
AUDITABILITY IN BLOCKCHAIN SYSTEMS
USING CRYPTOGRAPHIC PROTOCOLS

by

Panagiotis Chatzigiannis
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University
In Partial fulfillment of

The Requirements for the Degree
of

Doctor of Philosophy
Computer Science

Committee:

Dr. Foteini Baldimtsi, Dissertation Director

Dr. Giuseppe Ateniese, Committee Member

Dr. S. Dov Gordon, Committee Member

Dr. Jiasun Li, Committee Member

Dr. Konstantinos Chalkias, Committee Member

Dr. David S. Rosenblum, Department Chair

Date: Summer Semester 2022
George Mason University
Fairfax, VA

08/09/2022

Auditability in Blockchain Systems Using Cryptographic Protocols

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Panagiotis Chatzigiannis
Bachelor of Science

Hellenic Naval Academy, 2001
Master of Science

Naval Postgraduate School, 2012

Director: Dr. Foteini Baldimtsi, Professor
Department of Computer Science

Summer Semester 2022
George Mason University

Fairfax, VA

Copyright © 2022 by Panagiotis Chatzigiannis
All Rights Reserved

ii

Dedication

I dedicate this dissertation to my beloved wife Stella and to my wonderful kids, Sophia and
Vasiliki, for their constant support, encouragement, love and patience throughout my PhD.

iii

Acknowledgments

I am very grateful to my PhD advisor Foteini Baldimtsi, first for accepting me as her
PhD student, then giving me this great opportunity to develop my skills and knowledge
throughout the PhD program. She continuously supported and guided me for five full years,
a critical period in my life after making a big career decision when I decided to pursue a
doctoral degree in Computer Science. She created a fine balance between supervising my
research and leaving room for my personal freedom to make progress with my ideas, she
provided ways and inspiration to build necessary background in the field, she helped me
succeed with publishing my research work to the best conferences and journals, and (perhaps
most importantly) she helped me prepare with my transition to the industry by providing
invaluable advice, even from the first years in the program. It was a great privilege to work
with her and to be one of her first doctoral students.

I would like to especially thank Kostas Chalkias, who had a role of my co-mentor,
starting from my first summer internship with Facebook as my manager, up to serving as
external committee member in my thesis. I consider myself very fortunate working with
him, as apart from providing me with inspiring ideas (which eventually transformed into
great research works!), he also exposed me to the industry needs in the field, which proved
critical for me making the best possible choices in my new career.

I would also like to thank my doctoral committee members, Dov Gordon, Giuseppe
Ateniese and Jiasun Li, not only for taking the time to be part of my committee and for
their valuable feedback which had a great impact on the development of my dissertation,
but also for directly helping me improve my research work during my PhD studies.

My PhD experience was also unique and delightful as I was fortunate to work with
brilliant lab-mates in the security lab, exchange ideas, co-author papers and have fun dis-
cussions. In my first years in the PhD program, I found myself with supportive and friendly
lab-mates such as Mohammad Rezaeirad, Sahar Mazloom and Phi Hung Le, and then I
continued having excellent collaboration and fun discussions with Ioanna Karantaidou and
Daniel McVicker, who were co-authors and co-workers in my classes and in my research
papers and projects. Special thanks to Georgios Georgakis who helped me navigate the
challenges of the PhD program and provided lots of useful advice. The great interaction I
had all these years with my fellow PhD students is something I will always remember.

Finally, I would like to thank my beloved wife and kids for believing in my goals and for
standing by me all these years, often by making difficult sacrifices, such as being apart for
extended time periods. Despite having to go through difficult circumstances, they always
followed me into pursuing my goals. Without the continuous support from my wonder-
ful family, the successful completion of my long PhD journey would not have been made
possible!

iv

Table of Contents

Page

List of Tables . viii

List of Figures . x

Abstract . xii

1 Introduction . 1

2 Preliminaries . 6

2.1 Cryptographic primitives . 6

2.2 Blockchain primitives . 17

3 A private and auditable distributed payment scheme 21

3.1 Introduction . 21

3.2 MiniLedger model . 26

3.3 MiniLedger construction . 29

3.3.1 Our construction . 31

3.3.2 Discussion and comparisons . 36

3.4 MiniLedger security and extensions . 37

3.4.1 Adding clients for fine-grained auditing 37

3.4.2 Additional types of audits . 39

3.5 Evaluation . 40

3.6 MiniLedger security . 47

3.6.1 Scheme definitions . 47

3.6.2 Security definitions . 48

3.6.3 Security proofs . 53

3.7 MiniLedger zero knowledge proof . 57

3.8 MiniLedger+ construction and fine-grained audit algorithms 57

3.8.1 Assumptions and threat model . 61

3.8.2 Auditing banks . 61

3.8.3 Auditing clients . 62

3.8.4 Aggregating transactions . 63

3.8.5 Security analysis . 65

v

3.8.6 Cost analysis for MiniLedger+ without aggregation 65

3.8.7 Cost analysis for MiniLedger+ with aggregation 66

3.9 Additional audit types and modifications 67

3.9.1 Audit without consent . 67

3.9.2 Additional audit types . 68

3.10 Choosing a construction for digest D . 70

3.11 Optimizations for decryption operations . 71

3.11.1 Methodology . 71

3.11.2 Optimization evaluation, complexity analysis and comparison 73

3.12 Conclusion . 74

4 Proving assets in the Diem blockchain . 76

4.1 Introduction . 76

4.2 Diem architecture . 79

4.2.1 Keys and accounts . 79

4.2.2 Hierarchical model . 80

4.2.3 Diem proof of assets . 81

4.3 Implementation considerations . 83

4.3.1 What message to sign? . 83

4.3.2 Various PoA considerations . 84

4.4 Diem-specific implementation considerations 85

4.4.1 Primitives and soft PoA implementation in Diem 85

4.4.2 Random challenge consistency . 87

4.4.3 Signed block hashes as randomness 88

4.4.4 Accurate timestamping . 88

4.4.5 Compression . 89

4.4.6 Multiple currencies . 90

4.4.7 PoA transaction type . 91

4.4.8 Withdrawal capability . 91

4.5 Conclusion . 91

5 gOTzilla: Efficient Disjunctive Zero-Knowledge Proofs from MPC in the Head,

with Application to Proofs of Assets in Cryptocurrencies 93

5.1 Introduction . 93

5.1.1 Related Work . 96

5.2 Oblivious Transfer from Private Information Retrieval 99

5.3 Disjunctive proofs from 1:N OT . 104

vi

5.3.1 MPCitH Disjunctive Proof . 104

5.4 Disjunctive Proofs for Mixed Statements . 110

5.4.1 Proving the Value of Assets . 114

5.5 Implementation . 115

5.5.1 Evaluation . 116

5.6 Disjunctive proofs using Garbled Circuits 121

5.7 Conclusion . 122

6 Efficient signatures for auditing IoT devices . 126

6.1 Introduction . 126

6.2 Background . 130

6.3 BBox-IoT system properties . 133

6.3.1 Threat model & Assumptions . 135

6.4 Constructions . 137

6.4.1 Our Hash-based signature scheme 137

6.4.2 Overall BBox-IoT construction . 141

6.4.3 Security analysis . 146

6.5 Performance evaluation & measurements . 149

6.5.1 The IIoT setting with constrained devices 149

6.5.2 Evaluation setup . 150

6.5.3 Signing and verification . 152

6.5.4 Consensus performance . 154

6.6 Related work . 157

6.6.1 IoT and blockchain . 157

6.6.2 Hash-based signatures . 159

6.6.3 Cryptographic operations in IoT . 161

6.7 On MACs for sensor authentication . 162

6.8 Definition and Security proof of our signature scheme 163

6.8.1 Evaluation comparison with modified SPHINCS 165

6.8.2 Collision probability analysis . 165

6.9 An instantiation for consensus algorithm . 166

6.10 Construction algorithms . 167

6.11 Evaluation details . 175

6.12 Conclusions . 176

7 Conclusions and Future Work . 178

Bibliography . 179

vii

List of Tables

Table Page

2.1 Consensus algorithm comparison . 19

3.1 Confidential payment schemes comparison. By 4S we denote set anonymity,

4T auditing through a TP and 4K through “view keys” (which reveal all

private information of an account). By O: permissionless and C: permissioned

we refer to the set of parties that participate in the payment scheme and not

the underlying consensus. 25

3.2 MiniLedger Architecture and Pruning. 35

3.3 MiniLedger+ public ledger L. The extra information to be stored is de-

noted in blue color. 37

3.4 Consensus costs . 46

3.5 zkLedger and MiniLedger ZK proof costs per transaction 59

3.6 Fine-grained audit extension computation costs overview (normalized aggre-

gation costs). 61

3.7 Data structure D comparison. q: number of pruned transactions, k: #

bits, λ: security parameter, F: group multiplications, H: hash operations,

G: group exponentiations. Costs for Open(), π and Verify() are for a sin-

gle transaction audit, while costs for BOpen(), π̂ and BVerify() are for an

`-batched transaction audit. 70

3.8 Variable length truncation for the secp256k1 curve with n = 32, α = 20,

β = 12, k = 4. 74

5.1 Asymptotic comparison of disjunctive ZK proof systems for n statements for

a single circuit C. NI = Non-Interactive. Π denotes an MPCitH protocol,

ΠRuntime and ΠProofsize denote Runtime and Proofsize of Π, respectively. . 97

5.2 Evaluation for protocol in Fig 5.8. PIR preprocessing: NTT transform. Note:

a) MPCitH encoding is needed by both the P and V, therefore this column is

counted twice in the total runtime b) PIR preprocessing is executed by both

P and V in parallel. 116

viii

5.3 Communication costs for Fig. 5.5 protocol (including Fig. 5.1 subroutine)

for n = 220 . 121

5.4 Latency costs for Fig. 5.5 protocol (including Fig. 5.1 subroutine) for n = 220 121

5.5 Comparison of ZK proof systems for Proof of Assets for a single proof. |x|

is length of input, |F | circuit size, λ security parameter. (for BTC UTXO

|x| = 512 (BTC public key 256bits + 256 bits of padding for MD), probably

λ < x, we can consider 128 or 256 sec bits. Circuit F ′ might be 10 times

larger than F) . 122

6.1 Hash-based scheme comparison. 140

6.2 Hash-based scheme comparison for 256-bit messages and 256-bit security

parameter. Sizes in bytes. M,F and H denote MAC, PRF and hash operations

respectively. n denotes length of chain-based schemes. 140

6.3 Classes of Constrained Devices in terms of memory capabilities according to

RFC 7228. 150

6.4 Evaluation for sensor-aggregator protocol - Average verification times . . . 153

6.5 Evaluation for sensor-aggregator protocol (average values for 5000 verifications)154

6.6 Signing and verification costs (in milliseconds) compared with message and

signature sizes (in bytes). Note we assume hash-based signatures are aggre-

gated as discussed in Section 6.5.3. Signer is ATmega328P microcontroller

and verifier is RPi 3. 156

6.7 Hash-based schemes concrete comparison, 256-bit security 168

ix

List of Figures

Figure Page

2.1 The 1-out-of-n OT functionality. 15

2.2 MPC-in-the-Head subroutine. 16

3.1 MiniLedger overview. “State” is a private database for each Bank and

UsrDB is an optional private database for Bank’s clients. Banks read from

Ledger to create or prune transactions (1) and forward the transaction cre-

ation or pruning output to consensus (2). Consensus verifies and updates

the Ledger (3). Auditor read Ledger (4) and interact with Banks to audit

transactions (5). 27

3.2 Transaction creation, verification and auditing costs. 43

3.3 Pruning computation cost . 43

3.4 RSA witness Generation cost . 43

3.5 Audit open cost for one tx . 43

3.6 Audit verify cost . 43

3.7 Batch audit open costs . 43

3.8 Batch audit verify costs . 43

3.9 MiniLedger ZK proof π (without range proof) 58

4.1 Address structure in different blockchains. 80

4.2 Diem data structure overview. 87

4.3 Epoch skipping optimization. 90

5.1 Zero-knowledge proof to prove that the encrypted ciphertext cv is well formed

and at most one of bi 6= 0. 102

5.2 1-out-of-n OT protocol . 102

5.3 Malicious-receiver simulator for Π1:n
OT . 103

5.4 Secret sharing with specific offset index 104

5.5 . 106

5.5 OR proof using MPC-in-the-Head . 107

5.6 Notation for protocol ΠMPCitH−OR
f . 107

x

5.7 Malicious-verifier simulator for ΠMPCitH−OR
f 108

5.8 . 112

5.8 Disjunctive protocol via MPCitH for mixed statements. We denote by colored

text the additional elements introduced compared to Fig.5.5 113

5.9 . 119

5.9 Disjunctive Composite protocol via MPCitH for Proving Assets in Bitcoin.

We denote by colored text the additional elements introduced compared to

Fig.5.8 . 120

5.10 OR Proof using Garbled Circuits with MAC. We denote by colored text the

additional elements introduced compared to the protocol of Chase et al. . . 123

5.10 OR Proof with MAC and value Protocol using Garbled Circuits. We denote

by colored text the additional elements introduced compared to Fig. 5.10. 125

6.1 Modified Hyperledger Fabric architecture. 131

6.1 n-length Chain-based Signature Scheme . 139

6.2 Key generation for n = 5 and seed k5. First signature uses as pk = k0 and

sk = k1. 139

6.3 BBox-IoT construction overview . 141

6.2 BBox-IoT core algorithms and protocols 145

6.4 Aggregator verification costs in network outages. BBox-IoT is more expen-

sive when more than about 2400 signature packets are lost. 157

6.5 Number of signing operations for a 20mWh battery. 157

6.6 Collision probability for hash chain length 226. 166

xi

Abstract

AUDITABILITY IN BLOCKCHAIN SYSTEMS USING CRYPTOGRAPHIC PROTO-
COLS

Panagiotis Chatzigiannis, PhD

George Mason University, 2022

Dissertation Director: Dr. Foteini Baldimtsi

Enforcement of policy regulations and availability of auditing mechanisms are crucial

building blocks for the adoption of distributed payment systems. In this thesis we provide

a series of proposals towards implementing such systems (usually based on a blockchain),

augmented with such functionalities.

We first propose MiniLedger, a new standalone system that provides both auditabil-

ity and privacy for its users, while achieving near-constant storage requirements by all

participants who maintain it. We then propose add-on protocols for the Diem blockchain,

a recently developed permissioned payment system, which enables proving assets held by

custodial wallets in that system. Then we propose gOTzilla, which enables proving assets

owned by organizations or exchanges in permissionless blockchain systems (such as Bit-

coin), while remaining efficient even in the case such systems scale to millions of unspent

transaction outputs.

Finally, we describe BBox-IoT, which provides a way for resource-constrained devices

(typically encountered in an Industrial IoT setting) to efficiently sign data, therefore en-

abling auditing data provenance in a blockchain-based Industrial IoT system.

Chapter 1: Introduction

During the last decade, we witnessed a surge of proposals for several different distributed

payment systems, commonly referred to as cryptocurrencies, as an alternative to the tradi-

tional, centralized banking system. This term is derived from the fact that these systems

are based on a series of cryptographic primitives. For instance, Bitcoin [1], which was the

first cryptocurrency to emerge, uses relatively simple cryptographic tools, which include

public key cryptography, hash functions and distributed consensus. These tools are used to

secure transactions, as well as guarantee agreement on the state of a common append-only

public ledger, known as a blockchain. User participation in these systems can be controlled

or unrestricted, categorizing such systems in permissioned and permissionless respectively.

The distributed nature of the ledger, typically accessible by the open public or by a

wide base of participants (even in permissioned systems), enables external observers to ac-

cess transaction information, for example sender/receiver addresses or transaction amounts.

These addresses are essentially random-looking strings and provide their owners a sense of

anonymity, especially in permissionless payment systems where anyone can easily create

multiple such addresses on demand. However, it has been shown it is possible to associate

these “pseudo-anonymous” addresses with real identities (for instance using clustering tech-

niques [2–4]). These concerns led to a number of privacy-enhancing proposals, with most of

them using more advanced cryptographic tools (e.g ring signatures, zero-knowledge proofs

etc.) Some were stand-alone cryptocurrencies offering strong privacy guarantees such as

Zcash [5] and Monero [6], as well as academic works such as Quisquis [7] and Solidus [8],

while others were add-on functionalities to existing systems, such as CoinJoin [9] or Tum-

bleBit [10]. These approaches obfuscate (or completely hide) both the transaction graph

which can be generated from connecting senders and receivers of funds (as well as those

1

associated amounts) from public view, thereby providing a level of privacy equivalent to

cash. But such systems in turn raised concerns for regulatory and law-enforcement au-

thorities, since the abuse of such strong privacy guarantees provides users the potential to

circumvent regulatory controls (e.g. tax evasion or unauthorized money transmission) or

even engage in fraudulent/illegal activities (e.g. money laundering, extortion or drug traf-

ficking [11]). In this setting, state authorities or audit firms (e.g. Deloitte or KPMG [12,13])

will need to be convinced that the auditee “follows the rules” by meeting certain regula-

tory requirements. For example, all participants in a payment system should be compliant

with Anti-Money Laundering and Counter-Terrorism Financing (AML/KYC) per Financial

Action Task Force (FATF) Travel Rule [14], while an auditor should be able to verify com-

pliance with regulations such as the European General Data Protection Regulation [15] or

industry-specific requirements such as the Health Insurance Portability and Accountability

Act (HIPAA).

In the above setting, enforcing regulation becomes challenging, as the notions of privacy

and regulation are contradictory. In such distributed payment systems, regulation implies

auditability and accountability at user level (e.g. disclosing the user’s assets or past trans-

actions) or transaction level (e.g. disclosing the participants or value associated with some

transaction), while the public ledger entries continues to hide such information from parties

not directly associated with those regulatory functions. A limited type of accountability

already existed in traditional, private electronic cash [16] where when a coin was double-

spent, the identity of its owner could be revealed. Recently, a handful of academic works

attempted to provide some basic accountability or auditability functionalities, either on top

of existing privacy-preserving payment systems [17,18], or as new, stand-alone ones [19,20].

At the same time, as cryptocurrency popularity grew, various organizations were es-

tablished to bridge the gap between existing financial systems and the new cryptocurrency

world, such as cryptocurrency exchanges, which provide services for exchanging cryptocur-

rency with US Dollars, Euros etc., “stablecoins”, i.e. cryptocurrencies having their value

tied to standard currencies [21], or other types of centralized organizations which hold users’

2

coins. However, even with “pseudoanonymous” distributed payment systems which do not

hide transaction information on the public ledger, such information is not enough to pro-

vide regulatory control and additional regulation functionalities are still needed, as these

organizations are typically opaque to their internal operations. In fact, several infamous

examples exist where users lost their funds without holding these organizations accountable

[22] or organizations investing users’ funds instead of focusing on their solvency [23]. Also,

the Conference of State Bank Supervisors proposed a model regulatory framework including

cryptographic solvency proofs as a means of demonstrating solvency [24]. In that end, some

works [17, 25] focused on making these services more transparent to earn users trust, and

provide auditability functionalities to authorities (i.e., proving that they are solvent) with-

out disclosing additional information or exposing their users’ privacy1. However, preserving

privacy does not come for free, as this makes proof manipulation or collusion possible to

falsely convince an auditor of the organization’s claims.

Problem statement. From the above discussion, it is evident that there is a need for in-

corporating regulation in distributed payment systems from a technical standpoint. Specif-

ically, in this thesis we consider the problem of designing appropriate protocols that can

facilitate the needed regulation functionalities, both at a microscopic (i.e. single user or

transaction) and at a macroscopic (i.e. large organization) level. We also consider solutions

to this problem either by proposing new systems, or by augmenting existing ones, without

deviating from the core blockchain characteristics, such as its decentralized nature and the

privacy offered to its participants.

Results summary. In this thesis, we begin by considering the first aspect of the problem

above, namely combining privacy and auditability functionalities at a microscopic level into

a distributed payment system. To that end, we construct MiniLedger as a proposed

solution [26], a system with strong privacy guarantees while providing a wide range of

1In some scenarios, non-private auditing might suffice. However, such a protocol would be trivial from a
security standpoint, and to our knowledge no related proposal exists.

3

auditing functionalities, while also being efficient in terms of the needed storage costs. We

provide formal security definitions, an extension serving an arbitrarily large user base, as

well as evaluation results of our implemented prototype to showcase its efficiency.

Then we consider the problem of proving the solvency of organizations in the cryptocur-

rency world holding users’ coins. As [17] observed, such a solvency proof consists of two

independent proofs: a Proof of Assets and a Proof of Liabilities, which combined together

form a proof of solvency. While Proof of Liabilities has been extensively studied [25,27], we

observed a research gap for efficient and practical Proof of Assets since the seminal work of

[17]. Therefore, we first provide a Proof of Assets framework [28] tailored for Diem cryp-

tocurrency [29] (as well as other such systems with a similar hierarchical structure). In our

framework, we consider several cases encountered in practice, such as offline wallets, locked

assets, delegated spending capabilities and account pruning, while also proposing practical

optimizations towards supporting light clients.

Then we focus on large, popular permissioned payment systems such as Bitcoin. In this

setting, we propose gOTzilla[30], which provides an efficient protocol for such cryptocur-

rency exchanges and organizations to prove their assets, even when those cryptocurrencies

scale to millions of accounts. While our protocol is designed with the above use case sce-

nario in mind, we also construct similar protocols for a wider range of applications that are

of independent interest in the cryptography community.

Finally, we consider the use of blockchains in a resource-constrained device setting such

as Industrial Internet of Things (IIoT). Towards auditing data collected from sensors in such

environments, we construct BBox-IoT [31], a system that provides a way for operators of

an IIoT enclave to audit sensing data. BBox-IoT is based on a novel signature scheme

relying on simple cryptographic primitives and is tailored for the most resource constrained

class of IIoT devices where we evaluate its efficiency.

Thesis outline. This thesis is organized as follows. Chapter 2 contains the necessary

background for the primitives used throughout this thesis. We then propose MiniLedger

4

in Chapter 3 which efficiently implements privacy and auditability functionalities into a

distributed payment system. Towards Proof of Assets, we propose our framework for the

Diem cryptocurrency in Chapter 4 and our protocol for popular permissioned blockchains

such as Bitcoin in Chapter 5. In Chapter 6 we present BBox-IoT as a proposed efficient

solution for auditing resource-constrained devices in a blockchain-based IIoT setting. We

conclude in Chapter 7 and provide insights for future work.

5

Chapter 2: Preliminaries

We first define the notation we will be using throughout this thesis. By λ we denote

the security parameter, by pp the public parameters and by z ← Z the uniformly random

selection of an element z from space Z. A probabilistic polynomial-time (PPT) algorithm

B with input a and output b is written as b ← B(a). By := we denote deterministic

computation and by a→ b we denote assignment of value a to value b. We denote a protocol

between two parties A and B with inputs x and y respectively as {A(x) ↔ B(y)}. By

(pk , sk) we denote a public-private key pair and by [xi]
y
i=1 a list of elements (x1, x2, ..., xy).

We denote an n-dimensional vector v = {v1, . . . , vn}. By x ‖ y we denote concatenation of

bit strings x and y. We denote a matrix M with m rows and n columns as Mmn and a i−th

row and j-th column cell in the matrix as (i, j). Finally for simplicity, we omit λ and pp

and implied as inputs to the respective algorithms and protocols as needed, unless denoted

explicitly.

2.1 Cryptographic primitives

Public key encryption. A public key encryption scheme consists of the following algo-

rithms [32]:

• (pk , sk)← Gen(): Outputs a public key pk and a secret key sk , .

• C ← Enc(pk ,m): On input of a message m and a public key pk , outputs a ciphertext

C.

• m← Dec(sk , C): On input of a ciphertext C and a secret key sk , outputs a plaintext

message m.

6

To formalize security of a public key encryption scheme, we consider the following ex-

periment IND− CPA(λ):

• An adversary A knowing a public key pk performs a polynomial number of queries to

a challenger for messages m, and the challenger outputs encryptions of the respective

messages to A.

• A outputs a pair of messages m0,m1 to a challenger.

• Challenger chooses a random bit b and outputs ciphertext C ← Enc(pk ,mb) to A.

• A outputs b′ and IND− CPA outputs “1” if b == b′, else it outputs “0”.

Definition 1. A public key encryption scheme is indistinguishable under chosen plaintext

attack (IND-CPA), if for all PPT A, Pr [IND− CPA(λ) = 1] = 1/2 + negl(λ).

Homomorphic Encryption. An (additive) homomorphic encryption scheme is a public-

key encryption scheme equipped with an operation � over the ciphertext space such that

for any two plaintexts a, b, Dec(Enc(a) � Enc(b)) = a+ b.

ElGamal encryption. ElGamal encryption [33] consists of the following algorithms:

• pp ← Setup(1λ): On input of security parameter λ, outputs public parameters pp =

(G, g, p) where g is generator of cyclic group G of prime order p. We consider these

parameters as a default input to all following algorithms and we omit them for sim-

plicity.

• (pk , sk)← Gen(): Outputs a secret-public key pair as sk ← Zp, pk = gsk .

• (c1, c2) ← Enc(pk , x): Samples r ← Zp, computes c1 = gr, c2 = x · pkr and outputs

ciphertext C = (c1, c2).

• x← Dec(sk , (c1, c2)): Compute x = c2/c
sk
1 .

7

ElGamal encryption is IND-CPA secure under the Decisional Diffie-Hellman assumption

[32]. Also, ElGamal encryption is multiplicatively homomorphic:

Enc(pk ,m1) · Enc(pk ,m2) = Enc(pk ,m1 ·m2).

Additively homomorphic ElGamal encryption. ElGamal encryption can be modi-

fied to be additively homomorphic [34] and consists of the following algorithms:

• pp ← Setup(1λ): On input of security parameter λ, outputs public parameters pp =

(G, g, p) where g is generator of cyclic group G of prime order p.

• (pk , sk)← Gen(): Outputs a secret-public key pair as sk ← Zp, pk = gsk .

• (c1, c2) ← Enc(pk , x): Samples r ← Zp, computes c1 = gr, c2 = gx · pkr and outputs

ciphertext C = (c1, c2).

• x ← Dec(sk , (c1, c2)): Compute gx = c2/c
sk
1 . While x cannot be directly computed

from gx, it can be recovered through a pre-computed lookup table, assuming that the

message space is relatively small (e.g. 232).

ElGamal Encryption Variant. We now review another variant of ElGamal encryption,

called “twisted ElGamal” (TEG) [35]. Compared to the standard additive version of El-

Gamal encryption, it requires an additional group generator (denoted by h below) in the

public parameters pp, which makes it possible to homomorphically add ciphertexts c2 and

c′2 generated for different public keys pk and pk ′ and intentionally leak information on the

relation of encrypted messages m and m′ as we discuss below. This variant only works when

message space is small due to the need for a lookup table on decryption. TEG is secure

against chosen plaintext attacks and works as follows:

• pp← SetupTEG(1λ): Outputs pp = (G, g, h, p) where g, h are generators of cyclic group

G of prime order p.

• (pk , sk)← GenTEG(pp): Outputs sk ← Zp, pk = hsk .

8

• (c1, c2) ← EncTEG(pk ,m): Sample r ← Zp, compute c1 = pkr, c2 = gmhr and output

C = (c1, c2)

• m← DecTEG(sk , (c1, c2): Compute gm = c2/c
(1/sk)
1 and recover m from a look-up table

(assuming that the message space is relatively small).

Both of the two above ElGamal scheme versions are additively homomorphic, e.g.:

EncTEG(pk ,m1) · EncTEG(pk ,m2) = EncTEG(pk ,m1 +m2).

Specifically for TEG encryption, if (c1, c2) ← EncTEG(pk ,m) and (c′1, c
′
2) ← EncTEG

(pk ′,m′), then c2 · c′2 contains an encryption of m+m′. This implies if c2 · c′2 = 1, then any

external observer can deduce that m = −m′ (for properly chosen r, r′).

Digital Signatures. A digital signature scheme consists of the following algorithms [32,

36]:

• (pk , sk)← SignGen(1λ): Outputs a pair of keys (pk , sk).

• σ ← Sign(sk ,m): Takes as input a private key sk and a message m and outputs a

signature σ.

• SVrfy(pk ,m, σ) := b: Takes as input a public key pk , a message m and a signature σ,

and outputs a bit b where b = 1 indicates successful verification.

A digital signature is considered secure if an adversary A cannot forge a signature on a

message even after adaptively receiving signatures on messages of its choice. To formalize

the security definition we first describe the following experiment SigForge(λ):

1. (pk , sk)← SignGen(1λ)

2. A on input (pk) queries the signing oracle polynomial number of times q. Let Q :

[mi, σi]
q
i=1 be the set of all such queries.

3. A outputs (m∗, σ∗).

9

4. A wins if SVrfy(m∗, σ∗) = 1 where m∗ /∈ [mi]
q
i=1 and SigForge outputs “1”, else it

outputs “0”.

Definition 2. A digital signature scheme is existentially unforgeable under an adaptive

chosen-message attack, if for all PPT A, Pr [SigForge(λ) = 1] is negligible in λ.

One-time signatures. A digital signature scheme that can be used to sign only one

message per key pair is called a one-time signature (OTS) scheme.

Definition 3. A one-time digital signature scheme is existentially unforgeable under an

adaptive chosen-message attack, if for all PPT A and for q ≤ 1, Pr [SigForge(λ) = 1] is

negligible in λ.

Hash functions. An (unkeyed) hash function y := h(m) on input of a message m outputs

a digest y. A cryptographic hash function is considered secure if the probability to find

collisions is negligible (i.e. it is collision resistant). More formally, we consider the following

experiment HashColl [32]:

1. A picks values x, x′ ∈ {0, 1}∗ s.t. x 6= x′.

2. A wins if h(x) = h(x′) and HashColl outputs “1”.

Definition 4. A hash function h() : {0, 1}∗ → {0, 1}λ is collision resistant if for all PPT

A, Pr [HashColl = 1] is negligible.

A weaker notion for security of a hash function is preimage-resistance. We consider the

following experiment PreIm(λ, y):

1. A is given y ∈ {0, 1}λ

2. A outputs x.

3. A wins if h(x) = y. If A wins PreIm outputs “1”, else it outputs “0”.

10

Definition 5. A hash function h() : {0, 1}∗ → {0, 1}λ is preimage resistant if ∀ ppt A and

∀y ∈ {0, 1}λ, Pr [PreIm(λ, y) = 1] is negligible in λ.

Corollary 1. A collision resistant hash function is also preimage resistant.

Commitment schemes. A non-interactive commitment takes as input public parameters

pp, message m and randomness r and outputs value cm← Com(pp,m, r) such that, on one

hand, reveals no information about the message (hiding property) but, on the other hand,

it is hard to find (m′, r′) such that Com(pp,m, r) = Com(pp,m′, r′), when m′ 6= m (binding

property).

Pedersen commitments. Pedersen commitments [37] are constructed as follows:

• pp← ComGen(1λ). Outputs pp = (G, g, h, p) where g, h are generators of cyclic group

G of prime order p.

• cm← Com(pp,m, r). On pp, a message m ∈ [1...p] and randomness r ∈ [1...p], outputs

a commitment cm = gmhr.

• b ← Open(pp, cm,m, r). A verifier given a commitment cm and an opening (m, r)

returns a verification bit b.

Pedersen commitments are perfectly hiding and computationally binding under the dis-

crete logarithm assumption [37]. Also, Pedersen commitments are also additively homo-

morphic and are zero-knowledge proof-friendly (ZK proofs described below). Note that

ciphertext c2 from the above “twisted” ElGamal variant is equivalent to a Pedersen com-

mitment.

Zero-knowledge proofs. A zero-knowledge (ZK) proof is a two-party protocol between

a prover P, holding some private data (or else witness) w for a public instance x, and a

verifier V. The goal of P is to convince V that some property of w is true i.e. R(x,w) = 1,

11

for an NP-relation R, without V learning anything more. Some common types of ZK proofs

we consider are:

1. ZK proof on the opening of a commitment: Using Camenisch-Stadler notation [38] (used

throughout this thesis): {(w, r) : X = gwhr mod n}(X, g, h, n) where (X, g, h, n) are

the public statements given as common input to both parties, and (w, r) is the secret

witness.

2. ZK proof of knowledge of discrete log: {(x) : X = gx mod n}(X, g, n).

3. ZK proof of equality of discrete logs: {(x, r, r′) : X = gxhr mod n, Y = gxhr
′

mod

n}(X,Y, g, h, n).

4. ZK range proof that a committed value v lies within a specific interval (a, b): {(v, r) : X =

gvhr mod n∧ v ∈ (a, b)}(X, g, h, n). Such proofs can also be used to show that the value

v is positive or does not overflow some modulo operation. Most well-known construction

families for range proofs include square decomposition, multi-base decomposition (used

by zkLedger [39,40]) and the recent Bulletproofs [41].

ZK proofs can be composed as follows: (1) AND composition π1 ∧ π2 which can be

easily constructed by sequential or parallel proving of underlying assertions, and (2) OR

composition π1 ∨ π2 (also referred to as disjunctive ZK proofs), which can be constructed

by proving knowledge for the one and simulating knowledge for the other, without revealing

which of the two is actually proved and which is simulated. We also note the ZK proofs

we use are public coin and can be converted to non-interactive using the FS heuristic [42].

The needed properties of a zero-knowledge proof are Completeness, Soundness and Zero-

Knowledge, defined formally as follows.

• Complenetess: If R(x,w) = 1 and both players are honest V always accepts.

• Soundness: For every malicious and computationally unbounded P∗, there is a negligible

function ε(·) s.t. if x is a false statement (i.e. R(x,w) = 0 for all w), after P∗ interacts

with V, Pr[V accepts] ≤ ε(|x|).

12

• Zero Knowledge: For every malicious PPT V∗, there exists a PPT simulator S and negli-

gible function ε(·) s.t. for every distinguisherD and (x,w) ∈ R we have |Pr[D(ViewV∗(x,w)) =

1]− Pr[D(S) = 1]| ≤ ε(|x|).

ZK-SNARKs. ZK-SNARKs (Succinct Non-Interactive Arguments of Knowledge) [43–

45] is another well studied type of ZK proofs that received a lot of attention the last few

years due to their use in private cryptocurrencies [5]. Their goal is to offer constant, suc-

cinct proof sizes and short verification times. In particular, ZK-SNARKs can be verified

in time that is linear in the length of the input x, rather than the length of the circuit C.

However, they suffer from large prover overhead, since they require the prover to perform

a large number of public-key operations that is proportional to the size of the circuit rep-

resenting the statement. Finally, many ZK-SNARKS constructions require an additional

trust assumption. Namely, to guarantee soundness, they need a common reference string

(CRS) that is generated ahead of time by a trusted party (or a distributed protocol).

Mixed statements. Let f and g be non-algebraic and algebraic relations with public

instances y and z respectively. A ZK proof on a mixed statement has the generic form

{(w) : f(y, w) = 1 ∧ g(z, w) = 1}(y, z).

Cryptographic Accumulators. Accumulators allow the succinct and binding represen-

tation of a set of elements S and support constant-size proofs of (non) membership on S.

We focus on additive accumulators where elements can be added over time to S and to pos-

itive accumulators which allow for efficient proofs of membership. We consider trapdoorless

accumulators in order to prevent the need for a trusted party that holds a trapdoor and

could potentially create fake (non)membership proofs. Finally we require the accumulator

to be deterministic, i.e. always produce the same representation given a specific set. An

accumulator typically consists of the following algorithms [46]:

• (pp, D0) ← AccSetup(λacc) generates the public parameters and instantiates the accu-

mulator initial state D0.

13

• Add(Dt, x) := (Dt+1, upmsg) adds x to accumulator Dt, which outputs Dt+1 and upmsg

which enables witness holders to update their witnesses.

• MemWitCreate(Dt, x, St) := wtx Creates a membership proof wtx for x where St is the

set of elements accumulated in Dt. NonMemWitCreate creates the equivalent non-

membership proof utx.

• MemWitUp(Dt, w
t
x, x, upmsg) := wt+1

x Updates membership proof wtx for x after an ele-

ment is added to the accumulator. NonMemWitUp is the equivalent algorithm for non-

membership.

• VerMem(Dt, x, w
t
x) := {0, 1} Verifies membership proof wtx of x in Dt.

The basic security property of accumulators is soundness (or else collision-freeness)

which states that for every element not in the accumulator it is infeasible to prove mem-

bership.

Some well-known types of accumulators are the RSA accumulator [47] (which are addi-

tive and universal and Merkle Trees [48] (which are additive and positive). We note that

RSA accumulator can become trapdoorless if a trusted party (or an MPC protocol) is used

to compute the primes for the modulo n, or a public RSA challenge number (i.e. from RSA

Labs) is adopted. In addition, “batching” techniques can be applied in element additions

and membership proofs [47]. In Section 3.5 we discuss comparisons and trade-offs between

these two accumulator types considering different implementation scenarios.

MACs A circuit-based one-time Message Authentication Code (MAC) on x is defined as

t = ax+ b where a and b are randomly sampled by the verifier, and can be opened after the

prover has committed to t [49].

Oblivious Transfer 1-out-of-2 oblivious transfer (OT) is a fundamental functionality

in secure computation between a sender S that holds two values v0, v1 and a receiver R.

At the end of the protocol, the receiver learns exactly one of the sender values while the

sender learns nothing. 1-out-of-n OT is a generalized version of 1-out-of-2 OT where the

14

sender has n values, and the receiver learns one of them. In Figure 2.1 we describe the ideal

functionality for 1-out-of-n OT.

Functionality F1:n
OT

Functionality F1:n
OT communicates with sender S and receiver R, and adversary A.

1. Upon receiving input (sid, v1, · · · , vn) from S where vi ∈ {0, 1}κ, record
(sid, v0, · · · , vn).

2. Upon receiving (sid, i) from R where i ∈ {1, · · · , n}, send vi to R. Otherwise,
abort.

Figure 2.1: The 1-out-of-n OT functionality.

MPC in the Head An MPC protocol ΠF is an interactive protocol between m parties

P1, . . . , Pm to securely compute some function F on the joint input of all parties. The

MPC-in-the-Head paradigm (introduced by Ishai et al. [50]) considers a single party which

simulates the execution of all m parties locally and records transcripts of the interaction

between the simulated parties. These simulated views can later be selectively opened to

prove statements about the inputs of the simulated parties.

Formally, we require the following properties for ΠF to be an admissible protocol for

MPCitH:

Definition 6. Let ΠF be an MPC protocol for a functionality F(x1, . . . , xm).

• We say ΠF realizes F with correctness if for all possible inputs the probability that

the output of any party Pj running (semi-honest) ΠF is different from F(x1, . . . , xm)

is negligible in λ.

• We say ΠF realizes F with t-privacy if for all sets of (semi-honest) corrupt parties

I ⊂ {P1, . . . , Pm} s.t. |I| ≤ t there exists a PPT simulator S s.t. for all inputs the set

of views {viewj}j∈I is statistically indistinguishable from S(I, {xj}j∈I ,F(x1, . . . , xm)).

We model the local simulation of the MPCitH protocol with the black-box functionality

ΠMPCitH in Figure 2.2.

15

ΠMPCitH

Input: An m-party MPC protocol ΠF implementing the functionality F which takes
as input (Xj , Yj) from each party Pj and outputs to all parties F(⊕mj=1Xj ,⊕mj=1Yj)

with completeness and (m− 1)-privacy, (Xj , Yj) for j = 1, . . . ,m

Protocol: Run a simulation of ΠF as follows:

• Set each party Pj ’s input as (Xj , Yj)

• Sample Pj ’s initial randomness rk

• Set viewj ← {Xj , Yj , rj}

• Execute the steps ΠF , adding each message received by Pj to viewj

• Add the output to each viewj

Output: (view1, . . . , viewm)

Figure 2.2: MPC-in-the-Head subroutine.

Garbled Circuits A Garbled Circuit (GC) scheme is defined by the following algorithms

[49]:

• e, d,GC ← Gb(pp, λ, f, r) which on input of a boolean circuit f outputs a garbled

circuit GC and encoding and decoding information e and d.

• X ← Enc(e, x) which on input of encoding information e and an input x corresponding

to f , outputs a garbled input X.

• Y ← Eval(GC,X) on input of garbled circuit GC and garbled input X outputs en-

coded output Y .

• y ← Dec(Y, d) which on input of an encoded output Y and decoding information d

outputs y.

• {d, ∅} ← Ver(GC, e, f) which on input of garbled circuit GC, encoding information e

and boolean function f outputs either decoding information d or ∅.

Definition 7. A GC scheme (Gb,Enc,Eval,Dec,Ver) must satisfy the following properties:

16

• Correctness: ∀f, x,GC, e, d: (a) For Y ← Eval(GC,X), f(x)← Dec(Y, d) and (b) for

d← Ver(GC, e, f) with d 6= ∅ and Y ← Eval(GC,X), Dec(Y, d) = f(x).

• Authenticity: ∀f, x and PPT algorithm A, there is a negligible function ε(·) s.t.

Pr[∃y 6= f(x), y = Dec(d, d′) : (e, d,GC) ← Gb(pp, λ, f, r), d′ ← A(GC,Enc(e, x))]| ≤

ε(λ).

• Privacy: There exists a PPT simulator S s.t. the distributions (Gb,Enc,Eval,Dec,Ver),

X ← Enc(e, x) and S(f, f(x)) are indistinguishable.

2.2 Blockchain primitives

Byzantine Generals Problem. Leslie Lamport [51] was among the first to study the

problem of achieving agreement on a distributed (synchronous) system. His work first

considered a set of n inter-connected parties wishing to agree on a common output, while

possibly having conflicting initial inputs and under the assumption that up to f “Byzantine”

parties might behave maliciously. In this “Byzantine Agreement” (BA) problem, binary

consensus (i.e. for an output of 0 or 1) can be achieved with n = 3f + 1 nodes using

unauthenticated messages in rounds, where a leader sends a proposed binary value in a

fully connected network, then the honest nodes would propagate that value using the same

protocol acting as leaders themselves. Authenticated messages improves the resilience of

the protocol to n = 2f + 1, as Byzantine faults can be tolerated under the assumption

that dishonest parties cannot forge the leader’s signature. In both cases however, having a

communication complexity O(n2), the protocol does not scale to a large number of parties.

Blockchain. A blockchain is ledger, consisting of a series of blocks linked through some

cryptographic primitive. In the vast majority of cases, the linking between blocks is imple-

mented through a hash function, and the blockchain is append-only, making it immutable.

Also in most applications, the blockchain is publicly accessible, i.e. a public ledger.

17

Consensus protocols. A consensus protocol (denoted by CN) allows a set, SCN, of dis-

tributed parties to reach agreement in the presence of Byzantine faults. For the purpose of

this thesis, we consider agreement in the data posted on a ledger L. Participation in the

consensus protocol can be either permissioned (i.e. only authenticated parties have write

access in the ledger) or permissionless (i.e. any party can write in the ledger as in most

blockchain-based systems like Bitcoin or Ethereum). More formally, a ledger consensus

protocol Consensus(x, L) := L′ allows system participants given some input value x and

ledger state L, to agree on a new ledger L′.

The two fundamental properties of ledger consensus are [52, 53]: (a) Consistency: An

honest node’s view of the ledger on some round j is a prefix of an honest node’s view of

the ledger on some round j + `, ` > 0. (b) Liveness: An honest party on input of a value x,

after a certain number of rounds will output a view of the ledger that includes x.

Definition 8. Let parties [Pi]
n
i=1, each having a view of the blockchain BC(i), and receive

a common sequence of messages in rounds [1..j..] A protocol solves the ledger consensus

problem if the following properties hold:

i. Consistency: An honest node’s view of the blockchain on some round j is a prefix of an

honest node’s view of the blockchain on some round j+`, ` > 0, or BC(i)j ||Bj+1||...||Bj+` =

BC(i′)j+`, ∀Pi, Pi′ , j, `.

ii. Liveness: An honest party Pi on input of an operation (or transaction) tx, after a

certain number of rounds will output a view of the blockchain BC(i) that includes tx.

The protocol can be augmented with the existence of a TP assigning membership cre-

dentials (which requires an additional trusted setup phase) resulting in an Authenticated

ledger consensus protocol [51][54]. Such a protocol consists of the following algorithms:

1. (pp)← TPSetup(1λ): A trusted party TP generates the system paremeters pp.

2. (pki , ski)← PartyGen(pp): Each party i generates a public-private key pair.

18

Table 2.1: Consensus algorithm comparison

Algorithm Adversarial
model

Byzantine
tolerant

Dynamic
membership

Scalable DoS resistant

PBFT 3f + 1 4 5 5 Semi
Kafka 2f + 1 5 4 4 5

BFT-SMaRt 3f + 1 4 4 Semi 4

Nakamoto con-
sensus

2f + 1 4 Permissionless 4 4

3. TPMembers([̂pk]) := [pk]: The TP chooses the protocol participants from a list of

public keys [̂pk], and outputs a list of authenticated participant public keys [pk].

4. Consensus([[pkj]
n
j=1, ski , sti,BC(i)]ni=1) := BC′: All system participants with state sti

and a view of the blockchain BC(i)]ni=1), agree on a new blockchain BC′.

Practical Byzantine Fault Tolerance. Practical Byzantine Fault Tolerance [55] was

an exemplary consensus protocol for many others to follow, including ledger-based ones.

It assumes a partially asynchronous setting (i.e. offering eventual synchrony), where a

message is assumed to arrive at the destination node in the network after some unknown

but bounded time t. In each round, a leader orders messages and propagates them to all

nodes in the network in three phases. The leader is defined by a sequence of “views”, and

the backup nodes can propose a leader (or view) change if he has faulty behavior (timeout

exceeded). The protocol assumes n = 3f + 1, and has communication complexity O(n2),

which again is in practice not scalable for more than 20 nodes [56]. It also assumes static

membership of participating nodes.

Consensus algorithm categorization. Consensus algorithms can be categorized through

the following properties and assumptions:

1. Byzantine vs. Crash Fault Tolerant: The crash tolerant model of consensus does not

take Byzantine (i.e. malicious) behavior of nodes into account [57].

19

2. Synchronicity assumptions.

3. Incentive-compatible, i.e. motivations to participate in the system and follow its rules

[58].

4. Setup assumptions.

Nakamoto consensus. First introduced with Bitcoin [59], Nakamoto consensus [60] was

the first to enable agreement in a permissionless setting, with parties joining and leaving

the system. Its most prominent instantiation is Proof of Work, a computationally-intensive

puzzle where participants’ voting power is reflected by the ability to find a hash output with

specific properties in a brute-force fashion. Nakamoto consensus properties [52] include:

a) common prefix, i.e. blockchains maintained by the honest parties will possess a large

common prefix assuming suitably bounded adversarial power, and b) chain quality, i.e. a

bounded ratio of ratio of adversarial blocks in the chain of any honest player.

Blockchain layers. Blockchain based systems (e.g. cryptocurrencies) can be studied in

a layered approach [61]. The most common layers considered are the following:

• Network layer, which considers the sharing of the blockchain state, transactions and

consensus-related communication in a peer-to-peer fashion.

• Consensus layer, which considers the consensus algorithm and its elements, needed to

reach agreement on the blockchain state.

• Application (or transaction) layer, which considers the application-specific elements

such as account addresses, signatures and smart contracts.

Using this layered approach we can then consider potential blockchain security vulnerabili-

ties and mitigations, for instance eclipse attacks in the network layer [62], adversarial voting

power in consensus algorithms [52] or deanonymization techniques [3].

20

Chapter 3: A new private and auditable distributed payment

scheme

3.1 Introduction

As discussed in Chapter 1, privacy preserving distributed payment schemes focus on

improving user privacy, but typically at the cost of generating new regulatory concerns,

as in a “private” ledger, the transactions cannot be subject to any level of auditing (e.g.

tracing illegal behaviors).

In this chapter we present MiniLedger as a solution for a distributed privacy-preserving

and auditable payment system. MiniLedger not only guarantees the privacy of transac-

tions, but also offers built-in functionalities for various types of audits by any external

authority. It is the first private and auditable payment system with storage costs indepen-

dent of the number of transactions. To achieve such a storage improvement, we introduce

pruning functionalities for the transaction history while maintaining integrity and auditing.

We provide formal security definitions and a number of extensions for various auditing levels.

Our evaluation results show that MiniLedger is practical in terms of storage, requiring as

low as 70KB per participant for 128 bits of security, and depending on the implementation

choices, can prune 1 million transactions in less than a second.

The work presented in this chapter has been published in [26].

Our contributions. MiniLedger is the first space efficient, distributed private payment

system that allows an authorized set of participants to transact with each other, while

also allowing for a wide set of auditing by consent operations by any third party auditor.

We provide formal, game based definitions and a construction that relies upon a number of

cryptographic primitives: a consensus protocol, semi-homomorphic encryption, compact set

21

representation techniques (cryptographic accumulators) and non-interactive zero-knowledge

proofs (NIZKs).

At a high level, MiniLedger consists of n Banks transacting with each other through

a common transaction history, or else a ledger L which is maintained by a consensus mech-

anism (orthogonal to our work). The ledger is modeled as a two-dimensional table with n

columns, one for each participating Bank, and rows representing transactions. Whenever

Bank Bj wishes to send funds of value v to another Bk, it creates a n-sized vector containing

(semi)homomorphic encryptions and NIZK proofs which is appended in L. Bj encrypts the

value that is sent to each participating Bank in the system using each receiving Bank’s

public key, i.e. the encrypted values would be v for Bk, −v for Bj and 0 for any other

Bank. These encryptions provide privacy in MiniLedger since they hide values as well

as the sender and recipient of each transaction, while still allowing all participating Banks

to decrypt the value that corresponds to them and to compute their total assets at any

point. This overcomes the need for any out-of-band communication between Banks which

created security issues in previous works (ref. Section 3.3.2). Finally, the included ZK

proofs guarantee that transactions are valid without revealing any information.

MiniLedger provides auditability by consent. Any third party auditor with access to

L can ask audit queries to a Bank and verify the responses based on the public information

on L. The simplest audit is to learn the value of a cell in L, i.e. the exact amount of funds

a Bank received/sent at any point. This basic audit can be used to derive more complex

audit types as we discuss in Section 3.4.2, such as transaction history, account balance,

spending limit etc., without disclosing more information to the auditor than needed.

Space Efficiency. The main innovation of MiniLedger lies in the maintenance and storage

of L. In previous auditable schemes (such as zkLedger [19]) the full L needs to be stored

at any time and by all participants. The challenge in MiniLedger design was compacting

the ledger while maintaining security and a wide set of auditing functionalities. As noted

above, completely erasing transaction information would make auditing impossible (since

an auditor cannot possibly audit something that no longer exists). MiniLedger employs

22

a smart type of transaction pruning: participating Banks can prune their own transaction

history by computing a provable, compact representation of their previously posted history

and broadcast the resulting digest to the consensus layer. Once consensus participants agree

to a pruning operation (i.e. verify the digest as a valid representation of the Bank’s history),

that history can be erased from L and thus by all system participants (except the pruning

Bank itself which always need to store its own transaction history locally). Auditing is still

possible since a compact digest of transaction information is always stored in L and the

Bank under audit can prove that the revealed values correctly correspond to the digest.

