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Chenyang Xu, PhD 
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Dissertation Director: Dr. John J. Qu 

 

 

Land surface is of vital importance in the energy exchange within ecosystems and 

plays a key role in regulating the long-term effects of climate change. Earth observing 

platforms, including satellite techniques, have been widely applied to large-scale land 

surface properties, climate, and ecosystem monitoring. Remote sensing can provide 

global spatial and temporal continuous measurements with good resolution compare 

with traditional ground-based measurements. The availability of high-quality satellite 

products in the past fifty years has enhanced the study of monitoring carbon stocks in 

the soil and carbon dioxide flux from the soil due to climate change. Regional carbon 

flux monitoring is helpful not only in natural disaster monitoring and forecasting, but 

also in regional climate related studies.  

In this dissertation, I target the following key issues: 1) estimation of land surface 

water content (vegetation water content, soil water content) with both high spatial and 

temporal resolutions through combining multi-sources satellite observations with a 

machine learning based downscaling model; 2) measurement of surface soil 

temperature in forestry regions; and 3) application of the satellite-derived high 



 

 

 

resolution land surface measurements to carbon dioxide flux monitoring through the 

building of semi-empirical models integrating ground-truth observations.  

There were three study areas in this dissertation: 1) one of the main U.S. agricultural 

areas in Iowa, 2) the Great Dismal Swamp wildlife refuge in the U.S., and 3) the 

Central Tibetan Plateau in China. Field experiments were conducted in the three study 

areas, collecting ground-truth measurements of soil moisture, soil temperature at 

various depth, carbon dioxide (CO2) flux from soil, and other related land surface 

properties. These in-situ measurements are used for model testing, training, 

calibration and validation. This dissertation presents three scientific areas of work: 1) 

a novel algorithm is proposed to monitor bare soil’s water content and the water 

content of soil with vegetation cover at high resolutions by combining an improved 

downscaling model, vegetation water content retrieval model, the universal triangle 

model and water cloud model integrating microwave and optical remote sensing 

techniques; 2) surface soil temperature within a forestry region is monitored through 

thermal/ optical satellite sensors, considering the annual variation of air temperature, 

land surface temperature, soil temperature and vegetation index. (A key point to 

emphasize is the success of the application of thermal/ optical observations within 

forestry regions can improve the resolution of monitoring results compared with 

microwave measurements used in previous ways.); 3) a semi-empirical model 

monitoring soil carbon flux is built, based on the theory of the close relationship 

between soil carbon flux and several soil properties (e.g. soil temperature, soil 

moisture) revealed by ground observations.  

When compared to previous methods, by integrating microwave remote sensing 

techniques with optical/ thermal infrared satellite techniques, the algorithm proposed 



 

 

 

in this dissertation estimates not only land surface properties for bare soil, but also 

monitoring them with various land cover types in three study area with different 

regional climate. By combining multi-source Earth observations, the daily vegetation 

water content, surface soil moisture and surface temperature with high spatial 

resolution can all be obtained. The monitored land surface properties play a 

significant role in retrieving soil carbon flux. This approach of applying remote 

sensing techniques to estimate various land surface properties can be used for regional 

soil temperature, soil moisture and soil carbon flux monitoring in real time.  
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CHAPTER 1 INTRODUCTION 
 

 

 

The land surface plays an important role as the interface within the ecosystem, and it 

has a significant impact on the water and energy exchange, and heat transfer among 

the ecosystem. Land surface properties serve as important factors in regulating energy 

and flux balance between the land and atmosphere. Surface soil moisture and surface 

soil temperature are two of the main land surface properties as discussed in this 

dissertation, both soil moisture and soil temperature contribute to the carbon dioxide 

emissions from soil. In this dissertation, multi-sources satellite products (MODIS, 

Landsat 8, Sentinel 1) were integrated first to generate high quality satellite products 

and collect value information. The fused satellite products were then applied to 

monitor three main land surface properties discussed in this dissertation: surface soil 

moisture, surface soil temperature, and vegetation living conditions. The retrieved 

surface soil moisture, surface soil temperature and vegetation index datasets were 

combined with ground measurements to estimate carbon dioxide emissions from soil.  

 

Currently, in-situ measurement is the most accurate way for land surface properties 

monitoring. However, field experimentation is usually conducted in a short period and 

conducted in a good, representative case study area. Ground-truth observations are 

measured at point-based observing site. Recent studies have shown that remote 

sensing measurements are suitable for various surface soil properties monitoring. 
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There are numerous remote sensing methods for soil temperature and soil moisture 

retrieval based on mainly microwave or optical thermal infrared measurements, but all 

of them have advantages and limitations. High quality soil moisture and soil 

temperature measurements with both good spatial and temporal resolution are needed 

for further permafrost and carbon related studies. 

 

Targeting on these challenges and the advances of big data techniques, this 

dissertation proposes a method for soil moisture and soil temperature monitoring with 

both high spatial and temporal resolutions through combining multi-source earth 

observations such as microwave, optical/ thermal and in-situ observations to generate 

daily surface soil properties at moderate resolution based on the study area and study 

period by combining AMSR-E, SMOS, SMAP, Sentinel 1, MODIS and Landsat 8 

and various ground. The retrieved soil temperature and soil moisture measurements 

were applied to permafrost and ecosystems research combining physical based model 

and machine learning approaches. 

 

1.1 Remote Sensing Methods for Vegetation Water Content 

Monitoring 

The physical definition of vegetation water content (VWC) is volume of water content 

in vegetation (Hunt et al., 2011; Yilmaz et al., 2008). VWC is of vital importance in 

crop yield estimation, agricultural drought monitoring and microwave surface soil 

moisture retrieval (Huete et al., 1994; Gomez-Plaza et al., 2001; Ceccato et al., 2002; 

Kim et al., 2012; Jackson et al., 2004; Njoku et al., 2006; Notarnicola et al., 
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2007).VWC can be classified into leaf, plant and canopy scales (Hunt et al., 2011). 

Leaf VWC, which is also called equivalent water thickness (EWT), is the water mass 

per leaf unit area with units in kilogram per square meter (Ceccato et al., 2001; 

Jacquemoud et al., 2009). Plant VWC is the ratio of water content weight to whole 

plant weight with units in kilogram per plant. It provides key information for 

agricultural applications as inferring water stress for irrigation decision making, yield 

estimation, and assess drought conditions. Canopy VWC is the water mass of 

vegetation per ground area with units in kilogram per square meter. Canopy VWC 

plays a significant role in microwave soil moisture retrieval. Once the VWC can be 

monitored more accurately from satellite observations, soil moisture retrieval through 

microwave observations can be improved (Jackson et al., 2006; Njoku et al., 2006; 

Notarnicola., 2007). In addition, VWC is also useful in forestry to determine fire 

susceptibility for wildland fire risk monitoring (Fensholt and Inge, 2003; Tucker, 

1980; Claudio, 2006). Various studies have investigated the potential of using surface 

reflectance data to estimate VWC (Hunt et al., 2011; Yilmaz et al.,2008; Fensholt and 

Inge, 2003; Tucker, 1980; Claudio et al., 2006; Vivoni et al., 2008; Wang et al., 2008; 

Wang et al., 2013; Chen and Wilfred, 1998). 

 

The Normalized Difference Vegetation Index (NDVI) is one of the most popular 

vegetation indexes to monitor vegetation living conditions, but it has limited success 

when applied to VWC estimation (Chen et al., 2005; Huang et al., 2009). NDVI is 

calculated with the spectral reflectance of red band and near infrared band. The red 

band has strong chlorophyll absorption rather than water, which means that NDVI is 

optimal for chlorophyll estimation instead of VWC (Chen et al., 2005; Huang et al., 
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2009). Further studies have applied Normalized Difference Water Index (NDWI) and 

Normalized Difference Infrared Index (NDII) to monitor VWC (Hunt et al., 2011; 

Wang et al., 2013; Gao, 1996). Both NDWI and NDII are targeting on the strong 

water absorption features of shortwave infrared (SWIR) bands (Hunt et al., 2011; 

Wang et al., 2013; Gao, 1996; Chen et al., 2003; Chakroun, 2017; Gao and Alexander, 

1995). The shortwave infrared bands (1200-2500 nm) are very sensitive to leaf water 

content, showing strong absorptions compared with visible (400-700 nm) and near-

infrared bands (800-1000 nm) (Gao, 1996; Chen et al., 2003; Chakroun, 2017). 

Previous studies have shown that NDWI is much better than NDVI for vegetation 

water content estimation (Chen et al., 2005; Huang et al., 2009; Gao and Alexander, 

1995). The mission of MODIS and Landsat data make it possible to retrieve 

vegetation water content through NDWI measurements. 

 

1.2 Current Soil Moisture Retrieval Methods with Satellite 

Techniques 

Soil moisture is the water content within soil particles (Kerr et al., 2006; Wang et al., 

2008). Surface soil is an interface between the land and atmosphere, surface soil 

moisture plays an important role in the energy exchange between land and atmosphere. 

Soil moisture may also have an impact on soil carbon flux. Surface soil moisture is 

the average water content in the upper 5 cm of soil (Xu et al. 2018). Although surface 

soil moisture takes only a small part of the total water storage on earth, it is of 

fundamental importance to hydrological and biogeochemical processes. Surface soil 

moisture can be used to indicate some hazards processes such as fire, flood and 
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drought (Jackson et al., 1980; Jackson et al., 2009, Fayne et al., 2017). Remote 

sensing methods can only be applied to surface soil moisture monitoring, while the 

soil moisture below surface up to about two meters is significant to agriculture 

applications (Wang et al., 2009). Various spatial and temporal soil moisture 

monitoring from surface to depth is of great importance in further ecosystem and 

climate applications. Optical, thermal and microwave bands can be used to monitor 

surface soil moisture. The most commonly used method for measuring area averaged 

soil moisture at the hectometer horizontal scale is being implemented in the Cosmic-

ray Soil Moisture Observing System (COSMOS) (Zreda et al., 2012). 

 

1.2.1 Microwave methods for soil moisture monitoring  

Microwave methods, including passive and active methods, have been the most 

popular techniques for soil moisture monitoring with moderate signal penetration, 

usable under various weather condition, and solid physical theory for soil moisture 

monitoring. Microwave band for soil moisture estimation through the electromagnetic 

radiation with wavelengths from 0.5 to 100 cm (Jackson et al., 1999; Kerr et al., 2012; 

Schmugge et al., 1986; Njoku et al., 1996). The fundamental basis of microwave 

remote sensing for soil moisture is the large contrast between the dielectric properties 

of water and soil particles. As the moisture increases, the dielectric constant of the 

soil-water mixture increases, and this change is detectable by microwave sensors 

(Schmugge et al., 1974; Wang et al., 1980). Both passive and active microwave 

remote sensing techniques have demonstrated the most promising ability for globally 

monitoring soil moisture variations. 
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Passive microwave is one of the most commonly used methods to measure global 

surface soil moisture. The microwave sensors observe the intensity of emissivity from 

surface soil. The observed emission is related to its moisture content because of the 

large differences in the dielectric constant of dry soil and water. The current exist 

passive microwave soil moisture sensors include SMMR on Nimbus-7 (Owe et al., 

2008), SSM/I on TRMM/TMI (Owe et al., 2008), AMSR-E on Aqua (Njoku et al., 

2003; Wagner et al., 2007), SMOS mission by ESA (Kerr et al., 2001; Kerr et al., 

2012; Panciera et al., 2008), and SMAP mission by NASA (Escorihuela et al., 2010; 

Chan et al., 2016; Entekhabi, et al, 2009). The surface emission model is one of the 

essential components in the application of microwave remote sensing of soil moisture 

in the bare or vegetated surfaces (Jackson et al., 1982).  

 

In active microwave methods, a microwave pulse is sent and received. The received 

signal is compared with the signal that was sent to determine the backscattering 

coefficient of the surface, which has been shown to be sensitive to soil moisture 

(Hajnsek et al., 2009; Dobson et al., 1986). Sentinel series sensors (Paloscia et al., 

2013) and SMAP active sensor are two of the current globally observing sensors, but 

the SMAP active sensor didn’t work after 2015 (Chan et al., 2016).  

 

There are three methods measuring soil moisture through active microwave datasets: 

1) Theoretical approaches: Theoretical approaches are usually derived from the 

diffraction theory of electromagnetic waves and have different ranges of validity, 

depending on the wavelength and surface roughness (Ulaby et al., 1995); 2) Empirical 

approaches: Empirical models are generally derived from experimental measurements 
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to establish useful empirical relationships for inversion of soil moisture from 

backscattering observations. The main advantage of empirical models is that many 

natural surfaces do not fall into the validity regions of the theoretical backscattering 

models (Shi et al., 1997); 3) Semi-empirical models represent an acceptable 

compromise between theoretical and empirical approaches, have been developed 

based on a theoretical foundation with mode parameters derived from experimental 

data (Colliander et al., 2017). The main advantage of the semi-empirical models is 

that they do not have the site-specific problems.  

 

Recent advances in remote sensing have demonstrated the ability to measure the 

spatial variation of surface soil moisture under a variety of topographic and land cover 

conditions using both active and passive microwave measurements. Active sensors 

have high spatial resolution in the order of tens of meters, but have poor temporal 

resolution. Passive sensors can provide a spatial resolution over tens of kilometers but 

have a higher temporal resolution. SMOS and SMAP mission offer the opportunity of 

retrieving soil moisture in a combining passive/active microwave approach to increase 

the accuracy of the retrievals and can yield high-resolution soil moisture products. 

Many studies have been done combined passive and active microwave measurements. 

(Kerr et al., 2006; Wagner et al., 2012; Draper et al., 2012; Das et al., 2011; Liu et al., 

2012).  

 

1.2.2 Optical methods for soil moisture monitoring 

Optical method is one of the first remote sensing techniques for soil moisture 

monitoring. Optical solar band with wavelengths between 0.4 and 2.5 𝜇m (Lobell et 
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al., 2002). Surface reflectance within the wavelength range can be collected and used 

to estimate surface soil water content. The solar band has too many restrictions due to 

limited penetration and clouds or vegetation cover when applied to soil moisture 

monitoring (Muller et al., 2000), it has been paid less attention compared with thermal 

or microwave bands. There is a decrease in reflectance when soil moisture increases 

in measurements (Muller et al., 2000). Several empirical approaches have been 

proposed to monitor surface soil moisture. The empirical approaches can only provide 

a poor characteristic of a soil, which also depends on numerous other factors, such as 

mineral composition, organic matter, soil texture, and surface roughness. 

