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METHOD FOR DERIVING MULT-FACTOR MODELS FOR PREDICTING 
AIRPORT DELAYS 
 
Ning Xu, PhD 
 
George Mason University, 2007 
 
Dissertation Co-Director: Dr. Kathryn B. Laskey 
 
Dissertation Co-Director: Dr. Lance Sherry 
 
 

Traffic Flow Management (TFM), in coordination with Airline Operation Centers 

(AOC), manage the arrival and departure flow of aircraft at the nations airports based on 

the airport Arrival and Departure rates for each 15 minute segment throughout the day. 

The management of traffic flow has become so efficient in the U.S., that approximately 

95% of the delays now occur at the airports (not airborne). Inefficiencies in the traffic 

flow occur when non-traffic flow delays (e.g. carrier, turn-around, aircraft swapping and 

non-terminal area weather) are super-imposed on the traffic flow delays. Researchers 

have correlated these non-traffic flow delays at airports with sets of causal factors and 

have created models to predict aggregate delays at airports on the time scale of a day. To 

be consistent with the way traffic flow is managed, a model of causal factors of delays in 



  

15 minute segments would provide the analytical basis for improving the efficiency of 

TFM. 

This dissertation describes the development of multi-factor models for predicting 

airport delays in 15 minute segments at 34 OEP airports. The models are created using 

Multivariate Adaptive Regression Splines (MARS). The models, generated using historic 

individual airport data, exhibit an accuracy of 5.3 minutes for generated delay across all 

the airports, and 2.1 minutes for absorbed delay across all the airports. A summary of the 

factors that drive the performance of each airport is provided. The sensitivity of each of 

the factors is also analyzed.  

Analysis of the models indicates that the factors that determine Airport Delays in 

15 minute segments are unique to each airport. The most significant factors that generate 

delays at most of the nation’s airports are Carrier Delay, GDP Delay at the outbound 

destination, and Departure Demand Ratio. Because of the relationship between these 

factors, and the propagation of delays throughout the network, the only way to mitigate 

system-wide delays is via a holistic network approach. The implications of these results 

are discussed. 

The potential benefits from this research include providing: (1) researchers and 

analysts a method to identify systemic causes of delays in the NAS and study the trends 

of influential factors; and (2) airlines and Air Traffic managers a means to evaluate 

predicted delays while executing Traffic Flow Management initiatives.
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CHAPTER 1 

INTRODUCTION 

 
 

1.1 Problem Background 

The National Airspace System (NAS) is a large and complex stochastic system with 

thousands of interrelated components, such as administration, air traffic control centers, 

airports, airlines, aircraft and passengers (Donohue and Zellweger 2001). The complexity 

of the NAS creates numerous difficulties in air traffic management and control.  

Among the most intractable of these problems is flight delay, with its high cost to 

airlines, complaints from passengers, and difficulties for airport operations. For the last 

ten years, the U.S. Air Transportation System (ATS) has experienced long delays and 

increasing costs. Among the 75 airports recorded in FAA ASPM database, the number of 

U.S. airports that experienced more than 20,000 hours of arrival delay per year increased 

from 27 in 1998 to 37 in 2005, and 39 in 2007 (in Figure 1.1). The annual delay of 2007 

is estimated by doubling the total delay from January to June 2007. Among these airports, 

Chicago O'Hare International Airport (ORD) and Hartsfield-Jackson Atlanta 

International Airport (ATL) had more than 100,000 hours of arrival delay in 2006.  
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 Air traffic growth has put substantial pressure on the current ATS, and especially 

on capacity constrained areas of the air traffic infrastructure. According to Federal 

Aviation Administration (FAA) aerospace forecasts for fiscal years 2006-2017, the total 

combined instrument operations at airports with FAA and Contract Traffic Control 

Service are projected to increase from 48 million in 2003 to more than 64 million in 

2017. Since, most major airports in the NAS are operating near capacity, ATS delays will 

increase as the demand reaches and exceeds the capacity limit.  

1.1.1 Definition of Delays 

 The NAS can be modeled as a large scale network. The nodes of the network are 

the airports that serve to connect passengers to other flights or to transfer passengers and 

cargo to other modes of transportation. The arcs of the network are airways of the NAS. 
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Figure 1.1: Number of Airports Experiencing more than 20,000 Annual Arrival Delay.
The value of delays of 2007 is estimated by doubling the total delay of the first 6 months
of 2007. 
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A given aircraft originates and terminates flights at airports, traversing through several 

airports on its flight cycle throughput the day. At each node and on each arc of the 

network, an aircraft can accrue a delay or absorb a delay. Figure 1.2 illustrates generated 

delays and absorbed delays at airports and en route.  

The positive delay that occurs at an airport is defined as Airport Generated Delay.  

This component of delay arises when an aircraft takes more time in any of its flight 

phases on the ground than is scheduled. Negative airport delay is defined as Airport 

Absorbed Delay which arises when an aircraft takes less time in any of its phases than is 

scheduled.  The Airport Delay is the summation of Airport Generated Delay and Airport 

Absorbed Delay. 

In the same manner, airborne delay is defined as Airborne Generated Delay if the 

delay is positive or Airborne Absorbed Delay if the delay is negative.  

 

Airport Generated Delay (+)
Airport Absorbed Delay (-)

Gate

Airport (i)

Schedule:  Gate-in time (i) Gate-out time (i) Wheels-off time (i)

Gate

Airport (j)

Gate-in time (j) Gate-out time

Turn-around              Taxi-out                         Airborne                            Turn-around

Airborne Generated Delay (+)
Airborne Absorbed Delay (-)

Arrival Delay at destinationInbound Delay Wheels-off Delay

Airport Generated Delay (+)
Airport Absorbed Delay (-)

Gate

Airport (i)

Schedule:  Gate-in time (i) Gate-out time (i) Wheels-off time (i)

Gate

Airport (j)

Gate-in time (j) Gate-out time

Turn-around              Taxi-out                         Airborne                            Turn-around

Airborne Generated Delay (+)
Airborne Absorbed Delay (-)

Arrival Delay at destinationInbound Delay

Airport Generated Delay (+)
Airport Absorbed Delay (-)

Gate

Airport (i)

Schedule:  Gate-in time (i) Gate-out time (i) Wheels-off time (i)

Gate

Airport (j)

Gate-in time (j) Gate-out time

Turn-around              Taxi-out                         Airborne                            Turn-around

Airborne Generated Delay (+)
Airborne Absorbed Delay (-)

Arrival Delay at destinationInbound Delay Wheels-off Delay

Figure 1.2: Definition of Airport- and Airborne- Generated and Absorbed Delay 
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Besides airport delays and airborne delays, another critical delay in the NAS is 

inbound delay to an airport. Inbound delay is an accumulated value of delay on previous 

legs.  

The relationships among the types of delays are summarized in Equation 1.1.  

Two components of airport delay are turn-around delay and taxi-out delay. Taxi-

out delay is the difference between the actual taxi-out time (from gate pushback to 

wheels-off) and unimpeded taxi-out time. In ASPM data dictionary, the unimpeded taxi-

out time is calculated using a statistical function when the queues are of a minimal length 

based on aircraft queue lengths by carrier and airport (ASPM 2002). 

Turn-around delay is the difference between actual turn-around time and 

scheduled turn-around time. However, the extra turn-around time for flights which 

arrived early from previous leg but departed on time or early on the next leg is not 

penalized as Generated Delay. For these flights, the turn-around delay is defined as zero 

and the discrepancy between the actual and scheduled turn-around time is defined as 

Early-arrival Gap.  

Airport Delay Airport Generated Delay Airport Absorbed Delay           (1)
Airport Generated Delay max(0, Turn-around Delay) max(0, Taxi-out Delay)       (2)
Airport Absorbed Delay min(0, Turn-around De

= +
= +
= lay) min(0, Taxi-out Delay)        (3)

Wheels-off Delay Inbound Delay Early_arrival Gap Airport Delay           (4)

Airborne Delay irborne Generated Delay irborne Absorbed Delay     (5)

Arrival Delay a

A A

+

= + +

= +

t Dest. Inbound Delay Early_arrival Gap
Airport Delay Airborne Delay                                        (6)

= +
+ +

 1.1
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The wheels-off delay at an airport is the summation of Inbound Delay, Airport 

Generated Delay, Airport Absorbed Delay and Early-arrival Gap (if the flight arrived 

early during a previous leg).  

An example to calculate delays of a flight is provided in Figure 1.3.  

In this example, the flight arrived 30 minutes earlier than schedule, but departed 

on time. Hence, there was a 30-minute gap. The calculations of delays are as follows: 

Inbound Delay 10:00-10:30 -30
Early Arrival Gap 30
Turnaround Delay 0

Taxiout Delay 15
Airport Generated Delay 0 15 15

Airport Delay 15 0 15
Wheelsoff Delay Inbound Delay Early Arrival Gap Airport Delay

-30

= =
=
=
=
= + =
= + =
= + +
= 30 15

15
+ +

=

  

Taxi-in is one of the aircraft operations at an airport. For the purpose of this study, 

taxi-in delays are grouped with airborne delays for two reasons: (i) taxi-in delay is 

correlated with inter-arrival distances associated with the landing process. And (ii) taxi-in 

delay is a small, nearly constant portion of delays. 

 

 Schedule: Gate-in Time                Gate-out Time   Wheels-off Time

0930  0945  1000  1015  1030   1045  1100  1115  1130  1145  1200  1215

Actual: Gate-in Time                                   Gate-out Time      Wheels-off Time

Time axis

Early Arrival Gap

Schedule: Gate-in Time                Gate-out Time   Wheels-off Time

0930  0945  1000  1015  1030   1045  1100  1115  1130  1145  1200  1215

Actual: Gate-in Time                                   Gate-out Time      Wheels-off Time

Time axis

Early Arrival Gap

 
Figure 1.3: An Example of Flight Delay Calculation 
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1.1.2 Characterization of Delays 

 Using Equation 1.1, the delay statistics of Inbound Delay, Early Arrival Gap, 

Airport Generated Delay, Airport Absorbed Delay, Airport Delay, Airborne Generated 

Delay, Airborne Absorbed Delay, Airborne Delay and Arrival Delay at Outbound 

Destination (in Appendix Table A.1) were calculated for connecting flights in and out of 

34 airports in the Operational Evolution Plan (OEP) using the data set of individual 

flights collected from the BTS Airline On-time Performance database (BTS June, July 

and August 2005).   

These delays were summarized in Figure 1.4 in the order of the magnitude of 

Arrival Delay at Outbound Destination. The outbound destinations were restricted to 34 

OEP airports. The total arrival delays at destinations from ATL, ORD and DFW are the 

top three among 34OEP airports. EWR, PHL, MSP and DTW are another group of 

airports having the second highest total arrival delays.  
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Figure 1.4: Total Delays in Summer 2005 at 34 OEP Airports Ordered by Arrival Delay 
at Outbound Destination (minute). 
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Since the numbers of flights are different at each airport, the average delays per 

flight were compared (in Figure 1.5). PHL, JFK, and EWR are the top three airports in 

the first group followed by ORD, MSP, MIA, IAD, IAH, and LGA. The average Airport 

Delay per flight at these airports is more than 15 minutes in summer 2005.  
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Figure 1.5: Delays per Flight in Summer 2005 Ordered by Arrival Delay at Destination 
Ordered by Average Airport Delay per Flight (minute). 

It can be seen from Figure 1.5 that PHL, EWR and LGA had very high airport 

delays but a great deal of these delays was absorbed in the airborne phase which can be 

attributed to the airline schedule padding. The breakdown of Arrival Delay at Outbound 

Destination is different for each airport.  

Figure 1.6 shows the proportion of each type of delay to the total Arrival Delay at 

Outbound Destination at 34 OEP airports.  
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Figure 1.6: Contributions of Airborne, Inbound, Early-arrival, and Airport Delay to 
Arrival Delay at Outbound Destination ordered by Airborne Delay (Percentage). The 
Inbound Delay accounts for 46%, Early Arrival Gap 14.5%, Airport Delay 98.6%, and 
Airborne Delay -59.1%. 

 

 From Equation 1.2 , it can be calculated that the total Inbound Delay of 34 OEP 

airports (69,648 hours) accounts for 46% of the total Arrival Delay at Outbound 

Destinations (151,253 hours), Early Arrival Gap accounts for 14.5%,  and the Airport 

Delay (149,061 hours) accounts for 98.6%. The overall Airborne Delay (including taxi in 

delay at the destination) is a negative value (-89,427 hours). Its magnitude is 59.1% of the 

total Arrival Delay at Outbound Destinations.  

When Mueller and Chatterji evaluated 21 days of data from October and 

November 2001 in Post Operations Evaluation Tool (POET) database, they found that 

84% of all delays at ten U.S. airports occurred on the ground (2002). In the summer of 

Arrival Delay at Outbound Destinations = Inbound Delay
+ Early Arrival Gap 
+ Airport Delay
+ Airborne Delay

 1.2
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year 2005, Airport Generated Delays accounts for 91.37% of the total Airport and 

Airborne Generated Delays at 34 OEP airports. This observation is consistent with the 

findings of Muller and Chatterji that the majority of flight delays are generated at 

airports. Since 1998, air traffic control initiatives such as Ground Delay Program (GDP) 

have been implemented to convert the unavoidable airborne delay to safer and cheaper 

ground delay at origin airport (Ball and Lulli 2004). Overall, the reliability and efficiency 

of the NAS is directly determined by the magnitude of these delays. 

1.1.3 Characterization of Factors Related to Delays 

 Sussman states that the overall behavior of a complex transportation system is 

difficult to predict because the degree and nature of the relationships of the components 

of this system is imperfectly known (2004).The airport delays include delays resulting 

from carrier operations, congestion, weather, and delays by Ground Delay Programs and 

other traffic flow management initiatives. These delays are stochastic phenomena, and 

may be correlated to other factors of delays.  

Existing research has also suggested that delays in the NAS result from many 

interrelated factors. 

• Delays are caused by multiple causal factors (e.g. Allan et al 2001). 
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• Causal factors are correlated with other causal factors (e.g. Callaham et al. 

2001). This creates problems when estimating the impact of individual causal 

factors.   

• The inherently adaptive nature of the NAS creates strong non-linear 

relationships between causal factors (Donohue 2003). Delays propagate due to 

a highly connected schedule designed to maximize use of the expensive 

transportation resources (Beatty et al. 1998).   

Mitigation of delays in the NAS requires an understanding of the factors that 

cause delays. An analysis method is required to accurately predict delays and to measure 

causal factors’ contributions to a specific delay so that the appropriate corrective actions 

can be taken to prevent and alleviate delays. 

1.2 Problem Statement 

Traffic Flow Management (TFM), in coordination with Airline Operation Centers 

(AOC), manage the arrival and departure flow of aircraft at the nations airports based on 

the airport Arrival and Departure rates for each 15 minute segment throughout the day. 

The management of traffic flow has become so efficient in the U.S., that approximately 

95% of the delays now occur at the airports (not airborne). Inefficiencies in the traffic 

flow occur when non-traffic flow delays (e.g. carrier, turn-around, aircraft swapping and 

non-terminal area weather) are super-imposed on the traffic flow delays. Researchers 

have correlated these non-traffic flow delays at airports with sets of causal factors and 
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have created models to predict aggregate delays at airports on the time scale of a day. To 

be consistent with the way traffic flow is managed, a model of causal factors of delays in 

15 minute segments would provide the analytical basis for improving the efficiency of 

TFM. 

The research addresses the following problems: 

• What are the direct causal factors that generate airport delay? 

• What is the proper model to quantitatively estimate the impact of these factors 

on delays? 

• Is the predictive model of airport delay valid? 

• How should the degree of each factor’s influence on airport delays be 

measured? 

• What is the quantitative value of each factor’s influences?  

1.3 Research Scope 

The airport delays at 34 airports in the FAA's Operational Evolution Plan (OEP) were 

investigated and modeled in this research. OEP 8.0 was established to reduce delay and 

meet future demand at the OEP airports by increasing the effective capacity of the NAS 

by 30% (FAA 1). 35 heavily operated airports were selected for the OEP. These airports 

account for 73% of total enplanements and 69% of total operations in the NAS (Bhadra 

and Texter 2005). Collectively, these airports are referred as “OEP-35”. Figure 1.7 shows 
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the OEP-35 airports on the U.S. map. The research focuses on all OEP-35 airports, except 

HNL. 

The OEP-35 airports are highly connected. There are 1067 routes among the 

OEP-35 airports, of which 919 routes have at least one flight record per day during 

summer 2005 (from ASPM database). Figure 1.8 shows the number of destination 

airports each OEP-35 airport has. ATL, DEN, DFW, IAH, LAX and ORD have 

scheduled flights to all other OEP-35 airports. The majority of airports have more than 25 

connections. HNL only has flights to nine OEP-35 airports. For this reason, HNL is not 

included in this research. 

   

 
Figure 1.7: OEP-35 Airport in the U.S. 
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1.4 Objective 

The objective of this research is to develop a method to predict the airport delay in the 

NAS. The method shall explicitly deal with complexity (multiple causal factors), 

collinearity (correlation between causal factors) and the nonlinear adaptive nature of the 

NAS.  The method shall accept as inputs historical data on the daily performance of the 

NAS. The method shall generate as output: 

(1) Multi-factor model for predicting Airport Generated Delay and Airport 

Absorbed Delay. 

A multi-factor model represents the relationships between delays and the factors 

that cause them. Through the model, delays throughout a day can be predicted from the 

values of input factors. These predictions can be used to generate a graphic display like 

Figure 1.9. In Figure 1.9 the output (at the top) reflects the magnitude of airport delay in 
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Figure 1.8: Number of Routes Among OEP-35 airports 
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each 15-minute epoch given the settings of input factors (listed at the bottom). A user can 

manipulate the input factors and see the resulting changes in predicted delay. 

 

 
Figure 1.9: Example of the Input and Output for a Multi-factor Airport Delay Model 

(2) A multi-factor model trained with historical data, shall provide the user the 

ability to: 

• Evaluate the degree to which causal factors contribute to a specific delay. 

• Predict effects of interventions. 
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 In this research, we assume the causal factors identified in the literature and by 

experts are the causes for delays. The objective of this research is to distinguish the 

factors which we can use to predict Airport Delay more accurately than with other 

factors.  

1.5 Contributions 

This research identifies (1) the important causes of delays and (2) the strength of each 

cause’s influence on delay.  

AOC and TFM personnel could apply the multi-factor models to predict airport 

delay with a tool, as illustrated in Figure 1.10. Figure 1.9 shows the prediction of a single 

day given the values of inputs factors of each 15-minute epoch. Figure 1.10 plots the 

average Wheels off Delay and associated value of influence factors at LGA for each 15-

minute epoch during the summer 2005. The setting of each factor can be adjusted by 

choosing the value from pull-down menus to the left of each factor’s bar chart. Such a 

tool would enable personnel to perform “what if” analysis by making changes in causal 

factors at various times of the day and observing the predicted effects. The display would 

include multiple delay predictions to better understand the impact of one or more types of 

delays. 
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When collinearity is properly accounted for, the individual influence of factors on 

response variables can be better estimated. The sensitivity analysis results provide airline 

and air traffic managers the means to develop and evaluate mitigation strategies.  

1.6 Structure of Dissertation 

This dissertation is organized as the follows: Chapter 2 provides a review of previous 

research related to delay causality analysis. These analyses are summarized according to 

research scope and research methods.  

 
Figure 1.10: Graphical Display of Results of Implementing Multi-factor Model for 
Predicting Delay at LGA in 15 Minute Epochs 
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Chapter 3 describes the data process and factor collection.  

Chapter 4 provides a brief introduction of the piece-wise linear regression model. 

A detailed description of the model development and factor selection for final models is 

represented in this chapter. 

Chapter 5 lists examples of final models. 

Chapter 6 describes model validation results. 

Chapter 7 describes the detailed sensitivity analysis approach and the results.  

Chapter 8 describes a case study on 7 airports.  

Chapter 9 provides conclusion of results obtained to date and future work.
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CHAPTER 2 
 

PREVIOUS ANALYSIS OF DELAYS 
 
 
 
 

2.1  Complex Network Transportation System (CNTS) 

A Complex Network Transportation System (CNTS) moves passengers and cargo using 

multiple modes of transportation and multiple vehicles. There are three internal 

components of a transportation system: a physical system, management and labor 

(Sussman 2000). The physical system consists of infrastructure, vehicles, power systems, 

fuel and control, communication and location systems.  The management includes 

marketing, planning and operations. Four major parts in operating plans are schedule, 

crew assignment, vehicle distribution and connections. When we treat the transportation 

system as an interconnected network, the nodes usually represent terminals or stations 

(for example, airports), and the links are typically guideways (for example, air corridors). 

Sussman describes the characteristics of a transportation system as (2000):  

1. “Transportation systems are complex, dynamic and internally 

interconnected, as well as interconnected with other complex dynamic 

systems (e.g., the environment, the economy).” 
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2. “They vary in space and time (at different time scales for different 

components). Service is provided on complex networks. The system is 

stochastic in nature.” 

3. “Subsystems are integrated, closely coupled through feedback loops.” 

4. “Human decision-makers with complex decision calculi make choices that 

shape the transportation system.” 

5. “Its behavior is counterintuitive. Developing models that will predict their 

performance can be very difficult to do.” 

Analyzing and measuring the affect of flow of vehicles on transportation 

networks is a basic element of transportation systems analysis (Sussman 2004). 

2.2 Air Transportation System (ATS) 

Aviation is one of the critical modes in a national transportation system, which is a large-

scale, integrated system. Table 2.1 shows generic components of a CNTS and 

corresponding components of the Air Transportation System (ATS).   In this research, we 

study OEP-35 airport delays to gain insight into the overall ATS behavior that we can 

apply to CNTS. 
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CNTS ATS 
Infrastructure: 
• Guideway 
• Terminals/Stations 

 
• Airways, departure and arrival procedure 
• Airports 

Vehicles Airplanes 
Power System Jet 
Fuel Aircraft gas 
Control, Communications & 
Location Systems 

Controller, Sensors, Fleet Management 
Systems, Air Traffic Central Surveillance, 
Communication & Navigation Systems. 

There are many ways to describe the ATS from different perspectives. Krozel et 

al. have summarized the behavior of the ATS into a group of descriptive aggregated 

statistics from aviation related data (mainly 2000) (as shown in Table 2.2). 

ATS System States ATS System Controls ATS System Performance 
Seasonal Trend in
Enplanements 

Ground Delay Program Total Gate Departure 

Weekly Trends Cancellations Airport Departure delay 
Average AAR Ground Stops Gate delay 
IFR vs. VFR MIT Restrictions  Airborne delay 
Airport Visibility  Arrival delay 
Runway Configuration Changes  Total taxi in & taxi out delay 
  Block delay 
  Total delayed operations 
  Weather related delays 

Table 2.1: Physical System Components of CNTS and ATS 

 

Table 2.2: Example of Statistics Describing the ATS (Krozel et al 2003) 
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2.3 Causal Analysis of Delay in ATS 

Delay is one of the most pressing problems in the ATS. Because of the major economic 

and operational impacts of flight delay, it is essential for the Federal Aviation 

Administration, airlines and other stakeholders to understand the causes of delay and to 

find ways to reduce delay. 

The literature in analysis of delay is categorized into two aspects: 1) delay 

analysis in ATS by scope (section 2.3.1) and 2) methods for analyzing delays (section 

2.3.2).   

2.3.1 Delay Analysis in ATS by Scope 

 Predicting and analyzing the causes of delay have long been important topics of 

research because of their crucial importance in air traffic management and airline 

decision making. This problem has been examined from various perspectives, as shown 

in the Table 2.3. 

 



 

  

Scope Method Strength of Method Limitations of Method 
Macro: 
NAS 

• Independent trend analysis  (Krozel et al. 
2003) 

• Regression (Hansen&Hsiao, 
Hansen&Zhang 2005, Rupp 2005) 

• Steady state Markov Chain 
(Boswell&Evans 1997) 

• Normalization (Evans et al. 2004) 
• Correlation analysis (Post et al 2002) 

• Provides a overall performance of 
NAS, and general explanation of 
NAS delay 

• Ignores the difference and 
relationships between airports 

• Ignores the difference and 
relationships between delay causes

• Not instructive on improving the 
local airport efficiency.  

Meso: 
Airport 

• Classification (Allan et al. 2001) 
• Cluster analysis (Baden 2005) 
• Regression (Hansen&Zhang 2005) 
• Spectra analysis (Welch&Ahmed 2003) 
• Artificial Neural Network (Dai 2006)  
• Simulation (Schaefer et al. 2001, 

Schaefer & Millner 2001, DeArmon 
1993) 

• Provides causal analysis of single 
airport  

• Reveals the correlation among 
airports 

• Airport delay patterns reveal their 
natural grouping 

• Ignores the correlation between 
causal factors. 

• Simulation model lacks validation 
• Difficult to introduce time phases  
• Difficult to separated impact from 

different airports and the NAS 

Micro: 
Flight 
Cycle 

• Regression (Vigneau 2003) 
• Analytical (Beatty 1998)  
 

• Includes the system effect into 
analysis 

• Provides a dynamic view of delay  
• Reflects the impacts of flight  

connectivity  

• Absence of airline data 
• Estimated for specific region and 

specific airline, not a generic 
representative for airports in  NAS 

Micro: 
Flight 
segment 

• Classification (Allen et al. 2001) 
• Regression (Callaham et al. 2001, Rupp 

2005) 
• Queuing theory (Idris 2002) 
• Simulation (Hoffman 2001) 
• Two-way ANOVA (Willeman 2001) 

• Provide detail analysis for each 
flight segment 

• The causal analysis is better 
justified for it can be backed up by 
physical explanation 

• Limited by specific airport or route
• The correlations of segments to 

segments, factors to factors are not 
explained 

Table 2.3: Summary of Delay Analysis in ATS by Problem Scope 
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The first group of studies uses aggregated delay variables to reveal the 

relationship between environment variables and ATS aggregated delay. Trend analysis 

(Krozel et al. 2003), classification (Callaham et al. 2001), and regression analysis (e.g. 

Hansen and Hansen 2005, Chatterji and Sridhar 2005, Dai 2006) provide a static analysis 

of the ATS at a single point in time. Boswell and Evans (1997) developed a steady state 

Markov Chain model to examine temporal dynamics of delays and to study the 

correlation of the current ATS performance to the previous time period’s ATS 

performance. 

From an air traffic administration perspective, at any time period during a day, the 

understanding and prediction of all flights’ on-time performance is not only necessary to 

even out the demand on the limited capacity, but essential to improve the local airport’s 

and ATS’ efficiency. Research from an airport administration perspective which ignores 

the difference among airlines can be categorized into four groups: (1) study a local airport 

while ignoring its correlation with other airports in NAS (Allan et al 2001); (2) study the 

impact of delays of outbound flights from a specific airport to other airports in NAS (e.g. 

Schaefer and Millner 2001); (3) study the impact delays of inbound flights from airports 

in the NAS to a specific airport (DeArmon 1993); (4) study the relationship of aggregated 

delays of inbound flights from the entire NAS and outbound flights to the entire NAS 

(Baden et al. 2005).  

The major difficulty in meso-level airport delay analysis is determining how to 

introduce different time phases into the analysis. ATS is a connected dynamic network. 
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Due to the difference in airport configurations and the geographic distance, the 

transaction time and the strength of impacts from an event at one airport to other airports 

depend on the distance between airports and the airport’s ability to absorb the impacts. 

The questions can be, for example, “Why does Miami airport have high delays when the 

weather is perfect and the airport is not congested?” and “Where did the delayed flights 

to the Miami airport come from?” 

To tackle these problems, researchers go to a lower level, the flight level. Three 

types of downstream impacts from delay propagation have been summarized by Boswell 

and Evens (1997): downstream delay, flight cancellations and missed connections. They 

pointed out the downstream impacts were considered to be the "major and sometimes 

dominant factor in assessing the total costs of air traffic delay". Two major concerns an 

airline has about their delayed flights are “when disrupting events happen, how well will 

the affected airframe complete its whole day schedule (Vigneau 2003)”. And “how will 

this airframe disturb the airlines total schedule (Beatty et al 1998)?”  Few studies have 

been done on airline flight cycle because of the absence of airline data. 

A summary of the research on the factors influencing each flight segment is 

reported in Table 2.4. 

 

 

 



 

 25

Paper Segment Method Factors 

Hoffman 2001 Arrival and 
Departure TAAM simulation  Levels of traffic 

Wang et al. 
2003 Turn Around Analytical model  Slack and flight time allowance 

Idris et al. 2002 Taxi Out Queuing model 
Runway configuration, terminal, 
weather, downstream restriction, 
departure demand, queue size 

Welch and 
Ahmed 2003 

Arrival, 
Airborne Spectra analysis airport throughput 

Willemain 
2001 Airborne Two way ANOVA Airspace of origin, destination 

and end route 

 
These flight segment analyses provide detailed analysis of the impacts of several 

causal factors. These causal analyses are intuitive for they can be backed up by physical 

explanation, but they are limited by the problem scope. The analysis is only for a specific 

airport or route. After obtaining the flight information of routes and airports, there are 

many questions to be answered, such as how do airports influence other airports; how are 

airports influenced by other airports; how does an individual airport influence NAS; and 

how does NAS influence individual airports.  

2.3.2 Delay Analysis in ATS by Methods 

 The methods for analyzing delays can be summarized into five categories: 

regression and related methods, time series analysis, Bayesian Networks model analysis, 

cluster and classification analysis, and simulation.  The section on regression analysis 

includes methods for using observations to predict or explain delay. The methods include 

Table 2.4: Causal Analysis of Flight Segment Delay 
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linear regression, neural networks and related methods. In time series analysis, the trend 

analysis, spectral analysis and Markov Chain analysis are introduced. Linear 

classification and cluster analysis are described in the classification section.  The 

appropriate problems, assumptions, strengths, and weaknesses of each method are 

described in detail in the following sections.  

In this document, we use the capital letters to represent random variables and a 

letter in bold face to represent a vector or a matrix. 

2.3.2.1 Direct Measure 

Allan et al (2001 a) described a “direct” method to determine the achieved delay 

reduction benefits with the combination Integrated Terminal Weather System and 

Terminal Convective Weather Forecast (ITWS/TCWF). This direct measurement 

“compares the delays in a baseline time period when ITWS/TCWF were not in use to a 

subsequent time period in which ITWS/TCWF were in use.” But as these authors have 

pointed out the reduction in delays can be a result of many factors such as severity of 

weather, duration of weather, traffic changes, air traffic procedures, etc. Hence, the 

explanation of result requires sophisticated analysis of causality in order to distinguish 

which elements of the systems account for the reduction.  

Another analysis of delay at Newark International Airport was conducted by 

Allan et al to determine causes of aviation delay. The delays were categorized into groups 
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defined by causes. The proportion of each group was computed as the consequence from 

the resident cause. This kind of method is widely used in transportation statistical reports 

(DOT) but there are two drawbacks of it. First, it cannot be used to predict delay. Second, 

the assumption that these delay causes are mutually exclusive is not valid all the time.  

2.3.2.2 Regression Analysis 

 In an univariate regression analysis, there is one numerical response variable 

(dependent variable) Y, and one or more predictor variables (explanatory variables or 

independent variables) X. A goal of regression analysis is to predict the unknown value 

of the response variable associated with a given set of known predictor values. 

Additionally, one may desire to determine the mean and variance of the response variable 

conditioned on the predictor variable values. Another goal is to represent the independent 

contributions of each predictor variable to the prediction of the response variable using 

the regression coefficients. In other words, regression provides a way to determine how 

the variable iX  influences Y after controlling for other independent variables.  

 Table 2.5 summarizes research that used regression analysis for causal analysis of 

delay in NAS.  The first column in Table 2.5 describes the problem to be solved.  

Researchers attempted to distinguish the contributions of several critical factors, called 

predictor variables, to delay; the predictor variables are listed in column two. The 

researchers and their research approaches are listed in the third and fourth columns, 

respectively.  



 

 

Response variable Predictor variables Author Methods 
Probability of flight on time, 
delay or cancellation at LGA, 
 
Probability of flight delay and 
cancellation at NAS 

Economic (e.g. revenue, load factors), Route Competition 
(e.g. monopoly),  Airport Competition (e.g. concentration at 
origination, hub destination), Logistical (e.g. slot origination, 
distance, hours until next flights), Weather (e.g. rain, 
minimum temperature, frozen) 

Rupp 2005 Nested logit 
model 

AAR scheduled arrivals, visibility, wind speed, interaction of the 
visibility and operational condition, time and season 

Hansen & 
Zhang 2005 

GARCH 

LGA daily avg. arrival delay, NAS daily average arrival delay  
NAS daily avg.e arrival delay LGA delay 
 Exogenous variables:  derived queuing delay, adverse 

weather, EDCT holding and total flight operations 

Hansen & 
Zhang 2005 

Two-stage 
least squares 
model with 
GARCH 
model 

Avg. daily delay Arrival queuing, convective weather, terminal weather 
conditions, season, secular effects.  

Hansen & 
Hsiao 2005 

GARCH 

Weather Weighted Traffic 
Count (surrogate for system 
delay) 

Expected traffic demand, Weather Impacted Traffic Index 
(WITI), IMC, wind speed 

Chatterji & 
Sridhar 2005 

Ordinary 
Least Square 
(OLS) 

Arrival delay Departure delay, origin 
Departure delay Arrival delay, destination, load on departure, station stoptime
 day of week, hour, destination, capacity, load on arrival 

Vigneau 2003 Recursive 
OLS 

En route WITI, IMC< wind speed NAS impact (delay>30min, 
cancellation, diversion) Weather day-type, traffic day-type, season 

Callaham 2001 OLS 

Taxi out time  Runway configuration, airline, VFR/IFR, downstream 
restrictions, departure demand, queue size 

Idirs et al. 2002 OLS 

   

Table 2.5: Summary of Research Using Regression Analysis 
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2.3.2.2.1 Ordinary Least Square (OLS) Regression 

Appropriate problems:  

 OLS regression models relationships between the response variable and 

predictors. It is usually applied to observed sample or experimental data on a response 

variable, and tries to explain the behavior of that variable in the form of an algebraic 

equation that involves other variables (predictors) that describe experimental conditions.  

Assumptions:  

 Suppose there is a response variable Y and predictor variables X. The objective of 

regression is to develop a statistical model to predict y from x. The simple linear 

regression model represents the relationships between Y and X (as shown in 

Equation 2.1). 

In Equation 2.1, iy are particular observed values of the target variable Y, xi are 

the corresponding observed values of the predictor variables, and iε are unobservable 

random errors, or “noise”. α  and β are a set of unknown parameters that are estimated 

based on the observations of Y and X. The estimates of the parameters are denoted by α̂  

and β̂ . ˆˆ Tα + iβ x  yields estimated values of iy , denoted by ˆiy , as a function ofα̂ and β̂ . 

Higher order polynomial regression allows for a nonlinear relationship between response 

T
i i iy α ε= + +β x  2.1 
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and predictors. It is still called linear regression since the model is linear in the 

parameters. 

 There are 3 classical regression assumptions (Hamilton 1994): 1) Independent 

variables X are a vector of deterministic variables and measured without error, 2) iε  are 

independent and identically distributed (i.i.d.) with mean 0 and variance 2σ , and 3) the 

distribution of iε  is Gaussian. 

 Linear regression models assume any nonlinear relationship between predictors 

and Y can be transformed into linear form by applying transformations to the predictor 

variables (when this assumption is not met, nonlinear regression methods may be used). 

The least square estimates of α  and β , which minimize the sum of the squares of 

residuals∑ − 2)ˆ( ii yy , are optimal when errors are independent, normal, with zero mean, 

and homosecedastic. 

Strengths and weaknesses: 

 The strength with regression analysis is the ability to use a single regression 

equation that captures effects of all predictors simultaneously. Despite the variability in 

the data, the regression analysis can isolate the effect of each variable from the multitude 

of variables in the study and provide an explicit quantitative estimate of the impact of 

each predictor. The estimated coefficient, ˆ
jβ ,  for the jth predictor gives the estimated 

change in ( )|i iE Y x given a unit change in the jth predictor.  
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 The problems with regression methods come from two sources: data problems 

and model problems (Freund et al 2006). Specifically, the weaknesses of OLS regression 

are: 

  1) A major type of data problem involves observations which can greatly 

influence regression model estimates. Influential observations include outliers (extreme 

observations in the response variable) and leverage points (extreme values of predictors). 

Many statistical methods have been developed to detect outliers but the remedy for the 

effects of outliers is not purely a statistical problem. The outliers may be either recording 

errors or observations that are subject to a factor which is not included in the model. For 

this reason, whether to keep, correct, or remove extreme observations needs careful 

investigation.  

 2) A problematic regression model can be either overspecified or underspecified. 

Overspecified models include too many explanatory variables. The existence of 

collinearity among predictor variables causes the estimated regression coefficients to 

have inflated standard errors and also makes it difficult to distinguish their individual 

influence on the response variable. Underspecified models miss important predictors 

and/or incorrectly specify the relationships, for example, representing a non-linear 

relationship as linear. So, a tradeoff between bias and variance has to be made since 

estimating a large number of unknown parameters may overfit the model and increase the 

variance of the estimation, and deletion of a predictor may create bias. 
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  3) The assumption of independent, identical, normally distributed error terms is 

rarely met in practice, especially in air transportation systems. Heteroscedasticity, 

unequal variance, can be the result of a data problem, or a model problem, or both. 

Various methods have been applied to compensate for this problem. Generalized 

Autoregressive Conditional Heteroskedasticity (GARCH) in Hansen’s paper (Hansen & 

Zhang, Hansen & Hsiao 2005) and White (1980) robust standard errors in Rupp’s paper 

(Rupp 2005) both address the existence of heteroscedasticity in error terms. The GARCH 

models are explained in the time series method section. The model from White did not 

report a good fit (Pseudo R2<0.1).  

 4) The coefficients of predictor variables reflect the unique contribution of each 

predictor. However, if a predictor has joint contribution with other factors, the coefficient 

of their interaction term does not reflect the contribution of any particular predictor 

. 5) A regression model, by itself, does not imply cause and effect.  Regression is a 

way to measure correlation between response variable and predictors. Correlation implies 

causation only when the data from which the correlation was computed were obtained 

from controlled experiments. Controlled experiments control for extraneous variables 

which might confound the results. Causal interpretation of regression results for non 

experimental data requires careful justification based on knowledge of the domain. 

 In NAS delay analysis, two additional kinds of models, two-way ANOVA and 

Artificial Neural Networks, can also be categorized as regression models. 
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2.3.2.2.2 Two-way Analysis of Variance (Two-way ANOVA) 

Appropriate problems:  

Analysis of variance (ANOVA) tests for significant differences between group 

means through the portioning of Sums of Squared (SS) Deviations. It has been widely 

conducted on data collected in experimental studies to infer causality. In two-way 

ANOVA, there are two independent variables or factors (e.g. origin and destination in 

Willemain 2001). The hypotheses to be tested by two-way ANOVA according to 

Willemain’s paper are: 

1. The population means of the first factor are equal, i.e., the different flight origin 

airspace does not have different impact on daily average airborne delay; 

2. The population means of the second factor are equal, i.e., the different flight 

destination airspace does not have different impact on daily average airborne 

delay; 

3. There is no interaction between the two factors, i.e., the flight destination 

airspace’s impact on airborne delay does not depend on the origin airspace.  

Assumptions:  

The ANOVA test is, practically, equivalent to a regression analysis (Draper and 

Smith 1981). The ANOVA model in Draper and Smith can be represented 

mathematically as a multiple regression with dummy coded predictors, as shown in 

Equation 2.2. 



 

 34

Jones summarized the assumptions of the two-way ANOVA F test as (Jones 

1996):  

1. “The populations from which the samples were obtained must be normally or 

approximately normally distributed.  

2. The samples must be independent.  

3. The variances of the populations must be equal.  

4. The groups must have the same sample size.” 

Strengths and weaknesses: 

Two-way ANOVA analysis provides a mathematical way to test the effects of two 

factors. If the data was collected through controlled experiments, the results from 

ANOVA tests can be used to infer causality. But there are some noteworthy theoretical 

problems of the ANOVA test as summarized by Notthcott (2006). First, by selecting 

different range of factors or different choice of population, the values ANOVA yields for 

causal efficacies can be completely different. The ANOVA cannot reliably predict the 

( )ijk i j ij ijkY R C RCµ ε= + + + +  

where, µ = overall mean, 

            iR = effect of ith row factor, 

            jC = effect of jth column factor, 

      ijRC)( = interaction effect of row i and column j, 

           ijkε = random error within the (I,j)th cell for k observations 

assumed to be distributed as ),0( 2σN . Errors are assumed to be 
pairwise uncorrelated. 

2.2 
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outcomes of interventions when the input is outside the range of a generating sample. It 

can be misleading to extrapolate ANOVA results uncritically (Lewontin 1974). Second, 

ANOVA assigns causal efficacies only at the group level rather than singleton level. For 

example, origin airspace is a group level factor. It includes airspace of many airports 

which are at singleton level. The ANOVA F result, by itself, does not tell which 

components of the origin airspace cause more airborne delay.  

In practice, the assumptions of an ANOVA test are rarely met when data is not 

gathered from a carefully designed experiment. For example, the condition of airspace 

above Honolulu Airport (HNL) may be completely different from and not related to the 

airspace above LaGuardia Airport (LGA), but the airspace above Newark International 

Airport (EWR) is not likely to be much different from its neighboring airport LGA. The 

sample gathered about HNL airspace may be independent from the sample of LGA. 

However, the sample of EWR is not independent from the sample of LGA.  

2.3.2.2.3 Artificial Neural Network (ANN):       

 “An ANN is a model composed of several highly interconnected computational 

units, called neurons or nodes” (Detienne et al. 2001). These nodes are categorized into 

input layer (independent variables), output layer (response variables) and hidden layer 

(computation procedures) according to their position and function in the network.  
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Appropriate problems:  

ANN can be viewed as a nonlinear regression method. ANN represents the 

relationship between y and x as: 

Since there is no closed form solution to estimate β , iterative methods are used to 

solve for a local minimum of some measure of residuals, usually squared errors.  

Assumptions: 

 ANN can be applied with very weak assumptions. When the relationship (either 

linear or non-linear) between input variables and output variables are estimated by ANN, 

it is generally assumed that the estimation errors from the learned model are independent 

and identically distributed with zero mean.   

Strengths and weaknesses: 

The most important advantage of ANNs is that they can solve complex problems 

which do not have a closed form equation for estimating the regression parameters or for 

which an algorithmic solution is too complex to be found (Stergiou and Siganos 1996). 

Dai (2006) developed an artificial neural network model to estimate individual flight 

departure delay for real time air traffic flow management. A network with 70 nodes in 

hidden layers outperformed linear and non-linear regression method in Dai’s research.  

( ) ( , )E y f= x β , 

where f is some function of the observations x and parameters β . 
2.3 
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A neural network is a “black box” model that predicts departure delay from the 

input factors.  The parameters of a neural network model are not easily interpretable, and 

thus it is difficult to use a neural network model to gain understanding of how the factors 

interact to cause delay. The iterative learning process of ANN requires long processing 

time as the size of the problem expands (Stergiou and Siganos 1996).  Another weakness 

of neural networks is the lack of defining rules to construct a network. The choice of 

learning algorithm and model requires relatively good understanding of the underlying 

theory. The number of neurons per layer and number of layers are usually selected in the 

learning process after several trials.  Also, there are no standard statistical tests for ANN 

models. When the relationship is nearly linear and error s are approximately normal, a 

correctly specified multiple linear regression is superior to ANN (Warner and 

Manavendra 1996).  

2.3.2.3 Time Series Analysis 

Time series analysis examines data that has been observed at different points in 

time. In most cases, these observations violate the assumption of the traditional 

regression method that observations are independent. The systematic approach of 

drawing inferences from these time-correlated series is referred to as time series analysis.  

A general approach to modeling the dependence over time consists of the 

following steps (Brockwell and David 1996):  
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• “Plot the series and examine the main features of the graph, checking if 

there is a trend, a seasonal component, any apparent sharp changes in 

behavior and any outlying observations. 

• Remove the trend and seasonal components to get stationary residuals.  

• Choose a model to fit the residuals. 

• Forecasting will be achieved by forecasting the residuals and then 

inverting the transformations described above to arrive at forecasts of the 

original series. ” 

In the air transportation field, researchers usually look at the linear component of 

yearly, seasonal and monthly trends. Hansen et al. conducted a series of studies on the 

trend of delays and cancellations, such as the delay trend before and after the enactment 

of Aviation Investment and Reform Act for the 21st Century (AIR21) at LGA. In these 

studies, the residuals were fit against the past values of the series by Generalized 

Autoregressive Conditional Heteroskedasticity (GARCH) (Hansen and Zhang 2005, 

Hansen and Hisao 2005). Beside the complex GARCH model, a simple time domain 

approach, trend analysis, and frequency domain approach, spectral analysis, were 

conducted in the NAS delay analysis field. 
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2.3.2.3.1 Trend Analysis       

Appropriate problem:  

 Trend analysis has been widely used to visualize the shape of one quantitative 

dependent variable related to a quantitative independent variable, time t. The linear 

component of trend t vs. Y is used to evaluate whether there is an overall increase or 

decrease of Y as the independent variable t increases.  Rupp looked at the yearly trend of 

NAS delay, cancellation and on time arrivals (Rupp 2005); Krozel et al. plotted the 

seasonal trends of NAS states, NAS control and NAS performance (Krozel et al. 2003). 

These analyses applied the first step of time series modeling, plotted the series and 

examined the main features of the graph, checking if there is a trend, a seasonal 

component. 

Assumptions:   

 Simple trend analysis assumes time to be the dominant independent variable to 

predict changes in the response variable. 