As a result, the size of L in MiniLedger can be nearly constant (i.e. independent of the

number of transactions that ever happened).

Our compact transaction history representation can lead to multiple additional benefits

(besides obviously reduced storage requirements). First, a compact L makes addition of

new system participants (i.e. Banks) much more efficient (typically, new parties need to

download the whole L requiring large bandwidth and waiting time). Then, although the

structure of L does not allow for a very large number of participating Banks n (as the com-

putation cost of a single transaction is linear in n), the compactness of L allows augmenting

MiniLedger with more fine-grained types of auditing and enabling audits in a client level

(instead of a Bank level). We present MiniLedger+, an extension that serves a much

larger user base in Section 3.4.1.

Finally, we implement a prototype of the transaction layer of MiniLedger and evaluate

its performance in terms of transaction costs, pruning costs and size of L which we estimate

to be as low as 70KB of storage for each Bank. We show that transaction computation cost,

for a system with 100 Banks, takes about 4 sec, while transaction auditing is less than 5 ms,

independent of the number of Banks. Transaction computation costs increase linearly to the

number of Banks (as in zkLedger) but by optimizing the underlying ZK proofs we achieve

some small constant improvement. Although the linear transaction computation cost might

still seem high, we note that using our MiniLedger+ extension, a small number of Banks

can serve a very large user base. We perform experiments on two different types of pruning

23

instantiations, one using Merkle trees [48] and one using batch RSA accumulators [47].

Both result in pruning measurements that are independent of the number of participating

Banks. Our experiments show that we can prune 1 million transactions in less than a

second using Merkle trees and in about 2 hours using the RSA accumulator, and can

perform audits in milliseconds in the same transaction set. We also show that we can audit

multiple transactions at a time more efficiently with the RSA accumulator, and can create

audit openings for all transactions in less than a millisecond with a single exponentiation,

assuming pre-computation of the necessary witness. As we show in Section 3.5, the above

trade-offs between the two instantiations suggest that the eventual choice is up to the

deployment use-case of MiniLedger.

Related Work. We present an non-exhaustive overview of related works, and point the

reader to our Systematization of Knowledge work [63] for a more extensive review.

Anonymous distributed payment systems. Zcash [5], is a permissionless protocol hiding both

transacting parties and transaction amounts using zero knowledge proofs. Other notable

systems are CryptoNote and the Monero cryptocurrency [6], based on decoy transaction

inputs and ring signatures to provide privacy of transactions within small anonymity sets,

and Quisquis [7] which provides a similar anonymity level to Monero but allows for a

more compact sized ledger. Zether [64] is a smart contract based payment system which

only hides transaction amounts. Mimblewimble [65] uses Confidential Transactions [66]

to hide transaction values in homomorphic commitments, and prunes intermediate values

from the blockchain after being spent (which might be insecure in other UTXO systems

such as Bitcoin), improving its scalability. In the permissioned setting, Solidus [8] allows

for confidential transactions in public ledgers, employing Oblivious RAM techniques to hide

access patterns in publicly verifiable encrypted Bank memory blocks. This approach enables

users to transact in the system anonymously using Banks as intermediaries.

Adding auditability/accountability. A number of Zcash extensions [18,68,69] proposed the

addition of auxiliary information to coins to be used exclusively by a designated, trusted

authority for accountability purposes. While this allows for a number of accountability

24

Table 3.1: Confidential payment schemes comparison. By 4S we denote set anonymity, 4T

auditing through a TP and 4K through “view keys” (which reveal all private information
of an account). By O: permissionless and C: permissioned we refer to the set of parties that
participate in the payment scheme and not the underlying consensus.

Record Anonymity Auditing Permission Pruning

Zcash [5, 18] UTXO 4 4T O 5

Monero [6,67] TXO 4S 4K O 5

Quisquis [7] Hybrid 4S 5 O 4

MW [65] UTXO 5 5 O 4

Solidus [8] Ac cnt 4S 5 C 5

zkLedger [19] Accnt 4 4 C 5

PGC [35] Accnt 5 4 O 5

Zether [64] Accnt option 5 O 5

MiniLedger Accnt 4 4 C 4

functionalities, it suffers from centralization of auditing power. Additionally, all such works

inherit the underlying limitations of Zcash such as the need for trusted setup and strong

computational assumptions. Traceable Monero [67] attempts to add accountability fea-

tures on top of Monero. In a similar idea to Zerocash, a designated “tracing” authority

can link anonymous transactions with the same spending party and learn the origin or

destination of a transaction. The tracing authority’s role can again be distributed among

several authorities to prevent single point of failure and distribute trust. PRCash [20] aims

to achieve accountability for transaction volume over time. A regulation authority (can

be distributed using threshold encryption) issues anonymous credentials to the system’s

transacting users. If transaction volume in a period exceeds a spending limit, the user can

voluntarily deanonymize himself to the authority to continue transacting. PRCash however

only focuses on this specific audit type. zkLedger presented a unique architecture for im-

plementing various interactive audit types in a permissioned setting, but its linear-growing

storage requirements in terms of transactions make it impractical for real deployment. Ad-

ditionally, it assumes transaction values are communicated out-of-band, creating an attack

vector that could prevent participants from answering audits. Fundamentally, the require-

ment of communicating values out-of-band defeats the whole purpose of its construction.

25

We discuss details of these shortcomings in the full version of our paper [70]. We also note

an extension to zkLedger using private swaps [71] for supporting asynchronous submission

of transactions, which however is orthogonal to our work.

Finally, some works attempt to provide auditability and accountability in an organiza-

tion rather than in an account level. For instance, [17, 72] propose accountability mecha-

nisms for cryptocurrency exchanges, enabling them to prove their solvency based on Merkle

Trees and range proofs. A standard has been recently proposed for such functionalities in

[73]. Also [74, 75] proposed accountability solutions for general public records using public

ledgers or blockchains.

In Table 3.1 we summarize properties of private payment schemes and refer the reader

to [63] for a systematization of knowledge on auditable and accountable distributed payment

systems.

Prunable and stateless blockchains. Given the append-only immutability property for most

ledgers, the concern for ever-growing storage requirements in blockchains was stated even in

the original Bitcoin whitepaper [1], which considered pruning old transaction information

without affecting the core system’s properties. Ethereum [76], being an account-based

system, supports explicit support of “old state” pruning as a default option, and defers

to “archival” nodes for any history queries. Coda (Mina) [77] is a prominent example

of a stateless (succinct) blockchain, which only needs to store the most recent state with

recursive verifiability using SNARKs. Accumulators and vector commitments have also been

proposed to maintain a stateless blockchain [47, 78]. All such approaches however might

negatively impact auditability and are therefore not directly applicable in our setting.

3.2 MiniLedger model

We consider the following system participants: a Trusted Party TP, a set of consensus

participants SCN, a static set of n Banks with IDs defined by [Bj]
n
j=1 (known to everyone)

and an arbitrary number of Auditors A. Each Bank has a key pair [(pkj , skj)]
n
j=1 and an

26

B1

C
on

se
n
su

s

State Usr DB

Ledger

A
u
d
it

or
s

B2

State Usr DB

1

2

34

5

Figure 3.1: MiniLedger overview. “State” is a private database for each Bank and UsrDB
is an optional private database for Bank’s clients. Banks read from Ledger to create or
prune transactions (1) and forward the transaction creation or pruning output to consensus
(2). Consensus verifies and updates the Ledger (3). Auditor read Ledger (4) and interact
with Banks to audit transactions (5).

initial asset value [vj]
n
j=1. Banks maintain an internal state [stj]

n
j=1. We denote transactions

by txi where i represents the transaction’s index. We store transactions in a public ledger

L maintained by a consensus layer CN and stored by all banks.

We summarize the role of each participant in MiniLedger and provide the architecture

overview in Figure 3.1:

• TP is a trusted entity which runs an one-time setup to instantiate the system public

parameters and verifies the initial assets of each Bank. TP could be replaced by an MPC

protocol (i.e [79]) executed by the Banks.

• Banks generate transactions tx that transfer some of their assets to one or more other

Banks, while hiding the value and the transacting parties. Transactions are sent to the

consensus layer CN (via an anonymous communications protocol, i.e Tor) and if valid

are appended on L. Banks can prune their transaction history on L and “replace” it

by a digest D. The pruning Bank needs to send D to CN (incentives for the Bank to

perform the pruning operation are orthogonal to our construction) and is responsible1to

keep a copy of the pruned transactions in its private database “State” . If D is valid, CN

participants update L by deleting the pruned transactions and replacing them by D.

• Auditors, by observing the ledger, can audit the Banks at any point for any set of

transactions through interactive protocols. Auditors should be able to audit the value

1Failure to locally store transaction history can lead to audit failures.

27

of a single transaction or a subset of transactions, whether these transactions are still in

L or have been pruned.

We now state the assumptions required in MiniLedger and then describe our security

and privacy goals.

Assumptions. We focus on the transaction layer and consider issues with underlying

consensus and network layers and their mitigations orthogonal to this work. Specifically,

we assume the fundamental consensus properties, as defined in Sec. 2.2, always hold. On

a network level, we assume a malicious Bank cannot block another Bank’s view (Eclipse

attacks). In addition we assume that transactions are sent to all Banks using anonymous

communication channels to preserve anonymity of the sending and the receiving Bank(s).

We do not require out-of-band communication between Banks.

The “race conditions” problem in CreateTx(), where different transactions might be

created concurrently, is considered orthogonal to our work. We can either assume all

transactions are submitted to consensus for verification in a synchronous manner (i.e. no

“mempool” functionality), or can adopt an existing solution that uses an atomic exchange

protocol, proposed for zkLedger in [71]. Finally, for the sake of simplicity, we assume the

set of participating Banks is static but it is easy to extend our system to dynamically

add/remove Banks. We also assume the Random Oracle model to convert our ZK proofs

to non-interactive.

Security Goals. MiniLedger should satisfy the following properties (formally defined in

a game-based fashion in Sections 3.6.1, 3.6.2):

Theft prevention and balance: When spending, we require that a) transaction is authorized

by sending Bank, b) after spending, Bank’s balance decreases by the appropriate amount

and c) sending Bank cannot spend more than its total assets.

Secure pruning: Ledger pruning, which is executed in a user base, outputs a digest that a)

is only created by the respective Bank, b) contains the correct transactions in the correct

order, and c) does not contain bogus transactions. Ultimately secure pruning prevents

tampering with ledger history.

28

Ledger correctness: The ledger only accepts valid transactions and pruning operations.

Correct and Sound Auditability: An honest Bank following the protocol can always answer

audits correctly and convince an Auditor, while an Auditor always rejects false claims from

a malicious Bank.

Privacy: The ledger hides both the identities of transacting parties and values of transac-

tions from any external observer (except auditors who learn specific information during the

auditing protocol).

3.3 MiniLedger construction

Overview. We consider n Banks that transact with each other in an anonymous and au-

ditable way by posting data in a common ledger L (a two-dimensional table with n columns,

one for each participating Bank, and a number of rows which represent transactions). The

ledger is maintained by consensus participants, who verify every submitted transaction, and

is stored by all Banks. The Banks could be running consensus themselves, or out source

this operation to any external set of consensus parties.

For each txi, the sending Bank (i.e. the transaction creator) creates a whole row in L

which includes twisted ElGamal encryptions Cij = (c1, c2) that hide the transferred value

vij that corresponds to each cell (i, j). For instance, if we assume that there’s only one

receiving Bank in a transaction, the sending Bank would compute an encryption of −v for

its own cell, an encryption of v for the receiver cell, and a number of encryptions of 0 for

the rest of the cells. This makes the transmitted values indistinguishable to any external

observer due to ElGamal IND-CPA security(assuming the sender uses different randomness

values for each encryption). Additionally, the sending Bank accompanies each encryption

with a NIZK proof π to prevent dishonest Bank behavior as discussed in details below. This

specific ledger structure allows an external auditor to audit for a value sent/received by a

Bank at any given point, with the Bank replying with a value v and a ZK proof πAud for

its claim. This basic audit protocol can be extended to more complex queries (such as total

29

assets held by a Bank or if a transaction exceeds a set limit) as we explain in Section 3.4.2.

A straightforward implementation of such a transaction table, as done in zkLedger, leads

to a ledger L that grows linearly to the number of posted transactions. This makes schemes

like zkLedger hard to adopt in practice, since every single participant would have to store

a table of size n times the total number of transactions that have ever occurred. Besides

storage costs, the overall computational performance would also degrade even more over

time.

Reducing storage costs. The main idea for MiniLedger, is that each Bank Bj peri-

odically initiates a pruning operation, which prunes (or “compacts”) all transactions in its

corresponding column on L (this is in contrast to typical consensus pruning, where nodes

may be offline and have their transaction history in the public ledger pruned without their

consent). When a Bank performs a pruning operation, it has to publish a digest D contain-

ing the pruned transactions. The consensus layer will first verify that D is indeed a valid

digest, i.e. contains the transactions to be pruned, and then, come to an agreement about

the pruning operation. Note that Bj is still responsible for maintaining a private copy of all

its pruned transactions, however, there are great storage savings for the public version of

the ledger L which everyone in the system has to maintain. In other words, with each Bank

pruning its own transaction history, the whole ledger is effectively “sharded” to all Banks,

where each Bank is responsible for maintaining a correct copy of its own history, while the

public ledger only contains the compact representation Dj of each Bj ’s transaction history

(as well as a few recent transactions that might have not been pruned yet). We note that

the cost of a pruning operation depends on the number of transactions to be pruned but

is independent of the number of participating Banks n and can be amortized based on the

pruning frequency.

When Bj is audited for a pruned (i.e. not publicly visible) transaction value vij , it would

have to present the needed data to the auditor by recovering it from its private copy of its

transaction history. In addition, it would have to prove to the auditor not only that this

data is contained in D, but also that it had been posted on the specific row i (i.e. maintain

30

ordering).

We implement this pruning operation using cryptographic accumulators since they

achieve a short, constant size representation of D. We require schemes which are (a) addi-

tive, i.e. have an update functionality that enables a Bank to prune additional transactions

and update an already published D by adding the newly pruned ones, (b) positive, i.e. allow

for proofs of membership but also capable of providing a “position”/“ordering” proof, and

(c) trapdoorless, i.e. nobody has a trapdoor to create fake proofs of membership.

3.3.1 Our construction

For our construction we assume the following building blocks: the “twisted” vari-

ant of additive ElGamal encryption (SetupTEG,GenTEG,EncTEG, DecTEG), an EU-CMA

signature scheme (SignGen,Sign,SVrfy), an additive, positive cryptographic accumulator

(AccSetup, Add, MemWitCreate, MemWitUp,VerMem) with additional properties as dis-

cussed above, the Pedersen commitment scheme (ComGen, Com,Open), a consensus protocol

Consensus and a NIZK proof system. The phases of MiniLedger work as follows:

Setup: Setup can be executed with the help of a trusted third party or via an MPC protocol

amongst Banks.

1. SysSetup{TP(1λ)↔ [Bj(vj)]
n
j=1}. This interactive protocol is executed between TP and

a set of n Banks. TP sets as κ the number of bits that can represent a value and verifies the

initial asset value vj for each Bank . TP generates the public parameters for the accumulator

by running AccSetup(), the key parameters of the ElGamal variant encryption scheme by

executing SetupTEG() (which are also used for the Pedersen commitment scheme), the

consensus protocol parameters by running TPCSetup, and the joined set of parameters

denoted as pp is sent to all Banks. Each Bank generates an ElGamal key pair (pkBj
, skBj

)

through GenTEG() and sends pkBj
to TP. Finally, TP encrypts the initial values of each

Bank by running C0j = (c
(0j)
1 , c

(0j)
2) ← EncTEG(pkBj

, vj)
2. Then, it initializes a “running

2To simplify notation, from now on we will drop the superscripts from the two parts of Elgamal ciphertext,
i.e., we will simply write C0j = (c1, c2).

31

value total” which starts as Q0j = C0j and will hold the encryption of the total assets

of each Bank at any point. The vector [Q0j , C0j]
n
j=1 consists of the “genesis” state of the

ledger L along with the system parameters pp containing the key parameters and all Bank

public keys. At any point, the ledger L is agreed by the consensus participants and we

assume that all Banks (whether participating in consensus layer or not) store L.pp and L

are default inputs everywhere below.

Transaction creation:

2. txi ← CreateTx(skBk
, [vij ,]

n
j=1). This algorithm is run by Bank Bk wishing to transmit

some (or all) of its assets to other Banks in L. For each Bj in L (including itself), Bk executes

Cij ← EncTEG(pkBj
, vij) and computes Qij → Q(i−1)j · Cij . In order to prove balance,

similarly to [19], Bk should pick randomness values for the ElGamal variant encryptions

such that
∑n

j=1 rij = 0. Then, the sending Bank Bk generates a NIZK πij ∀j ∈ (1, ..n)

which proves the following (the exact description of πij can be found in Section 3.7):

Proof of Assets: Shows that either a) Bj is receiving some value (vij ≥ 0), or b) Bj is

spending no more than its total assets (
∑i

k=1 vkj ≥ 0) and within the valid range after

transaction execution, while proving knowledge of its secret key skj showing it authorized

the transfer. In both cases, an auxiliary commitment cmij is used which commits to either

vij or
∑i

k=1 vkj , so the proof includes a single range proof for the commitment value to

reduce computational costs, as the range proof is the most computationally expensive part

of π.

Proof of Consistency: Ensures consistency for the encryption randomness r in c1 and c2 in

both cases of the previous sub-proof, which guarantees correct decryption by Bank k.

The transaction txi = [Cik, cmik, πik, Qik]
n
k=1 is sent to consensus layer CN.

3. VerifyTx(txi) := bi. Verify all ZK proofs [πj]
n
j=1, check that

∏n
j=1 c

(ij)
2 = 1 (proof of

balance) and that Qij = Q(i−1)j · Cij . On successful verification output 1, else output ⊥.

Transaction pruning:

4. (Dβj , st
′
j , σj) ← Prune(stj) This algorithm is executed by Bj when it wishes to prune

32

its transaction history of depth q = β − α and “compact” it to an accumulator digest Dβj ,

where α is the latest digest and β is a currently posted row number (usually a Bank will

prune everything between its last pruning and the latest transaction that appeared in L).

It parses Cij from each txij . It fetches its previous digest Dαj (if α = 1, sets D → Dαj

as the initial accumulator value where A is defined from pp). Then ∀Cij , i ∈ [α, β] it

consecutively runs accumulator addition Add(D(i−1)j , (i ‖ Cij)) (note the inclusion of index

i which preserves ordering of pruned transactions in Dj). Finally it stores all transaction

encryptions [i, Cij]
β
i=α to its local memory, updates stj to st′j , computes σj ← Sign(Dβj)

and sends Dβj , σj to CN. Note that Dβj does not include proofs π, and pruning breaks

proofs of balance in rows for all Banks. Still “breaking” these old proofs is not an issue, as

they have already been verified.

5. PruneVrfy(Dβj , σj) := bj On receipt of Dβj , locally executes Prune() for the same trans-

action set to compute D′βj . If D′βj = Dβj (given the accumulator is deterministic) outputs

1, else outputs ⊥.

We note that after a successful pruning operation (i.e. one that is agreed upon in the

consensus layer), all system participants that store L can delete all existing data in cells

(i, j)∀i < β and just store Dβj along with the latest Qβj .

Consensus protocol: This is handled in the consensus layer CN with its details orthogonal

to our scheme. Similar to typical blockchain consensus, participants will only update L with

a new tx or D if this is valid according to the corresponding verification algorithms (i.e. in

Bitcoin, consensus participants validate transactions before posting them in L).

6. Consensus(tx or D) := L′. Runs the consensus protocol among SCN to update the ledger

with a new tx or pruning digest D after checking their validity. If consensus participants

come to an agreement, L is updated to a new state L′.

Auditing: Our auditing protocols below include a basic audit for a value v (that has either

been pruned or not) and a set’s sum of such values (which might be all past transactions,

thus auditing Bank’s total assets). These audits are interactive and require the Bank’s

33

consent. MiniLedger can support additional audit types and/or non-interactive audits as

we discuss in Section 3.4.2.

7. Audit{A(Cij) ↔ Bj(skj)} is an interactive protocol between an auditor A and a Bank

Bj . In this basic audit, A audits Bj for the value vij of a specific transaction txij (that

has not been pruned from L so far), encrypted as Cij on the ledger L. Bj first decrypts

the encrypted transaction through DecTEG() and sends vij to A, as well as a NIZK πAud :

{(skj) : c2/g
vij = (c1)1/skj}(c1, c2, vij , pkj , g, h). Then A accepts the audit for vij if πAud

successfully verifies.

8. AuditSum{A([Cij]
β
i=α) ↔ Bj(skj)} is an interactive protocol between an auditor A and

a Bank Bj . Here A audits Bj for the sum of the values
∑β

k=α vkj for transactions txαj up

to txβj (that have not been pruned from L so far). This protocol is a generalization of the

Audit{} protocol outlined above, (with Audit{} having as inputs (
∏β
i=αCij) and

∏
denoting

direct product for ciphertexts c1, c2), because of ElGamal variant additive homomorphism.

Note that although in this protocol the transactions are assumed to be consecutive for

simplicity, its functionality is identical if the transactions are “isolated”. Also if indices

α = 1 and β equals to the most recent transaction index (and no pruning has happened in

the system), the audit is performed on the Bank’s total assets.

9. AudPruned{A([(i, j)]γi=α, [Cij]
β
i=γ)↔ Bj(skj)} is an interactive protocol between an audi-

tor A and a Bank Bj , where transactions [txij]
γ
i=α have been pruned from L (and thus the

auditor only knows their indices and nothing else), and transactions [txij]
β
i=γ which are still

public in L (i.e. not pruned) and thus the auditor still sees their encryptions. This proto-

col generalizes AuditSum{}. It allows the auditor to audit Bj for: (a) specific transactions

(pruned or not) and, (b) sums of assets (pruned or not). For case (a), besides auditing a

transaction with index in [γ, . . . , β] which is still in L, the auditor can also audit Bj for a

specific transaction that has been pruned from L (i.e. ask: “Which was the value of the

i-th transaction?”). The Bank would respond with the corresponding Cij and depending

34

Table 3.2: MiniLedger Architecture and Pruning.

(a) Ledger state before pruning, assuming B1 had
pruned before at tx10.

B1 ... Bn
tx1
. . .
tx9

D9,1, Q9,1 ...

tx10
C10,1 = (c1 = pk1

r10,1 , c2 = gv10,1hr10,1)
π10,1, cm10,1, Q10,1

...

tx11
C11,1 = (c1 = pk1

r11,1 , c2 = gv11,1hr11,1)
π11,1, cm11,1, Q11,1

...

(b) Ledger state after B1 prunes at tx12. Digest D11,1

represents C10,1, C11,1 and ciphertexts that were rep-
resented in D9,1.

B1 ... Bn
tx1
. . .
tx11

D11,1, Q11,1 ...

tx12
C12,1 = (c1 = pk1

r12,1 , c2 = gv12,1hr12,1)
π12,1, cm12,1, Q12,1

...

on the underlying accumulator used, Bj would also provide a proof that Cij is a member of

its pruned history Dj with index i. For case (b), an auditor can audit the total (or a range

of) assets of Bj no matter what transaction information of Bj remains on L. Auditing total

assets works as follows: Bj fetches the stored transaction encryptions [Cij]
γ
i=α from its local

memory stj , computes [wij]
γ
i=α ← MemWitCreate(Dj , [Cij]

γ
i=α, stj)

3 . Then A reads Dj

from L and executes VerMem(Dj , (i ‖ Cij), wij)∀i ∈ (α, γ), outputting [bij]
γ
i=α. For every i,

if bij == 1 it executes the Audit{} protocol with Cij as input.

10. AudTotal{A(Qij) ↔ Bj(skj)} is equivalent to Audit{} for auditing Bj ’s total assets∑m
i=1 vij instead of a single vij .

We informally state the following theorem for the security of our scheme and provide

proof sketches in Section 3.6.3.

Theorem 1. Assuming the security of the ElGamal variant, Pedersen commitments, NIZK,

Accumulators and Consensus properties, MiniLedger construction satisfies our security

definitions as given in Section 3.6.2.

3When using batch RSA accumulator as we discuss later, we don’t send a set of witnesses but a single
witness for all encryptions.

35

3.3.2 Discussion and comparisons

Although MiniLedger architecture resembles zkLedger [19], there exist crucial differ-

ences that make MiniLedger superior both in terms of efficiency and security. We give an

overview below, and a thorough analysis in the full version of our paper [70].

Storage. As already discussed, MiniLedger by leveraging consensus properties applies a

pruning strategy which achieves O(n) storage requirements for L, compared to O(mn) for

zkLedger (wherem is the total number of transactions ever happened, and is a monotonically

increasing value).

Security. MiniLedger does not require any out-of-band communication, as all needed

information is communicated through the ledger using encryptions. On the other hand,

zkLedger assumes if a Bank is actually receiving some value in a transaction, it should be

notified by the sending Bank and also learn the associated value (which was hidden in the

commitment) through an out-of-band channel. zkLedger however, does not require receiving

Banks to be directly informed on the randomness (i.e. commitment cmij is never opened),

since they can still answer the audits correctly using the audit tokens, provided that it

knows its total assets precisely. This assumption is very strong and can potentially lead to

attacks, such as the “unknown value” attack where a malicious sending Bank informs the

receiving Bank on a wrong value (or does not inform it at all), which then prevents the re-

ceiving Bank from answering audits or even participating in the system. More importantly,

with transaction values communicated out-of-bank, the randomness could be included with

them as well. This would make the system trivial and defeat the purpose of most of its

architecture, as the ledger would consist of just Pedersen commitments and proofs of assets.

In this version the above attack would not work assuming all Banks are always online and

verify the openings in real time, which is also a very strong assumption.

Computation. MiniLedger optimizes ZK proof computation over zkLedger by combining

disjunctive proof of assets and proof of consistency into a single proof, giving an efficiency

gain of roughly 10% in space and computation. (We note that this optimization could also

benefit zkLedger as discussed in Section 3.7.)Additionally, while zkLedger’s computation

36

Table 3.3: MiniLedger+ public ledger L. The extra information to be stored is denoted
in blue color.

B1 ... Bj ...
...

txi
Cij = (c1 = pk1

rij ,c2 = gvijhrij)
πij , cmij, Dij , Qij , Rij , Hij

performance degrades over time (as the monotonically-increasing ledger requires more op-

erations to construct transactions), MiniLedger through the running totals Q achieves

steady optimal performance.

On setup parameters. We argue that even with the use of a TP, the trust level is rather

low. The parameters of ElGamal are just random generators (similar to Pedersen com-

mitments in zkLedger) and for certain accumulator instantiations (such as Merkle trees)

there is no trapdoor behind the parameter generation. Finally, the consensus setup essen-

tially consists of choosing trapdoorless parameters (i.e. block specifics etc) and the set of

participating parties. Thus, the only trust placed in TP is to pick a valid set of partici-

pants – something that all participants can check, exactly as in zkLedger. In comparison to

zkLedger (given that ElGamal parameters are the same as Pedersen commitment parame-

ters), the only additional setup is that of the accumulator which as discussed, for certain

instantiations can be completely trapdoorless.

3.4 MiniLedger security and extensions

3.4.1 Adding clients for fine-grained auditing

The compact nature of MiniLedger allows for fine-grained auditing where Banks rep-

resented on the ledger can serve as an intermediary for a set of clients, allowing them to

exchange values using their Banks as intermediaries. We overview this system which we

call MiniLedger+ below and provide its detailed construction in Section 3.8.

Protocol overview. Each Bank Bj maintains a private ledger of clients LBj (denoted as

37

“UsrDB” in Figure 3.1), independent of the public ledger L. For each client m, Bj stores

its transactions in encrypted format. These clients can be dynamically added or removed

from LBj . Inspired by [8], each client is uniquely and publicly associated with a single Bank

as f(pkjm) = Bj where f is a well-defined mapping of public keys pk to Banks.

When a client of Bs wishes to transfer value v to another client in the system, she

creates a transaction that includes a transaction id, encryptions of the recipient client’s pk ,

the receiver’s Bank Br and v, as well as appropriate NIZKs to prove consistency with the

protocol. This information is recorded on the private ledger LBs . Then, Bs, constructs a

transaction on L that transfers v to Br. In addition to the transaction information required

for standard MiniLedger, each cell will also contain an encryption of the recipient client’s

pk under pkBr , the transaction id, and NIZKs that prove that the correct value is sent to

the correct Bank. All this information will be concatenated and represented by Rij in L

(as shown in Table 3.3). Bs also computes a digest H of the constructed transaction using

a collision-resistant hash function H() and includes it in all cells of the respective row.

Note that information across rows in R, H is redundant but necessary to preserve ledger

indistinguishability. Finally, the receiving Br will perform the reverse steps to allocate the

value to its client. Bs might elect to aggregate many transactions of its clients into a single

one on L (recall that a transaction can have multiple receiving Banks, details in Section

3.8.4).

In MiniLedger+, monetary values are not owned by the clients themselves, but are

co-managed with the client and his respective Bank (as it happens in the actual banking

system), meaning that an honest Bank having total assets Σv represented in L, will always

have them distributed internally to its clients. As a result, Σv reflected in a column in L

should always match the sum of value sums for all clients in LBj . However since LBj is

private, the mechanism ensuring that this invariant holds will be reactive, in contrast with

the main ledger L where the mechanism is proactive. In other words, an auditor would have

to perform regular audits of the Banks to ensure they allocate the funds to their clients

correctly and follow the protocol. In Section 3.8 we describe this audit in detail, as well as

38

the extended threat model of MiniLedger+.

Auditors in MiniLedger+ can also perform audits at a client level as follows. Auditor

first asks Bj to present its private LBj and fully validates its correctness and consistency

with L as before. Then, the auditor performs audits on clients in a similar fashion as

with Banks in standard MiniLedger (i.e. audit single transactions, sums etc.). Note that

although the client is responsible for answering its audits correctly, Bj would be responsible

for any inconsistencies between LBj and L. We provide more details in Section 3.8.3.

Comparisons. MiniLedger+ has minimal storage overhead in L compared to MiniLedger.

Note that the additional entriesR andH in each column can still be pruned as in MiniLedger,

thus maintaining a ledger of constant size. The additional computation costs associated with

this extension are linear in the number of clients a Bank has, but can be made more efficient

by aggregating techniques. We provide an overview of these costs in Table 3.6 under Section

3.8.

Solidus [8] has a similar Bank-Client architecture but does not hide the identity of

transacting parties and does not offer auditability functionalities while employing expensive

ORAM operations. RSCoin [80] also has a similar paradigm of “mintettes” associated with

clients but without any privacy guarantees. Finally, [81] proposes a privacy-preserving pay-

ment UTXO-based system (as opposed to account-based in our work), which also supports

fine-grained auditing at a user level. In this work, there exists a powerful designated auditor

for each user, who can decrypt all user’s transactions, making system-wide deanonymiza-

tion possible in case auditors collude. The auditing costs are much greater compared to

MiniLedger+ and the protocol is overall much more complex while it does not support

different audit types such as total assets or value thresholds.

3.4.2 Additional types of audits

As shown in Section 3.3.1, MiniLedger basic audit functionality Audit{} is on the value

vij of specific transaction txij . Several more audit types can be constructed which reduce

to that basic audit. We discuss some of those below, and provide more details for audit

39

extensions in Section 3.9.2.

Full transaction audit: For an auditor to learn the full details of a transaction (sender,

receiver and values), they would have to audit the entire row (i.e. perform n audits on

vij ∀j).

Statistical audits: Audits such as average or standard deviation are supported by utilizing

“bit flags” to disregard zero-value transactions, proved for correctness in zero knowledge.

Value or transactions exceeding limit: Utilizing appropriate range proofs, an auditor

can learn if a sent or received value exceeds some limit t. Multiple range proofs can show

a Bank has not exceeded the limit over a time period.

Transaction recipient: The goal of this audit type is for a sending Bank to prove the

recipients for one of its transactions. While a Bank doesn’t know (and therefore cannot

prove) where a received value came from (unless learning it out-of-band as in zkLedger), for

outbound transactions the Bank can keep an additional record of its transaction recipients

in its local memory. As an example, for proving in txi that the Bank really sent vij to Bj ,

it could send this claim to the auditor who in turn would simply then audit Bj to verify

this claim.

Client audits: Audits in a client level (e.g. statistical audits or transaction limits) can be

performed similar to the respective audits in a Bank level, however the auditor needs first

to learn and verify the Bank’s private ledger LB as discussed in Section 3.4.1.

3.5 Evaluation

We implement a prototype of the transaction layer of MiniLedger in Python using the

petlib4 library to support cryptographic operations over the secp256k1 elliptic curve. We use

the zksk library [82] for the ZK and implement range proofs using the Schoenmakers’ Multi-

Base Decomposition method [83]5. The measurements were performed on Ubuntu 18.04 -

4https://github.com/gdanezis/petlib
5By using twisted ElGamal [35], MiniLedger is fully-compatible with Bulletproofs [41] which can further

reduce its concrete storage requirements.

40

https://github.com/gdanezis/petlib

i5-8500 3.0 GHz CPU - 16GB RAM using a single thread6. As we focus on the transaction

layer, we do not include measurements of the underlying consensus and network layers as

they are orthogonal to our work. We do however discuss the potential additional costs in

Section 3.5.

Accumulator Instantiation. A critical implementation choice is how to instantiate the

accumulator needed for the pruning operations. For efficiency reasons, we require schemes

with constant size public parameters and no upper bound on the number of accumulated

(i.e pruned) elements. We only consider schemes that have at most sublinear computation

and communication complexity (in the number of pruned elements) for opening/proving a

single transaction to the auditor and where the auditor’s verification cost is also at most

sublinear.

We first consider Merkle trees [48]. Assuming a Bank prunes q transactions, the Merkle

root provides O(1) representation in terms of storage with O(1) public parameters. Opening

and verification complexity of Merkle proofs for a single transaction audit involves O(logq)

hashing operations. However although hashes are relatively cheap operations, the over-

linear verification complexity might be a concern when auditing a series of transactions.

Finally, it should be noted that Merkle trees only support membership proofs.

We then consider the batch-RSA accumulator [47]. Given that all RSA typeaccumu-

lators can only accumulate primes p, we use a deterministic prime mapping hash function

(as in [47]) to enable accumulation of arbitrary inputs. The batch-RSA accumulator has

O(1) storage for its digest with O(1) public parameters as well. Proving membership for

a single element p in the standard RSA accumulator, requires the prover computing a wit-

ness w equal to the primes’ product in the accumulator without p (an O(q) operation as

shown in Figure 3.4), and the verifier checking that (gw)p = A where A is the current state

of the accumulator. However, in batch-RSA, the prover can reduce computation costs by

“batching” these operations for a set of elements (p1, p2, ...) which are in the accumulator

and provide a Proof of Knowledge of Exponent πPoKE : {(x) : (gw)x = A}(w, g,A) on the

6A basic implementation of MiniLedger is available at https://github.com/PanosChtz/Miniledger

41

https://github.com/PanosChtz/Miniledger

product x = p1p2... convincing a verifier without sending x (which is typically large) and

thus reducing communication costs. In our setting we use batch-RSA in auditing in order

to improve computational efficiency of membership proofs (when being audited for multiple

transactions) and we note that the Bank under audit does not need to include a PoKE, as

the auditor needs to recompute the prime mapping of the ciphertexts he is given by the

Bank anyway (this is a trade-off between PoKE computation cost for the Bank and higher

communication cost between Bank and Auditor). Through these techniques, batch-RSA

achieves the same complexity O(q) as when proving membership of a single element (while

Merkle Trees have O(`logq) complexity for ` elements). Consequently, the basic pruning

operations Prune() and PruneVrfy() are about two orders of magnitude more expensive com-

pared to Merkle trees as we show in Figure 3.3. However they are efficient when auditing

large amounts of transactions especially if auditing the total sum. Then, batching allows for

negligible computation costs for the proving Bank, and negligible audit verification cost for

a single transaction (which can enable audit extensions as discussed in Section 3.8). Thus,

choice between Merkle trees and batch-RSA accumulators ultimately relies on the use-case

requirements.

Finally, an alternative approach is the use of Vector Commitments [47,84,85]. However

these constructions although offering additional properties, either have linear or quadratic

public parameter costs [84,85] or are more expensive when proving and verifying membership

compared to Merkle trees or RSA accumulators, as we show on Table 3.7 in Section 3.10.

For our batch-RSA implementation, we use the SHA-256 hash function and the Miller

- Rabin primality test for hashing to prime numbers, and we use an RSA-3072 modulo to

maintain the same level of security [86]. We decouple the witness computation cost from

the proof of membership cost for the Bank, as the Bank might elect to pre-compute the

witnesses before its audit (assuming however that it does not prune again until the audit,

since that would require the witnesses to be recomputed again). Note the auditor needs to

run the hashing to prime mapping function again for all audited values (i.e. the auditor

cannot rely on the “honesty” of a Bank presenting pre-computed prime numbers for its

42

5 25 50 75 100

Number of Banks

0

2

4

T
im

e
(s

ec
) Tx create

Tx verify

5 25 50 75 100
Number of Banks

0

5

T
im

e
(m

s)

Tx audit Create Verify Storage Params

53ms 49ms 68KB 2KB

Costs per Bank

Figure 3.2: Transaction creation, verification and auditing costs.

101 102 103 104 105

Pruning depth q

101

104

T
im

e
(m

s)

RSA Accumulator

Merkle Tree

Figure 3.3: Pruning
computation cost

101 102 103 104 105

Pruning depth q

102

104

106

T
im

e
(m

s)

Figure 3.4: RSA witness
Generation cost

101 102 103 104 105

Pruning depth q

10−2

2× 10−2

T
im

e
(m

s)

RSA Accumulator

Merkle Tree

Figure 3.5: Audit open cost
for one tx

101 102 103 104 105

Pruning depth q

10−1

100

T
im

e
(m

s) RSA Accumulator

Merkle Tree

Figure 3.6: Audit verify cost

101 102 103 104 105

Batch length (for q = 100k pruned elements)

100

102

104

106

T
im

e
(m

s) RSA Accumulator

Merkle Tree

Figure 3.7: Batch audit
open costs

101 102 103 104 105

Batch length (for q = 100k pruned elements)

101

103

105

T
im

e
(m

s)

RSA Accumulator

Merkle Tree

Figure 3.8: Batch audit
verify costs

pruned transactions). For our Merkle tree implementation, we adopt a relevant python

library7, and we use SHA-256 as the underlying hash function.

Transaction Creation, Verification and Auditing. Every MiniLedger transaction

includes an ElGamal ciphertext C, a commitment cm, a NIZK π and a running total Q

for each Bank. Naturally, this results in linearly-increasing computation costs in terms

of number of Banks as shown in Figure 3.2 for both transaction creation and verification.

Note that storing the running total Q leads to constant transaction creation and verification

computational costs (for a fixed number of Banks), making total assets auditing much

more efficient. In contrast, zkLedger’s growing ledger size also implies linearly-increasing

NIZK proof verification costs, as the verifier would need to compute the product of all

7https://github.com/vpaliy/merklelib

43

https://github.com/vpaliy/merklelib

transaction elements for each Bank(applying our running total technique to zkLedger could

have analogous benefits). The transaction creation and verification costs are 53ms and

49ms respectively (for a single cell in L)and are roughly comparable with [19]. Note that

although we cannot directly compare different implementations, in Table 3.5 we show that

our more efficient NIZK requires less expensive operations.

Auditing any single value on the ledger takes about 4 ms as shown in Figure 3.2. This

is the cost for the complete auditing protocol, namely the decryption and proving cost for

the Bank and the verification cost for the Auditor. In contrast to [19], the auditing cost

is constant without being impacted either by the number of Banks or the number of past

transactions.

Transaction Pruning. We evaluate the computation requirements of the pruning opera-

tion which involves executing Prune() and PruneVrfy() to create the digest Dj . Our results

in Figure 3.3 show it is possible to prune and verify about 1 million transactions in less

than a second using Merkle trees and in about 2 hours using RSA accumulator. Note prime

number multiplication costs dominate the total costs (which also include hashing to primes

and an exponentiation) when the pruning depth becomes large. We also stress that these

computation requirements are independent of the number of Banks n in the system.

For transaction auditing in AudPruned{} interactive protocol, auditing opening and

verification costs are shown in Figures 3.5 and 3.6 respectively. As previously discussed, we

do not include the RSA accumulator’s witness creation costs (which can be pre-computed)

and are shown in Figure 3.4.

For auditing sums of values (i.e. “batch” auditing), the associated costs for opening and

verifying a 100K transaction digest are shown in Figures 3.7 and 3.8 respectively, with x-axis

representing the number of audited transactions. Note that for auditing 105 transactions

(i.e. the whole sum), RSA accumulator opening is significantly cheaper compared to Merkle

trees, as the audited Bank would only need to retrieve the respective transactions from its

local memory (which implies nearly O(1) cost) and send them to the auditor (who would

in turn need to recompute all primes and perform the exponentiation of their product).

44

Based on our evaluation results and the discussion above, the choice between Merkle

tree and batch RSA accumulator depends on use-case. Merkle trees fit a system expected

to incorporate sparse audits on individual transactions, while RSA accumulator is preferred

on deployments with frequent auditing on many transactions at a time (e.g. sums of assets

or value thresholds over a time period).

Storage Costs. The storage cost for L has a 64n-byte lower bound for the ElGamal

variant encryptions (which represent the running total Q), plus the needed storage for each

digest D and the system’s pp, assuming all n Banks have pruned their transaction history

and the ledger is made of a single row. Although during the system’s operation where

transactions are continuously appended on the ledger, its actual size will be more than

that lower bound, enforcing frequent pruning operations through appropriate incentives (or

penalties) will keep the size of the ledger close to its minimum. These savings in storage

costs are huge compared to [19] where all Banks would have to store a ledger of size O(nm)

where m is the total number of transactions that have happened since the system’s genesis.

Concretely, in our implementation each transaction’s communication and storage cost is

68KB per Bank, which includes the ElGamal variant encryption, the auxiliary commitment,

the NIZK and the running total. Note that we provide the actual memory footprint of our

implementation (which relies on the underlying libraries’ efficiencies) and not the theoretical

lower bounds. A MiniLedger instantiation including the necessary public parameters, one

transaction and a digest requires only 70KB of storage per Bank.

Network and Consensus Costs. As discussed in Section 3.2, MiniLedger focuses on

the transaction layer, thus consensus layer costs depend on the exact instantiation choice.

Any consensus protocol can be plugged to MiniLedger as long as it satisfies the basic

properties of consistency and liveness. Although we consider consensus orthogonal to our

implementation, we do recognize that its choice (along with network latency) ultimately

affects transaction throughput. All benchmarks performed so far focus on metrics inde-

pendent from consensus. Providing a full implementation of MiniLedger including a

45

Table 3.4: Consensus costs

Banks Peers Tx/s Network

10 80 21 LAN

100 4 2 WAN

consensus layer is out of scope, we note previous works [7,19,20,35] also take a similar ap-

proach on evaluation and do not include consensus measurements. For instance, zkLedger

[19] evaluation only takes network latency into account which is not useful without con-

sidering consensus costs (consensus is needed to guarantee agreement on L at any time).

To showcase an implementation scenario, we discuss below how MiniLedger could be im-

plemented using existing systems in the consensus layer and also provide some rough cost

estimations.

We chose Hyperledger, one of the most prominent distributed operating systems for

permissioned blockchains, to provide some estimated consensus measurements. Using Hy-

perledger Fabric with Kafka [87] as a permissioned consensus layer requires at least 0.5

seconds to complete a full consensus operation with 4 peers and 256-bit ECDSA [88]. We

previously discussed that Banks can store the ledger themselves and/or also have a “con-

sensus verifier” role in our system (recall that while they could run consensus themselves,

they do not have to, as we decouple consensus from Banks allowing any consortium of

parties for ledger maintenance). Thus, Banks could act as Hyperledger “clients”, “peers”

and “orderers” simultaneously, which would impact performance especially with a PBFT-

family consensus algorithm. For simplicity and efficiency, we consider Banks only acting as

“clients”, outsourcing ledger storage and consensus operations to an arbitrary number of

“peer” and “orderer” nodes respectively. These numbers are entirely dependent on the use-

case and do not affect MiniLedger performance or scalability. This separation between

Banks and consensus participants is quite natural. As another example, Diem [29], uses

similar architecture with MiniLedger (decoupled permissioned consensus and provider-

intermediated transactions [89]) but has different goals in terms of privacy and auditability.

46

Based on the Hyperledger evaluation, we derive conservative estimations of the expected

transaction throughput, shown in Table 3.4. These estimations are more than sufficient for

intra-Bank transactions in a deployed system (recall that any number of client-to-client

transactions in MiniLedger+ can be aggregated in a single MiniLedger transaction).

MiniLedger could also be imported in Diem, however the expected transaction throughput

is lower as it uses a Byzantine-tolerant consensus [90].

Although permissioned consensus generally seems more fitting to MiniLedger, permis-

sionless consensus could also be utilized. For instance, MiniLedger could be implemented

on top of an Ethereum smart contract, where Banks would be responsible to pay the respec-

tive gas fees. While technically any “Proof-of-X” consensus could be used, the underlying

game-theoretic aspects should also be considered.

Fine-grained Audit Extension. For MiniLedger+ we need to store extra informa-

tion on L, namely Rij and Hij for each entry. For consistency we use the same 256-bit hash

function as in our RSA accumulator. Rij has a total size of 512 bits, (excluding the size

of id), still pruning makes a ledger with the same lower bound possible as before. In Ap-

pendix 3.8 we derive the computation overhead for the sending Bank to create Rij roughly

equivalent to CreateTx() (in terms of number of clients and Banks respectively), showing

computation costs are doubled compared to basic MiniLedger. As the Bank only needs

to include additional information in D for each transaction, the effect on pruning costs for

L is negligible.

3.6 MiniLedger security

3.6.1 Scheme definitions

We define MiniLedger for a static set of n Banks with IDs defined by [Bj]
n
j=1. Each

Bank has a key pair [(pkj , skj)]
n
j=1 and an initial asset value [vj]

n
j=1. Banks maintain an

internal state [stj]
n
j=1. We assume that the set of participating Banks IDs, [Bj]

n
j=1, is

known to all system participants.

47

MiniLedger is composed of the following protocols:

• SysSetup{TP↔ [Bj]
n
j=1}: executed between TP and a set of Banks [Bj]

n
j=1 (or by Banks

through an MPC protocol). It verifies the initial values of Banks and outputs the system

parameters pp, and an initial ledger L with total system value vT =
∑n

j=1 vj . (We

assume that pp and L are default inputs everywhere below.)

• CreateTx(Bj , Bk, v): run by a Bank Bj , outputs transaction tx which transfers assets v

to Bank Bk
8.

• VerifyTx(tx): run by any party, verifies the validity of tx and outputs a verification bit b.

• Prune(stj): run by a Bank Bj , outputs a digest D containing a “compact” representation

of its transaction history and updates the Bank’s state to st′j .

• PruneVrfy(D): run by any party, verifies the validity of digestD and outputs a verification

bit b.

• Consensus(tx or D): is run by all consensus participants in SCN. On input a transaction

tx or a pruning digest D, the consensus participants will verify the transaction/digest

using the corresponding algorithms and update the ledger to L′.

• Audit{A ↔ Bj}: executed between a Bank Bj and an auditor A, where the auditor

audits a specific transaction (or a set of them) the Bank reveals the value(s) v of that

transaction (or set) to the auditor including a proof πAud of correct presentation of the

value(s) v.

• AudVrfy(v, πAud): executed by an auditor A to verify the validity of the proof πAud based

on the provided value v.

3.6.2 Security definitions

To define security we first describe the oracles provided to an adversary A. We assume

a challenger CH maintains a corrupted Bank list Tc and performs some “bookkeeping” for

8Here we assume a single receiving Bank for notational simplicity, but this algorithm can be easily
extended to support multiple receivers.

48

honest Banks /∈ Tc on oracle queries, where honest Banks have total assets vCH . This

bookkeeping includes the following: a) for CreateTx(), it appends the output transaction

tx to the ledger L, and b) for Prune(), it replaces the honest Bank’s transaction history

with digest D on L and updates the Bank’s state to st′j . Note that for security definitions

below that involve auditability, we only consider the basic audit on a transaction value -

for brevity we omit security definitions that involve more complex auditing.

• Oc(Bj): A corrupts Bank Bj and takes full control of it. Ocorr records Bj to Tc. This

oracle captures that A can corrupt honest Banks.

• Otx((Bj ,−vj), [Bk, vk]): A queries Otx to create a transaction which transfers vj from

Bank j (where j /∈ Tc) to recipient Bank(s) Bk. If Bank j has at least assets vj , Otx

executes CreateTx() outputting txi and runs bookkeeping, else it outputs ⊥. This oracle

captures that A can direct honest Banks to make specific (but valid) transactions of its

choosing.

• Oprn(Bj): A queries Oprn to prune the transaction history of Bj /∈ Tc. Oprn generates

digest D and runs bookkeeping. This oracle captures that A can prune the transaction

history of an honest Bank.

Definition 9 (Theft prevention and balance). For all security parameters λ, for all prob-

abilistic polynomial time adversaries A with oracle access to Oc,Otx:

Pr



pp← SysSetup{λ, [Bj]nj=1}, vt =
∑n

j=1 vi;

tx∗ ← AOc,Otx(pp) :{
(Bj /∈ Tc) ∨ (v∗t 6= vt) ∨ (Bj ∈ Tc,Bk /∈ Tc, v∗ > vA)

}
∧

VerifyTx(tx∗) = 1


≤ negl(λ)

where tx∗ is a transaction spending v∗ from Bj to Bk, vA the adversary’s total assets before

tx∗ and vt, v
∗
t the system’s total value before and after tx∗ respectively.

49

This property captures the requirements that: only the owner of the assets can spend

them, a transaction results in a decrease of sender’s assets by the value represented in the

transaction and that the sender cannot spend more than its total assets.

Definition 10 (Secure pruning). For all security parameters λ, for all probabilistic poly-

nomial time adversaries A with oracle access to Oc,Otx,Oprn:

Pr



pp← SysSetup{λ, [Bj]nj=1};

D∗ ← AOc,Otx,Oprn(pp) :
Bj /∈ Tc∨

(∃txBj ∈ L ∧ txBj /∈ D∗)∨

(∃tx∗Bj /∈ L ∧ tx∗Bj ∈ D
∗)

∧
PruneVrfy(D∗) = 1


≤ negl(λ)

where txBj denotes a transaction where Bj is involved in, and tx ∈ D∗ denotes repre-

sentation of a transaction in the digest.

