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GIS BASED TOPOLOGICAL MODELING FOR INFRASTRUCTURE SYSTEMS 

 

Sriharsha Vankadara, M.S. 

 

George Mason University, 2010 

 

Thesis Director: Dr. Michael J. Casey 

 

 

Today‟s society greatly depends on the operations of complex infrastructure 

networks such as transportation, utilities and telecommunication. While traditional 

modeling tools have provided an insight into the theoretical behavior of infrastructure 

networks, they lacked the ability to elucidate the spatial organization between multiple 

networks. Accurate modeling of infrastructure systems depends on integration of 

dependencies, spatial reliance and properties of each system. The purpose of this research 

is to develop a toolkit to model the spatial relationships between randomly generated 

infrastructure facilities using a Geographical Information Systems (GIS) based 

topological approach.  

Topology describes the geometric associations between infrastructure elements 

represented as point, line and polygon features. The objective is to generate realistic 

topological networks in the absence of spatially complete datasets that represent 

infrastructure networks. The toolkit is developed in Python making use of custom GIS 



 
 

libraries and comprises random topology generators for star, trunk and mesh shaped 

networks. The efficiency of the tools is tested by their ability to generate a water 

distribution topology from minimal spatial data to compare the created network with that 

of a reference distribution network. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

Infrastructure generally refers to the underlying framework or features that form 

the basis of a system or organization. From a civil engineering point of view, 

infrastructure systems are physical facilities and services that are necessary for a society 

or economy to function. These facilities typically include buildings, roads, sewers, dams, 

telecommunications and other physical structures that are essential to the existence and 

development of a society.  

A large number of infrastructure works have their functions dependent upon the 

existence and operations of other systems. For example, roads provide the accessibility 

required for the transportation of raw materials to factories as well as distribution of 

finished goods to markets. Besides functional dependency, there is also a spatial reliance 

between disparate infrastructure systems. The dependencies among facilities can be 

characterized as logical relationships or physical entities on the ground, capable of 

transporting resources between elements of an infrastructure system. Accurate modeling 

of infrastructure systems depends on integration of dependency, spatial reliance, and 

engineering properties of each system. This task is extraordinarily difficult in practice 

and consequently results in models that are inaccurate, incomplete, or unrealistic. 



2 
 

Methods are needed to provide a flexible and accurate means of modeling infrastructure, 

specifically geospatial distribution and dependency. 

This thesis focuses on modeling the spatial relationships between these systems 

using a Geographic Information Systems (GIS) based approach. GIS is widely used for 

spatial modeling as it provides powerful tools for data management, visualization, 

presentation and analysis. In a GIS based approach, individual elements of a large 

network of infrastructure system are represented as features with spatial attributes defined 

in co-ordinate pairs. These elements can be discrete, taking shapes of points (nodes) 

linked together to form discrete line features (arcs), or to form closed boundaries 

enclosing an area (polygon). A spatial relationship is one that describes the association 

between shapes or locations of features.  

  A topological model best reflects the geography of the real world, by providing a 

mathematical approach to describe the spatial relationships between geographic data 

types based on the principles of order, connectivity and adjacency. It helps maintain data 

integrity and quality by enforcing rules that model ways in which points, lines and 

polygons share geometry. The objective is to generate a topology consistent with a 

defined set of rules to model the spatial interactions between similar and dissimilar 

facilities represented as standard geographical features. Facilities that are geometrically 

polygonal in a geographic context are assumed to be point features in the topological 

models. Three distinct models are implemented as part of the work. A random feature 

chosen to symbolize the hub of a network is used to generate a star topology. A second 

model illustrating a trunk topology with nodes connecting to a main edge feature is 
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described. The third topological network represents nodes and edges organized into a 

mesh structure. 

 

1.2 Problem 

A thorough understanding of spatial relationships between elements of 

infrastructure can be of great assistance in crucial tasks such as planning, design, 

operation and maintenance of individual facilities and the system as a whole. Modeling 

these relationships, helps gaining better insight into methods in which entities behave and 

perform relative to each other in a geospatial context, thus providing an opportunity to 

generate near to accurate models that represent actual infrastructure networks on ground.  

The foundation of any research problem is data. No amount or depth of data 

analysis can substitute for the lack of sufficient data. Of utmost importance is data 

acquisition, upon which subsequent modeling and analysis techniques depend which 

alternatively governs the accuracy and reliability of results. However, data is not always 

available. This essentially depends on the type of data being sought such as sensitive 

information pertaining to critical infrastructure. In such situations, random data can be 

substituted to simulate actual conditions. This thesis addresses the problem of modeling 

spatial associations between arbitrarily generated infrastructure entities and generating 

network topologies which under certain given circumstances can be comparable and used 

alternatively in place of real network models representing actual infrastructure systems. 
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1.3 Objectives 

The objective of the research is twofold. The primary objective is the 

development of a toolkit comprising of tools to model spatial associations between 

infrastructure facilities by generating topological models from spatially random data 

using GIS principles and components. The tools are to be built with the ability to generate 

nodes representing entities and edges connecting the nodes symbolizing connectivity 

between facilities.  

The second objective is to apply the programming techniques implemented in the 

tools to generate topology for a water distribution network comprising of distribution 

mains, service lines and land parcels from inadequate data such as the lack of location 

information pertaining to service laterals and by imposing connectivity restrictions 

between elements of the network. The resulting model is to be compared with a reference 

water distribution network available for the same geographic location and one that 

corresponds to an actual network implemented on ground to assess the reliability and 

accuracy of the programmatically generated topology.   

 

1.4 Approach 

A programmatic approach has been employed to demonstrate spatial interaction 

between features by generating topologies modeled in the form of star, trunk and mesh 

networks. A toolkit comprising three distinct tools one for each of the networks is 

developed using a popular and widely adopted scripting language. The tools rely on 

spatially random data as input, from which nodes representing physical or virtual 
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infrastructure sources producing or consuming resources, and edges representing conduits 

for resource flow are generated as geographic features. 

The first tool simulates situation in which facilities represented as nodes or point 

features connect to a hub or central facility. The second generator tool models how 

facilities associate themselves to a trunk or main line running through them. The tool 

ensures that certain topological rules pertaining to non-intersection of relations 

represented by edges and distance constraints are met in the process. The last tool ensures 

that connectivity exists between a node and all other nodes in the network. 

The methodology implemented in creating the trunk topology generation tool is 

used to program another script tool specifically for modeling a water distribution 

network. The tool makes use of land parcel data as input to generate a network model 

conforming to topological rules with parcels represented as nodes and water distribution 

utilities symbolized as edge features. The model thus generated is compared with a 

reference model of the distribution system to understand the effects of connectivity 

restraints on topologies and test for accuracy, similarities and feasibility between the 

models.  

