of these possibilities is never worse than the other.

Observation 1. If Ropt = P −Bi, then the device Di can be transitioned without increasing

the overall energy consumption.

Observation 1 follows from the fact that Bi is defined as max{Bi
actual, T

i
sw}. If Bi =

Bi
actual > T isw, then by definition of Bi

actual, transitioning or not transitioning the device

results in the same energy consumption when the application completes at t = P − Bi =

P − Bi
actual. On the other hand, if Bi = T isw > Bi

actual, and the application completes at

t = P −Bi, it leaves a slack strictly larger than B i
actual and transitioning the device reduces

the energy consumption. Hence, in either case, the device Di can be transitioned without

increasing the energy consumption when Ropt = P −Bi.

Observation 1 implies that there are at most m+ 2 cases that need to be examined to

determine the optimal solution. Let ECopt denote the set of energy consumption values

44

obtained by evaluating the final m+ 2 cases. An interesting question is whether there

exists a pattern among these final m+ 2 cases that can be further exploited by convex

optimization techniques. Unfortunately, the answer is negative.

Observation 2. The relative ordering of the (m+ 2) values in the set ECopt does not

exhibit a special pattern.

The following observation justifies the above observation.

Illustrative Example 3: Consider a real time application with C = 10 and P = 30. The

application uses four devices D1(P
1
a = 0.2, B1 = 5), D2(P

2
a = 0.15, B2 = 10),

D3(P
3
a = 0.5, B3 = 15) and D4(P

4
a = 0.4, B4 = 17). Assume a = 1 and Tsw ≤ Bi

actual for all

devices. Bi
actual =

Ei
sd

+Ei
wu

P i
a

, i = 1 . . . 4. In these settings, it can be verified that f4 = 0.855,

f3 = 0.752, f2 = 0.559 and f1 = 0.464. Notice that ∀i, C
fi
∈ Ii. In interval I0, setting

f = U is the best choice as no devices are transitioned to sleep states. With the above

data it can be verified that E(f = U) = 38.611, E(f = f1) = 38.963, E(f = f2) = 38.886,

E(f = f3) = 38.958 and E(f = f4) = 38.730.

Notice how the interval-optimal energy consumption Ei(f) first increases, next de-

creases, then increases before decreasing once again, as one moves from the first candidate

frequency f1 to f2, f3 and f4. This shows that the optimal energy consumption values of

the final m+ 2 cases need not to have a well-defined relationship (such as convexity) which

can be exploited by optimization techniques. Hence, it is indeed necessary to evaluate and

compare the m+ 2 candidate cases for the optimal solution.

4.3.1 Computing the Optimal Frequency Efficiently

Based on the above characterizations an O(m logm) algorithm is formulated, given in

Figure 4.7, to find the optimal frequency for the multiple-device model. As an implica-

tion of Observation 2, it is necessary to compare the best energy consumptions obtained by

assuming Ropt ∈ Ii, i = 0 . . . m to obtain the global optimal. From Lemma 1 and Observa-

tion 1, in every interval Ii, i 6= m, if f = fi does not satisfy the response time constraints

45

Function Optimal frequency:

1 Set PON =
m
∑

i=1
P ia

2 Set POFF = 0

3 Set ET = 0

4 Set E0 = aCU2 + PON · P
5 Set Ebest = E0

6 Set fbest = U

7 for i = 1 to m

8 Set PON = PON − P ia
9 Set POFF = POFF + P ia

10 Set ET = ET +Eisd +Eiwu

11 Set fi = 3

√

POFF

2a

12 if (Cfi
∈ Ii) then f = fi

13 else f = C
ULi

= C
P−Bi

14 Set Ei = (af3 + POFF) · Cf + PON · P +ET

15 if (Ei < Ebest)

16 Ebest = Ei

17 fbest = f

18 end if

19 end for

20 Set Em+1 = (af3 + POFF) · Cf + PON · P +ET

21 if (Cfm
/∈ Im and Em+1 < Ebest)

22 Set Ebest = Em+1

23 Set fbest = fmax

24 end if

25 return fbest

Figure 4.7: Algorithm to Compute the Optimal Frequency (Multiple-Device Case)

46

then it is sufficient to evaluate and compare energy consumption at f = C
ULi

. The algorithm

begins assuming that the optimal solution is in I0 and f = U minimizes system energy (lines

4-6). The Ebest variable holds the minimum system energy consumption value encountered

so far and the fbest holds the corresponding frequency. In lines 7-19, cases where the op-

timal response time of the application is assumed to belong to each of the remaining m

intervals I1 . . . Im are considered. For each such interval the value of fi is computed. Based

on whether or not fi satisfies the response time constraints energy consumption at either

f = fi or f = C
ULi

is compared with Ebest. For interval Im, if fm does not satisfy the

response time constraints then it is necessary to evaluate and compare energy consumption

at LLm = C, as C does not act as an upper limit to any interval. In lines 20-24, this final

comparison is performed. At the end, fbest holds the optimal value of f that minimizes

system energy consumption.

Time Complexity: Sorting the devices based on break-even times requires O(m logm)

time. The algorithm performs a constant-time comparison in every interval and there are

at most m+ 1 intervals. Thus, the time complexity of the algorithm is O(m logm).

4.3.2 Experimental Evaluation

The experimental methodology in this section is an extension of the one described in Sec-

tion 4.2.3. Again, a real-time application with frame length of 44ms is considered. The

application now uses three devices during its execution: IBM Microdrive, Realtek Ethernet

Chip and Simple Tech Flash Card whose device specifications are given in Table 4.1 [40]. As

before, the CPU power consumption rate at the maximum processing frequency is modeled

after Intel XScale at 1.6W [127].

Device Pa, Ps, Pwu(Pwu) Twu(Twu) Break-even Time

Realtek Ethernet Chip 0.19, 0.085, 0.125(W) 10(ms) 20(ms)

IBM Microdrive 1.3, 0.1, 0.5(W) 12(ms) 24(ms)

SST Flash SST39LF020 0.125, 0.001, 0.05(W) 1(ms) 2(ms)

Table 4.1: Device Specifications

47

 0

 5

 10

 15

 20

 25

 30

 35

 40

 2 4 6 8 10 12 14 16 18 20

O
p
ti
m

a
l
S

la
c
k

C

Optimal Slack

(a) Optimal Slack as a function of C

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2 4 6 8 10 12 14 16 18 20

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

C

AG-SD
DA-SD

OPT

(b) Relative performance of schemes as a function
of C

Figure 4.8: Experimental evaluation for multiple device model

First, the effect of worst-case execution time on both optimal system slack and optimal

system energy consumption is considered (Figures 4.8(a) and (b)). Figure 4.8(a) shows the

optimal slack (P − Ropt) which minimizes system-wide energy as a function of C. Figure

4.8(b) shows the relative performance of the three schemes. The energy values are normal-

ized with respect to AG-SD when C = 20ms. The optimal slack decreases uniformly with

increasing utilization in the range 2 ≤ C ≤ 14. In this interval, f = fee is optimal, and

the OPT scheme follows DA-SD. For values in the range 14 < C < 20, OPT is significantly

different from both DA-SD and AG-SD. During this period, one or more devices cannot

be transitioned at f = fee, which explains the sharp increase in DA-SD at C = 16. The

step-like behavior of the optimal slack is also a consequence of the optimal frequency shift-

ing from f = fee to an intermediate value between U and fee. Note that depending on the

power characteristics of devices and frame length, the sharp increase in DA-SD scheme may

also occur at an earlier stage than the one shown in figure. In such cases, the advantage of

the proposed optimal scheme is even more pronounced.

In models minimizing the system-wide energy while ignoring device transition overheads

48

and DPM related issues, DA-SD scheme was shown to be optimal assuming it satisfies

feasibility constraints [10]. Observe that AG-SD outperforms DA-SD in the spectrum C ≥

16 in Figure 4.8(b). Due to device transition overheads, as mentioned before, transitioning

devices at f = fee is not always possible. When C = 16, IBM Microdrive cannot be

transitioned at fee and remains active throughout the frame significantly increasing device

energy consumption. The CPU power consumption rate is significantly high compared

to that of Flash Card and Ethernet Chip. Thus, with IBM Microdrive in active state

throughout the frame, the CPU energy savings in scheme AG-SD dominate the device

energy savings obtained by transitioning Flash Card and Ethernet Chip in DA-SD. This is

the reason why AG-SD outperforms DA-SD.

Finally, at C = 20, OPT follows AG-SD. Observe that for the devices considered T isw >

Bi
actual. As a result, the device break-even time, defined as max(T isw, B

i
actual), is dominated

by the device transition times. Thus, even at C = 20, the system has enough slack to

potentially transition all three devices energy-efficiently. However, when C = 20, there is

no device transitioning decision, involving transitioning at least one device to sleep state,

which can reduce device energy consumption to an extent that it overshadows the increase

in CPU energy by running the processor at frequencies higher than f = U . Thus, AG-SD

is optimal at C = 20.

While the above experiments were based on device/processor parameters taken from

[40,127], in the following experiments the sensitivity of the results are analyzed with respect

to power characteristics of the system components by scaling up and scaling down the

device/processor parameter values given in [40,127]. Figure 4.9 shows the impact of varying

device, processor and application characteristics. In these experiments C = 16ms.

Figures 4.9(a) and (b) show the impact of varying device and processor power charac-

teristics, respectively. In Figure 4.9(a) the active power of all devices are multiplied by a

certain scaling factor and re-compute device break-even times while keeping processor char-

acteristics the same. On the contrary, in Figure 4.9(b) the processor power consumption

at the maximum frequency is multiplied by a certain scaling factor while keeping device

49

 0

 0.5

 1

 1.5

 2

 0.25 0.5 0.75 1 1.25 1.5 1.75 2

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

Pa scaling factor

AG-SD
DA-SD

OPT

(a) Impact of device power scaling

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.25 0.5 0.75 1 1.25 1.5 1.75 2

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

Pcpu scaling factor

DA-SD
AG-SD

OPT

(b) Impact of processor power scaling

 0

 0.2

 0.4

 0.6

 0.8

 1

 30 32 34 36 38 40 42 44 46 48 50

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

Frame Length (P)

DA-SD
AG-SD

OPT

(c) Impact of frame length

Figure 4.9: Impact of variations in device, processor and application characteristics

characteristics the same. At each scaling point the system energy consumption of all three

schemes are evaluated. All energy values in Figures 4.9(a) and (b) are normalized with

respect to scaling factor of 1 (i.e. the original device/processor parameters).

In Figures 4.9(a) and (b) it is worth observing that there is a well-defined region where

50

OPT’s energy savings differ from those of AG-SD and DA-SD. At lower Pa scaling fac-

tors and higher Pcpu scaling factors, the processor energy consumption overshadows device

energy consumption and dominates system energy. As such, in these regions AG-SD outper-

forms DA-SD. On the contrary, at higher Pa scaling factors and lower Pcpu scaling factors

device energy consumption is dominant, hence DA-SD outperfors AG-SD. Thus, DA-SD

suffers from performance degradation in settings where CPU energy dominates, while in

settings where device energy dominates the performance of AG-SD significantly degrades.

As is evident in Figures 4.9(a) and 4.9(b) OPT maintains a robust performance at all

scaling factors and is not susceptible to performance degradation due to changes in power

characteristics of system components.

Figure 4.9(c) shows the impact of varying the frame length (P). P is varied between

30ms to 50ms in steps of 2ms. The energy values are normalized with respect to that

of AG-SD at P = 50. With increasing values of P the energy consumption of AG-SD

increases as devices are forced to remain in active state for prolonged periods of time. For

the same reason in the range 30 ≤ P < 46 the energy consumption of DA-SD increases

with increasing values of P . In this range there is not enough slack to create an effective

and energy-efficient device transition with which DA-SD can outperform AG-SD. However,

when P = 46, such a transition does occur and hence DA-SD outperforms AG-SD in the

range 46 ≤ P ≤ 50. Notice that in the region 40 < P < 46 OPT differs from both AG-SD

and DA-SD. Finally, the sudden decrease in energy consumption of OPT at P = 42 is due

to the fact that the frame length becomes large enough to allow for transitioning additional

devices energy-efficiently.

4.4 Workload Variability

While Section 4.3 has developed a provably optimal solution to minimize the system en-

ergy consumption for a deterministic workload by assuming worst-case execution behavior,

frequently, the actual workload in real-time applications exhibits significant variability [50].

In fact, exploiting workload variability to minimize CPU energy through reclaiming is a

51

heavily explored problem in DVS research [11, 101, 109]. In the presence of such variability

in run-time execution behavior, the optimal solution derived in Section 4.3 becomes sub-

optimal and pessimistic. In variable workload settings, even though the application’s actual

workload may not be known precisely in advance, some stochastic information about the

run-time execution behavior of the application can be determined [11, 35, 59, 82, 87, 127].

This section, following [11, 82], shows how information about the average-case execution

behavior of the application, if known, can be used to extend the framework to minimize the

average-case system energy consumption, while still providing deterministic guarantees to

meet the deadline.

Note that the hard deadline constraint will impose an absolute lower bound on the

CPU frequency, occasionally limiting the efficacy of energy optimization with average-case

execution time. The details of the approach are now given.

Let C ′ denote the average-case execution time of the real-time application (under max-

imum frequency). Let Rexp represent the response time of the application in the solution

that minimizes the average-case energy. Thus, by definition Rexp ∈ [C ′, P]. As in Section

4.3, the interval [C ′, P] can be divided into m+ 1 intervals I0 . . . Im. All interval values are

the same as in Section 4.3 except for the lower limit of Im which is C ′ as opposed to C (the

worst-case execution time). Thus, Rexp belongs to one of the m+ 1 intervals I0 . . . Im.

Further, following the same reasoning as in Section 4.3, it can be seen that if Rexp ∈ Ii, in

the solution that minimizes the average-case energy, all devices {D1 . . . Di} can and must be

transitioned to sleep state. On the other hand, devices {Di+1 . . . Dm} cannot be transitioned

in energy-efficient fashion and will remain in active state over the interval [0, P]. As such,

if Rexp ∈ Ii then the average-case system-wide energy consumption E ′
i(f) is given by:

E′
i(f) = (af 3 +

i
∑

j=1

P ja) ·
C ′

f
+

m
∑

j=i+1

P ja · P +

i
∑

j=1

(Ejsd +Ejwu)

Now, one can again construct (m+ 1) constrained optimization problems by enforcing

52

Rexp ∈ Ii i = 0 . . . m. Formally, the constrained optimization problem OPT ∗
i is defined as:

minimize E ′
i(f) (4.4)

subject to − C ′

f
+ LL′

i ≤ 0 (4.5)

C ′

f
− UL′

i ≤ 0 (4.6)

U ≤ f ≤ fmax (4.7)

LL′
i and UL′

i are the lower and upper limits of interval Ii respectively. Recall from Section

4.2 that U = C
P represents the minimum frequency which guarantees feasibility under worst-

case workload. Though the objective is to minimize the average-case system energy, it is

still important to meet the application deadline under worst-case execution behavior. The

constraint (4.7) in OPT ∗
i helps to meet that objective.

Let Fi denote the solution to OPT ∗
i . Further, let F ′

i denote the solution to the same

optimization problem, but without the constraint (4.7). By repeating the analysis in Section

4.3 one can verify Propositions 2 and 4, below. Proposition 3 is a consequence of convexity.

Proposition 2. F ′
i = fi if C′

fi
∈ Ii where fi =

3

√

i
P

j=1

P j
a

2a . Otherwise, either F ′
i = C′

UL′

i
or

F ′
i = C′

LL′

i
.

Proposition 3. If U ≤ F ′
i ≤ fmax then Fi = F ′

i . Otherwise, if F ′
i < U then Fi = U else

Fi = fmax.

Proposition 4. A solution to the problem of minimizing the average-case energy can be

obtained in O(m logm) time by comparing the OPT ∗
i solutions (Fi), i = 0 . . . m.

53

4.4.1 Experimental Evaluation

To evaluate the performance of the new scheme under workload variability, a series of

experiments are conducted. As in Section 4.3.2, a real-time application with a frame length

of 44ms, using three devices: IBM Microdrive, RealTek Ethernet Chip and Simple Tech

Flash Card is considered. The actual execution time of the application is determined using

normal distribution with mean BCET+WCET
2 and standard deviation ρ0 = WCET−BCET

6 ,

where BCET and WCET are the best-case and worst-case execution times of the application

under maximum frequency, respectively. The specific mean and standard deviation values

coincide with those used in [11, 59, 74, 82, 113], and guarantee that 99.7% of the execution

times fall in the range [BCET,WCET]2. The results presented are the average from

1, 000, 000 experiments. Also, the corresponding confidence intervals at 99% confidence

level are reported. The following three schemes are compared:

• OPT which is the optimal solution from Section 4.3 assuming worst-case execution

behavior. However, when the application completes in a given frame, the amount

of actual slack until the next invocation is computed and all devices that can be

transitioned in energy-efficient fashion are put to low-power states.

• OPT ∗ which minimizes the average-case system energy by assuming average-case

execution time (BCET+WCET
2).

• CLR which is the clairvoyant scheme that knows the actual execution times in advance

and uses this information to derive optimal CPU operation frequency and device

transitioning decisions. While CLR is not a practical scheme, it is used as a yardstick

algorithm yielding the lower bound on system energy consumption.

Figure 4.10(a) shows the comparison of the schemes as a function of the worst-case exe-

cution time of the application (C). The best-case to worst-case execution time ratio is fixed

at 0.2. The results are normalized with respect to OPT at C = 44. When C is in the range

2If the randomly generated execution time exceeds WCET , which happens with the probability 0.3%,
that value is not considered in the experiments.

54

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 8 12 16 20 24 28 32 36 40 44

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

C

OPT
OPT*
CLR

(a) Relative performance of schemes as a function
of C

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

BCET/WCET

OPT
OPT*
CLR

(b) Relative performance of schemes as a function

of BCET
WCET

Figure 4.10: Experimental evaluation under dynamic workload variability

[18, 30], the benefits of OPT ∗ over OPT are evident. In this range, the frequency deter-

mined by OPT ∗ is more energy-efficient towards dynamic workload variability compared to

that of OPT . At low C values [0, 18] there is more slack in the system and hence more DPM

opportunities; thereby all schemes perform the same. For C values in the range [30, 44],

the high worst-case and average-case execution times severely limit device transitions while

calculating the CPU frequency. As a consequence, both OPT and OPT ∗ perform the same.

However, CLR which uses actual workload information performs significantly better.

Figures 4.10(b) shows the impact of varying BCET
WCET ratio at C = 24. The results are

normalized with respect to OPT at BCET
WCET = 1. One can see that as BCET

WCET ratio decreases,

OPT ∗ performs better compared to OPT . This is because with more variations in run-time

behavior of the application, the accuracy of OPT ∗ in estimating actual workload increases

compared to OPT and thus the frequency determined by OPT ∗ yields lower system energy

consumption.

55

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0.25 0.5 0.75 1 1.25 1.5 1.75 2

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

Pa scaling factor

OPT
OPT*
CLR

(a) Impact of device power scaling

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.25 0.5 0.75 1 1.25 1.5 1.75 2

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

Pcpu scaling factor

OPT
OPT*
CLR

(b) Impact of processor power scaling

 0

 0.2

 0.4

 0.6

 0.8

 1

 30 32 34 36 38 40 42 44 46 48 50

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

Frame Length (P)

OPT
OPT*
CLR

(c) Impact of frame length

Figure 4.11: Impact of variations in device, processor and application characteristics

Figure 4.11 shows the impact of power and application characteristics. In these experi-

ments C = 24 and BCET
WCET = 0.2. The experiment methodology is the same as described for

Figure 4.9 in Section 4.3.2. While OPT deviates significantly from CLR at high Pa and

low Pcpu scaling factors, OPT ∗ remains close to the CLR, a fact showing its robustness

for various device and processor power characteristics (Figures 4.11(a) and (b)). Similar

56

trends can also be seen in Figure 4.11(c) where OPT deviates significantly from CLR at

high P values, while the performance of OPT ∗ gets closer to CLR as P increases. This is

because at large frame lengths, the importance of being able to accurately estimate actual

workload information (and use it to determine CPU frequency while accounting for DPM

issues) translates to significant system-wide energy savings.

4.5 Chapter Summary

This chapter addressed the problem of system-wide energy minimization for a frame-based

real-time application through a novel approach. The system-level energy model considered

both DVS- and DPM-related issues and accounted for device transition overheads. With

this general model, the exact interplay between DVS and DPM is formally characterized.

By deriving useful properties from this characterization, an O(m logm)-time algorithm

is formulated (where m is the number of devices) to determine the CPU frequency and

device transitioning decisions to minimize the system-wide energy. Through experimental

evaluations using real device parameters the potential benefits of the proposed optimal

scheme are demonstrated. Also, the solution is extended to address the workload variability

in order to minimize the average-case energy consumption assuming the knowledge about

average-case execution time.

57

Chapter 5: System-level Energy Management for Periodic

Real-time Tasks

5.1 Introduction

Most real-time embedded applications, such as those used in control systems, consist of

multiple tasks which are periodic in nature. While DVS solutions for periodic real-time tasks

are well-established, DPM solutions are less mature. Further, the problem of developing

system-wide energy management frameworks for periodic real-time tasks that unify DVS

and DPM is mostly an unexplored problem. This chapter investigates the complexity of the

RT-DPM problem and develops a new DPM framework called Device Forbidden Regions.

Using this novel framework, unified system-level energy management frameworks for both

fixed-priority and dynamic-priority periodic task systems are developed by combining DVS

with DPM, and accounting for their non-trivial interplay.

5.2 Dynamic Power Management for Real-Time Systems

One of the major challenges in online real-time dynamic power management is to make

sure that the device sleep intervals are longer than the corresponding break-even times, to

guarantee the energy efficiency. In theory, the scheduler can attempt to order the execution

of tasks in such a way that the device usage and sleep intervals are grouped together to the

extent it is possible. Theorem 1, whose proof is given in the Appendix A, indicates that

solving the problem of minimizing device energy consumption for general periodic tasks

(even in the absence of DVS) is intractable, closing an open problem. First, the device

energy minimization problem for real-time tasks is formally defined.

58

RT-DPM: Given a set of real-time tasks and a set of devices with known power charac-

teristics, find the feasible schedule that minimizes the total device energy consumption.

Theorem 1. RT-DPM for general periodic tasks is NP-Hard in the strong sense.

This result indicates that even a pseudo-polynomial time optimal algorithm for the

problem is unlikely, unless P = NP .

5.2.1 Next Device Usage Predictions

One solution to the RT-DPM problem is to commit to a given scheduling policy (such as

RMS or EDF) and then perform device transitions by trying to predict the next device

usage time of device Di at time t (denoted by NDUTi(t)), at run-time. The device can

be put to sleep state with confidence if the difference (NDUTi(t) − t) is larger than the

break-even time Bi of Di, as long as NDUTi(t) does not overestimate the actual next device

usage time.

Unfortunately, the stringent timing constraints of real-time tasks, the variability in ac-

tual execution times, and release time jitters make a precise prediction impossible. Further,

even if all this information is known to a clairvoyant scheduler, performing an exact online

response time analysis for various task instances during the hyperperiod (to figure out when

a task in need of Di will be dispatched next) is not computationally feasible [83].

One conservative but safe solution is to compute NDUTi(t) by considering the current

time, the tasks in ready queue, and the earliest release time of any future job that requires

Di. Hence, if the ready queue contains a task that requires Di, NDUTi(t) will be simply

t; otherwise it will be the earliest next release time of any instance of a task in βi (set

of tasks requiring device Di, Section 3.3). This is indeed the main principle of the Con-

servative Energy-Efficient Device Scheduling (CEEDS) algorithm, proposed by Cheng and

Goddard [38, 41]. When de-activating a device, CEEDS also schedules an activation time

(or, UpTime) by considering typically non-negligible re-activation delays and NDUT. At

this activation-time the device starts transitioning from low-power to active state in order

59

to be ready to serve requests at proper times.

5.2.2 Dynamic Device Power Management through Forbidden Regions

DFR-based approach to real-time DPM problem is based on the sleep intervals which are

explicitly and periodically enforced for each device. These special intervals are called device

forbidden regions. A separate forbidden region FRi is defined for each device Di. The

forbidden region FRi has a pre-determined duration ∆i ≥ Bi; as a result, Di can be safely

put to the sleep state during its forbidden region.

Further, a minimum separation time (or, period) Πi is associated with FRi, meaning

that two consecutive “activations” (or, “enforcements”) of a given FRi should be separated

by at least Πi time units. Under certain circumstances, it may be more beneficial to delay

the next activation of a forbidden region. In other words, the forbedden regions may be

activated in “sporadic” manner. During execution, the next “earliest release” (activation)

time of FRi is denoted by rfi.

An extremely important implication of inserting enforced device forbidden regions to

real-time schedules is that none of the tasks using Di can be dispatched while FRi is active.

However, other tasks (i.e. those in ψ − βi) can still execute. In other words, the tasks in βi

(set of tasks that use Di during execution) are effectively “blocked” by FRi when the latter

is active.

Naturally, a task using two different devices Di and Dj would be blocked whenever FRi

or FRj is active. Determining ∆i and Πi values to guarantee the feasibility of the real-time

task set and at the same time to maximize energy savings is a non-trivial problem. These

issues are addressed in Sections 5.3.1 and 5.3.2, respectively. Table 5.1 gives a summary of

the variables relevant for the DFR framework presented in this chapter.

The DFR scheme does not exclude the usage of CEEDS, or for that matter, any other

“prediction-based” online DPM algorithm. In fact, the feasibility analysis that is presented

in Section 5.3.1 treats each forbidden region FRi as a high priority periodic task delaying

the execution of tasks in βi. Consequently, when the system is able to shutdown the device

60

FRi Forbidden region associated with device Di

∆i Duration of forbidden region FRi
Πi Period of forbidden region FRi
γi Set of devices used by task Ti
βi Set of tasks using device Di

nfri Earliest next enforcement time for forbidden regions FRi

acti Reactivation timer for device Di

P ia Active power of device Di

P is Sleep power of device Di

T isd(T
i
wu) State transition times for device Di

Eisd(E
i
wu) State transition energy for device Di

Bi Breakeven time of device Di

Pi Period of task Ti
Ci Worst-case execution time of task Ti (under fmax)

Table 5.1: Notations

Di using the standard prediction techniques (e.g. through CEEDS), the next activation time

rfi of FRi can be “delayed” without affecting feasibility. This, in turn, will help to save the

“bandwidth” of the forbidden region and prolong the sleep interval in the future. Similarly,

when a scheduled activation time of FRi corresponds to a time instant when Di is actively

used by the running task, FRi should be postponed to a later time, to avoid unnecessary

transitions. Clearly, in all these cases, the activation of all subsequent forbidden regions of

the same device will be delayed by the same amount.

The following example illustrates the principles of DFR. Consider a harmonic task set

(where task periods are multiples of each other) with three real-time tasks T1, T2 and T3

and the following parameters: C1 = C2 = C3 = 1000, P1 = 2000, P2 = 4000, and P3 = 8000.

The devices D1 and D2 are used by the tasks T1 and T2, respectively. For these two devices,

B1 = 990, T 1
sd = T 1

wu = 495, B2 = 20 and T 2
sd = T 2

wu = 10. Assume all tasks are released at

t = 0 and all devices are initially in active state. Note that since the task set is harmonic

the schedules generated by both RMS and EDF are the same [83]. Hence, one can assume

either policy for the example considered. The schedule generated by DFR is shown in Figure

5.1a. In this example, the forbidden region durations and separation times are selected as

∆1 = ∆2 = 1000 and Π1 = Π2 = 4000. It is assumed that the first scheduled enforcements

61

���������
���������
���������
���������

����
����
����
����

���������
���������
���������
���������

���������
���������
���������
���������

�����
�����
�����

�����
�����
�����

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

1 Τ Τ1 1 1

Τ Τ22

Τ Τ33

0 1000 2000 3000 4000 5000 6000 7000 8000

0 1000 2000 4000 5000 6000

6000 70002000 3000

T

0

8000

8000

Τ

FR1 FR2 (a)

(b)

0 5495 65051495 2505

2010 4990 601010 990

Active

Sleep
D

Active

Sleep
D2

1

Figure 5.1: DFR Schedule

of both forbidden regions occur at t = 0.

At time 0, T1 is dispatched. FR1 is postponed as D1 is already active and in use by the

current job. FR2 is enabled: D2 is put to sleep state since it is currently not in use and its

next activation time is set to t + ∆2 − T 2
wu = 990. At time 1000, T1 completes and T2 is

dispatched. T2 finds D2 in active state. Also, FR2 ends and rf2 is set to t+Π2−∆2 = 4000.

D1 is put to sleep since NDUT1 is found to be greater than B1 through CEEDS prediction

mechanism. In this case, one can further postpone FR1 to preserve its “bandwidth” for the

future. Thus, the activation time of D1 is set to NDUT1 − T 1
wu = 1505.

At t = 1505, the predicted NDUT1 is 2000 and FR1 is pending. At this point, DFR

run-time management system forcefully starts FR1 at t = 2000. Observe that this allows

D1 to remain in sleep state without compromising the timing constraints. At t = 2000, FR1

is enabled and the activation time of D1 is set to 2505. In the mean time, D2 is shutdown

as NDUT2 > B2. The activation time of D2 is set to 3990. T3 is dispatched. At time 3000,

FR1 is disabled and rf1 is set to 6000. D1 completes its transition to the active state and

T1 preempts T3 upon arrival. At time 3990, DFR postpones again the activation of D2 as

rf2 is 4000 which is the same as NDUT2. Observe how DFR prolongs the idle intervals and

62

prevents D2 from remaining in active state unnecessarily. The rest of the schedule can be

obtained in a similar way. Figure 5.1b shows the device states and transitions for the DFR

algorithm. As a result, with DFR, D1 remains in sleep state for a total of 2020 units while

D2 sleeps for 5950 units. One can verify that with CEEDS for the same example D1 and

D2 have 40 and 3960 units of total sleep time respectively. The significant gains of DFR

are evident in this example.

5.3 DFR-RMS: Integrated System-Level Energy Management

Policy for Fixed-Priority Systems

In this section, a DFR-based RT-DPM policy called DFR-RMS for fixed-priority systems

and RMS policy is developed. Further, DFR-RMS is integrated with existing DVS policies

and its effectiveness in reducing system energy is shown.

5.3.1 RMS Schedulability Analysis for DFRs

Time Demand Analysis (TDA) technique [81] is a well-established methodology to assess

the feasibility of a periodic real-time task set scheduled by the preemptive RMS policy.

It provides a sufficient and necessary condition for the schedulability and is generalized

to various settings with aperiodic servers, precedence constraints, and task blocking times

[8, 83]. TDA relies heavily on the critical instant concept, where the response time of a

job is maximum when it is released simultaneously as all high-priority tasks [84]. Let hp(i)

denote all tasks with priority higher than that of a given periodic task Ti. The time demand

function of Ti (denoted by wi(t)) is defined as: wi(t) = Ci +
∑

Tj∈hp(i)d
t
Pj
e · Cj.

Theorem 2. [81,83] A set of fixed-priority periodic independent real-time tasks with rela-

tive deadlines equal to the periods is feasible if and only if ∀ i, ∃ t, 0 ≤ t ≤ Pi, wi(t) ≤ t,

under critical instant phasing.

The complexity of TDA is O(Pmax

Pmin
·n2), where Pmax and Pmin are the largest and smallest

63

periods in the task set respectively [83]. The exact characterization of the critical instant

for DFR-RMS is non-trivial. Multiple forbidden regions that overlap in time will cause a

total interference which is less than their total duration, and a given forbidden region FRj

may be dynamically postponed (for example, when Dj is in active use at the release time of

FRj). Further, the tasks in hp(i) that typically delay the execution of Ti may be themselves

delayed by various forbidden regions. Nevertheless, it is still possible to use the traditional

TDA technique by conservatively predicting (i.e. over-estimating) the interference of high

priority tasks in hp(i) and the forbidden regions, on a given task.

Let wFRi (t) be the time-demand function of Ti in the DFR-RMS algorithm, such that

the total interference on Ti from tasks in hp(i) and forbidden regions is maximized.

Proposition 5. In DFR-RMS, for every task Ti and every t in the range [0, Pi], the fol-

lowing holds:

wFRi (t) ≤ wmaxi (t) = Ci +
∑

Tj∈hp(i)
d t
Pj
e · Cj +

∑

j∈γi

d t
Πj
e ·∆j

Proof. The right hand side of the expression in Proposition 5 overestimates the actual

maximum interference on Ti by assuming that:

• the task Ti is released at the same time as all tasks in hp(i),

• none of the tasks in hp(i) is delayed by any forbidden regions until Ti completes, and,

• all forbidden regions FRj such that Dj ∈ γi are activated at t = 0, and each of

these forbidden regions is treated as a high priority preemptive task invoked at the

maximum frequency (i.e. every Πj time units).

Note that the last assumption above effectively ignores the ’overlap effect’ of forbidden

regions on Ti: if two forbidden regions Dj and Dk used by Ti overlap for x time units, then

their total interference would be ∆j + ∆k − x, and not ∆k + ∆j as assumed. However, it

64

is fairly difficult to precisely characterize the aggregate impact of such overlaps – though it

is certain that the worst-case interference for Ti occurs when there are no such overlaps at

all. Hence, the proposition holds.

Corollary 2. A set of periodic tasks can be feasibly scheduled by DFR-RMS if ∀ i, ∃ t,

0 ≤ t ≤ Pi, wmaxi (t) ≤ t.