 

1.2.3 Thermal infrared method for soil moisture monitoring 

Thermal infrared remote sensing measures the thermal emission of the Earth with an 

electromagnetic wavelength region between 3.5 and 14 𝜇m. Vegetation and land 

surface temperature have a complicated dependence on soil moisture. Carlson et al. 

and Gillies et al. have done various analyses and research, and report a trapezoid 

relationship that can be used to describe the relationship between vegetation index, 

LST and soil moisture. The relationship is known as “Universal Triangle” (Carlson et 

al., 2007). The soil-vegetation-atmosphere-transfer model was used to describe the 

basic evaporation processes at the surface as well, together with the water partitioning 

between vegetation transpiration, drainage, surface runoff, and soil moisture 

variations (Patel et al., 2009).   

 

1.2.4 Monitoring sub-surface soil moisture 
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Given the current technology, satellite remote sensing can only provide soil moisture 

measurements for the top few centimeters of the soil profile. Since these upper few 

centimeters of the soil are the most exposed to the atmosphere, their moisture varies 

rapidly in response to rainfall and evaporation. These observations of near-surface soil 

moisture must be related to the complete soil moisture profile in the unsaturated zone, 

in order to be more useful for agricultural, hydrologic and climatic studies. The ability 

to retrieve the soil moisture profile by assimilating near surface soil moisture 

measurements in a soil model has received increasing attention over the past decade 

(Gruhier et al., 2009; Pascale et al., 1994; Merlin et al., 2008). However, the 

incomplete knowledge of soil model physics and the limitations of assimilation 

techniques restrict the use of a data assimilation approach (Liu et al., 2011). Great 

efforts have been made to simulate water transport in soil, in which the Richards 

Equation is the primary tool for this purpose. Vertical water infiltration in layered soil 

profiles is usually modeled using the Richard Equation (Owe et al., 2001). 

 

1.3 Current Soil Temperature Monitoring Techniques 

Soil temperature plays an important role in many physical, chemical, and biological 

processes in terrestrial ecosystems by regulating the lower boundary of mass and 

energy exchange between the land and atmosphere. Temperature is a required input in 

process-based land surface models used to estimate carbon, water or energy balances 

(Miralles et al., 2012; Paul et al., 2003; McMichael et a., 1998). It is also an important 

indicator of climate change and a critical parameter in numerical weather forecasting 

and climate prediction (Paul et al., 2003). However, temperature measurements as the 
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land surface and at various soil depths are spatially and temporally limited. More 

accurate predictions of the spatial and temporal patterns of soil temperature can also 

enhance our understanding of the dynamics of vegetation and soil organic matter in 

different landscapes.  

 

Based on previous studies, we know that soil temperatures are affected by multiple 

factors, such as time, meteorology conditions, soil depth, soil type, land cover type, 

precipitation, topography, and so on (Hasfurther et al., 1972; Dwyer et al., 1990; 

Hikel et al., 2001; Mihalakakou et al., 2002; Paul et al., 2004; Wigneron et al., 2008; 

Zheng et al., 1993). Currently, there are three mainly methods for estimating soil 

temperature: 1) Physical models: Physical models estimate soil temperature profiles 

from the soil energy balance and the heat flow from the surface soil to different 

depths (Dwyer et al., 1990; Mihalakakou, 2002; Pleim and Gilliam, 2009). In addition, 

physical models better describe deep soil temperature profiles than surface soil 

profiles because the physical relationships are more stable at depth and are not as 

affected by atmospheric changes. The main limitation of physical models is the need 

for many inputs, and it becomes a difficult task to collect enough observations to 

build the model (Paul et al., 2004; Tabari et al., 2011). 2) Empirical models: Various 

empirical models have been built to estimate soil temperature for bare soil or crop/ 

agricultural areas (Tabari et al., 2011; Xu et al., 2011). Some of the methods have 

achieved good results, but with the disadvantage that such methods can only be 

applied to a homogeneous study area of bare soil or surface soil with limited land 

cover (Bilgili, 2010). Empirical models are highly dependent on ground observations, 

which limit their applications in large study areas or over long time periods. 3) Semi-
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empirical models. Considering both the merits and limitations of recent work, semi-

empirical methods have been proposed based on the physical theory for soil 

temperature monitoring, while in-situ measurements were used to build and validate 

the methods (Ahmad and Rasul, 2008; Dwyer et al., 1990; Hasfurther et al., 1972; 

Hikel et al., 2001; Hu et al., 2017; Paul et al., 2004; Zheng et al, 1993).  

 

Physical approaches focus on bare soil surfaces and depend strongly upon the initial 

and boundary conditions. They are traditionally difficult to apply in variable 

landscapes due to insufficient data available for the calculation of heat transfer 

parameters. The heat conduction model is one of the most popular models that has 

been widely used for one-dimension profile soil temperature estimation. For a one-

dimensional isotropic medium, the fundamental solution of the classic heat diffusion 

equation is given by: 

𝜕𝑇

𝜕𝑡
= 𝑘𝑠

𝜕2𝑇

𝜕𝑧2
(1.1) 

𝑘𝑠 = λ𝐶𝑔 (1.2) 

Where T is temperature, t is time, k is the thermal diffusivity, λ is the thermal 

conductivity and Cg is the volumetric heat capacity of the soil (Zheng et al., 1993). 

 

Empirical methods are often intended to be site specific and have limited applicability 

over large regions, providing simulated results which are less accurate than those 

produced by hybrid models. The properties of soil, vegetation cover, and litter also 

affect soil temperature by interacting with solar radiation (Hu et al., 2015; Dwyer et 
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al., 1990). Zheng et al. developed an empirical model to estimate soil temperature at 

different depths based on air temperature. 

 

The semi-empirical method considers the thermal properties of soil, vegetation cover, 

and litter with air temperature. Although it does not require regional regression 

coefficients or stringent data, it provides a better prediction of daily soil temperature 

compared with the empirical model. The influence of liquid vertical movement on soil 

temperature was considered (Bilgili, 2010; Tabari et al., 2010).  

 

Currently, measurements of soil temperature at the surface and at various depth are 

spatially and temporally limited. Soil temperature is influenced by various 

meteorological factors, such as solar radiation and air temperature, site topography, 

soil water content, soil texture and the area of surface covered by litter and canopied 

of plants (Xu et al., 2011). Applying satellite observations for soil temperature 

monitoring is important, since soil temperature has a close impact on soil moisture 

and vegetation water. The land parameter retrieval model is a popular global model to 

monitor surface temperature (Ahmad et al., 2008; Tabari et al., 2010; Pleim et al., 

2008; Zheng et al., 1993).  

 

Thermal infrared is an effective and widely used means to obtain surface temperature. 

However, thermal infrared band is vulnerable to the influence of clouds and may 

experience signal saturation easily under conditions of heavy vegetation, while about 

half of the land surface is covered by clouds (Mihalakakou, 2002). Many studies have 

shown that the surface temperature can be derived from 36.5 to 37 GHz brightness 
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temperature at vertical polarization because the microwave signals at this band are 

greatly sensitive to the surface temperature (Wigneron et al., 2008; Choudhury et al., 

1982). Currently, the most widely used model for the correction of effects of surface 

temperature on soil moisture inversion is the one developed by Holmes, which has 

been integrated into the well-known land parameter retrieval model. However, the 

ground observations that Holmes et al. used to establish the temperature model are 

mainly from the United States and some European countries. 

 

1.4 Carbon Flux Monitoring with Satellite Techniques in Recent 

Years 

Quantifying ecosystem organic carbon fluxes and stocks is of great importance for 

better understanding the global carbon cycle and monitoring greenhouse gas (GHG) 

emissions and mitigating the global warming aggravation (Romigh et al., 2006; Xiao 

et al., 2010; Xiao et al., 2019). It is well accepted that the increased GHG emissions to 

the atmosphere due to industrial development and human activities in recent decades 

have altered the regional climate and facilitated global warming (Oertel et al., 2016; 

Riahi et al., 2017). The carbon cycle on the Earth comprises the exchange of carbon 

between the atmosphere, biosphere, and geosphere. Under natural conditions, the 

balance remains stable over the long term; plants and animals consume the carbon and 

release carbon back to the atmosphere through respiration as carbon dioxide (CO2), 

plants absorb CO2 through photosynthesis and store the carbon as gross primary 

product (GPP). GPP is of great significance in keeping life cycle on Earth since it’s 

the fundamental basis for food and energy production (Xiao et al., 2011).  
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There is a great amount of organic carbon storage underground. For example, 

peatland is one of the main sources that contains great amount of organic carbon 

(Reddy et al., 2015; Sleeter et al., 2017). As a result of anthropogenic activity, much 

of the forest and agricultural areas have experienced drought, wildfires or abnormal 

weather conditions in recent years, which have rapidly changed the regional climate 

and accelerated the release of organic CO2 into the atmosphere. What’s more, with the 

development of industry and transportation in recent decades, the fossil fuel burning 

is another source of CO2 releasing into the atmosphere and breaking the balance of the 

carbon cycle (Riggan et al., 2004; Noormets et al., 2010; Reddy et al., 2015). 

 

Eddy covariance flux towers positioned around the world have been widely adopted 

to collect carbon, water and energy flux measurements for further research analysis 

(Finkelstein, 2001; Goulden et al., 1996). The fluxes are measured within the scale of 

the tower’s footprint, and eddy covariance algorithms assumes the flux tower 

measurement to be vertically homogeneous. In reality, however, the vertical exchange 

between ecosystems and the atmosphere can introduce uncertainties (Finnigan, 2008; 

Finkelstein, 2001; Massman and Lee, 2002; Loescher et al., 2006; Goulden et al., 

1996). The eddy covariance flux tower provides continuous high temporal resolution 

measurements of carbon flux, water restoration and energy exchange within the 

ecosystem (Luyssaert et al., 2009; Tramontana et al., 2016).   

 

1.4.1 FLUXNET global network 
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FLUXNET is a global network of micrometeorological flux measurement sites under 

various land cover type that measure the exchanges of carbon dioxide, water vapor, 

and energy between the biosphere and atmosphere (Tramontana et al., 2016; Fluxnet 

et al., 2001). FLUXNET provides infrastructure for compiling, archiving, and 

distributing carbon, water, and energy flux measurements, and meteorological, plant, 

and soil data to the science community. (Harris and Dash, 2010; Sasai et al., 2011; 

Riggan et al., 2003).  The FLUXNET project serves as a mechanism for uniting the 

activities of several regional and continental networks into an integrated global 

network. Research sites are operating across the globe in North, Central, and South 

America; Europe; Scandinavia; Siberia; Asia; and Africa. The regional networks 

include AmeriFlux, CarboEuroflux, AsiaFlux, and OzFlux (Tramontana et al., 2016). 

There are also disparate sites in Botswana and South Africa.  

 

The eddy covariance method is the method that FLUXNET used to assess trace gas 

fluxes between the biosphere and atmosphere (Kumar et al., 2016; Loescher et al., 

2006; Luyssaert et al., 2008). Vertical flux densities of CO2 and latent and sensible 

heat between vegetation and the atmosphere are proportional to the mean covariance 

between vertical velocity and the respective scalar fluctuations. Positive flux densities 

represent mass and energy transfer into the atmosphere and away from the surface, 

and negative values denote the reverse; ecologists use an opposite sign convention 

where the uptake of carbon by the biosphere is positive. Turbulent fluctuations were 

computed as the difference between instantaneous and mean scalar quantities 

(Roullier et al., 2013; Baldocchi et al., 1999; Goulden et al., 1996; Finkelstein and 

Sims., 2001). 
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These flux datasets have been used to evaluate or calibrate carbon fluxes derived from 

remote sensing approaches. For example, AmeriFlux data have been used to evaluate 

the MODIS GPP product (Heinsch et al., 2006; Xiao et al., 2014a) and to estimate 

parameters in carbon flux models (Xiao et al., 2011b, 2014b). The release of the 

AmeriFlux and FLUXNET datasets also enabled the upscaling of flux observations 

and the generation of carbon emissions estimates at regional to global scales using 

machine learning approaches (Xiao et al., 2008; Jung et al., 2011). The integration of 

remote sensing with the measurements from AmeriFlux, FLUXNET, NEON, and 

other flux networks will greatly benefit carbon cycle studies. 

 

1.4.2 Satellite techniques 

There has been an increasing demand for mapping global and regional carbon flux 

and energy exchange at moderate to high spatial resolution within the ecosystem in 

recent years. Satellite techniques are optimal ways to solve the problem; remote 

sensing observations have been widely applied to monitor global and regional carbon 

fluxes and carbon stocks in soil within the last five decades (Xiao et al., 2010; Xiao et 

al., 2019; Sasai et al., 2011). Both microwave and optical remote sensing technologies 

can be effectively applied to monitor and quantify carbon fluxes. It’s possible to 

estimate carbon fluxes through satellite techniques based on the development of 

global scale satellite platforms (e.g., the Earth Observation Systems (EOS), and Land 

Remote Sensing Satellite (Landsat)) observing the land surface properties since 

the1980s.  
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Remote sensing techniques have been used to monitor carbon fluxes by considering 

vegetation indexes, surface temperature and inversions atmosphere by combining 

physical based biosphere models, empirical models, machine learning approaches or 

artificial neural network (Melesse and Hanley, 2005; Vetter et al., 2008; Schuh et al., 

2010; Baldocchi et al., 1992). For example, vegetation indices estimated based on 

solar reflectance (SR) channels have been applied to estimate carbon emissions, since 

SR derived vegetation indices have a close relationship with canopy chlorophyll 

content, canopy structure and plant phenology. The factors mentioned above are of 

great importance to photosynthetic process, which affects carbon emissions a lot 

(Xiao et al., 2010; Harris and Dash, 2010).  

