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Abstract 
 

Attributional ruletrees are proposed as an extension of the current ruleset representation used by AQ 
type learning. The ruletrees split a multiclass classification problem into separate subproblems using 
a class splitting attribute. The resulting representation can be graphically represented as a tree whose 
root is assigned the class splitting attribute, branches stemming from the root are values (or sets of 
values) determining subsets of classes, and leaves are assigned ruleset families for classifying events 
to classes in these subsets. The values on the branches from the root thus define preconditions for 
applying ruleset families. Ruletrees are easy to interpret and understand, and can be generated by a 
relatively simple modification of the AQ algorithm presented below.. 
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1 INTRODUCTION 

In the classification problems with many classes (related concepts), an AQ-type learning program 
has to run independently for each class (concept). This makes the process inefficient if one seeks 
a decision structure to classify events to classes from a fixed set. In this case, decision tree may 
be a more effective representation, though it may difficult to interpret and understand (when the 
tree has many levels), and more complex (because trees are has lower expressive power than 
attributional rules).  

To address this problem, an attributional ruletree is introduced. An attributional ruletree is a 
tree-like structure, in which the root is assigned a class splitting attribute, which can be one of 
two types.  If it divides the family of decision classes into mutually disjoint sets of classes, then it 
is called p-type (partition generating); if it divides the family into overlapping decision classes, it 
is called o-type (overlap generating). The o-type attributes can be ranked based on some attribute 
quality criterion (e.g., Baim, 1982; Clark and Niblett, 1989). 

Given a family of training sets, each set characterizing one decision class (or concept), an 
attribute is  assumed to be of p-type, if it splits the family into subsets of training sets, such that 
events from these sets share values from disjoint subsets of the splitting attribute domain; 
otherwise, an attribute is of o-type. 

In the following, we will first concentrate on the method involving only a p-type splitting 
attribute. In Section 3, we will consider also the method involving an o-type splitting attribute. 
Once a splitting attribute is determined, the original problem is split into first-level subproblems.  
One can then apply the AQ-type attributional rule learning program to each subproblem, or seek 
a splitting attribute for each subproblem, and then create second-level subproblems. Going 
beyond two levels is not recommended, because the obtained rule structure would be difficult to 
understand and interpret by people, and thus would defeat the idea of natural induction, which is 
a central objective of AQ learning ((Michalski, 1972 ; Michalski et al. 1986, Wnek et al., 1995; 
Michalski, to appear). 

2 ILLUSTRATION OF A P-TYPE ATTRIBUTE 

To illustrate a p-type splitting attribute, assume that T1, T2, T3 ,..,Tm  are sets of training events 
for classes (concepts), C1, C2, C3,…,Cm, respectively, and an attribute, A, has the domain: 
{ a,b,c,d, e} . The attribute A is a p-type class splitting attribute, if it splits the training sets, for 
example, to three sets, defined by cases:   

Case 1:  If  [A = a v c]   =>   { C1, C4, C5}  

Case 2:  If  [A = b v d]  =>   { C2, C3, C6}  

Case 3:  If  [A = e]        =>    { C7, C8,.., Cm}  

In this example, sets of values of A in the three cases, { a,c} , { b,d} , and { e} , are mutually disjoint 
sets, and the corresponding subsets of classes, { C1,C4, C5} , { C2,C3, C6} ,{ C7, C8,.., Cm}  are 
also mutually disjoint.  If one chooses A as the root a tree, and creates three branches that area 
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assigned subsets { a,c} , { b,d}  and { e} , then the original classification problem with m classes, is 
now  transformed to three classification problems with 3,3, m-3, classification problems, 
respectively.  

3 ADVANTAGE OF USING RULETREES  

Let us try to roughly estimate the advantage of using a ruletree rather over rulesets as a function 
of the number of classes, m, and other relevant factors. We will start by considering the simple 
example above.  

Suppose that the number of classes m = 9, and the training sets for each class contain p=100 
examples. Thus, in each of three cases above, the combined training has 300 examples. Let’s 
assume that the complexity of an AQ-type learning process can be roughly approximated by a 
linear function of the number of the negative training events. Let com(N) denote the complexity 
of running AQ to learn a concept when the size of the negative training set is N. Since there are 3 
groups of classes, three classes in each group, and for each class the number of negative 
examples is 200, the complexity of learning concepts in one group is comp(600); and the total 
complexity of learning a ruletree is roughly comp(1800).  

