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Rising temperature is a major concern of urban livelihood and has become more 

severe with rapid urbanization. The complexity of built-up urban fabrics and the 

unevenly distributed anthropogenic heat release has led to urban heat variation. In 

response to the increasing greenhouse effect in recent years, the demand for 

understanding the heat variation in the U.S. has risen dramatically. The global warming 

trend deteriorates the variation by increasing the already high temperatures in heated 

areas. Many concerns have been brought up related to urban heat variability, primarily in 

energy and health fields. To address these concerns, many studies have been conducted 

for urban temperature observations and predictions.  

Missing data in observation is inevitable, which makes continuous high-resolution 

measurements challenging to acquire. Different discriminative and generative models 

established for sensor missing data filling often show their limitations (e.g., accuracy, 

stability, efficiency) when fitting into different datasets. Existing research methods for 

temperature prediction are mainly divided into deterministic methods and statistical 

methods. Deterministic methods require very informative observations that are difficult 
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to obtain in practice. In addition, various types of parameters need to be determined, but 

since these parameters are usually estimated based on experience, the accuracy is limited. 

Statistical methods, on the other hand, often fail to effectively integrate and analyze 

multi-source heterogeneous data, which has a considerable impact on temperature. The 

machine learning (ML) and deep learning (DL) methods proposed in recent years can 

learn to effectively present features from a large amount of input data. However, to carry 

out full-coverage high-resolution forecasts, there are high demands to integrate surface 

weather data and air temperature observations. Data scarcity also brought limitations to 

many current well-performed ML/DL methods. Another challenge expected to be solved 

is to transfer and reapply patterns learned in one city to another, as models do not 

naturally perform well across different regions. 

Regarding the missing data challenge, different algorithms (i.e., Kriging, 

MissForest, GAIN) were selected for comparison. All models built upon these algorithms 

are tested to fill the missing data at the rate of less than 10%, 20%, 40%, 60%, and 80%. 

Testing data are selected using either different seasons, or randomly draws from the 

entire dataset, to measure the stability of these models. Experiments were conducted to 

shows their performance in data filling accuracy and consistency across different missing 

data settings. Computational efficiency was considered to provide a complete dataset in 

real-time. Results demonstrated that each model has its strength and limitations. 

Ensemble models should be expected to integrate their respective superiorities in 

computational speed, imputation accuracy, and adaptability to different data missing 

situations.  
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Regarding fine-scaled temperature prediction and data scarcity, a framework was 

proposed to: 1) provide a fast data fusion technique, integrating measurements from the 

Internet of Things (IoT) of a high spatiotemporal resolution with observations from 

weather stations; 2) utilize a Long Short-Term Memory network to predict surface 

temperature from the fusion dataset for four major cities in the U.S.; 3) adopt transfer 

learning, leveraging the pre-trained model from regions with a higher number of 

observation stations to predict regions with data scarcity. With the proposed framework, 

multi-step predictions with low RMSEs were achieved. The transferable model also 

greatly improved the prediction accuracy for regions with data scarcity up to 26%. 

This dissertation makes innovative contribution for the following reasons: 

1) The comparison of data filling methods suggests an optimal way to complete 

hourly IoT temperature measurements in Los Angeles by testing different angles 

(i.e., computational speed, imputation accuracy, and adaptability to different data 

missing situations). 

2) The DL-based prediction framework provides high-resolution results with up to a 

39.6% MAE decrease. It supports data for near future heat-related decision-

making in study areas including Los Angeles, New York City, and Atlanta. 

3) The transfer learning utilizes well-established models trained by the DL-based 

prediction framework to minimize the prediction error for regions with data 

scarcity problems. It improves the predicting MAE up to 25.7%. 
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CHAPTER ONE. INTRODUCTION 

According to the United Nations World Population Prospects, 68% of the world’s 

population is projected to live in urban areas by 2050 (UN DESA, 2018). Temperature is 

one of the major concerns of urban livability, and rapid urbanization tends to intensify 

urban issues, such as Urban Heat Island (UHI; Zhong et al., 2017). The global warming 

trend accentuates the temperature imbalance by increasing already high temperatures in 

urban areas (Luber and McGeehin, 2008; McCarthy et al., 2010; Harlan et al., 2014). 

Since 1895, the average annual temperature of the contiguous United States has increased 

by 0.07 °C per decade. In 2010, it was 12.1 °C, 0.6 °C above normal (NOAA National 

Climate Data Center, 2010). Lee et al. (2017) hypothesized that global warming would be 

accountable for up to 71% of the temperature increase in existing urban areas in the 

2030s, even with the adoption of high-temperature mitigation strategies. In response to 

the increase of greenhouse effect in recent years, the demand for understanding the heat 

variation in the U.S. has risen dramatically (Wu and Li, 2013). 

The causes of fine scale urban heat variation can be introduced by the complexity 

of built-up urban fabrics and different levels of urban canyons (Zhou et al., 2017). The 

unevenly distributed anthropogenic heat release from transportation and the temperature 

control of buildings further exacerbate this heat variation. Moreover, differences in 
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population density, built-up density, and vegetation fractions can also directly or 

indirectly contribute to the formation of urban heat variation. 

A series of health and energy concerns are related to temperature. For example, 

during 2004–2018, an average of 702 heat-related deaths occurred annually in the U.S. 

(Vaidyanathan et al., 2020). The total number of deaths during the 1995 Chicago 

heatwave revealed that the heatwave resulted in 700 more deaths than expected (National 

Research Council, 2011). Energy consumption is another concern, as the extra cooling 

energy demand associated with urban overheating for all types of buildings can increase 

by an average of 12% (Santamouris, 2020). Countries where most buildings have air 

conditioning (e.g., U.S.) displayed an above-average increase in electricity consumption. 

The ability to monitor and predict the hourly temperature at the hyper-local level is an 

asset in managing the risk to human health and energy consumption. 

Temperature observations are mostly through satellite imageries and weather 

stations. The former does not directly measure ambient air temperature with coarse 

spatiotemporal resolution, while the sparsely distributed weather stations are incapable of 

providing good spatial continuous observation at a hyper-local level (Holdaway, 1996). 

On top of that, missing values exist as a critical challenge for both techniques. Missing 

data filling, either by discriminative or generative models, is essential for fine-scale urban 

heat variation detection (Yoon et al., 2018). 

Existing research methods for prediction are divided into multiple methods, 

including deterministic, statistical, and machine learning. Deterministic methods are 

based on aerodynamic theory and physicochemical processes using mathematical 
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algorithms to establish a numerical model (e.g., The Numerical Weather Prediction; 

NWP). As statistical methods, the most common approaches are multiple linear 

regression (MLR; Menon et al., 2017), autoregressive moving average (ARMA; Lydia et 

al., 2016), and support vector regression (SVR; Kaneda and Mineno, 2016).   

Sensor Missing Data Filling 

With the high accessibility of in-situ sensors, many have been deployed in the 

physical world, collecting massive environmental observations. With the Internet of 

Things (IoT), different IoT-based networks are developed for environmental monitoring, 

serving as a valuable source for weather observation data fusion (Rawat et al., 2014; Sah 

and Koli, 2019). Well-established IoT networks achieve near-real-time street-level air 

temperature measurements, unlike satellite observations that often require downscaling 

for appreciable spatiotemporal resolution (Ebrahimy and Azadbakht, 2019). However, 

due to affordability issues, equipment for in-situ measurements is not always built to last, 

which can result in loss of data quality. Sensor readings are usually lost at various 

unexpected moments because of sensor or communication errors, e.g., when a sensor 

loses network access, or when a sensor is powered off. Missed recordings can affect real-

time monitoring and compromise the performance of data modeling (Yi et al., 2016; 

Jaques et al., 2017).  

There are three general explanations for the missingness (Rubin, 1987): Missing 

At Random (MAR), Missing Completely At Random (MCAR) and Missing Not At 

Random (MNAR; Rubin 1987). When MAR, the population may be represented by the 

available data, while MCAR is a special case of MAR and occurs when the missing data 
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is independent from both observable and unobservable factors (Schafer and Graham, 

2002). MNAR indicates the missing data depend on other missing values, i.e., one or 

more factors are impossible to quantify and identify. Since the exact moment when one 

device stops functioning is generally unknown, assuming recurrent problems are not 

identified, the missing temperature filling can rely on the MAR mechanism and predict, 

interpolate, or impute using observed sensor readings (Cheng et al., 2009; Henn et al., 

2013; Shtiliyanova et al., 2017).  

Different missing data filling techniques have been studied, including Random 

Forest based imputation (MissForest), K-Nearest Neighbor (KNN), inverse-distance 

weighting (IDW), and geo-statistical Kriging for handling missing values on sensor 

networks. Yi et al. (2016) indicated two major challenges behind missing data filling in 

the spatiotemporal domain: 1) readings can be absent at arbitrary sensors and timestamps; 

and 2) sensor readings change over location and time significantly and non-linearly, 

affected by many factors. Temperature data series contain gaps ranging from several 

hours to several days. The aim of this study is to assess different methodologies to fill 

missing data for hourly IoT temperature series. 

Temperature Prediction and Transfer Learning Framework 

Although the numerical model performs as a standard on the temperature 

forecasting, these models require detailed site-specific information that is difficult to 

obtain (Chapman and Thornes, 2005). Numerical models also require massive 

computational power to solve complex equations that predict atmospheric conditions 

(Hewage et al., 2020). Statistical approaches fail to effectively integrate and analyze non-
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linear multi-source heterogeneous data (e.g., traffic flow, meteorological conditions, land 

use), which can compromise the utility of the temperature predictions (Yang et al., 

2020a). The machine (ML) and deep learning (DL) methods acquire effective feature 

representation from a large amount of input data, providing new approaches for 

addressing the shortcomings mentioned above. 

Temperature interreacts with many other factors, including wind speed, pressure, 

dew point, and humidity (Anjali et al., 2019; Hossain et al., 2015). One single data point 

is insufficient to serve as the metric for accurate prediction. To achieve high-resolution 

predictions, heterogeneous weather observation data fusion is required. As introduced, 

IoT networks are ideal candidates for such tasks. The shortcoming of IoT networks is that 

while they provide adequate coverage for areas with high sensor density; the remaining 

areas are characterized as being data scarce. 

Temperature prediction models need to be adapted to different applicable 

environments. Some models are developed for large-scale temperature forecasting, while 

others are for smaller region adjusted for more specific environment with higher 

spatiotemporal resolution. Those are adjusted to fit for specified settings often struggle 

with adaptability when applying to different regions, which results in a higher model 

training cost if each region needs to train from scratch. Due to the potential IoT data 

scarcity problem, those models should also be limited by the region data sufficiency 

while training. Regions with different environment characters or data scarcity can greatly 

benefit from transfer learning, where a well-trained model can be reapplied to other 

settings (regions). 
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Objectives 

In the field of temperature research and GIScience, outreaching to computational 

science and geographic science, the focus of this dissertation research lies in: 

1) Comparing IoT urban temperature missing data filling models. Results from 

different data filling models vary substantially despite independent model 

validations, indicating that the performance of data filling models varies from 

dataset to dataset. Model comparison experiments are conducted to define their 

strengths and limitations. Comparison should help suggest best utilizations of data 

filling models for different missing data scenarios.  

2) Building high-resolution multivariate temperature predictions. There are a variety 

of meteorological parameters can affect the temperature conditions. Data fusion 

provides an integrated high-resolution multivariate dataset for model input to 

optimize prediction accuracy. Multi-step predictions help to identify the 

temperature conditions from the next few hours to the next few days, greatly 

benefiting individuals and decision makers with fast response. 

3) Enabling transfer learning. Data scarcity exists, particularly for underdeveloped 

regions with limited access to data collecting sensors. The lack of observations 

leads to poor spatiotemporal information coverage, as well as insufficient training 

data for model learning. Allowing a well-trained model to be reapplied to regions 

with data scarcity can enhance the prediction accuracy. 

