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With the advent of Internet of Things (IoTs), secure communication between devices is a 

big challenge. Billions of new devices and sensors are going to be connected to internet. 

To ensure secure communication with the devices we need hardware primitives that are 

well suited to the requirements of IoTs. Recent research has led to an increased interest in 

security measures, especially in solutions that are physically unique and unclonable. 

Physical Unclonable Function (PUF) has been found to be a strong candidate for this 

purpose. Since PUF extracts the inherent manufacturing variations of a hardware chip, 

therefore it can be used as a finger print of devices. Eventually these finger prints can be 

used to authenticate devices and also to generate secure keys for cryptographic functions. 

This thesis describes the development of efficient and reliable PUF for FPGAs. Novel 

PUFs have been designed for this purpose. Furthermore, it also covers the generation and 

analysis of PUF responses in a more coherent and systematic method. For the generation 

of PUF responses different bit-generation schemes have been used and their results have 



xv 

 

been compared with each other. This novel study was done to determine the best scheme 

among the most popular schemes developed so far by different researchers. Software 

scripts were developed for all the schemes. Similarly, for the analysis, new metrics have 

been presented for the evaluation of PUF responses. Additionally, software scripts have 

been developed for analysis of PUF responses. These scripts can be applied to any type of 

PUF. 

Design, development, implementation and testing of two major types of PUF have been 

carried out. One is a memory based PUF: SR-Latch based design. The second is a delay 

based PUF: Ring oscillator based design. Both designs have been thoroughly tested on 

FPGA devices. Performance metrics of both designs have been presented and compared to 

the state of the art PUFs. Experiments were carried out on different FPGA technologies. It 

was done to prove the applicability and portability of our designs. 

One of the major requirements of PUF intended for IoT applications is that the device area 

must be efficiently utilized. The current state of the art PUFs are expensive for low area 

implementation. Therefore, in this work a highly efficient PUF has been developed and 

tested for FPGAs. Additionally, the PUF is very reliable for use at different environmental 

conditions. It makes it further attractive because the device can be used in broad range of 

temperature and voltage variations. To regenerate the same PUF response under different 

conditions we used the error correction scheme. We also presented different schemes that 

are suitable from the security point of view. 
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Lastly we presented a prototype of an efficient SR-Latch based PUF design, with two times 

improvement in area over the state of the art, thus making it very attractive for low-area 

designs. This PUF is able to reliably generate a 128-bit cryptographic key. 
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1. Introduction 

 

 

 

Physical Unclonable Functions (PUFs) are physical primitives which produce 

unclonable and device-specific measurements of silicon Integrated Circuits (ICs). These 

measurements are then processed to generate device IDs or Keys. It is very similar to the 

biometric feature extraction of humans. These features can be used for authentication and 

identification purposes. In ICs, manufacturing process variations results in physical 

uniqueness due to sub-microscopic level differences. Even with extreme precision, the two 

ICs manufactured under same conditions cannot have similar features. Thus manufacturer 

cannot control the development of these features during the manufacturing process. Due to 

this property the term ‘unclonability’ is used to describe it. The extraction of these IC 

specific features is carried out by using different PUF designs. The primary goal of any 

PUF construction is to extract these features cleanly and reliably. The process of extraction 

and the subsequent measurements must not be affected by any environmental conditions 

like voltage, temperature and radiation. It must be mentioned that in humans the biometric 

features cannot be acquired and they are ‘inherent’, similarly in ICs the sub-microscopic 

level features cannot be developed or grown on the IC fabric after the manufacturing 

process is complete. A common setting in which these physical primitives are used is to 

apply a stimulus and measure the response. The response of this primitive can be 



2 

 

interpreted as the result of evaluating a function. Since this function is similar to 

mathematical functions, therefore these functions are referred as Physical Unclonable 

Functions. Due to the cryptographic setting in which PUFs are used, stimulus and response 

are called Challenge Response Pair (CRP). 

Among other uses, PUFs enable device identification and authentication [9, 29], 

binding software to hardware platforms [12, 16, 21, and 41] and secure storage of 

cryptographic secrets [5, 4]. Furthermore, PUFs can be integrated into cryptographic 

algorithms [22], remote attestation protocols [43] or countering reverse engineering [60]. 

Today, PUF-based security products are already announced for the market, mainly 

targeting IP-protection, anti-counterfeiting and RFID applications [63, 64]. 

1.1. Motivation 

In the last couple of decades there has been an exponential increase in the digital 

information processing and communication systems. With this phenomenal increase, 

security challenges are becoming significant. An on-chip PUF (Physical Unclonable 

Function) can solve these challenges effectively and efficiently. A PUF is a chip-dependant 

unclonable challenge-response function that can be used to uniquely identify a specific 

integrated circuit. Furthermore, the PUF itself is tamper resistant against physically 

invasive attacks. Due to these attributes, a PUF offers security against intellectual property 

(IP) theft and counterfeiting, and solves issues such as chip authentication, reverse 

engineering, trusted computing, and secure key generation. The motivation for FPGA 

based PUF comes from the fact that FPGAs as opposed to ASICs offer a flexible and secure 
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solution to IP implementations in hardware. The reason for this flexibility is because 

FPGAs can be configured at any time in the field without any cost associated with it. 

Similarly FPGAs can offer secure IP implementation. In a practical application, the IP 

reads the PUF output and compares it with some built-in constant (chip-ID) and if both of 

them match then it enables the IP to run on this particular FPGA device. This way the IP 

vendor makes sure that the IP is licensed only for a selected device. The chip ID can be 

retrieved by the manufacturer during enrollment. Furthermore PUFs can be employed to 

verify if the system having an FPGA as one component which came from a genuine source. 

This can be done by extracting the chip-dependent PUF output in the field and comparing 

it with the one supplied by a genuine source. Another motivation of FPGA based PUFs is 

that FPGAs offer quick product customization as per market demands compared to ASIC, 

therefore it is important to investigate the security features of FPGA based PUF designs. 
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2. Previous Work 

 

 

 

Initially the term PUF was proposed by Pappu et al in [1]. Since 2002, silicon based 

PUFs have been extensively investigated. The initial proposal of a delay based arbiter PUF 

was made in [2]. Arbiter PUF was further explored by [3, 4, and 7] to investigate reliability 

and security features. Although the Arbiter-PUF offers strong PUF properties, it is prone 

to machine-learning attacks [49]. In [5], the robustness of optical PUF is proposed. PUF 

based secure processor is presented in [6]. In [9], the unclonability of PUF based RFID 

tags is investigated. In addition, a security protocol for RFID tags is also presented. In [11], 

the idea of a Ring-Oscillator (RO) based PUF is presented. In this PUF the challenge is the 

selection of a pair of ROs. The response is the one-bit comparison result of the frequencies 

of those ROs. A large-scale characterization of RO based PUF has been done in [23]. In 

[10] the first SRAM-PUF is presented, in which the start-up values of uninitialized 

Embedded RAMs are used as a PUF response. From 2008-2013, FPGAs produced by 

Xilinx and Altera, the start-up values of memory locations were controlled by the chip 

manufacturer, which rendered SRAM PUF useless for FPGAs. It must be mentioned that 

in new 28nm (Zynq) FPGAs, SRAM PUF can be employed by using the techniques of 

power gating [66]. In this technique the Block RAM of FPGA is disconnected from the 

power line of chip. In [16], Butterfly-PUF is presented, which requires symmetric paths 

between registers for causing metastability. FPGA tools do not offer complete access to 
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symmetric design at the wire level, therefore, routing schemes make it hard to achieve 

symmetric butterfly design on FPGAs. This fact has been verified by [27] for both Arbiter 

and Butterfly PUF. In [30] and [39], the concept of programmable delay lines is presented, 

in which the LUT delays are used to create a metastable condition which is further used to 

develop a PUF and TRNG respectively. In [34], Maiti et al. presented an RO PUF, in which 

multiplexers were introduced in the ring to select different paths inside the ring. In [37], 

the number of configurations of ring oscillator has been improved by introducing a latch 

in the path of a ring, making it impossible to compare a latch-path with no-latch-path. In 

addition to RO PUF, extensive research has been done to investigate the Latch PUF. In 

[38], an Error Correction Code (ECC) encoder and decoder have been developed for PUF 

based light weight applications. In [44] and [53] it has been revealed that robust responses 

from SR-Latch based PUF can be derived. In Latch PUF, the set reset latch is triggered 

into a metastable state. After some time the latch stables into a particular state. The 

response bit is based on the stable state of the SR-Latch. In [44], the response bits are 

derived from the location of the random latches. Bitline PUF has been proposed in [62]. It 

is an extension of SRAM PUF. In [67] the interface for secure PUF has been described. 
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2.1. Types of PUFs 

Fig. 1 shows the types and sub-types of different PUF designs. 

 

 

 

PUF

Silicon PUFNon-Silicon PUF

· Paper PUF

· Optical PUF

· CD-PUF

· Magnetic PUF

· Acoustical PUF

· RF-DNA..

Memory Based

· SRAM PUF

· Butterfly PUF

· Latch PUF

· Flip Flop PUF

· Bistable ring 

PUF

· MECCA PUF

· Bit-line PUF

Delay Based

· Ring Oscillator 

PUF

· Arbiter PUF

· Glitch PUF

· LUT based PUF

Other types:

· Current based PUF

· 
 

Figure 1: PUF Types and classifications 

 

 

 

a) SRAM-based PUF 

 It was initially proposed by Guajardo et al. [10], the SRAM-based PUF uses the 

initialization values of dedicated SRAM blocks. They consider a range of memory 
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locations as challenges and start-up values at these locations as responses. These values 

depend on the small asymmetry between two cross-coupled inverters Fig. 2, ensuring that 

the start-up values will always be the same with high probability. Guajardo et al. defined 

this kind of PUF as intrinsic, because the PUF generating circuit is directly present in the 

design to protect. The main drawback of SRAM-based PUF with FPGAs is that most FPGA 

manufacturers initialize the embedded memory blocks to zero before loading the bitstream 

to avoid shortcuts in the reconfigurable circuitry. It must be added that SRAM PUF has 

been adopted by Microsemi and Altera [72] in their devices. 

 

 

 

 

Figure 2: Logical circuit of an SRAM PUF (left). Electrical circuit of an SRAM cell (right) in 

CMOS [28]. 
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b) Flip-flop PUF 

 It was proposed by Maes et al. [18], the flip-flop PUF uses flip-flops start-up values as 

responses similarly to the SRAM-based PUF. Maes et al. imagined this PUF because it is 

possible to prevent flip-flops from being reset. Hence, this allows having an efficient PUF 

suitable for every FPGA. 

c) Butterfly PUF 

 It was proposed by Kumar et al. [16], the Butterfly PUF is another solution to overcome 

the SRAM PUF reset drawback. It consists in two cross-coupled latches initialized with 

two different values to have an unstable operating point. The latches are initialized on an 

external signal. When this one is released, the stable state depends on the slight differences 

between the connecting wires which are designed using symmetrical paths on the FPGA 

matrix. The Butterfly PUF needs manual routing to have symmetric paths and its 

performance highly depends on the targeted FPGA [51]. In Fig. 3, two cross coupled 

latches are shown. 
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Figure 3: Schematic circuit of a butterfly PUF cell 

 

 

 

d) MECCA PUF 

 Proposed in 2011 by Krishna et al [45]. In this PUF the write failure in SRAM memory 

cells is caused. It results into a data being written in the SRAM memory which is dependent 

on the chip. MECCA PUF has not been implemented on the real chip and the results come 

only from the simulation. 

e) LUT-based PUF 

 It was proposed by Anderson [31], the LUT-based PUF harnesses the FPGA’s LUT 

structure. It uses LUTs from the same basic logic block (slice or ALM), configured in shift-

register, and the carry-chain logic. This PUF relies on delays introduced by the LUTs and 

the multiplexers. It uses the presence or absence of glitches along the carry chain to 

determine the output bit. This PUF has the advantage to be completely described in HDL. 

f) Ring oscillator PUF 
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 It was introduced by Suh et al. [11], it mainly relies on a self-oscillating circuit and a 

counter. The ring oscillator produces an oscillating signal with a delay-dependent 

frequency. Besides, the counter measures the number of positive edges over a period of 

time. The obtained value is a good representation of the ring oscillator intrinsic delay. The 

main drawbacks of this kind of PUF are the limited number of possible challenges and the 

significant dynamic power consumption. The input is the selection of a pair of oscillators 

while the output is the one bit result after comparing their frequencies as shown in Fig. 4. 

 

 

 

 

Figure 4: Ring oscillator based PUF circuit 
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Classification into Strong and Weak PUF 

PUFs can be divided into strong PUFs and weak PUFs. The strong PUF includes the optical 

PUF, arbiter PUF, lightweight secure PUF, etc. The weak PUF mainly includes the 

memory-based PUF, RO PUF and glitch PUF. The security of strong PUFs is based on 

their high entropy content providing a huge number of unique challenge-response pairs 

(CRPs), which can be used in authentication protocols. On the other hand, weak PUFs 

exhibit only a small number of CRPs to be applied. Although they are not applicable to 

authentication protocols, the corresponding responses of weak PUFs can be used as a 

device unique key or seed for conventional encryption systems, while maintaining the 

advantages of physical unclonability. In order to enable the extraction of cryptographic 

keys from PUFs, the fuzzy extractor [17] is necessary. In [14], fuzzy extractor has been 

implemented on FPGA to generate cryptographic keys. 

Issues associated with Ring Oscillators 

· Systematic Variation 

 The frequency of RO PUF is dependent on the location of RO. In [8 and 34] it has been 

shown that the frequency of rings at the middle of a chip is higher than the rings located at 

the edges of the chip. This behavior is called ‘Systematic Variation’. Fig. 5 shows this 

behavior. The solution proposed by Maiti et al in [34], is that while comparing the 

frequencies of two ring oscillators, care must be taken because too far rings will have 

known results from frequency comparison. They proposed to compare only the 

neighboring ring oscillators. In this way the effect of Systematic variation will be minimal. 
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Figure 5: Systematic Variation Tuan et al [42] 

 

 

 

· Dependence on Voltage 

 The frequency of rings is highly dependent on the voltage supplied at the core of FPGA. 

These two values are directly related with each other. This problem can be solved by using 

the PUF only at the rated voltage. 

· Dependence on Temperature 

 The temperature and frequency of rings have inversely relationship with each other. Qu et 

al have proposed a method of ‘Temperature Aware Rings co-operation’ in [20]. With this 

method, 80% more rings can be used to generate a reliable bit. 

· Locking of Rings 

 Costea et al [33] showed that rings can lock with other, resulting in exhibition of same 

frequency when allowed to oscillate. This locking behavior occurs if two rings are 
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implemented very close to each other inside the FPGA fabric and if they are allowed to 

oscillate at the same time. This problem can be solved by running only one ring to oscillate 

at any particular time. Or two rings should not share the same resources like switch boxes 

inside CLB. 

· Implementation Size 

 The number of CRPs scales linearly with implementation size of regular RO-PUF. 

Therefore number of rings implemented are bounded by the logical resources available in 

FPGAs.  

New Directions and Improvements 

The following are the improvements reported for RO-PUF. 

a) Increasing the CR space: Maiti et al proposed that the challenge Response pairs of RO-

PUF can be increased by using the Identity mapping functions. 

b) Ganta et al proposed the concept of S-ArbRO. In S-ArbRO the CRP or RO PUF have 

been increased by integrating Arbiter PUF with RO PUF. 

c) In [24], circuit level techniques have been proposed to improve the reliability of RO 

PUF. This technique is based on using the transistors in forward body bias. 

d) In [32], it has been shown that the quality of RO PUF improves when ROs are enabled 

for longer duration. Additionally if ROs are placed and compared in a chain like mode 

then the quality metrics improves. It is also shown that surrounding logic badly affects 
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the frequency of ROs. We have also discovered this phenomenon in our investigation 

of RO PUF. 

e)  In [65], composite PUF has been proposed. The main advantage is the higher number 

of CRPs. 

g) Arbiter PUF 

 In Arbiter PUF two path are applied a low to high signal as shown in the Fig. 6. At the end 

of these paths there is an arbiter which decides the fastest path. A corresponding binary 

value is generated as an output by the arbiter. The challenge is the select line for 

multiplexers. Therefore if n multiplexers are employed then the total CRPs are 2n. Arbiter 

is usually a D-flip flop. The two inputs for this flip flop are connected to the clock and data 

signal. As shown in Fig. 7, the output of an arbiter is based on the speed of input signals. 

In [47], it has been shown that arbiter PUF has very low entropy when implemented on 

ASIC. Additionally it is prone to model building attacks [49]. 

 

 

 

 

Figure 6: Arbiter PUF: Arbiter detects faster signal 
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Figure 7: Arbiter output is based on the speed of two signals 

 

 

 

h) Time-bounded PUF 

 It was introduced by Majzoobi et al., the time-bounded PUF relies on three flip-flops 

placed around the circuit under test (CUT): The Launch FF, the Sample FF, and the Capture 

FF. Initially, the flip-flops are set to zero. Then, the Launch FF is set to one on the rising 

edge of the clock. This signal propagates through the CUT and is sampled by the Sample 

FF on the falling edge of the clock. The CUT adds a challenge-dependent delay which may 

be greater than the half of the clock period. Hence, the sampled value depends on it and is 

xor-ed with the true launched value to be captured by the Capture FF. 

i) Current based PUF 

 Proposed in 2011 by Majzoobi et al [40], it uses CMOS transistor leakage currents instead 

of delays and a sense amplifier instead of arbiter to implement a linear Strong PUF 

structure. 

2.2. Properties of PUF 

For the evaluation of PUF, certain properties have been devised. These properties are based 

on statistical measures. 
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Table 1: Different PUF parameters 

Maiti et al [58] 

Uniformity 

Bit-aliasing 

Uniqueness 

Reliability 

Hori et al [26] 

Randomness 

Steadiness 

Correctness 

Diffuseness 

Uniqueness 

Habib et al [73] 
Worse case Uniqueness 

Worse case Reliability 

Su et al [13] Probability of Misidentification 

Majoobi et al[15] 
Single-bit Probability 

Conditional Probability 

Yamamoto et al[44] Variety 

 

 

 

2.3. Target Applications 

PUF structure is incorporated in the silicon devices for targeting two major applications. 

First one is the identification of silicon devices and another one is secure key generation 

for cryptographic functions. In the case of identification, the silicon devices go through the 

process of enrolment. In this step, challenge response pairs (CRP) are generated and then 

stored in the database. This step is carried out at room temperature and nominal voltage. 

Once these devices reach the users in the field, the device PUF response is again generated. 

It is like a fingerprint used for human identification. If this PUF response is equivalent to 

the response stored in the database, the devices are identical, otherwise they are different. 

Since we do not know the operational conditions in the field, therefore a PUF is said to be 

reliable if it can generate the same response even if the operating conditions, namely 
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voltage and temperature, are changed. Similarly, the response of PUF should be unique, so 

that the responses of any two devices are substantially different. Additionally the number 

of CRPs should be huge for this application. Another major application of PUF is the 

generation of keys for cryptographic functions. The minimal requirements for a secure key 

generation and storage are: A) a source of randomness to ensure that generated keys are 

unique and unpredictable, and B) Keys are secure and reproducible. A PUF-based key 

generator tries to take care of both requirements at the same time by using a PUF to harvest 

static but device-unique randomness, and by processing it into a cryptographic key. It also 

avoids the need for a protected non-volatile memory to store the key. Since we know that 

key must be reproducible, therefore error correction schemes are employed to regenerate 

the key reliably in the field. 

2.4. Attacks 

PUF prevents the attacker from revealing the underlying device specific secrets associated 

with FPGAs. There are several types of attacks that can be carried out against PUF circuits. 