Strengths and weaknesses: 

 The trend plot provides direct visualization of change direction and degree of 

response variable. If the residuals are independent and identically distributed (i.i.d.), the 

independent variable, time, is the dominant independent variable to the changes of 

response variable. The tendency in practice of plotting the mean of response variable vs. 

time masks the variance of the response variable at each time period. That variance may 

also relate to time. Furthermore, the trend plot ignores the influence from other variables. 
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So, when there are many interacting variables, trend analysis provides an incomplete 

picture of delay. 

2.3.2.3.2 Spectral Analysis 

Appropriate problem:  

Spectral analysis uses frequency domain analysis to identify superimposed 

oscillations which contribute to variations in series of observations. Spectral analysis is a 

frequency domain approach in time series analysis.  

Spectral analysis is applied to a signal, ( )y f t= , where t typically corresponds to 

time and y corresponds to the amplitude of the signal. Spectral analysis breaks the signal 

down into frequency components with suitably chosen amplitudes and phases. These 

amplitudes and phases arise from the Fourier Transform of the signal. An example is 

given in Equation 2.4. 

The problem of spectral analysis is to estimate the discrete set of frequencies, 

amplitudes and phases from a sample of the signal at given times. Welch and Ahmed 

applied spectral analysis on airport throughput and delay in order to separate the effect of 

1 1 2 2 2sin( ) sin( )y t t cα θ α θ ε= + + +  
Where,  t  is time 
            iα  is the amplitude at a frequency  
            iθ  is the a particular frequency 
            ic  is phase which measures the offset in time between the waves 
            ε  is random error 

2.4 
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a new Phoenix runway from the effect of background noise, such as en route congestion, 

weather, and flow control actions (Welch and Ahmed 2003). The distribution of 

occurrences of periods of observed arrival throughputs at an airport is called the 

occurrence spectrum for the airport, and the related plots of delay versus throughput are 

called the delay spectra. Different relationships among arrival delay, queuing delay and 

arrival throughput comprise different airport throughput spectrum. Welch and Ahmed 

tried to distinguish the benefit of congestion management initiative from the different 

patterns of throughput and occurrence spectra for U.S. airports operating near capacity. 

They found that the hub and non-hub airports can be discriminated by the different 

patterns of arrival delay and queuing delay at the highest end of throughput.  

Assumptions:   

 In spectral analysis, the regularity of a series, a repeated pattern with a regular 

time interval, is composed of a superposition of periodic variations of the underlying 

phenomenon that produce the series (Shumway and Stoffer 2000). 

Strengths and weaknesses: 

Spectral analysis has the advantage of being a simple measurement capable of 

evaluation of the contributions of the periodic components. The spectrums provide 

valuable insights to the problem.  In a CNTS, there are typically many causal factors 

whose influence must be considered. Standard spectral analysis techniques do not 

consider how the signal depends on independent variables other than time.   
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2.3.2.3.3 Markov Chain Modeling 

Appropriate problem:  

A Markov chain is a special type of discrete-time stochastic process (Winston 

1993). Since Markov chain modeling studies how a random variable changes over time, it 

was grouped into the time series analysis section in this dissertation. Boswell and Evans 

developed a Markov Chain model based on the data from FAA database to predict 

downstream delays in NAS and likelihood of flight cancellation as a function of the 

initial delay in NAS (Boswell and Evans 1997).  

Assumptions:  

A Markov chain model assumes the system can be in one of a discrete set of 

states. A Markov chain represents a process starting in one of these states and moving 

successively from one state to another assuming the probabilities ijp  (moving from state 

i to next state j) only depends on its current state i and not on its state prior to the current 

state.    

In the Boswell and Evans model, the arrival delay at the next leg, thi )1( +  leg, is 

summation of downstream portion of arrival delay at previous leg and operational delays 

incurred in the current leg. The distribution function of arrival delay at the second leg is 

the convolution of the distributions of the two summands, operational delay and the 

previous leg carryover delay, under the assumption that they are statistically independent 

random variables.  
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To calculate a general-purpose multiplier for downstream delay, another 

assumption was made to assume the direct delays are uniformly distributed among flight 

legs, i.e. the flight delay may occur on the 1st leg, 2nd leg,..., 6th leg with the equal 

possibility.  

Strengths and weaknesses: 

A Markov chain model is a very simple, direct representation of a dynamic 

system whose components are connected sequentially.  

In reality, many systems are too complex to represent as stationary first-order 

Markov chains. Transitions may depend on states prior to the current state. The 

assumption of homogeneous transition behavior is often violated because different 

subgroups may have different transition propensities.   

In the Boswell and Evans paper, the calculated downstream multiplier is a 

constant ratio, 80%, between an initial delay and its total downstream impacts from 

flights at all sites and in all weather and traffic conditions. Given the various weather 

conditions and traffic patterns, adaptive nature of air traffic control and airline operation, 

and airport state (hub, or non-hub), it may not be realistic to assume the same transition 

matrix for all airports, weather and traffic conditions.  



 

 44

2.3.2.4 Discrete Bayesian Network Analysis 

A Bayesian network (BN) is a directed acyclic graph, in which each node denotes 

a random variable, and each arc denotes a direct dependence between variables. The BN 

model structure (nodes and arcs) encodes conditional dependence relationships between 

the random variables. Each random variable is associated with a set of local probability 

distributions (parameters in the Conditional Probability Tables). Probability information 

in a Bayesian network is specified via these local distributions. A root node in a BN 

model represents a random variable and its associated probability distribution. A non-root 

node has an associated random variable and a conditional distribution for its random 

variable given the values of the parent random variable(s). 

A discrete BN model contains only categorical variables and discretized 

continuous variables with a finite number of possible states. Currently, most standard BN 

software packages are limited to discrete variables.  

Appropriate problems:  

Bayesian Networks provide a powerful and expressive language for representing a 

complex phenomenon involving uncertainty and probabilistic reasoning. Rather than 

representing just one variable conditioned on its influencing factors as in a regression 

model, a BN model represents a joint probability distribution for all its nodes. BN models 

have gained increasing popularity for reasoning and decision-making. Through a well 

defined inference algorithm, a BN model can infer the probabilities of variables which 

have not yet been observed based on the observations of known variables.  
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Assumptions:          

David Danks summarized two assumptions for a Bayes Net formalism: Markov 

assumption and Faithfulness assumption. The Markov assumption, “X is 

(probabilistically) independent of its (graphical) non-descendants conditional on its 

(graphical) parents”, uses the absence of an arc to imply conditional independence. The 

Faithfulness assumption, “The (probabilistic) effects of (graphical) paths never exactly 

offset”, derives the absence of arc from conditional independence (Danks 2003). 

The BN model structure and parameters are either learned from data or 

constructed via expert judgment. It is common to link the cause node to the result node if 

the model represents a cause and effect relationship, or to link the nodes time order. 

Orienting links from cause to effect generally results in sparser networks (Pearl 2000).  

Strengths and weaknesses: 

Bayesian networks have become an increasingly important tool for investigating 

interdependence among multiple factors in complex systems. Bayesian networks have 

unique strengths both for inference and for visualization. When Bayesian networks are 

combined with traditional statistical methods, conditional independence can be exploited 

to provide more accurate estimation and therefore more precise prediction (Xu et al. 

2005). 

For large problems, exact inference in discrete Bayesian Networks is intractable. 

More sophisticated non-parametric density estimation methods and approximate 
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inference algorithms tailored to continuous distributions are needed to model complex 

system and reduce discretization error.  

2.3.2.5 Classification and Clustering 

 Classification and clustering methods are related to partitioning data into groups. 

Classification labels data according to the rules learned from the data with known group. 

Clustering partitions data into clusters. 

2.3.2.5.1 Classification 

Appropriate problems:  

 Typically, classification is about labeling groups of things according to their 

shared common characteristics. There is a response variable as well as one or more 

predictor variables in classification as in regression. The classification rules (classifier) 

are learned from known labeled cases, where the values of both predictor variables and 

response variable are known. After a classifier has been learned, it is then applied to 

unlabeled cases to allocate them to previously defined groups.  

 Suppose that we have K mutually exclusive, exhaustive groups, Class1, Class2, 

…Classk, and a p- dimensional vector, Feature . The prior probability ( )iP Class and 

conditional distribution of the Feature given Classi, ( )| iP ClassFeature , have been 
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estimated from a sample of labeled cases, 1, , nFeature Feature , called the training 

sample. Classification techniques are developed for solving the following problems. 1) 

Estimating the class-conditional probability ( | )iP ClassFeature , if all variables are 

discrete; 2) Considering classification as a prediction problem, where the goal is to 

estimate a function for ( )|i newP Class Feature . 

Assumptions:          

 The basic statistical assumption underlying classification methods is that 

observations are independent and identically distributed within each class, and the classes 

are mutually exclusive.   

Strengths and weaknesses: 

 Various classification algorithms have been developed to construct simple or 

complex linear or non-linear classifiers. Classification methods are generally more 

appropriate than regression methods if the response variable is categorical. If the 

response variable being predicted is numerical, regression methods are more appropriate.  

Linear Classifier:  

Appropriate problems:  

 In the existing literature, a classification technique applied to analyze NAS delay 

is linear classifiers (Allan et al. 2001, Chatterji and Sridhar 2005). In these analyses, the 
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conditional distribution of the Features given these delay has or has not occurred, 

( )|P DelayFeature , are estimated from the historical data, where Delay is a categorical 

variable with states Yes or No. A typical statement is "41% arrival delay occurred on 

days characterized by convective weather". In these studies, the goal for creating a 

classification rule is to gain a better understanding of a certain phenomenon but not to 

predict the probabilities of delay given the weather conditions.   

Assumptions:          

 A common linear classification method, linear discriminant analysis (LDA), 

assumes Gaussian conditional density models and the decision boundaries to separate 

groups are linear. It is further assumed that the normal distributions for the classes all 

have the same covariance matrix and only distribution means are different.  

Strengths and weaknesses: 

 The LDA classifiers are simple and straightforward. For a two-class problem, the 

operation of a linear classifier splits a high-dimensional input space with a hyperplane. 

One side of the hyperplane is “yes” and the other is “no”. But if the optimal decision 

boundary is not close to linear, then linear classification can perform poorly. In some 

cases, expanding and/or transforming the set of predictors can improve performance.  
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2.3.2.5.2 Cluster Analysis:    

Appropriate problems:  

 Cluster analysis is used to identify natural clusters in a set of cases.  The cases 

within a cluster are more similar to each other than they are to cases in other clusters.     

The application of cluster analysis in NAS delay problem focuses on weather 

normalization (Callaham et al. 2001) and airport categorization (Baden et al. 2006). The 

purpose of weather normalization done by Callaham et al. is to determine the discrete 

weather day-types with respect to severe en route weather together with the determination 

of traffic day-types, so that a fair comparison of NAS performance over different time 

intervals can be conducted given the fixed impacts from weather and traffic.  

Baden et al. conducted cluster analysis on the delay influence at local airport 

(relationship between inbound and outbound delays) and downstream airports 

(accumulated amount of delay transmitted by airframes). Two analyses yielded three 

different clusters of airports, but the airports geographically located closer are usually in 

the same cluster, and the hub airports tend to be in the different cluster from the non-hub 

airports.  

Assumptions:          

 Cluster analysis is conducted without prior assumptions on original data 

distribution and range. 
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Strengths and weaknesses: 

 The strength of cluster analysis lies in its capacity to discover the natural 

categories of high dimensional data; it has minimal requirements of domain knowledge 

and is capable of handling noise and outliers. There are various ways to build clusters, 

and there can be subjectivity in the choice of method. Applying different clustering 

methods, such as Ward’s Minimum Variance, Average Linkage, and two-stage Density 

Estimation, on the same set of data yields different clusters. Hence, there is not a single 

correct way to separate data into clusters.  

 None of the papers cited in this section explained what kind of measurement or 

rule was applied. It would give the reader a better understanding of their data structure if 

they had provided that information. Furthermore, cluster analysis is a useful starting point 

for other research purposes (see for example Tan et al. 2005).  

2.3.2.6 Simulation Methods 

Appropriate problems:  

 Simulation is a way to predict outcomes of a process for which an executable 

model has been developed (e.g. DeArmon 1993, Schaefer et al. 2001, Hoffman 2001). 

Regression analysis, time series analysis, and classification are all statistical methods, 

which use data to develop a model of the process that generates data. Simulation methods 
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use the developed models to predict the phenomenon of that process given different 

settings.  

 Simulation has been widely applied in the aviation area because it is too costly 

and intractable, in many cases, to do experiments on the system itself or to solve a model 

analytically. Table 2.6 listed 11 simulation models for capacity and delay as selected by 

Odoni et al. (1997). 

 Scope of Model  
Level of Detail 
(type of study) 

Aprons and 
taxiways 

Runways and 
final approaches 

Terminal area 
airspace 

En route 
Airspace 

Macroscopic 
(Policy analysis, 
cost-benefit 
studies) 
 

 LMI Runway 
Capacity Model* 
FAA Airfield 
Capacity Model* 
DELAYS* 
AND* 

 ASIM 
SDAT* 
DORATASK 
 

Mesoscopic 
(Traffic flow 
analysis, cost 
benefit analysis) 

 NASPAC 
TMAC 
FLOWSIM 
ASCENT 

Microscopic 
(Detailed analysis 
and preliminary 
design) 

TAAM 
SIMMOD 
 

Same The Airport Machine RAMS 

 Several simulation models have been developed after Odoni et al published the 

paper about simulation models. One of them is Future Air Traffic Management Concepts 

Evaluation Tool (FACET) developed by NASA. This tool models system-wide en route 

Table 2.6: Summary of Capacity and Delay Models 
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airspace operations over the contiguous United States (Bilimoria and Sridhar 2000). 

Airport and Control Center Simulator (ACCES) is another simulation model developed 

by NASA, which integrates the simulation models of airport operation and en route 

operation.  

Assumptions:          

 A simulation model is developed based on the understanding of how the system 

works. If the model is a faithful representation of the real-world system, then what can be 

learned from the model will accurately represent what would have been learned about the 

system by direct manipulation. 

Strengths and weaknesses: 

The main advantage of a simulation model is its ability to deal with a very 

complicated system. The weaknesses also come from the complexity of the problem to be 

solved. Real systems are usually affected by uncontrollable and random inputs.  There are 

many uncertainties in the system. However, most simulation models for large scale 

complex system tend to be oversimplified.  

Many of the models listed in Table 2.6 were integrated from queuing models of 

individual flights. But the near-capacity operation and highly adaptive nature of the 

system make the standard assumptions for queuing theory inapplicable. Many times, 

decision makers take specific actions that are different from the simulation. The actual 
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system may include important factors that are not represented in the simulation. Hence, 

the real system reaction may be very different from the outputs of simulation.  

2.4 Summary 

Existing research has provided the basis for delay analysis, but for the purpose of 

analyzing causes of delay in the ATS, there are some noteworthy limitations: 

 Detailed airline perspective models are too detailed to represent the system 

performance. 

 Analytical models of the aggregated system are too simplified to reflect the 

interrelationships between airports and the whole system. 

 No analysis has been done for individual airport delays at 15 minute increments 

for a network including a majority of the major airports. 

 Data mining results on the airport network of system cannot predict the response 

of the system to changes in the network. 

 Simulation models are based on many assumptions. These assumptions and model 

outputs need to be validated and need to represent the inherent stochastic and 

adaptive nature of the system. 

The purpose of this research is to apply proper data analysis technique to identify 

the important factors and to measure the degrees of their impact on delays at 34 OEP 

airports, so that an accurate prediction of airport delay at a practical level of detail can be 

achieved. Regression analysis, as a theoretically sound and well-developed technology, is 

a sensible way to accomplish this purpose. Regression analysis can not only predict the 
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unknown value of the response variable associated with a given set of known predictor 

values, the variable coefficients in a linear model can also represent the independent 

contributions of each predictor variable to the prediction of the response variable as well.  

Section 2.3.2.2.1 described two sources of problematic regression models: data 

problems and model problems (Freund et al 2006). The next section, Chapter 3, describes 

methods and processes conducted in this research to minimize data problems and model 

inadequacy, i.e., removing influential observations and collecting as many factors as 

possible to avoid missing important predictors. Chapter 4 explains the method applied to 

model non-linearity and balance model overspecification and inadequacy. 
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CHAPTER 3 
 

DATA PROCESSING 
 

 

Section 3.1 introduces the data source and the development of the Center of Air 

Transportation Systems Research Center (CATSR) Delay database. The CATSR Delay 

database includes a Flight Delay module and an Airport Delay module. The Airport 

Delay database is built on the top of the Flight Delay database. Section 3.2 describes 

factors studied in the literature and explains how factors were calculated in this research.  

3.1 Database Development 

3.1.1 Data Sources 

 The data used in this research comes from the Aviation System Performance 

Metrics (ASPM) and Enhanced Traffic Management System Counts (ETMSC) of the 

FAA database, Airline On-Time Performance Data from Bureau of Transportation 

Statistics (BTS), and National Convective Weather Detection (NCWD) databases.  

FAA 

The data collected from ASPM are Individual Flights Report and Quarter Hour 

Airport Report. The Individual Flight database includes flight data, ground and flight 

movement times. Arrival delay and departure delay are obtained by comparing flight 
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times to air carrier schedules from the Official Airline Guide (OAG) and carrier 

reservation systems. In the ASPM database, early departures and arrivals are assigned 

zero delay. In order to incorporate more detailed information about each component of 

delay for this research, negative delay values were computed for flights that arrived 

earlier than scheduled. 

The ASPM Quarter Hour Airport Report records the counts of airport operations 

categorized in various groups and average delays in each 15-minute epoch, and the 

airport condition information and airport efficiency information.  The airport condition 

information includes airport meteorological conditions flag, airport supplied runway 

configuration, ceiling, visibility, temperature, wind angle, and wind speed.  

ETMSC provides the aircraft equipment of flights between city pairs. This 

database is the source for aircraft type and weight in the CATSR Delay database. 

BTS 

The Airline On-Time Performance Database from BTS contains data pertaining to 

US certified air carriers that account for at least one percent of domestic scheduled 

passenger revenues (BTS 1). Hence, there are fewer flights recorded in this database of 

BTS than in ASPM. Both ASPM and BTS databases have data fields for flight number 

and aircraft tail number (unique identifier of aircraft). The flight numbers of some aircraft 

were erroneously recorded as tail numbers in the ASPM; these incorrect tail numbers 
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were corrected by the records in the BTS, based on flight arrival, departure time and 

carrier information.  

BTS does not have detailed flight segment information, but the information on a 

cancelled flight, the reason for cancellation, and diverted flights provide a good 

supplement to the ASPM. Another type of unique information recorded in BTS is the 

identification of Carrier Delay and Security Delay. They are explained in detail in section 

3.2. 

Both ASPM and BTS count a flight as "on time" if it operated less than 15 

minutes later than the scheduled time shown in the carriers' Computerized Reservations 

Systems (CRS).  In the database developed in this research, all flight delays are 

recalculated to include early flight information, i.e., negative delays. 

The flights in CATSR Airport Delay database are the joint set of BTS and ASPM; 

hence, they are about the flights recorded in BTS.   

NCWD 

One type of data collected from NCWD is the hourly weather condition at major 

airports in categorical format. When more than one type of weather exists at the same 

time, the worst condition for airport operation will be recorded. The other type of data in 

NCWD is the hourly total number of severe weather reports along each flow.  This data 

was treated as a surrogate for the en-route weather condition but in numerical format.  

Zero means no severe weather on that flow. A larger number of reports corresponds to 
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worse weather conditions. Together with the ASPM Quarter Hour Airport Report, these 

two databases are the sources of weather related factors in our developed database. 

3.1.2 Flight Delay Database 

 From departure to arrival, an aircraft pushes back from the gate, taxis out to the 

runway, takes off, passes though many en route sectors in the air, lands, and finally taxis 

to the gate. At the gate, the aircraft waits for turn-around, after which it continues on to 

the next leg. The Fight Delay database was constructed to record movement information 

of every 2-consecutive-leg components for each aircraft. 

The Flight Delay database was constructed using Microsoft SQL Server. It 

combines data from the Aviation System Performance Metrics (ASPM), National 

Convective Weather Detection (NCWD) databases, and BTS on-time performance 

database. In the ASPM database, each record contains information on one segment of 

flight, i.e. from the time (scheduled, planned and actual) the airframe pushes back from 

the gate to the time (scheduled, planned and actual) it enters the gate, depicted by the 

double-headed thick arrow in Figure 3.1. 
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The shortcoming of the way that the ASPM records the data for individual flights 

is the missing information from the previous leg. In this dissertation, a leg is defined as 

the process that an aircraft takes in traveling from one airport to another airport. The end 

points of a flight leg are gate in time at the origin airport and at the destination airport. If 

an aircraft traverses multiple airports in a day, it has a sequence of flight legs over a day.  

The constructed Flight Delay database is connected by aircraft tail number.  

Therefore, its records contains information about two legs of flight as shown in 

Figure 3.2, i.e., from the time (scheduled, planned and actual) the aircraft enters the gate 

at the previous leg to the time (scheduled, planned and actual) it enters the gate at the 

current leg.  

 
 

ASPM

 

ASPM
 

Figure 3.1: ASPM Record Scope 

Figure 3.2: Construction of Connected Database 
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Figure 3.3 shows a vehicle delay model that was developed to depict the 

occurrences of delays in a flight’s itinerary. In Figure 3.3, ACT represents actual, SCH 

represents scheduled, SEC represents second, IN means gate in, ON means wheels on, 

OFF means wheels off and OUT means gate out. The zero following SEC indicates the 

time of previous leg. This model divides delays in an itinerary of a flight leg into pieces 

according to flight segments. These delays were analyzed in order to gain understanding 

of the causal factors a flight may encounter in each segment.  

Touchdown (SCHONSEC0)

Gate In (SCHINSEC0)

Gate Out (SCHOUTSEC)

Takeoff (SCHOFFSEC)

Touchdown (SCHONSEC)

Gate In (SCHINSEC)

Unimpeded Taxi-in Time

Scheduled Turn-around Time

Unimpeded Taxi-out Time

Scheduled Airborne Time

Unimpeded Taxi-in Time

SCHEDULE ACTUAL

ACTONSEC0

ACTINSEC0

ACTOUTSEC

ACTOFFSEC

ACTONSEC

ACTINSEC

InboundDelay=(ACTINSEC0-SCHINSEC0)/60

GateOutDelay=(ACTOUTSEC-SCHOUTSEC)/60

InboundDelay=(ACTINSEC-SCHINSEC)/60

TaxiInDelay=(ACTINSEC0-ACTONSEC0)/60 – Unimpeded Taxi-in Time

TurnAroundDelay=(ACTOUTSEC-ACTINSEC0)/60 – Scheduled Turn-around Time

TaxiOutDelay=(ACTOFFSEC-ACTOUTSEC)/60 – Unimpeded Taxi-out Time

AirborneDelay=(ACTONSEC-ACTOFFSEC)/60 – Scheduled Airborne Time

TaxiInDelay=(ACTINSEC-ACTONSEC)/60 – Unimpeded Taxi-in Time

Time

}

}

}

DELAYS

Figure 3.3: Description of Vehicle Delay Model 
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In Figure 3.3, the scheduled starting time of each flight segment is listed along the 

vertical time line in the section to the left. The discrepancy between two scheduled 

starting times is the scheduled segment time. The actual starting times of corresponding 

segment is on the right side of the time line. Between the adjacent actual starting times, 

the equation to calculate segment delay is shown. Segment delay is the difference 

between the actual segment time length and the scheduled time length. The dashed 

vertical line in the section to the right separates the segment delay and point delay.  

Inbound Delay and Gate-out delay are referred to as point delay because they are the 

difference of actual starting point of a segment and the corresponding scheduled starting 

point.  

In a database, the primary key is a minimal set of attributes (columns) whose 

values uniquely identify an entity (record) in the set (Ramakrishnan and Gehrke 2000). 

The primary key of the Flight Delay database is the aircraft tail number, departure year 

and month, departure day and scheduled departure time in both hh:mm format and 

accumulated second since January 1st 1980.  

Flight operation involves a great deal of uncertainty. Flight delay analysis is 

conducted at the lowest level of ATS. Existing research has shown that the flight delay 

has a different relationship to the causal factors at different O/D pairs. (Xu et al 2007). 

Having more than 1000 O/D pairs among 35 OEP airports, there is a need of more 

general models to analyze the delays in ATS.  A higher level, meso-level, airport delay 

database is needed to gain insight into system delay. 
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3.1.3 Airport Delay Database 

A higher level Airport Delay database was aggregated from the flight database. 

The primary key of Airport Delay database is airport ID, departure year and month, 

departure day and scheduled departure time (15-minute epoch).  

Figure 3.4 and Figure 3.5 plot the aggregated delays of outbound flights from 

PHL and LGA in June, July and August 2005. These flights are recorded in BTS. Their 

previous leg information can be traced back in the database if the current leg is not the 

first leg of the day. These flights were scheduled to depart at the same 15-minute epoch 

are aggregated together for each epoch of day. The average Inbound Delay, Generated 

Delay, Early Arrival Gap, Absorbed Delay, and Wheels-off Delay throughout the day at 

Philadelphia International Airport (PHL) and LaGuardia Airport (LGA) were represented 

as stack bars. Each bar is a component of the average wheels-off delay (dot) for each 

flight scheduled to depart in a given 15 minute period. The average delay experienced 

during this period is the inbound delay (grey) plus the Generated Delay (black) plus the 

Early Arrival Gap (white) minus the Absorbed Delay (strip).  
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PHL and LGA are both airports with high Airport Generated Delay. However, the 

magnitude of delays at LGA in Figure 3.5 fluctuates more than the magnitude of delays at 

PHL. The aggregated airport data reveals more general information about the airport 
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performance. The Figures for 34 OEP airports are listed in Appendix C, which aggregates 

the average delay in 1-hour increments through out a day for summer 2006.  

Airport Operation Center (AOC) personnel and Traffic Flow Management (TFM) 

Specialists have suggested that a model for predicting airport delay in 15 minute epochs 

would be useful. Hence, in the Airport Delay database, a day is divided into 96 15-minute 

epochs that are numbered from 0 to 95. The delays in each epoch are average value per 

flight for flights scheduled to depart in that epoch. For example, the Airport Generated 

Delay of epochi  is the average of Generated Delays of all flights scheduled to depart at 

epochi; the Inbound Delay of epochi is the average of Inbound Delays of same flights 

scheduled to depart at epochi. Along with the data of potential factors causing delay is the 

Airport Delay database.   

The Airport Delay database contains only the connecting flights in the BTS 

database. A flight is coded as a connecting flight if its previous leg information is not 

absent and its tail number is in the correct format. If the flight is the first flight of a day 

then it is also a connecting flight but with zero Inbound Delay.  

The data associated with extreme value of delays in the Airport Delay database 

was excluded from the data set used to develop and validate the airport delay model.  

Examples of excluded values are Inbound Delays or Airport Generated Delays exceeding 

270 minutes (4.5 hours); Absorbed Delays longer than 3 hours; previous leg flight arrived 

more than 45 minutes early.  Each extreme scenario accounts for less than 0.1% of total 

data.  
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3.2 Factor Collection 

Janic identified the contributions of two major causes for flight delays in U.S: bad 

weather and congestion (Janic 2005). Bad weather alone accounts for 70-75% of flight 

delays. Airport and airspace congestion accounts for another 20-30%.  However, 

congestion problems are often associated with bad weather.  Some researchers have tried 

to estimate flight delays from these two types of factors and their interaction.  

Lamon (2001) estimated the number of Operations Network (OPSNET) delays at 

the 55 busiest commercial airports using 2 factors, percentages of convective weather 

coverage and total number of arrivals and departures. OPSNET delay refers to the delays 

of 15 minutes or more experienced by Instrument Flight Rule (IFR) flights provided 

through FAA (FAA 1). Callaham et al. (2001) derived a composite NAS performance 

measure as a response variable and regressed on a categorical variable with respect to 

schedule traffic level and pattern and another categorical variable with respect to severe 

weather location and extent. Although, the response variables describe aggregated NAS 

performance from different perspectives in the research of Lamon and Callaham, 

respectively, the predictor variables in their models are all about weather related 

variables, congestion related variables and their interactions.  

Similar but not limited to the factors in the research of Lamon and Callaham, the 

factors collected in this dissertation research involve 5 groups: weather related factors, 

traffic related factors, airline related factors, traffic flow management related factors, and 

other factors which cannot be categorized into the first 4 groups.  These factors were 
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defined based on the literature related to aviation delays and either selected or derived 

from the available databases.  

3.2.1 Weather Related Factors 

Airport Weather 

Weather is a major contributor to large delays. Airport Arrival Rate (AAR) (it is 

also referred to Airport Acceptance Rate) and Airport Departure Rate (ADR) depend 

mostly on weather (and on demand as well) (Hansen and Bolic 2001).  Airlines usually 

schedule for fair weather, so any decrease in AAR/ADR caused by weather can lead to 

delays. Factors related to weather in the existing literature are defined as convective 

weather, reduced ceiling and visibility, wind and corresponding AAR /ADR at local and 

destination airport respectively (e.g. Allan et al 2001, Evans and Clark 2005, Hansen and 

Hsiao 2005 etc.). The Quarter Hour Airport Report from FAA database, ASPM, records 

weather condition for each 15-minute epoch. In addition to ASPM, the categorical 

weather data for the local airport from the National Convective Weather Detection 

(NCWD) is also collected. The states of local weather in NCWD include thunderstorm, 

heavy-rain, rain, high-wind, wind, low-ceiling, low-visibility and none. Table 3.1 gives 

the ordinal representation for each state of local weather.  
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The weather related variables in ASPM are as follows: 

• WindSpeed: Wind speed (Knots) is recorded every 15 minutes for an airport. 

• WindDirection: Wind direction (angle) is recorded every 15 minutes for an 

airport. 

• Ceiling: The heights in 100 feet above the Earth's surface of the lowest level of 

clouds.  

• Visibility. It is the ability, as determined by atmospheric condition and expressed 

in units of distance, to see and identify prominent unlighted objects by day and 

prominent lighted objects by night, which is measured in Statute Miles for Flight 

Operations (Pilot/Controller glossary).  

• Weather: categorical variable with states, thunderstorm, heavy rain, rain, high 

wind, wind, low ceiling, low visibility and none, after different time period, from 

NCWD. 

Table 3.1: Ordinal Representation of Local Weather 

States of Local Weather in NEWD  Ordinal number 
NONE 0 
WIND 1 
RAIN 2 
LOW_VIS 3 
LOW_CLG 4 
LOW_MDT_WIND 5 
H_RAIN 6 
H_WIND 7 
TSTORM 8  
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• IFR/VFR: airport visual condition. IFR refers to Instrument Meteorological 

Conditions. VFR refers to Visual Meteorological Conditions.  

• Runway: Runway configuration (Arr | Dep) represents the arrival and departure 

runways in use at the time of the event. Different runway combination requires 

different AAR and has different influence on delay. In this research, the 

normalization was applied on the Runway Configuration. The numerical value 1, 2 

and 3 were assigned to groups of Runway Configuration based on the mean taxi-out 

delay of that group. The number 1 is assigned to the group of Runway Configuration 

which has the lowest mean taxi-out delay. 

• AAR: refers to the Airport Arrival Rate in the ASPM (also see the Airport 

Acceptance Rate). The AAR represents the reported maximum number of arriving 

aircraft that a facility can handle per unit of time (i.e., quarter hour or hour), reported 

to the Operational Information System (OIS). 

• ADR: Airport Departure Rate in ASPM represents the reported maximum number 

of departing aircraft that a facility can handle per unit of time (quarter hour). 

En-route Severe Weather Report   

Callaham et al. (2001) developed a Weather Impacted Traffic Index (WITI) to 

normalize for the potential impact of severe convective weather on en-route performance. 

The en-route WITI was calculated by overlaying a grid on the U.S. and assigning a 

weight to each cell based on the potential impact of air traffic performance from the 

convective weather that occurred in that cell. The computation of WITI was later 
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extended by Chatterji and Sridhar (2005) to include the regions around severe weather 

cells. The extended WITI was used to explain the total daily delays in the NAS.  

In this research, a more detailed variable is needed to represent the en-route 

weather condition since the response variable is delay in a 15-minute epoch.  The NCWD 

records the total number of severe weather reports on each flow and airport hourly. The 

number of severe weather reports during a flight’s scheduled or actual en-route time was 

calculated from the NCWD as a surrogate for this flight’s en-route airspace weather 

condition. 

Figure 3.6 illustrates the calculation of the total number of en-route severe 

weather reports for a flight which departed at :ih x and arrived at :jh y , where h 

represents hour, x and y represent minutes.  The calculation includes three parts: 

(1) The portion of the number of severe weather reports at the first hour ih , which 

is 1 *Report
60 i
x⎛ ⎞−⎜ ⎟

⎝ ⎠
. Report i  represents the number of severe weather reports 

in hour ih .  

(2) The total number of reports in the time interval between 1ih +  and  jh .  

(3) The portion of reports at the last hour jh , which is *Report
60 j
y .  
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The Zulu time in the NCWD was converted into airport local time in order to 

match with the flight in ASPM (http://www.grc.nasa.gov/WWW/MAEL/ag/wtz1.gif).  

3.2.2 Traffic Related Factors 

Ratio of Operation Demand and Airport Capacity at Scheduled Departure Time (ρ) 

Researchers formulated several kinds of variables to represent the operation 

demand, airport capacity, and the relationship between demand and capacity, such as 

departure demand and queue size (Idris et al 2002), levels of traffic (Hoffman 2007), 

arrival demand and total flight operations (Hansen and Zhang 2004), arrival queue and 

volume (Hansen and Hsiao 2005), airport throughput (Welch and Ahmed 2003), and rho 

(ρ), the ratio of number of scheduled operations to capacity (Ball et al 2006).  Each of 

these tries to quantitatively describe the traffic at an airport from a different perspective. 

In this research, airport operation demand is divided into departure demand and 

arrival demand, and airport capacity is divided into departure throughput and arrival 

throughput. In a specific time window, departure demand counts the number of flights 

  
Figure 3.6: Calculation of En-route Severe Weather Report during Scheduled En-route 
Time 
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scheduled or actually pushed back from gate; arrival demand counts the number of flights 

scheduled to enter the gate; throughput counts the number of actual wheels-offs for 

departure and number of actual gate-ins for arrival.  

For an individual flight i, the ratio of departure demand and departure throughput, 

abbreviated as Departure Demand Ratio, is defined as the scheduled (or actual) departure 

demand divided by departure throughput in a specific time window of the scheduled (or 

actual) departure time of this flight at its origin airport or destination airport (as in 

Equation 3.1). These ratios were calculated in time windows 15-minute and 30-minute 

around scheduled and actual operation time for departure and arrival separately. Note: the 

Departure Demand Ratio_ADRi denotes the ratio of departure demand and the declared 

Airport Departure Rate (ADR) by FAA.  

Departure DemandDeparture Demand Ratio
Departure Throughput

Departure DemandDeparture Demand Ratio_ADR
ADR

i
i

i

i
i

i

=

=
  

3.1

The departure demand includes the number of scheduled departures (calculated 

from ASPM) and cancelled departures (calculated from BTS) (Equation 3.2).  

The schedule departures for flight i in a 30-minute time window of its Scheduled 

Departure Time it  is the summation of flights whose scheduled departure time is within 

the time interval of ( 15it − minutes, 15it + minutes).  This number is calculated from the 

Departure Demand cheduled Departures Cancelled Departuresi i iS= +  3.2
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ASPM. The records in the ASPM are flights actually flown in the NAS; the cancelled 

flights are not included.  The number of cancelled flights whose scheduled departure time 

is within the time interval of ( 15it − minutes, 15it + minutes) is collected from the BTS 

database. However, the BTS database only contains flights reported by certified U.S. air 

carriers that account for at least one percent of domestic scheduled passenger revenues 

(BTS sources). There are 20 carriers in the BTS database in the 3-month period 2005, 

while there are records for 534 carriers it the ASPM. Therefore, the calculated 

cancellation from the BTS is just a subset of actual cancellations.  

The departure capacity is calculated as the airport departure throughput, which is 

the number of flights whose actual wheels-off time is within the time interval 

( 15it − minutes, 15it + minutes).  

For each 15-minute epoch, the ratio of departure demand and departure capacity, 

abbreviated to Departure Demand Ratio30, is the average value of Departure Demand 

Ratioi in 30-minute window for flights whose scheduled departure time is in that epoch 

(Equation 3.3).   

Arrival Demand Ratio is defined as the scheduled arrival demand divided by 

arrival throughput in Equation 3.4. 30Arrival Demand Ratio  denotes the average Arrival 

Demand Ratio in 30-minute window.  

1

1Departure Demand Ratio Departure Demand Ration
iin =

= ∑   3.3
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Arrival Demand Ratios and Departure Demand Ratios at the origin and 

destination airport are all analyzed in this research. 

 In the situation where the departure throughput is zero, Departure Demand Ratio 

is set equal to the departure demand. 

The variable denoted as Departure Demand Ratio_ADR30(or 15) represents the 

ratio of departure demand and Airport Departure Rate (ADR) in 30 (or 15) minute time 

window. Similarly, the variable denoted as Arrival Demand Ratio_AAR30(or 15) 

represents the ratio of arrival demand and Airport Arrival Rate (AAR) in 30 (or 15) 

minute time window. The variable denoted as Departure Ratio_15 represents the ratio of 

departure demand and the maximum value of ADR and departure throughput in a 15-

minute epoch.  

Scheduled Departure Time 

Hsiao and Hansen (2006) estimated the relationship between time of day and 

daily NAS delay. Beatty et. al (1999) also identified the different impact of initial delay 

at different time of day. In this paper, Scheduled Departure Time is defined in 15-minute 

epoch from 0 to 95 for a day. We only keep the data where the epoch is between 24 and 

87 (6:00AM to 9:59PM). 

1

Arrival Demand cheduled Arrivals Cancelled Arrivals
Arrival DemandArrival Demand Ratio

Arrival Thrroughput
1Arrival Demand Ratio Arrival Demand Ratio

i i i

i
i

i

n
ii

S

n =

= +

=

= ∑

 
3.4



 

 74

Inbound delay 

The Inbound Delay of a flight is the delay accumulated from upstream airports 

and en-route legs, i.e., the propagated delay from previous legs. The value of Inbound 

Delay is the difference between actual gate-in time and the scheduled gate-in time. The 

Inbound Delay of a 15-minute epoch is calculated by average Inbound Delays of all 

flights scheduled to depart to other 33 OEP airports at that epoch.  

3.2.3 Airline Related Factors 

Different airlines have different operations and scheduling strategies (Beatty et al. 

1999), and the same airline has different strategies at hub and spoke airports. In the Flight 

Delay database, different airlines are identified by different airline code; while in the 

Airport Delay database, there is no distinction between airlines since individual airlines’ 

data was merged together into an aggregate value for each 15-minute epoch. 

Scheduled Turn-around Time 

Wang et al defined turn around time as the time between an aircraft’s arrival and 

subsequent departure at the same airport (Wang et al 2003). They found that ample slack 

and flight time allowance in turn-around time and flight time can absorb most delays for 

subsequent flights. Vigneau referred to Scheduled Turn-around Time as station stop time 

in his paper and found it is an important variable for flight departure delay (Vigneau 

2003).  
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Scheduled turn-around time in the CATSR Delay database is defined as the length 

of time from scheduled gate-in from the previous leg to the scheduled gate-out time of 

the current leg. At an epoch, if all flights’ information for the previous leg is missing and 

the current leg is not the initial leg of the day, the average Scheduled Turn-around Time 

of that airport is used.  

Leg Number 

Schaefer and Miller (2001) found that the propagated delay is significant for the 

1st leg after leaving an Instrument Meterological Condition (IMC) airport and then 

damps out. We define a variable, Leg Number, to represent the position of a flight in its 

whole day itinerary.  In the Flight Delay database, each aircraft’s itinerary for a day can 

be tracked by its tail number and its scheduled departure time. The Leg Number starts at 

one.  

Beatty et al (1999) traced individual aircraft’s itinerary throughout a day using the 

data from American Airline, then calculated Delay Multipliers for initial delay that 

occurred at different time of day. Delay Multiplier represents the delay impact on the 

operation schedule as a whole. They found that later initial delay corresponds to smaller 

values of Delay Multiplier. Later time of day is usually associated with larger Leg 

Number especially for airlines having tightly connected schedules such as American 

Airlines.  Hence, Leg Number is a potential factor for delays.  
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Carrier Delay  

Carrier Delay records the length of delay (in minute) caused by aircraft cleaning, 

aircraft damage, awaiting the arrival of  connecting passengers or crew, baggage, bird 

strike, cargo loading, catering, computer, outage--carrier equipment, crew legality (pilot 

or attendant rest), damage by hazardous goods, engineering inspection, fueling, handling 

disabled passengers, late crew, lavatory servicing, maintenance, oversales, potable water 

servicing, removal of unruly passengers, slow boarding or seating, stowing carry-on 

baggage, weight and balance delays (DOT Report 2000). The causes of these delays are 

the circumstances considered within the airline’s control by FAA.  

For each 15-minute epoch, the Carrier Delay is the average value of Carrier Delay 

of individual flights scheduled to push back from gate at that time interval.   

Aircraft Substitution (or Swapping Aircraft Rate) 

Airlines substitute different aircraft to minimize the impact of long arrival delays 

(Beatty et al 1999). The criterion to identify a Swapped (substituted) airframe is set by 

comparing the airframe’s scheduled gate-in time from the previous leg to the scheduled 

gate-out time at the current leg.  

For an individual flight i, Swapped Aircraft is an indicator variable. Swapped 

Aircraft is equal to one when its scheduled departure time at current leg is earlier than its 

scheduled arrival time from the previous leg; otherwise Swapped Aircraft is zero.  
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For an epoch at an airport in Airport Delay database, Swap Aircraft Rate is a 

numerical variable representing the proportion of aircrafts which were not initially 

scheduled to all scheduled flights in the Flight Delay database. 

Cancellation (arrival and departure) 

A cancelled flight is “a flight that was listed in a carrier’s computer reservation 

system during the seven calendar days prior to scheduled departure but was not operated” 

(BTS Glossary). In the Airport Delay database, the cancelled departures (arrivals) are 

calculated as the count of cancelled flights in the BTS database in 15-minute epochs.  

Load Factor 

In Vigneau’s research of flight delays in Europe (2003), the passenger load of an 

aircraft is an important factor for departure delay.   Since there is no data available for 

passenger load, the weight class and number of seats of an aircraft are collected to reflect 

the complexity of check-in, boarding and unboarding operations.  

Weight class and number of seat were obtained from the ETMSC database. The 

matching of ETMSC with ASPM is done by linking the aircraft types in two databases.   
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3.2.4 Traffic Flow Management Related Factors 

GDP Holding Time 

The Ground Delay Program (GDP) is issued to reduce the volume of inbound 

flights at a destination airport when the scheduled demand exceeds the capacity of that 

airport. Over-scheduling and severe weather at destination airport can both result in a 

GDP at an origin airport (Allan et al 2001). The GDP Holding Time of an individual 

flight measures its assigned holding time on the ground of origin airport by Air Traffic 

Control before it departs for its destination. Idris et al (2002) pointed out that the 

downstream restrictions including the GDP affect an aircraft’s taxi out time. Hansen and 

Zhang (2004) estimated impact of GDP Holding Time (called EDCT holding in their 

paper) on the arrival delay at LGA.   

In this research, the GDP Holding Time is calculated from the ASPM Individual 

Flight database. For a single flight, the GDP Holding Time is the time elapse between the 

scheduled wheels-off time ( SchOffSec ) and Estimated Departure Clearance Time 

(EDCT) wheels-off time ( EDCTOffSec ).  

The first formula for GDP Holding Time is defined as Equation 3.5 :  

Some adjustment was made for the situation where the aircraft’s actual take-off 

time ( ActOffSec or ActOffTm ) was earlier than the assigned GDP wheels off time. The 

( ) / 60
1

( ) / 60i

EDCTOffSec SchOffSec
GDPtime

ActOffSec SchOffSec
−⎧

= ⎨ −⎩
 
otherwise

ActOffSecEDCTOffSec <=  3.5
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actual take-off time is treated as the ending point of GDP Holding Time in the CATSR 

database. In the ASPM database, EDCTOffSec  and EDCTOffTm  both record the 

assigned take off time by GDP. EDCTOffSec records the GMT seconds of EDCT wheels 

off time since 1/1/1980; EDCTOffTm  records EDCT wheels off time in the format 

HH:MM. These two records do not always agree with each other.  

The second formula for GDP Holding Time is defined as Equation 3.6 :  

If GDP assigned wheels off time is on the next day, the adjustment of secondary 

formula is in Equation 3.7 : 

Given two sets of GDP Holding Time, 1GDPtime  and 2GDPtime , both 

calculated from the same database, the value closer to the Airport Generated Delay 

( gendla ) is selected as the GDP Holding Time. This reflects the assumption that the 

Generated Delay is a direct result of GDP Holding Time (Equation 3.8). 

( , 2)*60 ( , 2)
      ( , 2)*60 ( , 2)

2
( , 2)*60 ( , 2)

      ( , 2)*60 ( , 2)

i

left EDCTOffTm right EDCTOffTm
left SchOffTm right SchOffTm

GDPtime
left ActOffTm right ActOffTm

left SchOffTm right SchOffTm

+⎧
⎪ − −⎪⎪= ⎨
⎪ +⎪

− −⎪⎩

 

Where,  ( , 2) *60 ( , 2)
            ( , 2) *60 ( , 2)

left ActOffTm right ActOffTm
left EDCTOffTm right EDCTOffTm

+ <
+

 

3.6

 
2 [ ( , 2) 24]*60 ( ,2)

( , 2)*60 ( , 2)
iGDPtime left EDCTOffTm right EDCTOffTm

left SchOffTm right SchOffTm
= + +
− −

 3.7
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In this research, the factor used in the model to estimate the average delay in each 

15-minute epoch is the average GDP Holding Time of all flight scheduled to push back 

from gate at that time interval.   