Contribution 

The main contribution of this dissertation are as follows: 
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1) The comparison of data filling methods suggests optimal way to complete hourly 

IoT temperature measurements. 

2) The DL-based prediction framework provides high-resolution results and support 

data for near future heat-related decision making. 

3) The transfer learning achieves high prediction accuracy for areas with data 

scarcity. 

Dissertation Organization 

The rest of this dissertation is organized as follows. Chapter 2 reviews the 

literature of related research, in terms of in-situ weather data sources and products, 

missing data filling techniques, and machine learning in weather study. Chapter 3 

compares popular data filling models in different aspects and inspects their adaptability to 

various IoT temperature missing observation problems. Chapter 4 integrates data from 

multiple data sources and establishes a multivariate temperature prediction framework 

with transfer learning capability. Chapter 5 concludes the dissertation and proposes 

potential future works. 

An overall architecture is established to show that the major components of this 

dissertation can contribute to urban temperature monitoring and analytics science 

communities and the public (Figure 1). 
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Figure 1 Missing Data Filling and Prediction Architecture for Realtime Temperature 
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CHAPTER TWO. LITERATURE REVIEW 

In-situ Weather Data Sources and Products 

Weather forecasting takes atmospheric data observed by different techniques. One 

is using satellite imageries, which measures land surface temperature continuously in 

both space and time but is often low in spatial resolution. Satellite observations are also 

less direct to how human sense environment (ambient temperature), which will not be 

discussed further in this study. On the contrary, in-situ sensors deployed at weather 

stations record the ambient temperature at approximately 2 meters above the ground, 

which is a key variable used to assess local weather change and human-heat interactions. 

This section will review how two different in-situ data sources (i.e., station data, IoT 

data) have currently been adopted in research and their limitations. 

Station Data 

Ground-based station observations, unlike satellite datasets, provide direct 

measurements. These stations have been built for decades and been contributing data to 

weather research starting from early stage (Crowe et al., 1978). The increasing number of 

stations enabled better continuous weather observations. Observations, depend on the 

sensor setup, include temperature, dew point, relative humidity, precipitation, wind speed 

and direction, visibility, atmospheric pressure, and types of weather occurrences such as 

hail, fog, and thunder. National Centers for Environmental Information (NCEI) provides 

a broad level of service associated with these observations including data collection, 

quality control, archive, and removal of biases associated with factors such as 
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urbanization and changes in instrumentation through time. Local Climatological Data 

(LCD) consists of hourly, daily, and monthly summaries for approximately 1,600 U.S. 

locations (Boissonnade et al., 2002).  

Weather Underground (WU) is a global community of people connecting data 

from environmental sensors like weather stations monitors so it can provide rich, 

hyperlocal data (e.g., temperature, pressure, humidity, dew point). There are more than 

250,000 personal weather stations, making it the largest of its kind and it provides one of 

the most local forecasts based on actual weather data points. A recent study based on WU 

collected 40,025 time series data from year 2012 to year 2016 at Hang Nadim Airport, 

Indonesia (Salman et al., 2018). Coupling with a DL algorithm, the authors proved the 

usability of WU for weather variable forecasting with high accuracy.  

 

IoT Data 

With the blooming of the internet of things (IoTs), high-resolution time series 

data collected from densely distributed local sensors became more accessible (Rawat et 

al., 2014). Different IoT-based networks can be specifically developed for weather 

prediction or environment monitoring (Sah and Koli, 2019). Different studies across 

multiple research domains based on IoT datasets and ML/DL models have proved the 

usability of IoT data with profound results (Widiasari, Nugroho, 2017; Ayele and Mehta, 

2018; Chammas et al., 2019). With their high spatiotemporal resolution, these data help 

lightweight ML/DL models to best achieve their advantage in rapid forecasting. A fast 

forecast can then lead to fast decision making and response, as recent research found the 
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intelligence of IoTs can help improve the quality of people’s lives (Paul and Saraswathi, 

2017). 

One of the applications using IoT data is to install smart sensors for real-time 

environment monitoring and prediction for natural disasters, which enables prevention 

and fast response. One research established a straightforward system to demonstrate this 

usability (Yawut and Kilaso, 2011). Weather station networks combined with sensor 

nodes and a coordinating server were adopted in the research. Different sensor nodes 

were used to collect temperature, humidity, light, and pressure. Together with decision 

tree models running on the server end, disaster alert systems were set up to potentially 

prevent enormous damage from natural disasters. Due to the low power consumption 

natural of these sensors in the network, the proposed system can be installed in locations 

that are difficult to hardwire or have no access to electricity.  

More studies have demonstrated promising results in using the IoT for weather 

hazard forecasting, as IoT provides optimal results in obtaining time series data 

(Widiasari and Nugroho, 2017). Experiments are designed to use Multi-Layer Perceptron 

Neural Networks (MLPNN) for flood event predictions based on rainfall data, and water 

levels in the weir. In the MLPNN, two sensors are mounted with one on upstream and 

one on downstream for monitoring. Data transfer to the server wirelessly, and then 

forecasting algorithms can be applied to the centralized dataset.  

One major limitation that can be found from these studies is the size of the sensor 

networks. Schatz and Kucharik (2014) reviewed some of the urban climate sensor 

networks, with at least 10 sensors operating for at least one year, from different studies in 
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the past 20 years. Overall, the networks are relatively small when considering fine-scale 

observation, despite the study claimed that the network applied (4 sensors/km2) is one of 

the most spatially dense and extensive ever deployed. 

In-situ Sensor Missing Data Filling 

As introduced, in-situ observations are typically limited by the spatially arrayed 

weather stations distributions, which in turn may often report time series with missing 

values in both space and time (Holdaway, 1996). Algorithms commonly used in the 

analysis of such large-scale data often depend on a complete set. Missing value filling 

methods offer a solution to this problem and can be categorized as either discriminative 

or generative (Yoon et al., 2018).  

Discriminative Filling 

The IDW (inverse distance weighted) interpolation is one of the most used 

interpolation methods and is directly based on the surrounding measured values with 

weights of the distance to those measurements (Lu and Wong, 2008). It considers spatial 

correlations between values to interpolate missing values from existing spatial 

distribution. This method assumes that the variable being mapped decreases in influence 

with distance from its sampled location, as the first law in geography (Tobler, 1970). This 

approach is intuitive, efficient, and works well with evenly distributed points. Chen and 

Liu (2012) applied this method to estimate the rainfall distribution in the middle of 

Taiwan gained a high correlation coefficient values of over 0.95, proved the usability in 

their task. IDW was also used to evaluate the impact of pollution, using the 

measurements from remote stations (De, 2013; Qiao et al., 2018). However, the best 
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results from IDW are obtained when sampling is sufficiently dense regarding the local 

variation that are attempting to simulate. If the sampling of input points is sparse or 

uneven, the results may not sufficiently represent the desired surface (Watson and Philip 

1985). Furthermore, IDW is unable to make predictions outside of the maximum and 

minimum values of the existing cluster. 

Due to their popularity, variations and IDW enhancements have also been well 

explored. Spatio-temporal Multiview-based learning (ST-MVL) ensembles IDW, Simple 

Exponential Smoothing (SES), User-based Collaborative filtering (UCF), and Item-based 

Collaborative Filtering (ICF) to impute highly accurate missing data values (Yi et al., 

2016). Each of these four empirical statistical models is then put through the linear least 

square equation to generate a final, holistic value. Despite the success of this approach 

with 26% accuracy enhancement, it was tested on a small dataset of 16 meteorological 

sensors; it is unsure how replicable this approach would be towards larger datasets, 

especially when considering that each model is trained to each individual sensor, and the 

question remains of how much computational power and time is needed for larger 

datasets over a larger period. Barbulescu et al. (2020) have recently proposed the 

optimization of finding the IDW parameter using a nature-inspired metaheuristic, which 

could potentially help IDW to achieve better performance.  

Like IDW, geostatistical kriging weighs the surrounding measured values to 

derive a prediction for an unmeasured location. Previous studies have demonstrated the 

advancement of kriging with high accuracy and low bias compared to other methods (Li 

et al., 2005, Mahdian et al., 2009, Yang et al., 2004). Unlike IDW, the weights in kriging 
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are based not only on the distance between the measured points and the prediction 

location but also on the overall spatial autocorrelation of the measured points represented 

in a variogram (Holdaway, 1996; Aalto et al., 2013). Linear combination of weights is 

determined by the spatial variation structure (Hattis et al., 2012). 

Wu and Li (2013) utilized variables of latitude, longitude, and elevation as 

residual kriging model input to interpolate the average monthly temperature. The study 

indicates that adding an elevation factor can enhance predicting performance. Though 

this proposed model is capable to capture the spatial variability of temperature, it is 

sensitive to the seasons. In contrast to applying kriging to spatial interpolation, 

Shtiliyanova et al. (2017) applied a kriging in the temporal dimension to fill in data gaps 

in time-series of air temperatures. Results show that the method can predict missing 

temperatures with acceptable accuracy with hourly resolution and for non-high elevation 

sites. One of the most recent studies adopted space–time regression-kriging to predict 

monthly air temperature (Li et al., 2020). A time series decomposition was applied for 

each station, and a multiple linear regression model was used to fit the spatiotemporal 

trends. A valid nonseparable spatiotemporal variogram function was utilized to describe 

similarities of the residuals in space–time. A space–time kriging was later applied to 

predict monthly air temperature, with a highest adjusted R-squared of 0.78. 

The k Nearest Neighbor (kNN) technique is the most computationally efficient 

because it is the lazy learning (Ding et al., 2020). It estimates missing values in data 

vectors by comparing available values and those of a data set with complete 

characteristics (Tabassian, 2016). It also provides flexibility to impute both continuous 
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data and discrete data (Batista and Monard, 2002). However, the choice of tuning 

parameters without prior knowledge is difficult and might have a dramatic effect on a 

method’s performance (Stekhoven and Bühlmann, 2012). 

Generative Filling 

Traditionally, machine learning and deep learning technics applied to missing 

data filling require complete data during training, resulting in a lack of training data when 

having large missing data rates.  

Random forest is one of the most well developed and adopted ensemble learning 

algorithms for regression tasks. By averaging over many unpruned regression trees, it 

intrinsically constitutes a multiple imputation scheme. Stekhoven and Bühlmann (2012) 

proposed an iterative imputation method (missForest) based on a random forest and 

evaluated using biological data with missing value ranging from 10% to 30%. The built-

in out-of-bag error estimates of random forest enables imputation error estimation 

without the need of a test set. Therefore, it does not require fully observed datasets for 

training. Random forest can process mixed-type data and is able to create both linear and 

nonlinear boundaries (Breiman, 2001). This allows MissForest to well handle different 

types of variables and fill the missing values simultaneously. MissForest has been shown 

to outperform well-known methods such as k-nearest neighbors (KNN) and parametric 

MICE (multivariate imputation using chained equation; Waljee et al., 2013; Tang and 

Ishwaran, 2017). 

Despite the statement made by its developers regarding attractive computational 

efficiency and applicability with high-dimensional data, the dataset adopted in their 
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experiments is small. Time series datasets can have continuous large data samples and 

will be explored in our study. Yoon et al. (2018) also found that MissForest as a 

discriminative model that cannot be adopted as easily when the number of feature 

dimensions is small, yielding large imputation error when allying to dataset with higher 

rate of missing values. 