· Replay attack 

If the adversary has physical access to PUF device and records the challenge Response 

pairs, then the adversary can fake the PUF by using the known CRPs. It can be thwarted 

by employing a PUF that has unlimited number of Challenge Response Pairs and using a 

new CRP every time. However, FPGAs have limited resources and it is impossible to build 

a circuit that has unlimited number of CRPs. 
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· Active attack  

This attack can be invasive or non-Invasive. In case of Invasive attack an adversary tries 

to use Laser beams or ion beam to study the physical structure of PUF. It may permanently 

damage the PUF. Therefore the PUF secrets are not tempered. Till now, there has been no 

invasive attack reported in literature.  

In case of non-Invasive attack the adversary tries to disrupt the challenge response behavior 

of PUF. For this purposes, the temperature or voltage are varied. 

· Passive attack 

The adversary uses the side-channel analysis to determine the relationship between the 

PUF circuit and the voltage variation or power consumption.  

· Modeling attack 

In modeling attack the adversary develops a mathematical model for the underlying PUF. 

This can be done by knowing the challenge response pairs of a PUF. Successful modeling 

attacks have been reported for Arbiter PUF [49]. It can be prevented by employing a PUF 

circuit that has true random outputs for corresponding inputs. It implies that there is no 

relationship between two challenge response pairs. 

· Chosen Challenge Attack 

 In this attack an adversary can select the desired challenges and model the 

relationship between challenges and responses. To thwart this attack Controlled PUF 

[2, 25] has been introduced. In these designs hash functions are employed at the input 
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and output of PUF. Thus breaking the link between input and output of a PUF as 

shown in the Fig. 8.  
 

 

 

 

Figure 8: Controlled PUF [2] 

 

 

 

· Cloning attack 

 In this attack an adversary will make the exact copy or clone of a PUF. It is assumed that 

the clone and the original circuit will have same Challenge Response Pairs (CRPs). 

Recently, Helfmeier et al. [52] demonstrated the first successful physical cloning of an 

SRAM PUF based on the fact that SRAM cells emit near infrared light when it is read and 

the cell’s power-up value can be obtained from the emitted light. Hence, SRAM PUFs are 

not well suited as secure PUFs. Cloning other PUFs such as RO PUFs or SR-Latch PUFs 

have not been reported to this date. Therefore, both PUFs are still considered unclonable. 
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· Reverse Engineering attack 

It is like a passive attack. In [60] Gate-level characterization (GLC) technique has been 

used to measure and extract the gate-level physical properties, such as threshold voltage 

and effective channel length.  

2.5. Challenges 

· Portability 

When PUF design is implemented on different FPGA platforms, the results are not always 

similar. The robustness and efficiency metrics vary depending on the FPGA technology 

used. Currently there is no literature available to describe the effects of FPGA technology 

on the final PUF output. We observed this behavior when similar Ring Oscillator (RO) 

PUF was implemented on Spartan-3e (90 nm) devices and then on Spartan-6 (45 nm) 

devices. The uniqueness and reliability were found to be significantly different. However, 

care must be taken to ensure that this comparison is not affected by the external FPGA 

circuit like the noise present in the voltage regulator or the variations due to temperature. 

In addition, aging affects must also be considered during this evaluation. 

In this research we implemented same type of PUF on different FPGA families. We 

presented our results to demonstrate the extent of portability. 

· Aging effect 
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The PUF circuit behaves differently on the similar devices due to the aging effect. This 

phenomenon has been investigated in [36] for RO PUF. In Fig. 9, the affect of aging on 

RO frequency has been shown. This problem has been addressed in [59] for RO PUF. 

 

 

 

 

Figure 9: RO Frequency variation with aging under T+V stress [36] 

 

 

 

However, in depth analysis and investigation needs to be carried out for other PUF designs 

especially the memory based PUF. 
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Weak points of different PUF designs 

Apart from the Ageing and Portability, there are other pros and cons of PUFs. These are 

based on the individual type or subtype of PUF design. They are listed in the Table below. 

 

 

Table 2: PUF advantages and disadvantages 

PUF 

Type 

Subcategory 

PUF Type 

Disadvantages 

Memory 

Based 

SRAM 

Cannot be used in 

Altera and Xilinx 

FPGAs, because 

start-up values are 

controlled. 

D flip flop 

Cannot be used in 

Altera and Xilinx 

FPGAs, because 

start-up values are 

controlled. 

Butterfly 

Not recommended 

for FPGAs 
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Mecca 

Design has not 

been reported to be 

implemented in 

practice yet, which 

presents a further 

risk in developing 

a solution 

Delay 

Based 

Arbiter 

Prone to modeling 

attacks 

Ring 

oscillator 

Expensive, since 

the number of rings 

required is large. 

 S-ArbRO 

Systematic 

variation can 

influence PUF 

output, if 

physically farther 

rings are compared 
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2.6. General Error Correction 

The output of PUF in the field is affected by noise. For reliability purposes the noisy bits 

have to be corrected. For this purpose error correction schemes are employed. One of the 

well known schemes used for this purpose is called Fuzzy extraction. It was proposed by 

Dodis et al in [17]. More recently Kang et al proposed error correction schemes for PUF in 

[61, 69]. This scheme consists of two steps: Generation and Reproduction as shown in the 

Fig. 10. 

In the generation, PUF bits are generated at the room temperature and nominal voltage. 

These bits are then encoded using BCH encoder. The encoded bits are stored in a database 

as helper data. In the reproduction step, the noisy PUF bits are generated in the field. The 

same helper data is used to correct the noisy bits. It is done using BCH decoder. In this 

process, some information is leaked to the adversary in the form of helper data.  

A more efficient implementation scheme for PUF error correction has been proposed in 

[61]. It is shown in Fig. 11, 
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Figure 10: Implementation diagram for fuzzy extractor [69] 

 

 

 

Figure 11: Efficient Implementation diagram for fuzzy extractor [61] 

 

 

 

As shown in the above figure, hash function is removed. It results into considerable 

improvement in area and speed of error correction scheme. 
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3. Goals and Contributions 

 

 

 

My research goal was primarily focused on three areas of PUF space. These areas are 

shown below in Fig. 12.  

 

 

 

Robustness

Efficiency

Portability

Reliable

Unique

Stable

Uniform

Area

Power

Time Spartan-3e

Spartan-6

Artix-7

Cyclone-V  

Figure 12: Dimensions of my proposed research 
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As evident from the above figure the three main areas of PUF space are: Robustness, 

Efficiency and Portability. My research goal was to develop a PUF that is Robust, Efficient 

and Portable at the same time. Robustness means that it should be able to generate a 

response that is unique, uniform and highly reliable. Portable means that it should be easily 

ported to FPGAs of different families and types. Efficiency means that our design should 

consume less power, area and time. We have to integrate all three dimensions while 

developing a PUF based system. Ignoring any one of them will seriously affect the quality 

of PUF. To comprehensively cover the PUF space we planned to develop two new types 

of PUFs. One is memory based and the other is delay based PUF. In the memory based 

PUF we planned to investigate an SR-Latch design. Similarly in the delay based PUF the 

goal was to develop a new RO-PUF design. Both designs are briefly explained in section 

3.1 and 3.2 respectively. The dimensions of PUF space namely Robustness, Efficiency and 

Portability are covered in section 3.3 to 3.5. 

3.1. Development of new SR-Latch PUF 

The state of the art SR-Latch PUF [44, 53] is very expensive from area point of view. It 

requires 2 CLBs of an FPGA to generate a single bit of PUF response. It is prone to the 

affect of nearby logic. Thus the reliability of PUF bit is severely affected if the tool 

configures the same CLB with external logic. In our proposed design we solved this 

problem by utilizing all the logic resources of a latch CLBs. Thus latch is not affected by 

the nearby logic. 
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Our design approach is based on determining the length of metastable state. We trigger the 

latch into a metastable state. During the metastable state, oscillations are generated by the 

latch and the counter counts it. The duration of metastable state of a latch is based on the 

inherent manufacturing variation. Thus entropy harvested is based on the manufacturing 

variation. Strong latches are selected for bit generation, the remaining latches are discarded. 

A latch is regarded as a strong one, if it repeats for the same duration of oscillation during 

metastable state. Once strong latches are determined, then PUF response bits are generated 

by comparing the number of oscillations of strong latches. 

To achieve area efficiency we configured more latches per CLB. With our design we 

utilized all the LUTs available inside a CLB, thus achieving a 100% LUTs efficiency. We 

compared our design with the state of the art [53]. In depth details of SR-Latch PUF have 

been covered in chapter 5. 

3.2. Development of new RO-PUF 

We developed a novel FPGA friendly Ring Oscillator (RO) based Physical Unclonable 

Function (PUF). In this design the internal variations of FPGA Look-Up Tables (LUTs) 

are exploited to generate a PUF response. Statistical tests were performed to study the 

strength of this PUF. Moreover, stability is compared with the state of the art reported in 

literature to date. Our design has been tested on 31 Spartan-3e devices and the results are 

promising. Furthermore, we also analyzed the frequencies to extract the random variation 

offered by our design. 
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In our design each RO is made from a single AND gate and three inverters. It uses one 

LUT for an AND gate and three LUTs for inverters. We used one LUT-input to connect in 

a ring, while the remaining LUT-inputs are varied in order to generate programmable 

delays. We compare our design with the state of the art design [34]. In depth details of our 

RO-PUF design are covered in chapter 6. 

3.3. Robustness 

Robustness deals with the ability of the PUF to exhibit ‘reliable’, ‘unique’ and ‘uniform’ 

responses. In our experiments, we compared our results with the state of the art.  

We developed a reliable and efficient SR-latch PUF in this work and compared the results 

to the state of the art implementation. A novel method of mode calculation is used to 

determine strong latches. The derived design has been verified on 25 Xilinx Spartan-6 

FPGAs (XC6SLX16) and 10 Xilinx Zynq SoC (XC7Z010) devices. The uniqueness is 

close to the ideal value of 50%. We also did the entropy analysis. We calculated bit-

dependent bias entropy bound based on PUF responses of 25 Spartan-6 FPGAs. We 

proposed two error correcting schemes for our PUF design. It was shown that the bit flips 

at extreme voltage and temperature were in the range of our proposed error correction 

schemes. 

Additionally, we developed new matrices to analyze the quality of PUF. Software based 

Python scripts were developed to generate the PUF IDs using different schemes and then 
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analyze the result. This software tool can be used for any type of PUF. Furthermore, the 

tool has been made available for research community. It is freely available at [74]. 

3.4. Portability 

Portability of PUF design means that different FPGA devices can be configured with the 

same design. These devices may belong to different FPGA vendors. Similarly devices may 

belong to same vendor but different families. Lastly devices may belong to the same family 

of a particular vendor. These three levels of portability can be explained with the following 

figure, 

 

 

PUF Design

Vendor-1 Vendor-2

Family-A Family-B Family-C

Device-YDevice-XDevice-W Device-Z

 

Figure 12: Types of Portability 
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As shown above, the three types of portability are, 

1) Intra-Family portability 

In this case devices belong to the same family of a particular vendor. As shown above XY 

shows this type of portability.  

2) Inter-Family portability 

In this case devices from same vendor are used. In the above figure WX shows this type of 

portability. These devices belong to two different families of Xilinx. We chose Spartan-6 

and Zynq devices for this experiment. 

3) Inter-Vendor portability 

In this case devices belong to two different vendors. As shown above YZ shows this type 

of portability. We chose Zynq devices from Xilinx and Cyclone devices from Altera for 

this experiment. 

The goal of this study will be to determine the challenges faced to achieve the three types 

of portability. 

3.5. Efficiency 

Efficiency deals with the area consumption of the design, the total power consumed by it 

and finally the time to calculate the PUF response.  
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Actual Power is equal to the power consumed by the FPGA device during the generation 

of PUF response bits. Area is calculated by the tool and this information can be easily 

extracted from the mapping report generated by tools. It is determined in terms of slice 

counts in FPGAs. Characterization time for RO PUF is calculated from the following 

equation, 

The total characterization time = (# of components  ∙ enable_time)/ (board_frequency) 

Where enable_time is the duration in which each component is allowed to run freely.  

Changing the efficiency metrics severely affects the quality of PUF. For example, in order 

to save the PUF area, if two rings oscillators are implemented inside a single CLB 

(Configurable Logic Block). Then due to the proximity of a neighboring ring, the frequency 

of two rings might lock with each other. It means that two rings will oscillate with same 

frequency. Similarly, in order to generate the PUF response quicker, if the characterization 

time of a ring is reduced, then the frequency of rings is severely affected. It will result into 

a very unreliable PUF response bit. 

In case of SR-latch PUF when external logic is allowed to configure the latch CLB then 

the number of counts are badly affected by the external logic. It implies that care need to 

be taken while reducing the area of a SR-latch PUF.  

We developed SR-Latch PUF that is 2x smaller and is more reliable than the state of the 

art design. To conserve less power, we enable the PUF components only when the PUF-
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ID is required. There are no free running, ROs or SR-Latches. Our design generates the 

PUF-ID in a reasonable time of ~5sec. 

3.6. List of Contribution 

· Design of a novel memory based PUF for FPGAs. 

· SR-Latch PUF is 2x smaller in area than the state of art. 

· SR-Latch PUF is more reliable than the state of art. 

· SR-Latch uniqueness measure is comparable to the state of the art. 

· Validated on Spartan-6 and Zynq FPGAs. 

· Design of a novel delay based PUF for FPGAs. 

· Due to the programmable nature of our RO-PUF, we can generate 2x more bits than 

the traditional RO-PUF. It implies our PUF requires less chip area to generate the 

same number of PUF response bits. 

· The uniqueness and uniformity measures of our RO-PUF responses are comparable 

to the ideal case. 

· The design has been validated on Spartan-3 FPGAs. 

· Frequency analysis of RO components. 

· Determination of systematic and manufacturing variations. 

· Implementation and evaluation of PUF architectures on multiple FPGA and SoC 

platforms. 

· Characterization of SR-Latch PUF over 10 Zynq devices and 25 Spartan-6 devices. 

· Characterization of RO-PUF over 31 Spartan-3 devices. 
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· Comprehensive analysis of PUF response generation schemes. 

· Development of post processing schemes and their software implementations for 

analysis and evaluation of various PUF designs. 

· Evaluation of the PUF for ‘Key generation’ application. 

· Selection and integration of the most suitable error correcting schemes. 

· Development of a final product that generates the PUF response and does all 

calculations on-chip in real time. 
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4. Methodology 

 

 

 

Our methodology is based on the following steps, 

4.1. Collection of Raw Results 

The unprocessed data we collect from FPGA device is called a raw result. This result 

consists of frequencies of ring oscillators or counts of metastable latches. These 

components (latches and oscillators) constitute the PUF design. We implemented RO PUF 

on Spartan-3 devices. Similarly, SR-latch based PUFs have been implemented on Spartan-

6 and Zynq [71] devices. We collected data from these devices at room temperature and at 

nominal voltage. For reliability purposes the data is also collected at varied temperature 

and voltage. The nominal voltage of Spartan-6 device is 1.2V and for Zynq devices, it is 

equal to 1V. We varied the voltage by ±5%. Similarly, the temperature was varied from -

5ºC to 85ºC. We tested our devices at -5ºC, 0ºC, 20ºC, 45ºC, 65ºC and 85ºC. It was made 

sure that devices are heated or cooled down for at least one hour in the heating chamber 

before the data is collected from it. Furthermore, when results were analyzed, the corner 

cases were also tested to see the result of worse case operating conditions on the PUF 

quality. It must be noted that the Spartan-6 boards were tested, while they were new. This 

was done to prevent the negative effect of ageing on the PUF results. 
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In the next stage we plan to implement PUF designs on Artix-7 and collect raw PUF data. 

This data collection will be done at rated operational condition of temperature and voltage 

allowed by the manufacturer of these devices. 

4.2. Converting Raw Results into PUF IDs 

In this process, software scripts are employed to convert the raw data collected from the 

devices into a binary PUF response. The frequency of two components (latches or 

oscillators) is compared with each other and a response bit is generated. Different schemes 

can be used to select these two components. We describe these schemes below. It must be 

mentioned that python script is used for PUF response generation in each scheme. 

4.3. Mathematical description of PUF properties 

We briefly explained the PUF properties in section 2.2 . Here they are explained with 

mathematical equations and illustrations. 

· Inter-chip Hamming Distance 

It is equivalent to the hamming distance between the responses of any two FPGA devices 

at the room temperature and nominal voltage. It shows the difference between the 

responses of any two devices. It is defined as , 

Inter − chip Hamming distance =  
HD(Ri,Rj)

L
 × 100%           (1) 

Where L is the length of response bits. Ri and Rj are the responses of two FPGA devices. 

The following figure explains it, 
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Figure 13: Normalized Inter-chip Hamming Distance 

 

 

In the above figure, the x-axis shows the normalized Hamming Distance. While the y-

axis (denoted frequency) shows the total number of times a given normalized inter-chip 

Hamming distance was obtained. In the above figure 25 devices have been used, the total 

number of combinations (i.e., the total number of board pairs {i,j}) is (25
2
)= 300. In ideal 

case, the normalized inter-chip HD should be 50% and will follow the binomial 

distribution. It means that 50% PUF output bits are different between PUF A and PUF B? 

If the PUF produces uniformly distributed independent random bits, the inter-chip 

variation should be 50% on average. Below in Fig. 14 it is shown how an actual PUF data 

compares with ideal case.  
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Figure 14: Normalized Inter chip HD (Average = 49%)  

 

 

· Intra-chip Hamming Distance 

The Normalized intra-chip Hamming distance is defined as (HD (Ri, R'i,t)/L) ∙100%. Where 

Ri is the response of a device at room temperature and R'i,t is the response of the same 

device when either temperature or voltage is changed. Ideally the response should not 

change and the device output should be similar to what we get at a room temperature. 

However, in actual case, both the voltage and temperature affects the response. 



39 

 

 

Figure 15: Normalized Intra-chip Hamming Distance 

 

 

The histogram of normalized intra-chip Hamming Distance at 1.26V is shown above in 

Fig. 19. In this figure the x-axis shows the Hamming Distance in terms of percentage. 

While the y-axis (denoted frequency) shows the total number of times a given normalized 

intra-chip Hamming distance was obtained. In the above figure PUF response is generated 

100 times for five boards at 25°C. Therefore, the total number of combinations is 500. In 

ideal case all 500 readings at 1.26V should have 0% HD. However, from the figure it is 

evident that a 2% change occurs in the HD at 1.26V. It must be mentioned that the nominal 

voltage for the devices used in this experiment was 1.2V.  

In literature, intra-chip HD is sometimes referred to reliability. 

· Uniqueness 

Uniqueness represents the ability of a PUF to uniquely distinguish a particular chip among 

a set of devices of the same type. Hamming distance (HD) between a pair of PUF identifiers 
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is used to evaluate uniqueness. If two devices, i and j ( i ≠ j ) , have n-bit responses, Ri and 

Rj, respectively, for the same challenge, the average inter-chip HD among N devices is 

defined as, 

Uniqueness =
2

N(N−1)
∑ ∑

HD(Ri,Rj)

L

N
j=i+1

N−1
i=1 × 100%       (2) 

It is an estimate of the inter-chip variation in terms of the PUF responses and not the actual 

probability of the inter-chip process variation.  

· Worse case Uniqueness 

It is equal to the minimum HD between any two chips. 

Worse case Uniqueness = Mini=1,j=i+1
i=N−1,j=N

(
Min(HD(Ri,Rj),L−HD(Ri,Rj))

L
∗ 100%)        (3) 

In ideal case, it should be 50%. 