3.2.5 Other Factors 

Security Delay  

Security Delay is defined as “delays caused by evacuation of a terminal or 

concourse, re-boarding of aircraft because of security breach, inoperative screening 

equipment and/or long lines in excess of 29 minutes at screening areas”. (BTS 3) 

Out-bound Leg Distance 

Non-stop distance has been found as an important categorical factor in flight 

arrival delay in the research of Abdel-Aty et al. (2007).  It was included in this research 

to investigate if it has any impact on airport operation. 

 
1   when 1 2

2   when 1 2
i i i i i

i
i i i i i

GDPtime GDPtime gendla GDPtime gendla
GDPtime

GDPtime GDPtime gendla GDPtime gendla

⎧ − <= −⎪= ⎨
− >= −⎪⎩

3.8
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CHAPTER 4 
 

MULTI-FACTOR MODELS FOR AIRPORT DELAY 
 
 
 
 

The delay factors have been described explicitly in Chapter 3. These factors are referred 

to as causal factors in the literature by the experts in the field. Theoretically, causality or 

causation is  

“a process linking two or more events or states of affairs so that one brings about 

or produces the other. One event is the cause of another if (a) the event occurs 

prior to the effect, (b) there is an invariant conjunction of the two events and (c) 

there is an underlying mechanism or physical structure attesting to the necessity 

of the conjunction.” (Web Dictionary of Cybernetics and Systems, available at 

http://pespmc1.vub.ac.be/asc/indexASC.html).  

To establish a firm empirical argument for a causal relationship, (b) and (c) have 

to be justified by empirical data from controlled experiments. Due to the lack of 

empirical data (mainly because it is practically infeasible to do the necessary 

experiments), the causal factors studied in the existing literature are defined based on 

expert judgments.  
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In a complex interrelated system, NAS, the causes of delay are multiple and rarely 

deterministic. The objective of this dissertation research is not to demonstrate causality, 

but to distinguish the most important factors from other researchers’ study and to predict 

delays from the selected factors.  

 This chapter describes a method to identify the important factors and predict 

airport delay from these factors deriving from regression analysis.    

Section 2.3.2.2.1 discussed two sources of problems with regression model: data 

problems and model problems (Freund et al 2006). The data process described in chapter 

3 has tried to collect all possible factors and not miss important predictors related to 

airport delay. Reducing influential observations is also achieved by removing the extreme 

long delays from Flight Delay database. 

The method described in this chapter is designed to overcome the model’s 

problems in regression analysis.  

One kind of problematic model is an inadequate model. Inadequate models miss 

important predictors and/or incorrectly specify the relationships. An example of this 

model would be representing a non-linear relationship as linear.  The first part of this 

chapter describes how and why the piece-wise linear regression model was selected from 

various kinds of regression methods. 

Another kind of problematic model is one which is too complex or overspecified, 

which includes too many explanatory variables and/or too many higher-order terms. The 
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existence of collinearity among predictor variables causes the estimated regression 

coefficients to have inflated standard errors and also makes it difficult to distinguish their 

individual influence on the response variable. The second part of this chapter describes 

the approaches used to deal with collinearity and overfitting. 

4.1 Deriving a Multi-Factor Model 

National Airspace System (NAS) is a complex adaptive system, and complex adaptive 

systems are highly non-linear (Donohue 2003). Non-linear relationships can be modeled 

by various types of regression methods. The selected regression model should be able to 

represent the complex non-linear relationship in a compact format. 

4.1.1 Overview of Regression Methods 

 This study compared OLS (discussed in Chapter 2) with several other regression 

methods. The other methods considered in this study include two local regression 

methods (Kernel regression and Nearest-neighbor regression), projection pursuit 

regression, and three adaptive nonlinear methods (CART, MARS, and MART). These 

methods are discussed below.   

Local regression methods: Kernel regression and Nearest-neighbor 

The basic idea of local regression is that one does not try to find a single model to 

fit all of the observations in a data set (and fit the model using all of the data). Instead to  
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predict a response value for a given set of predictors, only observations having similar 

predictor values are used. That is, to predict the response for a vector of predictor 

variables, x, only observations having predictor values in a neighborhood of x are used. 

When the space of predictors has high dimension, this method can create a large bias in 

the predictions (Hastie et al. 2001).  

Projection Pursuit Regression (PPR) 

PPR is a type of additive model. It is additive not in the original feature space, but 

in a space of derived features. The format of the model is 

where the derived features, the ( 1, , ),T
m mV m Mϖ= =x  are projections of x onto 

various directions. An iterative method is used to search for values of the mϖ and the 

functions mg  ( 1, , )m M= which provide a good fit. For this reason, this method is 

called Projection Pursuit. The parameter M can be arbitrarily large, and any continuous 

function in the sample space can be approximated arbitrarily well given adequate data.  A 

well fitted regression model can be constructed in this way. However, interpreting the 

fitted model and gaining an understanding of the phenomenon being modeled can be 

extremely difficult (Hastie et al. 2001). 

 

 

 ( )
1
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M

T
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m
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=
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CART  

Classification And Regression Trees (CART) is a decision-tree based regression 

method (Breiman et al. 1984). CART can be used for both classification and regression.  

In this research, CART is used to grow regression trees. The measurement space 

Ξ is recursively portioned with a sequence of splits on the predictor variables. The 

partitioned space can be represented with a tree-like structure. For each of the nodes 

(corresponding to the disjoint regions of the partition of the space) of the tree, the 

estimate of the response variable is a value, ( )g x . The same estimate is used for all x  

within the range of a node. The splits are selected in order to minimize [ ]2

1
( )N

i ii
y g

=
−∑ x  

or 
1

( )N
i ii

y g
=

−∑ x . A split is chosen if it produces the greatest possible reduction of  

[ ]2

1
( )N

i ii
y g

=
−∑ x  or 

1
( )N

i ii
y g

=
−∑ x . The final tree is selected based on the prediction 

accuracy achieved by a test sample or by cross-validation estimates.  

MARS 

Multivariate Adaptive Regression Splines (MARS) fits a series of continuous 

piece-wise linear functions called splines. A spline is a piecewise polynomial function 

that passes through every data point (interpolating splines) or close to the data point 

(smoothing splines). A linear spline is the simplest type of spline. The MARS model 

combines splines additively. 



 

 86

Starting with a constant in the model, MARS adds one variable-knot combination 

at a time. Graphically, the added combination is a line bent at a certain value t (called a 

knot). Two straight pieces of this bent line have the form 
,  if ,

( )
0, otherwise,
x t x t

x t +

− >⎧
− = ⎨

⎩
 and 

,  if ,
( )

0,  otherwise.
t x x t

t x +

− <⎧
− = ⎨

⎩
 These functions are called basis functions. At each step in the 

model building phase, a basis function pair is added by choosing a predictor variable to 

assume the role of x and selecting a value for the knot, t.  The selected basis function is 

the one that gives the greatest amount of improvement, where improvement is defined as 

the greatest reduction in the sum of squared errors. Terms are added into the model until 

it grows so complex that it overfits the data. Then MARS removes one basis function at a 

time to create a sequence of pruned models until all basis functions except the first 

constant are removed. Each time, the removed function is the one that contributes the 

smallest increase in the sum of squared residuals. The final model is selected through 

cross-validation from the sequence of created models.   

MART 

Multiple Additive Regression Trees (MART) model is a collection of weighted 

and summed trees. MART is similar in spirit to a long series expansion (such as a Fourier 

or Taylor’s series) – a sum of factors that becomes progressively more accurate as the 

expansion continues. The expansion can be written as: 

0 1 1 2 2( ) ( ) ( ) ( )M MF F T T Tβ β β= + + + +X X X X . 4.2 
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The terminal nodes of each tree in the sequence are selected by a greedy, top-

down recursive partitioning algorithm. Each terminal node corresponds to a disjoint 

region of the partition of the space. A slow-learning procedure is used, for which at each 

step the coefficient for the new tree added is decreased in magnitude from what it should 

be if the model-building process were to stop at that step. This creates a set of residuals 

looking less random than they would be if a larger coefficient was used, so that the next 

tree added can act to capture the pattern in the residuals. When a large number of such 

trees are superimposed, the response surface can be well approximated.  

4.1.2 Regression Methods Comparison 

 A comparison of regression methods was done to select an appropriate regression 

method which can well approximate the non-linear relationships and create models which 

are accurate preditors. Also, it is desired to find a method for which the model building 

process requires less effort and is more automatic, since 68 models are needed for 34 

airports.  

Sample Data: 

 Airport Delay involves two flight segments, turn-around and taxi-out. Xu et al. 

used Bayesian network models to infer that Taxi-out Delay is one of the major 

contributors to arrival delay at destination (2007). Taxi-out delay has been estimated by 

non-linear models (Irids et al. 2002).  A regression model which can accurately estimate 
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the non-linear relationships of Taxi-out Delay and its predictors should be a reasonable 

choice to predict Airport Delay.  

Furthermore, Taxi-out Delay data can be collected more easily than Turn-around 

Delay since it involves only one leg information of flights. The taxi out delay data from 

the ASPM Quarter Hour Report for ORD from December 1st 2003 to February 29th 2004 

was collected to compare the prediction power of the regression methods. Observations 

from early morning or with missing variables were removed from analysis. The causal 

factors were selected from the existing literature. 

 The data sample was divided into 3 parts: training data, testing data and 

generalization data. The testing data and generalization data were randomly selected from 

complete data set. Each of them accounts for 20% of the data, with the remaining 60% 

serving as the training data.  

Comparison Design: 

The regression models compared include Ordinary Least Square Regression 

(OLS), local regression methods Nearest Neighbor Regression and Kernel Regression, 

and computer-intensive regression methods (PPR, CART, MARS and MART). Defining 

Mean Squared Prediction Error (MSPE) as ( )2

1

1 ˆn
i ii

MSPE y y
n =

= −∑ , 

where, :  the actual delay in testing sample,
ˆ :  the model estimated delay using data from testing sample,

:  the number of cases in the testing sample.

i

i

y
y
n
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The MSPE is used as the criterion to compare the model prediction performance.  

The comparison was performed in two phases.  

• Phase I: regression models were built from the training data. Then, the testing data 

was used to assess the estimation accuracy of the models and select the best settings 

and the best model through MSPE.   

– For the more traditional regression method, the testing data was used to choose 

between OLS regression with stepwise variable selection and a shrinkage method 

(Lasso). 

– For local regressions, the testing data was used to choose the number of nearest 

neighbors and the shape of the kernel.  

– For PPR, the testing data was used to select number of directions (M).  

– For CART, the testing data was used to decide whether or not linear combinations 

of variables should be used.  

– For MARS, the testing data was used to choose maximum number of basis 

functions and the maximum number of interaction terms allowed in the model.  

– For MART, the testing data was used to determine the number of nodes per tree.  

• Phase II, the training data and testing data of Phase I were combined together to 

form a larger size training set (learning data) and then update the parameters of 

model learned during Phase I. Generalization data set is applied on Phase II models 

in order to get unbiased estimates of the generalization errors of the models selected. 
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Comparison Results 

OLS regression is relatively good provided that the error term distribution is 

normal or "well behaved" (i.e., not heavy-tailed and not highly skewed). If the 

relationship between a predictor and the response is sufficiently nonlinear, transforming 

the predictor or adding higher-order terms involving the predictor, may appreciably 

improve performance. However, this can be very complicated when there are a lot of 

explanatory variables. In fact, the variable selection and transformation were very time 

consuming.  

Table 4.1 reports estimates of the MSPE for the different methods. A smaller 

MSPE means a better prediction. The estimated standard errors (SE) of MSPE is 

calculated as 
( )2

1
iw w

m
m

−
−

∑ , where iw is squared prediction error for the ith case, 

w is the sample mean of squared prediction errors, and m is number of cases.  

Model: Phase I MSPE Rank Phase II MSPE Rank 
OLS 0.0161 3 0.0189 7 
nearest neighbor 0.0300 6 0.0176 5 
kernel 0.0623 7 0.0174 4 
PPR 0.0169 4 0.0170 2 
CART 0.0189 5 0.0184 6 
MARS 0.0154 2 0.0173 3 
MART 0.0124 1 0.0120 1 

Table 4.1: MSPE of Learned Regression Model 
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The results from MART are the best in both phases. MARS is the second best in 

the phase I, and the third best in phase II. However, since the estimated standard error of 

the MSPE of MARS is 0.0012, the observed difference in performance between MARS 

and PPR is negligible. OLS is the third best in phase I but the worst in phase II.  

A common problem for MART and PPR is model interpretation. Overall, the 

MARS model is the appropriate choice because: (1) the model building process is 

automatic and fast, (2) it can provide accurate predictions for non-linear phenomena, and 

(3) the developed model is relatively easy to use and interpret.  

4.2 Factor Selection 

Based on the comparison results in the Section 4.1, regression models created using 

Multivariate Adaptive Regression Splines (MARS) were selected to estimate the non-

linear relationship between airport delays and their influencing factors. 

 MARS is a commercial software developed by Salford Systems.  It is an adaptive 

data-driven method. MARS systematically searches for the locations and number of knots 

and the interactions between variables. The nonlinear contributions of variables are 

approximated through a series of continuous piecewise linear splines learned by MARS. 

The causal factors described in Chapter 2 were provided as input factors to 

MARS. The Airport Generated Delay and Airport Absorbed Delay are response 

variables. In situations where there are too many explanatory variables, the collinearity 
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among explanatory variables and model over-specification are a major problem in 

regression analysis. For example, airport weather condition affects airport runway 

configuration and operation capacity. Weather condition, runway configuration and 

AAR/ADR are all related to airport delay. Including more predictor variables in the 

model may reduce prediction bias but increase prediction variance. Including fewer 

predictor variables may reduce prediction variance but increase bias. MARS’s strategy of 

variable selection is to deliberately overfit a model first and then prune away parts which 

cause the least increases in the sum of squared residuals when they are removed. Cross-

validation is used to select a final model from a generated sequence of different sized 

models. 

At the initial part of this research, MARS was used to find models (Generated 

Delay model and Absorbed Delay model) for each of 34 airports. However, these models 

have different predictors and it is hard to analyze the factor’s impact on delays 

collectively. In order to identify a more general relationship for airport delays across 34 

OEP airports, the criteria of minimum sum of squared prediction errors can be slightly 

relaxed. If the hypothesis that prediction errors from two different sized models follow 

the same distribution cannot be rejected through statistical test, the models will be 

considered to have the same or nearly the same prediction power and the simple model 

will be favored. 
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4.2.1 Steps of Variable Selection 

The historical data from each of the 34 OEP airports was separated into three sets: 

training data for creating the model, testing data for selecting the factors for the simple 

models, which do not seem to appreciably underfit the data, and validation data to 

estimate the prediction accuracy of the final model. 

In the process of evaluating regression methods, the taxi-out data was randomly 

separated into three sets. For construction of models for airport delay, the data were 

separated into three sets by time. The data from June and July 2005 were treated as 

training data for predicting Airport Delays. The data from the first 15 days in August 

2005 was treated as testing data. The last 15 days (excluding the 31st) in August 2005 

was reserved for validation as described in Chapter 6. For each response variable – 

Generated or Absorbed Delay at one of 34 OEP airports – a set of predictor variables was 

selected and a model was generated according to the following steps:  

i. Begin with all independent variables, using MARS to build a full-size regression 

model from the training data for each airport.  

a. First, apply a square root transformation to the response variable to 

symmetrize the residual distribution. The scatter plot and Quantile-

Quantile plots of residuals for the untransformed response variable and 

transformed variable (square root transformation) are given in Appendix 

Figure A.1-A.8. 
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b. Next, obtain the residuals from the training data. ( ) ( ) ( )ˆfull i train i train iR y y= −  

where, ( )train iy  is the true delay value of case i in training  sample, ( )ˆtrain iy  is 

the estimated delay value of case i calculated from the full-size model.   

ii. Apply full-size model on testing data set to obtain prediction error 

( ) ( ) ( )ˆfull i test i test iE y y= −  where, ( )test iy  is the true delay value of case i in testing 

sample,  and ( )ˆtest iy  is the estimated delay value of case i calculated from the full-

size model.  

iii. Create a list of the selected variables from all 34 OEP airports. Count the 

number of times each variable appears among the 34 airports. The maximum 

appearance count is 34. 

iv. Keep the variables whose appearance count is more than 17 (half of the total 

number of airports) as the factors to build a baseline reduced-size MARS model.   

v. Calculate residuals ( )reduce iR  for the reduced-size model on training data for each 

airport. 

vi. Apply reduced-size model on testing data and get prediction error ( )reduce iE . 

vii. Conduct paired t tests to test the hypothesis that the mean of squared residuals 

from the regression and the squared prediction errors from full is greater or equal 

to the reduced size models. Conduct Kolmogorov-Smirnov tests to test the 

hypothesis that the squared values of residuals from the regression and the 

prediction errors from the full and reduced size models have the same 

distribution.  
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For each airport, accept the reduced-size model as the minimum-size model if 

the residuals from the training sample and the prediction errors from the testing 

sample pass both the t test and the Kolmogorov-Smirnov test at level 0.05, i.e., 

the null hypotheses of that the sample mean of squared residuals from the full-

size model is greater or equal to that from the reduced-size model and they have 

the same distribution were not rejected. 

viii. For each airport for which no model has yet been accepted, an additional factor 

is added. 

a.  For the Generated Delay model, the variable is added in the following 

order: (1) add Terminal Weather first since it appeared at 16 models, (2) 

add a variable with highest variable importance and the value of 

importance is greater than 30% in the MARS output as calculated for the 

in full-size model, from among the variables not yet considered for 

addition to the model, (3) if importance of Ratio of Departure Demand and 

Departure Throughput in 30-minute window is less than Ratio of 

Departure Demand and ADR in 30-minute window or 15-minute window, 

then replace it with the variable with high importance, (4) add the variable 

which has the lowest correlation with the factors in the model.  (Note: The 

MARS software assigns a variable importance rating to each variable 

which gives an indication of the predictive strength of each variable.) 

b. For Absorbed Delay model, select the variable with the highest variable 

importance as calculated for the in full-size model, from among the 
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variables not yet considered for addition to the model. For reduced-size 

Absorbed Delay model, only one additional variable is needed to pass the 

hypothesis tests. 

ix. Continue Steps v to viii till both tests are not rejected.  

 The independent variables in the reduced-size model are the significant factors, which 

we are interested in, for delays at corresponding airports. The variable selection process 

is graphically expressed in Figure 4.1  

Ix.

Total potential factors

Residual (full)
Important Variables

(importance>0)

Full-size 
model

ii. Execute 
model on 
testing 
sample

Prediction errors
 (full)

v. Run 
MARS on 
training 
sample

[34 airport models] 

iii.Summarize 
important 

variables at 
all airports

Reduced number of factors
Residual (reduced)

Reduced-
size model

Prediction errors 
(reduced)

vii. Conduct 
statistical 

tests

Hypotheses rejected

viii. Add one 
more factor

Additional factor

Final 
model

iv. Keep 
variables in 
more than 
17 models

ix.

vi. Execute 
model on 
testing 
sample

i. Run 
MARS on 
training 
sample

 

Figure 4.1: Steps of Variable Selection in the Final Model 

 

After these steps were completed, fewer factors for each airport were left in the 

final models. Paired t-tests and non-parametric Kolmogorov-Smirnov tests were 

conducted on the residuals of training samples from original full-size models and 
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reduced-size final models.  The same tests were also conducted on the prediction errors 

of the testing samples from the full-size and reduced-size models.  

The test results for Airport Generated Delay models are provided in Table A.3. 

The results can neither reject the null hypotheses that the full size models have smaller 

squared residuals nor the null hypothesis that the squared prediction errors from both size 

models have the same distributions at 5% significant level at all OEP 34 airports.  

The test results for Airport Absorbed Delay models are provided in Table A.4. 

For all the OEP 34 airports, the test results cannot reject the null hypotheses of equal 

means and same distributions. Hence, there is not strong evidence to support the 

hypotheses that the residuals or prediction errors from the reduced-size delay absorption 

models have different distributions from the full-size models.   

4.2.2 Selected Factors 

4.2.2.1 Factors for Airport Generated Delay 

The most common variables selected for Airport Generated Delay in final models 

are listed in Table 4.2. The complete list of predictors in each airport model is in 

Appendix Table A.5. 

. 

  



 

 

Table 4.2: Selected Factors Used in Equations for Generated Delay at Each Airport (in the order of average Airport Delay per
flight in summer 2005) 

 Inbound Airport Airline Outbound 

code 

Average 
airport delay 

(min) 
summer 05 

Inbound 
delay 
(min) 

Departure rho 
30 (demand/
throughput in 

30min) 

Departure rho 
ADR15 

(demand/AD
R in 15min)

Terminal 
weather 

 

Schedule 
departure 

time 

Carrier 
delay 
(min) 

Swap 
aircraft 

rate 

GDP 
holding 

time 
(min) 

Actual 
enroute 

time 
weather 

PHL 25.14   x     x x x x x 
JFK 22.56 x x     x x x x  

EWR 20.67   x     x x x x  
ORD 17.99 x x   x x x x x x 
MSP 16.80 x   x x x x   x  
MIA 15.89 x x   x x x   x  
IAD 15.83 x x     x x x x  
IAH 15.62 x   x x x x   x  
LGA 14.65 x x   x x x x x x 
DTW 14.32 x   x   x x   x  
CLT 14.19 x   x x   x x x  
ATL 13.80 x x     x x x x  
DFW 13.26 x x   x x x x x  
BOS 12.33 x   30-min    x x x x  
PHX 11.45 x x     x x x x  
FLL 11.41 x x     x x x x  
DCA 11.09 x x x x   x x x x 
MDW 11.05 x       x x x x  
CVG 10.14 x   30-min    x x x x x 
MEM 9.96 x   x x   x x x  
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 Inbound Airport Airline Outbound 

code 

Average 
airport delay 

(min) 
summer 05 

Inbound 
delay 
(min) 

Departure rho 
30 (demand/
throughput in 

30min) 

Departure rho 
ADR15 

(demand/AD
R in 15min)

Terminal 
weather 

 

Schedule 
departure 

time 

Carrier 
delay 
(min) 

Swap 
aircraft 

rate 

GDP 
holding 

time 
(min) 

Actual 
enroute 

time 
weather 

BWI 9.68 x x   x x x x x  
LAS 9.20 x x     x x x x  
CLE 9.08 x x     x x x x  
TPA 8.44 x x     x x x x  
DEN 8.39 x x       x x x  
PIT 8.32 x x   x   x x x  

MCO 8.30 x x   x x x x x  
SEA 8.17 x x     x x x x  
SLC 7.76 x   x     x x x  
STL 6.87 x x     x x   x  
LAX 6.74 x x     x x x x  
SFO 6.41 x   x     x x x  
SAN 5.35 x 15-min      x x x x  
PDX 4.21 x x     x x x x  

 
* 15-min and 30-min in the 4th and 5th column from left denote the ratio calculated in 15-minute and 30-minute time 

window which are different from other entries in the same column. 
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The Departure Demand Ratio reflects the airport operation and airline schedule 

structure, and it is considered to be a very important variable influencing the airport 

operation performance (Ball et al 2006). In Table 4.2, two correlated variables about 

Departure Demand Ratio, Ratio of Departure Demand and Departure throughput in 30-

minute time window and Ratio of Departure Demand and Airport Departure Rate (ADR) 

in 15-minute time window, are the selected predictors for 33 airports. The only exception 

is MDW airport. For MDW, the variable related to Departure Demand Ratio is not even 

in the full-size model.   

4.2.2.2 Factors for Airport Absorbed Delay 

The factors that appeared most commonly in the model for Airport Absorbed 

Delay at all 34 OEP airports in Table 4.3 are Inbound Delay, Scheduled Turn-around 

Time and Carrier Delay. Twenty nine airports have GDP Holding Time, 24 airports have 

Number of Seats and 7 airports have Scheduled Departure Time as additional factors. The 

complete list of predictors in each airport model is in Appendix Table A.6. 

 As shown in Table 4.2 and 4.3, the selected factors for airport delays differed 

among airports. The next chapter will explain the final models in detail.     
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  Inbound Airline Outbound 

Airport 
Avg.airport  
delay(min) 

Inbound 
 Delay (min)

Sch. Dep.
 time 

Sch. Turn 
time 

Carrier  
Delay (min) 

# of  
seats 

GDP  
Time (min)

PHL 25.14 x x x x x x 
JFK 22.56 x   x x     

EWR 20.67 x   x x x x 
ORD 17.99 x   x x x x 
MSP 16.80 x   x x   x 
MIA 15.89 x   x x x x 
IAD 15.83 x   x x x x 
IAH 15.62 x   x x x x 
LGA 14.65 x   x x x x 
DTW 14.32 x   x x   x 
CLT 14.19 x   x x x x 
ATL 13.80 x   x x x x 
DFW 13.26 x   x x x x 
BOS 12.33 x   x x   x 
PHX 11.45 x   x x     
FLL 11.41 x x x x x x 
DCA 11.09 x   x x x x 
MDW 11.05 x   x x   x 
CVG 10.14 x   x x x x 
MEM 9.96 x   x x x x 
BWI 9.68 x   x x x x 
LAS 9.20 x x x x x   
CLE 9.08 x x x x   x 
TPA 8.44 x x x x   x 
DEN 8.39 x   x x x x 
PIT 8.32 x   x x x x 

MCO 8.30 x   x x x x 
SEA 8.17 x   x x x x 
SLC 7.76 x   x x   x 
STL 6.87 x x x x x x 
LAX 6.74 x   x x x   
SFO 6.41 x x x x   x 
SAN 5.35 x   x x x   
PDX 4.21 x   x x x x 

Table 4.3: Selected Factors Used in Equations for Absorbed Delay at Each Airport (in the 
order of average Airport Delay per flight in summer 2005) 



 

 102

 

CHAPTER 5 
 

FINAL MODELS 
 
 
 
 

This chapter lists samples of final models of Airport Generated Delay and Absorbed 

Delay. The final models of all 34 OEP airports are provided in Appendix B. 

5.1 Airport Generated Delay 

The general form of the equation for Airport Generated Delay is illustrated by the model 

for ORD in Equation 5.1 . The response variable, Airport Generated Delay, is 

transformed by taking the square root to stabilize the variance of residuals. The same 

transformation was done on Airport Absorbed Delay as well.  
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Airport: ATL,  
 Basis Functions

 ===============
 BF1 = max(0, GDPHoldingTime  23.200);
 BF2 = max(0, 23.200  GDPHoldingTime );
 BF3 = max(0, CarrierDelay  11.857) * BF2;
 BF4 = max(0, 1

 

−
−

−

Generated Delay

1.857  CarrierDelay ) * BF2;
 BF6 = max(0, 34.000  ScheduleDepartureTime ) * BF2;
 BF7 = max(0, DepartureDemandRatio30  6.160);
 BF8 = max(0, 6.160  DepartureDemandRatio30 );
 BF9 = max(0, SwapAircraf

−
−

−
−

tRate  0.330);
 BF10 = max(0, 0.330  SwapAircraftRate );
 BF12 = max(0, 56.000  CarrierDelay ) * BF10;
 BF13 = max(0, InboundDelay  124.250) * BF10;
 BF14 = max(0, 124.250  InboundDelay ) * BF10;
 BF1

−
−
−

−
−

5 = max(0, ScheduleDepartureTime  54.000);
 BF16 = max(0, 54.000  ScheduleDepartureTime );
 BF17 = max(0, CarrierDelay  3.333) * BF16;
 BF18 = max(0, 3.333  CarrierDelay ) * BF16;

ĝ = max(0, 10.785 
+

−
−

−
−

 0.041 * BF1  0.074 * BF2 
+ .665814E-03 * BF3  0.003 * BF4 

 0.010 * BF6 
 0.030 * BF7  0.653 * BF8

+ 1.934 * BF9  1.150 * BF10 
 0.163 * BF12
 0.092 * BF13 + 0.031 * BF14 

+ 0.027 * BF15
+ 0.033 * B

−
−

−
− −

−
−
−

F16 
+ .961083E-03 * BF17  0.005 * BF18)

ˆWhere, g is the estimate of AirportGeneratedDelay
−

 

 

5.1

The model has an additive form. Each of the summands is a function of a basis 

function. Each basis function represents a linear contribution for a predictor over a certain 

range of values. For example, the two basic functions BF1 and BF2 in Airport Generated 
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Delay model of ATL represent two different segments of the range of values for GDP 

Holding Time (see Equation 5.1). Each segment has a different coefficient in the final 

model: e.g., 0.041 for BF1 and -0.074 for BF2. This can be seen in the plot of Figure 5.1. 

These different slopes indicate different degrees of influences of GDP Holding Time on 

Airport Generated Delay.  
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Figure 5.1: Graphical Example of the Contributions of a Pair of Basis Functions, BF1 and
BF2, to the Square Root of Generated Delay at ATL. 

The model also includes interaction terms. For example, the pair of BF12 is the 

interaction terms of Carrier Delay and Swap Aircraft Rate. Only when Swap Aircraft 

Rate is less than 0.33 and Carrier Delay less than 56 minutes will BF12 have positive 

value. The coefficients of BF12 in final model explain the joint impact of Carrier Delay 

and Swap Aircraft Rate.  
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5.2 Airport Absorbed Delay 

Similarly, the models for Airport Absorbed Delay are in the same format as 

Generated Delay. The difference is that the value of Absorbed Delay is negative. The 

transformed response variable is AbsorbedDelay− − . Equation 5.2 shows the final 

Airport Absorbed Delay model of ORD.  
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Airport: ATL,  
Basis Functions

 ===============
 BF1 = max(0, InboundDelay  18.222); 
 BF2 = max(0, 18.222  InboundDelay );
 BF3 = max(0, TurnaroundTime  84.500);
 BF4 = max(0, 84.500  Tu

−
−

−
−

Absorbed Delay

rnaroundTime );
 BF5 = max(0, InboundDelay  21.000) * BF4;
 BF6 = max(0, 21.000  InboundDelay ) * BF4;
 BF7 = max(0, CarrierDelay  39.667);
 BF8 = max(0, 39.667  CarrierDelay );

 BF10 = max(0, 54.700 

−
−

−
−
−  GDPHoldingTime );

 BF11 = max(0, NumberSeats  161.400);
 BF12 = max(0, 161.400  NumberSeats );
 BF13 = max(0, InboundDelay  69.333) * BF10;
 BF14 = max(0, 69.333  InboundDelay ) * BF10;
 BF15 = max(0,

−
−

−
−

 InboundDelay  8.750) * BF8;
 BF16 = max(0, 8.750  InboundDelay ) * BF8;
 BF17 = max(0, InboundDelay + .441525E-06) * BF12;
 BF18 = max(0, - .441525E-06  InboundDelay ) * BF12;

 
â = min(0, -1.324 

 0.

−
−

−

− 027 * BF1 + 0.053 * BF2 
+ 0.006 * BF3 + 0.038 * BF4
+ .480074E-03 * BF5  0.001 * BF6 
+ 0.004 * BF7  0.033 * BF8 

 0.025 * BF10 
+ 0.013 * BF11 + 0.002 * BF12 
+ .596830E-03 * BF13 + .154085E-03 * BF14
+

−
−

−

 .208147E-03 * BF15 + 0.001 * BF16 
 .253714E-03 * BF17  .252755E-03 * BF18)

ˆwhere, a is the estimate of AirportAbsorbedDelay

− −

− −

 

5.2
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5.3 Airport Delay 

Airport Delay is the summation of Airport Generated Delay and Absorbed Delay. 

Since the outputs of both the Generated Delay models and the Absorbed Delay models 

are the square roots of delays, each point estimate provided by these models needs to be 

transformed back to its original scale in minute so that the point estimate of Airport 

Delay can be calculated (see Equation 5.3). 

2 2ˆ ˆ ˆAirport Delay

ˆwhere,  is the estimate of AirportGeneratedDelay  for a 15-minute epoch

ˆ            is the estimate of AirportAbsorbedDelay  for a 15-minute epoch

epoch epoch epoch

epoch

epoch

g a

g

a

= −

− −

 5.3

 

The models developed can not only provide the point estimate of the mean of 

Airport Delay using the Equation 5.3, but the prediction intervals for given values of the 

predictors. The way to calculate an approximate standard deviation of back-transformed 

Airport Delay (Equation 5.4) is described as follows.   

[ ] 2 2 2 22 , .i i i i iV T V G V A Cov G A⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

 

[ ] [ ] ( ) ( )

[ ] [ ] ( ) ( )

22

22

ˆ ˆ ˆLet  = GeneratedDelay ,     and .

ˆ ˆ ˆLet  = AbsorbedDelay ,     and ,

where  is number of basis functions plus 1 (intercept),
and  is number of

i i i i i g i i g
n

i i i i i a i i a
n

G E G g V G g g n p

A E A a V A a a n p

p
n

σ

σ

= = ≈ − −

− − = = ≈ − −

∑

∑

 cases.

 

Let Airport Delay = GeneratedDelay + AbsorbedDelay 
2 2 ,i i iT G A= −  

and  
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Based on a first-order Taylor series expansion,  

( ) ( ) ( ) ( )' ,Y Y Yf Y f Y fµ µ µ− ≈ −  

we get 

( )( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2

,

' ,

and , , ' ' .

Y

Y Z

E f Y f

V f Y V Y f

Cov f Y f Z Cov Y Z f f

µ

µ

µ µ

≈

⎡ ⎤ ⎡ ⎤≈⎣ ⎦ ⎣ ⎦
⎡ ⎤ ≈⎣ ⎦

 

It follows that 

[ ]( )

[ ]( )

( )

22 2 2

22 2 2

2 2

ˆ ˆ ˆ2 4 ,

ˆ ˆ ˆ2 4 ,

ˆ ˆand , 4 , .

i i i g i

i i i a i

i i i i i i

V G V G g g

V A V A a a

Cov G A g a Cov G A

σ

σ

⎡ ⎤ ≈ =⎣ ⎦

⎡ ⎤ ≈ =⎣ ⎦

⎡ ⎤ ≈⎣ ⎦

 

Overall, we have that  

[ ] ( )2 2 2 2ˆ ˆ ˆ ˆ4 4 8 , .i g i a i i i i iV T g a g a Cov G Aσ σ≈ + −   

5.4

5.4 Results 

An inspection of models in Equation 5.1 to Equation 5.2 of ATL and all 34 OEP 

airport models in Appendix B shows that no two airports share the same model for either 

Generated Delay or Absorbed Delay. Different airport models have different factors, 

different knots over the factor’s value space, and different coefficients. The models are 

unique for each airport. Hence, using one general model to predict delays at all airports is 

questionable, at least to the level of fidelity in this research (15-minute increments).  
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CHAPTER 6 
 

MODEL VALIDATION 
 
 
 
 

The models derived in this research are used to predict airport performance at a future 

time. It is of paramount importance to validate the predictions from the regression models 

since regression analysis is susceptible to overfitting the training data. 

There are three ways to examine model validity (Steyerberg et al. 2000). 

• Apparent validation tests the regression model using the same data that was 

used to develop the model. This type of validation is mainly for assessing 

model assumptions via residuals.  

• Internal validation tests the regression model by using the data coming from 

the same underlying population. 

• External validation tests the model by using the data coming from a related 

but slightly different population.  

 A good regression model should be able to estimate the data out of the training 

sample without suspiciously high error measures. Both internal and external validations 

evaluate model performance via prediction errors. External validation is easier to 

calculate than the internal one because external validation just needs a new data sample 

different from training sample, while the internal validation requires another random 

sample from same population.  



 

 110

In this research, apparent validations were conducted during the model building 

process, and the results are shown in Appendix Figure A.1 to A.8. This chapter only 

show the external validation on the models derived for airports.  

6.1 External Validation 

A hold-out sample from the last 15 days of August 2005 and another data sample 

from the last 15 days of August 2006 (August 31st was excluded from both years) were 

used to measure the prediction accuracy for external validity.  External validation more 

accurately measures the prediction performance of the models. 

Figure 6.1 compares the actual Airport Delay and model output at each epoch on 

one day, August 24 2005 at ATL.  

Airport Delay (Generated + Absorbed) at ATL on Aug. 24
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Figure 6.1: Comparison of Estimated and Actual Airport Delay at ORD on Aug. 24, 2005

 

The dots in light color represent the estimated Airport Delays for each 15-minute 

epoch given the values of predictors. The dots in dark color are the actual delay for each 
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epoch. The dashed lines are the square of estimated Airport Delay plus or minus one 

estimated standard deviation of the error term of Airport Delay based on Equation 5.4.   

Not all the predictions for epochs on August 24, 2005 at ATL fall within σ̂ of the 

regression line. Table 6.1 summarized the percentage of actual Airport Delay data within 

ˆ1σ  and  ˆ2σ  of the regression line. About 77% of validation data of 2005 and 73.2% of 

validation data of 2006 fall within σ̂ of the regression line.  

Table 6.1: Summary of the Percentage of Actual Airport Delay Data (w) falls within 68%
and 95% prediction intervals for 34 OEP Airports.  

  Minimum percentage Average percentage 
Percentage of actual data in ˆ ˆw σ±  67.9% 77.0% 2005 Percentage of actual data in ˆ ˆ2w σ±  90.6% 94.9% 
Percentage of actual data in ˆ ˆw σ±   67.0% 73.2% 2006 Percentage of actual data in ˆ ˆ2w σ±  90.2% 93.6% 

 
  

Hence, the models perform very well on both 2005 and 2006 data, while 2005 is a 

little better than 2006. The detailed information about each airport is in Table A.7. 

 Several general validation statistics are provided in the next section.  

6.1.1 Validation Statistics 

Several measures of the overall estimation performance of the models for 

Generated and Absorbed Delay are calculated to assess how well the model fits the data.  

These are the mean transformed prediction error,  

( )21
estimate actual DataMTPE

m
= −∑ , 

and the mean absolute transformed prediction error,  
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21 estimate actual DataMTAPE
m

= −∑ , 

where, m is the number of records in the validation data set, the second half of August.  

The direct output of the fixed models are Airport Generated Delay  and 

Airport Absorbed Delay− − . Each model prediction was transformed back to the 

original scale to obtain a prediction of Airport Generated and Absorbed Delay. This 

enables the calculation of errors in the same units and scales as the actual delays.  

The MTPE is obtained by subtracting the actual delays from the transformed 

predictions, and then averaging them. This statistic takes account of the sign of positive 

and negative errors. It measures the bias of predictions from the fixed model. The ideal 

MTPE is zero.  

The MATPE is obtained by summing the absolute prediction errors for delays. 

Since there are both negative and positive errors, taking the absolute value of errors 

estimates the average magnitude of the errors without considering their direction. This 

statistic measures the variability of the predictions from the fixed model.  

6.1.2 Validation Results for 2005 

The values of validation statistics defined in the previous subsection for the 

overall performance are given in Table 6.2. The airports are listed in the order of average 

Airport Delay per flight in the summer 2005.  
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Table 6.2: Validation Results of Airport Delays at 34 OEP Airports of  Aug.2005 

Generated Delay Absorbed Delay Airport Delay 

Airport R^2 MTPE MATPE R^2 MTPE MATPE
Actual
Mean MTPE 

Actual 
Std MATPE

PHL 0.58 1.4 8.7 0.51 1.0 1.8 16.2 2.4 17.4 9.2 
JFK 0.60 -0.4 8.0 0.54 1.3 2.5 17.3 0.9 21.4 8.7 

EWR 0.52 0.6 7.7 0.49 1.2 2.5 14.7 1.8 18.3 8.5 
ORD 0.72 1.7 5.5 0.52 1.0 1.8 11.2 2.7 14.6 6.3 
MSP 0.62 0.9 5.9 0.59 0.2 2.3 14.1 1.1 21.3 6.5 
MIA 0.67 -1.0 6.1 0.42 0.7 2.1 9.2 -0.2 20.3 7.2 
IAD 0.53 1.2 7.2 0.42 1.4 2.5 8.7 2.6 21.0 8.3 
IAH 0.65 -2.2 8.3 0.46 1.2 2.1 12.8 -1.0 22.6 9.2 
LGA 0.49 -2.2 7.3 0.59 1.0 2.3 11.8 -1.2 14.8 7.8 
DTW 0.71 0.5 5.2 0.51 0.9 2.5 13.0 1.4 21.1 6.1 
CLT 0.68 -1.3 5.6 0.47 1.2 2.2 9.3 -0.1 17.4 6.3 
ATL 0.68 -1.5 5.8 0.60 0.7 2.3 12.5 -0.8 16.7 6.6 
DFW 0.70 -1.0 5.4 0.41 0.9 1.8 10.0 0.0 15.3 6.1 
BOS 0.64 -0.4 5.3 0.47 1.2 2.4 7.1 0.7 13.1 6.3 
PHX 0.62 -0.5 4.8 0.58 0.6 2.1 7.6 0.0 14.9 5.9 
FLL 0.60 -0.2 5.3 0.47 0.9 1.9 7.0 0.7 20.0 6.3 
DCA 0.63 -0.1 3.9 0.47 1.3 2.1 5.5 1.2 12.9 4.7 
MDW 0.65 0.4 4.2 0.47 1.0 1.8 5.6 1.3 13.6 5.1 
CVG 0.69 -1.3 4.8 0.58 1.1 2.3 6.9 -0.2 14.7 5.6 
MEM 0.69 -0.9 5.8 0.51 1.3 2.6 8.5 0.4 20.2 7.0 
BWI 0.60 -0.2 4.8 0.38 1.0 1.8 7.6 0.8 16.5 5.7 
LAS 0.63 -0.1 3.9 0.46 0.8 1.8 5.9 0.8 12.3 4.7 
CLE 0.68 -1.8 4.9 0.52 1.0 2.2 5.4 -0.9 20.6 5.9 
TPA 0.66 -0.8 4.8 0.47 1.2 2.1 5.2 0.4 19.7 6.0 
DEN 0.61 -0.2 3.9 0.50 1.0 2.0 4.3 0.8 10.9 4.9 
PIT 0.69 -1.0 4.1 0.46 1.4 2.4 2.7 0.4 17.8 5.4 

MCO 0.68 -0.7 4.5 0.39 0.8 2.0 6.0 0.1 16.5 5.4 
SEA 0.66 -0.6 3.6 0.66 0.9 2.2 5.0 0.3 14.5 4.5 
SLC 0.58 -1.4 4.4 0.51 0.9 1.9 6.1 -0.5 15.3 5.2 
STL 0.67 -0.2 4.3 0.44 1.2 2.1 3.8 1.0 11.6 5.1 
LAX 0.57 -0.2 3.4 0.50 0.5 1.8 5.0 0.3 9.8 4.2 
SFO 0.59 -0.3 4.5 0.65 1.0 2.4 3.5 0.7 15.7 5.7 
SAN 0.50 -0.8 4.8 0.46 1.0 2.1 3.6 0.1 13.9 5.7 
PDX 0.63 -1.6 3.4 0.64 0.7 2.1 1.8 -0.8 12.9 4.5 

average 0.63 -0.5 5.3 0.50 1.0 2.1 8.1 0.5 16.5 6.2 
min 0.49 -2.2 3.4 0.38 0.2 1.8 1.8 -1.2 9.8 4.2 
max 0.72 1.7 8.7 0.66 1.4 2.6 17.3 2.7 22.6 9.2 
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As can be seen from Table 6.2, the MTPE from validation samples in 2005, Aug. 

1st to Aug. 15th, are between -2.2 minutes at IAH and LGA and 1.7 minutes at ORD for 

Airport Generated Delay; and between 0.2 minutes at MSP and 1.4 minutes at PIT for 

Absorbed Delay. The average value of MATPE for Airport Generated Delay is 5.3 

minutes; the average value of MATPE for Airport Absorbed Delay is 2.1 minutes. The 

standard deviation of Airport Generated Delay of all 34 airports in summer 2005 is 20.0 

minutes. Based on the comments from experts of aviation modeling, prediction errors up 

to 15 minutes are acceptable. Therefore, the range of variation of prediction errors is 

reasonable. Predictions for the 2005 validation data correspond reasonably well to the 

actual observations.  

6.1.3 Validation Results for 2006 

Compared to the 2005 validation data, the August 2006 data is more likely to be 

different from the 2005 training data. After one year, airlines may have changed their 

operation strategies and airports may have improved operational conditions. The 

validation conducted on 2006 data provides a stronger test of model prediction 

performance (see Table 6.3).



