PARTIAL MEMORY LEARNING SYSTEM AQ-PM:
THE METHOD AND USER'S GUIDE

by

M. Maloof
R. §. Michalski

Reports of the Machine Learning and Inference Laboratory, MLI 96-8, George Mason
University, Fairfax, VA, 1996.

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

PARTIAIL. MEMORY
LEARNING SYSTEM AQ-PM:
The Method and User’s Guide

Marcus A. Maloof and Ryszard S. Michalski
MLI 96-?.2.%

November 1996

PARTIAL MEMORY
LEARNING SYSTEM AQ-PM:

The Method and User’s Guide

Abstract

This report describes the AQ-PM learning system. AQ-PM is an inductive learning system that
learns from examples distributed over time. It is capable of learning static as well as changing
concepts. AQ-PM takes a partial memory learning approach in which representative examples are
computed from induced concepts and retained for future learning. Representative examples are
those training examples that maximally expand characteristic concept descriptions in the
representation space. The AQ-PM system is an extension to the AQ135¢ inductive learning system.
In this report, we discuss the partial memory learning method and the AQ-PM learning system.
Examples are given illustrating how to set-up and run AQ-PM on a learning problem.

Key words: Concept learning, learning from examples, learning concepts over time, partial
memory models, concept change

Acknowledgments

The authors thank Ken Kaufman, Eric Bloedorn, and Janusz Wnek for many helpful discussions
about the internals of AQ15¢. Thanks to Qi Zhang and Seock Won Lee for reviewing drafts of this
report.

This research was conducted in the Machine Learning and Inference Laboratory at George
Mason University. The Laboratory’s research is supported in part by the Advanced Research
Projects Agency under Grant No. N00014-91-J-1854, administered by the Office of Naval
Research, and Grant No. F49620-92-J-0549, administered by the Air Force Office of Scientific
Research, in part by the Office of Naval Research under Grant No. N00014-91-J-1351, and in part
by the National Science Foundation under Grants No. IRI-9020266 and DMI-92496192.

1 Introduction

AQ-PM is an inductive learning system that learns from examples distributed over time. It is
capable of learntng static as well as changing concepts. AQ-PM takes a partial memory learning
approach in which representative examples are computed from induced concepts and retained for
future learning. Representative examples are those training examples that maximally expand
characteristic concept descriptions in the representation space. The AQ-PM system is an extension
to the AQ15¢ inductive learning system. In this report, we discuss the partial memory learning
method and the AQ-PM learning system. Examples are given illustrating how to set-up and run
AQ-PM on a learning problem. This report is intended to be a companion document to the AQ15¢
method and user’s guide (Wnek et al. 1995) and assumes that the reader 1s familiar with the
concepts therein.

2 The AQ-PM Learning Method

This section discusses the AQ-PM learning method at a high level. For more details, see (Maloof
1996). Referring to Algorithm 1, the basic idea is to maintain a set of representative examples over
time, and use these representative examples and past hypotheses for inductive learning, which can
be accomplished in either a batch or incremental learning mode. AQ-PM uses a batch learning
algorithm to leamn from past information. Initially, the system starts with no concepts (step 1) and
no representative examples (step 2). The system may possess background knowledge. As an
optimization, the system does not learn from new training examples that are already covered by the
current set of hypotheses, so a set of misclassified examples is computed (Step 4).

For the first time step, since the system has no concepts or representative examples, all new
training examples will be missed and the first training set is equivalent to the first data set.
Concepts are learned (Step 6) from the training examples. In Step 7, the induced concepts are used
to deductively select the representative examples from the training set. The characteristic concept
description is used to compute these examples.

In subsequent learning steps, the set of representative examples is unioned with any
misclassified training examples (Step 5) and used with the current set of concepts to learn a new set
of concepts (Step 6). The new set of representative examples is then computed (Step 7). This
process repeats indefinitely.

Algorithm 1: Partial Memory Incremental Learning
Given data sets Datay, forz=1..
. Concepts; =@
. Representatives, = @
fort=11t0=do
Missed, = FindMissedExamples(Concepts, ;, Data,)
TrainingSet,= Representatives,, v Missed,
Concepts, = Learn{TrainingSet,, Concepts,,)
Representatives,= FindRepresentativeExamples(Concepts,, TrainingSet,)
end

00 ~F O ln b D D) e

Representative examples are those examples that maximally expand a concept in the
representation space. In other words, they are the training examples that lie on the corners,
borders, or surfaces of the hyper-rectangle expressed by the characteristic concept description
covering a set of training examples. Algorithm 2 computes the set of representative examples that
lie on the borders of a set of characteristic concept descriptions.

Algorithm 2: FindRepresentatives
Given a set of characteristic concept descriptions Concepts; and a set of training examples
Train, from which Concepts, were induced.
Representatives, = &
removeRanges(Concepts;)
for each rule e Concepts; do
for each selector € rule do
newRule = extendRange(selector, rule)
Representatives, = Representatives, v strictMatch(newRule, Train,)
end
. end

QO ~I N b b =

As an illustration of the FindRepresentatives algorithm, Figure 1 shows a visualization of
two classes of the Iris data set (Fisher 1936) taken from the University of California, Irvine,
Machine Leamning Archive (Merz and Murphy 1996).