· Uniformity 

Uniformity of a PUF estimates how uniform the proportion of ‘0’s and ‘1’s are in the PUF 

response. 

Uniformity (i) =
1

L
 ∑ ri,l  × 100%
L
l=1                      (4) 

Where ri,l is the lth binary bit in the response of a chip i. 

 

· Reliability 

Reliability measures how accurately the PUF responses are reproduced under different 

operating conditions. These conditions include temperature, voltage or radiation. Intra-chip 

HD among several samples of PUF response bits are used to evaluate it. To estimate the 
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intra-chip HD, L-bit reference response (Ri) from the chip i at normal operating condition 

(at room temperature using the normal supply voltage) is extracted. The same L-bit 

response is extracted at a different operating condition 

(different ambient temperature or different supply voltage) with a value Ri. T samples of 

Ri are collected. For the chip i, the average intra-chip HD is estimated as follows: 

 

 HD Intra (i)=
1

T
∑

HD(Ri,R′i,t)

L
T
t=1  × 100%          (5) 

 

where Ri,t is the tth sample of a device i . HDINTRA indicates the average number of noisy 

PUF response bits. In other words, the reliability of a PUF can be defined as 

Reliability = 100% −  HD Intra (i)      (6) 

Fig. 8 shows how the reliability of a PUF is evaluated using the time dimension of PUF 

measurement.  

 

· Worse Case Reliability 

It is based on the maximum number of noisy bits under any set of conditions. Normally the 

corner cases of temperature and voltage are evaluated to see the number of noisy bits at the 

extreme level. We believe that for error correction purposes we need to consider the worse 

case reliability. Worse case reliability for chip i can be calculate as, 
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Worse case Reliability(i) = Mini=1
N (1 −

𝐶
Max
𝑐=1

 HD(Ri, Ri,c)

L
 ) × 100%    (7) 

Where C shows all possible conditions. 

· Bit-aliasing 

If bit-aliasing happens, different devices may produce nearly identical PUF responses, 

which is an undesirable effect. It gives us the information about the presence of systematic 

and spatial effect across devices. We estimate bit-aliasing of the lth bit in the PUF identifier 

as the percentage Hamming weight (HW) of the lth bit of the identifier across N devices: 

Bit aliasing (l) =  
1

N
∑ ri,l × 100%
N
i=1      (8) 

Where ri,l is the response of chip i at lth location. 

 

 

 

 

Figure 16: Parameters mapped on the PUF measurement dimension [58] 
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The properties of PUF are distributed along the device, space and time dimensions as 

shown above in the figure.  

Notations used in the properties are: 

 

Table 2: Notations used in equations 

N = Number of FPGA devices 

n = index of an ID in a chip ( 1 ≤ n ≤ N ) 

M = Number of ROs or Latches 

L = Size of ID in bits 

l = index of a response bit ( 1 ≤ l ≤ L ) 

Ri = Response of chip i, at normal operating 

condition Rj = Response of chip j, at normal operating 

condition 
HD= Hamming distance 

T = total number of samples measured per ID 

t = index of a sample (1 ≤ t ≤ T) 

Ri,C = Response of chip i, at condition C. 

 

 

 

4.4. Entropy 

Actual entropy of a PUF is a function of complex physical processes. Therefore, it is close 

to impossible to calculate the actual entropy of a PUF response. Normally, only the 

estimated upper bounds on the underlying entropy can be calculated. These bounds can be 

calculated using at least the following two methods.  



44 

 

1)  Based on the analysis of single bits 

2)  Based on the analysis of pairs of bits 

Both these methods have been explained in [48]. The first method assumes that an 

adversary knows a bias for each position of a PUF response. In this method every bit 

position in a PUF response vector will have its own bias. An adversary knowing these 

individual bit-dependent biases can make a more accurate prediction by guessing 

individual bits in favor of these biases. This upper bound, called the bit-dependent bias 

entropy bound, can be calculated by using 

𝐻(𝑌𝑛) = ∑ ℎ(𝑝𝑖)
𝑛
𝑖=1                                                                   (9) 

In the above equation, h(pi) is the binary entropy function, it is calculated for n bit 

positions. The second method is based on the analysis of a pair of PUF response bits. This 

method assumes that an adversary knows pairwise joint distributions for pairs of 

consecutive bits i and i+1.This bound is tighter than the bound given by (9). It is called 

pairwise joint distribution entropy bound. It can be calculated using equations (10) and 

(11). 

H(Yn) = ∑ h(pi)
n
i=1 − ∑ I(Yi, Yi+1) 

n−1
i=1                                                   (10) 

 

Where,  

I((Y1, Y2) = ∑ ∑ p(y1, y2). log2
p(y1,y2)

p(y1)p(y2)  y2∈𝕪2y1∈𝕪1                                      (11) 



45 

 

In equation (10), h(pi) is the binary entropy function, while I(Yi,Yi+1) is the mutual 

information between two random variables Yi and Yi+1. The mutual information 

between two random variables is a measure for the amount of information which is 

shared by both variables. We estimate the pairwise joint distributions of all possible pairs 

of the considered response bits, by counting the occurrences of each of the four possible 

pairs (‘00’, ‘01’, ‘10’, and ‘11’) in the n bit response of all devices. 
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5. Efficient SR-PUF design 

 

 

 

In this chapter we present a reliable and efficient SR-Latch based PUF design, with two 

times improvement in area over the state of the art, thus making it very attractive for low-

area designs. This PUF is able to reliably generate a 128-bit cryptographic key. The PUF 

response is generated by quantifying the number of oscillations during the metastability 

state for preselected latches. The derived design has been verified on 25 Xilinx Spartan-6 

FPGAs (XC6SLX16) and 10 Xilinx Zynq SoC (XC7Z010) devices. The design exhibited 

~49% uniqueness figures when tested on both types of FPGAs. The reliability figures were 

> 94% for temperature variation (0-85°C) and ± 5% of core voltage variation. We also 

propose two error correcting schemes that assure that a key generated in the field is similar 

to the one generated under nominal conditions. This chapter is based on the work presented 

at [70, 75]. 
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5.1. Introduction 

In the last couple of decades there has been an exponential increase in the digital 

information processing and communication systems. With this phenomenal increase, 

security challenges are becoming significant. Recent research has led to an increased 

interest in security measures, especially in solutions that are physically unique and 

unclonable. In this regard, different structures of Physical Unclonable Functions (PUFs) 

have been developed and investigated to efficiently meet the requirements of these 

solutions. PUFs are physical primitives which produce unclonable and device-specific 

measurements of silicon Integrated Circuits (ICs). These measurements are then processed 

to generate either responses in challenge-response schemes or secure keys for 

cryptographic functions. Manufacturing process variations give physical uniqueness, but 

many physical unclonable functions (PUFs) are noisy and exhibit low circuit efficiency. 

Therefore, while designing new PUF structures, we need to focus on the efficiency besides 

the unclonability, uniqueness, and reliability, because expensive designs cannot fulfill the 

requirements of low-area applications.  

PUF structure is incorporated in the silicon devices for targeting two major applications. 

First one is the identification of silicon devices and another one is secure key generation 

for cryptographic functions. In the case of identification, the silicon devices go through the 
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process of enrollment. In this step, challenge response pairs (CRP) are generated and then 

stored in the database. This step is carried out at room temperature and nominal voltage. 

Once these devices reach the users in the field, the device PUF response is again generated. 

It is like a fingerprint used for human identification. If this PUF response is equivalent to 

the response stored in the database, the devices are identical, otherwise they are different. 

Since we do not know the operational conditions in the field, therefore a PUF is said to be 

reliable if it can generate the same response even if the operating conditions, namely 

voltage and temperature, are changed. Similarly, the response of PUF should be unique, so 

that the responses of any two devices are substantially different. Another major application 

of PUF is the generation of keys for cryptographic functions. The minimal requirements 

for a secure key generation and storage are: A) a source of randomness to ensure that 

generated keys are unique and unpredictable, and B) Keys are secure and shielded from 

unauthorized access. A PUF-based key generator tries to take care of both requirements at 

the same time by using a PUF to harvest static but device-unique randomness, and by 

processing it into a cryptographic key. It also avoids the need for a protected non-volatile 

memory to store the key. Since we know that key must be reproducible, therefore error 

correction schemes are employed to regenerate the key reliably in the field. In this paper 

we are targeting the secure key generation application using SR-latch PUF. 

Part of this paper has been published in [70], we extended that work by implementing the 

design on Zynq devices. We tested Zynq devices at ± 5% of core voltage and (0-85°C) 

temperature. In Section 5.2, we explain the motivation for our PUF design. In Section 5.3 

we describe the related work for a better understanding of our study on PUF. Section 5.4 
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explains the design methodology. In Section 5.5, we explain the bit-string generation. 

Results and analysis are covered in Section 5.6. Implementation on Zynq based SoC 

devices is described in Section 5.7. Conclusions are given in Section 5.8. 

5.2. Motivation 

State of the art SR-latch PUF designs are very expensive in terms of chip area. These 

designs are not suitable for area constrained applications. We need to develop PUF designs 

that have small area footprint. Additionally these designs have to be reliable at different 

environmental conditions, i.e., the response of PUF at different voltage and temperature 

should match closely the response generated at the nominal voltage and room temperature. 

Furthermore, the PUF responses should be unique so that one PUF-ID can be easily 

differentiated from another ID. Apart from the reliability and uniqueness measure, the 

design should not be affected by the neighboring logic. These motivations lead us to 

propose a PUF design that is very efficient from the area consumption point of view and 

highly reliable at different voltages and temperatures. The effect of nearby logic inside the 

same CLB is negligible. The uniqueness measure is close to the ideal case. 

5.3. Related Work 

Since 2002, silicon based PUFs have been extensively investigated. There are two 

categories of silicon based PUF circuits: Delay based PUFs and Memory based PUFs. In 

delay based PUF, the propagation delay of a signal is used to generate a PUF response. 

Delay based PUFs include Arbiter PUF, Ring-Oscillator (RO) PUF and S-ArbRO PUF. In 

[30] and [39], the concept of programmable delay lines is presented, in which the LUT 

delays are used to create a metastable condition, which is further used to develop a PUF 
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and TRNG, respectively. Similarly, in [56], a PUF is developed using the programmable 

delay lines of LUT. 

Another category of silicon PUF is based on memory. It includes SRAM PUF, Butterfly 

PUF, and Latch PUF. In [10], the first SRAM-PUF is presented, in which the start-up 

values of uninitialized Embedded RAMs are used as a PUF response. However, in the 

current state of the art Xilinx and Altera FPGAs, the start-up values of memory locations 

are controlled by the chip manufacturer, which renders SRAM PUF useless for FPGAs. In 

[16], Butterfly-PUF is presented. Latch PUF (LPUF) was introduced in [13]. In [35], the 

concept of transient effect ring oscillator (TERO) is presented. A true random number 

generator (TRNG) is developed by counting the oscillations of elements during 

metastability. The least significant bit of that count is selected as a random bit. The same 

approach is further developed, where an element with PUF capability is presented. In [54], 

PUF design is developed which is based on (TERO) cells. The randomness is harvested by 

measuring the metastability counts. Final bits are generated by averaging the metastability 

counts and then reading the most significant two (or four) bits of an eight bit counter for 

each latch. Furthermore, each latch count is measured 218 times. 

In [53], SR-latch based PUF is developed; It has been implemented on Spartan-3 and 

Spartan-6 devices. In Spartan-6 based design, 128 SR-latches have been implemented. 

Each latch is configured by using two neighboring CLBs in each column. Inside each CLB 

a Look up Table (LUT) and a Flip Flop (FF) are used. PUF response is determined by the 

final state of the latch. All the latches are excited by a 2.5MHz clock signal. For each latch 

two bits are contributed towards the PUF response. If the final state of the latch is logic ‘0’ 
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in 1000 repetitions of the experiment, the corresponding response bits are ‘00’. If the final 

state is logic ‘1’ in 1000 repetitions of the experiment, the corresponding response bits are 

‘11’. If the final state changes at least once during 1000 repetitions of the experiment, this 

state is declared random, and encoded as '10'. A detection circuit determines all three cases 

and generates the response bits in each case. In our proposed design, we tried to improve 

the circuit efficiency of this design. In addition, our source of entropy is based on the exact 

number of oscillations at the output of an SR-latch during the metastable state, rather than 

a final state of each latch, as in [53]. Because of the encoding method, in [53] the goal is 

to increase the number of random latches, while in our work, we decrease the number of 

random latches. We include only the most stable latches, i.e., latches generating 

consistently the same number of oscillations in the metastable state, in the bit generation 

step during enrollment. On top of that, the method of [53] does not differentiate between 

the behavior of latches that generate no oscillations at the output from the behavior of 

latches that generate an even number of oscillations. This distinction is clearly made in our 

scheme. Furthermore, the method of [53] is prone to the influence of neighboring logic. 

We diminished this influence by prohibiting the tool from assigning any resources of the 

latch CLB to any external logic. 

5.4. Design Methodology  

In our design, an SR-latch is made from two LUTs configured as a NAND gate each. 

Additionally, two flip-flops are used in this latch to reduce the clock skew. Initially, a latch 

is forced into a metastable state by applying a rising-edge at a ‘ctrl’ signal, as shown in Fig. 

17. During this state, the SR-latch oscillates. An eight-bit counter is used to count these 
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oscillations. Once the metastable state is over, the latch stops oscillating, and the counter 

value is stored into the block RAM (BRAM). Before applying the ‘ctrl’ signal, the two flip-

flops (FF) are reset. It is done to ensure that latches always start oscillations with the same 

initial state.  

 

 

ctrl

FF LUT

Counter

8

clock

reset

 

Figure 17: A single SR-Latch design 

 

 

Once the process of the characterization is over for all the latches, the data from the 

BRAM is read-out to the PC via Enhanced Parallel Port (EPP) protocol as shown in Fig. 2. 

EPP protocol has been used for data retrieval because it has a very small area imprint. On 

the PC side, Digilent Port Communications (DPC) utilities are used, which are provided 

with Digilent Adept software [30]. In our design, a 9-bit multiplexer address line selects a 



53 

 

particular latch. This latch is then excited by applying a low to high transition at the ‘ctrl’ 

signal, as shown in Fig. 18. The eight-bit counter, available at the output of the multiplexer, 

counts the number of oscillations during the metastable state. These values are then stored 

in the neighboring BRAM. The bit generation and analysis are done during post-

processing. It must be mentioned that only one latch is characterized at any given time. 

This is done to prevent any correlation between the neighboring latches and also to save 

the FPGA logic resources. Therefore, only one counter is used to measure the latch-counts 

during the metastable state. In addition, all the control signals are provided by the FSM. 

512 latches are implemented, which requires 128 CLBs. The prototype design requires 

BRAM and EPP, because we want to analyze all the latch counts. However, in the final 

product, EPP can be replaced by a different interface and the size of the required BRAM 

will be reduced. 
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Figure 18: SR-latch PUF design 

 

 

A. FPGA Layout 

The placement of latches is constrained by the slice location attribute. All the latches 

are placed in a rectangular matrix of CLBs. The dimensions of this matrix are 16x8 as 

shown in Fig. 19.  
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Figure 19: Layout on FPGA 

 

 

We implemented our design on Spartan-6 (XC6SLX16) device. In Spartan-6 devices, 

each CLB has two slices. Inside each slice there are four 6-input LUTs. Four latches are 

implemented inside a single CLB in our design. These four latches (L1, L2, L3 and L4) are 

shown in Fig. 20, each with a different color scheme. This design is developed to eliminate 

the inter-CLB routing. We believe that due to the capacitance of long wires, the variation 

due to routing delays become significant, as explained in [27].  
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Figure 20: Our proposed design: Implementation of 4 SR-latches per CLB 

 

 

As evident from the above figure, each latch consists of two LUTs and two FF. All the 

LUTs inside the CLB are utilized in the implementation of latches, thus, achieving a 

hardware efficiency of 100% in terms of LUTs. By comparison, the design proposed in 

[53], shown in Fig. 21, has 12.5% LUT utilization because, only two LUTs are utilized 

from the two adjacent CLBs. In addition, the circuit efficiency for FF is 50%, while it is 

only 6.25% in [53].  

We also implemented the design proposed in [53], shown in Fig. 21. We added a counter 

to count the latch oscillations. We found that on the average 46% latches did not oscillate, 

i.e., the latch count remained zero.  
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Figure 21: Design proposed in [53] for Spartan-6 FPGAs 

 

 

We also implemented another design proposed in [53], shown in Fig. 22. In this case 

only Slice-X has been used. For consistency with [53], we implemented 128 latches. We 

define a latch to be ‘random’ if across the hundred samples the standard deviation is not 

zero. As evident from Fig. 23, the average number of latches outputting random number is 

64 out of 128. In addition, the tool has used the remaining LUTs for extra logic. 
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Figure 22: Single latch implemented per slice. 128 such latches were configured 

 

 

 

 

Figure 23: Histogram for the number of random latches when a single latch per slice is 

implemented. This result corresponds to the design from Figure 22 
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Figure 24: Proposed design: Percentage of stable latches per board at 1.2V and 25ºC. 

This result corresponds to the design from Figure 20 

 

 

 

Figure 25: Stability of two boards 
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Figure 26: Count of three latches shown 

 

 

 

Figure 27: The number of bit flips vs. the bit length of PUF 
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5.5. Bit Generation 

Our design consists of 512 SR-latches. Each latch is sampled 100 times and the 

corresponding latch count values are stored in the BRAM. Once all the latches are 

characterized, we select highly stable latches and ignore the remaining ones. In our method, 

a latch is defined to be stable if the latch count value remains the same for all 100 samples.  

During enrollment, we store for each latch, a latch number, a corresponding bit showing 

whether this latch is stable, and the latch count value (i.e., we store: {Latch #, stable, 

count}). For bit generation during enrollment, only the stable latch count values are 

considered. In this method the count values for L+1 latches are used. These values are used 

to generate the L bit PUF response. We number stable latches in a snake-like fashion: L1, 

L2, L3, ... LL+1, and then we do the comparisons of neighboring latches [L1, L2], [L2, L3], 

[L3, L4], ...,[LL,LL+1]. A binary response bit ‘1’ is generated if the count value of latch Li is 

greater than the count value of latch Li+1;otherwise it is ‘0’. In the field, the count value of 

stable latches is recalculated by sampling each latch 100 times. We get 100 count values 

between 0 and 255, e.g.,{127, 127, 128, 127, 127, 127... 128, 127}. For further calculations, 

we use the number that appears the largest number of times, e.g., 127 in the example above. 

This number can be determined in hardware by storing the number of repetitions of each 

possible count value (between 0 and 255) in the memory location equal to the count value. 

A 256-byte memory is sufficient for these calculations. 

This method of bit generation is flexible and can be generalized to obtain more PUF 

response bits per device. However, any attempt at generalization may affect the reliability 

of response bits. This dependence is explained in Figs 24 and 27. 
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In Fig. 24, the percentage of stable latches per device is shown. On the average, 87% of 

latches (0.87 ∙ 512 = 445) in all devices repeat the latch count at least 50 times out of 100 

samples during enrollment (i.e., have stability mode “> 50”). This percentage drops to 

51.4% when the latch counts are identical 100 times out of 100 samples (i.e., have stability 

mode “100”). As evident from Fig. 8, the FPGA boards B7, B14 and B22 have the smallest 

number of stable latches. In such cases, we consider as stable even latches that repeat the 

count value at least 90 times. Now the question arises, how many latches we should include 

in the bit generation process. It depends on the reliability of PUF response. In this work, 

we tested our boards at +5% of nominal voltage and -5 % of nominal voltage. It needs to 

be mentioned that on our Nexys-3 FPGA boards, the nominal voltage is equal to 1.2V, and 

it is supplied by LTC3633 regulator. We change this voltage by changing the resistor at the 

output of a voltage regulator, as recommended in [31]. 

