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Abstract

DEVELOPMENT OF A SECURE MOBILE GPS TRACKING AND MANAGEMENT
SYSTEM

Anyi Liu, PhD

George Mason University, 2011

Dissertation Director: Dr. Jim X. Chen

With increasing demand of mobile devices and cloud computing, it becomes increasingly

important to develop efficient mobile application and its secured backend, such as web

applications and virtualization environment. This dissertation reports a systematic study

of mobile application development and the security issues of its related backend.

First, to standardize the software development of mobile application, we design an effi-

cient mobile application that investigate the key issues of mobile application development,

such as location tracking, embedded database management (EDBM), and wireless commu-

nication. Our application has been implemented and commercialized on Window Mobile

smartphones.

Second, to prevent SQL injection attacks (SQLIAs), we propose a black-box input vali-

dation approach, which harnesses the effectiveness of genetic and input validation algorithms

to dynamically extract users’ inputs and detect malicious SQL control queries. Compared

to state-of-the-art protection approaches, our method does not require any code changes on

either the client, the web-server, or the back-end database. To evaluate the overhead and

the detection performance of our system, we have implemented the SQLProb and tested it

by using benchmark SQL attacks. Our experimental results show that we can detect all



known SQL injection attacks while maintaining very low resource utilization.

Third, to protect user’s private information from being exfiltrated to outside attacker,

we propose a architectural solution to detect covert channels in real-time. Our intrusion

detection system, namely Observer, runs a secure virtual machine that mimics the malicious

virtual machine so that any differences between two virtual machines can be identified in real

time. Unlike most existing signature or anomaly-based covert channel detection approaches,

Observer does not require any legitimate data to build a normal behavior model. To evaluate

Observer, we have run covert channels and detected them in real-time. Our experimental

results demonstrate that Observer can detect most covert storage channels with a high

detection rate and low latency and overhead.

Lastly, to detect more advanced covert channel attacks, such as covert timing channels

(CTCs), we design a novel metric that can quantitatively measure the difference between

the timing patterns of normal and CTCs. The key challenge we are facing is to detect

CTC online in a environment, where accurate time keeping might be affected by many

dynamic conditions. Our wavelet-based metric can quantitatively measure the distance

between the outbound networking flows of benign VMs and malicious VMs, which contains

CTCs. In addition, this online approach reduces the whole procedure of modeling legitimate

traffic while remains transparent to end-users. Our experimental result demonstrates a high

detection and a low false positive rate in detecting different CTC attacks.



Chapter 1: Introduction

Tremendous attention has been put on the advances of computer hardware and software.

On one hand, small and relatively inexpensive handhold devices such as personal digital

assistants (PDA), tablet computers, and mobile phones have become indispensable tools for

today’s highly mobile workforce. On the other hand, more and more personal and enterprise

users have been focused on how to sweep up data and program from personal computer

(PC) to a remote server or networked virtual environment [33]. Networked virtual envi-

ronment refers to a computer networking environment that connects simulated computer

environment, or virtual machine (VM), on the top of a given host hardware and software

platform. Indeed, reports show that the number of virtual machines has exceeded that of

physical servers since 2009 [79], and mobile internet users will eventually outnumber the

desktop internet users in 2014 [94].

While the advances of both technologies improve productivity remarkably, it is critical

to develop a framework that integrates mobile application, web application, and networked

virtual environment together. The application should provide key functionalities specifi-

cally adapt to mobilized utilities, such as location tracking, data management, and wireless

communication. In addition, the computational power and storage of the mobile appli-

cation should be extendable when connect to web applications and a networked virtual

environment. As this multi-level framework has been used, it also pose new risks to per-

sonal user and organizations. A shift of hacker’s target from PC to mobile devices, web

application, and virtual machines has made attacks more sophisticated and more dangerous

than ever [56].

In light of these challenges, current research efforts have been put on developing ef-

ficient mobile application and its secured backend, which includes the hardening of web

applications and virtual machines. For mobile application development, many development

1



environments that allow a developer to write, test, and deploy applications into the target

platform environment have been developed, such as Android [5], iOS SDK [73], and Win-

dows Mobile [130]. For web application security, different categories approaches of detecting

and preventing code-injection attacks have been developed, such as input validation [19,30,

45,54,99–101], static analysis [11,42,42,68,72,132], learning-based technologies [9,47,118],

and dynamic prevention [11, 20, 88, 113]. For virtual machine security, most of the covert

channel detection approaches assume that sufficient quantity of legitimate networking traffic

is available to model the legitimate traffic patterns [12,13,21,39,40,71,92,104,122–124].

In this dissertation, we explore different issues of mobile application development and

web and virtual machine security. Specifically, we address the key functionalities specifi-

cally adapt to mobilized utilities, such as location tracking, data management, and wireless

communication. In addition, we address two challenging intrusion detection and prevention

problems for web application and virtual machine security: 1) preventing code-injection

attacks for web applications, and 2) detecting covert storage/timing channels in virtual

machines. In Chapter 3, we study an input-validation approach to preventing SQL injec-

tion attacks. Our approach uses an input-validation proxy as an additional layer between

web application and its database, and thus avoids the complication of static analysis and

learning, and is highly adaptive to most existing web applications.

In Chapter 4 and Chapter 5, we investigate the intrusion system design and detective

metric development. With the observation that inside secrete can be transmitted the outside

attacker once a vulnerable VM has been compromised, we emphasis on the outbound traffic

of virtual machines. Compared to the unnoticeable deviation between legitimate traffic,

a greater deviation can be measured between a benign VM and compromised VM that

contains covert channel. In the consideration that virtual machine lacks precise time keeping

mechanism, our matric is robust enough to detect covert channel even with the presence of

noises.

2



1.1 Contributions

Our research contributions are summarized as follows. I have designed and implemented:

1. A new mobile application

Software development on mobile devices increasingly attracts more attention in re-

cent years. Due to different hardware platforms and software developing IDEs, most

mobile software development lacks a systematic methodology and scalable framework

to facilitate effective functionalities. We creat a multi-level mobile application frame-

work that supports front-end users, web interaction, and networked virtual environ-

ment that provides additional computational power and storage. On our framework,

we implement a mobile application that provides functionalities of location tracking,

game management, embedded database management, and blue-tooth communication.

The mobile application has been deployed successfully on commercial mobile phones.

2. A new input-validation approach to prevent code-injection attacks towards

web application

Preventing against code-injection attacks towards web applications such as SQL-

injection (SQLIAs) and Cross-site script (XSSs) is of increasing interest in recent

years. However, due to the complication of distinguishing non-executable data and

executable code, code-injection attacks are particularly difficult to prevent. The exist-

ing prevention schemes depend on code analysis, code instrumentation, or modeling

based on a large number of training data, which are non-effective to detect most

code-inject attacks. We introduce a new black-box approach to prevent most exist-

ing SQLIAs. Based on the observation that web applications use a common memory

space to keep query code and user input data, we develop a new algorithm to extract

user input from the application-generated query, and a new algorithm to validate

the extracted user input in the context of the application-generated query’s syntactic

structure. Our experiment results demonstrate that our system based on our new

approach has 100% detection rate in detecting most existing SQLIAs.

3



3. A new architectural solution to detect covert storage channels

Despite extensive research, covert storage channels (CSCs) are a principal threat to

information security. Most detecting techniques model legitimate network traffic.

However, such approaches may not be applicable in a networked virtual environments

where legitimate traffic may not be available. We design and implement a real-time

covert channel detection system, Observer. Observer does not require legitimate traf-

fic for modeling, and can be dynamically deployed in a networked virtual environment

where people are interested in investigating suspicious virtual machines. In addition,

Observer is implemented as a transparent bridge, so that it is not detectable to mali-

cious user. The experiment results show that Observer can detect CSCs with a high

success rate, low latency, and low overhead.

4. A new metric to detect slow covert timing channels in virtual machines

Covert timing channels (CTCs) aim to transmit hidden information by perturbing

the timing characters between consecutive packets in normal network communica-

tion. Most existing approaches either use signature-based approaches to detect known

CTCs or anomaly-based approach by modeling normal networking traffic to detect

unknown CTCs. Both of them fail to detect slow CTCs in a dynamic environment

without normal traffic for training. We introduce a new metric that can quantita-

tively measure the distance between different outbound networking flows from virtual

machines. Compared to existing approaches, our approach not only can detect most

slow existing and zero-day CTCs without normal traffic data, but also demonstrate its

detection with the presence of noises. Our experiment result shows that our approach

is sensitive to CTCs, and is capable of detection them accurately.

1.2 Organization

The rest of this dissertation is organized as follows. In Chapter 2, we present the design

and implementation of a mobile application that supports golf game. In Chapter 3, we

4



present a proxy-based approach to prevent code inject attacks toward web applications. In

Chapter 4, we present the design and implementation of an architectural solution to detect

covert storage channels in a networked virtual environment. In Chapter 5, we design and

implement a new metric to detect covert timing channels. We conclude the dissertation and

outline possible directions for our future work in Chapter 6.
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Chapter 2: Designing and Implementing a Mobile GPS

Tracking and Management System

2.1 Introduction

The advances of GPS [43], smartphones [105] and cloud computing [23] have opened the door

for researchers and software developers to tackle novel applications at a distance and scale

that were impossible to imagine just a couple of decades ago. This has led to the emergence

of the field of mobile application development, which is quite different from the conventional

application development. Compared to their desktop counterparts, mobile applications

demonstrate unique features, such as different usage patterns, more applications associate

with geographic information, limited size of screen, and short duration of activities due to

power constraint and limited computational power [98]. Developing efficient and scalable

mobile applications is always welcome yet challenging.

Most existing mobile application development has been focused on the stand-alone soft-

ware development. Although such development can be improved through advances in hard-

ware and software, such as graphics processing unit (GPU) [64], multi-core processor [34],

and novel algorithms, the current mobile application development still lacks a systematic

methodology and a scalable framework that supports front-end users, web interaction, and

networked virtual environments that provide additional computational power and storage.

In this chapter, a multi-level mobile application framework is described that integrates

front-end mobile application, web services, and networked virtual environment together so

as to provide additional computational power and storage. In particular, some key functions

are described and implemented, that have been considered as the most general functions

provided by mobile applications, such as geographic position tracking, real-time graphic

displaying, database management, and wireless communication.
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This chapter is organized as follows. Section 2.2 briefly describes a specific example

of a multi-level mobile application. Section 2.3 presents a detailed description the system

overview and the major components involved. Section 2.6 concludes the chapter with a

brief summary of the application and some discussion of future steps in the development

process.

2.2 Application Example

In this section, we present an actual example of a multi-level mobile application framework,

named EarthChildren. EarthChildren is designed to enhance the sporting experience of

golfers by providing them geographic information, game managing, and game information

exchange.

Figure 2.1 shows the working procedure of EarthChildren. When a golf shot is about to

be taken, a golfer’s mobile device, e.g., smartphone [105], receives messages from satellites,

which contain the geographic information about the golfer’s current position and the in-

tended goal. The geographic information can be used for many purposes: 1) retrieving maps

of the golf course that covers the position; 2) displaying the current position of the golfer on

her mobile device; 3) calculating angular and distant quantities and displaying them on the

golfer’s mobile device (Step 1 in Figure 2.1). In addition, the distance information can also

be used to recommend a particular club to the golfer based on her previous performance and

expressed preferences in such situation. During the game, a group of golfers can exchange

personal and game information with each other through wireless communication media,

such as Wi-Fi or Bluetooth (Step 2). After the entire game, the personal and game infor-

mation can be saved in the golfer’s personal computer (PC) (Step 3) or uploaded onto a web

application and saved in its database (Step 4) for future reference in the current of future

games. Of course, golfers can also upload information to their rented virtual machine(s) in

Cloud [23], which provides supplementary computational power and backup storage of the

mobile device (Step 5).
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Figure 2.1: EarthChildren, the application example

2.3 System Design

2.3.1 EarthChildren System Overview

Figure 2.2 illustrates the architecture of EarthChildren, which contains five major com-

ponents that can all be accessed from the main interface. 1) Location Tracker receives

geographic location information from the satellites, and calculates the latitude and longi-

tude of that position. 2) Graphic Displayer displays the current position on the mobile

device’s graphic user interface (GUI), as well as loads maps and icons based on the position

from the embedded database (EDB). 3) Game Manager calculates distance and angular

quantities, recommends golf clubs, manages the golfer’s personal information, and saves the

game records in the EDB. The game manager can also display a games which has been

saved previously. 4) Communicator supports Bluetooth communication between golfers’

mobile devices. 5)Database Manager bridges the communication between the above four

components and the EDB. The design and implementation details of each component are

described in the subsections that follow below.
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Figure 2.2: The system architecture of EarthChildren

Figure 2.3 shows the detailed software architecture of EarthChildren that is generated

by Enterprise Architect [109], which contains the definition of classes and their members

(variables and functions). The system was implemented on Windows Mobile [77, 130] with

a size of 16MB, containing 105 source files (.cpp and .h).

2.3.2 Definition

In this section, we define the notations that are used in the rest of the chapter.

• We denote the a geographic point ei in the earth coordinate system as ei = (x, y),

where x’s and y’s coordinates of ei are denoted as ei.x and ei.y, respectively. To

display ei on the screen of a mobile device, a function F that converts a geographic

point ei to a screen point pi = (x, y), such that F (ei.x) = pi.x and F (ei.y) = pi.y.

• The vector from ei to ej is denoted as V(i,j) = (ei.x − ej .x, ei.y − ej .y). The linear

distance between points ei and ej is the Euclidean distance between them, which is de-

noted as Dist(ei, ej) =
√

(ei.x− ej .x)2 + (ei.y − ej .y)2. Given two vectors V(i,j) and

V(i,k), the angle between them is denoted as Angle(i, j, k) = arccos

(
V(i,j) · V(i,k)

‖V(i,j)‖‖V(i,k)‖

)
,
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class GPSGolf_simple

«struct»
RightLeftIndex

+ leftMostIndex
+ rightMostIndex

«typedef»
RightLeftI

«struct»
FloatPOINT

+ x
+ y

«typedef»
fPOINT

«struct»
FairwayData

+ Corners ([4])
+ Green
+ Hole

«struct»
DisplayPoints

+ Current
+ Furthest
+ FurthestDist
+ Goal
+ GoalDist
+ MostLeft
+ MostLeftAng
+ MostRight
+ MostRightAng
+ Nearest
+ NearestDist
+ TotalAng

«struct»
Fairw ayDataDetail

+ BottomLeft
+ BottomRight
+ clubID ([40])
+ distance
+ greenID

CGolfCourse

- m_BitmapMem
- m_Cl ickGPS
- m_Cl ickPoint
- m_cornersForDebug ([4])
- m_currGPS
- m_disPts
- m_dlgDC
- m_fairway
+ m_gotStartPoint
- m_gps2img_transMat ([9])
- m_GpsStatus
- m_greenCenterGPS
- m_greenID
- m_greenImgCenter
- m_GreenPtNum
- m_hdcMem
- m_imageGreen
- m_img2gps_transMat ([9])
- m_imgHeight
- m_imgWidth
- m_maxDistGreenPtId
- m_maxRadius
- m_screenGreen
- m_srcRect
- m_startSrcRect
- m_viewRect

- angle() : double
- CalcGreenCenter() : void
+ CGolfCourse()
+ ~CGolfCourse()
- CleanScreen() : void
+ Draw2DC() : void
- DrawAl lText() : void
- DrawCurrGpsPoint() : void
- DrawFlag() : void
- DrawGreen() : void
- DrawImage2Mem() : void
- DrawLines() : void
- DrawPoints() : void
- FindSrcRect() : void
- GetAl lPoints() : void
+ GetCl ickGpsPointer() : fPOINT *
+ GetHoleGpsPointer() : fPOINT *
- GetLeftRightChenMethod() : RightLeftI
- GetTransMatrix() : void
+ GPS2ImageCoord() : fPOINT
+ GPS2ScreenCoord() : POINT
+ ImageCoord2GPS() : fPOINT
+ ImageCoord2Screen() : POINT
- LoadCourseData() : void
- LoadCourseImage() : bool
+ LoadFromDatabase() : bool
+ MoveSrcRect() : void
+ ScreenCoord2GPS() : fPOINT
+ ScreenCoord2Image() : fPOINT
+ SetCurrentGPS() : void
+ SetDefaul tDemoPoint() : void
+ SetGpsStatusTxt() : void
+ SetStartSrcRect() : void
+ SetViewRect() : void
- TransformGreen2ImageCoord() : void
- TransformGreen2ScreenCoord() : void
+ ZoomSrcRect() : void

«property set»
+ SetCl ickPoint() : void

CDialog

CGolfGPSDlg

- gotGPS
- haveRealGPS
- m_clubID
- m_currGPS
# m_golfCourse
- m_greenID
# m_hIcon
- m_lastSwing
- m_minDistIdx
- m_mode
- m_pGPS
# m_Pressed
- m_startPoint
- m_startTimer2
- m_timerTimes
# memBitmap
# memDC
- mybuffer_specVec
# oldBi tmap

+ CGolfGPSDlg()
# DoDataExchange() : void
+ endRevGpsData() : void
+ markGpsSignOnMap() : void
+ OnDestroy() : void
# OnIni tDialog() : BOOL
+ OnKeyDown() : void
+ OnKeyUp() : void
+ OnLButtonDown() : void
+ OnLButtonUp() : void
+ OnMouseMove() : void
+ OnMyMessage() : LRESULT
+ OnMyMessageLostSAT() : LRESULT
- OnOK() : void
+ OnPaint() : void
# OnSize() : void
+ OnTimer() : void
+ readGPSData() : BOOL
+ setGPSPointer() : void
+ startRevGpsData() : void A

«struct»
gpsDataItem

+ gpsLatitude
+ gpsLongi tude
+ gpsTime
+ positionCondition

CGPSData

+ m_Exi tGPSThreadEvent
- m_gpsData
- m_GPSSwitch
- m_GPSThreadNum
+ m_HctlDlg
- m_hGps
+ m_PauseWriteThreadEvent
+ m_pComPort
- m_strReceived

+ addGpsItem() : void
+ calDistOfTwoPoint() : double
+ CGPSData()
+ CGPSData()
+ getGpsData() : void
+ getGpsDataNoThread() : void
+ GetGpsPointFromStr() : BOOL
+ isGpsDataAvai lable() : BOOL
+ IsGpsOn() : BOOL
+ Parse() : BOOL
+ SetComPortPointer() : void
+ setStrReceived() : void
+ startGPSDataThread() : BOOL
+ stopGPSDataThread() : BOOL
+ TurnOffGps() : void
+ TurnOnGps() : void

«friend»
+ getGPShread() : DWORD

«struct»
NMEA_TIME

+ wHour
+ wMinute
+ wSecond

«struct»
NMEA_ANGLE

+ Degrees
+ Minutes

«struct»
NMEA_LATITUDE

+ Northing
+ Value

«struct»
NMEA_LONGITUDE

+ Easting
+ Value

«struct»
tagGPSPOINT

+ latitude
+ longitude

«struct»
ComConfigData

+ BaudRate
+ ByteSize
+ Parity
+ SerialPort
+ StopBits

CSerialPortComm

- m_commState
- m_dcbConfig
+ m_ExitReadThreadEvent
- m_hComm
- m_strRecv
- m_threadNum

+ CheckState() : int
+ ClosePort() : BOOL
+ CommRecv() : BOOL
+ ComOnOff() : void
+ CSerialPortComm()
+ CSerialPortComm()
+ ~CSerialPortComm()
+ getRecvStr() : void
+ OpenPort() : BOOL
+ SerialPortCommConfig() : void
+ startGetDataThread() : BOOL
+ stopGetDataThread() : BOOL

«friend»
+ getDataThread() : DWORD

#m_gol fCourse

+Corners+Hole +BottomLeft+BottomRight-m_Cl ickGPS -m_currGPS

-m_disPts

-m_fairway

-m_greenCenterGPS-m_greenImgCenter-m_currGPS

-m_dcbConfig

-m_lastSwing

-m_pGPS

+gpsLatitude +gpsLongi tude
+gpsTime

-m_gpsData

+m_pComPort

+Value +Value

+lati tude +longitude

-m_imageGreen

+ :        Public data/function member- :        Private data/function member: Navigable : Is-A relationship
Figure 2.3: The software architecture of EarthChildren
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LeftVec RightVecNearVecFurVecGoalVec
α β

RightLeft
Furthest

Nearest Goal
Centroids

Current
(a) The geographic quantities that are used by
EarthChildren

(b) The screen-shot of EarthChildren on a
mobile device

Figure 2.4: The geographic variables and screen-shot of EarthChildren

where V(i,j)·V(i,k) is the dot product of these two vectors and ‖V(i,j)‖ = Dist(ei, ej) . We

define the green of a golf course as a polygon P(1,...,n) = (e1, ..., en). Then, the coordi-

nates of its centroid can be calculated as P(1,...,n).x =
1

6A

n−1∑

i=1

(xi+xi+1)(xiyi+1−xi+1yi)

and P(1,...,n).y =
1

6A

n−1∑

i=1

(yi + yi+1)(xiyi+1 − xi+1yi), respectively [17].