0 1 2 pw
01234]1012 34§01 2 3 4 sw
0
1
2
3
024
5
6
7
0
1
2 L
3 i
14 H
6
7

p! sl | setosa example [B] versicolor example

Figure 1: Visualization of the setosa and versicolor training examples.
FEach example of an iris is expressed using four attributes: petal length (pl), petal width (pw), sepal

length (sl), and sepal width (sw). The characteristic concept descriptions induced from the training
examples in Figure 1 are:

setosa <:: (8l = 0..3] & [sw=0v 2..4] &
(Pl = 0] & [{pw = 0]
versicolor <:: {sl = 1..6] & [pl =1] & [pw = 1..2]

These concepts are visualized in Figure 2. Note that the training examples are overlaid on the
concept descriptions. After the FindRepresentatives algorithm is applied to the concept
descriptions and training examples in Figure 2, those training examples that lie on the borders of
the concept descriptions are kept as representative examples. Figure 3 shows the corresponding
representative examples computed for the two classes. Note that rules are matched to training
examples in n-dimensional space, which is why the following example is judged representative:

3] & [sw
1] & [pw

0] &
2]

versicolor <:: [sl
[Pl

tHol

Although the characteristic concept description is used for judging representative examples, other
types of descriptions (e.g., discriminant descriptions) can be used for reasoning.

0 1 2 pw
01234101 2349012 3 4 sw
0
1
2
3
03
5
6
7
0
1 g
2 L
3
L
5
6 W =]
7

pl sl . setosa example [BF] versicolor example

o setosa concept |4 versicolor concept

Figure 2: Visualization of the setosa and versicolor concept
descriptions with overlain training examples.

4 1 2 pPW
01234101 2 3 4J01 2 3 4 sw

NN AW RWN =0

Pl sl |l setosa example [versicolor example

Figure 3: Visualization of the setosa and versicolor representative examples.

In addition to mechanisms for finding representative examples, the AQ-PM learning system also
has mechanisms for managing, aging, and forgetting representative examples. Inductive support
mechanisms keep track of how many times an example has been seen. Rule selection mechanisms
allow the user to favor rules that cover frequently seen examples or that cover the most old
examples. The parameters for accessing these mechanisms are discussed in Section 3. For a
detailed description of these functions, see (Maloof 1996).

3 The User’s Guide

AQ-PM is an extension of the AQ15¢ inductive learning system (Wnek et al. 1995). This section
supplements the AQ15c User’s Guide. The command line syntax for the AQ-PM system 1is:

agqeom.run [-v] < <STDIN> > <STDOUT:

The executable takes a file from standard input, learns, and writes the results to standard ocutput.
The optional verbose switch (-v) shows intermediate results and aids in debugging and in
understanding how the program works. Use this switch with caution since the amount of
information can be great.

AQ-PM takes as input, two general file structures. For the first learning step, when there
are no representative examples and no concepts, the input file format 1s the following:

<parameters table>
[<criterion tables>]
<variables table>
<events tables>
[<tevents tables>]

Afier the first learning run, the input files for subsequent learning runs should have the following
format: |

<parameters table>
[<criterion tables>]
<variables table>
<inhypos table>
<representatives table>
- <events tables>
[<tevents tables>)

Those tables appearing between two square brackets are optional. The general format of AQ input
files and these tables (except for the representatives table) is discussed in the AQ15¢c User’s Guide
(Wnek et al. 1995). The variations that are specific to AQ-PM are discussed in the following

sections.
3.1 The parameters Table

In addition to the parameters available in AQI5c¢, several additional parameters were added to select
between learning modes and the partial memory learning mechanisms. Although the parameters
table is optional in AQ15c, it is required in AQ-PM. That is, in default mode, AQ-PM is
functionally equivalent to AQ15c. The following additional parameters are available in AQ-PM.
Note that words appearing in parenthesis are the parameter’s default value.

run
In AQ15c, the run parameter is used to conduct multiple learning runs using different parameter

settings. For this release of AQ-PM it is not possible to conduct multiple runs using different
parameter settings.

learning (batch)
The learning parameter is optional and controls what type of learning will be used. The legal

values are:

batch invokes batch learning. In this mode, AQ-PM is functionally equivalent to AQ15c.
It is the default learning mode.
partial invokes partial memory learning, as described above.

ambig (neg)

In addition to the AQ15¢c ambig parameters, the recent ambig parameter was implemented in AQ-
PM. This parameter handles ambiguous examples, which are those examples that have the same
attribute values, but different class labels. The recent ambig parameter selects the newest or most
recent training or representative example for learning. The older example is ignored.

echo (pvne)
The echo parameter specifies which tables are to be printed. Using the ‘m’ value prints the missed

examples table which is a list of the new training examples not covered by the current set of
hypotheses.

test (m)
In AQ15c, users may specify multiple flexible matching schemes for testing. For this release, AQ-

PM allows only one flexible matching parameter per run.

intersect (borders)

The intersect parameter affects how representative examples are computed. New training examples
are flexibly matched against a characteristic concept description. Conceptually, this characteristic
concept description is an n-dimensional hyper-rectangle, where n is the number of attributes used

to form the representation space.

corners Returns the training examples that lie on the corners of the hyper-rectangle formed
by the charactenistic concept description.
borders Returns the training examples that lie on the edges of the hyper-rectangle formed by

the characteristic concept description {(Algorithm 2).

update (reeval)
The update parameter determines how new representative examples are handled with respect to the

old representative examples.

reeval Old representative examples are re-evaluated with the new training examples to
form a new set of representative examples (Algorithm 1).
accum New training examples are evaluated to form a new set of training examples which

are unioned with the old set of representative examples.

useinhypos (yes)

The useinhypos parameter determines whether inhypos are used in the learning process.

yes Learning is conducted using inhypos represented as training examples,
representative examples, and any new training examples that are currently
misclassified by the current set of inhypos. The use of training examples derived
from inhypos is a rule optimization procedure (Wnek et al. 1996).

no Learning is conducted using representative examples and any new traiming
examples that are currently misclassified by the current set of inhypos.

aging (off)

The aging parameter determines how representative examples are weighted based on their age.