In the above experiment, A wins if he creates a digest D∗ on behalf of an honest Bank

Bj , or if D∗ either does not contain a transaction txBj that exists in L 9 or contains a

transaction tx∗Bj that does not exist in L. This property captures the requirement that

digest outputs are only created by the respective Banks, that pruning operations contain

the correct transactions in the correct order, and do not contain bogus transactions.

Definition 11 (Ledger Correctness). For all security parameters λ, for all probabilistic

9A also wins if the transaction is indeed in D∗ but out of order.

50

polynomial time adversaries A with oracle access to Oc,Otx,Oprn:

Pr



pp← SysSetup{λ, [Bj]nj=1};

tx∗\D∗ ← AOc,Otx,Oprn(pp) : VerifyTx(tx∗) = 0 ∧ tx∗ ∈ L

PruneVrfy(D∗) = 0 ∧D∗ ∈ L




≤ negl(λ)

This property captures the requirement that only valid transactions or pruning opera-

tions are accepted on the ledger.

Definition 12 (Correct Auditability). For all security parameters λ, for all probabilistic

polynomial time adversaries A with oracle access to Oc,Otx and Oprn and for any honest

auditor A:

Pr



pp← SysSetup{λ, [Bj]nj=1};

AO(pp) :

∃Bj /∈ Tc ∧ ∃txBj∧

Audit{A(txBj)↔ Bj(v)} := πAud∧

AudVrfy(πAud) := 0


≤ negl(λ)

where txBj denotes a transaction where Bj is involved in and v is input of CreateTx() which

outputs txBj .

In the above experiment, after A has made a polynomial number of queries to the oracles

(which include generating transactions and pruning them), A wins if any honest Bank is

unable to correctly answer some audit. This property captures the requirement that any

Bank following the protocol should always be able to answer audits correctly.

Definition 13 (Sound Auditability). For all security parameters λ, for all probabilistic

polynomial time adversaries A with oracle access to Oc,Otx and Oprn and for any honest

51

auditor A:

Pr



pp← SysSetup{λ, [Bj]nj=1};

AO(pp) :

Bj ∈ Tc ∧ ∃tx∧

Audit{A(tx)↔ Bj(v
∗)} := πAud∧

v∗ 6= v∧

Vrfy(πAud) := 1


≤ negl(λ)

where v is input of CreateTx() which outputs tx and v∗ is any arbitrary value.

In the above experiment, after A has made polynomial number of queries to the oracles

(which include generating transactions and pruning them), A wins if it succeeds on cheating

an auditor when a corrupted Bank is audited for a transaction. This property captures the

requirement that an auditor cannot accept false audit claims.

Definition 14 (Privacy). For all security parameters λ, for all probabilistic polynomial

time adversaries A with oracle access to Otx and Oprn:

Pr



pp← SysSetup{λ, [Bj]nj=1}

b ∈ {0, 1}, Lb, L1−b ← CH;

StartLoop

tx, tx′ ← A(Otx,Oprn)b,(Otx,Oprn)1−b(pp)

CH(tx, tx′) : VerifyTx(tx),VerifyTx(tx′)

CH : tx → L′b, tx′ → L′1−b

End Loop :

b′ ← A,

b = b′



≤ 1

2
+ negl(λ)

In the above experiment, the challenger CH instantiates two ledgers L and L′ in the

setup phase and flips a bit. Then A queries two instances of oracles Otx and Oprn (each

52

uniquely associated with a ledger) a polynomial number of times. However A is only allowed

to query the same oracle type (i.e. it cannot query Otx and Oprn the same time). For each

query set, the challenger updates the two ledgers as chosen by b in the setup phase. Finally

A guesses b. The privacy property captures the requirement that the ledger hides both

transacting parties and the associated values.

3.6.3 Security proofs

We now informally argue about the security of Theorem 1.

Lemma 1. MiniLedger satisfies Theft prevention and balance under the assumptions of

ZK soundness, and hardness of the discrete logarithm problem.

Proof. We distinguish the following two cases:

Case 1 (theft prevention):

Case 1a: In case A can derive a secret key from a public key (i.e. discrete logarithm

hardness assumption does not hold), this immediately enables theft of funds.

Case 1b: In the case A can break ZK soundness, when outputting tx∗ can either a)

For π∗ = π∗L ∨ π∗R in tx∗, Ver(π∗R) = 1, R(x, sk) = 0 (i.e. output the π∗R component of the

OR proof π without knowing sk , or b) violate the range proof component of the proof π,

i.e. cm = gv
′
hr
′′ ∧ v′ ∈ [0, 2k, Ver(π∗R) = 1, v < 0 (v > 2k is equivalent to v < 0), thus

permitting committing to a negative value under an honest Bank (which effectively spends

from that Bank).

Case 2 (balance):

Case 2a: Winning the game by changing the system’s total value (i.e. having instan-

tiated a system with total value vt, construct a verifiable tx∗ which then results into system’s

total value v∗t 6= vt): A verifiable tx∗ implies
∏n
j=1 c

(ij)
2 = 1 =⇒ gv1+v2+..+vn+ehr1+r2+..+rn =

1, where e 6= 0, which implies A can find r∗ = r1 + r2 + ..+ rn 6= 0 such that hr
∗

= 1/gv
∗
t ,

which contradicts the hardness of the discrete logarithm problem.

53

Case 2b: Winning the game by spending more than the total assets: In the case A can

break ZK soundness, when outputting tx∗ he can violate the range proof component πr of

the proof π∗, i.e. for πr : cm = gv
′
hr
′′ ∧ v′ ∈ [0, 2k, Ver(π∗R) = 1, v < 0 (v > 2k is equivalent

to v < 0). This enables committing to a negative sum of assets under a corrupted Bank,

which implies spending more than its total assets.

Lemma 2. MiniLedger satisfies secure pruning assuming Accumulator soundness, EU-

CMA signatures and consistency of the consensus layer.

Proof. Case 1: A can win the game in Definition 10 by pruning on behalf of an honest

Bank. This can only succeed if A manages to sign on behalf of that Bank, which directly

contradicts signature unforgeability.

Case 2: A wins the game by adding an arbitrary transaction into a digest D on behalf

of a corrupted Bank. This implies either breaking accumulator soundness, as the adversary

would be able to successfully prove membership for a non-accumulated element, or consensus

consistency (recall that the digest is created by the consensus participants as well).

Case 3: A wins the game by omitting a transaction in the digest D, which would also

contradict accumulator soundness as in the previous case.

Lemma 3. MiniLedger satisfies Ledger Correctness assuming consistency of the consen-

sus layer.

Proof. This follows directly from the assumed consensus properties.

Lemma 4. MiniLedger satisfies Correct Auditability assuming ZK soundness.

Proof. For Correct Auditability we define the following game:

1. Setup: CH runs pp← SysSetup{λ, [Bj]nj=1} and sends pp toA, which include [pkBj
, C0j , Q0j]

n
j=1.

2. Query: A queries Oc,Otx,Oprn,OAud and CH answers the queries as in Section 3.6.2,

maintaining the ledger L.

54

3. Output: For an honest Bank j, A outputs a transaction txBj where the Bank fails to

convince an honest Auditor A that the value of txBj is v.

Assume A wins the above game with non negligible probability. Then B would break ZK

soundness as follows: On input of π∗ : {c2 = gvhr ∧ c1 = pkr}, B runs SysSetup, however it

replaces pk1 with pk and sets as g, h the output of SetupTEG. Then forwards (pp, L) to A,

with B providing oracle access to A for Oc,Otx,OAud and Oprn. For Otx, B outputs txi to

A that includes [π]nk=1 which also ensures consistency for randomness r between each pair

of ciphertexts c1 and c2. However in each Otx query, B adds c2,1 = gvhr, c1,1 = pkr to each

update of L. When A queries Oc for B1, B aborts. When A outputs a txBj , if j 6= 1, B

aborts. Else if j = 1, with Audit{A(txB1) ↔ B1(v)} := πAud ∧ AudVrfy(πAud) := 0, implies

that B1 fails to decrypt correctly to answer the audit, thus c2 = gvhr ∧ c1 = pkr
′

breaking

ZK soundness.

Lemma 5. MiniLedger satisfies Sound Auditability assuming ZK soundness, Accumulator

soundness and consistency of the consensus layer.

Proof. Case 1: tx is still in L. An A breaking ZK soundness can convince CH for some

false v∗.

Case 2: tx is pruned and represented in the digest D in L. An A breaking Accumulator

soundness can prove membership to CH for an arbitrary tx∗ and then proceed with auditing

on that tx∗.

Lemma 6. MiniLedger satisfies Privacy assuming IND-CPA security of the ElGamal

encryption variant, Pedersen commitment hiding and Zero-knowledgeness of NIZKs.

Proof. We describe a sequence of hybrid experiments as follows:

Hybrid 0:

55

1. Setup: CH runs pp← SysSetup{λ, [Bj]nj=1}, flips a bit b ∈ {0, 1} and makes two identical

initialized ledgers Lb, L1−b. CH sends pp to A, which include [pkBj
, C0j , Q0j]

n
j=1 and the

two ledgers Lb, L1−b.

2. Query: A for ledgers Lb, L1−b makes queries Otx,Oprn where each oracle has two separate

instantiations uniquely associated with a ledger. CH answers the queries as in Section

3.6.2, verifying transactions or prune operations and maintaining the ledgers Lb, L1−b

accordingly. A is restricted to make simultaneous oracle queries of the same type on the

ledgers.

3. Output: A outputs a bit b′ and wins if b = b′.

Hybrid 1: Same as Hybrid 0 but now CH when answering queries to Otx, simulates

the ZK proofs πik in each txi = [Cik, cmik, πik, Qik]
n
k=1.

Hybrid 2: Same as Hybrid 1 but now CH when answering queries to Otx replaces

ciphertexts Cik and running totals Qik with random strings.

Hybrid 3: Same as Hybrid 2 but now CH when answering queries to Otx replaces

commitments cmik with random strings.

Corollary 1. Hybrids 0 and 1 are indistinguishable.

Proof. Immediately follows from the zero-knowledge property of π.

Corollary 2. Hybrids 1 and 2 are indistinguishable.

Proof. Immediately follows from the IND-CPA property of ElGamal encryption variant.

Corollary 3. Hybrids 2 and 3 are indistinguishable.

Proof. Immediately follows from the hiding property of Pedersen commitments.

56

3.7 MiniLedger zero knowledge proof

In MiniLedger we further improve on zkLedger’s proofs by providing a single disjunc-

tive [91] proof π with proving consistency for ElGamal encryptions in both cases as follows

(note this optimization is also applicable to zkLedger, we point the reader to the full version

of our paper [70] for details).

{(v, v′, r, r′, r′′, v̂, r̂, sk) : [(cm = gvhr
′ ∧ c2 = gvhr ∧ c1 = pkr) ∨ (cm = gv̂hr

′ ∧ ĉ2 =

gv̂ ĉ1
1/sk∧c2 = gvhr∧c1 = pkr∧pk = hsk)]∧[cm = gv

′
hr
′′∧v′ ∈ [0, 2k]]}(cm, c1, c2, ĉ1, ĉ2, g, h, pk)

The details for the above proof are shown in Figure 3.9 where we omit the range proof

part for notation simplicity as before. Our optimization results in the following total com-

putational and storage costs:

Transaction (prover’s) computation cost. The proving costs for π would be 3n prime-

order exps and 5n prime-order multi-exps.

Verifier’s computation cost. 11n prime-order exps and 5n prime-order multi-exps.

Auditing costs for πAud. Same as in zkLedger.

Storage costs. Each MiniLedger transaction is associated with the following commu-

nication/storage costs for the needed ZK proofs: 3n exps and 5n multi-exps elements as

well as 10n exponent values.

In Table 3.5 we provide a comparison between the computational and storage costs

between zkLedger and MiniLedger for their respective ZK proofs.

3.8 MiniLedger+ construction and fine-grained audit algo-

rithms

As discussed, we can take advantage of the compactness of MiniLedger to allow for

fine-grained auditing in a client level, where Banks are now acting as intermediaries for their

57

{(v, r, r′, v̂, r̂, sk) : (cm = gvhr
′ ∧ c2 = gvhr ∧ c1 = pkr) ∨ (cm = gv̂hr

′ ∧ ĉ2 = gv̂ ĉ1
1/sk ∧ c2 =

gvhr ∧ c1 = pkr ∧ pk = hsk)}(cm, c1, c2, ĉ1, ĉ2, g, h, pk)

Left part of OR proof is True: (running simulator S for

the right part) - Witnesses: v, r, r′

• P chooses χ2, χ3, ψ1, ψ3, ψ4, q, s1, s2, t, e2 at random

• P computes:

R1 = g
q
h
s1 R

′
1 = g

q
h
s2 R

′′
1 = pks2

R2 =
gχ2hψ1

ge2v̂he2r
′ R

′
2 =

gχ2 ĉ1
ψ3

ge2v̂ ĉ1
e2/sk

R
′′
2 =

gχ3hψ4

ge2vhe2r
R
′′′
2 =

pkψ4

pke2r
R

(4)
2 =

ht

he2sk

and sends R1, R
′
1, R

′′
1 , R2, R

′
2, R

′′
2 , R

′′′
2 , R

(4)
2 to V.

• V picks e at random and sends it to P.

• P computes

e1 = e− e2 z1 = q + ve1

z2 = s1 + r
′
e1 z3 = s2 + re1

z4 = χ2 z5 = ψ1 z6 = ψ3

z7 = χ3 z8 = ψ4 z9 = t

and sends (z1, z2, z3, z4, z5, z6, z7, z8, z9, e2) to V.

• V computes e1 = e− e2 and checks if:

g
z1h

z2 = R1cme1 g
z1h

z3 = R
′
1c
e1
2 pkz3 = R

′′
1 c
e1
1

g
z4h

z5 = R2cme2 g
z4 ĉ1

z6 = R
′
2ĉ2

e2 g
z7h

z8 = R
′′
2 c
e2
2

pkz8 = R
′′′
2 c

e2
1 h

z9 = R
(4)
2 pke2

Completeness: Straightforward to verify.
Special Soundness: The extractor completes the pro-

tocol with transcript ((R1, R
′
1, R

′′
1 , R2, R

′
2, R

′′
2 , R

′′′
2 , R

(4)
2), e,

(z1, z2, z3, z4, z5, z6, z7, z8, z9, e2)) then rewinds to step 2

and gets transcript ((R1, R
′
1, R

′′
1 , R2, R

′
2, R

′′
2 , R

′′′
2 , R

(4)
2), e∗,

(z∗1 , z
∗
2 , z
∗
3 , z
∗
4 , z
∗
5 , z
∗
6 , z
∗
7 , z
∗
8 , z
∗
9 , e
∗
2)). Now the extractor can

compute v =
z1−z

∗
1

e1−e∗1
, r′ =

z2−z
∗
2

e1−e∗1
and r =

z3−z
∗
3

e1−e∗1
. This guar-

antees the equality of values v and r in cm, c2 and c1 because
q, s2 which contain v and r respectively are used by the extrac-

tor in all R1, R
′
1 and R′′1 , and because both relations are hard

(based on the hardness of the Discrete Logarithm assumption).

Right part of OR proof is True: (running simulator S for

the left part) - Witnesses: v̂, v, r′, sk , r

• P chooses χ1, ψ1, ψ2, q1, q2, s1, s2, t, e1 at random

• P computes:

R1 =
gχ1hψ1

ge1vhe1r
′ R

′
1 =

gχ1hψ2

ge1vhe1r
R
′′
1 =

pkψ2

pke1r

R2 = g
q1h

s1 R
′
2 = g

q1 ĉ1
1/t

R
′′
2 = g

q2h
s2

R
′′′
2 = pks2 R

(4)
2 = h

t

and sends R1, R
′
1, R

′′
1 , R2, R

′
2, R

′′
2 , R

′′′
2 , R

(4)
2 to V.

• V picks e at random and sends it to P.

• P computes

e2 = e− e1 z1 = χ1 z2 = ψ1

z3 = ψ2 z4 = q1 + v̂e2 z5 = s1 + r
′
e2

z6 = 1/t+ e2/sk z7 = q2 + ve2

z8 = s2 + re2 z9 = t+ ske2

and sends (z1, z2, z3, z4, z5, z6, z7, z8, z9, e2) to V.

• V computes e1 = e− e2 and checks if:

g
z1h

z2 = R1cme1 g
z1h

z3 = R
′
1c
e1
2 pkz3 = R

′′
1 c
e1
1

g
z4h

z5 = R2cme2 g
z4 ĉ1

z6 = R
′
2ĉ2

e2 g
z7h

z8 = R
′′
2 c
e2
2

pkz8 = R
′′′
2 c

e2
1 h

z9 = R
(4)
2 pke2

Completeness: Straightforward to verify.
Special Soundness: The extractor completes the pro-

tocol with transcript ((R1, R
′
1, R

′′
1 , R2, R

′
2, R

′′
2 , R

′′′
2 , R

(4)
2), e,

(z1, z2, z3, z4, z5, z6, z7, z8, z9, e2)) then rewinds to step 2

and gets transcript ((R1, R
′
1, R

′′
1 , R2, R

′
2, R

′′
2 , R

′′′
2 , R

(4)
2), e∗,

(z∗1 , z
∗
2 , z
∗
3 , z
∗
4 , z
∗
5 , z
∗
6 , z
∗
7 , z
∗
8 , z
∗
9 , e
∗
2)). Now the extractor can

compute v̂ =
z4−z

∗
4

e2−e∗2
, v =

z7−z
∗
7

e2−e∗2
, r′ =

z5−z
∗
5

e2−e∗2
, sk =

e2−e
∗
2

z6−z∗6

and r =
z8−z

∗
8

e2−e∗2
. This guarantees the equality of values v̂, r in

cm, ĉ2 and c2, c1 respectively because q1 and s3 which contain

v̂ and r respectively are used by the extractor in all R2, R
′
2

and R′′2 , R
′′′
2 , and because both relations are hard (based on

the hardness of the Discrete Logarithm assumption).

HVZK: The simulator S on input of statement (v, r, r′, v̂, r̂, sk) ran-
domly chooses χ1, χ2, χ3, ψ1, ψ2, ψ3, ψ4, t, e2, e and outputs the transcript

((R1

cme−e2 ,
R′1
c
e−e2
2

,
R′′1
c
e−e2
1

, R2
cme2 ,

R′2
ĉ2
e2 ,

R′′2
c
e2
2

,
R′′′2
c
e2
1

,
R

(4)
2

pke2), e, (z1, z2, z3, z4, z5, z6, z7, z8, z9, e2))

which is perfectly indistinguishable from a honestly-executed protocol transcript

((R1, R
′
1, R

′′
1 , R2, R

′
2, R

′′
2 , R

′′′
2 , R

(4)
2), e, (z1, z2, z3, z4, z5, z6, z7, z8, z9, e2)).

Figure 3.9: MiniLedger ZK proof π (without range proof)

58

Table 3.5: zkLedger and MiniLedger ZK proof costs per transaction

zkLedger MiniLedger
Prime-order exps Prime-order multi-exps Exponents Prime-order exps Prime-order multi-exps Exponents

Transaction cost 3n 6n - 3n 5n -

Verification cost 12n 6n - 11n 5n -

Storage cost 3n 6n 12n 3n 5n 10n

Auditee cost 2 - - 2 - -

Auditor’s cost 4 - - 4 - -

client transactions. In this section we provide the detailed construction for MiniLedger+.

Let client pk11 associated with Bank B1 wishes to transfer some of his funds v to a client

pk21 associated with Bank B2. The client would then construct a transaction tx as follows:

C1. Construct id = s ‖ τ where s is a nonce and τ is a timestamp

C2. C1 ← EncTEG(pk11, v)

C3. C2 ← EncTEG(pkB1, v)

C4. C3 ← EncTEG(pkB1,B2)

C5. C4 ← EncTEG(pkB2, pk21)

C6. Compute ZKP π1 for C4 ∧ f(pk21) = B2 that proves consistency in c4 for B2, pk21

C7. Compute ZKP π2 for C3 ∧ C4 proving consistency for B2, pkB2

C8. Compute ZKP π3 for C1 ∧ C2 proving consistency for v

C9. Sign all the previous outputs as σ

C10. Construct txc : (id, C1, C2, C3, C4, π1, π2, π3, σ) and send it to B1.

B1 after receiving tx will perform the following actions:

S1. Vrfy(σ)

S2. Vrfy(π1 ∧ π2 ∧ π3)

S3. DecTEG(skB1, C2) := v

S4. DecTEG(skB1, C3) := B2

S5. Verify that v ≥ Σv for client pk11 (has the assets to transfer)

S6. Append tx in its private table under pk11

59

S7. Construct a transaction txi in L, where Ci2 (under B2’s column) transfers v to B2

S8. Compute ZKP π4, π5 for Ci2, C2, C3, proving consistency for v and B2 (i.e. proving it

sent the correct value to the correct Bank)

S9. Assign id ‖ C4 ‖ π4 ‖ π5 to all entries Rij of row i in L

S10. Assign id ‖ H(txc) to all entries Hij of row i in L

At this point, the sending client pk11 by observing the new entries Hij can verify that

its transaction has been correctly processed by its Bank B1. Finally the receiving Bank B2

would perform the following which completes the transaction:

R1. DecTEG(skB2 , Ci2) := v

R2. Parse Ri2 and perform DecTEG(skB2 , C4) := pk21

R3. C ′1 ← EncTEG(pk21 , v)

R4. C ′2 ← EncTEG(pkB2 , v)

R5. Compute ZKP π′1 for C4, C
′
1 proving consistency for pk21

R6. Compute ZKP π′2 for Ci2, C
′
1, C

′
2 proving consistency for v

R7. Construct txc′ : (id′, C ′1, C
′
2, ε, π

′
1, π
′
2, ε, σ

′) where ε are empty strings and σ′ is a signature

on txc′ by B2

R8. Construct an empty transaction in L, where all entries are empty strings ε except H :=

id′ ‖ H(txc′).

Note that only the receiving Bank B2 will be able to decrypt C4 and learn the final recipient

pk21, as other Bank’s decryptions will fail. This ensures that noone except the original

sending client learns both the sender and the end recipient of a transaction. Also an

external observer still cannot learn the sending or receiving Bank, as the indistinguishability

properties of MiniLedger are maintained (which is not true in a similar system, Solidus

[8]).

60

Table 3.6: Fine-grained audit extension computation costs overview (normalized aggrega-
tion costs).

Without aggregation With aggregation (aggregation factor θ)
Prime-order exps Prime-order multi-exps Prime-order exps Prime-order multi-exps

Client cost 6 6 + q 6 6 + q

Sending Bank cost 9 + q + 4n 5 + q + 7n 10 + q + 4n/θ 6 + q + (2 + 7n)/θ

Receiving Bank cost 6 5 6 + 1/θ 4 + 3/θ

3.8.1 Assumptions and threat model

For the above extension we assume the assumptions and threat model described in

Section 3.2 regarding the public ledger L. We now assume however that the auditors

behave honestly and do not collude with anyone, as they are the entities safeguarding the

scheme’s security. Similarly as before, we assume an anonymous broadcast functionality

between clients and Banks to preserve anonymity.

Otherwise Banks may try to manipulate their private tables and present altered tables

to auditors, steal money from their users, make transactions without their permission or

make them fail audits. Clients can also be assumed to be malicious - they might try to steal

money either from another client or from another Bank in the system, hide their assets,

provide false information to audits or try to make a system participant (Bank or client)

fail future audits. Banks and/or clients can also freely collude (without however breaking

consensus properties).

Finally, while from the Client-Bank relation it is natural for the Bank to know all its

clients and their values, the Bank can only learn transactions where their client is a sender

or receiver but does not learn the end receiver or the initial sender client respectively.

3.8.2 Auditing banks

Although honest behavior of the Banks can only be verified reactively, it can still be

held accountable if any of its clients “complain” about loss of funds. Therefore the auditor,

either at random or triggered by such a complaint, will perform the following protocol with

the Bank:

61

AB1. Auditor sends an audit query to Bank

AB2. The Bank presents the encrypted LBj to the auditor, as well as a ZKP πΣ that the sum

of sums of all its clients is equal to the Bank’s sum in L

AB3. The auditor verifies πΣ and also verifies that each txc in LBj is signed by its respective

client and can be matched with an existing digest H(txc) in L.

3.8.3 Auditing clients

An auditor A can also request audits from individual clients, providing that the cor-

responding Bank presents its encrypted LBj to A. As in the basic MiniLedger, A can

request an audit either for specific client transactions or for the sum of a client’s assets

in LBj . The prover can be either the Bank or the client, proving its answers in ZK. The

auditing protocol for a client would work as follows:

AC1. For auditing client pkjm, A makes the request from Bj .

AC2. Bj presents LBj to A.

AC3. Auditor A fully validates LBj , similarly as in AB3. above.

AC4. On successful verification (i.e. verify πΣ and that each txc signed and matched with

a digest H(txc)) , A requests value v from the client (or Bank) (the audit could be

on a specific tx, or the total assets Σv of the client represented by the product of the

respective ciphertexts)

AC5. Client (or Bank) sends v to A, along with a ZKP that the respective ciphertext encrypts

v (or the ciphertexts’ product if audited for total assets)

An interesting extension family in the client auditing protocol is a client proving that it

was not involved in txc with value v, or has not transacted with another client pkr . At a

high level, the first can be achieved with a Bank accumulating id ‖ v in LBj along with the

needed zero-knowledge proofs, and provide the auditor a non-membership proof of id ‖ v.

The second audit requires the client accumulating the above ciphertexts C4 (and similarly

with a ZK proof for honest accumulation). To prevent tampering with data, hashes of

62

accumulators and proofs should be regularly posted on the Bank’s private ledger (and in

turn, hashes to the main ledger). These extensions require a universal accumulator (as the

RSA accumulator), since Merkle trees do not provide such functionality.

3.8.4 Aggregating transactions

The above protocol requires a transaction to be posted in L for each client transaction,

which negatively impacts the overall scalability. However the Bank can defer creating the

transaction in L by waiting for more transactions of its clients to be posted on its local

“mempool”. Then the sending Bank can fulfill multiple transaction requests of its clients

with a single transaction in L, since that transaction can accommodate multiple recipient

Banks.

While aggregating transactions for recipients belonging to different Banks is simple by

including multiple entries in R and H, the protocol needs to be modified to accommodate

multiple transactions when two or more recipients belong to the same Bank. Similar to the

previous example, let two clients pk11 and pk12 associated with Bank B1 wishing to transfer

some of their funds v1 and v2 to clients pk21 and pk22 respectively, associated with Bank

B2. First, both clients would construct their transactions tx(1), tx(2) as before. B1 would

then work through steps S1 to S6 as above for each client separately. The rest of its steps

would be as follows:

S7. Construct a transaction in L, where Ci2 under B2’s column transfers v = v1 +v2 to B2

S8. Compute ZKP π4, π5 for Ci2, (C
(1)
2 +C

(2)
2), (C

(1)
3 ∧C

(2)
3), proving consistency for v and

B2 (i.e. proves from homomorphic addition of C
(1)
2 + C

(2)
2 it sent the correct value,

and separately proves with each C
(1)
3 , C

(2)
3 that it sent to the correct Bank)

S9. Compute C
(1′)
2 = EncTEG(pkB2 , v1) and C

(2′)
2 = EncTEG(pkB2 , v2)

S10. Compute ZKP π6 that proves consistency between (C
(1)
2 ∧C

(1′)
2) and (C

(2)
2 ∧C

(2′)
2) for

v1, v2 respectively

63

S11. Assign id(1) ‖ c(1)
4 ‖ π4 ‖ π5 ‖ π6 and id(2) ‖ c(2)

4 ‖ π4 ‖ π5 ‖ π6 to R. 10 Note that B1

cannot “mix and match” since it would fail the audit because of tx in its table.

S12. Assign id(1) ‖ H(tx(1)) ‖ id(2) ‖ H(tx(2)) to H.

Then Bank B2 would perform the following steps:

R1. Decrypt v from ciphertext Ci2 in L

R2. DecTEG(skB2 , C
(1)
4) := pk21, DecTEG(skB2 , C

(2)
4) := pk22, DecTEG(skB2 , C

(1′)
2) := v1,

DecTEG(skB2 , C
(2′)
2) := v2

R3. Compute C
(1′)
1 ← EncTEG(pk21 , v1) and C

(2′)
1 ← EncTEG(pk22 , v2)

R4. Compute C
(1′)
2 ← EncTEG(pkB2 , v1) and C

(2′)
2 ← EncTEG(pkB2 , v2)

R5. Compute π
(1′)
1 for C

(1)
4 , C

(1′)
1 proving consistency for pk21 & π

(2′)
1 for C

(2)
4 , C

(2′)
1 proving

consistency for pk22

R6. Compute π
(1′)
2 for C

(1′)
1 , C

(1′)
2 proving consistency for v1, π

(2′)
2 for C

(2′)
1 , C

(2′)
2 proving

consistency for v2 and c
(k2)
2 , (C

(1′)
1 · C(1′)

2), (C
(2′)
1 · C(2′)

2) proving consistency for v

R7. Construct tx(1′) : (id(1′), C
(1′)
1 , C

(1′)
2 , ε, ε, π

(1′)
1 , π

(1′)
2 , ε, σ(1′)) where ε are empty strings

and σ(1′) is a signature on tx(1′) by B2 (similarly for tx(2′))

R8. Construct an empty tx in L, setting all entries as ε except H := id(1′) ‖ H(tx(1′)) ‖

id(2′) ‖ H(tx(2′)).

Note that transaction aggregations do not interfere with audits either at the Bank or at

the client level, since all transactions are still “recorded” in the hashtable.

Another interesting case is when a client requests some monetary value to be transferred

to another client belonging to the same Bank, which would constitute an “internal” trans-

action for that Bank. The Bank’s assets in L would not change and a separate transaction

in L would not be needed, however the Bank would still post the respective digests in L

10To prevent leaktzage of information that some Bank receives values for two of its clients, the protocol
could enforce posting dummy values equal to the maximum number of clients some Bank has in the system
.

64

to ensure correct auditing. Such transactions can of course be aggregated with external

transactions in L as discussed above.

3.8.5 Security analysis

As in basic MiniLedger, malicious Banks cannot steal, hide or manipulate assets in L.

In MiniLedger+ however, a malicious Bank could trivially manipulate its private table

(e.g. change its clients’ values) since that table is not directly observable by an external

verifier. However malicious behavior would eventually be detected in an audit as the private

table won’t be consistent with the added column data in L. In the case the Bank attempts to

move funds internally without client authorization (debiting one of its clients and crediting

another), even though the balance sum in LBj would match the balance reflected in L, this

unauthorized transaction still wouldn’t be matched to an entry in L and would fail the

audit, thus exposing the Bank of malicious behavior against its own clients. For the same

reason, a Bank cannot “omit” a client transaction in LBj , as this would also result in a total

asset mismatch.

In a client audit, the client or the respective Bank might attempt to provide false answers

to the auditor, even by trying to collude. Here the auditor would have verified the validity

of LBj first, so any subsequent audits would be executed on transactions that have been

verified to be valid by having matched them with the public ledger L.

3.8.6 Cost analysis for MiniLedger+ without aggregation

Assuming an instantiation with the ElGamal variant encryption scheme, its computation

costs are as follows (here we denote c1 → X and c2 → Y):

Client costs. A client needs to construct tx which includes the following computation

costs: Compute ciphertexts C1, C2, C3, C4: 4 prime-order exps and 4 prime-order multi-

exps. Compute π1: Assuming mapping function f() for a client public key pkC and Bank’s

j id Bj is derived from verifying a client’s signature σskC
(pkC ,Bj) and assuming Bj has q

65

clients in total, π1 would be an OR zero-knowledge proof of knowledge of randomness r of

ciphertext Y for all q client public keys in the ElGamal variant encryption, which would be

q prime-order multi-exps. Compute π2: Since receiving Bank is known to the sending Bank,

π2 would just consist of a PoK of randomness for ciphertext Y of C3 and for ciphertext X

of C4, which are 2 prime-order exps. Compute π3: 2 prime-order multi-exps.

Sending bank costs. A Bank on receiving tx from its client has the following compu-

tation costs: Verify π1: q prime-order exps and q prime-order multi-exps. Verify π2: 4

prime-order exps. Verify π3: 2 prime-order exps & 2 prime-order multi-exps. Decrypt for

C2, C3: 2 prime-order exps. MiniLedger CreateTx() costs. Compute π4: 2 prime-order

multi-exps.Comp. π5: 1 prime-order exp & 1 prime-order multi-exp.

Receiving bank costs. A Bank receiving value from a transaction in L has the following

computation costs: Decrypt from transaction in L: 1 prime-order exp. Decrypt c4: 1 prime-

order exp. Encrypt C ′1, C
′
2: 2 prime-order exps and 2 prime-order multi-exps. Compute π′1:

Proof would be constructed in a similar way to π2, 2 prime-order exps. Compute π′2: Is

a proof of consistency of v for Y ciphertexts of C ′1, C
′
2 and Ci2 which costs 3 prime-order

multi-exps.

3.8.7 Cost analysis for MiniLedger+ with aggregation

Let us now consider the case a sending Bank aggregates θ transactions where all re-

cipients belong to the same receiving Bank Bj (aggregations for recipients among different

Banks have additive costs as in section 3.8.6). For comparison, we outline the normalized

computation costs per client transaction as follows:

Client costs. Same costs as without aggregation.

Sending bank costs. Verify π1: q prime-order exps and q prime-order multi-exps. Verify

π2: 4 prime-order exps. Verify π3: 2 prime-order exps and 2 prime-order multi-exps.

66

Decrypt C2, C3: 2 prime-order exps. MiniLedger CreateTx cost divided by θ. Compute

π4: 2/θ prime-order multi-exps (due to homomorphic additive property). Comp. π5: 1

prime-order exp & 1 prime-order multi-exp. Comp. C
(i′)
2 : 1 prime-order exp & 1 prime-

order multi-exp. Compute π6: 2 prime-order multi-exps

Receiving bank costs. Decryption costs from zkLedger transaction divided by θ. De-

crypt C
(i)
4 and C

(i)
2 : 2 prime-order exps. Encrypt C

(i′)
1 , C

(i′)
2 : 2 prime-order exps and 2

prime-order multi-exps. Compute π
(i′)
1 : 2 prime-order exps. Compute π

(i′)
2 : Is a proof of

consistency of v for Y ciphertexts of C
(i′)
1 , C

(i′)
2 and c

(i2)
2 ,

∏
C

(i′)
1 ,

∏
C

(i′)
2 which costs 2+3/θ

prime-order multi-exps.

3.9 Additional audit types and modifications

3.9.1 Audit without consent

All audit functionalities described in Section 6.4 are interactive and require the Bank’s

consent. We could enable non-interactive audits by including an encryption of πAud and

its statement for each transaction cell under a predetermined trusted auditor’s public key

(which preserves privacy). However since AudPruned{} is always interactive (and cannot be

converted to a non-interactive protocol because it needs the Bank’s input from its memory

state), an audit without consent can only take place on non-pruned data. Because of this

inherent limitation, the only possible type of audit without consent for pruned transactions

is AudTotal{}. Then the statement of NIZK πAud would be (Qj ,
∑
vj , pkj , g, h).

With MiniLedger taking this approach, an alternative direction for ledger “compact-

ing” could be pruning each transaction right away (without consent from Banks) in a similar

fashion to CODA [77]. Since MiniLedger is account-based, keeping running totals Q after

each transaction execution would be sufficient. The ledger would only consist of a single row

of running totals representing each Bank’s total assets. After a transaction is broadcasted

67

by a Bank, it would first be checked for validity as before and all running totals would be

updated as Q ·C → Q′, ensuring optimal O(n) ledger size (of course without Banks needing

to keep local memory state).

Finally, to remove the above trusted auditor requirement we can utilize threshold en-

cryption [92], where a coalition of t out of n Auditors could audit any Bank in the ledger,

even without its consent. The protocol would now require a Bank to encrypt the value vij

under the designated threshold encryption public keys. Then t Auditors will be able to

audit any Bank’s total assets.

3.9.2 Additional audit types

From our “basic” audit on a value v in L, we can derive several more audit types that

reduce to a basic audit. We outline some below, however note this list is not exhaustive.

We also note again that these audits can still be executed even for pruned data.

Statistical audits. This audit type category is similar to zkLedger’s. This requires a

sending Bank committing to a bit flag b in each cell in L, which indicates if that Bank

participates in that transaction (i.e. b = 1 if v 6= 0, and b = 0 otherwise), accompanied

with a NIZK to enforce correctness. “Statistical” audits involve queries that require only

non-zero value transaction consideration, as zero-value encryptions would skew the result.

For instance, to query the average transacted value for a Bank over a period, the auditor

would need to query all the Bank column cells that correspond to that period. The Bank

would then reply for all those cells as in the basic audit, with the addition of a reply to

the bit flag. Then the auditor after verifying the audit replies, would compute the average

value from cells with a bit flag of 1. This category is also applicable to MiniLedger+ in

an identical manner.

Value compared to some limit. To query if a Bank sent or received a value less or over

an amount t, the audited Bank simply needs to provide a range proof πr : {v : (v ≥ t)}.

To preserve correctness, the value v needs to be associated with the hidden value in cm

68

in π (included in Figure 3.9). As with the basic audit, this proof can be provided either

proactively (i.e. posted on L) or reactively (i.e. provided to the auditor during audit).

Limit over time. The auditor might want to learn if a Bank’s transactions have exceeded

a value over a time period (e.g. if Bank has received over $1M over a week). We can create

a conjunction of the two audits previously discussed to create such an audit (i.e. audit

on average value over time combined with range proof on that average value). To prevent

skewing the result in case the Bank has both sent and received values in that period,

additional range proofs are needed to prove if a value is positive or negative and included

in the overall limit audit. Also note that the notion of “time” in MiniLedger is equivalent

to transaction rows, which can include auxiliary timestamp information.

Transaction recipient. The goal of this audit type is for a sending Bank to prove the

recipients for one of its transactions. If that transaction has not pruned parts, the Bank

can simply reply with the list of receivers and then the auditor would need to audit each

Bank in the transaction row to verify this. However it is likely that at least one Bank has

pruned its respective cell in that transaction. In this case, the Bank should keep a record

of its transaction recipients in its local memory for each of its outbound transactions, and

reply to the auditor accordingly. Bit flags used in the Statistical Audits discussed before

can also be utilized to make this audit type more efficient.

Client audits in MiniLedger+. To execute audits at a client level, the auditor first

needs to fetch the client transactions from the Bank’s private ledger, and verify their validity

as outlined in Section 3.8.3. From that point, the auditor can perform all audits in a

client level in a similar fashion to the respective audits in a Bank level. For instance,

to learn if some MiniLedger+ client exceeded a value transaction threshold within a

time period or over a number of transactions, this audit can be executed by selecting the

client’s transactions from the Bank’s private table that happened within this period by

their id’s. The audit would then be on the sum of the values represented by the product of

69

the respective ciphertexts, and the client would produce a range proof for that ciphertext

product as above. and select those with the appropriate timestamp.

A special useful audit would be to learn if a MiniLedger+ client has sent assets to

some specific client pk or not. The transactions would need to be augmented with an

additive universal accumulator, with each sender adding the end client recipient’s pk to the

accumulator, while also providing its Bank a ZK proof of adding the correct public key.

During an audit, the client would have to prove membership (or non membership) to the

auditor. An important note is that the receiving client does not directly learn the original

sender of a specific transaction in-band, which implies the above approach cannot work for

a client to prove if he has received (or not) assets from another client.

3.10 Choosing a construction for digest D

In Section 3.5 we discussed our options for instantiating the accumulator used in pruning.

Here we provide a summary of comparisons between possible options in Table 3.7.

Table 3.7: Data structure D comparison. q: number of pruned transactions, k: # bits,
λ: security parameter, F: group multiplications, H: hash operations, G: group exponenti-
ations. Costs for Open(), π and Verify() are for a single transaction audit, while costs for
BOpen(), π̂ and BVerify() are for an `-batched transaction audit.

D |D| |pp| time
(PruneVrfy)

Up-
dat-
able

Dyn.
size

time(Prune)
time(Open)

time(BOpen)
|π|
|π̂|

time(Verify)
time(BVerify)

Merkle Tree O(1) O(1) O(q)H 4 4 O(q)H O(logq)H
O(`logq)H

O(logq)
O(`logq)

O(logq)H
O(`logq)H

Catalano-
Fiore CDH
[84]

O(1) O(q) O(q)G 4 5 O(q)G O(q)G
O(`q)G

O(1)
O(`)

O(λ)G
O(`λ)G

Lai-
Malavolta
[85]

O(1) O(q2) O(q)G 5 5 O(q)G O(q)G
O(`q)G

O(1)
O(1)

O(λ)G
O(`λ)G

Boneh-Bunz-
Fisch VC
[47]

O(1) O(1)
O(λ)G +

O(kq logq)F 4 O(kq logq)G O(kq logq)G
O(kq logq)G

O(1)
O(λ)

O(λ)G +O(k log`)F
O(λ)G +O(k` log`)F

Batch-RSA
accumulator
[47]

O(1) O(1)
O(λ)G +
O(q)F +
O(q)H

4 4

O(λ)G +
O(q)F +
O(q)H

O(q)F
O(q)F

O(1)
O(1)

O(q)F
O(q)F

70

3.11 Optimizations for decryption operations

As discussed in Section 3.3.1, MiniLedger uses an additively homomorphic ElGamal

scheme variant, which requires a precomputed discrete-log lookup table (we note additive

ElGamal is used in many recent blockchain-based payment systems [7, 8, 35, 64, 93]). Typi-

cally, for most financial applications, the max transaction amount ranges from 232 to 264, as

this is usually enough to encode even the largest reasonable balance. Generating and load-

ing a table for billions and trillions of elements is might be impractical though, especially

for constrained devices such as mobile phones, IoT devices and light clients in general. For

instance, when using the 256-bit secp256k1 elliptic curve where a group point is serialized in

33 bytes (in compressed form), 132 GB are required to store 232 elements in binary format.

While there are solutions for trading storage space for computation, such as Shanks al-

gorithm [94] (also known as baby-step giant-step), we propose an extra layer of compression

on top of such algorithms, by reducing the lookup table size by a constant factor without

any additional decryption cost. Our method only require a precomputation phase and pro-

duce collision-free tables11 with size independent of the elliptic curve field size; the larger

the size, the better the compression rate.

3.11.1 Methodology

Our goal is to compute a lookup table for gx ∀x ∈ [1, 2n]. Assuming an elliptic curve (EC)

over a finite field Fq for a security parameter λ, the uncompressed serialized representation

of an EC point is 2logq bits. Typically however, a compressed format of q′ = logq + 1 bits

is selected, where only one coordinate and additional sign bit are enough to reconstruct

the EC point. As a first intuition for our approach, we can pick some τ < q′, append

gx = b1b2...bτ to f where bi ∈ (0, 1). However we need careful consideration when picking

τ because of the birthday paradox. Picking a τ too small (meaning that the “chopped”

portion of gx is large), many collisions among the whole table will occur, which might result

11Similar compression techniques are also discussed in [95], but our work focuses on collision-free tables
per group to completely avoid false positives.

71

in ambiguities during lookup operations (e.g. on ElGamal decryption).

While the above technique is straightforward by trial and error, it results in a signifi-

cant compression factor, e.g. for secp256k1 elliptic curve, the factor is 1 : 4. However we

can further improve compression with a variable length truncation algorithm, which works

as follows. Assuming we have baby-step giant-step parameters α and β respectively from

Shanks algorithm, we choose truncation parameters τstart and τstop (where τstart > τstop),

which respectively direct the algorithm on how many bits should start the binary repre-

sentation for each element with, and how many bits should try to represent the elements

in an unambiguous way. The algorithm also needs as input data a set of uncompressed

precomputed tables A1, ...,Ap, which are partitioned to lower RAM requirements. Then

the algorithm, after initializing a variable truncation index table C, it starts from the “con-

servative” truncation parameter τstart and checks uniqueness of truncated elements for a

baby-step table A2 against all truncated elements of a (precomputed) full table A1. If

a collision is found, we update the respective index in C with the previous collision-free

truncation parameter τ . This process is repeated by decrementing that parameter (i.e.

truncating more bits). Note this process is done in two separate phases, one for checking

for collisions of baby-step elements against all values in range (2α, 2α+β] (to ensure that no

collisions occur even when doing giant steps) and then for self-collisions between baby step

elements.

Therefore from C we can serialize the respective table for 2α elements by interleaving

(dlog(τstart− τstop)e) bits per element. These bits encode the variable length and are neces-

sary to make serialized parsing possible. Alternatively, we can reduce the number of those

encoding bits by assigning them into k groups G1, G2, .., Gk, therefore needing dlogke bits

per element. For instance, we can decrement τ by 2 bits each time instead of 1, and group

G1 would represent lengths of τstart and τstart − 1 bits, group G2 would represent lengths

of τstart − 2 and τstart − 3 bits etc. Also, depending on the results, we might have these

groups contain an uneven number of bit representations. For example, truncating with

τstart usually turns out to contain relatively very few elements, and therefore devoting a

72

group for a very small population won’t be efficient overall. Still each group G must encode

the maximum τ that is included in that group, denoted by max τG. The total size of the

serialized lookup table will then be

k∑
i=1

(max τGi · |Gi|) + dlogke · 2α

where
∑k

i=1 |Gi| = 2α and max τGk = τstart. Note that even though the “grouping” approach

reduces the factor dlogke ·2α, the granularity of the algorithm is also reduced, which overall

increases the total size. On the other hand, more fine-grained groups will decrease the

overall needed storage of the serialized lookup table, but will result in slightly increased

computation cost in hashmap lookups12.

3.11.2 Optimization evaluation, complexity analysis and comparison

We evaluate our compression factor with the secp256k1 curve for n = 32, α = 20, β = 12

and k = 7. These parameters are consistent with existing implementations in the blockchain

domain, and our results are shown in Table 3.8. Note this requires dlogke = 3 bits of length

encoding per element, which overall results in about 393KB encoding overhead. We also

performed tests for n = 20, α = 20, β = 0 and k = 7 for the secp256k1 and secp521r1

curves, where we achieved a compression factor of 1:10 and 1:20 respectively. For k = 4 in

the secp256k1 curve shown in Table 3.8, the compression factor slightly reduces to 1:6.85.

For generating a compressed lookup table gx for x ∈ [1, 2n], our algorithm VarTruncate()

includes a computationally intensive overhead in addition to just generating the table,

similar to [96]. Specifically, [96] has an O(2n) computational overhead, while our algorithm

has O(k2n) complexity. However this additional cost is paid only once for a specific set

of parameters, while our algorithm achieves a) a significant improvement in compression

12Note that the cost of a hashmap lookup is insignificant compared to elliptic curve (EC) point addition

(about 40 times in our implementation), while a scalar to EC point multiplication is around 32 times more
expensive than EC point addition using the double-and-add method for small 32-bit scalars.

73

Table 3.8: Variable length truncation for the secp256k1 curve with n = 32, α = 20, β = 12,
k = 4.

Bits Bits
+en-
coding

ele-
ments

Total
Size

32 35 385479 13491765

36 39 599610 23384790

40 43 59450 2556350

44 47 3786 177942

48 51 238 12138

52 55 12 660

56 59 1 59

Size: 4.72MB Compress: 1:6.98

factor and b) collision free encoding which simplifies used data structures.

For recovering the discrete log of gx, the probabilistic [95] has O(c2n/3) computation and

storage complexity on average (for a very small c < 2), while our decryption computational

cost involves O(2β) multiplications and O(k2β) map lookups in the worst case, where k is the

number of utilized truncation groups. Note that regular Shanks has a lookup multiplication

complexity of O(2β2), for β2 > β (typically, for 256-bit curves β2 ≈ β + 3), when using the

same precomputed table size with our scheme.

3.12 Conclusion

We presented MiniLedger, the first private and auditable payment system with storage

independent to the number of transactions. MiniLedger utilizes existing cryptographic

tools and innovates on the meticulous design of optimized ZK proofs to tackle important

scalability issues in auditable, private payments. Additionally, we provide the first formal

security definitions for auditability and secure pruning in private and auditable payment sys-

tems. We achieve huge storage savings compared to previous works that store information

for each transaction ever happened. Using our pruning techniques, the overall MiniLedger

size can be impressively compacted to 70KB per Bank, no matter how many transactions

74

have ever occurred. Note that our storage and computation costs could be further improved,

e.g. by using Bulletproofs [41] (instead of Schoenmakers multi-base decomposition [83]),

more efficient programming languages (e.g. Rust) and libraries, or by utilizing CPU par-

allelization. However, as in related systems [19, 29] our goal is not to support “thousands”

of Banks, but an arbitrary number of clients as discussed in Section 3.4.1, which does not

affect the computation/storage costs in the public ledger. MiniLedger can currently serve

a small consortium of Banks (e.g. the world’s Central Banks) with an arbitrary number

of clients, or build a hierarchy of a large number of Banks and clients in accordance with

MiniLedger+. Evaluating MiniLedger on such a large scale or achieving its properties

in a permissionless setting are interesting directions for future work.

75

Chapter 4: Proving assets in the Diem blockchain

4.1 Introduction

We now shift from the anonymity vs. auditability dilemma at a microscopic level, where

we considered MiniLedger as a solution, towards the macroscopic level of the problem

this thesis considers, namely the problem of Proof of Assets (PoA), a fundamental part

for proving financial solvency on behalf of custodial wallets [17, 25], also known as Virtual

Asset Providers (VASPs). As discussed in Chapter 1, it is a cryptographic evidence that the

organization possesses sufficient assets which, combined with its proved liabilities, offers the

so-called Proof of Solvency (PoSolv). The need of such proofs became even more apparent

after infamous cryptocurrency exchange collapses, such as MtGox [22,97].

This chapter focuses on practical PoA solutions in the Diem blockchain, however parts

of our proposal apply to other systems as well. As regulatory compliance, transparency and

fund safety are among the top priorities for Diem [29], PoA should be an important feature

to achieve a safer wallet ecosystem. Diem’s unique hierarchical account model differs from

other blockchains and allows for several different PoA types that are not possible in other

platforms. Our goal is to formalize and explore many different types of asset proofs in the

Diem blockchain. Additionally, as we will show, Diem’s PoA, in combination to Know-

Your-Customer (KYC) identity verification, can also be useful to mitigate tax evasion,

something that is not straight-forward in other blockchains where one can deny ownership

of an address. In Diem, wallet addresses are pinned to particular entities, and thus VASPs

cannot hide their owned assets on purpose.

In the following, we provide a summary of related work, a detailed analysis of PoA

variants handcrafted to Diem’s design, and finally practical recommendations for proof

compression, aiming to make it more friendly for light (potentially mobile) clients.

76

The work presented in this chapter has been published in [28].