 

 115

Table 6.3: Validation Results of Airport Delays at 34 OEP Airports of  Aug.2006 

Generated Delay Absorbed Delay Airport Delay 

Airport R^2 MTPE MATPE R^2 MTPE MATPE
Actual
Mean MTPE 

Actual
Std MATPE

PHL 0.58 -0.6 11.8 0.51 1.2 2.1 19.4 0.6 26.6 12.4 
JFK 0.60 -5.5 11.3 0.54 1.0 3.0 23.7 -4.5 26.0 11.9 

EWR 0.52 -4.9 11.4 0.49 1.1 2.5 21.2 -3.8 21.1 11.8 
ORD 0.72 1.8 7.5 0.52 1.5 2.4 13.1 3.4 16.8 8.5 
MSP 0.62 0.8 6.0 0.59 1.6 2.8 8.6 2.4 18.5 7.5 
MIA 0.67 -0.2 8.0 0.42 1.1 2.6 10.4 0.9 26.2 9.6 
IAD 0.53 1.3 8.0 0.42 1.8 2.7 9.1 3.2 22.1 9.5 
IAH 0.65 -0.8 7.8 0.46 1.0 2.3 12.2 0.1 20.9 8.8 
LGA 0.49 -1.7 8.1 0.59 1.1 2.6 11.6 -0.6 15.5 8.9 
DTW 0.71 0.7 4.7 0.51 1.3 2.3 7.4 2.1 19.2 5.8 
CLT 0.68 -2.0 7.2 0.47 1.5 2.6 10.1 -0.5 21.1 8.3 
ATL 0.68 -3.4 6.7 0.60 0.8 2.0 15.3 -2.6 16.3 7.2 
DFW 0.70 0.4 6.2 0.41 1.0 1.8 10.8 1.4 15.3 7.0 
BOS 0.64 -0.1 5.6 0.47 1.1 2.5 8.2 1.0 15.7 6.6 
PHX 0.62 -1.6 7.4 0.58 0.7 2.0 10.2 -0.9 18.8 8.1 
FLL 0.60 1.2 5.2 0.47 2.0 2.6 3.6 3.2 15.1 6.9 
DCA 0.63 -0.3 5.3 0.47 1.6 2.4 8.3 1.2 18.2 6.0 
MDW 0.65 0.0 5.8 0.47 0.9 1.6 9.8 0.9 16.2 6.4 
CVG 0.69 1.4 5.3 0.58 1.3 2.2 6.1 2.6 22.2 6.5 
MEM 0.69 -0.2 4.9 0.51 1.9 3.0 5.4 1.8 20.4 6.3 
BWI 0.60 0.4 4.3 0.38 1.2 2.0 6.0 1.6 14.3 5.2 
LAS 0.63 -2.7 5.1 0.46 0.2 2.0 10.3 -2.5 13.5 5.8 
CLE 0.68 0.1 5.3 0.52 1.3 2.7 6.8 1.4 25.5 6.7 
TPA 0.66 -2.5 5.4 0.47 1.3 2.2 5.4 -1.2 17.4 6.5 
DEN 0.61 0.8 4.7 0.50 1.2 2.0 5.5 2.0 13.7 5.8 
PIT 0.69 -2.3 5.4 0.46 0.7 2.4 6.6 -1.7 16.5 6.2 

MCO 0.68 -1.9 5.2 0.39 0.6 1.9 7.8 -1.3 18.8 5.9 
SEA 0.66 -2.3 4.5 0.66 1.2 2.1 8.1 -1.1 15.2 5.1 
SLC 0.58 -2.4 4.6 0.51 1.4 2.4 5.7 -1.0 13.5 5.7 
STL 0.67 -0.1 3.1 0.44 1.6 2.2 3.4 1.5 13.5 4.4 
LAX 0.57 -2.1 4.1 0.50 0.5 2.1 7.1 -1.6 10.8 4.6 
SFO 0.59 -0.8 4.4 0.65 1.2 2.8 2.9 0.4 13.2 5.7 
SAN 0.50 -0.8 3.8 0.46 1.2 2.3 3.2 0.4 10.9 4.9 
PDX 0.63 -1.2 3.3 0.64 1.1 2.1 3.4 -0.2 14.8 4.1 

average 0.63 -0.9 6.1 0.50 1.2 2.3 9.0 0.3 17.8 7.1 
min 0.49 -5.5 3.1 0.38 0.2 1.6 2.9 -4.5 10.8 4.1 
max 0.72 1.8 11.8 0.66 2.0 3.0 23.7 3.4 26.6 12.4 
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The MATPEs from 2006 validation samples are between 3.1 minutes at STL and 

11.8 minutes at PHL for Airport Generated Delay; and between 1.6 minutes at MDW and 

3.0 minutes at JFK for Absorbed Delay. Overall, for Airport Delay, the MATPEs are 

from 4.1 minutes at PDX and 12.4 minutes at PHL. 

6.1.4 Comparison of Validation Results of 2005 and 2006 

For most airports, the validation results for August 2005 are slightly better than 

2006. This is to be expected since the airport performance in August 2005 should be 

more similar to June and July 2005 than August 2006.  Figure 6.2  shows the histograms 

of MTPE from 2005 and 2006 together, so that the difference can be seen easily.  

 
Figure 6.2: Comparison of MTPEs of Airport Generated Delay Using Validation Data 
from 2005 and 2006 
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The MTPEs of Generated Delay at JFK, EWR, ATL, and LAS in August 2006 are 

outside the left side boundary of all MTPEs in 2005; and the MTPE of ORD, IAD, FLL, 

and CVG in 2006 are outside the right side boundary of all MTPE in 2005. The MATPEs 

at PHL, JFK, and EWR in 2006 are outside the right boundary of all MATPEs in 2005 in 

Figure 6.3. It also shows that the models perform better for data in 2005 than 2006.   

Figure 6.3: Comparison of MATPEs of Airport Absorbed Delay Using Validation Data
from 2005 and 2006 
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60-day window to predict next 30 days might be a better strategy for using this model. In 

this research, we only consider summer season. The seasonal effects may also need to be 

included in the model when it is used to predict delays at different season. 
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CHAPTER 7 
 

SENSITIVITY ANALYSIS 
 
 
 
 

In addition to developing a methodology for predicting airport delay, another main 

purpose of this research is to provide a quantitative measurement of crucial factors’ 

influence on airport delay. This chapter describes a method for approximate sensitivity 

analysis in non-linear models. The results from sensitivity analysis are also discussed.  

7.1 Approach to Sensitivity Analysis 

If a model is linear and the factors in the model are independent, the coefficients in the 

model provide a measure of the effects of the factors. However, in the multi-factor 

piecewise models obtained in this research, separate slopes were fitted to the observations 

in different regions of the predictor variables’ value spaces. The interaction terms are 

context dependent as well. Therefore, the coefficient of a predictor is not directly 

interpretable as a global, context-independent measure of the factor’s impact. An 

approximate approach has to be designed to measure the degree of influence of predictors 

in the non-linear model. 



 

 120

7.1.1 General Equation for Sensitivity Analysis 

 The sensitivity analysis is conducted by adjusting one predictor while holding 

other predictors constant. Let ( , )i i jy f x= x , ( ) ( )( , )i ji
E y E f x= x ,  and 

( , )i y i x jy f x+ ∆ = + ∆ x  where i j≠ . For a non-linear model, given the same x∆ , 

different ix will yield different y∆ ; however, ( ) ( )( , )i y i x jE y E f x+ ∆ = + ∆ x  holds, hence  

 The expected difference between the expected prediction from the adjusted data 

set and the expected prediction from the original data set is the approximate results of 

changes of ix alone, which reflects the unique contribution of that predictor to the 

response variable, if that predictor’s value is artificially changed by a certain amount 

while holding the value of other predictors constant.  

 Since each delay model was developed to fit the training data and the models 

perform best on the training data in the form of mean squared residuals, the training data 

was used as the original data set in this chapter.  

 The predictors in the models are measured in different ways. In order to compare 

the relative importance of these incommensurate predictors, a standardized adjustment 

amount was set as the percentage of the expected values of the predictor of interest across 

all airports in the training sample, that is   

( ) ( ) ( )
( ) ( )

( , )

( , ) ( , )

y i x j i

i x j i j

E E f x E y

E f x E f x

∆ = + ∆ −

= + ∆ −

x

x x
. 7.1
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where, }{-50,-40,-30,-20,-10,10,20,30,40,50w∈ . This is a general rule for the sensitivity 

analysis conducted in this research. There are specific rules for each factor to 

accommodate their different distribution and practical reality.  These rules are described 

individually in detail in the following subsections.  

7.1.2 Factors in Sensitivity Analysis and Their Distribution 

 The factors compared in the sensitivity analysis are the most common 

predictors in the final models, i.e., these factors are the predictors in more than 17 airport 

models. The factors compared for Airport Generated Delay are the GDP Holding Time, 

Carrier Delay, Inbound Delay, ratio of departure demand and departure throughput (30-

minute window), and Swap Aircraft Rate. The factors compared for Airport Absorbed 

Delay are the GDP Holding Time, Carrier Delay, Inbound Delay, Scheduled Turn-around 

Time on Airport Absorbed Delay, and the Number of Seats.  

Time of day is not included in the sensitivity analysis since airlines schedule their 

flight based on their market and it is solely an airline’s decision about when to fly the 

flight. Arbitrarily adjusting the Scheduled Departure Time implies arbitrarily adjusting 

the airlines’ schedule, and it is not practically reasonable. 

Figure 7.1 plots the distributions of these selected factors at all 34 OEP airport in 

June and July 2005.  

% ( )x iw E x∆ =  7.2
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The expected value of factors Departure Demand Ratio, Scheduled Turn-around 

Time, and Number of Seats was computed as the sample mean of data of June and July 

2005 (training sample) from 34 airports.  

Equation 7.1 provides a general rule to conduct the sensitivity analysis of 

predictors.  However, the purpose of the sensitivity analysis conducted in this research is 

not solely about a factor’s impact shown in the model but about its impact on the overall 

airport delays which can be estimated by the model given the all other conditions are the 

same as June and July 2005. In this research, the response variables are delays, and it is 

0 10 20 30 40 50 60
0

0.1

0.2

0.3

carrier delay (minute)

pr
op

or
tio

n

Distribution of Carrier Delay (greater than 0)

0 20 40 60 80 100 120
0

0.1

0.2

0.3

GDP holding time (minute)

pr
op

or
tio

n

Distribution of GDP Holding Time (greater than 0)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

swap aircraft rate

pr
op

or
tio

n

Distribution of Swap Aircraft Rate (greater than 0)

-60 -40 -20 0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

in-bound delay (minute)

pr
op

or
tio

n

Distribution of In-bound Delay

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

ratio of departure demand and depature throughput (30-minute)

pr
op

or
tio

n

Distribution of Ratio

0 50 100 150 200 250
0

0.1

0.2

0.3

scheduled turn-around time (minute)

pr
op

or
tio

n

Distribution of Turn-around Time

0 50 100 150 200 250 300
0

0.1

0.2

0.3

number of seats

pr
op

or
tio

n

Distribution of Number of Seats

Figure 7.1: Distribution of Value of Selected Factor at 34 OEP Airports in June and July 
2005. The y-axis is the proportion of 15-minute epochs associated with the value in the x-
axis.  
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assumed that the only associated consequence of the changes of predictors in the models 

is delay, and the cost associated with delays is linearly correlated to the length of delay.  

Suppose there was a factor in a model which has very strong statistical 

significance on the Airport Delays. However, its impact on the overall airport 

performance is very small because the bad condition of this factor does not occur very 

often. Putting much effort to amend that factor may only achieve a very small 

improvement of the overall system performance. Hence, when a factor is artificially 

manipulated, it is done by considering its actual distribution and within its reasonable 

value space.  

The histograms of Carrier Delay and GDP Holding Time and Swap Aircraft Rate 

in Figure 7.1 plot the distribution of greater than zero data. Summarizing the data of all 

34 airports in June and July 2005, only 23.1% 15-minute epochs had greater than zero 

GDP Holding Time, 32.4% epochs had greater than zero Carrier Delay and 4.1% epochs 

had greater than zero Swap Aircraft Rate value.  

Using the Carrier Delay as an example, fewer than 40% of the epochs have flights 

with positive Carrier Delay. Imposing a certain amount of Carrier Delay to all epochs is 

not a realistic assumption for any airport.  Furthermore, it is not right to subtract a certain 

amount of Carrier Delay from all epochs because this would result in more than 60% 

epochs having negative Carrier Delay. A negative value of Carrier Delay violates the 

definition of Carrier Delay in the BTS database.  Hence, the adjustment made on the 

Carrier Delay actually extends or shrinks existing positive Carrier Delays in the Airport 
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Delay database, the expected value, ( )iE x in Equation 7.2, for these factors is calculated 

as x where 0ix > , and the minimum value of Carrier Delay after adjustment is zero.  

The expected value of Inbound Delay is also calculated as the sample mean of 

greater than zero Inbound Delays. This choice was made because the Inbound Delay has 

both negative and positive values in the database, and only the positive Inbound Delay is 

of concern.  

7.1.3 Steps of Sensitivity Analysis 

An approximation to the effect of manipulating one factor on the airport delays 

was calculated as follows: 

1. Execute the regression models on the 34 original training sets and record the 

predictions of the squared transformed Airport Generated Delay, ˆ
ioriging , and 

Absorbed Delay, ˆ
iorigina  

2. For each predictor: 

a. Calculate the expected value of a specific factor from all 34 OEP airports.  

b. For each record in the training set, add w% of the expected value of the factor to 

obtain an adjusted data sample, where }{-50,-40,-30,-20,-10,10,20,30,40,50w∈ .  

If a factor is not in the model of an airport, its reduced percentage is zero. For n 
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factors in the sensitivity analysis, there are nx10 sets of adjusted data samples. 

Detailed adjustment for each factor is presented in the subsection 7.2 respectively.  

c. Execute regression models on 34 adjusted data sets and record the predictions of 

the squared transformed Airport Generated Delay, ˆ
iadjustg  and Absorbed Delay, 

ˆ
iadjusta . 

d. Calculate the difference between the mean of predicted Airport Generated Delay 

from the adjusted data set and the mean from the original data set. Both of them 

were transformed back to their original scale using Equation 7.3. The same 

calculations were also carried out for Airport Absorbed Delay.  

3. Rank the predictor variables impact based on the slopes of delay variation value vs. 

increments of factor.  

7.2 Sensitivity Analysis of Individual Factors 

The sensitivity analysis conducted in this research provides a quantitative measure of 

how manipulating one factor affects airport performance assuming that the model 

( )

( )

2 2
1

2 2
1

1 ˆ ˆGenerated Delay Variation

1 ˆ ˆAbsorbed Delay Variation

ˆwhere, estimate of Generated Delay from original training data
ˆ            

i i

i i

n
adjust origini

n
adjust origini

origin

adjust

g g
n

a a
n

g

g

=

=

= −

= − +

−

−

∑

∑

estimate of Generated Delay from adjusted data
ˆ            estimate of Absorbed Delay from original training data
ˆ            estimate of Absorbed Delay from adjusted data

           

i

i

origin

adjust

a

a

−

−

       number of cases in training datan −

 
7.3



 

 126

accurately reflects the contribution of each factor on delay when other factors are held 

constant. The formula to calculate the mean and adjustment of each factor are provided in 

the following subsections along with the sensitivity analysis results.  

7.2.1 Carrier Delay 

In the Airport Delay database of summer 2005, there are only 32.4% epochs with 

greater than zero Carrier Delay.  For the reasons explained previously, the adjusted data 

consists of just the records having positive Carrier Delay, and the remaining data is kept 

same.   

The mean of Carrier Delay is the aggregated value of positive Carrier Delay in the 

database (Equation 7.4). Summing over the epochs from 24 to 87 in June and July in 

2005 at 34 airports obtain the total Carrier Delay. epochI  is an indicator variable at an 

epoch. If the Carrier Delay in that epoch is positive, 1epochI = ; otherwise, it is zero. 

Summing all Is obtains the total number of epochs having positive Carrier Delay. The 

average value of Carrier Delay for each of these epochs is 10.35 minutes. 
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7.4

 Equation 7.5 formulates the approach to adjusting values of Carrier Delay. Only 

positive Carrier Delays are manipulated, and the adjusted value is constrained to be non-

negative. 

( )
airport,day,epoch

airport,day,epoch

airport,day,epoch

adjusted Carrier Delay

max Carrier Delay %*Mean Carrier Delay,  0 ,   

                                                                 Carrier Delay 0

w+

= >

}{
0,  otherwise

where, -50,-40,-30,-20,-10,10,20,30,40,50w

⎧
⎪⎪
⎨
⎪
⎪⎩

∈

 7.5

Delay Variation at 34 OEP airports  

Using Equation 7.3, delay variations were calculated for the adjustment at each 

percentage for Airport Generated Delay and Absorbed Delay. Figure 7.2 plots the 

Variations of Airport Generated Delay vs. Adjusted portion of mean at 34 OEP airports. 

The x-axes are the number from -50% to 50%, they are w% in Equation 7.5. Note: not all 

records were adjusted. Figure 7.3 plots the Variations of Airport Absorbed Delay vs. 

Adjusted portion of mean at 34 OEP airports.  
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In the top left panel of Figure 7.2 is the plot of the change in Generated Delay vs. 

increments of Carrier Delay at ATL. The plot shows that Generated Delay increases as 

the adjustment in the mean increases. This means that longer Carrier Delay results in 

longer Generated Delay.  

In the top left panel of Figure 7.3 is the plot of the change in Absorbed Delay vs. 

increments of Carrier Delay at ATL. The plot also shows an increasing trend. However, it 

implies that the longer Carrier Delay gives rise to shorter Absorbed Delay since 

Absorbed Delay is negative by definition.  

As can be seen from the above two figures, the changes in Airport Generated 

Delay and Airport Delay increase as the adjustment of Carrier Delay increases. The 

magnitude of the change is different for different airports.  

Since the plots of Generated Delay variation in Figure 7.2 show that the 

relationship between delay variation and changes of Carrier Delay is monotonic, the 

univariate linear regression models can provide an approximate measure of the impact of 

changes in Carrier Delay on Generated Delay.  The slope in these simple linear models 

represents the contribution of each unit of increment of Carrier Delay to Airport 

Generated Delay (in Table 7.1). As can be seen from Table 7.1, reducing 10.35 minute 

Carrier Delay, which is mean value of Carrier Delay, in June and July 2005 can reduce 

more than 4 minutes Generated Delay at the airports in the first column Table 7.1. The 

reduction at remaining airports is less than 4 minutes.  
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Airport slope Airport slope Airport slope Airport slope 
ORD 5.77 LAX 3.41 IAH 2.48 TPA 1.47 
ATL 4.71 SEA 3.21 LGA 2.38 SAN 1.42 
MSP 4.34 CLT 2.88 CVG 2.26 PDX 1.33 
PHL 4.30 LAS 2.85 MDW 2.23 MEM 1.33 
PHX 4.29 IAD 2.75 SFO 2.10 CLE 1.06 
DEN 4.16 BOS 2.66 DCA 2.04   
DTW 4.01 MIA 2.59 BWI 1.81   
JFK 3.91 MCO 2.53 SLC 1.74   

EWR 3.70   STL 1.74   
DFW 3.68   FLL 1.61   

    PIT 1.59   

The increase of Airport Generated Delay is consistently higher than the increase 

of Absorbed Delay. The plots in Figure 7.3 use smaller scale of y-axis than in Figure 7.2 

in order to see the changes. Given such small amount of changes in Absorbed Delay, the 

slopes for the Absorbed Delay are not calculated. 

7.2.2 GDP Holding Time 

The value of GDP Holding Time is non-negative in the CATSR delay database. 

Only 23.1% of the epochs in the training set has greater than zero value of GDP Holding 

Time. Hence, the adjustment of GDP Holding Time is similar to Carrier Delay described 

in the previous section. The mean value of GDP Holding Time is the aggregate value of 

all positive GDP Holding Time, 19.22 minutes, as calculated in Equation 7.6. 

Table 7.1: Slopes of Changes in Airport Generated Delay vs. Percentage of Increment of 
Carrier Delay (mean 10.35 minutes) at 34 OEP Airports (minute). Airports are listed in 
the order of slopes.  
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The process of the adjustment on positive GDP Holding Time is formulated in 

Equation 7.7. Only positive GDP Holding Time will be manipulated and the minimum 

value of GDP Holding Time is zero.  

Delay Variation at 34 OEP airports  

 Figure 7.4 displays the changes in Airport Generated Delay as a result of changes 

in GDP Holding Time. No plot is shown in Figure 7.5 for the 5 airports in which GDP 

Holding Time is not a predictor.   

34 61 87
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 Similar to Carrier Delay, there is a clear upward trend of delay variation with 

greater adjustments in the GDP Holding Time. Increasing GDP Holding Time increases 

Airport Generated Delay and reduces the magnitude of Absorbed Delay. The slopes of 

the curves in Figure 7.4 are reported in Table 7.2   

Airport Slope Airport Slope Airport Slope Airport Slope 
DFW 5.15 DTW 3.41 BWI 2.31 SFO 1.49 
ATL 4.50 MCO 3.39 DEN 2.28 JFK 1.47 
ORD 4.47 PIT 3.26 STL 2.26 SAN 1.20 
CLT 4.01 FLL 3.25 PHL 2.24 SEA 1.11 
DCA 3.92 CLE 3.15 LGA 2.21 PDX 0.98 
CVG 3.88 MDW 3.13 LAX 2.20 PHX 0.95 
BOS 3.87 MEM 3.07 LAS 1.68   
IAH 3.73 MSP 3.04 SLC 1.61   
MIA 3.51 EWR 2.98     

  IAD 2.69     
  TPA 2.63     

 As for the changes in Generated Delay, the slopes for the airports in the last 

column of Table 7.2 are smaller than those for other airports. Adding 19.22 minutes of 

GDP Holding Time to these airports only increases overall Generated Delay by around 1 

minute. With the exception of JFK, these airports are located at the west coast of the U.S. 

The changes in Absorbed Delay are so small that the scale in Figure 7.5 has to be reduced 

to -1 to 1. For this reason, the slopes of changes in Absorbed Delay are not calculated. 

 Table 7.3 shows the percentage of epochs in June and July 2005 when the GDP 

was issued at each airports and the mean values of these positive GDP Holding Times.  

Table 7.2: Slopes of Airport Generated Delay Variation vs.  Increment of GDP Holding
Time (mean 19.22 minutes) at 34 OEP Airports (minute). Airports are listed in the order
of slopes. 
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Table 7.3: Percentage of GDP and Mean Value of GDP Holding Time at 34 OEP
Airports in June and July 2005. Airports are listed in the order of percentage. 

 Airport Percentage Mean (minute)  Airport Percentage Mean (minute) 
 DFW 37.2% 14.3   TPA 22.9% 30.1 
 ORD 35.4% 15.5   LAX 22.9% 6.3 
 ATL 34.2% 14.1   LGA 22.3% 20.3 
 IAH 30.4% 15.7   CLE 22.3% 26.2 
 DTW 29.8% 19.4   PIT 22.2% 31.6 
 BOS 29.5% 20.5   MEM 20.9% 27.9 
 CLT 29.5% 24.5   MDW 19.4% 26.1 
 MCO 29.3% 22.9   BWI 17.7% 23.2 
 DCA 29.3% 20.8   PHX 17.5% 8.0 
 MSP 29.0% 15.6   LAS 17.5% 8.5 
 MIA 27.0% 28.4   STL 16.5% 29.7 
 EWR 25.6% 21.8   SFO 15.6% 9.1 
 FLL 25.5% 26.2   SEA 14.4% 11.0 
 PHL 25.3% 21.6   SLC 14.3% 11.9 
 CVG 24.7% 20.4   JFK 12.7% 16.7 
 IAD 24.6% 23.4   SAN 10.7% 14.6 
 DEN 23.5% 8.7   PDX 7.1% 20.9 

 

 As can be seen, the airports listed in the first group in Table 7.2 are listed near the 

top of Table 7.3. These airports have high percentage of GDP.  CLT has long GDP 

Holding Time (24.5 minutes), and the influence of GDP on its Generated Delay is ranked 

at 4th place.  

 Changing GDP Holding Time has very small impact on the Airport Absorbed 

Delay, so we do not discuss its influence in detail. 
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7.2.3 Ratio of Departure Demand and Capacity (Departure Demand Ratio) 

The values of Departure Demand Ratio in Airport Generated Delay models is 

calculated by averaging the Departure Demand Ratio of all flights scheduled to depart at 

each 15-minute epoch of a day. Each flight’s Departure Demand Ratio is obtained by 

dividing the number of scheduled departures (pushing back from gate) by the number of 

actual takeoffs in the 30-minute window of that flight’s scheduled push back time.  

Departure Demand Ratio greater than 1 indicates airport congestion, i.e., demand 

exceeds capacity. Departure Demand Ratio less than 0.5 indicates the slot assignments at 

the airport were inappropriate, i.e., the airport departed flights 2 times more than 

originally scheduled. The analysis from historical data of summer 2005 shows that the 

relationship between Departure Demand Ratio and Airport Generated Delay is not 

monotonic. The minimum Airport Generated Delay occurs within range 0.5 to 0.6 across 

34 airports. Therefore, we used 0.55 instead of zero as the cutting point for the adjusted 

value for our sensitivity analysis.  

Figure 7.1 shows that the distribution of Departure Demand Ratio has a long-

right-tailed bell shape. There were 0.67% epochs among 34 OEP airports having greater 

than 5 Departure Demand Ratio. Such a Departure Demand Ratio is associated with 

situations when there were flights scheduled to depart but no actual takeoffs.  Such a 

skewed distribution might suggest use of the median rather than the means as a measure 

of central tendency. The value for the median is 1.05. However, the mean value is still 
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used as the base for sensitivity analysis since we use mean value as base for all other 

factors.  The mean of Departure Demand Ratio was calculated using Equation 7.8. 

The adjustment to Departure Demand Ratio is similar to the adjustment to 

Inbound Delay. We add increments to all Departure Demand Ratio, but only subtract 

from Ratios that are above 0.55 and constrained the adjusted values to be no less than 

0.55. This process is described in Equation 7.9. 

Delay Variation at 34 OEP airports  

Departure Demand Ratio is a significant factor at 33 Airport Generated Delay 

models. In 23 models, the Departure Demand Ratio in 30-minute window is significant. 

At MEM, the Departure Demand Ratio in 15-minute window is significant.  The 

Departure Demand and Airport Departure Rate (ADR) in either 30-minute or 15-minute 

window is significant in the Generated Delay model of other 10 airports. To conduct a 
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fair comparison, only Ratio of Departure Demand and Departure Throughput in 30-

minute window is analyzed in this section.  Hence, MEM and other 10 airports having 

Departure Demand and Airport Departure Rate (ADR) as predictor have no plot in 

Figure 7.6. 

Figure 7.6 shows the increasing trend of the changes in Generated Delay vs. 

increments of Departure Demand Ratio. As we would expect, higher Departure Demand 

Ratio implies more congested airport, and more congested airport has longer delays. 

Table 7.4 listed the slopes in the univariate regression models fitted to the dots in 

Figure 7.6. The degree of influence of Departure Demand Ratio at airport PHL, LGA, 

EWR, and ATL is higher than other airports.  
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Figure 7.6: Changes in Airport Generated Delay from Adjustment of Ratio of Departure Demand and Capacity_30min 

Adjusted Portion of Mean Departure Demand Ratio (1.25)
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 Airport Slope  Airport Slope  Airport Slope  Airport Slope 
PHL 10.94 DFW 4.50 TPA 3.05 STL 2.13 
LGA 10.73 ORD 4.29 MCO 3.03 SEA 2.07 
EWR 9.93 LAX 4.14 FLL 3.01 CLE 1.65 
ATL 6.16 BWI 3.85 DEN 2.99 LAS 1.49 

  JFK 3.58 MIA 2.82 PIT 1.42 
    DCA 2.73 PHX 1.25 
    IAD 2.55 PDX 0.57 

7.2.4 Airline Swap Aircraft Rate 

In Airport Delay database, only 4.1% epochs of 34 OEP airports has greater than 

zero Swap Aircraft Rate value. Swap Aircraft Rate is a significant factor at 10 Airport 

Generated Delay models. Similar to Carrier Delay and GDP Holding Time, the mean 

value of Swap Aircraft Rate calculated for sensitivity analysis is the aggregated value of 

positive Swap Aircraft Rate in Equation 7.10. The adjustment process of positive Swap 

Aircraft Rate is formulated in Equation 7.11.  

Table 7.4: Slopes of Changes in Airport Generated Delay vs. Increments of Departure 
Demand Ratio (mean 1.25) at 34 OEP Airports (minute). Airports are listed in the order 
of slopes. 
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Delay Variation at 34 OEP airports  

The scale of the y-axis has to be shrunk in Figure 7.7 since the variation is small. 

This is probably due to the small proportion of Swap Aircraft Rate in the whole data 

sample. Although the variation is very small, the plots still show some difference among 

airports. The increasing trend of ATL, DEN and ORD is steeper than other airports. 

34 61 87

, ,
1 1 24

34 61 87

, ,
1 1 24

SwapAircraftRate
Mean SwapAircraftRate

                                         0.23
where,  SwapAircraft

airport day epoch
airport day epoch

airport day epoch
airport day epoch

I

= = =

= = =

=

=

∑ ∑ ∑

∑ ∑ ∑

airport,day,epoch

airport,day,epoch

Rate  is average SwapAircraftRate at an epoch 

            in a day at an airport
1,  SwapAircraftRate 0

             
0,  otherwise  epochI
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Figure 7.7: Changes in Airport Generated Delay from Adjustment of Swap Aircraft Rate 

Adjusted Portion of Mean Swapping Aircraft Rate (0.23)
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7.2.5 Inbound Delay 

There are negative Inbound Delays and positive Inbound Delays in the database. 

Negative Inbound Delay means the flights that arrived earlier than their scheduled time. 

From an operation perspective, the ideal value for Inbound Delay is zero, i.e., flights 

arrive on time. In summer 2005, only 16% epochs across 34 OEP airports had zero 

Inbound Delay. 44.9% epochs had positive Inbound Delay and 39.1% has negative 

Inbound Delay. Neither late arrival nor early arrival can use the originally assigned slots. 

Both of them should be avoided. Practically, late arrival will cause more problems than 

early arrival since it will disturb the connectivity of airline’s schedule of crew and 

airframe.  

The mean value of Inbound Delay is 20.65 minutes calculated by aggregating the 

values of positive Inbound Delay (in Equation 7.12).  

34 61 87

, ,
1 1 24

34 61 87

, ,
1 1 24

airp

Inbound Delay
Mean Inbound Delay

                                 20.65(minute)
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The process of adjusting Inbound Delay is formulated in Equation 7.13. When we 

added a positive amount to Inbound Delay, it was added to all epochs. However, when 

we do subtraction, only positive Inbound Delay will be changed and we do not allow it to 

go below zero.   

 

Delay Variation at 34 OEP airports  

In Figure 7.8, the curves of Generated Delay variation are either flat or have a 

downward trend as Inbound Delay increases, except at LGA. The curve is upward at 

LGA. This downward trend implies that the Inbound Delay results in shorter Generated 

Delay at the airport. That may due to an airline’s recovery strategy to prevent delay 

getting longer. This phenomenon is illustrated more clearly in Figure 7.9. The plots show 

that the magnitude of Absorbed Delay becomes longer when Inbound Delay increases.
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Figure 7.8: Changes in Airport Generated Delay from Adjustment of Inbound Delay (minute) 

Adjusted Portion of Mean Positive Inbound Delay (20.65 minutes)
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Figure 7.9: Changes in Airport Absorbed Delay from Adjustment of Inbound Delay (minute) 

Adjusted Portion of Mean Positive Inbound Delay (20.65 minutes) 

C
ha

ng
es

 in
 D

el
ay

s (
m

in
ut

e)
 

147 



 

 148

The slopes of the univariate regression models fitted for the dots in each plot in 

Figure 7.9 ranges from -4.57 minutes to -1.65 minutes (in Table 7.5).  

 

 Airport Slope  Airport Slope  Airport Slope 
SFO -4.57 MEM -3.48 LAS -2.49 
PDX -4.28 SLC -3.39 DEN -2.47 
MSP -4.16 LAX -3.30 ORD -2.40 
LGA -3.77 DCA -3.25 FLL -2.37 
JFK -3.75 CLT -3.25 MCO -2.06 
CVG -3.69 MIA -3.10 STL -1.98 
SEA -3.66 ATL -3.06 PHL -1.95 
DTW -3.61 IAH -3.06 DFW -1.79 

  SAN -3.05 MDW -1.77 
  TPA -2.82 BWI -1.65 
  CLE -2.78   
  PIT -2.72   
  BOS -2.69   
  PHX -2.67   
  EWR -2.64   
  IAD -2.60   

Given every 20.65-minute Inbound Delay, these airports can absorb it from 8.0% 

(1.65/20.65=8%) to 22.1% (4.57/20.65=22.1%). The mean absorbed percentage is 14.3% 

of 34 OEP airports, and the percentage of delay which is not absorbed is 85.7%.  If there 

were no generated delay at the airport, this number is close to the analytical results from 

the research of Boswell and Evans (1997). They estimated that about 80% of delays 

propagate to downstream airports.  

Table 7.5: Slopes of Airport Absorbed Delay Variation vs.  Increments of Inbound Delay 
(mean 20.65) at 34 OEP Airports (minute). Airports are listed in the order of slopes. 
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When a flight arrives late, it is common for airlines to make up schedule by 

reducing the turn-around time. The Scheduled Turn-around Time is investigated in the 

next section.  

 7.2.6 Scheduled Turn-around Time 

Scheduled Turn-around Time is a significant factor for Airport Absorbed Delay 

model at all 34 OEP airports but not so at Airport Generated Delay models. The only 

constrain for the adjustment is that no turn-around time is allowed to be less than 0.  

The mean value of Scheduled Turn-around Time is calculated using 

Equation 7.14 and the adjustment process is formulated in Equation 7.15. 

}{

airport,day,epoch

airport,day,epoch

adjusted Scheduled Turnaround Time

Scheduled Turnaround Time
max

                %*Mean Scheduled Turnaround Time,  0

where, -50,-40,-30,-20,-10,10,20,30,40,50

w

w

⎛ ⎞
= ⎜ ⎟

+⎝ ⎠
∈

 7.15

 

 

  

34 61 87

, ,
1 1 24

airport,day,epoch

Mean Scheduled Turnaround Time
1          Scheduled Turnaround Time

           = 60.04(minute)
where,  Scheduled Turnaround Time  is avera

airport day epoch
airport day epochn = = =

= ∑ ∑ ∑

ge Scheduled 

            Turnaround Time at an epoch in a day at an airport
             is the total number of records in June and July at 34 OEP airportsn

 7.14
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Delay Variation at 34 OEP airports  

The plots in Figure 7.10  reveal that the absolute value of Absorbed Delay 

increases as turn-around prolonged.  However, after adding 40% of turn-around time the 

increase of Absorbed Delay stops at DCA, DFW, ORD, and TPA. 
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Figure 7.10: Changes in Airport Absorbed Delay from Adjustment of Scheduled Turn-around Time 

Adjusted Portion of Mean Scheduled Turn-around Time (60.04 minutes)
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The slopes of the univariatie regression models fitted for the dots in each plot in 

Figure 7.10 ranges from -5.72 minutes to -1.60 minutes (in Table 7.6). The negative 

value of slope means that increase turn-around time at the airports in the left column will 

increase the length of absorbed delays.  

 Airport Slope  Airport Slope  Airport Slope 
LAS -5.72 FLL -3.46 CVG -1.95 
LGA -5.47 DFW -3.42 IAH -1.60 
SAN -4.88 DEN -3.37   
SEA -4.82 DTW -3.23   
CLE -4.70 PIT -3.21   
MCO -4.62 SLC -3.17   
MDW -4.47 SFO -3.11   
PDX -4.47 ORD -3.05   
STL -4.32 JFK -2.83   
EWR -4.12 PHX -2.79   
ATL -4.04 MSP -2.79   
DCA -3.95 CLT -2.66   
BWI -3.87 LAX -2.42   
PHL -3.79 MIA -2.36   
TPA -3.53 BOS -2.32   
IAD -3.51 MEM -2.11   

 

7.2.7 Number of Seats 

Number of Seats is a significant factor for Airport Absorbed Delay model at all 34 

OEP airports but not so at Airport Generated Delay models. Its minimum value in the 

Table 7.6:  Slopes of Airport Absorbed Delay Variation vs.  Increments of Scheduled
Turnaround Time (mean 60.04 minutes) at 34 OEP Airports (minute). Airports are listed
in the order of slopes. 
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data of summer of 2005 is 30. Hence, the constraint for the adjustment is that the value of 

Number of Seats after adjustment is not allowed to be less than 30.  

The mean value of Number of Seats is calculated using Equation 7.16 and the 

adjustment process is formulated in Equation 7.17. 

( )
}{

airport,day,epoch

airport,day,epoch

adjusted Number of Seats

max Number of Seats %* Number of Seats,  30

where, -50,-40,-30,-20,-10,10,20,30,40,50

w

w

= +

∈

 7.17

 

Delay Variation at 34 OEP airports  

The plots in Figure 7.11 reveal that the absolute value of Absorbed Delay 

increases as the Number of Seats increased. The positive slope means that the length of 

Absorbed Delay reduces as the number of seats increases since the value of Absorbed 

Delay is negative. In other words, more delay is absorbed when the number of seats on 

the aircraft is smaller. This is probably because the smaller aircraft is able to turn around 

faster.

  

34 61 87

, ,
1 1 24

airport,day,epoch

Mean Number of Seats
1          Number of Seats

           = 134.43
where,  Number of Seats  is average Number of Seats

            at an e

airport day epoch
airport day epochn = = =

= ∑ ∑ ∑

poch in a day at an airport
             is the total number of records in 2 months at 34 OEP airportsn

 7.16
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Figure 7.11: Changes in Airport Absorbed Delay from Adjustment of Number of Seats (mean=134) 
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The curve for airport DEN, IAH, LGA and STL are not monotonic. Adding or 

removing 67 seats (0.5 of mean 134) will both reduce the length of the Absorbed Delay. 

The plot for airport LAS is quiet different from the others. A detailed investigation found 

that the second minimum value of seats at LAS is 100 and mean is 150. There is only one 

case with the average seats value of 70 at LAS. Removing more than 40% of average 

number of seats (54) from the data of LAS causes a large number of cases outside the 

value range of Number of Seats, i.e. less than 100. Hence, the left two points in the plot 

of LAS was left out. The slopes of the plots in Figure 7.11 are given in Table 7.7. 

Table 7.7:  Slopes of Airport Absorbed Delay Variation vs.  Increments of Number of 
Seats (mean 134) at 34 OEP Airports (minute). Airports are listed in the order of slopes. 

 Airport Slope  Airport Slope  Airport Slope 
LAS 7.51 SAN 3.41 MCO 1.42 
PHL 7.44 ATL 3.21 MEM 1.18 

  DFW 3.21 PDX 1.00 
  ORD 3.19 SEA 0.88 
  FLL 2.67 BWI 0.81 
  LAX 2.57 CLT 0.62 
  MIA 2.21 IAH 0.43 
  PIT 2.21   
  DCA 2.19   
  EWR 2.15   
  LGA 1.89   
  IAD 1.71   
  STL 1.51   
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7.3 Comparison of Individual Factor’s impact 

7.3.1 Comparison of Factors of Airport Generated Delay 

Most plots of Airport Generated Delay Variation demonstrate a monotonic 

relationship between individual factors and Airport Generated Delay. The slopes of fitted 

univariate regression models for the dots in the Delay Variation vs. Factor’s Increments 

figures approximately represent the degree of influence from one factor. Table 7.8 shows 

the slopes calculated in the previous subsections on the factors influencing Airport 

Generated Delay.
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Average Airport 

Delay (min) 
Inbound 
Delay 

Departure 
Demand Ratio

Carrier 
Delay

Swap Aircraft 
Rate GDP Time

PHL 25.14  10.94 4.30 0.52 2.24 
JFK 22.56 -0.63 3.58 3.91 0.09 1.47 

EWR 20.67  9.93 3.70 0.33 2.98 
ORD 17.99 -0.61 4.29 5.77 2.02 4.47 
MSP 16.80 -1.51  4.34  3.04 
MIA 15.89 -2.13 2.82 2.59  3.51 
IAD 15.83 -0.34 2.55 2.75 1.02 2.69 
IAH 15.62 -1.17  2.48  3.73 
LGA 14.65 1.07 10.73 2.38 0.16 2.21 
DTW 14.32 -1.26  4.01  3.41 
CLT 14.19 -1.68  2.88 1.12 4.01 
ATL 13.80 -1.19 6.16 4.71 1.19 4.50 
DFW 13.26 -0.32 4.50 3.68 0.49 5.15 
BOS 12.33 -0.74  2.66 0.36 3.87 
PHX 11.45 -0.96 1.25 4.29 0.52 0.95 
FLL 11.41 -0.65 3.01 1.61 0.10 3.25 
DCA 11.09 -0.70 2.73 2.04 0.42 3.92 
MDW 11.05 -0.55  2.23 0.30 3.13 
CVG 10.14 -1.74  2.26 0.36 3.88 
MEM 9.96 -1.29  1.33 0.22 3.07 
BWI 9.68 -0.27 3.85 1.81 0.37 2.31 
LAS 9.20 -0.21 1.49 2.85 0.39 1.68 
CLE 9.08 -0.66 1.65 1.06 0.35 3.15 
TPA 8.44 -1.13 3.05 1.47 0.12 2.63 
DEN 8.39 -0.96 2.99 4.16 1.93 2.28 
PIT 8.32 -1.15 1.42 1.59 0.36 3.26 

MCO 8.30 -1.73 3.03 2.53 0.36 3.39 
SEA 8.17 -1.49 2.07 3.21 0.07 1.11 
SLC 7.76 -1.41  1.74 0.09 1.61 
STL 6.87 -0.67 2.13 1.74  2.26 
LAX 6.74 -1.21 4.14 3.41 0.46 2.20 
SFO 6.41 -0.88  2.10 0.42 1.49 
SAN 5.35 -0.26  1.42 0.10 1.20 
PDX 4.21 -1.01 0.57 1.33 0.07 0.98 

Table 7.8: Summary of Slopes of the Changes of Airport Generated Delay vs. Increments 
of factors at 34 OEP Airports. Airports are listed in the order of average airport delay in 
summer 2005. 
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These factors can be grouped into categories based on their slope value as shown 

in Figure 7.12. The x-axes are the range of the slopes shown in Table 7.8 and the y-axes 

are number of airports associated with the corresponding slopes in x-axes. We define 

factor with slope greater than 5.5 as very high influence factor, slope 3.5 to 5.5 as high 

influence factor, slope 1.5 to 3.5 as moderate and slope less than 1.5 as low influence 

factor. 
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Figure 7.12: Influence Rank of Factor of Generated Delay Based on the Slopes of the 
Changes of Generated Delay 

Four airports are very highly influenced by Departure Demand Ratio; one of them 

is affected by Carrier Delay also. Nine airports are under high influence of Carrier Delay, 

and or GDP Holding Time, and 5 airports are under high influence of Departure Demand 

Ratio. Inbound Delay and Swap Aircraft Rate have low influence on the Generated 

Delay. 
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7.3.2 Comparison of Factors of Airport Absorbed Delay  

For Airport Absorbed Delay, a longer value means stronger capability to make up 

delay. Slopes of Airport Absorbed Delay variation were calculated in Table 7.9. The 

Absorbed Delay is defined as negative delay; the slope of beneficial factor is negative.
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Average Airport 

Delay (min) 
Inbound 
Delay 

Turnaround 
Time 

Carrier 
Delay 

Number of 
Seats GDP Time

PHL 25.14 -1.95 -3.79 0.66 7.44 0.08 
JFK 22.56 -3.75 -2.83 0.80   

EWR 20.67 -2.64 -4.12 0.49 2.15 0.20 
ORD 17.99 -2.40 -3.05 0.61 3.19 0.20 
MSP 16.80 -4.16 -2.79 0.45  0.23 
MIA 15.89 -3.10 -2.36 0.29 2.21 0.21 
IAD 15.83 -2.60 -3.51 0.25 1.71 0.29 
IAH 15.62 -3.06 -1.60 0.24 0.43 0.24 
LGA 14.65 -3.77 -5.47 0.36 1.89 0.17 
DTW 14.32 -3.61 -3.23 0.52  0.35 
CLT 14.19 -3.25 -2.66 0.62 0.62 0.28 
ATL 13.80 -3.06 -4.04 0.49 3.21 0.34 
DFW 13.26 -1.79 -3.42 0.21 3.21 0.21 
BOS 12.33 -2.69 -2.32 0.23  0.36 
PHX 11.45 -2.67 -2.79 0.47   
FLL 11.41 -2.37 -3.46 0.43 2.67 0.13 
DCA 11.09 -3.25 -3.95 0.45 2.19 0.23 
MDW 11.05 -1.77 -4.47 0.28  0.11 
CVG 10.14 -3.69 -1.95 0.20 0.25 0.16 
MEM 9.96 -3.48 -2.11 0.23 1.18 0.24 
BWI 9.68 -1.65 -3.87 0.20 0.81 0.08 
LAS 9.20 -2.49 -5.72 0.39 7.51  
CLE 9.08 -2.78 -4.70 0.18  0.15 
TPA 8.44 -2.82 -3.53 0.20  0.26 
DEN 8.39 -2.47 -3.37 0.54 -0.60 0.06 
PIT 8.32 -2.72 -3.21 0.14 2.21 0.18 

MCO 8.30 -2.06 -4.62 0.23 1.42 0.27 
SEA 8.17 -3.66 -4.82 0.48 0.88 0.07 
SLC 7.76 -3.39 -3.17 0.18  0.04 
STL 6.87 -1.98 -4.32 0.12 1.51 0.08 
LAX 6.74 -3.30 -2.42 0.52 2.57  
SFO 6.41 -4.57 -3.11 0.72  0.12 
SAN 5.35 -3.05 -4.88 0.41 3.41  
PDX 4.21 -4.28 -4.47 0.36 1.00 0.03 

Table 7.9: Summary of Slopes of the Changes of Airport Absorbed Delay vs.  Increments
of factors at 34 OEP Airports. Airports are listed in the order of average airport delay in 
summer 2005. 
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The value of slopes for factors of Absorbed Delay are separated using the same 

cutting point as we did for Generated Delay. An absolute value greater than 5.5 is defined 

as a very high influence factor, 3.5 to 5.5 as high influence factor, 1.5 to 3.5 as moderate 

and slope less than 1.5 as low influence factor. As can be seen from Figure 7.13, both 

Carrier Delay and GDP Holding Time have very small influence on Absorbed Delay. 