If AQ runs in a regular mode (without a splitting attribute), the complexity of learning each 
concept is approximately comp(800), and for all 9 concepts, comp(7200), that is, four times 
larger than in the case of learning a ruletree.  If the complexity of determining a splitting attribute 
is less than (comp(7200) – comp(1800)), using an splitting attribute leads a reduction of 
computational complexity.  There will be an additional reduction of complexity due to learning 
with training examples in which the number of attributes is reduced by 1 (the splitting attribute). 

Let us now consider a more general case.  If there are m classes, and the training set for each 
class has p examples, the complexity of running AQ for m classes is approximately:  

 comp(m *  (m -1) *  p) (1) 

If a splitting attribute partitions m classes to r groups, then there are m/r classes in each group, 
and each group has  p *  m/r examples. The number of negative examples in learning rules for 
each class is ((m/r) -1)*  p, and the complexity of learning concepts in each group is then m/r *  
comp((m/r  -1) *  p). The total complexity of learning rules for r groups is then: 

 comp(m *  ((m/r) -1) *  p) +  m *  (comp-s /comp-a) (2) 

where m *  comp-s stands for the complexity of determining a splitting attribute in the case of  m 
classes, and comp-a  estimates a reduction of AQ complexity in learning rules for one class  due 
to the reduction of the number of attributes in examples by 1. The advantage due to introducing a 
splitting attribute, AS, can then be estimated as: 

 AS  =  comp(m *  (m -1) *  p)/(comp(m *  ((m/r) -1) *  p) + m *  (comp-s/comp-a) (3) 

AS estimates how many times the complexity of running AQ is reduced by introducing a 
splitting attribute when the number of classes is m.  

If m is large, and the expression for AS can be approximated by:                                

 r   *    comp(m2  *   p) /( m *  (comp-s / comp-a) (4) 
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which can be simplified further to:                                                                              

 r  *   comp(m  *   p) *   f (5) 

where f = comp-a / comp-s.                                   

Expression (5) states that the advantage of using a splitting attribute grows with r,  m , p and f.  
The f factor represents the ratio of the decrease of AQ complexity due to the reduction of 
attributes in examples by 1 to the complexity of searching for a splitting attribute per class. Thus, 
the more classes and more examples are involved in a learning problem, the more advantageous 
is to learn a rule-tree than just rules, and to use a splitting attribute with a large domain. 

Summarizing, the advantage of a ruletree when the number of classes is large is due to the fact 
that in each AQ run, only a small number of classes are used as contrasting classes, and the 
number of negative examples is correspondingly reduced.  There is also an additional advantage 
in using fewer attributes in examples.  

The disadvantage is the cost of determining a class splitting attribute.  When the number of 
classed is sufficiently large, the advantages of building a ruletree should easily overcome this 
cost. Experimental studies are needed to determine conditions under which learning ruletrees is 
advantageous, and to which degree. 

Given a family of training sets, the set of original attributes defining training events may not 
include a p-type splitting attribute. It may be possible, however, to construct a function of a 
subset of these attributes (a derived attribute) that constitutes a p-type splitting attribute. This 
will, of course, add to the overhead of searching for a class splitting attribute. 

An alternative way is to seek an o-type attribute that minimizes the intersection of groups of 
classes. The above ideas have been incorporated into the algorithm AQrt described next.  

4 ALGORITHM AQRT  

Let us first consider the case of using a p-type splitting attribute. Let us assume that are m 
training example sets:  E1, E2, E3,…,Em, defined by values n attributes of specified type and 
domains. Given is also a rule selection criterion, LEF that defines a ranking of learned rules.  For 
the second part of the algorithm, assume that given is also a method for constructing new 
attributes (knowledge-driven or data-driven).    

Step 1.  Search for a p-type class splitting attribute among nominal, and then linear attributes in 
the original attribute set specified in the training data. In the case of linear attributes, seek range 
splitting points that define a class partitioning.  

This step may end after finding the first class splitting attribute, or can continue to find a set of 
alternative attributes. In the latter case, the algorithm can build a ruletree for each alternative 
attribute, and then select the best ruletree according to some criterion (e.g., the simplest ruletree, 
and/or the ruletree with the highest performance accuracy on the testing set).    

If the above search does not produce a class splitting attribute, apply an attribute construction 
method to determine a derived class splitting attribute.  If a class splitting attribute has been 
found, proceed to Step 2. 
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If this process continues without success, and a termination condition is reached, e.g., the process 
exceeds the allocated computational resources, terminate. In this case, AQ is run its normal 
mode, that is, it is applied to all the classes, one by one.   

Step 2.  Assign the class splitting attribute to the root of the ruletree, and assign subsets of its 
values that split the classes to branches stemming from the root.  If the class splitting attribute 
was selected from the original set of attributes, remove it from the training data. If the class 
splitting attribute was constructed, the algorithm may continue in one of two ways controlled by 
parameter exlude that is set by the user. 