Our contributions. We first formalize the PoA requirements in account-based blockchains,

focusing on the unique hierarchical account structure of the Diem blockchain, formerly

known as Libra. In particular, we take into account some unique features of the Diem

infrastructure to consider different PoA modes by exploring time-stamping edge cases, cold

wallets, locked assets, spending-ability delegation and account pruning, among the oth-

ers. We also propose practical optimizations to the byte-size of PoA in the presence of

light clients who cannot run a full node, including skipping Validator updates, while still

maintaining the 66.67% Byzantine fault tolerance (BFT) guarantee.

Related work. Bitstamp’s Proof of Reserves [98] was one of the first attempts to provide

evidence of a custodial wallet’s total assets through an interactive protocol with a third

party auditor. The process was to prove account-key ownership by signing over a provided

random message; briefly, the ability to sign over a challenge string implies control and

ownership of the account(s).

Provisions [17] presented a protocol based on zero-knowledge (ZK) proofs to prove assets,

as part of a more general scheme to prove solvency. Its focus was to hide which accounts

are owned by the audited entity. Briefly, the organization would form an anonymity set by

adding random accounts from the public blockchain to those it already controls, and then

prove (in ZK) that it knows a set of private keys that add up to or exceed some amount.

Unfortunately, Provisions’ custom ZK protocol cannot work with hashed public keys (which

account for the majority of today’s on-chain addresses), or with privacy-preserving cryp-

tocurrencies (such as ZCash[99]) and its protocol’s efficiency is linear to the size of anonymity

set; thus, it cannot practically apply to most of today’s blockchains. Agrawal et al. [100]

made proving assets with hashed public keys possible as part of a zk-SNARK-based protocol

combined with Σ-protocols (in a CRS model based on Pinocchio [43]), tailored for mixing

arithmetic and boolean components. However, in addition to the setup assumptions, this

approach is not efficient for large disjunctive statements (the size of the UTXO list in Bitcoin

77

is in the order of hundreds of millions) as as both the computational and space requirements

scale linearly with its size, it has expensive concrete costs for the prover because of the un-

derlying SNARKs and range proofs. In Diem, proving costs might be prohibitive in practice

for Diem’s ZK-unfriendly Pure-Ed25519-with-SHA512 signatures (including multi-sig); even

with the latest recursive ZK proof schemes[101].

MProve [102] implemented a PoA algorithm tailored to Monero [6]. Since ring signature

obfuscation does not allow for directly applying the Provisions PoA, its approach was to

prove that the key images of the addresses controlled by the organization have not previously

appeared on the blockchain. As PoA protocols are susceptible to collusion, MProve provides

a proof of non-collusion as well by leveraging the one-time nature of key images. Unfor-

tunately, this exposes the sender’s identity when these key images are spent, potentially

enabling tracing of transactions which breaks Monero’s advertised privacy guarantees.

Wang et al. [103] proposed a scheme for a buyer proving assets to a vendor before

finalizing a deal, using the transaction’s details as a “challenge”, which however is limited

to a “buyer-vendor” use-case without any privacy characteristics. More importantly, it does

not preserve the prover’s privacy against the verifier (or regulator) as strongly as Provisions.

Blockstream’s proof of reserves [104] consists of signing an “invalid” Bitcoin transaction

for each owned Unspent Transaction Output (UTXO). This transaction cannot be published

to the blockchain, however it still degrades the organization’s privacy against the auditor. A

similar approach is followed by Kraken cryptocurrency exchange [105]. The main advantage

of this method is that hardware security module (HSM) or cold wallet implementations

do not need an extra logic for signing PoA payloads and thus, it is directly backwards

compatible with existing custodial wallets.

Ethereum [106] proposed a different payload format when signing a message other than

a valid transaction1. The purpose of this distinction is to ensure that one should not

accidentally sign a transaction masqueraded as a message nonce. In our PoA case, this

1Ethereum’s message signing uses a flag prefix, to ensure an invalid transaction:
sign(keccak256“\x19Ethereum Signed Message:\n” + len(message) + message)).

78

prevents an auditor from maliciously picking a hash of a transaction as an audit-nonce,

which if signed, it could be submitted on chain without the user knowing. Also, Iconomi’s

proof of reserves [107] proved key ownership to Deloitte (auditor) through either signed

nonces or predefined transactions from the proving addresses.

Finally, a recent work [63] provided definitions and systematization for several payment

systems, including those offering PoA functionalities, and compared them in terms of their

properties and efficiency.

4.2 Diem architecture

4.2.1 Keys and accounts

Diem [29] is an account-based blockchain payment system, currently maintained by a

permissioned set of Validators which participate in its BFT-based consensus protocol[108].

Although there are no built-in privacy preserving protocols for its account states and trans-

actions, due to its permissioned nature, all public queries (including blockchain correctness

verifications) are proxied through full nodes, which have the same view of the blockchain

as Validators, but without participating in consensus. Compared to traditional cryptocur-

rencies, Diem provides the following features:

• Authentication keys, known as auth keys, are hashed versions of account public keys,

however they can be rotated independently as a proactive or reactive measure to

defend against possible key loss. This means that unlike Ethereum, a key rotation

does not imply change of address.

• Diem natively supports single Pure Ed25519 [109] or threshold multi-sig (k-out-of-n

up to n = 32) auth keys.

• There exists the concept of withdrawal capability, where the permission to spend can

be delegated to a different account. This implies that the spending key does not

necessarily reside in the state of each address.

79

• It also supports the key-rotation capability where users can give permission to other

accounts to update their auth keys. This is useful for wallets where one can still refer

to another cold address to gain access back to their account in case of accidental hot

auth key key loss.

• Account roles define the account owner’s authority in the system. A unique charac-

teristic of Diem is its hierarchical role-based access control [89]. Unlike Bitcoin and

Ethereum, especially for VASPs, there exist a KYC-ed parent and child accounts as

shown in Fig 4.1.

4.2.2 Hierarchical model

For the purposes of this work, we focus on Diem roles most commonly related to PoA:

ParentVASP and ChildVASPs. A ParentVASP represents the primary account of a regulated

custodial wallet, while multiple ChildVASPs can be created by ParentVASP accounts2. In

Diem, a PoA will be requested from the ParentVASP , and these proofs should include

all of their children’s assets as well. This architecture is not privacy-preserving, due to

the well-defined linkability of the accounts belonging to the same entity, and hiding owned

addresses is not possible for KYC-ed VASPs. In Section 4.4.1 we provide details about the

PoA related Diem data structures.

Figure 4.1: Address structure in different blockchains.

As an account-based system, Diem associates each account A with a value vj at each

2Note that in Diem a ChildVASP is not allowed to have any other children itself.

80

block j. We denote by AP and AC accounts with ParentVASP and ChildVASP roles, re-

spectively. An AP can be linked to n accounts AC1 , A
C
2 , ...A

C
n . There is a relation F

which maps each child to its parent account, i.e. F (ACi) = AP . Note however that

no inverse relation exists in Diem, i.e. the parent’s state does not include a relation

F−1(AP) = [AC1 , AC2 , ..., ACn]. This was probably a design decision to not allow par-

ent account states growing indefinitely when more children are added, because for a large

n that map would require significant storage space.

However, the data structure for AP does include the cardinality n, a very important

property to later ensure no child is missing in the proofs. Note that although a Parent-

VASP can create ChildVASPs, this does not necessarily mean that it controls the keys of

its children, and ChildVASPs can transact independently. Of course, nobody prevents wal-

lets from reusing the same key in multiple accounts or applying a BIP32 deterministic key

derivation [110]. That said, the hierarchy is mainly enforced for KYC-ed account linking

and splitting the risk of a key compromise attack; it also allows for different key and as-

set management policies, such as cold, warm and hot wallets or transaction sharding and

parallelization3.

4.2.3 Diem proof of assets

Generally, a PoA in Diem implies showing that a ParentVASP account is in possession

of assets of some specific currency(ies) value. However, there is a subtle distinction on how

to actually show this. One could merely use existing blockchain data structures, and sum

the values of a ParentVASP and all of its ChildVASP accounts, based on account ownership.

While straightforward, this proof does not provide key possession guarantees at the time of

the auditing taking place. For instance, account holders might have lost access to their keys,

which would make them unable to spend their assets. Therefore, we distinguish between

the following two PoA types for a query on account AP for a block j:

3While typical account-based systems require a sequence-id to prevent replay attacks, Diem’s hierarchical
model enables parallelization at the entity level, due to each child maintaining its own sequence-id.

81

Soft PoA: This proof is non-interactive, and a user (a third party auditor or even a light

client) can obtain it at any time and for any block j via a series of blockchain requests to

potentially untrusted nodes. It’s simple goal is to provably present the total balance for

all accounts belonging to the audited entity. No proof-of-knowledge of the spending key is

required (and thus the name soft), however the parent account is linked with the KYC-ed

entity; no other entity can claim this address’s balance, and thus some applications might

tolerate soft proofs. We highlight that this is only possible in Diem due to its hierarchical

identity-address binding which makes collusion more difficult and traceable; a WalletA

cannot just temporarily borrow its private key to a WalletB (an on-chain transaction should

happen posing the risk of being censored). Such a proof is constructed by showing the

following:

1. Given a genesis or any known checkpoint state with Merkle root rG, prove that the

Merkle root rj is valid (see Section 4.4.1 for details on these data structures). In

practice, the auditor will pick the block j for which the PoA is needed. Note that in

Diem, this can be shown using a series of epoch change proofs to get the validator-set

at block j.

2. For rj , provide Merkle inclusion proofs for both parent AP and its children AC1 , .., A
C
n

account states.

3. All related account state balances (i.e. AP , AC1 , .., A
C
n) sum up to a value V . In

PoSolv, this V is typically compared against proofs of liabilities [111].

4. F (ACi) = AP , ∀i ∈ (1, ..n), where n is the cardinality in account state AP . This

ensures that no child is accidentally or purposely omitted from the list.

Hard PoA: A hard PoA is requiring a key-ownership proof on top of soft proofs, usually

via signing. To prevent replay attacks, the protocol should require each account to sign

over some random challenge. Note that it is acceptable to sign with the auth key (or a

delegated key via withdrawal capability), valid at a requested block in the past or the most

82

recent one. We refer to these two types as dated -hard PoA and live-hard PoA, respectively

(further discussed in Section 4.4).

4.3 Implementation considerations

4.3.1 What message to sign?

As previously discussed, hard PoA simulates a proof of key-possession by signing over

a challenge r to prevent replays. This can either be a “special” hard PoA transaction,

included as metadata, or even run off-chain. Options for r include any combination of the

following:

• a random string interactively provided by the auditor.

• the hash of the block (or state snapshot) at height (j − 1). Note that Diem has the

concept of transaction version, which is a monotonically increasing integer for all of

the on-chain transactions. The latter means that one can even take a snapshot at

the middle of the block, but typically, when we refer to height we imply the version

number of the last transaction in a block.

• the latest Bitcoin block or from other robust proof-of-work blockchains (thus, use an

external reference for randomness). However, that would require running a mini light

client as a smart contract or trusting an Oracle service that could verify correctness

of the external seed input.

• the output of a distributed randomness generation protocol (such as RandHound

[112]), which can even be run by Diem Validators at each block.

• other publicly verifiable sources of randomness which embed timestamp informa-

tion [113], such as the closing stock prices in the stock market, weather conditions in

major cities etc, ideally with the use of verifiable delay functions (VDFs) [114].

83

However, some of the above randomness sources are susceptible to collusion attacks.

For instance, the auditor and the ParentVASP might collude on the provided randomness

in advance, or consensus Validators might agree to form a predictable block in Diem (this

might be tolerated by the BFT assumption). Therefore we prefer a combination of external

verifiable randomness and the RoundHound protocol run from Validators which can offer

better transparency guarantees. In short, we need a verifiable random and fresh challenge

to ensure that the prover could not have predicted and pre-signed it long ago.

While hard PoA could also be automated to be executed at some predetermined times,

the above randomness or challenges need to be unpredictable to prevent misbehavior. Note

however that unpredictability is weaker than being “bias-proof”, a property required by

other use-cases (e.g. lottery protocols). For instance, in a lottery protocol an attacker’s

goal could be to increase the probability of outputting a string that ends in 0. However in

the case of hard PoA, biasing the result in this way would have no benefit for the attacker as

we’re only interested in signing over a fresh unpredictable challenge. More information on

what data to-be-signed offers the above freshness and unpredictability properties is provided

in Section 4.4.3.

4.3.2 Various PoA considerations

Account state pruning: Many blockchain systems (including Diem) conserve space by

pruning old account states, but still keeping the state’s hash to preserve the system’s secu-

rity. Therefore, if the latest blockchain height is m and a PoA is requested for some height

j < m, the full account state containing a balance vj might not be available on-chain. In

this case, the account’s state would have to be recovered by a full-node who maintains

the full history. Validating the provided pruned state is easy; we just check if the state’s

hash-output equals the blockchain-maintained hash value for this account.

Cold wallets and valet keys: Hard PoA might be cumbersome when air-gapped wallets

are involved, as performing such an operation would require bringing keys out of cold

storage. The process sometimes requires expensive ceremonies, i.e. when the key resides

84

in HSM modules or physical vaults, or when it is split between several parties. A possible

approach to improve usability could be a) embedding PoA operations in HSM or b) using

valet keys as defined in [115].

Incentives: When proving solvency, malicious auditees might collude to temporarily prove

assets greater than some value that represents their off-chain liabilities. On the other hand,

other auditees might try to hide assets on purpose (e.g. for tax evasion purposes). This

would be a problem in any system other than Diem, where the auditee could simply claim

loss or non-knowledge of some key, and complex blockchain analysis techniques (e.g. clus-

tering) would have to be deployed to prevent such behavior. However Diem’s hierarchical,

KYC-ed account model mitigates this.

Locked assets: In our model we do not consider locked on-chain assets, i.e., for future

atomic swaps or side-chain smart contracts (locked assets are not supported by Diem yet).

In fact, proving solvency by taking locked assets into account is an open research challenge

in every blockchain, as discussed in the recent ZKProof 2020 workshop [111].

4.4 Diem-specific implementation considerations

4.4.1 Primitives and soft PoA implementation in Diem

Sparse Merkle Trees. Recall a Merkle tree [48] is a binary tree constructed by a collision-

resistant hash function h, providing logarithmic proofs with logarithmic complexity. Sparse

Merkle trees share the same philosophy, however tree-leaves do not contain the accumulated

elements themselves but serve to form an “index” of the element along with its path to the

root. This enables them to provide proofs of non-membership, where non-accumulated

elements can simply end in a placeholder value to maintain tree balance. However, as

these classes of Merkle trees are intractably large, we can also represent them by omitting

sub-trees that only contain placeholder values. Diem uses a variant of Sparse Merkle trees

(Jellyfish Merkle trees [116]) which enables shorter inclusion/exclusion proof sizes while still

providing collision resistance.

85

In Diem, transactions are accumulated in a Merkle tree, which in turn contains roots of

sparse Merkle trees that represent the state of all accounts as the transaction gets executed

[29, 117]. The top Merkle tree root defines the block hash and is signed by the Validators

participating in the consensus (at least 66.67% of them should sign) as transactions are

processed and account states are modified accordingly. We describe a specific data structure

format in Diem below.

Diem Data Structures [118, 119]. In Diem, account states are represented as an

AccountStateBlob which includes, among others, the address, balance for each currency

and account role (i.e., ParentVASP or ChildVASP). These account states are stored in a

sparse Merkle tree called TransactionInfo. In turn, this sparse Merkle tree’s root hash

state_root_hash represents all of the accounts’ global state at the end of a specific trans-

action.

In turn, the most recent TransactionInfo root in an blockchain version, along with the

epoch number corresponding to the current Validator set and a timestamp, are encapsulated

in a BlockInfo data structure. This data structure along with a hash value of the consensus

Quorum Certificate is encapsulated in a LedgerInfo Merkle tree. Note that a version’s most

recent Transaction (e.g. transaction T4 in Figure 4.2), effectively defines the global state

of all accounts for that version.

Finally, LedgerInfo along with consensus signatures by the current Validator set is

encapsulated in a LedgerInfoWithSignatures data structure, making it acceptable by

anyone trusting Diem’s BFT assumptions.

Proofs. A core object for implementing Diem soft PoA is the AccountStateProof data

structure. This contains a sparse Merkle tree proof (SparseMerkleProof) for a TransactionInfo

object, which in turn is verified by a TransactionInfoWithProof proof for the Merkle tree.

A second crucial element is EpochChangeProof, which includes the list of signatures involved

in Validator set updates. Through these built-in proof functionalities in Diem, we imple-

mented a CLI Soft PoA functionality [120] which returns total on-chain assets owned by

86

Diem ParentVASPs.

Figure 4.2: Diem data structure overview.

4.4.2 Random challenge consistency

It is recommended, especially when BIP32 [110] is applied or the same key is used

between accounts, that r should be the same across all signed messages to minimize proof

size. However, as keys in Diem are rotated regularly (discussed in Section 4.2.1), there

are two options for signing a hard PoA for time4 t: a) use an authentication key that was

valid at a past instance t, and b) use the most recent authentication key (which will be

linked to the key at t using a chain of rotations). While both PoA types are acceptable

for proving asset control at t, the latter version is stronger as it also shows key control

for a more recent time t + ∆. A reason for picking a slightly older t might be to reduce

the probability of wallet collusion; if one does not know for which t they will be audited,

temporarily borrowing private keys from other wallets is riskier. It is highlighted though

that wallet providers might have deleted old account keys, and thus a t closer to the current

time/block should be preferred, unless there is a reason not to, e.g. for proving assets

4We assume t is in the past. While it could be possible to make a PoA request for some time in the
future in advance, this enables several collusion attack vectors not addressed in this thesis.

87

exactly at the end of a calendar year.

In any case, we refer to the above two hard PoA types as dated -hard PoA and live-hard

PoA respectively. We mention that especially for cold wallets, it is advised the auditee signs

and rotates the keys simultaneously to ensure some additional (although not complete [121])

post-quantum security, due to publishing hashed keys.

4.4.3 Signed block hashes as randomness

In the previous section we discussed that block hashes can be used as a randomness

source to sign a hard PoA message, preferably in combination with other randomness

sources. Specifically in Diem, to prevent an attacker from manipulating this source, we

would pick the root of the LedgerInfo tree that includes 2f + 1 Validator signatures (thus

a LedgerInfoWithSignatures object), where f denotes the upper bound of Byzantine Val-

idators. Therefore, to manipulate this information, an attacker would need to also subvert

more than f Validators which in turn would break the assumption of Byzantine Fault Tol-

erance. Note that a dishonest leader could in theory selectively pick any 2f + 1 signature

combination when all Validators sign, but fortunately this does not give any advantage as

we are interested in a fresh and unpredictable, but not necessarily unbiased, challenge.

4.4.4 Accurate timestamping

Diem’s blocks use monotonically increasing timestamps. This implies that (unlike other

blockchains) one could use a time reference t instead of a block-height j. In addition, all PoA

elements should be consistent for a specific block, with the proof showing the total assets

for a snapshot of the same blockchain height (or timestamp) across all ParentVASP and

ChildVASP s. If a variation in height was allowed, malicious provers could move assets

among their accounts in neighboring blocks and falsely claim assets greater than those

actually owned.

Also, as mentioned before, Diem uses “versions” rather than “blocks-heights”, with

each transaction resulting in a unique, incremental version. Therefore, as each block has

88

subsequently a range of versions, the account states in the latest version in a block need to be

retrieved [116]. This can be implemented through appropriate GetVersionByTimestamp()

and GetStateByVersion() functionalities, which would return the blockchain version for

some specific timestamp and the blockchain state for some version respectively. Note that

as shown in Figure 4.2, the latest transaction in an epoch should be considered (transaction

T4) for all account state proofs, and prove that the immediate next transaction belongs to

the next epoch. This ensures that account proofs are provided after all transactions in the

block have been considered.

4.4.5 Compression

Signature compression: Signatures and public keys account for the largest part of a PoA

payload. Actually, there exist three types of signatures:

1. Validator signatures over the block data.

2. account signatures for every transaction in a block.

3. key-possession-proof signatures for each auditee key (potentially delegated).

In PoA we are interested in the first and third signature types. Compression can be

achieved through various techniques, but some of them require a Diem protocol update

and thus, they cannot be applied directly. Examples include having the Validators running

interactive multi-sig protocols, such as Musig2 [122] and FROST [123], or supporting BLS

signatures [124], which allows for aggregation to a single signature (although we still need

the public keys). Solutions not requiring a protocol update include the SNARKs [44],

STARKs [101] or the recent non-interactive EdDSA half-aggregation[125]. However, for

auditee signatures over a challenge, the prover, who controls all of the keys, can simulate a

Musig2 in-the-head or apply the Schnorr batching technique of [126].

Epoch proof compression: At the moment, Diem’s epoch-change proofs are sent in raw

format, without tackling duplication between epochs. We present an easy to implement

89

Figure 4.3: Epoch skipping optimization.

partial compression method without advanced ZK protocols.

Normally, to verify epoch changes, where at least one Validator rotates its key, we have

to verify all intermediate epochs from the last known checkpoint. However we can skip epoch

verifications if less than 1/3 Validators have been updated, and only require to “jump” to

an epoch where a sufficient number of Validators have changed (concept shown in Fig 4.3).

Note however that this optimization is incompatible with long range attack prevention [127];

still, this might be tolerable in some threat models. We can further optimize epoch proofs

by only considering the required 2f + 1 signatures (omit the rest) along with their key

rotation operations, even when all Validators have signed.

4.4.6 Multiple currencies

Note that Diem might support several currencies, and asset proofs might be required

across all of them. Our recommendation is that PoA should run per currency (but again

for the same height). Converting all currencies to a single one using the current exchange

rate is not advised for PoSolv purposes [111], as there are examples of extreme volatility

(i.e., the case of Swiss franc cap removal on Jan 15, 2015 [128]).

90

4.4.7 PoA transaction type

In general, as an alternative to a carefully signed message that is distinguishable from

a regular transaction by design [129], transferring some amount (or even a zero amount) to

a (designated) address would also work for PoA purposes, especially if one wants on-chain

PoA recording. In Diem, a hard PoA could also be executed through a special transaction

type, with the sole purpose of signing a message, however such “NO-OP” transactions are

not yet implemented. Fortunately, Diem allows sending funds to self, which is one way to

implement hard PoA. Another option would be to send some amount to a predetermined

“sink” account. Such approach has the advantage of consolidating all associated PoA events

and making them easier to track.

4.4.8 Withdrawal capability

As discussed in Section 4.2.1, Diem has the unique functionality of granting the capa-

bility of spending to other accounts and smart contracts[130]. This delegation mechanism

introduces additional complexity when proving assets. Because of withdrawal capability, the

PoA message signing should happen on-chain, which would make sure the smart-contract

logic that involves withdrawal capabilities would execute. Otherwise, off-chain verifiers

would need a copy of the current blockchain’s state and be able to simulate transaction

execution in this copy, which would make the whole process expensive or cumbersome.

Another issue is related to potentially incompatible implementations of custom withdrawal

capability logic (smart-contract), because currently there is no enforcement of requiring

additional metadata (which in our case is required to attach the random challenge).

4.5 Conclusion

We presented several considerations for implementing proof of assets in the Diem blockchain.

By taking advantage of Diem’s native hierarchical account structure, two major policies of

91

asset proofs have been analyzed: soft PoA, which can be executed at any time without in-

teraction with account holders, and hard PoA which provide extra assurance that account

holders are in control of their keys. However, the latter requires a more carefully planned,

coordinated interaction.

All of our proofs rely on widely-used cryptographic primitives with standard assumptions

(i.e. signatures and Merkle proofs). We discuss several edge-cases that should be taken into

account when designing PoA protocols in a hierarchical, KYC-ed, account-based blockchain

system (e.g. timestamping and consistency), and propose practical solutions, including

options for fresh and unpredictable proof of key-possession challenges. Finally, we propose

easy to implement optimizations (e.g. signature and epoch change proof compression), while

still remaining compatible with the underlying Diem blockchain.

92

Chapter 5: gOTzilla: Efficient Disjunctive Zero-Knowledge

Proofs from MPC in the Head, with Application to Proofs of

Assets in Cryptocurrencies

5.1 Introduction

We continue to consider the Proof of Assets problem at a macroscopic level, and in

this chapter we discuss the aspect of regulation in a large scale, permissionless distributed

payment system such as Bitcoin [1]. The work presented in this chapter has been published

in [30], and is also of independent interest for the cryptography community as discussed

below.

As discussed in Chapter 2, a zero-knowledge (ZK) proof [131] allows a prover P to

convince a verifier V that a statement x is true without revealing any further information.

ZK proofs have numerous applications: they are used as a building block in various cryp-

tographic constructions such as secure multiparty computation [132], signatures [133] and

anonymous credentials [134] just to name a few, and more recently they have been used as

a core component in privacy-preserving cryptocurrencies [5].

ZK proofs can be constructed generically for any NP language [132], however, such

generic constructions are usually not efficient. In order to achieve practical construc-

tions, customized ZK proofs have been designed for specific languages (e.g. particular al-

gebraic statements), or with specific optimization goals (e.g. proof size succinctness or

non-interactiveness). Many different approaches have been proposed, each with different

trade-offs on the types of supported languages, efficiency goals and underlying assumptions.

In terms of efficiency, the tradeoffs appear in the prover complexity, the verifier complexity,

and the communication costs.

93

Here we focus on zero-knowledge proofs that can efficiently support very large disjunctive

statements, and the Proof of Assets (PoA) problem in UTXO-based cryptocurrencies, where

a prover (usually some exchange or other organization) wishes to convince a verifier that

it knows the respective private keys of at least a certain number of coins on the blockchain

(without revealing which those coins are), is our application scenario. In Bitcoin, and other

cryptocurrencies with similar structure, PoA can be expressed as a disjunctive ZK proof

where the statement is a set of hashed public keys (often called addresses), and the witness

is one or more secret keys that correspond to some of the public keys. The challenge when

computing a ZK proof for PoA is bifold: (a) the size of the statement grows with the

total size of the Bitcoin UTXO set, which has hundreds of millions of elements, and (b)

the statement is a combination of an algebraic circuit – the discrete log relation between

(sk, pk) – and a Boolean hash function, since the prover needs to prove that it knows the

secret key for one of the hashed public keys. Concrete protocols for the PoA application

have been designed in the literature [17,100], but as explained in related work (Sections 4.1

and 5.1.1), they fall short in addressing the two main design challenges simultaneously.

Our Construction. We first focus on the challenge of dealing with very large statements.

Specifically, we are interested in statements of the following form: for a publicly known

circuit C, and a publicly known set of values Y = {y1, . . . , yn}, the prover wishes to prove

that it knows a witness x such that C(x) = y1 ∨ C(x) = y2 ∨ · · · ∨ C(x) = yn. A simple

restructuring of this statement allows us to remove the n copies of C, greatly reducing

the statement size. The prover witness is modified to be a pair of values, (x, y), such

that (C(x) = y) ∧ (y = y1 ∨ · · · ∨ y = yn)). As we discuss below, this provides significant

improvement even for existing proof systems that support disjunctions, as the size of an

equality circuit is much smaller than |C|.1 Once re-written in this form, we are able to

reduce the disjunction of equalities to 1-out-of-n Oblivious Transfer (OT).

1Generically, a proof system that efficiently supports disjunctions might not support the conjunction of
C with the disjunction of n equalities. In practice, existing systems seem to handle this change without
significant complication.

94

We build a ZK proof using the MPC in the head paradigm (MPCitH). Our main ob-

servation is that when proving that y is equal to one of the elements in the public set Y , it

suffices to enforce constraints on the Prover’s set of inputs to the MPC in the head. We do

that by having the Verifier prepare an encoding of all n possible inputs yi for the MPCitH

and having the Prover select a single input encoding obliviously, using 1-out-of-n OT. The

Verifier creates these encodings such that the portions of the encoded input that are re-

vealed to the verifier in the opened MPCitH views are identical for all yi. This ensures that

the view can be safely opened for verification, without revealing the index i. We implement

1-out-of-n OT using Private Information Retrieval (PIR). Note that PIR is a relaxation of

1-out-of-n OT, in that it potentially allows the receiver to learn more than one value. We

strengthen PIR to OT by performing a zero-knowledge proof on the Prover’s PIR query

to show that it is well-formed (i.e. a valid ciphertext encrypting a query for only a single

database element). In our 1-out-of-n OT protocol (as well as in the rest of the protocol)

we enforce honest Verifier behavior by committing to, and later revealing, the Verifier’s

random tape, allowing the Prover to check that the Verifier’s messages have all followed

the protocol. We can only do this because the Verifier’s inputs are random challenges that

do not require privacy beyond the end of the protocol; for general purpose 1-out-of-n OT,

this approach cannot be used for ensuring the honest behavior of the sender. By building

1-out-of-n OT from PIR, we achieve communication complexity of O(log n), which allows us

to achieve an overall communication cost of O(log n) + ΠProofsize where ΠProofsize denotes

the proof size of the MPCitH protocol. We present our protocol in Section 5.3.

ZK Proofs on Mixed Statements. An efficient disjunctive proof however, is not enough to

efficiently prove the concrete PoA statement, i.e. “I know sk such that: (H(pk) = y)∧ (y =

y1∨· · ·∨y = yn))” where {y1, . . . , yn} is a list of hashed public keys using function H and pk

is the public key that corresponds to sk. One could convert our algebraic statement (on the

relation between (sk, pk)) to a Boolean circuit, but, as we discuss later in Section 5.5, this

would result in a circuit with millions of gates. A number of works examined the problem

of efficiently combining algebraic to non-algebraic statements in a ZK proof. Chase et al.

95

[49] provided one of the first techniques based on Garbled Circuits, MACs and Oblivious

Transfer which was further optimized in [100], and later Backes et al. [135] presented a

technique on an MPCitH Σ-protocol inspired from ZKBoo [136], however these works were

not taking a disjunctive statement into account. In Section 5.4 we present an extension of

our disjunctive proof that supports mixed statements, and in Figure 5.9 we further extend

our mixed statements protocol to also handle the value that corresponds to the secret key

(i.e. witness) of the Prover (a property needed towards designing a PoA protocol).

Evaluation Results. We evaluate gOTzilla on top of an existing PIR implementation,

namely SealPIR [137], by implementing our techniques to derive a 1-out-of-n OT protocol,

while treating the underlying MPCitH protocol as a black box. Our results are presented in

detail in Section 5.5, where we show that we can prove knowledge over a disjunctive state-

ment of n = 220 elements in 14.89 seconds, with 6.18 MB of communication and 10 seconds

network latency at the worst case, for statistical security parameter λ = 40. Our evaluation

shows a significant improvement in total protocol run-time over Mac’n’Cheese [138] the

state of the art in disjunctive proofs, which has similar asymptotic costs to us as discussed

in the Related Work section below.

5.1.1 Related Work

We provide a short, non exhaustive, overview of common ZK proof types for disjunctive

proofs and mixed statements, as well as an overview of solutions specific to the PoA problem.

Standard ZK Techniques. Σ-protocols form a well studied class of efficient protocols

specifically for algebraic statements, such as discrete logarithms and roots [139,140], while

garbled-circuit approaches were used to efficiently prove Boolean circuits [141]. We note that

if one attempted to use a Σ-protocol to prove a statement about a function represented as

a Boolean (or arithmetic) circuit C, both proving and verification costs would grow linearly

with the size of the circuit (a simple SHA256 evaluation would result in tens of thousands

of exponentiations) which makes them prohibitive for a PoA like statement.

ZK-SNARKs are better suited for Boolean or arithmetic circuits and while they could

96

be used for algebraic statements, they would require circuits with thousands or millions of

gates for a simple computation like an exponentiation exploding the prover’s cost.

Some recent works [45,142–145] use techniques such as interactive oracle proofs (IOP),

vector oblivious linear evaluation (VOLE) and the MPC in-the-head paradigm without

relying on a setup phase, yet, they still impose high computational costs on the prover side

thus are not directly relevant to the considered PoA application.

Disjunctive ZK Proofs. A number of related works have examined the general problem

of building efficient disjunctive ZK proofs. Following the seminal work by Cramer et al. on

constructing standard disjunctive proofs [91], Stacked Garbling [146] proposed a garbled-

circuit approach for creating a disjunctive proof with sublinear communication complexity,

based on Jawurek et al. [141]. Later, Stacking Sigmas [147] provided a generic compiler

for reducing communication complexity (i.e “stacking”) of disjunctive Sigma-protocols sat-

isfying a specific “stackable” property, and is compatible with recent MPCitH style ZK

protocols such as KKW [143] and Ligero [142].

Table 5.1: Asymptotic comparison of disjunctive ZK proof systems for n statements for
a single circuit C. NI = Non-Interactive. Π denotes an MPCitH protocol, ΠRuntime and
ΠProofsize denote Runtime and Proofsize of Π, respectively.

No setup NI Prover Runtime Proof size

Ligero [142] 4 4 O((n+ |C|) · log(n+ |C|)) O(
√
n+ |C|)

Π + Stacking Sigmas [147] 4 4/5 O(n) + ΠRuntime O(log n) + ΠProofsize

Mac’n’cheese [138] 4 5 O(n+ |C|) O(log n+ |C|)
Goel et al. [148] 4 4 O(n) + ΠRuntime O(log n) + ΠProofsize

gOTzilla 4 5 O(n) + ΠRuntime O(log n) + ΠProofsize

Recently, Mac’n’Cheese [138] proposed a new, VOLE based approach to build generic

zero-knowledge proofs for disjunctive statements of the form (x, i) : Ci(x) = yi for i ∈

{1, . . . , n} with communication cost of maxi{|Ci|} + log n. In the general case where each

Ci is a different circuit, both the prover and verifier have to execute all branches to construct

or verify the proof, causing the total computation cost to be O(
∑n

i=1 |Ci|). In the special

case where all the circuits Ci are identical, using our observation above that restructures the

97

disjunctive portion, their construction can be slightly modified to improve the computational

cost to O(n+ |C|).

In a concurrent to ours work, Goel et al. [148] provided a membership proof protocol

towards building a ring signature, which is equivalent to our observation discussed above

(i.e. restructuring a disjunctive proof statement to a disjunction of equalities). Similar to

our construction, this work relies on an underlying MPCitH protocol and has equivalent

asymptotic costs, however it follows a cut and choose approach which naturally implies

higher concrete computational costs, while having reduced concrete communication costs.

In addition, being public-coin, it can be converted to a non-interactive protocol in the

random oracle model using the Fiat-Shamir transform. However, as we later discuss in

Section 5.4.1, interaction is naturally implied for our application scenario, and we discuss

the tradeoffs between computation and communication costs in Section 5.5.

In Table 5.1 we provide a comparison of basic techniques for disjunctive statements. We

note that although asymptotically we might have similar performance as Mac’n’Cheese [138]

or Stacking Sigmas [147] combined with a suitable MPCitH protocol Π, we have significant

concrete improvements. In Section 5.5.1 we present a concrete comparison of our disjunctive

protocol with Mac’n’Cheese [138] to showcase our improvement by 4x in runtime for the

case of “mixed” disjunctive statements. There is no available implementation of Stacking

Sigmas [147] for a direct comparison, however Stacking sigmas is expected to be more

expensive than Mac’n’Cheese concretely due to its underlying techniques (Stacking sigmas

relies on commitments with elliptic curve operations which are more expensive than VOLE

used in Mac’n’cheese). Also, there is no available implementation for Goel et al. [148]

therefore our comparison is based on their evaluation. We note that a caveat of our approach

is that we generally have larger memory requirements as opposed to Mac’n’Cheese where

the prover and verifier are not required to store the entire proof statement in memory.

However, as we discuss in Section 5.5.1, gOTzilla can optimize RAM usage by generating

the required data on the fly as needed to improve our storage costs.

1-out-of-n Oblivious Transfer and PIR The connection between PIR and Oblivious

98

Transfer was studied before in [149,150] (where 1-out-of-n OT was also referenced as “Sym-

metric PIR” or SPIR). These works provided transformations of PIR to SPIR, which how-

ever have an overhead in computational and/or communication costs.

While most 1-out-of-n OT protocols require linear communication, Zhang et al. [151]

presented a protocol with O(
√
n) communication costs, while also proposing using PIR

in conjunction with the appropriate ZK proofs. The protocol is quite practical (for short

messages) in terms of computation time, however, the communication cost is high. For

n = 106 and the message size of 192 bits, it took their protocol 30 seconds and 480 MB on an

Intel Core i5-2400 CPU running at 3.10 GHz in LAN setting. Beside the high communication

cost, another drawback of their protocol is that the message space is restricted by the size

of the group used in their protocol. When the message length is at least 10000 bits (as in

our use case), it is not clear how to modify [151] to make it work while still being practical2.

5.2 Oblivious Transfer from Private Information Retrieval

A Private Information Retrieval (PIR) protocol [152] between a receiver R and a server

S which owns a database D consisting of items y1, · · · yn, enables R to retrieve some item yi

from D without S learning any information about i. Intuitively, PIR is similar to a 1-out-

of-n OT protocol, with the main difference being that it only protects the privacy of R’s

input and assumes semi-honest behavior from both parties. In this section we construct a

protocol for 1-out-of-n OT built on top of SealPIR [153]. Note that this construction cannot

generically be applied to arbitrary PIR protocols, as it relies on properties of SealPIR’s

construction.

Privacy against semi-honest receivers. SealPIR is constructed from the additive homo-

morphic encryption scheme BFV [154,155] based on Ring-LWE. As privacy is not a concern

in a PIR protocol, SealPIR packs many yi to fully utilize the large plaintext supported

by Ring-LWE, and computes f(b, y) =
∑n/k

j=1 bj · Yj where Yj = (y1+(j−1)k, . . . , yjk), k is

2It will be too costly to use a group of size 10000 bits.

99

the number of yi’s that can be fitted into one plaintext, bj = 1 if the selected item is

in [1 + (j − 1)k; jk] and bj = 0 everywhere else. In the protocol, bj ’s are encrypted and

compressed by the receiver, decompressed by the sender who sends back the encrypted of

f(b, y). Finally the receiver decrypts the ciphertext and obtains f(b, y) = Yj .

We observe that without packing the yi, the protocol actually computes f(b, y) =∑n
j=1 bj · yj and realizes a semi-honest 1-out-of-n OT protocol (with less efficiency if the

plaintext has too much empty space).

Security against a malicious receiver. To achieve security against malicious receivers,

after sending its query the receiver performs a zero-knowledge proof that the query is “well-

formed” (i.e. is an encryption of a plaintext with exactly 1 nonzero index). We describe

this protocol in figure 5.1.

First, ΠWellFormed
ZK guarantees that the encrypted query cv is a correctly-constructed

ciphertext of a known plaintext with bounded noise using techniques proposed by Chen et

al. [156]. The rest of the protocol proves that the underlying plaintext is a well-formed.

The server creates a challenge by sampling a random element ri and random polynomial

Qi and an (n − 1)-out-of-n shamir-sharing of Qi (denote the vector of shares as qi). The

server then homomorphically computes ci := ri · cb + Enc(qi) and sends ci to the receiver.

If the query is well-formed, then the decryption of ci will have enough unmodified shares

to reconstruct Qi. More specifically, the decrypted plaintext will contain n− ||b|| shares of

Qi where ||b|| is the number of nonzero elements in the plaintext query. Hence if the query

contains > 1 non-zero elements the receiver is unable to reconstruct Qi. We repeat this

process (in parallel) to achieve the desired level of soundness.

Security against a malicious sender. To make ΠWellFormed
ZK malicious-secure, we observe

that the server only needs to keep Qi and ri private until the receiver has sent its response.

Additionally, once the receiver knows Qi, ri and the randomness used to encrypt qi it

can deterministically recompute the honestly-generated ci to verify honest behavior of the

server.

100

Along with the challenges ci, the server now sends a commitment to a PRG seed s from

which all other random values are sampled. The receiver commits to its responses, then the

server opens the seed to the receiver. The receiver recomputes the challenges and verifies

that they match what the server originally sent. If so, the receiver opens its responses to

the server.

For the overall 1-out-of-n OT protocol we apply a similar methodology. First the server

commits to its PRG seed and database input, and later opens this commitment so that the

receiver may check for honest behavior. In order to preserve the receiver’s input privacy,

this check must occur before any computations based on the received value are revealed

to the sender. To preserve soundness, it must occur after all relevant prover computations

have been run and their outputs committed. Because of this, our implementation of Π1:n
OT

only attains security against semi-honest S and malicious R. When using Π1:n
OT in a larger

protocol, we augment it with the PRG trick to reach malicious S security. As an optimiza-

tion, we use a single seed for all instances of 1-out-of-n OT, allowing the server to reveal

the databases for all instances simultaneously.

Theorem 2. Protocol ΠWellFormed
ZK is a Zero Knowledge proof that an encrypted PIR query

Enc(b) satisfies the condition: @(i 6= j) s.t. bi 6= 0 ∧ bj 6= 0.

Proof (Sketch). Soundness: If the prover cheats by setting more than one entry of b to

be non-zero, it will not have enough information to reconstruct Q̃i. As aij are sampled

uniformly at random, Qi(0) = ai,0 is also uniformly random. In order to pass the check,

the prover can only guess ai,0 and has the probability of 1/t to guess it correctly. In overall,

the chance that the verifier passes the check if it cheats is t−σ < 2−λ.

Zero-knowledge: It is clear that the encryption of b preserves the privacy of the selection

index. This is due to the property of the encryption scheme. In the protocol, the prover

only reveals Q′i(0) after seeing the seed used to generate the challenges by the verifier. Thus,

the verifier has no way to deviate from the protocol without being caught. If the verifier

abides by the protocol, it learns nothing from the answers. If the verifier cheats, it will not

101

ΠWellFormed
ZK

Setup. Ring-LWE scheme with parameters (N, t, q) where N is the degree of the
cyclotomic polynomial, t the plaintext modulus, and q the ciphertext modulus. The
prover has the key pair (sk, pk), while the verifier has the public key pk. σ is the

soundness amplifier such that t−σ < 2−λ.

Prover’s input. b ∈ Rt[X]/(XN + 1) and k ∈ [0, N) such that bk 6= 0 and bi = 0
∀i 6= k.

Commom input. cb = Enc(pk; b) where b ∈ Rt[X]/(XN + 1).

Protocol.
1. The prover sends a proof on the validity of ciphertext cb which includes that

the Ring-LWE noise is bounded.

2. The verifier samples a random seed s ∈ {0, 1}κ. For i ∈ {1, · · · , σ} the verifier

samples ri, Qi(X)← PRG(s) where ri ∈ Zt, Qi(X) =
n−1∑
j=0

aijX
j , aij ← Zt, and

computes qi = (Qi(1), · · · , Qi(N)) ∈ ZNt . It uses the additive homomorphic
property of Ring-LWE to compute ci ← Enc(pk, ri · b + qi). After that, the
verifier sends Com(s) and ci to the prover.

3. The prover decrypts ci, obtains ci = ri ·b+qi, interpolates Q′i from the points
(j, cij), where j ∈ {1, · · · , N}, j 6= k. It then sends Com(Q′i(0)) to the verifier.

4. The verifier decommits s to the prover.

5. The prover verifies that ci is correctly generated. If so, it decommits Q′i(0) to
the verifier.

6. The verifier checks that Q′i(0) = ai,0.

Figure 5.1: Zero-knowledge proof to prove that the encrypted ciphertext cv is well formed
and at most one of bi 6= 0.

Π1:n
OT

Receiver input. b = {b1, . . . , bn} where ∃i ∈ {1 . . . n} : bi 6= 0 ∧ bj = 0∀j 6= i

Sender input. y = {y1, . . . , yn}.

Setup. R generates a BFV keypair (sk, pk) and sends pk to S.

Protocol.
1. R computes cb ← Enc(b) and sends cb to S.

2. R and S run ΠWellFormed
ZK on cb.

3. S homomorphically computes c′b ← f(cb, y) and sends c′b to R

4. R computes b′ ← Dec(c′b) and outputs b′

Figure 5.2: 1-out-of-n OT protocol

102

see the answers, thus, there is no risk of leaking information to the verifier due to selective

failure attacks.

Theorem 3. Let Com be a binding and hiding commitment scheme, and let SealPIR be the

protocol described in [153], modified to not use any packing. Then the protocol described

in Figure 5.2 implements F1:n
OT with security against a malicious receiver and semi-honest

sender in the Com-hybrid model.

Proof. (Sketch) The security against semi-honest senders follows directly from the semantic

security of the cryptosystem and the zero-knowledge property of ΠWellFormed
ZK .

As for the security against malicious receivers, the soundness of ΠWellFormed
ZK ensures

that b is a valid query. Given that b is a valid query (i.e. only one i is nonzero) the sender’s

response c′b = f(cb, y) = Enc
(∑n

j=1 bj · yj
)

= Enc(bi · yi).

We construct a simulator S which interacts with R and the ideal functionality (shown

in Figure 5.3). The indistinguishability of R’s view when interacting with S in the real

world versus R’s view when interacting with S in the ideal world follows directly from the

soundness of the ΠWellFormed
ZK ZKPoPK subprotocol [156].

S1:nOT

1. R sends cb to S.

2. Perform ΠWellFormed
ZK with R. Using the ZKPoPK extractor from the sub-

protocol in step 1 [156] of ΠWellFormed
ZK extract b and learn R’s secret index

i.

3. Send i to F1:n
OT ; receive yi in return.

4. Compute c′b ← Enc(bi · yi) and send c′b to R

Figure 5.3: Malicious-receiver simulator for Π1:n
OT

103

5.3 Disjunctive proofs from 1:N OT

5.3.1 MPCitH Disjunctive Proof

Towards our goal of constructing an efficient disjunctive proof, we first define a helper

function ShareAt(m,x, J, r) which pseudorandomly samplesm-out-of-m additive secret shares

of x from the seed r, outputting a vector of values {X1, . . .Xm} such that
⊕m

j=1 Xj = x

(we omit m as explicit input to ShareAt for the rest of our work). In addition, ShareAt

has the property that for a fixed index J ∈ {1, . . .m} and r, ShareAt(m,x, J, r) and

ShareAt(m,x′, J, r) will have identical outputs at every index except the J-th index. This

function is shown in Figure 5.4.

ShareAt

Let G(·) be a PRG

Input: x ∈ {0, 1}∗, J ∈ {1, . . .m} and a seed r ∈ {0, 1}κ.

1. Sample random vector {X1, . . . ,Xm} by computing G(r), where |Xj | = |x| for

all j ∈ {1, . . .m}.

2. Set XJ as XJ ← x
⊕

j∈{1,...m}\J Xj

Output: {X1, . . . ,Xm}

Figure 5.4: Secret sharing with specific offset index

We define our main protocol ΠMPCitH−OR
f in Figure 5.5. The common input is a function

f , and a set of values y1, . . . , yn. The Prover wishes to prove, in zero knowledge, that it

knows input (x, y) such that f(x, y) = 1 ∧ y ∈ {y1, . . . , yn}. We let ΠF denote an m-party

protocol for securely computing f(
⊕

j xj ,
⊕

j yj). The verifier, V, begins by generating and

committing to a PRG seed s from which all further random values are sampled. This seed

will allow the prover to confirm the verifier’s honest behavior using the technique described

in Section 5.2.

Next, the verifier V generates τ different sets of input encodings – each containing m

104

shares – for each of the yi common input values. This results in a 3D table of shares

(n×m×τ), denoted Y k
ij , as shown in Figure 5.6. This 3D table is divided into n 2D “slices”

of dimension (m × τ), each corresponding to an input yi. These slices are encodings of

yi such that all slices are identical in every position except for 1 per row (τ non-identical

positions total). The non-identical position for the k-th row is denoted εk.

Then, prover P selects a “slice” of this 3D table through the 1-out-of-n OT protocol; the

choice of the slice is its secret input, `.

For each row of the slice (i.e. a chunk which was generated from the same value of k

and adds up to y`) P generates additive shares of x and computes MPCitH views using the

shares of y` from the slice and the newly-generated shares of x as input. Once all views are

generated, P commits these views to V.

Finally, V reveals the committed seed s to P, who regenerates the whole 3D table, and

verifies the honest behavior of the verifier. P aborts if there is a mismatch, otherwise P

decommits the MPCitH views (except Party εk) to V who verifies the honest execution of

the MPCitH protocol, and accepts the proof.

Note that since the slices are identical in each row except for at εk (i.e. the unrevealed

MPCitH input) the privacy of the MPCitH protocol protects the prover from revealing its

choice of index `.

Theorem 4. Let m ≥ 3, let f(Y,X) be the function defined in Figure 5.5, let Com be a

binding and hiding commitment scheme, let ΠF implement f with correctness and (m −

1)-privacy, and let Π1:n
OT implement F1:n

OT with security against a malicious receiver and a

semi-honest sender. Then the protocol described in Figure 5.5 is a zero-knowledge proof

protocol for the language {((y1, . . . , yn), x) : ∃` ∈ {1, . . . , n} such that f(x, y`) = 1} in the

(Com,F1:n
OT)-hybrid model.

Proof. Zero Knowledge: First we claim that the security of the protocol in the presence of

a dishonest verifier reduces to the security of the protocol in the presence of a semi-honest

verifier.

105

ΠMPCitH−OR
f

Setup. Let f(x, y) be some function, and let F be an m-party functionality that takes

input (Xj ,Yj) from each party Pj and outputs f(⊕mj=1Xj ,⊕mj=1Yj)
?
= 1 to all parties. Let

ΠF be an m-party protocol that securely realizes F with correctness and (m− 1)-privacy.

Common inputs. τ total number of repetitions, n values {y1, . . . , yn} ∈ {0, 1}κ, and m,
the number of parties involved in the MPC protocol, run in the head of the Prover, and

m−τ < 2−λ, λ is a security parameter.

Prover’s input. x ∈ {0, 1}∗ such that f(x, y`) = 1 for some ` ∈ {1, . . . n}. a

1. Verifier V generates random seed s and sends Cs ← Com(s) to the prover P. Through-
out the rest of the protocol, all randomness of the Verifier is generated by applying a
PRG, G(s). (We will, imprecisely, refer to these as “random” values.)

2. V uses the random seed s to sample the following values uniformly at random:

(a) εk
$← {1, . . .m} for k ∈ {1, . . . τ}.

(b) rk
$← {0, 1}κ for k ∈ {1, . . . τ}.

3. For i ∈ {1, . . . n}, k ∈ {1, . . . τ}, V compute vector {Y(k)
i,1 , . . . ,Y

(k)
i,m} ←

ShareAt(yi, εk, rk), which results in a 3D table, as in Figure 5.6. (Note that the same
rk is used for every yi.)

4. For every i ∈ {1, . . . n}, V sends the 2D table {{Y(1)
i,1 , . . .Y

(1)
i,m}, . . . {Y

(τ)
i,1 , . . .Y

(τ)
i,m}} =

{Y(1)
i , . . .Y

(τ)
i }

to Π1:n
OT.

5. P sends ` to Π1:n
OT.

6. Π1:n
OT outputs {Y(1)

` , . . .Y
(τ)
` } to P.