Yoon et al. (2018) proposed Generative Adversarial Imputation Nets (GAIN) 

which adopts the well-known Generative Adversarial Nets (GAN) framework with an 

additional hint matrix to avoid acquiring complete model training datasets. GAN trains 

two models simultaneously, a Generator to capture the data distribution, and a 

Discriminator to estimate the probability that a sample came from the training data rather 

than generative model (Goodfellow et al., 2014). The Generator is trained to maximize 

the Discriminator’s misclassification rate, while the Discriminator is trained to best 

classify between observed data and imputed data. Like GAN, the Generator’s goal in 

GAIN is to accurately impute missing data, and the Discriminator’s goal is to distinguish 

between observed and imputed components. A hint matrix containing the index 

information of the missing data was added to the model, which enabled Discriminator 

loss to be generated from the hint instead of requesting observations, and the model can 

thus be trained on incomplete data sets. GAIN outperformed MissForest and Auto-

encoder GAIN and demonstrated its usability when handling dataset with different 

percentage of missing values. The higher the missing rate, the lower the imputation 

accuracy. Larger training data sample with higher feature dimensions improves accuracy. 

Similarly, MisGAN was developed using GAN to impute missing data with incomplete 
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training dataset (Li et al., 2019). MisGAN outperforms GAIN under high missing rates, 

while GAIN training is quite unstable for the block missingness. Despite the success, 

MisGAN was developed for the MCAR case, which is different from the nature of 

temperature missing data (MAR).  

Unlike MissForest, both GAIN and MisGAN were established for univariate 

prediction, where temperature as an environmental variable can be easily affected by 

other meteorological conditions (e.g., wind speed, humidity, pressure). Implementing 

multivariate prediction can potentially help the model to be more accurate and robust. 

Moreover, the proposed GAIN model uses random state to initialize training which can 

be enhanced by adding extra data preprocessing, allowing temporal pattern integration 

from temperature time series data.  

IoT data, compared to conventional weather station data, has its uniqueness. The 

advantage of IoT data is its remarkably high spatiotemporal resolution. This advantage 

generates high dimensional dataset, which is generally a challenge for ML/DL studies. 

Due to the increasing popularity in IoT data applications, more recent studies start 

focusing specifically on the IoT missing data issue. Ding et al. (2020) provided a 

comprehensive review on estimating missing values in IoT time series data using 

different interpolation algorithm including Radial Basis Functions, Moving Least Squares 

(MLS), and Adaptive Inverse Distance Weighted, and using standard kNN estimator as a 

benchmark. The study suggests large differences in computational runtime and accuracy 

when applying different algorithms to different datasets. The cause of the differences 

varies depends on the data characteristics. 
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ML in Weather Study 

Due to the limitation of NWP models and the maturity of ML/DL in many 

research domains, recent weather studies attempt to utilize these models to advance 

forecasting results. Hippert et al. (2000) used a hybrid system for hourly temperature 

forecasting by integrating the Autoregressive Integrated Moving Average (ARIMA) 

model and the Multi-Layer Perceptron Neural Networks (MLPNN). The ARIMA is a 

class of models that explain a given time series based on its past values (i.e., its own lags 

and the lagged forecast errors so the equation forecasts future values. The ensembled 

model solves the drawback of using only one artificial neural network (ANN) or linear 

prediction framework for forecasting. This model achieves a 1-step (1-hour) prediction 

for one weather station in Rio with a mean absolute percentage error (MAPE) of 2.7%. 

Maqsood et al. (2004) developed an ensemble model from MLPNN, Radial Basis 

Function Network (RBFN), Elman Recurrent Neural Network (ERNN), and Hopfield 

model (HFM) for different weather forecasting, including temperature, wind speed, and 

relative humidity. The model’s 24-step weather predictions for different weather 

forecasting for all seasons outperformed each of the standalone models. The success of 

wind guest predictions using a decision tree model allows local weather monitoring in 

vineyards, orchards, and different fruit and vegetable crops across 30 locations in 

different countries (Sallis et al., 2011). 

More recently, the Long Short-Term Memory (LSTM) from the DL community is 

widely used for sequence prediction, including language translation (Luong and 

Manning, 2015; Huang et al., 2018), speech recognition (Graves et al., 2013; Soltau et al., 
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2016), and time series prediction (Hua et al., 2019; Karevan and Suykens, 2020). Within 

the field of weather prediction, LSTM networks provide short-term prediction of various 

weather variables, including surface temperature, surface precipitation, wind speed, and 

solar radiance. Utilizing LSTM, a recent study predicts the occurrence of rapid 

intensification of tropical cyclones (Li et al., 2017).  Another study based on weather 

balloon data proposes a weighted graph convolutional LSTM for the U.S. country-level 

temperature forecasting (Wilson et al., 2018). Despite the success of this model 

(outperformed all baseline models), only 67 stations across the U.S. were used with two 

weather measurements per day. A newly proposed approach that combines the LSTM 

with the Empirical Mode Decomposition (EMD) technique can predict El Niño one year 

in advance, allowing preparation for El Niño-related extreme weather events (Wang et 

al., 2021). 

The fruitful achievements in using ML/DL for hourly temperature forecasting for 

the past 20 years are reviewed (Cifuentes et al., 2020), including ML/DL techniques, 

notably MLPNN, Support Vector Machines (SVM), Autoregressive (AR), ARIMA, 

RBFN, LSTM, and ensemble modeling. The comparison reveals the LSTM to be superior 

at the single-step prediction at a regional scale with simulation data. Among those 

utilized real weather observation data, the best predictions achieved Mean Absolute 

Errors (MAEs) of 0.27°C for 1-step (one hour for each step, AR + MLPNN; Jallal et al., 

2019), 1.20°C for 4-step (SVM; Chevalier et al., 2011), 1.62°C for 8-step (Ward 

MLPNN; Smith et al., 2009), and 1.87°C for 12-step predictions (Ward MLPNN; Smith 

et al., 2009). The best MAEs for different multi-step predictions serve as references for 
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our model evaluations. The XGBoost (eXtreme Gradient Boosting), a popular time series 

prediction algorithm, is implemented recently for outdoor air temperature prediction 

using weather station data (Ma et al., 2020) with a RMSE of 6.3°C for 3-step predictions. 

The XGBoost is an ensemble tree (decision-tree-based) algorithm that uses a gradient 

boosting framework. Gradient boosting is a supervised learning algorithm, which 

accurately predicts a target variable by combining the estimates of a set of weaker 

models.  

Weather research is beyond the comparison among ML/DL models and extends 

the capability of ML-based weather predictions compared with the well-recognized 

NWPs. Du (2018) compared the MAPEs of ANN (4.06%), SVR (3.87%), and GP 

(3.81%) based methods with NWP (4.57%) for 3-step wind forecasting, showing all ML-

based algorithms outperforming the NWP. Hewage et al. (2020) propose a novel 

lightweight weather prediction model using LSTM and Temporal Convolutional 

Networks (TCN), which run on a standalone PC for a better short-term prediction than 

the well-recognized Weather Research and Forecasting (WRF) model for up to 12 hours. 

Despite the success, the author argues that local weather station data would be highly 

beneficial to the established model. The WRF data used in the article requires an 

additional 3 hours of data access time, delaying forecasts. 

IoT Weather Forecasting 

IoT sensor networks are increasingly used in environmental monitoring, offering 

real-time measurements with high spatial resolutions (Ballari et al., 2012). Weather 

studies across multiple research domains based on IoT datasets and ML/DL models prove 
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IoT data usability with promising results (Ayele and Mehta, 2018; Chammas et al., 

2019). With its high spatiotemporal resolution, these data help lightweight ML/DL 

models best achieve their fast-forecasting advantages compared to numerical models. A 

fast forecast leads to accelerated decision making and response, as recent research found 

the intelligence and the autonomous of IoTs can improve the quality of people’s lives 

(Paul and Saraswathi, 2017). 

Yawut and Kilaso (2011) adopt weather station networks combined with IoT 

sensors demonstrating the usability of IoT data for real-time natural disasters monitoring 

and prediction and fostering fast response and life-loss prevention. Different sensors 

collect temperature, humidity, light, and pressure, and with decision tree models, 

establish disaster alert systems to prevent damage from natural disasters. Due to the 

sensors’ low power consumption, the proposed system is installed in locations 

challenging to hardwire or use solar energy for flexibility. Similarly, Martinez et al. 

(2017) utilizes low-power IoT sensors for different glacier stick-slip motion 

investigations and expected to enable monitoring for a broader range of areas. Another 

promising result in using the IoT for weather hazard forecasting is demonstrated by 

Widiasari and Nugroho (2017): their study concludes that IoT provides optimal results in 

obtaining time series data. Experiments using MLPNN for flood event predictions based 

on rainfall data and water levels in a weir with two sensors upstream and downstream for 

monitoring. Data are transferred to the server wirelessly with forecasting algorithms 

applied to the centralized dataset.  
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The size of the sensor networks remains a shortcoming. Schatz and Kucharik 

(2014) reviewed urban climate sensor networks, with at least ten sensors operating for at 

least one year from different studies in the past 20 years. The networks are small for high 

spatiotemporal observations, despite the study’s claim that the network they applied (4 

sensors/km2) is one of the most spatially dense and extensive. There is a lack of using 

densely deployed sensors to fully achieve the potential of IoT networks in weather 

forecasting. By contrast, hundreds of IoT sensors for each study region are utilized for 

data fusion in the proposed framework. The forecasting model based on this fusion result 

leads to high-resolution temperature prediction. 

Transfer Learning 

In any neural network, models are trained to find the ‘perfect’ weights for 

prediction. The idea of transfer learning is applicable since the weights in the first few 

layers of a DL model are learning low-level features (like edges and corners in computer 

vision). In this case, it is not necessary to learn the same features from scratch while 

training on similar data. A pre-trained model on a source dataset can then be transferred 

and fine-tuned on a target dataset without having to modify the hidden layers of the 

network (Fawaz et al., 2019). 

LSTM has been widely adopted for the time series prediction task; however, the 

algorithm relies on the assumption that there are sufficient training and testing data 

coming from the same distribution (Ye and Dai, 2018). Transfer learning can provide the 

improvement of learning in a new task through the transfer of knowledge from a related 

task that has already been learned from old data when the new dataset does not have 
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enough records (Olivas et al., 2009). It uses pre-trained models as the starting point to 

also save the vast compute and time resources required to develop neural network models 

on related problems (Yosinski et al., 2014). One limitation is that the transferability gap 

grows as the distance between tasks increases, particularly when transferring higher 

layers. But even features transferred from distant tasks are better than training from 

scratch with random weights. 

There are many cases where the size of newly collected data is small, resulting in 

relatively small amount of fresh training data, while abundant old data can be obtained. 

Since time series data usually vary with time, samples over a long-time span differ 

widely from each other commonly. Hence, applying old data directly to prediction 

process is normally considered inadvisable. A hybrid algorithm called TrEnOS-ELMK 

was developed for time series prediction while adopting transfer learning to make 

knowledge transferred from old data possible (Ye and Dai, 2018). 

In the weather study, a trial was proposed for transferring information via training 

a DL model on data-rich wind farms and then finely tuned with data from newly built 

farms (Hu et al., 2016). As to the newly built wind farms, sufficient historical data is not 

available for training an accurate model, while some older wind farms may have long-

term wind speed records. The experimental results show that prediction errors are 

significantly reduced when using the proposed technique. In this dissertation, transfer 

learning is explored, as the values of temperature observations vary from region to region 

but the datasets themselves are highly similar. Specifically, even all study areas selected 

are considered as major cities, LA and NYC have the most stations while Chicago and 



24 

 

Atlanta have much less. Stations were also built at different times and have different 

lengths of historical data, such as the wind farm problem. Proposed transferable models 

are expected to solve the data imbalance problem. 
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CHAPTER THREE. IOT TEMPERATURE MISSING DATA FILLING MODEL 

COMPARISON 

IoT Temperature Data and Study Area 

IoT Temperature Data 

One-year vehicle-based IoT ambient air temperatures are provided by wireless 

GeoTab’s GO devices. GeoTab provides a truck-mounted sensor dataset, with 

observations at each predefined geohash grid during certain hours only for trucks in 

passing. Each geohash covers an area of 153m*153m. Since it is a vehicle-based data 

collection, geohash grids does not provide full data coverage, e.g., there are grids that 

have never collected data within our data collection. In this dissertation, we treat geohash 

grids as points and define them as weather data collection locations (DCLs, like stations) 

with time series temperature measurements. DCLs may have missing values even when 

they are on the truck route. This may cause by sensor functionality issues or simply no 

trucks pass through at the timestamp. GeoTab does not provide historical data to general 

users, and the near-real-time temperature data used in this dissertation were harvested 

daily using Python and SQL from Google Cloud Big Table API. Data are hourly 

temperature records from 04/29/2019 8:00 am to 05/01/2020 6:00 am and are 

preprocessed by GeoTab to remove anomalies.  