 

Land surface temperature (LST) measured through thermal infrared (TIR) channels 

can also be applied to monitor carbon emissions from soil. With the increase of 

temperature, the plants and organisms in soil become more active, the respiration rate 

of roots and organisms increase. Soil respiration is one of the main factors that 

contribute to soil carbon dioxide emissions (Peterson and Billings, 1975). With the 

increase of surface temperature, carbon emissions from soil increase consequently 

(Valentini et al., 2000). Satellite optical/ thermal measurements have been assimilated 

in various models to estimate carbon emissions, such as the light use efficiency (LUE) 

models, Terrestrial Ecosystem Model (TEM) and the Moderate Resolution Imaging 

Spectrometer Global Primary Productivity (MODIS-MOD17 GPP) model (Sasai et al., 

2011). 
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A continuous soil respiration rate is difficult to measure, and thus researchers have 

instead used the satellite LST observations to map carbon emissions based on the 

theory that surface temperature is the main controlling factors to soil respiration rate, 

and soil respiration contributes to soil carbon emissions (Xiao et al., 2010; Harris and 

Dash et al., 2010). Schubert found a strong correlation (R2 > 0.9) between MODIS 

derived LST products and ground observed carbon emissions within two peat lands in 

Sweden. The correlation between surface temperature and carbon emissions has been 

verified by various researches conducted in forest, grassland, tundra and arctic areas 

with correlation determination larger than 0.7 (Kimball et al., 2009; Moore et al., 

2013; Sim et al., 2008; Tang et al., 2011).  

 

Microwave remote sensing has been effectively applied to monitor biomass 

conditions at the land surface and can be applied to monitor carbon fluxes. The 

synthetic aperture radar (SAR) is one of the active microwave sensors, and has been 

widely applied to forest studies since it works under all-weather condition and has 

moderate penetration and good spatial resolution. Dobson et al. (1986) and Le Toan et 

al. (1992) have pointed out the forest carbon emissions depend on P-band, L-band and 

C-band backscattering of SAR, there is a strong linear relationship between soil 

carbon emissions and soil surface backscattering with correlation determination larger 

than 0.5. Lidar systems have been widely applied to observe carbon flux and biomass 

dynamics in forested areas and regions with high vegetation cover (Zhao et al., 2017; 

Harris and Dash et al., 2010; Reddy et al., 2015). A number of satellite techniques 

have been widely developed and applied to estimate carbon fluxes and stocks 

integrating observations from FLUXNET at global and regional scales. These 
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proposed methods show good performance validated by in-situ measurements (R2 > 

0.5) (Xiao et al., 2019; Chen et al., 2008). However, the main limitation of active 

microwave method is the coarse temporal resolution. 

 

1.4.3 Carbon flux models 

The Light Use Efficiency (LUE) models are widely used to quantify GPP and NPP 

from remotely sensed data. LUE models are based on the original radiation use 

efficiency logic of Monteith (1972) that under well-watered and fertilized conditions 

the productivity of a cropland exhibits a linear relationship with the absorbed 

photosynthetically active radiation by the canopies. Under actual environmental 

conditions, potential optical energy utilization rate is affected by water, temperature, 

and other environmental factors. Therefore, carbon emissions can be simulated in the 

LUE logic as APAR multiplied by maximum LUE and environmental stresses. The 

LUE approach has been one of the most important methods to map carbon emissions 

regionally or globally (Potter et al., 1993; Running et al., 2004).  

 

Process-based terrestrial ecosystem models describe terrestrial carbon, water, and 

energy fluxes in a mechanistic way to quantify these terrestrial cycles. The process-

based representation of ecosystem processes allows us to understand terrestrial 

ecosystem status and changes in mechanistic ways. These models can be divided into 

two categories: diagnostic models and prognostic models. Diagnostic models use 

remotely sensed data as temporally variant input data to capture spatial and temporal 

variations in terrestrial vegetation in a more realistic way, and therefore their 

simulations are limited to the period when remotely sensed data are available. 
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Prognostic models use climate data as temporally variant input data and can simulate 

past, present, and future changes in terrestrial ecosystem carbon dynamics. Many 

terrestrial model studies revealed large uncertainties in simulated CO2 fluxes at both 

site (Ichii et al., 2013) and regional (Huntzinger et al., 2012) scales. Both diagnostic 

models and prognostic models can make use of remotely sensed data to improve their 

performance in quantifying carbon emissions.  

 

Machine learning approaches have been used to upscale carbon emissions from sites 

to regional or global scales (Zhang et al., 2007; Xiao et al., 2008, 2010, 2011a; Jung et 

al., 2011; Ichii et al., 2017). Xiao et al., 2012 reflected the progress in the upscaling of 

carbon and water fluxes form towers to broad regions prior to 2012, and significant 

advances have been made since then. The machine learning approaches used include 

artificial neural network (Papale and Valentini, 2003), support vector machine (Yang 

et al., 2007), piecewise regression models (Zhang et al., 2007; Xiao et al., 2008), 

model tree ensemble (Jung et al., 2009), and random forest (Bodesheim et al., 2018). 

A recent study showed that four different machine learning techniques, including the 

artificial neural network, extreme learning machine, and support vector machine, had 

almost identical performance in estimating forest carbon fluxes (Dou and Yang, 2018). 

Although machine learning approaches differ from mechanistic models and do not 

explicitly incorporate biogeochemical processes, the machine learning methods can 

effectively estimate carbon fluxes through time and space and reveal plant responses 

to environmental controls. 
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CHAPTER 2 STUDY AREA 
 

 

 

The dissertation is mainly conducted in three study areas with valuable ground 

measurements available: Iowa, the main agricultural area in the U.S.; and the Great 

Dismal Swamp (GDS), a forested area in the U.S.; and central of the Tibetan Plateau, 

a highland region in China. 

 

2.1 Iowa 

One of the soil moisture calibration/ validation field works has been one in Iowa in 

2016. The study area locates on a plain within the central of Iowa, the United States. 

It is one of the main agricultural and grain production areas in the U.S. Soybean and 

corn are two of the major vegetation types in the study area. The study area, called 

South Fork Experimental Watershed, is with relatively homogeneous soil type and 

vegetation cover. The latitude of the study area ranges from 42.2 °N to 42.7 °N, 

and longitude from 93.6 °W to 93.2 °W was chosen. SMAPVEX16, leading by 

NASA and USDA, was conducted in 2016, from May to August, mainly aimed at 

SMAP soil moisture product validation and calibration.  

 

Elevations of these stations vary over 4470~4950 m. All the sensors have been 

calibrated by taking account of the impact of soil texture and soil organic carbon 

content on the measurements. As the highest soil moisture network above sea level in 
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the world, this network meets the requirement for evaluating a variety of soil moisture 

products and for soil moisture scaling analyses.  

 

 

 

 

Figure 2.1 Relative location of the study area in Iowa, and the distribution of observing sites 

 

 

2.2 The Great Dismal Swamp (GDS) 

The GDS, managed by the U.S. Fish and Wildlife Service (USFWS), is located on the 

boundary between North Carolina and Virginia (76.45°W, 36.60°N), and has an 

area of about 54,000 ha. The climate is humid, with mean annual precipitation around 

116.2 cm. The GDS consists of lots of shallow aquifers with peat soil cover. The three 

main forest species in the GDS are maple gum, Atlantic white cedar and pine posocin.  

The study area has experienced a series of natural disasters in recent decades. After a 

series of droughts and wildfires in the GDS, the climate is not as humid as it used to 
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be with substantially decreased soil moisture and increased soil temperature relative 

to before the disturbances, the relative humidity has declined over 15% as reported by 

the weather station at the GDS (Sleeter et al., 2017). The average peat thickness loss 

is around 46 cm, with thickness loss ranges from 25 cm to 50 cm over the GDS. As a 

result, the peat thickness at GDS only ranges from 0.3 m to 4 m now (Reddy et al., 

2015). A strong wind caused by Hurricane Isabel in 2003 destroyed about 1200 ha of 

Atlantic white cedar; a serious drought caused a series fire in 2008, which lasted 121 

days and burned biomass and peatland areas covering about 2400 ha; another 

lightning-induced wildfire occurred in 2011, during which some of the peatland 

burned down to around 1 m in depth with a total below-ground carbon loss around 

1.70 Tg C (Sleeter et al., 2017). Before 2000, Atlantic white cedar used to cover more 

than 50%, after the wildfire, Atlantic white cedar decreased to about only 3%, thus 

being succeeded by maple gum (>50%) and pine pocosin (10%) (Kim et al., 2017; 

Sleeter et al., 2017). With the change of forest species and peatland distribution, 

drying of soil and increase of temperature, the stocked organic carbon was released as 

GHGs (e.g. CO2 and CH4) and the rate of the organic CO2 emissions from soil 

increased rapidly, as recently observed by a series of studies (Reddy et al., 2015; 

Sleeter et al., 2017; Gutenberg et al., 2019). 

 

To study the GDS climate and hydrology following the series of catastrophic disasters 

in recent decades, the USGS has led a two-year ground observation study from May 

2015 to April 2017, collecting soil temperature, soil moisture, peat depth and CO2 

emissions. Nine observational sites were chosen in the study area, three sites in each 

forest type as shown in Figure 2.2. 
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Figure 2.2 Land Cover Map of the Great Dismal Swamp 

 

 

2.3 Central of the Tibetan Plateau 

TP is the highest plateau in the world with an average elevation of over 4000 m above 

the sea level. Our study area is located within the center of the TP (31-32 °N, 91.5-

92.5 °E), covering about 10,000 km2. As shown in Figures 3.3(a) and 3.3(b), the 

study area is relatively flat, with several hills distributed. As shown in Figure 3.3(c), 

over 95% of the study area are grassland, mainly alpine grasslands, but also prairie 
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and meadows (Yang et al., 2013; Chen et al., 2017). The growing season is short, 

allowing a grass height of only several centimeters (Zeng et al., 2015; Yang et al., 

2013), facilitating the application of remote sensing techniques in this area. The soil 

types are mainly silt and sand, with a clay content of less than 10%, resulting in a high 

drainage effect. The climate is semiarid, with an annual precipitation of about 500 

mm, mostly concentrated in summer. According to long-term records, around 75% of 

the precipitation occur from June to August (Zeng et al., 2015; Yang et al., 2013; 

Chen et al., 2017). SM shows a strong seasonal behavior, especially in terms of SSM. 

The annual freeze/ thaw cycle considerably influences the soil water dynamics in the 

area, impacting SSM measurements. The annual freeze and thaw cycle of the study 

area starts to freeze in October, and it starts to thaw in January. From December to 

February, the soil surface is fully frozen. Therefore, the ground measurements were 

conducted from March and November.  
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Figure 2.3 The location of Naqu network: (a) network position (denoted by the small red 

rectangle on the Tibetan Plateau). (b) The locations of 55 stations within a 1° × 1° area in the 

central TP. The bold blue and yellow square denotes a 0.3° × 0.3° and a 0.1° × 0.1° networks with 

enhanced observations, respectively, the elevation is also shown. (c) The locations of 38 stations 

in the large network, the land use is also shown. 
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CHAPTER 3 DATA 

 

 
  

3.1 Landsat 8 

The USGS launched the Landsat series satellites for high-quality monitoring of land 

surface properties monitoring in 1972. Landsat 8, used in this study, is the latest 

Landsat series satellite launched in 2013, with data products available from May 2013. 

From 2010, Landsat datasets have been provided free to the public. Since then, 

Landsat products have been widely used in regional studies of land cover 

classification, surface properties retrieval, and land surface emissivity monitoring, 

largely because of their high spatial resolution of 30 m (Xiao et al., 2019). Unlike 

previous Landsat series satellites, Landsat 8 carries an OLI with 11 reflectance bands 

and TIRS with two thermal infrared bands with 30-m spatial resolution and 16-day 

global cover. 

 

3.2 MODIS 

MODIS is another land surface monitoring sensor launched by NASA on board the 

AQUA and TERRA satellites of the EOS mission. TERRA MODIS, launched in 

December 1999, was applied in this study, since the local overpassing time of 

TERRA is close to the in-situ observation collecting time. In this study, we selected 

MODIS daily 500-m surface reflectance products (MOD09GA), daily 1000-m 
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MODIS land surface temperature and emissivity products (MOD11A1) and the daily 

1000-m MODIS atmospheric precipitable water product (MOD05).  

 

3.3 Sentinel 1 

Sentinel satellites are an important part of Global Monitoring for Environment and 

Security (GMES), the European Commission and the European Space Agency (ESA). 

Since only the Sentinel-1A product covered our area in 2015, it was selected for our 

study. Sentinel-1A was the first Sentinel series satellite launched on April 3rd, 2014 

with 12-day revisit cycle. On April 25th, 2016, Sentinel-1B was launched, which 

enhanced the temporal resolution to 6-day combining two sensors products together. 

Compared with MODIS product, the main advantage of Sentinel ones is they can be 

acquired under all weather conditions, and Sentinel sensors are not affected by cloud 

cover. Sentinel 1 carries a C-band (5.4 GHz) SAR sensor with multi-polarization 

imaging capability, which supports both single polarization (HH, VV) and dual 

polarization (HH + HV, VV + VH). There are four imaging modes (stripmap model 

(SM), interferometric wide swath (IW), extra-wide swath (EW), and wave mode 

(WM)) for the Sentinel product, which mainly differentiate in the stripe width. The 

SM, IW and EW are available in both single and dual polarization, while WV is only 

available in single polarization. The IW swath mode is the main acquisition mode 

over land and satisfied the majority of service requirements; for this reason, it was 

selected in our study. We applied the VV IW backscattering coefficients and incident 

angle measurement in the model proposed above to estimate SSM. 
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3.4 Ground Observation 

3.4.1 Iowa 

In situ measurements in this study were collected during the Soil Moisture Active 

Passive Validation Experiment 2016—Iowa (SMAPVEX16-IA). The temporary and 

permanent sites collected hourly soil moisture at 5-cm depth during the study period 

using a Stevens Water Hydra Probe (Stevens Water Monitoring Systems, Portland, 

OR, USA) Gravimetrically, USDA-ARS collected the soil moisture values during an 

extensive field campaign to validate and calibrate the soil moisture monitoring 

network. 

 

There are two intensive observing periods (IOPs) from May to August. The aircraft 

that carried the Passive/Active L-Band Sensor (PALS) was used to collect ground 

measurements of soil moisture, soil temperature, and soil roughness combined with 

ground sampling. All of the parameters measured during the campaign were used to 

calibrate and validate the measurements from the permanent and temporary sites. 

There are mainly three parts for the ground soil moisture sampling: temporary in situ 

stations, remote COsmic-ray Soil Moisture Observing System (COSMOS) rover 

technology, and high-density gravimetric sampling. The major goal of the ground 

sampling is to improve the scaling functions for the core validation sites (CVS) and 

the quality of the in-situ sensor estimation, and provide soil moisture products with 

high resolution over the study area. 
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There are 15 sites with hydra probes installed at 5 cm, 10 cm, 20 cm, and 50 cm by 

the USDA-ARS to monitor soil conditions at different depths. Soil moisture measured 

at 5 cm depth was chosen in this study. An additional 40 temporal hydra probes were 

installed during the crop-growing seasons to monitor the soil moisture and soil 

temperature at the same depths. Fieldwork was done during 25 May to 5 June and 3 

August to 16 August 2016; these manual measurements were used for the 

recalibration and validation of the soil probe measurements in the permanent and 

temporary network sites. 