  The modified trunk topology tool was applied over land parcel and utility main 

data, to generate service laterals that connect the distribution mains to service endpoints 

within parcel boundaries by implementing rules that prevent laterals from crossing over 

into adjacent parcels. For real estate that exists along street corners and has two 

boundaries available for placement of service laterals, another rule was implemented to 

determine the nearest distribution main to which the respective lateral would connect. 
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The results expected were feature containers of nodes and links which together 

along with the input data constitute a topological model compliant with proximity and 

adjacency rules that were imposed programmatically and bears close resemblance to the 

model chosen as reference. The model as a whole is compared to the reference to check 

for organization of the layout, similarities between arrangement of service laterals and 

accuracy.  
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CHAPTER 2 

PRELIMINARY STUDY 

 

Infrastructure modeling is widely researched to understand the behavior and 

performance of individual facilities as well as interdependent systems under certain 

modeling conditions specific to a study. The following section gives an overview of a 

modeling technique to study the impact of one infrastructure facility on dependent 

infrastructure. The next section describes methods and approaches for topology 

generation followed by GIS tools that are available and often used in infrastructure 

modeling. Modeling softwares that implement GIS technology for transportation and 

hydrological applications are presented in the final section. 

 

2.1 Infrastructure models 

Critical infrastructure is one of the most researched topics in the field of 

infrastructure modeling. The ramifications that critical infrastructure failure can have on 

the societal and economic conditions of a nation make it a commonly modeled problem. 

Critical infrastructure as defined by the U.S. Patriot Act comprises 

“systems and assets, whether physical or virtual, so vital to the United States that 

the incapacity or destruction of such systems and assets would have a debilitating 
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impact on security, national economic security, national public health or safety, or 

any combination of those matters” [1]. 

Innovative modeling approaches are necessary to identify and understand 

vulnerabilities within individual infrastructure components, failure of which may have a 

devastating effect on connected infrastructures. The research under review identifies that 

the problem in modeling cross-infrastructure effects depends on integration and behavior 

of individual critical infrastructure elements.  

Tolone et. al. [2] adopted an approach that involves utilizing an intelligent agent-

based methodology that develops integration awareness external to the infrastructure 

components. Agent-based integration uses knowledge of the context represented in the 

form of facts and rules that govern integration between individual infrastructures. A 

software agent is an autonomous program, or program component, that is situated within, 

aware of, and acts upon its environment in pursuit of its own objectives so as to affect its 

future environment. The modeling and simulation environment is designed in ways that 

allow the end user to execute simulations within a GIS context. Simulations are initiated 

by disabling infrastructure features and consequently viewing the impacts on connected 

elements through GIS visualization. The inter-infrastructure simulations are managed by 

collection of software agents which observe changes within infrastructure using 

knowledge of interdependencies, communicate with one another and based upon mutual 

interpretation affect changes across the concerned infrastructures. The agents are capable 

of affecting two types of state changes. First, having observed a state change in 

infrastructure, agents are capable of discerning impacts using knowledge available and 
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consequently affect changes in state within and across infrastructures. Second, agents can 

utilize GIS network analysis to reason and affect state changes.  

The results of the simulation are renderings of subsequent state changes across 

infrastructures due to impacts caused by disabling certain features within an 

infrastructure. The results are graphical solutions viewed in a GIS display. 

 

2.2 Topology generation 

 Infrastructure facilities represented as networks provide a useful framework for 

the representation and modeling of many physical, biological and social systems. Gastner 

and Newman in their study of spatial networks focused on the effects that geography has 

on the efficiency of networks [3]. The networks chosen by the authors for study were 

specifically distributed such as gas pipelines, sewage systems, and rail or air routes. The 

authors assumed that these networks have a root node that acts as a source or sink of the 

commodity distributed, for example, a sewage treatment plant [3].  

The distribution networks were considered to have two properties that impact 

efficiency. The first required the path between a vertex and the root to be relatively short. 

This meant that the sum of lengths of the edges along the shortest route between the 

vertex and root is not much greater than the Euclidean distance between the same two 

vertices. The second property required that the total length of all edges in the network is 

less so that the network is economical to build. To evaluate the efficiency of networks in 

terms of path lengths and total length of edges, two topological models that are each 

optimal respective to one of these criteria are used to compare the measurements. A star 
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model is representative of the shortest path to root node with every vertex connecting to 

the root by a straight edge. On the other hand, a minimum spanning tree (MST) is the 

optimal network representing a case of minimum total edge length. The comparison with 

star graph is achieved by computing the network‟s route factor which is the mean ratio of 

distance from a vertex to the root and the Euclidean straight line distance between the 

vertices computed over all non-root vertices. The route factor is given by the equation: 

         n   

q = 1 / n * (∑ li0 / d i0)                 (1)  

                 i=1 

 

where li0 is the distance between a vertex and root and di0 is the straight line distance. The 

star network is optimal for having the lowest possible router factor of 1.  

  number of 
vertices 

route factor edge length (km) 

network actual MST star actual  MST star 

sewer 
system 23922 1.59 2.93 1.00 498 421 102998 

gas (WA) 226 1.13 1.82 1.00 5578 4374 245034 

gas (IL) 490 1.48 2.42 1.00 6547 4009 59595 

rail 126 1.14 1.61 1.00 559 499 3272 
 

Figure 2.1: Route factors and total edge lengths [3] 

 

 The route factors for four networks under study along with their calculated total 

edge lengths are shown in Figure 2.1. From the route factors, it is evident that the 

networks are efficient with values close to 1. The edge lengths measured for the MST are 

also found to be reasonably close in comparison with the values of the actual networks. 

The remaining columns indicate that although the MST is optimal in terms of total edge 
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length, its values for route factor deviate to a large extent from those of actual networks 

and the reverse is true for the star shaped model. Due to this significant variation, the 

authors conclude that neither of these actual networks can function as a viable solution to 

the problem of generating an efficient distribution network [3]. Real world networks are 

capable of adjusting themselves in such a way that they concurrently possess benefits of 

both star and the minimum spanning tree. 

 Wang and Provan classify topological model generators into two categories: 

explanatory models, which capture topology growth that is based on specifics of the 

domain of the resultant model and descriptive models which are exclusively concerned 

with random topology generation [4]. The authors propose two possible methods as part 

of the explanatory models. The first being spatial preferential attachment which 

combines spatial constraints to reduce cost of generating connections and preferential 

attachment in which network growth primarily occurs around existing networks [4,5]. 