• For our application, we define the following quantities that are used by EarthChildren

for calculation and/or display purposes, which is illustrated in Figure 2.4(a):

– Current the geographic point of the current position, which is denoted as c;

– Goal the geographic point of the goal of the current green, which is denoted as

g;

– GoalVec the vector from point c to g, which is denoted as V(c,g);
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– Furthest the vertex on P(1,...,n) that yields maximum Dist(c, ei) for all 1 ≤ i ≤ n

and is denoted as f ;

– Nearest the vertex on P(1,...,n) that yields minimum Dist(c, ei) for all 1 ≤ i ≤ n

and is denoted as n;

– FurVec the vector from point c to f , which is denoted as V(c,f);

– NearVec the vector from point c to n, which is denoted as V(c,n);

– FurDist the distance between point c and f , which is denoted as Dist(c, f);

– NearDist the distance between point c and n, which is denoted as Dist(c, n);

– Left the vertex on P(1,...,n) that yields maximum anti-clock-wise angle Angle(c, g, i)

for all 1 ≤ i ≤ n and denoted as l;

– Right the vertex on P(1,...,n) that yields maximum clock-wise angle Angle(c, g, i)

for all 1 ≤ i ≤ n and denoted as r;

– LeftDist the distance between point c and l, which is denoted as Dist(c, l);

– RightDist the distance between point c and r, which is denoted as Dist(c, r);

– LeftVec the vector from point c to l, which is denoted as V(c,l);

– RightVec the vector from point c to r, which is denoted as V(c,r);

– α the angle between vector V(c,g) and V(c,l), which is denoted as Angle(c, g, l);

– β the angle between vector V(c,g) and V(c,r), which is denoted as Angle(c, g, r).

During the run-time, the quantities defined above displays on the screen of a mobile

device as shown in Figure 2.4(b). The following subsections show the acquisition and

calculation of these quantities.

2.3.3 Obtaining Geographic Information

EarthChildren has a built-in Global Positioning System (GPS) receiver, which receives

geographic message from satellites. The principle a GPS receiver calculates its own position
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1. All satellites have clock set to exactly the same time 2. All satellites know their exact position 3. Each satellite transmits its position and a time signal to the GPS receiver 5. The difference in distance traveled make each satellite appear to have a different time 6. The GPS receiver calculates the distance to each satellite and its own positionZX Y(x,y,z)
(x1,y1,z1) (x2,y2,z2) (x3,y3,z3) (x4,y4,z4)S1 S3 S4S2

C
4. The signals travel to the GPS receiver delayed by distance traveled

Figure 2.5: The mechanism of the GPS receiver

on earth based on the message it receives from satellites is shown in Figure 2.5. Assume that

all the clocks of the satellites have been synchronized. Each satellite knows its own position

in space and transmits the positional information Si = (xi, yi, zi) and current time ti to the

GPS receiver at the position c = (x, y, z). Upon receiving the above information sent from

satellites, the GPS receiver calculates the distance from Si to c based on Equation 2.1.





[(x1 − x)2 + (y1 − y)2 + (z1 − z)2]
1
2 + c(V t1 − V t0) = d1

[(x2 − x)2 + (y2 − y)2 + (z2 − z)2]
1
2 + c(V t2 − V t0) = d2

[(x3 − x)2 + (y3 − y)2 + (z3 − z)2]
1
2 + c(V t3 − V t0) = d3

[(x4 − x)2 + (y4 − y)2 + (z4 − z)2]
1
2 + c(V t4 − V t0) = d4

(2.1)

In Equation 2.1, the speed of light is denoted as C and time travels from satellite Si

to the GPS receiver is denoted as ∆ti(0 ≤ i ≤ 4). The distance between satellite Si and

c is di = C × ∆ti. We also denote the clock bias error of each satellite as V Ti, and the

clock bias error of GPS receiver as V t0. The GPS receiver uses the Equation 2.1 to solve
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four unknowns x, y, z, and V T0. It is obvious that the GPS receiver requires at least four

satellites’ position informatin to calculate the coordinates of the current position c.

Once the coordinates of c have been calculated by GPS receiver, they are encoded into

a standard-formatted message, namely NMEA-0183 message, and passed to a serial port

for further processing. NMEA-0183 is a combined electrical and data specification for com-

munication between marine electronic devices, such as echo sounder, sonars, anemometer,

gyrocompass, and autopilot [112]. NMEA-0183 has been defined by and is controlled by the

U.S. National Marine Electronics Association (NMEA), and specifies different formats of

messages that are transmitting geographic information, in which Global Positioning System

Fix Data (GPGGA) and Recommended Minimum Specific GPS/Transit Data (GPRMC)

are the two most frequently used formats.$GPRMC,220516,A,5133.82,N,00042.24,W,173.8,231.8,130694,004.2,W*701      2      3       4         5        6     7         8         9        10   11 121    = UTC of position fix (format hhmmss.ss)2    = Data status (format x,  A=active, V=Void)3    = Latitude (format llll.ll)4    = North or South (N or S)5    = Longitude (format yyyyy.yy)6    = East or West (E or W)7    = Speed over ground in knots (format yyy.y)8    = Track angle in degrees (format yyy.y)9    = UT date (format xxxxxx)10   = Magnetic variation in degrees (format yyy.y)11   = East or West (E or W)12   = Checksum (format *xx)
Figure 2.6: The fields of NMEA message in GPRMC format

Figure 2.6 and Figure 2.7 show the fields of NMEA message in GPRMC and GPGGA

format, respectively. When our mobile application read a NMEA-0183 message from a

serial port, it parses that message based on its format and only keeps the location-related

fields, such as latitude (the 3th of GPRMC or the 2th of GPGGA), north/south (the 4th of

GPRMC or the 3th of GPGGA), longitude (the 5th of GPRMC or the 4th of GPGGA), and
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$GPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M,  ,*471             2       3         4         5 6  7   8      9    10  11  1213141    = UTC of Position (format hhmmss.ss)2    = Latitude (format llll.ll)3    = North or South (N or S)4    = Longitude (format yyyyy.yy)5    = East or West (E or W)6    = GPS quality indicator (format x, 0=invalid; 1=GPS fix; 2=Different GPS fix) 7    = Number of satellites in use (format xx)8    = Horizontal dilution of position (format x.x)9    = Antenna altitude above mean sea level  (format x.x)10   = Units of antenna altitude in meters (format M)11   = Geoidal separation (format x.x)12   = Units of geoidal separation in meters (format M)13   = Age of Differential GPS data in seconds  (format x.x)14   = Differential reference station ID (format xxxx)15   = Checksum (format *xx)
Figure 2.7: The fields of NMEA message in GPGGA format

east/west (the 6th of GPRMC or the 5th of GPGGA). The location-related fields have been

highlighted by the dotted lines in Figure 2.6 and Figure 2.7.

The procedure to obtain the location-related fields is illustrated in Figure 2.8. The

values of these four fields (latitude, north/south, longitude, east/west) can be used to display

positions and/or to calculate distances, as discussed in the next subsection.

2.3.4 Displaying Points and Lines

Once a geographic point ei has been determined, the next step is to calculate distance

between geographic point A and point B, obtain the geographic quantities we defined in

Section 2.3.2, and convert ei to a screen point pi on the screen of the golfer’s mobile devices

by using a Function F .

Recall that the linear distance between ei and ej is defined as the Euclidean distance

between them. However, the linear distance cannot directly be used to calculate distance

because this application obtains latitude and longitude on the earth, which is a sphere.

To calculate the spherical distance between geographic point A and point B given their
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Start
End

Configure the serial port to receive GPS messageRead the NMEA formatted string str from the serial port Parse str and get longitude and latitudeIf the str format isGPRMCYes NoIf the str format isGPGGAYesParse str and get longitude and latitude
Figure 2.8: The procedure to obtain latitude and longitude

latitudes and longitudes, pi = (Latii, Longi) is defined, where Latii and Longi are the

latitude and longitude of pi. The latitudinal and longitudinal differences of A and B are

given by ∆φ = LatiA − LatiB and ∆λ = LongA − LongB, respectively. Considering the

earth as a sphere with an average radius R = 6371.004km as illustrated in Figure 2.3.4,

then the distance between A and B can be calculated from Equation 2.2 [27].

Dist(A,B) = 2R · arcsin

√
sin2(

∆φ

2
) + cos(LatiA)× cos(LatiB)× sin2(

∆σ

2
) (2.2)

After that, the procedure in Table 2.1 is used to calculate the quantities that are defined

in Section 2.3.2. Specifically, the procedure accepts the input of the geographic coordinates

of the current green P(1,...,n), the goal of the current green g, and the current position of the

golfer c. The procedure is invoked once a new c has been obtained. It runs one loop through

every point of the polygon P(1,...,n) of the green and calculates the quantities, such as the
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prime meridian RRLongALongB
EquadorLatiA LatiB
the North PoleA BO EDC

Dist(A, C)=Dist(E, D)=R.sin(LatiA)Dist(O, C)=R.cos(LatiA)Dist(B, D)=R.sin(LatiB)Dist(O, D)=R.cos(LatiB)
Figure 2.9: The calculation of distance between point A and point B

coordinates (Furthest, Nearest, Left, and Right), the distances (FurDist, NearDist,

LeftDist, RightDist, and GoalDist), and the angles (α and β).

Once all the necessary quantities have been determined, the final step is to convert a

geographic point ei into a screen point pi of a mobile device. Remember that on the screen,

two layers of images need to be displayed at the same time: the background map image

and the images that display the quantities (e.g., points and lines). Therefore, pi must be

drawn at the corresponding location on top of the map. To do this, our display process

first converts the geographic coordinates ei into the image coordinates ii, and then converts

the image coordinates ii into the screen coordinates pi. These two steps ensure that the

quantities will be shown at the correct position on the map.

Figure 2.10 shows the two-steps of conversion. The left side of the figure illustrates

the first step. The GPS coordinates of the top-left point and the bottom-right point of a

golf course are denoted as tl = (x0, y0) and br = (x1, y1), respectively. In addition, the

geographic coordinates of ei are (x, y). Then, the distance from c to the left boundary of

the golf course is ∆x = x − x0, and the distance from ei to the top boundary of the golf

course is ∆y = y − y0. Let us denote the width and the height of the background image as
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Table 2.1: The procedure to calculation the geographic quantities
Input:The geographical coordinates of the current green P(1,...,n), the goal g, and the current
point c

Output:The coordinates (Furthest, Nearest, Left, and Right), the distances (FurDist,
NearDist, LeftDist, RightDist, and GoalDist), and the angles (α and β)

1. Initialize FurDist = 0; NearDist = ∞; LeftDist = 0; RightDis = 0;
2. GoalDist = Dist(c, g);
3. for every point ei in P(1,...,n)

3.1. if Dist(c, ei) ≥ FurDist then
FurDist = Dist(c, ei); Furthest = ei;

3.2. if Dist(c, ei) ≤ NearDist then
NearDist = Dist(c, ei); NearDist = ei;

3.3. if (i==1) then
D = LeftDist = RightDist = (ei.x− c.x)× (g.y − c.y)− (ei.y − c.y)× (g.x− c.x);

3.4. else
3.4.1. if (D < LeftDist) then

LeftDist = D; Left = ei;
3.4.2. if (D > RightDist) then

RightDist = D; Right = ei;
end

4. α = Angle(c, g, l); β = Angle(c, g, r);
end

W and H, and thus we can get the image coordinates of ei, ii, from Equation 2.3.

ii.x =
∆x

x− x1
×W and ii.y =

∆y

y − y1
×H (2.3)

The similar calculation can be used to convert ii to pi in the second step, as illustrated

in the right side of the figure. The x coordinates of the left boundary and right boundary

are denoted as left.x and right.x, respectively. Similarly, the y coordinates of the top

boundary and bottom boundary are denoted as top.y and bottom.y, respectively. Then, the

coordinate of pi can be obtained from Equation 2.4.

pi.x =
ii.x− left.x

right.x− left.x
× SW and pi.y =

ii.y − top.y

bottom.y − top.y
× SH (2.4)
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TopTopLeft(x0, y0) Left
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RightCurrent(x, y)
TopRight

BottomLeft BottomRight(x1, y1)Imageei ii Screenii piW H
x∆

y∆

SW SH
Figure 2.10: The conversion from GPS coordinates to screen coordinates

where SW and SH are the width and length of the screen (in unit of pixels).

After the screen points of geographic points have been calculated, the same procedure

outlined in Figure 2.11 can be used to display all the graphic objects, which include points,

lines, polygon, and golf course map.

2.4 Managing Games

The functional requirements of our mobile application are supported by the four compo-

nents, which are shown in Figure 2.12. 1) Personal information management allows a user to

enter/update his/her personal information, such as name, title, phone number, and email.

2) GPS configuration management allows a user to enter/update the parameters of GPS re-

ceiver. 3) Historic game management shows a saved historic game and/or replays the game.

4) Peer management shows the comparison between a golfer and other peers in the game.
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StartClean the screen Compute the coordinates of all points     need to be displayedConvert all geographic points to screen point  ie

ie ipCopy the map image of the golf course onto the screen. Stretch the bitmap file to fit the screen if necessary  End
Draw the green as a polygonDraw all Draw all the points, lines, and text boxes

np ,...,1

ipIf c is outside np ,...,1

Figure 2.11: The flow-chart that draws graphic information

As described in Section 2.3.1 above, the database manager bridges most functional com-

ponents and the EDB. In EarthChildren, SQLite [111] a light-weight, server-less embedded

database is used to facilitate frequent data retrieval and update. SQLite is . More specifi-

cally, Figure 2.13 shows the SQLite database schema of EarthChildren, which generated by

SchemaCrawler [114]. The database schema contains eight tables. Table personal info keeps

all the personal information. Table gps configuration keeps all the parameters that are used

by the GPS receiver and the serial port. Table golf course gen and Table golf course spec

save the general information about the golfing venuses and all their courses, respectively.

Tables games, historic scores, club distance, and club type contain the information of all the

saved games, the golfer’s historic scores in each game, the distance of each hit, and the club

type information.

The original SQLite was designed to be easy to use and to provide good performance.

Confidentiality has not been considered to be a primary design goal. The confidentiality

issue relateed to EarthChildren is that the EDB could be copied in a unauthorized manner
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Personal information management menu GPS configuration management menu

Historic game management menu Peer management menu
Figure 2.12: The main interface of EarthChildren

from one mobile device to another. To ensure the confidentiality, we use the SQLite En-

cryption Extension (SEE) [102] that leverages Advanced Encryption Standard (AES-128)

encryption [10]. AES-128 is a symmetric-key encryption algorithm, which uses one secret

key to encrypt and decrypt the data. For encryption, the AES-128 cipher takes a num-

ber of repetitive transforming rounds to convert the plain-text into the cipher-text. Each

round consists of several processing steps, including SubBytes, ShiftRows, MixColumns,

and AddRoundKey, using a 128-bits secrete key. For decryption, a set of reverse steps is

applied to transform the cipher-text back into the original plain-text using the same se-

crete key. Based on [15], most known attacks that try to defeat AES are computationally

infeasible. By using bicliques attack [15], the secrete key can be recovered by taking a com-

putational complexity of 2126.1 for AES-128, 2189.7 for AES-192, and 2254.4 for AES-256.

The current implementation of SEE uses the AES-128 for encrypting and decrypting the
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Figure 2.13: The database schema used by EarthChildren

EDB.

To uniquely assign a secrete key to a mobile device, we use the International Mobile

Equipment Identity (IMEI) of that device, which is a sequence of numbers that uniquely

identify that device, as the secrete key. Before the application is released, the EDB must

be encrypted by its own IMEI. The process to access a encrypted EDB is as follows: Before

opening the EDB, the method GetIMEI() is used to retrieve the IMEI of the mobile device.
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Then, the IMEI is used as the secrete key to decrypt the EDB. Before all the database

related operations have been finished, the application the same IMEI to encrypt the EDB.