 

 

 

Table 1 Data Sources for IoT Temperature 

Dataset  Org. & Data 

Source 

Spatial 

Resolution 

Temporal 

Resolution 

Time 

Coverage  

Related 

Product/Variable 
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GeoTab IoT GeoTab, Inc. 

https://data.geotab.

com/weather/temp

erature 

153m x 

153m;  

23,300 

DCLs (LA) 

hourly 2019-2020 Temperature 

 

 

 

 

GeoTab IoT contains various data fields, including the sensor metadata and 

different parameter readings at different timestamps (Table 2). Temperature in Celsius is 

utilized through the dissertation for easy comparison to other research literatures.  

 

 

 

Table 2 Filed information of GeoTab IoT data 

Field Type Description 

Geohash STRING Geohash at the 7 character level (153m x 153m) 

GeohashBounds GEOGRAPHY Polygon object of the geohash bounds 

Latitude_SW FLOAT Latitude of the southwest corner of the geohash 

Longitude_SW FLOAT Longitude of the southwest corner of the geohash 

Latitude_NE FLOAT Latitude of the northeast corner of the geohash 

Longitude_NE FLOAT Longitude of the northeast corner of the geohash 

City STRING City (or municipality) within which the geohash 

resides (U.S., Canada, and Mexico only) 

County STRING County within which the geohash resides (U.S. and 

Mexico only) 

State STRING State within which the geohash resides (U.S., 

Canada, and Mexico only) 

Country STRING Country (or territory) within which the geohash 

resides (English common name) 

ISO_3166_2 STRING ISO-3166-2 codes for country and subdivision 

TimezoneName STRING Name of the time zone in which the geohash resides 

LocalDate DATE Local date when the temperature was recorded 
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LocalHour STRING Local hour (24 hr) when the temperature was 

recorded 

UTC_Date DATE UTC date when the temperature was recorded 

UTC_Hour STRING UTC hour (24 hr) when the temperature was 

recorded 

Temperature_C FLOAT Average temperature within the geohash (in ℃) 

Stdev_C FLOAT Standard deviation of the temperature readings 

within the geohash during the hour in which 

temperature was recorded (in ℃) 

Temperature_F FLOAT Average temperature within the geohash (in ℉) 

Stdev_F FLOAT Standard deviation of the temperature readings 

within the geohash during the hour in which 

temperature was recorded (in ℉) 

Version STRING Version number of the dataset 

 

 

 

 

Study Area 

LA was selected for this study due to its large in-city heat variations, particularly 

in downtown area, making it more significant to have continuous high resolution 

temperature measurements. Heat variation patterns differ depending on the time of day 

due to the urban fabric and human activities (Figure 2). 
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Figure 2 LA Heat Variation from GeoTab IoT Temperature Observations 

 

 

 

Data missing rate controls DCL coverage and distribution of a city, and the DCLs 

in downtown LA are selected for data filling comparison (Figure 3). Distributions 

demonstrate DCLs with missing rate less than 20%, 40%, 60% and 80%. Figures with 

higher missing rate include the DCLs from those with lower missing rate (e.g., Figure 3b, 

c, and d include the DCLs from Figure 3a). Due to the nature of vehicle based IoT, only a 

small portion of DCLs have good data completeness with missing rate < 20% located on 

major road with high traffic flow. The ability to fill missing data for DCLs with higher 

missing rate allows better city area coverage and provides higher temperature resolution.  
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Figure 3 The Distributions for DCLs with Missing Data Less Than 20%, 40%, 60% and 80% 

 

 

 

 

Popular Data Filling Techniques 

As introduced in literature review, there are many different data filling 

techniques. Different datasets have their own uniqueness and often require 

comprehensive testing to find the optimized solution. MissForest was first proposed and 

tested in biological fields, while GAIN was applied to general ML datasets. To our best 

knowledge, no data filling research has been conducted for this high-resolution vehicle 
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based IoT temperature dataset. This section will closely examine three different popular 

data filling algorithms, where each represents their superiority in their domain. 

 

Kriging 

Data interpolation will be performed using kriging, as the temperature 

observations are assumed to be continuous in space, and the IoT dataset is dense enough 

to provide results with high accuracy. Kriging is an advanced geostatistical procedure 

that generates an estimated surface from a scattered set of points with temperature. It 

weighs the surrounding measured values to derive a prediction for an unmeasured 

location. The formula is formed as a weighted sum of the data (Equation 1). 

 
Equation 1 Kriging 

𝑍(𝑆0) =  ∑ 𝜆𝑖𝑍(𝑆𝑖)

𝑁

𝑖=1

 

 

, where 𝑍(𝑆𝑖) is the measured value at the 𝑖 location; 𝜆𝑖 is an unknown weight for 

the measured value at the 𝑖 location; 𝑆0 is the prediction location; and 𝑁 is the number of 

measured values. The weights (𝜆𝑖) are based not only on the distance between the 

measured points and the prediction location but also on the overall spatial arrangement of 

the measured points (Figure 3). The result from kriging will expand the raw observations 

from each timestamp to a full coverage (size of the sensor network in ideal situation as 

explained). 
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Figure 4 Kriging Interpolation Demonstration 

 

 

 

The red point is the interpolation target (𝑆0) in the study area with all black point 

indicate locations with observations. The Euclidean distance is adopted in this scenario 

and the spatial arrangement is generated based on the distance and the distribution of 

observations. 

To apply Kriging to the time series data for spatial interpolation, algorithm will be 

applied to each timestamp that has at least one reading from one sensor. 

 

MissForest 

When the structure of MissForest is decomposed, it becomes apparent that 

Random Forest (RF) is essential to this algorithm. The RF is a classification algorithm 

consisting of many decision trees (Breiman, 2001). RF takes advantage of the bagging 

mechanism by allowing each individual tree to randomly sample from the dataset with 

replacement, resulting in several different trees. Each tree in a RF only picks from a 

random subset of features. This forces even more variation amongst the trees in the 

model and ultimately results in a lower correlation across trees and more diversification. 
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MissForest inherited these advancements from RF (with bagging and feature 

randomness) to address the missing data problem. Data are imputed by regressing each 

variable in turn against all other variables and then predicting missing data for the 

dependent variable using the fitted forest (Stekhoven and Bühlmann, 2012).  

 

 

 

 
Figure 5 Overview of the MissForest Algorithm 

 

 

 

To fit this model for the IoT temperature data, I assume the dataset 𝑋 =

(𝑋0, 𝑋1, 𝑋2, … , 𝑋𝑝−1) has 𝑛 ∗ 𝑝 dimensions, where 𝑛 is the total timestamps and 𝑝 is the 

number of sensors. Each sensor 𝑋𝑠 has missing values at a timestamp 𝑖𝑚𝑖𝑠
(𝑠)

 ⊆

{0, 1, 2, … , 𝑛 − 1}. The dataset can be separated into four parts: 

• The missing values of variable 𝑋𝑠, denoted by 𝑦𝑚𝑖𝑠
(𝑠)

 

• The observed values of variable 𝑋𝑠, denoted by 𝑦𝑜𝑏𝑠
(𝑠)
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• The variables other than  𝑋𝑠 with observations 𝑖𝑜𝑏𝑠
(𝑠)

denoted by 𝑋𝑜𝑏𝑠
(𝑠)

 

• The variables other than 𝑋𝑠with observations 𝑖𝑚𝑖𝑠
(𝑠)

 denoted by 𝑋𝑚𝑖𝑠
(𝑠)

 

Note that 𝑋𝑜𝑏𝑠
(𝑠)

 is typically not completely observed since the index 𝑖𝑜𝑏𝑠
(𝑠)

 

corresponds to the observed values of the sensor 𝑋𝑠. Likewise, 𝑋𝑚𝑖𝑠
(𝑠)

 is typically not 

completely missing.  

This proposed MissForest algorithm directly predicts the missing values using an 

RF trained on the observed parts of the dataset. The model makes an initial guess for the 

missing values in 𝑋 using a chosen imputation method (e.g., mean imputation) to begin 

with (Figure 5). All stations are then sorted to according to ascending order by missing 

rate. For each variable 𝑋𝑠, the missing values are imputed by first fitting an RF with 

response 𝑦𝑜𝑏𝑠
(𝑠)

 and predictors 𝑋𝑜𝑏𝑠
(𝑠)

; then, predicting the missing values 𝑦𝑚𝑖𝑠
(𝑠)

 by applying 

the trained RF to 𝑋𝑚𝑖𝑠
(𝑠)

. Updating the update imputed matrix using predicted 𝑦𝑚𝑖𝑠
(𝑠)

. The 

imputation procedure is repeated until the difference ∆𝑁 between the newly imputed data 

matrix and the previous one increases for the first time with respect to both variable 

types. 

Equation 2 MissForest Stopping Criteria 

∆𝑁=  
∑ (𝑋𝑛𝑒𝑤

𝑖𝑚𝑝 − 𝑋𝑜𝑙𝑑
𝑖𝑚𝑝)2

𝑗∈𝑁

∑ (𝑋𝑛𝑒𝑤
𝑖𝑚𝑝)2

𝑗∈𝑁

   

, where 𝑁 is a set of variables. 
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GAIN 

GAN is widely used for editing or generating images, security purposes, and in 

many other areas, outperforming most of the neural network architectures. As introduced 

in Section 2.2.2, the nature of generative model allows it to generate new data instances 

from zero. However, using GAN for production level missing data imputation is still 

challenging. GAIN was proposed by Yoon et al. (2018) and is one of the most popular 

GAN architectures for missing data filling. It is realized in this research as comparable 

with Kriging and MissForest to handle IoT temperature missing data filling. The idea 

behind it is straightforward: the Generator takes the vector of real data which has some 

missing values and imputes them accordingly. The imputed data is fed back to the 

Discriminator whose job is to figure out which data was originally missing. Unlike in a 

standard GAN where the output of the Generator is either completely real or completely 

fake, in this setting the output is comprised of some components that are real and some 

that are fake. 

In the model structure, there are three matrices used as model input (Figure 5). 

Data matrix (𝑋) is the original IoT observations. Mask matrix (𝑀) is pre-determined by 

the dataset, where 1 means observation exist, and 0 means the value is missing. A random 

matrix is randomly generated based on 𝑀, to assign initial values for the missing data 

spots. Similarly, we assume the dataset 𝑋 = (𝑋0, 𝑋1, 𝑋2, … , 𝑋𝑝−1) has 𝑛 ∗ (𝑝 − 1) 

dimensions, where 𝑛 is the total timestamps and 𝑝 is the number of DCLs. 𝑀 =

(𝑀0, 𝑀1, 𝑀2, … , 𝑀𝑝−1), taking values in {0, 1}𝑝−1. Based on X and M, we define a 

random matrix (𝑋̃, Equation 3). 
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Equation 3 GAIN Random Matrix Construction  

𝑋̃ =  {
𝑥𝑖 , 𝑖𝑓 𝑚𝑖 = 1 

∗, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

During the training, 𝑀 tells the Generator which values are missing, or which 

values are present. 𝑋̃ adds randomness to initialize the Generator to impute. 𝑋̅ is 

produced from the Generator for data imputation. 