 

In this study, calibrated and validated ground measurements from the 40 temporal 

sites were used to build the model for soil moisture retrieval with remote sensing 

datasets; ground measurements from the 15 permanent sites were used for validation. 

VWC sampling data were available for both corn and soybean sites. The selection of 

both corn and soybean sampling sites were semi-randomly selected, though onsite 

judgement to determine if the site was anomalous for any obvious reason. Most of the 

corn and soybean plants were observed to be healthy through the whole sampling 

period. The sowing period of corn fields ranges from April to May, and for soybean 

fields the sowing period is usually from the end of April to the mid-June.  

 

There were two intensive observing periods (IOPs) during the field experiment. In 

IOP 1, May 25th to June 5th, the crops were either not yet emerged, or small and only 

consisted of leaves. Therefore, the whole plant was weighed before and after totally 

dried. We weighted the whole plant and counted the leaf amount for each plant. Only 

limited sites were sampled within IOP 1. In IOP 2, from August 3rd to August 16th, 
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we weighed pod or corn, stem and leaf from every sampled plant separately and 

counted the leaf amount and stem height as well. The growth stage during IOP2 for 

corn field contains silking, dented and dough, for soybean field contains blooming, 

coloring, and setting pods. Due to cloudy weather conditions during IOP1, limited 

sites were available to build the monitoring model; therefore, we only focus on the 

VWC monitoring within IOP2 in August in this study.  

 

At each sampling site, three sub-sites were chosen starting from the entry point of the 

field and then at regular intervals diagonally across the field. The first sub-site was 

chosen with 100-m distance from the edge of the field. The second and third sub-sites 

were chosen by walking diagonally 100-m from the previous sub-site. A row will be 

selected randomly at each sub-site to measure the row spacing, density and direction. 

The row density was measure by counting the number of plants within one meter. The 

row properties were measured three times at each subsite. Five plants were measured 

and collected for each subsite both for corn and soybean fields. The collected crop 

was separated to leaf, stem and soybean pod/corn parts. Leaf number, stem height and 

stem diameter were measured as well. Each part was weighed before and after it was 

totally dried in the oven to estimate the water content and dry matter content. And we 

used the averaged value of each subsite to calibrate and validate the retrieved VWC 

from remote sensing measurements. 

 

3.4.2 The Great Dismal Swamp 

The USGS led a two-year monthly field campaign to collect land surface properties 

and environmental factors such as surface soil temperature, surface soil moisture and 
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CO2 emissions from soil to study the regional climate of the GDS after the series of 

natural disasters described above. The ground observations used in this study were 

collected through these field experiments. There were nine sampling sites in total 

located in the GDS (Figure 2.2), including three sites in each forest type (maple gum, 

Atlantic white cedar and pine pososin).  

 

Four sampling plots with permanent bases were located at each sampling site. The 

GDS contains 36 sampling plots and permanent bases for the carbon emission 

chambers collecting surface soil temperature and CO2 emissions from soil, for each 

sampling plot has one chamber, each sampling site has four chambers, and each forest 

type has 12 chambers. The location of sampling sites and sampling plots were decided 

by considering forest type and land type (peatland, watershed and flooding area). The 

sampling sites and sampling plots were considered representative of the 

characteristics of the study area. 

A temporal opaque chamber was used to sample CO2 emissions for 10 min during 

every sampling trip, during which time the chamber was set onto the permanent base 

to collect observations. The closed chamber technique is widely used to measure the 

exchange of CO2 from terrestrial ecosystems (Pirl et al., 2016; Zamolodchikov et al., 

2011; Norman et al., 1992). Surface soil temperature was measured by the average 

temperature from the land surface to 10 cm in depth using continuous data loggers 

(HOBO Pro v.2) at each sampling plot from 2015 to 2017. Spectroscopy analyzer was 

also applied to provide a quick sampling processes and reduce the error introduced by 

the pressure of the chamber (Parkin et al., 2012). During monthly field experiment, 

surface soil temperature was measured manually through thermometer to calibrate and 
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validate observations from loggers. Soil samples were collected from surface soil 

(land surface to 5 cm depth) at each sampling plots during the monthly field 

experiment, the samples were weighted before and after they were totally dried 

through the oven to calculate the surface soil moisture. 

 

3.4.3 Central of Tibetan Plateau 

Based on the significance of the TP for the global climate, several in-situ 

measurement networks have been established there in the last few decades to 

investigate the soil-vegetation-atmosphere cycle and its relationship with the local 

climate. In this study, we used in-situ data collected from a multiscale Soil Moisture 

and Temperature Monitoring Network in the central Tibetan Plateau (CTP-SMTMN) 

to evaluate SSM. There are 56 sampling sites in total at three spatial scales, measuring 

SM and ST at three spatial scales (1°, 0.3°, 0.1°) and four depths (0-5 cm, 10 cm, 20 

cm, 40cm) from 1 August 2010 to 30 June 2016. The sensors automatically measured 

SM and ST every 30 minutes, calculating the average values for the past 30 minutes. 

The in-situ measurements were calibrated and validated by taking 10 undisturbed soil 

samples from different stations. We used a large-scale network in this study, and 

randomly selected observations of 18 sampling sites to train the model proposed in 

this study; we also used observations of another eight sampling sites to validate the 

results retrieved by the sWCM. The geolocation of the sampling sites used for training 

and validation are listed in Tables 3.1 and 3.2, respectively. 

 

Table 3.1. Geolocations of 18 sampling sites used for model training 
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Site # Longitude Latitude 

BC05 92.20 31.17 

CD02 92.41 31.68 

CD03 92.34 31.66 

CD06 92.21 31.54 

MS3475 91.72 31.95 

MS3482 91.70 31.89 

MS3488 91.71 31.84 

MS3494 91.75 31.81 

MS3501 91.78 31.75 

MS3518 91.79 31.66 

MS3527 91.74 31.61 

MS3533 91.79 31.59 

MS3545 91.91 31.57 

MS3614 91.76 31.17 

MS3620 91.73 31.13 

MS3627 91.69 31.09 

MS3633 91.68 31.03 

MSBJ 91.90 31.37 
 

 

Table 3.2. Geolocations of eight sampling sites used for model validation 

 

Site # Longitude Latitude 

BC03 92.31 31.11 

BC04 92.25 31.13 

BC08 92.04 31.33 

MS3523 91.75 31.64 

MS3501 91.78 31.75 

MS3552 91.98 31.55 

MS3559 92.05 31.53 

MS3603 91.80 31.26 
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CHAPTER 4 METHODOLOGY 
 

 

 

Figure 4.1 illustrates the flows chart of the methodology of the proposal. The 

methodology can be classified into three parts: 1) integrating multi sources satellite 

observations to estimate soil temperature, as the yellow part shows; 2) combining 

satellite observations and in-situ measurements to monitor soil moisture under various 

land cover conditions, as the blue part shows; 3) utilizing satellite derived soil 

temperature and soil moisture observations to retrieve soil carbon flux, as the grey 

part shows. 
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Figure 4.1 Flow chart of the dissertation proposal 

 

 

4.1 Soil Moisture Content Estimation 

4.1.1 Regional Vegetation Water Content 

The Normalized Different Vegetation Index (NDVI) is one of the most popular 

vegetation indexes to monitor vegetation living conditions, but it has limited success 

when applied to VWC estimation (Chen et al., 2005; Huang et al., 2009). NDVI is 

calculated with the spectral reflectance of red band and near infrared band. The red 

band has strong chlorophyll absorption rather than water, which means that NDVI is 

optimal for chlorophyll estimation instead of VWC (Chen et al., 2005; Huang et al., 

2009). Further studies have applied Normalized Different Water Index (NDWI) and 

Normalized Different Infrared Index (NDII) to monitor VWC (Hunt et al., 2011; 

Wang et al., 2013; Gao, 1996). Both NDWI and NDII are targeting on the strong 

water absorption features of shortwave infrared (SWIR) bands (Hunt et al., 2011; 

Wang et al., 2013; Gao, 1996; Chen et al., 2003; Chakroun, 2017; Gao and Alexander, 

1995). Figure 4.2 demonstrates simulated leaf reflectance with the PROSPECT model 

at three different leaf water content levels. From Figure 4.2, the shortwave infrared 

bands (1200-2500 nm) are very sensitive to leaf water content, showing strong 

absorptions compared with visible (400-700 nm) and near-infrared bands (800-1000 

nm) (Gao, 1996; Chen et al., 2003; Chakroun, 2017). Previous studies have shown 

that NDWI is much better than NDVI for vegetation water content estimation (Chen 

et al., 2005; Huang et al., 2009; Gao and Alexander, 1995). However, before the 
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mission of MODIS, few sensors observed shortwave infrared reflectance, which limits 

the practical use of NDWI for VWC retrieval. 

 

 

 

 

Figure 4.2 Leaf spectral reflectance simulated for MODIS and Landsat 8 bands, where EWT means 

equivalent water thickness (EWT, cm). 

 

 

This study proposes a revised VWC estimation approach with an improved data 

fusion technique. The main target of this study is to monitor VWC at both good 

spatial and temporal resolution with remote sensing measurements during the crop 

reproductive growth stage in the major agricultural area in the U.S. We downscaled 

satellite observation to high resolution because of the 30 m high spatial resolution 
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assuring the vegetation conditions and related lands surface properties within a pixel 

can be considered homogeneous.  

The main steps for daily VWC estimation at 30m resolution include: (a) Fusion of 

OLI and MODIS data with an improved data fusion method; (b) Calculation of 

vegetation index using the fused reflectance measurements; (c) Calibration and 

validation of VWC retrieval equation; (d) Generation of daily VWC data with the 

calibrated retrieval equation.  

The improved reflectance bands fusion model we proposed in this study was based on 

the assumptions that the corresponding bands of Landsat 8 and MODIS are highly 

consistent (with relative similar wavelength) (Gao et al., 2006; Ke et al., 2015), and 

study is conducted within homogeneous area. The area of this study is with two main 

crop types that can be considered as homogeneous within 30 m spatial resolution. 

Both MODIS and Landsat 8 have near infrared band centered at 1.64 𝜇m and 

shortwave infrared band centered at 0.86 𝜇m. The two channels’ spectral reflectance 

generated by different sensors were fused firstly to get daily NDWI measurements at 

30 m spatial resolution, then specific crop type’s VWC at different scales were 

retrieved based on the relationship between VWC and NDWI (Zarco Tejada et al., 

2003). 

We proposed an improved data fusion method based on the following assumptions: 1) 

the corresponding channels of Landsat and MODIS are highly consistent, and 2) the 

study area is homogeneous. For homogenous pixels, remotely sensed TIR data from 

different sensors at a close acquisition time should be comparable and correlated after 

radiometric calibration, geometric rectification, and atmospheric correction. The 

difference between the acquisition time of Landsat 8 and MODIS is less than 10 min, 
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so we can consider the measurement to be acquired at the same time. However, there 

are still other factors such as orbit parameters, geolocation errors, effective pixel 

coverage, and spectral response functions, which can introduce some system biases 

into the subsequent analysis. The fusion procedure is described as follows: daily 

MODIS data was fused with the nearest 16-day Landsat data. The relationship of the 

radiance/ reflectance between the corresponding Landsat and MODIS channels can be 

expressed by the following equations: 

𝐿(𝑥, 𝑦, 𝑡) = 𝑚 ∗ 𝑀(𝑥, 𝑦, 𝑡) + 𝑛 (4.1) 

𝐿(𝑥, 𝑦, 𝑡0) = 𝑚 ∗ 𝑀(𝑥, 𝑦, 𝑡0) + 𝑛 (4.2) 

𝐿(𝑥, 𝑦, 𝑡𝑝) = 𝑚 ∗ 𝑀(𝑥, 𝑦, 𝑡𝑝) + 𝑛 (4.3) 

𝐿(𝑥, 𝑦, 𝑡𝑝) = 𝐿(𝑥, 𝑦, 𝑡0) + 𝑚 ∗ [𝑀(𝑥, 𝑦, 𝑡𝑝) −𝑀(𝑥, 𝑦, 𝑡0)] (4.4) 

where L is the at-sensor radiance/ reflectance of Landsat, M is the at-sensor radiance/ 

reflectance of MODIS; and m and n are regression parameters. Then, the radiance/ 

reflectance of the Landsat at time tp can be generated if we know the radiance/ 

reflectance of the MODIS at time to and tp, and the radiance/ reflectance of the 

Landsat at time to. 

The weighting function is considered in this method. We use the distance weighting 

function (D), and the spectral weighting functions (S), to calculate the fusion 

weighting function (W): 

𝐿 (𝑥𝑤𝑠
2
, 𝑦𝑤𝑠

2
, 𝑡𝑘) = ∑∑𝑊𝑖𝑘[𝑀(𝑥𝑖, 𝑦𝑖 , 𝑡𝑘) + 𝐿(𝑥𝑖, 𝑦𝑖 , 𝑡0) − 𝑀(𝑥𝑖, 𝑦𝑖 , 𝑡0)]

𝑤𝑠

𝑘=1

𝑤𝑠

𝑖=1

(4.5) 

𝐶𝑖𝑘 = 𝑆𝑖𝑘 × 𝐷𝑖𝑘 (4.6) 



 

40 

 

𝑊𝑖𝑘 =

1
𝐶𝑖𝑘

∑ ∑ (
1
𝐶𝑖𝑘
)𝑤𝑠

𝑘=1
𝑤𝑠
𝑖=1

(4.7) 

{
 
 

 
 𝑆𝑖𝑘 = |𝐿(𝑥𝑖, 𝑦𝑖 , 𝑡𝑘) −𝑀(𝑥𝑖, 𝑦𝑖 , 𝑡𝑘)|

𝐷𝑖𝑘 = 1 +
𝑑𝑖𝑘
𝐴
(𝑑𝑖𝑘 = √(𝑥𝑤𝑠

2
− 𝑥𝑖)

2

+ (𝑦𝑤𝑠
2
− 𝑦𝑖)

2

)
(4.8) 

{
𝑤𝑠 = 𝑒, 𝑠𝑢𝑚 (|𝑀(𝑥𝑖, 𝑦𝑖 , 𝑡0) −𝑀 (𝑥𝑤𝑠

2
, 𝑦𝑤𝑠

2
, 𝑡0)|) < 𝑎

𝑤𝑠 = 𝑒 + 2, 𝑠𝑢𝑚(|𝑀(𝑥𝑖, 𝑦𝑖 , 𝑡0) − 𝑀 (𝑥𝑤𝑠
2
, 𝑦𝑤𝑠

2
, 𝑡0)|) > 𝑎

(4.9) 

where L and M have the same meaning as above, S is the spectral weigh, D is the 

distance weight, ws is the window size, and A is a constant parameter that depends on 

the window size and land cover type. 