The second method that the authors suggest is based on principles of optimization by 

minimizing a function that is cumulative of the number of legs or edges a resource has to 

be transmitted and the cost of constructing those edges [4]. The concept of random 

topology generation, upon which the tools were built for building networks, is referred by 

the authors as the generalized random graph (GRG) model that is independent of any 

specifics of the network being generated [4]. To better represent real world networks, the 

authors suggest extending this random model by including a degree sequence for nodes 

which enables selecting at uniform a random graph from all possible graphs for the same 

degree sequence [4, 6].  
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 The topology generation techniques described primarily deal with the objectives 

of generating efficient topologies that represent real world networks and in the process 

make use of domain-specific data or tend to improve upon random generation 

methodology. The topology generation toolkit is the programmatic solution to developing 

distinct network topologies under conditions of lack of spatial data and subsequently 

capable of being modified as per the requirements of specific modeling purposes. 

  

2.3 GIS tools 

GIS can be viewed as an integrated package of hardware and software 

components, with powerful tools for data management, complex spatial analyses and 

visualization. A GIS based approach exposes powerful tools for managing data, 

visualization and analysis. GIS based modeling can be most valuable when the region of 

study covers a large geographic extent; the spatial and non-spatial attributes of data have 

a significant role in the model and when spatial analysis and its results play a key role in 

the modeling approach.  

The number of tools and depth in support for spatial analyses differ significantly 

between several GIS software available in the market. While there has been a tremendous 

rise in use of open source GIS tools in recent times, the GIS industry widely relies on 

commercial, off-the-shelf (COTS) software such as ArcGIS. Almost all commercial GIS 

software offer complex analysis and modeling capabilities in areas such as vector and 

raster analysis, cartographic modeling, topological modeling, network analysis, 
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geostatistical estimation, hydrological modeling and visualization of two and three 

dimensional data.  

 

Figure 2.2: Hydrologic modeling of a watershed 

  

The availability of such wide range of tools has resulted in the adoption of GIS 

technology across various industries such as  science, government, academia, business for 

applications including real estate, public health, crime mapping, national defense, 

sustainable development, natural resources, archaeology, regional and community 

planning, transportation and logistics [7]. 
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2.4 GIS based modeling softwares 

This section gives a brief overview of modeling softwares that integrate GIS 

principles and methodologies for topological modeling of infrastructure systems.    

 

2.4.1 TransCAD 

TransCAD is a transportation modeling software that leverages the capabilities of 

Geographic Information System (GIS) to store, manage, display and analyze 

transportation data. It supports all modes of transport and provides modules for routing, 

travel demand forecasting, public transit, logistics, site location, territory management, 

and decision support systems [8].  

TransCAD makes use of a network data structure that aids in routing and network 

optimization problems. Modeling transportation networks require accurate data 

representation as network distances and travel times depend on the actual shape and 

connectivity between transportation features. This is ensured by topological tools 

available within the GIS framework. Networks in TransCAD are also capable of 

managing complex network attributes such as road blocks, one-way streets and 

intersection delays that impact network analysis. The software also supports dynamic 

segmentation and linear referencing for transportation network data [9].  

The GIS based approach enhances visualization capabilities by providing 

graphical solutions which help the non-practitioner comprehend complex technical 

information.  
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2.4.2 MIKE SWMM 

MIKE SWMM is an engineering software for the modeling and simulation of 

hydrology and hydraulics for urban storm water and waste water systems. It integrates the 

modeling capabilities of Storm Water Management Model (SWMM) with an improved 

user interface and cutting-edge simulation and visualization capabilities [10].  

The United States Environmental Protection Agency (EPA) developed SWMM, a 

simulation model to estimate rainfall runoff quantity and quality from primarily urban 

areas for use in a single event or long-term simulation. The simulation model operates on 

a group of subcatchment areas that receive precipitation and generate runoff. The routing 

component of SWMM transports the runoff through pipes, channels and treatment 

devices. The model then tracks the quantity and quality of runoff generated within each 

subcatchment along with flow rates, flow depths and quality of water in each transport 

media during a simulation period [11].  

MIKE SWMM encompasses GIS capabilities via an ArcView based model 

MOUSE (Model for Urban Sewers) GIS to provide spatial and visual representations of 

models which can have their data stored in GIS databases. MOUSE GIS is a collection of 

model simplification tools with the ability to import and convert sewer and drainage 

system data from a wide variety of formats [12].  
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CHAPTER 3 

DESCRIPTION OF TOPOLOGICAL MODELING TOOLS 

 

3.1 Overview 

The first section in this chapter introduces the concept of GIS and features which 

are vital to the development of the modeling toolkit in this thesis. The second gives a 

brief overview of the programming language and spatial library used to accomplish 

certain geometric tasks within the tool framework. The following sections describe the 

principles and methodologies adopted to build star and trunk topologies.  

 

3.2 GIS features 

Most current open source GIS software systems support topological modeling, but 

Environmental Systems Research Institute‟s (ESRI) commercial mapping platform, 

ArcGIS has been chosen due to its wide use and extensive support for integration with 

programming languages. ArcGIS is a suite of geospatial products with ArcMap and 

ArcCatalog being the primary components used in this research. ArcCatalog serves as the 

data management and organizing tool, while ArcMap is primarily used for visualization, 

editing and analyzing geographic data. The following sections describe key features of 

the ArcGIS framework that play a significant role in the programming approach. 
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3.2.1 Feature class 

A feature class is a homogeneous collection of features of type point, line or 

polygon and share a common set of attributes. Feature classes can be found in a feature 

dataset sharing the same coordinate system and organized into networks or exist 

independently in a geodatabase. The geographic data read and generated as part of the 

programmatic approach is stored in feature classes.  

 

3.2.2 Geoprocessing 

Geoprocessing in general is a GIS operation that manipulates GIS data. A typical 

geoprocessing function involves performing an operation on an input dataset and 

consequently producing a new dataset. The fundamental purpose of geoprocessing is to 

automate tasks involving repetition of work. These tasks can encompass a single tool or a 

series of tools combined into a sequence of operations known as workflows.  

 

 

Figure 3.1: Data transformation in geoprocessing [13] 

 

Geoprocessing in ArcGIS can be tools that run within the realm of the ArcGIS 

desktop interface or as standalone Python scripts that build on the capabilities of the 

„geoprocessor‟ object. The geoprocessor is an object that manages all the geoprocessing 
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functions available within ArcGIS and exposes these methods for access in Python. The 

geoprocessor plays a key role in the development by making it possible to read and write 

geometries.  

 

3.3 Python 

Python is an interpreted, interactive, object-oriented programming language that 

offers strong support for integration with other languages and tools. It‟s easy to learn 

syntax emphasizes code readability, modularity and therefore makes it very attractive for 

rapid application development and reduced program maintenance. Python‟s extensive 

support for modules and packages encourages program modularity and code reuse.  

The choice of Python as the preferred language can be attributed to the extensive 

support that ArcGIS provides to its geoprocessing framework and widespread use of 

Python in its user community. The following section describes a Python package that has 

been used to execute geometric operations essential to topology generation.  