This parameter must be used in conjunction with the criterion table.

off The ages of representative examples are weighted uniformly or linearly in an
increasing or decreasing manner with respect to the past, depending on the criterion
table settings.

eXp The ages of representative examples are weighted exponentially in an increasing or
decreasing manner with respect to the past, depending on the criterion table
settings. :

log The ages of representative examples are weighted logarithmically in an increasing or
decreasing manner with respect to the past, depending on the criterion table

settings.

forget (off)

The forget parameter determines how representative examples are forgotten.

off Forgetting is not active. All representative examples are kept.

t<re> Engages a time-based forgetting techniques in which representative examples older
than n time steps are forgotten.

repfactor (1)
The repfactor parameter allows the user to additively weight representative examples. This setting
must be used in conjunction with the maxrep and minrep criterion table entries.

time (0)

The time parameter is a required parameter that indicates the time and ranges from 0 to 150. The
upper limit is arbitrary and can be extended to the maximum allowable integer on a given
computing system. Usually this parameter is not set directly by the user. After the initial learning
step, the time parameter is output by the system and initialized at 0. Scripts exist for stripping the
parameters table from the output file so it can be given without modification to the next learning
step.

Example:
parameters
learning mode ambig trim wts maxstar echo criteria test
partial e recent gen cpx 10 pv default m
parameters
un learning mode useinhypos intersect update time test

1 partial ic ves borders accum 10 q

3.2 The criterion Table

The criteria table implements a lexicographic evaluation function (LEF) for selecting the most
preferred rule. See the AQ15¢ User’s manual for more information about criterion tables. If a
criterion table is to be used in AQ-PM, it should be included in the <filestem>.domain file. See
Section 5.

Six new rule selection criteria have been implemented in this release of AQ-PM. The first
two criteria relate to the number of times a representative has been seen, while the second two
relate to the age of the representative examples. The final two relate to the coverage of

representative examples
maxseen maximize the number of frequently seen examples covered by a rule.
minseen minimize the number of frequently seen examples covered by a rule.

maxold maximize the number of old examples covered by a rule.

minold minimize the number of old examples covered by a rule.
maxrep maximize the number of representative examples covered by a rule.
minrep minimize the number of representative examples covered by a rule.

The maxold and minold criterion table settings can be used in conjunction with the aging parameter
to weight the ages of representative examples to larger or smaller extents. For example, to prefer
rules that cover older examples whose ages grow exponentially as time proceeds into the past, use
the exp aging parameter and the maxold criterion table. To treat all representative examples the
same, regardless of their age, use the off aging parameter and the default criterion table. Finally, to
prefer rules that cover newer examples whose ages diminish linearly as time proceeds into the past,
set the aging parameter to off and use the minold criterion.

The maxrep and minrep settings are used in conjunction with the repfactor parameter. The
repfactor parameter is used to weight representative examples and affects how the cost of the
coverage of the representatives examples is computed. The repfactor indicates how much each
representative example counts with respect to new training examples. For example, if the repfactor
is 2, then one representative example will count twice as much as one training example.

Example:

parameters

learning mode ambig trim wts maxstar echo criteria test
partial i¢ recent gen CpX 10 9374 temporal m

temporal-criteria
criterion tolerance
minold 0.0
maxsesan 0.0

3.3 The missed Table

The missed table is only an output table. If the ‘m’ value is included as one of the echo
parameters, then this table is produced. It is the list of new training examples that are misclassified
by the current set of hypotheses.

Example:
cap-missed
max bavg blength becomp bel be2 rlength rwidth rarea rcomp rcl rc2

4 1 0 P 8 4 0 1 0 2 7 5
0 0 3 1 3 1 2 2 8 4 1 ¢
1 6 2 1 4 1 2 2 > 9 K

3.4 The representative Table

The representative table is both an input and output table, The representative table is generated by
AQ-PM when partial memory learning is active. The table can also be present in the input file to
provide the system with a set of representative examples. It follows the same format as the events
and tevents table, but has a different table name, as shown below.

Example:

cap-representative
bmax bavg blength bocomp bel be2 rlength rwidth rarea rcomp rcl rea

2 2 0 2 8 8 0 1 1 3 7 5
i1 1 2 gl 4 1 1 2 5 4] 3 2
0 0 3 il a 0 2 2 8 4 0 0

4 Supporting Scripts

In AQ15 (Hong et al. 1986), the Pascal version, incremental learning is completely internalized
within the executable. Unfortunately, this internalization of the functions that distribute training
data over time, make it difficult run certain experimental designs (such as the STAGGER concept
experiments), test against different data sets during a single run, and run other incremental learning
methods on exactly the same training data for a given time step. For these and other reasons, the
data manipulation functions were not hard coded into the AQ-PM system. Therefore, users must
write scripts (Perl, ksh, csh, etc.) to partition data and to assemble AQ-PM input files in the
manner they wish. Several scripts are provided with the AQ-PM release to provide a baseline
capability.