Sixteen airports are highly impacted by the Scheduled Turn-around Time, and 8 airports 

are highly influenced by the Inbound Delay. The Number of Seats only have high 

influence on 2 airports.  

7.4 Caveats  

The sensitivity analysis conducted in this research has some limitations and modifications 

on standard sensitivity analysis. The limitations are: 
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Figure 7.13: Influence Rank of Factor of Absorbed Delay Based on the Slopes of the 
Changes of Absorbed Delay 
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1) For GDP Holding Time, Carrier Delay, and Swap Aircraft Rate, the adjustments are 

done on the magnitudes of these variables, not whether there is non-zero GDP, 

Carrier Delay, or Swapping Aircraft (greater than zero).  So, not all cases in the data 

sets were adjusted.  

2) The expected value of GDP Holding Time, Carrier Delay, Swap Aircraft Rate, and 

Inbound Delay are calculated using the mean of greater than zero values.  

3) The special constraints were applied on the adjustment of each factor to force the data 

within the reasonable range of values.  For example, the adjusted value for GDP 

Holding Time, Carrier Delay, Swap Aircraft Rate, Inbound Delay, and Scheduled 

Turn-around Time was cut off at zero. The Departure Demand Ratio is cut off at 0.55 

and the Number of Seats is cut off at 30.  

4) Regression models provide information about statistical relationships in data. Using 

the results of the sensitivity analysis to estimate the changes that would occur if the 

distributions of the input variables changed requires the assumption that the model 

reflects causal relationships. Statistically valid estimation of causal influences would 

require data from a study in which variables are manipulated. In the absence of 

experimental data, there results must be treated with caution.  

The results of sensitivity analysis can only be used as a type of quantitative 

reference for policy makers. More information should be considered when making a 

policy change. 



 

  163

 
 

CHAPTER 8 
 

CASE STUDY 
 
 
 
 
This chapter describes the utilization of the delay models. These models were 

trained with historical data from June and July 2005. The form of the models and the 

process for developing the models are explained in chapter 3 and chapter 4. In this 

chapter, the final models reported in Appendix B were used in a case study of delay 

reduction policies.  

8.1 Design of the Case Study 

The case study was conducted by following 5 steps. 

1.   Select airports.  

      Seven airports (ATL, DEN, EWR, JFK, ORD, PHL, and LGA) were selected to 

represent characteristics of different airport classes. The arrival delays of outbound 

flights from these airports collectively account for 37% of total arrival delay at 

outbound destination from 34 OEP airports.  
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 In the selected 7 airports, 6 of them (LGA is an exception) are among the 30 busiest 

airports in the world (Odoni 2004). PHL, JFK, EWR, and ORD have the highest 

Generated Delay per flight among the 34 OEP airports in 2005 (see Table A.2). ATL 

is the airport with the highest number of operations (see Table A.1). LGA has the 

highest Generated Delay among the non-hub airports. DEN is the largest international 

airport in the United States, whose land area is about 10 times of the land area of ATL 

(Odoni 2004). These airports also represent a range of geographical locations in the 

U.S. 

2. Compare the impact of 3 significant control factors.  

The factors analyzed are (1) GDP Holding Time, (2) Carrier Delay, and (3) Departure 

Demand Ratio. The settings for each factor are set below the mean of positive values 

of these factors. 

– Set GDP Holding Time to 0, 4, 8 and 15 minutes. The mean GDP Holding Time 

is 19.22 minutes. 

– Set Carrier Delay to 0, 5 and 10 minutes. The mean Carrier Delay is 10.35 

minutes. 

– Set Departure Demand Ratio to 0.8, 0.9, 1.0 and 1.2. The mean Departure 

Demand Ratio is 1.25.  

3. Set departure time. 

    Heavy delay time (6pm to 6:15pm; epoch 72), was set as the scheduled departure time. 
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4. Set mean values for the model inputs.  

     The mean values of other inputs were calculated using the data from these 7 airports in 

June and July 2005. The mean value of each airport was set as the fixed value in the 

models. The purpose of calculating the sample mean for these input variables is to set 

them at typical values. The results from this case study are only valid within the 

normal range of these factors. Table 8.1 shows the set value for the inputs in the 

Generated Delay model of each airport.  

Table 8.1: Settings for Predictors at Generated Delay Model at each Airport 

  PHL JFK EWR ORD LGA ATL DEN 
  27.2 22.6 20.7 20.3 14.6 13.8 8.4 
Inbound Delay (min)   8.62   18.96 27.19 27.67 8.81 
Terminal Weather       0 0     
Swap Aircraft Rate 0.0241 0.0197 0.0095 0.0249 0.0112 0.0144 0.0068
Actual Enroute Time 
 Weather 3794.44     857.68 859.67     
AAR             29.0 
Schedule Enroute Time 
 Weather 4246.79             
Visibility             9.758 
Runway Configuration 2     1       
Arrival Demand  
Ratio (throughput 30min) 0.99             
Arrival Demand  
Ratio (AAR 15min)             0.43 
 
Note: the value for Runway Configuration is the normalized value based on the mean 
taxi-out delay.  1 represents the lowest group of taxi-out delay and 3 represents the 
highest group of taxi-out delay. 
 

5. Calculate and compare the predictions of Generated Delay for these scenarios.  

Table 8.2  lists the scenarios studied in this chapter.  
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Table 8.2: Scenarios  

Control Variables Prediction of Generated Delay 
rho=0.8
rho=0.9
rho=1.0

Carrier Delay=0 
minute 

rho=1.2
rho=0.8
rho=0.9
rho=1.0

Carrier Delay=5 
minutes 

rho=1.2
rho=0.8
rho=0.9
rho=1.0

GDP=0 
minute 

Carrier Delay=10
minutes 

rho=1.2
rho=0.8
rho=0.9
rho=1.0

Carrier Delay=0 
minute 

rho=1.2
rho=0.8
rho=0.9
rho=1.0

Carrier Delay=5 
minute 

rho=1.2
rho=0.8
rho=0.9
rho=1.0

GDP=4 
minutes 

Carrier Delay=10
minutes 

rho=1.2
rho=0.8
rho=0.9
rho=1.0

Carrier Delay=0 
minute 

rho=1.2
rho=0.8
rho=0.9
rho=1.0

Carrier Delay=5 
minutes 

rho=1.2
rho=0.8
rho=0.9
rho=1.0

GDP=8 
minutes 

Carrier Delay=10
minutes 

rho=1.2
rho=0.8
rho=0.9
rho=1.0

Carrier Delay=0 
minute 

rho=1.2
rho=0.8
rho=0.9
rho=1.0

Carrier Delay=5 
minutes 

rho=1.2
rho=0.8
rho=0.9
rho=1.0

GDP=15 
minutes 

Carrier Delay=10
minutes 

rho=1.2
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8.2 Outputs of the Case Study 

8.2.1 Airport Generated Delay from the Worst Case Scenario 

  The worst case scenario from the experiment design described in previous section 

is the condition where there is a 15-mintue GDP, 10-minute Carrier Delay and Departure 

Demand Ratio is as high as 1.2.  The estimated Generated Delay for each airport is listed 

in Table 8.3. These delays at the peak operations period at 6PM are assumed due to GDP, 

Carrier Delay, and high value of Departure Demand Ratio. The airports are listed in the 

order of their average Airport Delay during summer 2005.  

Table 8.3: Airport Generated Delay Estimated from the Worst Scenario in Case Study 
Designed for 6 PM. 15-minute GDP, 10-minute Carrier Delay and the Departure Demand 
Ratio is 1.2.  

 Airport PHL JFK EWR ORD LGA ATL DEN 
Delay (minute) 45.9 55.4 46.9 38.7 31.5 31.3 24.6  

8.2.2 Case Study Result 

The combination of settings for GDP Holding Time, Carrier Delay and Departure 

Demand Ratio results in 48 scenarios (4x3x4). Figure 8.1 shows plots of the Airport 

Generated Delay.  The y-axes are the Predicted Generated Delay in minutes. The x-axes 

are the different settings for Departure Demand Ratio. The curves with different colors 

and styles in an airport plot are the Generated Delays given different settings of GDP 

Holding Time. The plots in the first row are for the scenarios that the Carrier Delay is 10 

minutes. The plots in the second row are for the scenarios that the Carrier Delay are 5 

minutes, and the plots in the bottom row associated with 0 Carrier Delay. 



 

  

0.8 1 1.2
0

20

40

60
PHL

Departure Rho

G
en

er
at

ed
 D

el
ay

 (m
in

ut
e)

0.8 1 1.2
0

20

40

60
JFK

Departure Rho

G
en

er
at

ed
 D

el
ay

 (m
in

ut
e)

0.8 1 1.2
0

20

40

60
EWR

Departure Rho

G
en

er
at

ed
 D

el
ay

 (m
in

ut
e)

0.8 1 1.2
0

20

40

60
ORD

Departure Rho

G
en

er
at

ed
 D

el
ay

 (m
in

ut
e)

0.8 1 1.2
0

20

40

60
LGA

Departure Rho

G
en

er
at

ed
 D

el
ay

 (m
in

ut
e)

0.8 1 1.2
0

20

40

60
ATL

Departure Rho

G
en

er
at

ed
 D

el
ay

 (m
in

ut
e)

0.8 1 1.2
0

20

40

60
DEN

Departure Rho

G
en

er
at

ed
 D

el
ay

 (m
in

ut
e)

0.8 1 1.2
0

20

40

60
PHL

Departure Rho

G
en

er
at

ed
 D

el
ay

 (m
in

ut
e)

0.8 1 1.2
0

20

40

60
JFK

Departure Rho

G
en

er
at

ed
 D

el
ay

 (m
in

ut
e)

0.8 1 1.2
0

20

40

60
EWR

Departure Rho

G
en

er
at

ed
 D

el
ay

 (m
in

ut
e)

0.8 1 1.2
0

20

40

60
ORD

Departure Rho

G
en

er
at

ed
 D

el
ay

 (m
in

ut
e)

0.8 1 1.2
0

20

40

60
LGA

Departure Rho

G
en

er
at

ed
 D

el
ay

 (m
in

ut
e)

0.8 1 1.2
0

20

40

60
ATL

Departure Rho

G
en

er
at

ed
 D

el
ay

 (m
in

ut
e)

0.8 1 1.2
0

20

40

60
DEN

Departure Rho

G
en

er
at

ed
 D

el
ay

 (m
in

ut
e)

0.8 1 1.2
0

20

40

60
PHL

Departure Rho

G
en

er
at

ed
 D

el
ay

 (m
in

ut
e)

0.8 1 1.2
0

20

40

60
JFK

Departure Rho

G
en

er
at

ed
 D

el
ay

 (m
in

ut
e)

0.8 1 1.2
0

20

40

60
EWR

Departure Rho

G
en

er
at

ed
 D

el
ay

 (m
in

ut
e)

0.8 1 1.2
0

20

40

60
ORD

Departure Rho

G
en

er
at

ed
 D

el
ay

 (m
in

ut
e)

0.8 1 1.2
0

20

40

60
LGA

Departure Rho

G
en

er
at

ed
 D

el
ay

 (m
in

ut
e)

0.8 1 1.2
0

20

40

60
ATL

Departure Rho

G
en

er
at

ed
 D

el
ay

 (m
in

ut
e)

0.8 1 1.2
0

20

40

60
DEN

Departure Rho

G
en

er
at

ed
 D

el
ay

 (m
in

ut
e)

GDP = 0 minute GDP = 4 minutes GDP = 8 minutes GDP = 15 minutes

Carrier Delay
= 10 minutes

Carrier Delay
= 5 minutes

Carrier Delay
= 0 minute

Generated Delay Impacted by Carrier Delay 

Generated Delay Impacted by GDP 

Generated Delay Impacted by Departure Demand Ratio 

Figure 8.1: Generated Delays at Each Airport from Case Study Scenarios 
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  Table 8.4 gives a summary of the predicted Generated Delays when the values of 

inputs of interest were reduced one by one. These values can be found in Figure 8.1.  

8.2.2.1 Reduced Delay Due to the Changes of Departure Demand Ratio 

As can be seen from Figure 8.1, the curves in each plot are almost parallel. 

Therefore, the impact of Departure Demand Ratio can be approximated by the difference 

of Generated Delay when reducing Departure Demand Ratio from 1.2 to 0.8 given 

Carrier Delay is 10 minutes and GDP Holding Time is 15 minutes.  

  Predicted Generated Delay from the Inputs: 

 

GDP=15min 
CarrierDelay=10min 
Departure ρ=1.2 
DepartureTime=6pm 

reduce  
ρ:1.2 to 0.8 

reduce  
ρ:1.2 to 0.8 
Carrier:10 to 0

reduce  
ρ:1.2 to 0.8 
Carrier: 10 to 0 
GDP: 15 to 0 

reduce  
ρ:1.2 to 0.8 
Carrier: 10 to 0 
GDP:15 to 0 
Time:6pm to 6am

PHL 46  40(-5) 25(-15) 18(-8) 4(-14) 
JFK 55 52(-3) 40(-13) 26(-14) 9(-17) 

EWR 47 41(-6) 27(-14) 20(-7) 6(-14) 
ORD 39 37(-2) 30(-7) 15(-15) 7(-8) 
LGA 31 26(-5) 15(-11) 10(-5) 5(-5) 
ATL 31 28(-3) 21(-8) 9(-12) 0(-8) 
DEN 25 23(-2) 17(-6) 6(-11) 6 

The third column to the left in Table 8.4 gives the predicted Generated Delay and 

the reduced delay (in parentheses). Reducing Departure Demand Ratio by 0.4 can reduce 

Generated Delay most at PHL, EWR, and LGA with 5 minutes or more, and it can only 

Table 8.4: Predicted Generated Delay (minute) from each Scenario 
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reduce Generated Delay at DEN by 2 minutes.  ATL and JFK are in the middle with 3 

minutes. 

8.2.2.2 Reduced Delay Due to the Changes of Carrier Delay and/or GDP Holding 
Time 

The forth column to the left in the Table 8.4 also gives the reduction of Generated 

Delay by reducing Carrier Delay given that GDP Holding Time is 15 minutes. Reducing 

Carrier Delay by 10 minutes can reduce Generated Delay by more than 10 minutes at 

PHL, JFK, EWR, and LGA.   

Reducing GDP Holding Time by 15 minutes given Carrier Delay is 0 can reduce 

the predicted Generated Delay by more than 10 minutes at JFK, ORD, ATL, and DEN 

(see the second column to the right in the Table 8.4). However, this type of calculation of 

the impact of the Carrier Delay and the GDP Holding Time ignores the interaction 

between these two factors.  

To investigate the impact of Carrier Delay and GDP Holding Time while 

considering their interrelationship, the Departure Demand Ratio is fixed at 0.8.  The 

Airport Generated Delay was predicted from the 12 scenarios combining 4 different 

values of GDP Holding Time and 3 values of Carrier Delay: 0, 5, and 10 minutes.   

 

 



 

  171

Reducing Carrier Delay 

In Figure 8.2, the x-axis is the Carrier Delay. The y-axis is the predicted 

Generated Delay. The 4 different colors and styles represent different settings of GDP 

Holding Time. The predicted Generated Delays in the 4th column in Table 8.4 are the 

delays of the most left point on the black curve with squares in Figure 8.2, and the values 

in the parentheses are the difference between the lowest delay and the highest delay on 

each of the black curves in Figure 8.2.  Reducing Carrier Delay by 10 minutes can 

decrease the Generate Delay by more than 10 minutes at PHL, JFK, EWR, and LGA, and 

by more than 5 minutes at ORD, ATL, and DEN.  

 

0 5 10
0 

10 
20 
30 
40 
50 
60 PHL 

Carrier Delay (minute)

G
en

er
at

ed
 D

el
ay

 (m
in

ut
e)

0 5 10
0

10

20

30

40

50

60
JFK

Carrier Delay

G
en

er
at

ed
 D

el
ay

 (m
in

ut
e)

0 5 10
0

10

20

30

40

50

60
EWR

Carrier Delay

G
en

er
at

ed
 D

el
ay

 (m
in

ut
e)

0 5 10 0

10

20

30

40

50

60
ORD 

Carrier Delay 

G
en

er
at

ed
 D

el
ay

 (m
in

ut
e)

0 5 10
0

10

20

30

40

50

60
LGA 

Carrier Delay 

G
en

er
at

ed
 D

el
ay

 (m
in

ut
e)

0 5 10
0

10

20

30

40

50

60
ATL

Carrier Delay

G
en

er
at

ed
 D

el
ay

 (m
in

ut
e)

0 5 10
0

10

20

30

40

50

60
DEN

Carrier Delay

G
en

er
at

ed
 D

el
ay

 (m
in

ut
e)

GDP = 0 minute 
GDP = 4 minutes 
GDP = 8 minutes 
GDP = 15 minutes 

 
Figure 8.2: Estimated Airport Generated Delay (minute) vs. Carrier Delay. The Departure
Demand Ratio is set at 0.8.  

 
The clear non-linear relationship between Carrier Delay and Airport Generated 

Delay can be seen from Figure 8.2, especially at PHL, JFK, ORD, LGA, and DEN. The 

downward bending of these curves illustrates that the Generated Delay can be reduced 
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more by decreasing the Carrier Delay from 5 minutes to 0 than by decreasing the Carrier 

Delay from 10 minutes to 5 minutes.  

Reducing GDP Holding Time 

In Figure 8.3, the x-axis represents GDP Holding Time. The y-axis represents the 

predicted Generated Delay. The different colors and styles represent different values of 

Carrier Delay. This graph evaluated the impact of GDP Holding Time. The delays in the 

5th column in Table 8.4 are the lowest delays on the black curve in Figure 8.3 which is 

associated with 0 Carrier Delay and 0 GDP Holding Time. Reducing GDP Holding time 

by 15 minutes can reduce Generated Delay by more than 10 minutes at JFK, ORD, ATL, 

and DEN. Figure 8.3 also shows the non-linear relationship between Generated Delay 

and GDP Holding Time. 
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Figure 8.3: Estimated Airport Generated Delay (minute) vs. GDP Holding Time. The
Departure Demand Ratio is set at 0.8. 
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8.3 Summary of Case Study Results 

The selected 7 airports are representatives of different classes of airports. DEN is 

the largest international airport in the United States by geographic space and number of 

runways; however, it still has an average of 13 minutes Generated Delay per flight. 

Analyzing the policy of alleviating delays at these airports is of particular interest.  

The conclusions of the case study are summarized below. These conclusions 

apply only for the range of input data in which the model is valid. 

1. Scheduled Departure Time (Time of Day)  

At 6 PM, even though there is no GDP, no Carrier Delay and Departure Demand 

Ratio is as low as 0.8, the Generated Delays at PHL, JFK, EWR, and ORD are 15 

minutes or higher. Changing Departure Time from 6 PM to 6 AM, the Generated Delays 

all fall below 10 minutes at these airports (see last column of Table 8.4). Therefore, 

Airport Generated Delay is related to the Time of Day.  

2. Departure Demand Ratio 

 Reducing Departure Demand Ratio from 1.2 to 0.8 can mitigate Generated Delay 

by more than 5 minutes per flight at PHL, EWR, and LGA. It can reduce Generated 

Delay by about 3 minutes at ATL and JFK. Making the same change on Departure 

Demand Ratio at ORD and DEN, which both have 6 runways, has marginal impact on its 

Generated Delay (2 minutes).  The Generated Delay model for ORD has the Runway 
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Configuration as one of the inputs. In this case study, it was set at the configuration 

associated with the lowest taxi-out delay.  The low impact of Departure Demand Ratio is 

probably due to its interrelationship with Runway Configuration.  

 There are two ways to reduce Departure Demand Ratio. One way is to reduce 

departure demand. The other one is to increase departure capacity.  

 The departure demand is the result of airline’s departure scheduling decisions. It 

may be controlled by FAA through slot control in the future. The actual departure 

capacity is not the declared Airport Departure Rate (ADR) by FAA. The capacity-limit 

factors, such as runways, gates, weather, and some environmental limitations, can 

diminish the airport capacity, which results in an actual departures rate below the ADR. 

There are also many cases where the actual departure throughput is above the declared 

ADR. If over-ADR departure occurs, the ATC controllers have made tradeoffs between 

departures and arrivals. The actual operation throughput (total departures and arrivals) 

shall not exceed the summation of AAR and ADR.   

 Figure 8.4  to Figure 8.8 show the relationship between departure throughput vs. 

ADR, operation throughput vs. the summation of AAR and ADR, and departure demand 

vs. ADR using ASPM data for summer 2005 from 6am to midnight. Figure 8.4 to 8.9 

show these relationships in scatter plots and probability distribution at EWR, LGA, ORD, 

ATL and JFK. Figure 8.9 shows JFK in summer 2007. The diagonal lines on the left side 

represent the situations that ADR equals to departure throughput and AAR+ADR equals 

to operation throughput. A random jitter was included so data do not overlay. The vertical 
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lines in light color on the right side separate the situations where the throughput is over 

the declared capacity or the departure demand is over declared capacity. 
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Figure 8.4: Probability Distribution for EWR, summer 2005 6 am to midnight, a) Departure Throughput vs. ADR, b) Total 
Operations vs. AAR+ADR, c) Scheduled Departure Demand vs. ADR, d) Scheduled Departure Demand vs. Departure 
Throughput 
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Figure 8.5: Probability Distribution for LGA, summer 2005 6 am to midnight, a) Departure Throughput vs. ADR, b) Total 
Operations vs. AAR+ADR, c) Scheduled Departure Demand vs. ADR, d) Scheduled Departure Demand vs. Departure 
Throughput 

177 



 

  

 

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

ADR+rand()/2

D
ep

ar
tu

re
 T

hr
ou

gh
pu

t+
ra

nd
()/

2

-35 -30 -25 -20 -15 -10 -5 0 5 10 15 20
0

0.05

0.1

0.15

Departure Throughput - ADR

P
or

tio
n 

of
 E

po
ch

s

0 10 20 30 40 50 60 70
0

20

40

60

80

ADR+AAR+rand()/2

O
pe

ra
tio

n 
Th

ro
ug

hp
ut

+r
an

d(
)/2

-35 -30 -25 -20 -15 -10 -5 0 5 10 15 20
0

0.05

0.1

0.15

Operation Throughput - (ADR+AAR)

P
or

tio
n 

of
 E

po
ch

s

0 10 20 30 40 50 60
0

20

40

60

ADR+rand()/2

D
ep

ar
tu

re
 D

em
an

d+
ra

nd
()/

2

-35 -30 -25 -20 -15 -10 -5 0 5 10 15 20
0

0.05

0.1

0.15

Departure Demand-ADR

P
or

tio
n 

of
 E

po
ch

s

0 10 20 30 40 50 60
0

20

40

60

Departure Throughput+rand()/2

D
ep

ar
tu

re
 D

em
an

d+
ra

nd
()/

2

-35 -30 -25 -20 -15 -10 -5 0 5 10 15 20
0

0.05

0.1

0.15

Departure Demand-Departure Throughput

P
or

tio
n 

of
 E

po
ch

s

a)

b)

c)

d)

 
Figure 8.6: Probability Distribution for ORD, summer 2005 6 am to midnight, a) Departure Throughput vs. ADR, b) Total 
Operations vs. AAR+ADR, c) Scheduled Departure Demand vs. ADR, d) Scheduled Departure Demand vs. Departure 
Throughput 
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Figure 8.7: Probability Distribution for ATL, summer 2005 6 am to midnight, a) Departure Throughput vs. ADR, b) Total 
Operations vs. AAR+ADR, c) Scheduled Departure Demand vs. ADR, d) Scheduled Departure Demand vs. Departure 
Throughput 
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Figure 8.8: Probability Distribution for JFK, summer 2005 6 am to midnight, a) Departure Throughput vs. ADR, b) Total 
Operations vs. AAR+ADR, c) Scheduled Departure Demand vs. ADR, d) Scheduled Departure Demand vs. Departure 
Throughput 
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Figure 8.9: Probability Distribution for JFK, summer 2007 6 am to midnight, a) Departure Throughput vs. ADR, b) Total 
Operations vs. AAR+ADR, c) Scheduled Departure Demand vs. ADR, d) Scheduled Departure Demand vs. Departure 
Throughput 
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  Table 8.5 summarizes the accumulated distributions on the right side of Figure 8.4 to Figure 8.9. 

Summer 2005 from ASPM   EWR LGA ORD ATL JFK JFK 2007 
Departure Throughput > ADR  16.4% 17.5% 18.1% 12.7% 12.4% 25.1% 
Departure Throughput < ADR 73.1% 67.8% 76.5% 79.7% 78.4% 63.2% 
       
Throughput (Departure + Arrival) > AAR+ADR 6.5% 12.8% 10.3% 8.1% 4.9% 9.1% 

Throughput (Departure + Arrival) < AAR+ADR 89.1% 79.8% 86.5% 87.3% 91.8% 84.8% 
       
Departure Demand > ADR 22.3% 25.5% 26.1% 20.1% 17.5% 29.8% 
Departure Demand = ADR 7.1% 8.6% 2.8% 6.7% 5.9% 7.7% 
Departure Demand < ADR 70.6% 65.8% 71.1% 73.2% 76.6% 62.5% 
       
Departure Demand > Departure Throughput 46.6% 40.5% 43.4% 48.7% 41.1% 45.6% 
Departure Demand = Departure Throughput 10.0% 13.0% 4.7% 7.1% 11.1% 7.7% 
Departure Demand < Departure Throughput 43.4% 46.5% 51.9% 44.1% 47.8% 46.7% 

Table 8.5: Percentages of Actual Operation (departure or departure+arrival) over Declared Capacity (ADR or ARD+AAR),
and percentages of the relationship between departure demand and ADR, between departure demand and departure throughput
in summer 2005 from 6am to midnight. 
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 The airports, EWR and LGA, where the Generated Delays are more sensitive to 

the Departure Demand Ratio than other airports, were operated over declared departure 

capacity at more than 15% of time. Departure demand exceeds ADR at these 2 airports 

more than 20% of time. There is also a large percent of time that the airports are operated 

under the declared capacity, and departure demand is below the capacity.  

 Given the current configuration at these airports, it may not be possible to 

physically increase airport operation capacity, for example adding a new runway. 

However, there are possibilities that the over-capacity demand can be moved to the time 

periods when the demand is less than the capacity. Therefore, the ways to reduce 

Departure Demand Ratio can be either improve airport operation efficiency or to reduce 

the Departure Demand.  

3. GDP Holding Time 

 From the case study, GDP Holding Time has larger impact on JFK, ORD, ATL,  

and DEN. Reducing GDP Holding Time by 15 minutes can result in more than 10 

minutes reduction of Generated Delay (see Table 8.4). It has relatively small impact on 

Generated Delay at PHL, EWR, and LGA when there is carrier delay.  

 Further investigation of GDP’s reveals that ATL, ORD, EWR, LGA and PHL are 

the top 5 airports issued the highest amount of GDP for their inbound flights in the 

summer of 2005 (see Table 8.6). However, the outbound flights from ATL and ORD also 
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have a high chance of being placed under a GDP at their destination.  This explains the 

high influence of GDP Holding Time on Generated Delays at ORD and ATL.  

 The flights outbound from JFK have very low probability to get assigned in a 

GDP; however, the Generated Delay of flights leaving JFK is very sensitive to the GDP. 
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Table 8.6: Allocation of GDP affected Flights within 34 OEP Airports in Summer 2005 

Origin of 
outbound flights 

Percentage of outbound 
flights affected by GDP 

Destination of 
inbound flights 

Percentage of inbound 
flights affected by GDP 

ORD 6.15% ATL 29.96% 
DFW 5.44% ORD 13.56% 
ATL 5.16% EWR 12.76% 
DCA 4.18% LGA 9.39% 
BOS 4.12% PHL 8.65% 
MCO 3.93% BOS 7.57% 
CLT 3.58% SFO 4.30% 
MSP 3.52% IAD 2.97% 
IAH 3.45% JFK 2.32% 
LAX 3.45% BWI 1.52% 
DEN 3.44% LAS 1.15% 
DTW 3.39% DCA 0.91% 
LGA 3.25% IAH 0.73% 
FLL 3.11% MDW 0.72% 
EWR 3.02% DTW 0.62% 
MIA 2.98% MSP 0.45% 
PHL 2.92% CVG 0.34% 
IAD 2.85% CLT 0.32% 
PHX 2.69% FLL 0.30% 
CVG 2.61% PHX 0.28% 
TPA 2.48% SEA 0.22% 
PIT 2.46% DEN 0.20% 
CLE 2.43% CLE 0.19% 
LAS 2.43% LAX 0.16% 
SFO 2.32% DFW 0.10% 

MDW 2.18% MIA 0.08% 
BWI 2.07% MCO 0.07% 
SEA 1.81% STL 0.05% 

MEM 1.66% PIT 0.04% 
STL 1.66% SAN 0.04% 
SLC 1.63% MEM 0.01% 
JFK 1.43% TPA 0.00% 
SAN 1.42%     
PDX 0.75%     
Total  100% Total 100% 
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4. Carrier Delay 

 Reducing Carrier Delay can mitigate Generated Delay at all 7 airports. It has 

larger impact on the top 3 airports with the worst Generated Delay, PHL, JFK, and EWR. 

It has big impact on Generated Delay at LGA too.  It can also decrease average 

Generated Delay per flight at ORD, ATL and DEN by more than 5 minutes if it is 

reduced by 10 minutes. 

 Overall, these conclusions are only valid for the data within the range of this case 

study since the models are non-linear and the factor’s impacts are expected to be different 

within different range.  

Considering the uncertainty associated with the predictions for the scenarios, the 

68% confidence interval for each point estimate is very wide (in Table 8.7). In Table 8.7, 

G represents the square root of Generated Delay and 2ˆ ˆ ˆ2 GG
gσ σ= . Given so much 

uncertainty in the prediction, the point estimate is very rough for the real delay. 
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G

g σ±  Redu.  2
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2ˆ ˆ
G

g σ±  Redu.
PHL 1.6 46 22 (24, 68) 40 20 (20, 60) -5 25 16 (9, 41) -15 18 14 (4, 32) -8 4 6 (-2, 10) -14 
JFK 1.5 55 22 (33, 77) 52 22 (30, 74) -3 40 19 (21, 59) -13 26 15 (11, 41) -14 9 9 (0, 18) -17 

EWR 1.7 47 23 (24, 70) 41 22 (19, 63) -6 27 18 (9, 45) -14 20 15 (5, 35) -7 6 8 (-2, 14) -14 
ORD 1.1 39 14 (25, 53) 37 13 (24, 50) -2 30 12 (18, 42) -7 15 9 (6, 24) -15 7 6 (1, 13) -8 
LGA 1.6 31 18 (13, 49) 26 16 (10, 42) -5 15 12 (3, 27) -11 10 10 (0, 20) -5 5 7 (-2, 12) -5 
ATL 1 31 11 (20, 42) 28 11 (17, 39) -3 21 9 (12, 30) -8 9 6 (3, 15) -12 0 0   -8 
DEN 1.1 25 11 (14, 36) 23 11 (12, 34) -2 17 9 (8, 26) -6 6 5 (1, 11) -11 6 5 (1, 11)   

 

Table 8.7: Predicted Generated Delay (minute) and 68% Confidence Interval for Each Scenario 
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CHAPTER 9 
 

CONCLUSIONS AND FUTURE WORK 
 
 
 
 
Most major airports in the U.S. are operating near capacity, and the rapid growth 

of air traffic is causing more delay problems. Based on the delay statistics in Table A.1, 

for a 100-minute inbound delay at the destination, more than 90 minutes of delay occurs 

at the airports. Even though a large amount of delays (59.1 minutes) were absorbed 

during the airborne phase, the total Airport Delay propagated in the system through 

multiple legs of an aircrafts’ itinerary still results in a similar amount of total Arrival 

Delay at outbound destination (Airport Delay 98.6 minutes vs. Total Arrival Delay at 

Outbound Destination 100 minutes in Figure 1.6).  This motivates the research conducted 

in this dissertation to model the factors that determine the Airport Delays. 

This research developed a method for deriving models to predict airport delays. 

Through well defined steps of variable selection, six factors out of more then 50 potential 

factors are shown to be statistically significant for the Airport Generated Delay at most 

34 OEP airports.  

o Departure Demand Ratio at 30-minute time Window,  

o Carrier Delay,  

o GDP Holding Time,  
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o Airline Swap Aircraft Rate,  

o Inbound Delay,  

o Departure Time.  

For Airport Absorbed Delay, 3 factors are indentified to be significant predictors. 

o Scheduled Turn-around Time,  

o Inbound Delay and  

o Carrier Delay  

This research confirms quantitatively that the factors which have been considered 

as causes for delays by previous research and expert operators in the field are 

contributing factors to airport delay. These factors account for an average of 63% of the 

variance of Airport Generated Delay and an average of 50% of the variance of Airport 

Absorbed Delay (average 2R  from Table 6.2).  

The validation results of data samples from 2005 and 2006 prove that airport 

models developed in this dissertation can provide useful predictions in terms of accuracy. 

These models also were accurate one year later (see Chapter 6). Estimated on the hold out 

sample, the average absolute prediction error is 6.2 minutes of 34 OEP airports for 15 

days in Aug. 2005 with minimum 4.2 minutes for LAX and maximum 9.2 minutes for 

PHL (see Table 6.2).  The mean absolute prediction error for data in August 2006 is 

below 10 minutes at 31 airports. The maximum error is 12.4 minutes for PHL (see Table 

6.3).  
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With such accuracy, the models developed in this research can not only be used to 

predict airport delay, to analyze the impact of delay mitigation policy on an airport, but 

also are ideal building blocks for NAS simulation models to identify the system impact of 

delay mitigation policies. 

9.1 Conclusions from Sensitivity Analysis and Case Study 

An approximate sensitivity analysis was performed on the validated models to provide 

quantitative measures of the influence of important factors. The summaries of analysis 

results are as follows. 

Airports are unique. Different airport should implement different delay mitigation 

strategies.  

1. The factors influencing Airport Generated Delay and Absorbed Delay are not 

exactly the same across 34 airports (see Table A.5 and A.6).  

 Each airport has its own operation characteristics. The models in Appendix B 

have different predictors, basis functions and coefficients. Each basis function represents 

the contribution of a predictor over a certain range of values. The coefficient of each 

basis function indicates the degree of influence of the corresponding factor when its value 

is in that range.  
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 Using Departure Time as an example, the airports behave differently at different 

times of the day. Figure 9.1  shows the break-points (knots) for Departure Time at the 

airports in New York which have Departure Time in their Generated Delay model.    
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Figure 9.1: The Break-points of Departure Time in the Airport Generated Delay Models 

 

 As can be seen from the table, no two airports have the same break-points of 

Departure Time. The break points at EWR and JFK are different even though they are 

geographically close. However, the difference of EWR and JFK is not large. The first 

group of close break-points is around 9:00 to 10:00 in the morning, which is the time the 

airports start to get crowded. The second group of break-points is around 12:00 at noon. 

And, the third group of break-points is around 6pm, which is the time when a bank of 

flights departs for Europe.  
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 Since the airport’s behavior is not the same, the assumption of treating airports as 

identical (e.g. Boswell and Evans 1997) oversimplifies the problem and should be 

avoided.  

2. The factors’ impact on delays are different 

 The significant factors for airport delays were narrowed down from more than 50 

to 6 factors for Airport Generated Delay and 4 factors for Absorbed Delay by following 

the approaches described in Chapter 4. Among these factors, some of them have more 

influence than others on the airport delays.  

 The sensitivity analysis conducted in this research investigated which factors have 

the most impact on the overall performance.  The second column of Table 9.1 shows the 

means of positive values of significant factors for Airport Generated Delay and Absorbed 

Delay across 34 airports using the data of summer 2005. These are the same values used 

for sensitivity analysis in Chapter 7.  

Table 9.1: Summary of Mean Value of Factors at 34 OEP Airports in June and July 2005 
and the Average Slopes of these Factors in Sensitivity Analysis. The Slope measures the 
amount of variation of delays (in minute) given 10% increment of the mean of 
corresponding factor. 

Average Slopes  
  Mean  Generated Delay Absorbed Delay 

Carrier Delay (minute) 10.35 2.78 0.38 
GDP Holding Time (minute) 19.22 2.79 0.16 
Departure Demand Ratio 1.25 3.86   
Inbound Delay (minute) 20.65 -0.92 -2.95 
Swap Aircraft Rate 0.23 0.49   
Schedule Turnaround Time (minute) 60.04   -3.53 
Number of Seats 134  1.56 
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 The last two columns of Table 9.1 show the average slopes across 34 airports 

based on the output of sensitivity analysis in Chapter 7.  For example, the first entry of 

the third column is the average value of the slopes reported in Table 7.1. 

 The Carrier Delay, GDP Holding Time, and Departure Demand Ratio are the 

most significant factors to Airport Generated Delay. The Scheduled Departure Time is 

a very important factor in the model. It is not included in the sensitivity analysis because 

Scheduled Departure Time is decided by airlines and cannot be manipulated.  

 Reducing Carrier Delay and GDP Holding Time will reduce Generated Delay at 

all 34 airports. Departure Demand Ratio appears at 23 Airport Generated Delay models.  

Reducing Departure Demand Ratio will also reduce Generated Delay. 

 Inbound Delay and Swap Aircraft Rate only slightly affect Airport Generated 

Delay.  The reason for the small impact of Swap Aircraft Rate is that swapping aircraft 

only occurs 4% of time (see section 7.2.4). With such small percentage, reducing the 

possibility of swapping aircraft does not significantly affect the overall performance in 2-

month training data period.  

 The reason for the small impact of Inbound Delay may be due to its colinearity 

with Scheduled Departure Time. When the major part of the variance of Generated Delay 

has been explained by Scheduled Departure Time, the Inbound Delay does not seem to 

affect Generated Delay much (see Figure 7.8).  The negative average slope of impact of 
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Inbound Delay to Generated Delay implies that implies that airports were forced to 

generate less delay for flights with longer in-bound delay.  

The Inbound Delay and Scheduled Turnaround Time are the most significant 

factors to Airport Absorbed Delay. Extended schedule turn-around time results in longer 

absorbed delay and all airports can absorb more delay when carrier delay and GDP 

holding time are reduced. 

3. For airports that share the same factors, a given factor has different influence at 

different airports. 

 The air traffic manager and stakeholder (e.g. ATC) should apply different policy 

on the airports according to their dominant factors.  

 Carrier Delay is solely the responsible of airline and changing it will not 

adversely affect the airlines’ market and profit. The causes of these delays are the 

circumstances considered within the airline’s control by FAA. The Airport Generated 

Delay can be mitigated by reducing Carrier Delay more significantly at some airports 

than other. These airports include ORD, ATL, MSP, PHL, PHX, DEN, DTW, JFK, 

EWR, and DFW (see Figure 7.2 and Table 7.1). 

 Departure Demand Ratio measures the balance of departure demand and actual 

departure capacity for each airport.  
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 Both the mean (1.25) and the median (1.05) of Departure Demand Ratio across 34 

airports show that the major airports are operating up to their capacity. The near-capacity 

operation is one of the most significant reasons for delays.  

 From the outputs of the Sensitivity Analysis in Chapter 7, the Airport Generated 

Delay at PHL, LGA, EWR, and ATL can be alleviated by the greatest amount by 

reducing Departure Demand Ratio (see Figure 7.6 and Table 7.4). This result is similar to 

the results of Case Study in Chapter 8 Table 8.4.  

 There were situations that these airports operated above its designed capacity, 

there also were situations the airports were operated below its designed capacity (see 

Figure 8.4 to Figure 8.9 and Table 8.5). There were situations that the demand at these 

airports is above its designed capacity, there also were situations that demand is below 

capacity.  

 The feasible solutions to reduce Departure Demand Ratio can be either to reduce 

departure demand or to increase airport capacity.  If adding new runways is too costly 

given the financial or environmental consideration, effectively utilizing the current 

facility is only solution. There are large percentages of time that the demand is below the 

capacity (see Table 8.5). It will mitigate the congestion at the airport if some demand at 

peak time is moved to other times. The airlines are not willing to sacrifice profit by 

reducing their operation or changing their schedule. Hence, an enforced slot control or 

other incentive may be a way to solve this problem.  
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  GDP is issued by the Air Traffic Control system Command Center (ATCSCC). 

The intention of GDP is to move the airborne delay to outbound destination to ground 

delay at origin. The reason that the destination airports issue GDP to inbound flights at 

origin is the arrival demand over arrival capacity.  Instead of recommending reducing 

GDP Holding Time at Origin airport, it would make more sense to reduce the arrival 

demand at destination.  

 Although ground delay is safer and cheaper than airborne delay, it causes 

problems at origin airport and airline operation. Reducing GDP Holding Time can reduce 

Airport Generated Delay at DFW, ATL, ORD, CLT, DCA, CVG, BOS, IAH, and MIA 

more than other airports (see Table 7.2). There airports are in the top 10 airports which 

have the highest percentage of GDP to outbound flights, except CVG and MIA (see 

Table Error! Reference source not found.). 

4. At a given airport, the rate of change of airport delay due to a specific variable 

differs at different ranges of the variable. 

 Nonlinearity is essential. Based on the outputs from section 8.2.2.2, reducing 

Carrier Delay from 10 minutes to 5 minutes does not have the same amount of reduction 

of Generated Delay as reducing the Carrier Delay from 5 to 0 at PHL and JFK.  Hence, 

preventing Carrier Delay at JFK and PHL is more important than reducing Carrier Delay. 

Intuitively, longer turn-around time at airport terminal enables aircraft to make up 

delays. The sensitivity analysis on Scheduled Turn-around Time shows this trend when 
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the time was artificially added or reduced within 30%. However, adding more than 40% 

turn-around time results in less absorbed delay at some airports (see Figure 7.10).  

Overall, the analysis results suggest that each airport should be treated differently 

according to its unique characteristics in the process of improving NAS performance. A 

GUI tool to predict Airport Delay at LGA was developed based on the developed models. 

The same tools can be developed for other airports as well. Such tools would enable AOC 

and TFM personnel to perform “what if” analysis by making changes in causal factors at 

various times of the day and observing the predicted effects. The display would include 

multiple delay predictions to better understand the impact of one or more types of delays. 

9.2 Recommendations for Future Work 

There are several limitations of this research.  

The first limitation is the limitation of regression analysis. An advantage of 

regression modeling is the ability to interpolate from regression analysis, i.e., drawing 

inference about ( | )E Y X x=  for x within the range of observed values of X. However, 

drawing an inference about ( | )E Y X x=  for x outside the range of the observed values of 

X can be dangerous.  

The data for this study did not include manipulation of the factors influencing 

delay. For this reason, care must be taken in interpreting the model for policy purposes. 
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The assumptions required to interpret the relationships causally would have to be 

carefully justified.  

Another limitation is that for a dynamic moving system like NAS, a one-time 

model development process is not sufficient. The models need to be updated in order to 

be able to represent the real system. It suggests that a running 60-day window to predict 

next 30 days to account for adaption of system would be a better strategy for using this 

model. 

The limitation of the approach of sensitivity analysis is that manipulating one 

factor at a time and keeping other factors unchanged assumes that these factors vary 

independently from each other. In reality, when changing one factor, the value of other 

factors may change accordingly. The interrelationships among the factors will be 

investigated in future research. 

This research focuses on delays at airports. The air space is as important as 

airports in air traffic management. The overall effect of the airborne phase is to absorb 

system delays rather than to generate delays.  One possible reason for this phenomenon is 

that air traffic control initiatives such as GDP have transferred the delay in air space to 

the ground. Another possibility is that airlines pad their schedule so that they have more 

room to make up lost time when they are behind schedule. These hypotheses need to be 

investigated by future study.   
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Once the airborne phase can be accurately estimated, the models of airports and 

airborne phases can be linked together to construct a network model of delay propagation 

for NAS.  

9.3 Published Results 

This research has been documented in several papers as follows: 

1. Xu, N., L. Sherry, and K.B. Laskey (2007). Sensitivity Analysis of Factors 

Causing Airport Delay (to be submitted). 

2. Xu, N., L. Sherry, and K.B. Laskey (2007). Multi-factor Models for Predicting 

Delays at U.S. Airports, Transportation Research Board, 2007. 

3. Xu, N., K.B. Laskey, C.H. Chen, S.C. Williams and L. Sherry (2007).  

Bayesian Network Analysis of Flight Delays. Proc. Transportation Research Board 86th 

Annual Meeting Compendium of Papers CD-ROM, 2007. 

4. Laskey, K., N. Xu, and C.H. Chen (2006). Propagation of Delays in the 

National Airspace System. Proc. of the 22nd Conf. of Uncertainty in Artificial 

Intelligence, Cambridge, MA. 2006. pp. 265-272. 

5. Xu, N., B.K. Laskey,G. Donohue, and C.H. Chen (2005). Estimation of Delay 

Propagation in the National Aviation System Using Bayesian Networks. Proc. of 6th 

USA/Europe Air Traffic Management R&D Symposium, Baltimore, MD. 2005. 
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Table A.1: Total Delays in Summer 2005 (minutes). The airports are ordered by total arrival delay at outbound destinations. 

Airport 

Number of  
outbound 

flight 

Inbound 
Delay from

 pre leg 

Early 
Arrival

Gap 

Airport  
Generated

Delay 

Airport 
Absorbed

Delay 

Airport  
Delay 

Airborne 
Generated

Delay 

Airborne
Absorbed

Delay 

Airborne
Delay 

Arrival 
Delay At  

Outbound 
Dest. 