Note that just like the original TDA algorithm, it is necessary and sufficient to evaluate

wmaxi (t) at every period boundary in interval [0, Pi]. Hence, the overall complexity of the

extended TDA is O(max{Pmax,Πmax}
Pmin

(n+m)2).

5.3.2 Determining Forbidden Region Parameters for DFR-RMS

Before DFR scheme can be used with a given task set, the duration (∆i) and period (Πi)

of each forbidden region FRi needs to be determined. While a fundamental requirement

is to ensure the feasibility of the real-time task set, another major objective is to optimize

energy savings with the selected ∆i and Πi values.

Intuitively, the longer ∆i (beyond Bi), the higher energy savings for deviceDi. Similarly,

as Πi decreases, the number of forbidden region instances of FRi gets higher, increasing the

overall sleep time. Also, considering that the energy savings of Di during a sleep interval is

proportional to the difference (P i
a−P is), one can define the Expected Energy Savings (EES)

of Di as:

EESi =
∆i −Bi

Πi
(P ia − P is) (5.1)

In order to perform an efficient search for the best {∆i,Πi} values, one needs to first establish

some lower and upper bounds on these quantities.

Bounding ∆i: Observe that having a forbidden region duration ∆i ≤ Bi is not helpful:

this stems from the very definition of break-even time. Similarly, it is easy to see that ∆i

cannot exceed Pj − Cj (the maximum allowable laxity for Tj) for any task Tj that uses

Di. Doing otherwise may result in a deadline miss for Tj , in case that an instance of Tj is

65

released immediately after the activation of FRi. Hence, Bi < ∆i ≤ min
Tj∈βi

(Pj −Cj).

Bounding Πi: Consider the quantity zi = max
j∈βi

{Pj}. When evaluating the feasibility

of any task in βi through the TDA in Section 5.3.1, the quantity d t
Πi
e = 1 for any Πi ≥ zi.

Hence, if a given task Tx is infeasible with a certain Πi = zi value (Di ∈ γx), then it is

guaranteed to remain infeasible for any Πi > zi. Recalling that increasing Πi does not help

to improve the energy savings either, one can obtain Πi ≤ max
j∈βi

{Pj}.

Define the utilization UDi
of a given device Di as the total utilization of tasks in βi.

Observe that the ratio ∆i

Πi
for given forbidden region FRi cannot exceed 1−UDi

, since this

is the maximum amount of time during which Di can be in sleep state. Combining all this,

∆i

1−UDi

≤ Πi ≤ max
Tj∈βi

{Pj}.

Given the expected energy savings (EESi) formula (Equation (5.1)), a reasonable ap-

proach is to treat the devices with large EESi values with high priority in the search process,

to increase the potential energy savings. Moreover, for a given Di, the ∆ and Π ranges can

be scanned at equi-distant points to assess the feasibility and EESi with the given values.

Simulation results show that evaluating EESi for 10-15 equi-distant candidates ∆i and Πi

values gives significant energy savings while keeping the running time at acceptable levels.

The resulting Greedy FR Assignment algorithm works as follows. In each iteration,

for every device Di not associated with an FR, a (∆i,Πi) pair that gives the best EESi

is computed while committing to all forbidden region assignments made in the previous

iterations and maintaining the feasibility. Among the newly assigned FRs, the forbidden

region of the device expected to provide the maximum energy savings (highest EESi) is

incorporated to the system. The algorithm ends either when no new FR assignment can be

made or FRs have been associated with all system devices.

Complexity: At each iteration, the complexity of finding the best (∆i, Πi) pairs is still

O(max{Pmax,Πmax}
Pmin

(n+m)2), given the constant number of candidate points evaluated in the

range. Hence, the overall complexity of this static algorithm is O(max{Pmax,Πmax}
Pmin

m(n+m)2),

66

where Pmax and Pmin represent the maximum and minimum periods in the task set.

Greedy FR Assignment Algorithm

• Set Z = {D1, . . . , Dm}

• Set W = ∅

• Repeat

– for each device Di in Z, compute (∆i,Πi) pair that gives best
EESi while committing to ∆, Π values already in W and main-

taining the feasibility.

– Commit to (∆j , Πj) pair for Dj that gives the maximum EES

– Set W = W ∪Dj

– Set Z = Z −Dj

• Until there is at least one Di ∈ Z for which an FR can be assigned

5.3.3 DFR-RMS Run-Time Management Routines

This subsection presents the actions performed by DFR-RMS at important scheduling points

and gives the pseudo-codes of the online routines to implement those actions. There are

three important scheduling points for the DFR-RMS framework corresponding to job arrival,

job completion and device re-activation events (Figure 5.2).

In the DFR-RMS framework a ready job Ji is said to be eligible for execution if all the

devices required by Ji are in active state. If one or more devices required by Ji are not

active (due to enforced forbidden regions), then Ji is said to be blocked from execution. The

ready queue is partitioned to two queues Qr and Qb such that at any given time, Qr has

all the eligible ready jobs and Qb has all the blocked jobs. The scheduler always executes

the highest priority job in Qr.

At job arrival time, the new job is inserted to either Qr or Qb based on its eligibility

for execution. If the new job is both eligible and has the highest priority among all eligible

jobs, then the scheduler dispatches it for execution. Similarly, at job completion time, the

next highest priority eligible job is picked for execution, provided the Qr is not empty. In

67

Job Jk arrives at time t:

1 if ∃Di: Di ∈ γk AND Di not active

2 insert Jk to Qb

3 else

4 insert Jk to Qr

5 Scheduler()

Job Jk completion at time t:

1 Jh = null

2 if Qr not empty

3 Jh = job with highest priority in Qr

4 Dispatch(Jh)

5 else

6 SleepStateTransitions(D)

Re-activation timer interrupt at time t:

1 for i = 1 to m

2 if (acti = t)

3 if (NDUT (Di, t) > acti + T iwu)

4 acti = NDUT (Di, t)− T iwu
5 else

6 if nfri ≤ NDUT (Di, t)

7 acti = NDUT (Di, t) + ∆i − T iwu
8 nfri = NDUT (Di, t) + Πi

9 else

10 Transition Di to active state

11 for each job Ji ∈ Qb
11 if all Dj ∈ γi active

12 Move Ji to Qr

13 Scheduler()

Figure 5.2: The DFR-RMS Run-time Actions

68

both cases, if possible, devices that are no longer in use are energy-efficiently transitioned

to their respective sleep states using function SleepStateTransitions() in Figure 5.3.

Each device Di is associated with a re-activation timer acti that indicates the time at

which a device in sleep state needs to start transitioning to active state. At the event

corresponding to device re-activation, first an effort is made to delay device activation by

extending device idle intervals. To this extent, next device usage times are re-computed to

capture changes, if any, from their previously computed values and forbidden regions are

enforced, if possible to do so. If device idle intervals cannot be successfully extended, then

the device is transitioned to active state.

When a device in sleep state transitions to active state, it can potentially unblock one

or more jobs in Qb. All such jobs that become eligible as a consequence of device active

state transitions are moved from Qb to Qr. Based on the priority of the jobs moved to Qr,

the currently running job Jcurr may be preempted.

Figures 5.3 and 5.4 give the online routines needed to perform the actions in Figure 5.2.

In Figure 5.3, function SleepStateTransitions(S) is used to transition a set of unused devices

S to sleep state. In doing so, for each idle device one needs to predict next device usage

times. This is achieved using the function NDUT (Di, t) that gives the next device usage

time of Di at time t. NDUT (Di, t) is based on the predictive RT-DPM policy CEEDS

given in [41] and approximates next device usage times using task release times and device

reactivation times (the earliest time an idle device will be used is when a job requiring

the device arrives to the system or a blocked job requiring the device becomes eligible for

execution).

At time t, in transitioning idle device Di to sleep state, SleepStateTransitions(S) first

tries to see if forbidden region FRi can be enforced. If so, FRi is enforced at t′ =

NDUT (Di, t) which effectively combines the inherent device idle interval [t, t′] captured

by the predictive RT-DPM component of DFR-RMS (function NDUT (Di, t)) and the de-

vice idle interval [t′, t′ + ∆i] due to the FR enforcement. This creates a long contiguous

device idle interval [t, t′ + ∆i] for Di. The reactivation timer acti of Di and the next FRi

69

Notations:

1 t: Current time

2 Jcurr: Currently running job

3 D: Set of m system devices

4 nfri: Earliest next enforcement of FRi

5 acti: Re-activation timer for device Di

6 Qr: Ready job queue

7 Qb: Blocked job queue

NDUT(Di,t)

1 for each Tj ∈ βi
2 if a job of Tj in Qr or Qb

3 zj = max(actk) Dk ∈ γj
4 zj = max(t, zj)

5 else

6 zj = next job release time of Tj ≥ t
7 return min(zj) Tj ∈ βi

SleepStateTransitions(S)
1 for each Di ∈ S in active state

2 if nfri ≤ t
3 acti = NDUT (Di, t) + ∆i − T iwu
4 nfri = NDUT (Di, t) + Πi

5 Transition Di to sleep state

6 else if NDUT (Di, t)− t > Bi

7 acti = NDUT (Di, t)− T iwu
8 Transition Di to sleep state

Figure 5.3: The DFR-RMS Run-time Routines

70

Dispatch(Ji)

1 SleepStateTransitions(D− γi)
2 Set Jcurr = Ji

3 Dispatch Jcurr

Scheduler()

1 Jh job with highest priority in Qr

2 if Jcurr 6= Jh

3 if Jcurr 6= null

4 Preempt Jcurr

5 Dispatch(Jh)

Figure 5.4: The DFR-RMS Run-time Routines (Continued)

enforcement nfri are updated appropriately.

Functions Dispatch() and Scheduler() in Figure 5.4 deal with selecting the highest pri-

ority eligible job in Qr for execution and dispatching it. The Dispatch() function makes a

call to SleepStateTransitions() in an effort to transition unused devices to sleep states.

Run-time Complexity: At either of the events corresponding to job arrival/completion

and device re-activation, at most m device transitioning decisions are made. For each device

transition, the computational overhead is constrained by next device usage predictions

(function NDUT (Di, t)) which takes O(n) time. Thus, the overall run-time complexity

of the framework is O(mn) per decision point. Since the number of system devices m is

typically small, the complexity of the framework for practical purposes can be treated as

O(n).

Extensions to DVS Settings with Dynamic Slack Reclaiming: The DFR algo-

rithm can be used in DVS settings with any feasible task speed assignment. Further, the

SDRA algorithm [10] is extended to fixed-priority settings for reclaiming. In SDRA, at

dispatch time a job computes its ’earliness’ by considering the slack of all higher priority

jobs. Earliness represents the total slack available in the system from higher priority tasks

71

that the current job can reclaim. Earliness is computed through the α-queue, which rep-

resents the canonical schedule in which all jobs take their worst-case execution time. All

jobs, upon arrival, insert their worst-case execution times (under the nominal speed) to the

α-queue. Jobs in the α-queue are ordered based on task priorities. A consequence of DFR

algorithm is that, at dispatch time, care must be taken not to consider blindly all higher

priority tasks in the α-queue: Some of these higher priority tasks may be currently blocked

by forbidden regions. Reclaiming from such a task might indeed lead to potential deadline

misses. Therefore, in DFR settings, the earliness is computed by considering only the higher

priority jobs that have completed their execution.

5.3.4 Experimental Evaluation

This section gives the performance evaluation of the DFR scheme through simulations.

A discrete event simulator was implemented in C for evaluation purposes. The results

shown are from 1000 randomly generated synthetic task sets, each containing 20 periodic

tasks. The periods of the tasks were randomly chosen to be in the interval [25ms, 1300ms]

which corresponds to the period range observed in example real-time applications [85].

Task utilizations are generated randomly using uniform distribution and task worst-case

execution times are calculated as the product of task periods and task utilizations. The

energy consumption of the task set over the hyperperiod (LCM) was recorded. Each task is

assumed to use 0-2 devices, determined randomly from the device specification list shown

in Table 5.2 and adopted from [40]. The CPU power consumption at maximum frequency

is considered to be 1.6W and modeled after the Intel Xscale at [127].

Device Pa, Ps, Pwu(Pwu) Twu(Twu)

Realtek Ethernet Chip 0.19, 0.085, 0.125(W) 10(ms)

MaxStream wireless module 0.75, 0.005, 0.1(W) 40(ms)

IBM Microdrive 1.3, 0.1, 0.5(W) 12(ms)

SST Flash SST39LF020 0.125, 0.001, 0.05(W) 1(ms)

Simple Tech Flash Card 0.225, 0.02, 0.1(W) 2(ms)

Fijitsu 2300AT Hard disk 2.3, 1.0, 1.5(W) 20(ms)

Table 5.2: Device Specifications

72

The performance of three schemes are compared: Always On (AON) where the devices

remain in active state throughout the simulation (no dynamic power management), CEEDS

[40] (adapted to RMS settings) and DFR-RMS in which devices are put to prolonged sleep

intervals at run-time through device forbidden regions. For each scheme, the mean en-

ergy consumption and the corresponding confidence intervals at 99% confidence level are

reported.

Let Evar =
m
∑

i=1
(Eimod +Eitrans). Evar represents the energy consumption of all devices

when in active state but not in use (Emod) and device transition energy (Etrans) over all

devices. Observe that DPM algorithms do not have a direct impact on Efixed (device energy

when in active state and in use), but only on Evar, which can be reduced to the extent the

algorithm is successful in increasing the length of sleep intervals and reducing unnecessary

transitions. As such, when evaluating the energy consumption, both the total device variable

active energy (Evar) and the total system energy (Etot) are presented separately. While Evar

shows the effectiveness of the DPM schemes, Etot values show their impact on overall system

energy.

First, settings where the tasks exhibit their worst-case workload are considered. The

impact of utilization on the schemes are shown. The task set utilizations are scaled from 0.2

to 0.7. Figure 5.5 shows the relative performance of the DPM schemes, on settings where

all jobs run at the maximum CPU speed (no DVS). All results are normalized with respect

to the energy consumption of CEEDS. At lower utilization values, DFR-RMS effectively

postpones device activations using forbidden regions. This helps in achieving prolonged

sleep periods and clustered active periods where the device is in continuous use. As a

result, DFR-RMS reduces Evar significantly: Evar gains are in the range of 15% to 32%

when compared to CEEDS. DFR-RMS scheme successfully reduces Etot by 5% to 22%, as

well. At high utilization values, the device idle intervals are strongly constrained by device

usage patterns, periods of tasks and break-even times of devices. These factors reduce

the gains obtained by DFR-RMS scheme at high utilizations. Notice that even at 70%

73

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 10 20 30 40 50 60 70

E
v
a

r
(N

o
rm

a
liz

e
d
)

Utilization (%)

AON
CEEDS

DFR

(a) Energy consumption Evar

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 10 20 30 40 50 60 70

E
to

t
(N

o
rm

a
liz

e
d
)

Utilization (%)

AON
CEEDS

DFR

(b) Energy consumption Etot

Figure 5.5: Energy consumption without DVS

utilization it is possible to schedule some forbidden regions and obtain gains. This is due to

the fact that schedulability of the task set is checked through time demand analysis given

in Section 5.3.1 and forbidden regions are successfully able to exploit the CPU idle times.

The above experiments are repeated for DVS settings (Figure 5.6). An energy-efficient

speed threshold for each task is computed through the technique given in [10]. Then, task

level speed assignments are computed by the algorithm in [10] with feasibility bound set to

the Liu-Layland bound for 20 tasks (approximately 70%). The results are similar showing

DFR-RMS’s gains on DVS settings as well. Even though the relative performance of DFR-

RMS is the same in both settings, the absolute Etot values for DPM schemes with DVS are

lower than those without DVS, showing the positive impact of DVS.

The next experiment shows the impact of varying device characteristics on DPM schemes

in general. In this setup, CEEDS and DFR-RMS are compared. DVS is enabled and

nominal speed values are assigned as above. The system utilization is fixed at 40%. For

a given task set and a device usage pattern, first the values of Evar and Etot are recorded

for the Pa values given in [40]. Then, for the same task set and device usage pattern, the

74

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 10 20 30 40 50 60 70

E
v
a

r
(N

o
rm

a
liz

e
d
)

Utilization (%)

AON
CEEDS

DFR

(a) Energy consumption Evar

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 10 20 30 40 50 60 70

E
to

t
(N

o
rm

a
liz

e
d
)

Utilization (%)

AON
CEEDS

DFR

(b) Energy consumption Etot

Figure 5.6: Energy consumption with DVS

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0.5 1 2 3 4 5

E
v
a

r
(N

o
rm

a
liz

e
d
)

Pa Scaling Factor

CEEDS
DFR

(a) Energy consumption Evar

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.5 1 2 3 4 5

E
to

t
(N

o
rm

a
liz

e
d
)

Pa Scaling Factor

CEEDS
DFR

(b) Energy consumption Etot

Figure 5.7: Energy consumption with Pa scaling

experiment is repeated by scaling up/down Pa for all devices and re-computing the break-

even times. Figure 5.7 shows the results normalized with respect to energy consumption of

the task set with Pa for all devices taken from figure [40], i.e. when the scaling factor is one.

75

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1 2 3 4 5

E
v
a

r
(N

o
rm

a
liz

e
d
)

WCET/BCET

AON
CEEDS

DFR

(a) Energy consumption Evar

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1 2 3 4 5

E
to

t
(N

o
rm

a
liz

e
d
)

WCET/BCET

AON
CEEDS

DFR

(b) Energy consumption Etot

Figure 5.8: Energy consumption with reclaiming enabled

Note that, CEEDS forces a device to be in active state at the predicted next device usage

time, however the device may not be used at this point. With DFR-RMS scheme, DFR

postponements and forceful DFR starts at next device usage times help prolong to extend

sleep intervals. This makes DFR scheme more tolerant to Pa scaling. Thus the gains of

DFR scheme increase significantly as Pa is scaled up, indicating that DFR would be even

more applicable in systems with significant power consumer devices.

Next, the effect of reclaiming on DFR scheme is considered (Figure 5.8). Again, the

utilization is set to 40%. The actual workload is varied randomly between best case execu-

tion time (BCET) and worst-case execution time (WCET) of the task. The ratio of WCET
BCET

is varied from 1 to 5. SDRA [10] is used for reclaiming. As mentioned in Section 5.3.3,

a consequence of DFR algorithm is that it is possible to reclaim slack only from higher

priority tasks that have completed execution in the α-queue. This somewhat limits the

gains for DFR. In fact, the relative performance of CEEDS and DFR appear to be mostly

uniform throughout the spectrum.

76

5.4 DFR-EDF: A Unified Energy Management Framework

for Dynamic-Priority Systems

In this section, the DFR approach is integrated with dynamic-priority systems and EDF pol-

icy. By combining DVS with DPM while taking into account the interplay between different

energy management techniques as well as power characteristics of the system components

a unified energy management framework, DFR-EDF, is developed.

5.4.1 EDF Schedulability Analysis with DFRs

While the potential benefits of DFRs for enhancing the effectiveness of DPM are clear, it

is imperative to make sure that all task instances meet their deadlines under various DFR

activation patterns. In this subsection, first the exact feasibility analysis of a real-time

periodic task set under preemptive EDF policy in the presence of DFRs is formally shown

to be co-NP-Hard in the strong sense. Then a sufficient schedulability condition for a set of

periodic tasks scheduled with preemptive EDF is derived, in the presence of device forbidden

regions with given duration (∆) and period (Π) parameters. Later, Section 5.4.2 addresses

the problem of determining ∆ and Π parameters.

Theorem 3. Given a task set ψ and a set of forbidden regions φ, deciding on the feasibility

of ψ under preemptive EDF is co-NP-Hard in the strong sense.

The proof of Theorem 3 can be found in Appendix B.

Definition 1. Υk represents all the forbidden regions associated with all the devices used

by the k smallest period tasks.

Formally, if tasks are sorted in non-decreasing order of periods, Υk represents the set

containing all the forbidden regions associated with devices ∪ki=1γi.

Theorem 4. Given a set of periodic tasks ψ = {T1 . . . Tn} arranged in non-decreasing order

of periods and a set of forbidden regions φ = {(∆1,Π1) . . . (∆m,Πm)}, the periodic task set

ψ can be scheduled by EDF in feasible manner if,

77

∑

i∈Υk

(
∆i

Πi
+

∆i

Pk
) +

k
∑

j=1

Cj
Pj
≤ 1 k = 1 . . . n

The proof of Theorem 4 can be found in Appendix C.

Complexity: The schedulability test has n iterations and each iteration takes O(m+ n)-

time. Therefore, the overall complexity is O(mn + n2). Since the number of devices is

typically much smaller than the number of tasks, the complexity of the static feasibility

test can be considered as O(n2).

In DVS settings with variable processing frequency, the following corollary holds as a

consequence of Theorem 4.

Corollary 3. Given a set of periodic tasks ψ = {T1 . . . Tn} arranged in non-decreasing

order of periods, and a set of forbidden regions φ = {(∆1,Π1) . . . (∆m,Πm)}, the periodic

task set ψ can be scheduled by EDF in a feasible manner at the processing frequency f if,

∑

i∈Υk

(
∆i

Πi
+

∆i

Pk
) +

k
∑

j=1

Cj
f · Pj

≤ 1 k = 1 . . . n

5.4.2 Determining System Parameters for Effective Integration of DVS

and DPM

To integrate DVS and DPM, DFR-EDF relies on a power management configuration C

uniquely determined by a processing frequency f and a set of forbidden regions φ =

{(∆1,Π1) . . . (∆m,Πm)}. Section 5.4.1 provided an efficient test to decide whether the

task set ψ is feasible under EDF with a given forbidden region set φ. Obviously, it is

equally important to determine the power management configuration C that yields best

energy savings, as there are typically many configurations that preserve the feasibility.

However, such a decision is not trivial. Typically, DVS and DPM components tend to

favor power management configurations with opposing features. Reducing the processing

78

frequency (to favor DVS) will scale up task execution times and hence seriously limit the

DPM opportunities. On the other hand, configurations that favor DPM will create long

idle intervals – but these typically require high CPU frequencies and will also need to take

into account the device transition overheads. In fact, in the light of Theorem 1 (which

indicates that RT-DPM is intractable even in the absence of DVS), one can safely state

that an exact and efficient solution is unlikely. The DFR-EDF framework takes a more

direct approach: it exploits several features of forbidden regions and known properties of

DVS solutions to quantify the energy savings one can expect, given a power management

configuration C. Hence, the static phase of DFR-EDF includes an iterative procedure to

decide on the run-time power configuration.

An inspection of Corollary 3 reveals that as more FRs are assigned to the system,

the minimum frequency that guarantees feasibility will typically increase. Thus, there is a

trade-off between assigning additional FRs to decrease device energy consumption and the

resulting increase in processor energy consumption. DFR-EDF incrementally assigns FRs

to the system. At each step, it evaluates the expected benefit (in terms of energy savings)

of assigning an FR for another system device separately, and commits to the one which

appears most promising. The process of assigning new FRs to the power management

configuration stops when it is expected that by doing so the overall energy consumption

will increase (due to, typically, excessive CPU energy consumption).

In the formal description of procedure, ∆E i
sys denotes the expected change in system

energy consumption as a consequence of adding a new forbidden region, FRi, to an already

assigned forbidden region set φ. Let ∆E i
device and ∆Ei

cpu denote the expected decrease

in device energy and the expected increase in processor energy respectively, due to the

additional forbidden region FRi during a hyperperiod. ∆Ei
sys can be expressed as:

∆Eisys = ∆Ei
device −∆Ei

cpu

If ∆Ei
sys > 0 then the system is expected to benefit from the additional forbidden region

79

FRi. On the other hand, if ∆Ei
sys < 0 then the system energy is likely to increase due to

the addition of FRi.

As a consequence of forbidden region enforcements, the devices are transitioned to sleep

states. Each FRi enforcement provides a potential device energy saving of ∆i · (P ia − P is)

and a device state transition energy overhead of E i
sw. During a hyperperiod H, there can

be at most b HΠi
c FRi enforcements. As such, ∆Ei

device can be approximated as,

∆Eidevice = bH
Πi
c · (∆i · (P ia − P is)−Ei

sw)

Let fa and fb denote the minimum frequencies that guarantee the feasibility of task set

ψ with FR sets φ and (φ ∪ FRi), respectively. Let Pcpu denote the power consumption of

the processor at maximum frequency. Recall that Utot represents task set utilization under

maximum processor frequency (fmax = 1). As a consequence of adding FRi, the system is

forced to switch to fb from frequency fa to guarantee feasibility. Clearly, fb ≥ fa. Thus,

∆Eicpu can be quantified as,

∆Eicpu = H · Utot · Pcpu · (fb2 − fa2)

Finally, for a given FRi, the range of possible ∆i and Πi values should be provided

to make the algorithm’s search component complete. Clearly, ∆i must be no shorter than

the corresponding device break-even time and cannot exceed the maximum laxity of a task

using the corresponding device. Hence, Bi ≤ ∆i ≤ min
j|Di∈γj

(Pj − Cj). Also, the ratio ∆i

Πi

must not exceed (1−UDi
), where UDi

is the total utilization of tasks using device Di. Thus,

∆i

1−UDi

≤ Πi ≤ H.

In determining the energy-minimal system parameters FRs assignments are made one

at a time, evaluating the benefit of such an assignment at each stage. An additional FR

is only incorporated to the system if it seems to be beneficial from the system-wide energy

80

Notations and Assumptions:

φ: Set of FRs

fnom: CPU frequency

H: Hyperperiod of task set

Pcpu: CPU power consumption

Utot: Task set utilization

ψ sorted: P1 ≤ . . . ≤ Pn
DetermineEMPRoutine():

1 Z ← {D1, . . . , Dm}
2 φ← ∅
3 fnom ←MinSchedulableFreq()

4 repeat

5 ∀Di ∈ Z, ∆Ei
sys ← −1

6 for each Di in Z do

7 (Ei
sys, (∆i,Πi), ϕi) ← BestSysFR(Di)

9 Ei
∗

sys ← max
i∈Z

(∆Ei
sys)

10 if(Ei∗
sys > 0)

11 φ← φ ∪ (∆i∗ ,Πi∗)

12 Z ← Z −Di∗

13 fnom ← ϕi∗

14 endif

15 endfor

16 until (Z = ∅ OR ∆Ei∗
sys ≤ 0)

17 C ← (fnom, φ)

Figure 5.9: Determining Energy-Minimal System Parameters

81

MinSchedulableFreq():

1 for h = 1 to n

2 α←
h
∑

j=1

Cj

Pj

3 β ← 1− ∑

i∈Υh

(∆i

Πi
+ ∆i

Ph
)

4 Fh ← α
β

5 endfor

6 return max(F1, . . . , Fn)

BestSysFR(Di):

1 for each of N (∆j,Πj) pairs do

2 φ← φ ∪ (∆j ,Πj)

3 ϕj ←MinSchedulableFreq()

4 φ← φ− (∆j ,Πj)

5 if ϕj ≤ 1

6 ∆Ei
device ← b HΠj

c ·∆j · (P ia − P is)

7 ∆Ei
cpu ← H · Utot · Pcpu · (ϕ2

j − f2
nom)

8 ∆Ej
sys ← (∆Ei

device −∆Ei
cpu)

9 else

10 ∆Ej
sys ← −1

11 endfor

12 ∆Ei
sys ← max(∆E1

sys, . . . ,∆E
N
sys)

13 return (Ei
sys, (∆i, Πi), ϕi)

Figure 5.10: Determining Energy-Minimal System Parameters (continued)

82

perspective. With the addition of each FR the CPU operating frequency is also updated

appropriately. This FR assignment process stops when no more FRs can be incorporated

into the system in an system-wide energy-efficient manner that also preserves the feasibility

of the task set.

DetermineEMPRoutine() given in Figure 5.9 determines the power management config-

uration C that consists of a set of FRs and CPU frequency f . At any time, φ keeps track

of the FRs assigned to the system and fnom represents the corresponding CPU frequency.

DetermineEMPRoutine() requires two procedures MinSchedulableFreq() and BestSysFR().

MinSchedulableFreq() determines the minimum CPU frequency f that guarantees the

feasibility of task set ψ with FR set φ. MinSchedulableFreq() is implemented in n iterations

by running the test provided in Corollary 3 and recording the minimum feasible frequency

at each step. The maximum frequency value recorded through n iterations is the minimum

value that guarantees the feasibility (as using a lower frequency would violate the feasibility

condition for at least one iteration). If this maximum frequency exceeds fmax = 1 then ψ

is not schedulable with φ. Note that MinSchedulableFreq() has the same complexity as the

feasibility test provided in Section 5.4.1 (O(mn+ n2)).

When BestSysFR() is called for a specific device Di it scans the range of ∆i and Πi

for (a fixed number of) N equi-distant points and determines the (∆i,Πi) pair and proces-

sor frequency ϕi that maximizes ∆Ei
sys while committing to the current FRs (set φ) and

maintaining the feasibility.

Specifically, for device Di, the range of ∆i and Πi is divided into d
√
Ne equi-distant

points each. Let DS and PS denote this set of d
√
Ne ∆i and Πi points respectively. For

each of the N possible combinations (∆,Π), where ∆ ∈ DS and Π ∈ PS, the minimum

schedulable frequency, fsched, is calculated to potentially incorporate the forbidden region

(∆,Π) for Di. Then, ∆Esys is computed based on the already assigned system FRs, the

new FR (∆,Π) and fsched. Among the N pairs, the one that yields the best ∆Esys value is

considered. The complexity of BestSysFR() is O(N · (mn+ n2)).

83

The DetermineEMPRoutine() procedure starts with an empty FR set and incrementally

assigns FRs one at a time. At each stage, for each device Di not associated with an FR

(set Z), a (∆i,Πi) pair and processor frequency ϕi that maximizes ∆Ei
sys is calculated

using the BestSysFR() routine. Following this, the most promising FR and corresponding

processor frequency combination (i.e. the one with the largest positive ∆E i
sys) is recorded as

the new best configuration (φ, fnom). This iterative process stops either when all devices are

assigned with FRs, no more FRs can be assigned due to feasibility, or assigning additional

FRs does not improve the system energy (i.e. ∆E i
sys ≤ 0 for all devices in Z).

Complexity: DetermineEMPRoutine() has at most m iterations. Each iteration invokes

the BestSysFR() routine once for every device not associated with an FR. Thus, the com-

plexity of each iteration isO(mN(mn+n2)) making the overall complexity O(m2N(mn+ n2)).

Though this complexity is technically pseudo-polynomial, extensive simulations show that

scanning no more than 50 equi-distant candidate ∆i and Πi values is typically sufficient to

determine system parameters that yield significant energy savings for task sets of different

sizes. Further, the number of devices in the system is typically small compared to the

number of tasks. Consequently, in practice the complexity can be seen as quadratic in the

number of tasks, which is affordable for a routine invoked only once in static analysis phase.

5.4.3 Online Components

Section 5.4.2 provided the details of the static component of DFR-EDF, which generates

a power management configuration C with forbidden regions and a CPU frequency. This

section presents the details of its online (dynamic) component. Such an on-line component

is needed because:

• On the DPM side, one needs to decide at run-time when and for how long devices can

be put to sleep state. This involves predicting when an idle device will be needed by a

task in the future and managing DFRs. DFR management involves frequently enforc-

ing and occasionally postponing the run-time activation of DFRs. DFR management

84

is coupled with predictive DPM policies to create long contiguous device idle intervals

during which system devices can be put to sleep state in energy-efficient manner.

• On the DVS side, one needs to calculate at run-time the energy-efficient frequency

threshold below which DVS affects system-wide energy negatively. This energy-

efficient frequency threshold is calculated as a function of the power characteristics of

both the CPU and the active device set. The CPU frequency is never reduced below

this threshold.

• Tasks rarely exhibit their worst-case workloads and leave unused CPU time (or slack).

At run-time one needs to reclaim and manage the slack from task early completions.

Further, one needs to exploit this slack using both DVS and DPM techniques to

further reduce system energy consumption.

Online DPM through DFRs

Section 5.4.2 presented rules to determine the parameters of forbidden regions. Specifically,

the length (or duration) ∆i and period (or minimum separation time) Πi of forbidden

region FRi were statically determined. Though, in theory, DFRs can be enforced strictly

periodically, at run-time DFR enforcements are ensured not to interfere with the execution

of a running job. In other words, the execution of a job cannot be preempted by DFR

enforcements. This is accomplished by postponing DFRs enforcements as required. Thus,

FRi associated with device Di is enforced at run-time only if the currently running job does

not require Di or the CPU is idle (i.e. FRi is enforced only if Di is idle and not in use).

Once FRi is enforced at run-time it has a duration of exactly ∆i units.

The performance of the DPM component can be further improved by incorporating

run-time prediction mechanisms, allowing enforcement of idle intervals even longer than

the statically-determined FR durations. To see this, first observe that the pre-determined

period Πi of a given forbidden region FRi gives the minimum separation time of two con-

secutive enforcements of FRi: delaying the next enforcement of FRi cannot have a negative

impact on feasibility. This gives a powerful opportunity to enhance the DPM effectiveness

85

at run-time. Specifically, when a device is idle, the next enforcement of its DFR can be

postponed and aligned exactly with the device next usage time as estimated using prediction

mechanisms. This gives the device a longer contiguous device idle interval during which it

can yield higher energy savings. Figure 5.11 illustrates this principle.

(a)

∆ i

t nfr i t n

J i

(b)

∆ i

t nfr i t n

J i FR

FR i

i

Device Idle Interval

Device Idle Interval

Figure 5.11: Postponements of DFRs

At time t, job Ji using device Di completes and Di is no longer in use. At this time

let tn be the estimated next device usage time determined through prediction mechanisms.