In Fig. 25, the stability of two devices has been shown. These two devices are the least 

stable ones in our set. The horizontal axis shows the repetition of latches. The vertical axis 

shows the percentage of latches. For instance device B7 has 18% latches that repeat the 

latch count value 100 times. Therefore to select 256 strong latches from 512 available, we 

need all latches that repeat the count value at least 94 times out of 100. Similarly, in B14 

we need to include all those latches that repeat at least 97 times out of 100. In Fig. 26, the 

count values of three latches are shown. Each latch is sampled 100 times. The horizontal 

axis shows the 100 runs and the vertical axis shows the respective count value for each run. 

From the figure it is clear that latch#1 and latch#2 are the stable ones, with count values 
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equal to 10 and 8 respectively. Latch#3 fluctuates between 10 , 11 and 12. Therefore we 

regard it as an unstable latch. 

In Fig. 27, the horizontal axis shows the length of PUF response, while vertical axis 

shows the number of bits that change at the respective voltages. We generated 320 bits 

from 321 latches by treating as stable latches for which the stability mode was in the range 

from 75 to 100. The same approach was used in the case of 384 bit responses. This graph 

shows the results for three specific boards randomly selected from our set of 25 FPGA 

boards. From this figure, we deduce that the number of bit flips increases with the increase 

in the bit length of PUF response. This diagram also shows that the worst case is 23 bit 

flips for Board-B6 for the PUF response size of 384 bits. Even in that case the reliability is 

94%, which is better than for the design from [53] in the same voltage range. However, we 

recommend the 256-bit version, which consists of highly stable latches (with the stability 

mode “100”), and results in reliable bits.  

To prove that a latch is not biased in our design, we analyzed the count value of all the 

latches and found that 50.12% of them are odd, while the remaining ones are even. It proves 

that the symmetry of latch is not affecting the count value. We need to mention here that 

our final bit response from each pair of latches is dependent on the latch count values and 

not on the final state of any particular latch. Therefore, the bit response from a pair of 

latches will always be the same as long as the differences of the two count values do not 

change the sign. 

5.6. Results 

We compare our results with [53]. This comparison is summarized in Tables 3 and 4. 
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Table 3: Details of dataset for Spartan-6 

 This work  [53] 

No. of Chips 

(N) 

25         20 

PUF per Chip 1         2 

Samples (T) 100       100 

ID size (L) 

bits 

256       256 

SR-Latches 

(M) 

512       128 

FPGA family                                         

(Device used) 

Spartan-6 

(XC6SLX16-

3CSG324) 

Spartan-6 

(XC6SLX16-

2CSG324) 

 

 

The uniqueness metric is used in [58]. We calculated uniqueness using the following 

equation: 

Uniqueness =
2

N(N − 1)
∑ ∑

HD(Ri, Rj)

L

N

j=i+1

N−1

i=1

× 100%               (12) 

Ri = Response of chip i 

Rj = Response of chip j 

HD= Hamming distance 

T = total number of samples measured 

per ID 
t = index of a sample (1 ≤ t ≤ T) 

 

 

Similarly, reliability is calculated according to the following equations:  
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HDINTRAi=
1

T
∑
HD(Ri, R′i,t)

L

T

t=1

 × 100%                           (13) 

Reliabilityi = 100% − HDINTRAi                                       (14) 

Average Reliability =
1

P
∑Reliabilityi                            (15)

P

j=1

 

Reliability shown in Table 4 is the average reliability of seven random boards from a 

set of 25 boards. Average Reliability of P chips can be calculated using equation (15). 

 

Table 4: Comparison of results with Yamamoto et al [53]. 

 This work [53] Ideal 

Uniqueness 49.24% 49% 50% 

Reliability @ 1.20V 99.50% 99.14% 100% 

Reliability @ 1.14V 97.54% 94.70% 100% 

Reliability @ 1.26V 98.67% 95.20% 100% 

 

 

To carry out a more comprehensive comparison of reliability. The encoding method of 

[53] is used to generate 1024 bits using 512 latches in our design. We assume that the 

contribution of latches whose final value is ‘0’ for 100 repetitions of the experiment are 

encoded as “00”. Similarly latches whose final value is ‘1’ and this value repeats 100 times 

are encoded “11”. Finally, all the latches which have a variable final state in 100 repetitions 
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of the experiment are regarded as random latches and are encoded as “10”. Then the 

average reliability at -5% voltage is 86.74%, similarly the average reliability at +5% 

voltage is 88.9%. We used the same seven boards as those used to obtain results reported 

in Table 4. From this experiment, it is clear that [53] generates four times more bits , 

however the voltage reliability drops by 8% at -5% voltage and by 7% at +5% voltage.  

Uniqueness 

In Fig. 28, the normalized inter-chip Hamming distance, (HD(Ri, Rj)/L) ∙100% is shown. 

The mean is 49.24%, while the standard deviation is 3.36%. This data is generated from 

25 FPGA boards at 25°C and 1.2V supplied as the core voltage. The total number of 

combinations (i.e., the total number of board pairs {i, j}) is (25
2
)= 300. The y-axis (denoted 

frequency) shows the total number of times a given normalized inter-chip Hamming 

distance was obtained. 

Reliability 

In Table 5, the information on bit flips for seven boards is shown. This set includes B7 

and B14 as shown in Fig. 24. It is clear from this table that the worst case is 13 bit flips. 

The Normalized intra-chip Hamming distance is defined as (HD(Ri, R'i,t)/L) ∙100%. 
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Figure 28: Normalized inter-chip Hamming distance for Spartan-6 (Mean=49.24%) 

 

 

Table 5: Voltage vs. Intra-chip Hamming Distance for Spartan-6 devices. 

Board 

No. 

No. of 

stable 

latches 

at 1.2V 

Bit 

flips 

at 

1.26V 

Bit 

flips 

at 

1.14V 

Maximum 

HD(Ri, R'i,t) 

Worst 

case HD 

B2 260 1 4 4 

13 

B4 280 1 13 13 

B6 264 1 6 6 

B7 261 8 2 8 

B14 268 6 11 11 

B16 275 5 1 5 

B23 262 3 9 9 
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Figure 29: Normalized intra-chip Hamming Distance at 1.26V for Spartan-6 devices. 

(Mean = 1.33%) 

 

 

 

Figure 30: Normalized intra-chip Hamming Distance at 1.14V for Spartan-6 devices 

(Mean = 2.46%) 
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Figs 29 and 30 show the histogram of normalized intra-chip Hamming Distance at 

1.26V and 1.14V, respectively. In both cases, a PUF response is generated 100 times for 

seven boards at 25°C. Therefore, the total number of combinations is 700. From figures 29 

and 30 it is evident that more bits flip occur at 1.14V than at 1.26V. 

Temperature Resistance 

We tested the boards at 0°C and 85°C. Table 6 shows the results for 10 boards. From 

Table 6, it is evident that for reliability the effect of 85°C is always worse than the effect 

of 0°C. Overall the worst case Hamming distance is 16. We also tested the five FPGA 

boards at the four corner cases of voltage and temperatures, as shown in Fig. 31. In each 

case 256 bits were generated. 

 

 

Table 6: Temperature vs. Hamming Distance for Spartan-6 devices. 

Board 

No. 

Bit 

length 

Bit 

flips 

at 

0°C 

Bit 

flips 

at 

85°C 

Maximum 

HD(Ri, 

R'i,t) 

Worst 

case 

HD 

B1 256 4 11 11 

16 

B2 256 7 12 12 

B3 256 2 12 12 

B4 256 0 7 7 

B5 256 3 13 13 

B6 256 2 7 7 

B7 256 3 10 10 

B8 256 7 16 16 

B9 256 8 8 8 

B10 256 5 8 8 
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Figure 31: Bit flips at all corners for Spartan-6 devices 

 

 

Reliability vs. Error Correction 

For error correction, we propose two methods. Both methods are described below. 

Method-A: This method is inspired by the constructions described in [76] and practical 

designs described in [61]. It is based on the use of BCH code. It does the error correction 

by removing the noise from PUF response in the field. This method consists of two 

procedures: Generation and Reproduction. Generation is carried out at the room 

temperature and nominal voltage, while Reproduction is carried out in the field. During the 
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generation process, Secure Sketch (SS) is applied to PUF output w, as shown in Fig. 32. 

The second input to SS is the key K, generated using a True Random Number Generator, 

RNG1. The output of SS, denoted by s, is stored as helper data in the database. During the 

reproduction process, the helper data is used to regenerate the key K from a noisy PUF 

response w’. BCH decoder is used to regenerate the 131 bit key as shown in the figure. We 

propose to use BCH with the following parameters: (n=255, k=131, t=18) code. The 

meaning of these parameters is as follows: n=255 is the output block size, k=131 is the 

input block size (in our case, the size of the key to be encoded), and t=18 is the number of 

errors that can be corrected by this code. We chose these parameters because the code with 

these parameters can easily correct the worst case errors shown in Tables 3 and 4, and Fig. 

31. Please note that in our scheme, the key K is not a function of the PUF response during 

the Generation process, but becomes a function of the PUF response during the 

Reproduction process in the field. This feature differentiates our scheme from two methods 

presented in [61]. It is important to note that this method is very suitable for low area 

designs. 
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Figure 32: Error correction scheme A 

 

 

Method-B: In Fig. 33, another method of applying error correction scheme is shown. 

This method has two Random Number Generators, RNG1 and RNG2. During the 

generation process, Secure Sketch (SS) is applied to PUF output W, as shown in the figure 

below. The second input to SS is K1, generated using RNG1. The output of SS, denoted 

by H1, is stored as helper data in the database. Similarly, the output of RNG2 is denoted 

by K2. Hash function (H) is applied to the output of K1 XOR K2. The output of this hash 

fuction is the key for our scheme. During the reproduction process, the helper data is used 

to regenerate the key from a noisy PUF response W’. BCH decoder is used to regenerate 

the 131-bit string K1 as shown in the figure below. It must be noted that the helper data 

consists of both H1 and H2. H2 is equal to the 131-bit string K2. We propose to use BCH 

with the following parameters: (n=255, k=131, t=18) code in Method-B as well. A nice 

property of this method is that if an intruder knows the key, he is not able to calculate either 
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W or K’ corresponding to the new helper data (H1’, H2’). We also want to add that the 

logic resources of programmable logic can be saved in area constrained designs by moving 

the error correction part to the processing system.  
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Figure 33: Error correction scheme B 

 

 

Entropy Analysis 

Actual entropy of a PUF is a function of complex physical processes. Therefore, it is 

close to impossible to calculate the actual entropy of a PUF response. Normally, only the 

estimated upper bounds on the underlying entropy can be calculated. These bounds can be 

calculated using at least the following two methods. 

1. Based on the analysis of single bits 
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2. Based on the analysis of pairs of bits 

Both these methods have been explained in [48]. The first method assumes that an 

adversary knows a bias for each position of a PUF response. In this method every bit 

position in a PUF response vector will have its own bias. An adversary knowing these 

individual bit-dependent biases can make a more accurate prediction by guessing 

individual bits in favor of these biases. This upper bound, called the bit-dependent bias 

entropy bound, can be calculated by using 

𝐻(𝑌𝑛) =∑ℎ(𝑝𝑖)

𝑛

𝑖=1

                                                (16) 

In equation (16), h(pi) is the binary entropy function, it has been calculated for n = 256 

bit positions. We calculated bit-dependent bias entropy bound based on PUF responses of 

25 FPGAs. This entropy bound appeared to be equal to 0.959 or 95.9%. This result implies 

that the 256-bit response contains a maximum of 245 bits of entropy. 

The second method is based on the analysis of a pair of PUF response bits. This method 

assumes that an adversary knows pair wise joint distributions for pairs of consecutive bits 

i and i+1.This bound is tighter than the bound given by (16). It is called pair wise joint 

distribution entropy bound. It can be calculated using equations (17) and (18). 

𝐻(𝑌𝑛) = ∑ ℎ(𝑝𝑖)
𝑛
𝑖=1 − ∑ 𝐼(𝑌𝑖, 𝑌𝑖+1)

𝑛−1
𝑖=1                         (17) 

Where,  

I((𝑌1, 𝑌2) = ∑ ∑ 𝑝(𝑦1, 𝑦2) ∙ 𝑙𝑜𝑔2
𝑝(𝑦1,𝑦2)

𝑝(𝑦1)𝑝(𝑦2)   𝑦2∈𝕪2𝑦1∈𝕪1       (18) 
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In equation (17), h(pi) is the binary entropy function, while I(Yi,Yi+1) is the mutual 

information between two random variables Yi and Yi+1. The mutual information between 

two random variables is a measure for the amount of information which is shared by both 

variables. We estimate the pairwise joint distributions of all possible pairs of the considered 

response bits, by counting the occurrences of each of the four possible pairs (‘00’, ‘01’, 

‘10’, and‘11’) in the 256 bit response of all 25 devices. We found that for n = 256; the 

pairwise joint distribution entropy bound is equal to 0.866 or 86.6%. Therefore, a 256-bit 

response contains approximately 221 bits of pairwise entropy. Finally, we want to add that 

the entropy of the key is equal to ρ ∙ n - (n-k) =0.866 ∙ 255 – (255-131) = 96.83 bits in our 

top-level key generation scheme with error-correction code, shown in Fig. 32. 

Cost 

It has been stated in [53] that the unused LUTs in each CLB can be used by the tool for 

other purposes. Therefore it is claimed that the circuit efficiency is still higher. However, 

we believe that neighboring logic, routed through the CLB, adversely affects the PUF 

response bits. To prove this claim we implemented ring-oscillators inside the latch-CLB 

for the design proposed in [53] and shown in Fig. 21. The result is listed in Table 7. We 

believe this change can become significant at different voltage. Therefore it is highly 

recommended to prohibit the external signals from being routed through the latch-CLBs. 
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Table 7: Effect of external signals on SR-latch for Spartan-6 devices. 

 Without Ring 

oscillators [21] 

With Ring 

oscillator  Reliability @ 1.2V 99% 92% 

 

 

 

In our design, the external signals cannot be routed through any CLBs designated to be 

used for SR-latches. We also prohibit the tool from using any resources inside the latch-

CLBs for external logic. Therefore, the effect of external signal on the latch performance 

is eliminated. This goal is achieved by using LOCK_PINS attribute provided by Xilinx. By 

doing so we ensured that all interconnects leading to LUT inputs are fixed and cannot be 

arbitrarily changed by the routing tool. As shown in Fig. 17, the latch requires only two 

LUT input pins. Thus we connect the remaining four input pins of each LUT to logic ‘0’, 

and lock them.  
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Table 8: Comparison with [53] for Spartan-6 devices. 

 This work  [53] 

Total latches configured 512 128 

Total CLBs used for PUF 128 256 

Response bit length 256 256 

Latch/#CLB 4 0.5 

Response bits/#CLB 2 1 

Response bits entropy 221 167.9 

Response bits entropy/#CLB 1.72 0.65 

 

 

It must be mentioned that we implement our PUF only on even rows of CLBs. This is 

done to leave one set of rows for additional logic to be implemented by the tool. This logic 

includes multiplexers, decoders, registers, and a counter. We would like to emphasize that 

the latch in our design is compact and does not share a switch-box with any other external 

signal (each CLB is associated with a single switch-box). Based on this discussion, the 

design proposed in [53] for Spartan-6 FPGAs is two times more expensive than the one we 

are proposing in this work. Table 8 lists the FPGA resources used by both designs. 

Characterization Time 

Since we implemented 512 latches, we record 100 samples of data from each latch. The 

delay between any two samples is 10,000 clock cycles. This figure comes from the fact 

that some latches oscillate longer during metastable state. The on-board clock frequency is 
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100MHz. As a result, the frequency of the ctrl signal is set to 10kHz. For comparison, in 

[57], the ctrl signal’s frequency is equal to 75kHz. 

The total characterization time for each FPGA is equal to (512 x 100 x 10,000)/ (100MHz) 

= 5.12 sec. 

Since each latch is sampled 100 times, therefore the total number of bytes saved into 

BRAM is equal to 512 x 100 = 51.2Kbytes. In the final product, the requirement for BRAM 

will be reduced. Since in the field, we will sample only the stable latches, therefore 257 

bytes of BRAM will be used to store final latch count values. Each final count value will 

be calculated using 100 count samples. The algorithm performing these calculations 

requires maximum 256 bytes of memory, as explained in Section IV. This memory can be 

reused for all latches, independently of their number. Therefore, the total BRAM 

requirement becomes (256 + 257) = 513 bytes. The execution time of BCH algorithm is 

listed below, 

 

 

 MicroBlaze Softcore 

(cycles) 

ARM Hard-core Zynq 

(cycles) 

BCH Encoding 608649 41340 

BCH Decoding 3288283 84498 
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5.7. Implementation on Zynq SoC 

 For a wide range of applications, heterogeneous chips (such as Xilinx All Programmable 

Systems on Chip, Zynq-7000) bring superior performance and flexibility, while consuming 

a small fraction of the power required by traditional FPGAs. The FPGA fabric 

(Programmable Logic) of Zynq devices is equivalent to 28nm Artix technology. Spartan-6 

FPGAs, are based on 45nm technology. Additionally, Zynq devices integrate dual-core 

ARM Cortex A9 processor in the Processing System (PS). Therefore it is very important 

to validate the strength of our proposed design on inherently different technologies and 

architectures. The CLB of Zynq device consists of two slices, that offer four 6-input LUTs 

and eight FFs each. 

We implemented a PUF having 512 SR-latches on a Zynq (XC7Z010) device. For this 

purpose 128 CLBs are used in the Programmable Logic (PL) of Zynq device. Four latches 

per CLB are implemented in this design. For consistency of design, we selected those CLBs 

which have slice-L only. It must be mentioned that there are no slice-X in Zynq devices. 

For interfacing with the Processing System we used AXI-lite protocol as shown below in 

the Fig. 34. 
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Figure 34: Interfacing PS of Zynq to PL using AXI-lite protocol implemented on 

Zynq-7010 

 

 

The PUF data is processed at the PS side. PUF response bits are generated from the 

latch counts. The final response is then transmitted to the PC via UART. It must be 

mentioned that the recommended internal voltage of FPGA fabric in Zynq is 1V, while the 

minimum and maximum operating voltage is 0.95V and 1.05V respectively [77]. 

Fig. 35 shows the normalized inter-chip Hamming Distance with a mean of 49.87%. 

Similarly, Figs 36 and 37 show the histogram of normalized intra-chip Hamming Distance 

at 1.05V and 0.95V, respectively. In both cases, a PUF response is generated 100 times for 

five boards at 25°C. Therefore, the total number of combinations is 500. From figures 36 
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and 37 it is evident that on the average there are more bits flip at 0.95V than at 1.05V. On 

the average 5.32% bits flip at 0.95V, while 4.61% bits flip at 1.05V. Tables 10 shows the 

average reliability and Table 11 shows the worst case reliability for voltage variation. 

 

 

 

 

Figure 35: Normalized inter-chip Hamming distance for Zynq-7010 devices 

(Mean=49.87%) 
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Table 9: Data set for Zynq-7010. 

 This work 

No. of Chips 

(N) 

10 

PUF per Chip 1 

Samples (T) 100 

ID size (L) 

bits 

256 

SR-Latches 

(M) 

512 

SoC Family 

(Device used) 

Zynq 

(XC7Z010CLG400) 

 

  

 

 

Table 10: Results of Zynq-7010. 

 This 

work 

Ideal 

Uniqueness 49.87% 50% 

Reliability @ 1.0V 99.10% 100% 

Reliability @ 0.95V 94.68% 100% 

Reliability @ 1.05V 95.39% 100% 
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Table 11: Voltage vs. Intra-chip Hamming Distance for Zynq-7010 devices. 