ATL 43885 526888 71938 824013 -218286 605727 57655 -394384 -336729 867824
ORD 45834 328631 107658 1021362 -196916 824446 46401 -538984 -492583 768154
DFW 35580 217363 68710 603962 -132085 471877 63608 -256300 -192692 565258
EWR 24341 247336 30934 612241 -109039 503202 19517 -393709 -374192 407280
PHL 21699 194939 44203 613518 -67987 545531 14475 -401113 -386638 398034
MSP 22916 116703 35594 495080 -110194 384886 37877 -182047 -144170 393014
DTW 21961 120609 35203 417545 -103114 314431 41735 -148839 -107104 363138
DEN 30114 81674 71547 364923 -112214 252709 66872 -161558 -94686 311243
BOS 25841 163846 42084 419562 -100875 318687 35900 -257769 -221869 302748
JFK 15958 144880 12851 432341 -72359 359982 18843 -236535 -217692 300021
LGA 23176 228904 33222 463935 -124513 339422 17996 -333665 -315669 285879
IAH 24576 61276 53262 472821 -88858 383963 30607 -253148 -222541 275960
IAD 19052 131164 33805 383558 -82029 301529 23123 -215704 -192581 273917
CLT 19103 102143 31158 348464 -77401 271063 26424 -171927 -145503 258861
MCO 21022 132354 34389 259151 -84675 174476 49603 -147053 -97450 243770
DCA 20386 99725 35657 304107 -77928 226179 31772 -162051 -130279 231281
PHX 26832 55443 60311 390254 -82953 307301 36942 -228973 -192031 231025
MIA 13615 79313 14615 270751 -54424 216327 26722 -109026 -82304 227950
LAX 30921 90424 58990 321612 -113132 208480 64216 -196264 -132048 225845
LAS 22447 127865 46204 283206 -76787 206419 31084 -189659 -158575 221912
BWI 16011 99962 31201 200354 -45414 154940 26427 -131761 -105334 180768
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Table A.1 Total Delays in Summer 2005 (minutes). The airports are ordered by total arrival delay at outbound destinations. 
(continued) 

Airport 

Number of 
outbound 

flight 

Inbound 
Delay from

 pre leg 

Early 
Arrival

Gap 

Airport  
Generated

Delay 

Airport 
Absorbed

Delay 

Airport  
Delay 

Airborne 
Generated

Delay 

Airborne
Absorbed

Delay 

Airborne
Delay 

Arrival 
Delay 

At Outbound
Dest. 

SEA 15808 91970 23300 196234 -67046 129188 36128 -103234 -67106 177353
FLL 14244 96762 21930 211244 -48768 162476 27730 -132672 -104942 176226
CVG 18280 30411 52496 260366 -74994 185372 30213 -138867 -108654 159624
CLE 15000 70445 26300 203108 -66912 136196 25379 -103919 -78540 154401

MDW 16457 60513 52721 230571 -48645 181926 20991 -166906 -145915 149246
SFO 18302 83730 31898 211642 -94361 117281 37178 -126310 -89132 143777
TPA 13845 83222 18895 167675 -50878 116797 28024 -103669 -75645 143269
PIT 12956 56306 26838 159094 -51282 107812 25389 -88122 -62733 128224
STL 13633 69001 28523 134412 -40733 93679 27173 -94892 -67719 123484
SLC 16577 36079 31691 185788 -57107 128681 23781 -109596 -85815 110636
SAN 16653 72245 21071 146359 -57271 89088 28148 -101481 -73333 109071
MEM 8786 40293 17917 125526 -38032 87494 18651 -56066 -37415 108289
PDX 8591 36478 11091 68197 -32062 36135 17860 -43869 -26009 57695

   
Total 714402 4178897 1318207 11802976 -2859274 8943702 1114444 -6480072 -5365628 9075177 
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Airport 

Inbound 
Delay from 

 pre leg 

Early 
Arrival 

Gap  

Airport  
Generated 

Delay 

Airport 
Absorbed 

Delay 

Airport 
Delay 

Airborne 
Generated 

Delay 

Airborne 
Absorbed 

Delay 

Airborne
Delay 

Arrival 
Delay 

At Outbound
Dest. 

PHL 9.0 2.0 28.3 -3.1 25.1 0.7 -18.5 -17.8 18.3 
JFK 9.1 0.8 27.1 -4.5 22.6 1.2 -14.8 -13.6 18.8 

EWR 10.2 1.3 25.2 -4.5 20.7 0.8 -16.2 -15.4 16.7 
ORD 7.2 2.3 22.3 -4.3 18.0 1.0 -11.8 -10.7 16.8 
MSP 5.1 1.6 21.6 -4.8 16.8 1.7 -7.9 -6.3 17.2 
MIA 5.8 1.1 19.9 -4.0 15.9 2.0 -8.0 -6.0 16.7 
IAD 6.9 1.8 20.1 -4.3 15.8 1.2 -11.3 -10.1 14.4 
IAH 2.5 2.2 19.2 -3.6 15.6 1.2 -10.3 -9.1 11.2 
LGA 9.9 1.4 20.0 -5.4 14.6 0.8 -14.4 -13.6 12.3 
DTW 5.5 1.6 19.0 -4.7 14.3 1.9 -6.8 -4.9 16.5 
CLT 5.3 1.6 18.2 -4.1 14.2 1.4 -9.0 -7.6 13.6 
ATL 12.0 1.6 18.8 -5.0 13.8 1.3 -9.0 -7.7 19.8 
DFW 6.1 1.9 17.0 -3.7 13.3 1.8 -7.2 -5.4 15.9 
BOS 6.3 1.6 16.2 -3.9 12.3 1.4 -10.0 -8.6 11.7 
PHX 2.1 2.2 14.5 -3.1 11.5 1.4 -8.5 -7.2 8.6 
FLL 6.8 1.5 14.8 -3.4 11.4 1.9 -9.3 -7.4 12.4 
DCA 4.9 1.7 14.9 -3.8 11.1 1.6 -7.9 -6.4 11.3 
MDW 3.7 3.2 14.0 -3.0 11.1 1.3 -10.1 -8.9 9.1 
CVG 1.7 2.9 14.2 -4.1 10.1 1.7 -7.6 -5.9 8.7 
MEM 4.6 2.0 14.3 -4.3 10.0 2.1 -6.4 -4.3 12.3 
BWI 6.2 1.9 12.5 -2.8 9.7 1.7 -8.2 -6.6 11.3 

Table A.2: Average Delays per Flight in Summer 2005 (minutes). The airports are ordered by average airport delay. 
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Airport 

Inbound 
Delay from 

 pre leg 

Early 
Arrival 

Gap  

Airport  
Generated 

Delay 

Airport 
Absorbed 

Delay 

Airport 
Delay 

Airborne 
Generated 

Delay 

Airborne 
Absorbed 

Delay 

Airborne
Delay 

Arrival 
Delay 

At Outbound
Dest. 

LAS 5.7 2.1 12.6 -3.4 9.2 1.4 -8.4 -7.1 9.9 
CLE 4.7 1.8 13.5 -4.5 9.1 1.7 -6.9 -5.2 10.3 
TPA 6.0 1.4 12.1 -3.7 8.4 2.0 -7.5 -5.5 10.3 
DEN 2.7 2.4 12.1 -3.7 8.4 2.2 -5.4 -3.1 10.3 
PIT 4.3 2.1 12.3 -4.0 8.3 2.0 -6.8 -4.8 9.9 

MCO 6.3 1.6 12.3 -4.0 8.3 2.4 -7.0 -4.6 11.6 
SEA 5.8 1.5 12.4 -4.2 8.2 2.3 -6.5 -4.2 11.2 
SLC 2.2 1.9 11.2 -3.4 7.8 1.4 -6.6 -5.2 6.7 
STL 5.1 2.1 9.9 -3.0 6.9 2.0 -7.0 -5.0 9.1 
LAX 2.9 1.9 10.4 -3.7 6.7 2.1 -6.3 -4.3 7.3 
SFO 4.6 1.7 11.6 -5.2 6.4 2.0 -6.9 -4.9 7.9 
SAN 4.3 1.3 8.8 -3.4 5.3 1.7 -6.1 -4.4 6.5 
PDX 4.2 1.3 7.9 -3.7 4.2 2.1 -5.1 -3.0 6.7 

 

 

  

  
Table A.2: Average Delays per Flight in Summer 2005 (minutes). The airports are ordered by average airport delay. (continue)
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Figure A.1: Scatter Plot of Residuals of Generated Delay on Original Scale from Full-size Model. 
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Figure A.2: Quantile_Quantile Plot of Residuals of Generated Delay on Original Scale from Full-size Model 
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Figure A.3: Scatter Plot of Residuals of Squared Root of Generated Delay from Reduced-size Model 

207



 

 

-10 0 10
-5

0

5

residual quantiles

no
rm

al
 q

ua
nt

ile
s

ATL

-10 0 10
-5

0

5

residual quantiles

no
rm

al
 q

ua
nt

ile
s

BOS

-10 0 10
-5

0

5

residual quantiles

no
rm

al
 q

ua
nt

ile
s

BWI

-10 0 10
-5

0

5

residual quantiles

no
rm

al
 q

ua
nt

ile
s

CLE

-10 0 10
-5

0

5

residual quantiles

no
rm

al
 q

ua
nt

ile
s

CLT

-10 0 10
-5

0

5

residual quantiles

no
rm

al
 q

ua
nt

ile
s

CVG

-10 0 10
-5

0

5

residual quantiles

no
rm

al
 q

ua
nt

ile
s

DCA

-10 0 10
-5

0

5

residual quantiles

no
rm

al
 q

ua
nt

ile
s

DEN

-10 0 10
-5

0

5

residual quantiles

no
rm

al
 q

ua
nt

ile
s

DFW

-10 0 10
-5

0

5

residual quantiles

no
rm

al
 q

ua
nt

ile
s

DTW

-10 0 10
-5

0

5

residual quantiles

no
rm

al
 q

ua
nt

ile
s

EWR

-10 0 10
-5

0

5

residual quantiles

no
rm

al
 q

ua
nt

ile
s

FLL

-10 0 10
-5

0

5

residual quantiles

no
rm

al
 q

ua
nt

ile
s

IAD

-10 0 10
-5

0

5

residual quantiles

no
rm

al
 q

ua
nt

ile
s

IAH

-10 0 10
-5

0

5

residual quantiles

no
rm

al
 q

ua
nt

ile
s

JFK

-10 0 10
-5

0

5

residual quantiles

no
rm

al
 q

ua
nt

ile
s

LAS

-10 0 10
-5

0

5

residual quantiles

no
rm

al
 q

ua
nt

ile
s

LAX

-10 0 10
-5

0

5

residual quantiles

no
rm

al
 q

ua
nt

ile
s

LGA

-10 0 10
-5

0

5

residual quantiles

no
rm

al
 q

ua
nt

ile
s

MCO

-10 0 10
-5

0

5

residual quantiles

no
rm

al
 q

ua
nt

ile
s

MDW

-10 0 10
-5

0

5

residual quantiles

no
rm

al
 q

ua
nt

ile
s

MEM

-10 0 10
-5

0

5

residual quantiles

no
rm

al
 q

ua
nt

ile
s

MIA

-10 0 10
-5

0

5

residual quantiles

no
rm

al
 q

ua
nt

ile
s

MSP

-10 0 10
-5

0

5

residual quantiles

no
rm

al
 q

ua
nt

ile
s

ORD

-10 0 10
-5

0

5

residual quantiles

no
rm

al
 q

ua
nt

ile
s

PDX

-10 0 10
-5

0

5

residual quantiles

no
rm

al
 q

ua
nt

ile
s

PHL

-10 0 10
-5

0

5

residual quantiles

no
rm

al
 q

ua
nt

ile
s

PHX

-10 0 10
-5

0

5

residual quantiles

no
rm

al
 q

ua
nt

ile
s

PIT

-10 0 10
-5

0

5

residual quantiles

no
rm

al
 q

ua
nt

ile
s

SAN

-10 0 10
-5

0

5

residual quantiles

no
rm

al
 q

ua
nt

ile
s

SEA

-10 0 10
-5

0

5

residual quantiles

no
rm

al
 q

ua
nt

ile
s

SFO

-10 0 10
-5

0

5

residual quantiles

no
rm

al
 q

ua
nt

ile
s

SLC

-10 0 10
-5

0

5

residual quantiles

no
rm

al
 q

ua
nt

ile
s

STL

-10 0 10
-5

0

5

residual quantiles

no
rm

al
 q

ua
nt

ile
s

TPA

 
Figure A.4: Quantile_Quantile Plot of Residuals of Square Root of Generated Delay from Redueced-size Model  
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Figure A.5: Scatter Plot of Residuals of Absorbed Delay on Original Scale from Full-size Model 
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Figure A.6: Quantile-Quantile Plot of Residuals of Absorbed Delay on the Original Scale from Full-size Model 
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Figure A.7: Scatter Plot of Residuals of Squared Root of Absorbed Delay from Reduced-size Mode 
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Figure A.8: Quantile-Quantile Plot of Residuals of Squared Root of Generated Delay from Reduced-size Mode 
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Squared Residuals Squared Prediction Errors 
Airport Paired t p-value ks p-value Paired t p-value ks p-value 

ATL -0.19 0.4266 0.02 0.7229 1.43 0.9236 0.02 0.7229 
BOS -0.75 0.2280 0.02 0.7877 0.80 0.7874 0.02 0.7877 
BWI -0.65 0.2592 0.02 0.3703 -0.68 0.2487 0.02 0.3703 
CLE -1.46 0.0725 0.02 0.3842 0.97 0.8341 0.02 0.3842 
CLT 2.34 0.9903 0.03 0.1480 0.32 0.6272 0.03 0.1480 
CVG -0.15 0.4385 0.01 0.9999 -0.23 0.4077 0.01 0.9999 
DCA 0.57 0.7162 0.01 1.0000 1.38 0.9154 0.01 1.0000 
DEN -0.51 0.3063 0.00 1.0000 -0.52 0.3007 0.00 1.0000 
DFW -0.94 0.1747 0.01 0.8267 -1.10 0.1348 0.01 0.8267 
DTW 0.30 0.6163 0.01 0.9852 0.42 0.6639 0.01 0.9852 
EWR -0.62 0.2674 0.03 0.0511 1.42 0.9213 0.03 0.0511 
FLL -0.53 0.2996 0.01 0.8776 -1.12 0.1322 0.01 0.8776 
IAD 1.09 0.8627 0.02 0.3950 2.44 0.9925 0.02 0.3950 
IAH -0.58 0.2794 0.02 0.8424 1.53 0.9370 0.02 0.8424 
JFK -1.51 0.0660 0.01 0.9800 2.67 0.9961 0.01 0.9800 
LAS -0.72 0.2359 0.01 0.9556 2.77 0.9971 0.01 0.9556 
LAX -1.03 0.1515 0.02 0.7815 1.78 0.9619 0.02 0.7815 
LGA -0.18 0.4288 0.01 0.9846 -0.19 0.4232 0.01 0.9846 
MCO -0.87 0.1916 0.02 0.6811 0.22 0.5865 0.02 0.6811 
MDW -0.16 0.4348 0.02 0.3676 -0.59 0.2776 0.02 0.3676 
MEM 0.01 0.5042 0.02 0.4553 1.11 0.8664 0.02 0.4553 
MIA -0.36 0.3579 0.01 0.9143 -1.04 0.1485 0.01 0.9143 
MSP -1.57 0.0580 0.01 0.9277 -0.30 0.3809 0.01 0.9277 
ORD NaN NaN 0.00 1.0000 NaN NaN 0.00 1.0000 
PDX -0.78 0.2177 0.02 0.6038 -1.46 0.0728 0.02 0.6038 
PHL 0.25 0.5983 0.00 1.0000 -0.22 0.4134 0.00 1.0000 
PHX -1.36 0.0877 0.03 0.1645 2.44 0.9926 0.03 0.1645 
PIT -0.84 0.1995 0.02 0.2769 1.00 0.8412 0.02 0.2769 
SAN -0.92 0.1791 0.01 0.8110 0.55 0.7088 0.01 0.8110 
SEA 0.74 0.7716 0.01 0.9430 1.16 0.8776 0.01 0.9430 
SFO 1.44 0.9252 0.01 1.0000 -0.75 0.2275 0.01 1.0000 
SLC -1.03 0.1509 0.02 0.3934 -1.04 0.1504 0.02 0.3934 
STL -0.90 0.1852 0.02 0.5978 -0.28 0.3893 0.02 0.5978 
TPA -0.44 0.3316 0.01 0.9578 3.12 0.9991 0.01 0.9578 

Table A.3: Test Result for Airport Generated Delay 

 
* P-vlaue greater than 0.05 means the null hypothesis cannot be rejected at 5% significant 
level.  
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 Table A.4: Test Result for Airport Absorbed Delay 

Squared Residuals Squared Prediction Errors 
Airport Paired t p-value ks p-value Paired t p-value ks p-value 

ATL 1.76 0.9606 0.02 0.7416 -0.15 0.4407 0.02 0.7416 
BOS -0.58 0.2826 0.00 1.0000 -0.53 0.2983 0.00 1.0000 
BWI 3.77 0.9999 0.02 0.5457 -1.02 0.1539 0.02 0.5457 
CLE -1.31 0.0946 0.02 0.7552 1.84 0.9673 0.02 0.7552 
CLT -0.21 0.4153 0.02 0.6372 -0.76 0.2227 0.02 0.6372 
CVG -1.53 0.0625 0.03 0.1761 1.74 0.9593 0.03 0.1761 
DCA -0.36 0.3589 0.01 0.9987 -0.76 0.2247 0.01 0.9987 
DEN -0.52 0.3020 0.01 0.9177 1.21 0.8859 0.01 0.9177 
DFW -1.23 0.1101 0.01 0.9973 -0.12 0.4511 0.01 0.9973 
DTW -1.50 0.0666 0.01 0.9891 -1.26 0.1042 0.01 0.9891 
EWR -0.97 0.1665 0.02 0.2658 -0.22 0.4119 0.02 0.2658 
FLL -0.52 0.3028 0.02 0.6588 1.60 0.9451 0.02 0.6588 
IAD -0.01 0.4978 0.00 1.0000 -1.49 0.0688 0.00 1.0000 
IAH -1.03 0.1516 0.02 0.8768 -0.09 0.4626 0.02 0.8768 
JFK -1.34 0.0896 0.02 0.3248 -0.30 0.3823 0.02 0.3248 
LAS 1.49 0.9313 0.01 0.8280 1.80 0.9638 0.01 0.8280 
LAX -0.24 0.4061 0.00 1.0000 -0.74 0.2301 0.00 1.0000 
LGA -1.62 0.0526 0.01 0.9425 0.49 0.6875 0.01 0.9425 
MCO 0.34 0.6320 0.02 0.7399 0.03 0.5125 0.02 0.7399 
MDW -0.75 0.2256 0.02 0.4351 -0.12 0.4511 0.02 0.4351 
MEM -0.42 0.3372 0.03 0.2863 0.31 0.6205 0.03 0.2863 
MIA -0.08 0.4668 0.03 0.2051 -0.24 0.4034 0.03 0.2051 
MSP -0.58 0.2804 0.02 0.5969 -0.10 0.4587 0.02 0.5969 
ORD 0.04 0.5160 0.02 0.6824 -1.51 0.0656 0.02 0.6824 
PDX NaN NaN 0.00 1.0000 NaN NaN 0.00 1.0000 
PHL -0.92 0.1796 0.00 1.0000 -1.16 0.1224 0.00 1.0000 
PHX -0.54 0.2961 0.00 1.0000 0.89 0.8120 0.00 1.0000 
PIT 0.15 0.5609 0.01 1.0000 0.32 0.6242 0.01 1.0000 
SAN 0.46 0.6765 0.02 0.6408 1.34 0.9100 0.02 0.6408 
SEA 0.48 0.6859 0.02 0.2611 1.41 0.9205 0.02 0.2611 
SFO -0.70 0.2407 0.01 0.9660 -0.33 0.3723 0.01 0.9660 
SLC -0.61 0.2710 0.01 0.9416 -0.31 0.3796 0.01 0.9416 
STL 0.63 0.7348 0.01 1.0000 -0.37 0.3568 0.01 1.0000 
TPA 0.37 0.6459 0.00 1.0000 1.73 0.9580 0.00 1.0000 

 
* P-vlaue greater than 0.05 means the null hypothesis cannot be rejected at 5% significant 
level.



 

 

Table A.5: Predictors for Airport Generated Delay in the Reduced-size Models of 34 OEP Airports 

  Predictor ATL BOS BWI CLE CLT CVG DCA DEN DFW DTW EWR FLL
Inbound inbound delay x x x x x x x x x x   x 

carrier delay x x x x x x x x x x x x 
swap aircraft rate x x x x x x x x x   x x 
cancelled departure rate                 x       
scheduled departure time x x x x   x     x x x x 
leg number                 x       

Airline  

scheduled turnaround time                         
departure rho (demand/throughput in 30min) x   x x     x x x   x x 
departure rho (demand/throughput in 15min)                         
departure rho (demand/ADR in 30min)   x       x             
departure rho (demand/ADR in 15min)         x   x     x     
ADR                         
arrival rho (demand/throughput in 30min)                         
arrival rho (demand/AAR in 30min)             x   x       
arrival rho (demand/AAR in 15min)               x         

Departure 
Demand  
Ratio   

AAR               x         
terminal weather     x   x   x   x       
visibility               x         
runway configuration                         
IMC / VMC                         

Airport 

security delay                         
GDP holding time x x x x x x x x x x x x 
actual enroute time weather           x x           
scheduled enroute time weather   x                     

Outbound 

outbound distance                         
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  Predictor IAD IAH JFK LAS LAX LGA MCO MDW MEM MIA MSP ORD
Inbound inbound delay x x x x x x x x x x x x 

carrier delay x x x x x x x x x x x x 
swap aircraft rate x   x x x x x x x     x 
cancelled departure rate                         
scheduled departure time x x x x x x x x   x x x 
leg number                         

Airline  

scheduled turnaround time               x         
departure rho (demand/throughput in 30min) x   x x x x x     x   x 
departure rho (demand/throughput in 15min)                         
departure rho (demand/ADR in 30min)                         
departure rho (demand/ADR in 15min)   x             x   x   
ADR   x                     
arrival rho (demand/throughput in 30min)                         
arrival rho (demand/AAR in 30min)                         
arrival rho (demand/AAR in 15min)                         

Departure 
Demand  
Ratio   

AAR   x   x                 
terminal weather   x       x x   x x x x 
visibility                         
runway configuration                       x 
IMC / VMC                         

Airport 

security delay               x         
GDP holding time x x x x x x x x x x x x 
actual enroute time weather           x           x 
scheduled enroute time weather               x         

Outbound 

outbound distance                         
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  Predictor PDX PHL PHX PIT SAN SEA SFO SLC STL TPA
Inbound inbound delay x   x x x x x x x x 

carrier delay x x x x x x x x x x 
swap aircraft rate x x x x x x x x   x 
cancelled departure rate                     
scheduled departure time x x x   x x     x x 
leg number             x       

Airline  

scheduled turnaround time x                   
departure rho (demand/throughput in 30min) x x x x   x     x x 
departure rho (demand/throughput in 15min)         x           
departure rho (demand/ADR in 30min)                     
departure rho (demand/ADR in 15min)             x x     
ADR                     
arrival rho (demand/throughput in 30min)   x                 
arrival rho (demand/AAR in 30min)               x     
arrival rho (demand/AAR in 15min)                     

Departure 
Demand  
Ratio   

AAR     x               
terminal weather       x             
visibility         x           
runway configuration   x                 
IMC / VMC         x           

Airport 

security delay                     
GDP holding time x x x x x x x x x x 
actual enroute time weather   x                 
scheduled enroute time weather   x                 

Outbound 

outbound distance           x x       
 

217



 

 

Table A.6: Predictors for Airport Absorbed Delay in the Reduced-size Models of 34 OEP Airports 

  factor ATL BOS BWI CLE CLT CVG DCA DEN DFW DTW EWR FLL
Inbound inbound delay x x x x x x x x x x x x 

carrier delay x x x x x x x x x x x x 
scheduled turnaround time x x x x x x x x x x x x 
SEATS x   x   x x x x x   x x 
WEIGHT       x                 
scheduled departure time       x               x 

Airline  

leg number                         
departure rho (demand/throughput in 30min)                     x   
departure rho (demand/ADR both in 15min)                         

Departure 
Demand  

Ratio departure rho (demand/ADR in 15min)                         
GDP holding time x x x x x x x x x x x x 
scheduled enroute time weather                         
destination arrival rho (demand/AAR in 30min)       x                 

Outbound 

outbound distiance   x x                   
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  Predictor IAD IAH JFK LAS LAX LGA MCO MDW MEM MIA MSP ORD
Inbound inbound delay x x x x x x x x x x x x 

carrier delay x x x x x x x x x x x x 
scheduled turnaround time x x x x x x x x x x x x 
SEATS x x   x x x x   x x   x 
WEIGHT                         
scheduled departure time       x                 

Airline  

leg number x                       
departure rho (demand/throughput in 30min) x                       
departure rho (demand/ADR both in 15min)         x               

Departure 
Demand  

Ratio departure rho (demand/ADR in 15min)         x               
GDP holding time x x       x x x x x x x 
scheduled enroute time weather                         
destination arrival rho (demand/AAR in 30min)                         

Outbound 

outbound distiance         x x             
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  Predictor PDX PHL PHX PIT SAN SEA SFO SLC STL TPA
Inbound inbound delay x x x x x x x x x x 

carrier delay x x x x x x x x x x 
scheduled turnaround time x x x x x x x x x x 
SEATS x x   x x x     x   
WEIGHT   x           x     
scheduled departure time   x         x   x x 

Airline  

leg number x   x               
departure rho (demand/throughput in 30min)                     
departure rho (demand/ADR both in 15min)         x           

Departure 
Demand  

Ratio departure rho (demand/ADR in 15min)                     
GDP holding time x x   x   x x x x x 
scheduled enroute time weather       x             
destination arrival rho (demand/AAR in 30min)                     

Outbound 

outbound distiance       x           x 
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Table A.7: Percentage of Actual Airport Delay Data (w) in Validation Set of 2005 and
2006 in Regression Value ±σ̂  and ˆ2σ . 

Percentage of actual data in 2005   Percentage of actual data in 2006  Airport Code Within 68% Within 95% Within 68% Within 95% 
ATL 75.9% 94.9% 72.6% 92.7% 
BOS 76.1% 94.2% 74.3% 94.9% 
BWI 75.3% 95.1% 79.0% 96.8% 
CLE 74.6% 91.1% 70.4% 91.6% 
CLT 77.2% 95.9% 71.1% 93.8% 
CVG 67.9% 92.7% 67.0% 92.4% 
DCA 83.6% 97.3% 77.9% 95.0% 
DEN 75.6% 94.5% 73.0% 95.8% 
DFW 77.7% 94.3% 78.0% 93.2% 
DTW 79.5% 95.3% 77.1% 95.8% 
EWR 86.1% 98.2% 73.6% 94.2% 
FLL 82.2% 96.6% 71.1% 95.7% 
IAD 84.3% 96.1% 80.1% 96.1% 
IAH 73.5% 90.6% 71.2% 91.9% 
JFK 79.8% 96.5% 72.5% 90.7% 
LAS 73.3% 95.1% 68.2% 91.2% 
LAX 75.6% 96.2% 76.1% 93.8% 
LGA 78.4% 95.1% 73.6% 95.1% 
MCO 78.0% 95.4% 74.0% 93.4% 
MDW 79.0% 95.9% 76.1% 94.9% 
MEM 70.1% 91.0% 67.8% 92.8% 
MIA 78.8% 94.9% 72.6% 91.6% 
MSP 83.0% 97.1% 74.6% 96.0% 
ORD 81.6% 96.9% 72.5% 94.5% 
PDX 72.7% 94.1% 75.7% 94.1% 
PHL 79.0% 97.6% 71.1% 95.3% 
PHX 71.5% 94.5% 67.4% 90.7% 
PIT 77.2% 94.5% 73.3% 92.4% 
SAN 73.9% 91.6% 69.9% 93.5% 
SEA 78.9% 97.0% 77.1% 93.7% 
SFO 72.4% 93.4% 72.8% 94.1% 
SLC 76.4% 93.6% 71.0% 90.2% 
STL 73.9% 94.3% 73.9% 94.8% 
TPA 75.7% 94.3% 71.5% 90.5% 

Average 77.0% 94.9% 73.2% 93.6% 
min 67.9% 90.6% 67.0% 90.2% 
max 86.1% 98.2% 80.1% 96.8% 
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APPENDIX B 
 

FINAL MODELS 
 
 
 
 

B.1 Airport Generated Delay Models 

Airport: ATL 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, GDPHoldingTime - 23.200); 
 BF2 = max(0, 23.200 - GDPHoldingTime ); 
 BF3 = max(0, CarrierDelay - 11.857) * BF2; 
 BF4 = max(0, 11.857 - CarrierDelay ) * BF2; 
 BF6 = max(0, 34.000 - ScheduleDepartureTime ) * BF2; 
 BF7 = max(0, DepartureDemandRatio30 - 6.160); 
 BF8 = max(0, 6.160 - DepartureDemandRatio30 ); 
 BF9 = max(0, SwapAircraftRate - 0.330); 
 BF10 = max(0, 0.330 - SwapAircraftRate ); 
 BF12 = max(0, 56.000 - CarrierDelay ) * BF10; 
 BF13 = max(0, InboundDelay - 124.250) * BF10; 
 BF14 = max(0, 124.250 - InboundDelay ) * BF10; 
 BF15 = max(0, ScheduleDepartureTime - 54.000); 
 BF16 = max(0, 54.000 - ScheduleDepartureTime ); 
 BF17 = max(0, CarrierDelay - 3.333) * BF16; 
 BF18 = max(0, 3.333 - CarrierDelay ) * BF16; 
  
sqrt(GeneratedDelay) = max(0, 10.785 + 0.041 * BF1 - 0.074 * BF2 + .665814E-03 * BF3 
            - 0.003 * BF4 - 0.010 * BF6 - 0.030 * BF7 - 0.653 * BF8 
            + 1.934 * BF9 - 1.150 * BF10 - 0.163 * BF12 
            - 0.092 * BF13 + 0.031 * BF14 + 0.027 * BF15 
            + 0.033 * BF16 + .961083E-03 * BF17 - 0.005 * BF18) 
  
Airport: BOS 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, GDPHoldingTime - 6.200); 
 BF2 = max(0, 6.200 - GDPHoldingTime ); 
 BF3 = max(0, CarrierDelay - 3.167); 
 BF4 = max(0, 3.167 - CarrierDelay ); 
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 BF5 = max(0, InboundDelay - 139.000) * BF1; 
 BF6 = max(0, 139.000 - InboundDelay ) * BF1; 
 BF7 = max(0, RD30SS - 0.542); 
 BF8 = max(0, 0.542 - RD30SS ); 
 BF9 = max(0, SwapAircraftRate + .707592E-09) * BF2; 
 BF10 = max(0, ScheduleEnrouteWeather - 2054.250); 
 BF11 = max(0, 2054.250 - ScheduleEnrouteWeather ); 
 BF12 = max(0, ScheduleDepartureTime - 55.000) * BF10; 
 BF13 = max(0, 55.000 - ScheduleDepartureTime ) * BF10; 
 BF14 = max(0, ScheduleDepartureTime - 48.000) * BF7; 
 BF15 = max(0, 48.000 - ScheduleDepartureTime ) * BF7; 
 BF17 = max(0, 8.333 - CarrierDelay ) * BF2; 
 BF18 = max(0, SwapAircraftRate + .707592E-09) * BF4; 
  
sqrt(GeneratedDelay) = max(0, 4.159 - 0.024 * BF1 - 0.024 * BF2 + 0.066 * BF3 - 0.080 * BF4 
           + .486045E-03 * BF5 + .721596E-03 * BF6 + 0.297 * BF7 
           - 3.198 * BF8 + 0.648 * BF9 + .294995E-03 * BF10 
           - .265383E-03 * BF11 - .121340E-04 * BF12 - .128603E-04 * BF13 
           + 0.083 * BF14 + 0.045 * BF15 - 0.020 * BF17 
           + 1.154 * BF18) 
  
Airport: BWI 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, GDPHoldingTime - 15.500); 
 BF2 = max(0, 15.500 - GDPHoldingTime ); 
 BF3 = max(0, CarrierDelay - 5.000) * BF2; 
 BF4 = max(0, 5.000 - CarrierDelay ) * BF2; 
 BF5 = max(0, DepartureDemandRatio30 - 3.000) * BF2; 
 BF6 = max(0, 3.000 - DepartureDemandRatio30 ) * BF2; 
 BF7 = max(0, SwapAircraftRate + .719125E-10); 
 BF8 = max(0, InboundDelay + 28.500) * BF1; 
 BF9 = max(0, CarrierDelay - 6.000) * BF7; 
 BF10 = max(0, 6.000 - CarrierDelay ) * BF7; 
 BF11 = max(0, ScheduleDepartureTime - 73.000); 
 BF12 = max(0, 73.000 - ScheduleDepartureTime ); 
 BF13 = ( TerminalWeather = 8 OR TerminalWeather = 9) * BF12; 
 BF15 = max(0, ScheduleDepartureTime - 30.000) * BF2; 
 BF16 = max(0, 30.000 - ScheduleDepartureTime ) * BF2; 
 BF17 = max(0, ScheduleDepartureTime - 51.000); 
  
sqrt(GeneratedDelay) = max(0, 3.520 + 0.081 * BF1 - 0.035 * BF2 + 0.005 * BF3 - 0.017 * BF4 
           + 0.017 * BF5 - 0.048 * BF6 + 4.024 * BF7 - .516493E-03 * BF8 
           - 0.067 * BF9 + 0.713 * BF10 - 0.152 * BF11 
           + 0.046 * BF12 + 0.158 * BF13 + 0.002 * BF15 
           - 0.014 * BF16 + 0.055 * BF17) 
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Airport: CLE 
 
 Basis Functions 
 =============== 
 BF1 = max(0, GDPHoldingTime - 14.800); 
 BF2 = max(0, 14.800 - GDPHoldingTime ); 
 BF3 = max(0, CarrierDelay - 0.333) * BF2; 
 BF4 = max(0, 0.333 - CarrierDelay ) * BF2; 
 BF5 = max(0, InboundDelay - 77.885) * BF1; 
 BF6 = max(0, 77.885 - InboundDelay ) * BF1; 
 BF7 = max(0, DepartureDemandRatio30 - 3.050); 
 BF8 = max(0, 3.050 - DepartureDemandRatio30 ); 
 BF10 = max(0, 0.250 - SwapAircraftRate ); 
 BF11 = max(0, ScheduleDepartureTime - 76.000) * BF10; 
 BF14 = max(0, 10.167 - CarrierDelay ) * BF8; 
 BF16 = max(0, 31.000 - ScheduleDepartureTime ) * BF8; 
 BF17 = max(0, ScheduleDepartureTime - 45.000) * BF2; 
 BF18 = max(0, 45.000 - ScheduleDepartureTime ) * BF2; 
  
sqrt(GeneratedDelay) = max(0, 6.499 + 0.013 * BF1 - 0.151 * BF2 + 0.004 * BF3 - 0.115 * BF4 
           - .287213E-03 * BF5 + .788110E-03 * BF6 - 0.085 * BF7 
           - 6.096 * BF10 - 0.636 * BF11 - 0.034 * BF14 
           - 0.125 * BF16 + 0.002 * BF17 + 0.003 * BF18) 
  
Airport: CLT 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, GDPHoldingTime - 9.100); 
 BF2 = max(0, 9.100 - GDPHoldingTime ); 
 BF3 = max(0, CarrierDelay - 0.400) * BF2; 
 BF4 = max(0, 0.400 - CarrierDelay ) * BF2; 
 BF5 = max(0, InboundDelay - 109.000) * BF1; 
 BF6 = max(0, 109.000 - InboundDelay ) * BF1; 
 BF7 = max(0, SwapAircraftRate - 0.200); 
 BF8 = max(0, 0.200 - SwapAircraftRate ); 
 BF10 = max(0, 0.429 - DepartureDemandRatio_ADR15 ); 
 BF11 = max(0, CarrierDelay - 43.000); 
 BF12 = max(0, 43.000 - CarrierDelay ); 
 BF13 = ( TerminalWeather = 0 OR TerminalWeather = 1 OR TerminalWeather = 2 OR TerminalWeather 
= 3 
        OR TerminalWeather = 4 OR TerminalWeather = 5 OR TerminalWeather = 7) * BF2; 
 BF15 = max(0, InboundDelay + 7.667); 
 BF16 = max(0, - 7.667 - InboundDelay ); 
 BF18 = max(0, 48.000 - CarrierDelay ) * BF15; 
  
sqrt(GeneratedDelay) = max(0, 9.152 + 0.119 * BF2 + 0.006 * BF3 - 0.164 * BF4 + .580519E-03 * BF5 
           + .636105E-03 * BF6 + 2.909 * BF7 - 8.790 * BF8 
           - 3.262 * BF10 - 0.022 * BF11 - 0.069 * BF12 
           - 0.235 * BF13 - 0.046 * BF15 - 0.030 * BF16 
           + .830188E-03 * BF18) 
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Airport: CVG 
 
 Basis Functions 
 =============== 
 BF1 = max(0, GDPHoldingTime - 15.800); 
 BF2 = max(0, 15.800 - GDPHoldingTime ); 
 BF3 = max(0, CarrierDelay - 4.429) * BF2; 
 BF4 = max(0, 4.429 - CarrierDelay ) * BF2; 
 BF6 = max(0, 0.656 - RD30SS ); 
 BF7 = max(0, InboundDelay - 47.000) * BF1; 
 BF8 = max(0, 47.000 - InboundDelay ) * BF1; 
 BF9 = max(0, SwapAircraftRate - .357727E-09); 
 BF10 = max(0, ActuralEnrouteWeather + .586138E-04); 
 BF11 = max(0, InboundDelay + 38.000); 
 BF12 = max(0, GDPHoldingTime - 109.000) * BF11; 
 BF13 = max(0, 109.000 - GDPHoldingTime ) * BF11; 
 BF15 = max(0, 55.000 - CarrierDelay ); 
 BF16 = max(0, ScheduleDepartureTime - 42.000) * BF6; 
 BF18 = max(0, InboundDelay + 38.000) * BF15; 
  
sqrt(GeneratedDelay) = max(0, 10.853 + 0.175 * BF1 - 0.164 * BF2 + 0.002 * BF3 - 0.011 * BF4 
            - 2.662 * BF6 + 0.001 * BF7 - .956928E-03 * BF8 
            + 2.798 * BF9 + .141702E-03 * BF10 - 0.218 * BF11 
            - 0.001 * BF12 + 0.002 * BF13 - 0.087 * BF15 
            + 0.051 * BF16 + .778851E-03 * BF18) 
   
Airport: DCA 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, GDPHoldingTime - 13.600); 
 BF2 = max(0, 13.600 - GDPHoldingTime ); 
 BF3 = max(0, CarrierDelay - 1.500) * BF2; 
 BF4 = max(0, 1.500 - CarrierDelay ) * BF2; 
 BF6 = max(0, 7229.000 - ActuralEnrouteWeather ); 
 BF7 = max(0, SwapAircraftRate + .138945E-09); 
 BF9 = max(0, 50.750 - InboundDelay ) * BF1; 
 BF11 = max(0, 6.080 - DepartureDemandRatio30 ); 
 BF12 = max(0, ArrivalDemandRatio_AAR30 - 0.600) * BF2; 
 BF15 = max(0, 39.667 - CarrierDelay ) * BF11; 
 BF16 = ( TerminalWeather = 8); 
 BF18 = max(0, DepartureDemandRatio_ADR15 - 0.100) * BF2; 
  
sqrt(GeneratedDelay) = max(0, 7.929 + 0.023 * BF1 - 0.129 * BF2 + 0.004 * BF3 - 0.032 * BF4 
           - .247570E-03 * BF6 + 5.325 * BF7 + 0.001 * BF9 
           + 0.101 * BF12 - 0.011 * BF15 + 1.982 * BF16 
           + 0.031 * BF18) 
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Airport: DEN 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, CarrierDelay - 0.167); 
 BF2 = max(0, 0.167 - CarrierDelay ); 
 BF3 = max(0, SwapAircraftRate - 0.250); 
 BF4 = max(0, 0.250 - SwapAircraftRate ); 
 BF5 = max(0, GDPHoldingTime - 14.000); 
 BF6 = max(0, 14.000 - GDPHoldingTime ); 
 BF7 = max(0, DepartureDemandRatio30 - 8.730); 
 BF8 = max(0, 8.730 - DepartureDemandRatio30 ); 
 BF9 = max(0, ArrivalDemandRatio_AAR15 - 0.222) * BF4; 
 BF10 = max(0, 0.222 - ArrivalDemandRatio_AAR15 ) * BF4; 
 BF11 = max(0, AAR - 24.000) * BF4; 
 BF12 = max(0, 24.000 - AAR ) * BF4; 
 BF13 = max(0, VISIB_CR - 8.000); 
 BF14 = max(0, 8.000 - VISIB_CR ); 
 BF15 = max(0, CarrierDelay - 20.500) * BF6; 
 BF16 = max(0, 20.500 - CarrierDelay ) * BF6; 
 BF17 = max(0, InboundDelay + 21.500) * BF13; 
 BF18 = max(0, - 21.500 - InboundDelay ) * BF13; 
  
sqrt(GeneratedDelay) = max(0, 12.043 + 0.029 * BF1 - 2.511 * BF2 + 4.686 * BF3 - 8.155 * BF4 
            + 0.060 * BF5 + 0.025 * BF6 + 0.044 * BF7 - 0.459 * BF8 
            - 1.237 * BF9 - 17.500 * BF10 - 0.080 * BF11 
            + 0.942 * BF12 - 0.861 * BF13 - 0.365 * BF14 
            + 0.003 * BF15 - 0.007 * BF16 - 0.006 * BF17 
            - 0.060 * BF18) 
  
Airport: DFW 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, GDPHoldingTime - 16.200); 
 BF2 = max(0, 16.200 - GDPHoldingTime ); 
 BF3 = max(0, CarrierDelay - 10.143) * BF2; 
 BF4 = max(0, 10.143 - CarrierDelay ) * BF2; 
 BF5 = ( TerminalWeather = 2 OR TerminalWeather = 8 OR TerminalWeather = 9); 
 BF7 = max(0, ScheduleDepartureTime - 39.000); 
 BF8 = max(0, 39.000 - ScheduleDepartureTime ); 
 BF10 = max(0, 3.970 - DepartureDemandRatio30 ); 
 BF11 = max(0, InboundDelay + 26.000) * BF1; 
 BF12 = max(0, ArrivalDemandRatio_AAR30 - 0.821); 
 BF13 = max(0, 0.821 - ArrivalDemandRatio_AAR30 ); 
 BF14 = max(0, SwapAircraftRate + .471008E-09) * BF10; 
 BF15 = max(0, LegNumber - 1.000); 
 BF16 = max(0, CancelledDepartureRate - 0.036); 
 BF18 = ( TerminalWeather = 4 OR TerminalWeather = 8 OR TerminalWeather = 9) * BF16; 
  
sqrt(GeneratedDelay) = max(0, 7.059 + 0.078 * BF1 - 0.044 * BF2 + 0.005 * BF3 - 0.011 * BF4 
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           + 2.451 * BF5 + 0.032 * BF7 - 0.088 * BF8 - 0.579 * BF10 
           - .625545E-03 * BF11 + 28.937 * BF12 - 0.554 * BF13 
           + 1.730 * BF14 - 0.391 * BF15 + 5.362 * BF16 
           + 24.259 * BF18) 
 
Airport: DTW 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, CarrierDelay - 0.625); 
 BF2 = max(0, 0.625 - CarrierDelay ); 
 BF3 = max(0, GDPHoldingTime - 12.000) * BF2; 
 BF4 = max(0, 12.000 - GDPHoldingTime ) * BF2; 
 BF5 = max(0, DepartureDemandRatio_ADR15 - 0.196); 
 BF6 = max(0, 0.196 - DepartureDemandRatio_ADR15 ); 
 BF7 = max(0, GDPHoldingTime - 54.500); 
 BF8 = max(0, 54.500 - GDPHoldingTime ); 
 BF9 = max(0, InboundDelay - 114.000) * BF7; 
 BF10 = max(0, 114.000 - InboundDelay ) * BF7; 
 BF11 = max(0, CarrierDelay - 37.000) * BF8; 
 BF12 = max(0, 37.000 - CarrierDelay ) * BF8; 
 BF13 = max(0, ScheduleDepartureTime - 63.000); 
 BF14 = max(0, 63.000 - ScheduleDepartureTime ); 
 BF15 = max(0, InboundDelay - 121.000); 
 BF16 = max(0, 121.000 - InboundDelay ); 
 BF17 = max(0, GDPHoldingTime - 70.600) * BF16; 
 BF18 = max(0, 70.600 - GDPHoldingTime ) * BF16; 
  
sqrt(GeneratedDelay) = max(0, 1.761 + 0.006 * BF1 + 1.145 * BF2 - 0.022 * BF3 - 0.171 * BF4 
           + 0.683 * BF5 - 6.338 * BF6 + 0.034 * BF7 + 0.086 * BF8 
           - .277391E-03 * BF9 - .224443E-03 * BF10 + .812947E-03 * BF11 
           - 0.002 * BF12 - 0.024 * BF13 - 0.024 * BF14 
           + 0.012 * BF15 + 0.060 * BF16 + .344492E-03 * BF17 
           - .788747E-03 * BF18) 
  