 

3.3.1 Shapely 

Shapely is a Python package for analysis and manipulation of geospatial 

geometries [14]. The „shapely‟ geometry module not only supports standard feature types 

– points, lines and polygons but also multi-point, multi-line, multi-polygon geometries 

and other complex geometries. It has the capability to produce new geometries such as 

buffer, boundary, centroid, convex hull and also test if shapes intersect, cross, contain or 
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touch each other. In this thesis, „shapely‟ has been primarily used to determine scalar 

properties such as distance and check geometric association between geometries.  

 

3.4 Infrastructure Topology Generator (ITG) 

The Infrastructure Topology Generator (ITG) is the name given to a set of 

scripting tools developed in the Python programming language to create generic models 

of randomly generated infrastructure elements. The models provide insight into the 

spatial arrangement of elements by collectively organizing infrastructure representations 

into star, trunk and mesh network topologies.  The scripts function by leveraging the 

capabilities of the ArcGIS geoprocessing framework for tasks such as reading and writing 

features, creating feature storage containers and managing workspaces. Equally 

significant to the tools are programming constructs, modules, functions and methods 

inherent to the Python language. The tools have been developed adhering to certain 

programming principles such as commenting code wherever necessary, replacing 

repetitive chunks of code with functions and deleting objects to reduce memory 

consumption. 

The tools extensively make use of „lists‟ which is one of the several types of 

sequences supported by Python. A list is the most flexible data type available in Python 

and is used as a container for items. Most lists implemented across the toolkit store 

coordinate pairs of point or line features. List objects support several operations including 

adding, indexing, slicing, multiplication, membership and finding largest and smallest 

elements. Another important aspect of Python programming is the use of „modules‟. 



20 
 

Modules aid in the logical organization of related Python code components for easier 

understanding and use. A module is any other Python script capable of being imported 

into other scripts exposing its functional aspects in the form of classes, functions and 

variables. For example, the geoprocessing features of ArcGIS are imported into the tools 

via the module „arcgisscripting‟.   

Code developed in scripting languages such as Python can be written in text files 

and saved with the required language extension (.py for Python files) before executing 

them with the Python interpreter. This being a viable alternative is not best suited when 

developing complex programs that require numerous lines of code. In such a scenario, a 

software application known as Integrated Development Environment (IDE) helps 

maximize productivity by providing a set of integrated tools within a single interface. An 

IDE normally consists of [15]: 

 A source code editor 

 A compiler or an interpreter 

 Build automation tools and 

 A debugger 

The standard Python installation comes with a built-in IDE known as IDLE which 

supports features such as syntax highlighting, auto completion and smart indentation 

[16]. Due to a lack of adequate support for debugging (process of finding defects in a 

computer program) in IDLE, another standalone IDE known as PythonWin with rich 
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feature support and integrated debugging facility has been used in the development of the 

toolkit. 

The following sections describe in detail the inner workings of the three tools 

developed for topology generation. The sections first provide an overview of the process 

in which topologies are created and go on to elucidate in detail the programming 

constructs. 

 

3.5 Star topology tool 

The star topology is a network of nodes connected via edges to a central node or 

hub. The topology generation first requires creation of a finite number of random nodes 

or abstract points which are consequently converted into features in a point feature class 

using the geoprocessing functionality of the ArcGIS framework. The conversion into 

ArcGIS point features is essential for visualizing the network.  

The point features are looped through one at a time and appended to a Python list. 

This is followed by random selection of a central node from which a point object is 

created and consequently removed from the list. An empty line feature class to hold the 

edges connecting the hub and remaining points is generated. Looping through the nodes 

in the list, a line object for every link between the hub and corresponding point is created 

and inserted into the line feature class. The steps involved or the flow of program 

execution for generating a star topology is depicted in Figure 3.2.  
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A star topology is thus produced with nodes and edges stored in two discrete 

feature classes. The next section describes in detail, steps of the procedure from a 

programming perspective.  

 

 

Figure 3.2: Script execution sequence for star topology 

 

3.5.1 Tool description 

Python being an interpreted language executes instructions in a sequence. The star 

topology generation tool comprises programming statements written in sequence. The 

objective and procedure involved in generating star topology being relatively simpler to 

that of the trunk tool, and with most operations being non-repetitive, the code has been 
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structured into sequential statements without the use of functions. This enhances code 

readability and makes debugging easier.  

The program begins by importing required modules whose features are 

subsequently utilized in developing the tool. One of these modules is part of the toolkit 

and provides the star and trunk tools with the ability to generate random point locations. 

The module essentially is a Python file with a class definition and a method to generate 

random nodes. The class function utilizes methods exposed by a built-in module within 

the standard Python library named random. The module provides functions for generating 

random integers between a definite range of numbers or choosing a random item from a 

list of items. This custom class module implements one method getRandomCoords by 

taking as input the number of points to generate. A coordinate pair is then randomly 

generated within the defined bounds and is consequently appended to a list which is 

returned to the object calling the function. An information description also known as 

pseudocode of the random coordinate generating function is depicted in Figure 3.3. 

 

Figure 3.3: Pseudocode for random node generation 
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Following the import of modules, the much required geoprocessor object is 

created and workspace for the tool environment is set. An empty feature class is created 

in the workspace to store all the point coordinates that are generated. When creating 

feature classes, the code implements a check to verify if a feature class with an identical 

name already exists in the workspace. In the event of an already existing file, the 

geoprocessor ensures that the feature object container is removed. Inserting features into 

a GIS feature class requires a cursor which is a data access object that iterates over rows 

in a table. Cursors are provided for searching, inserting and updating features. Each type 

of cursor is created by a corresponding geoprocessor method. With the creation of an 

insert cursor on the empty feature class, an object of the random class calls the function 

getRandomCoords with the required number of points and stores the returned coordinates 

in a list. For every point item in the list, a GIS point object is created and its „X‟ and „Y‟ 

attributes are assigned from coordinates of the respective item. The insert cursor now 

creates a new feature (row) for every point whose shape is set to the geometry of the 

point object. The cursor then inserts the feature into the container. The pseudocode for 

creating a feature class with randomly generated points is illustrated in Figure 3.4. 
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Figure 3.4: Pseudocode detailing feature class generation from random points 

 

The feature class container now consisting of all point features is read using a 

search cursor by looping over features and gathering geometry of each point into a 

Python list. The next step involves choosing a random point from the list as the hub of the 

topology. The random module implements a method of the name choice for random 

selection of item in a list. A point is chosen from the list of geometries and stored in a 

variable to function as the central node or hub. The point selected is therefore excluded 

from the points list and a GIS point object is created from it. Having identified the hub 

and point features, the next step in the process is to create line (edge) geometries 
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connecting the hub to its nodes. An empty feature class capable of storing line features is 

created upon which an insert cursor is generated. Looping through the points in the list, 

an array object to store the two end points is created. The point being iterated over and 

the hub object are added to the array which is assigned as the shape of a new feature in 

the feature class. The insert cursor creates a new row for the feature and the container is 

thus updated with links. The feature class with line geometries connecting the hub to its 

nodes is showin in Figure 3.5.   