Equation 4 GAIN Imputation Matrix  

𝑋̅ =  𝐺 ( 𝑋̃, 𝑀, (1 − 𝑀) ⊙  𝑍)   
 

Equation 5 GAIN Complete Matrix  

𝑋̂ =  𝑀 ⊙ 𝑋̃ + (1 − 𝑀)  ⊙ 𝑋̅ 

, where 𝑍 is a noise variable, independent from other variables. ⊙ denotes 

element-wise multiplication. 𝑋̂ indicates the complete data matrix.  

Rather than identifying whether an entire vector is real or fake, the Discriminator 

attempts to distinguish which components are real (observed) or fake (imputed). The 

highlight of GAIN is the introduction of Hint matrix (𝐻), which is supplied to the 

Discriminator to support fake data identification. The improvement of using hint matrix 

produces smaller Discriminator loss, thus ensure the Generator to learn. The initialization 

of 𝐻 is predefined to determine the amount of information contained in 𝐻 about 𝑀.  
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Figure 6 GAIN Model Structure 
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Essentially, GAIN is used to train Discriminator to maximize the probability of 

correctly predicting 𝑀, while the Generator is trained to minimize the probability of the 

Discriminator predicting 𝑀. 

IoT Temperature Data Filling 

The uniqueness of this vehicle based IoT data is that DCLs in low traffic roads 

can have continuous missing data (temporal missing block, TMB), causing extremely 

high missing data rate for certain DCLs. The temporal block missing increases the 

possibility of spatial block missing (i.e., no DCLs has data at certain timestamp). Kriging 

utilizes values from neighboring DCLs to fill missing data at certain location would not 

work when spatial missing block (SMB, e.g., late at night when no vehicle is driving and 

collecting data). In this case, most of the experiments are conducted after removing 

timestamps with spatial block missing. 

Different algorithms may have various error estimation techniques. MissForest 

utilizes out-of-bag error for model performance estimation, while GAIN produces the 

whole matrix and applies MSE for those have original observations with predicted 

values. To fairly compare the performance of the three algorithms, 10% of the data is 

randomly selected and removed before data filling and then used for accuracy 

calculation. For those that requires model training before data filling, the data is split into 

different seasons, and one of the four seasons is determined as the testing set once the 

model has been trained. 
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Data Filling with Default Settings 

To start the experiments, three different algorithms are applied with parameters 

set to default. In addition, a Baseline is added into the initial comparison. Essentially, the 

Baseline imputation compute for each missing data by utilizing the sum of the overall 

mean of the whole matrix with the difference of the row average from the overall mean 

and the difference of the column average from the overall mean. 

Fall and summer seasons were selected to calculate data filling accuracy 

respectively (Figure 7), meaning for models (i.e., GAIN) that require training, all other 

three seasons will be the training data. As introduced, SMB exits when there are no 

readings for all DCLs at certain timestamp. SMBs are removed as part of the data 

preprocessing to fairly compare all three different models, since kriging does not apply to 

SMB situation. Compared to using mean absolute error (MAE), RMSE has the benefit of 

penalizing large errors more and is preferred for accuracy assessment (Equation 6). 

Equation 6 RMSE  

𝑅𝑀𝑆𝐸 = √
1

𝑛
 ∑(𝑃𝑖 − 𝑂𝑖)2

𝑛

𝑖=1

  

 

Kriging outperforms the other two through all missing rate settings, when SMBs 

are ignored (Figure 7a, b). Shaded area indicates the RMSE range from the smallest of a 

testing DCL to the largest, while the line plot shows the mean. In contrary to how Kriging 

and MissForest demonstrate steady and low increase of RMSE with the missing rate get 

larger, GAIN gets dramatic increase when missing rate is large. In the experiment 

settings, the significant difference first shows when including all DCLs has missing data 
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smaller than 60%. The maximum RMSE or GAIN at missing data smaller than 80% 

tripled than that of Kriging or MissForest. The pattern exists for when the summer season 

or the fall season are the testing seasons. All three selected techniques demonstrated their 

usability for IoT temperature missing data filling compares to the Baseline. Although the 

Baseline imputation handles missing data better than GAIN (with slightly larger RMSE 

than that of MissForest), it does not demonstrate advantages over Kriging when neither 

can apply to SMBs. Due to the lack of significant benefits of utilizing the Baseline, only 

the three selected techniques are included in the rest of the experiments.  

The only study case conducted in this chapter that utilizes all data point is when 

testing the performance between only MissForest and GAIN (Figure 7c, d). Despite the 

still higher average RMSE across the experiment settings, when fitting all data for data 

filling, the GAIN model has a lower maximum RMSE tested in summer season. It falls 

back into the same pattern for high missing rate data filling with drastically increased 

prediction errors. 
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Figure 7 Data Filling Accuracy Comparison with Default Settings. 7a, b for SMB removed; 7c, d for all data 

 

 

 

 

To further examine the spatial pattern of model performance, the RMSE for each 

DCLs is plotted (Figure 8). The darker the red, the higher the RMSE. DCLs with lower 

missing rate remain low RMSEs when data filling is applied to larger datasets include 

DCLs with higher missing rates. The spatial distribution of DCLs explains the reason for 

Kriging to perform well on DCLs with large missing rates. The idea behind the Kriging 

introduced in Section 3.2.1 is that it weighs its surrounding observations for the missing 

locations. Most of the ones that have large missing rate are in downtown areas 
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surrounded by DCLs with small missing values (Figure 3). The spatial accessibility of the 

close by readings enables Kriging to make accurate predictions.   
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Figure 8 Missing Data Filling RMSE Spatial Distribution 
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Runtime Comparison 

The purpose of missing data filling for IoT temperature is to better support real-

time heat variation detection, which benefit urban livings by making fast heat related 

response. Therefore, the computational time is another critical indication for different 

algorithms. In the experiments, all models are tested under the same Google Colab Pro 

environment with following hardware configurations: 

• CPU: Intel(R) Xeon(R) CPU @ 2.30GHz (* 4) 

• GPU 0: Tesla P100-PCIE-16GB 

• Memory Total: 26 GB 

 Data filling for different missing data rate are compared. MissForest has a much 

longer runtime compared to the other two, making it not suitable for real-time (hourly) 

data filling and prediction. GAIN performs the fastest with less than 6 minutes to fill all 

DCLs with less than 80% missing data, and 86 seconds for the 10% setting.  
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Figure 9 Data Filling Algorithm Runtime Comparison 

 

 

 

 

GAIN Tuning 

ML and DL algorithms in general requires hyperparameter tuning to allow 

optimal performance when fitting different datasets. Due to the large runtime of 

MissForest and how it fails to complete the IoT missing temperature filling tasks within a 

reasonable time range, the tuning experiments are designed for GAIN. There are three 

major parameters controls the accuracy of GAIN predictions (i.e., Batch size, Hint rate, 

and Alpha). Batch size decides the selected sample size (time stamps) utilized for each 

training epoch. Hint rate determines the amount of information of mask matrix passes to 

Discriminator (a higher hint rate helps Discriminator to identify imputed data instance 
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and lowers its loss). Alpha is for predefined hyper-parameter to help update Generator 

using stochastic gradient descent (SGD; Yoon et al., 2018). 

The grid search provided by GridSearchCV exhaustively generates candidates 

from a grid of parameter values specified with the param_grid parameter. For instance, to 

tune hint rate and alpha, batch size and epoch number should be set to the same value 

(Figure 10). The parameters (i.e., p_hint and alpha) input to the mode are updated with a 

for loop going through the param_grid list. 

 

 

 

 

 

 
Figure 10 Grid Search Hyperparameter Setting Example 

 

 

 

 

From the initial comparison, GAIN performs worse on the fall season dataset with 

a missing rate of less than 60% (Figure 7a, b). This dataset is adopted for model tuning. 

Batch size is tested at 50, 100, 500, and 1000 (the default was 128). It stopped at 1000 

based on the assumption that a larger batch size reduces the stochasticity of the gradient 

descent and can cause model overfitting. The hint rate is put to the range of 0.1 to 0.9, 

with a set increase of 0.2. Alpha is set from 2 to 20, with a set increase of 2. Results are 
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plotted into grids with different color stand for averaged RMSEs from DCLs. This 

comparison suggests a best configuration among experimented settings with: 

• Batch 1000 

• Hint Rate 0.7 

• Alpha 20 

 

 

 

 

Figure 11 GAIN Hyperparameter Tuning Grid Search Result 
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Different from the idea of conventional machine learning, one epoch in GAIN 

means that one batch with randomly selected samples has had an opportunity to update 

the internal model parameters (instead of working through the entire training dataset). 

Still, number of epochs decides the times a model gets updated from learning. Using the 

parameter setting defined from previous grid search, model performances are tested at the 

epoch size of 200, 400, 600, …, 2000 in the same Google Colab Pro environment (i.e., 

Intel(R) Xeon(R) CPU @ 2.30GHz (* 4); Tesla GPU P100-PCIE-16GB; Memory 26 

GB). The results are averaged in five repeated experiments, and it is revealed that the 

“ultimate” GAIN model requires 1600 epochs, with a batch size of 1000, a hint rate of 

0.7, and an alpha of 20 (Figure 12).  
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Figure 12 Epochs for an “Ultimate” GAIN 

 

 

 

Tunned model parameter settings are adopted for the rest of this chapter for more 

performance comparisons. Using fall data, tunned GAIN shows great improvement at 

missing rate set to less than 60% (Figure 13). Both the mean RMSE and maximum match 

closely to Kriging and MissForest, but with a much faster data filling speed. The RMSE 

also dropped at a missing rate less than 80%.  

 

 

 

 

Figure 13 Performance of GAIN After Tuning Comparison 

 

 

 

Looking at the RMSE spatial distribution at 60% (Figure 14), the overall RMSE 

has dropped with overall lighter color marks throughout all DCLs. Like the still high 

maximum RMSE demonstrated on Figure 13b at 80% missing rate, though smaller with 

~25% decrease, there are few dark red spots located in the downtown LA. This 

experiment explains how model tuning can be effective on the tuning setting (i.e., data 

filling for fall season at missing rates < 60%) and expand to other settings (e.g., larger 
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missing rate at 80%). However, extreme cases (the dark reds on Figure 14d) for different 

settings should be further adjusted for potential better fits.  

 

 

 

 

Figure 14 RMSE Spatial Distribution of GAIN After Tuning Comparison 
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Seasonal Data Filling 

Experiments composed in this section are based on the GAIN model with tuned 

parameters due to its effectiveness. All three models are compared under all missing rate 

settings for all four seasons. GAIN provides competitive accuracy (average RMSE) for 

all four seasons compares to Kriging and MissForest across all settings (Figure 15). Like 

introduced, GAIN does not handle well for edge cases at 80% missing rate, generating a 

high RMSE at these DCLs and leading to significantly large maximum RMSEs in shaded 

areas for all seasons.  

 

 

 

 
Figure 15 Seasonal Data Filling RMSE Comparison 
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To look closely at the numbers, at a missing rate < 60%, GAIN gives average 

Normalized RMSEs (NRMSE) close to or smaller than MissForest with lower standard 

deviations (Table 3). A low standard deviation indicates RMSEs are clustered around the 

mean, providing more stable predictions across all DCLs. The differences can be 

explained by the model algorithm. The GAIN model selects a subset of data randomly 

from a separate training dataset during each training epoch, enabling it to be more robust 

when handling edge cases (after tuned).  On the contrary, MissForest performs only on a 

given test dataset with mean imputation initialization, making it less adaptive to certain 

edge cases when not enough observations during random forest model fitting. Kriging 

offers the lowest RMSE with minimum standard deviation, making it the optimal 

algorithm for IoT missing temperature filling at all settings without SMBs. The 

outstanding performance of Kriging is majorly due to the spatial density of the IoT 

dataset since this geostatistical method is heavily reliant on surrounding observations. 