Airport: EWR 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, CarrierDelay - 14.857); 
 BF2 = max(0, 14.857 - CarrierDelay ); 
 BF3 = max(0, GDPHoldingTime - 15.600) * BF2; 
 BF4 = max(0, 15.600 - GDPHoldingTime ) * BF2; 
 BF6 = max(0, 5.110 - DepartureDemandRatio30 ); 
 BF7 = max(0, ScheduleDepartureTime - 29.000); 
 BF8 = max(0, 29.000 - ScheduleDepartureTime ); 
 BF9 = max(0, ScheduleDepartureTime - 46.000) * BF6; 
 BF11 = max(0, ScheduleDepartureTime - 73.000); 
 BF12 = max(0, 73.000 - ScheduleDepartureTime ); 
 BF14 = max(0, 52.400 - GDPHoldingTime ) * BF12; 
 BF15 = max(0, ScheduleDepartureTime - 38.000) * BF6; 
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 BF17 = max(0, SwapAircraftRate - 0.250) * BF2; 
 BF18 = max(0, 0.250 - SwapAircraftRate ) * BF2; 
  
sqrt(GeneratedDelay) = max(0, 15.749 + 0.029 * BF1 + 0.080 * BF2 + 0.002 * BF3 - 0.003 * BF4 
            - 0.496 * BF6 - 0.086 * BF7 - 0.203 * BF8 + 0.095 * BF9 
            - 0.083 * BF11 - 0.003 * BF14 - 0.092 * BF15 
            + 0.278 * BF17 - 0.819 * BF18) 
  
Airport: FLL 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, GDPHoldingTime - 13.200); 
 BF2 = max(0, 13.200 - GDPHoldingTime ); 
 BF3 = max(0, CarrierDelay - 2.000) * BF2; 
 BF4 = max(0, 2.000 - CarrierDelay ) * BF2; 
 BF6 = max(0, 109.333 - InboundDelay ) * BF1; 
 BF8 = max(0, 46.000 - ScheduleDepartureTime ) * BF2; 
 BF9 = max(0, DepartureDemandRatio30 - 0.830); 
 BF12 = max(0, 0.500 - SwapAircraftRate ) * BF2; 
 BF13 = max(0, ScheduleDepartureTime - 78.000); 
  
sqrt(GeneratedDelay) = max(0, 4.112 + 0.240 * BF2 + 0.006 * BF3 - 0.046 * BF4 + .682817E-03 * BF6 
           - 0.006 * BF8 + 0.531 * BF9 - 0.542 * BF12 - 0.174 * BF13) 
  
Airport: IAD 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, CarrierDelay - 0.333); 
 BF2 = max(0, 0.333 - CarrierDelay ); 
 BF3 = max(0, GDPHoldingTime - 27.000); 
 BF4 = max(0, 27.000 - GDPHoldingTime ); 
 BF5 = max(0, SwapAircraftRate - 0.330) * BF4; 
 BF6 = max(0, 0.330 - SwapAircraftRate ) * BF4; 
 BF8 = max(0, 72.000 - ScheduleDepartureTime ) * BF2; 
 BF9 = max(0, InboundDelay - 105.000) * BF3; 
 BF10 = max(0, 105.000 - InboundDelay ) * BF3; 
 BF11 = max(0, ScheduleDepartureTime - 47.000) * BF4; 
 BF12 = max(0, 47.000 - ScheduleDepartureTime ) * BF4; 
 BF13 = max(0, ScheduleDepartureTime - 35.000) * BF4; 
 BF15 = max(0, DepartureDemandRatio30 - 6.870); 
 BF16 = max(0, 6.870 - DepartureDemandRatio30 ); 
 BF17 = max(0, ScheduleDepartureTime - 70.000); 
 BF18 = max(0, 70.000 - ScheduleDepartureTime ); 
  
sqrt(GeneratedDelay) = max(0, 8.410 + 0.067 * BF1 - 0.993 * BF2 - 0.013 * BF3 + 0.163 * BF4 
           + 0.230 * BF5 - 0.412 * BF6 - 0.065 * BF8 - .885071E-04 * BF9 
           + .752824E-03 * BF10 + 0.015 * BF11 - 0.004 * BF12 
           - 0.013 * BF13 + 0.125 * BF15 - 0.328 * BF16 
           - 0.138 * BF17 - 0.045 * BF18) 



 

 229

 Airport: IAH 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, GDPHoldingTime - 5.200); 
 BF2 = max(0, 5.200 - GDPHoldingTime ); 
 BF3 = max(0, CarrierDelay - 0.333) * BF2; 
 BF4 = max(0, 0.333 - CarrierDelay ) * BF2; 
 BF5 = max(0, DepartureDemandRatio_ADR15 - 0.786); 
 BF6 = max(0, 0.786 - DepartureDemandRatio_ADR15 ); 
 BF7 = ( TerminalWeather = 8); 
 BF9 = max(0, ScheduleDepartureTime - 76.000); 
 BF10 = max(0, 76.000 - ScheduleDepartureTime ); 
 BF11 = max(0, AAR - 20.000); 
 BF12 = max(0, 20.000 - AAR ); 
 BF13 = max(0, ADR - 13.000); 
 BF14 = max(0, InboundDelay - 78.000); 
 BF15 = max(0, 78.000 - InboundDelay ); 
 BF16 = max(0, CarrierDelay - 68.000) * BF15; 
 BF17 = max(0, 68.000 - CarrierDelay ) * BF15; 
 BF18 = ( TerminalWeather = 2 OR TerminalWeather = 8) * BF6; 
  
sqrt(GeneratedDelay) = max(0, 5.234 + 0.056 * BF1 - 0.127 * BF2 + 0.008 * BF3 - 0.248 * BF4 
           + 0.314 * BF5 - 1.557 * BF6 + 3.677 * BF7 - 0.139 * BF9 
           - 0.028 * BF10 - 0.094 * BF11 + 0.170 * BF12 
           - 0.254 * BF13 - 0.113 * BF14 + 0.064 * BF15 
           - .575701E-03 * BF16 - .839270E-03 * BF17 + 4.463 * BF18) 
  
Airport: JFK 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, CarrierDelay - 0.333); 
 BF2 = max(0, 0.333 - CarrierDelay ); 
 BF3 = max(0, ScheduleDepartureTime - 49.000); 
 BF4 = max(0, 49.000 - ScheduleDepartureTime ); 
 BF5 = max(0, GDPHoldingTime - 38.800); 
 BF6 = max(0, 38.800 - GDPHoldingTime ); 
 BF7 = max(0, ScheduleDepartureTime - 77.000); 
 BF10 = max(0, 0.500 - SwapAircraftRate ) * BF2; 
 BF11 = max(0, ScheduleDepartureTime - 37.000); 
 BF13 = max(0, DepartureDemandRatio30 - 7.090) * BF11; 
 BF14 = max(0, 7.090 - DepartureDemandRatio30 ) * BF11; 
 BF15 = max(0, InboundDelay - 74.000) * BF1; 
 BF16 = max(0, 74.000 - InboundDelay ) * BF1; 
 BF17 = max(0, GDPHoldingTime - .108698E-06) * BF2; 
 BF18 = max(0, GDPHoldingTime - .108698E-06) * BF1; 
  
sqrt(GeneratedDelay) = max(0, 7.472 + 0.038 * BF1 + 13.612 * BF2 + 0.368 * BF3 - 0.072 * BF4 
           + 0.033 * BF5 - 0.052 * BF6 - 0.299 * BF7 - 32.846 * BF10 
           - 0.132 * BF11 - 0.007 * BF13 - 0.016 * BF14 
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           - .209585E-03 * BF15 + .608024E-03 * BF16 + 0.090 * BF17 
           - .622994E-03 * BF18) 
  
Airport: LAS 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, CarrierDelay - 4.200); 
 BF2 = max(0, 4.200 - CarrierDelay ); 
 BF3 = max(0, ScheduleDepartureTime - 48.000) * BF2; 
 BF4 = max(0, 48.000 - ScheduleDepartureTime ) * BF2; 
 BF5 = max(0, GDPHoldingTime - 14.100) * BF2; 
 BF6 = max(0, 14.100 - GDPHoldingTime ) * BF2; 
 BF7 = max(0, SwapAircraftRate + .980553E-09); 
 BF8 = max(0, InboundDelay + 10.833) * BF1; 
 BF9 = max(0, - 10.833 - InboundDelay ) * BF1; 
 BF10 = max(0, CarrierDelay - 2.857) * BF7; 
 BF11 = max(0, 2.857 - CarrierDelay ) * BF7; 
 BF12 = max(0, ScheduleDepartureTime - 60.000); 
 BF13 = max(0, 60.000 - ScheduleDepartureTime ); 
 BF14 = max(0, AAR - 12.000); 
 BF15 = max(0, 12.000 - AAR ); 
 BF16 = max(0, DepartureDemandRatio30 - 1.210); 
 BF17 = max(0, 1.210 - DepartureDemandRatio30 ); 
 BF18 = max(0, GDPHoldingTime - .329794E-08) * BF13; 
  
sqrt(GeneratedDelay) = max(0, 4.197 + 0.093 * BF1 + 0.219 * BF2 - 0.005 * BF3 - 0.012 * BF4 
           + 0.010 * BF5 - 0.028 * BF6 + 5.099 * BF7 - .456372E-03 * BF8 
           + 0.002 * BF9 - 0.114 * BF10 + 1.745 * BF11 
           - 0.035 * BF12 - 0.023 * BF13 - 0.120 * BF14 
           + 0.024 * BF15 + 0.588 * BF16 + 0.046 * BF17 
           + 0.002 * BF18) 
 
Airport: LAX 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, CarrierDelay - 9.636); 
 BF2 = max(0, 9.636 - CarrierDelay ); 
 BF3 = max(0, GDPHoldingTime - 1.200) * BF2; 
 BF4 = max(0, 1.200 - GDPHoldingTime ) * BF2; 
 BF5 = max(0, SwapAircraftRate - .158304E-10) * BF2; 
 BF6 = max(0, ScheduleDepartureTime - 39.000) * BF2; 
 BF7 = max(0, 39.000 - ScheduleDepartureTime ) * BF2; 
 BF8 = max(0, InboundDelay - 55.000); 
 BF9 = max(0, 55.000 - InboundDelay ); 
 BF10 = max(0, DepartureDemandRatio30 - 0.890); 
 BF11 = max(0, 0.890 - DepartureDemandRatio30 ); 
 BF12 = max(0, InboundDelay - 27.000) * BF1; 
 BF13 = max(0, 27.000 - InboundDelay ) * BF1; 
 BF14 = max(0, GDPHoldingTime - .104740E-06) * BF9; 
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 BF15 = max(0, SwapAircraftRate - .158304E-10); 
 BF16 = max(0, InboundDelay - 5.000) * BF10; 
 BF17 = max(0, 5.000 - InboundDelay ) * BF10; 
 BF18 = max(0, InboundDelay + 27.333) * BF15; 
  
sqrt(GeneratedDelay) = max(0, 3.320 + 0.065 * BF1 - 0.112 * BF2 + 0.006 * BF3 - 0.025 * BF4 
           + 0.877 * BF5 - 0.002 * BF6 - 0.006 * BF7 + 0.011 * BF8 
           + 0.013 * BF9 + 0.069 * BF10 - 1.515 * BF11 
           - 0.004 * BF12 + .933777E-03 * BF13 + .718799E-03 * BF14 
           + 0.025 * BF16 + 0.038 * BF17 + 0.072 * BF18) 
 
Airport: LGA 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, CarrierDelay - 0.333); 
 BF2 = max(0, 0.333 - CarrierDelay ); 
 BF3 = max(0, ActuralEnrouteWeather - 2459.667); 
 BF4 = max(0, 2459.667 - ActuralEnrouteWeather ); 
 BF6 = max(0, 4.000 - DepartureDemandRatio30 ); 
 BF7 = max(0, GDPHoldingTime - 15.000); 
 BF8 = max(0, 15.000 - GDPHoldingTime ); 
 BF9 = max(0, ScheduleDepartureTime - 30.000); 
 BF10 = max(0, 30.000 - ScheduleDepartureTime ); 
 BF11 = max(0, InboundDelay - 155.000) * BF7; 
 BF12 = max(0, 155.000 - InboundDelay ) * BF7; 
 BF13 = ( TerminalWeather = 2 OR TerminalWeather = 4 OR TerminalWeather = 9); 
 BF16 = max(0, 50.400 - InboundDelay ) * BF8; 
 BF17 = max(0, SwapAircraftRate + .308945E-09) * BF2; 
 BF18 = max(0, InboundDelay + 35.333) * BF9; 
  
sqrt(GeneratedDelay) = max(0, 9.608 + 0.069 * BF1 - 1.845 * BF2 + .140112E-03 * BF3 
           - .448500E-03 * BF4 - 1.195 * BF6 - 0.260 * BF10 
           + .593182E-03 * BF11 + .336615E-03 * BF12 + 1.095 * BF13 
           - 0.002 * BF16 + 18.586 * BF17 - .228610E-03 * BF18) 
  
Airport: MCO 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, GDPHoldingTime - 12.000); 
 BF2 = max(0, 12.000 - GDPHoldingTime ); 
 BF3 = max(0, CarrierDelay - 6.875) * BF2; 
 BF4 = max(0, 6.875 - CarrierDelay ) * BF2; 
 BF6 = max(0, 91.167 - InboundDelay ) * BF1; 
 BF7 = ( TerminalWeather = 6 OR TerminalWeather = 8 OR TerminalWeather = 9); 
 BF8 = ( TerminalWeather = 0 OR TerminalWeather = 1 OR TerminalWeather = 2 OR TerminalWeather = 
4 OR TerminalWeather = 5 OR TerminalWeather = 7); 
 BF10 = max(0, 0.500 - SwapAircraftRate ) * BF8; 
 BF12 = max(0, 5.830 - DepartureDemandRatio30 ); 
 BF13 = max(0, ScheduleDepartureTime - 72.000); 
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 BF14 = max(0, 72.000 - ScheduleDepartureTime ); 
 BF16 = max(0, 27.000 - CarrierDelay ) * BF8; 
 BF18 = max(0, 61.500 - InboundDelay ); 
  
sqrt(GeneratedDelay) = max(0, 9.417 + 0.005 * BF3 - 0.020 * BF4 + .862865E-03 * BF6 
           - 2.420 * BF7 - 4.881 * BF10 - 0.480 * BF12 
           - 0.062 * BF13 - 0.021 * BF14 - 0.053 * BF16 
           + 0.011 * BF18) 
  
Airport: MDW 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, GDPHoldingTime - 15.300); 
 BF2 = max(0, 15.300 - GDPHoldingTime ); 
 BF3 = max(0, CarrierDelay - 7.500) * BF2; 
 BF4 = max(0, 7.500 - CarrierDelay ) * BF2; 
 BF5 = max(0, ScheduleDepartureTime - 74.000) * BF2; 
 BF6 = max(0, 74.000 - ScheduleDepartureTime ) * BF2; 
 BF8 = max(0, 86.000 - InboundDelay ) * BF1; 
 BF10 = max(0, 0.500 - SwapAircraftRate ); 
 BF12 = max(0, 2283.500 - ScheduleEnrouteWeather ) * BF10; 
 BF14 = max(0, 0.714 - SecurityDelay ) * BF10; 
 BF15 = max(0, TurnaroundTime - 30.000) * BF10; 
 BF16 = max(0, 30.000 - TurnaroundTime ) * BF10; 
 BF17 = max(0, CarrierDelay + .489912E-07) * BF10; 
 BF18 = max(0, SwapAircraftRate + .122835E-08) * BF1; 
  
sqrt(GeneratedDelay) = max(0, 7.735 - 0.049 * BF2 + 0.002 * BF3 - 0.012 * BF4 - 0.006 * BF5 
           - 0.002 * BF6 + .795513E-03 * BF8 - .570800E-03 * BF12 
           - 6.504 * BF14 - 0.007 * BF15 + 0.205 * BF16 
           + 0.094 * BF17 - 0.052 * BF18) 
  
Airport: MEM 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, GDPHoldingTime - 24.300); 
 BF2 = max(0, 24.300 - GDPHoldingTime ); 
 BF4 = max(0, 49.000 - CarrierDelay ) * BF2; 
 BF6 = max(0, 0.667 - DepartureDemandRatio_ADR15 ); 
 BF7 = max(0, InboundDelay - 73.333) * BF1; 
 BF9 = ( TerminalWeather = 8); 
 BF11 = max(0, SwapAircraftRate - 0.200) * BF2; 
 BF14 = max(0, 104.000 - InboundDelay ); 
 BF16 = max(0, 28.400 - GDPHoldingTime ) * BF14; 
 BF17 = max(0, CarrierDelay - 1.000) * BF14; 
  
sqrt(GeneratedDelay) = max(0, 1.456 + 0.050 * BF1 + 0.204 * BF2 - 0.003 * BF4 - 2.115 * BF6 
           - .294911E-03 * BF7 + 2.966 * BF9 + 0.584 * BF11 
           + 0.047 * BF14 - 0.002 * BF16 + .415180E-03 * BF17) 
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Airport: MIA 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, CarrierDelay - 1.500); 
 BF2 = max(0, 1.500 - CarrierDelay ); 
 BF3 = max(0, GDPHoldingTime - 16.000); 
 BF4 = max(0, 16.000 - GDPHoldingTime ); 
 BF6 = max(0, 68.000 - ScheduleDepartureTime ) * BF2; 
 BF7 = ( TerminalWeather = 8) * BF4; 
 BF11 = max(0, CarrierDelay - 34.500) * BF4; 
 BF12 = max(0, 34.500 - CarrierDelay ) * BF4; 
 BF13 = max(0, DepartureDemandRatio30 - 3.000); 
 BF14 = max(0, 3.000 - DepartureDemandRatio30 ); 
 BF15 = max(0, InboundDelay + 25.000); 
 BF17 = max(0, InboundDelay + 41.000) * BF4; 
 BF18 = ( TerminalWeather = 5 OR TerminalWeather = 8 OR TerminalWeather = 9) * BF4; 
  
sqrt(GeneratedDelay) = max(0, 7.417 + 0.019 * BF1 + 0.054 * BF3 - 0.078 * BF4 - 0.028 * BF6 
           + 0.212 * BF7 + 0.002 * BF11 - 0.006 * BF12 
           + 0.608 * BF13 - 0.358 * BF14 - 0.056 * BF15 
           + 0.003 * BF17 + 0.066 * BF18) 
  
Airport: MSP 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, CarrierDelay - 1.000); 
 BF2 = max(0, 1.000 - CarrierDelay ); 
 BF3 = max(0, GDPHoldingTime - 3.000) * BF2; 
 BF6 = max(0, 0.950 - DepartureDemandRatio_ADR15 ); 
 BF7 = max(0, GDPHoldingTime - 27.700); 
 BF8 = max(0, 27.700 - GDPHoldingTime ); 
 BF10 = max(0, 21.125 - InboundDelay ) * BF1; 
 BF11 = ( TerminalWeather = 0 OR TerminalWeather = 1 OR TerminalWeather = 4 OR TerminalWeather 
= 5 
        OR TerminalWeather = 7) * BF8; 
 BF13 = max(0, ScheduleDepartureTime - 30.000) * BF8; 
 BF14 = max(0, 30.000 - ScheduleDepartureTime ) * BF8; 
 BF16 = max(0, 73.000 - InboundDelay ) * BF6; 
 BF18 = max(0, 48.600 - CarrierDelay ) * BF8; 
  
sqrt(GeneratedDelay) = max(0, 5.913 + 0.023 * BF1 - 0.495 * BF2 + 0.026 * BF3 - 3.418 * BF6 
           + 0.032 * BF7 + 0.068 * BF8 + 0.001 * BF10 - 0.047 * BF11 
           + .221791E-03 * BF13 - 0.006 * BF14 + 0.028 * BF16 
           - 0.002 * BF18) 
  
 
 
 
 



 

 234

Airport: ORD 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, CarrierDelay - 1.000); 
 BF2 = max(0, 1.000 - CarrierDelay ); 
 BF3 = max(0, GDPHoldingTime - 5.700); 
 BF4 = max(0, 5.700 - GDPHoldingTime ); 
 BF5 = max(0, ScheduleDepartureTime - 63.000); 
 BF6 = max(0, 63.000 - ScheduleDepartureTime ); 
 BF7 = max(0, ActuralEnrouteWeather - 62.286); 
 BF8 = max(0, 62.286 - ActuralEnrouteWeather ); 
 BF9 = max(0, DepartureDemandRatio30 - 0.230) * BF7; 
 BF10 = max(0, SwapAircraftRate - .696272E-09); 
 BF11 = (RWY_CODE = 1); 
 BF13 = max(0, CarrierDelay - 4.333) * BF4; 
 BF14 = max(0, 4.333 - CarrierDelay ) * BF4; 
 BF15 = ( TerminalWeather = 2 OR TerminalWeather = 5 OR TerminalWeather = 7 OR TerminalWeather 
= 9) * BF7; 
 BF18 = max(0, 78.200 - InboundDelay ) * BF3; 
  
sqrt(GeneratedDelay) = max(0, 4.974 + 0.055 * BF1 - 0.123 * BF2 + 0.022 * BF3 - 0.039 * BF4 
           - 0.013 * BF5 - 0.034 * BF6 - .119693E-03 * BF7 
           - 0.004 * BF8 + .368412E-03 * BF9 + 5.283 * BF10 
           - 0.536 * BF11 + 0.003 * BF13 - 0.033 * BF14 
           + .537073E-03 * BF15 + .628346E-03 * BF18) 
  
Airport: PDX 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, CarrierDelay - 29.167); 
 BF2 = max(0, 29.167 - CarrierDelay ); 
 BF3 = max(0, GDPHoldingTime - 17.000) * BF2; 
 BF4 = max(0, 17.000 - GDPHoldingTime ) * BF2; 
 BF5 = max(0, SwapAircraftRate - .511732E-10) * BF2; 
 BF6 = max(0, InboundDelay + 1.667); 
 BF7 = max(0, - 1.667 - InboundDelay ); 
 BF8 = max(0, GDPHoldingTime - 17.000) * BF6; 
 BF9 = max(0, 17.000 - GDPHoldingTime ) * BF6; 
 BF10 = max(0, InboundDelay - 19.000) * BF2; 
 BF11 = max(0, 19.000 - InboundDelay ) * BF2; 
 BF13 = max(0, 69.000 - TurnaroundTime ); 
 BF14 = max(0, ScheduleDepartureTime - 58.000) * BF13; 
 BF15 = max(0, 58.000 - ScheduleDepartureTime ) * BF13; 
 BF16 = max(0, ScheduleDepartureTime - 33.000); 
 BF17 = max(0, 33.000 - ScheduleDepartureTime ); 
 BF18 = max(0, DepartureDemandRatio30 - 0.270) * BF13; 
  
sqrt(GeneratedDelay) = max(0, 5.902 + 0.054 * BF1 - 0.020 * BF2 + 0.002 * BF3 - 0.007 * BF4 
           + 0.306 * BF5 - 0.121 * BF6 + 0.007 * BF7 + .312280E-03 * BF8 
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           + 0.005 * BF9 + 0.001 * BF10 - .788510E-03 * BF11 
           + 0.021 * BF13 - 0.001 * BF14 - .539767E-03 * BF15 
           + 0.002 * BF16 + 0.061 * BF17 + 0.006 * BF18) 
 
Airport: PHL 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, CarrierDelay - 0.333); 
 BF2 = max(0, 0.333 - CarrierDelay ); 
 BF3 = max(0, GDPHoldingTime - 19.700); 
 BF4 = max(0, 19.700 - GDPHoldingTime ); 
 BF6 = max(0, 3.286 - ArrivalDemandRatio30 ) * BF4; 
 BF7 = max(0, ActuralEnrouteWeather - 3160.500); 
 BF8 = max(0, 3160.500 - ActuralEnrouteWeather ); 
 BF9 = max(0, ScheduleDepartureTime - 56.000) * BF4; 
 BF10 = max(0, 56.000 - ScheduleDepartureTime ) * BF4; 
 BF11 = max(0, DepartureDemandRatio30 - 2.250); 
 BF12 = max(0, 2.250 - DepartureDemandRatio30 ); 
 BF14 = max(0, 34.000 - ScheduleDepartureTime ); 
 BF15 = max(0, ScheduleEnrouteWeather + .147176E-04); 
 BF17 = max(0, 0.500 - SwapAircraftRate ) * BF4; 
 BF18 = (RWY_CODE = 2) * BF4; 
  
sqrt(GeneratedDelay) = max(0, 9.239 + 0.056 * BF1 - 2.314 * BF2 + 0.024 * BF3 + 0.205 * BF4 
           - 0.068 * BF6 + .533943E-03 * BF7 - .723781E-03 * BF8 
           + 0.004 * BF9 + 0.003 * BF10 + 0.298 * BF11 
           - 1.044 * BF12 - 0.291 * BF14 - .469390E-03 * BF15 
           - 0.281 * BF17 - 0.033 * BF18) 
  
Airport: PHX 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, CarrierDelay - 2.143); 
 BF2 = max(0, 2.143 - CarrierDelay ); 
 BF3 = max(0, GDPHoldingTime - 2.300) * BF2; 
 BF4 = max(0, 2.300 - GDPHoldingTime ) * BF2; 
 BF5 = max(0, SwapAircraftRate - 0.060); 
 BF6 = max(0, 0.060 - SwapAircraftRate ); 
 BF7 = max(0, AAR - 15.000); 
 BF8 = max(0, 15.000 - AAR ); 
 BF9 = max(0, ScheduleDepartureTime - 36.000) * BF6; 
 BF10 = max(0, 36.000 - ScheduleDepartureTime ) * BF6; 
 BF11 = max(0, InboundDelay + 23.500); 
 BF12 = max(0, - 23.500 - InboundDelay ); 
 BF13 = max(0, DepartureDemandRatio30 - 2.800) * BF11; 
 BF14 = max(0, 2.800 - DepartureDemandRatio30 ) * BF11; 
 BF16 = max(0, 22.375 - CarrierDelay ) * BF6; 
 BF17 = max(0, ScheduleDepartureTime - 51.000); 
 BF18 = max(0, 51.000 - ScheduleDepartureTime ); 
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sqrt(GeneratedDelay) = max(0, 4.821 + 0.055 * BF1 + 0.038 * BF3 - 0.150 * BF4 + 1.750 * BF5 
           + 16.436 * BF6 - 0.204 * BF7 + 0.287 * BF8 - 0.437 * BF9 
           - 3.114 * BF10 + 0.255 * BF12 + 0.009 * BF13 
           - 0.007 * BF14 - 1.076 * BF16 + 0.033 * BF17 
           + 0.027 * BF18) 
 
Airport: PIT 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, GDPHoldingTime - 17.500); 
 BF2 = max(0, 17.500 - GDPHoldingTime ); 
 BF3 = max(0, CarrierDelay - 0.333) * BF2; 
 BF4 = max(0, 0.333 - CarrierDelay ) * BF2; 
 BF5 = max(0, InboundDelay - 41.000) * BF1; 
 BF6 = max(0, 41.000 - InboundDelay ) * BF1; 
 BF8 = max(0, 15.500 - DepartureDemandRatio30 ) * BF2; 
 BF9 = max(0, SwapAircraftRate - 0.250); 
 BF10 = max(0, 0.250 - SwapAircraftRate ); 
 BF12 = ( TerminalWeather = 0 OR TerminalWeather = 1 OR TerminalWeather = 2 OR TerminalWeather 
= 4 
        OR TerminalWeather = 5); 
 BF13 = max(0, CarrierDelay - 37.000) * BF12; 
 BF14 = max(0, 37.000 - CarrierDelay ) * BF12; 
 BF15 = max(0, InboundDelay + 6.000) * BF10; 
 BF17 = max(0, InboundDelay + 4.500) * BF2; 
 BF18 = max(0, - 4.500 - InboundDelay ) * BF2; 
  
sqrt(GeneratedDelay) = max(0, 9.473 + 0.038 * BF1 + 0.163 * BF2 + 0.003 * BF3 - 0.149 * BF4 
           - .195893E-03 * BF5 + .653026E-03 * BF6 - 0.021 * BF8 
           + 4.782 * BF9 - 8.473 * BF10 - 0.035 * BF13 
           - 0.062 * BF14 - 0.102 * BF15 + 0.001 * BF17 
           - 0.002 * BF18) 
 
Airport: SAN 
 
 Basis Functions 
 =============== 
 BF2 = max(0, 1.333 - CarrierDelay ); 
 BF6 = max(0, 1200.000 - ICM_CR ); 
 BF7 = max(0, VISIB_CR - 6.000) * BF6; 
 BF9 = max(0, SwapAircraftRate - .297868E-10) * BF2; 
 BF10 = max(0, ScheduleDepartureTime - 43.000); 
 BF13 = max(0, 4.500 - DepartureDemandRatio15 ) * BF2; 
 BF14 = max(0, GDPHoldingTime - 8.500); 
 BF15 = max(0, 8.500 - GDPHoldingTime ); 
 BF17 = max(0, 55.333 - InboundDelay ) * BF14; 
 BF18 = max(0, CarrierDelay - .113268E-06) * BF15; 
  
sqrt(GeneratedDelay) = max(0, 4.035 + 0.003 * BF6 - .864972E-03 * BF7 + 7.185 * BF9 
           - 0.013 * BF10 - 0.144 * BF13 - 0.166 * BF15 
           + 0.001 * BF17 + 0.011 * BF18) 
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Airport: SEA 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, CarrierDelay - 10.200); 
 BF2 = max(0, 10.200 - CarrierDelay ); 
 BF4 = max(0, 53.000 - GDPHoldingTime ) * BF2; 
 BF5 = max(0, InboundDelay - 113.000); 
 BF6 = max(0, 113.000 - InboundDelay ); 
 BF7 = max(0, DepartureDemandRatio30 - 2.470); 
 BF8 = max(0, 2.470 - DepartureDemandRatio30 ); 
 BF9 = max(0, SwapAircraftRate - 0.250) * BF2; 
 BF10 = max(0, 0.250 - SwapAircraftRate ) * BF2; 
 BF12 = max(0, 999.000 - Distance ) * BF6; 
 BF14 = max(0, 72.000 - CarrierDelay ) * BF6; 
 BF15 = max(0, ScheduleDepartureTime - 43.000); 
 BF16 = max(0, 43.000 - ScheduleDepartureTime ); 
 BF17 = max(0, GDPHoldingTime - .179148E-07) * BF6; 
 BF18 = max(0, GDPHoldingTime - .179148E-07); 
  
sqrt(GeneratedDelay) = max(0, 3.021 + 0.040 * BF1 + 0.537 * BF2 - 0.007 * BF4 + 0.021 * BF5 
           + 0.040 * BF6 + 0.774 * BF7 - 0.304 * BF8 + 0.391 * BF9 
           - 1.111 * BF10 - .100473E-04 * BF12 - .395528E-03 * BF14 
           - 0.011 * BF15 - 0.027 * BF16 + .674974E-03 * BF17 
           - 0.053 * BF18) 
 
Airport: SFO 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, CarrierDelay - 1.750); 
 BF2 = max(0, 1.750 - CarrierDelay ); 
 BF3 = max(0, GDPHoldingTime - 0.700); 
 BF4 = max(0, 0.700 - GDPHoldingTime ); 
 BF5 = max(0, DepartureDemandRatio_ADR15 - 0.875) * BF2; 
 BF6 = max(0, 0.875 - DepartureDemandRatio_ADR15 ) * BF2; 
 BF7 = max(0, InboundDelay - 100.500) * BF1; 
 BF8 = max(0, 100.500 - InboundDelay ) * BF1; 
 BF10 = max(0, 0.500 - SwapAircraftRate ); 
 BF11 = max(0, LegNumber - 2.000) * BF10; 
 BF12 = max(0, 2.000 - LegNumber ) * BF10; 
 BF13 = max(0, CarrierDelay - 59.000) * BF4; 
 BF14 = max(0, 59.000 - CarrierDelay ) * BF4; 
 BF15 = max(0, Distance - 2470.000); 
 BF16 = max(0, 2470.000 - Distance ); 
 BF17 = max(0, InboundDelay - 36.857) * BF3; 
 BF18 = max(0, 36.857 - InboundDelay ) * BF3; 
  
sqrt(GeneratedDelay) = max(0, 7.374 - 0.072 * BF1 - 0.145 * BF2 + 0.027 * BF3 + 4.739 * BF4 
           - 0.164 * BF5 - 0.850 * BF6 + .954112E-03 * BF7 
           + 0.001 * BF8 - 7.102 * BF10 - 0.323 * BF11 
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           - 1.188 * BF12 - 0.044 * BF13 - 0.089 * BF14 
           - 0.006 * BF15 - .293950E-03 * BF16 - .149685E-03 * BF17 
           + 0.001 * BF18) 
 
Airport: SLC 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, CarrierDelay - 1.000); 
 BF2 = max(0, 1.000 - CarrierDelay ); 
 BF3 = max(0, GDPHoldingTime - 25.000) * BF2; 
 BF4 = max(0, 25.000 - GDPHoldingTime ) * BF2; 
 BF5 = max(0, DepartureDemandRatio_ADR15 - 1.458) * BF2; 
 BF6 = max(0, 1.458 - DepartureDemandRatio_ADR15 ) * BF2; 
 BF7 = max(0, ArrivalDemandRatio_AAR30 + .947311E-08) * BF2; 
 BF9 = max(0, 0.200 - SwapAircraftRate ) * BF2; 
 BF11 = max(0, 1.000 - InboundDelay ) * BF1; 
 BF12 = max(0, InboundDelay + 3.333); 
 BF14 = max(0, GDPHoldingTime - 2.200) * BF12; 
 BF15 = max(0, 2.200 - GDPHoldingTime ) * BF12; 
 BF17 = max(0, 23.400 - GDPHoldingTime ); 
 BF18 = max(0, InboundDelay + 31.000) * BF2; 
  
sqrt(GeneratedDelay) = max(0, 5.293 + 0.063 * BF1 + 3.676 * BF2 + 0.069 * BF3 - 0.073 * BF4 
           - 1.335 * BF5 - 0.976 * BF6 + 1.101 * BF7 - 16.245 * BF9 
           + 0.003 * BF11 - 0.057 * BF12 - .416106E-03 * BF14 
           + 0.016 * BF15 - 0.084 * BF17 + 0.018 * BF18) 
 
Airport: STL 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, GDPHoldingTime - 10.000); 
 BF2 = max(0, 10.000 - GDPHoldingTime ); 
 BF3 = max(0, CarrierDelay - 7.500) * BF2; 
 BF4 = max(0, 7.500 - CarrierDelay ) * BF2; 
 BF6 = max(0, 103.333 - InboundDelay ) * BF1; 
 BF7 = max(0, DepartureDemandRatio30 - 1.670) * BF2; 
 BF8 = max(0, 1.670 - DepartureDemandRatio30 ) * BF2; 
 BF9 = max(0, ScheduleDepartureTime - 65.000); 
 BF10 = max(0, 65.000 - ScheduleDepartureTime ); 
 BF12 = max(0, 58.500 - CarrierDelay ); 
 BF15 = max(0, InboundDelay + 4.333); 
 BF17 = max(0, InboundDelay - 1.667) * BF2; 
 BF18 = max(0, 1.667 - InboundDelay ) * BF2; 
  
sqrt(GeneratedDelay) = max(0, 6.445 + 0.024 * BF1 + 0.005 * BF3 - 0.023 * BF4 + .449881E-03 * BF6 
           + 0.081 * BF7 - 0.047 * BF8 - 0.023 * BF9 - 0.018 * BF10 
           - 0.035 * BF12 - 0.028 * BF15 + 0.002 * BF17 
           - 0.004 * BF18) 
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Airport: TPA 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, GDPHoldingTime - 7.000); 
 BF2 = max(0, 7.000 - GDPHoldingTime ); 
 BF3 = max(0, CarrierDelay - 5.000) * BF2; 
 BF4 = max(0, 5.000 - CarrierDelay ) * BF2; 
 BF5 = max(0, InboundDelay - 96.000) * BF1; 
 BF6 = max(0, 96.000 - InboundDelay ) * BF1; 
 BF7 = max(0, DepartureDemandRatio30 - 7.000); 
 BF8 = max(0, 7.000 - DepartureDemandRatio30 ); 
 BF9 = max(0, ScheduleDepartureTime - 71.000); 
 BF10 = max(0, 71.000 - ScheduleDepartureTime ); 
 BF11 = max(0, SwapAircraftRate - 0.500) * BF2; 
 BF12 = max(0, 0.500 - SwapAircraftRate ) * BF2; 
 BF13 = max(0, DepartureDemandRatio30 - 1.450) * BF2; 
 BF14 = max(0, 1.450 - DepartureDemandRatio30 ) * BF2; 
 BF16 = max(0, 61.000 - CarrierDelay ) * BF8; 
 BF17 = max(0, InboundDelay + .133610E-06); 
 BF18 = max(0, - .133610E-06 - InboundDelay ); 
  
sqrt(GeneratedDelay) = max(0, 8.117 + 0.188 * BF2 + 0.006 * BF3 - 0.033 * BF4 + .261904E-03 * BF5 
           + .684080E-03 * BF6 - 1.051 * BF7 - 0.180 * BF8 
           - 0.092 * BF9 - 0.027 * BF10 + 1.161 * BF11 
           - 0.541 * BF12 + 0.061 * BF13 + 0.071 * BF14 
           - 0.008 * BF16 - 0.008 * BF17 - 0.022 * BF18) 
 

B.2 Airport Absorbed Delay Models 

Airport: ATL 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, InboundDelay - 18.222); 
 BF2 = max(0, 18.222 - InboundDelay ); 
 BF3 = max(0, TurnaroundTime - 84.500); 
 BF4 = max(0, 84.500 - TurnaroundTime ); 
 BF5 = max(0, InboundDelay - 21.000) * BF4; 
 BF6 = max(0, 21.000 - InboundDelay ) * BF4; 
 BF7 = max(0, CarrierDelay - 39.667); 
 BF8 = max(0, 39.667 - CarrierDelay ); 
 BF10 = max(0, 54.700 - GDPHoldingTime ); 
 BF11 = max(0, NumberSeats - 161.400); 
 BF12 = max(0, 161.400 - NumberSeats ); 
 BF13 = max(0, InboundDelay - 69.333) * BF10; 
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 BF14 = max(0, 69.333 - InboundDelay ) * BF10; 
 BF15 = max(0, InboundDelay - 8.750) * BF8; 
 BF16 = max(0, 8.750 - InboundDelay ) * BF8; 
 BF17 = max(0, InboundDelay + .441525E-06) * BF12; 
 BF18 = max(0, - .441525E-06 - InboundDelay ) * BF12; 
  
sqrt(AbsorbedDelay) = min(0, -1.324 - 0.027 * BF1 + 0.053 * BF2 + 0.006 * BF3 + 0.038 * BF4 
            + .480074E-03 * BF5 - 0.001 * BF6 + 0.004 * BF7 
            - 0.033 * BF8 - 0.025 * BF10 + 0.013 * BF11 
            + 0.002 * BF12 + .596830E-03 * BF13 + .154085E-03 * BF14 
            + .208147E-03 * BF15 + 0.001 * BF16 - .253714E-03 * BF17 
            - .252755E-03 * BF18) 
  
Airport: BOS 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, InboundDelay - 7.000); 
 BF2 = max(0, 7.000 - InboundDelay ); 
 BF4 = max(0, 82.500 - GDPHoldingTime ); 
 BF6 = max(0, 122.800 - TurnaroundTime ) * BF1; 
 BF7 = max(0, Distance - 300.000) * BF1; 
 BF10 = max(0, 1.000 - CarrierDelay ); 
 BF11 = max(0, InboundDelay - 57.000) * BF4; 
 BF14 = max(0, 74.750 - TurnaroundTime ) * BF4; 
 BF15 = max(0, InboundDelay + 10.500) * BF10; 
 BF16 = max(0, - 10.500 - InboundDelay ) * BF10; 
  
sqrt(AbsorbedDelay) = min(0, -0.270 - 0.051 * BF1 + 0.077 * BF2 - 0.025 * BF4 + .470724E-03 * BF6 
            + .120250E-04 * BF7 + .213996E-03 * BF11 + .111745E-03 * BF14 
            - 0.012 * BF15 - 0.073 * BF16) 
  
Airport: BWI 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, InboundDelay - 7.500); 
 BF2 = max(0, 7.500 - InboundDelay ); 
 BF3 = max(0, TurnaroundTime - 95.750) * BF1; 
 BF5 = max(0, Distance - 1043.250); 
 BF6 = max(0, 1043.250 - Distance ); 
 BF7 = max(0, CarrierDelay - 1.000); 
 BF8 = max(0, 1.000 - CarrierDelay ); 
 BF9 = max(0, GDPHoldingTime - 36.000) * BF6; 
 BF10 = max(0, 36.000 - GDPHoldingTime ) * BF6; 
 BF12 = max(0, 71.660 - TurnaroundTime ); 
 BF13 = max(0, InboundDelay + 11.000) * BF12; 
 BF14 = max(0, - 11.000 - InboundDelay ) * BF12; 
 BF15 = max(0, NumberSeats - 108.000) * BF1; 
 BF18 = max(0, 4.000 - InboundDelay ) * BF8; 
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sqrt(AbsorbedDelay) = min(0, -2.423 - 0.045 * BF1 + 0.081 * BF2 + .716995E-03 * BF3 
            + .880120E-03 * BF5 + 0.002 * BF6 + 0.005 * BF7 
            - 0.501 * BF8 + .103871E-04 * BF9 - .360186E-04 * BF10 
            + 0.007 * BF12 + .953999E-03 * BF13 - 0.004 * BF14 
            + .314077E-03 * BF15 + 0.039 * BF18) 
  
Airport: CLE 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, InboundDelay - 6.000); 
 BF2 = max(0, 6.000 - InboundDelay ); 
 BF4 = max(0, 71.660 - TurnaroundTime ); 
 BF5 = max(0, InboundDelay + 11.000) * BF4; 
 BF6 = max(0, - 11.000 - InboundDelay ) * BF4; 
 BF7 = max(0, ScheduleDepartureTime - 72.000) * BF4; 
 BF9 = max(0, ArrivalDemandRatio_AAR30_Dest - 0.333); 
 BF10 = max(0, 0.333 - ArrivalDemandRatio_AAR30_Dest ); 
 BF11 = max(0, GDPHoldingTime + .661021E-08); 
 BF13 = max(0, 0.500 - CarrierDelay ); 
 BF14 = max(0, Weight - 4.090); 
 BF15 = max(0, 4.090 - Weight ); 
 BF17 = max(0, 15.000 - InboundDelay ) * BF13; 
 BF18 = max(0, ScheduleDepartureTime - 24.000) * BF9; 
  
sqrt(AbsorbedDelay) = min(0, -2.676 - 0.039 * BF1 + 0.078 * BF2 + 0.017 * BF4 + .908381E-03 * BF5 
            - 0.004 * BF6 - 0.002 * BF7 - 1.004 * BF9 + 5.281 * BF10 
            + 0.012 * BF11 - 1.655 * BF13 + 0.638 * BF14 
            + 3.632 * BF15 + 0.061 * BF17 + 0.025 * BF18) 
  
Airport: CLT 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, InboundDelay - 18.444); 
 BF2 = max(0, 18.444 - InboundDelay ); 
 BF3 = max(0, GDPHoldingTime - 17.000); 
 BF4 = max(0, 17.000 - GDPHoldingTime ); 
 BF6 = max(0, 91.140 - TurnaroundTime ) * BF1; 
 BF8 = max(0, 6.000 - CarrierDelay ) * BF4; 
 BF10 = max(0, 158.120 - NumberSeats ) * BF1; 
 BF12 = max(0, 58.710 - TurnaroundTime ); 
 BF14 = max(0, 60.000 - TurnaroundTime ) * BF2; 
 BF16 = max(0, 5.667 - CarrierDelay ) * BF2; 
 BF18 = max(0, 4.667 - CarrierDelay ); 
  
sqrt(AbsorbedDelay) = min(0, -2.118 - 0.043 * BF1 + 0.049 * BF2 + 0.009 * BF3 + 0.001 * BF6 
            - 0.006 * BF8 - .297411E-03 * BF10 + 0.036 * BF12 
            - 0.001 * BF14 + 0.008 * BF16 - 0.163 * BF18) 
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Airport: CVG 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, InboundDelay - 20.000); 
 BF2 = max(0, 20.000 - InboundDelay ); 
 BF3 = max(0, TurnaroundTime - 104.330) * BF1; 
 BF4 = max(0, 104.330 - TurnaroundTime ) * BF1; 
 BF5 = max(0, TurnaroundTime - 70.700); 
 BF6 = max(0, 70.700 - TurnaroundTime ); 
 BF7 = max(0, GDPHoldingTime - .816149E-07); 
 BF8 = max(0, CarrierDelay - 0.500); 
 BF9 = max(0, 0.500 - CarrierDelay ); 
 BF10 = max(0, InboundDelay - 21.400) * BF6; 
 BF11 = max(0, 21.400 - InboundDelay ) * BF6; 
 BF12 = max(0, InboundDelay + 12.000) * BF9; 
 BF13 = max(0, - 12.000 - InboundDelay ) * BF9; 
 BF14 = max(0, NumberSeats - 178.000) * BF1; 
 BF15 = max(0, 178.000 - NumberSeats ) * BF1; 
 BF16 = max(0, InboundDelay - 4.600) * BF9; 
 BF18 = max(0, GDPHoldingTime - .816149E-07) * BF2; 
  
sqrt(AbsorbedDelay) = min(0, -3.300 - 0.041 * BF1 + 0.078 * BF2 + .497451E-03 * BF3 
            + 0.002 * BF4 + 0.001 * BF5 + 0.037 * BF6 + 0.017 * BF7 
            + 0.012 * BF8 + 0.623 * BF9 - 0.002 * BF10 
            - .967181E-03 * BF11 - 0.082 * BF12 - 0.138 * BF13 
            - 0.002 * BF14 - .361987E-03 * BF15 + 0.065 * BF16 
            - .343876E-03 * BF18) 
  