Also, let nfri < tn be the earliest time in the future FRi can be enforced. As shown in

Figure 5.11(a), if FRi is enforced at nfri, Di effectively has an idle interval [t, nfri + ∆i].

However, if by postponing and aligning the next enforcement of FRi at tn, Di would

have a long contiguous idle interval [t, tn + ∆i] (Figure 5.11(b)). One can observe that by

postponing the enforcement of FRi to tn, the overlap between the guaranteed device idle

interval [t, tn] and the device idle interval of ∆i units provided by FRi is minimized. Thus,

overall sleep time of Di increases. Note that such an online optimization is possible only

when nfri ≤ tn holds.

As seen by the above example, combining FR enforcements with predictive DPM policies

clearly increases the overall effectiveness of the DPM component. As such, the ability

to accurately predict the inherent device idle intervals in the schedule is still important

for the DFR-EDF framework. In the following, first the rules for predicting next device

usage times (NDUT) by improving on the bounds given by CEEDS predictive policy [41] is

86

given. Following this rules are provided for transitioning devices using DFR enforcements

in conjunction with the improved predictive policy.

Predicting next device usage times: At time t, let C r
k denote the remaining worst-

case execution time of job Jk under the frequency assigned by the static routine. Let HP k
denote the set of jobs in the ready queue having higher priority than any unfinished job of

Tk. In the worst-case feasible schedule (where all jobs present their worst-case workload),

a given task Tk cannot start to execute until time t+
∑

j∈HPk

Crj . Further, if an instance of

Tk is not currently ready, then one needs to wait at least until its earliest next release time

Rk(t). Hence, in either case, at time t, Tk’s next dispatch time cannot occur earlier than

max(Rk(t), t +
∑

j∈HPk

Crj). Thus, at time t, Di used by Tk can be put to sleep state for a

maximum of Vki = max(Rk − t,
∑

j∈HPk

Crj) time units without causing a deadline miss for

Tk.

Interestingly, the DFR-EDF framework creates further opportunities to put a device to

sleep state by exploiting the run-time information about idle intervals currently enforced

for other devices. Specifically, note that when a device Dj is explicitly put to sleep state

(e.g. through an FR), a task Tk using both Dj and another device Di is guaranteed not

to generate a request for Di as well, while Dj remains in sleep state. This follows from

the inter-task device scheduling paradigm, where all the devices of a given task must be

ready before it can start to execute. In other words, the existence of a task Tk using both

Di and Dj during its execution, makes the sleep intervals of Di and Dj inter-dependent at

run-time.

Let nj denote the end of a currently enforced idle interval for device Dj . At time t,

a task Tk is guaranteed not to use any device Di ∈ γk for at least (nj − t) time units, if

there exists another device Dj ∈ γk for which an idle interval is already enforced until time

nj. Considering all other devices, one can see that Di ∈ γk cannot be used by Tk for a

maximum of Wk
i = max(nj − t), j|Dj ∈ (γk −Di) time units.

87

Combining the two factors, namely the interference of high priority jobs and impact of

already enforced sleep intervals it can be seen that at time t, Di ∈ γk can be safely put

to sleep state for δki (t) = max(Vki ,Wk
i) time units without causing a deadline miss for Tk.

The maximum time Di can be put to sleep state without affecting the feasibility can be

determined by iterating over all tasks using Di and taking the minimum.

Proposition 6. A given device Di can be put to sleep state at time t for

δi(t) = min(δki (t)), k|Di ∈ γk time units without compromising the system feasibility.

Device state transitions: Rules for transitioning devices and performing effective

DPM are now given. Two actions DEACTIVATE and ACTIVATE are defined. The DE-

ACTIVATE action tries to transition all devices not in use to sleep state. For each device

put to sleep state, a device re-activation time is set which indicates the time at which

the sleeping device must start transitioning back to active state. Device re-activations

can be handled by the operating system through timers. Each device is associated with a

re-activation timer whose value is appropriately set while transitioning the corresponding

device to sleep state. When the re-activation timer of a device expires, the ACTIVATE

action tries to postpone its re-activation time if possible to do so, else starts transitioning

the device to active state.

The DeviceCntrlRoutine() given in Figure 5.12 handles device transitioning decisions by

combining δi(t) with the run-time enforcements of FRs. DeviceCntrlRoutine() is invoked

at scheduling points corresponding to job completion/dispatch times with action set to

DEACTIVATE and at device re-activation times with action set to ACTIVATE.

Let T iwu refer to the time delay involved in transitioning device Di from sleep to active

state. Due to T iwu, a device Di transitioned to sleep state at time t and having expected

next usage time tn > t must be re-activated at time tn − T iwu. This will ensure Di will be

active and ready to service requests at time tn.

Jh represents either the currently running job or the job to be dispatched at time t

(Jh = null when the processor idles). For each device Di, nfri represents the earliest next

88

Notations:

t: current time

S: Set of devices in sleep state

A: Set of devices in active state

DeviceCntrlRoutine(action, Jh):

1 if(action = DEACTIVATE)

2 ∀Di|Di ∈ A
3 if(Di /∈ γh && t+ δi(t) ≥ nfri)
4 acti ← t+ δi(t) + ∆i − T iwu
5 nfri ← t+ δi(t) + Πi

6 S ← S ∪Di

7 A ← A−Di

8 Start Di transition to sleep

9 ∀Di|Di ∈ A
10 if(Di /∈ γh && δi(t) > Bi)

11 acti ← t+ δi(t)− T iwu
12 S ← S ∪Di

13 A ← A−Di

14 Start Di transition to sleep

15 if(action = ACTIVATE)

16 ∀Di|(Di ∈ S && acti = t)

17 if(t+ δi(t) ≥ nfri)
18 acti ← t+ δi(t) + ∆i − T iwu
19 nfri ← t+ δi(t) + Πi

20 else if(t+ δi(t) > acti + T iwu)

21 Set acti ← t+ δi(t)− T iwu
22 else

23 S ← S −Di

24 A ← A∪Di

25 Start Di transition to active

Figure 5.12: DFR-EDF DPM Component

89

enforcement time of FRi. If Di is not associated with an FR, nfri is set to ∞. Also,

as explained above due to device transition delays, each Di has a reactivation timer acti

representing the time at which it must start transitioning to active state. S and A denote

the set of devices in sleep and active states respectively at the current time t. At system

start time nfri for all assigned FRs in the system is set to 0 and all devices are assumed

to be in active state.

Let A′ ⊆ A denote the set of active devices not in current use. When invoked with

action set to DEACTIVATE DeviceCntrlRoutine() tries to transition all devices in A ′. First

devices in A′ that are associated with an FR are considered. Every such device Di has an

inherent device idle interval [t, t+ δi(t)]. It is assumed that δi(t) is computed as explained

in Proposition 6. Where possible this device idle interval is extended by postponing and

aligning the next enforcement of FRi exactly at t + δi(t) thus creating a long contiguous

sleep interval [t, t+ δi(t) + ∆i] for Di (Lines 2-8).

Next both the set of devices in A′ for which FR postponements were not possible and

the set of devices in A′ that have no associated FRs are considered. For every such device a

transitioning decision is made based on the information, δi(t), estimated by the prediction

mechanism (Lines 9-14). Note that by handling the DPM of devices for which FRs can be

enforced prior to handling the DPM of other devices, DeviceCntrlRoutine() helps use the

information of enforced FRs in determining δi(t).

Notice that δi(t) may increase with new job arrivals due to the workload of newly

arriving high priority jobs. Thus, when DeviceCntrlRoutine() is invoked with action set to

ACTIVATE at time t, among the devices that need to be transitioned to active state only

those whose sleep intervals cannot be extended are transitioned. The remaining devices can

remain in sleep state and their reactivation timers are updated accordingly based on their

respective extended intervals. Also, FRs are enforced if possible to further elongate device

sleep periods (Lines 16-25).

Complexity: The run-time complexity of DeviceCntrlRoutine is mainly constrained by

the computation overhead involved in computing δi(t) for all system devices at time t. Next

90

it is shown how this can be done in O(n log n) time using appropriate data structures. Before

invoking DeviceCntrlRoutine at a given scheduling point some pre-processing is done and

two temporary data structures: c-array and v-array are constructed. These data structures

are destroyed at the end of DeviceCntrlRoutine.

c-array is constructed using the ready queue. Each node in the c-array has two asso-

ciated values: deadline (d) and cumulative interference (CI). The cumulative interference

on a job represents the total interference from the remaining worst case execution times

of all high priority jobs currently in the ready queue. If the ith node in the ready queue

contains job Jk, then Cr
k will be denoted as xi (i.e. xi = Crk). The c-array is constructed

in the following way: for each entry k in the ready queue create an entry in the c-array

with the corresponding deadline and cumulative interference CIk =
k
∑

j=1
xj. Notice that the

cumulative interference of the c-array nodes can be recursively defined as:

CI1 = xi

CIi = CIi−1 + xi

Thus, building the c-array takes O(n) time and further its entries are sorted in order of

deadlines (since they are constructed using the ready queue).

The v-array is constructed using the c-array. The ith node in the v-array represents the

interference for the unfinished job instance of Ti from high priority jobs currently in the

ready queue. This value can be obtained by performing a binary search like interpolation

on the c-array using as key the deadline of the unfinished job instance. As such, computing

value for each node of the v-array takes O(log n) time making the total complexity of

creating the v-array O(n log n).

Once pre-processing is done and the v-array is constructed, computing V ki takes constant

time while computing Wk
i takes O(m) time. Therefore, computing δi(t) takes O(n +mn)

time. Since there are at most m devices computing all δi(t) values takes O(mn+m2n) time.

91

Since m is usually small, for all practical purposes this complexity can be considered O(n).

Thus, the overall complexity of DeviceCntrlRoutine is constrained by the pre-processing

phase and is O(n log n).

Dynamic Voltage Scaling

Many DVS schemes adopt a nominal (default) frequency fnom [11,101,109] that is statically

computed. In DFR-EDF framework, fnom is determined using the DetermineEMPRoutine()

routine as described in Section 5.4.2. It has been well-established that aggressive slowdown

will affect system energy negatively and hence, at run-time, the frequency should not be

lowered below a certain energy-efficient threshold [10, 41, 71]. DFR-EDF adopts the sys-

tem energy-efficient scaling technique given in [41]. In that technique, an energy-efficient

frequency threshold (fthres) is calculated dynamically based on the power characteristics of

both the processor and the devices in active state, at job dispatch times. The processor

frequency is never reduced below this threshold.

Specifically, consider a DVS-enabled CPU where there are k discrete frequency levels

l1, . . . , lk = fmax. Then, fthres at time t is calculated as the frequency f ∈ {l1, . . . , lk} that

minimizes Ē(f) given by the expression:

Ē(f) = (Pcpu +
∑

Di∈A
(P ia − P is)) ·

1

f
(5.2)

In the above expression, A represents the active device set at time t and Pcpu denotes

the CPU power consumption at maximum CPU frequency. Thus, Ē(f) approximates the

total system energy consumption per unit of execution at frequency f . Since in practice

both the number of system devices and the number of discrete CPU operation modes are

relatively small, [41] provides offline pre-processing methods to determine fthres in constant

time during execution.

At run-time, the dispatch frequency of a job is calculated as max(fnom, fthres). This

ensures both the feasibility and dynamic energy-efficient frequency constraints are met.

92

Generalized Slack Reclaiming

As many real-time tasks complete early at run-time, detecting and reclaiming unused CPU

time (slack) has been a major tool for dynamic DVS schemes [11, 101, 132]. These schemes

typically incorporate mechanisms to decide on the amount of slack that can be reclaimed

without compromising the feasibility, before the CPU frequency is reduced. Dynamic slack

can be also exploited by DPM techniques to increase the length of device idle intervals by

delaying task executions [40]. DFR-EDF has a built-in mechanism that can be used to

keep track of and reclaim dynamic slack, for DVS or DPM. However, possibly the most

novel aspect of DFR-EDF’s generalized reclaiming mechanism is that, whenever possible,

it allows the use of the same dynamic slack for both DVS and DPM (i.e. for both lowering

the processor frequency and increasing the idle intervals of devices).

First a motivation example is given to illustrate this novel aspect. Figure 5.13 shows the

schedule of three ready jobs with decreasing priority at time t under worst-case workload.

Each job requires a worst-case execution time of 10 units under their nominal frequency

assumed to be fmax = 1. Jobs J1 and J3 use device D1 with break-even time 12 units, while

J2 uses no device. D1 has no associated FR and is in active state at time t.

�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������

t+10t t+30t+20t+3

J1 J2 J3

Figure 5.13: Reclaiming for both DVS and DPM

Assume J1 completes early at time t1 = t+ 3, creating a dynamic slack of 7 units. At

time t1, J2 will be dispatched and D1 is no longer in use. Thus, the system needs to make

a decision on whether or not to transition D1 and decide on the processor frequency for

executing J2. Notice that at time t1, if the dynamic slack is ignored, the device idle interval

length of D1 is predicted to be 10 units (the worst-case execution time of J2) which is

smaller than the break-even time of D1. Hence, D1 would be kept in active state by a naive

93

predictive DPM policy. However, J3 can start as late as t + 20 without violating system

feasibility. Thus, by taking into account the dynamic slack of 7 units, one can transition

D1 at time t1, as delaying its usage until t + 20 for 17 units (which is greater than the

break-even time of D1) would still keep the system feasible. Also, J2 (dispatched at time

t1) can use the same dynamic slack of 7 units to lower its dispatch frequency to 10
17 . Thus,

the dynamic slack of 7 units from J1’s early completion has supported both DVS and DPM.

The details of DFR-EDF’s generalized slack monitoring and reclaiming mechanism are

now provided. To keep track of unused run-times a technique similar to that used in Dual

Speed Dynamic Reclaiming Algorithm (DSDR) [132] is adopted. When a job completes,

its remaining (unused) run-time is added to a data structure called the slack-queue. Each

element in the slack-queue has two components, one indicating the remaining run-time of the

job and the other indicating its deadline. The slack-queue is maintained in non-decreasing

order of deadlines. At time t, the remaining run-time of job Ji is denoted by rrti. At the

release time of Ji, rrti is set to Ci

fnom
. At time t, when Ji is being dispatched, let H denote

the set of elements in slack-queue with deadlines no greater than that of Ji. The slack

available to Ji at time t due to early completions is given by:

slacki =
∑

j∈H
rrtj (5.3)

Note that the remaining run-times of jobs and hence the slack-queue change with time and

need to be updated accordingly. Below are the rules for updating job run-times and the

slack-queue.

• When job Ji executes, as long as slacki > 0 it consumes run-time from the head of

the slack-queue. When slacki = 0, Ji consumes its own run-time rrti.

• During an idle processor cycle, run-time is consumed from the head of the slack-queue

(provided the slack-queue is non-empty).

94

• When the run-time of an element in the slack-queue is completely depleted it is re-

moved from the slack-queue.

Slack Reclaiming for DVS: Recall from Section 5.4.3 that C r
i represents the remain-

ing worst-case execution time of Ji under fnom. Further, from Section 5.4.3, when a job is

being dispatched at time t, the frequency is not reduced below the energy-efficient frequency

threshold (fthres). Thus, Ji with available slack slacki is dispatched at frequency:

f = max(
Cri

slacki + rrti
, fthres) (5.4)

The first component of Eq (5.4) is adopted from [132] where it is formally proved that this

frequency does not violate the system timing constraints. Since f in Eq (5.4) is no less than

its first component, it preserves system feasibility.

Slack Reclaiming for DPM: The slack that is available for a specific job at dispatch

time can be also used to improve the estimation of the maximum time a device can idle

without compromising the feasibility. Specifically, recall from Section 5.4.3 that V ki was

defined as the maximum time Di can remain in sleep state at time t without causing a

deadline miss for Tk and was computed through the total remaining workload of ready jobs

in HPk (jobs with higher priority than any unfinished job of Tk). Notice that the very same

principle can be applied to re-define Vki in a more precise manner: since in a pessimistic

scenario the job of Tk would have to be delayed until all high priority jobs complete with

their worst-case workload, delaying Tk during the unused run-times of such completed jobs

(i.e. effectively keeping Di in sleep state) would not hurt its feasibility. Let slackk denote

the sum of remaining run-times from all completed jobs that is available to the earliest

unfinished job instance of Tk. Vki is updated as:

Vki = max(Rk(t)− t, slackk +
∑

j∈HPk

Crj)

95

Event: Release of job Ji

1 rrti ← Ci

fnom

2 Insert Ji in Ready Queue

3 Scheduler()

Event: Completion of job Ji

1 Insert Jcurr to slack queue

2 Jcurr = null

3 if (ready queue = null)

4 DeviceCntrlRoutine(DEACTIVATE, null)

5 else

6 Scheduler()

7 end if

Event: Scheduled time to start device re-activation

1 DeviceCntrlRoutine(ACTIVATE, null)

Event: Completion of device re-activation

1 Scheduler()

Figure 5.14: DFR-EDF Run-Time Adjustments

96

GetNextEligibleJob()

1 E ← null

2 for each Ji in Ready Queue

3 if Di active ∀Di | Di ∈ γi
4 E ← E ∪ Ji
5 end for

6 return highest priority job in E
Dispatch(Ji)

1 DeviceCntrlRoutine(DEACTIVATE, Ji)

2 fthres ← f that minimizes Eq (5.2)

3 slacki ←
∑

Jk∈H
rrtk (from Eq (5.3))

4 f ← max(
Cr

i

slacki+rrti
, fthres) (from Eq (5.4))

5 Jcurr = Ji /* Update current job */

6 Dispatch Jcurr at smallest li ≥ f
Scheduler()

1 Jn ← GetNextEligibleJob()

2 if (Jn 6= null AND Jn 6= Jcurr)

3 if (Jcurr 6= null)

4 Preempt Jcurr

5 end if

6 Dispatch(Jn)

7 end if

Figure 5.15: DFR-EDF Run-Time Adjustments (continued)

97

One can create an additional c-array like data structure (as explained in Section 5.4.3)

but using the slack-queue. Further, an additional v-array like structure can be created

using this c-array build from the slack-queue to compute slackk in constant time. Since,

building these additional structures takes no more than O(n log n) time (Section 5.4.3), it

does not increase the run-time complexity of the pre-processing phase and hence that of

DeviceCntrlRoutine.

Figures 5.14 and 5.15 summarize the main principles behind the online component of the

DFR-EDF framework. Four events are defined corresponding to release of a job, completion

of a job, scheduled time at which a device in sleep state must start transitioning back to

active state and the time at which such a device re-activation completes. Figures 5.14 and

5.15 gives the rules and routines to be called at each of these events. Jcurr in the Figures

represent the current job in execution.

Routine GetNextEligibleJob() returns the current highest priority eligible ready job for

execution. A ready job is said to be eligible for execution if all its devices are in active

state. The Scheduler() uses the GetNextEligibleJob() routine to determine which ready

job to execute. In addition to invoking the Scheduler() at events corresponding to job

completion/preemption, it is also necessary to do so when a device in sleep state returns to

active state as this may make a higher priority job eligible for execution, hence necessitating

a preemption.

The DeviceCntrlRoutine() is called with option DEACTIVATE at job completion/dispatch

events, to try transition to sleep state, the devices that are unnecessarily active. Similarly, at

device re-activation times DeviceCntrlRoutine() is called with option ACTIVATE to begin

transitioning appropriate devices back to active state.

The initial run-time of jobs are set at their release times (Line 1, under job release

event) and jobs are inserted to the slack queue upon completion (Line 1, under job com-

pletion event). The slack queue is assumed to be updated according to the rules described

previously.

98

5.4.4 Experimental Evaluation

The experimental evaluation settings are the same as those described previously in Sec-

tion 5.3.4. As before, device specifications are as listed in Table 5.2 and the CPU power

consumption at maximum frequency is modeled after the Intel Xscale processor at 1.6W

[127]. In these experiments, the processor is assumed to operate at 10 discrete normal-

ized frequency levels [0.1, 0.2, . . . , 1]. In addition to DFR-EDF, four well-known energy

management algorithms are implemented:

• UNI-DVS (Uniform DVS) is the CPU energy management scheme based on [11]. UNI-

DVS scales the execution times of all tasks uniformly by setting the CPU frequency

to the minimum value that guarantees system feasibility (i.e. all jobs are dispatched

at frequency equal to system utilization). There is no DPM component in UNI-DVS

and all devices kept in active state at all times.

• UNI-DVS (Uniform DVS) is the CPU energy management scheme based on [11]. UNI-

DVS scales the execution times of all tasks uniformly by setting the CPU frequency

to the minimum value that guarantees system feasibility (i.e. all jobs are dispatched

at frequency equal to system utilization). There is no DPM component in UNI-DVS

and all devices kept in active state at all times.

• EEDS (Energy-Efficient Device Scheduling) scheme, adopted from [40], is a state-of-

the-art DPM-only scheme for dynamic priority systems and EDF scheduling. There

is no DVS component in EEDS and it is designed for systems where the device power

dominates over that of the CPU.

• DA-DVS (Device-Aware DVS) represents the schemes that exploit the concept of

energy-efficient scaling. The DVS algorithm was adopted from [10] which gives the

optimal task level slowdown factors by taking into account device energy-efficient fre-

quency thresholds. Though [10] does not consider the DPM-related issues, for com-

pleteness a DPM component was incorporated to DA-DVS. DA-DVS performs device

99

transitions based on the CEEDS (Conservative Energy Efficient Device Scheduling)

algorithm given in [41].

• SYS-EDF is a system-level energy management scheme with both DVS and DPM

components [41]. SYS-EDF performs DVS using the concept of energy-efficient scaling

and has a simple prediction-based DPM component that is applied at run-time.

In all schemes, when there is a sufficiently long processor idle interval, the CPU is

transitioned to its low-power state. CPU state transitions are assumed to incur energy

overheads, but have negligible latencies. In line with Intel Xscale [96,127] figures, the CPU

idle time threshold is set to 10ms, CPU transition energy overhead to 0.8mJ and CPU idle

power to 0.08W . The mean energy consumption and the corresponding confidence intervals

at 99% confidence level are reported.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d
 S

y
s
te

m
 E

n
e
rg

y

Utilization

UNI-DVS
DA-DVS

SYS-EDF
EEDS

DFR-EDF

(a) Impact of system utilization

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1 2 3 4 5

N
o
rm

a
liz

e
d
 S

y
s
te

m
 E

n
e
rg

y

WCET/BCET

UNI-DVS
DA-DVS

EEDS
SYS-EDF
DFR-EDF

(b) Impact of workload variability

Figure 5.16: Impact of System Utilization and Workload Variability

Figure 5.16(a) shows the relative performance of these schemes as a function of system

utilization with worst-case workloads. All energy values are normalized with respect to

the energy consumption of UNI-DVS at 100% system utilization. DFR-EDF provides clear

100

gains over all schemes throughout the entire spectrum. UNI-DVS performs poorly compared

to other schemes since it does not have a DPM component. Among the four schemes

with both DVS and DPM components, the performance of SYS-EDF and DA-DVS quickly

degrades at high utilization values, whereas DFR-EDF maintains its high performance.

This is because, with increasing utilization, the system has to use high frequencies and

hence becomes increasingly dependent on DPM (rather than DVS) for energy management.

Further, the DPM policy of SYS-EDF and DA-DVS is a relatively simple lookahead-based

prediction scheme.

DFR-EDF with its sophisticated DPM component effectively minimizes device energy at

high utilization values which translate to significant system energy savings. In fact, notice

that even EEDS with its more comprehensive DPM approach is able to outperform SYS-

EDF and DA-DVS at increasing utilization values when the latter’s processor energy gains

become less significant. By judicially combining DVS and DPM, DFR-EDF outperforms

all other schemes by margins of up to 20%.

Figure 5.16(b) shows the relative performance of schemes under variability in the actual

workload. This variability is controlled by modifying the worst-case to best-case execution

time ratio, WCET
BCET . The actual workload of each job is determined randomly at its arrival

time, according to a uniform probability distribution between BCET and WCET . Clearly,

the higher the WCET
BCET ratio, the larger the dynamic slack that can be used for additional

energy savings. In these experiments, the system utilization is fixed at 60% and all energy

values are normalized with respect to energy consumption of UNI-DVS at WCET
BCET = 1.

Notice that with increasing WCET
BCET ratio the energy consumption of all schemes decreases,

but relative improvements after a certain threshold become marginal. This is because with

ample slack, with DVS, tasks tend to run at energy-efficient frequency thresholds. Similarly,

for DPM, the idle interval of each device is naturally bounded by the periods of tasks using

it. As explained in Section 5.4.3, whenever possible DFR-EDF utilizes the same dynamic

slack for both DVS and DPM.

101

 0.5

 1

 1.5

 2

 2.5

 0.25 0.5 1 1.5 2 2.5 3

N
o
rm

a
liz

e
d
 S

y
s
te

m
 E

n
e
rg

y

Pa Scaling Factor

UNI-DVS
DA-DVS

SYS-EDF
EEDS

DFR-EDF

(a) Impact of Device Power

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0.25 0.5 1 1.5 2 2.5 3

N
o
rm

a
liz

e
d
 S

y
s
te

m
 E

n
e
rg

y

Pcpu Scaling Factor

EEDS
UNI-DVS
SYS-EDF
DA-DVS

DFR-EDF

(b) Impact of CPU Power

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0.25 1 3 6 9 12

N
o
rm

a
liz

e
d
 S

y
s
te

m
 E

n
e
rg

y

Esw Scaling Factor

EEDS
SYS-EDF
DA-DVS

UNI-DVS
DFR-EDF

(c) Impact of Device Transition Power

Figure 5.17: Impact of System Parameters

Figures 5.17(a), 5.17(b) and 5.17(c) show the impact of varying power characteristics

of system components. In these experiments the system utilization is fixed at 60% and

WCET
BCET = 1. In Figure 5.17(a), for each taskset and device usage pattern, the device active

power (Pa) of all devices is multiplied by a certain scaling factor and recompute the device

break-even times while keeping the processor power the same. That is, the higher the scaling

102

factor, the more dominant the device power. Similarly, in Figure 5.17(b), the processor

power consumption at the maximum frequency (Pcpu) is multiplied while keeping the device

power characteristics the same. And, in 5.17(c) the device transition power is multiplied,

which in turn effects device transition energy (Esw), while keeping all other parameters the

same.

In all these experiments, for each scaling factor the energy consumed by all schemes are

recorded. All energy values are normalized with respect to scaling factor of one (i.e. the

original device/processor parameters as in [40, 127]).

With decreasing Pa scaling factors or increasing Pcpu scaling factors, processor energy

consumption becomes more dominant and thus the role of DVS proves more crucial com-

pared to that of DPM in minimizing the system energy. Thus, at low Pa scaling factors

and high Pcpu scaling factors EEDS performs worse compared to all other schemes. In fact,

there are regions in Figures 5.17(a) and 5.17(b) where EEDS performs worse than UNI-DVS

which does not have a DPM component. Similarly, with increasing Pa scaling factors or de-

creasing Pcpu scaling factors, device energy consumption becomes more dominant and thus

DPM becomes critical for minimizing system energy. Thus, in these regions, EEDS outper-

forms both SYS-EDF and DA-DVS. However, due its inherent design features that exploit

DVS and DPM in a synergistic way, DFR-EDF maintains a robust performance through-

out all scaling factors – unlike other schemes, DFR-EDF does not suffer from excessive

degradations in settings where CPU or device power dominates.

In Figure 5.17(c), the energy consumption of all schemes, except UNI-DVS which has

no DPM component, increases with Esw. EEDS which is an aggressive DPM policy is most

sensitive to Esw scaling performing significantly worse than all other schemes at high Esw

values. SYS-EDF and DA-DVS end up performing atleast as worse as UNI-DVS (with no

DPM policy) at high Esw values. By accounting for device energy overheads in determining

the energy-efficient system configuration (Section 5.4.2), DFR-EDF outperforms all schemes

in the entire spectrum.

103

5.4.5 Integrating Resource Access Protocols to DFR-EDF

While certain I/O operations can be interrupted, others are inherently non-interruptable.

As such, in practice, it may not always be possible to preempt all system components and

resources at arbitrary times. For such non-preemptable serially re-usable resources, mutual

exclusion must be enforced at run-time.

To enforce mutual exclusion, several mechanisms are proposed including semaphores

and mutex locks [13, 83, 112]. Without loss of generality, one instance of each non-sharable

resource in assumed the system. This implies that binary semaphores can be used to en-

force non-preemptive execution while holding the resources. Specifically, there is a unique

and distinct semaphore Si associated with each non-preemptable serially re-usable resource

Di. Some resources may be still usable in preemptive fashion. Without loss of gener-

ality resources D1, . . . , Dh are assumed to be used in non-preemptive fashion; but re-

sources Dh, . . . , Dm can be used preemptively (1 ≤ h ≤ m). As a result, before using a

non-preemptable serially re-usable resource Di (i ≤ h), the requesting task has to execute

wait(Si) operation and it must release it by executing signal(Si) [83]. The initial value of

all binary semaphores are set to zero.

While the above solution effectively guarantees mutual exclusion on non-preemptable

serially re-usable resources, it introduces the well-known priority inversion problem. A high

priority job (Jh) is blocked from execution by a low priority job (Jl) which is holding a

non-sharable resource also required by Jh. While Jh is blocked by Jl, a medium priority job

Jm with priority greater than Jl, but smaller than Jh, arrives to the ready queue. Jm needs

no resources and hence is able to successfully preempt Jl and execute. Execution of Jm in

this scenario indirectly extends the blocking time of Jh. As a consequence of this priority

inversion problem, the high priority job Jh can potentially suffer from indefinite blocking.

This unbounded priority inversion problem can lead to potential deadline violations in real-

time systems. Several resource access protocols such are Stack Resource Policy (SRP) and

Priority Ceiling Protocol (PCP) have been proposed to eliminate the unbounded priority

inversion problem [13, 83, 112].

104

The following describes how to incorporate SRP to DFR-EDF framework, assuming that

each non-preemptable serially re-usable resource is accessed through wait() and signal()

operations on the corresponding binary semaphores.

The main idea behind SRP is to allow job executions only when all resources required

by the job are available. Thus, once a job begins execution it will not be blocked again

until it completes. This way, SRP ensures that job blocking times are bounded. In SRP,

each task Ti has a priority level and preemption level.

• Priority level of task Ti, denoted as pi, is assigned either statically or dynamically and

is dictated by the real-time scheduling policy.

• Each task Ti is statically assigned a preemption level based on its relative deadline.

Smaller the relative deadline of a task, higher it’s preemption level. All jobs of a task

share the same preemption level as that of the task. Preemption level of job J is

denoted by pl(J).

A job Ja is allowed to preempt a job Jb only if pl(Ja) > pl(Jb). To solve the unbounded

priority inversion problem, SRP uses the concept of resource ceiling and system ceiling.

Resource ceiling of resource Di, denoted by cli, represents the highest preemption level

of jobs that could be blocked on Di. If Di is available cli = 0. Otherwise,

cli = max{pl(J) | Di blocks J}

System ceiling is a time-varying quantity that is defined as clsys = max(cl1, . . . , clm).

In SRP a job J can preempt/start execution only when the following condition holds:

• J has the highest priority among all ready jobs.

• Preemption level of J is greater than the current system ceiling (i.e. pl(J) > clsys).

Direct application of SRP in DFR-EDF settings is not sufficient. To illustrate this fact,

consider the following example scenario. At time t, there are no ready jobs and a DFR

105

is enforced for resource D1. The DFR activation for D1 will be in effect in the interval

[t, t1]. Now at time t2 (t < t2 < t1), job J1 using resources D1 and D2 arrives. J1 is blocked

from execution until time t1 by the FR enforced for D1. Now, assume another job J2

using resources D2 and D3 arrives to the system at time t3 (t2 < t3 < t1). At time t3,

both resources required by J2 are available and the rules of SRP as described above do not

prevent the execution of J2 at time t3. However, if J2 executes beyond t1 (the time at which

FR activation for D1 will end), it can block the execution of J1 (due to shared resource

D2), thereby extending the blocking time of J1.

As seen from the above example, with DFR’s, the system must be careful in executing

a low priority job Ji during the duration of a forbidden region activation FRj , even if all

resources needed by Ji are currently available. This is because, allowing such an execution

can potentially lead to unbounded priority inversion, if Ji is also subsequently preempted

by other jobs. The solution to this problem is based on the observation that an active DFR

effectively blocks a job Ji which may arrive during its enforcement. Hence the resource

ceiling definition must be updated accordingly to address unbounded priority inversion

problem. The definition of resource ceiling is modified as follows:

Resource ceiling of resource Di, denoted by cli, represents the highest preemption level

of jobs that could be blocked on Di. If Di is available and has no FR enforced cli = 0.

Otherwise, cli = max{pl(J) | Di blocks J}.

The definition of system ceiling and scheduling rules remain the same as described above.

Note that with this modification, in the above example, when an FR is enforced for

D1 at time t, the system ceiling is raised to at least the resource ceiling of D1 (i.e.

clsys ≥ cl1 ≥ pl(J1)). This prevents J2 from executing at time t3 as pl(J2) < pl(J1) ≤ clsys.

For each task Ti, bi is defined to be the maximum resource blocking time. bi is calculated

exactly the same way it is done with SRP [13]. In a scenario where both preemptable and

non-preemptable resources are present, the value attributed by preemptable resources in

the calculation of bi is assumed to be zero.