It is worth noting that although the implementation ensures that the encrypted EDB is

bundled with its IMEI, and cannot be used by simply copied to another device. However,

this mechanism cannot prevent advanced attacks, which spoof the IMEI, avoid authentica-

tion (e.g., race condition attacks [91]) or exfiltrate the data through covert channels, the

last of which are discussed in detail in Chapter 4 and Chapter 5.

2.5 Bluetooth Communication

One important feature of EarthChildren is the functionality of exchanging information

among golfers. The information to be exchanged includes personal information (E-business

Card) and game information (game history). Since the group of golfers is assumed to

exchange information within short distance on a golf course (normally less than 100 yards),

we choose Bluetooth technology [14, 51] to facilitate this functionality because of its data

transmitting rate, throughput, transmission range, and suitability for such circumstances:

First, most current mobile devices on the market support Bluetooth 2 Enhanced Data Rate

(EDR) [110] or more advanced technologies, e.g., Version 3.0+HS and Version 4.0 [14] that

provide a data transmitting rate of at least 3 Mbps and a throughput of 2.1 Mbps [14],

which are sufficient for the application under discussion. Second, most current bluetooth

antennas are using or can be extended to Bluetooth Power Class 1 antennas that have a

communication range of 100 meters [89]. This range is far enough for our application in a

golf course.

The Bluetooth communication component was implemented using Winsock API [131]

provided by Windows Mobile [77]. Figure 2.5 shows the procedure of bluetooth communi-

cation, which first creates a thread that performs bluetooth device inquiry. If the device

inquiry finds any bluetooth devices within the power range, the user can select the ap-

propriate bluetooth device and establishes a connection with that device. Then, the local
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device creates two threads: the send thread and the receive thread, which are responsible

for sending information and receiving information, respectively.

YesNo
StartInitialize a dialog boxCreate a thread that performs bluetooth device inqueryDisplay a warning“Cannot find bluetooth device” ie

Connect to the bluetooth device(s)EndCreate a thread that sends informationCreate a thread that receives information
Let the user choose bluetooth device(s)

If bluetooth device(s) has been found 
Figure 2.14: The procedure of peer-communication via bluetooth

2.6 Conclusion and Future Steps

In this chapter, we have presented the design and implementation of EarthChildren, a

mobile application that provides many general functionalities. Our result demonstrates

that our development methodology satisfies most mobile application.
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Chapter 3: Preventing SQL Injection Attacks

3.1 Introduction

SQL injection attacks (SQLIAs) refer to a class of attacks in which an adversary inserts

specially crafted control code into the data fields of an SQL query. A successful SQLIA

allows the attacker to gain control of the original query, leading to privilege escalation

and extraction of unauthorized information from the database [116]. These attacks exploit

inadequacies in the user input handing that are sometimes deeply embedded in the program

logic [49,132].

Earlier research has presented many techniques to defend against SQLIAs. Some re-

search is geared towards attempting to validate user inputs [19, 100, 101]. Unfortunately,

this strategy appears to be difficult to implement because most existing approaches have

little knowledge of the syntactic structure of generated queries, hence some malicious inputs

still manage to pass through [113]. Furthermore, input validation cannot offer protection

against more sophisticated attacks, such as alternate encoding and stored procedure at-

tacks [49].

Another class of static analysis solutions statically screens application source code to val-

idate every user input before being integrated into a query [11,47,53,68,72,74,100,128,132].

These techniques work when application source code is available. An alternative approach

uses dynamic prevention techniques [88, 113] that require minimal human interaction, but

they insert extra metadata to delimit user inputs that may change the semantics of the

original application code. Moreover, automatic preservation of metadata is almost impos-

sible. Even if these approaches can effectively detect most SQLIAs, they require extra

effort to distinguish user input data through the use of techniques, such as tainting or code

instrumentation.
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Some research [24, 75] and commercial solutions, such as using PREPARE statements

require the programmer to define the skeleton of an SQL query in order to make the SQL

structure unchangeable. These approaches, although providing a robust mechanism to

prevent SQL injection attacks, require the programmer to specify the intended query at

every query point, which often entails a significant amount of re-engineering.

Like most code injection attacks, SQLIAs exploit the fact that web applications use a

common memory space to keep query code and the user input data, thereby injecting code

as data and executing them as code [95]. Our system, SQLProb (SQL Proxy-based Blocker)

extracts user input from the application-generated query, even when the user input data has

been embedded into the query, and validates them in the context of the generated query’s

syntactic structure. We validate user inputs by extracting user inputs and aligning them

against valid inputs by using and enhancing a genetic algorithm.

SQLProb offers several advantages: First, it is a complete black-box approach that does

not require modifying application or database code, thereby avoiding the complexity of

tainting, learning, or code instrumentation. Second, our input validation technique does not

require metadata or learning. Third, our implementation utilizes an off-the-shelf proxy that

requires minimal setup complexity. Finally, SQLProb is independent of the programming

language used in the web application.

To evaluate our system, we have employed SQLProb to detect a wide range of SQL injec-

tion attacks. We show that SQLProb can prevent sophisticated attacks, such as the alternate

encoding attack and the stored procedure attack. Our experimental results demonstrate

remarkable effectiveness in detecting all classes of SQL attacks at a reasonable overhead.

The rest of the chapter is organized as follows. Section 3.2 illustrates the SQLIA with

a simple web application example. In Section 3.3, we first define some terminologies, and

then present our system overview, as well as the detailed steps of detection process. In

Section 3.4, we evaluate the effectiveness of our approach. In Section 3.5, we discuss the

limitation of our approach. Section 3.6 discusses related work and Section 3.7 concludes

this chapter.
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3.2 An Illustrative Example

In this section, we present an actual example of an SQLIA. Figure 3.1 depicts the login page

of an online bookstore that allows users to login by providing user name and password. An

SQL injection attack occurs when an attacker causes the web application to generate SQL

queries that are functionally different from what the user interface programmer intended.

For instance, for a database that stores user names and passwords, an attacker may attempt

to gain root privileges by manipulating the user name or password string. Let’s say the

application contains the following code:

query = "SELECT * FROM accounts WHERE login=’"

+ request.getParameter("login")

+ "’ AND password=’"

+ request.getParameter("password") + "’";

In this code, the web application retrieves user inputs from login and password, and

concatenates these two user inputs into the query. The above code generates a query for

the purpose of user authentication. However, if an attacker enters admin into the login field

and nosense’ OR ’1=1 into the password field, the query string becomes the following:

SELECT * FROM accounts WHERE name=’admin’

AND password=’nosense’ OR ’1=1’

In this example, the password field, which should have only a password string, is

replaced with five sub-strings: string “nosense”, logic control keyword “OR”, “1”, logi-

cal control assignment “=”, and “1”. Specifically, the logical control code “OR” connects

“password=’nosense’” and “1=1” to change the evaluation of the WHERE clause. Such

a condition always evaluated to be a logic tautology; hence, an attacker can bypass the

authentication process, and gain the root privilege.
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Figure 3.1: An example of SQL injection attacks

3.3 The SQL Proxy-based Blocker (SQLProb) System De-

sign

3.3.1 SQLProb System Overview

The main system architecture of SQLProb is illustrated in Figure 3.2. SQLProb has four

main components: (1) The Query Collector processes all possible SQL queries during the

query collection phase; (2) The User Input Extractor implements a global pair-wise align-

ment algorithm to identify user input data (Section 3.3.3); (3) The Parse Tree Generator

generates the parse tree for the incoming queries (Section 3.3.4); (4) The User Input Valida-

tor evaluates the user input is benign or malicious based on user input validation algorithms

(Section 3.3.5). The shaded area shows the off-the-shelf proxy.

SQLProb uses two phases to detect SQLIAs: the query collection phase and the query

evaluation phase. During the query collection phase, the query collector collects the queries

that cover all the functionalities of the application, and stores them as the collected queries.

During the query evaluation phase, when an application-generated query is captured by

the proxy, the proxy forwards it to the user input extractor and the parse tree generator

simultaneously. The user input extractor leverages a global alignment algorithm for the

application-generated query against the collected query repository, and extracts the user
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input data. Then, the user input validator validates the extracted user inputs in the parse

tree, which is generated by the parse tree generator. If the user inputs are found to be

benign, the generated query will be sent to database directly; otherwise, the query will be

discarded as a malicious query. Here we assume that input for the query collection phase

is vetted to avoid including existing SQLIAs in our training data. Such vetting can easily

be done using an automated process. User Input ExtractorParse TreeGenerator Maliciousqueries DatabaseProxy User-Input Validator BenignqueriesParse TreeWeb Application queries Query CollectorQuery Collection PhaseQuery Evaluation Phase User InputCollected Queries
Results

Figure 3.2: Overview of the SQLProb system architecture

3.3.2 Problem Formalization

We formalize the problem of SQL injection attacks as follows:

• We denote the set of all queries generated by an applicationA asQ = {qi | 1 ≤ i ≤ m}.
For a query qi that has n(n ≥ 0) user inputs, the set of user inputs is denoted as set

UI(qi) = {UIi,j | 0 ≤ j ≤ n}. We use the term user input data for the raw user typed

strings and any transformations thereof.

• The collected queries of A is the set T (A) of all SQL queries generated by A during

the query collection phase.

• During the data evaluation phase, given a query qi, the algorithm that compares the

similarity for qi against a query qj ∈ T (A) is given as Sim(qi, qj). The query which

q̊i gives the highest similarity value in T (A), is called prototype query of qi.
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(a) the scoring matrix
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(b) The alignment result generated by
Needleman-Wunsch algorithm between two
SQL queries

Figure 3.3: A completest matrix processed by the Needleman-Wunsch algorithm

• After incorporating user input, the resulting query string may contains k(k > 1)

queries, based on SQL grammar G. The parse tree for a single SQL query qi is

denoted as Tree(qi). The parse tree of a set of queries Q = {qi | 1 < i ≤ k} is denoted

by Tree(Q).

3.3.3 Separation of User Input

The assumption embedded in SQLProb is we can pre-generate the structure of all user

inputs. Therefore, by having a large enough sample set, it is possible to efficiently compare

any user input we receive with one that is in our sample. To efficiently perform this

comparison, we use an enhanced version of the Needleman-Wunsch algorithm [28]. This

algorithm was originally designed to globally optimally aligned pairs of DNA, RNA, or

protein sequences, which attempt to align every residue in every sequence. It is most useful

when the sequences in the query set are similar and of roughly equal size.

The Needleman-Wunsch algorithm [28] iteratively constructs a (N +1)×(M +1) dimen-

sional scoring matrix where N and M are the lengths of the two sequences. The algorithm

uses three steps: (1) scoring similarity, (2) summing, and (3) back-tracking.

Given two SQL query strings q1 = x1x2 . . . xn and q2 = y1y2 . . . ym, we can insert gaps,
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if necessary, to achieve a global maximum alignment between them. In the first two steps,

our algorithm first computes the similarity score for each cell of the scoring matrix based

on a predefined similarity matrix. The similarity and gap penalty can be defined as a part

of the scoring matrix, or can be specified explicitly. In our work, we assign 1 for a syntactic

match, 0 for a syntactic mismatch, and 5 for a gap. In the second (summing) step, the

value of the maximum alignment between q1 and q2, or Sim(q1, q2), is defined as the sum of

terms for each aligned pair of letters 〈xi, yj〉 within the sequences (representing similarity

as s(xi, yj)), plus terms for each gap (representing a penalty as p).

The cell M(i, j) is the score of the best alignment between the initial segment x1x2...xn

of x up to xi and the initial segment y1y2...ym of y up to yj . Initially, M(0, 0) = 0,

M(i, 0) = −ip, M(0, j) = −jp. Starting with the top leftmost cell M(1, 1) to bottom

rightmost cell M(N + 1,M + 1), the matrix is iteratively filled by using the following

equation:

y = MAX





M(i− 1, j − 1) + s(xi, yj) i ≥ 1, j ≥ 1

M(i− 1, j)− p i ≥ 1

M(i, j − 1)− p j ≥ 1

(3.1)

In the third step (back-tracking), the algorithm backtracks from the cell with the highest

score (the bottom rightmost cell) of the matrix back to the cell with the lowest score (the

top leftmost cell) of the matrix, using the following three rules, in order to maximize the

alignment score.

• If move diagonal, do nothing;

• If move left, insert a gap into the second sequence;

• If move up, insert a gap into the first sequence.

The purpose of backtracking is to move to the left, upper, or diagonal cell with the

highest score. If all three cells are equal, backtracking will move to the diagonal cell. The
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procedure is illustrated in Figure 3.3(a), where backtracking starts from the cell with the

highest score 22 (the bottom rightmost cell). The shaded path is traced back to the top

leftmost cell, which has the lowest score of 0.

We use the example in Figure 3.3(b) to demonstrate alignment between two SQL queries.

The first query is in the collected query set T (A) obtained during the query collection phase.

The second query is generated by the web application in the data evaluation phase. In this

example, all SQL keywords are abbreviated by their initials. For example, SELECT is ab-

breviated as S’. FROM is abbreviated as F’. Table name(s) is abbreviated as T’. Column

name(s) is abbreviated as C’. To achieve global alignment, the Needleman-Wunsch algo-

rithm inserts “ ”, as a gap, into the first query after password=’. Therefore, the alignment

result for the password is “ ”, which indicates that the user’s input string for the

second query has a length of 12. Accordingly, the sub-string at the corresponding position

in the second query is abc’ OR ’1=1. Therefore, we can easily extract the user’s input for

the password in the second query as “abc’ OR ’1=1”.

3.3.4 Complexity Analysis and Optimization

To allocate the prototype query q̊i of a application-generated query qi, every application-

generated query must be aligned with each collected query during the query collection

phase. In the worst case, the incoming query qi must align with all m collected queries

in T (A). Because both time and space complexity of Needleman-Wunsch algorithm are

quadratic, the overall time complexity to allocate the prototype query is O(n3), while the

space complexity is still O(n2). Normally, m is much larger than the length of most query

strings, making most alignment operations superfluous. The purpose of our optimization

is to reduce m to m′ (m′ << m), such that the overall time complexity will be reduced

to approximate O(n2). To avoid unnecessary alignment operations, we cluster collected

queries in the following steps: First, we cluster the collected queries based on different query

types. For example, SELECT statements and UPDATE statements will be categorized into two

different clusters. Secondly, within each cluster, queries carrying redundant information will
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Table 3.1: The result of optimization
Applications Number of

queries before
optimization

Number of
queries after
optimization

% of reduc-
tion

Bookstore 213 55 25.8%
Classifield 395 31 8.1%
EmployDir 218 33 15.1%
Events 364 25 6.8%
Portal 504 56 11.1%

be further aggregated. Particularly, identical queries containing the same query structure,

but with different user input, will be aggregated. In the aggregated representation, instead

of replacing name and password by the wild-card tokens [9], we fully eliminate the user

input strings. Eventually, queries with the identical query structure but different user input

strings will be aggregated into the same cluster.

Table 3.1 demonstrates the number of queries, obtained during the query collection

phase, before and after optimization. For different applications we obtained from www.

gotocode.com, the optimization reduces the size of the collected query, ranging from 6%

to 25%.

3.3.5 User Input Validation Algorithms

One of the advantages of our approach is that we can evaluate the extracted user input data

in the context of the syntactic structure of the query. In order to illustrate our definition of

the user input validation algorithm, we return to the two queries (benign and malicious) in

Section 3.2, and show the parse trees for their WHERE clause in Figure 3.4 and Figure 3.5,

respectively.
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Figure 3.4: Parse tree for WHERE clause of a benign query

Figure 3.5: Parse tree for WHERE clause of a malicious query

Figure 3.4 represents the partial parse tree for the WHERE clause of the benign query

in section 3.2, where the shaded double octagons represent the leaf nodes parse from user

inputs. In the parse tree, every user input string can find a non-leaf node in the parse tree,

such that its sub-tree leaf nodes comprise the entire user input string. That is, for user

input leaf nodes, it is impossible to find a non-leaf node whose decedent leaf nodes contains

not only the user input leaf nodes, but also other control leaf nodes. For example, consider

the non-leaf node ID for ’john’ and ID for ’nonsense’. Both are shown as shaded double
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Table 3.2: The input validation algorithm
Data:Parse Tree Tree(qi) generated from SQL grammar G, and the set of user input UI(qi)
Result:True if the query is an SQLIA, or False if otherwise
1. for each leave node leaf(uj), which corresponding to UIi,j in UI(qi)

1.1 do depth-first-search upward from leaf(uj);
1.2 Search stops at a non-leaf node nl nodej ;
1.3 Keep the nl node;
end

2. do breath-first-search downward from NLN until reaching all m leaf nodes leaf(node)k;
3. if

⋃n
i=1(leaf(ui)) ⊂

⋃m
k=1(leaf(node)k) then

Return True;
else Return False;

end

octagon. Consequently, our algorithm is given in Table 3.2.

Figure 3.5 is an example of the application of the validation algorithm. The password

field is parsed into the set
⋃n

i=1(leaf(ui)) with five leaf nodes: nonsense, OR, 1, =, and 1.

Next, we do depth-first-search from these five leaf nodes. The traversed paths intersect at

a non-leaf node, SQLExpression. Finally, we do breath-first-search from SQLExpression to

reach all the leaf nodes of the parse tree, which are composed as a superset of
⋃n

i=1(leaf(ui)),

implying that the input string ui is malicious.

The algorithm described above takes quadratic time, because step 2 and step 3 take

time of n × h, where n is the number of leaf nodes parsed by ui, and h is the average

number of layers from leaf nodes to nl node in the parse tree. In addition, step 4 takes

time complexity for a breath-first-search is O(n2). Therefore, the overall time complexity is

O(n2).

3.4 Evaluation

To measure the overhead and performance of our approach, we implemented the SQLProb.

The current implementation of SQLProb is implemented by Java and tested on a Virtual

Machine with 1 GB RAM running Fedora 9 [1]. We use MySQL 5.0.27 [78] as the back-end

database server. For every SQL query initiated by a web application, we use a customized
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Table 3.3: Different categories of attacks used in effectiveness evaluation
Type of Attacks Attack Description Detected?

Tautology Injecting one or more condi-
tional statement

Yes

Logically Incorrect
Queries

Information gathering, ex-
tract data

Yes

Union Queries Return data from a different
table

Yes

Piggy-Backed
Queries

New queries piggy-back on the
original

Yes

Stored Procedures Invoking stored procedure Yes
Inferences Infer answers from apps’ re-

sponse
Yes

Alternate Encoding Injecting modified control
text

Yes

MySql Proxy [36] to collect it, and determine if it is benign or malicious, before sending it

to the database. If the query is determined to be benign, the query will be forwarded to

the database; otherwise, it will be dropped immediately. To minimize the network latency,

we use wget 1.10 [129] to replay HTTP request from a different machine within the same

Ethernet subnet to the machine, which runs both web application server and the prevention

engine.