Airport: DCA 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, InboundDelay - 8.000); 
 BF2 = max(0, 8.000 - InboundDelay ); 
 BF3 = max(0, TurnaroundTime - 70.000) * BF1; 
 BF4 = max(0, 70.000 - TurnaroundTime ) * BF1; 
 BF5 = max(0, CarrierDelay - 4.500); 
 BF6 = max(0, 4.500 - CarrierDelay ); 
 BF7 = max(0, TurnaroundTime - 61.250); 
 BF8 = max(0, 61.250 - TurnaroundTime ); 
 BF9 = max(0, NumberSeats - 128.500) * BF8; 
 BF10 = max(0, 128.500 - NumberSeats ) * BF8; 
 BF11 = max(0, TurnaroundTime - 64.000) * BF2; 
 BF12 = max(0, 64.000 - TurnaroundTime ) * BF2; 
 BF14 = max(0, 85.000 - GDPHoldingTime ); 
 BF15 = max(0, InboundDelay + 9.333) * BF6; 
 BF16 = max(0, - 9.333 - InboundDelay ) * BF6; 
 BF17 = max(0, InboundDelay - 32.000) * BF14; 
  
sqrt(AbsorbedDelay) = min(0, -1.241 - 0.022 * BF1 + 0.130 * BF2 - .259964E-03 * BF3 
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            + .473242E-03 * BF4 + 0.008 * BF5 - 0.052 * BF6 
            + 0.004 * BF7 + 0.049 * BF8 + 0.002 * BF9 - .183185E-03 * BF10 
            - .166914E-03 * BF11 - 0.003 * BF12 - 0.016 * BF14 
            - 0.003 * BF15 - 0.014 * BF16 + .266873E-03 * BF17) 
  
Airport: DEN 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, InboundDelay - 8.000); 
 BF2 = max(0, 8.000 - InboundDelay ); 
 BF3 = max(0, TurnaroundTime - 102.250) * BF1; 
 BF4 = max(0, 102.250 - TurnaroundTime ) * BF1; 
 BF6 = max(0, 62.250 - TurnaroundTime ); 
 BF7 = max(0, CarrierDelay - 5.200); 
 BF8 = max(0, 5.200 - CarrierDelay ); 
 BF9 = max(0, NumberSeats - 108.000) * BF1; 
 BF10 = max(0, 108.000 - NumberSeats ) * BF1; 
 BF11 = max(0, InboundDelay + 11.700) * BF6; 
 BF12 = max(0, - 11.700 - InboundDelay ) * BF6; 
 BF13 = max(0, NumberSeats - 110.660); 
 BF14 = max(0, 110.660 - NumberSeats ); 
 BF15 = max(0, GDPHoldingTime - .283873E-07) * BF6; 
 BF17 = max(0, 22.000 - InboundDelay ) * BF8; 
  
sqrt(AbsorbedDelay) = min(0, -2.135 - 0.071 * BF1 + 0.061 * BF2 + .414740E-03 * BF3 
            + .827640E-03 * BF4 + 0.013 * BF6 + 0.008 * BF7 
            - 0.124 * BF8 + .256014E-03 * BF9 + 0.002 * BF10 
            + .800474E-03 * BF11 - 0.004 * BF12 + 0.002 * BF13 
            + 0.015 * BF14 + .843695E-03 * BF15 + 0.003 * BF17) 
  
Airport: DFW 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, InboundDelay - 3.714); 
 BF2 = max(0, 3.714 - InboundDelay ); 
 BF3 = max(0, TurnaroundTime - 73.500); 
 BF4 = max(0, 73.500 - TurnaroundTime ); 
 BF5 = max(0, InboundDelay + 10.000) * BF4; 
 BF6 = max(0, - 10.000 - InboundDelay ) * BF4; 
 BF7 = max(0, GDPHoldingTime + .101890E-06); 
 BF8 = max(0, NumberSeats - 92.000); 
 BF9 = max(0, CarrierDelay - 0.750) * BF8; 
 BF10 = max(0, 0.750 - CarrierDelay ) * BF8; 
 BF12 = max(0, 2.600 - CarrierDelay ) * BF1; 
 BF13 = max(0, NumberSeats - 170.500) * BF1; 
 BF15 = max(0, InboundDelay - 99.000) * BF3; 
 BF16 = max(0, 99.000 - InboundDelay ) * BF3; 
 BF17 = max(0, InboundDelay - 64.500) * BF8; 
 BF18 = max(0, 64.500 - InboundDelay ) * BF8; 
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sqrt(AbsorbedDelay) = min(0, -2.813 - 0.048 * BF1 + 0.115 * BF2 + 0.014 * BF3 + 0.015 * BF4 
            + .824261E-03 * BF5 - 0.003 * BF6 + 0.012 * BF7 
            + 0.027 * BF8 + .204332E-03 * BF9 - 0.004 * BF10 
            + 0.004 * BF12 - .774182E-03 * BF13 - .319299E-03 * BF15 
            - .114874E-03 * BF16 + .525390E-03 * BF17 - .288912E-03 * BF18) 
  
Airport: DTW 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, InboundDelay - 16.000); 
 BF4 = max(0, 103.330 - TurnaroundTime ) * BF1; 
 BF5 = max(0, GDPHoldingTime - 50.000); 
 BF6 = max(0, 50.000 - GDPHoldingTime ); 
 BF7 = max(0, CarrierDelay - 8.833); 
 BF8 = max(0, 8.833 - CarrierDelay ); 
 BF9 = max(0, TurnaroundTime - 85.660); 
 BF10 = max(0, 85.660 - TurnaroundTime ); 
 BF11 = max(0, InboundDelay - 17.500) * BF10; 
 BF12 = max(0, 17.500 - InboundDelay ) * BF10; 
 BF14 = max(0, 31.600 - InboundDelay ) * BF8; 
 BF15 = max(0, InboundDelay + 12.000); 
 BF17 = max(0, InboundDelay - 12.250) * BF6; 
 BF18 = max(0, 12.250 - InboundDelay ) * BF6; 
  
sqrt(AbsorbedDelay) = min(0, 0.336 + 0.032 * BF1 + 0.001 * BF4 + 0.005 * BF5 - 0.027 * BF6 
           + 0.006 * BF7 - 0.134 * BF8 + 0.003 * BF9 + 0.037 * BF10 
           - 0.001 * BF11 - 0.001 * BF12 + 0.003 * BF14 
           - 0.082 * BF15 + .189393E-03 * BF17 + .473089E-03 * BF18) 
  
Airport: EWR 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, InboundDelay - 10.000); 
 BF2 = max(0, 10.000 - InboundDelay ); 
 BF3 = max(0, TurnaroundTime - 87.000) * BF1; 
 BF4 = max(0, 87.000 - TurnaroundTime ) * BF1; 
 BF5 = max(0, CarrierDelay - 0.800); 
 BF6 = max(0, 0.800 - CarrierDelay ); 
 BF7 = max(0, DepartureDemandRatio30 - 1.340) * BF1; 
 BF8 = max(0, 1.340 - DepartureDemandRatio30 ) * BF1; 
 BF9 = max(0, GDPHoldingTime - .778340E-08); 
 BF10 = max(0, TurnaroundTime - 75.000); 
 BF11 = max(0, 75.000 - TurnaroundTime ); 
 BF12 = max(0, NumberSeats - 125.000); 
 BF14 = max(0, InboundDelay - 65.000) * BF6; 
 BF15 = max(0, 65.000 - InboundDelay ) * BF6; 
 BF16 = max(0, TurnaroundTime - 76.250) * BF2; 
 BF17 = max(0, 76.250 - TurnaroundTime ) * BF2; 
 BF18 = max(0, InboundDelay + 27.000) * BF12; 
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sqrt(AbsorbedDelay) = min(0, -2.756 - 0.021 * BF1 + 0.106 * BF2 - .108494E-03 * BF3 
            + .513454E-03 * BF4 + 0.011 * BF5 - 1.445 * BF6 
            + 0.002 * BF7 - 0.018 * BF8 + 0.012 * BF9 + 0.006 * BF10 
            + 0.034 * BF11 + 0.011 * BF14 + 0.017 * BF15 
            - .266450E-03 * BF16 - 0.002 * BF17 + .210935E-03 * BF18) 
  
Airport: FLL 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, InboundDelay - 5.500); 
 BF2 = max(0, 5.500 - InboundDelay ); 
 BF4 = max(0, 73.000 - TurnaroundTime ) * BF1; 
 BF5 = max(0, TurnaroundTime - 67.500); 
 BF6 = max(0, 67.500 - TurnaroundTime ); 
 BF8 = max(0, 5.000 - CarrierDelay ); 
 BF9 = max(0, ScheduleDepartureTime - 45.000) * BF6; 
 BF10 = max(0, 45.000 - ScheduleDepartureTime ) * BF6; 
 BF12 = max(0, 22.000 - InboundDelay ) * BF8; 
 BF13 = max(0, GDPHoldingTime - 35.000) * BF8; 
 BF14 = max(0, 35.000 - GDPHoldingTime ) * BF8; 
 BF15 = max(0, NumberSeats - 143.250) * BF1; 
 BF16 = max(0, 143.250 - NumberSeats ) * BF1; 
 BF18 = max(0, - 7.000 - InboundDelay ) * BF6; 
  
sqrt(AbsorbedDelay) = min(0, -1.515 - 0.042 * BF1 + 0.043 * BF2 + 0.001 * BF4 + 0.001 * BF5 
            + 0.030 * BF6 - 0.151 * BF8 - .305965E-03 * BF9 
            - 0.003 * BF10 + 0.008 * BF12 + 0.002 * BF13 
            - 0.003 * BF14 + .273304E-03 * BF15 - .710284E-03 * BF16 
            - 0.002 * BF18) 
  
Airport: IAD 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, InboundDelay - 14.000); 
 BF2 = max(0, 14.000 - InboundDelay ); 
 BF3 = max(0, TurnaroundTime - 70.750) * BF1; 
 BF4 = max(0, 70.750 - TurnaroundTime ) * BF1; 
 BF5 = max(0, CarrierDelay - 1.000); 
 BF6 = max(0, 1.000 - CarrierDelay ); 
 BF8 = max(0, 86.000 - GDPHoldingTime ); 
 BF9 = max(0, LegNumber - 5.220) * BF1; 
 BF10 = max(0, 5.220 - LegNumber ) * BF1; 
 BF11 = max(0, TurnaroundTime - 52.500) * BF8; 
 BF12 = max(0, 52.500 - TurnaroundTime ) * BF8; 
 BF13 = max(0, TurnaroundTime - 56.000) * BF2; 
 BF14 = max(0, 56.000 - TurnaroundTime ) * BF2; 
 BF15 = max(0, NumberSeats - 110.000) * BF8; 
 BF16 = max(0, 110.000 - NumberSeats ) * BF8; 
 BF17 = max(0, DepartureDemandRatio30 - 0.710) * BF1; 
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 BF18 = max(0, 0.710 - DepartureDemandRatio30 ) * BF1; 
  
sqrt(AbsorbedDelay) = min(0, -0.798 - 0.010 * BF1 + 0.077 * BF2 + .344490E-04 * BF3 
            + .645234E-03 * BF4 + 0.009 * BF5 - 0.286 * BF6 
            - 0.022 * BF8 - 0.014 * BF9 - 0.004 * BF10 
            - .124021E-03 * BF11 + .652704E-03 * BF12 + .668317E-03 * BF13 
            - 0.002 * BF14 + .731895E-04 * BF15 - .199855E-04 * BF16 
            + 0.001 * BF17 - 0.019 * BF18) 
  
Airport: IAH 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, InboundDelay - 14.500); 
 BF2 = max(0, 14.500 - InboundDelay ); 
 BF6 = max(0, 64.300 - GDPHoldingTime ); 
 BF8 = max(0, 74.660 - TurnaroundTime ); 
 BF9 = max(0, InboundDelay + 10.000) * BF8; 
 BF10 = max(0, - 10.000 - InboundDelay ) * BF8; 
 BF11 = max(0, NumberSeats - 90.000); 
 BF12 = max(0, 90.000 - NumberSeats ); 
 BF14 = max(0, 7.125 - CarrierDelay ) * BF11; 
 BF15 = max(0, InboundDelay - .257915E-07) * BF12; 
 BF16 = max(0, .257915E-07 - InboundDelay ) * BF12; 
 BF18 = max(0, 14.000 - InboundDelay ) * BF6; 
  
sqrt(AbsorbedDelay) = min(0, -1.779 - 0.029 * BF1 + 0.047 * BF2 - 0.024 * BF6 + 0.001 * BF9 
            - 0.002 * BF10 + 0.012 * BF11 + 0.036 * BF12 
            - 0.001 * BF14 - 0.001 * BF15 - 0.002 * BF16 
            + .791638E-03 * BF18) 
      
Airport: JFK 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, InboundDelay - 12.500); 
 BF2 = max(0, 12.500 - InboundDelay ); 
 BF3 = max(0, TurnaroundTime - 92.500) * BF1; 
 BF4 = max(0, 92.500 - TurnaroundTime ) * BF1; 
 BF5 = max(0, CarrierDelay - 9.000); 
 BF6 = max(0, 9.000 - CarrierDelay ); 
 BF7 = max(0, InboundDelay - 81.000) * BF6; 
 BF8 = max(0, 81.000 - InboundDelay ) * BF6; 
 BF9 = max(0, TurnaroundTime - 135.000); 
 BF10 = max(0, 135.000 - TurnaroundTime ); 
 BF11 = max(0, InboundDelay - 90.000) * BF10; 
 BF12 = max(0, 90.000 - InboundDelay ) * BF10; 
 BF13 = max(0, InboundDelay + 12.000); 
 BF15 = max(0, InboundDelay - 78.000) * BF9; 
 BF16 = max(0, 78.000 - InboundDelay ) * BF9; 
 BF17 = max(0, InboundDelay - 87.000); 
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sqrt(AbsorbedDelay) = min(0, -0.023 + 0.045 * BF1 + 0.028 * BF2 + .164685E-03 * BF3 
            + .206367E-03 * BF4 + 0.006 * BF5 - 0.285 * BF6 
            + 0.004 * BF7 + 0.003 * BF8 + 0.016 * BF9 + 0.077 * BF10 
            - .264400E-03 * BF11 - .838000E-03 * BF12 - 0.110 * BF13 
            - 0.002 * BF15 - .191659E-03 * BF16 + 0.058 * BF17) 
  
Airport: LAS 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, InboundDelay - 9.333); 
 BF2 = max(0, 9.333 - InboundDelay ); 
 BF3 = max(0, TurnaroundTime - 87.160); 
 BF4 = max(0, 87.160 - TurnaroundTime ); 
 BF5 = max(0, ScheduleDepartureTime - 59.000) * BF4; 
 BF6 = max(0, 59.000 - ScheduleDepartureTime ) * BF4; 
 BF7 = max(0, InboundDelay - 7.333) * BF4; 
 BF8 = max(0, 7.333 - InboundDelay ) * BF4; 
 BF9 = max(0, CarrierDelay - 0.333); 
 BF10 = max(0, 0.333 - CarrierDelay ); 
 BF11 = max(0, NumberSeats - 115.000) * BF1; 
 BF12 = max(0, 115.000 - NumberSeats ) * BF1; 
 BF13 = max(0, InboundDelay + 8.500) * BF10; 
 BF14 = max(0, - 8.500 - InboundDelay ) * BF10; 
 BF15 = max(0, NumberSeats - 166.000) * BF2; 
 BF16 = max(0, 166.000 - NumberSeats ) * BF2; 
 BF17 = max(0, CarrierDelay - 0.600) * BF2; 
 BF18 = max(0, 0.600 - CarrierDelay ) * BF2; 
  
sqrt(AbsorbedDelay) = min(0, -3.487 - 0.048 * BF1 + 0.123 * BF2 + 0.026 * BF3 + 0.047 * BF4 
            - .543967E-03 * BF5 - .603585E-03 * BF6 + .761984E-03 * BF7 
            - 0.002 * BF8 + 0.015 * BF9 - 0.930 * BF10 
            + .374798E-03 * BF11 - 0.007 * BF12 - 0.019 * BF13 
            - 0.210 * BF14 + 0.001 * BF15 + .246537E-03 * BF16 
            - .713822E-03 * BF17 + 0.033 * BF18) 
  
Airport: LAX 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, InboundDelay - 12.667); 
 BF2 = max(0, 12.667 - InboundDelay ); 
 BF4 = max(0, 85.250 - TurnaroundTime ) * BF1; 
 BF5 = max(0, TurnaroundTime - 83.250); 
 BF6 = max(0, 83.250 - TurnaroundTime ); 
 BF7 = max(0, CarrierDelay - 0.200); 
 BF8 = max(0, 0.200 - CarrierDelay ); 
 BF9 = max(0, InboundDelay + 9.000) * BF8; 
 BF10 = max(0, - 9.000 - InboundDelay ) * BF8; 
 BF11 = max(0, DepartureRatio_15 - 0.500) * BF6; 
 BF12 = max(0, 0.500 - DepartureRatio_15 ) * BF6; 
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 BF14 = max(0, 0.693 - DepartureDemandRatio_ADR15 ); 
 BF15 = max(0, NumberSeats - 52.500); 
 BF17 = max(0, Distance - 277.800); 
 BF18 = max(0, 277.800 - Distance ); 
  
sqrt(AbsorbedDelay) = min(0, -2.839 - 0.047 * BF1 + 0.066 * BF2 + 0.001 * BF4 + 0.001 * BF5 
            + 0.014 * BF6 + 0.010 * BF7 - 0.090 * BF9 - 0.280 * BF10 
            - 0.018 * BF11 + 0.040 * BF12 - 1.223 * BF14 
            + 0.006 * BF15 - .217227E-03 * BF17 + 0.005 * BF18) 
  
Airport: LGA 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, InboundDelay - 12.500); 
 BF2 = max(0, 12.500 - InboundDelay ); 
 BF3 = max(0, TurnaroundTime - 77.000) * BF1; 
 BF5 = max(0, CarrierDelay - 3.000); 
 BF6 = max(0, 3.000 - CarrierDelay ); 
 BF8 = max(0, 74.000 - TurnaroundTime ); 
 BF9 = max(0, Distance - 616.370) * BF8; 
 BF10 = max(0, 616.370 - Distance ) * BF8; 
 BF11 = max(0, GDPHoldingTime - 83.000) * BF6; 
 BF12 = max(0, 83.000 - GDPHoldingTime ) * BF6; 
 BF13 = max(0, NumberSeats - 73.000); 
 BF14 = max(0, 73.000 - NumberSeats ); 
 BF15 = max(0, InboundDelay + 13.000) * BF8; 
 BF16 = max(0, - 13.000 - InboundDelay ) * BF8; 
 BF17 = max(0, NumberSeats - 130.000) * BF1; 
  
sqrt(AbsorbedDelay) = min(0, -3.310 - 0.023 * BF1 + 0.112 * BF2 - .107584E-03 * BF3 
            + 0.016 * BF5 + 0.225 * BF6 + .586672E-04 * BF9 
            + .336713E-04 * BF10 + 0.009 * BF11 - 0.004 * BF12 
            + 0.004 * BF13 + 0.043 * BF14 + .660217E-03 * BF15 
            - 0.007 * BF16 + .219447E-03 * BF17) 
  
Airport: MCO 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, InboundDelay - 9.500); 
 BF2 = max(0, 9.500 - InboundDelay ); 
 BF3 = max(0, TurnaroundTime - 82.250) * BF1; 
 BF4 = max(0, 82.250 - TurnaroundTime ) * BF1; 
 BF5 = max(0, GDPHoldingTime - 50.000); 
 BF6 = max(0, 50.000 - GDPHoldingTime ); 
 BF7 = max(0, CarrierDelay - 0.600) * BF6; 
 BF8 = max(0, 0.600 - CarrierDelay ) * BF6; 
 BF9 = max(0, TurnaroundTime - 62.330) * BF6; 
 BF10 = max(0, 62.330 - TurnaroundTime ) * BF6; 
 BF12 = max(0, 72.000 - TurnaroundTime ) * BF2; 
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 BF13 = max(0, CarrierDelay - 3.000) * BF2; 
 BF14 = max(0, 3.000 - CarrierDelay ) * BF2; 
 BF15 = max(0, NumberSeats - 146.660) * BF1; 
 BF16 = max(0, 146.660 - NumberSeats ) * BF1; 
 BF17 = max(0, TurnaroundTime - 51.000) * BF6; 
  
sqrt(AbsorbedDelay) = min(0, -1.441 - 0.049 * BF1 + 0.091 * BF2 - .386774E-03 * BF3 
            + 0.001 * BF4 + 0.004 * BF5 - 0.019 * BF6 + .356751E-03 * BF7 
            - 0.012 * BF8 + .699310E-03 * BF9 + .666024E-03 * BF10 
            - 0.003 * BF12 - 0.001 * BF13 + 0.010 * BF14 
            + .964258E-04 * BF15 - .645073E-03 * BF16 - .637666E-03 * BF17) 
  
Airport: MDW 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, InboundDelay - 7.750); 
 BF2 = max(0, 7.750 - InboundDelay ); 
 BF3 = max(0, TurnaroundTime - 89.000) * BF1; 
 BF4 = max(0, 89.000 - TurnaroundTime ) * BF1; 
 BF5 = max(0, TurnaroundTime - 60.000); 
 BF6 = max(0, 60.000 - TurnaroundTime ); 
 BF7 = max(0, CarrierDelay - 1.667); 
 BF8 = max(0, 1.667 - CarrierDelay ); 
 BF9 = max(0, InboundDelay - 5.000) * BF6; 
 BF10 = max(0, 5.000 - InboundDelay ) * BF6; 
 BF11 = max(0, GDPHoldingTime - 6.000); 
 BF12 = max(0, 6.000 - GDPHoldingTime ); 
 BF13 = max(0, InboundDelay - 63.500) * BF8; 
 BF14 = max(0, 63.500 - InboundDelay ) * BF8; 
 BF15 = max(0, TurnaroundTime - 227.000) * BF12; 
 BF16 = max(0, 227.000 - TurnaroundTime ) * BF12; 
 BF17 = max(0, InboundDelay + 15.000) * BF8; 
  
sqrt(AbsorbedDelay) = min(0, -2.156 - 0.042 * BF1 + 0.079 * BF2 - .109691E-03 * BF3 
            + 0.001 * BF4 + 0.013 * BF5 + 0.041 * BF6 + 0.008 * BF7 
            + 3.267 * BF8 - .537232E-03 * BF9 - 0.002 * BF10 
            + 0.008 * BF11 - 0.301 * BF12 + 0.061 * BF13 
            - 0.042 * BF14 - 0.003 * BF15 + 0.001 * BF16 
            - 0.052 * BF17) 
  
Airport: MEM 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, InboundDelay - 13.250); 
 BF2 = max(0, 13.250 - InboundDelay ); 
 BF3 = max(0, GDPHoldingTime - 80.000); 
 BF4 = max(0, 80.000 - GDPHoldingTime ); 
 BF5 = max(0, TurnaroundTime - 88.000) * BF1; 
 BF6 = max(0, 88.000 - TurnaroundTime ) * BF1; 
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 BF7 = max(0, TurnaroundTime - 33.000); 
 BF8 = max(0, 33.000 - TurnaroundTime ); 
 BF9 = max(0, CarrierDelay - 5.000); 
 BF10 = max(0, 5.000 - CarrierDelay ); 
 BF11 = max(0, InboundDelay + 9.000) * BF4; 
 BF12 = max(0, - 9.000 - InboundDelay ) * BF4; 
 BF13 = max(0, InboundDelay - 9.000) * BF4; 
 BF15 = max(0, NumberSeats - 134.600); 
 BF16 = max(0, 134.600 - NumberSeats ); 
 BF17 = max(0, InboundDelay - 73.000) * BF7; 
 BF18 = max(0, 73.000 - InboundDelay ) * BF7; 
  
sqrt(AbsorbedDelay) = min(0, 0.043 - 0.058 * BF1 + 0.007 * BF2 - 0.005 * BF3 - 0.004 * BF4 
           + .325583E-03 * BF5 + .972446E-03 * BF6 - 0.006 * BF7 
           + 0.097 * BF8 + 0.004 * BF9 - 0.110 * BF10 - 0.001 * BF11 
           - .293752E-04 * BF12 + 0.001 * BF13 + 0.017 * BF15 
           + 0.002 * BF16 + 0.002 * BF17 + .627970E-04 * BF18) 
     
Airport: MIA 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, InboundDelay - 12.600); 
 BF2 = max(0, 12.600 - InboundDelay ); 
 BF3 = max(0, TurnaroundTime - 110.000) * BF1; 
 BF4 = max(0, 110.000 - TurnaroundTime ) * BF1; 
 BF5 = max(0, GDPHoldingTime - 58.500); 
 BF6 = max(0, 58.500 - GDPHoldingTime ); 
 BF7 = max(0, CarrierDelay - 11.000) * BF6; 
 BF8 = max(0, 11.000 - CarrierDelay ) * BF6; 
 BF9 = max(0, NumberSeats - 168.330) * BF1; 
 BF10 = max(0, 168.330 - NumberSeats ) * BF1; 
 BF11 = max(0, InboundDelay + 11.000); 
 BF13 = max(0, TurnaroundTime - 67.000) * BF11; 
 BF14 = max(0, 67.000 - TurnaroundTime ) * BF11; 
 BF15 = max(0, NumberSeats - 145.000) * BF11; 
 BF16 = max(0, 145.000 - NumberSeats ) * BF11; 
 BF17 = max(0, InboundDelay - 11.250) * BF6; 
 BF18 = max(0, 11.250 - InboundDelay ) * BF6; 
  
sqrt(AbsorbedDelay) = min(0, 1.340 + 0.062 * BF1 - 0.065 * BF2 - .865263E-04 * BF3 
           + .531585E-03 * BF4 + 0.009 * BF5 - 0.018 * BF6 
           + .936629E-04 * BF7 - .949757E-03 * BF8 - .468192E-03 * BF9 
           - .499283E-03 * BF10 - 0.115 * BF11 - .160857E-04 * BF13 
           + 0.001 * BF14 + .351647E-03 * BF15 - .382989E-04 * BF16 
           + .320360E-03 * BF17 + 0.001 * BF18) 
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Airport: MSP 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, InboundDelay - 26.500); 
 BF2 = max(0, 26.500 - InboundDelay ); 
 BF4 = max(0, 185.000 - TurnaroundTime ) * BF1; 
 BF6 = max(0, 100.000 - CarrierDelay ); 
 BF8 = max(0, 99.250 - TurnaroundTime ) * BF6; 
 BF10 = max(0, 102.800 - TurnaroundTime ) * BF2; 
 BF12 = max(0, 96.000 - GDPHoldingTime ) * BF6; 
 BF13 = max(0, InboundDelay - 9.333) * BF6; 
 BF14 = max(0, 9.333 - InboundDelay ) * BF6; 
 BF15 = max(0, InboundDelay + 14.000); 
 BF17 = max(0, TurnaroundTime - 94.000) * BF15; 
 BF18 = max(0, 94.000 - TurnaroundTime ) * BF15; 
  
sqrt(AbsorbedDelay) = min(0, 4.098 + 0.072 * BF1 - 0.074 * BF2 + .362963E-03 * BF4 
           - 0.018 * BF6 + .165202E-03 * BF8 - .524350E-03 * BF10 
           - .149700E-03 * BF12 - .407269E-03 * BF13 + .923777E-03 * BF14 
           - 0.116 * BF15 + .629995E-04 * BF17 + .566784E-03 * BF18) 
  
Airport: ORD 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, InboundDelay - 10.667); 
 BF2 = max(0, 10.667 - InboundDelay ); 
 BF4 = max(0, 65.080 - TurnaroundTime ) * BF1; 
 BF5 = max(0, CarrierDelay - 4.714); 
 BF6 = max(0, 4.714 - CarrierDelay ); 
 BF7 = max(0, TurnaroundTime - 70.500); 
 BF8 = max(0, 70.500 - TurnaroundTime ); 
 BF10 = max(0, 200.000 - NumberSeats ); 
 BF11 = max(0, GDPHoldingTime - .142701E-06); 
 BF13 = max(0, 69.250 - TurnaroundTime ) * BF2; 
 BF14 = max(0, InboundDelay - 60.500) * BF7; 
 BF15 = max(0, 60.500 - InboundDelay ) * BF7; 
 BF17 = max(0, 33.500 - InboundDelay ) * BF10; 
  
sqrt(AbsorbedDelay) = min(0, -2.194 - 0.012 * BF1 + 0.078 * BF2 + .754285E-03 * BF4 
            + 0.015 * BF5 - 0.057 * BF6 + 0.012 * BF7 + 0.035 * BF8 
            - 0.013 * BF10 + 0.009 * BF11 - 0.002 * BF13 
            - .311570E-03 * BF14 - .160500E-03 * BF15 + .262721E-03 * BF17) 
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Airport: PDX 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, InboundDelay - 15.000); 
 BF2 = max(0, 15.000 - InboundDelay ); 
 BF4 = max(0, 85.000 - TurnaroundTime ) * BF1; 
 BF5 = max(0, CarrierDelay - 2.000); 
 BF6 = max(0, 2.000 - CarrierDelay ); 
 BF7 = max(0, TurnaroundTime - 52.600); 
 BF8 = max(0, 52.600 - TurnaroundTime ); 
 BF9 = max(0, InboundDelay - 16.000) * BF8; 
 BF10 = max(0, 16.000 - InboundDelay ) * BF8; 
 BF12 = max(0, - 9.500 - InboundDelay ) * BF6; 
 BF13 = max(0, CarrierDelay - 2.000) * BF2; 
 BF14 = max(0, 2.000 - CarrierDelay ) * BF2; 
 BF15 = max(0, GDPHoldingTime + .205833E-07) * BF6; 
 BF17 = max(0, 4.000 - LegNumber ) * BF2; 
 BF18 = max(0, NumberSeats - 30.000) * BF1; 
  
sqrt(AbsorbedDelay) = min(0, -2.472 - 0.079 * BF1 + 0.100 * BF2 + 0.001 * BF4 + 0.017 * BF5 
            - 0.575 * BF6 - 0.004 * BF7 + 0.084 * BF8 - 0.001 * BF9 
            - 0.004 * BF10 - 0.086 * BF12 - .655613E-03 * BF13 
            + 0.027 * BF14 + 0.007 * BF15 - 0.007 * BF17 
            + .238990E-03 * BF18) 
  
Airport: PHL 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, InboundDelay - 10.000); 
 BF2 = max(0, 10.000 - InboundDelay ); 
 BF3 = max(0, TurnaroundTime - 128.750) * BF1; 
 BF4 = max(0, 128.750 - TurnaroundTime ) * BF1; 
 BF5 = max(0, CarrierDelay - 6.000); 
 BF6 = max(0, 6.000 - CarrierDelay ); 
 BF7 = max(0, ScheduleDepartureTime - 71.000); 
 BF8 = max(0, 71.000 - ScheduleDepartureTime ); 
 BF10 = max(0, 54.000 - InboundDelay ) * BF6; 
 BF12 = max(0, 86.000 - TurnaroundTime ); 
 BF13 = max(0, NumberSeats - 70.000); 
 BF14 = max(0, 70.000 - NumberSeats ); 
 BF15 = max(0, GDPHoldingTime + .557923E-07) * BF6; 
 BF17 = max(0, 11.000 - InboundDelay ) * BF12; 
 BF18 = max(0, Weight - 4.000); 
  
sqrt(AbsorbedDelay) = min(0, -2.573 - 0.036 * BF1 + 0.092 * BF2 + .190306E-03 * BF3 
            + .417888E-03 * BF4 + 0.016 * BF5 - 0.247 * BF6 
            - 0.013 * BF7 - 0.011 * BF8 + 0.004 * BF10 
            + 0.027 * BF12 + 0.018 * BF13 - 0.044 * BF14 
            + 0.002 * BF15 - 0.001 * BF17 - 0.899 * BF18) 
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Airport: PHX 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, InboundDelay - 8.000); 
 BF2 = max(0, 8.000 - InboundDelay ); 
 BF3 = max(0, TurnaroundTime - 134.660) * BF1; 
 BF4 = max(0, 134.660 - TurnaroundTime ) * BF1; 
 BF5 = max(0, TurnaroundTime - 77.000); 
 BF6 = max(0, 77.000 - TurnaroundTime ); 
 BF7 = max(0, CarrierDelay - 0.286); 
 BF8 = max(0, 0.286 - CarrierDelay ); 
 BF9 = max(0, InboundDelay - 46.000) * BF8; 
 BF10 = max(0, 46.000 - InboundDelay ) * BF8; 
 BF11 = max(0, TurnaroundTime - 80.000) * BF2; 
 BF12 = max(0, 80.000 - TurnaroundTime ) * BF2; 
 BF13 = max(0, InboundDelay + 11.500); 
 BF15 = max(0, LegNumber - 2.000) * BF6; 
 BF16 = max(0, 2.000 - LegNumber ) * BF6; 
 BF17 = max(0, LegNumber - 2.200); 
 BF18 = max(0, 2.200 - LegNumber ); 
  
sqrt(AbsorbedDelay) = min(0, -1.094 + 0.016 * BF2 - .883280E-04 * BF3 + .849202E-03 * BF4 
            + 0.008 * BF5 + 0.040 * BF6 + 0.009 * BF7 - 5.018 * BF8 
            + 0.126 * BF9 + 0.094 * BF10 - .517526E-03 * BF11 
            - 0.001 * BF12 - 0.090 * BF13 - 0.002 * BF15 
            - 0.040 * BF16 + 0.087 * BF17 + 0.706 * BF18) 
  
Airport: PIT 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, InboundDelay - 13.500); 
 BF2 = max(0, 13.500 - InboundDelay ); 
 BF3 = max(0, GDPHoldingTime - 5.000); 
 BF4 = max(0, 5.000 - GDPHoldingTime ); 
 BF5 = max(0, TurnaroundTime - 104.500) * BF1; 
 BF6 = max(0, 104.500 - TurnaroundTime ) * BF1; 
 BF7 = max(0, CarrierDelay - 1.500) * BF4; 
 BF8 = max(0, 1.500 - CarrierDelay ) * BF4; 
 BF9 = max(0, NumberSeats - 79.000); 
 BF10 = max(0, 79.000 - NumberSeats ); 
 BF11 = max(0, InboundDelay + 10.500); 
 BF13 = max(0, TurnaroundTime - 104.500) * BF11; 
 BF14 = max(0, 104.500 - TurnaroundTime ) * BF11; 
 BF15 = max(0, ScheduleEnrouteWeather - 78.500) * BF11; 
 BF16 = max(0, 78.500 - ScheduleEnrouteWeather ) * BF11; 
 BF17 = max(0, Distance - 287.500) * BF2; 
 BF18 = max(0, 287.500 - Distance ) * BF2; 
  
sqrt(AbsorbedDelay) = min(0, -0.272 + 0.143 * BF1 - 0.023 * BF2 + 0.010 * BF3 + 0.013 * BF4 
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            - 0.002 * BF5 - .946825E-03 * BF6 + 0.002 * BF7 
            - 0.072 * BF8 + 0.010 * BF9 + 0.009 * BF10 
            - 0.169 * BF11 + 0.001 * BF13 + 0.001 * BF14 
            + .218123E-05 * BF15 - .904125E-04 * BF16 - .803026E-05 * BF17 
            + .283192E-03 * BF18) 
  
Airport: SAN 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, InboundDelay - 13.667); 
 BF2 = max(0, 13.667 - InboundDelay ); 
 BF4 = max(0, 1.000 - CarrierDelay ); 
 BF5 = max(0, InboundDelay + 8.333) * BF4; 
 BF6 = max(0, - 8.333 - InboundDelay ) * BF4; 
 BF7 = max(0, TurnaroundTime - 10.000) * BF1; 
 BF8 = max(0, NumberSeats - 130.000); 
 BF9 = max(0, 130.000 - NumberSeats ); 
 BF10 = max(0, TurnaroundTime - 80.000); 
 BF11 = max(0, 80.000 - TurnaroundTime ); 
 BF12 = max(0, NumberSeats - 35.000) * BF2; 
 BF13 = max(0, 35.000 - NumberSeats ) * BF2; 
 BF14 = max(0, InboundDelay - 5.500) * BF4; 
 BF16 = max(0, TurnaroundTime - 78.660) * BF2; 
 BF17 = max(0, 78.660 - TurnaroundTime ) * BF2; 
 BF18 = max(0, DepartureRatio_15 - 0.110) * BF11; 
  
sqrt(AbsorbedDelay) = min(0, -3.413 + 0.177 * BF2 - 0.057 * BF5 - 0.068 * BF6 - .242539E-03 * BF7 
            + 0.012 * BF8 - 0.017 * BF9 + 0.025 * BF10 
            + 0.055 * BF11 - .584270E-03 * BF12 + 0.009 * BF13 
            + 0.053 * BF14 - 0.001 * BF16 - 0.002 * BF17 
            - 0.010 * BF18) 
  
Airport: SEA 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, InboundDelay - 17.000); 
 BF2 = max(0, 17.000 - InboundDelay ); 
 BF3 = max(0, TurnaroundTime - 98.000) * BF1; 
 BF4 = max(0, 98.000 - TurnaroundTime ) * BF1; 
 BF5 = max(0, TurnaroundTime - 95.000); 
 BF6 = max(0, 95.000 - TurnaroundTime ); 
 BF7 = max(0, CarrierDelay - 0.500); 
 BF8 = max(0, 0.500 - CarrierDelay ); 
 BF9 = max(0, InboundDelay - 48.500) * BF8; 
 BF10 = max(0, 48.500 - InboundDelay ) * BF8; 
 BF11 = max(0, InboundDelay + 10.500) * BF6; 
 BF12 = max(0, - 10.500 - InboundDelay ) * BF6; 
 BF13 = max(0, InboundDelay + 9.667); 
 BF15 = max(0, CarrierDelay + .455655E-07) * BF2; 
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 BF16 = max(0, NumberSeats - 93.330) * BF6; 
 BF17 = max(0, 93.330 - NumberSeats ) * BF6; 
 BF18 = max(0, GDPHoldingTime - .179148E-07); 
  
sqrt(AbsorbedDelay) = min(0, 0.235 + 0.109 * BF1 - 0.030 * BF2 - .120898E-03 * BF3 
           - .632901E-03 * BF4 + 0.003 * BF5 - 0.004 * BF6 
           + 0.016 * BF7 - 3.268 * BF8 + 0.031 * BF9 + 0.060 * BF10 
           + 0.001 * BF11 + .233143E-03 * BF12 - 0.149 * BF13 
           - .554835E-03 * BF15 + .988322E-04 * BF16 + .146373E-03 * BF17 
           + 0.011 * BF18) 
  
Airport: SFO 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, InboundDelay - 18.500); 
 BF2 = max(0, 18.500 - InboundDelay ); 
 BF4 = max(0, 139.600 - TurnaroundTime ) * BF1; 
 BF5 = max(0, CarrierDelay - 6.000); 
 BF6 = max(0, 6.000 - CarrierDelay ); 
 BF8 = max(0, 64.000 - TurnaroundTime ); 
 BF10 = max(0, 65.420 - TurnaroundTime ) * BF2; 
 BF11 = max(0, InboundDelay + 11.000) * BF6; 
 BF12 = max(0, - 11.000 - InboundDelay ) * BF6; 
 BF13 = max(0, InboundDelay - 41.500) * BF6; 
 BF15 = max(0, GDPHoldingTime + .390500E-07) * BF6; 
 BF16 = max(0, CarrierDelay - 0.500) * BF8; 
 BF18 = max(0, ScheduleDepartureTime - 24.000) * BF8; 
  
sqrt(AbsorbedDelay) = min(0, -2.787 - 0.050 * BF1 + 0.073 * BF2 + .566958E-03 * BF4 
            + 0.012 * BF5 + 0.050 * BF8 - 0.002 * BF10 
            - 0.006 * BF11 - 0.010 * BF12 + 0.006 * BF13 
            + 0.004 * BF15 - .651956E-03 * BF16 + .401657E-03 * BF18) 
  
Airport: SLC 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, InboundDelay - 16.000); 
 BF2 = max(0, 16.000 - InboundDelay ); 
 BF3 = max(0, TurnaroundTime - 73.110) * BF1; 
 BF4 = max(0, 73.110 - TurnaroundTime ) * BF1; 
 BF5 = max(0, TurnaroundTime - 78.500); 
 BF6 = max(0, 78.500 - TurnaroundTime ); 
 BF7 = max(0, TurnaroundTime - 80.000) * BF2; 
 BF8 = max(0, 80.000 - TurnaroundTime ) * BF2; 
 BF9 = max(0, CarrierDelay - 0.333); 
 BF10 = max(0, 0.333 - CarrierDelay ); 
 BF12 = max(0, - 10.000 - InboundDelay ) * BF10; 
 BF13 = max(0, Weight - 4.570); 
 BF14 = max(0, 4.570 - Weight ); 
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 BF15 = max(0, CarrierDelay - 2.800) * BF2; 
 BF16 = max(0, 2.800 - CarrierDelay ) * BF2; 
 BF17 = max(0, GDPHoldingTime - 70.000) * BF10; 
 BF18 = max(0, 70.000 - GDPHoldingTime ) * BF10; 
  
sqrt(AbsorbedDelay) = min(0, -3.664 - 0.029 * BF1 + 0.109 * BF2 - .220649E-03 * BF3 
            + .861071E-03 * BF4 + 0.011 * BF5 + 0.045 * BF6 
            - .506022E-03 * BF7 - 0.002 * BF8 + 0.022 * BF9 
            - 0.262 * BF12 + 0.260 * BF13 + 0.772 * BF14 
            - .822847E-03 * BF15 + 0.012 * BF16 + 0.082 * BF17 
            - 0.028 * BF18) 
 Airport: STL 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, InboundDelay - 6.667); 
 BF2 = max(0, 6.667 - InboundDelay ); 
 BF3 = max(0, TurnaroundTime - 42.400); 
 BF4 = max(0, 42.400 - TurnaroundTime ); 
 BF5 = max(0, ScheduleDepartureTime - 65.000); 
 BF6 = max(0, 65.000 - ScheduleDepartureTime ); 
 BF8 = max(0, 37.000 - InboundDelay ) * BF3; 
 BF9 = max(0, NumberSeats - 50.000); 
 BF10 = max(0, 50.000 - NumberSeats ); 
 BF11 = max(0, InboundDelay + 7.500) * BF9; 
 BF12 = max(0, - 7.500 - InboundDelay ) * BF9; 
 BF13 = max(0, TurnaroundTime - 99.500) * BF1; 
 BF14 = max(0, 99.500 - TurnaroundTime ) * BF1; 
 BF16 = max(0, 49.600 - GDPHoldingTime ); 
 BF18 = max(0, 0.600 - CarrierDelay ); 
  
sqrt(AbsorbedDelay) = min(0, -1.137 - 0.059 * BF1 + 0.087 * BF2 - 0.051 * BF3 + 0.028 * BF4 
            - 0.016 * BF5 - 0.013 * BF6 + 0.001 * BF8 + 0.004 * BF9 
            + 0.068 * BF10 + .133845E-03 * BF11 - .885348E-03 * BF12 
            + 0.003 * BF13 + .693897E-03 * BF14 - 0.014 * BF16 
            - 0.682 * BF18) 
  
Airport: TPA 
 
 Basis Functions 
 =============== 
  
 BF1 = max(0, InboundDelay - 6.000); 
 BF2 = max(0, 6.000 - InboundDelay ); 
 BF3 = max(0, TurnaroundTime - 80.000) * BF1; 
 BF4 = max(0, 80.000 - TurnaroundTime ) * BF1; 
 BF5 = max(0, GDPHoldingTime - 30.000); 
 BF6 = max(0, 30.000 - GDPHoldingTime ); 
 BF8 = max(0, 56.500 - TurnaroundTime ) * BF6; 
 BF10 = max(0, 80.000 - TurnaroundTime ) * BF2; 
 BF11 = max(0, InboundDelay - 13.000) * BF6; 
 BF12 = max(0, 13.000 - InboundDelay ) * BF6; 
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 BF13 = max(0, ScheduleDepartureTime - 74.000) * BF6; 
 BF14 = max(0, 74.000 - ScheduleDepartureTime ) * BF6; 
 BF16 = max(0, 5.000 - CarrierDelay ) * BF6; 
 BF17 = max(0, Distance - 558.500); 
 BF18 = max(0, 558.500 - Distance ); 
  
sqrt(AbsorbedDelay) = min(0, -1.075 - 0.042 * BF1 + 0.109 * BF2 - .181339E-03 * BF3 
            + .634843E-03 * BF4 + 0.007 * BF5 - 0.037 * BF6 
            + 0.002 * BF8 - 0.003 * BF10 + .721148E-03 * BF11 
            + 0.002 * BF12 - 0.003 * BF13 - .444700E-03 * BF14 
            - 0.004 * BF16 + .266903E-03 * BF17 + 0.002 * BF18) 
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APPENDIX C 
 

AGGREGATED DELAYS FOR A DAY IN 34 OEP AIRPORTS 
 
 
 
 

The figures in Figure C.1 were drawn for connecting flights in June, July and August 

2006. By calling them connecting flights, we mean their previous leg can be found in 

BTS database. For any specific hour, if the number of total flights in three months is less 

than 46, its aggregate delay is not shown on the figure.  Each bar shows the components 

of the average wheels-off delay for each flight scheduled to depart in a given 60 minute 

period. The average delay experienced during this period is the inbound delay (lightest, 

yellow) plus the generated delay (darkest, dark red) minus the absorbed delay (medium 

dark, cyan).  
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Figure C.1: Aggregated Inbound Delay, Airport Generated Delay, and Airport Absorbed
Delay for each hour in Summer 2006 at OEP 34 Airports 
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