Theorem 5. Given a set of periodic tasks ψ = {T1 . . . Tn} arranged in non-decreasing order

106

of periods, and a set of forbidden regions φ = {(∆1,Π1) . . . (∆m,Πm)}, the periodic task set

ψ can be scheduled by DFR-EDF and DFR-SRP if,

bk
Pk

+
∑

i∈Υk

(
∆i

Πi
+

∆i

Pk
) +

k
∑

j=1

Cj
f · Pj

≤ 1 k = 1 . . . n

The full proof of Theorem 5 is given in Appendix D.

5.5 Chapter Summary

This chapter proposed a novel device forbidden region (DFR) based approach to RT-DPM.

Using the DFR approach system-level energy management frameworks were developed,

DFR-RMS for fixed priority systems and DFR-EDF for dynamic priority systems. The

device energy minimization problem for general periodic tasks (even in the absence of DVS)

was formally shown to be NP-Hard in the strong sense. Also, it was formally proved that

developing an exact feasibility test for preemptive EDF scheduling and DFRs is co-NP-

Hard in the strong sense. Sufficient feasibility tests were developed for a set of periodic

real-time tasks scheduled with RMS and EDF in the DFR framework. Using this test, an

algorithm was provided to determine the DFR configuration and processing frequency for

efficient integration of DPM and DVS in a single framework. Further, online components

were developed to integrate predictive DPM policies and use slack reclaiming for both DVS

and DPM simultaneously at run-time. Simulation results indicate that DFR-RMS and

DFR-EDF offers significant energy gains over state-of-the-art energy management schemes.

Finally, the well known Stack Resource Policy was modified for use in conjunction with

DFR-EDF to handle non-preemptable serially re-usable resources.

107

Chapter 6: Energy Management of Periodic Real-time Tasks

on Chip-Multiprocessors

6.1 Introduction

The focus of this chapter is the effective system-level energy management of periodic real-

time tasks on a set of homogenous processing cores that share the same supply voltage and

frequency. The proposed framework assumes partitioned scheduling based on preemptive

EDF policy on each core.

The global DVS model poses a number of challenges that only very recently started to

attract attention [73,110,129]. To start with, under the global voltage/frequency constraint,

the core with the maximum load at a specific time becomes the main deciding factor in

the overall CMP energy consumption [110, 129]. This suggests the importance of load

balancing [66, 110, 129]. However, the frequency-independent power characteristics (which

limit the efficacy of DVS) may vary over time, complicating the problem. In addition, while

parallelism in general helps to save energy [12,37,135], the increasing core-level static power

trends effectively limits the energy-efficient parallelism level: for light workloads, it can be

more energy-efficient to use only a subset of cores (and put others to low-power states), as

opposed to keeping all cores in active state [26, 94, 114].

This chapter addresses two primary problems in the energy management on CMP plat-

forms. The first one is energy-efficient core activation and task allocation: to determine, for

a given workload, the energy-optimal number of cores to activate and further, the mapping

of tasks to active cores. The other problem is the run-time dynamic energy management

through coordinated DVS and core idle state transitions.

108

6.2 CMP System Model

6.2.1 Processor Model

The system has a set of n periodic real-time tasks ψ = {T1 . . . Tn} that are partitioned upon

m homogeneous processing cores C1 . . . Cm. ψi denotes the subset of tasks allocated to core

Ci. As before, Ti is defined by the parameters Ci and Pi. The load on core Ci is defined as

the total utilization of tasks allocated to Ci, namely, σi =
∑

Tj∈ψi

Uj ≤ 1.

6.2.2 Power Model

As in [73,110,129], the CMP platform is assumed to have the Global DVS feature, that is,

the voltage can be adjusted for all active cores uniformly, along with the frequency (up to

an upper bound fmax).

ACPI defines an active state in which the core executes instructions. The exact power

profile in active state (defined as state C0 in ACPI) will consist of static and dynamic

power figures. In the active state, by using the power model from [10, 105, 137], the power

consumption of a core Ci executing task Tj is modeled as:

Pi(t) = Pstatic + ajV
2f + P jind

where ajV
2f and P jind represent the frequency-dependent and frequency-independent com-

ponents of active power, respectively. V denotes the supply voltage and f denotes the CPU

clock frequency. aj is the effective switching capacitance of Tj . Note that the values of aj

and P jind depend on the characteristics of the task Tj executing on core Ci at a given time.

In Global DVS settings, all active cores are inherently constrained to operate at the

same supply voltage and frequency level [73,110,129]. Given the almost-linear relationship

between the supply voltage and frequency, the power consumption of the active core Ci at

109

time t can be expressed as:

Pi(t) = Pstatic + ajf
3 + P jind (6.1)

The aggregate power consumption of all the cores varies with time and is a function of

individual core states and the global operating frequency of all active cores. Let H be the

hyperperiod of the task set ψ. The energy consumption of the system over the interval

[0,H] is given as:

E =

∫ H

0

m
∑

i=1

Pi(t) dt

When a core is not executing any instructions, it may be put in one of the various idle

states [139]. Each idle state has a different power consumption characteristic; as a general

rule, the lower power consumption in a given idle state, the higher the time and energy

overheads involved in returning to the active state. While the exact number of idle states

varies from architecture, this work assumes the existence of at least the following three

fundamental states that are supported by most modern multicore systems (including Intel

Core 2 Duo, Intel Xeon, most recent Intel i7-Nehalem lines):

• Halt state: In this state, the execution of instructions is halted and the core clocks

are gated, resulting in significant reduction in dynamic power. The core can return

to active state almost instantaneously (≈ 10ns) [77,139]. The power consumption on

core Ci in the halt state is given by Pi = Pstatic + P0, where P0 is the reduced dynamic

power.

• Sleep state: Here, further, the Phase Locked Loops (PLLs) are gated and L1 cache

contents are invalidated. In this state, dynamic power is eliminated thus making

Pstatic the only component of power consumption. However, this saving in power

consumption comes at the cost of addition overheads compared to the halt state.

110

Returning to active state may require a few hundred microseconds and involves non-

trivial energy overheads [95, 139].

• Off state: Here, the core voltage is reduced to very low levels, to make even the static

power consumption negligible. CPU context is not preserved and returning to active

state involves significant time and energy overheads [139]. Intel’s new i7 architecture

achieves this very low energy consumption through power gating feature [77].

Table 6.1 provides a summary of the additional notations used in this chapter.

Ci Core i

P iind Frequency-independent power of task Ti
ai Effective switching capacitance of task Ti

fee(t) Global energy-efficient frequency

σi Load on Ci
σ(t) Maximum load among all active cores

σ∗i Effective load on Ci
σ∗(t) Maximum effective load among all active cores

ψi Set of tasks allocated to Ci

Table 6.1: Notations

6.3 Global Energy-Efficient Frequency

Existing DVS studies for uni-processor systems established that the frequency-independent

dynamic power (Pind) implies the existence of a energy-efficient frequency (also called critical

frequency) threshold below which DVS is no longer effective from the system-level energy

point of view [10,71,137]. This is because, with decreasing frequency, the gains in frequency-

dependent dynamic energy can be offset by the excessive increase in frequency-independent

dynamic energy after some point. Further, as different tasks may have different power

characteristics, the energy-efficient frequency is task-dependent [10]. In [137], the value

of the energy-efficient frequency for task Ti with effective switching capacitance ai and

frequency-independent power P i
ind was given as

3

√

P i
ind

2·ai
.

111

T1

t 1 t 2

Core 1

Core k

2

kT

t t1

Figure 6.1: T1, . . . , Tk running in parallel

However, in CMP platforms, with the unique voltage and frequency constraint, this

concept needs to be re-visited. Consider k ≤ m active cores, where core Ci executes task Ti.

Let the set of tasks T (t) = {T1 . . . Tk} run in parallel from t1 to t2 as shown in Figure 6.1.

During this concurrent execution, Ti completes ci cycles of its workload. If f denotes

the global operating frequency in interval [t1, t2], the total dynamic energy consumption in

this interval is given by:

E′ =

k
∑

i=1

(aif
3 + P iind) ·

ci
f

=

k
∑

i=1

(aif
2 +

P iind
f

) · ci

It can be easily verified that E ′ is a strictly convex function of f . Thus, setting the first

derivative of E ′ to zero gives the global energy-efficient frequency threshold for the k active

cores at time t as:

fee(t) = 3

√

Pind(t)

2 · a(t) (6.2)

where Pind(t) =
k
∑

i=1
P iind and a(t) =

k
∑

i=1
ai.

Note that the global energy-efficient frequency level is potentially different from the

energy-efficient frequency levels of tasks executing in parallel. In other words, global energy

management may mandate the use of frequency levels that are below individual tasks’

energy-efficient frequency thresholds.

112

Remark 3. The global energy-efficient frequency threshold depends on the frequency-dependent

active power and effective switching capacitance of the set of currently executing tasks on

all active cores. Since the set of tasks executing in parallel changes with time, the global

energy-efficient frequency threshold is time-dependent.

Consequently, at the scheduling points that correspond to job completion, dispatch and pre-

emption events, the global energy-efficient frequency should be re-computed. This operation

will take at most O(m) time at each scheduling point.

Remark 4. The timing constraints of the task set may require using a frequency-level higher

than fee(t) at time t. The time-dependent global energy-efficient frequency level indicates a

lower bound that should not be violated even if timing constraints allow.

6.4 Components of Coordinated Power Management

Effective and coordinated power management of multiple processing cores to execute a given

workload involves two main dimensions: statically making core activation and task-to-core

allocation decisions, and dynamically managing the activated cores. Note that since a

partitioned-based approach is assumed, the allocation of the periodic tasks to cores is done

statically and run-time migration of tasks is not considered.

6.4.1 Energy-efficient Core Activation and Task Allocation

In general, the number of available processing cores (m) may be greater than the minimum

number of cores upon which the given real-time workload can be scheduled in feasible

manner. While the early studies that exclusively focused on dynamic power [4,12] suggested

using all processing elements in parallel whenever possible, ever-increasing static power

figures [26, 94] renders such an approach infeasible.

The power consumption of a given core can be minimized (in fact, effectively eliminated

through techniques such as power gating in Intel i7 architecture [77]) when it is put to off

state (Section 6.2). In active, halt and sleep states, the static power would be consumed

113

continuously. This is because the periodic nature of the real-time application and signifi-

cant time/energy overheads associated with transitions to/from off state make dynamically

putting a core to off state at run-time an unrealistic option. As a result, instead of activat-

ing a core with light workload (with corresponding static energy consumption), it would be

preferable to move that workload to other cores when possible. Obviously, a correlated and

major issue is to perform task allocation on the selected cores to preserve feasibility and

prepare favorable initial conditions for run-time management of dynamic energy.

Thus, the offline phase can be seen as an integrated component that decides on task-

to-core allocations while keeping an eye on total (i.e. static+dynamic) potential energy

consumption. The k ≤ m cores selected by this phase will be activated and then will be

managed by the run-time component. The remaining (m−k) cores are put to off state with

negligible power consumption.

6.4.2 Run-time Power Management of Active Cores

The run-time management of the selected k ≤ m cores involves the use of Global Voltage

Scaling as well as selectively putting some cores to halt and sleep states (Section 6.2) to

reduce dynamic energy. To start with, the global frequency level that determines the dy-

namic power consumption at time t is decided by the highest performance level required

by any core in active state at time t (Equation (6.1)). This requires both closely monitor-

ing the workload conditions on all cores and exploiting the available idle states whenever

possible. As an example, if the core that requires highest performance level (e.g. highest

frequency level for the feasibility of its workload) is put to halt or sleep state temporarily,

the frequency can be reduced to the next highest performance level required by any of the

remaining cores during that interval. In addition, putting any core to halt and in particular

sleep states have the potential of reducing dynamic energy consumption for all the cores

through reducing the global energy-efficient frequency as well (Section 6.3).

Sections 6.5 and 6.6 give a detailed discussion of these two fundamental dimensions.

Since solving to the problem of energy-efficient core activation depends on some important

114

dynamic energy consumption approximation formulas that are driven by the results of

Section 6.5, first that component is considered.

6.5 Run-time Coordinated Power Management

This section assumes that k ≤ m cores are selected for the execution of the periodic workload

and that task-to-core allocations are already performed by the static phase.

6.5.1 Exploiting Core Idle States at Run-time

In general, any of the k cores can be occasionally put to halt and sleep states when they have

no ready task to execute, with corresponding gains in dynamic energy at the related core.

While transitioning to sleep state provides higher dynamic energy savings, more significant

time and energy overheads associated with that transition requires a more careful evaluation

(Section 6.2). In fact, there exists a minimum length of idle interval, denoted by Ithres,

that justifies transitioning a core to sleep state [73]. Thus, an idle core can be put to sleep

state in energy-efficient manner if and only if its predicted length of idle interval is no less

than Ithres.

To preserve the feasibility of the workload, a simple scheme is provided to compute the

predicted length of the idle interval. The earliest time in future an idle core will have to

execute a task is constrained by the earliest next release time among all jobs allocated to

that core. This value provides a safe lower bound on the minimum length of idle interval

and hence can be used for making safe core state transitioning decisions. Let nrtj denote

the earliest time in future a job of task Tj may be released. Then, at time t, the minimum

length of idle interval for an idle core Ci is given as:

δi(t) = min(nrtj)− t, j|Tj ∈ ψi

where ψi denotes the set of tasks allocated to Ci. An idle core Ci will be transitioned to

sleep state if and only if δi(t) ≥ Ithres. Following this, a timer is set to appropriately start

115

transitioning Ci back such that it will be active and ready to execute jobs at time t+ δi(t)

which marks the end of its idle interval. On the other hand, if δi(t) < Ithres then Ci is simply

put to halt state, which involves negligible transition overheads [139]. Finally, note that the

run-time overhead of making this decision is constrained by the complexity of computing

δi(t). On each core, one can always update the information about the next earliest job

release time in the future (min(nrtj)) at job release times in O(1) time. Thus, core state

transition decisions can be done in constant-time.

Remark 5. Core state transitions to halt or sleep states not only help reduce power at

the core-level but may potentially provide additional savings for the entire system, since the

global energy-efficient frequency may be effectively reduced.

6.5.2 Coordinated Voltage and Frequency Scaling (CVFS) Algorithm

Recall from Section 6.3 that running all the active cores at fee(t) at all times minimizes

the dynamic energy. However, obviously, this does not necessarily guarantee the feasibility

of the workload. Since fee(t) is time-dependent, computing the optimal feasible frequency

f(t) ≥ fee(t) to minimize energy in the long-run poses great challenges. Hence, a more

direct but efficient approach is taken.

The feasibility on each active core Ci is guaranteed as long as its operational frequency

is no smaller than is total load [11, 101], i.e. f(t) ≥ σi preserves the feasibility on core Ci.

Let σ(t) denote the largest load value among all active cores, i.e.

σ(t) = max(σi), i|Ci is active

CVFS consists in setting f(t) = max(σ(t), fee(t)) to preserve the feasibility of all active

cores without violating the energy-efficient frequency constraint. Recall that the scheduling

points and core state transitions that can potentially change the set of simultaneously

executing tasks may have an impact on the global energy-efficient frequency threshold fee(t).

Thus, f(t) needs to be re-computed at these important events. Note that the new value of

116

f(t) can be evaluated in time O(m) at each scheduling point.

6.5.3 CVFS*: Adapting to Dynamic Load Conditions

CVFS is based on using the static load values of active cores at run-time. The load σi = Ci

Pi

corresponds to the worst-case utilization of the task set ψi on the core Ci. While this is a

safe approach, there are potential benefits of computing the instantaneous load σ∗
i , which

may differ from σi for two reasons:

• Some jobs may not take their worst case cycles and complete early. Due to this unused

CPU time, in some intervals, the instantaneous load may be less than σi.

• Due to the constraints imposed by fee(t) and global voltage/frequency, a given core

may be forced to execute at frequency levels higher than what is necessary to preserve

its own feasibility. Hence, its remaining workload may be lower than σi in some

intervals.

The algorithm CVFS* is based on maintaining a reasonably accurate estimation of the

core-level instantaneous loads σ∗
i and reducing the frequency below what is suggested by

CVFS when the conditions allow.

Exploiting task early completions. In this direction, the well-known cycle conserving

EDF (cc-EDF) algorithm (which is originally proposed for uni-processor systems [101]) is

extended to multicore environments with global energy-efficient frequency awareness.

Specifically, for each task Tj on core Ci, uj(t) is defined as its effective load at time t.

Let wccj denote the worst-case number of CPU cycles required by task Tj at the maximum

CPU frequency fmax. Formally, wccj = Cj · fmax. Then, the rules to update uj on core Ci

are given as [101]:

• When a job of Tj is released, uj is reset to
Cj

Pj
.

• When a job of task Tj released at time r completes after executing accj ≤ wccj cycles,

it has effectively consumed accj CPU cycles in the interval [r, r + Pj]. Thus, the

117

effective load of Tj over this interval is
accj

fmax·Pj
and not necessarily its worst-case

workload
Cj

Pj
. Hence, when a job of Tj completes, uj is set to

accj
fmax·Pj

.

Given this, the instantaneous effective load σ∗
i on Ci is defined as σ∗i =

∑

Tj∈ψi

uj . Also,

let σ∗(t) be the maximum effective load at time t among all active cores, i.e.

σ∗(t) = max(σ∗i), i|Ci is active

σ∗i is updated on Ci at events corresponding to job completions and job arrivals. Now

consider the frequency assignment where at time t, all active cores are executed at frequency

f(t) given by:

f(t) = max(σ∗(t), fee(t)) (6.3)

Proposition 7. At any time t, executing core Ci at f(t) = σ∗(t) preserves the feasibility of

task set ψi.

Proof. The feasibility of task set ψi is preserved as long as the operating frequency f(t) on

core Ci at time t, satisfies the constraint f(t) ≥ σ∗
i . This follows from the correctness of

cc-EDF [101]. Since σ∗(t) ≥ σ∗i , executing core Ci at f(t) ≥ σ∗(t) ≥ σ∗i preserves feasibility

of task set ψi.

Corollary 4. At any time t, executing all active cores at f(t) = max(σ∗(t), fee(t)) preserves

the overall feasibility.

Refining the load estimation. Since all active cores are constrained to run at the same

global frequency, typically many cores will operate at a processing frequency higher than the

level necessary to guarantee the timing constraints of their remaining workload. This fact

can be exploited to further refine the estimate of σ∗
i , providing additional energy savings.

The basic principle is given below:

118

f = 0.5

4

4

40

0 14

14 20

20

200

(a) Reclaiming the dynamic slack

f = 0.5

f = 0.2

T1

T2

T4

3τ

τ4

4

4

40

0

20

20

200

18.3

18.3
(b) Refining the effective load estimation

f = 0.14

T1

T2

T4

τ3

τ4

Core 1

Core 2

Core 3

Core 1

Core 2

Core 3

Figure 6.2: An example with four tasks and three cores

On core Ci, the execution at a frequency higher than σi may be seen as equivalent to

executing a smaller workload at speed σi. In other words, speeding up a task on core Ci
can potentially be considered as an event of early task completion, even if tasks exhibit their

worst-case workload.

The following example illustrates this point. Figure 6.2 shows a CMP with three

cores. C1 has one task T1 (C1 = 10, P1 = 20). C2 has two tasks T2 (C2 = 2, P2 = 20) and

T3 (C3 = 2, P3 = 20). C3 has one task T4 (C4 = 4, P4 = 40). Thus, the initial effective

loads on the cores are given as σ∗
1 = 0.5, σ∗2 = 0.2 and σ∗3 = 0.1. It is assumed that

fmax = 1.0 GHz. For simplicity, assume a = 1 and Pind = 0 for all tasks. Also, the

actual execution of T1 on C1 at fmax is limited to 2 units while all other tasks exhibit their

worst-case behavior.

At time t = 0, T1, T2 and T4 are dispatched on C1, C2 and C3 respectively at f = 0.5 GHz.

At time t = 4, T1 and T2 complete. Observe that at this point, the slack reclaiming rules

that are previously provided would make no change to the effective load of C2 as T2 took its

119

worst-case workload. Thus, if one estimated the effective load on a core using the previous

rules, then at t = 4, T3 and T4 would be dispatched at f = 0.2 GHz as shown in Figure

6.2(a).

However, observe that in the interval [0, 4], T2 executed at f = 0.5Ghz, which is higher

than 0.2 GHz which is sufficient to maintain the feasibility of the workload on C2. Since

at f = 0.2 GHz, T2 would have executed only 0.8 × 109 cycles in the interval [0, 4], one

can potentially see the completion of T2 as an early completion at f = 0.2 GHz. Hence, at

t = 4, σ∗2 can be set to 0.8
20 + 2

20 = 0.14. Thus, at t = 4, both T3 and T4 would be dispatched

at f = 0.14 GHz as shown in Figure 6.2(b), increasing the energy savings.

The following describes how to update σ∗
i at run-time according to these principles.

Without loss of generality, assume a job of Tj executes on core Ci in p contiguous execution

intervals, denoted by {e1 . . . ep}. During each contiguous execution ek, let Tj consume atk

units of CPU time at frequency fk. For each ek, one can compute the workload (ack) Tj

would have completed at frequency σi in atk time units, by setting ack = atk · σi. The

cumulative workload completed by Tj corresponding to the contiguous execution sequence

{e1 . . . ep} is given by:

cj =

p
∑

k=1

ack =

p
∑

k=1

(atk · σi)

The operating system can keep track of and update cj for each task Tj appropriately

at task preemption and completion points. Thus, the rules to update uj can be re-defined

(refined) as:

• When a job of Tj is released, set uj =
Cj

Pj
.

• When a job of task Tj completes, set uj =
cj

fmax·Pj
.

Figure 6.3 shows the pseudo-code for CVFS*. The function AdjustFrequency() recom-

putes the global energy-efficient frequency threshold based on Equation (6.2) in Section 6.3

120

Function AdjustFrequency():

1 Set p = 0

2 Set a = 0

3 for each active core Ci on which Tj currently runs

4 Set p = p+ P jind

5 Set a = a+ aj

6 Set σ∗i =
∑

Tk∈ψi

uk

7 Set σ∗(t) = max(σ∗i), i|Ci is active

8 Set fee(t) = 3

√

p
2·a

9 Set f(t) = max(σ∗(t), fee(t))

At job arrival of Tj on core Ci:

1 Set uj =
Cj

Pj

2 AdjustFrequency()

At state transition of core Ci to active state:

1 AdjustFrequency()

At job completion of Tj on core Ci:
1 Set uj =

cj
fmax·Pj

2 if ready queue is empty

3 Set δi(t) = min(nrtk)− t, k|Tk ∈ ψi
4 if δi(t) ≥ Ithres
5 Transition Ci to sleep state

6 Set timer to transition Ci back

7 else

8 Transition Ci to halt state

9 AdjustFrequency()

Figure 6.3: The pseudo-code of CVFS*

121

and the maximum effective load σ∗(t) among all active cores. The new global frequency

f(t) is then easily calculated by taking the maximum.

An event corresponding to either job arrival or completion may change uj , which in turn

may trigger changes in the effective load of Ci and hence f(t). Also, as mentioned before,

events corresponding to job completions, job preemptions and core state transitions have

the potential to change fee(t) and hence f(t). Thus, at these events the AdjustFrequency()

function is called.

Since core-level power state transitioning decisions can be made in O(1) time (Section

6.5.1), the complexity of CVFS* is determined by the complexity of AdjustFrequency()

function. Observe that the value of σ∗
i on each core Ci can be updated at job completion

and job arrival events and kept track of in constant time. Thus, when AdjustFrequency()

is called σ∗ and fee(t) can be re-computed in O(m) time. Hence, the overall run-time

complexity of CVFS* is O(m) at each scheduling point.

6.5.4 Experimental Evaluation

This section evaluates the performance of the algorithms with the help of a discrete-event

simulator. For 2- and 8-core systems, synthetic task sets each with 20 and 50 tasks, respec-

tively are generated. P i
ind values were randomly chosen in the range [0, 0.2]. The power

consumption at fmax on each core is assumed to be 1W . Power consumption of cores is

sleep state is assumed to be 5mW . The break-even time for core transitions to sleep state

is taken as 1ms and the energy overhead associated with such transitions is assumed to be

0.5mJ . Task periods were generated randomly in the interval [25ms, 1300ms]. Task uti-

lizations are randomly generated using uniform distribution and task worst-case execution

times are computed as the product of task utilizations and task periods.

The reported energy consumption values are normalized with respect to the base scheme

which executes all tasks at fmax at all times (no power management). Previous studies on

energy minimization on multi-processor systems [4,110] showed that the maximum allowable

utilization of a task (denoted as α) is an important parameter for performance. As a

122

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

Normalized Utilization

CVFS (α = 1.0)
CVFS (α = 0.7)
CVFS (α = 0.5)
CVFS (α = 0.3)

(a) 2 cores

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

Normalized Utilization

CVFS (α = 1.0)
CVFS (α = 0.7)
CVFS (α = 0.5)
CVFS (α = 0.3)

(b) 8 cores

Figure 6.4: Impact of Utilization

result, the impact of this task utilization factor α is also investigated. In the experiments,

normalized utilization refers to the quantity Utot

m , where m is the number of cores on which

the workload is executed. For each normalized utilization and α pair, 1000 task sets are

generated; the data points in the plots reflect the average of these runs. Also, the confidence

intervals at 99% confidence level are reported. The results show only dynamic energy

consumption; the static power that is continuously consumed by all active cores is not

included.

First, the behavior of CVFS over the normalized utilization spectrum. In these exper-

iments, all tasks complete their worst-case workload. Task allocation to m cores is done

using Worst-Fit-Decreasing (WFD) heuristic which is known to generate better-balanced

partitions [4, 12].

Figures 6.4(a) and (b) show the impact of normalized system utilization on CMP with

m = 2 cores and m = 8 cores for various α values, respectively. It can be seen that the

CVFS scheme provides significant overall system energy savings. With increasing normal-

ized utilization values, the gains of CVFS decrease as high frequency is often needed to meet

123

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

η

CVFS (α = 1.0)
CVFS* (α = 1.0)
CVFS (α = 0.3)
CVFS* (α = 0.3)

(a) normalized utilization 0.8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

η

CVFS (α = 1.0)
CVFS* (α = 1.0)
CVFS (α = 0.3)
CVFS* (α = 0.3)

(b) normalized utilization 0.4

Figure 6.5: Impact of workload variability (2 cores)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

η

CVFS (α = 1.0)
CVFS* (α = 1.0)
CVFS (α = 0.3)
CVFS* (α = 0.3)

(a) normalized utilization 0.8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

η

CVFS (α = 1.0)
CVFS* (α = 1.0)
CVFS (α = 0.3)
CVFS* (α = 0.3)

(b) normalized utilization 0.4

Figure 6.6: Impact of workload variability (8 cores)

the feasibility constraints. With increasing α values, the partitions created by WFD have a

higher σ (maximum load among all cores) value. Since σ is one of the factors constraining

f(t) (Section 6.5.2), with increasing α values the relative gains of CVFS tend to decrease.

124

Figures 6.5 and 6.6 show the impact of workload variability on the schemes. η is defined

as the ratio of average-case execution cycles (acc) to worst-case execution cycles(wcc) and

use it to model the notion of dynamic workload variability. The lower the η ratio, the more

the actual workload deviates from the worst case workload. For a specific value of η, the

actual execution cycles are generated randomly using normal distribution with mean acc

and standard deviation wcc−acc
6 .

Figures 6.5(a) and 6.6(a) show the impact of varying η for 2-core and 8-core systems

respectively, with normalized utilization fixed to a high value (0.8). With decreasing η, the

gains of CVFS* over CVFS are prominent, in particular for the case where α = 0.3. This

is due to the run-time effective load adjustments of CVFS* which provides additional DVS

opportunities and hence better energy savings compared to CVFS. For the same utilization

value, higher α values tend to create more unbalanced partitions relative to lower α values.

In CMP systems where all cores are constrained to operate at the same frequency, this limits

the opportunities to exploit dynamic workload variability. As such, the gains of CVFS* over

CVFS decreases with increasing α values.

Figures 6.5(b) and 6.6(b) show the impact of varying η for 2-core and 8-core systems

respectively, with normalized utilization fixed to a low value (0.4). In this case, irrespective

of α values, the gains provided by CVFS* over CVFS are rather small. Recall that f(t) is

constrained by σ and the global energy-efficient frequency threshold fee(t) (Section 6.5.2).

At low normalized utilization values, f(t) is predominantly constrained by fee(t), hence the

run-time adaptations of CVFS* do not provide significant benefits compared to CVFS.

6.6 Energy-Efficient Core Activation and Task Allocation

This section elaborates on the important dimension of the problem introduced in Section

6.4.1, namely selecting k ≤ m number of cores for the execution of the workload to minimize

expected energy while preserving the feasibility through a proper task allocation on these k

cores. Clearly, since determining feasibility of a workload on a fixed number of processors

125

is NP-Hard in the strong sense, one cannot hope for an efficient and optimal solution to

this problem.

Recall from Section 6.5.2 that at any given time the unique frequency for all active cores

is given as f(t) = max(σ, fee(t)). Hence, starting with initial task allocations (partitions)

that are reasonably balanced and adjusting these to maintain a balance between static and

dynamic power consumptions is a promising approach. In fact, minimizing the maximum

load among cores is also in line with existing multiprocessor and multicore energy manage-

ment results [4,12,110]. Among task allocation heuristics, the Worst-Fit Decreasing (WFD)

algorithm is known to typically yield well-balanced partitions where the maximum load on

any core is small [4,12]. Assuming that the tasks are already sorted in non-increasing order

according to their utilization values, WFD allocates tasks one by one to the core with the

least load at a time. For this specific problem, WFD is equivalent to the well-known List

Scheduling Algorithm (LST) where independent tasks each with a given size in the range

[0, 1] are partitioned to m CPUs each with unit capacity. The result in [58] implies that

the maximum load among all cores generated by LST (and equivalently WFD in the set-

tings under investigation) is no more than 4
3 times that of the optimal. As a result, the

first step of the proposed framework will consist in generating an initial partition on all

m cores through WFD, before transforming this initial schedule into a final and a more

energy-efficient partition with possibly a smaller number of active cores.

Having an efficient mechanism to evaluate the expected energy consumption of a given

partition in static phase is an important component of the approach. Let Pk be a feasible

partitioning of task set ψ to k ≤ m cores. Since only k cores have tasks allocated to them,

the remaining (m− k) cores can be put to off state. Thus, the static energy consumption

of partition Pk is given as:

Es(Pk) = k · Pstatic ·H

Since the global unique frequency at time t, f(t), is time-dependent and further depends

on the set of tasks executing in parallel at any given time, it is very difficult, if not impossible,

126

to have an accurate figure for the dynamic energy consumption of the task set ψ, in advance.

The dynamic energy consumption of Pk is estimated by calculating the weighted average

value of f(t) in the interval [0,H], where H is the hyperperiod. Let Fee denote the weighted

average of all fee(t) values in the interval [0,H]. Fee is approximated as:

Fee =
3

√

P ∗
ind

2 · a∗

where, P ∗
ind =

n
∑

i=1
(Ui · P iind) and a∗ =

n
∑

i=1
(Ui · ai). Recall from Equation (6.2) that the global

energy-efficient frequency at any given time is determined by the ratio of P i
ind and ai values

of tasks. Hence, it is natural to expect that tasks with large utilization values will have

a higher contribution to Fee on the average. Given this, the weighted average of all f(t)

values in the interval [0,H] can be approximated as:

F = max(σ, Fee)

The expected dynamic energy consumption of task set ψ over partition Pk is then

calculated as:

Ed(Pk) =

n
∑

i=1

(aiF
3 + P iind) ·

Ui
F
·H

Notice that different partitions may produce different F values and thus have different

expected dynamic energy consumptions. The total expected energy consumption of Pk is:

Eexp(Pk) = Es(Pk) +Ed(Pk) (6.4)

Next, three schemes are presented for determining the number of active cores.

Sequential-Search (SS) Algorithm. The minimum number of cores necessary to execute

a workload with total utilization Utot in feasible manner is dUtote. SS exhaustively considers

127

every possible k in the range [dUtote,m] and for each such k it generates a partition Pk
using WFD. If Pk is a feasible partition then the algorithm computes the expected energy

consumption of Pk using Equation (6.4). The k value corresponding to the partition with

the least Eexp is returned. Figure 6.7 gives the pseudo-code.

1 for each k in the range [dUtote,m] do

2 Determine partition Pk using WFD

3 if Pk feasible

4 Compute Eexp(Pk)
5 Select k corresponding to partition with min(Eexp)

Figure 6.7: Algorithm SS

Complexity Issues: SS has at most m iterations. In each iteration the algorithm has to

execute worst-fit decreasing (which takes O(n logm) time) and calculate Eexp from Equation

(6.4) (which takes O(n) time). Thus, the overall complexity of SS is O(nm logm).

Greedy Load Balancing (GLB) Algorithm. GLB invokes WFD only once on all m

cores. Working on the resulting partitioning, GLB tries to free the least loaded core, by

simply moving all tasks on the least loaded core to the second least loaded core, if and

only if doing so preserves the feasibility of the workload and does not increase the expected

energy consumption, computed through (6.4). The algorithm is re-invoked iteratively for

the remaining cores until such a block move of tasks is no longer possible.

Before giving the formal pseudo-code the following two variables are introduced: Pk(ψi)

representing the set of tasks allocated to core Ci in partition Pk and Pk(σi) denoting the

load on Ci in Pk. Figure 6.8 gives the pseudo-code.