Board 

No. 

No. of 

stable 

latches 

at 1.0V 

Bit 

flips at 

1.05V 

per 

256 

bits 

Bit 

flips at 

0.95V 

per 

256 

bits 

Maximum 

HD(Ri, 

R'i,t) 

Worst 

case HD 

B1 260 13 18 18 

18 B2 258 8 12 12 

B3 261 9 15 15 

B4 262 15 8 15 

B5 258 14 14 14 

 

 

 

 

Figure 36: Normalized intra-chip Hamming Distance at 1.05V for Zynq-7010 (Mean 

=4.61%) 
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We observerd that the number of counts of a latch during metastable state is affected by 

the operating voltage. Increasing the voltage of FPGA fabric by +5% increases the count 

value by 20.5% on the average. Similarly, reducing the voltage by 5% decreases the count 

value by 13.71% on the average for five boards. Fig. 38 shows this phenomenon. It must 

be added that only strong latches were considered in this experiment. Moreover, the 

temperature to conduct this experiment was fixed at 25°C. 

 

 

 

Figure 37: Normalized intra-chip Hamming Distance at 0.95V Zynq-7010 (Mean = 

5.32%) 
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Figure 38: Absolute values of average relative changes in the metastability counts of 

latches for the boundary voltage values of 0.95V (negative changes in count values) 

and 1.05 (positive changes in count values) 
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Temperature Resistance 

The operating temperature for the device ranges from 0°C to 85°C [77]. We tested the 

boards at these temperatures. Table 12 shows the results for 10 boards. From Table 12, it 

is evident that for reliability the effect of 85°C is worse than the effect of 0°C. Overall the 

worst case Hamming distance is 15 bits. 

 

 

Table 12: Temperature vs. Hamming Distance for Zynq-7010. 

Board 

No. 

Bit 

length 

Bit 

flips 

at 

0°C 

Bit 

flips 

at 

85°C 

Maximum 

HD(Ri, 

R'i,t) 

Worst 

case 

HD 

B1 256 7 8 8 

15 

B2 256 7 12 12 

B3 256 9 10 10 

B4 256 10 11 11 

B5 256 6 13 13 

B6 256 10 12 12 

B7 256 7 12 12 

B8 256 12 15 15 

B9 256 10 15 

 

15 

B10 256 8 13 13 

 

 

 

Comparison with [54] and [57] 
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Our implementation of SR-latch is inherently different from TERO based PUF designs. 

These differences range from the differences at the design of basic building block level to 

the final bit generation process. However, our design does the counting of metastable 

oscillations like [54]; therefore we deem it necessary to compare our design to the designs 

presented in these two papers. The design described in [57] consists of both PUF and 

TRNG, while the one described in [54] is a pure PUF design, like ours. Table 13 shows the 

implementation details of all three designs. 

In Table 14, the inter-device variation (uniqueness) and intra-device variation (reliability) 

are shown for the three designs. This table also shows Reproducibility, which means, how 

many times the result is repeated for the same challenge at the room temperature and 

nominal voltage. It needs to be mentioned that in case of Reproducibility, [57] used eight 

different placements on FPGA fabric to measure results. The reliability for different 

voltages and temperatures is not reported by [54]. The nominal voltage (Vnom) for our 

FPGA is 1.2V, and 1.5V for the FPGA used in [57]. 
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Table 13: Implementation details of PUF. 

 This work [57] [54] 

Design type SR-Latch TERO TERO 

Target 

FPGA 

family 

Xilinx 

Spartan-6 

Actel 

Fusion 

Altera 

Cyclone-II 

Devices 

used 
25 10 9 

Basic cells 

per device 
512 Latches 

216 

TEROs 

1172 

TEROs 

PUFs per 

chip 
1 1 4 

Size of basic 

building 

block 

4 

latches/CLB 

8 

LEs/TERO 

16 

LEs/TERO 

Bits 

generated 
256 216 252 

Samples 100 128 128 

 

 

 

In addition, we tested five boards at extreme voltage (±5% of Vnom) and ten boards at 

extreme temperatures (Tmin = 0°C, Tmax = 85°C), while [57] tested two boards at extreme 

voltages (Vmax=+6.6% of Vnom, Vmin =-13.3% of Vnom) and extreme temperatures (Tmin=-

13°C, Tmax=100°C). Vcore is the voltage applied to the core of an FPGA device.  
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Table 14: Results of SR-Latch PUF. 

 
This 

work 
[57] [54] 

Inter-device variation (%) 49.24 49.48 49.27 

Reproducibility* 99.5 97.75 97.25 

Reliability at Vcore=Vmin, TR 94.92% 96.6% N/A 

Reliability at Vcore= Vmax ,TR 98.04% 97.0% N/A 

Reliability at Tmin, Vcore= Vnom 96.87% 95.7% N/A 

Reliability at Tmax, Vcore= Vnom 93.75% 97.8% N/A 

*At nominal voltage and room temperature. 

 

 

The reliability shown in Table 14 is for the worst case scenario. Furthermore, room 

temperature is defined as TR=25°C in our case, while it is defined as TR=24°C in [57]. 

5.8. Conclusions  

We presented a reliable and efficient SR-latch PUF in this work and compared the results 

to the state of the art implementation. The latch is designed to keep the effect of routing at 

minimum and extract the randomness at the same time. Strong and stable latches are 

selected in this method during enrolment. A novel method of mode calculation is used to 

determine strong latches. From the circuit efficiency point of view, the proposed design is 

two times more efficient than the state of the art. The derived design has been verified on 

25 Xilinx Spartan-6 FPGAs (XC6SLX16) and 10 Xilinx Zynq SoC (XC7Z010) devices. 

The uniqueness is close to the ideal value of 50%. In case of Spartan-6 devices it is 49.24%. 

Similarly, the uniqueness measure for Zynq devices is 49.87%. The PUF responses exhibit 
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high resistance to temperature and voltage variations. For this purpose the design has been 

tested at ± 5% of core voltage and also over the commercial temperature range [0-85°C]. 

For Spartan-6 devices the reliability at +5% of nominal voltage is 98.67%, while at -5% of 

nominal voltage it is 97.54%. At both voltages it is more reliable than the start of the art. 

For Zynq devices the reliability is 94.68% at -5% of nominal voltage and 95.39% at +5% 

of nominal voltage. We also did the entropy analysis. We calculated bit-dependent bias 

entropy bound based on PUF responses of 25 Spartan-6 FPGAs. This entropy bound 

appeared to be equal to 0.959 or 95.9%. Similarly, the pairwise joint distribution entropy 

bound is equal to 0.866 or 86.6%. We proposed two error correcting schemes for our PUF 

design. It was shown that the bit flips at extreme voltage and temperature were in the range 

of our proposed error correction schemes. 
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6. PUF design using Programmable Delay Lines 

 

 

 

In this chapter a novel design of an FPGA friendly Ring Oscillator (RO) based Physical 

Unclonable Function (PUF) is presented. In this design the internal variations of FPGA 

Look-Up Tables are exploited to generate a PUF response. Statistical tests were performed 

to study the strength of this PUF. Furthermore, we also analyzed the frequencies to extract 

the random variation offered by our design. 

Contents 

6. PUF design using Programmable Delay Lines ...................................................................... 91 

6.1. Introduction .................................................................................................................... 91 

6.2. Previous Work ............................................................................................................... 93 

6.3. Implementation Details .................................................................................................. 98 

6.4. Bit-string generation .................................................................................................... 103 

6.5. Frequency Analysis ...................................................................................................... 108 

6.6. Conclusion ................................................................................................................... 114 

 

6.1. Introduction 

With an increasing number of communication and computing devices, security challenges 

are becoming significant. An on-chip PUF (Physical Unclonable Function) can solve these 

challenges effectively and efficiently. A PUF is a chip-dependent unclonable challenge-

response function that can be used to uniquely identify a specific integrated circuit. 

Furthermore, the PUF itself is tamper resistant against physically invasive attacks. Due to 
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these attributes, a PUF offers security against intellectual property (IP) theft and 

counterfeiting, and solves issues such as chip authentication, reverse engineering, trusted 

computing, and secure key generation. The idea of PUFs was first presented in [1].  Since 

then, the scientific community has profoundly investigated it.  Silicon based PUFs use the 

idea of extracting the maximum variability of the chip manufacturing process. This 

variation is inherent and results in a unique signature for each chip similar to a biometric 

thumb impression of humans. Even for the same manufacturing process each chip carries 

a different signature due to process variations. A strong PUF is classified to be the one that 

extracts the maximum process variation and is reliable to exhibit this variation under 

different conditions.  

There are strong reasons to design PUFs for FPGAs. Cryptographic functions are 

implemented using FPGAs for faster execution compared to software execution, and PUFs 

can provide random keys for these functions.  Furthermore, FPGAs are reconfigurable in 

nature and IP protection during configuration of an FPGA is an important issue from a 

security point of view.   

In Section 6.2, we describe the previous work for a better understanding of our study on 

PUF. We present and discuss implementation details, as well as highlight results in Section 

6.3. In 6.4 we highlight the bit-string generation and in 6.5 we do the frequency analysis. 

The conclusion and future study are described in Sections 6.6. 
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6.2. Previous Work 

Since 2002, silicon based PUFs have been extensively investigated. The initial proposal of 

a delay based arbiter PUF was made in [2]. Arbiter PUF was further explored in [3] and 

[4] to investigate reliability and security features. Although the Arbiter-PUF offers strong 

PUF properties, it is prone to machine-learning attacks [49]. In [11], the idea of a Ring-

Oscillator (RO) based PUF is presented. In this PUF the challenge is the selection of a pair 

of ROs. The response is the one-bit comparison result of the frequencies of those ROs. RO 

PUF has some weaknesses associated with it, like dependence on supply voltage and 

temperature. In addition, special care must be taken to reduce the effect of systematic 

variations [34]. More recently S-ArbRO PUF, with the increased number of challenge 

response pairs (CRP) was presented [51]. 

A large-scale characterization of RO based PUF has been done in [23]. In [16], Butterfly-

PUF is presented, which requires symmetric paths between registers for causing 

metastability. FPGA tools do not offer complete access to symmetric design at the wire 

level, therefore, routing schemes make it hard to achieve symmetric butterfly design on 

FPGAs. This fact has been verified by [27] for both Arbiter and Butterfly PUF. In [30] and 

[39], the concept of programmable delay lines is presented, in which the LUT delays are 

used to create a metastable condition which is further used to develop a PUF and TRNG 

respectively. Our approach is to employ the concept of programmable delay lines in ring 

oscillators based PUF for improving the number of independent response bits. We did not 

create metastability for randomness. In [34], Maiti et al. presented an RO PUF, in which 

multiplexers were introduced in the ring to select different paths inside the ring. In this 
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design, only two rings with identical paths were compared at a time because the authors 

wanted to determine a configuration which resulted in the maximum frequency difference 

between two ROs. However, in our case, the path outside of the LUTs stays constant. 

Therefore, we minimize the impact of routing or wire delays on the frequency of ring 

oscillator. Hence, the randomness is purely due to internal LUT variation. This delay is the 

significant and deciding factor in the comparison of two ring oscillators. In [37], the 

number of configurations of ring oscillator has been improved by introducing a latch in the 

path of a ring, making it impossible to compare a latch-path with no-latch-path. Our 

approach is completely different because we do not introduce anything in the path of a ring. 

We extract only the randomness inherent in LUTs, where we have the luxury of comparing 

any configuration of a LUT with any other configuration i.e., any configuration from ‘000’ 

to ‘111’ with any other configuration from ‘000’ to ‘111’. All configurations are applied 

to LUT input lines.  We will show in the next section that the programmable delay offers 

to generate random and independent bits with a very strong capability to repeat them. 

This PUF is designed for Spartan xc3s100e devices, where each CLB has four slices, each 

with two 4-input LUTs. Our PUF design is based on a RO, which has one AND gate and 

three inverters. This design uses one LUT for an AND gate and three LUTs for inverters. 

We used one LUT-input to connect in a ring, while the remaining LUT-inputs are varied 

in order to generate programmable delays, as shown in Fig. 39. 

In Fig. 39, three inverter LUTs in a ring are connected to three delay lines each, while the 

remaining LUT is tied to two lines. Because we wanted to analyze the maximum effect of 
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delay lines on the ring oscillator frequency, therefore we connected all free LUT inputs to 

our programmable delay controller. All the LUT inputs are locked by using a LOCK_PINS 

attribute provided by Xilinx tools. By doing so we ensured that all interconnects leading to 

LUT inputs are fixed and cannot be arbitrarily changed by routing tools. Additionally, we 

ensure that all the rings are identical and are subject only to CLB internal routing delays. 

In order to achieve this, we defined each ring oscillator as a macro and placed them at 

selected locations. The output of this ring oscillator is fed into a 32-bit counter, which 

determines the frequency of this oscillator. It is important to mention that the response from 

our design is solely dependent on the internal variation of FPGA LUTs, and variations due 

to routing delays are minimized. In particular, our method eliminates any differences in 

routing paths (and thus routing delays) caused by the tools. Figure 40 shows the placement 

of 130 ROs that make up our PUF. Each ring oscillator is constrained in a single CLB. In 

this design, 130 rings are configured at the center of a chip in a 13x10 matrix, The chip 

under test does not allow us to place 130 rings in a square format placed at the center of a 

chip. 
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Figure 39: Single Ring-Oscillator with programmable delay lines 

 

 

In Figure 40, rings start from the bottom left (R0) corner and the last one is shown at the 

top-right corner numbered R129. We selected 130 as a number of rings, because the FPGA 

devices available to us had 240 CLBs in total. We cannot use all CLBs for rings, because 

we need some logic resources to use for control purposes as shown in the Table 15.We 

could have decreased the slice count by forcing two rings per CLB (as each CLB slice 

contains two neighboring LUTs), but we intentionally rejected that approach, because the 

two rings might lock with each other, and hence their frequency affect each other. This 

phenomenon is also reported in [33]. 

For data retrieval we used Enhanced Parallel Port (EPP protocol), which has a very small 

area imprint. On the PC side, Digilent Port Communications (DPC) utilities were used, 

which are provided with Digilent Adept software. 
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Table 15. Area requirements of our design 

 

Number 

of slices 

occupied 

Percentage 

Slices for 

rings 

4∙130 

=520 
54.2% 

Slices for 

other logic 
27 23.6% 

Total slices 47 77.8% 
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Figure 40: PUF array configuration of 130 RO on Spartan xc3s100e device 

 

 

 

6.3. Implementation Details 

LUT_input bits can be varied from ‘000’ to ‘111’, resulting in eight different frequencies 

of a ring oscillator. Additionally, these frequencies are highly repeatable for any particular 

ring as shown in Fig. 41. From Fig. 41, it is evident that the frequency varies significantly 

depending on the LUT_input sequence. In [30] and [39], it is stated that maximum 
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frequency is achieved with ‘000’ and minimum with ‘111’ sequence. However, based on 

our experiments, this is not always the case. 

 

 

 

Figure 41: Frequency distribution due to LUT_input bits variation 

 

 

The pattern presented in Fig. 41 changes completely when we select another ring oscillator. 

Even a neighboring CLB exhibits a different pattern. One reason might be that we use 

Spartan-3e devices which are based on 90nm technology while in [30, 39], Virtex-5 devices 

are used which are 65nm technology. We also observed that the standard deviation among 

20 samples never exceeds 0.018 % of ring oscillator frequency. By using longer 

characterization time the noise further decreases. It is important to mention here that we 

did not test repeatability under different voltage and temperature conditions.  
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We tested our PUF for different characterization times; which is the time required to allow 

the ring to oscillate freely. Each RO should be enabled for enough time, such that the delay 

pattern associated with each LUT input value is sufficiently repeatable as shown in Fig. 

42. Preliminary investigation revealed that a small characterization time causes huge 

differences in the pattern. In Fig. 43, the characterization time is reduced from 1sec to 

1msec and standard deviation increases among four runs from 0.018% to 0.15%. 

 

 

 

Figure 42: Characterization time equal to 1 sec 
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Figure 43: Characterization time equal to 1 msec 

 

 

We used a characterization time of 1 sec when we extracted data from PUF, implemented 

on 31 Digilent boards. We did the frequency analysis of each ring and devised two schemes 

to analyze the improvement in the number of response bits.  

Scheme # P1 

In this scheme, we compared eight frequencies resulting from eight different values (000 

to 111) applied to LUT input of one ring oscillator with eight frequencies of the 

neighboring oscillator i.e., only ROs under the same configurations are compared. In post-

processing, if fr0 > fr1, the response is ‘1’ otherwise it is ‘0’. To remove systematic 

variation (an unwanted correlated variation due to spatial location of a ring-oscillator on a 

chip), under each configuration, only the comparisons shown in Fig. 44 are made. 

Therefore, the PUF will output 8 ∙ (r − 1) bits response for each FPGA, and chip ID is 

extracted from these 1032 bits.  
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Figure 44: Comparison of rings along the rows 

 

 

Scheme # P2 

In this scheme we compared the frequencies along the CLB columns as shown in Fig. 45, 

where each circle shows a single comparison, otherwise it is similar to scheme P1. From 

this scheme, we were able to extract the same 1032 bit response. However, the inter-chip 

variation decreases to 95.34% from 96.6% as shown in Table 17. One reason is that the 

first row of the devices (R0-R9) were having the smallest frequencies and resulted in a 

similar response when compared to the frequencies of the 2nd row (R10-R19). This 

behavior reduced the HD and subsequently the Inter-chip variation. 
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Figure 45: The comparison of rings along the columns 

 

 

6.4. Bit-string generation 

For 130 ROs, each ring pair is able to generate 8 bits due to 8 LUT configurations, which 

yields bitstring of length 129∙8 = 1032 bits. In this work we only compare the neighboring 

rings to cancel out the effect of systematic variation. During comparison, if the frequencies 

of two rings cross, then we record 8 bits, otherwise a single bit is contributed toward the 

PUF ID. Therefore, during enrollment, we store for each ring number a corresponding 

crossover bit (i.e., we store pairs: (Ring #, c)).  In Fig. 46, a meaning of the crossover is 

demonstrated. 
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Figure 46: Crossover of two rings 

 

 

A thresholding technique as explained below is employed to discard those comparisons 

which are vulnerable to producing “bit-flips”. 

The normalized inter-chip Hamming distance, (HD (Ri, Rj)/L) ∙100% is shown below, 
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Figure 47: Normalized inter-chip Hamming distance 

The mean is 48.48%. This data is generated from 31 FPGA boards at 25°C and nominal 

voltage supplied at the core. The total number of combinations (i.e., the total number of 

board pairs {i,j}) is(31
2
)= 465. The y-axis (denoted frequency) shows the total number of 

times a given normalized inter-chip Hamming distance was obtained. In this data, 248 bit 

response from each FPGA board is used. The reason is that in our data set, the minimum 

number of bits generated by any FPGA device using the crossover method was 248 bits.  

Thresholding Technique: 

 If an ID bit is flipped during regeneration then it reduces the reliability. In order to avoid 

this condition, a thresholding technique is employed which accepts a bit if the difference 

in frequency for any comparison is greater than 150kHz (Δf ≥ 150 kHz). Otherwise we 

discard that bit, because it can be flipped by noise during regeneration. But if the 
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frequencies of two rings fail the thresholding condition (Δf ≥ 150 kHz), then only one bit 

is contributed towards the chip ID, and this bit is generated by the majority vote of 8 

comparisons. Furthermore, Δf is fixed at 150 kHz, because we observed that the average 

standard deviation among 20 samples of each frequency is around 30 kHz for all the rings. 