The NDWI value can be calculated through equation (4.10): 

NDWI =
(𝜌𝑁𝐼𝑅 − 𝜌𝑆𝑊𝐼𝑅)

𝜌𝑁𝐼𝑅 + 𝜌𝑆𝑊𝐼𝑅
(4.10) 

where 𝜌𝑁𝐼𝑅  is the reflectance of the near infrared band, and 𝜌𝑆𝑊𝐼𝑅  is the reflectance of 

the shortwave infrared band. 

Then the regression models were built to estimate VWC with NDWI. We mainly 

focused on plant VWC and canopy VWC in this study. Ground based VWC for plant 

and canopy can be generated as shown in equation (4.11) and (4.12) separately. Plant 

VWC is the total water mass counted from leaf part, stem part and pod part together. 

In this study, we collected all parts together as plant water content and generate the 

average plant VWC per site. Canopy VWC is the total plant water content per unit 

area, we measured total plant VWC per square meter as canopy VWC here. 

𝑉𝑊𝐶𝑝𝑙𝑎𝑛𝑡 = (FW𝑙𝑒𝑎𝑓 − DW𝑙𝑒𝑎𝑓) + (FW𝑠𝑡𝑒𝑚 − DW𝑠𝑡𝑒𝑚) + (FW𝑝𝑜𝑑 − DW𝑝𝑜𝑑)(4.11) 
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𝑉𝑊𝐶𝑐𝑎𝑛𝑜𝑝𝑦 =∑ [(FW𝑙𝑒𝑎𝑓 − DW𝑙𝑒𝑎𝑓) + (FW𝑠𝑡𝑒𝑚 − DW𝑠𝑡𝑒𝑚) + (FW𝑝𝑜𝑑 − DW𝑝𝑜𝑑)]
𝑛

1
∗
𝑑

𝑛
(4.12) 

where VWCplant means plant VWC, FWleaf means fresh weight for all the leaves per 

plant, DWleaf means dry matter weight for all leaves per plant, FWstem means stem 

fresh weight for the same plant, DWstem means the stem dry weight for the plant, 

FWpod means the fresh weight for all the pods of the same plant, DWpod means the dry 

weight for all the pods for the same plant, VWCcanopy means canopy VWC, n means 

the plant number per site, d means the plant density (plant number per square meter) 

(Yilmaz et al., 2008; Wang et al., 2013; Gamon et al., 1995).  

Plant VWC and canopy VWC can then be generated of the linear relationship with 

NDWI separately for differently crop type. We randomly selected half ground 

observations collected from the field work to build the VWC retrieval model and used 

the rest to validate the model. The least squares method is used to calibrate the linear 

model. 

𝑉𝑊𝐶𝑝𝑙𝑎𝑛𝑡 = 𝑎1 × 𝑁𝐷𝑊𝐼 + 𝑏1 (4.13) 

𝑉𝑊𝐶𝑐𝑎𝑛𝑜𝑝𝑦 = 𝑎2 × 𝑁𝐷𝑊𝐼 + 𝑏2 (4.14) 

where a1, b1 are plant VWC regression coefficients, a2, b2 are canopy VWC 

regression coefficients separately. 

 



 

42 

 

4.1.2 Surface Soil Moisture Content Estimation within Bare Soil/ Limited 

Vegetation Cover 

Landsat 8 TIR2 was fused with MODIS band 32; Landsat 8 band 4 was fused with 

MODIS band 1; and Landsat 8 band 5 was fused with MODIS band 2. The 

corresponding solar reflective and thermal emissive channels from Landsat 8 and 

MODIS measurements were fused first to get daily remote sensing datasets at 120 m 

resolution to calculate LST and NDVI, which were used in the universal triangle 

method for SSM retrieval. The method in this study mainly contains three data: bands 

fusion, LST retrieval, and SSM retrieval.  

𝑁𝐷𝑉𝐼 =
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝐸𝐷
𝜌𝑁𝐼𝑅 + 𝜌𝑅𝐸𝐷

(4.15) 

A single- channel method proposed by Jimenez-Munoz et al. was used to retrieve the 

LST with the fused thermal infrared data. The basis of the single channel algorithm is 

that the radiation attenuation for atmospheric absorption is proportional to the 

radiance difference of simultaneous measurements at different wavelengths. The 

generalized single channel method only uses the total water vapor content and the 

effective wavelength and can be applied to different sensors with the same equations.  

 

The NDVI and LST have a complicated relationship with soil moisture. Carlson and 

Gillies described the relationship as the vegetation index/ temperature (VIT) trapezoid. 

The analyses of data by Carlson and Gillies demonstrated that there is a unique 

relationship among soil moisture, the NDVI, and the LST for a specific study area, 

which was identified as the “universal triangle”. The results were later confirmed by 
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theoretical studies using a soil-vegetation-atmosphere transfer (SVAT) model, which 

was designed to describe the basic evaporation processes at the surface, together with 

the water partitioning between vegetation transpiration, drainage, surface runoff, and 

soil moisture variations. 

 

 

 

 

Figure 4.3 Universal triangle relationship between soil moisture, temperature, and NDVI 

(Chauhan et al., 2003) 

 

 

The relationship between soil moisture, NDVI*, and T* can be expressed through a 

regression equation, as follows: 

𝑇∗ =
𝑇 − 𝑇0
𝑇𝑠 − 𝑇0

(4.16) 

𝑁𝐷𝑉𝐼∗ =
𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼0
𝑁𝐷𝑉𝐼𝑠 − 𝑁𝐷𝑉𝐼0

(4.17) 
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where T is the observed LST at each pixel, NDVI is the observed NDVI at each pixel, 

and the subscripts 0 and s stand for the minimum and maximum values, respectively. 

𝑆𝑆𝑀 =∑∑𝑎𝑖𝑗𝑁𝐷𝑉𝐼
∗(𝑖)𝑇∗(𝑗)

𝑗=𝑛

𝑗=0

𝑖=𝑛

𝑖=0

(4.18) 

SSM = 𝑎00 + 𝑎10𝑁𝐷𝑉𝐼
∗ + 𝑎20𝑁𝐷𝑉𝐼

∗2 + 𝑎01𝑇
∗ + 𝑎02𝑇

∗2

+𝑎11𝑁𝐷𝑉𝐼
∗𝑇∗ + 𝑎22𝑁𝐷𝑉𝐼

∗2𝑇∗

+𝑎12𝑁𝐷𝑉𝐼
∗𝑇∗2 + 𝑎21𝑁𝐷𝑉𝐼

∗2𝑇2 (4.19)

  

 

4.1.3 Surface Soil Moisture Content Estimation with Vegetation Cover 

In an area with high vegetation coverage, the soil radiation information is concealed 

by the vegetation canopy, which will affect the accuracy of soil moisture estimation. 

Therefore, those methods are generally applicable only for monitoring soil moisture 

in bare soil and sparsely vegetated areas and under cloud-free conditions. However, 

microwave radiation at longer wavelengths has a stronger penetrating ability, which is 

not affected by weather conditions and acquisition time. Therefore, microwave 

remote sensing is considered as one of the most promising avenues for SSM 

monitoring. 

 

In order to obtain SAR data for SSM estimation, the acquired Sentinel 1 SAR images 

were processed, and the backscattering coefficient images in experiment areas were 

obtained. Then, the backscattering coefficients of each sample were extracted 

according to the latitude and longitude coordinates. In addition, the acquired Landsat 

8 OLI images were processed, and the vegetation index images covering the 

geographical extent of the experimental areas were obtained. Then, the vegetation 
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indices of each sample were extracted according to the latitude and longitude 

coordinates. 

 

To develop a semi-empirical model for the soil water content estimation, the water-

cloud model was used. There are two important parameters in the water-cloud model. 

One is the vegetation water content, which can be expressed by vegetation indices 

obtained from Landsat 8 data. Another one is the soil backscattering coefficient, 

which can be simply described by using a linear correlation with SSM. Then, those 

expressions were substituted into the water-cloud model, and an improved water-

cloud model with a spectral index was built. In addition, a semi-empirical model for 

SSM estimation was built.  

 

The canopy backscattering model is an important tool for studying the relationship 

between ground backscattering and soil moisture. To better describe the 

backscattering of the soil and vegetation in vegetation-covered areas, the water-cloud 

model proposed by Attema and Ulaby was used in this study. The water-cloud model 

is based on the radiation transport model, and the vegetation canopy is assumed to be 

uniform horizontal clouds, thus ignoring multiple scattering. In the water-cloud mode, 

the total backscattering in the vegetation-covered areas can be simply described as 

two parts: one is the scattering reflected directly from the vegetation canopy, and the 

second is the backscattering from the ground. The model is relatively simple and 

practical in describing radar scattering mechanism in crop-covered areas. Therefore, 

this model has often been used to estimate relevant information in vegetation-covered 

areas. 
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4.2 Soil Temperature Monitoring 

Accurate LST calculation through fused satellite measurements is significant for 

further surface soil temperature retrieval. According to the enterprise algorithm, the 

measured radiance difference from the two TIR channels are used to determine the 

radiance attenuation due to atmospheric absorption. The enterprise algorithm can be 

expressed as: 

𝐿𝑆𝑇 = 𝑝1 + 𝑝2 ∗ 𝑇1 + 𝑝3 ∗ (𝑇1 − 𝑇2) + 𝑝4 ∗ 𝜀 + 𝑝5 ∗ 𝜀 ∗ (𝑇1 − 𝑇2) + 𝑝6 ∗ ∆𝜀 (4.20) 

where T1 and T2 are the brightness temperatures of the two thermal infrared bands, p1, 

p2, p3, p4, p5 and p6 are empirical parameters for the algorithm. 

 

Land surface emissivity can be calculated as follows: 

ε = {

𝑎𝜀 × 𝑅𝑟𝑒𝑑 + 𝑏𝜀 ,        𝑁𝐷𝑉𝐼 < 0.2

𝜀𝑣𝑃𝑣 + 𝜀𝑠 × (1 − 𝑃𝑣) + 𝐶 ,         0.2 ≤ 𝑁𝐷𝑉𝐼 ≤ 0.5
𝜀𝑣 + 𝐶  ,     𝑁𝐷𝑉𝐼 > 0.5

(4.21) 

where 𝑎𝜀, 𝑏𝜀 are empirical parameters, 𝜀𝑣 and 𝜀𝑠 are emissivity values of vegetation 

and bare soil, Pv is the vegetation fraction, NDVI is the normalized different 

vegetation index, and C represents the value of surface roughness effects. 

𝑃𝑣 = (
𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛
)
2

(4.22) 

𝐶 = (1 − 𝜀𝑠) × 𝜀𝑣 ∗ 0.55 × (1 − 𝑃𝑣) (4.23) 

The emissivity value of soil and vegetation for two thermal bands are shown in Table 

4.1, which can be used to calculate land surface emissivity of two thermal infrared 

bands with different wavelengths, respectively. 
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Table 4.1 Emissivity values for soil and vegetation for thermal bands with different wavelengths 

 

Wavelength Soil (𝜺𝒔) Vegetation (𝜺𝒗) 

Band 1 (10.60-11.28 µm) 0.9668 0.9863 

Band 2 (11.50-12.51 µm) 0.9747 0.9896 

 

 

In previous studies, air temperature was selected as an optimal factor to monitor soil 

temperature in forested areas, combined with other ancillary observations (Ahmad 

and Rasul, 2008; Dwyer et al., 1990; Hasfurther et al., 1972; Hu et al., 2017; Paul et 

al., 2004). Air temperature can be measured by weather stations of standard 

meteorological height with high accuracy, which is considered to be the most precise 

way to collect in-situ air temperature observations with high temporal resolution as 

well. Many weather stations have been installed all over the world; however, there 

was no weather station within the study area and the nearest station was far away. 

Many studies have shown that the satellite-based daily LST product can be used to 

retrieve near surface daily mean air temperature from thermal infrared bands with 

high accuracy (R2 about 0.9, RMSE about 1K) in agricultural and forested areas due 

to the strong linear relationship between air temperature and LST (Huang et al., 2015; 

Kloog et al., 2014; Vancutsem et al., 2011; Yoo et al., 2018; Zhu et al., 2013). 

𝑇𝑎 = 𝑎𝑡 × 𝐿𝑆𝑇 + 𝑏𝑡 (4.24) 

where Ta is air temperature, LST is land surface temperature, and at and bt are 

empirical parameters. 

 

Both MODIS and Landsat LST products have been used to estimate LST in various 

regions and have obtained high quality air temperature results validated by in situ 
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weather station observations (Huang et al., 2015; Kloog et al., 2014; Vancutsem et al., 

2010; Yoo et al., 2018; Zhu et al., 2013). Departing from previous work, in this study, 

we substituted air temperature with LST to monitor surface soil temperature in a 

forested area using an improved surface soil temperature method. The annual and 

diurnal fluctuations of air temperature and soil temperature, and their relationship, 

were taken into consideration with ancillary datasets. Ground-truth surface soil 

temperature observations were used to calibrate and validate the results.  

 

Average daily surface soil temperature can be calculated as below (Paul et al., 2004): 

𝑆𝑆𝑇 = 𝑆𝑆𝑇̅̅ ̅̅ ̅ + 𝑃𝑠 sin(𝜔 × 𝑑𝑜𝑦 + 𝜃𝑠) (4.25) 

where SST is the surface soil temperature, 𝑆𝑆𝑇̅̅ ̅̅ ̅ is the mean annual surface soil 

temperature, Ps is the annual amplitude of the surface soil temperature wave, w is 

equal to 2π/365, and doy is day of year, 𝜃𝑠 is phase shift generated through the 

training procedure. 