7. For every k ∈ {1, . . . τ}, P:

(a) Computes X(k) = {X(k)
1 , . . . ,X

(k)
m } as a random additive share of x, i.e. (x =⊕m

j=1 X
(k)
j)

(b) Computes {view1,k, . . . , viewm,k} ← ΠMPCitH(ΠF , (X
(k),Y

(k)
`)).

8. For all j ∈ {1, . . .m}, k ∈ {1, . . . τ}, P sends Cviewj,k ← Com(viewj,k) to V

9. V de-commits s, which P uses to derive {ε1, . . . , ετ} and to reconstruct the 3D table

as in above steps 2 - 3 b.

aThe input length |x| can be either fixed or arbitrary.
bAll messages sent by the receiver during Π1:n

OT are computed deterministically from the seed s and the
common input {y1, . . . , yn}.

Figure 5.5
106

10. P verifies the following properties hold for all i, i′ ∈ {1, . . . , n}, k ∈ {1, . . . , τ}, j ∈
{1, . . . ,m}\εk:

m⊕
j=1

Y
(k)
i,j = yi. Y

(k)
i,j = Y

(k)
i′,j

If these properties do not hold, P aborts.

P decommits each {viewj,k}k∈{1,...τ},j∈{1,...m}\εk

11. V checks that the decommitted views are consistent with honest executions of ΠF ,

include an output of 1, and that viewj,k has a Y input equal to Y
(k)

1,j .

Figure 5.5: OR proof using MPC-in-the-Head

... ...

... Y
(τ)
nm

... ...

... Y
(k)
nm

Y
(1)
11

... Y
(1)
n1

... Y
(1)
ij

...

Y
(1)
1m

... Y
(1)
nm τ

n

m

Figure 5.6: Notation for protocol ΠMPCitH−OR
f .

107

Consider the view of V after step 9. The messages V has received are encrypted queries

of P’s private input ` (step 1 of Π1:n
OT), a transcript of a zero-knowledge proof (step 2 of

Π1:n
OT), and commitments to MPCitH views (step 8 of ΠMPCitH−OR

f).

Suppose V does not follow the protocol honestly. In the honest protocol, V’s messages

are generated deterministically based on s, the common input, and P’s messages. Hence

after V opens s in step 9, the prover can compare each message that V sent against the

expected message in the honest verifier protocol. By our assumption one of these messages

is inconsistent, hence P’s next action is to abort the protocol.

SMPCitH−OR
MaliciousVerifier

1. Emulating step 1 of Π1:n
OT , S samples a random unit vector b and sends Enc(b)

to V.

2. Emulating step 2 of Π1:n
OT , S runs the zero-knowledge simulator for ΠWellFormed

ZK

with V.

3. Emulating step 8 of ΠMPCitH−OR
f , S samples m× τ random strings of the same

length as an MPCitH view and sends a commitment to each string to V.

4. Emulating step 9 of ΠMPCitH−OR
f , S aborts the protocol after receiving V’s

decommitment.

Figure 5.7: Malicious-verifier simulator for ΠMPCitH−OR
f

We construct a simulator S for V’s view after step 9 (shown in Figure 5.7) for the case

where V deviates from the honest protocol and argue that the view when interacting with

the simulator is indistinguishable from V’s view when running ΠMPCitH−OR
f . The encrypted

query’s indistinguishability follows from the semantic security of the encryption scheme. The

zero-knowledge transcript’s indistinguishability follows from the zero-knowledge property

of ΠWellFormed
ZK . The indistinguishability of the committed views follows from the hiding

property of Com. Finally, as discussed above a verifier that deviates from the honest protocol

will always cause the protocol to abort after step 9.

Next, we claim that, when given access to an ideal functionality for F1:n
OT, our protocol is

zero-knowledge against a verifier that does not deviate from the semi-honest protocol. Since

Π1:n
OT implements F1:n

OT with semi-honest sender security and we are assuming the verifier

108

behaves semi-honestly, we may freely replace Π1:n
OT in our protocol with F1:n

OT. The simulator

for ΠMPCitH−OR
f then proceeds as follows.

1. Accept the verifier’s inputs to the OT functionality, recovering all input encodings,

{Y(1)
i , . . .Y

(τ)
i } for all i, as well as (ε1, . . . , ετ). If any of these values are badly formed,

the simulation sets an abort flag: abort = 1. Otherwise, for each k ∈ {1, . . . , τ}, the

simulator chooses random input shares, {X(k)
1 , . . . , X

(k)
m }, then discardsX

(k)
εk and Y

(k)
i,εk

,

for arbitrary i. (Note that, excluding Y
(k)
i,εk

and Y
(k)
j,εk

, the remaining n− 1 shares of yi

and yj are identical).

2. Let S be the (n − 1)-privacy simulator from Definition 6. The ZK simulator runs S

using the remaining n− 1 shares of x, and yi. It commits to the resulting n− 1 views

and sends them to the verifier.

3. The simulator runs steps 9-11 honestly: it accepts the decommitment to the veri-

fier’s randomness, performs the described correctness checks, and decommits to the

simulated views if everything passes, and abort 6= 1.

By definition, the output of S is indistinguishable from the decommitted views of the

prover in the hybrid-world proof. The reader can verify that the remainder of the simulation

is perfect.

Soundness: Suppose the Prover does not know a valid input xi for any yi. By the hiding

property of Com, the prover learns nothing about the verifier’s state other than the queried

row from Π1:n
OT before it sends the commitments to its MPCitH views. And by the binding

property of Com the prover’s MPCitH views must be fixed before the prover receives the

rest of the verifier’s state. Since the proof is accepted or rejected based on these views, we

can reduce the soundness of the protocol to the security properties of the MPCitH protocol.

We consider 3 cases, depending on how many simulated MPCitH parties perform mali-

cious behavior (as measured by comparing inconsistencies in the parties’ views).

109

In the first case, all MPCitH parties act honestly. By the completeness of ΠF , either all

parties output 0 with all but negligible probability (in which case the proof is rejected) or

the input (xi, yi) is a valid witness for f . By our previous assumption, if f(xi, yi) = 1, then

yi is not a member of the common input set, hence the input encoding Yi,j must be different

from the encodings created by the verifier in at least one position. If any opened view’s

input encoding of yi does not match the verifier’s encodings the proof will be rejected, thus

in order to create valid proof, P must modify only the share of yi that is not opened by

V. By the hiding property of Com, P has no information about εj , hence the prover has at

best 1
m chance of guessing correctly for a single iteration. Amplified over τ iterations the

cheating prover’s probability of success is ≤ 1
mτ

The second case we consider is where exactly one simulated party performs malicious

behavior. In this case, the malicious party’s view must be inconsistent with at least one

other view. Since (n−1) views are opened, the verifier will see this inconsistency unless the

malicious view, or the receiver of the malicious message, is the one left unopened. Therefore,

the cheating prover’s probability of correctly guessing εj for every iteration is (2
m)τ . As an

aside, it should be straightforward to see that some smaller success probability is achieved if

the prover mixes-and-matches the strategies of the first and second cases between iterations.

The final case is that there are two or more malicious parties. In this case it is guaranteed

that there will be an inconsistent pair of views in any (n − 1)-subset, giving the cheating

prover a success probability of 0 in this case.

5.4 Disjunctive Proofs for Mixed Statements

In the proof of assets problem, the Prover and Verifier hold as common input a list of

hashed public keys, L = {y1, . . . yn}, where yi = H(xi), for some hash function H. The

Prover wishes to prove that it knows secret key z such that (x, z) is a legitimate output of

some cryptographic key generation algorithm, and, for some yi ∈ L, H(x) = yi.

110

More generally, we consider mixed statements of the form f(x, yi) = 1 ∧ g(x, z) = 1,

where yi ∈ L, f is a Boolean (or “non-algebraic”) function – in our application, a hash

function – and g(x, z) is an algebraic function – in our application, one verifying that z is

the secret key corresponding to x.

Chase et al. [49] consider this question without the disjunction. That is, they assume

|L| = 1, and focus solely on the challenge of constructing an efficient proof for mixed

statements. They do this by leveraging the specific proof system for f , built from Garbled

Circuits, in the following way. The prover begins by committing to input x with Com(x).

The Verifier then prepares a garbled circuit for the Boolean circuit that outputs both f(x),

as well as a one-time MAC on the Prover’s input: t = ax+b. The prover is allowed to decode

t, and commits to this as well. Finally, the prover provides a proof, using an algebraic proof

system, that it knows (x, t) such that f(x, y) = 1, x is consistent with Com(x), t is consistent

with Com(t), and t = ax + b. In this way, the MAC on x that was derived while proving

f(x, y) = 1 ensures that the same input x is used when proving that g(x, z) = 1.

Note that Chase et al. compute t = ax + b inside a Boolean circuit, which requires

O(|a||x|) AND gates. We improve on their solution by using the oblivious transfer to avoid

performing integer multiplication and addition in a Boolean circuit. As in the previous

Section, we use MPC-in-the-head, rather than garbled circuits. Specifically, let xi be the

ith bit of x, and for each u ∈ {1, . . . , |x|}, let 0u and 1u denote the input encodings

generated by the verifier for that input bit. The verifier chooses a at random, and samples

b by choosing random bu for each u ∈ {1, . . . , |x|} and setting b =
∑

u bu. When obliviously

sending the encoding of the ith input bit, the verifier sends (0u, bu) and (1u, 2
u−1a + bu)

to the OT functionality. By summing the 2nd value received in each of the |x| received

ordered pairs, the Prover recovers ax + b, and no computation in the circuit is required.

We note that this leads to significant improvement over Chase et al. even when |L| = 1. In

Figure 5.8, we present the full protocol, highlighting the changes in our disjunctive proof

from Figure 5.5, in order to support mixed statements.

111

ΠMPCitH−OR−Mix
f

Setup. Let f(x, y) be a Boolean function and g(x, z) an algebraic function. Let F
be an m-party functionality that takes input (Xj ,Yj) from each party Pj and outputs

f(⊕mj=1Xj ,⊕mj=1Yj)
?
= 1 to all parties. Let ΠF be an m-party protocol that securely realizes

F with correctness and (m− 1)-privacy.
Common inputs. τ total number of repetitions, n values {y1, . . . , yn} ∈ {0, 1}κ, and m,
the number of parties in the MPC protocol run in the head of the Prover. m and τ are set

such that m−τ < 2−λ, where λ is a security parameter.
Prover’s input. x, z, ` such that: ` ∈ {1, . . . n}, f(x, y`) = 1 and g(x, z) = 1. We denote

as (x1, . . . x|x|) the bit representation of x (i.e. x =
∑|x|

u=1 2u−1xu).

Verifier’s input. Cx = Com(x), Cz = Com(z).

1. Verifier V generates its random tape s and sends Cs ← Com(s) to the prover P.
Throughout the rest of the protocol, all randomness of the Verifier is generated by
applying a PRG, G(s). (We will, imprecisely, refer to these as “random” values.).

2. V uses the random seed s to sample the following values uniformly at random:

(a) εk
$← {1, . . .m} for k ∈ {1, . . . τ}.

(b) rk
$← {0, 1}κ for k ∈ {1, . . . τ}.

(c) wu,k
$← {0, 1}κ for u ∈ {1, . . . , |x|}, k ∈ {1, . . . τ}

(d) a
$← {0, 1}λ, bu

$← {0, 1}|x|+λ for u ∈ {1, . . . , |x|}. Define b :=
∑|x|

u=1 bu

3. For u ∈ {1, . . . |x|}, k ∈ {1, . . . τ}, V computes {0(k)
u,1 . . .0

(k)
u,m} ← ShareAt(0, εk, wu,k)

and {1(k)
u,1 . . .1

(k)
u,m} ← ShareAt(1, εk, wu,k)

4. For i ∈ {1, . . . n}, k ∈ {1, . . . τ}, V computes vector Y
(k)
i := {Y(k)

i,1 , . . .Y
(k)
i,m} ←

ShareAt(yi, εk, rk)

5. Exchange labels for inputs.

For i ∈ {1, . . . n} denote 2D table Yi := {Y(1)
i , . . .Y

(τ)
i }, and for u ∈

{1, . . . , |x|} denote 2D tables 0u := {{0(1)
u,1, . . .0

(1)
u,m}, . . . {0(τ)

u,1, . . .0
(τ)
u,m}}, 1u :=

{{1(1)
u,1, . . .1

(1)
u,m}, . . . {1(τ)

u,1, . . .1
(τ)
u,m}}

Figure 5.8112

5. (a) V sends {Y1, . . .Yn} to Π1:n
OT.

(b) P sends ` to Π1:n
OT.

(c) Π1:n
OT outputs Y` to P.

(d) For every u ∈ {1, . . . |x|}
i. V sends {(0u, bu), (1u, 2

u−1a+ bu)} to Π1:2
OT.

ii. For every u ∈ {1, . . . |x|}, P sends xu to Π1:2
OT.

iii. If xu = 0 then Π1:2
OT outputs (0u, bu) to P, otherwise it out-

puts (1u, 2
u−1a + bu). P denotes whichever output it receives as

{{X(1)
u,1, . . . X

(1)
u,m}, . . . {X(τ)

u,1 , . . . X
(τ)
u,m},Mu}

(e) For k ∈ {1, . . . τ} denote the 2D table X(k) :=

{(X(k)
1,1 || . . . ||X

(k)
|x|,1), . . . , (X

(k)
1,m|| . . . ||X

(k)
|x|,m)}

6. For every k ∈ {1, . . . τ}, P computes (view1,k, . . . , viewm,k) ←
ΠMPCitH(ΠF , (X

(k),Y
(k)
`)).

7. P computes MAC(x) =
∑|x|

u=1(Mu) = a · x+ b and CMAC(x) ← Com(MAC(x)).

8. For all j ∈ {1, . . .m}, k ∈ {1, . . . τ}, P sends CMAC(x) and Cviewj,k ← Com(viewj,k)

to V.

9. V decommits s, which P uses to reconstruct {ε1, . . . , ετ}, {0u,1u}, {Y1, . . .Yn}

10. P verifies the following properties hold for all i, i′ ∈ {1, . . . , n}, u ∈ {1, . . . , |x|},k ∈
{1, . . . , τ}, j ∈ {1, . . . ,m}\εk:

m⊕
j=1

Y
(k)
i,j = yi. Y

(k)
i,j = Y

(k)
i′,j

m⊕
j=1

0
(k)
u,j= 0

m⊕
j=1

1
(k)
u,j= 1 0

(k)
u,j = 1

(k)
u,j

11. P decommits each {viewj,k}k∈{1,...τ},j∈{1,...m}\εk

12. V checks that the decommitted views are consistent with honest executions of ΠF ,
and, if so, outputs 1.

13. P and V execute the following ZK proof protocol: π = {(x,MAC(x), z) : Cx =
Com(x) ∧ CMAC(x) = Com(MAC(x)) ∧MAC(x) = ax+ b ∧ Cz = Com(z) ∧ g(x, z) =

1}(Com(x),Com(z),Com(MAC(x)), a, b)

14. If π verifies, V accepts, else V rejects.

Figure 5.8: Disjunctive protocol via MPCitH for mixed statements. We denote by colored
text the additional elements introduced compared to Fig.5.5

113

Theorem 5. Let m ≥ 3, let f(Y,X) be the function defined in Figure 5.8, let Com be

a binding and hiding commitment scheme, MAC(x) an unforgeable one-time MAC and

let ΠF implement f with correctness and (m − 1)-privacy. Then the protocol described in

Figure 5.8 is a zero-knowledge proof protocol for the language {((y1, . . . , yn), z, x) : ∃` ∈

{1, . . . , n} such that f(x, y`) = 1 ∧ g(x, z) = 1} in the (Com,F1:n
COT)-hybrid model.

Proof (Sketch). Zero Knowledge: The simulator runs in the same fashion as in Theorem 4,

and it inherits the same procedure for the ZK proof π.

Soundness: Our protocol inherits the soundness properties as in Theorem 4. Here the

prover can also cheat by using an inconsistent witness x for functions f and g. However this

is prevented from the unforegability property of the one-time MAC, the binding property

of the commitment scheme and the soundness property of the ZK proof π.

5.4.1 Proving the Value of Assets

When proving ownership of assets in a cryptocurrency such as Bitcoin, the exchange

(i.e. the prover) needs to prove knowledge of a number of secret keys for the respective

hashed public keys among those in the UTXO set. Additionally, they might wish to prove

something about the values assigned to such keys, e.g. that their total value exceeds some

minimum. For simplicity, we treat the UTXO set as a list of tuples, where each tuple

(Hi||vi) represents a hashed3 public key and value pair, where Hi = H(pki). Therefore,

given a common input of a tuple list L = {(H1||v1), (H2||v2), ...(Hn||vn)}, P must prove

knowledge of secret keys {skk}tk=1 corresponding to a set of public keys S = {pkk}tk=1 such

that ∀k ∈ {1, . . . , t}, (skk, pkk) is a valid output of the appropriate key generation algorithm,

(H(pkk), vk) ∈ L, and, Σt
k=1vi ≥ v.

The protocol as discussed above, is not sufficient for the Proof of Assets application as it

does connect the provers’ keys to their corresponding “coin” value stored on the blockchain.

In Figure 5.9, we present an extension of our protocol that also supports values. The main

3We also treat the double hashing RIPEMD160(SHA256()) of public keys in Bitcoin as a single hash
function H.

114

change is to provide an additional MAC on the input values, in order to bind them with

their respective hashed keys. Also for simplicity, we do not provide a k-out-of-n OR proof

but rather a 1-out-of-n OR proof (i.e. we only assume that the exchange only controls one

address in the UTXO set), however the protocol can be naturally extended to accommodate

multiple keys.

Interaction. Note that while gOTzilla is interactive, interaction is still acceptable for the

Proof of Assets application. Recall that PoA is not typically executed on its own, but

rather in parallel with a ”Proof of Liabilities” (PoL) protocol [17, 25, 27] in order to Prove

Solvency. PoA proves that an organization owns more than X assets, and PoL proves that

an organization’s total liabilities towards its clients are less than some value Y . For the

organization to be solvent, its assets should exceed its liabilities X > Y . While PoA is

executed between an organization and an auditor, PoL is executed between an organization

and its clients. In PoL, the organization publishes a digest on its total liabilities, and each

client needs to check the inclusion of their value (which they store with the organization)

in that published digest. This check can only happen interactively which in turn makes

the complete Proof of Solvency protocol interactive as well (for the Organization side).

Therefore, our interactive protocol is still in-line with the requirements of this application,

while it is the first one to provide an efficient way to prove assets even among many million

hashed public key - value tuples.

5.5 Implementation

gOTzilla implementation is based on SealPIR [137] and MP-SPDZ [157]4 libraries. As

discussed in Section 5.2, we use SealPIR for our needed OT functionality, and we provide

more implementation details below.

4MP-SPDZ provides the ZK proof of plaintext knowledge needed for ΠWellFormed
ZK . The proof implemented

in this library is for the BGV cryptosystem [158], whereas to be compatible with SealPIR we need a proof

in the BFV cryptosystem [155]. However, a BFV-compatible version of this proof has been designed [156],

and claims theoretically cheaper cost than the BGV version [159], but currently has no publicly available
implementation. For this reason we believe the existing BGV implementation provides a good estimate of
the cost.

115

Table 5.2: Evaluation for protocol in Fig 5.8. PIR preprocessing: NTT transform. Note:
a) MPCitH encoding is needed by both the P and V, therefore this column is counted twice
in the total runtime b) PIR preprocessing is executed by both P and V in parallel.

Number of
elements

MPCitH
encoding
(both P
and V)

PIR Pre-
processing
(P and V)

PIR
Query
(P)

PIR Re-
ply (V)

PIR De-
code (P)

ΠWellFormed
ZK

(polynomial
interpola-
tion) (P)

ΠWellFormed
ZK

(bounded
noise) (P)

Total
Run-
time

Run-
time
of
[138]

213 7ms 74ms <1ms 199ms 1ms 1ms 163ms 453ms 30.23s

216 31ms 392ms <1ms 880ms 2ms 1ms 151ms 1.64s 31.87s

218 86ms 1.3s 2ms 2.2s 3ms 1ms 152ms 3.83s 37.5s

220 358ms 6.47s 2ms 7.07s 5ms 1ms 163ms 14.89s 60s

222 1.61s 9.7s 3ms 9.6s 10ms 2ms 165ms 22.7s 150s

224 7.4s 38.59s 4ms 32.6s 10ms 3ms 167ms 86.09s 510s

5.5.1 Evaluation

Our first set of benchmarks for protocol ΠMPCitH−OR
f is performed locally, with the

prover and verifier running on the same host. We run our benchmarks on a z1d.metal

AWS instance using 48 threads (24 physical cores) and 384 GB of RAM. We performed

our evaluations for a range of disjunctive elements between 216 and 224. As we require

mτ ' 2−40 soundness, we pick m = 3 MPCitH (minimum required) parties and τ = 25

repetitions as this choice of parameters minimizes (m − 1) · τ . Concretely, if we consider

Limbo [160] as an efficient underlying MPCitH protocol, this implies about 50ms additional

runtime cost on top of the rest of our protocol’s runtime, which does not depend on n, and

is dwarfed by the overall runtime costs of our protocol (therefore we do not take it into

account). Assuming |f(x)| = 256 bits, the size of each slice of the 3D table is 256 ·m ·(τ−1)

(we only need to send τ − 1 shares as the remaining one can be inferred) which implies a

1600 byte size per element. As shown in Table 5.3, for n = 220 the total communication

between the prover and verifier is 6.18 MB, plus 3.45 MB for communicating the PIR Galois

keys beforehand. However, both the prover and verifier need to generate a version of the 3D

table in their local memory (or storage) based on the seed s (steps 9 and 3 of the protocol

ΠMPCitH−OR
f respectively). In our current implementation, we store the entire table in RAM

(requiring about 18GB memory for 220 such elements), however this table can be offloaded

116

to disk and retrieved as needed at the cost of additional I/O operations, or alternatively,

each slice of the cube can be generated on demand as needed.

Table 5.2 shows our local benchmarks in detail, where we provide a break down of the

protocol’s total runtime as follows:

1. Verifier’s secret share phase (step 3 for ShareAt() of Fig. 5.5).

2. The 1-out-of-n OT phase (steps 4 - 6 of Fig. 5.5) which include:

• Preprocessing, Query, Reply and Decode costs of SealPIR.

• Polynomial interpolation (step. 3 of Fig. 5.1).

• Proof of bounded noise (step. 1 of Fig. 5.1).

Note for brevity, we don’t include the costs of PRG generation, commitment and de-

commitment costs, one-time MAC and ZK proof protocol as these are negligible compared

to the overall runtime costs (which as shown in Table 5.2, are dominated by MPCitH en-

coding and PIR preprocessing and reply).

We also performed a second set of benchmarks over a network for n = 220, as shown on

Table 5.4, where we take the additional network latency into account as well. In particular,

the PIR Query - Reply would replace the 5th and 6th column together on Table 5.2, and

similarly the rest of our network measurements. This shows that although our protocol has

many rounds of interaction (most of them during ΠWellFormed
ZK), the overall impact to its

total run-time is very small.

Comparison. We now make a concrete comparison of our protocol’s runtime and com-

munication costs with Mac’n’cheese [138], which also aims for disjunctive Zero-knowledge

proofs and has similar asymptotic costs as shown in Fig. 5.1. We observe that Mac’n’cheese

is not explicitly tailored for disjunctive proofs comprised of circuits with the same struc-

ture, however as discussed in Section 5.1, in such a case its disjunctive statement C(x) =

y1 ∨C(x) = y2 ∨ · · · ∨C(x) = yn can be modified as (C(x) = y)∧ (y = y1 ∨ · · · ∨ y = yn) to

avoid many circuit evaluations, resulting in a conjunctive statement which one part consists

117

of a disjunctive statement of equality checks.

In addition, as discussed in Section 5.4, our protocol can be naturally extended to

accommodate mixed statements, with only an overhead of |x| 1-out-of-2 OTs, which only

cost roughly 25ms in total for |x| = 256 [161], a negligible cost compared to the main

protocol’s benchmarks presented above.

Given those observations, we first compare with Mac’n’cheese’s needed runtime for n

equality checks plus proving (C(x) = y) where C is a 250 million gate Boolean circuit, which

is equivalent to converting from an arithmetic circuit representing the algebraic statement.

Specifically when n = 220, the estimated reported cost of C for Mac’n’Cheese is 30 seconds,

and the cost for 220 equality checks (256 million gates), is another 30 seconds, running on

a system with equivalent specifications5, adding to a total runtime of 60 seconds, with a

total communication cost of 63 MB. Given our measurements, we observe significant im-

provements even when comparing with the disjunctive equality checks part of Mac’n’cheese.

In addition, Mac’n’cheese can handle only Boolean or arithmetic circuits, therefore as an

example, a mixed statement in the form of SHA256(gx) = y would need around 250 million

gates, while gOTzilla is compatible with techniques combining algebraic and non-algebraic

statements similar to the work by Chase et al. [49] as discussed in Section 5.4, and therefore

we don’t need to convert between circuit types. Finally, in comparison to the concurrent

work of [148], and based on their reported numbers our protocol is roughly 6x more efficient

in computational costs (assuming the reported runtime t in Table 2 of [148] only takes the

prover’s or the verifier’s costs into account, but not both simultaneously as we do), namely

for 213 elements our total runtime for 256 bits of statistical security (which implies a pa-

rameter τ = 80) is 644ms while the total runtime for [148] in an equivalent system would

be 3960ms. However, our protocol has higher communication costs, primarily because of

the required proof of bounded Ring-LWE noise.

5These estimates were provided by Mac’n’cheese authors assuming cost per gate is 120ns.

118

ΠMPCitH−OR−BTC
f

Setup. f(x, y) is a Boolean function and g(x, z) is an algebraic function. ΠF is a semi-honest
m-party protocol implementing the functionality F which takes as input (Xj ,Yj) from each party

Pj and outputs to all parties f(⊕mj=1Xj ,⊕mj=1Yj)
?
= 1 with correctness and (m− 1)-privacy..

Common inputs. τ total number of repetitions, n public key and value pairs (y1, v1), . . . , (yn, vn)

and a minimum asset value v0. yi ∈ {0, 1}κ and m−τ < 2−λ, λ is a security parameter.
Prover’s input. x, z, ` such that: f(x, y`) = 1, v` ≥ v0, and g(x, z) = 1. We denote as (x1, . . . x|x|)

the bit representation of x (i.e. x =
∑|x|
u=1 2u−1xu).

Verifier’s input. Cx = Com(x), Cz = Com(z), Cv = Com(v`).

1. Verifier V generates its random tape s and sends Cs ← Com(s) to the prover P. Throughout
the rest of theprotocol, all randomness of the Verifier is generated by applying a PRG,G(s).
(We will, imprecisely, refer to these as “random” values.).

2. V uses the random seed s to sample the following values uniformly at random:

(a) εk
$← {1, . . .m} for k ∈ {1, . . . τ}.

(b) rk
$← {0, 1}κ for k ∈ {1, . . . τ}.

(c) wu,k
$← {0, 1}κ for u ∈ {1, . . . |x|}, k ∈ {1, . . . τ}

(d) a
$← {0, 1}λ, bu

$← {0, 1}|x|+λ for u ∈ {1, . . . , |x|}. Define b :=
∑|x|
u=1 bu

(e) c
$← {0, 1}λ, d $← {0, 1}|v|+λ

3. For u ∈ {1, . . . |x|}, k ∈ {1, . . . τ}, V computes {0(k)
u,1 . . .0

(k)
u,m} ← ShareAt(0, εk, wu,k) and

{1(k)
u,1 . . .1

(k)
u,m} ← ShareAt(1, εk, wu,k)

4. For i ∈ {1, . . . n}, k ∈ {1, . . . τ}, V computes vector {Y(k)
i,1 , . . .Y

(k)
i,m} ← ShareAt(yi, εk, rk)

5. Exchange labels for inputs.

For i ∈ {1, . . . n} denote 2D table Yi := {Y(1)
i , . . .Y

(τ)
i , cvi + d}, and for u ∈

{1, . . . , |x|} denote 2D tables 0u := {{0(1)
u,1, . . .0

(1)
u,m}, . . . {0(τ)

u,1, . . .0
(τ)
u,m}}, 1u :=

{{1(1)
u,1, . . .1

(1)
u,m}, . . . {1(τ)

u,1, . . .1
(τ)
u,m}}

(a) V sends {(Y1, c · v1 + d), . . . , (Yn, c · vn + d)} to Π1:n
OT.

(b) P sends ` to Π1:n
OT.

(c) Π1:n
OT outputs (Y`, c · v` + d) to P.

(d) For every u ∈ {1, . . . , |x|}
i. V sends {(0u, bu), (1u, 2

u−1a+ bu)} to Π1:2
OT.

ii. P sends xu to Π1:2
OT.

iii. If xu = 0 then Π1:2
OT outputs (0u, bu) to P, otherwise it outputs (1u, 2

u−1a+ bu). P
denotes whichever output it receives as {{X(1)

u,1, . . . X
(1)
u,m}, . . . {X(τ)

u,1 , . . . X
(τ)
u,m},Mu}

(e) For k ∈ {1, . . . τ} denote the 2D table X(k) :=

{(X(k)
1,1 || . . . ||X

(k)
|x|,1), . . . , (X

(k)
1,m|| . . . ||X

(k)
|x|,m)}

Figure 5.9119

6. For every k ∈ {1, . . . τ}, P computes (viewk,1, . . . , viewk,m) ←
ΠMPCitH(ΠF , (X

(k),Y
(k)
`)).

7. P computes MAC(x) =
∑|x|

u=1Mu and CMAC(x) ← Com(MAC(x)). Similarly com-

pute MAC(v`) = cv` + d and CMAC(v`) ← Com(MAC(v`)).

8. For all j ∈ {1, . . .m}, k ∈ {1, . . . τ}, P sends CMAC(x), CMAC(v`), and Cviewj,k ←
Com(viewj,k) to V.

9. V decommits s, which P uses to reconstruct {ε1, . . . , ετ}, {0u,1u}, and {Y1, . . .Yn}

10. P verifies the following properties hold for all i, i′ ∈ {1, . . . , n}, u ∈ {1, . . . , |x|},k ∈
{1, . . . , τ}, j ∈ {1, . . . ,m}\εk:

m⊕
j=1

Y
(k)
i,j = yi. Y

(k)
i,j = Y

(k)
i′,j

m⊕
j=1

0
(k)
u,j = 0

m⊕
j=1

1
(k)
u,j = 1 0

(k)
u,j = 1

(k)
u,j

11. P decommits each {viewj,k}k∈{1,...τ},j∈{1,...m}\εk

12. V checks that the decommitted views are consistent with honest executions of ΠF
output 1.

13. P and V execute the following ZK proof protocols:

(a) π1 = {(x,MAC(x), z) : Cx = Com(x) ∧ CMAC(x) = Com(MAC(x)) ∧
MAC(x) = ax + b ∧ Cx = Com(x) ∧ Cz = Com(z) ∧ g(x, z) =
1}(Com(x),Com(z),Com(MAC(x)), a, b)

(b) π2 = {(v`,MAC(v`)) : Cv = Com(v`) ∧ CMAC(v`) = Com(MAC(v`)) ∧
MAC(v`) = cv` + d ∧ v` ≥ v0}(Cv, CMAC(v`), c, d, v0)

14. If any of π1,π2 do not verify, V rejects, else accepts.

Figure 5.9: Disjunctive Composite protocol via MPCitH for Proving Assets in Bitcoin. We
denote by colored text the additional elements introduced compared to Fig.5.8

120

Table 5.3: Communication costs for Fig. 5.5 protocol (including Fig. 5.1 subroutine) for

n = 220

PIR Query (Step 5) 64.14 KB

PIR Response (Step 4) 320.71 KB

ΠWellFormed
ZK poly interp. 192.04 KB

ΠWellFormed
ZK bounded noise 5.62 MB

Committed views (Step 8) 2.45 KB

Total 6.18 MB

Table 5.4: Latency costs for Fig. 5.5 protocol (including Fig. 5.1 subroutine) for n = 220

PIR Query
+ Reply

ΠWellFormed
ZK

polynomial
interpol.

ΠWellFormed
ZK

bounded
noise

MPCitH
views

Total

US East - East 7.405s 7ms 298ms 370ms 8.08s

US East - West 7.563s 126ms 892ms 381ms 8.962s

US East - Japan 7.738s 292ms 1.59s 421ms 10.04s

5.6 Disjunctive proofs using Garbled Circuits

As discussed in Section 5.4, Chase et al. [49] aims to provide ZK proof protocols for

mixed statements in the form of f(x, y) = 1 ∧ g(x, z) = 1. Towards this goal, it constructs

protocols in two different ways. The first (and more efficient) assumes the existence of

a bit-wise commitment as part of a larger protocol, while the second requires a separate

sub-circuit to compute a one-time MAC t = a ·x+ b which has O(|x||a|) AND gates, where

|x| and |a| is the bit length of x and a respectively. For instance, if |x| = |a| = 512, then

|x||a| = 262144, which is about 10 times the size of a SHA256 circuit.

We observe that this one-time MAC value can be computed during a COT step using a

similar process to how we encode the input (shown in ΠMAC,f GC), where FCOT is equivalent

to FOT plus an opening phase to the receiver (refer to [49] for the ideal functionality). In

this protocol, the prover and verifier compute MAC(x) = a · x + b as follows. The prover

computes the bit decomposition of x: x1, . . . , x|x|. The verifier creates additive shares of b:

b1, . . . , b|x|. For each bit xu in x the two parties perform a 1-out-of-2 OT. If xu = 0 the prover

121

Table 5.5: Comparison of ZK proof systems for Proof of Assets for a single proof. |x| is
length of input, |F | circuit size, λ security parameter. (for BTC UTXO |x| = 512 (BTC
public key 256bits + 256 bits of padding for MD), probably λ < x, we can consider 128 or
256 sec bits. Circuit F ′ might be 10 times larger than F)

No setup NI Prover Verifier Proof size Notes

Chase et al.
[49] (w/o
MAC)

4 5 O(|x| pub +
|F | sym)

O(|x| pub +
(|F | sym)

O((|F |+ |x|)λ) Σ-protocol +
GC

Chase et al.
[49] (w/ MAC)

4 5 O(λ pub
+ (|F ′| +
|x|λ) sym)

O(λ pub
+ (|F ′| +
|x|λ) sym)

O((|F ′| +
|x|λ)λ)

Σ-protocol +
GC

Backes et al.
[135]

4 4 O(|x| + λ pub
+ |F |λ sym)

O(|x| + λ pub
+ |F |λ sym)

O((|F |λ +
|x|)λ)

Ped. Comm.
+ ZKBoo

Figure 5.10
with value

4 5 O(λ pub +
(|F | sym)

O(λ pub +
(|F |) sym)

O((|F |+ |x|)λ) Σ-protocol +
GC

receives Mu ← bu, otherwise the prover receives Mu ← (2u−1a+bu). From M1, . . . ,M|x| the

prover is able to computeMAC(x) as
∑|x|

u=1Mu =
∑|x|

u=1 2u−1a·xu+bu = a·x+b = MAC(x).

However, even with the above optimization, the costs for a disjunctive proof remain

linear in the size of the circuit. In Figure 5.10 we show an optimized OR Proof using

Garbled Circuits with MAC, while in Figure 5.10 we extend the previous protocol with

value.

5.7 Conclusion

We presented gOTzilla, a novel protocol for disjunctive Zero-Knowledge proofs, tailored

for large disjunctions. While our protocol has equivalent asymptotic communication costs

with recent works, we show that gOTzilla offers a concrete improvement over the state-of-

the-art, especially when the disjunctions include mixed (i.e. algebraic and non-algebraic)

statements, since our protocol is more “mixed statement-friendly”. Finally, as the Bitcoin’s

UTXO count is roughly 80 million at the time of writing [162], gOTzilla can serve as a basis

for a Proof of Assets over Bitcoin’s blockchain, where an exchange can interactively prove

its assets to an auditor in a few minutes.

122

ΠGC−OR−Mix
f

Setup. Group G where DDH assumption holds. Com(·) is a commitment scheme. Let G =
(Gb,En,De,Eval,Ve) be a garbling scheme.

Commom input. y1, · · · , yn where yi ∈ {0, 1}κ.

Prover’s input. x ∈ G, where x is the witness to the statement y`.

Verifier’s input. Cx = Com(x).

Protocol.

1. The verifier constructs a garbled circuit for F .

(GC, e, d)← Gb(1κ, F (x, y) = y ⊕ f(x)

2. The prover sends (i, xi) for all i ∈ [n] to FCOT.

3. The verifier sends (i, (K0
i , bi), (K

1
i , 2

ia+ bi)) for all i ∈ [n] to FCOT where a and bi has length
of λ and |x|+ λ bits respectively.

4. FCOT outputs (Kxi
i , 2

iaxi + bi) for all i ∈ [n] to the prover.

5. The prover sends ` to F1:n
COT.

6. The verifier sends (y1, · · · , yn) to F1:n
COT.

7. F1:n
COT outputs y` to the prover.

8. The verifier sends the garbled circuit GC to the prover.

9. The prover evaluates the garbled circuit

Z ← Eval(GC, {Kxi
i }i∈[n], y`)

10. The prover computes t =
n−1∑
i=0

(2iaxi + bi) = ax+ b.

11. The prover commits to the garbled output Z and t by sending Com(Z),Com(t) to the verifier
and proves knowledge of opening.

12. The verifier sends open to FCOT and F1:n
COT.

13. FCOT sends (K0
i ,K

1
i) and F1:n

COT sends (y1, · · · , yn) to the prover for all i ∈ [n].

14. The prover verifies that the circuit was garbled correctly by running Ve(GC, {K0
i ,K

1
i }i∈[n], F)

and the garbled inputs for x, y1, · · · , yn are correct. If the check fails, the prover terminates.
Else, it opens Z to the verifier.

15. The verifier checks that De(d, Z) = 0. Otherwise, it rejects and terminates.

16. The prover and the verifier execute a ZK proof to prove the following. π = {(x, t) : Cx =
Com(x) ∧ Ct = Com(t) ∧ t = ax+ b}(Cx,Ct)

17. If π does not verify, the verifier terminates.

Figure 5.10: OR Proof using Garbled Circuits with MAC. We denote by colored text the
additional elements introduced compared to the protocol of Chase et al.

123

ΠGC−OR−Mix−v
f

Setup. Group G where DDH assumption holds. Com(·) is a commitment scheme. Let
G = (Gb,En,De,Eval,Ve) be a garbling scheme.

Commom input. (y1, v1), · · · , (yn, vn) where yi ∈ {0, 1}κ, vi ∈ [0, L].

Prover’s input. x ∈ G, where x is the witness to statement y` such that v` ≥ v0.

Verifier’s input. Cx = Com(x) and Cv` = Com(v`).

Protocol.

1. The verifier constructs a garbled circuit for F .

(GC, e, d)← Gb(1κ, F (x, y) = y ⊕ f(x)

2. The prover sends (i, xi) for all i ∈ [n] to FCOT.

3. The verifier sends (i, (K0
i , bi), (K

1
i , 2

ia + bi)) for all i ∈ [n] to FCOT where a and bi
has length of λ and |x|+ λ bits respectively.

4. FCOT outputs (Kxi
i , 2

iaxi + bi) for all i ∈ [n] to the prover.

5. The prover sends ` to F1:n
OT.

6. The verifier sends ((y1, a
′v1 + b′), · · · , (yn, a′vn + b′)) to F1:n

OT where a′ and b′ has length
of λ and |x|+ λ bits respectively.

7. F1:n
COT outputs (y`, a

′v` + b′) to the prover.

8. The verifier sends the garbled circuit GC to the prover.

9. The prover evaluates the garbled circuit

Z ← Eval(GC, {Kxi
i }i∈[n], y`)

10. The prover computes t =
n−1∑
i=0

(2iaxi + bi) = ax+ b and v = a′v` + b′.

11. The prover commits to the garbled output Z and t by sending Com(Z),Com(t), Com(v)
to the verifier and proves knowledge of opening.

12. The verifier sends open to FCOT and F1:n
COT.

13. FCOT sends (K0
i ,K

1
i) and F1:n

COT sends ((y1, a
′v1 + b′), · · · , (yn, a′vn + b′)) to the prover

for all i ∈ [n].

124

14. The prover verifies that the circuit was garbled correctly by running
Ve(GC, {K0

i ,K
1
i }i∈[n], F) and the garbled inputs for x, y1, · · · , yn are correct. If the

check fails, the prover terminates. Else, it opens Z to the verifier.

15. The verifier checks that De(d, Z) = 0. Otherwise, it rejects and terminates.

16. The prover and the verifier execute the following ZK proofs: π1 = {(x, t) : Cx =
Com(x)∧Ct = Com(t)∧ t = ax+b} π2 = {(v`, v) : Cv` = Com(v`)∧Cv = Com(v)∧v =
a′v` + b′ ∧ v` ≥ v0}

17. If any of π1, π2 do not verify, the verifier terminates.

Figure 5.10: OR Proof with MAC and value Protocol using Garbled Circuits. We denote
by colored text the additional elements introduced compared to Fig. 5.10.

125

Chapter 6: Efficient signatures for auditing IoT devices

6.1 Introduction

Blockchain applications are not restricted into cryptocurrency and payment systems. In

fact, the use of distributed, immutable ledgers has been proposed as a prominent solution

in the IoT setting, allowing rapid detection of inconsistencies in sensory data and network

communications, providing a conflict resolution mechanism without relying on a trusted

authority [163]. A number of relevant schemes has been proposed in the literature [164,165]

(later discussed in Section 6.6), which propose various ways to integrate distributed ledgers

with IoT.

In addition, the commercial success of low Size Weight and Power (SWaP) sensors and

IoT devices has given rise to new sensor-centric applications transcending traditional indus-

trial and closed-loop systems [166,167]. In their most recent Annual Internet Report [168],

CISCO estimates that there will be 30 billion networked devices by 2023, which is more

than three times the global population. While very different in terms of their hardware

and software implementations, Industrial IoT (IIoT) systems share common functional re-

quirements: they are designed to collect data from a large number of low-SWaP sensor

nodes deployed at the edge. These nodes, which we refer to as edge sensors, are resource-

constrained devices used in volume to achieve a broader sensing coverage while maintaining

low cost. Thus, while capable of performing simple operations, low-SWaP sensors usu-

ally depend on battery power, are equipped with limited storage, and have low processing

speed [169].

In practice, edge sensors are usually controlled by and report to more powerful gateway

devices (which we refer to as aggregators) that process and aggregate the raw sensory data.

For instance, in an Industrial (IIoT) environment, sensors are devices such as temperature

126

sensors are broadcasting their measurements to the network router, which in turn submits it

to the cloud through the Internet. Until recently, due to processing and storage constraints,

many IoT designs were geared towards cloud aggregation and data processing. However,

latency, bandwidth, autonomy and data privacy requirements for IoT applications keep

pushing the aggregation and processing of data towards the edge [170]. In addition, in most

use cases, IoT devices need to be mutually authenticated to maintain system integrity and

the data origin has to be verified to prevent data pollution attacks [171,172] and in “model

poisoning” where an attacker has compromised a number of nodes acting cooperatively,

aiming to reduce the accuracy or even inject backdoors to the resulting analysis models [173,

174].

The Challenge: One of the main roadblocks for using Blockchain-based systems as “decen-

tralized” databases for sharing and storing collected data is their dependency on asymmetric

authentication techniques. Typically, to produce authenticated data packets, sensors have

to digitally sign the data by performing public key cryptographic operations, which are

associated with expensive sign and verification computations and large bandwidth require-

ments. Although some high-end consumer sensor gateways and integrated sensors might be

capable of performing cryptographic operations, a large number of edge sensors have limited

computational power, storage and energy [175, 176]. To make matters worse, sensors try

to optimize their power consumption by entering a “sleep” state to save power resulting in

intermittent network connectivity and lack of synchronicity. Given such tight constraints,

an important challenge is allowing low-SWaP devices being extremely constrained both in

terms of computational power and memory (categorized as Class 0 in RFC 7228 [177] ref.

Section 6.5.1), to authenticate and utilize a blockchain-based data sharing infrastructure.

Our Contributions: We design and implement BBox-IoT, a complete blockchain-based

system for Industrial IoT devices aimed to create a decentralized, immutable ledger of

sensing data and operations while addressing the sensor and data authentication challenge

for extremely constrained devices. We aim to use our system as a ”black-box” that empowers

operators of an IIoT enclave to audit sensing data and operational information such as IIoT

127

communications across all IIoT devices.

To perform sensor and data authentication operations without relying on heavy crypto-

graphic primitives, we introduce a novel hash-based digital signature that uses an onetime

hash chain of signing keys. While our design is inspired by TESLA broadcast authentication

protocol [178,179], our approach does not require any timing and synchronicity assumptions

between signer and verifier. Overcoming the synchronicity requirement is critical for low-

SWaP devices since their internal clocks often drift out of synchronization (especially those

using low cost computing parts) [180, 181]. Our signature construction is proven secure

assuming a preimage resistant hash function. Also, we achieved logarithmic storage and

computational (signature/verification) costs using optimizations [182, 183]. Our proposed

scheme further benefits by the broadcast nature of the wireless communication. Indeed, in

combination with the immutable blockchain ledger, we are able to ferret out man-in-the-

middle attacks in all scenarios where we have more than one aggregators in the vicinity of

the sensors. To bootstrap the authentication of sensor keys, we assume an operator-initiated

device bootstrap protocol that can include either physical contact or wireless pairing us-

ing an operator-verified ephemeral code between sensors and their receiving aggregators.

Our bootstrap assumptions are natural in the IoT setting, where sensors often “report” to

specific aggregators and allows us to overcome the requirement for a centralized PKI. Note

that our signature scheme is of independent interest, in-line with recent efforts by NIST for

lightweight cryptography [184].

For the blockchain’s consensus protocol, we consider a permissioned setting, where a

trusted party authorizes system participation at the aggregator level. Our system supports

two main types of IoT devices: low-SWaP sensors who just broadcast data and self-reliant

aggregators who collect the data and serve as gateways between sensors and the blockchain.

While our system is initialized by a trusted operator, the operator is not always assumed

present for data sharing and is only required for high-level administrative operations includ-

ing adding or removing sensors from the enclave. We build the consensus algorithms for

BBox-IoT using a modified version of Hyperledger Fabric [185], a well known permissioned

128

blockchain framework, and leverage blockchain properties for constructing our protocols tai-

lored for constrained-device authentication. However, BBox-IoT operations are designed

to be lightweight and do not use public key cryptography based on the RSA or discrete

logarithm assumptions, which are common, basic building blocks of popular blockchain

implementations. We describe our system in detail considering interactions between all

participants and argue about its security.

We implemented and tested a BBox-IoT prototype in an IIoT setting consisting of

extremely constrained sensors (Class 0 per RFC 7228). We employed 8-bit sensor nodes

with 16MHz micro controllers and 2KB RAM, broadcast data every 10 seconds to a subset

of aggregators (e.g. IIoT gateways) which in turn submit aggregated data to a cloud infras-

tructure. The evaluation shows that the IIoT sensors can compute our 64-byte signature

in 50ms, making our signature scheme practical even for the least capable of IIoT plat-

forms. Our evaluation section shows results by considering a sensor/gateway ratio of 10:1.

When compared with ECDSA signing operations, our scheme is significantly more efficient

offering two (2) and three (3) orders of magnitude speedup for signing and verification re-

spectively. Our theoretical analysis and implementation shows that we can achieve strong

chained signatures with half signature size, which permits accommodating more operations

in the same blockchain environment. BBox-IoT is also over 50 times more energy-efficient,

which makes our system ideal for edge cost-efficient but energy-constrained IIoT devices

and applications.

Finally, we adopt the same evaluation for Hyperledger Fabric considered in previous

work [185] and estimate the end-to-end costs of BBox-IoT when running on top of our

Hyperledger modification, showing it is deployable in our considered use-cases.

The work presented in this chapter has been published in [31].

129

6.2 Background

BBox-IoT Permissioned Consensus: The consensus properties discussed in Section

2.2 while necessary, are not sufficient for our system consensus. For instance, most “classi-

cal” consensus algorithms such as PBFT [55] have not been widely deployed due to various

practical issues including lack of scalability. With BBox-IoT requirements in mind, the

system’s consensus algorithm needs to satisfy the following additional properties:

i. Dynamic membership: In BBox-IoT, there is no a priori knowledge of system partici-

pants. New members might want to join (or leave) after bootstrapping the system. We

highlight that the vast majority of permissioned consensus protocols assume a static

membership [186]. Decoupling “transaction signing participants” from “consensus par-

ticipants” is a paradigm that circumvents this limitation [187].

ii. Scalable: BBox-IoT might be deployed in wide-area scenarios (e.g. IIoT), so the

whole system must support in practice many thousands of participants, and process

many operations per second (more than 1000 op/s) [56].

iii. DoS resistant: For the same reason above, participants involved in consensus should

be resilient to denial-of-service attacks [58].

Hyperledger. One of the most promising examples of permissioned blockchains is the

Hyperledger project, established by the Linux Foundation and actively supported by com-

panies such as IBM and Intel [188]. The Hyperledger project aims to satisfy a wide range

of business blockchain requirements, and has developed several frameworks with different

implementation approaches, such as Hyperledger Fabric, Indy, Iroha and Sawtooth. Each

framework uses a different consensus algorithm, or even supports “pluggable” (rather than

hardcoded) consensus like Hyperledger Fabric [185]. To make pluggable consensus possi-

ble, Hyperledger Fabric introduces the “execute-order-validate” paradigm in its architec-

ture, instead of the traditional “order-execute” [185]. In this paradigm, the “maintainer”

130

(a) Original architecture. Clients collect signa-
tures from peers for a transaction, then submit the
signed transaction to the ordering service which
then returns a block containing packaged transac-
tions to peers.

(b) Modified architecture. Clients only broadcast
the transaction to the peers, who are then respon-
sible themselves for signing it before submitting it
to the ordering service.

Figure 6.1: Modified Hyperledger Fabric architecture.

participants are decoupled from the “consensus” participants (called Peers and Orderers

respectively as we will see below), which eventually leads to satisfying dynamic membership

and scalability.

In the following we focus on Hyperledger Fabric which seems to fit best in our system

and provide a high-level description of its architecture (shown in Figure 6.1a). Its main

components are categorized as follows:

1. Clients are responsible for creating a transaction and submitting it to the peers for

signing. After collecting a sufficient number of signatures (as defined by the system

policy), they submit their transaction to the orderers for including it in a block. Client

authentication is delegated to the application.

2. Peers are the blockchain maintainers, and are also responsible for endorsing clients’

transactions. Notice that in the context of Hyperledger, “Endorsing” corresponds to

the process of applying message authentication.

3. Orderers collectively form the “ordering service” for the system. After receiving

signed transactions from the clients, the service establishes consensus on total order

of a collected transaction set. Then the ordering service by delivering blocks to the

131

peers, and ensures the consistency and liveness properties of the system.