 

Figure 3.5: Star topology  
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3.5.2 Example 

Star shaped networks also referred to as hub-and-spoke networks do not exist 

independently in the real world but are often part of larger networks. A pure 

implementation of star topology is possible in command and control environments where 

a central facility acts as a dispatch and monitoring center responsible for operations of 

connected facilities. A star topological network by itself can be non-reliable as failure of 

the hub instantly incapacitates the entire network.  

In a star topology, the central node has a much higher degree of connectivity than 

nodes to which a point-to-point connection exits from the hub. The remaining nodes in 

the network which only connect to the hub all have a single degree of connectivity. The 

number of links characteristic to a star topology is always one less than the number of 

nodes. A large scale implementation of the star model can commonly be found within the 

transport industry. The air transportation system in a country is a large network of 

connected hubs with each hub signifying center of a star network. Large cities often act 

as transportation hubs handling significant traffic volumes and connect to regions with 

relatively lesser traffic. The hubs in turn are connected to other hubs making up a larger 

network.  

Barabasi describes how an air transport system resembles a scale-free network by 

comparing it with a highway system that is based on the principles of random networks. 

In a highways system, cities representing nodes are connected by highways and there are 

no cities that are served by hundreds of highways [17]. The degree distribution of such a 

network follows a bell shaped curve indicating that most nodes have equal number of 



28 
 

links and nodes with a large number of links do not exist signifying a uniform network. 

Air transport networks on the other hand follow a power law distribution in which there 

is no single node that is characteristic of all the other nodes, therefore lacking any scale. 

In such networks, most nodes only have a few links and are held together by few highly 

connected hubs. This is similar to the case in which a large number of smaller airports are 

connected to each other through a handful of hubs. Figure 3.6 illustrates random and 

scale-free networks. 

 

Figure 3.6: Random and scale-free networks [18] 

 

3.6 Trunk topology tool 

The trunk topology generation is a more complex process in the sense that certain 

topological rules governing the organization of nodes and edges have to be complied 

with. The development for this topology involves breaking down the process into 

numerous simple functions to avoid code repetition and reduce complexity. The random 

node generation and transformation into ArcGIS point features in a feature class is 

similar to that described in star topology construction. The trunk tool generates three 
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feature classes in the process with one containing all point features, one with a single 

polyline feature representing the trunk and one with edges connecting nodes to trunk.  

The first step involves reading the point features into a Python list which is then 

passed to a function that results in a list of nodes participating in the trunk. The points of 

the trunk are randomly selected and subjected to a validation function that implements a 

procedure to check if the trunk intersects with itself. On successful verification, the points 

of the trunk are excluded from the entire points list. The Python list with points of the 

trunk is passed to a function that generates a discrete feature class for the trunk main.  

The next step is to create a line feature class to store associations between 

remaining nodes and the trunk. For every node in the list, its straight line distance to each 

participating node in the trunk is computed. The trunk node that is nearest is determined 

as the one to which a link must be generated. With this identification of node pairs, the 

nodes are passed to a function that creates a line object and inserts it into the line feature 

class. Figure 3.7 illustrates the program execution in steps. A detailed description of the 

procedure adopted to create this tool is elucidated in the following section. 
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Figure 3.7: Script execution sequence for trunk topology 
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3.6.1 Tool description 

Before delving into the specifics of tool development, it is essential to understand 

that complex and lengthy code when broken down into smaller chunks of related 

instructions with discrete functioning objectives, simplifies code manipulation, prevents 

code repetition and makes testing far less complex. Unlike the star topology tool which 

has been developed using sequential instructions the trunk tool relies heavily on the use 

of functions. The following tasks requisite for trunk network generation are implemented 

as functions: 

 Reading point geometries from a feature class into a Python list 

 Creating feature classes using the geoprocessor 

 Identifying random points that make up the trunk 

 Check to verify validity of trunk 

 Creating a feature class to store the trunk main feature and 

 Joining outstanding point features in the list to trunk 

 

The Python tool for trunk topology generation utilizes the custom class similar to 

the star tool for generating point coordinates. The script implements a function for 

creating feature classes that takes as arguments, the path to the feature class and the type 

of features (points, lines or polygons). Upon successful execution the function returns an 

insert cursor. By providing a discrete function for creating feature classes, the need to 



32 
 

repeat instruction each time for this purpose is avoided thus reducing length and 

complexity of code.  

An object of the custom class is created and the method for obtaining randomly 

generated point coordinates is invoked. The point locations returned are stored in a list. 

An empty point feature class is created by passing arguments required by the 

createFeatureClass function. The insert cursor returned by the function is used to insert 

points in the list after converting them into GIS point objects by looping over one 

another.  

The points feature class updated with features from the random points list is then 

passed as parameter to another function readTestPoints that uses a search cursor to iterate 

over the features and retrieves point geometries appended to a list. The list with 

coordinates of each point in the feature class is returned and consequently passed onto 

another function createTrunkList. This function takes as parameters the node list and a 

numerical value that indicates the number of points that should make up the trunk. The 

objective of this function is to create a list of points that participate in the trunk. This is 

achieved by iterating over the entirety of points received as function argument and 

choosing a random point. A check is implemented to ensure that a point once chosen is 

not selected again. The point is then appended to an empty list container for points that 

create the trunk. Once the required number of non-repetitive random points is 

accumulated, the program breaks from the loop. Having identified points of the trunk, the 

next task is to validate the trunk for any self-intersections.  
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A topology rule that governs the spatial organization of points creating the trunk 

is implemented via a function checkTrunkValidy which requires as input the list of points 

forming the trunk. The function makes sure that the points chosen do not result in a trunk 

main that crosses itself. This test for geometric association is made possible by the 

Shapely library from which a LineString class is imported into the tool. The trunk is 

essentially a polyline made up of connected line features or line strings. The trunk points 

are iterated over and a line string object is generated by the class imported using a point 

and its adjacent in the list. The line string objects are therefore stored in a list object. 

With no possibility for two line objects sharing a common point to intersect, each line in 

tested with non-adjacent lines utilizing the crosses binary spatial operator. If the test 

determines that the trunk is invalid, the execution flow returns to the createTrunkList 

function to generate a new set of points. This process repeats itself until a valid set of 

points for the trunk are selected. The pseudocode describing the structure of the two 

functions and the control flow is depicted in Figures 3.8 and 3.9. 
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Figure 3.8: Random point selection for trunk 

 

 

 
 

Figure 3.9: Checking trunk for self-intersection 
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The identification of a valid trunk is followed by creating a feature class with the 

lone trunk main feature. The trunk points are passed on to a createTrunkFC function 

which acquires itself an insert cursor from the createFeatureClass function. An array 

object with all the trunk point objects is assigned to the shape property of a new feature. 