𝑆𝑆𝑇̅̅ ̅̅ ̅ can be calculated as follows: 

𝑆𝑆𝑇̅̅ ̅̅ ̅ = 𝑇𝑎̅̅̅ × 𝑓𝐴 (4.26) 

where 𝑇𝑎̅̅̅ is the mean annual air temperature and fA can be calculated using the 

following equation: 

𝑓𝐴 = 𝑎1× exp(𝑎2 × exp(𝑁𝐷𝑉𝐼̅̅ ̅̅ ̅̅ ̅̅ ) + 𝑎3) + 𝑎4 (4.27) 

where a1, a2, a3 and a4 are empirical parameters and 𝑁𝐷𝑉𝐼̅̅ ̅̅ ̅̅ ̅̅  is mean annual NDVI. In 

previous studies, leaf area index (LAI) has been most commonly used to estimate 

temperature fluctuations (Ahmad and Rasul, 2008; Dwyer et al., 1990; Hu et al., 2017; 

Paul et al., 2004). Due to the small study area in this study, no suitable LAI 

measurements could be collected. Many studies have pointed out that LAI is 
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dependent on NDVI in agricultural and forested areas (Wang et al., 2005), so we used 

NDVI instead to calculate temperature fluctuation.  

 

Ps can be calculated as: 

𝑃𝑠 = 𝑃𝑎 × 𝑓𝑃 (4.28) 

where Pa is the annual air temperature amplitude, which can be derived from the 

satellite-based temperature products. fp can be calculated as: 

𝑓𝑃 = 𝑏1 × exp(𝑏2 × exp(𝑁𝐷𝑉𝐼) + 𝑏3) + 𝑏4 (4.29) 

where b1, b2, b3, and b4 are empirical parameters, respectively. 

 

4.3 Soil Carbon Flux 

Through the field experiment conducted in GDS, we found there is a strong nonlinear 

relationship between SST and CO2 emission from soil, add SSM observation to the 

CO2 emission model can effectively improve the monitoring results.  

 

Land surface temperature is one of the key parameters in hydrology, meteorology, 

and the surface energy balance. The thermal infrared sensor with two thermal infrared 

channels was added to the Landsat 8 payload to support the detection of the urban 

heat island, volcanoes, and forest fires. Recently, the NOAA JPSS EDR team is 

developing an enterprise LST algorithm that will be used for both the JPSS and 

GOES-R satellite missions. This provides an alternative method to retrieve land 

surface temperature measurements, which makes the comprehensive validation of 

LST possible.  
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Soil respiration is one of the main factors contribute to the emission of carbon dioxide 

from soil. Soil temperature accelerates the soil respiration rate, with the increase of 

soil temperature, soil respiration rate increase as a response, which facilitate the 

carbon emission from soil as well. Analyzing the ground-based observations collected 

through the two-year field campaign in the GDS, there is a positive relationship 

between CO2 emission and soil temperature. With the increase of SST, CO2 emission 

increase as a response. At the end of summer in September, CO2 emission can reach 

the highest rate around 9e+05 ug CO2/m
2/hr; at the end of winter in March, CO2 

emission is with the lowest rate around 0.5e+05 ug CO2/m
2/hr. The annual cycle of 

carbon dioxide emission from soil in forested area has been proved by Noormets et al. 

as well, the main reason for this may be the increase of soil respiration rate with the 

increase of SST. The soil respiration is one of the main factors for the carbon dioxide 

emission from soil (Sasai et al., 2011; Peterson and Billings, 1975; Valentini et al., 

2000).  

 

In this study, we built a nonlinear semi-empirical model as equation (4.30) expresses 

by combing retrieved SST observations through satellite datasets and in-situ CO2 

measurements to estimate CO2 with different forest types cover. Ground-truth CO2 

measurements in this study were used to train and validate the model. 

𝐶𝑂2 = 𝑎 × exp(𝑏 × 𝑆𝑆𝑇) + 𝑐 (4.30) 

where CO2 is the CO2 flux, a, b, and c are empirical parameters that can be generated 

combing in-situ measurements. The empirical parameters vary a lot based on various 

forest type. 
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From previous studies, we get to know that soil moisture has an impact on carbon 

emissions monitoring as well as soil temperature. In this part, we integrate surface soil 

temperature and vegetation covered surface soil moisture measurements through 

remote sensing techniques to retrieve CO2 emissions from the soil. The retrieved 

results will be compared with the CO2 emissions retrieved from surface soil moisture 

to evaluate whether integrating surface soil moisture will improve the CO2 monitoring 

model. 

𝐶𝑂2 = 𝑓(𝑆𝑆𝑇, 𝑆𝑆𝑀) (4.31) 

where SST is the surface soil temperature, SSM is the surface soil moisture. The 

carbon emissions monitoring model can be improved considering soil surface flux and 

evaporation through assimilating soil temperature measurement with soil moisture 

measurements. 
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CHAPTER 5 RESULT 
 

 

 

5.1 Soil Moisture Content Estimation under Various Conditions 

5.1.1 Regional High Resolutions Vegetation Water Content Estimation 

 

Observations of Landsat 8 and MODIS corresponding bands with similar wavelength 

were fused to generate daily reflectance measurements with a 30 m spatial resolution. 

The downscaled NIR and SWIR reflectance were used to calculate daily NDWI with 

30 m spatial resolution, which was used to estimate VWC as well. Compared with 

Landsat 8 near infrared band, the statistical results of fused reflectance value is with 

R2 of 0.91, RMSE of 0.09; compared with Landsat 8 shortwave infrared band, the 

statistical results of fused reflectance value is with R2 of 0.88, RMSE of 0.07; 

compared with the NDWI value calculated from Landsat 8 directly, the statistical 

results of fused NDWI value is with R2 of 0.89, RMSE of 0.04.  

Figure 5.1 and 5.2 show the scatter plots between observed and predicted VWC for 

corn and soybean fields separately. The red diagonal line means observed value 

equals to predicted one, therefore the distribution along the red line means monitored 

results with high R2, low absolute error and low RMSE.   

For NDWI and plant VWC for corn sites, as the scatter plot between observed and 

predicted value shown in Figure 5.1a; 

𝑉𝑊𝐶𝑝𝑙𝑎𝑛𝑡 = 5.901 ∗ 𝑁𝐷𝑊𝐼 − 2.219 (5.1) 
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For NDWI and plant VWC for soybean sites, as the scatter plot between observed and 

predicted value shown in Figure 5.2a; 

𝑉𝑊𝐶𝑝𝑙𝑎𝑛𝑡 = 0.5132 ∗ 𝑁𝐷𝑊𝐼 − 0.1442 (5.2) 

For NDWI and canopy VWC for corn sites, as the scatter plot between observed and 

predicted value shown in Figure 5.1b; 

𝑉𝑊𝐶𝑐𝑎𝑛𝑜𝑝𝑦 = 146.7 ∗ 𝑁𝐷𝑊𝐼 − 61.51 (5.3) 

For NDWI and canopy VWC for soybean sites, as the scatter plot between observed 

and predicted value shown in Figure 5.2b;  

𝑉𝑊𝐶𝑐𝑎𝑛𝑜𝑝𝑦 = 48.88 ∗ 𝑁𝐷𝑊𝐼 − 15.95 (5.4) 

 

Table 5.1 Statistical results of retrieved VWC with ground measured VWC 

 

 RMSE R2 p-value 

Corn Plant VWC 0.10 kg/plant 0.44 7.18 e-5 

Corn Canopy VWC 1.31 kg/m2 0.66 2.05 e-4 

Soybean Plant VWC 0.02 kg/plant 0.78 1.10 e-10 

Soybean Canopy VWC 0.94 kg/m2 0.85 1.89 e-10 
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(a)                                                                                           (b) 

 

Figure 5.1 Scatter plot between (a) Observed and predicted plant water content and (b) 

Observed and predicted canopy water content for corn fields 

 

 

 

(a)                                                                                     (b) 

Figure 5.2 Scatter plot between (a) Observed and predicted plant water content and (b) 

Observed and predicted canopy water content for soybean fields 
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When focusing on IOP2, NDWI can be used to retrieve plant VWC and canopy VWC 

both for corn and soybean with relatively good results. Although there exists a linear 

relationship between VWC and NDWI for both corn and soybean fields, different 

crop type needs to be studied separately. Results show that same NDWI value may 

indicate different VWC for different crop type, the coefficients vary with crop types. 

NDWI value ranges from 0.44 to 0.53 for corn field, while it ranges from 0.37 to 0.58 

for soybean field within the same period. Corn field shows relative higher plant VWC 

with the same NDWI value. With the increase of NDWI, plant VWC increase rapidly 

for corn field compared with soybean filed. In this study, soybean field shows better 

statistical results with higher R2 both at plant and canopy level. This may be caused 

by the influence of leaves’ growth angle and different canopy structures on near 

infrared and shortwave infrared bands reflectance.  

 

As mentioned previously, the study area was covered by two Landsat 8 scenes. We 

used both path 27/ row 30 and path 26/ row 31 Landsat 8 observations, there are only 

two Landsat 8 observation available within the study period on August 7th and 

August 16th. Within these two Landsat 8 passing days, cloud contamination is 

relatively high in the study area. If we only use Landsat 8 to retrieve VWC, too 

limited ground measurement is available to build the VWC retrieval model and 

validate the retrieved results. By fusing Landsat 8 with MODIS similar wavelength 

reflectance measurements through the improved downscaling method, we can 

generate daily 30 m VWC with satellite observations and use ground based VWC on 
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all sampling day to validate the results. Figure 5.3 and Figure 5.4 show the time series 

of observed and predicted canopy VWC for corn and soybean sites separately. SF01, 

LTAR-Corn, SF14, S32, SF04, SF02, S10, JPL-Cron, S36, S31, SF10, S09 represents 

corn field sampling site ID; LTAR-Soy, S19, NA04, S02, S03, S14, S21, S13, SF03, 

S18, S17, SF07 represents soybean field sampling site ID. From the time series of 

each sampling site, we can figure out both the predicted and observed VWC increase 

with time. The trend of the predicted value matches the observed ones quite well both 

for corn and soybean fields, which means the model can be used to estimate VWC 

from satellite observations.   

 

Previously, many field experiments have been done for the same study region, remote 

sensing techniques have been applied to retrieve VWC successfully. Different from 

this study, only one satellite sensor has been applied to estimate VWC combine 

ground truth measurements. For instance, Jackson et al. estimated corn and soybean 

canopy VWC through Landsat 7 ETM+ from mid-June 2002 to mid-July 2002 during 

SMEX02 field campaign for the same region with larger study area. A growth curve 

of VWC for each crop type was developed to generate daily ground-based 

observation. Both NDVI and NDWI were calculated to monitor canopy VWC for 

corn and soybean field separately, NDWI showed better statistical results compared 

with NDVI, with RMSE is 0.73 kg/m2 for corn field, RMSE is 0.20 kg/m2 for soybean 

field. Chen et al. monitored VWC with the same field campaign through MODIS 

observations. Same as the former one, NDWI showed better results compared with 

NDVI, with R2 is 0.74 for corn canopy VWC, R2 is 0.52 for soybean canopy VWC. 

Recently, a similar study has been done by Cosh et al. monitoring canopy VWC 
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focusing on the same field experiment. Temporal interpolation was applied to 

generate daily 30-m observations from 16-day Landsat 8 products, while there exists 

no clear relationship between Landsat 8 reflectance change with time. Different from 

this study, the whole growing period from May to August was considered, with 

RMSE of corn canopy VWC is 1.37 kg/m2, RMSE of soybean canopy VWC is 1.10 

kg/m2. This study shows better results both for corn and soybean fields compared 

with the former work. Figure 5.5a is the image representing spatial distribution of 

plant VWC on Aug 10th, 2016; figure 5.5b is the image of canopy VWC on the same 

day, respectively. 
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Figure 5.3 Time series between observed and predicted vegetation water content (canopy) for 

each corn site within IOP 2 
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Figure 5.4 Time series between observed and predicted vegetation water content (canopy) for 

each soybean site within IOP 2 

 

 

    

(a)                                                                                                 (b) 

 

Figure 5.5 Images of (a) Plant VWC and (b) Canopy VWC on 8/10/2016 

 

 

The error sources in this study mainly consist four parts: 1) Satellite observations, 

both from Landsat 8 and MODIS. The satellite surface reflectance observations and 

vegetation indices calculated may introduce various sources of uncertainty such as 

atmospheric effects, error from retrieval procedures, weather effects and the 

degradation of sensors. 2) Error from ground observing. The error from ground 

observing mainly from three ways: error from instruments; human induced error 

while conducting the experiments; experiment design error. When researchers 

designed the field campaign, although site representative, decreasing human and 
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instrument induced deviation and re-calibration have been considered carefully, error 

may still be introduced in unexpected ways. 3) Error from fusion model. The 

improved fusion model applied in this study consider there exist linear relationship 

between MODIS and Landsat 8 reflectance bands with similar wavelength on 

observing and predicting date. In reality, the relationship between MODIS and 

Landsat 8 in more complicated than linear relationship. Besides that, we treat the 

effects from surrounding pixels the same to the central pixel, the relationship between 

neighboring pixels is unknow yet. 4) Error from VWC modeling model (NDWI-VWC 

relationship), we simplified the VWC monitoring model in this study to just consider 

NDWI. There are several other factors that may affect VWC monitoring and NDWI-

VWC model parameter as well, such as soil moisture, surface temperature, leaf area 

index. 

 

5.1.2 Surface Soil Moisture Content Estimation within Bare Soil/ Limited 

Vegetation Cover 

15 permanent sites were chosen to evaluate the predicted SSM with observed SSM. 

Figure 5.6 shows the histogram of the difference between predicted SSM and 

observed SSM from ground measurements; the x-axis has the unit of m3/m3, and the 

y-axis is the percentage of the number of observations in each bin. We can see that the 

difference ranges from -0.2 m3/m3 to 0.15 m3/m3, with a mean error of 0.034 m3/m3, 

and a mean relative error of 0.0191. Table 5.2 shows the mean error, the mean relative 

error, the standard deviation of error, and the standard deviation of the relative error 

for each site. The results show that this method can be applied to regional SSM 

monitoring with success. Figure 5.7 compares the SSM estimation values with the in 
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situ SSM values for 15 sites. The x-axis is the in situ SSM values with the unit m3/m3; 

the y-axis is the retrieved SSM with the same unit. The diagonal red line in each sub-

plot means that the predicted SSM is equal to the observed SSM. In general, there was 

a strong correlation between the SSM estimations and the in situ SSM measurements. 