 If exlude = yes, all attributes that are arguments of the function defining the constructed attribute 
are removed from the original attribute set.  If exlude = no, the original attribute set remains 
without change. The exclude parameter is recommended to be set to yes, if the set of original 
attributes is relatively large and the allocated time for the algorithm execution is short; otherwise, 
to no.   

Step 3. Run AQ separately for classes defined in each group of classes in the partition (in the 
example above, for cases 1,2,3). 

The result of learning is a set of families of rulesets, each family describing classes in the group 
defined by the class splitting attribute. This procedure is similar to the way AQ handles 
structured output attributes (Kaufman and Michalski, 1996). 

 Figure 1.  A ruletree with the class splitting attribute A. 

To illustrate the algorithm, Figure 1 presents an attributional ruletree that would be generated for 
the example presented above. In this figure, the original multiclass problem has been split to 
subproblems, each involving learning a ruleset family for a smaller number of classes. As 
discussed in Section 3, running AQ for these subproblems represents a simpler problem than 
running AQ for all classes. Ruleset families, RSFi, i=1,2,3, inside of rectangular blocks may be 

RSF3:  
Ruleset family for 
classes C7,C8,..,Cm 
 

Case 1:  If  [A = a v c]  =>   {C1,C4, C5} 
Case 2: If  [A = b v d]  =>   {C2,C3, C6} 
Case 3: If  [A = e]        =>   {C7, C8,.., Cm} 

a, c 
 

 b d 
 

e 

A 

RSF1: 
Ruleset family for 
classes C1,C4, C5 

RSF2: 
Ruleset family for 
classes C2,C3,C6 
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listed as attributional rules, or presented graphically as concept association graphs (Michalski and 
Kaufman, 2000; Kaufman and Michalski, 2000).  

In the figure, RSFi, i=1,2,3 are ruleset families in which each rule is in the form 

 Class = j]   <=   Premise-j (6) 

where Premise-j  is a product of attributional conditions.   

The interpretation of a ruletree is very simple. Suppose there is a rule 

 Class = C4]  <=  Premise-C4 (7) 

in the block RSF1, then it would be interpreted as: 

“ If A is a or c in the event being classified, then assign the event to class C4, if 
Premise-C4 holds.”    

If there is a censored rule in the RSFi (a rule with an exception clause), that is, for example, a 
rule: 

 [Class = C4]  <=  Premise-C4 \_  Exception-C4 (8) 

“ If A is a or c in the event being classified, then assign the event to class 
C4, if Premise-C holds, except when Exception-C4 holds.”    

5 USING O-TYPE SPLITTING ATTRIBUTE 

In practical problems a p-type splitting attribute may not exist among original attributes, and 
constructing a derived attribute of this type may be computationally costly. In such situations, 
one may seek an o-type splitting attribute that maximizes some criterion of the quality of split. 
One can use for this purpose any of the existing methods for determining attribute quality, for 
example, gain ratio, gini index, promise (Baim, 1982), etc.  Alternatively, one may define a 
criterion of class group disjointness, which expresses the degree to which an o-type attribute 
approximates a p-type attribute.  

After determining the attribute that scores the highest on the chosen split quality measure, the 
attribute is assigned to the root, and the algorithm proceeds as in the case with p-type splitting 
attribute. The procedure is identical to determining the root and the first level of an ordinary 
decision tree. The difference from the case with a p-type splitting attribute is that a ruletree 
created with o-type splitting attribute will have some decision classes included in more than one 
group of classes defined the splitting attribute.  

An advantage of using o-type splitting attributes is that every attribute could potentially be used 
as a class splitting attribute. A disadvantage is that the classes are not partitioned to disjoined 
sets, and the interpretation of such rule-trees is more complex.  

6 CONCLUSION 

The idea of attributional rule-trees represents a slight by potentially important modification of the 
current representation of ruleset families used for representing a decision structure in AQ type of 
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learning.   The class splitting attribute can be viewed as an attribute that defines preconditions for 
applying ruleset families.  

To implement such representation, a relatively simple modification of the current AQ algorithm 
is required. The main addition to AQ is the process of determining a class splitting attribute. This 
process can be computationally implemented in different ways, but is conceptually 
straightforward, if a p-type splitting attribute exists among original attributes, or one uses an o-
type splitting attribute. If a derived class splitting attribute is to be constructed, the modification 
of the AQ algorithm is more involved, but still relatively simple.  An initial implementation of 
the AQrt algorithm may not include this step. 
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