Therefore, we keep it at least 5 times the standard deviation. After applying this condition, 

the number of strong bits per chip is 283 as shown in Table 16. We call this sequence of 

bits the Chip-ID. It is important to mention here that 283 bits is the minimum length of bit 

string generated by a particular FPGA, all other devices generated more than 283 bits. 

The more different a pattern is from another ring oscillator in absolute frequency terms, the 

stronger 8-bits we will get from their comparison. 

 

Table 16. Details of dataset 

 Maiti et al. [34] This work 

No. of Devices (N) 193 31 

Samples (T) 100 20 

No. of ID’s (K) 1 1 

ID size (L) bits 511 283 

Ring oscillators (M) 512 130 

FPGA family (Device 

used) 

Spartan-3E 

(XC3S500E) 

Spartan-3E 

(XC3S100E) 
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In Tables 16, 17 and 18 we compared our results with the results shown by Maiti et al. 

in [34].  

 

 

Table 17. Comparison with Maiti et al. [34] 

  P1 P2 Maiti Ideal 

Uniformity 50.13 50.75 50.56 50% 

Uniqueness 96.6 95.34 93.98 100% 

Bit-aliasing 51.8 50.75 50.56 50% 

Reliability 97.88 98.1 99.13 100% 

 

 

 

We measured our PUF responses at room temperature and then generated results shown in 

Table 17, by running a script available at [78] on our PUF data. 

From Table 17 and 18, it is evident that our result set is comparable to Maiti et al. However, 

we believe that with four times smaller PUF size (in-terms of the number of CLB slices for 

Ring Oscillators) we were able to generate more than twice as many bits per ring oscillator. 

Furthermore, our PUF-IDs are more biased towards ‘1’, resulting in Uniformity greater 

than ideal by 0.13%. All the five PUF properties are thoroughly explained in [58]. 
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Table 18. Properties of independent strong bits 

 

This 

work 

(P1) 

This 

work 

(P2) 

Maiti 

et 

al.[34] 

Number of ring oscillators [A] 130 130 512 

Average Independent, strong response 

bits* [B] 
283 318 511 

Bits per Ring [B/A] 2.17 2.44 ~1 

*strong bit = When the Δf ≥ 150kHz, [Average of 31 Devices Frequency ≈ 165MHz] 

 

 

6.5. Frequency Analysis 

To show the extent of randomness offered by the chip under test and extracted by our 

design, we analyzed the frequencies of all rings under all configurations. The frequencies 

of all 31 devices are shown in Fig. 48. Each frequency is the average of all 1040 frequencies 

generated by ROs of a given chip. Each ring generates 8 different frequencies and there are 

130 rings in total. The standard deviation in the frequency of 1040 points per chip is shown 

in Fig. 49. 
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Figure 48: Average frequency of all ring oscillators located on each board 

 

 

The average frequency of each ring oscillator averaged over all boards is shown in Fig. 50. 

Each point in this figure is the average of (8 frequencies ∙ 31 boards) = 248 frequencies. 

From Fig. 50, it is evident that the highest peaks in the frequency occur at the central part 

of the chip. While the lowest frequencies occur at the edges. This behavior has also been 

reported in [8]. Our PUF layout is not placed exactly at the center of the chip as explained 

in section IV, therefore in Fig. 50 the highest peaks seem off the center. 
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Figure 49: Average standard deviation in frequency of 1040 points per board 

 

 

 

 

Figure 50: The average frequency of all boards for 130 Ring oscillators depending on 

CLB locations 
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Systematic and Manufacturing Variation 

The frequency of any ring oscillator consists of both systematic variation and 

manufacturing process variation. For PUF statistical and qualitative analysis we need to 

decompose these variations into within-die and die-to-die variations.  

Decomposition Methodology 

With the introduction of programmable delay lines, we were able to generate eight different 

frequencies from a single ring oscillator. Therefore we had 1040 total frequencies for 130 

ring oscillators. We analyzed 130 rings that make the rectangle shown in Fig. 40 at the 

central part of the chip. This rectangle is a matrix of 13x10 ring oscillators. We laid these 

1040 frequencies in the form of a matrix with 13 rows and 80 columns. Any point in this 

matrix is denoted by F(x,y), where x ranges from 0 to 79 and y ranges from 0 to 12, i.e., 

each row contains 80 frequencies from 10 ring oscillators. Other dimensions could also be 

employed for this experiment. F(0,0) is the frequency of ring oscillator 0, with LUT_input 

configuration equal to ‘000’. We call F(0,0) as the nominal frequency in our calculations. 

 We decomposed the frequency of rings into random and systematic variation components. 

Our decomposition method follows the method explained in [42], as shown in equation .  

F(x,y)= F(0,0)+RWID+SWID(x,y)+SD2D(x,y)    (19)  

Here, RWID is the random within die variation component, SWID is the systematic within 

die variation component while SD2D is the systematic die to die variation. 
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We used Down Sampled Moving Average (DSMA) to extract the random and systematic 

variation from equation 19. In DSMA we moved the window over 1040 points and we got 

the average frequency of all the points in a window.  

DSMA(x,y)= (2z+1)
-2 ∑ F(i,j)

x+z,y+z

i=x-z, j=y-z

    (20)   

The window size is 9 with a 3x3 dimension, by setting z=1 in equation (20). We keep z = 

1, because with a big window size we will be averaging too many points, which will 

suppress the randomness due to programmable delay lines.  

DSMA(x,y)= F(x,y)- RWID              (21)   

From equation 21, we got  

RWID= F(x,y)- DSMA(x,y)        (22)         

For 1040 points in total and z=1, we get 858 random values. We normalized it over F(0,0) 

to get the RWID variation. It has been shown in Fig 51. 
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Figure 51: Random within die variation (normalized over F(0,0), shown as a 

percentage) 

 

 

The properties of random within die variation has been listed in Table 19. 

The distribution of this randomness is shown in Fig. 52. The distribution of Random 

within Die variation is plotted using a histogram. It is evident that the plot is centered at 

0.0. 

  



114 

 

Table 19. Properties of Random with-in die variation normalized over F(0,0) 

Mean 0.0 

Min -3.23 % 

Max 2.27 % 

Peak to Peak 5.5% 

Standard Deviation 0.84% 

 

 

 

6.6. Conclusion 

In this work we presented a novel PUF design, based on ring oscillators, where the 

programmable delays of FPGA LUTs were used to generate additional bits of an ID. The 

strength of this design is its ability to generate more than one random frequency per ring 

oscillator without changing the path of the ring outside LUTs. This solution offers the 

option to reduce the area requirements of ring oscillator PUFs. To demonstrate the strength 

of this PUF, it was shown that our design generated more bits per ring oscillator, and these 

bits are as strong as the ones reported in literature for Configurable Ring Oscillators. The 

statistical and PUF properties were analyzed and were shown to be very strong from a 

security point of view. 
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Figure 52: Distribution of the random within die variation 
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7. A Comprehensive Set of Schemes for PUF Response Generation 

 

 

 

In this chapter a comprehensive set of schemes to generate Physical Unclonable Functions 

(PUF) responses, is presented. Software scripts have been developed to generate the PUF 

IDs using five different schemes. We also propose a new set of PUF metrics that are based 

on the Worst Case (WC) PUF performance. Values of these metrics, for the Ring Oscillator 

(RO) PUF and SR-Latch PUF, have been presented and analyzed in the chapter. 
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7.1. Introduction 

 

Extensive research has been going on to develop new hardware primitives for security. 

PUF is one of such primitives that can efficiently solve several problems in hardware 

security. These problems range from reverse engineering, counterfeiting, to detection of 

pirated devices. For this purpose the two important applications where PUF can be used 
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are: key generation and device authentication. The input to PUF is called a challenge and 

the output is called a response. Therefore it works in the Challenge Response Pairs (CRPs). 

In the past researchers used only one scheme to generate the PUF responses. For more in-

depth analysis we need to generate responses using more than one scheme. It gives us the 

flexibility to control the response bit size. We present five most popular schemes in this 

work. Additionally we also explain the effect on PUF metrics when different schemes are 

used. In Section 8.2, we describe the previous work for a better understanding of our study 

on PUF. Section 8.3 explains the PUF schemes; methodology is covered in section 8.4. In 

Section 8.5, we discuss the results. The conclusion and future study are described in Section 

8.6. 

7.2. Previous Work 

The previously reported schemes for PUF response generation from raw data included: 

comparing the counts of neighboring ROs [34], Lehmer-Gray encoding method [46], 

Identity-mapping [50] and S-ArbRO method [51]. Quantitative and statistical performance 

evaluations of Arbiter PUF and RO-PUF were presented in [26] and [58], respectively. In 

this work we analyze PUF responses generated using five different schemes. Each scheme 

is described in detail using a pseudocode. For evaluation of responses, PUF metrics have 

been developed.  

7.3. PUF Schemes for ID generation 

PUF responses are generated from the raw PUF data as shown below in Fig. 53, 
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Results
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Figure 53: PUF ID generation and evaluation 

 

 

As shown above in Fig. 53, the raw PUF data is the input to our PUF generation module. 

In case of RO-PUF raw input consists of the number of ring-oscillator periods within a 

predefined fixed time interval. Similarly in case of SR-Latch PUF, raw input consists of 

the number of oscillations of a latch during metastable state. In this work we used three 

data sets; Spartan-3 data-set for ROs [78], Spartan-6 data-set for SR-Latches [73] and Zynq 

data-set for SR-Latches. Devices used for Zynq data belongs to (XC7Z010) family. Five 

schemes are explained below, 

i)  Comparing the neighboring components (CNC) 

In this scheme raw data from the neighboring components of FPGA are compared. Fig. 54 

shows this scheme. In this figure C0, C1…CM-1 shows the physical location of components 
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on the FPGA fabric. Raw data from the neighboring components are compared to mitigate 

the effect of systematic variation. 

Algorithm 1 Comparing the Neighboring Components 

CNC( F[], M):          //F[] is the input array of M 

components. 

for(i = 0; i< M-1; i++) 

 if(F[i] > F[i+1]) 

  Response[i] = 1 

 else 

  Response[i] = 0 

        end if 

end for 

 

Where Response array stores the PUF response of M components. In this scheme each 

component is compared with both neighbors except the first and last component. In case 

of first and last component, comparison is done only with a single neighbor. The 

comparison of (C0,C1), (C1, C2), (C2, C3)... (CM-2,CM-1) is carried out. Therefore for M 

components the total number of PUF response bits will be equal to M-1. 

 

 

C15 C14 C12 C11 C10 C9 C8

C0 C1 C2 C3 C4 C5 C6 C7

C13

CM-8 CM-7 CM-5 CM-4 CM-2 CM-1

CM-9 CM-10 CM-11 CM-12 CM-13 CM-14 CM-15 CM-16

CM-6 CM-3CM-8 CM-7 CM-5 CM-4 CM-2 CM-1

CM-9 CM-10 CM-11 CM-12 CM-13 CM-14 CM-15 CM-16

CM-6 CM-3

C15 C14 C12 C11 C10 C9 C8

C0 C1 C2 C3 C4 C5 C6 C7

C13

 

Fig. 54. Comparison of neighboring Components     Fig. 55. Pairwise comparison with neighbors 
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ii) Pairwise Comparison (PC) 

In this comparison each component is compared only once with its neighbor. The 

comparison of (C0, C1), (C2, C3), (C4, C5)…. (CM-2, CM-1) is carried out. Therefore for M 

components the total number of PUF response bits will be equal to ⌊M/2⌋. Fig. 55 shows 

this scheme. 

 

Algorithm 2 Pairwise Comparison 

PC(F[], M):             //F[] is the input array of M 

components 

for(i=0; I < 2 ∙ ⌊M/2⌋; i+=2) 

 if(F[i] > F[i+1]) 

  Response[i] = 1 

 else 

  Response[i] = 0 

        end if 

end for 

Where Response array stores the PUF response of N components. 

iii) Binary Lehmar-Gray (BLG) encoding  

In LG encoding, all components are divided into sets of size S. Encoding the ordering of S 

component measurements Fs= (F0, . . . , Fs-1 ) results into an L-bit response. A Lehmer code 

is a unique numerical representation of an ordering which is moreover efficient to obtain 

since it does not require explicit value sorting. It represents the sorted ordering of F 

components as a coefficient vector Ls-1= (L1, . . . , Ls− 1) with Li ∈ {0, 1, . . . , i}. It is clear 
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that Ls− 1
 can take 2 × 3 × . . . × S = S! possible values which is exactly the number of 

possible orderings. The Lehmer coefficients are calculated from F as Lj = ∑ 𝑔𝑡
𝑗−1
𝑖=0  (Fj, Fi) 

with gt (x, y) = 1 if x > y and 0 otherwise. The Lehmer encoding has the nice property that 

a minimal change in the sorted ordering caused by two neighboring values swapping places 

only changes a single Lehmer coefficient by ±1. 

 The total number of bits generated for each set is: 

Bits generated per set (L) = ∑  ⌈log2 i⌉ 
S
i=2                            (22) 

Below is a pseudo code for converting counts of M components into an (M/S) ∙ L -bit 

response denoted by Response. 

Algorithm 3 Binary Lehmer Gray Encoding 

BLG (F[], M, S):  //F[] is the input array of components, S=Set size. 

for(t=0; t < ⌊M/S⌋ ; t++) 

Response= Response || Lehmer(F[t∙S:(t+1)∙S-1], S) 
end for 

 

Lehmer(array[], S):      

for(j=1; j< S ; j++) 

  sum = 0 

  for(i=0; i<j ; i++) 

 if (array [j] > array [i]) 

   sum= sum + 1 

         end if 

     end for 

  L_Response = L_Response ||(Gray(bin(sum, ceil(log2(j+1))))                                                                 

end for 

return L_Response 

 

Gray(bin_bits): //array of binary bits is passed to Gray(). 

Len_bits=len(bin_bits)  //Length of an array 

G[0] = bin_bits[0]    

for(i=1; i< Len_bits; i++) 

 G[i] = XOR(bin_bits [i], bin_bits [i-1]) 

end for 

 

Above a function named bin(p,t), converts a decimal number p to t binary bits. For M 

components , the total response is equal to (M/S)∙L bits. In [46], set size S, is 16. Similarly, 
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a function named Gray() is used for encoding the Lehmer co-efficients. Gray encoding 

make it sure that each subsequent number is only a single bit different than a previous one. 

Where bin_bits is an array of binary bits. G is an array of corresponding Gray encoded 

bits. 
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iv) S-ArbRO-2  

S-ArbRO-2 is described in [51]. In this design the number of CRPs have been improved. 

Components are divided into elements. Each element has a pair of components associated 

with it as shown below in Fig. 56, 

 

 

 

Fig. 56. Element contains a pair of components 

 

 

The difference between the counts of components in each element is the respective count 

associated with that element (r1-r2 or r2-r1). This difference in count value may be positive 

or negative. The next step is to select a group size for elements. This is done by selecting 

a value for parameter K. Inside this group, elements are added with each other. The range 

of K is 2 ≤ K ≤ N. Here, N is the total number of elements and K is the number of elements 

selected in each group. Challenge is the selection of group of elements, while response 

(Rc) is the one bit result as shown in Fig. 57, 
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Algorithm 4 S-ArbRO-2 

S-ArbRO-2(E[], K):     //K is the parameter passed. 

combo=[]     //It will hold all the possible combinations //of groups of 

Elements.  

sums=[]   //It will hold the result of all the additions.  

Kp= 2 ^ (K – 1)  // power(2, K-1). 

i = 0  

for x in combinations(E,K): // Generate all combinations 

                            // of K out of N elements.   

 combo [i]= x  

    i = i + 1 

end for 

for(i=0; i< len(combo); i++): 

for(j = 0; j< Kp; j++): 

     temp=[] 

     p=bin(j,K)              //convert j into K binary bits. 

     for(s=0; s<len(p); s++): 

    if(p[s] =='0') 

 temp = temp || (combo[i][s][0]- combo[i][s][1]) //r1-r2 

       else 

 temp = temp || (combo[i][s][1]- combo[i][s][0]) //r2-r1 

       end if  

     end for  

     sums= sums || (sum(temp))  

   end for 

end for 

 

for(i=0; i< len(sums); i++): 

 if(sums[i]> 0)  

    Response[i]=1  

  else  

    Response[i]=0 

        end if 

end for 

 

If the result of adding elements is positive, the response is ‘1’, otherwise it is ‘0’. The total 

Challenge Response (CR) space is, 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑅 𝑠𝑝𝑎𝑐𝑒 =  
𝑁!

𝐾! × (𝑁 − 𝐾)!
× 2𝐾−1      (23) 
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Fig. 57. S-ArbRO-2 showing the relationship between Challenge Response Pairs (CRPs) 

 

 

As evident from the Fig. 57, the total number of elements is N. For example, 64 components 

will result in N = 32 elements. Suppose the parameter K is equal to 2. Then the total number 

of possible combinations are 992. In the pseudo code, E[] is an input array of N elements. 

Each Element has 2 components. K is the subset size. Combo holds all the possible 

combinations of  (N
K
)  elements. Sums will hold all the sums for K elements. 

Combination(N,K) calculates the (N
K
), sum(array) adds all the elements of an array. The 

response of S-ArbRO-2 is returned by an array Response[]. The pseudo code will generate 

all the possible CRPs. Assume the list of components is [10,5,6,4,17,11]. Therefore the 

three elements formed are E1=[10,5], E2=[6,4] and E3=[17,11]. The possible number of 

combinations for K = 2 is (3
2
) = 3. Hence three groups of elements formed will be {E1, 

E2}, {E1, E3} and {E2, E3}. Combo will contain [{E1, E2}, {E1, E3},{E2, E3}] or 

[{[10,5], [6,4]}, {[10,5], [17,11]},{[6,4], [17,11]}]. If the group challenge is (01), it will 

select group {E1,E3}. Similarly inside each group if the challenge is (00). It will result in 
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0=>E1[r1-r2]= 10-5= 5 and 0=>E3[r1-r2]= 17-11= 6. Sums will hold 5+6=11. Since 11>0, 

therefore the final PUF response will be ‘1’.  

v) Identity Mapping (Id-Map) 

This scheme is described in [50]. In identity mapping m components can generate 2M – M 

– 1 response bits. In this method, t component counts are selected from m component 

counts where 2 ≤ t ≤ M. Initially all pairs of component counts are determined S2,  

|𝑆2| = (
𝑀

2
) 

Similarly, S3 contains all possible triplets of component counts. 

|𝑆3| = (
𝑀

3
) 

Likewise,  

|𝑆𝑡| = (
𝑀

𝑡
) 

Then a random variable Qt is defined that assigns a real number X to each outcome of St 

𝑄𝑡: 𝑆𝑡 → 𝑋 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

𝑄𝑡(𝑓𝑥1, 𝑓𝑥2, 𝑓𝑥3, … . 𝑓𝑥𝑡) =  ∑ ∑ 𝑤(𝑥𝑢)(𝑥𝑣)

𝑡

𝑣=𝑢+1

𝑡−1

𝑢=1

. ‖𝑓(𝑥𝑢) − 𝑓(𝑥𝑢)‖
𝑒
      (24) 

Where 1≤ x1, x2, x3, …, xt ≤ M  

And, x1≠ x2≠ x3≠ .. ≠xt and 2 ≤ t ≤ M 

The weight factor w(xu)(xv) can depend on a particular design. However, in our script it is 

equivalent to 1. We chose 1 because we believe that systematic variations come into the 

effect, when far away components are compared. Therefore we keep the weight factor 

constant for all Q values. Response R, from Q is generated by using the following equation, 
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𝑅 = 𝑚𝑜𝑑(𝑄[𝑖]/𝑞, 2))  for i =0,1,2,.. 