4. The Membership Service Provider (MSP) is responsible for granting participation

privileges in the system.

In its initial version v0.6, Hyperledger Fabric used the Byzantine fault-tolerant PBFT

consensus algorithm [189], which only supports static membership for the ordering service

participants. It’s current version (v2.2) offers the Raft [190] consensus algorithm, which

provides crash fault tolerance but not Byzantine fault tolerance, thus preventing the system

from reaching consensus in the case of malicious nodes. Hyperledger Fabric could potentially

use BFT-SMART in the future [191,192].

Regarding scalability, although the original version of Hyperledger Fabric has several

potential bottlenecks in its architecture, proposals exist to improve its overall performance in

terms of operations per second [193]. These proposals suggest storing blocks in a distributed

peer cluster for further scalability improvements. Also while operations (or transactions)

per second is one scalability aspect in our setting, the other one is the actual number of

peers the system can practically support without heavily impacting its performance. To the

best of our knowledge, this has only been experimentally shown for up to 100 peers [185].

This experiment indicates however a low impact of the number of peers, especially if the

network latency is low. Our setting allows such an assumption, since our use-case scenarios

are all instantiated in a specific geographical location, as later discussed in section 6.5.

Modifying Hyperledger Fabric. While Hyperledger Fabric’s execute-order-validate ar-

chitecture offers several advantages discussed previously, we cannot directly use it in our

BBox-IoT system, since we assume that lightweight devices (which for Hyperledger Fab-

ric would have the role of “clients”) are limited to only broadcasting data without being

capable of receiving and processing. In Hyperledger Fabric, clients need to collect signed

transactions and send them to the ordering service, which is an operation that lightweight

devices are typically not capable of performing.

To address this issue, we propose a modification in Hyperledger architecture. In our

132

modified version, as shown in Figure 6.1b, a client broadcasts its “transaction” message

to all nearby peer nodes. However, the transaction is handled by a specific peer (which is

equivalent to an aggregator as we discuss in the next section), while peers not “responsible”

for that transaction disregard it. That specific peer then assumes the role of the “client”

in the original Hyperledger architecture simultaneously, while also continuing functioning

as a peer node. As a client, it would be responsible for forwarding this transaction to

other peers, and collecting the respective signatures, as dictated by the specified system

policy, in a similar fashion to original Hyperledger Fabric. It would then forward the signed

transaction to the ordering service, and wait for it to be included in a block. The ordering

service would send the newly constructed block to all peers, which would then append it to

the blockchain.

Security of our modifications. The proposed modifications of Hyperledger do not affect

the established security properties (i.e. Consistency and Livenessas we define them in

Section 2.2 and interpreted in [185]), since a peer node simultaneously acting as a client,

can only affect the signing process by including a self-signature in addition to other peers’

signatures. However, because the signing requirements are dynamically dictated by the

system policy, these could be easily changed to require additional signatures or even disallow

self-signatures to prevent any degradation in security. We also note that while this modified

version of Hyperledger effectively becomes agnostic to the original client, which otherwise

has no guarantees that its broadcasted transaction will be processed honestly, our threat

model discussed in the next section captures the above trust model.

6.3 BBox-IoT system properties

In BBox-IoT there are five main types of participants, most of them inherited by

Hyperledger Fabric: the MSP, orderers, local administrators, aggregators and sensors. Ag-

gregators are equivalent to peers and sensors to clients in our modified Hyperledger Fabric

architecture discussed in the previous section. We provide a high level description of each

participant’s role in the system and include detailed definitions in Section 6.10 .

133

• The MSP is a trusted entity who grants or revokes authorization for orderers, local ad-

ministrators and aggregators to participate in the system, based on their credentials.

It also initializes the blockchain and the system parameters and manages the system

configuration and policy.

• Orderers (denoted by O) receive signed transactions from aggregators. After verifying

the transactions as dictated by the system policy they package them into blocks. An

orderer who has formed a block invokes the consensus algorithm which runs among the

set of orderers O. On successful completion, it is transmitted back to the aggregators

with the appropriate signatures.

• Local administrators (denoted by LAdm, are lower-level system managers with delegated

authority from the MSP. Each LAdm is responsible for creating and managing a local

device group G, which includes one or more aggregators and sensors. He grants autho-

rization for aggregators to participate in the system with the permission of the MSP. He

is also solely responsible for granting or revoking authorization for sensors in his group,

using aggregators to store their credentials.

• Aggregators (denoted by Ag) are the blockchain maintainers. They receive blocks from

orderers and each of them keeps a copy of the blockchain. They store the credentials of

sensors belonging in their group and they pick up data broadcasted by sensors. Then

they create blockchain “transactions” based on their data (after possible aggregation),

and periodically collect signatures for these transactions from other aggregators in the

system, as dictated by the system policy. Finally, they send signed transactions to the

ordering service, and listen for new blocks to be added to the blockchain from the orderers.

• Sensors (denoted by S) are resource-constrained devices. They periodically broadcast

signed data blindly without waiting for any acknowledgment. They interact with local

administrators during their initialization, while their broadcasted data can potentially be

received and authenticated by multiple aggregators.

134

We then define the security and operational properties of BBox-IoT, in accordance

with evaluation principles adopted in [165,194–196].

6.3.1 Threat model & Assumptions

Physical layer attacks and assumptions. While our system cannot prevent physi-

cal tampering with sensors that might affect data correctness, any data discrepancies can

be quickly detected through comparisons with adjacent sensors given the blockchain im-

mutability guarantees [197]. Similarly, any malicious or erroneous data manipulation by an

aggregator will result in detectable discrepancies even when one of the aggregators is not

compromised simultaneously. Of course, if all aggregators become compromised instanta-

neously, which is hard in a practical setting, our system will not detect any discrepancies.

This raises the bar significantly for an adversary who might not be aware or even gain access

to all aggregator nodes at the same time. Finally, attacks such as flooding/jamming and

broadcast interception attacks are out of scope in this thesis.

Trust Assumptions. We assume that MSP is honest during system bootstrapping only,

and that device group participants (Local administrators, aggregators and sensors) may

behave unreliably and deviate from protocols. For instance, they might attempt to statically

or dynamically interfere with operations of honest system participants (e.g. intercept/inject

own messages in the respective protocols), even colluding with each other to do so. This

behavior is expected which our system is designed to detect and thwart.

Consensus Assumptions. As in Hyperledger, we decouple the security properties of

our system from the consensus ones. For reference, this implies tolerance for up to 1/3

Byzantine orderer nodes, with a consensus algorithm satisfying at least the fundamental

and additionally required properties discussed in Section 6.2.

Given the above adversarial setting, we define the following security properties1:

S-1 Only authenticated participants can participate in the system. Specifically:

1We do not consider data confidentiality in our system, however as discussed later our model could be
extended to satisfy confidentiality as well.

135

a. An orderer non-authenticated by the MSP is not able to construct blocks (i.e.,

successfully participate in the consensus protocol). The ordering service can

tolerate up to f malicious (byzantine) orderers.

b. An LAdm non-authenticated by the MSP is not able to form a device group G.

c. If an aggregator is not authenticated by the MSP, then its signatures on trans-

actions cannot be accepted or signed by other aggregators.

S-2 Sensor health: Sensors are resilient in the following types of attacks:

a. Cloning attacks: A non-authenticated sensor cannot impersonate an existing

sensor and perform operations that will be accepted by aggregators.

b. Message injection - MITM attack: A malicious adversary cannot inject or modify

data broadcasted by sensors.

S-3 Device group safety: Authenticated participants in one group cannot tamper with

other groups in any way, i.e.:

a. An LAdm cannot manage another group, i.e. add or revoke participation of an

aggregator or sensor in another device group, or interfere with the functionalities

of existing aggregators or sensors at any time.

b. An aggregator (or a coalition of aggregators) cannot add or remove any sensor

in device group outside of their scope, or interfere with the functionalities of

existing aggregators or sensors at any time.

c. A sensor (or a coalition of sensors) cannot interfere with the functionalities of

existing aggregators or other sensors at any time.

S-4 Non-repudiation and data provenance: Any BBox-IoT node cannot deny sent data

they signed. For all data stored in BBox-IoT, the source must be identifiable.

S-5 DoS resilient: BBox-IoT continues to function even if MSP is offline and not avail-

able, or an adversary prevents communication up to a number of orderers (as dictated

136

by the consensus algorithm), a number of aggregators (as dictated by the system pol-

icy) and up to all but one sensor. Also an adversary is not able to deny service to any

system node (except through physical layer attacks discussed before).

S-6 System policy and configuration security: BBox-IoT policy and configuration can

only be changed by MSP.

S-7 Revocation: The system is able to revoke authentication for any system participant,

and a system participant can have its credentials revoked only by designated system

participants.

6.4 Constructions

6.4.1 Our Hash-based signature scheme

Our construction is inspired by Lamport passwords [198] and TESLA [178, 179] but

avoids the need for any synchronization between senders and receivers which is a strong

assumption for the IoT setting. Instead, we assume the existence of a constant-sized state

for both the sender and receiver between signing operations. Our scheme allows for a

fixed number of messages to be signed, and has constant communication and logarithmic

computation and storage costs under the following requirements and assumptions:

• There’s no requirement for time synchronization, and a verifier should only need to know

the original signer’s pk .

• The verifier should immediately be able to verify the authenticity of the signature (i.e.

without a “key disclosure delay” that is required in the TESLA family protocols, described

in more detail in Section 6.6.2).

• Network outages, interruptions or “sleep” periods can be resolved by requiring computa-

tional work from the verifier, proportional to the length of the outage.

137

• We do not protect against Man-in-the-Middle attacks in the signature level, instead, we

use the underlying blockchain to detect and mitigate such attacks as we discuss later in

Section 6.4.3.

• The signer has very limited computation, power and storage capabilities, but can out-

source a computationally-intensive pre-computation phase to a powerful system.

Our scheme, presented in Construction 6.1, is a chain-based one-time signature schemese-

cure under an adaptive chosen-message attack as formally defined in Definition 15, with each

key derived from its predecessor as ki ← h(ki+1), i ∈ {n− 1, n− 2, . . . , 0} and h is a preim-

age resistant hash function. The keys when used in pairs (ki, ki−1) can be viewed as a

public-private key pair for a one-time signature scheme, then forming a one-way hash chain

with consecutive applications of h. The key kn serves as the “private seed” for the entire

key chain. In the context of integrity, a signer with a “public key” ki−1 = h(ki) would have

to use the “private key” ki to sign his message. Since each key can only be used once, the

signer would then use ki = h(ki+1) as his “public key” and ki+1 as his “private key”, and

continue in this fashion until the key chain is exhausted.

For example as shown in Figure 6.2, we can construct a hash chain from seed k5. For

signing the 1st message m1, the signer would use (pk1 , sk1) = (k0, k1) and output signature

σ = h(m1||k0)||k1. Similarly, for the 2nd message he would use (pk2 , sk2) = (k1, k2) and for

the 5th message (pk5 , sk5) = (k4, k5).

Constructing the one-way hash-chain described above, given the seed kn, would require

O(n) hash operations to compute k0 = hn(kn), which might be a significant computational

cost for resource-constrained devices, as the length of the hash chain n is typically large

to offset the constraint of single-use keys. While we could pre-compute all the keys, which

would cost a O(1) lookup operation, we would then require O(n) space, which is also a lim-

ited resource in such devices. Using efficient algorithms [182,183], we can achieve logarith-

mic storage and computational costs by placing “pebbles” at positions 2j = 1 · · · dlog2(n)e,

which as shown in Section 6.5.3 makes our construction practical for resource-constrained

138

Let h : {0, 1}∗ → {0, 1}λ be a preimage resistant hash function.

(pk , skn , s0)← OTKeyGen(1λ, n)

– sample a random “private seed” kn ← {0, 1}∗

– generate hash chain pk = k0 = h(k1) = h(h(k2)) = ... = hi(ki) = hi+1(ki+1) = ... = hn−1(kn−1) =

hn(kn)

– hash chain creates n pairs of (pki , ski) where:

(pk1 , sk1) = (k0, k1) = (h(k1), k1),

(pk2 , sk2) = (k1, k2) = (h(k2), k2),

... ,

(pki , ski) = (ki−1, ki) = (h(ki), ki),

...,

(pkn , skn) = (kn−1, kn) = (h(kn), kn)

– initialize a counter ctr = 0, store ctr and pairs as [(pki , ski)]
n
1 to initial state s0

– output (pk = pk1 , skn , s0).

Note: Choosing to store only (pk , skn) instead of the full key lists introduces a storage-computation trade-off,

which can be amortized by the “pebbling” technique we discuss in this section.

(σ, ski , si)← OTSign(ski−1 ,m, si−1)

– parse si−1 and read ctr→ i− 1

– compute one-time private key ski = ki from n− i successive applications of the hash function h on the

private seed kn (or read ki from [sk]n1 if storing the whole list)

– compute σ = h(m||pki)||ski = h(m||ki−1)||ki = h(m||h(ki))||ki

– increment ctr→ ctr + 1, store it to updated state si

OTVerify(pk , n,m, σ) := b

– parse σ = σ1||σ2 to recover σ2 = ki

– Output b = (∃j < n : hj(ki) = pk) ∧ (h(m||h(ki)) = σ1)

Note: The verifier might choose to only store the most recent ki which verified correctly, and replace pk with

ki above resulting in fewer hash iterations.

Construction 6.1: n-length Chain-based Signature Scheme

k0 k1
h

k2
h

k3
h

k4
h

k5
h

Figure 6.2: Key generation for n = 5 and seed k5. First signature uses as pk = k0 and
sk = k1.

139

Table 6.1: Hash-based scheme comparison.

Scheme Architecture NoSync NoDelay

TESLA [178,179] Chain 5 5

µTESLA 2-level chain [199] Chain 5 5

Sandwich, 1-level, light chain [200] Chain 5 5

Comb Skipchain [200] Chain 4 5

Short Hash-Based Signatures [201] Chain 4 4

XMSS [202] Tree 4 4

BPQS [203] Chain 4 4

SPHINCS [204] Tree 4 4

Our construction Chain 4 4

Table 6.2: Hash-based scheme comparison for 256-bit messages and 256-bit security param-
eter. Sizes in bytes. M,F and H denote MAC, PRF and hash operations respectively. n
denotes length of chain-based schemes.

Scheme |σ| |pk | |sk | Sign() Verify()

Short Hash-Based Signatures [201] 128 + log2n 32 64(dlog2(n)e+ 1) (dlog2(n)e+ 3)H + 3F dlog2(n)e
XMSS [202] 2692 (4963) 1504 (68) 64 747H + 10315F 83H + 1072F
BPQS [203] 2176 68 64 1073 H 1073 H
SPHINCS [204] 41000 1056 1088 386F, 385 PRGs, 167519 H 14060 H
Our Construction 32(64) 32 32 dlog2(n)eH 1 H

devices. The verifier’s cost is O(1) when storing the most recently-used k.

Comparison and Discussion. Our scheme is directly comparable with the TESLA

Broadcast Message Authentication Protocol [178, 179], which follows a similar chain-based

paradigm but requires some synchronicity between the sender and receiver, and the receiver

can only verify a message after some delay. Several other chain-based schemes have been

proposed [199–201], forming a “hierarchy” of chains aiming to improve their efficiency in

various aspects. However, most of them do not prevent the synchronicity requirement

and delayed verification, in fact some even introduce additional requirements, e.g. special

“commitment distribution” messages [199], where a verifier won’t be able to verify a long

series of signatures if those are lost. As our scheme is hash-based, we compare with another

family of hash-based signatures schemes that follow a tree structure, e.g. XMSS [204]

and SPHINCS [202]. While these schemes do not have any synchronicity assumptions,

140

Figure 6.3: BBox-IoT construction overview

their performance is not suited for the low SWaP sensors we consider (even with resource-

constrained device optimizations [205]which we compare in detail in Section 6.8.1). In Table

6.1 we compare with other hash-based schemes in terms of properties (i.e. no synchronicity

or delays, denoted as NoSync and NoDelay respectively). In Table 6.2 we provide a concrete

comparison with the rest of the schemes satisfying the above properties. In Section 6.6 we

discuss some of the above schemes in more detail.

The caveat in our scheme is that it is susceptible to Man-in-the-Middle attacks. Specifi-

cally, an attacker might intercept a signature packet in transit (thus learning the “ephemeral”

private key) and replace it with an arbitrary message and signature. Nevertheless such at-

tacks are highly unlikely to be successful in our setting as discussed later in Section 6.4.3.

6.4.2 Overall BBox-IoT construction

Our BBox-IoT system consists of the following components as shown in Figure 6.3

illustrating our modifications to the Hyperledger Fabric architecture.

141

• A (trusted) Membership Service Provider2 MSP, which resembles a Trusted Party, and is

responsible for authorizing participation in the system. The MSP bootstraps the system

and forms the genesis block, which contains hardcoded information on its public key

and the consensus algorithm. The genesis block also initializes the authorized system

participants and the system policy (denoted by Pol), both of which can be changed later.

• A permissioned blockchain BC, which consists of normal “transaction” blocks and special

“configuration” blocks.

• A configuration Config for BC, containing membership information for local administrator,

orderer and aggregators, as well as system policy data. As in Hyperledger Fabric, Config

is stored in the configuration blocks.

• A set of orderer nodes O : {O1,O2, ...,O`}, responsible for achieving consensus on forming

new blocks. These nodes are assumed static, although it can be extended to handle

dynamic membership.

• A set of device groups G : {G1,G2, ...,Gn}. On each group Gi there exist:

– A local administrator LAdmi, responsible for its group membership, which includes

a set of aggregators and sensors. In order for LAdmi to add or remove an aggregator

in the system must also have consent from the MSP, however he does not need

permission to handle sensor membership.

– A set of aggregators AGi : {Agi1,Agi2, ...,Agim}, which also have the role of peers

in Hyperledger Fabric. We assume aggregators can perform regular cryptographic

operations and aggregate data received from sensors. As discussed in our modified

Hyperledger, they also briefly take the role of a “client”.

– A set of sensors Si : {Si1, Si2, ...,Sik}, which are assumed to be resource-constrained

devices. These would be the equivalent of clients in the original Hyperledger Fab-

ric architecture, but here they are assumed to only broadcast their data to nearby

2The MSP also includes the system administrator.

142

group aggregators, without expecting a confirmation. The only step where interac-

tion occurs is during initial setup, where they exchange their public key and other

initialization data with the group administrator. We also assume that sensors can

only perform basic cryptographic operations (i.e. hashing), meaning they can’t per-

form public key cryptography operations that use exponentiations.

We first describe the initialization process for the system’s MSP and genesis block B0.

After generating its keys, MSP bootstraps the system with pre-populated participation

whitelists of orderers, local group administrators, and aggregators (denoted by OL, LL and

PL respectively) and a pre-defined system policy. Sensors do not need to be tracked from the

MSP, as participation authorization for sensors is delegated to the group local administra-

tors. Local administrators control authorization privileges with a respective sensor whitelist

denoted by SL, and they also keep a whitelist of group aggregators denoted by AL.

Furthermore, we detail the functionality of reading or updating the system’s configu-

ration, including the permissioned participants and the system policy. Orderers and local

administrators can only be authorized for participation by the MSP, while aggregators need

their local administrator’s approval as well. As discussed above, sensor participation is

handled by the local administrators, however, group aggregators also keep track of group

participation for sensors in a passive manner. The local administrators are also responsible

for revoking participation rights for aggregators and sensors belonging in their group. In

general, granting or revoking participation privileges is equivalent to adding or removing

the participant’s public key from the respective whitelist. Note that membership verifica-

tion can also be handled by accumulators [206, 207] instead of whitelists to achieve lists of

constant size, however we keep whitelists for simplicity purposes.

Furthermore, on a high-level, sensors “blindly” broadcast their data as signed transac-

tions. Nearby aggregators (belonging to the same device group) receive and verify the data

and collect the required amount of signatures from other aggregators in the system (as de-

fined by the system policy), and then submit the signed transaction to the ordering service.

The orderers then by running the consensus protocol, “package” the collected transactions

143

to form a blockchain block. Finally, the block is sent back to the aggregators, who as the

blockchain “maintainers”, append it to the blockchain. The core system functionalities are

shown in Construction 6.2 and we provide a detailed description of all system algorithms

and protocols in Section 6.10. .

Sensor join: Defined by SensorJoin() protocol between a sensor and a Local adminis-

trator. This is the only phase when a sensor is interacting with the system, as the LAdm

generates a new hash chain and its associated pebbles in a powerful device. The pebbles are

then loaded to the sensor, and LAdm updates the group aggregators with the new sensor’s

public key.

Sensor broadcast: Defined by SensorSendData() protocol between a sensor and group

aggregators. For some data m, the sensor computes the one-time hash-based signature

using OTSign() and the signed data m,σ is broadcasted to all group aggregators. If there

is any aggregator who receives a different signed message m′, σ, the message is discarded,

else it remains in the aggregator’s pending memory for processing.

Aggregator transaction: Defined by AggrSendTx() protocol between aggregators and

orderers. For an aggregator to submit aggregated data to the blockchain, it first needs to

collect the needed signatures from other aggregators. Then it submits the signed transaction

to the ordering service, which in turn executes the Consensus() algorithm to construct a block

with a set of signed transactions. Finally, the block is transmitted to the aggregators, who

append the block as the blockchain maintainers.

Sensor transfer: Defined by SensorTransfer algorithm, executed when a sensor is trans-

ferred to a new location or device group. The handing-over aggregator saves its state of our

signature scheme w.r.t. that sensor and encrypts it on the blockchain under the receiving

aggregator’s public key. After sensor transfer, the receiving aggregator decrypts that state

and resumes message verification.

Optionally in our construction, a symmetric group key KG can be shared between each

group’s local administrator, aggregators and sensors for confidentiality purposes. However,

144

SensorJoin

– Sensor generates a seed uniformly at random, and generates hash chain through OTKeyGen algorithm.

(computation is out sourced to a powerful device)

– Sensor stores hash chain “pebbles” in its memory and outputs the last element of the chain as public key to

the LAdm

SensorSendData

– Sensor computes signature σ for broadcasted data m using OTSign algorithm

– Sij broadcasts σ to aggregators in group.

– Each aggregator after verifying the signature through OTVerify, checks if any other aggregator received a

conflicting message. It adds the message - signature pair in its local state, pending for blockchain submission.

AggrSendTx

– Aggregator parses its local state for pending blockchain operations as a transaction.

– Aggregator computes signature on transaction and sends it to other aggregators.

– Each aggregator after verifying signature and sender membership in the system, signs the transaction.

– The sending aggregator submits signed transaction to ordering service after reaching the necessary number

of signatures, as dictated by system policy.

– Each orderer after verifying signatures, runs consensus algorithm which outputs a blockchain update opera-

tion.

– The blockchain operation is received by orderers who update the blockchain state.

SensorTransfer

– Aggregator encrypts the state for the sensor under the receiving aggregator’s pk (i.e. the most recently

received ski) and submits it to the blockchain using AggrSendTx. Sensor is removed from the device group

and is transferred to a new group.

– Receiving aggregator decrypts state from the blockchain and resumes verification of received data from

sensor.

Construction 6.2: BBox-IoT core algorithms and protocols

145

the additional encryption operations have an impact mainly on sensors, which have con-

strained computational and storage resources. Note that using such a key for authentication

or integrity would be redundant since these properties are satisfied using public keys exist-

ing in the appropriate membership lists and revocation operations can still be performed

at an equivalent cost using those lists.

6.4.3 Security analysis

Theorem 6 (informal). The construction in Section 6.4.2 satisfies participant authentica-

tion (S-1), sensor health S-2 and device group safety properties (S-3) assuming (SignGen,

Sign, SVrfy) is an existentially unforgeable under a chosen-message attack signature scheme,

(OTKeyGen,OTSign,OTVerify) is an unforgeable one-time chain based signature scheme,

MSP is honest and not compromised and the consensus scheme (TPSetup, PartyGen, TPMembers,

Consensus) satisfies the consistency property.

Proof Sketch. We now provide a proof sketch arguing about the security of our scheme.

S-1 Participant Authentication. We require that only authenticated participants can par-

ticipate in the different functions of our protocol. We argue that if an adversary breaks the

participant authentication property then it could break the unforgeability of the underlying

signature scheme. Specifically:

1. For property S-1a., in protocol OrdererAdd (coupled with ConfigUpdate) the use of

an unforgeable signature scheme guarantees that no one but the MSP can authen-

ticate orderers, while in protocol Consensus the same scheme guarantees that only

the authenticated orderers can perform this core functionality. Also recall from the

previous property that an adversary being able to authenticate orderers could break

the immutability property.

2. For property S-1b., in protocol LAdminAdd (coupled with ConfigUpdate) the use of

an unforgeable signature scheme guarantees that no one but the MSP can authenti-

cate Local Administrators, while AggrSetup,AggrAdd,AggrUpd, SensorSendData and

146

GroupRevoke guarantee that only the authenticated local administrators can perform

these functionalities.

3. For property S-1c., in protocol AggrAdd (coupled with

ConfigUpdate) the use of an unforgeable signature scheme guarantees that no one but

the MSP can authenticate Aggregators, while AggrUpd and AggrSendTx the same

scheme guarantees that only the authenticated aggregators can perform these func-

tionalities.

S-2 Sensor health. In order for an adversary to impersonate/clone a sensor, it would either

have to break the unforgeability of our signature scheme, or launch a MITM attack which

is a potential attack vector as discussed in Section 6.4.1.

As discussed in Section 6.3.1, we consider jamming attacks at the physical layer outside

the scope of this thesis. Given the nature of our setting where a sensor’s broadcast has

typically short range, we consider MITM and message injection attacks hard and unlikely

to launch but we still consider them as part of our threat model. Even in these unlikely

scenarios, MITM attacks can be easily mitigated in BBox-IoT. A first approach for detect-

ing such attacks is to leverage blockchain properties, where aggregators can compare data

received from a sensor at the blockchain level. Our assumption here is that sensor data can

be received by more than one aggregator in the vicinity of the sensor which is a reasonable

scenario for typical dense IoT deployments. If there’s even one dissenting aggregator, prob-

ably victim of a MITM attack, all the associated data would be considered compromised

and disregarded and the operator will be notified of the data discrepancy detected. The

above approach, while simple, still permits a MITM attacker to “eclipse” a sensor from the

system using a jamming attack.

An alternative approach is to make a proactive check at a group level, where each

aggregator would verify the validity of its received data by comparing it with other aggre-

gators before even submitting it to the blockchain. In both above strategies, the attacker’s

work increases significantly because he would need to launch simultaneous MITM attack

between the sensor and all aggregators in the vicinity. We adopt the second approach in

147

our Construction in Section 6.10.

The above properties and strategies ensure that only data broadcasted by authenticated

sensors are accepted by aggregators in SensorSendData.

S-3 Device group safety. An adversary wanting to break device group safety would either

have to add or revoke aggregators or sensors in an existing group through AggrAdd, AggrUpd

or GroupRevoke thus breaking unforgeability of the signature scheme used in these proto-

cols or interfere with existing authenticated sensors in a group through SensorSendData by

breaking unforgeability of the one-time chain based signature scheme.

Integrity, non-repudiation and data provenance requirements (S-4) are core properties

of any digital signature scheme thus directly satisfied in BBox-IoT.

Additionally, we argue that our system is DOS resilient (S-5) in the following scenarios:

• MSP offline or not available: The core system functionality is not affected, although

there can be no configuration changes in the system. All algorithms and protocols

(except those involving adding or revoking orderers, local administrators or aggrega-

tors or those involving system policy changes) perform authentication through the

configuration blocks and not the MSP itself.

• Orderers unavailable: Reduces to tolerance properties of the consensus algorithm.

• LAdm unavailable: The core system functionality is not affected, although there can

be no administrative operations in the respective group.

• Ag unavailable: Transactions are not processed only in the respective groups. However

if more than τ aggregators are unavailable as required in AggrSendTx, no transactions

can be processed in the whole system.

Also an adversary might attempt to flood an aggregator by broadcasting messages and

arbitrary signatures. In this scenario the aggregator would be overwhelmed since by running

OTVerify for each message-signature pair separately, it would have to check the signature

against all hash chain values up to the first public key. To mitigate this we propose checking

148

only for a few hashes back to the chain (defined by a system parameter “maxVerifications”

as shown in Algorithm 2. This parameter can be set by the local administrator but should

be carefully selected. A small value might result in need of frequent re-initializations for

the sensors - if a long network outage occurs between a sensor and an aggregator and they

lose “synchronization”, the local administrator should reinitialize the sensor in the device

group. On the other hand, a large value would amplify the impact of DOS attacks.

Policy and configuration security (S-6) is ensured by algorithms ConfigUpdate and ReadConfig,

as the first algorithm creates a special configuration transaction signed by the MSP and the

second returns configuration data originating from such a transaction.

Revocation (S-7) is made possible by NodeRevoke and GroupRevoke (in conjunction with

whitelists used throughout all system protocols and algorithms). Also the unforgeability

of the underlying signature scheme ensures that only the MSP (and the LAdm respectively

only for aggregators and sensors) can revoke these credentials.

Remark. One might suggest using MACs instead of our proposed signature scheme for

sensor authentication, however this would compromise sensor auditing (we discuss this in

more detail in Section 6.7).

6.5 Performance evaluation & measurements

6.5.1 The IIoT setting with constrained devices

IIoT environments are complex systems consisting of heterogeneous devices that can

be tracked at different organizational layers, namely (a) computational, (b) network, (c)

sensor/edge layers [208]. Devices at the higher levels are powerful servers dedicated to the

analysis of data, storage, and decision making. They frequently reside outside the factory

premises, i.e., in cloud infrastructures. On the other hand, on-site and at the edge layer, a

myriad of low-SWaP devices such as sensors and actuators reside, assigned with the tasks of

posting their data or reconfiguring their status based on received instructions. On typical

real-life IIoT deployments, the processing speed of such devices ranges from tens (e.g.,

149

Table 6.3: Classes of Constrained Devices in terms of memory capabilities according to
RFC 7228.

Name RAM Flash

Class 0 <<10 KiB <<100 KiB
Class 1 10 KiB 100KiB
Class 2 50KiB 250KiB

Atmel AVR family) to hundreds of MHz (e.g., higher-end models of ARM Cortex M series).

Diving even deeper, at the lower end of the spectrum, one may observe sensor-like devices

that are severely constrained in memory and processing capabilities.

Such extremely constrained devices have been considered by RFC 7228 [177] which

underlines that “most likely they will not have the resources required to communicate

directly with the Internet in a secure manner”. Thus, the communication of such nodes

must be facilitated by stronger devices acting as gateways that reside at the network layer.

In Table 6.3 we provide a taxonomy of constrained devices residing at the edge of IIoT

according to RFC 7228.

In this work, we consider a generic IIoT application scenario that involves Class 0

devices which are connected to more powerful IoT gateways in a sensor/gateway ratio

of 10:1. The chosen platforms and all experimental decisions were made to provide a

realistic scenario under the following assumptions: (a) devices severely constrained in terms

of computational power and memory resources (Class 0) and (b) moderately demanding in

terms of communication frequency (i.e. transmission once every 10 seconds).

6.5.2 Evaluation setup

Our testbed consists of Arduino UNO R3 [209] open-source microcontroller boards

equipped with ATmega328P 16 MHz microcontroller and 2KB SRAM fitted with a Blue-

tooth HC-05 module. These devices are really constrained and they represent the minimum

of capabilities in all of IoT sensors utilized in our experimental scenarios (Class 0 in Table

6.3). For the gateways, we use Raspberry Pi 3 Model B devices equipped with a Quad Core

150

1.2GHz BCM2837 64bit CPU and 1GB RAM.

We first focus on evaluating our system in a device group level3. We use the one-time

signature scheme outlined in Construction 6.1 and SHA256 as the hash function h(). The

length of the hash chain as defined in section 6.6.2 sets the upper bound on the number of

one-time signatures each sensor Si can generate. In the case where the sensor’s available

signatures are depleted, it would enter an “offline” state and the Local Administrator LAdm

would need to manually renew its membership in the system through the SensorJoin proto-

col. In a large-scale deployment of our system however, frequent manual interventions are

not desirable, so our goal is to pick a sufficiently large n such that the available one-time

signatures to the sensor last for the sensor’s lifetime. As discussed above and taking similar

schemes’ evaluations into account [210], we consider a frequency of one (1) signing operation

per 10 seconds for simplicity. We consider sensor lifetimes between 4 months as an lower

and 21 years as a upper estimate (as shown in Table 6.5), which imply a hash chain between

220 and 226 elements respectively.

In the setup phase, we pre-compute the hash-chain as needed by the pebbling algo-

rithm [182] and load the initial pebble values into the sensor. We first measure the actual

needed storage on the sensor for various values of n. Note that for n = 226, the lower bound

for needed storage using a 256-bit hash function is about 26 · 256 = 832 bytes of memory.

Then we set the sensor device to communicate with the aggregator through Bluetooth in

broadcast-only mode and measure the maximum number of signing operations that can be

transmitted to the aggregator for various values of n, as well as the verification time needed

on the aggregator side since it will need to verify a large number of sensor messages. The

fact that we are able to run BBox-IoT on Class 0 devices demonstrates the feasibility of

our approach for all low-SWaP sensors.

3Our code is available at https://github.com/PanosChtz/Black-Box-IoT

151

https://github.com/PanosChtz/Black-Box-IoT

6.5.3 Signing and verification

We run our experiments under different scenarios and multiple times. Our evaluation

results, which are shown in Table 6.5, represent the statistical average across all measure-

ments. Note that for measuring the average signature verification time on the aggregator

side, we assume that the aggregator is able to receive all the data broadcasted by the sen-

sor. If a network outage occurs between them (and the sensor during the outage keeps

transmitting), the aggregator after reestablishing connection would have to verify the sig-

nature by traversing the hash chain back up to the last received secret key, which incurs

additional computation time (in Figure 6.4 we show the associated verification cost in such

occasions). As expected, the verification time is relatively constant in all measurements,

about 0.031ms on average. This suggests that such an aggregator could still easily handle

105 sensors transmitting data for verification (as we considered one transmission every 10

seconds for each sensor).

Table 6.5, shows that the pebbles data structure consumes most of the required memory

storage in our implementation, while the remaining program requires a constant amount

of memory for any number of pebbles. We also observe a slight impact of the number of

pebbles on the total verification time, which is mainly affected by the sensor’s capability

to compute the signature on its message and the next secret key. For example, the sensor

needs 50ms to compute the next signature with n = 226 and 49.95ms for n = 224. Also by

comparing the total verification time with the signature computation time, we conclude the

extra 14.3 msec are needed for transmitting the signature.

In Table 6.4 we provide a series of measurement results for the average verification time

of 1 signature on the aggregator. By T2 we denote the verification time of a signature

and by T3 the total verification time by an aggregator (we provide detailed algorithms for

our measurements in Section 6.11.) The average total verification time (denoted by maxV)

increases significantly as we require more verification operations from the Arduino device.

This happens because of dynamic memory fragmentation as the pebbling algorithm updates

the pebble values.

152

Table 6.4: Evaluation for sensor-aggregator protocol - Average verification times

T2 (µsec) T3 (msec)

maxV 20 22 24 26 20 22 24 26

100 28.12 31.18 31.34 28.95 42.83 42.84 42.91 43.08

500 30.78 31.94 30.31 30.63 51.25 51.23 51.37 51.39

1000 31.39 30.96 31.14 30.74 55.27 55.35 55.36 55.41

2500 30.57 30.97 32.39 30.86 60.61 60.65 60.7 60.78

5000 33.26 31.7 31.66 31.43 64.66 64.74 64.79 64.83

10000 33.34 33.38 33.6 31.41 68.68 68.75 68.78 68.86

Comparison with ECDSA We compare our lightweight scheme with ECDSA, which is

commonly used in many blockchain applications. We assume IoT data payloads between

50 and 220 bytes, which can accommodate common data such as timestamps, attributes,

source IDs and values. In Table 6.6 we show that our scheme is more efficient compared to

ECDSA by 2 and 3 orders of magnitude for signing and verification respectively. Even when

considering larger payload sizes which impact hash-based signature operations, our scheme

remains much more efficient. However, verification cost for our scheme increases linearly

during network outages, and as shown in Figure 6.4 it might become more expensive than

ECDSA when more than 2400 signature packets are lost.

Another metric we consider is energy efficiency, which is of particular importance in IoT

applications that involve a battery as power source. Our experiments depicted in Figure

6.5 show that our ATmega328P microcontroller can perform more than 50x hash-based

signing operations compared to the equivalent ECDSA operations for the same amount of

power. Finally, while our hash-based signature normally has a size of 64 bytes (as shown in

Table 6.5), we can “compress” consecutive signatures along a hash chain to 32 bytes by only

publishing the most recent ki. The verifier would then generate the previous hash chain

values at a minimal computational cost. This makes it possible to store more authenticated

data in the blockchain, as we show below.

153

Table 6.5: Evaluation for sensor-aggregator protocol (average values for 5000 verifications)

Hash Chain length n 220 222 224 226

Sensor lifetime for
1sig/10sec (m: months,
y: years)

4 m 16 m 5 y 21 y

Pebble Gen time (sec-
onds)

1.62 6.49 24.57 95.33

Verification time per
signature (msec)

0.031

Signature size (bytes) 64+ |m|
Total dynamic memory
usage (bytes)

1436 1520 1604 1678

Pebble struct memory
usage (bytes)

840 924 1008 1082

Program memory usage
(bytes)

596

Signature computation
time (msec)

49.82 49.88 49.95 50.00

Average total verifica-
tion time per signature
(msec)

64.15 64.25 64.26 64.32

Communication cost
(msec)

14.3

6.5.4 Consensus performance

Considering the use-case scenario discussed in Section 6.5.1, we discuss the performance

of our BBox-IoT system as a whole. We show that the most important metric in the

system is the transaction throughput which heavily depends on the ability of the SWaP

sensors to transmit data in a group setting. Of course, the scalability of the system overall

is also directly proportional to the number of system active participants it can support

simultaneously.

Sensors. Our measurements indicate that the aggregator - which is a relatively powerful

device - is not the bottleneck in the protocol execution. Based on the measurements in

Table 6.5, we can safely assume that a single aggregator can verify over a thousand sensors’

data being continuously broadcasted, since the signature computation time by a sensor is

154

three (3) orders of magnitude larger than the verification time by an aggregator. This is

still a pessimistic estimation, since we previously assumed that a sensor broadcasts (and

signs) data every 10 seconds, which implies that the aggregator can accommodate even

more sensors.

Orderers. Since orderers only participate in the consensus protocol to sign blocks, we

only need a few orderers such that our system remains resilient to attacks at the consen-

sus level should a subset of orderers become compromised. Orderers can be strategically

distributed over a geographical area to minimize the network latency between an aggrega-

tor and the ordering service, controlled by the main organization (which also controls the

MSP). Evaluations performed in previous works have shown that by having 3 orderers,

3000 transactions/second can be easily achieved using the consensus protocol used in the

current version of Hyperledger Fabric (with a potential of further improvement in a future

adoption of BFT-SMART), and even considering up to 10 orderers in the system does not

greatly affect its performance [185,192].

Aggregators. The expected number of aggregators in the system depends on the use case as

it is expected. As discussed in Section 6.5.1, where gateways play the role of BBox-IoT

aggregators, we consider a sensor/gateway ratio of 10:1 for our evaluation purposes. To

our knowledge, no evaluation of Hyperledger Fabric has ever been performed to consider

such a great number of peers, which would require a great amount of resources to perform.

However, by adopting the evaluation performed in [185] which measured the throughput in

terms of number of peers up to 100 (which as discussed, are the aggregators in our system),

we can extrapolate this evaluation to the order of thousands, which shows that with the

aid of a “peer gossip” protocol, the system remains scalable if the peers are in the same

approximate geographical area which implies low average network latency.

Blockchain operations. As discussed, aggregators’ role is to aggregate sensor data into

blockchain transactions. Assuming that aggregators perform no “lossy” operations (such as

averaging techniques), they would just package many collected sensor data along with the

155

Table 6.6: Signing and verification costs (in milliseconds) compared with message and
signature sizes (in bytes). Note we assume hash-based signatures are aggregated as discussed
in Section 6.5.3. Signer is ATmega328P microcontroller and verifier is RPi 3.

BBox-IoT ECDSA

Message length Sensor Sign Aggr Vrfy Sensor Sign Aggr Vrfy

50 50.43 0.0339

4200 42.55
100 53.47 0.0349
150 56.40 0.0357
202 59.33 0.03687
218 60.06 0.0369

Signature size 32 64

respective signatures into a transaction which in turn would be submitted to the ordering

service. If we assume as in [185] a block size of 2MB, we can estimate how much signed

sensor data a block can hold. Given the discussion in Section 6.5.3, a Hyperledger block

could hold (at most) about 15800 signed sensor data using our hash-based scheme vs. 12700

using ECDSA.

Latency. We also wish to estimate the time from a value being proposed by an aggregator

until consensus has been reached on it (assuming the block contains a single transaction).

Again we can adopt previous evaluations in Hyperledger Fabric [185], which show an average

of 0.5 sec for the complete process. Finally, considering that the previous evaluations men-

tioned above were all performed on the original Hyperledger Fabric (while our architecture

requires a slight modification as discussed in Section 6.2), for our purposes we assume that

the expected performance of aggregators (which are essentially Hyperledger peers also hav-

ing client application functionalities) is not affected by this additional functionality, since

the main affecting factor that can potentially become a bottleneck for the scalability of the

whole system is network latency and not computational power.

156

0 1000 2000 3000 4000 5000 6000

Outage depth (hash chain elements)

0.000

0.025

0.050

0.075

0.100

T
im

e
to

ve
ri

fy
(s

ec
) BBox-IoT

ECDSA

Figure 6.4: Aggregator verification costs in network outages. BBox-IoT is more expensive
when more than about 2400 signature packets are lost.

BBox-IoT 3592

ECDSA 70

1000 2000 3000 4000

Figure 6.5: Number of signing operations for a 20mWh battery.

6.6 Related work

We now discuss a number of works that connect IoT to the blockchain setting or works

which build cryptographic primitives to optimize different parts of computation for resource-

constrained IoT devices. Note that none of these works addresses the problem of authenti-

cation for extremely constrained (Class 0) devices.

6.6.1 IoT and blockchain

Shafagh et al. [165] presented an architecture aiming to handle IoT data in a decen-

tralized manner while achieving confidentiality, authenticity and integrity. This proposed

system defines itself as “IoT compatible” being append-only by a single writer and can be

accessed by many readers, and consists of a layered design on top of an existing public

157

blockchain to store access permissions and hash pointers for data, while storing the actual

data off-chain using decentralized P2P storage techniques. Other approaches [211–213] also

used a similar ”layering” paradigm. While these approaches are simpler than ours, they ul-

timately rely heavily on the performance and properties of the underlying public blockchain

and are not specifically tailored to handle resource-constrained IoT devices.

Dorri, Kanhere, and Jurdak [195] considered a “local” private blockchain maintained by

a capable device, managed by the on-site owner and containing the local IoT device trans-

actions. These lower-tier elements would be overlaid by a shared blockchain that can handle

hashed data originating from the local blockchain and stored in a cloud storage service, and

can enable access to local data. The above approach also offers confidentiality and integrity

for submitted data and is suitable for resource-constrained IoT devices, however it is more

complex than BBox-IoT and requires managing and replicating data over several points

in the system.

More recently, AlTawy and Gong [214] presented a blockchain-based framework in the

supply chain setting using RFIDs. This model considered blockchain smart contracts in-

teracting with an overlay application on the RFID readers and a centralized server that

handles membership credentials. This framework offers anonymity for the participating

entities, which prove their membership in zero-knowledge, while their anonymity remains

revocable by the server. It also provides confidentiality for its transactions and enforces

a notion of “forward secrecy” which enables future product owners in the supply chain to

access its entire history. BBox-IoT differs from the above work in several ways, since it is

tailored to handle resource-constrained devices. Our work does not have confidentiality or

anonymity as a main goal, although it can be added as an option using symmetric keys. We

also do not require any smart contract functionality from the blockchain, and we operate

exclusively in the permissioned setting.

IoTLogBlock [164] shares a common goal with our work: enabling the participation

of low-power devices in a distributed fashion, and similarly uses Hyperledger as a “cloud

service” in a IoT setting. The crucial difference with our work, is that IoTLogBlock is

158

evaluated on a Class 2 device using ECDSA signatures, which are far more expensive than

our proposed hash-based signature and could not have been supported at all by a Class

0 device, while having much larger power consumption (Fig 6.5). Our proposed signature

scheme is a key component for efficient implementations of blockchain-based systems in the

IIoT setting.

Several more approaches have been presented which augmented an IoT infrastruc-

ture with a blockchain, focusing on providing two-factor authentication [215], managing

or improving communication among IoT devices [216, 217], implementing a trust man-

agement system in vehicular networks [218], providing edge computing services [219], data

resiliency [220], providing secure and private energy trade in a smart-grid environment [221]

and implementing a hierarchical blockchain storage for efficient industrial IoT infrastruc-

tures [222] and all of which are orthogonal to our work. We point the reader to [223, 224]

for extensive reviews on the related literature.

6.6.2 Hash-based signatures

Early works such as Lamport’s One-Time Signatures (OTS) [225] allowed the use of a

hash function to construct a signature scheme. Apart from being one-time however, this

scheme suffered from large key sizes. Utilizing tree-based structures such as Merkle trees

[48], enabled to sign many times while keeping a constant-sized public key as the Merkle

root. Winternitz OTS and later WOTS+ [226][227] introduced a way of trading space for

computation for the underlying OTS, by signing messages in groups. XMSS [202] further

optimized the Merkle tree construction using Winternitz OTS as an underlying OTS. Other

works such as HORS [228] enabled signing more than once, and more recently SPHINCS and

SPHINCS+ [204,229] enabled signing without the need to track state. Using HORS [228] as

a primitive combined with a hash chain, Time Valid One-Time Signature (TV-HORS) [230]

improves in signing and verification computational efficiency, but assuming “loose” time

synchronization between the sender and the verifier. All of the above scheme families while

only involving hash-based operations, still incur either large computational and/or space

159

costs, and cannot be implemented in Class 0 resource-constrained devices we consider.

Follow-up work exists for implementing SPHINCS on resource-constrained devices [205]

which we discuss later in this section and compare in Section 6.8.1.

The TESLA Broadcast Message Authentication Protocol [178,179] follows a “one-way”

chain-based approach for constructing a hash-based message authentication scheme. Based

on a “seed” value, it generates a one-way chain of n keys, which elements are used to generate

temporal MAC keys for specified time intervals. The protocol then discloses each chain

element with some time delay ∆, then authenticity can be determined based on the validity

of the element in the chain as well as the disclosure time. The “pebbling” algorithms [182,

183] enable logarithmic storage and computational costs as discussed in Section 6.4.1. Its

main drawback however is that it also requires “loose” time synchronization between the

sender and the receiver for distinguishing valid keys. In an IoT setting this would require

the frequent execution of an interactive synchronization protocol, since IoT devices are

prone to clock drifting [180, 181]. Also we assume in Section 6.3 that IoT devices function

in a broadcast-only mode, which would not allow the execution of such interactive protocol

in the first place. Furthermore, TESLA introduces a “key disclosure delay” which might

be problematic in certain IoT applications, and gives up the non-repudiation property of

digital signatures.

Several modifications and upgrades to the TESLA protocol have been proposed, with

most of them maintaining its “key disclosure delay” approach which is also associated with

the loose time synchronization requirement [199, 200]. A notable paradigm is the “hierar-

chical” (or two-dimensional) one-way chain structure, where the elements of a “primary”

hash chain serve as seeds for “secondary” chains in order to reduce communication costs.

[200] includes several such proposals. For instance, its Sandwich-chain uses two separate

one-way chains. The first one-way chain is used as a “primary” chain, which generates

intermediate “secondary” chains using the elements of the second one-way chain as salts.

However to maintain efficiency, it still assumes some weak time synchronicity between the

signer and the verifier by disclosing each element of the “primary” chain with some time

160

delay (else the verifier in case of a network outage would have to recompute all the pre-

vious secondary chains as well which would defeat its efficiency gains). More importantly

however, this construction has much larger storage requirements than ours. In the same

work, the Comb Skipchain construction is asymptotically more efficient in signing costs

than our scheme and does not require time synchronicity, but has worse concrete storage

requirements which are prohibitive for low-end IoT devices, and still suffers from delayed

verification. This work includes other interesting modifications such as the “light” chains

where the secondary chains are generated using a lower security parameter and a standard

one-dimensional TESLA variant which does not require a MAC.

6.6.3 Cryptographic operations in IoT

In the context of improving cryptographic operations in the IoT setting, Ozmen and

Yavuz [231] focused on optimizing public key cryptography for resource-constrained devices.

This work exploited techniques in Elliptic Curve scalar multiplication optimized for such

devices and presented practical evaluations of their scheme on a low-end device. Even

though the device used in this work can be classified as a Class 1 or Class 2 device, our

construction signing is more efficient both in terms of computation cost and storage by at

least an order of magnitude.

As discussed above, Hülsing, Rijneveld and Schwabe [205] showed a practical evaluation

of the SPHINCS hash-based signature scheme [204] on a Class 2 device. At first glance this

implementation could also serve our purposes, however our proposed construction, while

stateful, is much cheaper in terms of runtime, storage and communication costs, without

such additional assumptions. We directly compare with their scheme in Section 6.8.1.

Kumar et al. [232] propose an integrated confidentiality and integrity solution for large-

scale IoT systems, which relies on an identity-based encryption scheme that can distribute

keys in a hierarchical manner. This solution also uses similar techniques to our work for

signature optimization for resource-constrained devices, however, it requires synchronicity

between the system participants. Portunes [233] is tailored for preserving privacy (which is

161

not within our main goals in our setting), and requires multiple rounds of communication

(while we consider a “broadcast-only” setting)

Wander et al. [234] quantified the energy costs of RSA and Elliptic Curve operations as

public key cryptography algorithms in resource-constrained devices. In a similar context,

Potlapally et al. [235] performed a comprehensive analysis of several cryptographic algo-

rithms for battery-powered embedded systems. However as discussed in Section 6.6.2, we

consider hash-based algorithms that are lighter and more efficient.

Finally we mention an extensive IoT authentication survey [236]. In this work, our

authentication scheme is comparable to [237] which utilizes hashing for one-way authenti-

cation in a distributed architecture, however our scheme is more storage-efficient, suited for

low-SWaP (Class 0) sensors.

6.7 On MACs for sensor authentication

One might suggest using MAC authentication in our scheme instead of one-time hash

based signatures, which might be slightly more efficient in terms of computation cost for

generating a signature, are simpler in usage and do not expire. The question of whether

its preferable using symmetric primitives in resource-constrained IoT devices instead of

public key cryptography has been raised in academic works [231], and several motivations

to provide efficient public key cryptography techniques in such devices were outlined, most

of which are also applicable to our system as follows.