JavaCC [57] was used to automate the parse tree generation process. Specifically,

we used JJTree [59], the pre-processor portion of JavaCC, to generate the parse trees.

Figure 3.6 illustrates the screen-shot of the web application and the input of login and

password. The corresponding parse tree is illustrated on the right hand side of the fig-

ure. The source codes of the vulnerable web applications are publicly available from

http://www.gotocode.com.

3.4.1 Experimental Setup

We use Amnesia attack test suite [47], containing both benign and attacking string patterns.

The attacking result has been extensively explored before (such as in [11,75]). Although the

test suite contains 30 different attack patterns and the malicious codes have been injected
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Table 3.4: Applications from the www.gotocode.com

Application
Name

No of Requests LOC Failure & Syn-
tax. Error

Portal 7483 16,453 2999
Bookstore 6492 16,959 1612
Classifieds 6544 10,949 1475
EmplDir 7038 5,658 1994
Events 7109 7,242 2240

successfully, we noticed that the set of attack patterns may not be complete. To ensure

that the test suite is as complete as possible, we extended the attack pattern by including

a wide category of the real-world attacking patterns[49], in order to guarantee that the

malicious attacking string patterns return “sensitive” information. Table 3.3 illustrates a

list of vulnerabilities, as well as injection attacks exploiting those vulnerabilities. Those

attacks cover the most known SQLIA attacks. Furthermore, a combination of these attacks

can generate more complicated new attacks. Specifically, Table 3.4 summarizes the Amnesia

test suite. The second column lists the number of web requests, and the third column lists

the lines of code (LOC) for each application. The fourth column reports the number of

invalidate web requests detected.

3.4.2 Detection and Overhead

The objective of the first set of experiments was to demonstrate the effectiveness of the

proposed technique to prevent SQL injection attacks. SQLProb achieved 100% detection

rate with no false positive for all the attacks in the test suite.

The objective of the second set of experiments was to evaluate the performance of

SQLProb. The first performance metric is the response time per web request. For each web

request sent to the application, we measure the web application’s original response time,

the response time only with proxy, and the response time with SQLProb. All the results are

shown in Figure 3.7 and have 95% confidence interval. Clearly, for different applications,

the proxy only introduces modest delays, ranging from 16.7% (Portal) to 25.7% (Events).
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Figure 3.6: The screen-shot of SQLProb
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Figure 3.7: The response time
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Figure 3.8: The CPU usage

For every request, the prevention engine had varying delays ranging from 59.5% (Empldir)

to 181.3% (Portal). The delay of our prevention engine was mainly attributed to query

alignment, parse tree generation, and user input validation procedure, specifically, most

queries collected by Portal at training phase are very long strings. Due to the nature of

the Needleman-Wunsch algorithm, the incoming query takes more time to align with the

collected long queries in order to determine its prototype query. An area of future research

is to develop methods for reducing the alignment time.
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The second performance metric is the resource usage, such as CPU usage. Figure

3.8 displays the CPU usage over time for different web applications. The results clearly

demonstrate that SQLProb utilizes much fewer computational resources than Mysql Proxy ;

i.e., 20.9% vs. 54.2%.

3.5 Discussion

Section 3.4.2 investigated the detection capabilities and overhead in extracting user inputs

and using the input validation algorithm to analyze parse trees in order to detect SQLIAs.

This section discusses the possible limitations and intended improvements of the work.

Incomplete collection of web applications

The accuracy of the alignment algorithm to extract user inputs is based on the fact

that our alignment algorithm can guarantee to allocate the prototype query for an incoming

query. Although we tested our methodology with a wide range of attacks, one potential

limitation of our approach is that the accuracy of the extracted user inputs largely depends

on the completeness of the collected query during query collection phase, a common problem

with most black-box approaches.

Possible errors Given an incoming query, without the knowledge of where the

intended query was been invoked in the source code of web applications, it is possible for

the alignment algorithm to use an inappropriate prototype query to do the alignment and

extraction of the user input data. This situation can arise, for example, if there are two

query structures in the application that was collected during the query collection phase,

such as:

(1) "SELECT * FROM employdb WHERE name=’" + nam1 + "’"

(2) "SELECT * FROM employdb WHERE name=’" + nam1 + "’" +

"OR name=’" + nam2 + "’"

In this case, during the query evaluation phase, if we observe an incoming query as
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SELECT * FROM employdb WHERE name=’john’ OR name=’admin’, the alignment al-

gorithm will choose query (2) as the prototype query, because it yields the maximum align-

ment value. However, it is possible for the input query being invoked by query(1) to be

interpreted a SQL injection attack that is using john’ OR name=’admin as the injected

code.

3.6 Related Work

SQL injection attacks have been researched in depth, resulting in a number of protection

techniques that can be broadly categorized as: input validation, static analysis, learning-

based prevention, and dynamic prevention approaches. This section compares SQLProb

with each of these categories.

Input Validation Because the root cause of SQLIAs is the intermingling of data and

control code, improper input validation accounts for most security problems in database and

web applications. Many input validation approaches are signature-based, resulting in incom-

plete input validation routines, introducing false alerts. In [100, 101], a human-developed

security-policy description language(SPDL) specifies and enforces user input constraints by

analyzing and transforming HTTP requests/responses to enforce the specified policy. This

approach is human-based and requires that the developer know which data and pattern

filter to apply to the data. PowerForms [19] and Commercial tools, such as AppShield [54]

and InterDo [53] operate with a similar methodology.

The common weakness of these techniques is that they have no insight on the structure

of the generated queries, and therefore, may still admit bad inputs. In addition, they ignore

the fact that the original user input may be subject to manipulation and transformation,

which may eventually defeat the effectiveness of this approach. The SQLProb approach is

complimentary to most of the existing input validation approaches. In addition, it avoids

the complicated steps of tracing the user input string manipulation throughout the applica-

tion. Furthermore, compared to some products’ claims to have the proxy-alike capability of
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intercepting all incoming queries and blocking the suspicious ones [30,45,99], the SQLProb

approach does not require specifying any signature or rule for known attacks.

Some products claim to have the proxy-alike capability of intercepting all incoming

queries and blocking the suspicious ones, such as SANA Security’s Primary Response [99],

McAfee Entercept [30], and GreenSQL [45], though their efficiency and resistance to zero-

day attacks may need further study. While those approaches match incoming queries against

the certain behavior rules and known attack signatures [30,45], the SQLProb approach does

not require specifying any signature or rule for attacks.

Static Analysis To guarantee security, [42,68,72,132] perform static analysis over the

entire application’s source code to ensure that every piece of input is subject to an input

validation check before being incorporated to a query. However, these approaches require

the entire source code of the application, while our approach is a black-box based approach

that requires no source code for applications and databases.

JDBC Checker [42] statically checks the type correctness of the dynamically generated

SQL queries. Although JDBC Checker can detect SQL injection vulnerabilities caused by

improper type checking of the user inputs, this technique is not applicable to more general

forms of SQL injection attacks, because most of these attacks consist of syntactically correct

and type-correct queries.

Our work is closely related to the recent work of CANDID [11], which dynamically

mines programmer-intended query structure on any user input. While it is an effective

approach, CANDID requires extra instrumentation to transform the web application code,

usually tied to a specific programming language. Moreover, there is no guarantee that the

byte code transformation process is error-free and that it will not introduce any potential

vulnerabilities. Furthermore, byte code transformation is expensive and may negatively

impact the availability of the web applications.

Learning-based Prevention A set of learning-based approaches have been proposed

to learn all the intended query structure statically [47] or dynamically [9, 118]. The effec-

tiveness of detection largely depends on the accuracy of the learning algorithms. Compared
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to this kind of approaches, our approach has at least two advantages. First, our approach

neither requires a learning algorithm, nor is it limited to the number of collected queries.

Second, our approach validates the user input within the syntactic structure of generated

query, which more efficiently reveals the syntactic meaning of the user input.

Dynamic Prevention Dynamic tainting approaches [48, 81, 133] taint the input

strings and track those taints within the information flow of a program. All of them require

not only the source code of the entire application, but also the collaboration of external

libraries.

Many recent works [20,88,113], explicitly mark the user input data by using metadata.

Although these approaches all work efficiently, it is widely believed that the metadata in-

troduce many disadvantages, such as changing the semantics of the original program and

requiring metadata preservation functions throughout the application, which is almost im-

possible to implement in an automatic manner [11]. In contrast, our approach is a complete

black-box approach that requires no source code of web applications. SQLrand [18] lever-

ages secret keys, while SMask [60] uses keyword mask to randomize and de-randomizes

every SQL keyword through a proxy filter before passing the query to the database. As a

result, the injected commands will cause a syntactic failure after passing to the proxy filter.

This approach has immediate drawbacks: SQLrand requires extra effort to rewrite all the

“plain-text” queries in the web applications as “randomized” ones. In addition, the security

of the above approaches depends on the secret key, which can possibly be compromised by

brute force attacks. Furthermore, this technique “decrypts” SQL instructions throughout

the applications, which imposes tremendous cost overheads. By comparison, our approach

does not require any secret key. Instead, it has a different purpose and uses the proxies for

the alignment purpose.

3.7 Conclusion

We have presented SQLProb, a novel online and adaptive detection system against SQLIAs.

SQLProb employs dynamic user input extraction and analysis, taking into consideration the
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context of query’s syntactic structure. Unlike current protection techniques, the new ap-

proach is fully modular and does not require access to the source code of the web applications

or the database. In addition, it is easily deployable to existing enterprise environments and

can protect multiple front-end web applications without any modifications. To measure

the performance and overhead of the technique, a prototype of SQLProb has been used.

The experimental results indicate that the method can achieve a high detection rate with

reasonable performance overhead making the system ideal for environments where software

or architecture changes are not an economically viable option.
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Chapter 4: Detecting Covert Storage Channels In a Highly

Virtualized Environment

4.1 Introduction

The widespread deployment of firewalls and other perimeter defenses to protect information

in enterprise information systems in the past decade has raised the bar for the malicious

outsider attacking a networked enterprise. However, the seemly secured system can be

penetrated and defeated easily by insider attackers if the attackers steal data from inside

and sent it out through a secret communication channel, of which covert channels are

a particularly virulent kind [44]. According to a report of the US Computer Security

Institute (CSI) [41], the percentage of the insider attacks among the overall number of

attacks reported rose to 59% in 2007. Insider attacks have overtaken viruses and worms on

the list of the most prevalent forms of attacks [97].

As a common communication channel used by insiders, covert channels, refer to a class

of communication channels that can be exploited by a process of transferring information

in a manner that violates a system’s security policy [83]. A successful covert channel leaks

inside information to the outside human attackers in such a way that the unauthorized

behavior undetectable.

To defend against various covert channels, researchers have presented a number of detec-

tion and prevention approaches. The detection approaches described in [12,21,22,38,58,104]

mainly focused on first building clean traffic models from historic data, and then detecting

various covert channels by comparing their behavior with the predicted behavior of the clean

traffic models. After detection, countermeasures manipulate traffic to prevent information

from leaking through covert channels [35,62,63,120].
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These defense approaches that explore deviation from clean historic traffic patterns have

been shown to be effective against most covert channels. However, a common assumption of

most of these methods is that covert channels traffic will reveal itself in a statistical pattern

that is different from that of clean historic traffic. Therefore, their effectiveness depends on

having a sufficient amount of clean traffic to determine such a pattern.

Unfortunately, modeling from the clean historic traffic is problematic in a networked

virtual environment, such as the cloud computing environment. First, traffic generated

from virtual machines (VMs) are subjected to unpredictable factors: (1) VMs may be

migrated arbitrarily across the virtual networks; (2) VMs may constantly reverted to a

previously snapshot; and (3) VMs may be configured to run multi-booting systems. Due

to these unexpected environment changes in a virtual environment, clean historic traffic

is either unavailable or unable to be represented the correct statistical patterns of a clean

state in real time. Therefore, these modeling mechanisms are not generally applicable in a

dynamic virtual environment.

To dealing with all these challenges, we have proposed and implemented a real time

system Observer (Outbound Service Validater), which detects covert storage channels in

real-time visualized environment. Observer leverages a secure VM to a) mimic the behavior

of a vulnerable VM, and b) process networking traffic in two basic steps: First, it duplicates

and redirects all the inbound traffic from a vulnerable VM to a secure VM. Second, it

differentiates the outbound traffic of two VMs, such that any difference between two VMs

can be easily identified.

Compared to existing approaches to detect covert channels, Observer offers several ad-

vantages. First, it is a real-time approach that does not require modeling or historic traffic.

Second, Observer can be dynamically facilitated in a cloud infrastructure once a vulnerable

VM has been identified. Third, our implementation is transparent to outside attackers, such

that it minimizes the risk of turning an intrusion detection system into a vulnerable target.

To validate the effectiveness, we evaluated Observer with a set of three experiments.

Our experimental results demonstrate that, without modeling, our system can detect many
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covert channels, while inducing an average of 0.5ms latency to the inter-packet delays. The

average increase of CPU usage induced by Observer is about 35% in a virtual network of

100Mbps throughput.

4.2 Related Works

4.2.1 Differential Analysis

A number of differential analysis techniques have been developed for building intrusion

detection systems. In this regard, our work is closely related to Netspy [121], which compares

the outgoing packets from a clean system with outgoing packets from an infected system.

While Netspy generates signatures characterizing the malicious networking behaviors of

spywares, our system improves over detection in the following ways: First, Netspy was only

designed to detect spywares that leak victims’ private information, and send it out through

an HTTP response as plain-text. In contrast, our approach detects more stealthy attacks,

such as covert channels, through which the inside information might be leaked through

encrypted traffic. Second, in order to generate signatures, Netspy assumes that spywares

must generate extra network traffic from the infected system. This assumption fails if

the information is transmitted through a passive covert channel where no extra traffic is

generated when leaking the victim’s information. Third, Netspy only correlates the inbound

packets with the corresponding outbound packets being triggered. Sophisticated covert

channels generators, however, can evade detection by postponing the outbound packets,

such that the inbound and outbound packets can never be correlated. Our system addresses

the above problem directly.

Privacy Oracle [61] proposed a similar approach to discovering information leakage. By

using the perturbed user input, the system can identify the fields of network traces by

aligning various network traces pair-wise. Siren [16] used crafted user input, along with the

legitimate user activities, to thwart the mimicry attacks. Although both Privacy Oracle

and Siren use an architecture that is similar to ours, how they differentiate the anomalous
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output to detect covert channels is unknown.

The recent work of Mesnier et al. [76] predicts the performance and resource usage of

one device by the use of an mirror device. Their primary difference between their approach

and ours is that it the former focuses on predicting the workload characteristics of I/O

devices, whereas our technique focuses on detecting covert channels. Technically, these two

problems are quite different and employ different techniques.

4.2.2 Attacks Design and Detection

A number of design methodologies have been developed for either building [22, 39, 65, 106]

or detecting covert channels [4, 38, 58, 70, 86]. The effectiveness of these detections largely

depends on the accuracy of modeling and the availability of a substantial quantity of clean

historic traffic. Compared to this category of approaches, our approach demonstrates at

least two advantages: First, our approach is an online approach that neither requires mod-

eling nor large quantities of clean historic traffic. Second, our system can dynamically be

deployed or migrated across the networked virtual infrastructure, such that it is applicable

in a highly virtualized environment.

Many recent works apply covert channel design schemes to trace back suspicious traffic.

For example, [124] took advantage of well-designed inter-packet delays, namely watermark,

to trace suspicious VOIP traffic [122, 123]. Their recent work [92] utilized watermarked

packets to trace back a bot-master. In contrast, our work only focuses on covert channels

detection, rather than how to design them, although their covert channels design schemes

of others can nicely complement our detection methodology.

Recent work addressed cross virtual machine covert/side channels [85,96,125] and their

countermeasures [55]. All of them dealt with specific types of covert channels that leak

information between VMs, that share the same VM monitor or hardware. In contrast,

our work was not designed to detect inter-VM covert/side channels, but instead, the more

aggressive covert channels that exist between inside and outside attackers.

Replayer [80] describes a system that replays the application dialog between two hosts,
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and expects the recurrence of all the consequential behavior of a system after its infection.

Although we face similar challenge as Replayer that modifies the networking packets to

maintain a stateful dialog with off-line traffic, our approach manipulates the online traffic

to keep a stateful network dialog with the secure VM. In comparison, our approach has a

different purpose by manipulating the traffic for covert channels detection.

4.3 Threat Model

In this section, we address the threat model of covert channels in a networked virtual en-

vironment. We mainly focus on detecting unauthorized information leakage that transmits

sensitive inside information to outside attackers through covert channels. Covert channels

can be roughly categorized into two types: covert storage channels that manipulate the

contents of a storage location (e.g., disk, memory, and packet headers) and covert timing

channels that manipulate the timing or ordering of events (e.g., disk accesses, memory ac-

cesses and the inter-packet delays). The focus of this chapter is on the detection of covert

storage channels.

Despite of the complex structure of a networked virtual environment, we wish to han-

dle threats of covert channels as generally as possible. First, we assume that a vulnerable

virtual machine (VVM) can be compromised by many exploits, such as the existing exploita-

tions towards vulnerable services running on a VM, zero-day attacks, and inside subverting.

Initially, we do not consider attacks that change the behavior of VMs through the virtual

machine monitor (VMM) or hypervisor, a system software that allows multiple guest operat-

ing systems to run on a physical computer concurrently [117]. Second, we assume that, once

a VM has been compromised, its user-space applications and the kernel-space device drivers

can be fully controlled by the attacker. Since the incentive for attacker to launch covert

channels is to leak insider information to outside attackers, covert channels can be detected

from outbound network traffic. Figure 4.1 illustrates the proposed attacking scenario.