Complexity Issues: GLB invokes WFD once on all m cores (which takes O(n logm)

time). Following this, GLB has at most m iterations (Lines 3-11) where calculating Eexp

takes O(n) time and re-arranging the position of the second least loaded core, after moving

the workload from the least loaded core to it, can be done in O(logm) time. Thus, the

128

1 Pm = Partition obtained through WFD on m cores

2 k = min(m,n)

3 while (k > 1)

4 src =index of the core with minimum load

5 des =index of the core with second minimum load

6 if (σsrc + σdes > 1) return Pk
7 Pk−1 = Pk − (Pk(ψsrc),Pk(σsrc))
8 Set Pk−1(ψdes) = Pk−1(ψdes) ∪ Pk(ψsrc)
9 Set Pk−1(σdes) = Pk−1(σdes) + Pk(σsrc)
10 if (Eexp(Pk−1) ≥ Eexp(Pk)) return Pk
11 Set k = k − 1

12 return Pk

Figure 6.8: Algorithm GLB

overall complexity of GLB is O(n logm+m logm+mn) = O(mn).

Threshold-based Load Balancing (TLB) Algorithm. TLB is similar to GLB but does

not use the expected energy formula given in Equation (6.4), to improve efficiency. Instead,

TLB uses the concept of load threshold, wherein a partition is accepted by TLB as long

as the minimum load on any core is no smaller than a pre-defined threshold value. This

threshold value should be carefully chosen by the system designer to reflect an appropriate

balance between static and active power consumptions. Similar to GLB, TLB first invokes

WFD once on all m cores and then iteratively tries to free the least loaded core, by simply

moving all tasks on it to the second least loaded core, if and only if the minimum load is

smaller than the pre-defined threshold and doing so preserves the feasibility of the workload.

After such a move, the algorithm is iteratively re-invoked on the new set of active cores.

Figure 6.9 gives the pseudo-code.

Complexity Issues: Assuming n ≥ m, WFD takes O(n logm) time. Following this

there are at most m iterations (Lines 3-11) and in each of these iterations re-arranging the

position of the second least loaded core takes O(logm) time making the total complexity

129

1 Pm = Partition obtained through WFD on m cores

2 k = min(m,n)

3 while (k > 1)

4 src =index of the core with minimum load

5 des =index of the core with second minimum load

6 if(σsrc > threshold or σsrc + σdes > 1)

7 return Pk
8 Pk−1 = Pk − (Pk(ψsrc),Pk(σsrc))
9 Set Pk−1(ψdes) = Pk−1(ψdes) ∪ Pk(ψsrc)
10 Set Pk−1(σdes) = Pk−1(σdes) + Pk(σsrc)
11 Set k = k − 1

12 return Pk

Figure 6.9: Algorithm TLB

O(n logm). On the other hand, if n < m, WFD takes O(n) time, there are only n iterations

(Lines 3-11) each taking O(log n) time which gives a complexity of O(n log n). Thus, the

overall complexity can be expressed as O(n log(min(m,n))).

6.6.1 Experimental Evaluation

In this section, the performance of algorithms SS, GLB and TLB are compared. The

simulation methodology is parallel to the one described in Section 6.5.4. The static power

consumption of cores is taken as 0.1W . Results for 4 and 8 cores are shown in Figures

6.10 and 6.11 respectively, the trends of which are similar. Results are shown with α = 0.3

and α = 1.0. For the TLB scheme, results are shown with threshold values 0.1 and 0.2

that performed best in the experiments. For each core, Pstatic was set to 10% of CPU

dynamic energy consumption at fmax [73]. In these experiments, the worst-case workload

for each task is considered and once a partitioning of tasks to k ≤ m cores is decided by the

algorithms, the task set is executed with CVFS scheme and the energy consumption over

the hyperperiod is recorded. All energy consumption values are normalized with respect to

130

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.05 0.1 0.2 0.3 0.4 0.5

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

Normalized Utilization

TLB(0.1)
TLB(0.2)

GLB
SS

(a) α = 0.3

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.05 0.1 0.2 0.3 0.4 0.5

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

Normalized Utilization

TLB(0.1)
TLB(0.2)

GLB
SS

(b) α = 1.0

Figure 6.10: Comparing SS, GLB and TLB (4 cores)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.05 0.1 0.2 0.3 0.4 0.5

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

Normalized Utilization

TLB(0.1)
TLB(0.2)

GLB
SS

(a) α = 0.3

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.05 0.1 0.2 0.3 0.4 0.5

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

Normalized Utilization

TLB(0.1)
TLB(0.2)

GLB
SS

(b) α = 1.0

Figure 6.11: Comparing SS, GLB and TLB (8 cores)

the scheme which uses all m available cores to execute the workload.

In decreasing order of performance with respect to energy savings, the algorithms can be

arranged as: SS, GLB, TLB (with threshold 0.2) and TLB (with threshold 0.1). However,

131

the better the system energy savings of a scheme, the more its computational complexity.

For the TLB scheme, the energy benefits are sensitive to the threshold value. In the simu-

lations it was observed that a threshold of 0.2 provides energy benefits that are comparable

to that provided by SS, which has high execution overhead.

At low utilization values the gains provided by the schemes are significant (easily ex-

ceeding 50%). With increasing utilization values, the dynamic energy consumption of the

workload dominates static energy and hence the number of cores activated to execute the

workload in energy-efficient and feasible manner approaches m. Thus, as utilization in-

creases the benefits of schemes decrease. In fact, when the normalized utilization Utot

m

exceeds 0.5, all the schemes are forced to activate all m cores to enforce feasibility or avoid

excessive dynamic power that can result from using less number of cores at high frequencies.

It can also be seen that the benefits of the schemes decrease much quickly at lower α

values compared to higher α values (Figure 6.10(b) and 6.11(b)). This is because, with

large α values, WFD tends to generate more unbalanced initial partitions [12]. This results

in more chances for finding cores with light workloads in the WFD partition; the workloads

on these cores can then be transferred to the ones with high load, enabling them to switch

to off state.

Finally, one can also see that at low normalized utilization values, the benefits of schemes

are more pronounced in the case with 8 cores. This is due to the fact that with higher number

of cores the opportunities to minimize static energy by turning off cores also increase, in

particular for low utilization values.

6.7 Chapter Summary

This chapter considered the problem of system energy minimization of periodic real time

tasks executing on CMP platforms with partitioning and global DVS capability. Consider-

ing a generalized power model, an expression for the global energy-efficient frequency that

depends on the set of tasks executing in parallel, was derived. Two schemes CVFS and

132

CVFS* were proposed to exploit global DVS and core-level idle states. CVFS* has the

additional capability of adapting to workload variations at run-time. Also, the problem

of determining the optimal subset of cores to execute the workload with low static power

while preserving feasibility through an appropriate task allocation was investigated and

three techniques were suggested for this purpose. Experimental evaluations verified the

effectiveness of the proposed solutions to reduce the system energy on CMP platforms.

133

Chapter 7: Competitive Analysis of Energy-Constrained

Real-Time Scheduling

7.1 Introduction

This chapter investigates the impact of energy constraint on the competitiveness of on-

line real-time scheduling in settings where there is sufficient time but insufficient energy

to complete all the workload. Upper bounds on the competitive factor achievable by on-

line/semi-online algorithms are derived. In addition, on-line/semi-online algorithms are

designed and their competitive factors are obtained. In this investigation, various funda-

mental models are considered, including uniform value density, non-uniform value density,

constrained execution environments such as non-preemptive/non-idling settings and plat-

forms with DVS capability. Also, the competitiveness of energy-constrained online real-time

scheduling is investigated under the resource augmentation framework.

7.2 Terminology and Assumptions

This chapter makes the underloaded energy-constrained system assumption where the input

instance ψ is feasible in real-time sense; that is, there must exist a feasible schedule where

all the jobs in ψ meet their deadlines if the energy constraint is not taken into account.

To address the problem, first non-DVS settings are considered (DVS-enabled systems

will be considered in Section 7.6) consisting of a uni-processor system having limited energy

budget of E units. The system’s total energy consumption during its operation cannot

exceed this allowance. It is assumed that executing a job consumes one unit of energy per

time unit. The system’s energy consumption in idle state (i.e. when it is not executing any

job) is negligible.

134

Real-time jobs enter and leave the system during its operation. ψ denotes the finite input

sequence of jobs that arrive to the system during its operation. Preemptive scheduling is

assumed. Each job Ji is represented by the tuple (ri, ei, di). Here ri and di are the release

time and deadline of the job Ji, respectively. For the sake of clarity, ei is used to denote the

size of the job, indicating both its execution time and energy requirements (since execution

per unit time requires unit energy). The laxity of the job Ji is given by di−(ri+ei). Since ψ

is finite and one unit of execution requires one unit of energy, similar to [5],[6] Eb =
∑

Ji∈ψ
ei

is defined to be the minimum energy needed to complete all the jobs in ψ.

Each job is associated with a value that is proportional to its execution time. Value-

based real-time systems where a job that successfully completes execution by its deadline

contributes its value to the system are considered; no value is obtained from the executions

of jobs that miss their deadlines [17],[75]. The analysis starts with the uniform value density

model [17],[18],[20],[75], where the job’s value is equal to its size (ei). The analysis is also

extended (in Section 7.5) to the more general non-uniform value density model. Note that

the off-line problem of maximizing the total system value can be easily shown to be NP-

Hard even for the simple case where all jobs have the same deadline, by slightly modifying

the intractability proof given in [108].

emax is defined as the upper bound on the size of any job that can be introduced to

the system. It is assumed that emax ≤ E, since no algorithm can process jobs with energy

requirement greater than E. Observe that this definition implies that a job with size exactly

emax may or may not appear in the actual input instance.

The minimum processing time (and energy requirement) of any job in the system is

denoted by δ. That is, the size of any job is no smaller than δ units1. E and ei (for each

job Ji) are assumed to be expressed as exact multiples of δ. Observe that this assumption

guarantees that the number of jobs introduced to the system is polynomial with respect to

the energy constraint E. However, the ratio δ
E may be arbitrarily low.

1As energy and execution requirements are expressed as real numbers, δ is assumed to be a real number
strictly greater than zero.

135

Before proceeding with the formal analysis, a specific job arrival pattern is introduced

that has proven very useful in deriving competitive factors in online real-time scheduling

[17],[75]. Specifically, a set of sequential jobs with size ’x’ are introduced to the system at

time t, if they have the following characteristics:

(1) all jobs in the set have size x,

(2) the first job is released at time t with deadline t+ x, and,

(3) each subsequent job is released at the deadline of the previous job in the set.

Hence, all the jobs in the sequence have zero laxity. Note that a similar pattern of sequential

jobs were crucial in obtaining the well-known competitive factor bound of 0.25 for overloaded

real-time systems [17],[75].

7.3 Basic Results

It is well-known that preemptive EDF achieves the best possible performance without the

knowledge of future job release times, if the system has sufficient energy to execute the

entire workload (which is assumed to be feasible in real-time sense).

Proposition 8. If E ≥ Eb then preemptive EDF has a competitive factor of 1.

Proof. Follows from the optimality of preemptive EDF in underloaded real-time environ-

ments [45].

However, in underloaded environments with scarce energy, preemptive EDF turns out

to be a poor online algorithm:

Lemma 2. If E < Eb, then preemptive EDF is non-competitive (i.e. it cannot guarantee a

non-zero competitive factor).

Proof. Figure 7.1 shows how to construct an instance using n jobs (J1 . . . Jn), with decreas-

ing deadlines and increasing release times, for which preemptive EDF cannot guarantee a

non-zero value. Let c and D be two positive numbers such that c ≤ emax and D � c.

136

All jobs have size of c units. Also, r1 = 0 and d1 = D. Given this, the release times and

deadlines of any two successive jobs are related by the following equations,

ri = ri−1 + c− δ

di = di−1 − δ

Observe that when EDF is about to finish executing a job, another job with a shorter

deadline is released. EDF preempts the currently running job in favor of the job with

earlier deadline. Continuing this way, while executing Jn, for some n ≥ 1, EDF depletes its

entire energy budget at time t = E. Notice that at time t = E, EDF has n pending jobs

and zero remaining energy. Since preemptive EDF does not execute any job to completion

in this instance, its total value is zero.

J

J

J

J

J
c

r d

Energy exhausted2

3

4

n

1

i i

D t = E

Figure 7.1: The worst-case instance for preemptive EDF

An interesting question involves the upper bound on the performance of any online

algorithm in energy-constrained settings, in worst-case scenarios. In establishing such upper

bounds, the competitive analysis technique typically makes use of the so-called adversary

method ([18], [27],[75],[102]). In this proof technique, the adversary generates an initial

input job sequence, observes the online algorithms’ behavior, and then decides on what

further jobs should be released. This process is repeated a finite number of times. At

137

some point (which must comply with the problem specification), the adversary announces

the optimal schedule that it would generate for that input sequence – and a bound on the

competitive factor is established by comparing it to the schedule selected by the online

algorithm. Theorem 6 establishes this upper bound as a function of the energy budget E

and the upper bound on maximum job size emax.

Theorem 6. In energy-constrained underloaded settings, no online algorithm can achieve

a competitive factor greater than E−emax

E .

See Appendix E for a full proof.

Theorem 6 implies that, the upper bound on the competitive factor depends heavily on

the ratio emax

E : the higher this ratio, the lower the best achievable competitive factor. For

example, if emax

E = 1/3, then, no algorithm can achieve more than 2/3 of the total value of

a clairvoyant algorithm. However, as emax

E → 1, the upper bound approaches zero, implying

that no online algorithm can be competitive.

Further, for a given workload, as the system’s initial energy budget E is reduced, the

best achievable competitive factor quickly decreases. Similarly, for a given energy budget

E, as the upper bound on job size emax for the workload increases, the best achievable

competitive factor quickly decreases. Nevertheless, it will be shown next that an online

algorithm that is able to achieve this upper bound indeed exists.

7.3.1 Algorithm EC-EDF

In this subsection, an optimal online algorithm called EC-EDF is developed for energy-

constrained real-time scheduling in underloaded settings. EC-EDF uses an admission test

to admit new jobs that arrive at run-time. Specifically, if the newly-arriving job J fails to

pass the admission test, it is discarded (i.e. never executed). In case that it passes the test,

the new job J is added to the set C of admitted jobs. When a job completes execution it is

removed from set C.

138

EC-EDF effectively commits to all the admitted jobs, in the sense that, as formally

shown below, it guarantees their timely completion without violating the system’s energy

budget limits. Further, all the admitted jobs are scheduled according to the well-known

preemptive EDF policy.

The admission test uses the following relatively simple rule to decide whether the new

job J arriving at time t can be admitted or not: J is admitted if and only if the system’s

remaining energy budget at time t, Er, is sufficient to fully execute J and the remaining

workload of all the pending admitted jobs (i.e. the remaining workload in set C).

Let Er and eri represent the remaining energy with the system and the remaining exe-

cution time of job Ji at time t respectively. It is assumed that both Er and eri are properly

updated at run-time. Hence, formally, a job J with size e arriving at time t is admitted to

the system if and only if :

Er ≥ e+
∑

Ji∈C
eri

The following example illustrates the behavior of EC-EDF. Consider a system with E =

100. The following four jobs constitute the input sequence: J1(0, 20, 200), J2(10, 30, 190),

J3(25, 75, 150) and J4(85, 15, 120). Figure 7.2 shows the schedules generated by EC-EDF,

EDF and the clairvoyant algorithm along with the total values obtained by each. In each

schedule, the unshaded jobs are those that complete before the corresponding algorithm

depletes its energy budget, while the shaded jobs are those that fail to do so.

At time t = 0, EC-EDF admits J1 and dispatches it (C = {J1}). At t = 10, J2 with

higher priority than J1 arrives. EC-EDF admits J2 as there is enough remaining energy to

execute both J2 and the pending workload of admitted jobs, C = {J1} (i.e. Er ≥ e2 + er1).

EC-EDF updates set C to {J1, J2}.

Notice that at t = 25 when the largest job J3 in the set arrives the remaining energy is

sufficient to execute it. However EC-EDF does not admit J3 as with the remaining energy

of 75 units, the system cannot execute J3 and the pending workload of admitted jobs,

C = {J1, J2} (i.e. Er < e3 + er1 + er2).

139

�����
�����
�����

�����
�����
�����

���������
���������
���������
���������

���������
���������
���������
���������

���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������

���
���
���
���

 �
 �
 �
 �

JJ

0

0

100

100

Completed Jobs

Unfinished Jobs

J1

J1 J2 J1 J

J1 J2 3

4

4

J3

10 50

10 25 85

20 25 100

0 40

EC−EDF Schedule with a total value of 65

EDF Schedule with a total value of 15

Optimal Schedule with a total value of 95

85

Figure 7.2: Schedules Generated by EC-EDF, EDF and Optimal

At t = 85, EC-EDF admits and executes J4 to completion. Thus, by executing jobs J1,

J2 and J4 to completion, EC-EDF gathers a total value of 65. It is straightforward to verify

that EDF gets a total value of only 15. The clairvoyant algorithm knowing, the future job

sizes and arrival patterns, skips certain jobs and idles as necessary, making a total value of

95 as shown in Figure 7.2.

Proposition 9. EC-EDF guarantees the completion of all the admitted jobs before their

deadlines, without violating the system’s energy budget limits.

Proof. Assume there exists a non-empty subset C ′ of the admitted jobs that cannot be

completed in a timely manner without violating the energy budget limits. It will shown by

contradiction that C ′ cannot exist.

Recall that by assumption, the input sequence ψ is guaranteed to be feasible from

timing constraints point of view. Thus, C ′ ⊂ ψ is also feasible. Further, EC-EDF schedules

the admitted jobs using preemptive EDF which is known to be optimal in underloaded

conditions. Hence, if C ′ exists then EC-EDF must run out of energy before completing the

jobs it admitted. Since the admission rule of EC-EDF ensures that there is always enough

140

remaining energy in the system to meet the computational demand of all pending admitted

jobs along with the newly admitted job, a contradiction is reached here. Hence, C ′ cannot

exist.

Theorem 7. EC-EDF has a competitive factor of E−emax

E .

Proof. First, note that if Eb ≤ E, EC-EDF reduces to traditional EDF and can execute all

the jobs in the input sequence ψ (which is assumed to be feasible), achieving a competitive

factor of one. Thus, the adversary must create a feasible input sequence ψ such that

Eb > E. Under this condition, eventually EC-EDF will be forced to discard a job due to

energy limitations.

Let Jd be the first job discarded by EC-EDF at time t. At time t, let ψ ′ denote the set

of jobs admitted by EC-EDF before discarding Jd and let E′ denote the total workload (and

energy demand) of the jobs in ψ′. From Proposition 9, EC-EDF is guaranteed to complete

the job set ψ′ in a timely manner without violating the system energy budget limits. Thus,

EC-EDF guarantees a total value of E ′.

As a consequence of Jd being discarded at time t, E ′ + ed > E. Since ed ≤ emax, this

implies E ′ > E − emax. Thus, the total value obtained by EC-EDF is at least E − emax,

while the adversary can make at most a value of E. Thus, EC-EDF has a competitive factor

of E−emax

E .

Note here that in settings where E ≥ Eb, EC-EDF is able to finish all the jobs in the

input sequence thanks to the optimality of EDF, achieving a competitive factor of 1 under

that condition. That is, regardless of the relationship between E and Eb, EC-EDF yields

the best competitive factor.

7.3.2 A Semi-online Algorithm with a Constant Competitive Factor

It is occasionally possible to improve the competitive ratio of online algorithms by providing

some limited information about the actual input sequence. For example, online scheduling

algorithms typically benefit from information about the maximum job size, sum of job

141

processing times or job size patterns in the actual input [49],[102]. The online algorithms

that exploit this type of limited information about the actual input are called semi-online

and their design and analysis have been recently attracting increasing interest [49],[102].

Even for the problem under consideration, the knowledge of the largest job size in the

actual input instance turns out to be very helpful. For the uniform value density model

where the value of a job is equal to its execution time, the largest size job in the input

instance is also the most valuable job in the set. Below, the algorithm EC-EDF ∗ that

achieves a competitive factor of 0.5 using this information, is described. Further, it will

be shown that with only the additional knowledge of the largest job size, no semi-online

algorithm can perform better than EC-EDF ∗, demonstrating its optimality.

Let el ≤ E represent the largest job size in the actual input sequence. First the rules for

EC-EDF ∗ are given. EC-EDF ∗ exploits the information about el: in semi-online settings,

the fact that at least one job of size el will be part of the input sequence is guaranteed by

definition. EC-EDF ∗ compares el to the available energy budget E. If el >
E
2 , EC-EDF ∗

simply waits for the largest size job, el, and executes it. Since E ≥ el >
E
2 , the value of

EC-EDF ∗ is no less than E
2 + δ. The adversary can gather a value of at most E. On the

other hand, if el ≤ E
2 , EC-EDF ∗ schedules jobs using EC-EDF. By definition, no job size

in the actual input sequence can be larger than el. Thus, from Theorem 7, the competitive

factor for EC-EDF becomes E−el

E . Further, given the constraint el ≤ E
2 , the lower bound

on competitive factor of EC-EDF and hence that of EC-EDF ∗ reduces to 0.5. Thus, in

either case, EC-EDF ∗ makes at least half of the value of the adversary.

Lemma 3. EC-EDF ∗ has a competitive factor of 0.5.

Lemma 4. With only the additional knowledge of the largest job size, no semi-online algo-

rithm can achieve a competitive factor greater than 0.5.

Proof. The proof involves a specific scenario in which the adversary effectively limits the

total value of any semi-online algorithm to half of its value. Let E = k1 · δ and el = k2 · δ.

Where, k1 and k2 are positive integers such that k1 ≥ k2. The proof is similar to that of

142

Theorem 6. The adversary first releases (k1 − k2 + 1) sequential jobs of size δ (note that

here k2 = el

δ and not emax

δ as in Theorem 6). As mentioned in proof of Theorem 6, let m

be the number of jobs not executed by the online algorithm A. Again, there are 3 cases.

Cases 1, 2 and 3B are similar to those in Theorem 6, except that at the very end the ad-

versary now releases a job of size el instead of emax. Therefore, repeating the corresponding

arguments from Theorem 6, the competitive factor of A for these cases is given by E−el

E .

Case 3A corresponds to k2 jobs of size δ having been released and A having executed

0 ≤ m′ < m of these jobs. Repeating the corresponding arguments of Theorem 6, notice that

A has accrued a value of (k1 − k2 + 1 + (m′ −m)) · δ and has a remaining energy budget

of (k2 − (m′ −m+ 1)) · δ, while the adversary has accrued a total value of E and has no

energy budget left. Also, observe that in the input sequence leading to and terminating in

Case 3A, a job of size el has not been released by the adversary. Thus, at the end of Case

3A, the adversary releases a job of size el that A can execute provided it has enough energy

budget left to execute it (i.e. if (m′ −m+ 1) ≤ 0). Thus, the maximum value that A can

accrue is el + (k1 − k2 + 1 + (m′ −m)) · δ and its competitive factor is no better than

el + (k1 − k2 + 1 + (m′ −m)) · δ
E

≥ el
E

From the above 3 cases the competitive factor of A can be expressed as max(E−el

E , el

E).

Since, 0 ≤ el ≤ E, one has max(E−el

E , el

E) ≥ 0.5. Thus, no semi-online algorithm can achieve

a competitive factor greater than 0.5.

Corollary 5. Among semi-online algorithms that have only the additional knowledge of the

largest job size, EC-EDF ∗ is optimal.

In online real-time scheduling in overload conditions, the best achievable competitive

factor was shown to be 0.25 [17] and further, there exists an algorithm Dover with this

competitive factor [75]. In contrast, in online real-time scheduling with hard energy con-

straints for underloaded settings, with the knowledge of the largest job size in the actual

143

input sequence, the best achievable competitive factor is 0.5 which is twice as large as that

in overloaded settings. Further, the algorithm EC-EDF ∗ achieves this competitive factor.

7.4 Competitive Analysis for Non-idling and Non-preemptive

Scheduling Algorithms

The main results in preceding sections were derived under the assumption that preemption

was allowed and that, if needed, the online algorithm could leave the CPU idle in the

presence of ready jobs. In this section, the implications of relaxing each of these assumptions

are investigated separately.

7.4.1 Non-Idling Execution Settings

In real-time scheduling theory, a scheduling algorithm is said to be idling at time t, if there

is a pending job and the algorithm is not executing any job. The algorithms that never idle

(i.e. non-idling or work-conserving algorithms) have practical importance and were studied

in the literature [69],[83]. In what follows, a basic competitive analysis of non-idling online

real-time scheduling algorithms in energy-constrained settings is considered.

Note that the traditional definition of idling, as given above, is not quite adequate for

energy-constrained settings, as an algorithm should not be forced to execute a pending

job requiring more than the remaining energy, or waste energy by executing a job that is

guaranteed to miss its deadline. Thus, in an effort to address non-idling scheduling issues,

first the idling concept is formally re-defined for energy-constrained settings.

Definition 2. In energy constrained settings, an algorithm is considered to be idling if and

only if all of the following four conditions hold at a specific time instant t:

• The processor is not executing any job,

• There is a pending (ready) job Ji with remaining execution time/energy requirement

eri > 0.

144

• eri ≤ di − t,

• eri ≤ Er, where Er is the system’s remaining energy budget.

Given this definition, a non-idling algorithm is the one that does not idle at any time

t. Observe that, according to these definitions, EC-EDF is a non-idling algorithm, while

EC-EDF ∗ is an idling algorithm. Section 7.3.1 already shows that EC-EDF is the best

non-idling algorithm that can be developed against a potentially idling adversary.

The power of idling for the adversary was crucial in deriving the competitive factor

bound in Theorem 6. The main motivation behind this subsection is to investigate if there

can exist an non-idling algorithm better than EC-EDF against an adversary that cannot

idle either. Hence, as opposed to the previous sections, the adversary cannot idle in the

analysis presented in this subsection.

Lemma 5. No non-idling online algorithm can achieve a competitive factor greater than

E−emax

E against a non-idling adversary.

Proof. Let E = k1 · δ and emax = k2 · δ. Where, k1 and k2 are positive integers such that

k1 ≥ k2. In the execution scenario that will establish the bound, the adversary first intro-

duces (k1 − k2) sequential jobs each of size δ. By executing these jobs, at time t = (k1 − k2) · δ,

both the online algorithm A and the adversary have accrued a total value of

(k1 − k2) · δ = E − emax and have a remaining energy budget of emax units. At time t, the

adversary introduces the following 2 jobs: J1(t, δ, t + δ) and J2(t, 2δ, t + 5δ). A has two

choices.

Case 1: A executes J1. In this case, the adversary executes J2 and waits until t1 = t+5δ.

Notice that since A scheduled J1, it will have to also schedule J2 after finishing J1, since

it cannot idle. On the other hand by executing J2, the adversary has effectively created

an idle interval for itself by missing the deadline of J1. At t1, A has accrued a value of

E − emax + 3δ and has a remaining energy budget of emax − 3δ units. On the other hand,

at time t1, the adversary has accrued a value of E − emax + 2δ and has a remaining energy

budget of emax − 2δ units. At t1, the adversary introduces a job with size emax − 2δ that

145

A cannot execute. By executing this job the adversary accrues a total value of E. The

competitive factor is E−emax

E .

Case 2: A executes J2. In this case, the adversary executes J1 followed by J2. When

A finishes J2 at time t + 2δ, the adversary has finished executing only half of J2. At this

stage the adversary introduces job J3(t + 2δ, 2δ, t + 4δ). Note that, A is forced to execute

J3 (as it cannot idle). The adversary, by continuing with execution of J2, misses J3 and

again creates an idle period for itself from t + 3δ to t + 5δ. At time t1 = t + 5δ, A has

accrued a value of E − emax + 4δ and has a remaining energy budget of emax − 4δ units.

On the other hand, at time t1, the adversary has accrued a value of E − emax + 3δ and has

a remaining energy budget of emax − 3δ units. At t1, the adversary introduces a job with

size emax − 3δ that A cannot execute. By executing this job the adversary accrues a total

value of E. The competitive factor is E−emax

E .

In the non-idling model, the knowledge of the largest job size in the actual input sequence

does not help, as the algorithm A cannot idle and wait for it, which was crucial for achiev-

ing a competitive idling semi-online algorithm EC-EDF ∗. In the non-idling model, the

adversary can introduce jobs such that when the largest size job is released, the remaining

energy budget of A is not sufficient to execute it.

Corollary 6. EC-EDF is also optimal against an adversary that cannot idle.

7.4.2 Non-Preemptive Execution Settings

This subsection restricts analysis to non-preemptive online scheduling algorithms. Non-

preemptive execution have several attractive features, such as ease of implementation, low

run-time overheads, implicit exclusive access to shared resources, among others [83]. As

such, non-preemptive scheduling algorithms have been studied in the realm of real-time

scheduling literature [69],[83]. This subsection presents basic results for settings where both

the online algorithm A and the adversary schedule jobs through non-preemptive algorithms.

146

Lemma 6. There does not exist a competitive non-preemptive online algorithm, irrespective

of the ratio emax

E .

Proof. In the scenario that enforces this upper bound, the adversary introduces a job of size

2δ and deadline emax+2δ. If the online algorithm A idles until t = emax+2δ and skips this

job, the adversary continues the pattern. A will have to execute one of these jobs before

the cumulative workload released by the adversary reaches E or more. When A executes a

job (say at time t), the adversary releases a job of size emax with zero laxity at time t+ δ.

The non-preemptive algorithm A gathers a value of 2δ, while the adversary gathers a value

of emax. By repeating the same pattern a finite number of times, the algorithm A can be

made technically non-competitive, regardless of the ratio emax

E .

Notice that with non-preemption, while the online algorithm is executing a job of size

X for execution, the adversary can release a job of size Y � X and no laxity, causing

excessive value loss for the algorithm. This was the key to the instance given in the proof

of Lemma 6. As a consequence, with the knowledge of the largest job size (say el) in the

input instance, no (potentially) idling non-preemptive semi-online algorithm can achieve a

competitive factor greater than el

E and the algorithm that achieves this bound simply waits

for the largest job size, el. The ratio el

E may be arbitrarily small if el <
E
2 . However, if

el ≥ E
2 , this semi-online algorithm has a competitive factor of 0.5.

7.4.3 Non-idling and Non-preemptive Execution Settings

In general, non-preemptive real-time scheduling is known to be NP-Hard in the strong

sense, even in off-line settings [69]. However, non-idling EDF is optimal among all non-

idling non-preemptive policies [69]. Lemma 7 below establishes a fundamental result for

non-preemptive, non-idling algorithms. Lemma 7 is derived for settings where the workload

is feasible under non-idling and non-preemptive scheduling.

Lemma 7. No non-preemptive non-idling online algorithm can achieve a competitive factor

greater than E−emax

E and non-preemptive EC-EDF achieves this competitive factor.

147

Proof. The proof is very similar to that of Lemma 5. However, in Case 2 where A executes

J2, introduce the third job J3 at time t+δ (i.e. J3(t+δ, 2δ, t+4δ)). Observe that this allows

feasibility of J1, J2 and J3 under non-preemptive non-idling scheduling. Now, by repeating

the arguments of Lemma 5 the upper bound on performance of any online non-preemptive

and non-idling algorithm can be found as E−emax

E . Since non-preemptive non-idling EDF

is an optimal real-time scheduling algorithm in the sense that it can generate a feasible

schedule whenever another non-preemptive non-idling algorithm can do so [69], the non-

preemptive EC-EDF is found as the optimal non-idling non-preemptive algorithm.

It is also straightforward to verify that the additional knowledge of the largest job size

in the actual input sequence does not help design better non-preemptive non-idling online

algorithms.

7.5 Non-Uniform Value Densities

In value-based real-time execution model, each job is associated with a value proportional

to its execution time. The value density of a job is its value divided by its execution time.

The ratio of the largest value density to the smallest value density is called importance ratio

[17],[75]. In uniform density settings (Section 7.3), the importance ratio is one and hence

the value of the job is equal to its size. This section undertakes the competitive analysis in

the more general non-uniform density settings.

In these settings, the value of a job Ji with value density ki is given by kiei. Let kmin

and kmax denote the smallest and largest value densities that can be associated with any

job. Without loss of generality, it is assumed that kmin = 1 and thus the ratio of kmax

kmin
is

simply kmax. Observe that in comparison to uniform density settings, the largest size job

is no longer guaranteed to be the most valuable job.

Theorem 8. In non-uniform value settings where kmax > 1, no online algorithm can

achieve a competitive factor greater than 1

(kmax)
emax

E
.

148

The full proof of Theorem 8 is provided in Appendix F.

Note that the upper bound established by Theorem 8 is not tight when the ratio kmax

kmin
is

close to one. This can be verified by setting kmax = 1 + ∆ ≈ 1, where ∆ is very small, and

repeating the input instance given in the proof of Theorem 6 with the following two changes:

(1) All the released jobs have value density kmax. (2) At the very end, in every branch, the

adversary releases a single job of size δ with value density kmin = 1. In this specific modified

sequence the upper bound can easily be verified to be kmax(E−emax)
kmaxE

= E−emax

E , while for the

given parameters the upper bound suggested by Theorem 8 is close to 1, irrespective of

the ratio emax

E . However, as kmax increases the upper bound established by Theorem 8

decreases in exponential fashion. Investigating the tightness of the upper bound established

by Theorem 8 when the ratio kmax

kmin
is large is an open problem.

Also, note that the upper bound on performance established by Theorem 8 holds with

or without the knowledge of the largest job size in the input sequence. This can be verified

by the job release pattern given in the proof of Theorem 8. Thus, a priori knowledge of

the largest job size does not help design better online algorithms in non-uniform value

density settings. Lemma 8 establishes the competitive factor of the semi-online algorithm,

EC-EDF ∗, which uses the additional knowledge of largest job size.