Where q is the bucket size. The size of array Q depends on the value of t selected. For 

instance if t =2, the total elements of Q are (M
2
). If t=3, then total length of Q will be (M

2
) + 

(M
3
), and so on. 

In addition to the response bits, a set of helper data is also generated. This helper data is 

used to reduce the effect of noise in the field. For example, with noise the count value for 

a component is different from the one calculated during enrolment. Therefore, a helper data 

is used to mitigate the effect of noise.  

Algorithm 5 Identity Mapping 

Identity_map(components[], q, t, e):  

  //q, t and e are parameters. 

S=[]   //It will hold the (𝐌
𝐭
) component counts.  

Q=[]   //It will hold the Qs. 

i = 0   

for x in combinations(components,t)  

 S[i]= x  

 i = i + 1 

end for 

  

j = 0  

for a,b in combinations(S,2)  

 Q[j]= (|a-b|)e 

 j = j + 1  

end for 

  

for(i=0; i< len(Q); i++) 

 Response_enrollment [i]= (Q[i]/q) mod 2  

 Wt[i] = (0.5 ∙ q) – (Q[i]-  ⌊ (Q[i]/q) ⌋ ∙ q)  

end for 

for (i=0; i< len(Q’); i++) //Q’ is generated in the 

field. 

 temp[i]= ( Wt[i] + Q’[i]) //error correction 

 Response_field[i]= (temp[i]/q) mod 2 

end for 

Helper data Wt is calculated using the following equation, 

𝑊𝑡 = (
𝑞

2
) − (𝑄[𝑖] − 𝑞 ∙ ⎣ 𝑄[𝑖]

𝑞
⎦)   for i=0, 1, 2, 3… 
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In the above equation, q is the bucket size. It must be appropriately chosen. If q is chosen 

very big, then too many bits will be encoded into the same bucket. Therefore, it will reduce 

the uniqueness significantly. Similarly, if q is chosen very small, then it will affect the 

reliability property. A small change by the noise in the field will move the response bit to 

another bucket. It must be noted that for each element of Q, only one value of Wt is 

calculated.  

In the pseudo code, components[] is an input array that contains the counts of components. 

q is the bucket size , parameter e is any real number except 1 and t is the parameter , such 

that 2 ≤ t ≤ m. PUF Response during enrolment is stored in an array Response_enrollment. 

While Wt is the array that contains the helper data. In the field, each response bit is 

recalculated using Wt and noisy Q’ values. Response_field[] contains the PUF response 

generated at the field. 

7.4. Methodology 

We use three properties of PUF to rank the schemes. These properties are Average 

uniformity, WC uniqueness and WC reliability. We chose the WC because in key 

generation and device authentication we are more interested in the worst case uniqueness 

and reliability. These properties are explained here, 

Uniformity of a PUF estimates how uniform the proportion of ‘0’s and ‘1’s are in the PUF 

response of a device. It is calculated using equation 25, 

Uniformity (i) =
1

L
 ∑ri,l  × 100%

L

l=1

                      (25) 
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Where ri,l is the lth binary bit in the response of a chip i. Response of each device is L bits. 

Average uniformity of N devices is shown in equation 26. The optimal value is 50% for a 

set of N devices. 

Avg Uniformity =
1

N
 ∑Uniformity (i)

N

i=1

           (26) 

The best among five schemes in terms of Average Uniformity is based on equation 27. 

Best scheme =  Mins=1
5 |(|50% − 𝐴𝑣𝑔 𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦(𝑠)|)   (27) 

Worst case uniqueness is equal to minimum relative Hamming Distance between the 

response R(i) and response R(j), as well as between R(i) and complement of R(j). It is 

determined by looking at all pairs of responses from devices i and j. Its optimal value is 

equal to 50%. It is calculated at the room temperature and nominal voltage. It is defined as, 

WC Uniqueness = Mini=1,j=i+1
i=N−1,j=N

(
Min(HD(Ri, Rj), L − HD(Ri, Rj))

L
) ∗ 100%  (28) 

Where L is the length of response bits. Ri and Rj are the responses of two FPGA devices. 

To determine the best scheme we chose the one that has the highest WC uniqueness. 

The worst case reliability is calculated using the following equation, 

WC Reliability = Mini=1
N

(

  
 
1 −

𝐶
Max
𝑐 = 0

 HD(Ri, Ri,C)

L
 

)

  
 
∗ 100%          (29) 

It describes how close to the 100% reproduction of the PUF bits a given scheme is getting 

in the worst case. Optimal value is equal to 100%. In equation 29, HD is the hamming 

distance. Ri is the response of device i at the nominal condition. Ri,c is the response of 

device i in the field. L is response size in bits and C is the total number of conditions applied 
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in the field. The best scheme in terms of WC reliability is the one that has the highest value 

for equation 29. Overall, we used the following equation to determine the optimum 

parameters: 

𝑍 = 𝑀𝑎𝑥{50%− 𝐴𝑣𝑔 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦, 50%−𝑊𝐶 𝑢𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠, 100%−𝑊𝐶 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦}     (30) 

We choose the parameter for any dataset which gives the smallest value for Z according to 

equation 30. These parameters are shown in Tables 21 to 23. 

The input to PUF-ID generating scripts is in the chip-row format. In this format the rows 

contain the data for a particular device while the columns contain the M components. This 

format is shown in Fig. 58, 

 

Chip # 1

Chip # 2

Chip # N

Components

C0 C1 CM-1

 

Fig. 58. Data input format for PUF-ID generating scripts 

 

 

‘Comma separated values’ (CSV) format has been used to store the input data. Only one 

value is stored in the input file per component. It is done by taking the median of all the 
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samples per component. The output of PUF-ID generating scripts is stored in the text (.txt) 

format. It consists of 1’s and 0’s. The same text files are then input to the evaluation scripts. 

The result of evaluation script is then stored in a separate text file. 

7.5. Results 

In order to generate same number of PUF response bits using different schemes. We chose 

the PUF response size of 128 bits. It is due to the fact that Pairwise Comparison (PC) 

generates only 128 bits using all the 256 components of SR_latch data. 

 

 

Table 20. Details of dataset. 

 CNC PC BLG S-ArbRO-2 Id-Map 

Parameters   
Set size = 

16  
K= 2 t=2 

PUF Response length (L) 128 128 128 128 128 

Min Components Required (M) 129 256 48 24 17 

PUF Response (L) M-1 ⌊M/2⌋ (M/S)∗Ls
† (

M

K
) ∗ 2k−1 (

M

t
) 

† For S = 16, L
s
=49 

 

 

 

a. Zynq Data set 

Total devices = 10, Total Components per device = 256 

 

Table 21. Zynq data. 

 CNC PC BLG 
S-ArbRO-

2 
Id-Map 

Parameters   
Set size 

=16 
K = 2 

e=0.5, 

q = 2, 

t=2 

Inter-chip HD Mean 49.02% 49.87% 46.64% 50.46% 50.14% 

Inter-chip HD Min 38.28% 42.19% 36.72% 29.69% 39.84% 

Inter-chip HD Max 57.03% 58.59% 53.91% 71.88% 58.59% 

Inter-chip HD Std Dev 4.48% 3.36% 3.8% 10.28% 4.37% 

WC Uniqueness 38.28% 41.41% 36.72% 28.12% 39.84% 

Avg Uniformity 46.87% 46.79% 47.89% 54.14% 47.34% 

Std Dev Uniformity 1.39% 4.49% 4.58% 10.19% 12.44% 
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b. Spartan-6 Data set 

Total devices = 25, Components per device = 256 

 

Table 22. Spartan-6 Data. 

 CNC PC BLG 
S-

ArbRO-2 
Id-Map 

Parameters   
Set size 

=16 
K = 2 

e=0.5, 

q = 1, t=2 

Inter-chip HD Mean 49.36% 49.25% 46.12% 49.77% 46.37% 

Inter-chip HD Min 35.16% 33.59% 32.81% 25.78% 34.38% 

Inter-chip HD Max 63.28% 60.16% 59.38% 83.59% 62.5% 

Inter-chip HD Std Dev 5.2% 4.45% 4.34% 10.41% 4.82% 

WC Uniqueness 35.16% 33.59% 32.81% 16.41% 34.38% 

Avg Uniformity 44.03% 44.71% 44.65% 52.96% 63.68% 

Std Dev Uniformity 1.95% 4.52% 4.24% 8.63% 6.41% 

 

 

c. Spartan-3 Data set 

Total devices = 193, Components per device = 512 

 

Table 23. Spartan-3 data set. 

 CNC PC BLG 
S-

ArbRO-2 
Id-Map 

Parameters   
Set size 

=16 
K=2 

e=0.5, 

q = 30, 

t=2 

Inter-chip HD Mean 46.83% 46.61% 45.85% 46.13% 48.76% 

Inter-chip HD Min 28.91% 30.47% 26.56% 13.28% 24.22% 

Inter-chip HD Max 65.63% 62.5% 66.41% 83.59% 64.84% 

Inter-chip HD Std Dev 4.86% 4.45% 4.76% 10.2% 4.47% 

WC Uniqueness 28.91% 30.47% 26.56% 13.28% 24.22% 

Avg Uniformity 49.86% 52.25% 47.70% 50.24% 57.80% 

Std Dev Uniformity 2.53% 4.58% 6.70% 9.39% 4.96% 

 

 

From Table 21, 22 and 23, it is evident that the best scheme in terms of WC uniqueness is 

PC for both Zynq and Spartan-3 datasets. However for Spartan-6 data it is the CNC scheme 
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that generates the best results. Similarly for Average uniformity the best results are offered 

by BLG in Zynq dataset and S-ArbRO-2 in both Spartan-6 and Spartan-3 datasets. 

Tables 24-28 shows the worse case reliability as defined in equation (29). Spartan-3 data 

set contains voltage and temperature data for only five devices. Similarly Zynq data set 

contains voltage and temperature data for ten devices. Additionally the Spartan-6 data set 

contains voltage and temperature data for fifteen devices. The nominal voltage of Zynq 

devices is 1V on the other hand it is 1.2V for both Spartan-6 and Spartan-3 devices. 

 

 

 

Table 24. Comparing the neighboring components (CNC). 

 Zynq Spartan-6 Spartan-3 

PUF Type SR-Latch SR-Latch RO-PUF 

No. of devices tested 10 15 5 

Rel @ +5% V 93.75% 99.21% 87.50% (+10%V) 

Rel @ -5% V 93.75% 95.31% 91.40% (-10%V) 

Rel @ 85°C 91.40% 94.53% 95.31% (+65°C) 

Rel @ 0°C 94.53% 96.87% N/A 

 

 

 

Table 25. Pairwise Comparison (PC). 

 Zynq Spartan-6 Spartan-3 

Rel @ +5%V 93.75% 97.65% 91.40% (+10%V) 

Rel @ -5%V 93.75% 96.09% 92.96% (-10%V) 

Rel @ 85°C 89.84% 96.09% 92.96%(+65°C) 

Rel @ 0°C 94.53% 96.09% N/A 
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BLG encoding: Set size (S) = 16, M=48, PUF response size = (M/S) ∙ 49  

Table 26. Binary Lehmar-Gray (BLG) encoding. 

 Zynq Spartan-6 Spartan-3 

Rel @ +5% V 86.71% 94.57% 83.59% (+10%V) 

Rel @ -5% V 85.93% 90.62% 84.37% (-10%V) 

Rel @ 85°C 78.9% 85.93% 90.62% (+65°C) 

Rel @ 0°C 89.84% 92.18% N/A 

 

 

S-ArbRO-2: Parameter K = 2 , Elements = M/2 

Table 27. S-ArbRO-2 scheme. 

 Zynq Spartan-6 Spartan-3 

Rel @ +5% V 92.18% 96.87% 48.14%(+10%V) 

Rel @ -5% V 92.96% 96.09% 38.2% (-10%V) 

Rel @ 85°C 83.59% 89.06% 39.06%(+65°C) 

Rel @ 0 °C 92.96% 93.75% N/A 

 

 

Identity Mapping: Parameters, e=0.5, t = 2 

From Table 24-28, the best scheme in terms of worst case reliability is CNC for Zynq, PC 

for Spartan-6 and Id-Map for Spartan-3 datasets. The bold values shown in each column 

shows the minimum value. For any dataset the best scheme is chosen that results in the 

highest bold value 

 

Table 28. Identity Mapping scheme. 

 Zynq Spartan-6 Spartan-3 

Parameter chosen q=2 q=1 q=30 

Rel @ +5% V 75.81% 89.84% 94.53% (+10%V) 

Rel @ -5% V 91.4% 85.93% 92.96% (-10%V) 

Rel @ 85 °C 64.84% 89.84% 97.65%(+65°C) 

Rel @ 0 °C 92.18% 90.62% N/A 
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The worst result is offered by S-ArbRO-2 for Spartan-3 dataset. It might be due to the fact 

that certain ROs are affected more by voltage and temperature variation than others. In S-

ArbRO-2 if the sign of the elements change in the field. Then it results in a bit flip, hence 

low reliability. 

7.6. Conclusion and Future work 

 From this work we conclude that PUF responses should be generated using multiple 

schemes to determine the uniformity and worst cases of uniqueness and reliability. S-

ArbRO-2, Lehmer-Gray and Identity mapping offers the ability to use less number of 

components for PUF design; however the CRPs are no longer independent. Additionally 

the effect of systematic variation is not taken into account when Identity mapping is used, 

especially for RO-PUF. BLG scheme offers the best results in terms of uniformity in Zynq, 

however it is the S-ArbRO-2 scheme that generates the best uniformity results for both 

Spartan-3 and Spartan-6 datasets. In case of uniqueness PC scheme offers best results for 

both Zynq and Spartan-3 datasets, however it is the most expensive scheme in terms of 

area. In case of Reliability we have no winner as three different schemes offer the best 

results for three data sets. In the future we intend to enhance the scope of our method by 

including the Arbiter PUF data set [79] in our analysis.  
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Appendix 

 

 

 

Configurations based comparison 

In [34], a scheme based on the configurations of RO is developed. In this scheme eight 

configurations are used for each RO as shown in Fig. 59. Each configuration results into a 

different RO frequency. The difference between frequencies (∆f1, ∆f2, ∆f3….∆f8) of two 

neighboring ROs is chosen based on the highest absolute difference in frequency among a 

set of eight values. This scheme is intended for improving the reliability of PUF. If the 

difference between two ROs is very high then the chance of a bit flip reduces due to noise 

in the field. 

 

 

 

Figure 59: Selection of the RO-pair with the maximum frequency difference 

between two configurable ROs. 
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Pseudo code: 

i = 0 

While (i < N-1) 

 j =0 

 Max = │f[i][j] - f[i+1][j]│ 

 While (j<8) 

  If(│f[i][j] - f[i+1][j]│ > Max) 

   Max = │f[i][j] - f[i+1][j]│ 

   Index_Max = j 

  j = j + 1 

 If(f[i][ Index_Max] > f[i+1][ Index_Max]) 

  Response[i] = 1 

 Else 

  Response[i] = 0 

  

 i = i + 1 

 

In the above pseudo code, f[i][j] represents a frequency of ring oscillator i with 

configuration j selected. For N, ROs the total number of bits generated are N-1. 
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8. Research Contributions 

 

 

 

My research primarily focused on three areas of PUF. These areas are shown below in Fig. 

60.  

 

Robustness

Efficiency

Portability

Reliable

Unique

Stable

Uniform

Area

Power

Time

Spartan-3e

Spartan-6

Artix-7
 

Figure 60: Dimensions of my proposed research 

 

As evident from Fig. 60, the three main areas are: Robustness, Efficiency and Portability. 

All three are critical for the quality of PUF. For instance, if a PUF is very robust from 
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reliability point of view and portable to a large number of devices but very inefficient from 

cost point of view, then it will not be regarded as an attractive design. We have to integrate 

all three dimensions while developing a PUF based system. Ignoring any one of them will 

seriously affect the quality of PUF. To comprehensively cover the PUF space we developed 

two new types of PUFs. One is memory based and the other is delay based PUF. In the 

memory based PUF we developed a new SR-Latch design. Similarly, in the delay based 

PUF we developed a new RO-PUF design. Both designs are summarized in section 8.1 and 

8.2 respectively. The dimensions of PUF space namely Robustness, Efficiency and 

Portability are covered in section 8.3 to 8.5. 

8.1. Development of new SR-Latch PUF 

The state of the art SR-Latch PUF [44, 53] is very expensive from area point of view. It 

requires 2 CLBs of an FPGA to generate a single bit of PUF response. It is prone to the 

affect of nearby logic. Thus the reliability of PUF bit is severely affected if the tool 

configures the same CLB with external logic. Our design approach is based on determining 

the length of metastable state. Our design of SR-Latch is shown below in Fig. 61, 
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FF LUT

Counter

8

clock

reset

 

Figure 61: Single SR-Latch design 

 

 

In the above figure SR-Latch is made from two NAND gates. The rising edge of a ‘ctrl’ 

signal creates a metastable state. During the metastable state, oscillations are generated by 

the latch and the counter counts it. The duration of metastable state of a latch is based on 

the inherent manufacturing variation. Thus entropy harvested is based on the 

manufacturing variation. The assertion of a ‘reset’ signal before the rising ‘ctrl’ signal 

ensures that the latch is always initialized from the same initial condition. Strong latches 

are selected for bit generation, the remaining latches are discarded. A latch is regarded as 

a strong one, if it repeats for the same duration of oscillation during metastable state. Once 

strong latches are determined, then PUF response bits are generated by comparing the 

number of oscillations of strong latches. 

To achieve area efficiency we configured four latches per CLB of an FPGA as shown 

below, 
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SliceM or SliceL SliceX

CLB

FFLUT

L2

L1

L3

L4

 

Figure 62: Placement of four SR-Latches in a Xilinx CLB 

 

 

With this design we utilized all the LUTs available inside a CLB, thus achieving a 100% 

LUT efficiency. We configured 512 latches, which required 128 CLBs. Below are the 

advantages of our design, we compare it with the state of the art design [53]. 
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Table 29: Advantages of our SR-Latch design. 

 Our SR-Latch Design SR-Latch [53] 

Reliability @ 1.20V   99.50%   99.14%   

Reliability @ 1.14V     97.54%   94.70% 

Reliability @ 1.26V   98.67%   95.20%   

Uniqueness   49.24%   49% 

Total latches configured 512 128 

Total CLBs used for PUF 128 256 

Response bit length 256 256 

Latch/#CLB 4 0.5 

Response bits/#CLB 2 1 

Response bits entropy 221 167.9 

Response bits 

entropy/#CLB 
1.72 0.65 

 

 

 

Below the major differences have been listed between our design and the designs presented 

for SR-latch PUF in literature. 

 

 

 

Table 30: Major difference between our design and other designs 

 Our design Other designs 

Source of Entropy 
The duration of metastable 

state is used. 

In [53], the final state of the 

latch after the is used as a 

source of entropy. 

In [54], the randomness is 

harvested by measuring the 
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metastability counts. Final 

bits are generated by 

averaging the metastability 

counts and then reading the 

most significant two (or 

four) bits. In order to assure 

the reproducibility of these 

bits, each latch count is 

measured 218 times. 

Configuration Area 
4 latches configured per 

CLB 

In [53], a single latch is 

configured per pair of CLB. 

Encoding Method 

PUF response is ‘1’ if the 

counts of a strong latch L1 

is greater than another 

strong Latch L2 counts. 

Otherwise it will be ‘0’. 

If the final state of the latch 

is logic ‘0’, the 

corresponding response bits 

are ‘00’. If the final state is 

logic ‘1’, the corresponding 

response bits are ‘11’. 

Otherwise it is “10”. 