We established the foundation of security based on the following two assumptions. First,

the VMM, which is under the control of the current virtual computing environment, is
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Figure 4.1: The threat of covert channels

assumed to be correct, trusted, and unbreachable. Second, it is assumed that there exist

a certain number of secure VMs (SVMs), which are also under the control of the current

virtual computing environment. The SVMs can be created either along with the vulnerable

VM by simply cloning them from a clean state, or from a VM prototype, such as Amazon’s

Elastic Compute Cloud (EC2) service [29] or Microsoft’s Azure Services [8]. The SVMs

are protected by the virtual computing environment, such that outside attackers cannot

compromise them. Note that, although our approach requires the synchronization of at least

one SVM with each VVM, the number of SVMs is bounded by the number of vulnerable

servers we are inspecting. Therefore, Observer can be applied to monitor as many vulnerable

servers as necessary, once extra computational and storage resource become available. We do

not require that the VMMs of the virtual environment knows the software being installed on

VMs (e.g., the OS and the applications), although such information is useful for determining

the integrity of VMs.
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4.4 System Design

4.4.1 Definition

We address the problem of covert channel detection by isolating and validating the out-

bound traffic. From a formal perspective, we define our system as an extended finite state

machine (EFSM) due to its advantages to represent input and output parameters, context

variables, operations, and predicates, which is widely used to model communication system

behaviors [87,103].

Definition 1. Our CTCs detection system can be defined as an extended finite state

machine (EFSM) M, which is represented as a quintuple M = (Σ, S,~v,D, T ), where:

- Σ is an event alphabet of the EFSM, i.e., the networking packets in this paper. Each event

e ∈ Σ has its name and argument. In our system,

- S is a finite set of states of EFSM, where s0 ∈ S is the start state, and sz ∈ S is the final

state.

- ~v is a vector of finite set of state variables, ~v = (v1, v2, . . . , vk)

(1 ≤ k ≤ z).

- D is a set of domain values for state variables, D = (D1, D2, . . . , Dk), in which Di denotes

the domain of values for the variable vi.

- T is a transition relation: S ×D × Σ → (S,D).

The transition t ∈ T is a tuple 〈si, e, Pt, At, si+1〉, where si, si+1 ∈ S are the starting and

ending states of the transition t, respectively. Since our detection system keeps the states

of at least two individual machines. si is the composition of two states, si = s̊i,m1 × s̊i,m2 ,

where m1 and m2 are two machines(or virtual machines). Pt(e × ~v) is a predicate on the

valuation of a event e and current state variables ~v, within which ~v = ~vi,m1×~vi,m2 . ~vi,m1 and

~vi,m2 represent the vectors of the finite state variables on machine m1 and m2. The context
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update function At(~v) is defined as ~v := A(~v) that changes the current state variable vector

~v. It changes the values of current state vector ~v before moving to a new state.

Definition 2. We further divide events in the above definition as input event ?event(~x)m,

and output event !event(~x)m for machine m, in which ~x = (x1, x2, . . . xn) is the vector of

event parameters. The transition edges between the nodes of the EFSM directed graph can

be represented as 〈st, c?event(~x), Pt, At, qt〉 or 〈st, c!event(~x), Pt, At, qt〉. Now suppose that

s̊0,m1 = s̊0,m2 , and e for all event e ∈ Σ, then we will have s̊i,m1 = s̊i,m2(0 ≤ i ≤ k). There ex-

ists a function that evaluates the difference between as ∆(̊si,m1 , c!event(~x), s̊i,m1 , c!event(~x), θ)

= {Benign,Attack}, which returns either Benign or Attack, given a threshold θ.

4.4.2 Observer System OverviewOutput AnalyzerTraffic Filter Traffic DistributorTraffic Manipulator Outbound TrafficInbound TrafficElimination CommandsVVMSVMVMR Virtual Machine Deployment
Figure 4.2: Observer system architecture

Figure 4.2 illustrates the system architecture of Observer. The shaded area highlights

the components and the structure that are of special interest. Observer contains two major

components: the Security Mediator (SM) and the Virtual Machine Repository (VMR). The

SM consists of three sub-components: (1) The Traffic Filter monitors the inbound packets

from the Internet, and filters the specific traffic of interest; (2) The Traffic Distributor

identifies the networking protocol information from the intercepted packets, replicates the
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packets, and sends them to both the VVM and SVM; (3) The Output Analyzer singles out

the outbound traffic from both VMs, and detects anomalous patterns. VMR maintains a

set of VMs, as well as activating, deactivating, cloning, and updating the snapshots of VMs.

The shaded area highlights the components and the structure of Observer.

4.4.3 Intercepting Interesting Traffic

The function of the traffic filter is straight-forward. To protect certain services, Observer

maintains a list of rules that are used to intercept relevant packets. If an incoming packet

satisfies one rule, it will be subject to further processing. Whenever a new susceptible service

has been launched, new rules that correspond to that service will be added to the existing

list of rules. A few lines of rules are shown in Figure 4.4.3, which are similar to general

purpose firewall rules. The rules specify the packet header fields, such as Protocol, Src

IP, Src Port, Dst IP, Dst Port, and Packet header flags. For example, the first rule

specifies that TCP packets sent from an external host (with an address of 123.123.123.123

and any port number) to an internal HTTP service (with an address of 129.174.2.123 and

port number of 80) will be intercepted. The second rule drops all TCP packets that reply

to any external host, whose packet header field contains an rst flag. The set of rules can be

updated by inserting new rules or deleting obsolete rules at run-time, such that the attacker

can not take advantage of penetrating the system when the traffic filter updates the list of

rules.

It is worth to noting that the rules used by the traffic filter came from a priori knowledge

or reported vulnerabilities. The traffic filter takes a time of O(N) where N is the total

number of packets (measured in terms of number of bytes) that satisfies the rule-set provided

that we only restrict our focus to those services most easily compromised. Since the packet

filter does not buffer any processed packet, the storage requirements are bounded by the

maximum size of a networking packet.
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<?xml version="1.0" encoding="utf-8"?> <root>
<rule>

<Action>INTERCEPT</Action>
<Direction>OUT</Direction>
<Protocol>TCP</Protocol>
<From_IP>123.123.123.123</From_IP>
<From_Port>ANY</From_Port>
<To_IP>129.174.2.123</To_IP>
<To_Port>80</To_Port>
<Flags>NA</Flags>

</rule>......
<rule>

<Action>DROP</Action>
<Direction>IN</Direction>
<Protocol>TCP</Protocol>
<From_IP>ANY</From_IP>
<From_Port>ANY</From_Port>
<To_IP>129.174.2.123</To_IP>
<To_Port>80</To_Port>
<Flags>TCPFLAG=rst</Flags>

</rule>
</root>

Figure 4.3: A snippet of configuration file used by the traffic filter

4.4.4 Re-directing Traffic to Virtual Machines

In general, the primary job of the traffic distributor is to forward packets, which are origi-

nally destined to the VVM, to the SVM. More specifically, the traffic distributor has jobs:

First, when the traffic distributor receives a packet e from the traffic filter, it constructs a

new packet, namely e′. e′ keeps some packet fields from e, such as Src IP, Src Port; while

it modifies others, such as the Dst IP, Dst Port, the sequence numbers, and checksum.

The Dst IP, Dst Port are the IP address and port number of the SVM. Then, the traffic

distributor dispatches e and e′ simultaneously. Second, when the traffic distributor receives

reply packets from both VMs, it only sends out the reply packets, which corresponding to

the incoming packet e from VVM. In such a way, outside attackers may have no knowledge

of the SVM.

Figure 4.4 illustrates how does the traffic distributor works as a simplified state machine,

where M1 and M2 represent the VVM and SVM, respectively. The states of the state

machine are represented as ellipses, and the behavior of the traffic distributor are represented
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INIT Disconnect SendFIN/ACK Ready to Disconnect Request to DisconnectSent SYN SentSYN/ACK Established Send Data Request to DisconnectReceive SYN, Produce SYN’,Send SYN, SYN’ to M1, M2.Start
Receive SYN/ACK and SYN/ACK’ from M1, M2,Send SYN/ACK. Receive ACKProduce ACK’,Send ACK, ACK’ to M1, M2, respectively. Receive PUSH/ACK from M1, M2,Send PUSH/ACK from M1. Receive ACK,Produce ACK’,Send ACK, ACK’ to M1, M2, respectively.Receive FIN/ACK and  FIN/ACK’ from M1,M2,Send FIN/ACK.Receive ACK, Produce ACK’,Send ACK, ACK’ to M1, M2.Receive FIN/ACK,Produce FIN/ACK’,Send FIN/ACK, FIN/ACK’ to M1, M2, respectively.Receive ACK,Produce ACK’,Send ACK, ACK’ to M1, M2, respectively.1 5432 6789

Figure 4.4: The simplified state machine of traffic distributor

as the edges (or transitions) between states. For example, when the traffic distributor

receives a SYN packet, it constructs a new SYN packet, namely SYN’, and sends both SYN

and SYN’ to M1 and M2, respectively. Similarly, when it receives an ACK and ACK’ packets,

it only sends out ACK. To synchronize the output of M1 and M2, the traffic director keeps

all previous states of communication in a queue, in case of packets loss or fragmentation.

The overhead required for the traffic distributor to construct a new packet e′ is nearly

the same for each packet. The storage requirement is dictated by the total number of

packets been forwarded from the traffic filter. Although Observer collects the live traffic,

which can be increased without a bound, the storage requirement is still bounded by 2n,

where n is the number of packets in the queue.

4.4.5 Detection of Anomalous Traffic Patterns

To detect covert channels, we use shape tests, which are referred to as first-order statistics,

such as means, variances, and distributions [86]. To examine the shape of traffic patterns, we

run two statistic tests: Chi-Square test (χ2 test) [25], and two-sample Kolmogorov-Smirnov

test (KS-test) [50]. In particular, we use the χ2 test for discrete samples, and the KS-test

for continuous samples. One prominent feature of the both test is that it is general enough

that it does not depend on the actual cumulative distribution function being tested, which
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is distribution free.

More formally, for the χ2 test, x1 and x2 are the samples collected from SVM and VVM

that divided into k bins and the test statistic can be defined as follows:

χ2 = Σk
i=1

(K1Ri −K2Si)2

Ri + Si
(4.1)

where the summation is over bins 1 to k, Ri is the observed frequency for bin i for

sample 1, and Si is the observed frequency for bin i for sample 2. K1 and K2 are scaling

constants that are used to adjust for unequal sample sizes; specifically,

K1 =

√
Σk

i=1Si

Σk
i=1Ri

, (4.2)

and

K2 =

√
Σk

i=1Ri

Σk
i=1Si

(4.3)

For the default χ2 test, the null hypothesis that two samples come from the same distri-

bution, against the alternative that two samples do not come from the same distribution.

The result h is 1 if the null hypothesis can be rejected at the 5% significance level. The

result h is 0 if the null hypothesis cannot be rejected at the 5% significance level. In our

test, x1 and x2 are the samples collected from SVM and VVM, respectively, so the null

hypothesis is that x1 and x2 are both normal.

The two-sample Kolmogorov-Smirnov test (KS-test) has been used as an alternative to

χ2 test in some previous approaches [39, 86]. The KS-test is also distribution-free but is

restricted to continuous distributions. Specifically, KS-test measures the maximum distance

between two empirical distribution functions (S1(x) and S2(x)) of two samples (x1 and x2),

whose measurement is determined as follows.
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KSTEST = max|S1(x)− S2(x)| (4.4)

Where S1(x) is the proportion of x1 values less than or equal to x and S2(x) is the

proportion of x2 values less than or equal to x. For the default KS-test, the null hypothesis

is that x1 and x2 are from the same continuous distribution. The alternative hypothesis is

that they are from different continuous distributions. The result h is 1 if the test rejects

the null hypothesis at the 5% significance level; or 0 if otherwise. In our test, x1 and x2

are the samples collected from SVM and VVM, respectively. Similarly, the null hypothesis

is that x1 and x2 are both normal.

4.5 Implementation

To measure the effectiveness and performance overhead of Observer, we have implemented

Observe on top of a VMware ESX Server [31]. The traffic filter and the traffic distributor

were implemented as part of a transparent bridge, which uses a customized IP Firewall

(ipfw) [37] to intercept networking packets initiated from the Internet. We used the divert

socket [108] technology to manipulate intercept packets. The divert socket can alter raw

packets before they being processed by the networking stack. The traffic filter and the

traffic distributor were implemented by C language with approximately 1000 lines of code.

To minimize the networking latency after the packets leave the security mediator, we

clone the VVM and the SVM cloned from the same virtual machine image of the same

state, and configure them one hop away from Observer. Since the VVM and SVM must be

closely synchronized, we use the sequence number field of TCP packets to synchronize the

outbound traffic from both VMs.

The output analyzer uses ethereal [32] to collect the traffic and separate the timing

information, and ntop [82] to measure the statistics of networking traffic at runtime. The

output analyzer module was written in C, perl, Dataplot, and MATLAB.
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4.6 Evaluation

In this section, we describe how Observer was evaluated. In Section 4.6.1, we describe the

attacks used in our experiment. In Section 4.6.2, we analyze the effectiveness of Observer

in terms of sensitivity and detection accuracy achieved. Finally, in Section 4.6.3, we discuss

the performance overhead of the approach.

4.6.1 Attacks in the evaluation

In our evaluation, we limited our detection analysis to two types of CSCs: IP/TCP Packet

Fields Channel (PFC) and Botnet Traceback Watermark Channel (BTWC). The PFC op-

erates by modifying the urgent fields of TCP packets to transmit information, so that it

transmits a 1 bit by increasing the value of urgent fields by an integer modulo w, and

transmits a 0 bit by increasing the value of urgent fields by an integer modulo bw
2 c.

The BTWC operates by modifying the length of the encoding packet by padding char-

acters to achieve a specific length, in which the padded characters could be invisible (such

as whitespace) or visible characters. We use the scheme similar to [92] to construct the

BTWC. Specifically, to encode an i -bit sequence S = s0, ..., si−1, we use 2i randomly cho-

sen packets pairs 〈Pri , Pei〉 (i = 0, ..., L), where ri ≤ ei. We call Pri the reference packet

and Pei the encoding packet. A covert bit sk(0 ≤ k ≤ i− 1) can be encoded into the packet

pair 〈Pri , Pei〉 with the following equation, where Lr and Le are the values of the encoded

filed in Pri , Pei , respectively.

e(Lr, Le, L, sk) = le + [(0.5 + sk)L− (le − lr)]mod2L (4.5)

To test the effectiveness to detect slow covert channels, we extended the original covert

channel design scheme. Rather than using 2i packets, we use 2ai(a ≥ 1) packets to encode

S, where a was could be a constant or a randomized number generated by a pseudorandom

number generator (PRNG). Pri and Pei will be chosen from 2a packets. We call a as the

amplifier, where a larger value of a indicates a slower covert channel. We apply the amplifier
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Table 4.1: The detection window size for various covert channels

BTWC PFC
a = 1 160 60
a = 5 181 460
a = 10 7150 390
a = 20 24060 730

to all covert channels design schemes in this chapter.

4.6.2 Effectiveness

Latency

We measure the latency of Observer in terms of the detection window size, which is defined

the minimum number of packets needed to detect a covert channel once it starts to transmit

information. Clearly, a larger windows size indicates a longer latency with less sensitivity

and greater vulnerability to covert channels in real-time. Table 4.6.2 shows the detection

window size of Observer to reach 100% true positive rate. As we stated before, a large value

of a indicates slow covert channels. The results obviously indicate slower covert channels

require larger detecting windows. The true positive rate is the proportion of covert channels

in test that are correctly been identified as covert. For example, to detect the most aggressive

BTWC, which sends one bit per packet, the detection window size is 160. However, a slower

BTWC, which transmits one bit every 20 packets, needs a windows size of 24060! Similarly,

the detection window sizes vary from 60 to 730 for PFCs, indicating that Observer is much

more sensitive to PFC than it is to BTWCs. This result can be explained by comparing

the distributions of these two channels types in Figure 4.5, and the cumulative distributions

of them, as illustrated and Figure 4.6. These data show that, for various value of a, the

distributions of BTWCs more similar to each other than is the case with the distributions

of PFCs. Therefore, BTWCs are more difficult to detect by Observer than are PFCs.
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Figure 4.5: The distribution of BTWCs and PFCs
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Figure 4.6: The cumulative distribution of BTWCs and PFCs

Detection Rate

To determine the false positive rate, which is the proportion of legitimate samples in the

test set that are incorrectly been identified as covert, Observer collects live traffic from both

VVM and SVM. We run both BTWC and PFC for a = 1. Under these conditions, the

false positive rate of Observer for both BTWC and PFC are 0. Table 4.6.2 and Table 4.6.2

show the results of the associated statistical tests. As expected, the slower covert channels,

which have larger values of a, exhibit statistics that are closer to those of the legitimate

traffic. For the analysis of false positives, we set the targeted false positive rate to be 1%.
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To achieve this false positive rate, we use the 99th percentile of the legitimate samples as

the cutoff point between samples that samples are considered benign or covert.

Figure 4.7 demonstrates that Observer reaches 100% true positive rate for both PFCs

and BTWCs for various values of a. We also notice that the effectiveness of detection de-

pends on having a sufficient number of collected packets. For example, for the PFC with

a = 10, the truth positive rate fluctuates when Observer collects 5000 packets. The similar

situation also happened for BTWCs. Clearly further research is needed to improve the

effectiveness of detection.
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Figure 4.7: The true positive rates of two covert channel detection

Table 4.2: The test scores of PFCs
Legitimate PFC PFC PFC PFC PFC

Http (a = 1) (a = 5) (a = 10) (a = 20) (a = 50)

mean 20.143 36.926 23.48 23.343 20.878 20.478

stdev 3.925 16.485 10.576 10.316 6.137 5.088

χ2 test statistics 0 6789.002 82.136 75.657 3.902 0.796

χ2 test(CDF value) 0 1 1 1 0.580575 0.061007

χ2 test(1% cutoff point) ≥ 15.087 ≥ 11.345 ≥ 15.086 ≥ 13.277 ≥ 13.277 ≥ 13.277
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Table 4.3: The test scores of BTWCs
Legitimate BTWC BTWC BTWC BTWC BTWC

Http (a = 1) (a = 5) (a = 10) (a = 20) (a = 50)

mean 283.601 284.785 283.824 283.721 283.660 283.622

stdev 453.532 452.005 453.215 453.357 453.441 453.503

KS-test statistics 0 0.248 0.049 0.025 0.012 0.004

KS-test (p value) 1 0 2.937e-015 2.53e-004 0.212 0.951

KS-test (1% cutoff point) ≥ 0.1923 ≥ 0.1923 ≥ 0.1923 ≥ 0.19233 ≥ 0.1929 ≥ 0.1929

Table 4.4: The comparison of throughput under the best and the worst case scenarios
Best scenario Worst scenario Ratio

# of packets 1,802,176,469 170,712,403 0.094
# of bytes 1,214,518,973,379 128,003,547,066 0.105

# of packets/sec 187,727 17,783 0.098
# of bytes/sec 126,512,393 13,333,703 0.110

Duration 160 min 160 min 1

4.6.3 Performance

In the first experiment to evaluate the performance of Observer, we examine the throughput

boundary of Observer, under the worst and the best case scenarios. In the worst case

scenario, since most inbound packets sent from outside to VVM are part of a covert channel,

the majority of the packets are subjected to being intercepted by the traffic filter. However,

in the best case scenario, none of the packets need to be intercepted. In both scenarios, we

measure the throughput of outbound HTTP packets from the VVM for 160 minutes, such as

the number of packets, the number of bytes, the number of packet per second, the number of

bytes per second. The detailed statistics of both scenarios are demonstrated in Table 4.6.3.