The high-level Perl script that is responsible for running the AQ-PM system repeatedly over
time is run.agpm, shown in Appendix A. This script calls the AQ-PM executable, agpm.run,
various Unix commands, and three other Perl scripts described below. run.agpm takes two
arguments: the file stem of the input files and the number of data partitions. The data partitions
should be of the form <filestem>0.data, <filestem>2.data,..., <filestem>n-1.data, where n is the
number of partitions. The run.agpm script must be executed in the directory containing the various
input files.

The run.agpm script expects to find a lparam, .domain, .test, and various .data files. For
example, if the filestem were ‘caps’, then the directory should contain the following files:
caps.Iparam, caps.domain, caps.test, and caps0Q.data, capsl.data,..., caps9.data. The caps.lparam
file contains the learning parameters for the first learning run. The caps.domain file contains the
variables table for all learning runs. The caps.test file typically contains all available tramning data
in a series of tevent tables, although other testing options are possible. Finally, the various .data
files contains event tables for each class and a set of training events for the class. See the AQ15¢c
user’s guide (Wnek et al. 1995) for more information about preparing AQ15c¢ data files.

Assuming a directory contained the above files, to start one learning run with AQ-PM, the
user would type at the Unix prompt: -

% run.agpm caps 10

This would start the run.aqpm script, which assemble input files, call AQ-PM, disassemble output
files, and repeat until all the data partitions have been processed.

The xparam Perl script (Appendix B) takes an AQ-PM file as standard input and writes the
parameters table to standard output. Note that this script assumes that the variables table
immediately follows the parameter table. Therefore, the ‘v’ option must be set for the echo
parameter. Otherwise, the user can modify the xparam script. The parameters that are stripped
from an output file are used as the input learning parameters for the following run. The run.agpm
script saves the parameters in a file named <filestem>i.lparam, where <filestem> is the first
parameter to the script and i is the current partition number. The learning parameters for the Sth
run of the caps experiment would be saved to the file named caps5.lparam. |

The xhypos Perl script (Appendix C) takes an AQ-PM file as standard input and writes the
outhypos as inhypos, stripping off the t- and u-weights. These hypos are used as inhypos to the
next learning step. The run.agpm script saves the inhypos in the file named <filestem>i.hypos.
For the 5th iteration of the caps experiment, the outhypos would be renamed and saved to the file
caps5.hypos. Saving the hypos in this manner allows for the user t0 accumulate statistics on the
complexity of the rules by writing scripts to count selectors or internal disjuncts.

The xreps Perl script (Appendix D) takes an AQ-PM file as standard input and writes the
representative examples tables to standard output. The output representative examples from one
learning run are used as the input representative examples in the subsequent run. Again, saving the
file in this manner, allows the user to compute statistics on how many representative examples are
being stored at each partiton.

S Examples of AQ-PM Learning Runs

5.1 A single run at the beginning of time

When AQ-PM receives a file that only has event and tevent tables (i.e., no representative examples
and no inhypos), it is the beginning of time, so to speak. Most learning runs will begin in this
manner, although this is not a requirement. The simplest input file to AQ-PM must consist of a
parameters table, a variables table, and a set of event tables. Throughout this section we will use
the blasting caps data set as an example, because these data files are included with the AQ-PM
release. The following is a very simple input file for the caps problem. Assume it is named

capstest.aqin.

parameters

learning

partial

variahles

name levels type cost

kmax 5 1in Q)

bervg 4 1in 1.0

blegth 6 lin 1.8

boomp 4 lin 1.0

ksl 10 lin 1.0

bz 12 lin 1.0

rlegth 4 1lin 1.0

rwidch 5 lin 1.0

rarea 11 lin 1.0

jqee | 4 6 lin 1.0

rcl 10 lin 1.0

rcl 7 lin 1.0

reigma 14 lin 1.0

rd 5 1in 1.0

rdl 7 lin 1.0

Cap-aevents

bex bavg blength boomp bel bo2 rlergth rwidth rarea reap rel rel rsigma rd xdl
0 0 3 1 { 0 2 2 8 0 g # T 1 1
1 1 2 1 4 1 1 2 5 -0 3 2 2 2 4
2 2 0 2 B 8 D 1 1 3 7 5 3 1 1

noncap-events

Imax bavg blength boomp bel bo2 rleygth rwidth rarea reomp rel rc2 rsigma rd rdl
i 2 0 2 8 3 0 2 0 2 8 4 2 & 0
2 2 1 1 8 5 1 3 g 1 3 3 2 2 5
1 Q 1 1 1 0 0 2 2 2 1 1 o 1 B
1 1 1 1 5 1 0 2 Q 4 8 3 0 0 0