Lemma 8. Algorithm EC-EDF ∗ has a competitive factor of 1
2kmax

.

Proof. Let el ≤ E represent the largest job size in the input sequence. If el >
E
2 , EC-

EDF ∗ waits for the largest job of size el and is guaranteed a value of kmin(
E
2 + δ) = E

2 + δ.

The adversary can make at most kmaxE. The competitive factor is 1
2kmax

. On the other

hand, if el ≤ E
2 , EC-EDF ∗ follows EC-EDF which would guarantee a value of at least

kmin(E − el + δ) even when executed on jobs with the minimum value density kmin = 1.

Again, the adversary can make a total value of at most kmax E. Thus, the competitive

factor is found as the minimum value of E−el+δ
kmax E

which is 1
2kmax

(obtained when el = E
2). As

a result, in both cases, the competitive factor is 1
2kmax

.

149

It is also interesting to consider the upper bound on the competitive factor of any non-

idling algorithm (compared against an idling adversary) in these settings. Theorem 9 below

establishes this bound.

Theorem 9. No non-idling online algorithm can achieve a competitive factor greater than

min(E−emax

E+(kmax−1)emax
, 1

2kmax
) against a potentially idling adversary.

Proof. Two constants c1 = b E
emax
c and c2 = E− (c1 · emax) are defined. First, the adversary

introduces a workload W1 of E − emax + δ units using n ≥ 1 jobs, each with value density

kmin = 1. All jobs in W1 have zero laxity and are released back to back, one at a time

(i.e. the release time of the ith job coincides with the deadline of the (i− 1)th job and the

deadline of the ith job is its release time plus execution time). At least one job in W1 will

be of size exactly c2. At the end of execution of the workload W1 the non-idling algorithm

A has exhausted E − emax + δ units of energy and gathered a value of E − emax + δ. Two

cases are distinguished:

Case 1: Assume emax ≤ E
2

At this stage, the adversary introduces another workload W2 of c1emax units using c1 jobs

of size emax and value density kmax (as with W1 all jobs in W2 have zero laxity and are

released back to back). A cannot execute any job in W2 irrespective of the job deadlines.

The adversary gathers a value of c1kmaxemax+ c2 by executing all jobs in workload W2 and

the job of size c2 in workload W1. The value of A is E−emax+ δ. If c2 = 0, the competitive

factor is E−emax

kmaxE
. If c2 6= 0, by setting c2 = δ the competitive factor is minimized and in

that case, is bounded by E−emax

kmaxE
. Thus, either way the competitive factor is no more than

1
2kmax

(obtained by setting emax = E
2).

Case 2: Assume emax >
E
2

In this case c1 = 1 and c2 = E− emax. The adversary has two different strategies to reduce

the competitive factor as much as possible depending on the value of kmax (similar to Case

1 above). First, the adversary can follow the exact same sequence given in Case 1 above

150

by restricting the largest job size in the actual instance to E
2 . In this case, the competitive

factor, as explained in Case 1, would be 1
2kmax

.

Second, the adversary can introduce another workload, W2, of c1emax units using c1

jobs of size emax and value density kmax. A cannot execute any job in W2 irrespective of

their deadlines. The adversary gathers a value of c1kmaxemax + c2 by executing all jobs in

workload W2 and the job of size c2 in workload W1. The competitive factor would then be

E−emax

kmaxemax+E−emax
.

From Cases 1 and 2 one can conclude that the competitive factor is constrained either

by 1
2kmax

or by E−emax

kmaxemax+E−emax
. Further, since the ordering between these two terms is

dependent on the values of emax and kmax, no non-idling algorithm can achieve a competitive

factor greater than min(E−emax

E+(kmax−1)emax
, 1

2kmax
).

Next, it will be shown that EC-EDF is the optimal non-idling algorithm in non-uniform

value density settings as well.

Lemma 9. EC-EDF has a competitive factor of min(E−emax

E+(kmax−1)emax
, 1

2kmax
).

Proof. Let t represent the time instance at which EC-EDF discards a job for the first time.

Let the execution requirement of this job discarded by EC-EDF be ed. Since ed ≤ emax,

at time t, EC-EDF has accepted a workload of at least E − ed + δ and from Proposition 9,

EC-EDF is guaranteed to make a value of at least:

V = kmin(E − ed + δ) = E − ed + δ

Thus, the total value accrued by EC-EDF is V + ∆V , where ∆V ≥ 0.

If V ∗ represents the total value accrued by the adversary then 0 ≤ V ∗ ≤ kmaxE. Thus

the competitive factor can be defined as V+∆V
V ∗ . However, in non-uniform value density

settings, it is not necessary that ∆V is minimized (i.e. ∆V = 0) when V ∗ is maximized (i.e.

V ∗ = kmaxE); which was the case in uniform value density settings. Thus, when jobs have

151

different value densities, there is a non-trivial relation between V ∗ and ∆V . Two cases are

distinguished.

Case 1: 0 < ed ≤ E
2

In this case the maximum value the adversary can make without increasing the value accrued

by EC-EDF beyond V is kmaxE; which is also the maximum value the adversary can make in

non-uniform value density settings. This can be achieved by releasing a workload consisting

of jobs with total execution requirement ed and value density kmax after time t. While EC-

EDF has not enough energy left to execute any of these jobs, the adversary can execute all

these jobs making a value of at most kmaxE. Thus, in this case ∆V = 0 and V ∗ = kmaxE

giving a competitive factor of E−ed

kmaxE
which is minimized at ed = E

2 to 1
2kmax

.

Case 2: emax ≥ ed > E
2

In this case the maximum value the adversary can make without increasing the value accrued

by EC-EDF beyond V is:

V ∗
1 = E − ed + δ + kmaxed < kmaxE

In this case the competitive factor is minimized at ed = emax and is given by:

E − emax
E + (kmax − 1)emax

On the other hand, if the adversary intends to make a value V ∗
2 > V ∗

1 then ∆V > 0,

and the following observation holds.

Observe that, if V ∗
2 is maximized (i.e. V ∗

2 = kmaxE) then ∆V ≥ (2ed − E). As a

consequence, if V ∗
2 = kmaxE then V + ∆V ≥ ed + δ. In this case the competitive factor is

minimized at ed = E
2 + δ and is given by 1

2kmax
.

From Cases 1 and 2, the competitive factor of EC-EDF is:

min(
E − emax

E + (kmax − 1)emax
,

1

2kmax
)

152

Corollary 7. EC-EDF is an optimal non-idling algorithm in non-uniform value settings.

The following remarks conclude this subsection.

• The bound of (kmax)
− emax

E holds in general for any online algorithm (idling or non-

idling). The knowledge of the largest job size does not help improve the upper bound

on competitive factor achievable by any online algorithm.

• Again, the competitive factor of the algorithm heavily depends on the ratio emax

E .

When emax ≤ E
2 , the best achievable competitive factor is 1√

kmax
. As emax

E → 1, the

best achievable competitive factor reduces to 1
kmax

.

• The upper bound established in Theorem 8 is not tight when the ratio kmax

kmin
is close

to one. For larger values of kmax

kmin
, investigating the tightness of this upper bound is

an interesting open problem that deserves further research.

7.6 DVS settings

This section derives an upper bound on the competitive factor of DVS-enabled online algo-

rithms. A DVS-capable processor whose frequency can be varied in the range [fmin, fmax]

is considered. Without loss of generality, it is assumed that fmax = 1. Power consumption

of the processor at frequency f is modeled as a convex function P (f) = af α, where a is a

constant characterized by the processor parameters2 and 2 ≤ α ≤ 3. Thus, at frequency f ,

the time and energy required to execute a job with processing time x are given by x
f and

E(f) = P (f) · xf = fα−1x, respectively.

2In this section it is assumed that a = 1. Recently there have been research efforts addressing system
energy models, where it was shown that lowering frequency below a certain threshold (called energy-efficient

speed) may adversely affect overall system energy consumption [10]. The upper bound results can easily be
adapted to these system-level energy models by enforcing arbitrarily low energy-efficient speed levels.

153

In line with the previous sections the underloaded energy-constrained system assumption

is made: in DVS settings, there should exist a feasible schedule for all jobs in ψ, when the

processor executes all jobs at frequency fmax and the energy constraints are not taken into

account.

Notice that with DVS, the energy required to execute a job depends on the frequency at

which the job is executed. As such, there is no longer one-to-one correspondence between

job execution times and energy requirements. By taking this into account, in this section,

a job Ji is represented by Ji(ri, Ci, Di, ei), where ri is its release time, Ci is its execution

time at frequency fmax (also referred to as workload of Ji), Di is its relative deadline and ei

is its minimum energy requirement. The minimum energy requirement ei is computed by

assuming the minimum frequency Ci

Di
that would allow the timely completion of Ji before

its deadline. That is, ei = E(Ci

Di
) = (Ci

Di
)α−1 · Ci.

Note that the uniform density model is assumed throughout this section and the value

of a job Ji is assumed to be equal to Ci (execution time at fmax). That is, executing a job

at a low frequency reduces the energy consumption but does not affect its value. Before

proceeding, some basic definitions and existing results are given that will be instrumental

in the analysis.

Definition 3. Let l(t1, t2) denote the total amount of workload of jobs with release times

at or later than t1 and deadlines at or earlier than t2. The effective loading factor h(t1, t2)

over an interval [t1, t2] is defined as h(t1, t2) = l(t1,t2)
t2−t1 .

Definition 4. The absolute effective loading factor (or simply the loading factor) β is the

maximum effective loading factor over all intervals [t1, t2]: β = max(h(t1, t2)),

0 ≤ t1 < t2.

Theorem 10. (from [16],[70]) A set of real-time jobs can be scheduled in feasible manner

(by preemptive EDF) if and only if β ≤ 1.

Given the loading factor β, if the processor executes all jobs at constant frequency

154

f = max(fmin, β), then the new loading factor β ′ (increased due to the reduced frequency)

would be β
f . Further, one can easily verify that β ′ would still not exceed 1.0 under that

condition [130]. Thus, running jobs at frequency f = max(fmin, β) preserves the system

feasibility (without the energy constraint).

Proposition 10. A DVS algorithm that runs at constant speed f ≥ max(fmin, β) cannot

make a total value > E
fα−1 .

Proposition 10 can be justified by observing that with DVS, to deplete e units of energy,

the system will have to execute a workload of e
fα−1 at constant frequency f . Thus, with e

units of energy, a maximum value of e
fα−1 can be made by running the processor at constant

speed f . Note that this implies that with DVS the system is able to achieve a value greater

than E. In settings where both the online algorithm and adversary have DVS, the pre-

knowledge of β can potentially provide some advantage to the online algorithm. Theorem

11 characterizes this result.

Theorem 11. Assuming β > fmin where 0 < β ≤ 1,

(i) Without the knowledge of β, there is no online DVS algorithm with a competitive factor

greater than fα−1
min .

(ii) With the knowledge of β, there is no online DVS algorithm with a competitive factor

greater than (fmin

β)α−1.

Proof. Case 1: Assume β is unknown to the algorithm

Consider the following instance. The adversary sets β = 1 and introduces a job J1(0, E,E,E)

(Notice the minimum energy requirement for J1 is e1 = E). Clearly, if the online algorithm

A does not execute J1, it will miss its deadline. The adversary executes J1 and releases no

more jobs. The value of A is zero, while that of the adversary is E.

If A executes J1, then, at time t = E, the adversary introduces J2(E,
E

kα−1 ,
E
kα , E),

where fmin ≤ k ≤ 1. Observe that J2 can be executed at frequency
E

kα−1

E
kα

= k. By skipping

155

J1, the adversary executes J2 gathering a value of E
kα−1 . Thus, the competitive factor is

E
E

kα−1

= kα−1. Since the minimum possible frequency is fmin, by setting k = fmin, the

adversary can force an upper bound of (fmin)
α−1 on the competitive factor.

Case 2: Assume β is known to the algorithm

The pattern in Case 1 can be repeated with a slight modification. J1 is given with param-

eters J1(0,
E

βα−1 ,
E
βα , E). A is forced to execute J1 at frequency β to guarantee a non-zero

total value. At that point, the adversary introduces J2 with the following parameters

J2(E,
E

fα−1

min

, E
fα

min
, E). Observe that J2 can be executed by the adversary at frequency fmin,

yielding a value of E
fα−1

min

. Further, since fmin < β, the processor loading factor can be easily

shown to be β, satisfying the assumption. A has a value of E
βα−1 and thus the competitive

factor is bounded by (fmin

β)α−1.

The case where β ≤ fmin is relatively simple: consider the algorithm EC-EDF using a

constant speed fmin. Notice that this algorithm does never spend more energy than required

while processing jobs, as the system limitations do not allow processing below fmin. Also,

due to the same constraint, fmin is the least possible frequency with which the adversary

can process jobs. As such, this case can be shown to be equivalent to the non-DVS case

(Section 7.3), where both the online algorithm and the adversary had to process jobs at the

same (constant) speed. Thus, all the results of Section 7.3 apply.

As a consequence of Theorem 11, the upper bound on competitive factor approaches

zero as fmin → 0 and β → 1.

7.6.1 Semi-online Algorithm EC-DV S∗

This subsection presents a semi-online algorithm EC-DV S∗ that uses the knowledge of both

β and the maximum job size in the input instance. EC-DV S∗ is a variant of EC-EDF ∗

for DVS settings where β > fmin. First, a variant of EC-EDF called EC-DVS is described

which will later be used by EC-DV S∗.

156

The EC-DVS algorithm uses an admission test similar to that of EC-EDF and admits a

new job to the system if and only if there is enough remaining energy to completely execute

both the new job and the remaining workload from all pending admitted jobs. All admitted

jobs are executed in EDF order and at a constant speed β.

Observe that in executing a workload of W units, EC-DVS spends βα−1 ·W units of

energy. Thus, formally, at time t, when the system has remaining energy budget of E r

units and remaining workload of R units from all pending admitted jobs, EC-DVS admits

a newly arriving job Ji(t, Ci, Di, ei) if and only if

Er ≥ βα−1 · (Ci +R)

Lemma 10. If the largest job size in the input instance Cl is such that Cl ≤ 1
2(E
βα−1) then

EC-DVS has a competitive factor of 1
2(fmin

β)α−1

Proof. If EC-DVS rejects a job Ji with execution time Ci, then this implies that EC-DVS

has depleted (or will eventually deplete upon completely executing the remaining workload

of pending admitted jobs) at least E ′ = E − βα−1Ci + δ units of energy. In other words,

EC-DVS has admitted a workload of at least E′

βα−1 units.

The following property of EC-DVS can be easily verified in the lines of Proposition 9:

EC-DVS executes all admitted jobs to completion before their respective deadlines without

violating the system’s energy constraints. Thus, EC-DVS guarantees a value of at least

E′

βα−1 . Since Ci ≤ Cl ≤ 1
2(E
βα−1), the following holds:

E′

βα−1
=
E − βα−1Ci + δ

βα−1
≥ E − βα−1Cl + δ

βα−1

E′

βα−1
≥
E − (βα−1 · 1

2 (E
βα−1)) + δ

βα−1

157

E′

βα−1
≥ 1

2
(
E

βα−1
)

Since the optimal algorithm can make a value of at most E
fα−1

min

, the competitive factor

of EC-DVS is 1
2(fmin

β)α−1.

The EC-DV S∗ algorithm is based on EC-DVS and has the following rules. If the

maximum job size in the input instance Cl is such that Cl >
1
2(E
βα−1) then EC-DV S∗ just

waits for the job Jl with execution time Cl and executes it at speed f = Cl

Dl
, where Dl is

the deadline of Jl. Since the processor cannot run at a frequency lower than fmin and the

minimum execution requirement of any job cannot exceed the system energy budget E, f is

guaranteed to be in the range [fmin, β]. On the other hand, if Cl ≤ 1
2(E
βα−1) then EC-DV S∗

follows the rules of EC-DVS.

Lemma 11. EC-DV S∗ has a competitive factor of 1
2(fmin

β)α−1.

Proof. Let Cl denote the maximum job size in the input instance.

Case 1: If Cl >
1
2(E
βα−1) then EC-DV S∗ makes a value of at least Cl while the optimal

online algorithm can make at most E
fα−1

min

. Thus, the competitive factor of EC-DV S∗ is

1
2(fmin

β)α−1.

Case 2: If Cl ≤ 1
2(E
βα−1) then EC-DV S∗ follows EC-DVS and thus has a competitive

factor of 1
2(fmin

β)α−1 (Lemma 10).

From Cases 1 and 2, EC-DV S∗ has a competitive factor of 1
2(fmin

β)α−1.

Lemma 12 below establishes the upper bound on the best achievable competitive factor

by any semi-online algorithm that uses only the knowledge of β and the largest job size in

the input instance.

158

Lemma 12. No semi-online algorithm with the knowledge of β and the largest job size in

the input instance can achieve a competitive factor greater than (fmin

β)α−1.

Proof. The adversary constructs an instance of back-to-back jobs (Ji+1 released at the

deadline of Ji) with the following parameters: C = δ, D = δ
fα−1

min

and e = fα−1
min · δ. This

sequence of jobs ends either when the total workload released by the adversary reaches E
fα−1

min

or A executes one of these jobs at time t < E
fα−1

min

. Both of these cases will be considered

separately. Let Cl denote the maximum job size in the input instance.

• Case A: The total workload released by the adversary reaches E
fα−1

min

. In this case,

the adversary introduces job J(E
fα−1

min

, Cl,
Cl

β , β
α−1Cl). Observe that job J ensures the

loading factor of the input instance created by the adversary is β. Since the online

algorithm A has not executed any job (and hence not depleted any energy budget)

until the release time of job J , it can execute job J and accrue a value no more

than Cl. On the other hand, executing all jobs except job J , the adversary makes a

total value of E
fα−1

min

. Thus, the competitive factor is fα−1
min · Cl

E . The minimum energy

requirement of Cl must not exceed E, hence: βα−1Cl ≤ E. Thus, setting Cl = E
βα−1

the competitive factor is bounded by (fmin

β)α−1 .

• Case B: A executes one of the jobs at time t < E
fα−1

min

. In this case, A has depleted

fα−1
min ·δ units of energy and accrued a value of δ. At this stage the adversary introduces

job J(t, Cl,
Cl

β , E). Observe again that job J ensures the instance created by the

adversary has a loading factor β. By executing J at frequency β the adversary makes

a value of Cl. The competitive factor is δ
Cl

, where Cl ≤ E
βα−1 . Thus the competitive

factor in this case can be arbitrarily small.

From Cases A and B above, no semi-online algorithm with the knowledge of β and

159

the largest job size in the input instance can achieve a competitive factor greater than

(fmin

β)α−1.

Corollary 8. The competitive factor of EC-DV S∗ is 0.5 times that of the optimal semi-

online algorithm in these settings.

7.7 Resource Augmentation

While the competitive analysis characterizes performance guarantees in the worst-case sce-

narios, some recent efforts exploited alternative means to quantify the performance of online

algorithms. Resource augmentation technique, introduced by [100] and popularized by [72],

is such a framework. With resource augmentation, the online algorithm is given additional

resources compared to the adversary in an effort to compensate for the lack of knowledge

about the future. For example, the online algorithm may run on a faster processor [72],

or it may have access to additional CPUs [19]. The following analysis shows how resource

augmentation can help significantly improve the performance of EC-EDF, especially when

emax

E is close to one.

First, the implications of providing the online algorithm EC-EDF with additional energy

is explored. Specifically, if the adversary possesses an energy budget of E units, then EC-

EDF is assumed to have an initial energy of (1 + x)E units, where x > 0. From Theorem

7 it is known that given an initial energy of E, EC-EDF guarantees a value of at least

E − emax. Thus, with (1 + x)E units of initial energy, EC-EDF guarantees a value of at

least (1 + x)E − emax. The competitive factor is 1 + x − emax

E . Hence, if x = emax

E then

EC-EDF has a competitive factor of 1.

Proposition 11. The online algorithm EC-EDF achieves a competitive factor of 1 compared

to an adversary with E units of energy budget, if it is allocated (E + emax) units of energy.

Further, emax

E ≤ 1, hence:

160

Corollary 9. If EC-EDF is provided twice as much energy as the clairvoyant adversary

Cadv, it becomes at least as powerful as Cadv.

The following describes a practical way to effectively give more energy to EC-EDF.

Specifically, the EC-EDF scheduler is augmented with the knowledge of the absolute load-

ing factor β, and a DVS-capable processor. It will be shown that EC-EDF can successfully

compete with a clairvoyant adversary without DVS feature. With this resource augmenta-

tion, EC-EDF always executes all jobs at speed f = β. This modified EC-EDF is referred

to as β-EC-EDF. Observe that since the processor always runs at constant speed β, to

deplete e units of energy, the processor must execute e
βα−1 units of workload. Thus, the

initial energy budget of β-EC-EDF is effectively 1
βα−1 times that of the adversary. Following

Theorem 7, β-EC-EDF guarantees a value of E
βα−1 − emax.

Proposition 12. β-EC-EDF has a competitive factor of E−βα−1emax

βα−1E
.

The following is a consequence of Proposition 12 and the inequality emax ≤ E:

Corollary 10. If β ≤ (1
2)

1

α−1 , β-EC-EDF is as powerful as a clairvoyant adversary without

DVS.

7.8 Chapter Summary

This chapter undertook a preliminary study of competitive analysis for energy-constrained

online real-time scheduling in underloaded settings. An optimal algorithm EC-EDF was

proposed which achieves the best possible performance guarantee obtainable by any online

algorithm. Further, by assuming the knowledge of the largest job size, an optimal semi-

online algorithm EC-EDF ∗ was proposed, which has a competitive factor of 0.5. Extending

the analysis, fundamental results were provided for various models and settings including

those of non-uniform value density and DVS.

161

Chapter 8: Conclusions

This chapter presents a summary of the main results obtained in this dissertation research,

and then identifies a number of open problems for potential future work.

8.1 Summary of the Dissertation’s Contributions

Energy management remains one of the fundamental design goals in real-time embedded

systems. Dynamic Voltage Scaling (DVS) allows the processor supply voltage and clock

frequency to be adjusted, thereby providing opportunities for reducing CPU dynamic energy.

Dynamic Power Management (DPM) technique transitions device, when not in use, to low-

power states and helps reduce the device energy. Both DVS and DPM techniques have been

extensively applied for energy management in real-time systems. Recently there has been

a growing interest in managing the system-wide energy, which mandates combining both

DVS and DPM in a unified framework. Below, the specific contributions of this dissertation

in this area are summarized.

8.1.1 Optimal Integration of DVS and DPM for a Frame-based Real-time

Application

• A provably optimal algorithm OPT was developed to minimize the system-wide energy

consumption. OPT is based on an exact characterization of the interplay between DVS

and DPM.

• The dissertation extended the algorithm OPT to address dynamic variations in task

execution times. The proposed algorithm OPT* minimizes average-case system energy

using the knowledge of average-case execution time. OPT* guarantees the deadline

of the application under worst-case execution workload.

162

8.1.2 System-level Energy Management of Periodic Real-time Tasks

• The RT-DPM problem for periodic tasks was shown to be NP-Hard in the strong sense,

even in the absence of DVS. This result implies that for periodic real-time systems an

exact and efficient solution to the system-level energy management problem is highly

unlikely.

• The dissertation has developed two unified system-level energy management frame-

works, DFR-RMS and DFR-EDF, that target the most widely deployed static- and

dynamic-priority periodic real-time applications, respectively. A critical building

block for these frameworks is the novel RT-DPM concept: Device Forbidden Re-

gions (DFR). With DFRs, long device idle intervals (called forbidden regions (FRs))

are periodically inserted to the schedule at run-time. Every FR is associated with a

device, which is put to low-power mode during FR activations thereby reducing its

energy. The proposed frameworks integrate DVS and DPM to minimize the system-

wide energy. Through simulations the advantages of the DFR framework over other

state-of-art schemes were shown.

8.1.3 Energy Management of Periodic Real-time Tasks on Chip-Multiprocessors

• One of the contributions of this dissertation is the introduction and characterization

of global energy-efficient frequency, which varies over time with the number of active

cores and the subset of tasks running in parallel upon them.

• Two schemes CVFS and CVFS* were proposed for run-time dynamic energy manage-

ment through coordinated DVS and core transitions among processing units. CVFS*

improves over CVFS by effectively exploiting slack from task early completions to

save more energy.

• The dissertation also investigated the problem of determining the optimal subset

of cores to execute the workload with low static power while preserving feasibility

163

through an appropriate task allocation; and suggested three techniques (SS, GLB,

TLB) for this purpose with varying effectiveness and run-time complexities.

• Through experimental evaluations the effectiveness of the proposed schemes in reduc-

ing system energy on CMP platforms was verified.

8.1.4 Competitive Analysis of Energy-Constrained Real-time Scheduling

• The dissertation carried out competitive analysis of energy-constrained real-time schedul-

ing by investigating several models including online settings with no knowledge of

future input, semi-online settings with partial (limited) knowledge of future input,

uniform density settings where the value of a job is directly proportional to its exe-

cution time, non-uniform density settings where jobs accrue different value for unit

time execution, and DVS-enabled systems.

• For the uniform value density settings, an optimal online algorithm EC-EDF was

developed. Further, a constant competitive optimal semi-online algorithm EC-EDF ∗

was also proposed.

• For the non-uniform value density settings, the dissertation derived an upper bound for

the best achievable competitive factor by any online algorithm. Also, the competitive

factor of EC-EDF ∗ in these settings was investigated.

• The dissertation also analyzed various models including non-preemptive, non-idling

and DVS settings, and derived a number of fundamental results.

8.2 Future Work

8.2.1 Energy-Efficient Real-Time Scheduling on Chip Multiprocessors

The focus of the work in this dissertation was the effective system-level energy management

of a set of processing cores that share the same supply voltage and frequency (a single

voltage island). In contrast, some recent processors consist of multiple voltage islands.

164

Investigating system-level energy management issues on such platforms is an open avenue.

Also, investigating device power management and the problem of integrating DVS and

DPM on CMP platforms are interesting open directions. Analyzing the potential of global

scheduling and quantifying the impact of task migration on energy consumption are other

open directions.

8.2.2 Joint Temperature and Power Management for Real-Time Tasks

In recent years, the exponential increase in power density of the processors has resulted

in large energy consumption. As a consequence, processors have extensively been subject

to overheating which has also reduced the system’s reliability. Due to the exponential

dependency of circuit reliability on operating temperature, it is predicted that over 50% of

the electronic failures are temperature-related [131]. Given the interdependency between

temperature and power, the high leakage power in modern multi-core architectures further

aggravates the problem. For all of the above reasons, temperature management has become

an important design goal.

Existing works on temperature management of hard real-time systems have typically

focused on minimizing peak temperature [55,123]. In these and other existing works [14,115]

the relationship between temperature and power is modeled using Fourier’s Law of heat

conduction. The thermal parameters are calculated by the RC thermal model.

An interesting and open problem to investigate is energy minimization subject to tem-

perature constraints. Specifically, given a real-time scheduling policy A, determine the

scheduling frequency and voltage levels for task executions that minimize energy consump-

tion while not violating both the thermal constraints and feasibility of the system.

Some recent CMP systems including AMD Opteron have the Global Voltage Variable

Frequency feature. Here, though cores share the same supply voltage they can indepen-

dently manage their own operating frequencies. While this will not significantly help in

energy management (since voltage is not scaled), it may have an impact on temperature

management. Investigating issues in temperature management for such platforms is an open

165

problem.

8.2.3 Energy Constrained Weakly Hard Real-Time Scheduling on Multi-

core Systems

Weakly hard real-time systems are motivated by the fact that for certain application do-

mains, some distantly separated deadline misses are acceptable. Multimedia, real-time

communication and embedded systems control are few examples of such applications. For

these systems, the general (m, k)-firm deadline model has been proposed where the system

degradation (or quality of service) is acceptable as long as every task misses no more than

m deadlines in every k consecutive instances.

In the recent past, there has been an ever-growing demand for devices with superior

quality of service and extended battery life. This has led to a proliferation in battery

operated (hence energy constrained) devices. The soft real-time nature of the workload

expected to run on these devices initially motivated the study of energy constrained weakly

hard real-time uni-processor systems [5]. With the emerging multi-core platforms expected

to dominate the embedded market, it would be worthwhile to re-visit the problem for chip-

multi-core processors and propose efficient and effective heuristics.

166

Appendix A: Proof of Theorem 1

To show that the RT-DPM problem for periodic tasks is NP-Hard in the strong sense, the

corresponding decision problem PRT-DPM is shown to be NP-Hard in the strong sense [56].

PRT-DPM: Given a periodic task set ψ = {T1 . . . Tn}, where each task Ti uses a subset of

devices in D = {D1 . . . Dm}, is there a feasible schedule that consumes at most X units of

device energy in one hyperperiod ?

The given PRT-DPM problem is shown to be NP-Hard in the strong sense by reduction

from the 3-Partition problem. The 3-Partition problem is defined below and known to be

NP-Hard in the strong sense [56].

3-Partition: Given a set S = {s1 . . . s3m} of 3m positive integers, an integer B where

B
4 < si <

B
2 (i = 1 . . . 3m) and

3m
∑

i=1
si = mB, can S be partitioned into m disjoint subsets

S1 . . . Sm such that the sum of elements in each subset is exactly B ?

Note that the 3-Partition instance admits a ”YES” answer if and only if there are exactly

three elements in Si, i = 1 . . . m, such that
∑

j|sj∈Si

sj = B.

Given an instance of the 3-Partition problem construct an instance of the PRT-DPM

problem as follows:

• The system has a set of 3m+1 periodic tasks ψ = {T0 . . . T3m} with relative deadlines

equal to periods and a set of 3m+ 1 devices D = {D0 . . . D3m}. The first instances of

all tasks are released at time t = 0.

• Tasks T1 . . . T3m are referred to as normal tasks (N-tasks). Each N-task Ti has Ci = si,

Pi = 3mB and uses a unique device Di. The devices used by N-tasks are called non-

critical devices.

167

• Task T0 is referred to as special task (S-task). The S-task has C0 = B, P0 = 3
2B and

using device D0. D0 is called the critical device.

• Device characteristics of non-critical device Di (i = 1 . . . 3m) are given as:

– P ia = 1, P is = 0, Ei
sw = B

2 , T isw = 3mB − si

– From the above one can deduce B i
actual = B

2 . Notice that T isw > Bi
actual as long

as m ≥ 1. Thus, Bi = max(T isw, B
i
actual) = 3mB − si.

• Device characteristics of critical device D0 are ginen as:

– P 0
a = 3m+ 1, P 0

s = 0, E0
sw = B

2 (3m+ 1), T 0
sw = B

– From the above one can deduce B0
actual = B

2 and B0 = max(T 0
sw, B

0
actual) = B.

• The value of X in the PRT-DPM instance is set to:

X = 2mB · P 0
a +m · E0

sw +
3m
∑

i=1

(si · P ia +Eisw) =
15

2
m2B + 5mB

A high level map to the proof is given.

• First, it is shown that a feasible schedule having device energy consumption of X

units or less has necessarily a specific pattern where the S-task is scheduled at the

beginning and end of every two consecutive execution periods (i.e. if this pattern is

violated the schedule consumes more than X units of device energy).

• Then, it is further shown that a schedule can achieve device energy consumption of

X units if and only if the N-tasks can be scheduled non-preemptively and in the same

sequence in every hyperperiod.

• Having established that a feasible schedule with device energy consumption of at most

X units is possible only with the specific execution pattern as described above, it is

168

finally shown that the PRT-DPM instance admits a ”YES” answer if and only if the

corresponding 3-Partition instance admits a ”YES” answer.

Before proceeding some basic properties that are important to the proof are given. The

hyperperiod of the given task set is 3mB. The system utilization U is:

U =
B
3
2B

+
3m
∑

i=1

si
3mB

=
2

3
+

mB

3mB
= 1

Since U = 1, there exists a feasible schedule and the time-line is fully utilized in every

hyperperiod (i.e. there is no time instant in any hyperperiod where the CPU is idle).

Since T isw > Bi
actual, P

i
s = 0 and Bi = T isw for all Di, i = 0 . . . 3m, the following property

follows.

Property 3. For each device Di, the energy consumed by keeping it active over an idle

interval of length exactly Bi units exceeds the energy consumed in transitioning it back and

forth over the same interval, i.e. Bi · P ia > (Ei
sw + P is(Bi − T isw) = Ei

sw)

As a consequence of Property 3, transitioning the considered devices over idle intervals of

length exactly equal to their corresponding break-even times is beneficial for energy savings

of every device.

T0 T0

B B B

Figure A.1: Maximum Contiguous Idle Interval for Critical Device

Due to the periodic nature of tasks, the maximum contiguous idle interval a device can

have is bounded by twice the laxity of the tasks using the device in any feasible schedule.

Figure A.1 shows that the maximum length of idle interval the critical device D0 can have

169

is equal to B units. This maximum idle interval is obtained by scheduling the S-task at two

far extremes of consecutive hyperperiods.

Property 4. All device idle intervals for the critical device D0 are of length B units or

less.

Consider a schedule where the S-task is scheduled at the beginning of every odd-

numbered period and at the end of every even-numbered period as shown in Figure A.2.

A schedule satisfying this property is called a Z-schedule. Notice that since the periods of

N-tasks is equal to the hyperperiod 3mB, and preemption is allowed, there always exists a

feasible Z-schedule.

B 3B B

The i Hyperperiod

T0 T T T T T0 0 0 0 0

(i−1)(3mB) i(3mB)

th

Figure A.2: Z-Schedule

Property 5. In a Z-schedule, the critical device D0 has exactly m idle intervals, each of

length B.