The trunk feature is then inserted into the feature class. Figure 3.10 illustrates a trunk 

generated from randomly generated points. 

 

Figure 3.10: Trunk generated from random point features 

 

The trunk having been identified, its points are excluded from the list containing 

all points generated for the topology. The last task in the process involves generating 

edges that establish spatial connections between the outstanding point features and the 
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trunk. An empty feature class to store edge features is created and an insert cursor is 

obtained. It is assumed that points attach to the trunk at nodes closest in distance. This 

requires calculating distance between every point feature and points of the trunk. The 

point features are iterated upon, and distance of each feature from every point in the trunk 

is calculated. The distances for a point feature are appended to a list and being numerical 

quantities, Python‟s minimum function is used to determine the least distance from the 

list. Utilizing the index of the shortest distance in the list, the trunk point which is closest 

to a point feature is deduced. This program flow for this process is described in Figure 

3.11.  

 

 
 

 

Figure 3.11: Determination of nearest trunk node 
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The point feature and closest trunk point along with the insert cursor are 

parameters to the function createFeaturesToTrunk which creates a line object with the 

points and inserts a new edge feature each time it is called. The function with its 

parameters and process of generating the output feature class is listed in Figure 3.12. 

 

 
 

 

Figure 3.12: Creating edge features to trunk points 

 

Figure 3.13 illustrates the generated topology with point, trunk and edge feature classes 

stacked upon one another forming a network of connected elements.  
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Figure 3.13: Trunk topology with point features connected to trunk 

 

3.6.2 Example 

A trunk topology is implemented for systems that require delivery of resources 

between sources and sinks by way of a trunk that runs through the network. The trunk 

can dispense resources to destinations connected at defined points of distribution that act 

as a hub or have sinks connected along its length via individual junctions. Figure 3.13 in 

the previous section depicts case of a trunk that connects to service nodes in the network 

at defined points along the length of the trunk. 

 



39 
 

A water distribution system best illustrates the application of a trunk based 

network. Pump stations represent the source from which water is distributed to customers 

(residential, commercial or industrial) using distribution mains that usually run alongside 

streets. Each customer is connected to the main via a lateral. The connections between 

service endpoints and distribution mains are governed by factors such as location of the 

customer relative to the main, purpose of the service and demand. A distribution network 

with mains and laterals is illustrated in Figure 3.14.  

 

 

Figure 3.14: Water network depicting distribution mains and service laterals  
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For every service endpoint, there is just one lateral or link that connects to the 

distribution main, hence the degree of connectivity is one. Junctions at which the service 

laterals join the main have a constant connectivity degree of three with two links 

belonging to the main and one from the service line. Mains are pipes of equal or unequal 

diameters connected through junctions. These junctions vary in their nodal degree 

depending upon the number of number of mains that they connect to at an intersection. 

The degree of connectivity of these junctions can exist between the range of two and 

four. Segments of water distribution systems need to be taken out of service from time to 

time for maintenance and repairs. Those sections that need to be taken out of service are 

limited by the placement of shut-off valves. Higher the densities of these valves, fewer 

customers are affected with a reduced impact on the overall system operations. The 

number of these valves can vary depending upon design requirements. Since the 

objective of these valves is to obstruct flow in a pipe, the degree of connectivity is two. In 

the case of trunk topology generated by the tool, it can be observed that nodes of the 

trunk resemble hubs of a star network and have higher degree of connectivity than nodes 

that connect to them with individual links. 
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3.7 Mesh topology tool 

 A mesh topology can be described as a network of nodes and edges in which 

every node is attached to all other nodes. The mesh topology generation follows a more 

straightforward approach due to participating nodes having equal degree of connectivity.  

The Python based tool developed for mesh generation is built upon functions previously 

implemented in the trunk tool for creating node and edge feature classes. The coordinate 

pairs required for generating nodes are obtained from the custom class object built with 

the ability to create random Cartesian coordinates given the required number of points. 

The nodes are subsequently converted into features in a point feature class through 

geoprocessing techniques and are consequently read into a Python list object. Iterating 

over nodes in the list, an in-memory line or edge object is created between the current 

and each following node in the list. The edge features thus generated are inserted into a 

line feature class. The feature classes together form a mesh topology. The programmatic 

workflow involved in generating the network is illustrated in Figure 3.15. 



42 
 

 

Figure 3.15: Process workflow for mesh topology generation 

 

3.7.1 Tool description 

 The mesh topology generation involves an unambiguous approach due to the 

availability of methods for reading coordinate geometries into native Python objects and 

generating output features previously implemented for the trunk tool. The random nodes 

required for the network are generated in the manner similar to that demonstrated in the 

descriptions for star and trunk tools. An object of the random point generation class – 

randnodes, is used to generate coordinate pairs for the required number of mesh nodes. 

Figure 3.4 describes the process involved in generating the nodes. An empty feature class 
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for storing the nodes returned is created by the createFeatureClass function depending 

upon parameters such as type of feature, name and location on disk and returns an insert 

cursor. A geoprocessing point object is created for every node and its corresponding x 

and y properties are set before the cursor creates a new feature and the point is assigned 

to the feature‟s shape. The cursor consequently inserts the feature into the feature class. 

The pseudocode for this process is described in Figure 3.16. 

 

Figure 3.16: Mesh node feature generation 

 

  The node feature class generation is followed by retrieving the coordinates of 

each point into a Python list using the readTestPoints function that makes use of a search 

cursor to iterate over each point feature. The list thus generated forms the basis for 

creating edge features that connect nodes. The feature class for storing edges generated in 

the process is created and the corresponding insert cursor is obtained. Each coordinate 

pair in the list is iterated upon, and a loop on points following the current point is applied 
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to create an array constituting start and end nodes of the respective edge being generated. 

The array thus produced is designated to the shape property of the new line feature 

created by the insert cursor and subsequently inserted into the edge feature class. The 

pseudocode detailing the edge creation procedure is shown in Figure 3.17. 

 

Figure 3.17: Mesh edge feature generation 

 

The node and edge feature classes together give rise to a topology arranged in the form of 

a mesh. A visual inspection of the feature layers as shown in Figure 3.18 corroborates the 

process employed in rendering a mesh topology.  
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Figure 3.18: Mesh topology 

 

3.7.2 Example 

A mesh topology is a network in which all the nodes are connected to each other. 

Each node in a mesh network is independent of other nodes and maintains continuous 

flow between nodes. A mesh network is comprised of  

n (n – 1) / 2                                (2) 

                                             

links that connect n nodes. Built upon the principle of redundancy, failure of a node does 

not disrupt network flow due to availability of alternate connection paths. Due to this 
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capability, mesh networks are known to be self-healing and reliable unlike star shaped 

networks.  