 

 

 
Table 3 Data Filling Performance in Terms of RMSE (Average ± Std of RMSE) 

Missing  

< 60% 
Temp (℃) Kriging MissForest GAIN 

Spring 16.99 ± 4.40 0.93 ± 0.52 1.17 ± 0.64 1.33 ± 0.53 

Summer 22.86 ± 4.78 1.19 ± 0.69 1.49 ± 0.90 1.48 ± 0.77 

Fall 20.77 ± 5.90 0.72 ± 0.39 0.93 ± 0.47 1.01 ± 0.42 

Winter 14.64 ± 4.39 0.63 ± 0.29 0.78 ± 0.33 0.92 ± 0.37 

 

 

 

Unlike GAIN that trains and tests on separate data, Kriging and MissForest only 

perform on given testing sets to fill the missing values. The IoT temperature data 
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collection only covers one year, meaning GAIN could be trained on datasets with missing 

patterns that exist in the testing set. To avoid the bias towards Kriging and MissForest, 

random data selection for model benchmarking is performed (Figure 16). The filling 

accuracy shows GAIN outperforms MissForest at most settings (missing rate < 20%, 

40%, and 60%), and Kriging still gives minimum RMSEs.  

 

 

 

 

Figure 16 Data Filling RMSE on Random Testing Sets 

 

 

 

Time series data patterns are extracted for certain DCLs, since low prediction 

accuracy appears repeatedly for different seasonal tests when we examine the RMSE 

spatial distribution. Two DCLs (i.e., ‘9q5csmk’ and ‘9q5csmp’) are displayed here as examples. 

Illogical observation data appeared in late July 2019 with sudden drops. Temperature declined 

over 70°C within one hour then jumped back. The lowest temperature recorded for LA in 2019 is 
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3°C on January 02, 2019, making these recordings unreliable from the IoT data collection. To 

better perform data filling, extra data correction and cleaning is necessary, despite the GeoTab 

claims that anomalous data and outliers have been removed. Data correction remains challenging 

due to the lack of other ground truth observations that can provide such high spatiotemporal 

resolution, and a future study on the topic is crucial for better missing data filling. 

 

 

 

 

 

Figure 17 Time Series Plots for DCLs with High Data Filling RMSE 

 

 

 

All models compared in this research have their limitations, either compromised 

on the accuracy at high missing rate DCLs, or large runtime. Kriging outperforms 

MissForest and GAIN but is incapable of filling values within SMBs. To optimize 

temperature missing data filling, a hybrid missing data filling scheme is expected to 
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integrate the fast computation speed from GAIN, high accuracy from Kriging, and all 

data filling capability from GAIN or MissForest. 
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CHAPTER FOUR. TEMPERATURE PREDICTION AND TRANSFER 

LEARNING FRAMEWORK 

Data Description 

Compares to the missing data filling (Chapter 3), more regions are selected to 

complete temperature prediction study, i.e., Los Angeles (LA), New York City (NYC), 

Atlanta (AT), and Chicago (CHI). GeoTab IoT temperature data are collected in the same 

way as introduced in Section 3.1.1 for all additional three regions aside of LA. From the 

largest to the smallest sensor network, the four study regions have DCLs of 38,175 

(NYC), 23,300 (LA), 24,662 (CHI), and 11,377 (AT). Like previously introduced, 

temperature is recorded vehicularly, the number of DCLs is ideal when all DCLs provide 

data (i.e., having vehicles driven continuously). Due to the missing temperature filling 

still has uncertainty, only DCLs with < 5% missing data are used to optimize model 

training (e.g., 927 DCLs in LA out of 23, 300) in this study. As sensors are truck-

mounted, data coverage is best in the major cities with a higher density of road networks 

and traffic. The maps (Figure 18) of GeoTab DCLs in the four regions show the selected 

DCLs located on major roads (high traffic volume for full data coverage). As an example, 

most of the selected DCLs in LA are located over the state freeway (e.g., Santa Ana Fwy, 

Golden State Fwy). The same applies to NYC, AT, and CHI. 

Meteorological data are also collected for the four regions from Weather 

Underground (WU). Data details for the four regions are listed in Table 4. The resolution 

of ground-based observations varies by location, depending on the coverage of IoT DCLs 

or WU stations in different regions. Each data collection has different attributes (e.g., 



56 

 

resolution, coverage), and these are presented with expected data processing techniques 

in the following sub-sections.  

 

 

 

Table 4 Data Sources for IoT Temperature and WU Meteorological Observations 

Dataset  Org. & 

Data 

Source 

Spatial 

Resolution 

Temporal 

Resolutio

n 

Time 

Coverag

e  

Variable Role 

GeoTab 

IoT 

GeoTab, 

Inc. 

https://data.

geotab.com/

weather/tem

perature 

927 DCLs (LA) 

1045 DCLs 

(NYC) 

508 DCLs (AT) 

269 DCLs (CHI) 

hourly 2019-

2020 

Temperatur

e 

Data 

fusion. 

Both 

predictors 

and 

predictio

n target. 

Weather 

Undergr

ound 

(WU) 

IBM 

Weather 

Undergroun

d 

https://www

.wundergrou

nd.com/abo

ut/data  

100 stations (LA) 

136 stations 

(NYC) 

27 stations (AT) 

2 stations (CHI) 

 
 

hourly 2019-

2020 

Temperatur

e, 

humidity, 

pressure, 

wind 

speed, UV 

index, etc. 

Data 

fusion. 

Predictor

s. 

 

 

 

 

Weather Underground (WU) Meteorological Data 

The WU comprises individual (250,000 globally) collected measurements from 

the environment using personal weather stations (PWS), providing hyperlocal data. These 

observation stations are more sparsely distributed as compared to IoTs (Figure 18). And 

like IoT data sources, station observations are ground-based.  
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Since temperature is often affected by other meteorological variables, one 

advantage of utilizing WU is the concurrent acquisition of additional weather metrics 

(e.g., temperature, humidity, wind speed, pressure, cloud coverage). Observations from 

WU enrich the model training features after data fusion and improve the accuracy of 

predictions (Table 5). 

 

 
 

 

Table 5 Filed information of WU PWS data 

Field Type Description 

Time DATE UTC date when the data was recorded 

summary STRING Weather description like “clear” 

Icon STRING Weather description icon display on map 

like “clear-day icon” 

precipIntensity FLOAT Precipitation Intensity 

precipProbability FLOAT Precipitation Probability 

precipType FLOAT Precipitation Type 

temperature FLOAT Temperature (in ℉) 

apparentTemperature FLOAT Apparent Temperature (in ℉) 

dewPoint FLOAT Dew Point (in ℉) 

humidity FLOAT Humidity  

pressure  FLOAT Pressure  

windSpeed FLOAT Wind Speed 

windGust FLOAT Wind Gust 

windBearing FLOAT Wind Bearing 

cloudCover FLOAT Cloud Cover 

uvIndex FLOAT UV Index 

visibility FLOAT Visibility  

Ozone FLOAT Ozone  

local_datetime DATE Local date when the data was recorded 

Lon FLOAT Longitude  

Lat FLOAT Latitude  

precipAccumulation FLOAT Precipitation Accumulation 
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Study Area  

As stated, four major cities in the U.S. are selected to build and test temperature 

prediction models (Figure 18). Cities have presents different DCL patterns due to 

differences in the road network density and traffic flow. On the maps, gray dots represent 

all DCLs, and blue triangles are selected DCLs. Red squares are WU locations. 

 

 

 

 

Figure 18 IoT and WU Data Distribution 
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High-resolution Multivariate Temperature Predictions 

Before starting the major task of temperature prediction, we structured a 

framework that presents as a workflow to compose all features required to be established. 

Data fusion is crucial for multivariate prediction, and a parallel matrix manipulation 

allows fast nearest neighbor paring is introduced. The structure of LSTM is detailed to 

explain the reason for it to outperform others and selected as the core model of this 

prediction framework. Training procedures are documented to help audience replicate our 

experiments with datasets of their choice.   

Framework 

The framework for temperature prediction (Figure 19) consists of four modules, 

starting with the acquisition of the temperature metrics/predictors streamed with the 

target temperature through the data fusion module. From this module, data from different 

sources are integrated into spatiotemporal dimensions (Yang et al., 2020b). This fusion 

dataset enables the later multivariate prediction with accuracy improvements. LSTM 

construction as a second module is customized to best fit the integrated dataset for 

temperature prediction optimization. Train-test data split allows models to learn better 

with less overfitting and more robust. Training dataset feed to the LSTM, and model 

performance is evaluated using different prediction scenarios at the following module. 

Prediction model as a module is interchangeable, different models are tested and 

compared to generate optimal results. Transfer learning is the last step to further enhance 

the multi-step prediction accuracy, using a well-established pre-trained model, for regions 

with data scarcity and high initial prediction errors.  
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Figure 19 Framework for Temperature Prediction 

 

 

 

Data fusion 

Data fusion integrates the extra weather observations (i.e., humidity, pressure, 

wind speed, dew point, precipitation probability, cloud cover, and UV index) from WU 

stations with IoT DCLs and generates a single fused dataset (Figure 20).  
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Figure 20 Data Fusion 

 

 

 

One set of Sensor Distance Matrices is constructed for each region. The Sensor 

Distance Matrix stores the Euclidean Distance from WU stations to IoT DCLs in 

spatiotemporal dimensions (Yang et al., 2020b), after which each IoT DCL is paired with 

its nearest WU station. This fusion dataset remains the set of DCLs from IoTs but with 

additional weather observations from WU integrated. Distances are calculated using 

matrix construction and vectorization to achieve fast parallel computation (Equations 7 - 

9). 
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Equation 7 Matrix Outer Addition 

𝑃 = 𝑊𝑈[𝑥0, … , 𝑥𝑘 , 𝑦0, … , 𝑦𝑘]2 +  𝐼𝑜𝑇[𝑥0, … , 𝑥𝑖 , 𝑦0, … , 𝑦𝑖]
2

=  [

𝑝[0,0] = 𝑊𝑈[𝑥0]2 + 𝐼𝑜𝑇[𝑥0]2 + 𝑊𝑈[𝑦0]2 + 𝐼𝑜𝑇[𝑦0]2 ⋯ 𝑝[𝑘,0]

⋮ ⋱ ⋮
𝑝[0,𝑖] ⋯ 𝑝[𝑘,𝑖]

] 

 

Equation 8 Dot Product of Two Matrices  

𝑀 = [
𝐼𝑜𝑇[𝑥0] 𝐼𝑜𝑇[𝑦0]

⋮ ⋮
𝐼𝑜𝑇[𝑥𝑖] 𝐼𝑜𝑇[𝑦𝑖]

] ∙ [
𝑊𝑈[𝑥0] ⋯ 𝑊𝑈[𝑥𝑘]
𝑊𝑈[𝑦0] ⋯ 𝑊𝑈[𝑦𝑘]

]

=  [

𝑚[0,0] = 𝑊𝑈[𝑥0] ∗ 𝐼𝑜𝑇[𝑥0] + 𝑊𝑈[𝑦0] ∗ 𝐼𝑜𝑇[𝑦0] ⋯ 𝑚[𝑘,0]

⋮ ⋱ ⋮
𝑚[0,𝑖] ⋯ 𝑚[𝑘,𝑖]

] 

 

Equation 9 Euclidean Distance Matrix  

𝐷 =  √(𝑃 − 2𝑀) 

 

, where 𝑖 for 𝑖 ∈ 𝐼 is each DCLs from IoT dataset, and 𝑘 for 𝑘 ∈ 𝐾 is each station 

from WU. x, y are longitude and latitude respectively. The 𝑃 and 𝑀 are two matrices 

constructed for each region, and as inputs for distance matrix (D) calculation.  