Without loss of generality energy consumption during the ith hyperperiod is considered.

The total device energy consumption of a schedule S during the ith hyperperiod is expressed

as:

Ed(S) = Ec(S) +E′
c(S) +Enc(S) +E′

nc(S)

Above, Ec(S) denotes the energy consumed by critical device D0 when active and in use.

E′
c(S) denotes the aggregate energy consumption of D0 over all of its idle periods during

one hyperperiod (including transition costs when appropriate).

Similarly, Enc(S) represents the energy consumed by all non-critical devices when active

and in use. Finally, E ′
nc(S) indicates the aggregate energy consumption of all non-critical

170

devices over all of their respective idle periods during one hyperperiod (including transition

costs when appropriate).

Lemma 13. If a feasible schedule does not satisfy the Z-schedule property then its total

device energy consumption is greater than X units.

Proof. As a consequence of Property 4, the critical device D0 can have at most m device

idle intervals of length B in one hyperperiod. Let S ′ be a schedule having 0 ≤ k < m device

idle intervals of length B for D0. By definition, S ′ is not a Z-schedule.

Each hyperperiod has 2m instances of S-task and hence D0 is active and in use for 2mB

units. Thus, Ec(S
′) = 2mB · P 0

a .

This gives a total idle period of 3mB−2mB = mB units for D0 during the hyperperiod.

Since S′ has k idle intervals of length B, D0 is energy-efficiently transitioned k times,

each of these transitions consume E0
sw units of energy and once transitioned, D0 consumes

no energy during the idle interval (P i
s = 0). Finally, over device idle intervals that are

smaller than B0 = B, D0 is kept in active state. Thus, E ′
c(S

′) = (m− k)B · P 0
a + k ·E0

sw.

Each non-critical device Di is active and in use for si units in one hyperperiod. Thus,

Enc(S
′) =

3m
∑

i=1
si · P ia.

The total device energy consumption of schedule S ′ during the ith hyperperiod is:

Ed(S
′) = Ec(S

′) +E′
c(S

′) +Enc(S
′) +E′

nc(S
′)

Note that E ′
nc(S

′) ≥ 0. Assume Ed(S
′) ≤ X. It will be shown by contradiction that this is

impossible. Since, Ed(S
′) ≤ X,

Ed(S
′) ≤ 2mB · P 0

a +m · E0
sw +

3m
∑

i=1

(si · P ia +Eisw)

171

(m− k)B · P 0
a + k · E0

sw +E′
nc(S

′) ≤ m · E0
sw +

3m
∑

i=1

Eisw

Note that for every device in the PRT-DPM instance, E i
sw = Bi

actual · P ia. By substituting

this value,

(m− k)(B −B0
actual) · P 0

a +E′
nc(S

′) ≤
3m
∑

i=1

(Bi
actual · P ia)

(m− k)B
2
· P 0

a +E′
nc(S

′) ≤ B

2
· 3m

This inequality cannot hold because even if the left hand side was minimized by setting

k = m− 1 which is its maximum value and E ′
nc(S

′) = 0 respectively, P 0
a = 3m + 1 ≤ 3m,

giving a contradiction.

As a consequence of Lemma 13, any schedule having device energy consumption of X

units or less must be a Z-schedule. The energy consumed by all devices in a schedule S

satisfying the Z-schedule property during the ith hyperperiod can be expressed as:

Ed(S) = 2mB · P 0
a +m · E0

sw +
3m
∑

i=1

si · P ia +E′
nc(S)

Notice that Ed(S) ≤ X if and only if E ′
nc(S) ≤

3m
∑

i=1
Eisw. Lemma 14 below characterizes

how to schedule N-tasks in a schedule S satisfying the Z-schedule property to enforce that

E′
nc(S) ≤

3m
∑

i=1
Eisw hold.

Lemma 14. In a Z-schedule, during the ith hyperperiod, E ′
nc ≤

3m
∑

i=1
Eisw if and only if N-

tasks can be scheduled non-preemptively and exactly in the same sequence as in hyperperiods

(i− 1) and (i+ 1).

172

Proof. One can classify the device idle intervals of non-critical devices as enclosed intervals

and extended intervals. An enclosed interval is a device idle interval that starts and ends

within the same hyperperiod. On the other hand, an extended interval is a device idle

interval that starts in one hyperperiod and ends in the consecutive hyperperiod. Figure

A.3 shows enclosed and extended intervals for a device used by task Tk. As a consequence

of Lemma 13, S-task is scheduled at the beginning and end of every hyperperiod in a Z-

schedule. Thus, in a Z-schedule

(1) Every non-critical device has exactly one extended interval for every two consecutive

hyperperiods and the length of this extended interval is no less than 2B (Figure A.3).

(2) For a non-critical device Di, the maximum length of an enclosed interval is 3mB− si−

2B < Bi = 3mB − si (Figure A.3). Thus, the non-critical devices cannot be transitioned

energy-efficiently over any of their respective enclosed intervals. Observe that a non-critical

device will have an enclosed interval if and only if the corresponding N-task using it is

executed in a preemptive manner within one hyperperiod.

T0 T0kT T0Tk Tk

2B3mB − s − 2Bk

enclosed interval

extended interval

The i Hyperperiod (Length = 3mB)th

Figure A.3: Extended and Enclosed Intervals of N-tasks

By proving the implications in both directions Lemma 14 will be established.

Claim A: In a Z-schedule, during the ith hyperperiod, if N-tasks are scheduled non-

preemptively and exactly in the same sequence as in hyperperiods (i− 1) and (i+ 1) then

E′
nc ≤

3m
∑

i=1
Eisw.

Consider a Z-schedule S∗ where, during the ith hyperperiod, N-tasks are scheduled

non-preemptively and in the exact same sequence as in hyperperiods (i− 1) and (i+ 1).

As a consequence of non-preemptive execution, the schedule S∗ has no enclosed intervals

173

T0 1T T0TT T0 0T T2 3 T T1 2 3

i Hyperperiod (Length = 3mB)th (i+1) Hyperperiodth

3mB − s

3mB − s 1

2

Figure A.4: Scheduling to Minimize Device Energy of the PRT-DPM Instance

over the ith hyperperiod. Further, notice that in a Z-schedule, when N-tasks are executed in

the same sequence over consecutive hyperperiods a and b, the lengths of extended intervals

across a and b are exactly equal to their respective device break-even times (Figure A.4).

Since tasks are executed in the same sequence in hyperperiods (i− 1) and i, each non-

critical device Di is energy-efficiently transitioned after the completion of task Ti in (i−1)th

hyperperiod. Further, Di returns to active state only at the exact start time of Ti in ith

hyperperiod. As a consequence, non-critical devices consume no active energy in the ith

hyperperiod until their first usage (i.e. start time of Ti in ith hyperperiod).

Also, tasks are executed in the same sequence in hyperperiods i and (i+1). Thus, each

non-critical device Di is energy-efficiently transitioned after completion of Ti in ith hyper-

period. Transition energy costs for device transitions in the ith hyperperiod are accounted

in E′
nc(S

∗). Thus, E ′
nc(S

∗) is expressed as, E ′
nc(S

∗) =
3m
∑

i=1
Eisw.

Claim B: In a Z-schedule, during the ith hyperperiod, if E ′
nc ≤

3m
∑

i=1
Eisw then N-tasks

are scheduled non-preemptively and in the exact same sequence as in hyperperiods (i− 1)

and (i+ 1).

First observe that since system utilization U = 1 and Bi = 3mB − si (i = 1 . . . 3m), if

all N-tasks are not executed in the same sequence during consecutive hyperperiods a and

b then there exists at least one non-critical device Dk whose extended interval length Ik
across a and b is such that 2B ≤ Ik < Bk.

The claim will be proved considering 3 cases and reaching a contradiction for each.

174

Case 1: Assume E ′
nc ≤

3m
∑

i=1
Eisw and N-tasks are scheduled:

(1) Non-preemptively

(2) Not in the same sequence during hyperperiods i and (i+ 1)

Let Snr be a schedule satisfying the above conditions (Case 1). In Snr, there exist k ≥ 1

non-critical device(s) that could not be energy-efficiently transitioned after their respective

last usage in ith hyperperiod. Without loss of generality let these k devices have indices

1 . . . k.

For device Dj (j = 1 . . . k), let [tj1, t
j
2] denote the extended interval across hyperperiods i

and (i+ 1). Let I1
j denote the length of interval [tj1, iH] which represents portion of [tj1, t

j
2]

confined in ith hyperperiod. As a consequence of Lemma 13, I1
j ≥ B.

Notice:

E′
nc(Snr) ≥

k
∑

j=1

I1
j · P ja +

3m
∑

i=k+1

Eisw =

k
∑

j=1

(I1
j −Bj

actual) · P ja +

3m
∑

i=1

Eisw

Bj
actual = B

2 and I1
j ≥ B implies I1

j −Bj
actual > 0 (j = 1 . . . k). Therefore, E ′

nc(Snr) >
3m
∑

i=1
Eisw

which is a contradiction.

Case 2: Assume E ′
nc ≤

3m
∑

i=1
Eisw and N-tasks are scheduled:

(1) Non-preemptively

(2) In the same sequence during hyperperiods i and (i+ 1)

(3) Not in the same sequence during hyperperiods (i− 1) and i

Let Snl be a schedule satisfying the above conditions (Case 2). There exists in Snl, k ≥ 1

non-critical device(s) that could not be energy-efficiently transitioned after their respective

175

last usage in (i − 1)th hyperperiod. As a result, these k devices will consume β > 0 units

of energy from the start of ith hyperperiod to the point of their respective first usage in it.

Since all tasks in hyperperiods i and (i+1) are executed in the same sequence, non-critical

devices are energy efficiently transitioned after their last usage in hyperperiod i. Thus,

E′
nc(Snl) = β +

3m
∑

i=1
Eisw >

3m
∑

i=1
Eisw which is a contradiction.

Case 3: Assume E ′
nc ≤

3m
∑

i=1
Eisw and N-tasks are scheduled preemptively in the ith hy-

perperiod

Let Sp be a schedule where one or more N-tasks are preempted in the ith hyperperiod.

Sp contains at least one enclosed interval for some non-critical device Dk. Let α > 0 be

the energy consumed in keeping non-critical device(s) active over their respective enclosed

intervals.

Further, since U = 1 and Bi = 3mB − si (i = 1 . . . 3m), irrespective of the order of

execution across hyperperiods,

(i) There exists in Sp, k ≥ 1 non-critical device(s) that could not be energy-efficiently tran-

sitioned after their respective last usage in ith hyperperiod. Similar to Case 1, one needs

to account for the energy consumed by these device(s) after their respective last usage in

ith hyperperiod. Without loss of generality let these k devices have indices 1 . . . k. Also,

as described in Case 1, for device Dj (j = 1 . . . k), I1
j denotes the length of the extended

interval confined in ith hyperperiod.

(ii) Further, there also exists in Sp, l ≥ 1 non-critical device(s) that could not be energy-

efficiently transitioned after their respective last usage in (i− 1)th hyperperiod. Similar to

Case 2, let β > 0 account for the energy consumed by these device(s) from the start of ith

hyperperiod to the point of their respective first usage in it.

176

Combining all the above and simplifying,

E′
nc(Sp) = α+ β +

k
∑

j=1

(I1
j −Bj

actual) · P ja +

3m
∑

i=1

Eisw

α > 0, β > 0 and I1
j − Bj

actual > 0 (j = 1 . . . k) implies, E ′
nc(Sp) >

3m
∑

i=1
Eisw which is a

contradiction.

Corollary 11. A Z-schedule where N-tasks are scheduled in a non-preemptive manner and

in the same sequence during every hyperperiod has a device energy consumption of X units

in one hyperperiod.

Observe that the execution time of N-tasks, Ci = si (i = 1 . . . 3m) are such that B
4 <

Ci <
B
2 . This follows directly from the size constraint in the 3-Partition problem. As

such, a feasible Z-schedule where the N-tasks are scheduled in a non-preemptive manner

must contain m contiguous execution sequences for the N-tasks. Each of these execution

sequences are of length B and delimited by S-task executions. Further, there are exactly 3

N-tasks in each of these execution sequences.

Property 6. A non-preemptive feasible Z-schedule for the PRT-DPM instance can exist

only with exactly three N-tasks executed in every device idle interval of the critical device.

Lemma 15. The PRT-DPM instance admits a ”YES” answer if and only if the corre-

sponding 3-Partition instance admits a ”YES” answer.

Proof. Recall from Property 5 that a Z-schedule has m device idle intervals, I1 . . . Im, each

of length B.

If the PRT-DPM instance admits a ”YES” answer, then Corollary 11 and Lemma 14

imply that this is achievable only by the special Z-schedule with non-preemptive execution

pattern for N-tasks. From Property 6, in this pattern, there must be exactly three N-tasks

executed in each Ii, i = 1 . . . m. Since each of these device idle intervals are exactly of

177

length B units:
∑

Tj∈Ii

sj = B, i = 1 . . . m. Thus, a solution to the 3-Partition instance can

be constructed by assigning each set of three N-tasks executed in Ii to Si, i = 1 . . . m, and

the 3-Partition instance admits a ”YES” answer.

Conversely, if the 3-Partition instance admits an ”YES” answer, then there exists m

disjoint sets S1 . . .Sm such that
∑

j∈Si

sj = B. Further, each Si contains exactly three ele-

ments. Thus, by scheduling the tasks that correspond to the elements of Si over interval

Ii, i = 1 . . . m, a non-preemptive feasible Z-schedule for the PRT-DPM instance can be

constructed. From Corollary 11, such a schedule consumes exactly X units of device energy

in one hyperperiod and the PRT-DPM instance admits a ”YES” answer.

Finally, note that the reduction described can be achieved in polynomial-time. Hence

the theorem follows.

178

Appendix B: Proof of Theorem 3

First the problem is formulated as a decision problem.

DFR-FSB: Given a periodic task set ψ = {T1 . . . Tn} and a set of forbidden regions

φ = {(∆1,Π1) . . . (∆m,Πm)}, can all job instances of ψ meet their respective deadlines

under preemptive EDF ?

DFR-FSB is shown to be co-NP-Hard in the strong sense by reduction from the 3-

partition problem which is known to be NP-Hard in the strong sense [56].

3-Partition: Given a set S = {s1 . . . s3m} of 3m positive integers, an integer B where

B
4 < si <

B
2 (i = 1, . . . , 3m) and

3m
∑

i=1
si = mB, can S be partitioned into m disjoint subsets

S1, . . . ,Sm such that the sum of elements in each subset is exactly B ?

Note that the 3-Partition instance admits a ”YES” answer if and only if there are exactly

three elements in Si, i = 1 . . . m, such that
∑

j|sj∈Si

sj = B.

Given an instance of the 3-partition construct the following instance of the DFR-FSB

problem.

• There are 3m+1 devices in the system ({D0, D1 . . . D3m}). All devices are associated

with forbidden region parameters. Device D0 is associated with FR0 with ∆0 = 2B+1

and Π0 = (m+2)(B+1). Other devices Di6=0 are associated with FRi having ∆i = si

and Πi = (m+ 2)(B + 1).

• There are two periodic tasks, ψ = {T1, T2}. T1 has worst-case execution time of 1

unit and period B + 1 units. T2 has worst-case execution time of 1 unit and period

(m + 2)(B + 1) units. T1 uses no system device, while T2 uses all 3m + 1 devices

{D0, D1, . . . , D3m}.

179

ψ is a harmonic task set with hyperperiod H = (m+ 2)(B + 1) and the total utilization

U given by:

U =
1

B + 1
+

1

(m+ 2)(B + 1)
≤ 1

First, note that all (m + 2) instances of T1 meet their respective deadlines within the

hyperperiod. The first (m+ 1) instances of T1 have higher priority compared to the single

instance of T2 and they are not subject to delay by any FR interference. The last ((m+2)th)

instance of T1 has the same priority as that of T2 and can be delayed by at most C2 = 1

time unit. Even with this interference from T2, as it is not delayed by any FR activation,

the last instance of T1 is guaranteed a timely completion.

Remark 6. All instances of T1 meet their respective deadlines under any FR activation

pattern and preemptive EDF scheduling.

0

T T T T T1 1 1 1 1

I
FR0

1 (B+1) (m+2)(B+1)m(B+1)

I I1 2 m

Icrit

Figure B.1: EDF Schedule with worst-case FR enforcement for T2

Now, focusing on the execution of T2, which is affected by all |φ| = 3m + 1 forbidden

regions, an arguement is made that T2 is definitely schedulable if FR0 is not activated after

the completion of the (m+ 1)th instance of T1 and until the end of hyperperiod (i.e. in the

interval Icrit = [(m(B + 1) + 1, (m+ 2)(B + 1)], as shown in Figure B.1). In other words, if

FR0 is not activated in the interval Icrit, then there always exists a feasible EDF schedule.

To see this, assume FR0 is activated at some other interval [t1, t2] in the hyperperiod.

In this case, observe that the activation of FR0 will overlap with at least one of the first

(m + 1) instances of T1, each of which has higher priority with respect to T2. As a result

180

T2, cannot be delayed by more than:

∆0 +m · C1 +

3m
∑

i=1

∆i = 2B + 1 +m+mB = (m+ 1)(B + 1)− 1

time units and T2 will meet its deadline with its C2 = 1 unit execution time requirement.

Remark 7. In the worst-case FR activation pattern for T2, FR0 should be activated in

interval Icrit

If FR0 is activated in the interval Icrit, then T2 can only be executed in one the following

m intervals (where the (m+ 1) high priority instances of T1 are not executing, as shown in

Figure B.1):

I = {I1 = [1, B + 1], . . . , Im = [(m− 1)(B + 1) + 1,m(B + 1)]}

The total length of intervals in I is mB and deciding on the schedulability of T2 depends on

whether there exists a FR activation pattern for FR1 . . . FRm (whose FR durations sum

up to mB), such that the intervals in I can be continuously and fully covered.

In the worst-case interference pattern for T2, let Ifr denote the total interference of

FR1 . . . FRm during the intervals I = {I1 . . . Im}. Given that Ifr ≤
3m
∑

i=1
∆i = mB, the

following properties can be easily verified:

Remark 8. T2 misses its deadline if and only if Ifr = mB.

Remark 9. Ifr = mB if and only if the following three facts hold:

(1) Each FRi ∈ (φ− FR0) is enforced once during the interval [0, (m+ 2)(B + 1)].

(2) No two enforcements of FR1 . . . FRm overlap.

(3) No enforcements of FR1 . . . FRm overlaps with the execution of T1

It is now show that a DFR-FSB instance admits a ”NO” answer if and only if the

corresponding 3-partition instance admits a ”YES” answer, completing the proof.

181

Claim A: If the DFR-FSB instance admits a ”NO” answer then the corresponding 3-

partition instance admits a ”YES” answer.

If the DFR-FSB instance admits a ”NO” answer then T2 must have missed its deadline

(Remark 6). From Remarks 7, 8 and 9 if T2 misses its deadline then for each Ik ∈ I,

there exists a set of forbidden regions Fk ⊂ (φ − FR0) such that
∑

i∈Fk

∆i = B. Further, at

run-time the forbidden regions in Fk are enforced back-to-back to form a single contiguous

unit of length B that prevents execution of T2 over Ik. Note that by definition, each FRi

is enforced at run-time as a contiguous unit of length ∆i (i.e. a single enforcement of an

FR cannot be split into multiple parts). Also, each FRi can interfere with the execution

of T2 at most once during the interval [0, (m + 2)(B + 1)] (since all FRs have a period of

(m+ 2)(B + 1)). Thus:

F1 ∩ F2 ∩ . . . ∩ Fm = ∅

Further, since Ifr = mB when T2 misses its deadline (Remark 8):

F1 ∪ F2 ∪ . . . ∪ Fm = φ− FR0

Also note that B
4 < ∆i = si <

B
2 . Thus, if

∑

i∈Fk

∆i = B, then Fk contains exactly three

FRs from the set φ − FR0. A solution to the 3-partition instance can be constructed by

assigning each set of three FRs in Fk to Sk (k = 1, . . . m).

Claim B: If the 3-partition instance admits a ”YES” answer then the corresponding DFR-

FSB instance admits a ”NO” answer.

If the 3-partition instance admits a ”YES” answer then there exists {S1 . . . Sm} such

that
∑

i∈Si

si = B (i = 1, . . . ,m). Thus, by enforcing the FRs corresponding to elements of

Si in interval Ii back-to-back (i = 1 . . . m), one can create a total interference of Ifr = mB

thus forcing T2 to miss its deadline.

182

Appendix C: Proof of Theorem 4

The theorem is proved by contradiction. Assume there is a deadline miss and the following

holds:

∀kk=1...n

∑

i∈Υk

(
∆i

Πi
+

∆i

Pk
) +

k
∑

j=1

Cj
Pj
≤ 1

Let td be the first time a job misses its deadline in the EDF schedule. Let ts be the last time

before td such that there are no pending job execution requests with arrival times before ts

and deadlines at or before td. ts is well defined as no requests can arrive before t = 0.

At time t, where ts ≤ t ≤ td, let A(t) denote the set of ready jobs with pending execution

requirements whose arrival times are in interval [ts, t] and deadlines in interval [ts, td]. By

choice of ts, A(t) is a non-empty set throughout the interval [ts, td]. Hence, there is always

a pending job with deadline no greater than td in this interval.

Let td − ts = X. Let k be the largest index satisfying the condition Pk ≤ X. At any

time t, ts ≤ t ≤ td, the job instances in A(t) belong to a subset of tasks in {T1 . . . Tk} (since

tasks are ordered according to periods). Υk denotes the set of forbidden regions affecting

one or more tasks in {T1 . . . Tk}.

As a result, at any time t in the interval [ts, td] either a job in A(t) should be executing

or all the jobs in A(t) should be prevented from execution (blocked) by one or more FRs

in Υk. Therefore, the entire interval [ts, td] can be seen as a sequence of intervals where in

each interval either a job in A(t) runs or all jobs in A(t) are blocked by one or more FRs

in Υk.

Let α1 denote total length of interval in [ts, td] where all jobs in A(t) are blocked due to

FR enforcements. α1 is bounded by the total length of FRs in Υk when they are activated

with their minimum separation times (Π values) in [ts, td]. Thus, α1 ≤
∑

i∈Υk

d XΠi
e ·∆i.

Let α2 denote the length of intervals in [ts, td] where a job in A(t) is executed. α2 is

183

bounded by the total execution time of jobs in A(t), ts ≤ t ≤ td. Thus, α2 ≤
k
∑

j=1
b XPj
c · Cj .

Since a job misses its deadline at time td, α1 + α2 > X

∑

i∈Υk

dX
Πi
e ·∆i +

k
∑

j=1

bX
Pj
c · Cj > X

Since dY e ≤ bY c+ 1 and bY c ≤ Y ,
∑

i∈Υk

(XΠi
+ 1) ·∆i +

k
∑

j=1

X
Pj
· Cj > X

∑

i∈Υk

(
∆i

Πi
+

∆i

X
) +

k
∑

j=1

Cj
Pj

> 1

By choice of k, P1 ≤ P2 . . . ≤ Pk ≤ X. Thus,
∑

i∈Υk

(∆i

Πi
+ ∆i

Pk
) +

k
∑

j=1

Cj

Pj
> 1, giving a

contradiction and proving the theorem.

184

Appendix D: Proof of Theorem 5

The theorem is proved by contradiction. Assume there is a deadline miss and the following

holds:

∀kk=1...n
bk
Pk

+
∑

i∈Υk

(
∆i

Πi
+

∆i

Pk
) +

k
∑

j=1

Cj
Pj
≤ 1

Let td be the first time a job misses its deadline in the EDF schedule. Let ts be the last time

before td such that there are no pending job execution requests with arrival times before ts

and deadlines at or before td. ts is well defined as no requests can arrive before t = 0.

At time t, where ts ≤ t ≤ td, let A(t) denote the set of ready jobs with pending execution

requirements whose arrival times are in interval [ts, t] and deadlines in interval [ts, td]. By

choice of ts, A(t) is a non-empty set throughout the interval [ts, td]. Hence, there is always

a pending job with deadline no greater than td in this interval.

Let td − ts = X. Let k be the largest index satisfying the condition Pk ≤ X. At any

time t, ts ≤ t ≤ td, the job instances in A(t) belong to a subset of tasks in {T1 . . . Tk} (since

tasks are ordered according to periods). Υk denotes the set of forbidden regions affecting

one or more tasks in {T1 . . . Tk}.

As a result, at any time t in the interval [ts, td] either a job in A(t) should be executing

or all the jobs in A(t) should be prevented from execution (blocked) by either FRs in Υk

or execution of jobs not in A(t). Below it is first shown that there can be at most one job

not in A(t) that can execute in the interval [ts, td].

Proposition 13. There can be at most one job not in A(t) that can execute in the interval

[ts, td].

Proof. First observe that a job not in A(t) will only execute in the interval [ts, td] if it is

holding a non-preemptable resource that is required by some job in A(t). The above claim is

proved by contradiction. Assume there were more than one such jobs. Then there must be

at least two such jobs Ja and Jb with one of them having preempted the other. Without loss

185

of generality, assume Ja preempts Jb. Since Jb began execution before Ja and is blocking

some Ji in A(t), at the time Ja preempts Jb, the system ceiling is at least pl(Ji). Since

Ja is able to preempt Jb, pl(Ja) must be greater than the current system ceiling. Thus,

pl(Ja) > pl(Ji). However, by definition the relative deadline of Ji is smaller than that of Ja

leading to a contradiction.

The entire interval [ts, td] can be seen as a sequence of intervals where in each interval

either

• A job not in A(t) runs.

• All jobs in A(t) are blocked by one or more FRs in Υk.

• A job in A(t) runs.

Let α1 denote the total length of interval in [ts, td] where jobs not in A(t) are executed.

From Proposition 13, it is know that there can be at most one job Jl not in A(t) that can

be executed in [ts, td]. Thus, α1 is bounded by the longest time Jl causes resource blocking

uses the shared resource(s). This in turn is bounded by bi for every Ji in A(t). In particular,

α1 ≤ bk

Let α2 denote total length of interval in [ts, td] where all jobs in A(t) are blocked due to

FR enforcements. α2 is bounded by the total length of FRs in Υk when they are activated

with their minimum separation times (Π values) in [ts, td]. Thus,

α2 ≤
∑

i∈Υk

dX
Πi
e ·∆i

Let α3 denote the length of intervals in [ts, td] where a job in A(t) is executed. α3 is

bounded by the total execution time of jobs in A(t), ts ≤ t ≤ td. Thus,

186

α3 ≤
k

∑

j=1

bX
Pj
c · Cj

Since a job misses its deadline at time td,

α1 + α2 + α3 > X

bk +
∑

i∈Υk

dX
Πi
e ·∆i +

k
∑

j=1

bX
Pj
c · Cj > X

Since dY e ≤ bY c+ 1 and bY c ≤ Y ,

bk +
∑

i∈Υk

(
X

Πi
+ 1) ·∆i +

k
∑

j=1

X

Pj
· Cj > X

bk
X

+
∑

i∈Υk

(
∆i

Πi
+

∆i

X
) +

k
∑

j=1

Cj
Pj

> 1

By choice of k, P1 ≤ P2 . . . ≤ Pk ≤ X. Thus,

bk
Pk

+
∑

i∈Υk

(
∆i

Πi
+

∆i

Pk
) +

k
∑

j=1

Cj
Pj

> 1

Giving a contradiction and proving the theorem.

187

Appendix E: Proof of Theorem 6

To prove Theorem 6, create an input sequence ψ such that for any given positive small

value δ and for any online algorithm A, A accrues a value no more than E − emax + δ and

the adversary gains a total value of E. Thus, the competitive factor of A will be shown

to be no better than E−emax

E . Recall that E and ei for any job Ji are exact multiples of δ.

This implies emax, the upper bound on the size of any job, is also an exact multiple of δ.

Let E = k1 ·δ and emax = k2 ·δ. Where, k1 and k2 are integers such that k1 ≥ k2, k1 ≥ 1

and k2 ≥ 1. In the following, feed algorithm A the input sequence ψ such that there exists

a time t, where A obtains a total value of no more than E − emax + δ. Further, A will be

unable to accrue any additional value after time t.

Start with time t = 0. The adversary introduces (k1 − k2 + 1) sequential jobs with size

δ (recall sequential jobs have zero laxity and are released back to back one at a time). At

time t1 = (k1 − k2 + 1) · δ, let m ≥ 0 denote the number of jobs that are not executed by A.

There are the following three cases.

• Case 1: m = 0. In this case A has executed to completion a total workload of

W = (k1 − k2 + 1) · δ, accruing a value of W units while also depleting W units of the

intial energy budget E. At time t1, the adversary introduces a single job with size

emax = k2 · δ. With only (k2 − 1) · δ units of energy left, A cannot execute this job.

On the other hand, the adversary by executing (k1 − k2) jobs of size δ and the job

with size emax accrues a value of (k1 − k2) · δ + emax. Thus, the competitive factor is

given by:

(k1 − k2 + 1) · δ
(k1 − k2) · δ + emax

=
E − emax + δ

E

• Case 2: m ≥ k2. In this case A has skipped execution of at least k2 jobs. Thus, at

time t1, the value accrued by A is no more than (k1 − 2k2 + 1) · δ and its remain-

ing energy budget is no more than (2k2 − 1) · δ. At t1, the adversary introduces a

188

single job of size emax. By executing this job, A can increase its value to at most

(k1 − 2k2 + 1) · δ + emax. Similar to Case 1 above, the adversary makes a value of E

by executing (k1 − k2) jobs of size δ along with the job of size emax. The competitive

factor is given by:

(k1 − 2k2 + 1) · δ + emax
E

=
E − emax + δ

E

• Case 3: m < k2. In this case first observe that in the time interval [0, t1], A accrues a

value of W1 = (k1 − k2 + 1−m) · δ. Starting from time t1, the adversary incremen-

tally releases sequential jobs of size δ until one of the following two conditions hold:

(1) k2 jobs have been released and A has executed 0 ≤ m′ < m of these jobs. (2) A

executes m of these jobs. There are the following two sub-cases.

– Case 3A: k2 jobs of size δ have been released and A has executed 0 ≤ m′ < m

of these jobs. Thus, in the time interval (t1, (k1 + 1) · δ], A accrues a value of

W2 = m′ · δ. The adversary can accrue a total value of E by executing (k1 − k2)

jobs released in interval [0, t1] and k2 jobs released interval [t1, (k1 + 1) · δ]. The

competitive factor is given by:

W1 +W2

E
=

(k1 − k2 + 1 + (m′ −m)) · δ
E

Since m′ < m,

(k1 − k2 + 1 + (m′ −m)) · δ
E

<
(k1 − k2 + 1) · δ

E
=
E − emax + δ

E

– Case 3B: A executes m of these jobs. Let t2 ≤ (k1 + 1) · δ be the time when A

189

completes executing m jobs. At time t2, A has accrued a value of

W = W1 +m · δ = (k1 − k2 + 1) · δ = E − emax + δ

Also, at time t2 the remaining energy budget with A is (k2 − 1) · δ units. The

adversary at t2 releases a single job with size emax which A cannot execute. The

adversary by executing (k1 − k2) jobs released in interval [0, t1) and the job with

size emax released at t2 accrues a total value of E. Thus, the competitive factor

is given by W
E = E−emax+δ

E .

From Cases 1, 2 and 3, no online algorithm can achieve a competitive factor greater than

E−emax+δ

E . Since δ
E can be arbitrarily low, the upper bound on the achievable competitive

factor is given by E−emax

E .

190

Appendix F: Proof of Theorem 8

In order to prove Theorem 8, an input instance is provided for which the ratio of the total

value accrued by any online algorithm A to that of a clairvoyant adversary cannot be more

than 1

(kmax)
emax

E
.

This instance consists of a series of periods P1, P2, . . . , Pm m ≥ 1. The exact number

of periods (m), as well as the exact number of jobs released in each period, depend on the

actions of the algorithm A. The strategy will consist in showing that, in each period, the

ratio of the value accrued by A to that of the adversary cannot be greater than 1

(kmax)
emax

E
.

This, in turn, will establish the upper bound over all the periods, that is, the competitive

factor of the entire input instance.

Let the remaining energy of A at the beginning of the period Pi be Ei. Clearly, E1 =

E ≥ emax. All the jobs released within a period are released back-to-back and with laxity

zero; that is, at the deadline of a job, a new job is released. First the structure of the first

period P1 is described and then show how it can be generalized to multiple periods.

In the first period, first a job with value density kmin and size X ≤ emax is released by

the adversary. The adversary keeps releasing such jobs with value density kmin and size X

back to back (i.e. the following job is released at the deadline of the previous one) until one

of the following conditions occurs:

a. Either the online algorithm A does not accept any of these jobs until the total energy

requirement (the total size) of the released jobs in period P1 reaches E1.

In this case, the adversary stops releasing any new jobs. No more periods are intro-

duced and this marks the end of the input instance as well. While A obtained a value

of zero in this period, the adversary announces that it has accrued a non-zero value

by executing all bE1

X c jobs that it has released; yielding the total value ratio zero in

this (last) period.

191

b. Or, the online algorithm A accepts one of these jobs at some point before their total

energy requirement does not exceed E1.