Although the throughput of Observer under the worst case scenario decreases to nearly

10% of that is under the best case scenario, the average processing time of each packet

is roughly 56.2ms under the worst case scenario. The possible reasons of this decreasing

can attribute to the serial processing of Observer. Parallel packet processing technique is

needed to improve the drawback of the current implantation.

In the second experiment, we measure the average inter-packet delay (IPD) latency
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introduced by Observer. For that purpose, we collect 1,000,000 packets with Observer

installed and without Observer installed. The average latency added to the IPD is 0.5ms,

which is much smaller than the average IPD without Observer installed (2.267ms). The

IPD latency can be explained as the queuing delays that Observer adds to the inbound

packets, when redirecting them to both VMs at the same time.
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Figure 4.8: Performance overhead of Observer.

In the third experiment, we measure the resource usage, such as the CPU usage, with

the respect to the throughput. The result is encouraging in that the resource usage does not

increase significantly over time. Indeed, the CPU usage remains fairly steady, so that there

continues to be a linear relationship between usage and throughput when the throughput

is less than 100Mbps. In short, this result shows that the average system overhead scales

with the networking throughput as expected. It is also worth nothing that the overhead

caused by Observer has no negative performance impact on the machines being monitored,

which is a significant benefit of this virtual architecture.

4.7 Discussion

We have so far demonstrated the effectiveness and performance of Observer to detect covert

channels. In the following, we discuss the limitations and possible improvements to our

62



system.

Redundancy cost Currently, the ability of our system to accurately detect covert

channels depends on the assumption that the virtual computing environment can provide

at least one secure VM for each vulnerable VM, which means that the networked virtual

environment has to keep a number of secure VMs, in order to detect the same number of

vulnerable VMs. Although the cost to maintain a secure VM is much less than to maintain

a physical machine, this fact limits the scalability of our approach. How to dynamically

allocate secure VMs and manage them effectively will be a future research topic for us.

Synchronization between VMs Although our current approach mainly focuses on

the services that have limited usage of user interface, and simplify the input of services

as the inbound networking traffic, there still exists a large number of services that need

frequent interaction with human users through command line or graphic interface. To keep

a secure VM across its life cycle is difficult and laborious. In addition, since our approach

is a online intrusion detection system, there might be inbound traffic that contain exploits

that could compromise secure VMs at runtime. We will examine this question in our future

research.

4.8 Conclusion

We have presented Observer, a real-time intrusion detection system against covert channels.

Observer detects new covert channels in a networked virtual environment by running a

secure VM to mimic the vulnerable VM, such that the difference between two VMs can be

identified. Unlike most existing covert channels detection approaches, our approach does

not depend on modeling historic data. Our experimental results demonstrate that we can

achieve low latency and high detection rate with reasonable overhead.
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Chapter 5: Detecting Covert Timing Channels in a

Networked Virtual Environment

5.1 Introduction

Covert timing channels (CTCs) are one of the most prevalent forms of attacks in com-

puter security [84, 97]. They are a class of attacks that exfiltrate inside credentials, such

as passwords and secret keys, by manipulating the timing or the ordering of networking

events [38]. A successful CTC leaks sensitive inside information to outside human attackers

without triggering any alert from a well-protected network, presenting a challenging that is

well-known to the world of information security.

Most existing approaches to address this security problem either use signature-based

approaches to detect known CTCs [22] or anomaly-based approaches by modeling legitimate

networking traffic to detect unknown CTCs [12, 21, 38, 104]. However, these methods have

at least two obvious limitations: First, the effectiveness of these approaches depend on

the availability of a sufficient amount of legitimate (or attack-free) traffic to construct the

signatures of attacks or to build an accurate model of legitimate traffic, thereby making it

possible to detect CTCs either as a match to attack signatures or a deviation from the models

of legitimate traffic. Unfortunately, in a networked virtual environment, where virtual

machines are interconnected, legitimate traffic is either hard to obtain or contains noise due

to the imprecise timing keeping mechanism used in virtual machines [52]. Therefore, most

existing approaches fail to detect CTCs because legitimate traffic for signature construction

or modeling is absent. In addition, since the virtual machines use emulated devices to obtain

timing information, that timing information contains more noises than that collected from

a physical networking environment. Second, most of the approaches were designed to detect

those CTCs which transmit information at a high rate of speed to achieve large bandwidth.
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However, an attacker who is aware of this fact can deliberately extend the duration of the

CTC transmission process. In such a way, the timing patterns of CTCs traffic become

almost indistinguishable from that of legitimate traffic and the attacker can exfiltrate the

insider information with complete peace of mind. Although some model-based CTC design

schemes [39, 71] have been proposed to model slow CTCs, there is no detection approach

has been implemented to detect those CTCs.

In this chapter, we present a new wavelet-based approach to detecting CTCs in a net-

worked virtual environment, where no historic legitimate traffic is available. We build our

CTC detection approach upon our novel intrusion detection system, Observer, which mea-

sures the distance between outbound traffic generated by two virtual machines (VMs): one

is the potentially infected VM and the other is a benign VM. More specifically, the metric

employs the variables derived from the discrete wavelet-based multi-resolution transforma-

tion (DWMT) to measure the variability of the timing difference at all decomposition scales.

To the best of our knowledge, this approach is the first online CTC detection approach that

can detect CTCs by quantitatively measuring the distance between two networking flows.

To evaluate our wavelet-based metric, we conduct a series of experiments to detect

different CTCs and their slow variations. Then, we determine the robustness of our approach

with the presence of noise. In short, the experimental results demonstrate that our wavelet-

based metric is very effective in detecting existing CTCs and their slow variations in real-

time.

5.2 Related Works

CTCs have been the subject of a great deal of recent research. For example, Berk et al. [12]

implemented a simple binary covert timing channel based on the Arimoto-Blahut algorithm,

which computes the input distribution that maximizes the channel capacity [13]. Cabuk et

al. developed the first IP CTC, which we refer to as IPCTC [21] and TRCTC [22], which is

a more advanced traffic replay CTC. Shah et al. [104] developed a keyboard device, called
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JitterBug, that slowly leaks user typed information over the Internet.

Giffin et al. [40] showed that although not a CTC, low-order bits of the TCP timestamp

can be exploited to create a CTC due to the shared statistical properties of timestamps

and packet timing. Another application is to apply CTC to trace suspicious traffic. For

example, Wang et al. [124] took advantage of well-designed inter-packet delays, namely

watermark, to trace VOIP traffic [122, 123]. Their recent work [92] utilizes watermarked

networking traffic to trace back bot-master through CTC traffic. Our work, however, does

not consider how to design and trace back watermarks, although the design scheme of [92]

can be used to test the effectiveness of our detection metric. Gianvecchio et al. [39] and

Liu et al. [71] designed model-based covert channel encoding schemes which seek to achieve

undetectability and robustness at the same time.

A number of CTCs detection methods have also been developed. Peng et al. [86] showed

that the Kolmogorov-Smirnov test is an effective way to detect CTCs that manipulate inter-

packet delays. Cabuk et al. [22] investigated a regularity-based approach of detecting CTCs.

They also developed a metric, named ε-similarity, to measure the proportion of similar inter-

packet delays. The limitation of ε-similarity metric is that it only targets IPCTC. Therefore,

it is not general enough to detect other CTCs. Berk et al. [12] employed a simple mean-

max ratio test to detect binary or multi-symbol CTCs. However, the assumption of the

mean-max ratio test is that the legitimate inter-packet delays follow a normal distribution,

which is often not true for real world traffic. Gianvecchio et al. [38] investigated an entropy-

based approach to detecting CTCs, and they achieved good results of detection. Compared

to their work, our approach demonstrates the following three advantages: First, as an

essential step to computing the patterns of length m, the corrected conditional entropy

(CCE) metric of [38] spends a quadratic time complexity, while our approach takes linear

timing complexity. Second, CCE metric cannot detect stealthy CTC, while our WBD

metric can detect all CTCs, as well as their stealthy versions. Third, compared to previous

approaches, our approach works online and is applicable in a virtualized environment, while

most previous approaches requires training data and cannot work in virtual machines.
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Jing et al. developed a wavelet-based approach to measure time distortion of low latency

anonymous networks [58], which is closely related to our work. Their timing distortion

metric is particularly designed to deal with the issues of packet transformation that are

caused by anonymous network, such as flow mixing, merging, adding chaff, and packet

dropping. In comparison, our approach has at least two advantages: First, our WBD

metric can clearly differentiate slow versions of different CTCs, while the time distortion

metric cannot. Second, our approach is particularly designed to detect CTCs, which have

more stealthy timing characteristics than the timing distortion of packet transformation

introduced by anonymous networks. Therefore, our approach is a different technology that

addresses more subtle issues.

Askarov et al. [7, 134] proposed online covert timing channels prevention mechanisms

that mitigate information leakage. Although their approaches were proven to be efficient to

bounds the information leakage as a function of elapsed time, how to detect covert timing

channels is still an open problem which has not been addressed. The online prevention

mechanisms without considering which networking flow contains covert timing channel will

affect throughput and the response time of a system significantly. Another problem of

these online prevention mechanisms is that it affects networking performance, particularly

for those streaming services which require fast response time.

5.3 Background

5.3.1 The Challenges to Detecting CTCs

After a vulnerable VM has been compromised by an attacker, an effective way to exfiltrate

inside information from a well-protected network is to leak information through covert

timing channels (CTCs). There are two types of CTCs: active and passive. Active CTCs

refer to the covert channels that generate additional traffic along with the existing traffic

to transmit information, while passive CTCs refer to covert channels that manipulate the

existing traffic and do not generate additional traffic. In general, active CTCs are easier
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Table 5.1: The means and standard deviations of two flows (in second)
Statistics Legitimate flow Jitterbug flow
Mean 0.14722 0.15097
Standard Deviation 0.04064 0.04317

to detect than are passive CTCs [38]. In this chapter, we only focus on the CTCs that

manipulate the timing information of networking packets, say inter-packet delays (IPDs) of

a network flow.

The primary challenge to detecting CTCs is that the statistics of covert traffic are so

close to those of legitimate traffic that it is hard to differentiate CTC traffic from legitimate

traffic by using standard statistical tests. Figure 5.1 illustrates a comparison of the em-

pirical cumulative distribution (ECD) of the inter-packet delays of a legitimate networking

traffic sample and a CTC traffic sample, namely JitterBug [104] (sample size=300). The

distribution and ECD of these two samples are very close. Other statistics of these two sam-

ples, such as means and standard deviations, are also very similar as shown in Table 5.1.

Because of this great similarity, detection methods only based on standard statistical tests

are not accurate and robust for detecting CTCs.
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Figure 5.1: The comparison of ECD between a legitimate flow and a JitterBug flow
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5.3.2 Time Drifting in Virtual Machines

To detect CTCs in a physical networking environment, most existing approaches commonly

assume that legitimate traffic contains accurate timing information that is always available.

However, this assumption might not be hold in a networked virtual environment for at least

two reasons.

First, in a virtual networked environment, many dynamic conditions make it almost

impossible to obtain legitimate traffic at runtime [126]. For example, a VM may be arbi-

trarily migrated across a virtual network. A VM may be constantly reverted to a previous

snapshot, which is a saved state of data and hardware configuration of a running virtual

machine [107]. In addition, VMs may be configured to run multi-booting systems, accessi-

ble by different users, and/or for different purposes. Because of these dynamic conditions,

legitimate traffic of a benign virtual machine can have completely different timing patterns

across its life-cycle, which makes the collected legitimate traffic information inappropriate

for modeling. In short, in such a case, most existing approaches fail due to insufficient good

quality of legitimate traffic.

Second, unlike a physical machine that can directly access its physical CPU, a virtual

machine accesses the physical CPU through emulated timer devices [52], which makes ac-

curate time keeping almost impossible. We use the term “time drifting” to refer to the

noises introduced by the emulated timer devices. Figure 5.2(a) illustrates an observation of

time drifting in the inter-packet delays of outbound traffic of two identical VMs when given

the same inbound traffic. However, even though time drifting exists in a networking virtual

environment, the IPDs of two identical VMs are still very similar, as shown in Figure 5.2(b).

5.3.3 A Wavelet-Based Approach to Detecting Covert Timing Channels

In this section, we present a wavelet-based metric to quantitatively measure the distance

between the inter-packet delays (IPDs) of a legitimate flow and a CTC flow. We first

describe the model of our CTC detection approach. Then, we discuss how to measure the

timing distance between two outbound networking flows by using the variables derived from
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(a) The IPDs of two outbound networking flows
from two identical VMs
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Figure 5.2: The effect of time drifting

wavelet-based multi-resolution transformation (DWMT). Finally, we formulate the metric

to measure the timing distance between two networking flows.

The Model of the CTC Detection Approach

Given the same networking inbound flow I, the problem of measuring the timing distance

between two outbound flows, namely O1 and O2, can be formulated as follows: The inbound

flow I contains K > 0 packets 〈pi,1, ..., pi,K−1〉. As the response of I, Virtual machine

VM1 generates O1 that contains M > 0 packets 〈po1,1, ..., po1,M−1〉 and virtual machine

VM2 generates O2 contains N > 0 packets 〈po2,1, ..., po2,N−1〉. Since the packets of Oi

were generated by VM as the response of that of I, we segment the packets in I and

Oi based on their request/response relationship. Specifically, for the jth inbound segment

Ij = 〈pj
i,1, ..., p

j
i,m〉, its responding outbound segment in Oi is defined as Oj

i = 〈pj
oi,1

, ..., pj
oi,o〉.

We use tj(oi,k) to represent the timestamp of the kth packet in the jth segment of Oi. Since

the length of I is much longer than that of Oi, we can further aggregate Oi into w aggregated

segments. In Figure 5.3, Oi−2
2 is the responding outbound segment of Ii−2 in flow O2.

For O1,i, the packets within the segment of ti is represented as 〈po1,0, ..., po1,m−1〉(m > 0)

. Similarly, the packets in the same segment is represented as 〈po2,0, ..., po2,n−1(n > 0), where
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Outbound Flow O1 Ii-2 Ii Ii+1Ii-1Outbound Flow O2 TimeTimeThe aggregated segment
O2i-2 O2i-1 O2i O2i+1 Ii+2Inbound Flow I Time

Figure 5.3: The inbound and outbound flows

n ≈ m. The time-stamp of the j-th packet in O1,i and O2,i are represented as tj(O1,i) and

tj(O2,i), respectively.

Measuring Timing Distance between Flows

The assumption behind the development of the timing distance metric is that the timing

patterns of the outbound legitimate traffics are similar. Therefore, by characterizing the

timing patterns of the networking flows, it is possible to efficiently measure the timing

distance between a legitimate flow and a CTC flow. To effectively perform the measurement,

we use discrete wavelet-based multi-resolution transformation (DWMT) [2]. The DWMT

has been widely used in signal processing [3] and anomaly detection [58], which has at

least three prominent features. First, DWMT provides multi-resolution analysis, which

allows us to look at the sequence of data at different scales. Second, DWMT allows feature

localization, i.e., it allows us to know the characteristics of the signal and “approximately”

where in time they occur. Finally, DWMT supports online analysis, that is, we can compare

the difference between two flows online.

The DWMT takes a sequence of data as input and transforms that sequence into a

number of wavelet coefficients sequences. Specifically, the l level DWMT takes a sequence
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Figure 5.4: The original IPDs and its wavelet coefficients at different scales

of IPDs and transforms the sequence into 1) l wavelet detailed coefficient vectors at different

scales (CDi, where 1 ≤ i ≤ l) and 2) a low-resolution approximate vector (CAl)1. For the

j-th segment of Oi, the wavelet detailed coefficients vector at scale l can presented as:

V (i, j, l) = 〈CDj
l (oi, 1), ..., CDj

l (oi, Nj)〉 (5.1)

where Nj = nj × 2−j is the number of wavelet detail coefficients at scale j, and cl,k =

cl−1,2k + cl−1,2k+1 for l ≥ 0. Figure 5.4 illustrates the transformation of a DWMT, namely

Harr wavelet [46], on a IPDs sequence (sample size=300). The Harr wavelet uses five

level transformation and obtains one approximate coefficient vector (a5) and five detailed

coefficient vectors at different scales (di and 1 ≤ i ≤ 5 ).

The design goals of our wavelet-based distance (WBD) are three-folds: First, we expect

that the WBD between two legitimate flows is small. Second, we expect that the WBD

between a legitimate flow and a CTC flow is detectably different. Third, the WBD should

be able to differentiate regular CTC and stealthy CTC. To achieve these goals, we define
1In this dissertation, we use CAj and CD0 exchangeable.
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three derived vectors based on the coefficient vector V(i,j,l) at scale l(l ≥ 0): the intra-

flow vector (intraFV), the inter-flow vector (interFV), and the Kullback-Leibler divergence

(KLD) vector.

We define intra(i, j, l) = 〈CDj
l (Oi, 1)− CDj

l (Oi, 0), ..., CDj
l (Oi, Nj)− CDj

l (Oi, Nj−1)〉,
which reflects the fluctuating characteristics between adjacent coefficients within a coef-

ficient vector at scale j of one flow Oi. The intraFV (j, l) is defined as the Euclidean

distance [26] between intra(1, j, l) and intra(2, j, l) as shown in Equation 5.2:

intraFV (j, l) = dist(intra(1, j, l), intra(2, j, l)) (5.2)

Similarly, we define the interFV (j, l) = dist(V (1, j, l), V (2, j, l)) as the Euclidean dis-

tance between coefficient vectors V(1,j,l) and V(2,j,l), which characterizes the deviation

between two wavelet coefficients for the same segment j at the same scale j.