The trends of the distribution are close to the red line, which means that the retrieved 

result is very close to the in-situ measurements of SSM. As with LST validation, the 

absolute error and relative error are used to validate SSM. Overall, the values of mean 

error and the values of the mean relative error are quite small, which proves that this 

method—which aimed at improving the temporal and spatial resolution of SSM 

retrieval—has successfully monitored the SSM during the crop-growing season. 

 

 

 

 

Figure 5.6 Histogram of the difference between predicted SSM and observed SSM. 
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Table 5.2 Statistics obtained from the comparison of retrieved SSM against in-situ SSM 

measurements 

 

Site 

ID 

Mean Error 

(m3/m3) 

Mean 

Relative 

Error 

Standard 

Deviation of 

Error (m3/m3) 

Standard 

Deviation of 

Relative Error 

RMSE 

(m3/m3) 

SF01 −0.0056 0.0397 0.0238 0.1174 0.0302 

SF02 −0.0031 −8.0776 × 

10−4 

0.0018 0.1701 0.0434 

SF03 −0.0427 −0.1387 0.0222 0.2392 0.0655 

SF04 0.0090 0.0430 0.0224 0.1965 0.0402 

SF05 0.0104 0.0888 0.0215 0.1737 0.0485 

SF06 −0.0241 −0.1031 0.0206 0.1641 0.0500 

SF07 0.0169 0.0595 0.0212 0.1512 0.0462 

SF08 0.0532 0.1438 0.0286 0.2634 0.0817 

SF09 −0.0067 0.0452 0.0269 0.2469 0.0354 

SF10 −0.0349 −0.1678 0.0278 0.2463 0.0570 

SF11 −0.0154 0.1118 0.0266 0.2341 0.0769 

SF12 −0.0664 −0.0919 0.0311 0.2459 0.1124 

SF13 −0.0249 −0.0473 0.0301 0.2366 0.0520 

SF14 −0.0239 −0.1105 0.0292 0.2304 0.0715 

SF15 −0.0566 −0.1585 0.0305 0.2333 0.0910 
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Figure 5.7 Results of the predicted SSM with the observed SSM. 

 

 

R2 is 0.58, and the RMSE for this study ranged from 0.0302 m3/m3 to 0.1124 m3/m3. 

By checking the distribution of corn and soybean fields, we found that most of the 

sites with relatively good retrieval results are corn sites. The main reason for this is 

that, during crop growing seasons, the soybean leaves contain lots of dew in the 

morning, which will have a big influence on the evapotranspiration circle, and flow in 
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the soil around 7 a.m. to 8 a.m. leading to an increase of SSM. Since the in-situ 

measurements were usually conducted between 9–11 a.m., the ground measurements 

of SSM were relatively higher than the soil moisture value at the satellite passing time, 

which influences the retrieval model as a result. If cornfields and soybeans fields are 

separated, the results might be improved, but the spatial resolution in this study is not 

fine enough to do this. In addition, some fields have both corn and soybeans, and it 

would be difficult to study them separately. 

 

Figure 5.8 is the time series of observed SSM and predicted SSM for each site. For 

most of the validation sites in the study area, the trends of observed SSM and 

predicted SSM during the study period match well. 

 

 

 

 

Figure 5.8 Time series of predicted and observed SSM. 
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5.1.3 Surface Soil Moisture Content Estimation with Vegetation Cover 

We estimated vegetated SSM within the central TP through sWCM combining multi-

source satellite observations (MOD09 and Sentinel-1A SAR) and in-situ 

measurements from CTP-SMTMN. In-situ measurements were also applied to 

validate the monitoring results. Based on the statistical results obtained for 2015 

(Table 5.3), the sWCM integrating MODIS and SAR observations can be applied to 

effectively retrieve SSM in the study area. Both NDII and NDWI were suitable 

(R>0.6) and can be integrated into the sWCM for SSM monitoring. The NDII worked 

relatively better, with a higher R2, a lower RMSE, and a lower ubRMSE. Both NDII-

sWCM and NDWI-sWCM slightly overestimated SSM with positive bias values over 

the study. Table 5.4 and Table 5.5 are the statistical results of NDII-sWCM and 

NDWI-sWCM, respectively. 

 

Table 5.3 Statistical results of the methods proposed in this study, with R2 (coefficient 

determination), RMSE (root-mean-square error) (m3/m3), ubRMSE (unbiased root-mean-square 

error) (m3/m3) and bias (m3/m3) 

 

Vegetation 

index applied 

R2 RMSE ubRMSE bias 

NDII 0.4513 0.0609 0.0603 0.0085 

NDWI 0.4264 0.0613 0.0607 0.0083 
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Table 5.4 Statistical results of NDII-sWCM for each validation sites, with R2 (coefficient 

determination), RMSE (root-mean-square error) (m3/m3), ubRMSE (unbiased root-mean-square 

error) (m3/m3) and bias (m3/m3) 

 

Site # RMSE ubRMSE bias 

BC03 0.0591 0.0589 -0.0051 

BC04 0.087 0.0610 0.0620 

BC08 0.0656 0.0654 0.0043 

MS3501 0.0926 0.0470 0.0798 

MS3523 0.0368 0.0368 -0.0005 

MS3552 0.0347 0.0346 -0.0020 

MS3559 0.0407 0.0392 -0.0112 

MS3603 0.0389 0.0363 -0.0141 
 

 

Table 5.5 Statistical results of NDWI-sWCM for each validation sites, with R2 (coefficient 

determination), RMSE (root-mean-square error) (m3/m3), ubRMSE (unbiased root-mean-square-

error) (m3/m3) and bias (m3/m3) 

 

Site # RMSE ubRMSE bias 

BC03 0.0564 0.0553 0.0112 

BC04 0.0941 0.0681 0.0650 

BC08 0.0724 0.0507 -0.0521 

MS3501 0.0839 0.0441 0.0714 

MS3523 0.0308 0.0296 -0.0087 

MS3552 0.0389 0.0389 0.0009 

MS3559 0.0415 0.0407 -0.008 

MS3603 0.0395 0.0371 0.0143 
 

 

Figure 5.9(a) illustrates the scatterplots between observed and predicted SSM values, 

considering VI as NDII or NDWI separately (with 1:1 red line shown). Both NDII 

and NDWI overestimated SSM under low SSM conditions (in-situ SSM < 0.15 

m3/m3), and both VIs underestimated SSM under high SSM conditions (in-situ SSM > 
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0.2 m3/m3). Figure 5.9(b) represents the histogram of the differences between 

observed and predicted SSM values, the value accumulated (over 70%) between -0.05 

to 0.05 m3/m3 for NDII, between -0.06 to 0.07 m3/m3 for NDWI. 

 

 

 

Figure 5.9. (a) Scatter plots for observed and predicted SSM values using NDII and NDWI, 

respectively (b) histogram showing the differences between observed and predicted SSM values 

using NDII and NDWI, respectively. 
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Figure 5.10(a) shows the time series of observed and predicted SSM values for eight 

validation sites separately. The red line represents the observed SSM values, green 

line represents the predicted SSM values with NDII integrated in sWCM, blue lie 

represents the predicted SSM values with NDWI integrated in sWCM. For sites 

MS3552 and MS3603, the trend of predicted SSM (NDII-sWCM & NDWI-sWCM) 

matched the observed SSM quite well. For all sites, summer (May to August) has the 

highest SSM values with is consistent with the information provided above that 

summer has the most precipitation within the year. Observed SSM values drop rapidly 

at the beginning of August for all sites, predicted SSM values of some sites drop 

rapidly at the same time. Such situation is not understood yet. Figure 5.10(b) and 

Figure 5.10(c) illustrate the scatter plot between observed and predicted SSM values 

when NDII or NDWI were applied in the sWCM separately. In one site (BC08), 

sWCM overestimated SSM for the whole study period; while in two sites (BC04 & 

MS3501), sWCM underestimated SSM for most of the study period. In three sites 

(BC03, MS3523 & MS3552), SSM was overestimated when it was low and 

underestimated when it was high, which is consistent with the results from Figure 5.9. 

In two sites (MS3559 & MS3603), the scatterplots were distributed along the 1:1 red 

line. When the same parameters were applied, different validation sites yielded 

different results. 

 

Figure 5.11(a) shows the Landsat 8 false color image using the reflectance band 

(band1) as red, the shortwave-infrared band (band2) as green, and the near-infrared 

band (band3) as blue, where red indicates regions with vegetation cover and brown 

indicates bare soil. From left to right are the images acquired on May 25th, July 18th 
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and October 22nd. Based on the false color images, in May and October, the study 

area contained mostly bare soil, while in July, it was fully covered by grass. Figure 

5.11(b) and Figure 5.11(d), from left to right, are the generated SSM images when 

NDII or NDWI were integrated in the sWCM separately. Figure 5.11(c) and Figure 

5.11(e) show the scatter plots between observed and predicted SSM values when 

NDII or NDWI were applied in the rWCM, respectively. In spring, both NDII and 

NDWI overestimated SSM. In summer and autumn, the distribution was along the 1:1 

red line and the scatterplots were also accumulated along the 1:1 red line, suggesting 

that the model works better for soil with vegetation cover compared with bare soil. 

We observed s spatial-temporal pattern of SSM distribution, with the highest and 

lowest levels in summer and winter, respectively. Most likely, this is because the 

active layer starts to thaw in spring, resulting in a rapid increase in SSM. In contrast, 

in autumn and winter, the soil is mostly frozen, with decreased SSM levels. In spring, 

the eastern part of the study area showed relatively high SSM values when compared 

to the western part, while in summer, SSM was lowest in the central part. In winter, 

the lowest levels were observed for the central and eastern parts. Both images 

generated by NDII-sWCM and NDWI-sWCM illustrate the same distribution. The 

NDII-sWCM show lower SSM values compared to the NDWI-sWCM for spring, 

summer, and autumn. 

 

Although the model proposed in this study achieved good results, we recognize that 

there are some uncertainties. First, there were uncertainties from satellite 

measurements, as the MODIS solar bands have associated atmospheric uncertainties. 

Second, some uncertainties were associated with the ground observations, mainly 
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caused by technique design and experimental design, although calibration and 

validation were conducted. Third, we estimated the backscattering of the vegetation 

canopy mainly based on the VWC, but there are other factors that also affect the 

surface backscattering of active microwave signals such as soil surface roughness. 

Fourth, the WCM only considers the surface backscattering composed of 

backscattering from soil and vegetation and assumes there is no reflection within the 

vegetation canopy. Such assumption can, however, not be made for the “real world”. 

Soil texture and soil roughness are important factors that affect the backscattering of 

C-band signals, and omitting such factors may cause uncertainties in the retrieved 

SSM values when there is a vegetation cover. 
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Figure 5.10 (a) Time series of the observed and predicted SSM values (b) Scatter plots between 

the observed and predicted SSM values via NDII (c) Scatter plots between the observed and 

predicted SSM values via NDWI for each validating site. 
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Figure 5.11 (a) Landsat 8 false color images, (b) NDII-retrieved SSM map, (c) scatter-plot 

between observed and predicted SSM values by NDII, (d) NDWI-retrieved SSM map, (e) scatter 

plot between observed and predicted SSM values by NDWI on March 20th, July 18th, October 

22nd, respectively 

 

5.2 Vegetated Soil Temperature Monitoring through Satellite 

Techniques 

After combing the Landsat 8 and MODIS thermal infrared bands, daily 30-m LST 

was obtained using the enterprise algorithm, and LST was used to generate surface 

soil temperature within the forested area through an improved surface soil 

temperature retrieval model. I first calculated over the entire study area and then for 

each forest type separately to determine whether forest type influenced the surface 

soil temperature retrieval method accuracy.  

 

Validation using ground-truth surface soil temperature observations yields an R2 of 

0.78 and RMSE of 1.83 ℃ when the study area was treated as a homogenous forest 

and NDVI was applied as vegetation index in the model, and has an R2 of 0.81 and 

RMSE of 1.65 ℃ when EVI was applied in the model and treated the GDS as a 

homogeneous forest type. Figure 3 are the scatter plots between observed and 

predicted surface soil temperature when integrated NDVI in the model. Figure 5.12(a) 

shows the scatter plot between observed surface soil temperature and predicted 

surface soil temperature values over the whole study area, and dots located on the red 

diagonal line indicate where predicted and observed values were equal. We then 

classified the study area based on forest cover type: maple gum, Atlantic cedar, and 
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pine pocosin. Figure 5.12(b) shows the scatter plot between observed and predicted 

surface soil temperature values over the whole study area. Same as in figure 5.12(a), 

the red diagonal line in figure 5.12(b) indicates where predicted and observed values 

were equal. Compared with figure 5.12(a), the scatter plot distribution was not 

significantly different, which implied that dividing the study area into forest types did 

not differ greatly from calculating over the whole study area. Figure 5.13 shows the 

scatter plots between observed and predicted surface soil temperature when applied 

EVI as VI in the model, respectively. Same as figure 5.12, figure 5.13(a) is the scatter 

plot between observed and predicted surface soil temperature when training three 

forest types together, figure 5.13(b) is the scatter plot between observed and predicted 

surface soil temperature of the GDS when training different forest types separately. 

The scatter plot distribution is along the 1:1 red line both when studying the GDS and 

each forest types separately. Same as figure 5.12, there is no big difference when the 

GDS is treated as homogeneous forest cover or composition of specific forest types, 

which indicates that forest type doesn’t play an important role for surface soil 

temperature monitoring within forested region when applying various VIs in the 

model. 
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(a)                                                                                           (b) 

 

Figure 5.12 Scatter plot between observed and predicted surface soil temperature (a) the GDS 

observations were trained together (b) each forest types were trained separately when 

integrated NDVI in the model 

 

 

Table 5.6 shows the statistical analysis results for three forest types separately using 

observations for each type as training data. Pine pocosin has the best retrieval results 

(highest R2, lowest RMSE), while maple gum has the worst results (lowest R2, highest 

RMSE). There were no significant differences in the results (R2 and RMSE) between 

different forest types, which indicated that the improve surface soil temperature 

retrieval model can be applied to the three forest types in this study effectively. 

Compare with NDVI, EVI shows better monitoring results when applied in the model 

as VI with lower RMSE and high R2 for the forest types studied in this research. 