Firstly, signatures provide non-repudiation, which as discussed previously is a needed

security property S-4. Although a way to achieve non-repudiation through MACs could be

to use a separate MAC key for each sensor, each key would need to be shared with each

group aggregator separately since they should be all able to verify data from all sensors

in the group. This would increase the attack surface since an attacker compromising any

aggregator could also send bogus data for all sensors. Also considering that aggregators

might have to verify data from a great number of sensors, our hash-based verification cost

162

(which involves one hash operation) is cheaper than one MAC operation. Although for

sensors a MAC operation is cheaper than a hash-based signature, as we show in section

6.5 a hash-based signature which involves a few hashes and a Quicksort operation is still

relatively efficient even for the weakest types of sensors.

Secondly, our chain hash-based scheme has a built-in “replay protection” against an

attacker, since that signature is by definition valid for one time only. A MAC scheme would

require extra layers of protection (nonces and/or timers) against replay attacks.

Lastly, by using our hash-based signature scheme we enable public verifiability of signed

sensor data on the blockchain, even by entities not authorized to participate in the system.

6.8 Definition and Security proof of our signature scheme

We first define the API of a chain based signature for a fixed number of messages n.

• (pk , skn , s0) ← OTKeyGen(1λ, n): Outputs a pair of keys pk , skn and an initial state

s0, where pk = hn(skn) and h() is a collision resistant hash function.

• (σ, ski , si) ← OTSign(ski−1 ,m, si−1): Takes as input the system state si−1, a private

key ski−1 and a message m, generates a signature σ and updates the signer’s private

key to ski where ski−1 = h(ski) and his state to si where i ≤ n.

• OTVerify(pk ,m, σ) := b: Takes as input a public key pk , a message m and a signature

σ, and outputs a bit b where b = 1 indicates successful verification.

To formalize security for chain-based signatures with length of chain n, we describe the

following experiment OTSigForge(λ, n):

1. (pk , skn , s0)← OTKeyGen(1λ, n)

2. A on input (pk , n) makes up to q ≤ n queries to the signing oracle. Let Q : [mi, σi]
q
i=1

the set of all such queries where mi is the queried message and σi is the signature

returned for mi.

163

3. A outputs (mq+1, σq+1).

4. A wins if OTVerify(pk ,mq+1, σq+1) := 1 and hi(ski) 6= pk ∀i ≤ q where OTSigForge

outputs “1”, else it outputs ”0”.

Note in the above experiment by hi(ski) 6= pk ∀i ≤ q we restrict A from winning the

game by reusing a secret key ski existing in the chain up to distance q from the public key

pk .

Definition 15. A chain-based one-time digital signature scheme is existentially unforgeable

under an adaptive chosen-message attack, if ∀ ppt A, Pr [OTSigForge(λ, n) = 1] is negligible

in λ.

Given the formal definition above we now prove the security of Construction 6.1.

Theorem 7. Let h : {0, 1}∗ → {0, 1}λ be a preimage resistant hash function. Then Con-

struction 6.1 is an existentially unforgeable chain-based one-time signature scheme.

Proof. Let A be an adversary who wins the OTSigForge game described in Section 6.6.2

and therefore can forge signatures using the above scheme with non-negligible probability

p(λ). That is, ∃ A which after performing q queries {mi}qi=1 where q ≤ n, can output a

signature σq+1 for a message mq+1 where OTVerify(pk ,mq+1, σq+1) = 1 and hi(ski) 6= pk

∀i ≤ q.

Then, an algorithm B running the PreIm experiment would use A to break preimage

resistance of h as follows: On input (λ, y), B would generate a hash chain of length n with

seed y as (y, h(y), ..., hn(y)) and forward (hn(y), n) to A. Then A makes up to q ≤ n

queries to B. When A queries for mi (where i denotes the query number), B returns

σi = h(mi||hn−i+1(y))||hn−i(y) to A. If q = n and A does not output a forgery, B returns

⊥ and starts over. If A eventually outputs a forgery (mq+1, σq+1) to B and q < n, then

B returns ⊥ as output of PreIm experiment and starts over, else if q = n, B would parse

σn+1 = σA||σB and return σB. Assuming a uniform probability distribution of the number

of queries q, Pr [PreIm(λ, y) = 1] = Pr[OTSigForge(λ,n)=1]
n = p(λ)

n which is non-negligible.

164

6.8.1 Evaluation comparison with modified SPHINCS

As discussed in section 6.6.2, the modified SPHINCS scheme tailored for resource-

constrained devices [205] could be a candidate scheme for our system. Here we make a

direct comparison between modified SPHINCS and our proposed scheme for our system’s

purposes.

Assuming a hash chain length of 226 elements (which as discussed is only exhausted after

21 years assuming generation of one signature every 10 seconds), a signature generation only

requires 27 hashing operations in the worst case, which according to our measurements on

a 8-bit 16Mhz CPU Arduino device outlined in Section 6.5.3, would only need 50 ms on

average. On the other hand, modified SPHINCS’ evaluation performed on a resource-

constrained device (32-bit 32Mhz Cortex M3 which is more powerful than our Arduino

Uno R3) needs 22.81 seconds for signature generation. Also our signature size (excluding

the payload) is only 64 bytes for the signature and the program storage requirement 1082

bytes, while modified SPHINCS generates a 41KB signature, streamed serially. Our only

additional requirement is an initial precomputation phase using a powerful device, which

will have to pre-compute the 226 hash chain elements and then send the “pebbles” to the

resource-constrained device.

6.8.2 Collision probability analysis

Although we assumed a collision resistant hash function in our hash-based signature

construction, given the length of the hash chain (typical length 226) there is an increased

likelihood of a collision along that chain through the birthday paradox (especially for lower

levels of security where the output size of the hash function is small), which would result in

“cycles” of hashes. If such cycles occur, an adversary could then trivially break the security

of our scheme and sign bogus sensor data.

Assume a hash chain of length 2n and a security parameter λ. From the birthday

165

44 46 48 50 52 54 56 58 60 62
Security parameter λ

0.0

0.2

0.4

0.6

0.8

1.0

C
ol

lis
io

n
pr

ob
ab

ili
ty

n =26

Figure 6.6: Collision probability for hash chain length 226.

paradox, the probability of a collision on the hash chain is approximated by p = 1 −

e
−2n(2n−1)

2λ+1 . In Figure 6.6 we show that given a chain length of 226 as previously discussed,

the output size of the hash function h() should be at least 64, and SHA256 which we used

in our evaluations satisfies these requirements.

Nevertheless, if birthday attacks become an issue for a small security parameter, we can

apply the technique from [200] where the chain index is used as salt to prevent such attacks

for a small overhead in cost. However since we show that the birthday attack is negligible,

we prefer to keep the costs as low as possible.

6.9 An instantiation for consensus algorithm

In the generic construction of our scheme, we assumed a “pluggable” consensus algo-

rithm, decoupled from our construction, similar to the original Hyperledger architecture.

Recall that this algorithm, which is executed among all orderers Oi, on input of a blockchain

BC and some orderer state sti, outputs an agreed new updated blockchain BC′. Here we

provide a concrete instantiation of a consensus algorithm for the modified Hyperledger used

166

in BBox-IoT that matches the PBFT consensus protocol [55] as follows:

1. Oi parses TXL from its stOi
extracting a set of transactions {txi}.

2. Oi based on the current BC and {txi} constructs a new block Bi which would create

BC||Bi → BC′.

3. Oi computes σ := Sign(skOi
,Bi). and sends σ to all orderers in O (equivalent to

“pre-prepare” phase in PBFT).

4. All the other orderers Ox ∈ O parse (OLBC) from the output of ReadConfig(BC).

Check if pkOi
∈ OLBC and SVrfy(pkOi

, σ,Bi) = 1. Then it verifies that the proposed

block was formed correctly (i.e., it is a valid extension of the current blockchain BC).

If all verifications pass, it computes σx := Sign(skOx ,Bi) and sends σx to all orderers

in O (equivalent to “prepare” phase in PBFT).

5. Each Ox ∈ O (including Oi) checks if SVrfy(pkOx , σx,Bi) = 1. If it collects suffi-

cient number of signatures (specific to each consensus protocol) it computes σ′x :=

Sign(skOx ,Bi, 1) and sends σ′x to all orderers in O (equivalent to PBFT “commit”

phase).

6. Each Ox ∈ O (including Oi) checks if

SVrfy(pkOx′′ , σ
′
x,Bi, 1) = 1. If it receives sufficient number of signatures (specific to

each consensus protocol) it updates its state to stOx
′ and outputs “1”. It outputs “0”

in all other cases.

The above instantiation satisfied the basic consensus properties in Definition 8.

6.10 Construction algorithms

For our construction we assume an existentially unforgeable signature scheme (SignGen,

Sign, SVrfy) and an unforgeable one-time chain based signature scheme as defined in Section

167

Table 6.7: Hash-based schemes concrete comparison, 256-bit security

Scheme Stateful Public key
(bytes)

Secret key
(bytes)

Signature
(bytes)

Sign
(msec)

Verify
(msec)

Remarks

XMSS Yes 68 4963 610 160 Cortex M3
32MHz 32-bit
16KB RAM
[238,239]

SPHINCS No 1056 1088 41000 18410 513 Cortex M3
32MHz 32-bit
16KB RAM
[205]

BBox-IoT Yes 32 32 32 (64) 52 0.035 ATmega328P
16MHz 8-bit
2KB RAM

6.6.2 (OTKeyGen, OTSign, OTVerify). We also assume an authenticated blockchain consen-

sus scheme (TPSetup,PartyGen,TPMembers,Consensus) satisfying the properties outlined

in Section 2.2.

1. SystemInit(1λ, LL,OL,PL,Pol) allows the MSP to initialize the BBox-IoT system.

The initialization is optionally based on predetermined initial system participants,

where LL,OL,PL are lists containing public keys for Local administrators, orderers

and peers respectively, as well as a preselected system policy Pol.

(a) MSP sets as pp the system parameters for the signature and the hash function,

as well as the consensus algorithm by running TPSetup.

(b) Computes a random key pair (pkMSP , skMSP)← SignGen(1λ).

(c) Assembles and outputs the genesis block B0 (serving as the initial configuration

block) by copying pkMSP , pp and [LL,OL,PL,Pol] from the algorithm inputs.

(d) Initializes empty lists in MSP memory

[LLMSP,OLMSP,PLMSP,Pol, oper] where oper denotes a pending revoke operation

list.

(e) Copies Pol to PolMSP.

168

The genesis block B0 (as the blockchain BC in general) is public, while the rest of

the outputs remain private to MSP. For the following algorithms and protocols we

assume that the security parameter and the system parameters are a default input.

2. ConfigUpdate(BC, skMSP , stMSP) enables MSP to read system configuration information

from its memory that is pending to be updated, and construct a new configuration

block to make the new system configuration readable and valid in the blockchain by

all system participants.

(a) MSP parses stMSP as [LLMSP,OLMSP,PLMSP,PolMSP].

(b) Assembles a configuration update transaction txu = [LLMSP,OLMSP,PLMSP,PolMSP].

(c) Parses ReadConfig(BC) as PLBC.

(d) Sends signed transaction σMSP(txu) to all Agi ∈ PLBC.

Since Pol does not apply to transactions signed by MSP, the configuration update

transaction is promptly appended to BC by all aggregators, resulting in public output

BC′.

3. PolicyUpdate(stMSP,Pol) enables MSP to update system policy parameters. On input

of a new system policy Pol, MSP copies it to stMSP[Pol], overwriting the previous

policy. The algorithm outputs the new updated stMSP
′.

4. ReadConfig(BC) can be run by any system participant to recover the current system

configuration.

(a) Parses BC as a series of blocks Bi.

(b) From the set of blocks marked as “configuration” blocks where Bi[type = ”C”],

selects the block Bc with the greatest height c.

(c) Parses and outputs Bc as ([LLBC,OLBC,PLBC],PolBC).

169

5. OrdererSetup() is run by an orderer Oi initializing its credentials and state. It com-

putes and outputs signing keys as (pkOi
, skOi

)← SignGen(1λ) and initializes a signed

transaction list in memory stOi
[TXL].

6. OrdererAdd{Oi(pkOi
, skOi

)↔

MSP(pkMSP , skMSP , stMSP[OLMSP],BC)} is an interactive protocol between an orderer

Oi and the system MSP in order to add that orderer in the system:

(a) Oi first creates a physical identity proof π, then submits π and pkOi
to MSP.

(b) MSP verifies π. Then it parses (OLBC) from the output of ReadConfig(BC). Check

that (pkOi
/∈ OLMSP) ∧ (pkOi

/∈ OLBC). If all verifications hold, add pkOi
to its

local orderer list OLMSP and return “1” to Oi, else return “0” with an error code.

7. LAdminSetup() is an algorithm run by a LAdm to initialize its credentials and state

and create a new device group G. A Local Administrator computes and outputs

signing keys as (pkLAdmi
, skLAdmi

)← SignGen(1λ). Allocates memory for storing group

aggregators’ and sensors’ public keys as stLAdmi
[AL,SL].

8. LAdminAdd{LAdmi(pkLAdm , skLAdm)↔

MSP(pkMSP , skMSP , stMSP[LLMSP],BC)} is an interactive protocol between a local group

administrator LAdmi and MSP in order to add LAdmi in the system.

(a) LAdmi creates a physical identity proof π, then submits π and pkLAdm to MSP.

(b) MSP verifies π. Then it parses (LLBC) from the output of ReadConfig(BC). Check

that (pkLAdmi
/∈ LLBC) ∧ (pkLAdmi

/∈ LLMSP). If all verifications hold, add pkLAdmi

to LLMSP in stMSP and return “1” to LAdmi, else return “0” with an error code.

9. AggrSetup{LAdmi(pkLAdmi
, skLAdmi

, stLAdmi
) ↔ Agij()} is an interactive protocol be-

tween an LAdmi and an aggregator Agij wishing to join group Gi.

170

(a) Agij computes signing keys as (pkAij
, skAij

)← SignGen(1λ) and initializes pending

and write transaction sets pseti → ∅, txseti → ∅ in its stAgij
.

(b) Agij creates a physical identity proof π, then submits π and pkAij
to LAdmi.

(c) LAdmi verifies (pkAij
/∈ AL) and π. If these verifications hold, it invokes AggrAdd(pkAij

)

with MSP. If MSP outputs “1”, it adds pkAij
to AL, sends an updated copy of

AL to all Agij ∈ AL and pkLAdmi
to Agij. In all other cases it returns “0”.

(d) Agij copies pkLAdmi
in its memory in stAgij

.

10. AggrAdd{LAdmi(pkLAdmi
, skLAdmi

, pkAij
)↔

MSP(pkMSP , skMSP , stMSP[PLMSP],BC)} is an interactive protocol between a local ad-

ministrator LAdmi wishing to add an aggregator to the system and MSP.

(a) LAdmi computes σ ← Sign(skLAdmi
, pkAij

). Send σ to MSP.

(b) MSP computes SVrfy(pkLAdmi
, pkAij

, σ) := b. Checks that (pkLAdmi
∈ LLMSP) ∧

b ∧ (pkAij
/∈ PLMSP) == 1. If the verification holds, it parses (PLBC) from the

output of ReadConfig(BC). Check that (pkAij
/∈ PLBC). If the verification holds,

add pkAij
to PLMSP and returns “1” to LAdmi. It returns “0” in all other cases.

11. AggrUpd{LAdmi(skLAdm , pkS) ↔ Agij(stAgij
[CL])} is an interactive protocol between

LAdmi and an aggregator Agij, both belonging to Group i. It is used when LAdmi

wants to add a sensor public key pkS to Agij and update its sensor list CL.

(a) LAdmi computes σ := Sign(skLAdmi
, pkS). Send σ to Agij.

(b) Agij computes SVrfy(pkLAdmi
, pkS , σ) := b. Checks that (pkS /∈ stAgij

)∧ b == 1. If

the verification holds, it adds pkS to CL4 and returns “1” to LAdmi. It returns

“0” in all other cases.

4LAdmi should run the protocol with every aggregator in the group, however we present this with one
aggregator for simplicity.

171

12. SensorJoin{LAdmi(pkLAdmi
, skLAdmi

, stLAdmi
[SL]) ↔ Sij(n)} is an interactive protocol

between LAdmi of Group i and a sensor Sij wishing to join the system.

(a) Sij using the one-time signature scheme described in Section 6.6.2:

i. Samples k ← (1λ). and stores it in stSij
.

ii. Runs (pkSij
, skSij

, ` = 1)← OTKeyGen(1λ, n)5

iii. Stores ` = 1 to stSij
where ` denotes the current “index” in the hash chain.

iv. Creates a physical identity proof π

v. Sends (π, pkSij
) to LAdmi

(b) LAdmi checks Vrfy(π) ∧ (pkSij
/∈ SL)

∧AggrUpd(skLAdmi
, pkSij

) == 1 ∀Agij ∈ Gi. LAdmi adds pkSij
to SL, else it outputs

“0”.

13. SensorSendData{Sij(pkSij
, skSij

,m, stSij
)↔

AGx(stAg [CL, pset, txset])} is a protocol between sensor Sij broadcasting data and a

subset of aggregators AGx ⊆ {AGi} (where {AGi} is the aggregator set in Gi).

(a) For sending data m, Sij computes (σ, skS , stSij
′)← OTSign(skS ,m, stSij

)

(b) Sij broadcasts σ to AGx.

(c) Agk runs OTVerify(pkSij
,m, σ) := b.6 If b == 1 it runs AggrAgree with all other

aggregators in the group. If no “alarm” message mA from some other aggregator

is received within some time δ, it adds m,σ to pseti. If at least one “alarm”

message is received, it outputs ⊥.

14. AggrAgree{Agk(skAk
,AL, pkSij

,m, σ) ↔ AG([skAi
, pkSij

,m′])} is a protocol between an

aggregator in Gi and all other aggregators in the group. The purpose of this protocol is

5This step is typically computed by a powerful device.
6To avoid redundancy, the protocol can be improved by deterministically defining a “responsible” aggre-

gator for each transaction as discussed previously in this section.

172

to detect any MITM attacks, and verifies that no aggregator in the group has received

any message m′, σ′ from pkSij
where m 6= m′7.

(a) Agk for payload µ = (pkSij
,m, σ) computes s = Sign(skAk

, µ) using an EU-CMA

signature scheme and sends s, µ to all Agi ∈ AG .

(b) Each Agi checks if it received a message m′ with signature σ from sensor pkSij

where m 6= m′. If there’s no such message, it outputs ⊥. Else it sends an “alarm”

message mA and respective signature s to Agk and keeps a record in its log.

15. AggrSendTx{AG([pkAi
, skAi

, stAgi
,BC]) ↔ O(pkOj

, skOj
, stj)} is an interactive protocol

between all aggregators Agi ∈ AG and all orderers Oj ∈ O. It is initiated when an

aggregator wishes to submit a transaction for validation in the system and eventually

store it in the blockchain.

(a) An Agi ∈ AG parses pseti in stAgi
as a set of transactions {tx}.

(b) Agi samples a nonce n← (1λ) and appends it to {tx}.

(c) Agi computes σ ← Sign(skAi
, {tx}). Send σ to all other Agj ∈ AGx.

(d) Each Agj, parses (PLBC) from the output of ReadConfig(BC). Computes SVrfy(pkAi
, {tx}, σ) :=

b. If (pkAi
∈ PLBC) ∧ b == 1, compute

σj ← Sign(skAj
, {tx}). Send σj to Agi.

(e) Agi parses ReadConfig(BC)→ PolBC → τ where τ the minimum required number

of signatures for a transaction to be submitted on the blockchain, as defined by

policy Pol.

(f) If |{σj}| > τ , select a reachable orderer O, send {σj}, copy {tx} → txset and set

pset → ∅.

(g) The orderer O parses stj → TXL,

{tx} → n, ReadConfig(BC)→ PLBC,PolBC and PolBC → τ then checks:

7This protocol does not require that all other aggregators in the group are reachable, therefore it does
not require a reply from all aggregators to complete.

173

i. |{σj}| > τ and n /∈ TXL

ii. Compute SVrfy(pkAj
, {tx}, σj) := b,∀j then∏

bj == 1

iii.
∏
j({pkAj

} ∈ PLBC) == 1

If the checks are valid, stores |{σj}| in its stOi
and replies “1” to Agi as a confir-

mation, else it replies “0”.

(h) If Oi has created a new block containing ordered transactions, it runs Consensus

to update the blockchain.

(i) If Consensus succeeds, it runs UpdateBC with all aggregators to update to the

new BC′.

16. Consensus([[pkOj
]nj=1, skOi

, sti,BC]ni=1) := BC′

The exact protocol functionality is described in the system parameters pp8 and follows

the definition provided in Section 2.2. In general this protocol is executed among all

orderers Oi ∈ O where they agree on a new updated blockchain BC′. In Section 6.9

we provide a concrete instantiation of a consensus algorithm for our construction.

17. UpdateBC{Oi(pkOi
, skOi

, stOi
,BC′)↔

AG([pkAx , skAx , stAgx ,BC])} is initiated by an orderer Oi to append a new block in the

blockchain.

(a) Oi parses its stOi
to retrieve the agreed blockchain update signature set {σ′x}

(b) Oi computes σ ← Sign(skOi
, (Bi, {σ′x})) where BC′ := BC||Bi and sends σ to all

Agx ∈ AG .

(c) Each Agx computes SVrfy(pkOi
,Bi||{σ′x}, σ) := b and checks if b == 1. Then it

parses σ as a transaction set {tx} and removes these from txsetx. Then it updates

BC to BC′, else it outputs ⊥.

8This is equivalent to Hyperledger’s “pluggable” consensus, which is defined in the genesis block.

174

18. NodeRevoke(pki , σ, stMSP,BC) is initiated by MSP to revoke credentials of any system

participant.

MSP parses ReadConfig(BC) as [LLBC,OLBC,PLBC]. It verifies σ (if the remove opera-

tion was initiated by a LAdm) and checks if pki exists in [LLBC,OLBC,PLBC] or in its

[LLMSP,OLMSP,PLMSP] ∈ stMSP in case participation privileges for pki have not yet

been updated on the BC through ConfigUpdate. If it finds a match in the blockchain

lists, it creates a remove operation R := (pki , “rm”) and adds R to oper, else if it finds

a match in its state lists it removes it from the respective list, else it outputs ⊥. If

pki ∈ PLBC ∨ pki ∈ PLMSP, it also informs LAdmi.

19. GroupRevoke(pki , stLAdm [AL,SL]) is initiated by a Local Administrator to revoke cre-

dentials of an aggregator or sensor in its group. LAdm checks if pki ∈ [AL, SL]. If it

finds a match and pki ∈ AL, it LAdmi computes σ ← Sign(skLAdmi
, pkAi

, ”R”). Sends

(σ, pkAi
, ”R”) to MSP. On receiving successful removal from MSP (after it invokes

NodeRevoke), LAdm removes pki from AL. If pki ∈ SL, it invokes AggRevokeSensor

with all Ag ∈ AL. After successful completion, it removes pki from SL.

20. AggRevokeSensor{LAdmi(skLAdm , pkS) ↔ Agij(stAgij
[CL])} is initiated by a Local Ad-

ministrator as a subroutine of GroupRevoke to revoke credentials of a sensor in its

group.

(a) LAdmi computes σ := Sign(skLAdmi
, pkS“R”). Send σ to Agij.

(b) Agij computes SVrfy(pkLAdmi
, pkS , σ) := b. Checks that (pkS /∈ stAgij

) ∧ b == 1.

If the verification holds, it removes pkS from CL and returns “1” to LAdmi. It

returns “0” in all other cases.

6.11 Evaluation details

Algorithms 1 and 2 show the pseudocode for our evaluations on the sensor and aggregator

side respectively. We denote by T1 the signature computation time, by T2 the verification

175

time and by T3 the total verification time, as previously shown in Table 6.5.

Algorithm 1 Sensor send data

1: tempkey ← k0

2: initPebbles()
3: while True do
4: m ← readSensor()
5: output.type ← “payload”
6: output.data ← m
7: transmit(output)
8: T1.start()
9: hashedData ← h(m——tempkey)

10: output.type ← “hash”
11: output.data ← hashedData
12: transmit(output)
13: tempkey ← computePebbles() {as in [182]}
14: output.type ← “secretKey”
15: T1.end()
16: output.data ← tempkey
17: transmit(output)
18: end while

6.12 Conclusions

We designed and implemented BBox-IoT, a block-chain inspired approach for Indus-

trial IoT sensors aiming at offering a transparent and immutable system for sensing and

control information exchanged between IIoT sensors and aggregators. Our approach guar-

antees blockchain-derived properties to even low-Size Weight and Power (SWaP) devices.

Moreover, BBox-IoT acts as a ”black-box” that empowers the operators of any IoT system

to detect data and sensor tampering ferreting out attacks against even SWaP devices. We

posit that enabling data auditing and security at the lowest sensing level will be highly

beneficial to critical infrastructure environments with sensors from multiple vendors.

Finally, we envision that our approach will be implemented during the sensor manufac-

turing stage: having industrial sensors shipped with pre-computed pebbles and their key

material labeled using QR-code on the sensor body will allow for a seamless and practical

deployment of BBox-IoT.

176

Algorithm 2 Aggregator receive data

1: publickey ← k0

2: verifications ← 0
3: while verifications < maxVerifications do
4: check1 ← False
5: check2 ← False
6: read ← input()
7: if read.type = “payload” then
8: T3.start()
9: m ← read.data

10: else if read.type = “hash” then
11: s1 ← read.data
12: else if read.type = “secretKey” then
13: s2 ← read.data
14: tempkey ← s2

15: i← 0
16: T2.start()
17: while i < maxVerification ∧ doWhile = True do
18: if h(tempkey) = publickey then
19: check1 ← True
20: if h(m——publickey) = s1 then
21: check2 ← True
22: publickey ← secretkey
23: end if
24: doWhile = False
25: else
26: tempkey ← h(tempkey)
27: i++
28: end if
29: end while
30: if check1 ∧ check2 = True then
31: print(“Payload m is valid”)
32: verifications++
33: T2.end()
34: else
35: print(”Verification failed”)
36: end if
37: T3.end()
38: end if
39: end while

177

Chapter 7: Conclusions and Future Work

In this thesis, we considered the problem of incorporating auditability-related protocols

in blockchain-based payment systems that can facilitate the needed regulatory functionali-

ties, without deviating from the original system’s core characteristics. To that end, we first

presented MiniLedger as a solution at a microscopic level, which is a distributed payment

system offering both strong privacy and auditability protocols for its participants, while also

remaining efficient in terms of storage costs for the public ledger. Then at a macroscopic

level, we focused on Proof of Assets protocols, which are needed as a part of a solvency

proof, and presented a framework tailored for the Diem cryptocurrency, as well as gOTzilla,

an efficient protocol that enables to prove assets of large organizations in large-scale permis-

sionless systems such as Bitcoin. In addition, we considered the problem of auditing data

collected from resource-constrained devices in a blockchain-based Industrial IoT setting.

As discussed in our recent paper [63], there are still a number of research gaps in this field.

For instance, proving solvency of an organization on top of a distributed payment system

with privacy-preserving characteristics remains an open problem, while considering “off-

chain” approaches that have becoming increasingly popular due to the scalability properties

offered in blockchain systems is also challenging, as their main ledger footprint is minimal

by nature, making the design of such protocols particularly challenging. We believe this

thesis will inspire such future work needed towards a greater adoption of blockchain-based

payment systems.

178

Bibliography

179

Bibliography

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2009. [Online].
Available: http://bitcoin.org/bitcoin.pdf

[2] E. Androulaki, G. Karame, M. Roeschlin, T. Scherer, and S. Capkun, “Evaluating user
privacy in Bitcoin,” in FC 2013, ser. LNCS, A.-R. Sadeghi, Ed., vol. 7859. Springer,
Heidelberg, Apr. 2013, pp. 34–51.

[3] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M. Voelker,
and S. Savage, “A fistful of bitcoins: characterizing payments among men with
no names,” Commun. ACM, vol. 59, no. 4, pp. 86–93, 2016. [Online]. Available:
https://doi.org/10.1145/2896384

[4] D. Deuber, V. Ronge, and C. Rückert, “Sok: Assumptions underlying cryptocurrency
deanonymizations,” Proc. Priv. Enhancing Technol., vol. 2022, no. 3, pp. 670–691,
2022. [Online]. Available: https://doi.org/10.56553/popets-2022-0091

[5] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza,
“Zerocash: Decentralized anonymous payments from bitcoin,” in 2014 IEEE Sym-
posium on Security and Privacy. IEEE Computer Society Press, May 2014, pp.
459–474.

[6] N. Van Saberhagen, “Cryptonote v 2.0,” 2013. [Online]. Available: https:
//cryptonote.org/whitepaper.pdf

[7] P. Fauzi, S. Meiklejohn, R. Mercer, and C. Orlandi, “Quisquis: A new design for
anonymous cryptocurrencies,” in ASIACRYPT 2019, Part I, ser. LNCS, S. D. Gal-
braith and S. Moriai, Eds., vol. 11921. Springer, Heidelberg, Dec. 2019, pp. 649–678.

[8] E. Cecchetti, F. Zhang, Y. Ji, A. E. Kosba, A. Juels, and E. Shi, “Solidus: Con-
fidential distributed ledger transactions via PVORM,” in ACM CCS 2017, B. M.
Thuraisingham, D. Evans, T. Malkin, and D. Xu, Eds. ACM Press, Oct. / Nov.
2017, pp. 701–717.

[9] G. Maxwell, “Coinjoin: Bitcoin privacy for the real world,” 2013. [Online]. Available:
https://bitcointalk.org/index.php?topic=279249.0

[10] E. Heilman, L. Alshenibr, F. Baldimtsi, A. Scafuro, and S. Goldberg, “TumbleBit:
An untrusted bitcoin-compatible anonymous payment hub,” in NDSS 2017. The
Internet Society, Feb. / Mar. 2017.

180

http://bitcoin.org/bitcoin.pdf
https://doi.org/10.1145/2896384
https://doi.org/10.56553/popets-2022-0091
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf
https://bitcointalk.org/index.php?topic=279249.0

[11] “IRS is trying to deanonymize privacy coins like monero and zcash.” [On-
line]. Available: https://www.forbes.com/sites/shehanchandrasekera/2020/07/06/
irs-is-trying-to-deanonymize-privacy-coins-like-monero-and-zcash/#4607506c4174

[12] “Deloitte COINIA and the future of audit.” [Online]. Available: https://www2.
deloitte.com/us/en/pages/audit/articles/impact-of-blockchain-in-accounting.html

[13] “Deloitte’s 2020 global blockchain survey,” 2020. [Online]. Available: https://www2.
deloitte.com/content/dam/insights/us/articles/6608 2020-global-blockchain-survey/
DI CIR%202020%20global%20blockchain%20survey.pdf

[14] “FATF travel rule: What you need to know.” [Online]. Available: https:
//complyadvantage.com/knowledgebase/fatf-travel-rule/

[15] “Regulation (eu) 2016/679 of the european parliament and of the council of 27 april
2016 on the protection of natural persons with regard to the processing of personal
data and on the free movement of such data, and repealing directive 95/46/ec (general
data protection regulation),” Official Journal of the European Union L119, pp. 1–88,
2016.

[16] S. Brands, “Untraceable off-line cash in wallets with observers (extended abstract),”
in CRYPTO’93, ser. LNCS, D. R. Stinson, Ed., vol. 773. Springer, Heidelberg, Aug.
1994, pp. 302–318.

[17] G. G. Dagher, B. Bünz, J. Bonneau, J. Clark, and D. Boneh, “Provisions: Privacy-
preserving proofs of solvency for bitcoin exchanges,” in ACM CCS 2015, I. Ray, N. Li,
and C. Kruegel, Eds. ACM Press, Oct. 2015, pp. 720–731.

[18] C. Garman, M. Green, and I. Miers, “Accountable privacy for decentralized anony-
mous payments,” in FC 2016, ser. LNCS, J. Grossklags and B. Preneel, Eds., vol.
9603. Springer, Heidelberg, Feb. 2016, pp. 81–98.

[19] N. Narula, W. Vasquez, and M. Virza, “zkledger: Privacy-preserving auditing for
distributed ledgers,” in 15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18). Renton, WA: USENIX Association, Apr. 2018, pp. 65–80.
[Online]. Available: https://www.usenix.org/conference/nsdi18/presentation/narula

[20] K. Wüst, K. Kostiainen, V. Capkun, and S. Capkun, “PRCash: Fast, private and
regulated transactions for digital currencies,” in FC 2019, ser. LNCS, I. Goldberg
and T. Moore, Eds., vol. 11598. Springer, Heidelberg, Feb. 2019, pp. 158–178.

[21] “Tether: Fiat currencies on the bitcoin blockchain.” [Online]. Available:
https://tether.to/wp-content/uploads/2016/06/TetherWhitePaper.pdf

[22] T. Moore and N. Christin, “Beware the middleman: Empirical analysis of Bitcoin-
exchange risk,” in FC 2013, ser. LNCS, A.-R. Sadeghi, Ed., vol. 7859. Springer,
Heidelberg, Apr. 2013, pp. 25–33.

[23] “Tether’s bank says it invests customer funds in bitcoin.” [Online]. Available:
https://www.coindesk.com/tethers-bank-says-it-invests-customer-funds-in-bitcoin

181

https://www.forbes.com/sites/shehanchandrasekera/2020/07/06/irs-is-trying-to-deanonymize-privacy-coins-like-monero-and-zcash/#4607506c4174
https://www.forbes.com/sites/shehanchandrasekera/2020/07/06/irs-is-trying-to-deanonymize-privacy-coins-like-monero-and-zcash/#4607506c4174
https://www2.deloitte.com/us/en/pages/audit/articles/impact-of-blockchain-in-accounting.html
https://www2.deloitte.com/us/en/pages/audit/articles/impact-of-blockchain-in-accounting.html
https://www2.deloitte.com/content/dam/insights/us/articles/6608_2020-global-blockchain-survey/DI_CIR%202020%20global%20blockchain%20survey.pdf
https://www2.deloitte.com/content/dam/insights/us/articles/6608_2020-global-blockchain-survey/DI_CIR%202020%20global%20blockchain%20survey.pdf
https://www2.deloitte.com/content/dam/insights/us/articles/6608_2020-global-blockchain-survey/DI_CIR%202020%20global%20blockchain%20survey.pdf
https://complyadvantage.com/knowledgebase/fatf-travel-rule/
https://complyadvantage.com/knowledgebase/fatf-travel-rule/
https://www.usenix.org/conference/nsdi18/presentation/narula
https://tether.to/wp-content/uploads/2016/06/TetherWhitePaper.pdf
https://www.coindesk.com/tethers-bank-says-it-invests-customer-funds-in-bitcoin

[24] “CSBS state regulatory requirements for virtual currency activities.” [Online]. Avail-
able: https://www.csbs.org/sites/default/files/2017-11/CSBS%20Draft%20Model%
20Regulatory%20Framework%20for%20Virtual%20Currency%20Proposal%20--%
20Dec.%2016%202014.pdf

[25] K. Chalkias, K. Lewi, P. Mohassel, and V. Nikolaenko, “Distributed auditing proofs
of liabilities,” Cryptology ePrint Archive, Report 2020/468, 2020, https://eprint.iacr.
org/2020/468.

[26] P. Chatzigiannis, F. Baldimtsi, and K. Chalkias, “Sok: Auditability and
accountability in distributed payment systems,” pp. 311–337, 2021. [Online].
Available: https://doi.org/10.1007/978-3-030-78375-4 13

[27] Y. Ji and K. Chalkias, “Generalized proof of liabilities,” Cryptology ePrint Archive,
Report 2021/1350, 2021, https://ia.cr/2021/1350.

[28] P. Chatzigiannis and K. Chalkias, “Proof of assets in the diem blockchain,” in Applied
Cryptography and Network Security Workshops - ACNS 2021 Satellite Workshops,
AIBlock, AIHWS, AIoTS, CIMSS, Cloud S&P, SCI, SecMT, and SiMLA, Kamakura,
Japan, June 21-24, 2021, Proceedings, ser. Lecture Notes in Computer Science,
J. Zhou, C. M. Ahmed, L. Batina, S. Chattopadhyay, O. Gadyatskaya, C. Jin, J. Lin,
E. Losiouk, B. Luo, S. Majumdar, M. Maniatakos, D. Mashima, W. Meng, S. Picek,
M. Shimaoka, C. Su, and C. Wang, Eds., vol. 12809. Springer, 2021, pp. 27–41.
[Online]. Available: https://doi.org/10.1007/978-3-030-81645-2 3

[29] “The libra blockchain,” 2020. [Online]. Available: https://developers.libra.org/docs/
assets/papers/the-libra-blockchain/2020-05-26.pdf

[30] F. Baldimtsi, P. Chatzigiannis, S. D. Gordon, P. H. Le, and D. McVicker,
“gotzilla: Efficient disjunctive zero-knowledge proofs from mpc in the head,
with application to proofs of assets in cryptocurrencies,” Cryptology ePrint
Archive, Paper 2022/170, 2022, https://eprint.iacr.org/2022/170. [Online]. Available:
https://eprint.iacr.org/2022/170

[31] P. Chatzigiannis, F. Baldimtsi, C. Kolias, and A. Stavrou, “Black-box iot:
Authentication and distributed storage of iot data from constrained sensors,”
in IoTDI ’21: International Conference on Internet-of-Things Design and
Implementation, Virtual Event / Charlottesville, VA, USA, May 18-21, 2021. ACM,
2021, pp. 1–14. [Online]. Available: https://doi.org/10.1145/3450268.3453536

[32] J. Katz and Y. Lindell, Introduction to Modern Cryptography, Second Edition, 2nd ed.
Chapman & Hall/CRC, 2014.

[33] T. ElGamal, “A public key cryptosystem and a signature scheme based on discrete
logarithms,” in CRYPTO’84, ser. LNCS, G. R. Blakley and D. Chaum, Eds., vol. 196.
Springer, Heidelberg, Aug. 1984, pp. 10–18.

[34] O. Ugus, A. Hessler, and D. Westhoff, “Performance of additive homomorphic ec-
elgamal encryption for tinypeds,” 6. Fachgespräch Sensornetzwerke, 2007.

182

https://www.csbs.org/sites/default/files/2017-11/CSBS%20Draft%20Model%20Regulatory%20Framework%20for%20Virtual%20Currency%20Proposal%20--%20Dec.%2016%202014.pdf
https://www.csbs.org/sites/default/files/2017-11/CSBS%20Draft%20Model%20Regulatory%20Framework%20for%20Virtual%20Currency%20Proposal%20--%20Dec.%2016%202014.pdf
https://www.csbs.org/sites/default/files/2017-11/CSBS%20Draft%20Model%20Regulatory%20Framework%20for%20Virtual%20Currency%20Proposal%20--%20Dec.%2016%202014.pdf
https://eprint.iacr.org/2020/468
https://eprint.iacr.org/2020/468
https://doi.org/10.1007/978-3-030-78375-4_13
https://ia.cr/2021/1350
https://doi.org/10.1007/978-3-030-81645-2_3
https://developers.libra.org/docs/assets/papers/the-libra-blockchain/2020-05-26.pdf
https://developers.libra.org/docs/assets/papers/the-libra-blockchain/2020-05-26.pdf
https://eprint.iacr.org/2022/170
https://eprint.iacr.org/2022/170
https://doi.org/10.1145/3450268.3453536

[35] Y. Chen, X. Ma, C. Tang, and M. H. Au, “PGC: Decentralized confidential payment
system with auditability,” in ESORICS 2020, Part I, ser. LNCS, L. Chen, N. Li,
K. Liang, and S. A. Schneider, Eds., vol. 12308. Springer, Heidelberg, Sep. 2020, pp.
591–610.

[36] S. Goldwasser, S. Micali, and R. L. Rivest, “A digital signature scheme secure against
adaptive chosen-message attacks,” SIAM Journal on Computing, vol. 17, no. 2, pp.
281–308, Apr. 1988.

[37] T. P. Pedersen, “Non-interactive and information-theoretic secure verifiable secret
sharing,” in CRYPTO’91, ser. LNCS, J. Feigenbaum, Ed., vol. 576. Springer, Hei-
delberg, Aug. 1992, pp. 129–140.

[38] J. Camenisch and M. Stadler, “Efficient group signature schemes for large groups
(extended abstract),” in CRYPTO’97, ser. LNCS, B. S. Kaliski Jr., Ed., vol. 1294.
Springer, Heidelberg, Aug. 1997, pp. 410–424.

[39] G. Maxwell and A. Poelstra, “Borromean ring signatures,” 2015. [On-
line]. Available: https://github.com/Blockstream/borromean paper/blob/master/
borromean draft 0.01 34241bb.pdf

[40] A. Poelstra, A. Back, M. Friedenbach, G. Maxwell, and P. Wuille, “Confidential
assets,” in FC 2018 Workshops, ser. LNCS, A. Zohar, I. Eyal, V. Teague, J. Clark,
A. Bracciali, F. Pintore, and M. Sala, Eds., vol. 10958. Springer, Heidelberg, Mar.
2019, pp. 43–63.

[41] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell, “Bulletproofs:
Short proofs for confidential transactions and more,” in 2018 IEEE Symposium on
Security and Privacy. IEEE Computer Society Press, May 2018, pp. 315–334.

[42] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to identification
and signature problems,” in CRYPTO’86, ser. LNCS, A. M. Odlyzko, Ed., vol. 263.
Springer, Heidelberg, Aug. 1987, pp. 186–194.

[43] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio: Nearly practical ver-
ifiable computation,” in 2013 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, May 2013, pp. 238–252.

[44] J. Groth, “On the size of pairing-based non-interactive arguments,” in EURO-
CRYPT 2016, Part II, ser. LNCS, M. Fischlin and J.-S. Coron, Eds., vol. 9666.
Springer, Heidelberg, May 2016, pp. 305–326.

[45] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Scalable zero knowledge
with no trusted setup,” in CRYPTO 2019, Part III, ser. LNCS, A. Boldyreva and
D. Micciancio, Eds., vol. 11694. Springer, Heidelberg, Aug. 2019, pp. 701–732.

[46] F. Baldimtsi, J. Camenisch, M. Dubovitskaya, A. Lysyanskaya, L. Reyzin, K. Samelin,
and S. Yakoubov, “Accumulators with applications to anonymity-preserving revoca-
tion,” in 2017 IEEE European Symposium on Security and Privacy, Paris, France,
April 26-28, 2017. IEEE, 2017, pp. 301–315.

183

https://github.com/Blockstream/borromean_paper/blob/master/borromean_draft_0.01_34241bb.pdf
https://github.com/Blockstream/borromean_paper/blob/master/borromean_draft_0.01_34241bb.pdf

[47] D. Boneh, B. Bünz, and B. Fisch, “Batching techniques for accumulators with ap-
plications to IOPs and stateless blockchains,” in CRYPTO 2019, Part I, ser. LNCS,
A. Boldyreva and D. Micciancio, Eds., vol. 11692. Springer, Heidelberg, Aug. 2019,
pp. 561–586.

[48] R. C. Merkle, “A digital signature based on a conventional encryption function,” in
CRYPTO’87, ser. LNCS, C. Pomerance, Ed., vol. 293. Springer, Heidelberg, Aug.
1988, pp. 369–378.

[49] M. Chase, C. Ganesh, and P. Mohassel, “Efficient zero-knowledge proof of algebraic
and non-algebraic statements with applications to privacy preserving credentials,”
in CRYPTO 2016, Part III, ser. LNCS, M. Robshaw and J. Katz, Eds., vol. 9816.
Springer, Heidelberg, Aug. 2016, pp. 499–530.

[50] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, “Zero-knowledge from secure
multiparty computation,” in 39th ACM STOC, D. S. Johnson and U. Feige, Eds.
ACM Press, Jun. 2007, pp. 21–30.

[51] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals problem,” ACM
Trans. Program. Lang. Syst., 1982. [Online]. Available: http://doi.acm.org/10.1145/
357172.357176

[52] J. A. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone protocol: Anal-
ysis and applications,” in EUROCRYPT 2015, Part II, ser. LNCS, E. Oswald and
M. Fischlin, Eds., vol. 9057. Springer, Heidelberg, Apr. 2015, pp. 281–310.

[53] J. A. Garay and A. Kiayias, “SoK: A consensus taxonomy in the blockchain era,” in
CT-RSA 2020, ser. LNCS, S. Jarecki, Ed., vol. 12006. Springer, Heidelberg, Feb.
2020, pp. 284–318.

[54] Y. Lindell, A. Lysyanskaya, and T. Rabin, “On the composition of authenticated
byzantine agreement,” Cryptology ePrint Archive, Report 2004/181, 2004, https://
eprint.iacr.org/2004/181.

[55] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in OSDI
’99. Berkeley, CA, USA: USENIX Association, 1999. [Online]. Available:
http://dl.acm.org/citation.cfm?id=296806.296824

[56] M. Vukolic, “The quest for scalable blockchain fabric: Proof-of-work vs. BFT
replication,” in IFIP WG 11.4 International Workshop, iNetSec 2015, ser. Lecture
Notes in Computer Science, J. Camenisch and D. Kesdogan, Eds., vol. 9591. Springer,
2015, pp. 112–125. [Online]. Available: https://doi.org/10.1007/978-3-319-39028-4 9

[57] C. Cachin and M. Vukolic, “Blockchain consensus protocols in the wild,” CoRR, vol.
abs/1707.01873, 2017. [Online]. Available: http://arxiv.org/abs/1707.01873

[58] S. Bano, A. Sonnino, M. Al-Bassam, S. Azouvi, P. McCorry, S. Meiklejohn, and
G. Danezis, “Consensus in the age of blockchains,” CoRR, vol. abs/1711.03936,
2017. [Online]. Available: http://arxiv.org/abs/1711.03936

184

http://doi.acm.org/10.1145/357172.357176
http://doi.acm.org/10.1145/357172.357176
https://eprint.iacr.org/2004/181
https://eprint.iacr.org/2004/181
http://dl.acm.org/citation.cfm?id=296806.296824
https://doi.org/10.1007/978-3-319-39028-4_9
http://arxiv.org/abs/1707.01873
http://arxiv.org/abs/1711.03936

[59] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
http://bitcoin.org/bitcoin.pdf,” 2008.

[60] N. Stifter, A. Judmayer, P. Schindler, A. Zamyatin, and E. Weippl, “Agreement with
satoshi — on the formalization of nakamoto consensus,” Cryptology ePrint Archive,
Report 2018/400, 2018, https://eprint.iacr.org/2018/400.

[61] H. Chen, M. Pendleton, L. Njilla, and S. Xu, “A survey on ethereum systems
security: Vulnerabilities, attacks and defenses,” CoRR, vol. abs/1908.04507, 2019.
[Online]. Available: http://arxiv.org/abs/1908.04507

[62] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks on bitcoin’s peer-
to-peer network,” in USENIX Security 2015, J. Jung and T. Holz, Eds. USENIX
Association, Aug. 2015, pp. 129–144.

[63] P. Chatzigiannis, F. Baldimtsi, and K. Chalkias, “Sok: Auditability and
accountability in distributed payment systems,” in Applied Cryptography and
Network Security - 19th International Conference, ACNS 2021, Kamakura, Japan,
June 21-24, 2021, Proceedings, Part II, ser. Lecture Notes in Computer Science,
K. Sako and N. O. Tippenhauer, Eds., vol. 12727. Springer, 2021, pp. 311–337.
[Online]. Available: https://doi.org/10.1007/978-3-030-78375-4 13

[64] B. Bünz, S. Agrawal, M. Zamani, and D. Boneh, “Zether: Towards privacy in a smart
contract world,” in FC 2020, ser. LNCS, J. Bonneau and N. Heninger, Eds., vol.
12059. Springer, Heidelberg, Feb. 2020, pp. 423–443.

[65] G. Fuchsbauer, M. Orrù, and Y. Seurin, “Aggregate cash systems: A cryptographic
investigation of Mimblewimble,” in EUROCRYPT 2019, Part I, ser. LNCS, Y. Ishai
and V. Rijmen, Eds., vol. 11476. Springer, Heidelberg, May 2019, pp. 657–689.

[66] G. Maxwell, “Confidential transactions,” 2015. [Online]. Available: https:
//people.xiph.org/∼greg/confidential values.txt

[67] Y. Li, G. Yang, W. Susilo, Y. Yu, M. H. Au, and D. Liu, “Traceable monero: Anony-
mous cryptocurrency with enhanced accountability,” IEEE Transactions on Depend-
able and Secure Computing, 2019.

[68] Y. Jiang, Y. Li, and Y. Zhu, “Auditable zerocoin scheme with user awareness,” in Pro-
ceedings of the 3rd International Conference on Cryptography, Security and Privacy,
Kuala Lumpur, Malaysia, January 19-21, 2019, 2019, pp. 28–32.

[69] K. Naganuma, M. Yoshino, H. Sato, and T. Suzuki, “Auditable zerocoin,” in 2017
IEEE European Symposium on Security and Privacy Workshops, 2017, pp. 59–63.

[70] P. Chatzigiannis and F. Baldimtsi, “Miniledger: Compact-sized anonymous and au-
ditable distributed payments,” Cryptology ePrint Archive, Report 2021/869, 2021,
https://ia.cr/2021/869.

[71] A. Centelles and G. Dijkstra, “Extending zkledger with private swaps.” [Online].
Available: https://cdn2.hubspot.net/hubfs/6034488/privateledger.pdf

185

https://eprint.iacr.org/2018/400
http://arxiv.org/abs/1908.04507
https://doi.org/10.1007/978-3-030-78375-4_13
https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt
https://ia.cr/2021/869
https://cdn2.hubspot.net/hubfs/6034488/privateledger.pdf

[72] J. Doerner, A. Shelat, and D. Evans, “Zeroledge: Proving solvency with privacy.”

[73] K. Chalkias, K. Lewi, P. Mohassel, and V. Nikolaenko, “Distributed auditing proofs
of liabilities,” Cryptology ePrint Archive, Report 2020/468, 2020, https://eprint.iacr.
org/2020/468.

[74] J. Frankle, S. Park, D. Shaar, S. Goldwasser, and D. J. Weitzner, “AUDIT: Practi-
cal accountability of secret processes,” Cryptology ePrint Archive, Report 2018/697,
2018, https://eprint.iacr.org/2018/697.

[75] S. Goldwasser and S. Park, “Public accountability vs. secret laws: Can they coexist?”
Cryptology ePrint Archive, Report 2018/664, 2018, https://eprint.iacr.org/2018/664.

[76] G. Wood, “Ethereum: A secure decentralized generalised transaction ledger,” 2021,
accessed: 2021-02-14. [Online]. Available: https://ethereum.github.io/yellowpaper/
paper.pdf

[77] J. Bonneau, I. Meckler, V. Rao, and E. Shapiro, “Coda: Decentralized cryptocurrency
at scale,” Cryptology ePrint Archive, Report 2020/352, 2020, https://eprint.iacr.org/
2020/352.