The Kullback-Leibler divergence (KLD) has been used to measure the distance between

two probability distributions p1(x) and p2(x) [66, 67]. From an information theory’s per-

spective, KLD measures the expected number of extra bits required to code samples from

p1(x) when using a code based on p2(x). For probability distributions p1(x) and p2(x), their

KLD is defined as:

KLD(p1(x), p2(x)) =
|x|∑

i=0

p1(x) log
p1(x)
p2(x)

(5.3)

To calculate the KLD between two wavelet coefficient vectors at scales j, it is necessary to

obtain the probability distribution of V(i,j,l), namely p(V (1, j, l)). To obtain p(V (1, j, l)), we

first covert V (i, j, l) = 〈CDj
l (oi, 1), ..., CDj

l (oi, Nj)〉, which contains the numeric coefficients

into a vector of symbols S̃i = 〈α1, ..., αl〉. Then, we calculate p(V (i, j, l)) based on S̃i.
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Table 5.2: The equiprobable regions as defined under N(0,1) Gaussian distribution
HHHHHHβ

α
3 4 5 6 7 8 9 10

β1 -0.43 -0.67 -0.84 -0.97 -1.07 -1.15 -1.22 -1.28
β2 0.43 0 -0.25 -0.43 -0.57 -0.67 -0.76 -0.84
β3 - 0.67 0.25 0 -0.18 -0.32 -0.43 -0.52
β4 - - 0.84 0.43 0.18 0 -0.14 -0.25
β5 - - - 0.97 0.57 0.32 0.14 0
β6 - - - - 1.07 0.67 0.43 0.25
β7 - - - - - 1.15 0.76 0.52
β8 - - - - - - 1.22 0.84
β9 - - - - - - - 1.28

The effectiveness of converting from V (i, j, l) to S̃i depends on a mapping function F that

maps CDj
l (oi,m) into an alphabet A = α1, ..., αm, where the soundness of translation from

CDj
l (oi,m) to αm holds as follows:

F (CDj
l (oi,m)) = αm, iff. βj−1 ≤ αm ≤ βj (1 ≤ i ≤ l, 1 ≤ j ≤ m) (5.4)

To facilitate effective conversion, we use the data discretization scheme of SAX [69] to

assign wavelet coefficients into k equiprobable regions. Each continuous coefficient value

that falls into a region maps to a unique symbol αi (1 ≤ i ≤ κ). Table 5.2 illustrates

the equiprobable regions as defined under N(0,1) Gaussian distribution, in which the area

between βj and βj+1(1 ≤ j ≤ 8) is 1
α(3 ≤ α ≤ 10)2. The KLD in Equation 5.5 for V(1,j,l)

and V(2,j,l) now becomes:

KLD(j, l) = KLD(p(V (1, j, l)), p(V (2, j, l))) =
k∑

i=0

p(S̃1) log
p(S̃1)
p(S̃2)

(5.5)

There is a tradeoff involved in choosing the optimal size κ of alphabet A. That is,

an large value κ keeps more information about the distribution of the continuous data,
2Although the continuous wavelet coefficients may follows other distributions, it does not affect the

effectiveness for calculating the equiprobable regions once the distributions has been identified.
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Figure 5.5: Experimental Setup.

but it might generate too many false alarms. In contrast, a small value of κ keeps less

information about the distribution, but it might be insensitive to the detection of slow or

stealthy attacks. In Section 5.5.2, we will examine more closely this tradeoff and illustrate

how we can determine the optimal value of κ.

Given intraFV, interFV, and KDL at scale l, we define the wavelet-based distance

(WBD) between O1 and O2 for all scales as shown in Equation 5.6.

WBD(O1, O2) =
m∑

j=1

(
m∑

l=0

intraFV (j, l)×
m∑

l=0

interFV (j, l)×
m∑

l=0

KLD(j, l)

)2

(5.6)

Basically, WBD summarizes the divergence of inter-flow, inter-flow, and KLD between

two networking flows. A large value of WBD indicates significant difference between two

flows, while a small value of WBD implies two flows are similar.

5.4 Implementation

5.4.1 Environment Setup

Environment Construction Figure 5.5 shows the experimental setup. It consists of
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our intrusion detection system (Observer) (See Chapter 4 for detail), two benign virtual

machines (BV M1 and BV M2), and a series of infected virtual machines, which contains

different CTCs (IV Mi(0 < i < n)). To run experiments for a specific CTC, one infected

virtual machine IV Mi will be chosen, and run in parallel with virtual machine Observer,

BV M1, and BV M2. Observer intercepts all the inbound networking traffic, sending it to

the IV Mi, as well as BV M1 and BV M2. The outbound traffic from BV M1, BV M2,

and IV Mi are immediately used for CTC detection. To ensure that BV M1 and BV M2

have the same virtual machine runtime state, BV M1 and BV M2 are cloned from the same

snapshot si of a virtual machine image.

IDS setup The system architecture of Observer is illustrated in Figure 5.6 and has four

main components: (1) the Traffic Filter identifies the packets that are sent to the infected

VM IV Mi; (2) the Traffic Distributor acts as a transparent bridge that forwards inbound

packets to BV M1, BV M2, and IV Mi ; (3) the Output Analyzer uses timing distance

metric to calculate the timing distance between the virtual machine pairs, BV M1, BV M2

and BV M1, IV Mi; (4) the Traffic Manipulator only sends out the outbound traffic coming

from IV Mi. If the traffic of IV Mi has been identified as CTC traffic, the traffic manipu-

lator also takes countermeasures to eliminate CTC in the traffic. A post-processing script

compares the outbound flows from the three VMs and classifies the result into one of the

following cases: (a) Observer successfully reports a CTC (true positive); (b) Observer re-

ports benign flows as containing a CTC (false positive); (c) Observer reports a CTC as

benign (false negative). In particular, the false positive rate is the proportion of legitimate

sample in the test set that are mistakenly been identified as CTC, while the true positive

rate is the percentage of CTC in the test that are correctly been identified as CTC. The

false negative rate is the proportion of CTC sample in the test that are mistakenly been

identified as legitimate, while the true negative rate is the percentage of CTC in the test

set that are correctly been identified as legitimate.

We have implemented our CTC detection system in C on the top of VMware ESX Server

4.1 [31]. The traffic filter was implemented by ipfw [37], a customized transparent bridge,
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Output AnalyzerTraffic Filter Traffic DistributorTraffic Manipulator Outbound TrafficInbound TrafficElimination CommandsVMVM
Figure 5.6: System Architecture of Observer

to intercept traffic. The traffic distributor was implemented by divert socket [108]. The

output analyzer uses ethereal [32] to collect the outbound traffic, and tethereal [115]

to separate the timing information from the outbound traffic. We also use ntop [82] to

measure the statistics of traffic at runtime. The output analyzer was written in C, perl,

Dataplot, and MATLAB.

5.4.2 CTC implementation

To emulate the malicious program that exfiltrates insider information. we have modified

the source code of vsftpd v2.3.4 [119] running on Fedora Linux 9. The modified vsftpd

includes the CTC encoder by generating a timing delay before sending out the packet to

the client. The CTC encoder was written in C and inline assembly that invokes instructions

to the Read Time-Stamp Counter (RDTSC) of CPU [93]. We choose RDTSC instruction

because it has excellent resolution and requires only low overhead for keeping time informa-

tion [39]. A description of the procedure for generating the precise timing delay is shown in

Figure 5.7. Specifically, the program first calibrates the CPU ticks and obtains the number

of nano seconds per CPU tick. Then, based on the elapsed time, the program runs the loop

for the number of nop instructions.

Meanwhile, we disable virtualization of the Time-Stamp Counter (TSC) within the VMs,

so that the TSC within a virtual machine returns the physical machine’s TSC value and

writing the TSC from within the virtual machine has no effect. Each VM was configured
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1. Initialize tick_begin=0, tick_end=0, tick_diff=0  //Initialize variables2. tick_begin = getRDTSC() //Get starting time3. Loop for n times4. tick_end = getRDTSC() //Get ending time5. tick_diff = (tick_begin-tick_end)                          //Get difference between starting and ending time6. Get time elapsed, elaps_time, in nano second7. nanosec_per_ticks = time_diff /elaps_time8. noOfLoop = (109/nanosec_per_ticks)*w               //Calculate number of ticks for duration w (in sec)9. Loop for noOfLoop times, each time run nop  //Generate precise delay for duration w 
Figure 5.7: The procedure to generate precise timing delay

one hop away from Observer.

5.4.3 Detection Methods

We use four board classes of measurements to detect CTCs: statistical tests, the timing dis-

tortion metric for measuring low latency anonymous network [58], the corrected conditional

entropy method [38], and our wavelet-based distance (WBD) method. For the statistical

tests, we use: 1) shape tests, which describes the first-order statistics, e.g., mean, standard

deviation, and empirical cumulative distribution (ECD); 2) Kolmogorov-Smirnov test (KS-

Test) [50], which has been described in Chapter 4; 3) Welch’s T-test (WT-Test) [127], and

4) the regularity test (RT-Test) [21].

WT-Test is used to determine whether the means of two samples are with different

sample sizes and variance. The statistical WT − Test is defined as Equation 5.7.

t =
X1 −X2√

s1
2

N1
+ s2

2

N2

(5.7)

where Xi, si
2, and Ni are the ith sample mean, variance, and sample size, respectively.

For RT-Test determines whether the variance of the inter-packet delays is relatively

constant. In our evaluation, we first divide the sequence of outbound IPDs into k segments,

and calculate the standard divination of segment i that is denoted as σi. The regularity
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score is defined in Equation 5.10. It is the standard deviation of the pairwise difference

between each σi and σj for all segment i < j. The reason that we choose RT is based on the

observation that the variance of the inter-packet delays changes over time for most types of

network traffic. With CTCs, the code used to transmit data is a regular process and, as a

result, the variance of the inter-packet delays remains relatively constant over time.

regularity = STDEV (
|σi − σj |

σi
, i < j,∀i, j) (5.8)

As stated in Chapter 4, the KS-Test measures the distance between the legitimate

sample and the test sample. The small test score implies that the test sample is close to the

legitimate sample. In contrast, the large test score indicates that the possible occurrence of

a CTC. By contrast, the small score of the regularity test indicates the possible existence

of a CTC.

Jin et al. [58] proposed an wavelet-based metric (MLAN) that quantitatively mea-

sures the practical effectiveness of anonymous networks in the presence of timing attacks.

The timing attacks in networking traffic refers to transformations that mix, split, merge,

add chaff, and/or drop packets introduced by anonymous networks, such as Tor [90] and

Anonymizer.com [6]. Thus, this metric is applicable to determine how likely a networking

flow has been distorted by a CTC. The MLAN measures

ej =

∑Nj−1
p=0 [CD(X, Y, j)(p)]2

Nj
(5.9)

where CD(X, Y, j)(p) is the pth (p = 0...Nj − 1) wavelet detail coefficient at scale j for

the jth vector D(X, Y, j). Nj = 2−jnj is the number of the wavelet detail coefficient at

scale j.

Gianvecchio et al. [38] showed that the corrected conditional entropy (CCE) is effective

in detecting different types of CTCs. The CTC traffic is shown to change the entropy of

a legitimate traffic. Thus, the corrected conditional entropy can be used to determine if
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an obvious deviation has been detected in the change of entropy. Specifically, the CCE

measures

CCE(xm|x1, ...xm−1) = CE(xm|x1, ...xm−1) + perc(xm).EN(x1) (5.10)

where CE(xm|x1, ..., xm−1) is the estimated conditional entropy for the pattern x1, ..., xm.

perc(xm) is the percentage of unique patterns of length m and EN(x1) is the entropy with

m fixed at one, i.e., only the first-order entropy.

5.5 Evaluation

In this section, we first analyze the similarity between benign outbound traffic, which jus-

tifies the assumption of our approach (Section 5.5.1). Then, we analyze the optimal values

of parameters which might affect the effectiveness of detection (Section 5.5.2). After that,

we study the effectiveness of our approach for detecting different CTCs (Section 5.5.3).

Finally, we evaluate the robustness of our metric to detect CTCs in the presence of noises

(Section 5.5.4).

5.5.1 Similarity Between VMs for Legitimate Traffic
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(a) sample size=300
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(b) sample size=1000
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(c) sample size=33000

Figure 5.8: The quantile-quantile (QQ) plot of the IPD of two legitimate flows

The objective of the first set of experiments is to justify the observation of close correla-

tion between benign VMs, with respect to outbound traffic. Given the same inbound traffic,
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we collect datasets of three different sizes of IPDs from BVM1 and BVM2. Figure 5.8 illus-

trates the quantile-quantile (QQ) plot of the IPDs of two legitimate outbound flows with

the size 300, 1000, and 33000. The highly linear nature of all plots strongly indicates that

the outbound flows from two benign VMs follow the same distribution.

Table 5.5.1 shows the test results from the datasets. For the WT-Test and the KS-Test

at the 5% significance level, the value h = 0 means that one should accept the null hypoth-

esis; i.e., that two flows come from the same distribution, while h = 1 means one should

reject the null hypothesis. The p-values of the WT-Test and the KS-Test show whether

two samples differ significantly, say rejecting the null hypothesis if the p-values are “small”.

When the sample size is small (size=100, 1000), both the WT-Test and the KS-Test accept

the null hypothesis. However, when the sample size is large (size=33000), both tests reject

the null hypothesis. This behavior results from the fact that IPDs contain more noise when

there is no long-term time synchronization mechanism applied between VMs. It also indi-

cates that the smaller detection window can detect CTCs more accurately than the larger

detection window. Our average WBD result shows that all legitimate flows have values

lower than 32.5, indicating that the legitimate flows are indeed very similar.

Table 5.3: The statistic values of IPDs of legitimate flows of different size
data size=300 data size=1, 000 data size=32, 000

Type of traffic Legit1 Legit2 Legit1 Legit2 Legit1 Legit2
Mean 0.148 0.148 0.150 0.150 0.5353 0.5357
Stdev 0.039 0.040 0.035 0.0332 0.0093 0.0091

WT-Test(h) 0 0 1
WT-Test(p) 0.9111 0.948 1.0e− 003
WT-Test(ci) [−0.0067, 0.0060] [−0.0031, 0.0029] [−0.5370− 0.2540]
KS-Test(h) 0 0 1
KS-Test(p) 0.9859 0.2816 6.5703e− 035
KS-Test(ci) 0.0368 0.0440 0.0492

WBD 32.52464 5.38012 13.0492
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5.5.2 The Choice of κ and ω

One important quantity that reflects the effectiveness of our wavelet-based approach is the

calculation of Kullback-Leibler divergence that measures the distributions of two discretized

wavelet vectors, where the choice of the size of alphabet A, κ, is critical. As we stated above

in Section 5.3.3, the tradeoff in choosing κ is that a small value of κ keeps less information

about the distribution of the data, thus leads to an increased number of false negatives. In

contrast, a larger value of κ retains more information about the distribution of the data

and increases the detection sensitivity, thereby leading to an increased number of false

positives. To determine the optimal value of κ, we run tests for α = 2 through 10 for

both legitimate and different versions of Jitterbug flows. All flows contain 1,000 packets.

Figure 5.9 illustrates the WBD value for each case. It is clear that when the value of κ

is 9 or 10, the WBD of legitimate and malicious cases can be easily differentiated. We

obtain a similar result in other CTCs detection. Therefore, we choose κ = 10 to retain the

ability of measuring the deviation of malicious traffic. The WBD values calculated in this

dissertation all use κ = 10, except where otherwise stated.
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Figure 5.9: WBD plots of different networking flows for different κ

The second important quantity is the detection window size ω, which is the number of

IPDs to be compared between networking flows. In Section 5.5.1, our result indicates that
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too large a value for ω might lead to false negatives because of noise and the absence of

synchronization. In addition, a large ω also causes longer processing time of wavelet de-

composition and slower response, which means that more information could be transmitted

before a CTC is detected. Therefore, it is always good to have a relatively small ω. How-

ever, choosing a too-small ω is also problematic, because it makes the IDS over-sensitive,

leading to an increased number of false positives. Figure 5.10 shows the WBD value for

window size ω = 100 through 1,000 for both legitimate and different versions of Jitterbug

flows. All flows contain 1,000 packets. It is clear that the WBD values of legitimate and

malicious flows can be easily differentiated when ω ≥ 800. We obtain similar results with

other CTCs. Therefore, the WBD values calculated in this dissertation all use ω = 1000,

except where otherwise stated. The issues of noises and time synchronization that could

possibility lead to false negatives are discussed in Section 5.5.4.
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Figure 5.10: WBD plots of different networking flows for different ω

5.5.3 Detection of CTCs

To evaluate the effectiveness, we evaluate our WBD metric with a wide range of CTCs in

Table 5.4, which cover both active CTC and passive CTCs. Although some CTCs have been
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Table 5.4: Covert Timing Channels Used in Evaluation
Name Attack Description Active/ Detectable?

Passive

IP Channel
(IPCTC) [22]

Transmitting 1-bit or 0-bit by choosing
send or not send a packet during inter-
val w

Passive Yes

Time-Replay Channel
(TRCTC) [22]

Transmitting 1-bit or 0-bit by choosing
historic legitimate IPDs as additional
input from different baskets

Active Yes

Botnet Traceback Wa-
termark(BTW) [92]

Injecting modified control text Passive Yes

JitterBug [104] Operates small delays in keystrokes to
affect the original IPDs

Passive Yes

studied by a model-based off-line approaches [38], ours is the first online CTC detection

approach that does not require any training data. Below, we describe the detection for each

of the CTCs in greater detail.

IPCTC Detection

Our first sets of experiments is designed to test the ability of our system to detect the

presence of IPCTC [21]. The IPCTC encodes a 1-bit by transmitting a packet during a

timing interval w, and encodes 0-bit by not transmitting a packet during w. The distribution

of IPCTC inter-packet delays is determined by the timing interval w and the number of

0-bits between two 1-bits. To avoid creating a pattern of inter-packet delays at multiples of

a single w, the encoding scheme can choose different values w, and rotate among them [22].

For example, in Figure 5.11, in order to transmit the byte, 1011 0010, the sender sends

four packets within the duration of 8w. The 1-bits were transmitted at the 1st, 3rd, 4th,

and 7th timing interval. The message is first encoded by the encoder, and then transmit

bit by bit to the receiver. The message is rebuilt by the decoder once it receives the bit

stream.