Now, we can run AQ-PM by typing:
% agpm.run < captest.agin >! captest.agout

When the command completes execution, the file captest.aqout looks like the following:

parameters

rn learning mode ambig trim wte maxstar eche criteria verbose useinhypos intersect update time
1 partial ic ey mini copx 10 pv default 1 yves borders recval 0
variables

type levels oost rame

1 lin 5 1.00 Imex.lkmex

2 1lin 4 1.00 bavg.bavg

3 lin 6 1.00 blegth.blength

4 lin 4 1.00 bcoomp.boomp

£ lin 10 1.00 kcl.kck
& lin 12 1.00 be2.kcd
7 1lin 4 1.00 rlength.riength
8 1lin 5 1.00 rwidth.rwidch
9 lin 11 1.00 rarea.rarea
10 lin 6§ 1.00 roomp.roomp
11 lin 10 1.00 rcl.rxcl
12z lin 7 200 2 reZiae2
13 lin 14 1.00 rsigma.rsigma
14 1lin 5 1.00 rd.xd
15 1lin 7 1.00 rdl.rxdl
cap-Cuthyro
#oopx
1 [rsigma=2..3,7] [rdl=1,4] (L:6, u:6)

noncap-cuthyro
o

1 [blaygth=0..1] {rsigna=0,2]

cap-representative
kmexx bavg blength
2 2 0
1 1 2
0 0 3

noncap-representative

tmax bevg blength
1 . 1
1 0 1
2 2 1
1 2 0

Learning system time:
Learnirg user time:

{t:8, u:8)

boam kol be2 rlength
2 8 g8 0
1 4 1 1
i 0 1 2
beap bel be2 rlength
1 5 1 0
1 e 0 0
1 g 5 1
2 g 3 0

0.233 secadds

1.00 secads

rwidth

rwidth

SR i B]

rarea
1
5
B

e eilie]
E
Q

0

Lo R FURE U o

rcl

o W O

re2

hb-unEJ

rsigma

rsigma

ol I N0 s e

I--‘MI—‘BJ
H»b-:»—*ié:

BPwR oy

10

CJU‘ILAJOIé

If a subsequent learning run is needed, the parameters, outhypos, and representative examples
should be stripped from the output file, modified, and used in the input for the next learning step.

5.2

A single run at some point in time

Once we have our first set of representative examples and input hypos, then the anatomy of an AQ-
PM input becomes more complicated. We will need the parameters, variables, and events tables,
but we also need the representative and inhypo tables. Here is an example of a capl.aqin file:

PAaraneters

nm learming mode ambig trim wts maxstar eche criteria verlose ueeintyros intersect update time

1 partial ic epty gen copx 10 oV
variables

rame levels type cost
ke 5 lin 1.0
benvg 4 lin 1.0
blength 6 lin 1.0
boomp 4 lin 1.0
I i 10 1in 1.0
b 12 lin 1.0
rlegth 4 lin 1.0
rwidth - b 1in 1.0
rarea 11 1lin 1.0

default

yes

borders acoum

0

OO 6 lin 1.0
rcl 10 lin 1.0
re2 7 lin 1.0
rsigna 14 lin 1.0
rd 5 lin 1.8
rdl 7 1in 1.0
cap-intypo
o
1 [rsigma=1..13] [rdl=l..4] (t:6, u:6)
rencap-intypo
o
1 [blength=0..1] [rsigma=0..Z] {£:8, u:8)
cap-representative
kmax bavg blength boome bel ko2 rlength rwidth rarea rcop rel 1rc2 rsigma rd rdl
2 2 0 2 8 8 0 1 1 3 7 5 3 1 1
3 1 2 1 4 1 1 2 5 0 8 2 2 2 4
0 0 3 1 0 ¢ 2 2 8 0 0 0 7 1 1
roncap-represeritative
tmex bawg blength boop bcl b2 rlength rwidth rayrea roomp rcl rc2 rsigna rd rdl
1 1 1 i 5 1 0 2 0 4 8 3 0 0 0
1 0 1 ik 1 0 0 2 2 2 1 1 0 1 3
2 2 i 1 8 5 1 3 9 i 3 3 2 3 5
1 2 0 2 8 3 0 2 0 2 8 4 2 1 0
Cap-eVENLS :
bmex bavg blength boomp bol bBe2 rlegth rwidth rarea room rcl re?2 rsigma rd rdl
2 0 2 1 4 C 2 1 7 0 0 0 9 1 3
2 2 1 1 8 10 1 2 7 0 5 4 2 2 4
2 2 2 1 6 4 1 2 3 0 5 3 7 2 4
nCnNcap-evants
imax bavg blength bearp bel be? rlength rwidth rarea roamp ¢l rc? rsigma rxd
2 2 1 2 B8 7 1 3 8 1 2] 3 2 3 B
2 2 3 0 5 1 0 3 0 1 8 2 8 ¢ 0
1 1 1 2 7 2 0 3 8 4 5 3 Q A 3
2 2 1 1 7 5 0 3 8 4 3 5 10 2 4

From the command line, we can type:
% agpm.run < capl.agin >! capl.agout

which produces the following output file:

Farameters

run learmning mode ambig trim wts maxstar eche criteria verbose useinhypos intersect update time