A model input for each training has a size of a selected time-window (T) 

multiplied by the number of variables (N, N*T). The weights for each parameter are 

updated within each learning process, stored in trained models, and fine-tuned when 

applied to a different region during transfer learning. 

 

LSTM 

The LSTM is a recurrent neural network (RNN), and like all other RNNs have a 

chain-like structure (Figure 21). The key to LSTMs is the cell state, which allows the 

LSTM to remove or add information through different gates. The three gates (i.e., forget 

gate, input gate, output gate) are composed of a sigmoid neural network layer and a 



63 

 

pointwise multiplication operation. The sigmoid layer outputs numbers between 0 

(discard all information) and 1 (keep all information). The forget gate (𝑓𝑡, Equation 10) 

determines what information is eliminated from the cell state, the input gate (𝑖𝑡, Equation 

11) determines what new information is stored in the cell state, and the output gate (𝑜𝑡, 

Equation 12) determines the output. 

 

 

 

 

 
Figure 21 LSTM Model Structure 

 

 

 

In Figure 21, boxes are sigmoid functions, and circles are multiplication 

operations. From left to right, the cell state (𝑪𝒕−𝟏) and output (𝑯𝒕−𝟏) from the last module 

with new input (𝒙𝒕) are going through different sigmoid functions and multiplication 

operations. Cell state (𝑪𝒕) and output (𝑯𝒕) for the current module are updated accordingly 

and passed to the next module.  

The associated equations with the three gates are the following: 

Equation 10 LSTM Forget Gate  

𝑓𝑡 =  𝜎(𝑤𝑓[ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑓) 
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Equation 11 LSTM Input Gate 

𝑖𝑡 =  𝜎(𝑤𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 
 

Equation 12 LSTM Output Gate 

𝑜𝑡 =  𝜎(𝑤𝑜[ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑜) 

 

, where 𝑤𝑥 and 𝑏𝑥 are the weights and biases, respectively for each gate.  

The LSTM allows multiple input variables, a significant benefit in time series 

prediction, as classical linear methods are difficult to adapt to multivariate prediction 

problems. In this study, the fusion dataset is formatted into three dimensions when 

feeding into LSTM and includes samples, timesteps, and multivariate. The LSTM 

seamlessly supports continuous multi-step prediction, producing multiple neurons 

representing the incremental timestamp (N). 

 

Training Procedure and Performance Evaluation 

The framework generalizes multi-step temperature prediction. During the 

prediction within each region, 70% of the total DCLs from the fusion dataset are used for 

training (Figure 22). The model gains generalization by training on many stations across 

the region. Generalization from each model trained in different regions varies on the DCL 

distributions, assuming the more sparsely distributed sites (e.g., LA) are better 

generalized. The remainder (30%) of the DCLs are used for the evaluation of the local 

model generalization. Within the 70% training DCLs, 70% recordings are used for 

training (30% for validation). A model is considered as well-generalized when showing 

accurate prediction on the testing DCLs. Only well-generalized models are used for 

predictions.  
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Figure 22 Temperature Prediction Training Data Processing 

 

 

 

The full potential of LSTM is revealed using hyperparameter tuning, which 

optimizes prediction accuracy while avoiding model overfitting. Parameters include the 

number of LSTM layers, number of nodes in each LSTM layer, learning rate, dropout 

rate, number of epochs, and different optimizers. Dropout is a regularization method in 

which input and recurrent connections to LSTM units are probabilistically excluded from 

activation and weight updates while training a network. This reduces overfitting and 

improves model performance. Early stopping stops model iteration when errors increase. 

The effect of each parameter is examined while keeping the other parameters fixed. The 

model is coded in Python (PyTorch GPU version). The eight weather features from data 

fusion are model inputs. 

Results are evaluated using Root Mean Square Error (RMSE, Equation 6) and R-

squared. The Mean Absolute Error (MAE, Equation 13) is adopted as an additional 

measurement for comparison to other research in the literature. 
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Equation 13 MAE 

𝑀𝐴𝐸 =
1

𝑛
 ∑ |𝑃𝑖 − 𝑂𝑖|

𝑛

𝑖=1

 

, where 𝑂𝑖 is the observed air temperature, 𝑃𝑖 is the predicted air temperature, and 

𝑛 is the number of test samples. 

Transfer Learning  

Transfer learning is to improve learning in a new task by transferring knowledge 

from a related task that has already been learned. In any neural network, models are 

trained to find the optimized weights for prediction. Transfer learning is applicable since 

the first few layers of a DL model capture low-level features, and it is unnecessary to 

learn features de novo on similar data. Although the number of temperature observations 

varies by region, the relationship between temperature and the other weather parameters 

is similar. A pre-trained model on a source dataset from one region is fine-tuned on a 

target dataset from another region without modifications of the hidden layers of the 

network (Fawaz et al., 2019). In this study, all models trained in regions with sufficient 

data (e.g., LA model was trained using LA local dataset before transferring) are applied 

to the region with data scarcity for transferability tests (i.e., CHI). Transfer learning 

follows the workflow (Figure 23). 
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Figure 23 Transfer Learning Workflow 

 

 

 

Assuming Region A (source region) has sufficient temperature recordings for 

model training, a model is saved after being trained and directly loaded for tuning in 

Region B, the target region with data scarcity. The tuned model is used later for target 

region temperature prediction. 

Experiments and Results  

Model Performance Comparison 
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Two widely adopted ML models (i.e., ARIMA, XGBoost) are built for model 

comparison, starting with next-hour (1-step) temperature prediction for a selected DCL. 

To examine the model fitness on IoT temperature data, temperature is the only variable 

utilized as model input. RMSE and R2 are calculated on testing data after model trainings 

for fitness evaluation. Predictions are plotted along with observations to display how 

accurate does each model predict (Figure 24).  

 

 
ARIMA 

RMSE: 1.94  

R2 = 0.97 
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XGBoost 

RMSE: 2.35  

R2 = 0.95 

 
LSTM 

RMSE: 1.85  

R2 = 0.98 

 
Figure 24 Model Performance Comparison at Single Station (Univariate) 
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The model performance comparison at one selected DCL using only temperature 

observation suggests the superiority of LSTM. To extend the comparison of the selected 

models, experiments are developed for 12-step continuous temperature prediction using 

the past 24-hour multivariate weather observations (fusion data). The minimums (Min) 

indicate the best fitting DCLs and the maximums (Max) from the most unfitted DCLs. 

The LSTM yielded the best prediction results with the lowest RMSE (1.43) and highest 

R2 (0.97) (Figure 25). Unlike LSTM and XGBoost, ARIMA does not support 

multivariate as input and only relies on the historical temperature measurements for 

prediction, resulting in the lowest accuracy among all models. In contrast to the high 

accuracy during univariate experiment (outperformed XGBoost), this indicates the 

advantage of data fusion. Although XGBoost allows multivariate input, the continuous 

prediction does not leverage the time dependency and produces less consistent results. 

 

 

 

 

ARIMA 

R2 = 0.89 

Max RMSE = 5.51 

Min RMSE = 4.25 
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XGBoost 

R2 = 0.94 

Max RMSE = 2.13 

Min RMSE = 1.83 

 

LSTM 

R2 = 0.97 

Max RMSE = 1.94 

Min RMSE = 1.43 

 

Figure 25 Model Performance Comparison for 12-step Prediction with 24-hour Input (Multivariate) 

 

 

 

Evaluation of the Localized Temperature Prediction 

Model result validation and error assessment are essential for model evaluation. 

Models are only evaluated on their corresponding training regions. The evaluations using 

different lengths of data input for different prediction lengths show the average RMSE 

from all testing DCLs for each city (Figure 26a). The shaded area indicates the RMSEs 

expansion from the best fitted (Min RMSE) to the worst DCL (Max RMSE). The change 
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in R2 across all multi-step prediction scenarios by city (Figure 26b) indicates that the 

longer the prediction length, the less accuracy in the model (higher RMSE and lower R2). 

Starting from the beginning with significantly low prediction errors (e.g., using the 

previous 24-hour temperature to predict the next 1-hour), RMSE increases with the 

enlarged prediction length. Among all cities, the framework performed best in LA with 

the lowest RMSEs and the worst in CHI with multiple sudden increases in RMSE. Given 

that the number of adopted DCLs is only half that of New York, the AT has surprisingly 

low RMSE and high R2. 

Since the R2 is a relative measure of fit and RMSE is an absolute measure, most 

prediction scenarios across all study regions have more distinguishable RMSEs with 

smaller differences in R2.  Cities with more data entry for model training perform better, 

mainly when predicting a more extended time range. The sudden drop in R2 for CHI 

indicates that input weather measurements do not account for much of the temperature 

variation when predicting over the long term, due to the lack of training data. Together 

with the highest standard error, CHI is selected as the target region for transfer learning. 
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Figure 26 Multi-step Temperature Prediction Evaluation Using RMSE (a) and R2 (b) 
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The color-shaded area in (a) indicates the RMSEs expanded from the Min RMSE 

to the Max RMSE. Evaluations are plotted in Blue, Orange, Green, and Red for LA, 

NYC, AT, and CHI, respectively. 

Compared with previous studies, the proposed framework shows 30-40% 

accuracy increases (Table 6). For the most extreme case (forecasting for the next 120 

hours), the MAE from the best fitting DCL in LA (1.66°C) is ~10% smaller than that of 

other studies' next 12-hour prediction (1.87°C; Table 6).  

 

 

 

Table 6 Proposed Multi-step Predictions in Comparison to the Best Results Reviewed 

by Cifuentes et al. (2020) 

MAE (°C) Previous Studies 
Proposed Framework 

(Study region) 

Max Accuracy 

Change 

4-step 

1.20  

SVM; Chevalier et al., 

2011 

0.91 (LA) 

0.88 (NYC) 

0.96 (AT) 

-26.7% 

8-step 

1.62 

Ward MLPNN; Smith et 

al., 2009 

0.98 (LA) 

1.37 (NYC) 

1.22 (AT) 

-39.5% 

12-step 

1.87 

Ward MLPNN; Smith et 

al., 2009 

1.13 (LA) 

1.45 (NYC) 

1.58 (AT) 

-39.6% 

 

 

 

 

The box plots illustrate the increasing dispersion of RMSEs with increasing 

prediction length (Figure 27). The experiments compare different multi-step prediction 

scenarios, where 24_4, 24_8, and 24_12 is conducted to compare with previous studies 

(Table 6). Experiments of 36_12, 48_12, and 72_12 show how enlarged input length can 

affect the 12-step continuous prediction accuracy (compares to 24_12). The comparison 
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shows that twice the input length (24_12) balances the overall prediction accuracy and 

the RMSE variance among DCLs (smaller box size). Therefore, the remaining 

experiments are performed using 2X input for 1X output. With the increasing RMSE, box 

size and the length of the whiskers in the LA chart increase as outliers emerge. The 

expanding box size and whisker length demonstrate the struggle of the model when 

predicting certain DCLs, which is expected as the DCL in LA expands through a larger 

region. Outliers also explain how the model balances accuracy and generalization when 

fitting into more considerable weather variations in a larger region. Smaller boxes and 

shorter whiskers with fewer outliers in the other three regions (NYC, AT, and CHI) 

support this as their data expands through smaller regions (Figure 18). Boxes in all 

regions show positive skewness, indicating more than half of the DCLs have lower 

RMSEs than the average. It is proposed that these models fit well for most DCLs, and 

only a small group of DCLs show low accuracy. 
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Figure 27 Multi-step LSTM with Multivariate Prediction Result Evaluation 

 

 

 

Though increasing prediction length leads to rising RMSEs, introducing a longer 

input time range reduces the prediction error. For instance, when comparing the box plot 

for 24h→ 12h and 36h→ 12h, the latter yields better results. However, this is not always 
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the case: when evaluating the result from 36h→ 12h and 48h→ 12h, the increased input 

provides lower accuracy. 