An electrical distribution system is an example of an infrastructure system that 

implements a mesh based topology. It is one of the operations supported by an electrical 

network besides electricity generation and transmission. The components responsible for 

these operations are interconnected and form the electricity network or grid. The logical 

topology of an electrical grid varies depending upon constraints of the budget, system 

reliability requirements and the load and generation characteristics. The redundancy 

provided by mesh topologies is not deemed cost effective at the distribution level, but is 

considered to be a reliable alternative at the transmission level. 

Every node in a mesh topology of n nodes has a (n – 1) degree of connectivity. In 

the case of a mesh based electrical transmission network, failure or disruption of service 

at a generator does not interrupt service due to availability of alternate paths through 

which electricity can be transmitted. Though it may seem feasible and effective from a 

topological perspective, in a real network, the failure of a node and consequent re-routing 

of current to flow from other generators in the network over transmission lines of 

insufficient capacity can result in cascading failure and power outage across the entire 

network.   
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3.8 Discussion 

The star, trunk and mesh topology generators provide a random topological model 

of connected nodes and edges which represent physical or virtual entities acting as 

sources or conduits for flow of resources or information and can vary significantly in 

their purpose depending upon the problem being addressed. These tools provide the 

necessary foundation for building spatially random networks for models that require an 

understanding of spatial organization and behavior of elements when data available at 

hand is limited or cannot be deemed accurate. The geographic bounds and number of 

nodes participating in the models can be controlled programmatically depending upon the 

spatial domain of the problem. Due to the random nature of topologies, the datasets 

produced are devoid of non-spatial information which is essential for most geospatial 

analysis procedures. The datasets can be edited to include attribute data as information 

becomes available in the course of the process. The spatial layout generated by the tools 

can be enhanced to reflect changes that may be induced by specific modeling 

requirements capable of improving the accuracy and in turn the results of any analysis 

that depend on the network. 

 

3.9 Summary 

The process adopted in the development of scripting tools capable of producing 

random topological models with spatial layouts in the shape of star, trunk and mesh is 

emphasized in this chapter. GIS feature classes serve as containers that hold geometry 

objects generated by the tools. The geoprocessing framework of ArcGIS plays a pivotal 
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role in the development of these tools by providing necessary objects that support 

reading, writing and analyzing geometric data. The wide adoption of Python within the 

GIS domain along with the availability of extensive geometry analysis and manipulation 

libraries such as Shapely motivated the use of Python as the preferred language.  

Random data generation which is a key requirement for the tools is implemented 

as a class module that requires number of nodes as input and consequently generates a list 

of random coordinate pair values.  The star topology is a network of nodes connected via 

edges to a central hub. The steps involved in generating such a topology is illustrated via 

a pictorial as well as described in detail. Trunk topology is a network of nodes that 

connect to nodes of a trunk. The edge generation between nodes and trunk points is 

dependent upon computation of proximity values. The complexities involved in trunk 

generation are described at length with code presented in the Appendix. Mesh topology is 

a redundant network built upon the requirement that each node must connect to all other 

nodes.  

The following chapter presents a modeling scenario with the objective of 

programmatically generating a water distribution topology model using insufficient data 

and comparing the results with a reference model. 

 

 

 

 

 



49 
 

 

 

CHAPTER 4 

MODELING A WATER DISTRIBUTION NETWORK 

 

4.1 Overview 

As described in Chapter 1, unavailability of data is the driving force behind 

adopting a random modeling approach. With the likelihood of results generated from 

such an approach varying considerably each time a model is generated, it is beneficial to 

have access to a model that can serve as a reference to compare the output with. This 

chapter elucidates a modeling scenario in which a close to real water distribution system 

of a neighborhood is used as a reference to evaluate a topological model generated 

programmatically for the same neighborhood assuming the case of insufficient data.  

 

4.1.1 Reference data 

The reference data used in the test case modeling was created by Environmental 

Sciences Research Institute (ESRI) using a database structure similar to that of the city of 

Montgomery, Alabama. The data is stored in a geodatabase and is comprised of feature 

datasets for landbase and water data. The landbase dataset comprises feature class data 

for blocks, parcels, road centerlines and edges of pavements. The water dataset 

constitutes data representing distribution mains, service laterals to parcels, tanks, system 

valves, location of fire hydrants and water network junctions. For the current modeling 
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situation, the reference network data belongs to a small portion of the entire geographic 

extent extracted from the south west blocks comprising of land parcels, their distribution 

mains along with service laterals to each parcel. Figure 4.1 illustrates the distribution 

system with network connectivity used for comparing the results generated network 

topology. 

 

Figure 4.1: Reference water distribution network 
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4.1.2 Purpose 

The purpose of this test case approach is to programmatically generate a 

topological model of network data from insufficient information such as land parcels, and 

utility mains, and consequently generating service lines from the mains to the parcels. 

The generated model is then compared with the actual reference model to test for 

similarities, inconsistencies, degree of accuracy and additional topological rules that can 

be administered for better results. The next section describes the procedure involved in 

the generation of service lines from mains to a network junction within a parcel.  

 

4.2 Network generation 

The modeling approach involves using land parcel data from the reference dataset 

as input and utility main features to generate network data comprising of service lines 

that connect point features within a parcel boundary to utility lines. The following 

sections describe the programmatic approach with illustrations of intermediate results and 

topological rules employed to arrive at the optimal and best network model. 

The code for generating this topological model is developed in Python with 

extensive use of the ArcGIS geoprocessor object and Shapely library methods for 

creation of in-memory line and polygon geometry objects. The code developed is 

organized into functions with specific objectives and uses Python lists and dictionaries as 

intermediate storage objects. 
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4.2.1 Topological rules 

The approach to modeling a water distribution system requires the network model 

to conform to certain topological rules by maintaining relationships of proximity and 

adjacency. One of the rules implemented ensures that service laterals do not cross 

adjacent parcels when connecting to their intended service nodes. The other rule applies 

only to parcels with more than one boundary available for service line connections. In 

such cases, the rule makes sure that service laterals connect to the nearest utility main. 

Figure 4.2 depicts violation of topology by service laterals connecting to utility main 

intersections. 

 

Figure 4.2: Violation of topological rule 
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4.2.2 The process 

The process commences with reading parcel geometries to create point features 

that represent a point of connection within the extents of a parcel to the utility main 

through service laterals. This conversion of parcel polygons to point features is achieved 

by determining the centroids of each polygon feature and subsequently writing these 

point geometries into a feature class.  

The next step involves determining the nearest utility main for each centroid in 

the parcel feature. This is achieved using one of the proximity analysis tools available 

within the ArcGIS framework. The tool enables calculation of distance from each point in 

the input feature class to the nearest point or line in another feature class of type point or 

polyline. The results are distance and location values along with the feature identification 

value appended to the attribute table of the input feature class. The input features in this 

scenario are the parcel centroids for which nearest distances to the utility mains are 

computed and corresponding point of intersection coordinates and identification values of 

nearest utility are updated as attributes.  