1 partial ic apty gen cpx 10 ot default 1 yes

variables

type levels cost name

1 lin 5 1.00 Imex.lnax

2 lin 4 1.00 kbavg.l=awg

3 lin § 1.00 blawth.blength

4 lin 4 1.00 Dboomp.beanp

5 1lin 10 1.00 bcl.bel

6 1lin 12 1.00 lc2.bc2

7 lin 4 1.00 rlewth.rlegth

g8 lin 5 1.00 rwidth.rwidth

g 1lin 11 1.00 rarea.rarea

10 1lin & 1.00 roonp.roamp

11 1lin 10 1.00 zxel.rcl

12 1lin 7 1.00 rc2.rcd

13 lin 14 1.00 rsigma.rsigma
14 lin 5 1.00 xd.rd

borders

accun 1

12

15 lin 7 1.00 ndl.rdl

cap-outhypo
oo
1 [rsigma=1..9] [rdl=]l..4] {t:6, u:6)

noncap-cathypoe
o
1 [xwidth=2..4] [rconp=l..5] {£:10, u:10)}

cap-representative

hmax bavg blegth boomp bel bo2 rlength rwidth rarea roap xcl rc2 rsigm 9l rdl

2 2 0 2 8 8 0 1 1 3 7 5 3 1 1

1 1 2 1 4 1 1 2 5 0) 2 2 2 4

0 0 3 1 0 0 2 2 8 Q 0 0 7 1 1
noncap-representat ive

max bavg Dblewgth bromp kel be2 rlength rwidth rarea reamp rcl re2 resigmm rd rdl

2 2 1 1 7 5 0 3 B8 4 6 5 10 2 4

2 2 3 0 5 1 0 3 0 it 8 3 8 0 0

1 i 1 1 5 1 0 2 0 4 B8 3 0 0 0

1 0 1 1 1 0 0 2 2 2 1 1 0 1 3

2 2 1 i 8 5 1 3 9 1 3 3 2 3 h

1 2 0 2 8 3 0 2 0 2 8 4 2 1 Q
Learning system time: 0.467 secaxds
Learning user time: 0.00 secands

5.3 Learning over time

Now that we’ve seen the basics of AQ-PM input files and output files, let’s look at how to run AQ-
PM progressively over time. The following is a listing of the SAQPMHOME/caps directory:

lemarde? 1s

REAIME caps. test caps2.data. capsh . data capsB.data
caps.domain caps0.data capsld.data capsb.data capsY.data
caps. 1param capsl.data capsd .data caps? .data

The caps.Iparam file looks like the following:

lecnardo® cat caps. lparam

parameters
nn learning mede anbig trim wts mexstar echo criteria verbose useinhypos intersect update forget test
1 partial ic ety gen cpx 10 v default 1 ves korders accum off m

The first part of the caps.domain looks like the following:

lecnard® head caps.domain

variables

name levels type cost

sk 5 lin 1.0
v 4 lin 1.0
blength 6 1in 1.0
boomp 4 lin 1.0
bl 10 lin 1.0
b2 12 1lin 1.0
rlegth 4 lin 1.0
rwidth 5 Iin 1.0

There are 10 data files named caps0.data, capsl.data,..., caps9.data. Each data file contains
roughly 10% of the data contained in the caps.test file. The first data file, caps0.data looks like the
following

lecnardo% cat caps0.data

cap-evenits

hmax bavg blength boomp bel
0 G 3 1 ¢
1 1 2 1 4
2 2 0 2 8

nacap-everncs

b2 rlemgth rwidth rarea rocomp rel re2 rsigma
0

1

B8

4 2
1 2
0 1

0 0
0 3
3 (s

7 1
2 2
3 i

rad
!
4
1

13

rdl

max bavg blength beomp bol beZ rlewth mwidth rarea reap rel re2 rsigm rd rdl

g, g
o3 SN N

Q

1
1
1

2 8
1 B8
1 1
1 5

3

5
0
1

oo o

2
3
2
2

9 1
2 2
0 4

2

oo = L 00

L =l

OOk
S L

O wmo

Fmally, the caps.test file contains the testing data. For this problem, the testing file contains all of
the original data. So the overall scheme is to learn on 10% of the original data, test on 100% of the
original data, learn on the next 10% of the original data, test on 100% of the original data, and so
on, until the data partitions have been exhausted. At that point, the learner has seen 100% of the
original data. Ideally, testing at this point should produce 100% accuracy. The caps.test file locks
like the following:

leonardo® head caps. test

cap-tevents

lmax bawvg blength boomp bol be2 rlagth rwidth rarea reomp rel re2 rsigma rd &l

| S I e Y it T Sl N N I N N
OO O DM D

B2 D2 DYDY O RS

= e el N I N
o B D2 0D oD

QO o OO

B2 b D
N N e

=100 -] BT =D

OO OO0 WD O
WOl -dimm

O ol O b by Ut s

W WU O W WY W
e et el

L B L P = 2 O B

Once the data files have been set up properly, run the run.agpm Perl script:

lecnardo® nun.agpm caps 10
Working an partitian O...
Working on partition 1...
Working an partition 2...
Working cn partiticn 3...
Working on partiticn 4...
Working on partition 5...
Working cn partition 6..
Working an partition 7...
Working an partiticon 8...
Working on partition 9...