[78] A. Chepurnoy, C. Papamanthou, and Y. Zhang, “Edrax: A cryptocurrency with
stateless transaction validation,” Cryptology ePrint Archive, Report 2018/968, 2018,
https://eprint.iacr.org/2018/968.

[79] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure distributed key genera-
tion for discrete-log based cryptosystems,” in EUROCRYPT’99, ser. LNCS, J. Stern,
Ed., vol. 1592. Springer, Heidelberg, May 1999, pp. 295–310.

[80] G. Danezis and S. Meiklejohn, “Centrally banked cryptocurrencies,” in NDSS 2016.
The Internet Society, Feb. 2016.

[81] E. Androulaki, J. Camenisch, A. De Caro, M. Dubovitskaya, K. Elkhiyaoui, and
B. Tackmann, “Privacy-preserving auditable token payments in a permissioned
blockchain system,” Cryptology ePrint Archive, Report 2019/1058, 2019, https:
//eprint.iacr.org/2019/1058.

[82] W. Lueks, B. Kulynych, J. Fasquelle, S. L. Bail-Collet, and C. Troncoso, “zksk:
A library for composable zero-knowledge proofs,” in Proceedings of the 18th ACM
Workshop on Privacy in the Electronic Society, 2019, pp. 50–54.

[83] B. Schoenmakers, “Interval proofs revisited,” in Workshop on Frontiers in Electronic
Elections, 2005.

[84] D. Catalano and D. Fiore, “Vector commitments and their applications,” in
PKC 2013, ser. LNCS, K. Kurosawa and G. Hanaoka, Eds., vol. 7778. Springer,
Heidelberg, Feb. / Mar. 2013, pp. 55–72.

[85] R. W. F. Lai and G. Malavolta, “Subvector commitments with application to succinct
arguments,” in CRYPTO 2019, Part I, ser. LNCS, A. Boldyreva and D. Micciancio,
Eds., vol. 11692. Springer, Heidelberg, Aug. 2019, pp. 530–560.

186

https://eprint.iacr.org/2020/468
https://eprint.iacr.org/2020/468
https://eprint.iacr.org/2018/697
https://eprint.iacr.org/2018/664
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://eprint.iacr.org/2020/352
https://eprint.iacr.org/2020/352
https://eprint.iacr.org/2018/968
https://eprint.iacr.org/2019/1058
https://eprint.iacr.org/2019/1058

[86] National Institute of Standards and Technology, Recommendation for Key Manage-
ment: NIST SP 800-57 Part 1 Rev 4, USA, 2016.

[87] “Apache kafka,” https://kafka.apache.org/.

[88] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. D. Caro,
D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, S. Muralidharan, C. Murthy,
B. Nguyen, M. Sethi, G. Singh, K. Smith, A. Sorniotti, C. Stathakopoulou, M. Vukolic,
S. W. Cocco, and J. Yellick, “Hyperledger fabric: a distributed operating system for
permissioned blockchains,” in Proceedings of the Thirteenth EuroSys Conference, Eu-
roSys 2018, Porto, Portugal, April 23-26, 2018, 2018, pp. 30:1–30:15.

[89] “Libra roles and permissions,” 2020. [Online]. Available: https://lip.libra.org/lip-2/

[90] J. Zhang, J. Gao, Z. Wu, W. Yan, Q. Wu, Q. Li, and Z. Chen, “Performance analysis
of the libra blockchain: An experimental study,” CoRR, vol. abs/1912.05241, 2019.
[Online]. Available: http://arxiv.org/abs/1912.05241

[91] R. Cramer, I. Damg̊ard, and B. Schoenmakers, “Proofs of partial knowledge and sim-
plified design of witness hiding protocols,” in CRYPTO’94, ser. LNCS, Y. Desmedt,
Ed., vol. 839. Springer, Heidelberg, Aug. 1994, pp. 174–187.

[92] V. Shoup and R. Gennaro, “Securing threshold cryptosystems against chosen cipher-
text attack,” Journal of Cryptology, vol. 15, no. 2, pp. 75–96, Mar. 2002.

[93] “libpgc: a c++ library for pretty good confidential transaction system,” https://
github.com/yuchen1024/libPGC/tree/master/PGC openssl/PGC.

[94] D. Shanks, “Five number-theoretic algorithms,” 1973.

[95] D. J. Bernstein and T. Lange, “Computing small discrete logarithms faster,” in IN-
DOCRYPT 2012, ser. LNCS, S. D. Galbraith and M. Nandi, Eds., vol. 7668. Springer,
Heidelberg, Dec. 2012, pp. 317–338.

[96] V. Mavroudis, “Computing small discrete logarithms using optimized lookup tables,”
2015, USCB, Koç Lab.

[97] C. Decker and R. Wattenhofer, “Bitcoin transaction malleability and MtGox,” in
ESORICS 2014, Part II, ser. LNCS, M. Kutylowski and J. Vaidya, Eds., vol. 8713.
Springer, Heidelberg, Sep. 2014, pp. 313–326.

[98] “Bitstamp proof of reserves.” [Online]. Available: https://www.bitstamp.net/s/
documents/Bitstamp proof of reserves statement.pdf

[99] D. Hopwood, S. Bowe, T. Hornby, and N. Wilcox, “Zcash protocol specification,”
GitHub: San Francisco, CA, USA, 2016.

[100] S. Agrawal, C. Ganesh, and P. Mohassel, “Non-interactive zero-knowledge proofs for
composite statements,” in CRYPTO 2018, Part III, ser. LNCS, H. Shacham and
A. Boldyreva, Eds., vol. 10993. Springer, Heidelberg, Aug. 2018, pp. 643–673.

187

https://kafka.apache.org/
https://lip.libra.org/lip-2/
http://arxiv.org/abs/1912.05241
https://github.com/yuchen1024/libPGC/tree/master/PGC_openssl/PGC
https://github.com/yuchen1024/libPGC/tree/master/PGC_openssl/PGC
https://www.bitstamp.net/s/documents/Bitstamp_proof_of_reserves_statement.pdf
https://www.bitstamp.net/s/documents/Bitstamp_proof_of_reserves_statement.pdf

[101] A. Gabizon, K. Gurkan, P. Jovanovic, G. Konstantopoulos, A. Oines, M. Olszewski,
M. Straka, and E. Tromer, “Plumo: Towards scalable interoperable blockchains using
ultra light validation systems,” ZKProof, 2020.

[102] A. Dutta and S. Vijayakumaran, “Mprove: A proof of reserves protocol for monero
exchanges,” in 2019 IEEE European Symposium on Security and Privacy Workshops,
EuroS&P Workshops 2019, Stockholm, Sweden, June 17-19, 2019. IEEE, 2019, pp.
330–339. [Online]. Available: https://doi.org/10.1109/EuroSPW.2019.00043

[103] H. Wang, D. He, and Y. Ji, “Designated-verifier proof of assets for bitcoin exchange
using elliptic curve cryptography,” Future Gener. Comput. Syst., vol. 107, pp.
854–862, 2020. [Online]. Available: https://doi.org/10.1016/j.future.2017.06.028

[104] S. Roose, “Standardizing bitcoin proof of reserves.” [Online]. Available: https:
//blockstream.com/2019/02/04/en-standardizing-bitcoin-proof-of-reserves/

[105] “Kraken proof of reserves.” [Online]. Available: https://www.kraken.com/en-us/
proof-of-reserves-audit

[106] “Ethereum wiki,” 2019. [Online]. Available: https://web.archive.org/web/
20190613115908if /https://github.com/ethereum/wiki/wiki/JSON-RPC#eth sign

[107] “Proof of solvency: Technical overview.” [Online]. Available: https://medium.com/
iconominet/proof-of-solvency-technical-overview-d1d0e8a8a0b8

[108] M. Baudet, A. Ching, A. Chursin, G. Danezis, F. Garillot, Z. Li, D. Malkhi, O. Naor,
D. Perelman, and A. Sonnino, “State machine replication in the libra blockchain,”
The Libra Assn., Tech. Rep, 2019.

[109] S. Josefsson and I. Liusvaara, “RFC 8032: Edwards-Curve Digital Signature Algo-
rithm (EdDSA),” Jan 2017.

[110] D. Khovratovich and J. Law, “Bip32-ed25519: Hierarchical deterministic keys over
a non-linear keyspace,” in 2017 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW). IEEE, 2017, pp. 27–31.

[111] K. Chalkias, K. Lewi, P. Mohassel, and V. Nikolaenko, “Distributed auditing proofs
of liabilities,” Cryptology ePrint Archive, Report 2020/468, 2020, https://eprint.iacr.
org/2020/468.

[112] E. Syta, P. Jovanovic, E. Kokoris-Kogias, N. Gailly, L. Gasser, I. Khoffi, M. J. Fis-
cher, and B. Ford, “Scalable bias-resistant distributed randomness,” in 2017 IEEE
Symposium on Security and Privacy. IEEE Computer Society Press, May 2017, pp.
444–460.

[113] H. Gjermundrød, K. Chalkias, and I. Dionysiou, “Going beyond the coinbase transac-
tion fee: Alternative reward schemes for miners in blockchain systems,” in Proceedings
of the 20th Pan-Hellenic Conference on Informatics, 2016, pp. 1–4.

[114] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch, “Verifiable delay functions,” in Annual
international cryptology conference. Springer, 2018, pp. 757–788.

188

https://doi.org/10.1109/EuroSPW.2019.00043
https://doi.org/10.1016/j.future.2017.06.028
https://blockstream.com/2019/02/04/en-standardizing-bitcoin-proof-of-reserves/
https://blockstream.com/2019/02/04/en-standardizing-bitcoin-proof-of-reserves/
https://www.kraken.com/en-us/proof-of-reserves-audit
https://www.kraken.com/en-us/proof-of-reserves-audit
https://web.archive.org/web/20190613115908if_/https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sign
https://web.archive.org/web/20190613115908if_/https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sign
https://medium.com/iconominet/proof-of-solvency-technical-overview-d1d0e8a8a0b8
https://medium.com/iconominet/proof-of-solvency-technical-overview-d1d0e8a8a0b8
https://eprint.iacr.org/2020/468
https://eprint.iacr.org/2020/468

[115] “Provisions: Privacy-preserving proofs of solvency for bitcoin exchanges,”
Real World Crypto 2016. [Online]. Available: https://rwc.iacr.org/2016/Slides/
Provisions%20talk%20RWC.pdf

[116] Z. Gao, Y. Hu, and Q. Wu, “Jellyfish merkle tree,” 2021, https://developers.diem.
com/papers/jellyfish-merkle-tree/2021-01-14.pdf.

[117] “Diem storage module,” 2021, https://github.com/diem/diem/tree/master/storage.

[118] “Diem data structures specification,” 2021, https://github.com/diem/diem/blob/
main/specifications/common/data structures.md.

[119] “Diem authenticated data structure specification,” 2021, https://github.com/diem/
diem/blob/main/specifications/common/authenticated data structures.md.

[120] “Diem proofs of assets,” 2021. [Online]. Available: https://github.com/diem/diem/
blob/main/client/assets-proof/README.md

[121] K. Chalkias, J. Brown, M. Hearn, T. Lillehagen, I. Nitto, and T. Schroeter,
“Blockchained post-quantum signatures,” in 2018 IEEE Blockchain. IEEE, 2018,
pp. 1196–1203.

[122] J. Nick, T. Ruffing, and Y. Seurin, “Musig2: Simple two-round schnorr multi-
signatures,” Cryptology ePrint Archive, Report 2020/1261, 2020, https://eprint.iacr.
org/2020/1261.

[123] C. Komlo and I. Goldberg, “Frost: Flexible round-optimized schnorr threshold sig-
natures,” Cryptology ePrint Archive, Report 2020/852, 2020, https://eprint.iacr.org/
2020/852.

[124] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil pairing,” in
ASIACRYPT 2001, ser. LNCS, C. Boyd, Ed., vol. 2248. Springer, Heidelberg, Dec.
2001, pp. 514–532.

[125] K. Chalkias, F. Garillot, Y. Kondi, and V. Nikolaenko, “Non-interactive half-
aggregation of eddsa and variants of schnorr signatures,” CT-RSA, 2021.

[126] R. Gennaro, D. Leigh, R. Sundaram, and W. Yerazunis, “Batching schnorr identifica-
tion scheme with applications to privacy-preserving authorization and low-bandwidth
communication devices,” in International Conference on the Theory and Application
of Cryptology and Information Security. Springer, 2004, pp. 276–292.

[127] S. Azouvi, G. Danezis, and V. Nikolaenko, “Winkle: Foiling long-range attacks in
proof-of-stake systems,” in Proceedings of the 2nd ACM Conference on Advances in
Financial Technologies, 2020, pp. 189–201.

[128] F. Breedon, L. Chen, A. Ranaldo, and N. Vause, “Judgement day: Algorithmic trad-
ing around the swiss franc cap removal,” 2018.

[129] “Ethereum wiki (archive.org).” [Online]. Available: https://web.archive.org/web/
20190613115908if /https://github.com/ethereum/wiki/wiki/JSON-RPC#eth sign

189

https://rwc.iacr.org/2016/Slides/Provisions%20talk%20RWC.pdf
https://rwc.iacr.org/2016/Slides/Provisions%20talk%20RWC.pdf
https://developers.diem.com/papers/jellyfish-merkle-tree/2021-01-14.pdf
https://developers.diem.com/papers/jellyfish-merkle-tree/2021-01-14.pdf
https://github.com/diem/diem/tree/master/storage
https://github.com/diem/diem/blob/main/specifications/common/data_structures.md
https://github.com/diem/diem/blob/main/specifications/common/data_structures.md
https://github.com/diem/diem/blob/main/specifications/common/authenticated_data_structures.md
https://github.com/diem/diem/blob/main/specifications/common/authenticated_data_structures.md
https://github.com/diem/diem/blob/main/client/assets-proof/README.md
https://github.com/diem/diem/blob/main/client/assets-proof/README.md
https://eprint.iacr.org/2020/1261
https://eprint.iacr.org/2020/1261
https://eprint.iacr.org/2020/852
https://eprint.iacr.org/2020/852
https://web.archive.org/web/20190613115908if_/https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sign
https://web.archive.org/web/20190613115908if_/https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sign

[130] S. Blackshear, B. Wilsion, and T. Zakian, “Diem improvement proposal 11,” 2021,
https://dip.diem.com/dip-11/.

[131] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity of interactive
proof-systems (extended abstract),” in 17th ACM STOC. ACM Press, May 1985,
pp. 291–304.

[132] O. Goldreich, S. Micali, and A. Wigderson, “How to prove all NP-statements in zero-
knowledge, and a methodology of cryptographic protocol design,” in CRYPTO’86,
ser. LNCS, A. M. Odlyzko, Ed., vol. 263. Springer, Heidelberg, Aug. 1987, pp.
171–185.

[133] M. Bellare and S. Goldwasser, “New paradigms for digital signatures and message
authentication based on non-interactive zero knowledge proofs,” in CRYPTO’89, ser.
LNCS, G. Brassard, Ed., vol. 435. Springer, Heidelberg, Aug. 1990, pp. 194–211.

[134] J. Camenisch and A. Lysyanskaya, “An identity escrow scheme with appointed veri-
fiers,” in CRYPTO 2001, ser. LNCS, J. Kilian, Ed., vol. 2139. Springer, Heidelberg,
Aug. 2001, pp. 388–407.

[135] M. Backes, L. Hanzlik, A. Herzberg, A. Kate, and I. Pryvalov, “Efficient non-
interactive zero-knowledge proofs in cross-domains without trusted setup,” in
PKC 2019, Part I, ser. LNCS, D. Lin and K. Sako, Eds., vol. 11442. Springer,
Heidelberg, Apr. 2019, pp. 286–313.

[136] I. Giacomelli, J. Madsen, and C. Orlandi, “ZKBoo: Faster zero-knowledge for Boolean
circuits,” in USENIX Security 2016, T. Holz and S. Savage, Eds. USENIX Associa-
tion, Aug. 2016, pp. 1069–1083.

[137] “Sealpir: A computational pir library that achieves low communication costs and
high performance.” [Online]. Available: https://github.com/microsoft/SealPIR

[138] C. Baum, A. J. Malozemoff, M. B. Rosen, and P. Scholl, “Mac’n’cheese:
Zero-knowledge proofs for boolean and arithmetic circuits with nested disjunctions,”
in Advances in Cryptology - CRYPTO 2021 - 41st Annual International
Cryptology Conference, CRYPTO 2021, Virtual Event, August 16-20, 2021,
Proceedings, Part IV, ser. Lecture Notes in Computer Science, T. Malkin and
C. Peikert, Eds., vol. 12828. Springer, 2021, pp. 92–122. [Online]. Available:
https://doi.org/10.1007/978-3-030-84259-8 4

[139] C.-P. Schnorr, “Efficient identification and signatures for smart cards,” in
CRYPTO’89, ser. LNCS, G. Brassard, Ed., vol. 435. Springer, Heidelberg, Aug.
1990, pp. 239–252.

[140] L. C. Guillou and J.-J. Quisquater, “A practical zero-knowledge protocol fitted
to security microprocessor minimizing both trasmission and memory,” in EURO-
CRYPT’88, ser. LNCS, C. G. Günther, Ed., vol. 330. Springer, Heidelberg, May
1988, pp. 123–128.

190

https://dip.diem.com/dip-11/
https://github.com/microsoft/SealPIR
https://doi.org/10.1007/978-3-030-84259-8_4

[141] M. Jawurek, F. Kerschbaum, and C. Orlandi, “Zero-knowledge using garbled circuits:
how to prove non-algebraic statements efficiently,” in ACM CCS 2013, A.-R. Sadeghi,
V. D. Gligor, and M. Yung, Eds. ACM Press, Nov. 2013, pp. 955–966.

[142] S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam, “Ligero: Lightweight sub-
linear arguments without a trusted setup,” in ACM CCS 2017, B. M. Thuraisingham,
D. Evans, T. Malkin, and D. Xu, Eds. ACM Press, Oct. / Nov. 2017, pp. 2087–2104.

[143] J. Katz, V. Kolesnikov, and X. Wang, “Improved non-interactive zero knowledge with
applications to post-quantum signatures,” in ACM CCS 2018, D. Lie, M. Mannan,
M. Backes, and X. Wang, Eds. ACM Press, Oct. 2018, pp. 525–537.

[144] S. Setty, “Spartan: Efficient and general-purpose zkSNARKs without trusted setup,”
in CRYPTO 2020, Part III, ser. LNCS, D. Micciancio and T. Ristenpart, Eds., vol.
12172. Springer, Heidelberg, Aug. 2020, pp. 704–737.

[145] C. Weng, K. Yang, J. Katz, and X. Wang, “Wolverine: Fast, scalable, and
communication-efficient zero-knowledge proofs for boolean and arithmetic circuits,”
in 42nd IEEE Symposium on Security and Privacy, SP 2021, San Francisco,
CA, USA, 24-27 May 2021. IEEE, 2021, pp. 1074–1091. [Online]. Available:
https://doi.org/10.1109/SP40001.2021.00056

[146] D. Heath and V. Kolesnikov, “Stacked garbling for disjunctive zero-knowledge proofs,”
in EUROCRYPT 2020, Part III, ser. LNCS, A. Canteaut and Y. Ishai, Eds., vol.
12107. Springer, Heidelberg, May 2020, pp. 569–598.

[147] A. Goel, M. Green, M. Hall-Andersen, and G. Kaptchuk, “Stacking sigmas: A frame-
work to compose σ-protocols for disjunctions,” Cryptology ePrint Archive, Report
2021/422, 2021, https://ia.cr/2021/422.

[148] ——, “Efficient set membership proofs using mpc-in-the-head,” Cryptology ePrint
Archive, Report 2021/1656, 2021, https://ia.cr/2021/1656.

[149] M. Naor and B. Pinkas, “Oblivious transfer and polynomial evaluation,” in 31st ACM
STOC. ACM Press, May 1999, pp. 245–254.

[150] G. Di Crescenzo, T. Malkin, and R. Ostrovsky, “Single database private information
retrieval implies oblivious transfer,” in EUROCRYPT 2000, ser. LNCS, B. Preneel,
Ed., vol. 1807. Springer, Heidelberg, May 2000, pp. 122–138.

[151] B. Zhang, H. Lipmaa, C. Wang, and K. Ren, “Practical fully simulatable oblivious
transfer with sublinear communication,” in FC 2013, ser. LNCS, A.-R. Sadeghi, Ed.,
vol. 7859. Springer, Heidelberg, Apr. 2013, pp. 78–95.

[152] E. Kushilevitz and R. Ostrovsky, “Replication is NOT needed: SINGLE database,
computationally-private information retrieval,” in 38th FOCS. IEEE Computer So-
ciety Press, Oct. 1997, pp. 364–373.

[153] S. Angel, H. Chen, K. Laine, and S. T. V. Setty, “PIR with compressed queries
and amortized query processing,” in 2018 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, May 2018, pp. 962–979.

191

https://doi.org/10.1109/SP40001.2021.00056
https://ia.cr/2021/422
https://ia.cr/2021/1656

[154] Z. Brakerski, “Fully homomorphic encryption without modulus switching from clas-
sical GapSVP,” in CRYPTO 2012, ser. LNCS, R. Safavi-Naini and R. Canetti, Eds.,
vol. 7417. Springer, Heidelberg, Aug. 2012, pp. 868–886.

[155] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic encryption,”
Cryptology ePrint Archive, Report 2012/144, 2012, https://eprint.iacr.org/2012/144.

[156] H. Chen, M. Kim, I. Razenshteyn, D. Rotaru, Y. Song, and S. Wagh, “Maliciously
secure matrix multiplication with applications to private deep learning,” Cryptology
ePrint Archive, Report 2020/451, 2020, https://ia.cr/2020/451.

[157] “Multi-protocol spdz.” [Online]. Available: https://github.com/data61/MP-SPDZ

[158] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully homomorphic en-
cryption without bootstrapping,” in ITCS 2012, S. Goldwasser, Ed. ACM, Jan.
2012, pp. 309–325.

[159] C. Baum, D. Cozzo, and N. P. Smart, “Using TopGear in overdrive: A more efficient
ZKPoK for SPDZ,” in SAC 2019, ser. LNCS, K. G. Paterson and D. Stebila, Eds.,
vol. 11959. Springer, Heidelberg, Aug. 2019, pp. 274–302.

[160] C. D. de Saint Guilhem, E. Orsini, and T. Tanguy, “Limbo: Efficient zero-knowledge
mpcith-based arguments,” in CCS ’21: 2021 ACM SIGSAC Conference on Computer
and Communications Security, Virtual Event, Republic of Korea, November 15 - 19,
2021, Y. Kim, J. Kim, G. Vigna, and E. Shi, Eds. ACM, 2021, pp. 3022–3036.
[Online]. Available: https://doi.org/10.1145/3460120.3484595

[161] “Efficient multi-party computation toolkit,” 2022. [Online]. Available: https:
//github.com/emp-toolkit/emp-ot#iknp-style-protocols

[162] “Blockchain.com unspent transaction outputs,” 2022. [Online]. Available: https:
//www.blockchain.com/charts/utxo-count

[163] J. Bell, T. D. LaToza, F. Baldimtsi, and A. Stavrou, “Advancing open
science with version control and blockchains,” in 12th IEEE/ACM International
Workshop on Software Engineering for Science, SE4Science@ICSE 2017, Buenos
Aires, Argentina, May 22, 2017. IEEE, 2017, pp. 13–14. [Online]. Available:
https://doi.org/10.1109/SE4Science.2017.11

[164] C. Profentzas, M. Almgren, and O. Landsiedel, “Iotlogblock: Recording off-line
transactions of low-power iot devices using a blockchain,” in 44th IEEE Conference
on Local Computer Networks, LCN 2019, Osnabrueck, Germany, October 14-17,
2019, K. Andersson, H. Tan, and S. Oteafy, Eds. IEEE, 2019, pp. 414–421. [Online].
Available: https://doi.org/10.1109/LCN44214.2019.8990728

[165] H. Shafagh, L. Burkhalter, A. Hithnawi, and S. Duquennoy, “Towards blockchain-
based auditable storage and sharing of iot data,” in Proceedings of the 2017 on Cloud
Computing Security Workshop, ser. CCSW ’17. New York, NY, USA: ACM, 2017,
pp. 45–50. [Online]. Available: http://doi.acm.org/10.1145/3140649.3140656

192

https://eprint.iacr.org/2012/144
https://ia.cr/2020/451
https://github.com/data61/MP-SPDZ
https://doi.org/10.1145/3460120.3484595
https://github.com/emp-toolkit/emp-ot#iknp-style-protocols
https://github.com/emp-toolkit/emp-ot#iknp-style-protocols
https://www.blockchain.com/charts/utxo-count
https://www.blockchain.com/charts/utxo-count
https://doi.org/10.1109/SE4Science.2017.11
https://doi.org/10.1109/LCN44214.2019.8990728
http://doi.acm.org/10.1145/3140649.3140656

[166] H. Zou, Y. Zhou, J. Yang, and C. J. Spanos, “Towards occupant activity driven smart
buildings via wifi-enabled iot devices and deep learning,” Energy and Buildings, vol.
177, pp. 12–22, 2018.

[167] H. Derhamy, J. Eliasson, J. Delsing, and P. Priller, “A survey of commercial frame-
works for the internet of things,” in ETFA 2015. IEEE, 2015.

[168] “Cisco Annual Internet Report ,” 2020. [Online]. Avail-
able: https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/
annual-internet-report/white-paper-c11-741490.html

[169] J. Bugeja, P. Davidsson, and A. Jacobsson, “Functional classification and
quantitative analysis of smart connected home devices,” in 2018 Global Internet of
Things Summit, GIoTS 2018, Bilbao, Spain, June 4-7, 2018. IEEE, 2018, pp. 1–6.
[Online]. Available: https://doi.org/10.1109/GIOTS.2018.8534563

[170] L. Lin, X. Liao, H. Jin, and P. Li, “Computation offloading toward edge computing,”
Proceedings of the IEEE, vol. 107, no. 8, pp. 1584–1607, 2019.

[171] J. Liu, Y. Xiao, and J. Gao, “Achieving accountability in smart grid,”
IEEE Systems Journal, vol. 8, no. 2, pp. 493–508, 2014. [Online]. Available:
https://doi.org/10.1109/JSYST.2013.2260697

[172] P. Tenti, H. K. M. Paredes, and P. Mattavelli, “Conservative power theory, a frame-
work to approach control and accountability issues in smart microgrids,” IEEE Trans-
actions on Power Electronics, vol. 26, no. 3, pp. 664–673, March 2011.

[173] A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. B. Calo, “Analyzing federated
learning through an adversarial lens,” in Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, ser. Proceedings of Machine Learning Research, K. Chaudhuri and
R. Salakhutdinov, Eds., vol. 97. PMLR, 2019, pp. 634–643. [Online]. Available:
http://proceedings.mlr.press/v97/bhagoji19a.html

[174] T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “Badnets: Evaluating backdooring
attacks on deep neural networks,” IEEE Access, vol. 7, pp. 47 230–47 244, 2019.

[175] K. Boyer, L. Brubaker, K. Everly, R. Herriman, P. Houston, S. Ruckle, R. Scobie,
and I. Ulanday, “A distributed sensor network for an off-road racing vehicle.” Inter-
national Foundation for Telemetering, 2017.

[176] F. Karray, M. W. Jmal, A. G. Ortiz, M. Abid, and A. M. Obeid, “A comprehensive
survey on wireless sensor node hardware platforms,” vol. 144, 2018, pp. 89–110.
[Online]. Available: https://doi.org/10.1016/j.comnet.2018.05.010

[177] C. Bormann, M. Ersue, and A. Keranen, “Terminology for constrained-node net-
works,” Internet Requests for Comments, RFC Editor, RFC 7228, May 2014.

[178] A. Perrig, R. Canetti, J. D. Tygar, and D. Song, “Efficient authentication and signing
of multicast streams over lossy channels,” in IEEE S & P 2000, 2000, pp. 56–73.

193

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://doi.org/10.1109/GIOTS.2018.8534563
https://doi.org/10.1109/JSYST.2013.2260697
http://proceedings.mlr.press/v97/bhagoji19a.html
https://doi.org/10.1016/j.comnet.2018.05.010

[179] ——, “The tesla broadcast authentication protocol,” 2002.

[180] F. Tirado-Andrés, A. Rozas, and Á. Araujo, “A methodology for choosing time
synchronization strategies for wireless iot networks,” vol. 19, no. 16, 2019, p. 3476.
[Online]. Available: https://doi.org/10.3390/s19163476

[181] A. Elsts, X. Fafoutis, S. Duquennoy, G. Oikonomou, R. J. Piechocki, and I. Craddock,
“Temperature-resilient time synchronization for the internet of things,” IEEE Trans.
Industrial Informatics, vol. 14, no. 5, pp. 2241–2250, 2018. [Online]. Available:
https://doi.org/10.1109/TII.2017.2778746

[182] M. Jakobsson, “Fractal hash sequence representation and traversal,” in Information
Theory, 2002. IEEE, 2002, p. 437.

[183] D. H. Yum, J. W. Seo, S. Eom, and P. J. Lee, “Single-layer fractal hash chain traversal
with almost optimal complexity,” in CT-RSA 2009, ser. LNCS, M. Fischlin, Ed., vol.
5473. Springer, Heidelberg, Apr. 2009, pp. 325–339.

[184] M. S. Turan, K. A. McKay, Ç. Çalık, D. Chang, and L. Bassham, “Status report on
the first round of the nist lightweight cryptography standardization process,” 2019.

[185] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. D. Caro,
D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, S. Muralidharan, C. Murthy,
B. Nguyen, M. Sethi, G. Singh, K. Smith, A. Sorniotti, C. Stathakopoulou,
M. Vukolic, S. W. Cocco, and J. Yellick, “Hyperledger fabric: A distributed
operating system for permissioned blockchains,” CoRR, vol. abs/1801.10228, 2018.
[Online]. Available: http://arxiv.org/abs/1801.10228

[186] N. Chondros, K. Kokordelis, and M. Roussopoulos, “On the practicality of
practical byzantine fault tolerance,” in ACM/IFIP/USENIX 13th International
Middleware Conference, ser. Lecture Notes in Computer Science, P. Narasimhan and
P. Triantafillou, Eds., vol. 7662. Springer, 2012, pp. 436–455. [Online]. Available:
https://doi.org/10.1007/978-3-642-35170-9 22

[187] R. Rodrigues, B. Liskov, K. Chen, M. Liskov, and D. Schultz, “Automatic
reconfiguration for large-scale reliable storage systems,” IEEE Trans. Dependable
Sec. Comput., vol. 9, no. 2, pp. 145–158, 2012. [Online]. Available: https:
//doi.org/10.1109/TDSC.2010.52

[188] Hyperledger, “Hyperledger architecture volumes 1 and 2,” Jun 2018. [Online].
Available: https://www.hyperledger.org/wp-content/uploads/2017/08/Hyperledger
Arch WG Paper 1 Consensus.pdf

[189] ——, “Hyperledger fabric documentation: Consensus algorithm, release 0.6,” Jun
2018. [Online]. Available: https://fabricdocs.readthedocs.io/en/origin-v0.6/FAQ/
consensus FAQ.html

[190] D. Ongaro and J. K. Ousterhout, “In search of an understandable consensus
algorithm,” in 2014 USENIX Annual Technical Conference, USENIX ATC ’14,
Philadelphia, PA, USA, June 19-20, 2014., 2014, pp. 305–319. [Online]. Available:
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro

194

https://doi.org/10.3390/s19163476
https://doi.org/10.1109/TII.2017.2778746
http://arxiv.org/abs/1801.10228
https://doi.org/10.1007/978-3-642-35170-9_22
https://doi.org/10.1109/TDSC.2010.52
https://doi.org/10.1109/TDSC.2010.52
https://www.hyperledger.org/wp-content/uploads/2017/08/Hyperledger_Arch_WG_Paper_1_Consensus.pdf
https://www.hyperledger.org/wp-content/uploads/2017/08/Hyperledger_Arch_WG_Paper_1_Consensus.pdf
https://fabricdocs.readthedocs.io/en/origin-v0.6/FAQ/consensus_FAQ.html
https://fabricdocs.readthedocs.io/en/origin-v0.6/FAQ/consensus_FAQ.html
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro

[191] A. N. Bessani, J. Sousa, and E. A. P. Alchieri, “State machine replication for the
masses with BFT-SMART,” in 44th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, DSN 2014, Atlanta, GA, USA, June
23-26, 2014. IEEE Computer Society, 2014, pp. 355–362. [Online]. Available:
https://doi.org/10.1109/DSN.2014.43

[192] J. Sousa, A. Bessani, and M. Vukolic, “A byzantine fault-tolerant ordering service for
the hyperledger fabric blockchain platform,” in DSN 2018. IEEE Computer Society,
2018, pp. 51–58. [Online]. Available: https://doi.org/10.1109/DSN.2018.00018

[193] C. Gorenflo, S. Lee, L. Golab, and S. Keshav, “Fastfabric: Scaling hyperledger fabric
to 20, 000 transactions per second,” CoRR, vol. abs/1901.00910, 2019. [Online].
Available: http://arxiv.org/abs/1901.00910

[194] M. Bowman and C. Morhardt, “Blockchain must adapt to build trust in the
internet of things,” May 2018, retrieved June 24, 2018. [Online]. Available:
https://www.coindesk.com/blockchain-must-adapt-build-trust-internet-things/

[195] A. Dorri, S. S. Kanhere, and R. Jurdak, “Blockchain in internet of things:
Challenges and solutions,” CoRR, vol. abs/1608.05187, 2016. [Online]. Available:
http://arxiv.org/abs/1608.05187

[196] O. Garcia-Morchon, R. Rietman, S. Sharma, L. Tolhuizen, and J. Torre-
Arce, “A comprehensive and lightweight security architecture to secure the iot
throughout the lifecycle of a device based on himmo,” in ALGOSENSORS
2015. Berlin, Heidelberg: Springer-Verlag, 2015, pp. 112–128. [Online]. Available:
https://doi.org/10.1007/978-3-319-28472-9 9

[197] K. Wüst and A. Gervais, “Do you need a blockchain?” Cryptology ePrint Archive,
Report 2017/375, 2017, https://eprint.iacr.org/2017/375.

[198] L. Lamport, “Password authentication with insecure communication,” Commun.
ACM, vol. 24, no. 11, pp. 770–772, Nov. 1981. [Online]. Available: http:
//doi.acm.org/10.1145/358790.358797

[199] D. Liu and P. Ning, “Efficient distribution of key chain commitments for broadcast
authentication in distributed sensor networks,” in NDSS 2003. The Internet Society,
Feb. 2003.

[200] Y.-C. Hu, M. Jakobsson, and A. Perrig, “Efficient constructions for one-way hash
chains,” in ACNS 05, ser. LNCS, J. Ioannidis, A. Keromytis, and M. Yung, Eds., vol.
3531. Springer, Heidelberg, Jun. 2005, pp. 423–441.

[201] E. Dahmen and C. Krauß, “Short hash-based signatures for wireless sensor networks,”
in CANS 09, ser. LNCS, J. A. Garay, A. Miyaji, and A. Otsuka, Eds., vol. 5888.
Springer, Heidelberg, Dec. 2009, pp. 463–476.

[202] J. A. Buchmann, E. Dahmen, and A. Hülsing, “XMSS - A practical forward secure
signature scheme based on minimal security assumptions,” in Post-Quantum Cryp-
tography - 4th International Workshop, PQCrypto 2011, B.-Y. Yang, Ed. Springer,
Heidelberg, Nov. / Dec. 2011, pp. 117–129.

195

https://doi.org/10.1109/DSN.2014.43
https://doi.org/10.1109/DSN.2018.00018
http://arxiv.org/abs/1901.00910
https://www.coindesk.com/blockchain-must-adapt-build-trust-internet-things/
http://arxiv.org/abs/1608.05187
https://doi.org/10.1007/978-3-319-28472-9_9
https://eprint.iacr.org/2017/375
http://doi.acm.org/10.1145/358790.358797
http://doi.acm.org/10.1145/358790.358797

[203] K. Chalkias, J. Brown, M. Hearn, T. Lillehagen, I. Nitto, and T. Schroeter,
“Blockchained post-quantum signatures,” Cryptology ePrint Archive, Report
2018/658, 2018, https://eprint.iacr.org/2018/658.

[204] D. J. Bernstein, D. Hopwood, A. Hülsing, T. Lange, R. Niederhagen, L. Pa-
pachristodoulou, M. Schneider, P. Schwabe, and Z. Wilcox-O’Hearn, “SPHINCS:
Practical stateless hash-based signatures,” in EUROCRYPT 2015, Part I, ser. LNCS,
E. Oswald and M. Fischlin, Eds., vol. 9056. Springer, Heidelberg, Apr. 2015, pp.
368–397.

[205] A. Hülsing, J. Rijneveld, and P. Schwabe, “ARMed SPHINCS - computing a 41 KB
signature in 16 KB of RAM,” in PKC 2016, Part I, ser. LNCS, C.-M. Cheng, K.-M.
Chung, G. Persiano, and B.-Y. Yang, Eds., vol. 9614. Springer, Heidelberg, Mar.
2016, pp. 446–470.

[206] F. Baldimtsi, J. Camenisch, M. Dubovitskaya, A. Lysyanskaya, L. Reyzin, K. Samelin,
and S. Yakoubov, “Accumulators with applications to anonymity-preserving revoca-
tion,” Cryptology ePrint Archive, Report 2017/043, 2017, https://eprint.iacr.org/
2017/043.

[207] J. Camenisch and A. Lysyanskaya, “Dynamic accumulators and application to efficient
revocation of anonymous credentials,” in CRYPTO 2002, ser. LNCS, M. Yung, Ed.,
vol. 2442. Springer, Heidelberg, Aug. 2002, pp. 61–76.

[208] Y. Wu, H.-N. Dai, and H. Wang, “Convergence of blockchain and edge computing
for secure and scalable iiot critical infrastructures in industry 4.0,” IEEE Internet of
Things Journal, 2020.

[209] “Arduino uno rev3,” 2019. [Online]. Available: https://store.arduino.cc/usa/
arduino-uno-rev3

[210] D. Amiet, A. Curiger, and P. Zbinden, “FPGA-based accelerator for SPHINCS-256,”
IACR TCHES, vol. 2018, no. 1, pp. 18–39, 2018, https://tches.iacr.org/index.php/
TCHES/article/view/831.

[211] L. Bai, M. Hu, M. Liu, and J. Wang, “Bpiiot: A light-weighted blockchain-based
platform for industrial iot,” IEEE Access, vol. 7, pp. 58 381–58 393, 2019.

[212] O. Novo, “Blockchain meets iot: An architecture for scalable access management in
iot,” IEEE Internet of Things Journal, vol. 5, no. 2, pp. 1184–1195, April 2018.

[213] J. Wan, J. Li, M. Imran, and D. Li, “A blockchain-based solution for enhancing
security and privacy in smart factory,” IEEE Transactions on Industrial Informatics,
June 2019.

[214] R. AlTawy and G. Gong, “Mesh: A supply chain solution with locally private
blockchain transactions,” PoPETs, vol. 2019, no. 3, pp. 149–169, 2019. [Online].
Available: https://doi.org/10.2478/popets-2019-0041

[215] L. Wu, X. Du, W. Wang, and B. Lin, “An out-of-band authentication scheme for
internet of things using blockchain technology,” in 2018 International Conference on
Computing, Networking and Communications (ICNC), March 2018, pp. 769–773.

196

https://eprint.iacr.org/2018/658
https://eprint.iacr.org/2017/043
https://eprint.iacr.org/2017/043
https://store.arduino.cc/usa/arduino-uno-rev3
https://store.arduino.cc/usa/arduino-uno-rev3
https://tches.iacr.org/index.php/TCHES/article/view/831
https://tches.iacr.org/index.php/TCHES/article/view/831
https://doi.org/10.2478/popets-2019-0041

[216] M. Samaniego and R. Deters, “Internet of smart things - iost: Using blockchain and
clips to make things autonomous,” in IEEE ICCC 2017, June 2017, pp. 9–16.

[217] D. Miller, “Blockchain and the internet of things in the industrial sector,” IT Profes-
sional, vol. 20, no. 3, pp. 15–18, May 2018.

[218] Z. Yang, K. Yang, L. Lei, K. Zheng, and V. C. M. Leung, “Blockchain-based decen-
tralized trust management in vehicular networks,” IEEE Internet of Things Journal,
vol. 6, no. 2, pp. 1495–1505, April 2019.

[219] Z. Xiong, Y. Zhang, D. Niyato, P. Wang, and Z. Han, “When mobile blockchain meets
edge computing,” IEEE Communications Magazine, vol. 56, no. 8, pp. 33–39, August
2018.

[220] X. Liang, J. Zhao, S. Shetty, and D. Li, “Towards data assurance and resilience
in iot using blockchain,” in MILCOM 2017 - 2017 IEEE Military Communications
Conference (MILCOM), Oct 2017, pp. 261–266.

[221] N. Z. Aitzhan and D. Svetinovic, “Security and privacy in decentralized energy trad-
ing through multi-signatures, blockchain and anonymous messaging streams,” IEEE
Transactions on Dependable and Secure Computing, vol. 15, no. 5, pp. 840–852, Sep.
2018.

[222] G. Wang, Z. Shi, M. Nixon, and S. Han, “Chainsplitter: Towards blockchain-based
industrial iot architecture for supporting hierarchical storage,” in IEEE International
Conference on Blockchain, 2019. IEEE, 2019, pp. 166–175. [Online]. Available:
https://doi.org/10.1109/Blockchain.2019.00030

[223] M. Ali, M. Vecchio, M.Pincheira, K. Dolui, F. Antonelli, and M. Rehmani,
“Applications of blockchains in the internet of things: A comprehensive survey,”
IEEE Communications Surveys and Tutorials, vol. 21, no. 2, pp. 1676–1717, 2019.
[Online]. Available: https://doi.org/10.1109/COMST.2018.2886932

[224] M. A. Ferrag, M. Derdour, M. Mukherjee, A. Derhab, L. A. Maglaras, and
H. Janicke, “Blockchain technologies for the internet of things: Research issues and
challenges,” IEEE Internet Things J., vol. 6, no. 2, pp. 2188–2204, 2019. [Online].
Available: https://doi.org/10.1109/JIOT.2018.2882794

[225] L. Lamport, “Constructing digital signatures from a one-way function,” SRI Interna-
tional Computer Science Laboratory, Technical Report SRI-CSL-98, Oct. 1979.

[226] J. Buchmann, E. Dahmen, S. Ereth, A. Hülsing, and M. Rückert, “On the security
of the winternitz one-time signature scheme,” Cryptology ePrint Archive, Report
2011/191, 2011, https://eprint.iacr.org/2011/191.

[227] A. Hülsing, “W-OTS+ - shorter signatures for hash-based signature schemes,” in
AFRICACRYPT 13, ser. LNCS, A. Youssef, A. Nitaj, and A. E. Hassanien, Eds., vol.
7918. Springer, Heidelberg, Jun. 2013, pp. 173–188.

[228] L. Reyzin and N. Reyzin, “Better than BiBa: Short one-time signatures with fast
signing and verifying,” in ACISP 02, ser. LNCS, L. M. Batten and J. Seberry, Eds.,
vol. 2384. Springer, Heidelberg, Jul. 2002, pp. 144–153.

197

https://doi.org/10.1109/Blockchain.2019.00030
https://doi.org/10.1109/COMST.2018.2886932
https://doi.org/10.1109/JIOT.2018.2882794
https://eprint.iacr.org/2011/191

[229] D. J. Bernstein, A. Hülsing, S. Kölbl, R. Niederhagen, J. Rijneveld, and P. Schwabe,

“The SPHINCS+ signature framework,” in ACM CCS 2019, L. Cavallaro, J. Kinder,
X. Wang, and J. Katz, Eds. ACM Press, Nov. 2019, pp. 2129–2146.

[230] Q. Wang, H. Khurana, Y. Huang, and K. Nahrstedt, “Time valid one-
time signature for time-critical multicast data authentication,” in INFOCOM
2009. 28th IEEE International Conference on Computer Communications, Joint
Conference of the IEEE Computer and Communications Societies, 19-25 April
2009, Rio de Janeiro, Brazil. IEEE, 2009, pp. 1233–1241. [Online]. Available:
https://doi.org/10.1109/INFCOM.2009.5062037

[231] M. O. Ozmen and A. A. Yavuz, “Low-cost standard public key cryptography
services for wireless iot systems,” in Proceedings of the 2017 Workshop on Internet of
Things Security and Privacy, IoT S&P@CCS,, 2017, pp. 65–70. [Online]. Available:
https://doi.org/10.1145/3139937.3139940

[232] S. Kumar, Y. Hu, M. P. Andersen, R. A. Popa, and D. E. Culler, “JEDI:
many-to-many end-to-end encryption and key delegation for iot,” CoRR, vol.
abs/1905.13369, 2019. [Online]. Available: http://arxiv.org/abs/1905.13369

[233] H. Li, G. Dán, and K. Nahrstedt, “Portunes: Privacy-preserving fast
authentication for dynamic electric vehicle charging,” in 2014 IEEE International
Conference on Smart Grid Communications, SmartGridComm 2014, Venice,
Italy, November 3-6, 2014. IEEE, 2014, pp. 920–925. [Online]. Available:
https://doi.org/10.1109/SmartGridComm.2014.7007766

[234] A. Wander, N. Gura, H. Eberle, V. Gupta, and S. C. Shantz, “Energy analysis of
public-key cryptography for wireless sensor networks,” in 3rd IEEE International
Conference on Pervasive Computing and Communications (PerCom 2005), 8-12
March 2005, Kauai Island, HI, USA. IEEE Computer Society, 2005, pp. 324–328.
[Online]. Available: https://doi.org/10.1109/PERCOM.2005.18

[235] N. R. Potlapally, S. Ravi, A. Raghunathan, and N. K. Jha, “Analyzing the
energy consumption of security protocols,” in Proceedings of the 2003 International
Symposium on Low Power Electronics and Design, 2003, Seoul, Korea, August 25-27,
2003, I. Verbauwhede and H. Roh, Eds. ACM, 2003, pp. 30–35. [Online]. Available:
https://doi.org/10.1145/871506.871518

[236] M. El-hajj, A. Fadlallah, M. Chamoun, and A. Serhrouchni, “A survey of internet of
things (iot) authentication schemes,” Sensors, vol. 19, no. 5, p. 1141, 2019. [Online].
Available: https://doi.org/10.3390/s19051141

[237] O. O. Bamasag and K. Youcef-Toumi, “Towards continuous authentication in
internet of things based on secret sharing scheme,” in Proceedings of the 10th
Workshop on Embedded Systems Security, WESS 2015, Amsterdam, The Netherlands,
October 8, 2015, S. A. Koubias and T. Sauter, Eds. ACM, 2015, p. 1. [Online].
Available: https://doi.org/10.1145/2818362.2818363

[238] P. Kampanakis and S. Fluhrer, “LMS vs XMSS: A comparison of the stateful hash-
based signature proposed standards,” Cryptology ePrint Archive, Report 2017/349,
2017, https://eprint.iacr.org/2017/349.

198

https://doi.org/10.1109/INFCOM.2009.5062037
https://doi.org/10.1145/3139937.3139940
http://arxiv.org/abs/1905.13369
https://doi.org/10.1109/SmartGridComm.2014.7007766
https://doi.org/10.1109/PERCOM.2005.18
https://doi.org/10.1145/871506.871518
https://doi.org/10.3390/s19051141
https://doi.org/10.1145/2818362.2818363
https://eprint.iacr.org/2017/349

[239] A. Hülsing, L. Rausch, and J. Buchmann, “Optimal parameters for XMSSMT ,” Cryp-
tology ePrint Archive, Report 2017/966, 2017, https://eprint.iacr.org/2017/966.

199

https://eprint.iacr.org/2017/966

Curriculum Vitae

Panagiotis (Panos) Chatzigiannis received his Bachelor’s engineering degree from Hellenic
Naval Academy and his Masters of Science in Computer Science from US Naval Postrgrad-
uate School. During his PhD program, he was a summer intern with Facebook/Novi in
2020 and 2021. Currently, he is working as a staff research scientist at Visa Research.

200

	List of Tables
	List of Figures
	Abstract
	 Introduction
	 Preliminaries
	Cryptographic primitives
	Blockchain primitives

	 A private and auditable distributed payment scheme
	Introduction
	MiniLedger model
	MiniLedger construction
	Our construction
	Discussion and comparisons

	MiniLedger security and extensions
	Adding clients for fine-grained auditing
	Additional types of audits

	Evaluation
	MiniLedger security
	Scheme definitions
	Security definitions
	Security proofs

	MiniLedger zero knowledge proof
	MiniLedger+ construction and fine-grained audit algorithms
	Assumptions and threat model
	Auditing banks
	Auditing clients
	Aggregating transactions
	Security analysis
	Cost analysis for MiniLedger+ without aggregation
	Cost analysis for MiniLedger+ with aggregation

	Additional audit types and modifications
	Audit without consent
	Additional audit types

	Choosing a construction for digest D
	Optimizations for decryption operations
	Methodology
	Optimization evaluation, complexity analysis and comparison

	Conclusion

	 Proving assets in the Diem blockchain
	Introduction
	Diem architecture
	Keys and accounts
	Hierarchical model
	Diem proof of assets

	Implementation considerations
	What message to sign?
	Various PoA considerations

	Diem-specific implementation considerations
	Primitives and soft PoA implementation in Diem
	Random challenge consistency
	Signed block hashes as randomness
	Accurate timestamping
	Compression
	Multiple currencies
	PoA transaction type
	Withdrawal capability

	Conclusion

	 gOTzilla: Efficient Disjunctive Zero-Knowledge Proofs from MPC in the Head, with Application to Proofs of Assets in Cryptocurrencies
	Introduction
	Related Work

	Oblivious Transfer from Private Information Retrieval
	Disjunctive proofs from 1:N OT
	MPCitH Disjunctive Proof

	Disjunctive Proofs for Mixed Statements
	Proving the Value of Assets

	Implementation
	Evaluation

	Disjunctive proofs using Garbled Circuits
	Conclusion

	 Efficient signatures for auditing IoT devices
	Introduction
	Background
	BBox-IoT system properties
	Threat model & Assumptions

	Constructions
	Our Hash-based signature scheme
	Overall BBox-IoT construction
	Security analysis

	Performance evaluation & measurements
	The IIoT setting with constrained devices
	Evaluation setup
	Signing and verification
	Consensus performance

	Related work
	IoT and blockchain
	Hash-based signatures
	Cryptographic operations in IoT

	On MACs for sensor authentication
	Definition and Security proof of our signature scheme
	Evaluation comparison with modified SPHINCS
	Collision probability analysis

	An instantiation for consensus algorithm
	Construction algorithms
	Evaluation details
	Conclusions

	 Conclusions and Future Work
	Bibliography