Transferability Evaluation  

Chicago (CHI) is used as the target region to evaluate transfer learning as it has 

the lowest number of DCLs and yields the least satisfying accuracy during model testing 

(Figure 26). Models trained in the other three regions (LA, NYC, and AT) are directly 

loaded and fitted to the CHI dataset for model tuning (Section 4.3). Fine-tuned models 

are later used for CHI temperature prediction. Matrices are built for comparing the model 

performance during transfer learning (Table 7). Accuracy is compared using the same set 

of equations (RMSEs, R2). Improvements are obtained for all, particularly when the 

prediction length (up to 25.7% enhancement) is enlarged. This is useful since the CHI 

locally trained models perform well when predicting shorter periods but struggle for 

longer period predictions due to data scarcity. The increased R2 indicates how the 

transferable models better fit the CHI dataset than the CHI locally trained model.  

 

 

 
 

Table 7 Transferable Prediction Evaluation Matrix 

Accuracy 

Change 

CHI 

(baseline) 

LA  

predicting CHI 

NYC 

predicting CHI 

AT  

predicting CHI 

24h 12h R2:  0.96 

- 

- 

R2:  0.97 

-0.7% RMSE 

-2.9% MAE  

R2:  0.98 

-5.8% RMSE  

-7.8% MAE  

R2:  0.98 

-7.7% RMSE  

-9.3% MAE  

144h 72h R2: 0.70 

- 

- 

R2:  0.92 

-24.9% RMSE  

-24.2% MAE  

R2:  0.91 

-24.3% RMSE  

-24.4% MAE  

R2:  0.87 

-25.2% RMSE  

-24.2% MAE  
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240h 120h R2:  0.51 

- 

- 

R2:  0.83 

-13.9% RMSE  

-16.1% MAE 

R2:  0.87 

-21.0% RMSE  

-25.7% MAE  

R2:  0.88 

-16.5% RMSE  

-17.9% MAE  

 

 

 

The CHI (baseline) is the prediction results from the CHI locally trained model. 

All accuracy changes are measured using Max RMSE (or MAE) change when applying 

transfer learning. Negative numbers indicate the RMSE (or MAE) decreases (i.e., better 

accuracy than baseline). 

Hourly RMSEs are plotted to further assess how the adopted transfer learning 

reduces the prediction error due to data scarcity (Figure 28). The transfer models perform 

similarly to the CHI’s local trained model when predicting short period temperatures 

(Figure 28a), where the RMSE increases with lead time. By increasing the prediction lead 

time, and the transferred models start to show better performance with steady growth in 

low standard errors (Figure 28b). In a more extreme case, the CHI model struggles 

initially, giving an overall much higher RMSEs (Figure 28c). The NYC model 

outperforms both the LA and AT models, displaying a near-flat RMSE across the 120-

hour prediction. 
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Figure 28 Comparison of the Transfer Model Hourly RMSE.  

(a) shows prediction RMSE of each step (hour) when using 24-hour data input for 12-step continuous prediction. 

(b) shows 144-hour for 72-step. (c) shows 240-hour for 120-step. Evaluations are plotted in Blue, Orange, and 

Green for transfer models from LA (LA_CHI), NYC (NYC_CHI), and AT (AT_CHI), respectively. CHI locally 

trained model (CHI_CHI) as baselines is colored in Red. 

 

 

 

Transfer learning is proven to be useful in cases of data scarcity. The 

effectiveness of these transfer learning models is due to the high spatial correlation 

(mostly major roads) and high density distributed of the IoT DCLs. The variation in 

performance is caused by the similarity differences shared among sources and target 

cities. The ideal density of DCLs for transferable model training is a future research 

initiative. 
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CHAPTER FIVE. CONCLUSION AND FUTURE WORK 

Temperature is one of the major concerns of urban livability, and intensified 

global warming accentuates the temperature imbalance by increasing the already high 

temperatures in urban areas. A series of health and energy concerns are related to 

temperature. To better assist fine-scaled temperature observation and predictions for fast 

heat-related responses, this dissertation utilized vehicle-based IoT as a main data source. 

Well-established IoT networks achieve near-real-time street-level air temperature 

measurements, unlike satellite observations that often require downscaling for 

appreciable spatiotemporal resolution. The missing data issue on IoT datasets is 

inevitable, and therefore targeted missing temperature observation filling was studied by 

comparing different state-of-art data filling algorithms. Then a multivariate temperature 

prediction framework is proposed that adopts IoT observations and integrates 

meteorological observations from external data resources (WU). Lastly, transfer learning 

is successfully applied, enabling well-trained models to continuously predict highly 

accurate temperatures for tested regions with data scarcity.  

Conclusion  

The rich selection for missing data filling models granted possibility for better 

utilizing IoT datasets. The missing of IoT temperature observation is treated as the MAR 

mechanism, since the exact moment when one device stops functioning is generally 

unknown, and can be predicted, interpolated, or imputed using observed sensor readings. 

Selected algorithms (i.e., Kriging, MissForest, and GAIN) are considered for comparison 
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as state-of-art from their domain in statistics, machine learning and deep learning. 

Different algorithms demonstrated their advantages and weakness under different testing 

scenarios. All models built upon these algorithms are tested to fill the missing data at rate 

of less than 10%, 20%, 40%, 60%, and 80%. Testing data are then selected using either 

different seasons, or randomly draw from the entire dataset, to measure the stability of 

these models. 

We defined spatial missing block (SMB) to introduce the situation when all IoT 

sensors do not have readings at a timestamp. Kriging outperforms MissForest and GAIN 

in data filling accuracy with lowest average RMSE and minimum error standard 

deviation, making it the most stable solution to fill datasets without SMBs. The nature of 

Kriging only allows it to fill missing data when close by observations are available. 

MissForest gives out competitive results across all test settings with RMSEs close to the 

Kriging results. However, the long model runtime makes it incapable of real-time data 

filling (over an hour to produce results). The tuned GAIN model as a deep learning model 

offers the most balanced performance when filling data with missing the rate < 60% but 

not on edge cases with the missing rate < 80%. The results are indistinguishable from 

MissForest but slightly less accurate than Kriging, with the fastest runtime. It takes less 

than 6 minutes to produce a filled dataset from training (Figure 9). Under the test with 

SMB, where Kriging was eliminated by default, and GAIN outperforms MissForest on 

most miss rate settings.  

Data filling experiments are comprehensively studied; however, the result can be 

biased due to spatiotemporal information not being fairly integrated into all models. 
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Kriging uses spatial autocorrelation only and fills the missing data timestamp by 

timestamp, meaning it does not include any temporal information into consideration. For 

GAIN model, such information is partially participated, since each batch is composed as 

a random selection from the entire training data. The larger the batch, the higher the 

possibility that timestamps with similar patterns get selected. MissForest has the best 

spatiotemporal information integration, since it takes the whole time series in (or as long 

as it needs to be), and all the DCLs (spatial information) as attributes to train the model to 

the best. This could help explain the longer runtime for MissForest. Kriging adopts 

variogram that for each point, only nearest observations are used while calculating for 

each missing point, where MissForest must take all observations into consideration by 

default.   

To accurately predict high spatiotemporal resolution urban temperature, a 

framework is proposed using IoT data fusion and deep learning. A data fusion technique 

is achieved by parallel matrix computation for fast heterogeneous data integration to 

enrich IoT data features. A fusion dataset is utilized for multivariate LSTM prediction 

support. Different multi-step prediction scenarios are tested. The LSTM as a DL 

algorithm is proven to offer advanced prediction capability for multi-step temperature 

prediction with multivariate on our fusion dataset compared to ARIMA and XGBoost. 

The generalized prediction model performs well on most of the local testing DCLs. The 

proposed framework enables effective and consistent predictions across different study 

regions and gives competitive accuracy compared to other methodologies. Temperature 

predictions completed on major roads (missing data <5%) were considered as sufficient 
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to represent the study areas since the distribution of these selected sensors was widely 

expanded. Even for the most extreme case tested (120-step prediction), the proposed 

framework outperforms the best model reviewed for 12-step prediction. Despite the 

encouraging results, a greater prediction length leads to a larger error, and the optimized 

input-output combination for different multi-step predictions needs to be explored. It is 

convincing that these models can be applied to the rest of DCLs if there are long enough 

consecutive recordings for model input, which can be achieved by properly integrating 

missing data filling algorithms.  

The development of model transfer learning is derived from the reusability of 

trained models from regions with sufficient temperature observations. Transfer learning 

minimize the prediction error for regions with data scarcity problem and improves the 

predicting MAE up to 25.7%. Enhanced prediction accuracy from transferable models 

conquers the data scarcity problem and allows the proposed framework to be more 

widely adopted. The framework can be implemented in other weather parameter 

predictions (e.g., humidity, pressure) and is expected to assist city planning and 

management (Murphy, 1993). 

Limitations of this temperature prediction framework are severalfold and warrant 

discussion below. Despite the high resolution of the IoT dataset, especially when 

comparing with traditional weather station measurements, this dataset does not offer 

complete coverage of uniformly distributed surface temperature observations as achieved 

using satellite images. The number of DCLs varies mainly from region to region, and the 

proposed transfer learning does not predict sites absent of DCLs. One solution is 
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spatiotemporal data interpolation to fill the area as grids. However, popular algorithms 

like IDW only achieve accurate results if the sampling of input points is dense or the 

results do not represent the desired surface (Watson and Philip 1985). Transfer learning 

showed different improvement levels and needed further exploration to understand the 

reasons to explain why some transferable models are better than others. For instance, the 

LA model has the highest local prediction accuracy but does not provide the best results 

when transferring to CHI. 

For both studies, only one year of data is collected due to the limited access to the 

historical IoT dataset. A more prolonged time coverage for model training is expected to 

improve prediction by integrating yearly trends. The influence of climatic patterns should 

be considered for better SMB missing data fillings and long-term predictions. 

Future Works 

Based on the results from the dissertation, there are more to explore for potential 

enhancements: 

1) IoT temperature data correction is necessary for better missing data filling and 

predictions. Error readings can cause a model to learn from inaccurate 

information, producing incorrect results. However, not many data resources are 

available at such high resolution for IoT data correction. Credible social media 

data that collects real-time information, followed by human mobility in the urban 

area, has the potential to help detect the false IoT sensor readings (Yang et al., 

2019).  
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2) Explorations should be initialized for a better data filling scheme targeting 

spatiotemporal IoT data specifically, given the explosive growth of IoT earth 

observations. Different data filling mechanisms have their limitations. An 

ensemble missing data filling model is expected. Multivariate data filling models 

exist and should also be explored (Little and Schluchter, 1985). For instance, the 

diversifications of street blocks can be calculated and adopted as a parameter 

since differences in buildings and activities along the road network indicate that 

there are unevenly distributed anthropogenic heat releases (Teng et al., 2019). 

3) Integrating a properly designed missing data filling model into temperature 

prediction can significantly improve the prediction coverage. This can be 

completed once the first two works are conducted and can provide reliable 

datasets. For a larger prediction coverage, a data storage and retrieval mechanism 

redesign should enhance the processing speed for missing data filling and time 

series prediction (Hu et al., 2018; Xu et al., 2021).  

4) The established temperature prediction framework yields high accuracy and 

precision; however, it still struggles with longer-term forecasting. Climate change 

and temperature-related spatiotemporal event detection should step in to 

emphasize the long-term temperature pattern (Yu et al., 2020). Despite the 

computational efficiency of the proposed models and the framework, enabling 

cloud computing could allow larger-scale data manipulation (Li et al., 2020). 
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