The learning process writes several types of files. The *.reps files contain the representative
examples. The *.hypos files contain the inhypos for the next learning step. The caps[0-9].1lparam
files contain the learning parameters for the next learning step. The *.aqgin files are the assembled
input files for AQ-PM. The *.agout files are the output files from AQ-PM.

lecarde? 1s
REAIME

caps. domain
caps. lparam
caps . test
caps0.agin
caps0 . acout
caps0.data
cap=0.hvpos
caps, lparam

caps] . hypos
capsl. lparam
capsl . reps
caps2.aqin
Ccaps2 . agout
capsd.data
caps2. hypos
caps2 . lparam
Caps2. reps

capald . lparam
capal.reps
capsd . aqin
capsd .agout
capsd .data
capss . hypos
caped . Iparam
capsd . reps
capsh.aqgin

capsh. reps
capsh.agin
capsh.agpat
capsb.data
capsh. hypos
capeb . 1param
capsh. reps
capsT.agin
caps’ .agout

caps8.aqin
Capst . agaut
capsd.data
capss . hypos
capel. 1param
capsl.reps
caps9.aqgin
caps9.agout
caps9.data

14

caps0.reps capeld. agin capss.agout caps/.data capsY . hyvpos
capsl . aqin caps3 . agaik capsb.data caps’ . lypes caps9. lparam
capsl . agoat caps3.data capsh. hypos caps? . Jparam Caps9. reps
capsl.data caps3 . lyvpos capsS. lparam caps’? . reos

From these basic files, a great deal of information can be extracted using simple grep commands.
Additional information can be extracted using Perl scripts. Predictive accuracy, learning times,
testing times, number of selectors, and number of rules can be extracted from the various *.agout
files. The memory requirements for the learning run can be computed by counting the number of
representative examples (not lines) in the various *.reps files. The following is an example of how
to extract predictive accuracy from the *.aqout files using the Unix grep command.

lecrnardo? grep Accuracy *.agaut

capsO.agout: # Bvents Correct: 45 # Events Tneorrect: 21 Accuracy: £8.18%
capsl.agout: # Bvents Correct: 60 # Events Incorrect: 6 Accuracy: 90.912
capsd.agout: # Events Correct: 53 # Events Incorrect: 13 Accuracy: 80.30%
capsd.agout: # BEvents Correct: 58 # Bvents Tnoorrect: Accuracy: 87.88%
capsd .aqout: # Events Correct: 58 # Bvents Incorrect: Accuracy: 87.88%
capsh.aqout: # Events Correct: 63 # Events Incorrect: Accuracy: 95.45%
capsb.agqout : # Events Correct: 62 # Bvents Tnoorrect: Accuracy: 93.94%
caps’.aqgout: # BEvents Correct: 59 4 Events Incorrect: Accuracy: 89.39%
capsB.agout: # Events Gorrect: 59 # Fvents Inoorrect: Accuracy: 89.39%
capsY.agout: # Events Correct: 65 # BEvents Incorrect: Accuracy: 98.48%

[N I I O PR o e)

6 Coding Projects

The following is a list of suggested programming projects that will incorporate additional aspects
of the partial memory learning methodology into the AQ-PM learning system. See (Maloof 1996)
for more detail. These items are not presented in any order reflecting importance or difficulty.

1. Implement the surfaces intersection method for selecting the representative examples that lic
on the surfaces of the n-dimensional hyper-rectangle expressed by a characteristic concept
description.

2. Implement frequency-based forgetting in which, after a user-indicated period of time, any
example that has not been seen a certain number of time is forgotten.
Implement memory-based forgetting in which a certain number of representative examples
are kept. If the certain number is exceeded, then some secondary policy (e.g., time-based
forgeiting) is used to forget examples (e.g., the oldest).
Implement time-based rule matching functions in which rules covering the newest or oldest
examples are preferred in the event of a conflict (i.e., a tie between multiple rules).
Implement frequency-based rule matching functions in which rules covering the most or
least frequently seen examples are preferred in the event of a conflict.
Implement a parameter in which the system learns from all new training examples, not just
those that are missed.
Port AQ15 (Hong et al. 1986) no memory and full memory incremental learning from
Pascal to C and incorporate into the AQ-PM system. Hooks are present in the ag.c file of
the AQ-PM distribution.
Implement noise handling mechanisms (Aha et. al. 1991).
Implement adaptive forgetting policies (Widmer and Kubat 1996)
In the file agpm.c in the AQ-PM distribution, the functions computeBorders and
computeCorners do not remove training examples as they are added to the set of
representative examples. Instead, the algorithm repeatedly cycles through the entire set of
representative examples until all available complexes have been exhausted. A more
efficient algorithm would be to terminate the selection process if all complexes have been
exhausted and all available training examples have been added to the representatives
examples set. This would involve removing the training example from the list after it is
added to the set of representative examples.

s

~l N a K

O O 0o

15

7 Known Bugs

The only known bug involves the use of nominal variables. If a nominal variable appears as the
first entry in the variables table, when the setup routines read a training example from the events
table, they apparently think that the first attribute value (which is nominal) is still part of the
attributes list. This occurs even though there is an explicit token in the setup grammar in agparse.y
for an end of line character after the attributes list. If a linear variable appears as the {irst variable,
followed by one or more nominal variables, the program works fine. It is not known why this

oCccurs.

8 Conclusions

The AQ-PM learning system is an extension of the AQ15¢ inductive learning system and an
implementation of a partial memory learner. It is capable of learning a static or changing concept
over time. The methodology was briefly discussed and illustrated. The implemented components
of the methodology are accessed through various parameter settings, which were discussed at
length. Several Perl scripts were presented and discussed for data and experiment management.
Examples were given for the blasting caps data set to illustrate the anatomy of AQ-PM input and
output files. Finally, the Perl scripts were demonstrated to show how AQ-PM learns over time.