 

Table 5.6 Statistical results for three forest types 
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 NDVI 

Forest type R2 RMSE (℃) 

Maple-gum 0.77 1.76  

Atlantic white cedar 0.79 1.85  

Pine pocosin 0.83 1.46  
 

 

Figure 5.13(a) shows the observed and predicted surface soil temperature time series 

integrated NDVI as VI in the model within the study period for maple gum site, 

where the blue dots (maple-o) represents the observed values, the black dotted line 

(maple-ndvi1) represents the predicted values using observations from the whole 

study area as training data, and the red dotted line (maple-ndvi2) represents predicted 

values using only maple-gum observation data for training. Figure 5.13(b) shows the 

same time series but for Atlantic white cedar where the blue dots (cedar-o) indicates 

the observed surface soil temperature values from Atlantic white cedar cover, the 

black dotted line (cedar-ndvi1) indicates the predicted values using observations from 

the whole study area as training data, and the red dotted line (cedar-ndvi2) indicates 

predicted values using only Atlantic white cedar forest observation data for training. 

Figure 5.13(c) shows the surface soil temperature time series for pine pocosin site, 

where the blue dots (pine-o) is observed values for pine pocosin site, the black dotted 

line (pine-ndvi1) is predicted values using observations from all forest types as 

training, and the red dotted line (pine-ndvi2) is predicted values using pine pocosin 

observation for training. Figure 5.13 shows the time series of observed and predicted 

surface soil temperature when integrated EVI as VI in the model for maple gum site, 

Atlantic white cedar site and pine pocosin site respectively. As the time series 
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illustrated, over the two-year observing period after the wildfire the surface soil 

temperature increases at first then decrease gradually in summer, while in winter the 

surface soil temperature increases, and the annual range of surface soil temperature 

decrease as a consequence both for NDVI and EVI derived results. The trend works 

for all three studied forest types. In addition, no great differences were observed in 

time series distributions for specific forest cover types using different training 

parameters when VI was integrated in the model, which is consistent with the results 

showing in the scatter plots. The NDVI derived time series dropped sharply in winter 

for the three forest types, especially in 2016. 

 

 

 

(a) 
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(b) 

 

(c) 

 

Figure 5.13 Time series of predicted and observed surface soil temperature for (a) maple gum, (b) 

Atlantic white cedar and (c) pine pocosin when integrated NDVI in the model 

 

 

Over the two-year study period, both of the predicted surface soil temperature time 

series matched observed values quite well for all three forest types. Statistical results 

were also good, with R2 greater than 0.7 and RMSE less than 2 ℃ for all sites with 
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two different training groups. Based on the statistical results and time series, we can 

see that modeling the study area together or separated by forest type did not improve 

surface soil temperature results. The surface soil temperature monitoring method did 

not depend heavily on forest type, and none of the forest types has obvious high 

accuracy results. 

 

5.3 Retrieve Carbon Dioxide Flux from Soil 

 

The ground-based observations collected through the two-year field campaign in the 

GDS revealed a positive relationship between CO2 emissions and surface soil 

temperature. With the increase of surface soil temperature, CO2 emissions increase. 

At the end of summer in September, CO2 emissions peaked at around 9e+05 𝜇g 

CO2/m
2/h; at the end of winter in March, CO2 emissions reached their lowest rate at 

around 0.5e+05 𝜇g CO2/m
2/h. The annual cycle of CO2 emissions from soil in the 

forested area has been proved by Noormets et al. (2010) This could because of the 

increase of soil respiration rate with the increase of surface soil temperature. The soil 

respiration is one of the main factors behind CO2 emissions from soil (Sasai et al., 

2011; Peterson and Billings, 1975; Valentini et al., 2000). Figure 5.14 shows the time 

series of surface soil temperature, surface soil moisture and CO2 emissions from soil 

and the scatter plots of CO2 emissions between surface soil temperature/ surface soil 

moisture separately for (a) the whole GDS, (b) Atlantic white cedar, (c) maple gum 

and (d) pine pocosin, respectively. From the time series, we found both surface soil 

temperature and CO2 emissions have annual cycles, such finding works for the GDS 

and each separate forest type. When surface soil temperature reaches the annual 
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highest value, CO2 emission is highest as well, the same goes for the annual lowest 

time of surface soil temperature and CO2 emission. However, there is no obvious 

annual cycle for surface soil moisture. From the scatter plots, we can figure out when 

surface soil temperature increases, CO2 emission increases consequently. There is a 

strong nonlinear positive relationship (R2 > 0.65) between surface soil temperature 

and CO2 emissions when studying the whole study area or each forest types separately. 

As surface soil moisture increases, CO2 emission decreases as a result. Although there 

exist nonlinear negative relationships between surface soil moisture and CO2 

emissions for all observing sites, compared with surface soil temperature, the effects 

by surface soil moisture is not obvious (R2 < 0.3). In this study, we estimate CO2 

emissions mainly based on its relationship with surface soil temperature. 

 

 

(a) 
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(b) 

 

(c) 
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(d) 

 

Figure 5.14 Time series of the observed soil temperature, soil moisture and CO2 emissions from 

soil, and scatter plots between CO2 emissions and surface soil temperature/ surface soil moisture 

of (a) GDS, (b) Atlantic white cedar, (c) maple gum, and (d) pine pocosin 

 

 

In this study, based on the relationship we found from ground observation, we built a 

nonlinear semi-empirical model by combining retrieved surface soil temperature 

observations through satellite datasets and in-situ CO2 measurements to estimate CO2 

from different forest types. Ground-truth CO2 measurements in this study were used 

to train and validate the model. 

 

In this study, the CO2 emissions from soil in different forest types were examined 

based on their relationship with surface soil temperature. We evaluated the surface 
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soil temperature retrieval results within the GDS through ground-truth surface soil 

temperature measurements with R2 of 0.78, and RMSE of 1.83 ℃. The results reveal 

that remote sensing techniques can be applied to map surface soil temperature in 

forested regions effectively with good statistical results. There exist annual cycles of 

satellite-retrieved surface soil temperature, and the trend matched the ground-based 

observations well. In addition, we applied the improved surface soil temperature 

retrieval model in different forest types separately and found no major difference 

between the retrieval results for different forest types. Maple gum with R2 of 0.77, 

RMSE of 1.76 °C; Atlantic white cedar with R2 of 0.79, RMSE of 1.85 °C; pine 

pocosin with R2 of 0.83, RMSE of 1.46 °C. The surface soil temperature retrieval 

model proposed in this study works well for maple gum, Atlantic white cedar and 

pine pocosin forest cover with R2 over 0.7 and RMSE less than 2 °C, and the forest 

type did not affect the surface soil temperature monitoring through satellite 

measurements. 

 

The estimated CO2 emissions were evaluated with in-situ observations. We trained 

the model over the GDS together and then focused on each forest type separately to 

study whether homogeneous study area and different forest type had an impact on the 

model. Table 5.7 presents the statistical results from the CO2 emissions retrieval 

model, with trained empirical parameters a, b, and c for the GDS and specific forest 

types. Table 5.7 reveals that monitoring CO2 with different forest types separately can 

effectively improve the accuracy with higher R2 and lower RMSE. Maple gum and 

Atlantic white cedar showed a stronger CO2-surface soil temperature relationship than 

pine pocosin. This was because the CO2 emissions from soil with pine pocosin cover 
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did not change substantially in spring, autumn, and winter, and in summer there was 

an obvious increase rate of CO2 emissions, which leads to the proposed model 

working better for pine pocosin cover in spring, autumn and winter than in summer. 

 

Table 5.7 Training parameters (a, b, and c) and statistical results of the CO2 emissions model 

 

Forest type a b c R2 RMSE (𝜇g CO2/m
2/h) 

GDS 5.36e+04 0.10 -2.01e+04 0.47 1.25e+05 

Maple gum 3.71e+04 0.12 7.84e+03 0.51 1.14e+05 

Atlantic white cedar 8.10e+05 0.03 -9.57e+05 0.62 1.15e+05 

Pine posocin 4.98e+04 0.11 -1.25e+04 0.44 1.07e+05 

 

 

Figure 5.15 is the scatter plot between observed and estimated CO2 emissions from 

soil. The CO2 emissions monitoring model was shown to effectively generate spatial 

and temporal continuous measurements through satellite observation. Figure 5.16 

illustrates the time series of predicted and observed CO2 emissions for maple gum, 

Atlantic white cedar and pine pocosin cover, where co2-p indicates predicted CO2 

emissions through the proposed mode, co2-o represents observed CO2 emissions 

through in-situ measurements. 
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(a)                                                                                    (b) 

 

(c)                                                                                    (d) 

 

Figure 5.15 Scatter plots between the observed and predicted CO2 emissions from soil (a) the 

GDS, (b) maple gum, (c) Atlantic white cedar and (d) pine pocosin. The red line is the 1:1 line. 
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(a) 

 
(b) 

 
(c) 
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Figure 5.16 Time series of the observed and predicted CO2 emissions from soil of (a) maple gum, 

(b) Atlantic white cedar and (c) pine pocosin 

 

 

Figure 5.17 represents the images of surface soil temperature and CO2 emissions with 

the highest and lowest average values on Feb 19th 2016 and July 28th 2016, 

respectively. The bias between observed and predicted values for each sampling sites 

have also been marked by circle symbols, the size of the circle indicates the 

magnitude of bias. Blue represents Atlantic white cedar, yellow represents maple gum, 

green represents pine pocosin, respectively. Bias above zero (observed value larger 

than predicted one) is marked by lighten color, while bias below zero (observed value 

smaller than predicted one) is marked by darken color. The bias of most sites on July 

28th 2016 are larger than that on Feb 19th 2016. Atlantic white cedar and maple gum 

sites with relatively smaller bias compared with pine pocosin sites (smaller size of the 

symbol). One pine pocosin site is with extremely high bias (bias > 7e+05 𝜇g 

CO2/m
2/h), which is consistent with the time series. This may cause by in-situ 

measurements errors. 
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(a) (b) 

   

(c)                                                                                             (d) 
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Figure 5.17 Surface soil temperature of the GDS with (a) minimum average value on Feb 19th 

2016 and (c) with maximum average value on July 28th 2016, respectively; CO2 emissions of the 

GDS with (b) minimum average value on Feb 19th 2016 and (d) with maximum average value on 

July 28th 2016, respectively 

 

 

Figure 5.18 presents the images generated from satellite measurements for the 

distribution of CO2 flux from soil within the GDS for May 20th 2015, August 30th 

2015, November 25th 2015, February 5th 2016, May 15th 2016, August 25th 2016, 

November 30th 2016, and February 15th 2017. The CO2 emissions in 2015 are slightly 

higher compared with that in 2016 for the GDS over four seasons. Cypress gum 

covered areas with relative high CO2 emissions in summer compared with other land 

cover types, however, this species showed relative lower CO2 emissions in spring, fall 

and winter compared with other regions. 

 

      

(a)                                                                         (b) 
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(c)                                                                    (d) 

      

(e)                                                                        (f) 
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(g)                                                                        (h) 

 

Figure 5.18 The soil CO2 emissions on (a) May 20th 2015, (b) August 30th 2015, (c) November 

25th 2015, (d) February 5th 2016, (e) May 15th 2016, (f) August 25th 2016, (g) November 30th 

2016 and (h) February 15th 2017 

 

 

These data reveal that CO2 emissions varies with season and forest cover. There is an 

approximately annual cycle of CO2 emissions as surface soil temperature, with winter 

having the lowest carbon flux and summer having the highest carbon flux, which is 

consistent with the ground-truth measurements. 
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CHAPTER 6 DISCUSSION AND CONCLUSION 
 

 

 

The limitations of this dissertation include: 

1) Error from observations, which include satellite observations and ground 

observations I applied in the dissertation.  

a. As for satellite observations, Landsat 8, MODIS and Sentinel-1 may all introduce 

uncertainties. The surface reflectance observations may introduce various sources of 

uncertainty such as atmospheric effects, error from retrieval procedures, weather 

effects and the degradation of sensors; the microwave signals are affected by terrain a 

lot. 

 

b. The error from ground observing mainly from three ways: error from instruments; 

human induced error while conducting the experiments; experiment design error. 

When researchers designed the field campaign, although site representative, 

decreasing human and instrument induced deviation and re-calibration have been 

considered carefully, error may still be introduced in unexpected ways.  

 

2) Error from models built in the dissertation.  

a. The improved fusion model applied in this study consider there exist linear 

relationship between MODIS and Landsat 8 reflectance bands with similar 
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wavelength on observing and predicting date. In reality, the relationship between 

MODIS and Landsat 8 in more complicated than linear relationship. Besides that, we 

treat the effects from surrounding pixels the same to the central pixel, the relationship 

between neighboring pixels is unknow yet.  

 

b. I simplified the relationship between satellite observations and land surface 

properties (soil moisture, soil temperature, soil carbon flux) to build the retrieval 

model in this study. There are several other factors that may affect such soil properties 

monitoring, considering other significant factors may improve the monitoring results 

effectively. While such parameters may be difficult to collect. 

 

3) All study area mention in the dissertation is regional study. 

In this study, semi-empirical models were applied integrating ground observations to 

retrieve land surface properties in regional study area. While whether such semi-

empirical models can be applied to other regional is under debate. Besides that, 

ground observations are needed to calibrate and validate the model, collecting 

valuable ground observations is a tough task in many regions in the world. While 

remote sensing is one of the most important techniques to observe land surface 

properties in such regions. 

 

This dissertation investigated and explored current land properties monitoring method 

in this decades and discuss the advantages and limitations of each method, then 

proposed innovated approaches to retrieve land properties through satellite techniques. 
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Specifically, the dissertation 1) combining multi-sources satellite observations with a 

machine learning based downscaling model to generate satellite observations with 

both high spatial and temporal resolutions, 2) monitoring spatial and temporal 

continuous various land surface properties (vegetation water content, surface soil 

moisture, surface soil temperature) combining in-situ  measurements and downscaled 

satellite observations within three study areas, and 3) applies the satellite derived high 

resolution land surface properties to retrieve carbon dioxide emissions from soil 

through building semi-empirical model integrating ground-truth observation. 

 

In future, we plan to combine soil temperature and soil moisture to improve the soil 

carbon flux monitoring. From ground observations, as soil temperature increases, 

carbon dioxide flux increases as well; as soil moisture decrease, carbon dioxide flux 

consequently. Although there is a close non-linear relationship between soil carbon 

flux and soil temperature (R2>0.6), integrating soil moisture and soil temperature 

together can greatly improve carbon flux monitoring results (R2>0.9). Current surface 

soil moisture monitoring method with vegetation cover works well for grassland and 

crop area, but applying the model to forestry area is still challenging. Improving the 

current semi-empirical method to applied to various study areas globally is of great 

importance, and integrate the current knowledge with other physical models and 

machine learning method may significantly improve the application of satellite 

techniques in areas with limited ground observation network.  
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