At this point, the adversary releases another job of size X but with the value density

k · kmin at the deadline of the first job accepted by A. If A executes this second job

as well, the adversary releases a third job of size X, and value density k2 · kmax at

the deadline of the second job and so on. This pattern continues, i.e. the adversary

keeps releasing jobs where the value density of each job is equal to k times that of the

previous one, until one of the following conditions is satisfied: either the remaining

energy of the player becomes strictly less than emax, or, A rejects executing a job even

though its remaining energy is greater than or equal to emax. Each of these cases is

examined in detail below.

b1. After executing s+1 jobs with value densities kmin, k·kmin, . . . , ks ·kmin, the remaining

energy of A becomes strictly smaller than emax.

In this case, as the last job of this period (and as the last job of the entire input

instance), the adversary releases a job of size emax, zero laxity and value density

ks+1 · kmin. Observe that A cannot execute this job due to the energy deficiency.

However, the adversary announces that it has skipped all the jobs with value density

kmin, but executed the s jobs with value densities k · kmin, . . . , ks · kmin and the last

one with value density ks+1 · kmin in this period1.

Thus, the ratio of the values of accrued by A and the adversary in this last period is

given by:

1Observe that, in this case, E1 = (s+1)·X+Y where s ≥ 0 and 0 ≤ Y < emax. Recalling that E1 ≥ emax

and X ≤ emax, one can infer that E1 ≥ (X + Y) ≥ emax; because if this was not true, there would not be

a non-negative integer s for which E1 = (s + 1) · X + Y holds. So, one can re-write E1 as s · X + (X + Y)

where (X + Y) ≥ emax; that is, the adversary has sufficient energy to execute the s jobs with size X, along
with the last one of size emax.

192

c =
(1 + k + k2 + . . .+ ks) ·X · kmin

(k + k2 + . . .+ ks) ·X · kmin + (ks+1kmin) · emax

≤ (1 + k + k2 + . . .+ ks) ·X · kmin

(k + k2 + . . .+ ks) ·X · kmin + (ks+1kmin) ·X

≤ 1

k
.

b2. Or, after executing s+1 jobs with value densities kmin, k ·kmin, . . . , ks ·kmin, A rejects

executing the job with value density ks+1 · kmin even though its remaining energy is

greater than or equal to emax.

In this case, in this period A accrues a total value of kmin · X ·
∑s

i=0 k
i. Then, the

adversary announces that it has skipped all the jobs it has released with value density

kmin; instead, it has executed the (s + 1) jobs with value densities k · kmin, . . . , ks ·

kmin, k
s+1 · kmin, making a total value of kmin ·X ·

∑s+1
i=1 k

i. Hence, the ratio of the

total value of A to that of the adversary in this period is:

c =
kmin ·X ·

∑s
i=0 k

i

kmin ·X ·
∑s+1

i=1 k
i

=
1

k
(F.1)

At this point, this period ends and a new period with the same job release pattern as

that in the previous one is started. Observe that, up to this point, the adversary and

A have executed exactly the same number of jobs with the same size; hence, at the

beginning of the next period, their remaining energy levels are identical. Further, by

the very nature of the condition that must be satisfied at the beginning of the case

(b2.), this energy level is definitely greater than or equal to emax.

Thus, the adversary starts a new period by releasing jobs of size X and value density

kmin back to back, until A picks up one of these and the whole analysis above can

193

be repeated to establish that the value ratio at the end of the second, third, and all

subsequent periods cannot exceed 1
k . Obviously, this sequence of periods will end after

a finite number of steps, either when A does not pick up any job in the sequence of

back-to-back released jobs with value density kmin (in case (a.)), or by the triggering

condition of the case (b1.) above (as the remaining energy monotonically decreases

whenever A executes a job). By considering the fact that the value ratio cannot

exceed 1
k in any of the periods, one can show that the competitive factor is indeed

bounded by 1
k .

What needs to be examined now is how large k can be. Let Pj be the period during

which the algorithm A executes the maximum number of jobs. The last job released

by the adversary in this period Pj has value density ki+1. The value density of this

job is fixed to kmax. Thus, ki+1 = kmax.Observe that A executed exactly i + 1 jobs

in this period Pj .Note that the number of jobs executed by A in the period Pj puts

a constraint on i+ 1; that is, (i+ 1) ·X ≤ E. That is, (i+ 1) can be, at most, equal

to E
X . As a result one obtains, kmax = ki+1 = k

E
X ; or equivalently, k = (kmax)

X
E . To

maximize k, choose the maximum possible value for X, which is equal to emax. In

that case, the competitive factor c is bounded by at most 1
k = 1

(kmax)
emax

E
, completing

the proof.

194

Bibliography

195

Bibliography

[1] J. Anderson, V. Bud, and U.C. Devi. An EDF-based Scheduling Algorithm for Multi-
processor Soft Real-Time Systems. In Proc. of the Euromicro Conference on Real-Time
Systems, 2005.

[2] B. Andersson and K. Bletsas. Sporadic Multiprocessor Scheduling with Few Preemp-
tions. In Proc. of the Euromicro Conference on Real-Time Systems, 2008.

[3] B. Andersson, K. Bletsas, and S. Baruah. Scheduling Arbitrary-Deadline Sporadic Task
Systems Multiprocessors. In Proc. of the Real-Time Systems Symposium, 2008.

[4] T.A. AlEnawy and H. Aydin. Energy-Aware Task Allocation for Rate Monotonic
Scheduling. In Proc. of Real Time and Embedded Technology and Applications Sympo-
sium, 2005.

[5] T.A. AlEnawy and H. Aydin. Energy-Constrained Scheduling for Weakly-Hard Real-
Time Systems. In Proc. of the Real-time Systems Symposium, 2005.

[6] T.A. AlEnawy and H. Aydin. On Energy-Constrained Real-Time Scheduling. In Proc.
of the European Conference on Real-Time Systems, 2004.

[7] B. Andersson, S. Baruah, and J. Jonsson. Static-Priority Scheduling on Multiprocessors.
In Proc. of the Real-Time Systems Symposium, December, 2001.

[8] N. Audsley, A. Burns, K. Tindell, M. Richardson and A. Weilings. Applying New
Scheduling Theory to Static Priority Pre-emptive Scheduling, In Software Engineering
Journal, vol. 8, no. 5, pp. 284-295, 1993.

[9] H. Aydin, R. Melhem, D. Mosse and P.M. Alvarez. Determining Optimal Processor
Speeds for Periodic Real-Time Tasks with Different Power Characteristics. In Proc. of
the EuroMicro Conference on Real-Time Systems, 2001.

[10] H. Aydin, V. Devadas, and D. Zhu. System-Level Energy Management for Periodic
Real-Time Tasks. In Proc. of the Real-Time Systems Symposium, 2006.

[11] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez. Power-Aware Scheduling for
Periodic Real-Time Tasks. IEEE Transactions on Computers, vol. 53, no. 10, pp. 584-600,
2004.

[12] H. Aydin and Q. Yang. Energy-Aware Partitioning for Multiprocessor Real-Time Sys-
tems. In Proc. of International Parallel and Distributed Processing Symposium, 2003.

196

[13] T.P. Baker. A Stack-Based Resource Allocation Policy for Realtime Processes. In Proc.
of the Real-Time Systems Symposium, 1990.

[14] N. Bansal and K. Pruhs. Speed Scaling to Manage Temperature. In Proc. of the Sym-
posium on Theoretical Aspects of Computer Science, 2005.

[15] N. Bansal, T. Kimbrel, and K.Pruhs. Dynamic Speed scaling to manage energy and
temperature. In Proc. of the Symposium on Foundations of Computer Science, 2004.

[16] S. Baruah, L. Rosier, and R. Howell. Algorithms and Complexity Concerning the Pre-
emptive Scheduling of Periodic, Real-Time Tasks on one Processor. In Real Time Sys-
tems(2), vol. 2, no. 4, pp. 301-324, 1990.

[17] S. Baruah, G. Koren, B. Mishra, A. Raghunathan, L. Rosier, and D. Shasha. Online
Scheduling in the presence of Overload. In Proc. of the Symposium on Foundations of
Computer Science, 1991.

[18] S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. Rosier, D. Shasha, and
F. Wang. On the Competitiveness of Online Real-Time Task Scheduling. In Proc. of the
Real-Time Systems Symposium, 1991.

[19] S. Baruah. Overload Tolerance for Single-Processor Workloads. In Proc. of the Real-
Time Technology and Application Symposium, 1998.

[20] S. Baruah and J. Haritsa. Scheduling for Overload in Real-Time Systems. IEEE Trans-
actions on Computers, vol. 46, no. 9, pp. 1034-1039, 1997.

[21] S. Baruah and M. E. Hickey. Competitive Online Scheduling of Imprecise Computa-
tions. IEEE Transactions on Computers, vol. 47, no. 9, pp. 460-468, 1998.

[22] D. Bautista, J. Sahuquillo, H. Hassan, S. Petit, J. Duato. A Simple Power-Aware
Scheduling for Multicore Systems when running Real-time Applications. In Proc. of In-
ternational Parallel and Distributed Processing Symposium, 2008.

[23] L. Benini, A. Bogliolo, and G. D. Micheli. A Survey of Design Techniques for System-
Level Dynamic Power Management. IEEE Transactions on VLSI Systems, vol. 8, no. 3,
pp. 299-316, 2000.

[24] E. Bini, G.C. Buttazzo and G. Lipari. Speed Modulation in Energy-Aware Real-Time
Systems. In Proc. of the Euromicro Conference on Real-Time Systems, 2005.

[25] E. Bini, G.C. Buttazzo and G.M. Buttazzo. Rate Monotonic Analysis: The Hyperbolic
Bound. In IEEE Transactions on Computers, vol. 52, no. 7, pp. 933-942, 2003.

[26] S. Borkar. Thousand core chips: A Technology Perspective. In Proc. of the Design
Automation Conference (DAC), 2007.

[27] A. Borodin and R. El-Yavin Online Computation and Competitive Analysis. Cambridge
University Press, 1998.

[28] A. Burchard, J. Liebeherr, Y. Oh, and S. Son. New strategies for Assigning Real-Time
Tasks to Multiprocessor Systems. In IEEE Transactions on Computers, vol. 44, no. 12,
pp. 1429-1442, 1995.

197

[29] G. Buttazzo, G. Lipari, and L. Abeni. Elastic Task Model for Adaptive Rate Control.
In Proc. of the Real-Time Systems Symposium, 1998.

[30] G. Buttazzo and L. Abeni. Adaptive Workload Management through Elastic Schedul-
ing. In Journal of Real-Time Systems, vol. 23, no. 1-2, pp. 7-24, 2002.

[31] G. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling Algorithms
and Applications, Second Edition, Springer, 2005.

[32] G.C. Buttazzo. Rate Monotonic vs. EDF: Judgment Day. In Journal of Real-Time
Systems, vol. 29, no. 1, pp. 5-26, 2004.

[33] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and S. Baruah. A Cate-
gorization of Real-time Multiprocessor Scheduling Problems and Algorithms. In Handbook
of Scheduling: Algorithms, Models, and Performance Analysis, Joseph Y-T Leung (ed).
Chapman Hall/ CRC Press, 2004.

[34] H.L. Chan, W.T. Chan, T.W. Lam, L.K. Lee, K.S. Mak, and P. Wong. Energy Efficient
Online Deadline Scheduling. In Proc. of the Symposium on Discrete Algorithms, 2007.

[35] J.J. Chen and L. Thiele. Expected System Energy Consumption Minimization in
Leakage-Aware DVS systems. In Proc. of International Symposium on Low Power Elec-
tronics and Design (ISPLED), 2008.

[36] J.J. Chen and T.W. Kuo. Voltage Scaling Scheduling for Periodic Real-Time Tasks in
Reward Maximization. In Proc. of the Real-Time System Symposium, 2005.

[37] J-J. Chen, C-Y. Yang, H-I. Lu, and T-W. Kuo. Approximation Algorithms for Multi-
processor Energy-Efficient Scheduling of Periodic Real-Time Tasks with Uncertain Task
Execution Time. In Proc.of the Real-Time and Embedded Technology and Applications
Symposium, 2008.

[38] H. Cheng and S. Goddard. Integrated Device Scheduling and Processor Voltage Scaling
for System-wide Energy Conservation. In Proc. of the International Workshop on Power-
Aware Real-Time Computing, 2005.

[39] H. Cheng and S. Goddard. EEDS-NR: An online Energy-Efficient I/O Device Schedul-
ing Algorithm for Hard Real Time Systems with Non-Preemptive Resources.In Proc. of
the Euromicro Conference on Real Time Systems, 2006.

[40] H. Cheng and S. Goddard. Online Energy-Aware I/O Device Scheduling for Hard Real-
Time Systems. In Proc. of Design Automation and Test in Europe, 2006.

[41] H. Cheng and S. Goddard. SYS-EDF: A System-wide Energy-efficient Scheduling Al-
gorithm for Hard Real Time Systems. In the International Journal of Embedded Systems
on Low Power Real-Time Embedded Computing, vol. 4, no. 4, pp.45-56, 2006.

[42] K. Choi, R. Soma and M. Pedram. Fine-Grained Dynamic Voltage and Frequency
Scaling for Precise Energy and Performance Trade-off based on the Ratio of Off-Chip
Access to On-Chip Computation Times. In Proc. of Design, Automation and Test in
Europe, 2004.

198

[43] J.Y. Chung, J.W.S. Liu and K.J. Lin. Scheduling Periodic Jobs that allow imprecise
results. In IEEE Transactions on Computers, vol. 19, no. 9, pp. 1156-1173, 1990.

[44] Z. Deng, J.W.S. Liu and J. Sun. A Scheme for Scheduling Hard Real-Time Applica-
tions in Open System Environment. In Proc. of the Euromicro Workshop on Real-Time
Systems, 1997.

[45] M. Dertouzos. Control Robotics: The Procedural Control of Physical Processes. In
Articial Intelligence and Control Applications, IFIP Congress, 1974.

[46] M. Dertouzos and A.K. Mok. Multiprocessor Online Scheduling for Hard Real-Time
Tasks. IEEE Transactions on Software Engineering, vol 15, no. 12, pp. 1497-1506, 1989.

[47] J.K. Dey, J. Kurose. D. Towsley, C.M. Krishna and M. Girkar. Efficient On-line Proces-
sor Scheduling for a Class of IRIS (Increasing Reward with Increasing Service) Real-Time
Tasks. In Proc. of SIGMETRICS Conference on Measurement and Modeling of Computer
Systems, 1993.

[48] J. Dorsey et. al. An integrated Quad-Core Opteron Processor. In Proc. of IEEE Intl.
Solid State Circuits Conference, 2007.

[49] T. Ebenlendr and J. Sgall. Semi Online Preemptive Scheduling: One Algorithm for All
Variants. In Proc. International Symposium on Theoretical Aspects of Computer Science,
2009.

[50] R. Ernst and W. Ye. Embedded Program Timing Analysis based on Path Clustering
and Architecture Classication. In Proc. of the International Conference on Computer-
Aided Design, 1997.

[51] W. Feng and J.W.S. Liu. An Extended Imprecise Computation Model for Time-
Constrained Speech Processing and Generation. In Proc. of the Workshop on Real-Time
Applications, 1993.

[52] M. Elnozahy, M. Kistler, and R. Rajamony. Energy Efficient Server Clusters. In Work-
shop on Power Aware Computing Systems, 2002.

[53] M. Elnozahy, M. Kistler, and R. Rajamony. Energy Conservation Policies for Web
Servers. In USENIX Symposium on Internet Technologies and Systems, 2003.

[54] W. Feng and J.W.S. Liu. Algorithms for Scheduling Real-Time Tasks with Input Error
and End-to-End Deadlines. In Proc. of the IEEE Transactions on Software Engineering,
vol. 23, no. 2, pp. 93-106, 1997.

[55] N. Fisher, J.J. Chen, S. Wang, and L. Thiele. Thermal-Aware Global Real-Time
Scheduling on Multicore Systems. In Proc. of the Real-Time Technology and Applica-
tions Symposium (RTAS), 2009.

[56] M.R. Garey and D.S. Jhonson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, 1979.

[57] J. Goossens, S. Baruah and S. Funk. Real-time Scheduling on Multiprocessors. In Proc.
of the International Conference on Real-Time Systems, 2002.

199

[58] R.L. Graham. Bounds on Multiprocessing Timing Anomalies. SIAM Journal on Applied
Mathematics, vol. 17, no. 2. pp. 416-429, 1969.

[59] F. Gruian. Hard Real-Time Scheduling for Low-Energy Using Stochastic Data and DVS
Processors. In Proc. of the 2004 International Symposium on Low Power Electronics and
Design (ISLPED), 2001.

[60] M. Hamdaoui and P. Ramanathan. A Dynamic Priority Assignment Technique for
Streams with (m, k)-firm Deadlines. In IEEE Transactions on Computers, vol. 44, no. 5,
pp. 1443-1451, 1995.

[61] P.J.M. Havinga and G.J.M. Smith. Design Techniques for Low-Power Systems. Journal
of Systems Architecture, vol. 46, no. 1, 2000.

[62] S. Herbert and D. Marculescu. Analysis of Dynamic Voltage/Frequency Scaling in
Chip-Multiprocessors. In Proc. of the Intl. Symp. on Low Power Electronics and Design
(ISLPED), 2007.

[63] I. Hong, D. Kirovski, G. Qu, M. Potkonjak and M. Srivastava. Power Optimization
of Variable Voltage Core-based Systems. In Proc. of the Design Automation Conference,
1998.

[64] I. Hong, M. Potkonjak and M. B. Srivastava. On-line Scheduling of Hard Real-
Time Tasks on Variable Voltage Processor. In Proc. of the International Conference on
Computer-Aided Design, 1998.

[65] S. Irani, S. Shukla and R. Gupta. Algorithms for Power Savings. In Proc. the Sympo-
sium on Discrete Algorithms, 2003

[66] C. Isci, A. Buyuktosunoglu, C. Cher, P. Bose, and M. Martonosi. An Analysis of
Efficient Multi-Core Global Power Management Policies: Maximizing Performance for
a Given Power Budget. In Proc. of the IEEE/ACM Intl. Symp. on Microarchitecture
(MICRO), 2006.

[67] T. Ishihara and H. Yasuura. Voltage Scheduling Problem for Dynamically Variable
Voltage Processors. In Proc. of the International Symposium on Low Power Electronics
and Design, 1998.

[68] K. Iwama and S. Taketomi. Removable Online Knapsack Problems. In Proc. of the
International Colloquium on Automata, Languages and Programming, 2002.

[69] K. Jeffay, D. F. Stanat, and C. U Martel. On Non-Preemptive Scheduling of Periodic
and Sporadic Tasks. In Proc. of the Real-Time Systems Symposium, 1991.

[70] K. Jeffay and D.L. Stone. Accounting for Interrupt Handling Costs in Dynamic Priority
Task Systems. In Proc. of the Real-Time Systems Symposium, 1993.

[71] R. Jejurikar and R. Gupta. Dynamic Voltage Scaling for System-Wide Energy Mini-
mization in Real-Time Embedded Systems. In Proc. of the International Symposium on
Low Power Electronics and Design, 2004.

200

[72] B. Kalyanasundaram and K. Pruhs. Speed is as Powerful as Clairvoyance. In Proc. of
the Symposium on Foundations of Computer Science, 1995.

[73] H. Kim, H. Hong, H-S. Kim, J-H Ahn and S. Kang. Total Energy Minimization of
Real-Time Tasks in an On-Chip Multiprocessor Using Dynamic Voltage Scaling Effi-
ciency Metric. In IEEE Transactions of Computer-Aided Design of Integrated Circuits
and Systems, vol. 27, no. 11, pp. 2088-2092, 2008.

[74] W. Kim, D. Shin, H.S. Yun, J. Kim, S.L. Min. Performance Comparison of Dynamic
Voltage Scaling Algorithms for Hard Real-Time Systems. In Proc. of the IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), 2002.

[75] G. Koren and D. Shasha. D-over: An Optimal Online Scheduling Algorithm for Over-
loaded Real-Time Systems. In Proc. of the Real-Time Systems Symposium, 1992.

[76] G. Koren, D. Shasha and S. C. Huang. MOCA: A Multiprocessor Online Competitive
Algorithm for Real-Time Scheduling. In Proc. of the Real-Time Systems Symposium,
1993.

[77] R. Kumar and G. Hinton. A Family of 45nm IA Processors. In Proc. of the Intl. Solid-
State Circuits Conference, 2009.

[78] S. Lauzac, R. Melhem and D. Mosse. An Efcient RMS Admission Control and its Ap-
plication to Multiprocessor Scheduling. In Proc. of the International Parallel Processing
Symposium, 1998.

[79] C.H. Lee and K.G. Shin. On-Line Dynamic Voltage Scaling for Hard Real-Time Systems
Using the EDF Algorithm. In Proc. of the Real-Time Systems Symposium, 2004.

[80] J. Lehoczky, L. Sha and J.K. Strosnider. Enhanced Aperiodic Responsiveness in Hard
Real-Time Environments. In Proc. of the Real-Time Systems Symposium, 1987.

[81] J. Lehoczky, L. Sha and Y. Ding. The Rate-Monotonic Scheduling Algorithm: Ex-
act Characterization and Average Case Behaviour. In Proc. of the Real-Time Systems
Symposium, 1989.

[82] L-F. Leung, C-Y. Tsui and X.S. Hu. Exploiting Dynamic Workload Variation in Low
Energy Preemptive Task Scheduling. In Proc. of Design Automation and Test in Europe
(DATE), 2005.

[83] J. Liu. Real Time Systems Prentice Hall, NJ, 2000.

[84] C.L. Liu and J.W. Layland. Scheduling Algorithms for Multiprogramming in a Hard-
Real-Time Environment. In Journal of the Association for Computing Machinery, vol 20,
no. 1, pp. 46-61, 1973.

[85] D.C. Locke, D. Vogel and T. Mesler. Building a Predictable Avionics Platform in Ada:
A Case Study. In Proc. of the Real-Time Systems Symposium, 1991.

[86] J. Lopez, J. Diaz, M. Garcia and D. Garcia. Worst-Case Utilization Bound for EDF
Scheduling on Real-Time Multiprocessor Systems. In Proc. of the Euromicro Workshop
on Real-Time Systems, 2000.

201

[87] J. Lorch and A. Smith. Improving Dynamic Voltage Scaling Algorithms with PACE.
In ACM SIGMETRICS, 2001.

[88] Y. Lu, L. Benini, and G. D. Micheli. Power Aware Operating Systems for Interactive
Systems. In IEEE Transactions on VLSI Systems, vol. 10, no. 2, pp. 119-134, 2002.

[89] D. Luenberger.Linear and Nonlinear Programming. Addison-Wesley, Reading Mas-
sachusetts, 1984.

[90] H.-Y. McCreary, M. A. Broyles, M. S. Floyd, A. J. Geissler, S. P. Hartman, F. L.
Rawson, T. J. Rosedahl, J. C. Rubio, M. S. Ware. EnergyScale for IBM POWER6
microprocessor-based systems. In IBM Journal of Research and Development, vol 21,
no. 6, pp. 775-786, 2007.

[91] R. McGowen, C.A. Poirier, C. Bostak, J. Ignowski, M. Millican, W.H. Parks, and
S. Naffziger. Power and Temperature Control on a 90-nm Itanium family processor. In
Journal of Solid-State Circuits, vol. 41, no. 1, pp. 229-237, 2006.

[92] A.K. Mok. Fundamental Design Problems of Distributed Systems for Hard Real Time
Environments, PhD Thesis, Laboratory for Computer Science, MIT, 1983.

[93] A.K. Mok and M.L. Dertouzos. Multiprocessor Scheduling in a Hard Real-Time Envi-
ronment. In Proc. Texas Conference Computing Systems, 1978.

[94] L. Mosley. Power Delivery Challenges for Multicore Processors. In Proc. of CARTS
USA, 2008.

[95] A. Naveh et al.. Power and Thermal Management in the Intel Core Duo Processor.
Intel Technology Journal, Vol. 10, no. 2, May 2006.

[96] L. Niu. Energy Efficient Scheduling for Real-Time Embedded Systems with QoS Guar-
antee. In Proc. of the Conference on Embedded and Real-Time Computing Systems and
Applications (RTSCA’10), 2010.

[97] D. Oh and T. P. Baker. Utilization Bounds for N-Processor Rate Monotone Scheduling
with Static Processor Assignment. In Journal of Real-Time Systems, vol. 15, no. 2, pp.
183-192, 1998.

[98] M.A. Palis. Competitive Algorithms for Fine-Grain Real-Time Scheduling. In Proc. of
the Real-Time Systems Symposium, 2004.

[99] M. Pedram. Power Minimization in IC Design: Principles and Applications. ACM
Transactions on Design Automation of Electronics Systems, vol. 1, no. 1, pp. 3-56, 1996.

[100] C. Phillips, C. Stein, E. Torng, and J. Wein. Optimal Time-Critical Scheduling via
Resource Augmentation. In Proc. of the ACM Symposium on Theory of computing, 1997.

[101] P. Pillai and K.G. Shin. Real-Time Dynamic Voltage Scaling for Low-Power Embed-
ded Operating Systems. In Proc. of the Symposium on Operating Systems Principles,
2001.

202

[102] K. Pruhs, J. Sgall, and E. Torng. In the Handbook of Scheduling, Algorithms, Models
and Performance Analysis. CRC press, FL, USA, 2004, edited by J.Y.T. Leung.

[103] A. Qadi, S. Goddard, and S. Farritor. A Dynamic Voltage Scaling Algorithm for
Sporadic Tasks. In Proc. of the Real-Time Systems Symposium, 2003.

[104] G. Quan and X. Hu. Enhanced Fixed-Priority Scheduling with (m, k)-firm guarantee.
In Proc. of the Real-Time Systems Symposium, 2000.

[105] X. Qi and D. Zhu. Power Management for Real-Time Embedded Systems on Block-
Partitioned Multicore Platforms. In Proc. of the Intl. Conf. on Embedded Software and
Systems (ICESS), 2008.

[106] P. Ramanathan. Overload Management in Real-Time Control Applications using
(m, k)-firm guarantee. In IEEE Transactions on Parallel and Distributed Systems, vol.
10, no. 6, pp. 549-559, 1999.

[107] C. Rusu, R. Melhem, and D. Mosse. Maximizing Rewards for Real-Time Applications
with Energy Constraints. ACM Transactions for Embedded Computing Systems, vol. 2,
no. 4, pp. 537-559, 2003.

[108] C. Rusu, R. Melhem, and D. Mosse. Maximizing the System Value while Satisfying
Time and Energy Constraints. In Proc. of the Real-Time System Symposium, 2002.

[109] S. Saewong and R. Rajkumar. Practical Voltage-Scaling for Fixed-Priority Real-Time
Systems. In Proc. of the Real-Time and Embedded Technology and Applications Sympo-
sium, 2003.

[110] E. Seo, J. Jeong, S. Park, and J. Lee. Energy Efficient Scheduling of Real-Time Tasks
on Multicore Processors. In IEEE Transactions of Parallel Distributes Systems, vol. 19,
no. 11 pp. 1540-1552, 2008.

[111] K. Seth, A. Anantaraman, F. Mueller and E. Rotenberg. FAST: Frequency-Aware
Static Timing Analysis. In Proc. of the Real-Time Systems Symposium, 2003.

[112] L. Sha, R. Rajkumar and J.P. Lehoczky. Priority Inheritance Protocols: An Approach
to Real-Time Synchronisation. In IEEE Transactions on Computers, vol. 39, no. 9, pp.
1175-1185, 1990.

[113] Y. Shin and K. Choi. Power Conscious Fixed Priority Scheduling for Hard Real-Time
Systems. In Proc. of the Design Automation Conference, 1999.

[114] A. Sinkar and N. Kim. Analyzing Potential Power Reduction with Adaptive Voltage
Positioning Optimized for Multicore Processors. In Proc. of the International Symposium
on Low Power Electronics and Design 2009.

[115] J. E. Sergent and A. Krum, Thermal Management Handbook, McGraw-Hill, 1998.

[116] D. Snowdon, S. Petters, and G. Heiser. Accurate Online Prediction of Processor and
Memory Energy Usage under Voltage Scaling. In Proc. of the International Conference
On Embedded Software, 2007.

203

[117] B. Sprunt, J. Lehoczky and L. Sha. Aperiodic Task Scheduling for Hard Real-Time
Systems. In Real-Time Systems Journal, vol. 1, no. 1, pp. 27-60, 1989.

[118] M. Spuri and G. Buttazzo. Scheduling Aperiodic Tasks in Dynamic Priority Systems.
In Real-Time Systems Journal, vol. 10, no. 2, pp. 179-210, 1996.

[119] V. Swaminathan and K. Chakrabarty. Energy Conscious Deterministic I/O Device
Scheduling in Hard Real-Time Systems. In Proc. of the International Conference in Com-
puter Aided Design, 2003.

[120] V. Swaminathan and K. Chakrabarty. Pruning-Based, Energy-Optimal Deterministic
I/O Scheduling for Hard Real-Time Systems. ACM Transactions on Embedded Computing
Systems, vol. 4, no. 1, pp. 141-167, 2005.

[121] V. Swaminathan, K. Chakrabarty and S.S. Iyengar. Dynamic I/O Power Management
for Hard Real-Time Systems. In Proc. of the International Conference on Hardware-
Software Co-design and System Synthesis, 2001.

[122] H. W. Turnbull. Theory of Equations. Oliver and Boyd, London, 1947.

[123] S. Wang and R. Bettati. Reactive Speed Control in Temperature-Constrained Real-
Time Systems. In Proc. of the EuroMicro Conference on Real-Time Systems, 2006.

[124] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for Reduced CPU En-
ergy. In USENIX Symposium on Operating Systems Design and Implementation, 1994.

[125] H. Wu, B. Ravindran, and E. D. Jensen. Utility Accrual Real-Time Scheduling Under
the Unimodal Arbitrary Arrival Model with Energy Bounds. In IEEE Transactions on
Computers, vol. 56, no. 10, pp. 1358-1371, 2007.

[126] R. Xu, D. Mosse, and R. Melhem. Minimizing Expected Energy Consumption in
Real-Time Systems through Dynamic Voltage Scaling. ACM Transactions on Computer
Systems, vol. 25, no.4, 2007.

[127] R. Xu, C. Xi, R. Melhem, and D. Mosse. Practical Pace for Embedded Systems. In
Proc. of the International Conference on Embedded Software, 2004.

[128] C-Y. Yang, J-J. Chen, T-W. Kuo, and L. Thiele. An Approximation Scheme for
Energy-Efficient Scheduling of Real-Time Tasks in Heterogeneous Multiprocessor Sys-
tems. In Proc. of the Conference on Design, Automation and Test in Europe, 2009.

[129] C. Yang, J. Chen, and T-W. Kuo. An Approximation Algorithm for Energy-Efficient
Scheduling on A Chip Multiprocessor. In Proc. of the Conference on Design, Automation
and Test in Europe, 2005.

[130] F. Yao, A. Demers and S. Shenker. A Scheduling Model for Reduced CPU Energy. In
Proc. of the Foundations of Computer Science, 1995.

[131] L.-T. Yeh and R. C. Chu, Thermal Management of Microelectronic Equipment: Heat
Transfer Theory, Analysis Methods, and Design Practices, ASME Press, 2002

204

[132] F. Zhang and Chanson. Processor Voltage Scheduling for Real-Time tasks with Non-
Preemptible Sections. In Proc. of the Real-Time Systems Symposium, 2002.

[133] X. Zhong and C.-Z. Xu. System-Wide Energy Minimization for Real-Time Tasks:
Lower Bound and Approximation. In Proc. of the International Conference on Computer-
Aided Design, 2006.

[134] X. Zhong and C.-Z. Xu. Frequency-Aware Energy Optimization for Real-Time Peri-
odic and Aperiodic Tasks. In Proc. of the Conference on Languages, Compilers and Tools
for Embedded Systems, 2007.

[135] D. Zhu, R. Melhem and B. Childers. Scheduling with Dynamic Voltage/Speed Adjust-
ment Using Slack Reclamation in Multi-Processor Real-Time Systems. In IEEE Trans-
actions on Parallel and Distributed Systems, vol. 14, no. 7, pp. 686-700, 2003.

[136] D. Zhu and H. Aydin. Energy Management for Real-Time Embedded Systems with
Reliability Requirements. In Proc. of the International Conference on Computer-Aided
Design, 2006.

[137] D. Zhu, R. Melhem and D. Mosse. The Effects of Energy Management on Reliability
in Real-Time Embedded Systems. In Proc. of IEEE/ACM Intl. Conf. on Computer Aided
Design (ICCAD), 2004.

[138] J. Zhuo and C. Chakrabarti. System-Level Energy-Efficient Dynamic Task Scheduling.
In Proc. of the Design Automation Conference, 2005.

[139] Advanced Configuration and Power Interface Standard, http://www.acpi.info/.

[140] IBM Power 7 Overview.
http://www.redbooks.ibm.com/redpapers/pdfs/redp4638.pdf

[141] Introduction to Intel Core Duo Processor Architecture. In Intel Technology Journal,
vol 10, no. 2, pp. 89-97, 2006.

[142] Intel i7 Processor Specifications.
http://www.intel.com/products/processor/corei7/specifications.htm

[143] Intel i7-800 and i5-700 Processor series. Datasheet - Volume 1.
http://download.intel.com/design/processor/datashts/322164.pdf

[144] Intel Xeon Specifications.
http://www.intel.com/design/intarch/xeon/specifications xeon.htm

205

Curriculum Vitae

Vinay Devadas received his B.S. degree in Computer Science and Engineering from Visves-
varaya Technological University, Bangalore, India in 2005 and his M.S. degree in Computer
Science from George Mason University, Fairfax, VA in 2007.

206