16

References

Aha, D.W; Kibler, D.; and, Albert, M.K. (1991) Instance-based learning algorithms. Machine
Learning 6:37-66.

Fisher, R. (1936) The use of multiple measurements in taxonomic problems. Annuals of Eugenics
7:179-188.

Hong, J.; Mozetic, 1.; and Michalski, R.S. (1986) AQ15: incremental learning of attribute-based
descriptions from examples, the method and user’s guide. Technical Report UIUCDCS-F-
86-949. Department of Computer Science, University of Illinois at Urbana-Champaign,
Urbana, IL.

Maloof, M.A. (1996) Partial memory incremental learning. Ph.D. Dissertation. George Mason
University, Fairfax, VA.

Merz, C.J., and Murphy, P.M. (1996) UCI repository of machine learning databases
[http://www.ics.uci.edu/~mlearn/MLRepository.html]. Department of Information and
Computer Science, University of California, Irvine.

Michalski, R.S., and Larson, J.B. (1978) Selection of most representative training examples and
incremental generation of VL, hypotheses: the underlying methodology and the description
of programs ESEL and AQ11. Technical Report 867, Department of Computer Science,
University of Illinois, Urbana, IL.

Michalski, R.S., and Larson, I.B. (1983) Incremental generation of VL, hypotheses: the
underlying methodology and the description of program AQ11. Technical Report
UIUCDCS-F-83-905, Department of Computer Science, University of Illinois, Urbana,
IL.

Reinke, R.E. (1984) Knowledge acquisition and refinement tools for the ADVISE META-
EXPERT system, Master’s Thesis. University of Illinois, Urbana, IL.

Reinke, R.E., and Michalski, R.S. (1988) Incremental learning of concept descriptions: a method
and experimental results. In Hayes, J.E.; Michie, D.; and Richards, J., eds., Machine
Intelligence 11, 263-288. Oxford: Clarendon Press.

Wnek, J.; Kaufman, K.; Bloedorn, E.; and Michalski, R.S. (1995) Selective induction learning
system AQI5c: the method and user’s guide. Reports of the Machine Learning and
Inference Laboratory, MLI 95—4. Machine Learning and Inference Laboratory, Department
of Computer Science, George Mason University, Fairfax, VA.

Widmer, G., and Kubat, M. (1996) Learning in the presence of concept drift and hidden contexts.
Machine Learning 23:69-101.

Appendix A: run.aqpm Perl script

#!/usr/local/bin/perl
#

1f (SH#ARGV 1= 1) {
print ‘Format: run.agom <filestem> <n>\n";
}
else {
S1 = 13
printf "Working on partition $i...\n";
“cat SARGV[0].lparam $ARGVI[0] .domain SARGV([0]%1.data SARGV[0].test >
SARGV[0]S1i.agin’;
‘agpm.run < $ARGV[0]$i.agin > $ARGV[0]S$i.aqout®;
“xparams < $ARGV[0]$i.agout > SARGV[0]S$1i. 1param”;
"xhypos < $ARGV[0]S%i.agout > $ARGV[0]Si.hypos’;
"xXreps < $SARGV[0]Si.agout > SARGV[0Q]S5i.reps’;
for (81 = 2; $i <= SARGVI[1]; %i++) {
printf 'Working on partition $i...\n";
5) = 51 - 1;
“cat SARGV([01S$7.lparam S$SARGV([0] .domain SARGV[0]$] .hypos SARGVI0]S$].reps
SARGV{(]$i.data SARGV[0].test > $ARGV[0]$i.agin”;
Tagpm.run < SARGVI0]Si.agin > SARGV[0]S1.agout’™;
"xparams < $ARGV[0]$i.agout > SARGV([0]6i. 1lparam”;
"xhypos < SARGV[0]$i.agout > SARGV[0]5%1 .hypos™;
‘Xreps < $ARGV[0]%i.agout > SARGV([0]$i.reps”;
} # for
} # else

17

Appendix B: xparam Perl script

#! /usr/local /bin/perl

#

xparams < <filestem>.aqout > <filestem-.param
#

Takes an agom ocutput file and extracts the parameters,
#

SparamSeen = Q;
print “\n";
while (<STDIN>) {
if {/variables/) {
exit;
}

if (/parameters/) {
SparamSeen
}

if (SparamSeen == 1) {
print S_;

¥
f—

}
} # while

Appendix C: xhypos Perl script

¥l /usr/local/bin/perl

#

xhypos < <filestems>.agout > <filestem>.hypos

¥

Takes an agpm output file and extracts the cuthypos,
renames them as inhypos, and strips off the t- and
u-weights, and prints them to standard output.

#

shypoSeen = (;
print "\n";
while (<STDIN=>) {
if (/-representative/) {
exit;
}

if (/-outhypo/) {
ShypoSeen = 1;
s/outhypo/inhypo/;
'
if (ShypoSeen == 1) {
#s/\N(t:.*\)//;
print $_;
}
} ¥ while

Appendix D: xreps Perl script

#!/usr/local /bin/perl

#

xreps < <filestem>.agout > <filestem>.reps

#

Takes an agpm output file and extracts the representative
examples and prints them to standard output.

#

SrepsSeen = 0;
print] \n] :
while (<STDIN>) {
if (/Learning system/) {
exit;
}
if (/-representative/) {
SrepsSeen = 1;
}

if (SrepsSeen == 1) {
print $_;
}
} # while

20