Selection of Latches for 

PUF response generation 

Only strong latches are 

used in PUF response 

generation. Strong latches 

are highly repeatable. 

In [53], all latches are used. 

If latch is not repeatable 

then it is regarded as 

random and encoded as 

“10”. 

Influence of neighboring 

logic. 

No external logic can 

influence the counts of a 

latch during metastablitiy. 

In [53], the external logic 

can be configured inside the 

latch CLB. Therefore, it can 

affect the counts or the final 

state of the latch. 

 

 

In depth details of SR-Latch PUF has been covered in chapter 5. 

8.2. Development of new RO-PUF 

We developed a novel FPGA friendly Ring Oscillator (RO) based Physical Unclonable 

Function (PUF). In this design the internal variations of FPGA Look-Up Tables are 

exploited to generate a PUF response. Statistical tests were performed to study the strength 
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of this PUF. Moreover, stability is compared with the state of the art reported in literature 

to date. Our design has been tested on 31 Spartan-3e devices and the results are promising 

with the uniqueness measure of 48.3%, Uniformity 50.13%, Bit-aliasing 51.8% and 

Steadiness 99.5%. Furthermore, we also analyzed the frequencies to extract the random 

variation offered by our design. 

Below is our design, 

 

 

 

Figure 63: Programmable Ring Oscillator (RO) along with the control 
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In our design each RO is made from a single AND gate and three inverters. It uses one 

LUT for an AND gate and three LUTs for inverters. We used one LUT-input to connect in 

a ring, while the remaining LUT-inputs are varied in order to generate programmable 

delays, as shown in Fig. 63. In Fig. 63, three inverter LUTs in a ring are connected to three 

delay lines each, while the remaining LUT is tied to two lines. Because we wanted to 

analyze the maximum effect of delay lines on the ring oscillator frequency, therefore we 

connected all free LUT inputs to our programmable delay controller. Below are the 

advantages of our design, we compare it with the state of the art design [34].  

 

 

Table 31: Major difference between our RO-PUF design and other designs 

 Our RO-PUF design Other designs 

Source of Entropy 

The frequency of RO varies 

due to the programmable delay 

lines. This variation can be 

harvested to generate more 

than one bit per RO. 

In [34], multiplexers are 

used to determine the most 

stable configuration. Each 

RO has different frequency 

due to manufacturing 

variation.  

Bits generated per RO 2.17 bits/RO 1 bit/RO in [34]. 
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Effect of routing delays 

Our path outside the LUT is 

constant for all the 

configurations.  

In [34], different path is 

chosen for each 

configuration.  

Bit encoding 

Since there are 8 

configurations possible for 

each RO. If two neighboring 

ROs crosses, then 8 bits are 

encoded otherwise only 1 bit is 

added to the PUF response. All 

the configurations where the 

Δf<150KHz, are discarded. 

The frequency of each RO 

is compared with its 

neighbor. Hence, a single 

bit is generated per pair of 

ROs. For a pair of ROs, the 

frequency chosen is based 

on the largest Δf between 

two ROs.  

 

 

 

Regarding our new PUF designs we describe the dimensions of PUF space covered in my 

research as follows, 

8.3. Robustness 

Robustness deals with the ability of the PUF to exhibit ‘reliable’, ‘unique’ and ‘uniform’ 

responses. In our experiments, we compared our results with the state of the art.  



147 

 

We developed a reliable and efficient SR-latch PUF in this work and compared the results 

to the state of the art implementation. A novel method of mode calculation is used to 

determine strong latches. The derived design has been verified on 25 Xilinx Spartan-6 

FPGAs (XC6SLX16) and 10 Xilinx Zynq SoC (XC7Z010) devices. The uniqueness is 

close to the ideal value of 50%. In case of Spartan-6 devices it is 49.24%. Similarly, the 

uniqueness measure for Zynq devices is 49.87%. The PUF responses exhibit high 

resistance to temperature and voltage variations. For this purpose, the design has been 

tested at ± 5% of core voltage and also over the commercial temperature range [0-85°C]. 

For Spartan-6 devices the reliability at +5% of nominal voltage is 98.67%, while at -5% of 

nominal voltage it is 97.54%. At both voltages it is more reliable than the start of the art. 

For Zynq devices the reliability is 94.68% at -5% of nominal voltage and 95.39% at +5% 

of nominal voltage. We also did the entropy analysis. We calculated bit-dependent bias 

entropy bound based on PUF responses of 25 Spartan-6 FPGAs. This entropy bound 

appeared to be equal to 0.959 or 95.9%. Similarly, the pairwise joint distribution entropy 

bound is equal to 0.866 or 86.6%. We proposed two error correcting schemes for our PUF 

design. It was shown that the bit flips at extreme voltage and temperature were in the range 

of our proposed error correction schemes. 

8.4. Portability 

Portability of PUF design means that different FPGA devices can be configured with the 

same design. These devices may belong to different FPGA vendors. Similarly devices may 

belong to same vendor but different families. Lastly devices may belong to the same family 
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of a particular vendor. These three types of portability can be explained with the following 

figure, 

PUF Design

Vendor-1 Vendor-2

Family-A Family-B Family-C

Device-YDevice-XDevice-W Device-Z

 

Figure 64: Three types of portability  

 

 

As shown above in Fig. 64, the three types of portability are, 

1) Intra-Family portability 

In this case devices belong to the same family of a particular vendor. As shown above XY 

shows this type of portability.  

2) Inter-Family portability 

In this case devices belong to two different families of a particular vendor. As shown above 

WX shows this type of portability. Two families of Xilinx were chosen for this experiment. 
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The device specific information was generated using python scripts. Below a VHDL code 

is shown, 

Latches_gen: FOR i in 0 to N-1 GENERATE 

SR_latch_gen: SR_latch generic map(top_slice=>slice_array_top(i),  bottom_slice=> 

slice_array_bottom(i))     

port map(clk=>clk, ff_in=> ff_in(i∙4), CE=>CE, CLR=> CLR , Q_out=> ring_osc(i∙4) 

); 

END GENERATE; 

In the above code SR-latches are instantiated for SR-Latch PUF. The placement of latches 

is based on the top_slice and bottom_slice parameters. To make the code portable, the 

slice locations are generated using python script as shown below in a VHDL code, 

constant N : integer := 128; 

type slice_locations is array(0 to N-1) of string(1 to 12);  

constant slice_array_top    : slice_locations := ("SLICE_X13Y0 ",… "SLICE_X23Y63");  

constant slice_array_bottom : slice_locations := ("SLICE_X12Y0 ",… "SLICE_X22Y63"); 

All the elements of ‘slice_array_top’ and ‘slice_array_bottom’ are generated using python 

scripts. 

3) Inter-Vendor portability 

In this case devices belong to two different vendors namely Xilinx and Altera. According 

to Fig. 64, YZ shows this type of portability. Zynq devices from Xilinx and Cyclone 
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devices from Altera were selected for this experiment. Both families are based on 28nm 

technology. Additionally both have dual core ARM hard cores.  

Ideally we planned to develop a vendor independent IP and then add the placement 

constraints as shown below in Fig. 65, 

 

 

Vendor Independent 

IP

Fitter/Placement

Constraints

Synthesis

Place & Route

FPGA

 

Figure 65: Ideal portability directed towards FPGA devices 
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In the above figure a Fitter and Placement constraints are different for each vendor. 

However, the vendor independent IP cannot be developed for SR-Latch PUF due to the 

following reasons, 

A. Devices from both vendors are significantly different at the lower logic level. 

Below is an explanation of both devices, 

 

 

Figure 66: High level block diagram of Adaptive Logic Module (ALM) in Cyclone V 

[81] 

 

 

As shown above in Fig. 66, Cyclone V devices have 8-input LUT and 4 FFs inside each 

ALM. There are ten ALMs inside each LAB (Logic Array Block). Detailed diagram of an 

ALM is shown below Fig. 67, 



152 

 

 

Figure 67: Detailed diagram of an ALM in Cyclone V devices 

 

 

As shown above in Fig. 67, F0,F1..F3 constitute the Adaptive LUT. Inside each ALM there 

is a pair of 4-input LUTs and two pairs of 3-input LUTs. Altera calls it a fracturable LUT. 

It can implement a single 6-input function, a combo of [5-input, 3-input] functions and 

finally a pair of 4-input functions. The vendor claims that it is more efficient than a single 

6-input LUT offered by Xilinx. Altera ALMs are described in [80]. 

 On the other hand the slice of Zynq devices has four 6-input LUTs as shown below in Fig. 

68, 
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Figure 68: High level block diagram of Zynq slice 

 

 

Each CLB (Configurable Logic Block) has two such slices. In case of SR-Latch we need two LUTs 

and two flip flops. These components are highlighted in red color as shown in Fig. 69, 
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Figure 69: Detailed functional diagram of sliceL in Zynq devices 
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As evident from the above figures the LUTs are very different for both vendors. 

Additionally, we need different approaches to configure the same type of design in each 

vendor. 

B. Below in table 32, we show the primitives required for each vendor to configure an 

SR-Latch. 

 

Table 32: Primitives used for SR-Latch design 

Altera Xilinx 

DFF primitive is used for instantiation of a flip flop. FDCE primitive is used for instantiation of a flip 

flop. 

LCELL primitive is used for LUT instantiation. LUT6 is used to instantiate a 6-input LUT. 

 

 

 

Table 33: Functionality of Altera DFF primitive 

PRn CLRn Clk Din Qout Comment 

1 1  D D 
Normal 

Operation 

X 0 X X 0 Clear state 

0 1 X X 1 Pre-Set 
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Table 34: Functionality of Xilinx FDCE primitive 

CE CLR Clk Din Qout Comment 

1 0  D D 
Normal 

Operation 

X 1 X X 0 Clear state 

0 0 X X No Change  

CE = Clock Enable 

 

 

Since we use the flip-flop components only for normal operation and clear states, therefore 

we can connect the CE input pin to PRn in Altera. Similarly CLR is inverted and tied to 

CLRn. Thus we can achieve a limited portability of flip-flop primitives in both vendors. 

As shown in the table above, the FF primitives can be made portable with an inverted 

‘clock enable’ input. However, the LUT primitive are inherently different for both vendors. 

Additionally, the placement of primitives in Altera is achieved by modifying the Quartus 

Setting File (.qsf), as shown below 

set_location_assignment FF_X4_Y1_N13 -to Latch_0|FF_top 

set_location_assignment LABCELL_X4_Y1_N12 -to Latch_0|q 

set_location_assignment LABCELL_X4_Y1_N18 -to Latch_0|q_not 

set_location_assignment FF_X4_Y1_N19 -to Latch_0|FF_bottom 

The placement of components is different from Xilinx.  
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We implemented a 512 component SR-Latch PUF on cyclone V. Only 8.2% latches 

showed any sign of metastability. The reason for this low percentage is due to the very 

small propagation delay of cyclone LUT [82] as compared to Xilinx LUT. As shown below 

in Fig 70, 

 

Cyclone LUT Delay

1 Logic Level

Spartan LUT Delay

1 Logic Level
  

Figure 70: Propagation delay of Cyclone vs Spartan LUTs 

 

 

Due to the very small propagation delay of LUTs, the SR-Latch does not oscillate as 

explained in [83].  

 In case of intra-vendor portability the only difference is the placement of components on 

different FPGAs. We proved that by generating the placement parameters and using a 

generic VHDL code, we can easily achieve the said types of portability. However, in case 

of inter-vendor portability, the devices were very different at the lower logic level. We 
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highlighted the difference and described the challenges we face in this experiment. The 

goal of this study was to determine the challenges faced to achieve the three types of 

portability. As we explained the Vendor-Independent IP cannot be developed for SR-Latch. 

However, we were able to demonstrate the inter-family and intra-family portability. 

8.5. Efficiency 

Efficiency deals with the area consumption of the design, the total power consumed by it 

and finally the time to calculate the PUF response.  

Actual Power is equal to the power consumed by the FPGA device during the generation 

of PUF response bits. Area is calculated by the tool and this information can be easily 

extracted from the mapping report generated by tools. It is determined in terms of slice 

counts in FPGAs. Characterization time for RO PUF is calculated from the following 

equation, 

The total characterization time = (# of components  ∙ enable_time)/ (board_frequency) 

Where enable_time is the duration in which each component is allowed to run freely.  

Changing the efficiency metrics severely affects the quality of PUF. For example, in order 

to save the PUF area, if two rings oscillators are implemented inside a single CLB 

(Configurable Logic Block). Then due to the proximity of a neighboring ring, the frequency 

of two rings might lock with each other. It means that two rings will oscillate with same 

frequency. Similarly, in order to generate the PUF response quicker, if the characterization 
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time of a ring is reduced, then the frequency of rings is severely affected. It will result into 

a very unreliable PUF response bit. 

In case of SR-latch PUF when external logic is allowed to configure the latch CLB then 

the number of counts are badly affected by the external logic. It implies that care need to 

be taken while reducing the area of a SR-latch PUF.  

We developed SR-Latch PUF that is 2x smaller and is more reliable than the state of the 

art design. To conserve less power, we enable the PUF components only when the PUF-

ID is required. There are no free running, ROs or SR-Latches. Our design generates the 

PUF-ID in a reasonable time of ~5sec. 
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Table 35: Power consumption of PUF (mWatt) 

 Spartan-6 Zynq Cyclone V Spartan-3e 

SR-Latch PUF 

20 

1669 

1569(PS7) 

100(PL) 

423.6(PL) X 

RO-PUF X X X 34 

PL=Programmable Logic, PS7= Processing System 

 

 

Table 36: Total Area consumption of PUF (slices) 

 Spartan-6 Zynq Cyclone V Spartan-3e 

SR-Latch PUF 601 674 2785 (ALMs) X 

RO-PUF X X X 727 

 

 

 

The figures in table 36, shows the total area consumed. It includes the logic area required 

for control unit and all the components in a PUF. It is surprising that the Xilinx tool reports 
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higher slice count for Zynq device as compared to Spartan-6. In both cases, it is the same 

design for SR-Latch PUF. 

8.6. List of Contribution 

· Design of a novel SR-Latch PUF for FPGAs. 

· SR-Latch PUF is 2x smaller in area than the state of art. 

· SR-Latch PUF is more reliable than the state of art. 

· SR-Latch uniqueness measure is comparable to the state of the art. 

· Validated on Spartan-6 and Zynq FPGAs. 

· Design of a novel RO-PUF for FPGAs. 

· Due to the programmable nature of our RO-PUF, we can generate 2x more bits than 

the traditional RO-PUF. It implies our PUF requires less chip area to generate the 

same number of PUF response bits. 

· The uniqueness and uniformity measures of our RO-PUF responses are comparable 

to the ideal case. 

· The design has been validated on Spartan-3 FPGAs. 

· Frequency analysis of RO components. 

· Determination of systematic and manufacturing variations. 

· Implementation and evaluation of PUF architectures on multiple FPGA and SoC 

platforms. 

· Characterization of SR-Latch PUF over 10 Zynq devices and 25 Spartan-6 devices. 

· Characterization of RO-PUF over 31 Spartan-3 devices. 
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· Comprehensive analysis of PUF response generation schemes. 

· Development of post processing schemes and their software implementations for 

analysis and evaluation of various PUF designs. 

· Evaluation of the PUF for ‘Key generation’ application. 

· Selection and integration of the most suitable error correcting schemes. 

· Development of a final product that generates the PUF response and does all 

calculations on-chip in real time. 
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9. Conclusions and future work 

 

 

 

We developed a novel SR-latch PUF in this work and compared the results to 

the state of the art implementation. The latch is designed to keep the effect of 

routing at minimum and extract the randomness at the same time. Strong and 

stable latches are selected in this method during enrolment. A novel method of 

mode calculation is used to determine strong latches. From the circuit efficiency 

point of view, the proposed design is two times more efficient than the state of 

the art. The derived design has been verified on 25 Xilinx Spartan-6 FPGAs 

(XC6SLX16) and 10 Xilinx Zynq SoC (XC7Z010) devices. The uniqueness is 

close to the ideal value of 50%. In case of Spartan-6 devices it is 49.24%. 

Similarly, the uniqueness measure for Zynq devices is 49.87%. The PUF 

responses exhibit high resistance to temperature and voltage variations. For this 

purpose the design has been tested at ± 5% of core voltage and also over the 

commercial temperature range [0-85°C]. For Spartan-6 devices the reliability 

at +5% of nominal voltage is 98.67%, while at -5% of nominal voltage it is 

97.54%. At both voltages it is more reliable than the start of the art. For Zynq 

devices the reliability is 94.68% at -5% of nominal voltage and 95.39% at +5% 

of nominal voltage. We also did the entropy analysis. We calculated bit-
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dependent bias entropy bound based on PUF responses of 25 Spartan-6 FPGAs. 

This entropy bound appeared to be equal to 0.959 or 95.9%. Similarly, the 

pairwise joint distribution entropy bound is equal to 0.866 or 86.6%. We 

proposed two error correcting schemes for our PUF design. It was shown that 

the bit flips at extreme voltage and temperature were in the range of our 

proposed error correction schemes. 

Additionally we developed a new RO based PUF. In this PUF, the 

programmable delays of FPGA LUTs were used to generate additional bits of 

an ID. The strength of this design is its ability to generate more than one random 

frequency per ring oscillator without changing the path of the ring outside 

LUTs. This solution offers the option to reduce the area requirements of ring 

oscillator PUFs. To demonstrate the strength of this PUF, it was shown that our 

design generated more bits per ring oscillator, and these bits are as strong as the 

ones reported in literature for Configurable Ring Oscillators. The statistical and 

PUF properties were analyzed and were shown to be very strong from a security 

point of view.  

Apart from developing new and efficient PUF designs, we developed a coherent 

method to generate PUF responses using five different schemes. We developed 

a software tool for this purpose. Moreover, the tool is capable to analyze the 

PUF responses and determine the quality of PUF responses using different 

metrics. From this work we concluded that PUF responses should be generated 

using multiple schemes to determine the uniformity and worst cases of 
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uniqueness and reliability. S-ArbRO-2, Lehmer-Gray and Identity mapping 

offers the ability to use less number of components for PUF design; however 

the CRPs are no longer independent. Additionally the effect of systematic 

variation is not taken into account when Identity mapping is used, especially 

for RO-PUF. BLG scheme offers the best results in terms of uniformity in Zynq, 

however it is the S-ArbRO-2 scheme that generates the best uniformity results 

for both Spartan-3 and Spartan-6 datasets. In case of uniqueness PC scheme 

offers best results for both Zynq and Spartan-3 datasets, however it is the most 

expensive scheme in terms of area. In case of Reliability we have no winner as 

three different schemes offer the best results for three data sets. Lastly, we 

developed new metrics to determine the quality of PUF responses. These 

metrics were based on the worst case Uniqueness and worst case Reliability.  

In the future we intend to enhance the scope of our method by including the 

Arbiter PUF data set [79] in our analysis. Similarly we also intend to carryout 

the entropy analysis of PUF responses. It will include calculating the average 

binary entropy, worse case Entropy and Joint Pairwise entropy. 
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B. Course Work in PhD program  

· ECE 545 - Digital System Design with VHDL - Fall 2009 

· ECE 645 - Computer Arithmetic - Spring 2010 

· ECE 681 - VLSI Design for ASICs - Fall 2010 

· ECE 511 - Microprocessors - Fall 2010 

· ECE 646 - Cryptography and Computer Network Security - Fall 2010 

· ECE 682 - VLSI Test Concepts - Spring 2011 

· ECE 746 - Advanced Applied Cryptography - Spring 2011 

· ECE 899 - Cryptographic Engineering - Spring 2012 

· CS 659  - Theory and Applications of Data Mining - Spring 2013 

· CEIE 894 - Design and Inventive Engineering - Fall 2013 
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