In our experiment, the CTC encoder reads the “/etc/passwd” file and encodes its binary

into IPCTC. For IPCTC, we use four versions of encoding schemes. Given the observation

that the average IPD of traffic is 0.147s , we design the first three schemes by choosing the
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Encoder Decoder 

 

Message Message
Figure 5.11: The encoding scheme of IPCTC

timing interval w of 0.1s (IPCTC V1), 0.12s (IPCTC V2), 0.14s (IPCTC V3). The fourth

scheme rotates among the above ws after each 100 packets (IPCTC V4) to avoid creating

a regular pattern of inter-packet delays. This design makes sure that both legitimate and

CTC flow have almost the same duration and send almost the same number of packets at

run-time.

Detection Analysis In the test, we run 100 times for a duration of 50 seconds. In

each flow, we collect around 400 packets. For the regularity test, we divide the sequence

of inter-packet delays into 20 segments. According to [38], IPCTC is the easiest CTC to

detect because its abnormality shown up in simple statistical tests. From Figure 5.12, it is

obvious that the empirical cumulative distribution (ECD) of legitimate flows and IPCTC

flows are quite different. In addition, the ECD of two legitimate flows, which come from

two benign VMs, are very close.

Table 5.5 shows more detailed results of all tested flows. Although all the tests can detect

all IPCTCs, our WBD measurement shows the better results: the WBD of legitimate flows

is very small (0.6295), which is in stark contrast to the WBDs of IPCTC flows, which all all

16,0000 or higher. Although MLAN and CCE can differentiate all IPCTCs from legitimate

flow, it is almost impossible to differentiate different versions of IPCTCs. For example, the

85



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IPD (in second)

T
he

 e
m

pi
ric

al
 c

um
ul

at
iv

e 
di

st
rib

ut
io

n

 

 

Normal1
Normal2
IPCTC_V1
IPCTC_V2
IPCTC_V3
IPCTC_V4

Figure 5.12: The empirical cumulative distribution of legitimate and IPCTC IPDs

CCE for different IPCTC are all close to 0.609.

Table 5.5: The test scores of IPCTC
Legit IPCTC V1 IPCTC V2 IPCTC V3 IPCTC V4

Average # of
IPDs

0.1472 0.156 0.187 0.218 0.188

Mean 0.1472 0.156 0.187 0.218 0.188
Stdev 0.041 0.089 0.106 0.124 0.111
Regularity 0.9723 0.9723 0.9723 0.9723 0.9723
T-Test 0 1 1 1 1
KS-Test 0 1 1 1 1
KS-Test(p
value)

0.96702 0 0 0 0

MLAN 0.0433 1.3616 1.5072 1.7034 1.353
CCE 1.1874 0.6055 0.6095 0.6099 0.7614
WBD 0.6295 15982.6817 37092.8784 76188.4579 50241.9389

Since IPCTC V1, IPCTC V2, and IPCTC V3 use the same frequency to send packets,

but different ws, the regularity of these three CTCs are identical. Therefore, it is impossible

to differentiate legitimate traffic from IPCTCs using the regularity test. Interestingly, when

the regularity tests combine with our WBD, it is easy to identify IPCTCs using different w

because different WBDs with the similar regularity indicate IPCTCs that are of the same
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type, differing only in the parameter w used in the encoding scheme.

TRCTC Detection

Our second set of experiments investigates how our metric detect TRCTC [22]. Compare to

IPCTC, TRCTC is a more advanced CTC that replays a set of legitimate inter-packet de-

lays to mimic the behavior of legitimate traffic. Figure 5.13 illustrates that TRCTC collects

a sample of legitimate traffic Bini as input and replays Bini to transmit information. Bi

is partitioned into two equal bins Bin0 and Bin1. TRCTC transmits a 0 bit by randomly

replaying an inter-packet delay from bin Bin0 and transmits a 1 bit by randomly replaying

an inter-packet delay from bin Bin1. Since Bini(i = 0and1) is made up of legitimate traffic,

the distribution of TRCTC traffic is approximately equal to the distribution of legitimate

traffic. The encoding scheme TRCTC is first encoded by encoder, and then transmit bit by

bit to the receiver. Then, the message is rebuilt by the decoder bit by bit, which is similar

to that of IPCTC.

Decoder 

Message 

 EncoderMessage
Figure 5.13: The encoding scheme of TRCTC

In our experiments, we designed four versions of TRCTCs (TRCTC V1, TRCTC V2,
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Figure 5.14: The distribution of legitimate flow and different TRCTC flows

TRCTC V3, TRCTC V4) by injecting one additional bogus packet into the flow after ev-

ery a packets (a = 5, 10, 15, 20). Of course, a larger value of a indicates a slow attack.

Figure 5.14 shows that the empirical cumulative distribution of legitimate IPDs and four

versions of TRCTC IPDs are almost identical due to the encoding mechanism of TRCTC.

Table 5.6: The test scores of TRCTC
Legit TRCTC V1 TRCTC V2 TRCTC V3 TRCTC V4

Mean 0.1472 0.1465 0.1471 0.1466 0.1467
Stdev 0.0406 0.0411 0.0409 0.0410 0.0411
Regularity
(group
size=20)

0.2452 0.2958 0.1991 0.3009 0.1955

T-Test 0 0 0 0 0
KS-Test 0 0 0 0 0
KS-Test(p
value)

0.9670 0.6451 0.9982 1 1

MLAN 0.0433 0.87 1.0074 0.8995 0.8561
CCE 1.1833 1.1589 1.1749 1.1813 1.1829
WBD 0.4669 859.5832 651.9172 455.5041 318.9133

Detection Analysis Table 5.6 shows the similar results that are similar to as those

with IPCTC. Since TRCTCs demonstrate the distribution as legitimate traffic, the WT-Test
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and the KS-Test fail to detect all TRCTCs, since they accept the null hypothesis that the

IPDs of TRCTC and the legitimate traffic follow the same distribution. Although MLAN

and CCE test can differentiate TRCTC from legitimate traffic, they are incapable of identi-

fying slow TRCTCT. For both tests, the aggressive (TRCTC V1) and the stealthy TRCTC

(TRCTC V4) yield similar results. e.g., the MLAN test for TRCTC V1 and TRCTC V4,

and the CCE test for TRCTC V3 and TRCTC V4. However, the testing results shown that

our WBD test can achieve detection and stealthy TRCTC identification at the same time.

BTW Detection

Back-track Watermark (BTW) is a passive CTC that specifically designed to track back

the communication between a bot and its bot-master [92]. Specifically, to encode an i -bit

sequence S = s0, ..., si−1, we use 2i randomly chosen packets pairs:〈Pri , Pei〉 (i = 0, ..., L),

such that ri ≤ ei, in which Pri is called a reference packet and Pei is called an encoding

packet. Let le and lr be the inter-packet delays of the covert bit encoding and reference

packets, respectively. A covert bit sk(0 ≤ k ≤ i − 1) was encoded into the packet pair

〈Pri , Pei〉. Specifically, we use the watermark bit encoding function defined in Equation 5.11

to adjust the length of the watermark encoding packet Pei. We use a pseudo-random number

generator (PRNG) and seed st to generate the random time tei at which Pei will be sent

out.

e(Lr, Le, L, sk) = le + [(0.5 + sk)L− (le − lr)]mod2L (5.11)

For the encoding function, given the PRNG and st and the approximate time tei at

which the watermark encoding packet Pei should arrive. Then we use the packets in the

time interval [tei− δ
2 ; tei + δ

2 ] to decode the CTC. Specifically, we use the sum of the lengths

of all the packets in the time interval [tei− δ
2 ; tei+ δ

2 ] as the length of the watermark encoding

packet and apply that to the watermark bit decoding Equation 5.13.
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d(Lr, Le, L) = b(le − lr)
L

cmod2 (5.12)

iff.

(−0.5 + 2i)L ≤ xe − xr ≤ (−0.5 + 2i)L (5.13)

We further extend the initial CTCs design scheme to generate slow attacks. In particular,

we use 2ai(a ≥ 1) packets to encode bit sequence S, where the parameter a can either be

a constant or a variable generated by a PRNG. Pri and Pei were chosen from 2a packets.

We call a the amplifier, which indicates how slow the information can be transmitted. The

larger the value of a, the slower an attack can proceed.
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Figure 5.15: The distribution of legitimate flow and different BTW flows

In our experiment, we construct four version of BTW by using different values of a. We

have generated 60 seconds of live traffic from all VMs. Figure 5.15 illustrates the empirical

cumulative distribution of two legitimate flows and four CTC flows. Except for the traffic

for BTW V1 and BTW V2, all of the rest of the traffic have quite similar distributions.

Compared to the legitimate traffic, the BTW traffic contains more IPDs, which are larger

than 0.2s.
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Table 5.7: The test scores of BTW
Legit BTW V1

(a=5)
BTW V2
(a=10)

BTW V3
(a=20)

BTW V4
(a=30)

Mean 0.1474 0.2207 0.1814 0.1627 0.1587
Stdev 0.0399 0.1775 0.1304 0.0918 0.0828
Regularity
(group
size=20)

0.2452 1.3504 0.7595 0.9206 0.9723

T-Test 0 1 1 1 0
KS-Test 0 1 0 0 0
KS-Test (p
value)

0.9670 0.0004 0.2808 0.9862 0.9999

MLAN 0.0433 1.8296 1.2081 1.4790 1.2394
CCE 1.1848 1.0440 1.0842 1.10789 1.1312
WBD 2.6757 1489.8973 828.7632 250.8589 124.9655

Detection Analysis Our experimental result demonstrates that the mean and stan-

dard deviation of legitimate and CTC IPDs are similar, particularly for larger values of a.

The WT-Test and KS-Test can detect aggressive BTW (BTW V1); however, they all fail to

detect BTW V4, which is the stealthiest CTC in this set of experiments. Figure 5.16 illus-

trates the testing scores of a legitimate flow and a BTW flow. It is obvious that the testing

score of MLAN generates a large percentage of false positive, because its testing scores of

legitimate and BTW flow are not distinguishable for more cases. Table 5.5.3 demonstrates

that although MLAN can reach 100% true positive rate, it generates 65% false positive rate.

Compared to all the above tests, the CCE and WBD tests yield good results: they can

not only detect all BTWs, but also reach 100% true positive with zero false positives. In

particular, the WBD gives better results than CCE because it can quantify the degree of

stealthiness for each BTW, in which the larger value of WBD indicates the more aggressive

CTC, while CCE cannot.
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Figure 5.16: The testing scores of a legitimate flow and a BTW V1 flow

Table 5.8: BTW detection rates
NT-Test KS-Test MLAN≥

0.65593
CCE≥
0.9953

WBD≥
0.0015

Legitimate
(False Positive)

0% 24% 65% 0% 0%

BTW V1 (True
Positive)

0% 87% 100% 100% 100%

JitterBug Detection

JitterBug is a passive CTC [104] that manipulates the existing networking traffic. It op-

erates by creating small delays in key-presses that affect the inter-packet delays of an ap-

plication. It transmits a 1 bit by increasing an IPD to a value modulo w milliseconds and
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transmits a 0 bit by increasing an IPD to a value modulo d bw
2 c milliseconds. For small

values of w, the distribution of JitterBug traffic is very similar to that of the original le-

gitimate traffic. However, because of the small value w, it can also cause the CTC to be

indistinguishable from the legitimate traffic containing noises.

The w = 100 milliseconds was chosen for our experiments. We use four versions of

JitterBug, each with a different value for the amplifier: JitterBug V1 (a=5), JitterBug V2

(a=10), JitterBug V3 (a=20), and JitterBug V4 (a=30). This design makes sure that both

legitimate and CTC flow have almost the same duration and send almost the same number

of packets at run-time.
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Figure 5.17: The distribution of legitimate flow and different JitterBug flows

To evaluate the detection and true/false positive rate, we collect 30,000×10 packets in

real-time. Table 5.9 shows the testing scores of all tests. The mean and standard devi-

ation of legitimate traffic (mea=0.1472, stdev=0.0406) and stealthy CTC traffic are very

similar, particularly for JitterBug V4 (mea=0.1497, stdev=0.0432). Both the WT-Test and

the KS-Test fail to detect JitterBugs, except the most aggressive one (JitterBug V1). For

the regularity test, although the smaller testing scores imply CTC for aggressive Jitter-

Bug V1 and JitterBug V2, it fails to detect more stealthy CTC, such as JitterBugs V3 and

JitterBugs V4. The CCE test cannot differentiate different versions of Jitterbugs because
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Table 5.9: The Test Scores of JitterBug
Legit JitterBug JitterBug JitterBug JitterBug

V1 V2 V3 V4

Mean 0.1472 0.1626 0.1549 0.1510 0.1497
Stdev 0.0406 0.0502 0.0482 0.0432 0.0432
Regularity
(group
size=20)

0.2452 0.2125 0.1848 0.2453 0.2969

T-Test 0 1 0 0 0
KS-Test 0 1 0 0 0
KS-Test(p
value)

1-e7.5 1-e7.5 1-e7.5 1-e7.5 1-e7.5

MLAN 0.0433 0.638 0.6957 0.8286 0.07097
CCE 1.1834 1.20119 1.2015 1.19333 1.19443
WBD 7.5561E-05 0.0218 0.0341 0.0349 0.0645

most of the test scores are between 1.18 and 1.20. The WBD can detect the most stealthy

JitterBug, JitterBug V4 because its testing score is 0.0645, which is much larger than that

of the legitimate traffic.

Table 5.10: Jitterbug detection rates
NT-Test KS-Test MLAN≥

0.60995
CCE≥
0.9953

WBD≥
0.00018

Legitimate
(False Positive)

0 31.4% 66% 0 5%

Jitterbug V1
(True Positive)

62.4% 70.1% 100% 100% 100%

For true/false positive test, Table 5.5.3 tabulates the true/false positive rates of the

tests. Although the NT-Test demonstrates a zero false positive rate, its true positive rate

is as low as 62.4%. Similarly, the KS-Test and the MLAN test have relative higher true

positive rates (70.1% for the KS-Test and 100% for the MLAN) than that of the NT-Test,

but the false positive rate of both are very high (31.4% for the KS-Test and 66% for the

MLAN) as well. Our approach can achieve low false positive rate and high true positive
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rate at the same time: when WBD ≥ 0.00018, the false positive is 5% , while true positive

is the 100%. Figure 5.18 demonstrates the testing scores of legitimate and Jitterbug V1. In

investigating the reason for the false positives, we found that most false positives happened

after 138,000 packets had been received. This is most likely due to the fact of the lack of

timing synchronization between the VMs in the long-term. To address this problem, one

possible solution is that the virtual machine monitor should periodically synchronize the

clocks in the involved VMs. We are currently investigating such techniques to reduce the

false positive rate.
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Figure 5.18: The testing scores of a legitimate flow and a Jitterbug V1 flow
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Table 5.11: The embedded noises used in our experiment
Legit Legit Legit Legit Legit

+Noise1 +Noise2 +Noise3 +Noise4

Noise Type Normal1 Normal2 Exponential Uniform
mean 0.1470 0.0147 0.0147 0.0025 0.0196
stdev 0.0405 0.0040 0.0406 0.0001 0.0001

WBD mean 0.1100 0.3796 1.0751 0.1861 0.7356
WBD stdev 0.0290 0.0522 0.1392 0.0237 0.0966

5.5.4 The Impact of Noise

One significant concerns about CTC detection in virtual machines is the impact of noise

due to the effect of time drifting. Although our previous experiments demonstrate the

effectiveness of our approach to detect CTCs with the presence of timing drifting, our

next set of experiments is designed to investigate the robustness of our approach against

timing drifting. In particular, we investigate the variances of WBD with the presence of

noise follows different distribution. We create noises that follow four different distributions.

Noise1 and Noise2 are both follow a normal distribution. They have the same mean but

different standard deviations. Noise3 and Nose4 follow an exponential distribution and a

uniform distribution, respectively. We use the same mechanism of CTC generator to embed

different noises into the legitimate traffic. We collect 1000 packets in each case. Table 5.11

illustrates the WBD scores do not fluctuate greatly due to the noise. Regardless of noise,

the upper bound of WBD values for all flows is 1.0751, which is very small. The legitimate

flow has the smallest WBD value. Noise2 has the highest WBD value because its standard

deviation (0.0406) is even larger than its mean (0.0147). The variances of WBD scores are

small in the presence of noise, which means our WBD is rebuts enough with the presence

of noise.
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5.6 Conclusion

In this chapter, we have investigated a wavelet-based metric to detect CTCs in a networked

virtual environment. We designed and implemented our CTC detection system on the

top of Observer, which has been discussed in detail in Chapter 4. We have applied our

wavelet-based approach to detect different types of CTCss with real-time experiments. Our

experimental results show that our metric is capable of detecting a variety of CTCs. We

have found that our approach is robust even in the presence of inaccurate time-keeping

mechanisms of VMs.
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Chapter 6: Conclusion

This dissertation intends to create a secured and scalable framework that supports efficient

mobile applications.

First, to overcome limitation and weakness of existing mobile applications, we have de-

signed and implemented a mobile application product, namely Earthchildren. Regardless

of specific software developing IDEs, our system addresses most important functionalities

of a mobile devices, such as geographic position tracking, real-time graphic display, embed-

ded database management, and wireless communication. Our mobile application has been

deployed successfully on commercial mobile phones.

Second, we have presented SQLProb, a novel online and adaptive prevention system

against SQLIAs. Unlike most existing protection approaches, our approach is fully modular

and does not require access to the source code of the web applications or the database.

In addition, our system is easily deployable to existing enterprise environments and can

protect web applications without modifying their source code. To measure the performance

and overhead of our technique, we have developed a prototype of SQLProb. Our experi-

ment results indicate that we can achieve high detection rate with reasonable performance

overhead. This prominent feature makes our system ideal for environments where software

or architecture changes is not an economically viable option.

Third, to detect unauthorized information leakage from malicious virtual machines, we

have presented Observer, a real-time intrusion detection system against covert channels.

Observer detects new covert channels in a networked virtual environment by running a

secure VM to mimic the suspect VM, such that the difference between two VMs can be

identified. Unlike most existing covert channels detection approaches, our approach does

not depend on modeling historic data, and can detect covert storage channels at run-time.

Our experimental results demonstrate that we can achieve low latency and high detection
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rate with reasonable overhead.

Fourth, to detect covert timing channel, which could exfiltrate sensitive information from

a networked virtual environment, we have proposed, designed, and implemented intrusion

detection system that detect covert timing channel in real-time. Our experimental results

show that our wavelet-based metric can detect most current covert timing channels, without

any legitimate networking traffic or model.

With the advances of mobile devices and cloud computing technology, we expect that

the emerging technologies will be integrated in our proposed framework, which make future

computing more easy to use and more secure.
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