 

Figure 4.3: Updated feature attributes after nearest point analysis 

 

Upon successful execution of the nearest point analysis tool, virtual in-memory service 

line objects are created for each parcel point feature using its geometry and coordinates of 

the nearest point on utility retrieved from the point‟s attributes. This is followed by 
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obtaining geometry of each parcel into a Python dictionary object in the form of key 

value pairs where the parcel object identification values serve as keys to the polygon 

geometry. This step leads to a similar process of acquiring geometries of features that 

make up the utility main. At this point of program execution, if the in-memory service 

line objects are converted into features in a feature class and visualized, it can be 

observed that laterals generated from the output of proximity analysis produce features 

that violate topology by crossing into adjacent polygons to connect to the closest main. 

This can be seen in Figure 4.4. 

 

Figure 4.4: Service laterals crossing into adjacent parcels 

 

This intermediate undesired output is avoided by storing service lines as objects in 

memory. An important observation made and utilized in addressing the crossing laterals 

situation is that a parcel polygon, the centroid feature representing it and the service line 
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connecting it to the nearest utility main, all share the same object identification values. 

The following step in the process involves looping through each service line and 

identifying those polygons through which lines pass but do not share the same 

identification values. For every such service line identified, the nearest utility found is 

discarded from the utility main geometries derived into a Python dictionary, and the 

distance from the corresponding parcel centroid is computed to every other utility 

geometry. The shortest of the distances is identified from which the required utility is 

obtained and the new point of intersection for the service line is computed which now 

conforms to the topological relationship. With the calculation of new closest points and 

their distances to the utility mains, the feature class with parcel centroids is updated with 

the new attributes. The service lateral features are now created by making use of the 

centroid geometry and the updated coordinate attributes for the points of intersection on 

utility main features. The pseudocode for service lateral generation procedure is 

illustrated in Figure 4.5. The code for the test case modeling is depicted in the Appendix.  
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Figure 4.5: Pseudocode for service lateral generation 

 

 

 

4.2.3 Results 

The feature classes created as part of the rule based topological modeling process 

represent a series of connected nodes and edges in a water distribution network. A visual 

inspection of the network suggests that the model generated although not identical to the 

reference model, has a similar network layout with the orientation of most service lines 

coincident with those in the reference model. Figure 4.6 illustrates the distribution 

network when feature classes are stacked upon one another.  
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Figure 4.6: Generated water network model 

 

 

Figure 4.7: Reference water network model 
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The degree of connectivity for each service connection junction on the utility 

main is three and that of network junctions within individual parcels is one in both the 

generated topological network and reference model. Utility main intersections have 

varying degrees of connectivity depending upon the number of mains that intersect at the 

given location. In both models, it can be observed that the connectivity degree varies 

between two and four.  

From the reference model in Figure 4.7, it can be observed that few parcels have 

more than one service line to the utility main such as the top rightmost block. The 

absence of this phenomenon in the generated model can be attributed to the lack of 

sufficient data. A comparison of generated and reference models to determine the 

variations in the number of service line connections to each distribution main results in 

the following graph illustrated in Figure 4.8. 

 

 

Figure 4.8: Service line connectivity to each utility main feature 
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From the graph, it can be observed that the maximum difference between service 

line allocations to a utility feature is three. The variation in distribution of service lines 

across the network for the generated model is more uniform, unlike that in the reference 

network where sudden rise in service connections is predominant. This dissimilarity can 

be attributed to the presence of multiple service connections to a parcel with a probable 

cause of high demand.  

With the availability of additional data and information pertaining to the 

organization of features such as locations of service endpoints within parcels and demand 

requirements, a more accurate data model can be generated by plugging into the code, 

modeling requirements specific to the required network.  

 

4.3 Generation based on engineering constraints 

The topological models described in Chapter 3 are based on the assumption of 

inaccessibility to information and hence depend upon random data generation techniques. 

The models being generic and with topology predominantly related to the spatial 

orientation of geometric features, it is sufficient to generate data that is geographically 

referenced without the need for any non-spatial information pertaining to infrastructure 

objects in the model. Although it is possible to produce a model conforming to a standard 

set of topological constraints which primarily govern the spatial relationships of features, 

the model cannot be considered optimal relative to an actual infrastructure model, 

without knowledge of the engineering properties relevant to the scenario for which it is 
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being generated. These attributes play a key role in defining an objective and form the 

basis for a constraint based topological model. 

The water distribution network model implements topological rules of proximity 

and adjacency between service laterals and land parcels but does not take into account the 

engineering properties of the network such as diameter, material, age of the pipes or even 

the types of soil around the study area. Figure 4.7 depicts attributes of pipes represented 

as line features.  

 

 

Figure 4.9: Engineering properties of pipes 

 

These non-spatial properties stored as attributes in the respective feature classes besides 

playing a key role in spatial analysis can have a significant impact on the topological 

organization of feature geometries by introducing constraints such as distribution mains 

represented as edges with different diameters or materials can only connect via junctions 

and fire hydrants can only connect to a hydrant lateral but not a service lateral. To ensure 

the flow of water between water mains and service laterals which are usually of different 

diameters requires a junction or reducer valve to maintain network connectivity and flow. 
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These constraints, also referred as network connectivity rules in the GIS domain, are not 

just limited to water distribution networks but can similarly be applied to other 

infrastructure models such as electrical lines, gas pipelines, telephone services and any 

network model that aids in the flow of resources.  

Water distribution networks are often designed with a primary objective of 

meeting demand from consumers. The huge amount of information involved in creating 

such a network can be categorized into three important groups - customer information, 

data pertaining to infrastructure elements and geographical information of customers and 

infrastructure. Demand is a constantly varying parameter depending upon the type of land 

use – residential, commercial or industrial. These consumer types and their geographic 

locations significantly impact the placement and types of water infrastructure elements 

specifically pipes, pumps and valves. From a topological perspective, valves are the 

junctions that connect and regulate flow between pipes. Common pipe characteristics 

such as diameter, material and length are dependent upon consumption, flow 

requirements, pressure levels, durability, cost and their respective function within the 

pipe network. Pipes that serve as distribution mains often run along streets and are larger 

conduits of flow than service laterals which move water from the mains to consumers. 

Due to fluctuations in water demand between adjacent customers, service laterals may be 

of different sizes. The network connectivity between distribution mains and service 

laterals can be characterized by a trunk topology. Figure 4.8 illustrates connectivity and 

diameters of a distribution main and service laterals. 



62 
 

 

Figure 4.10: Diameters of distribution main and service laterals 

 

 Generating a topological model that is in close resemblance to an actual water 

network topology on the ground not only requires meeting water demand but must also 

take into consideration other governing factors such as cost and reliability. The generated 

water network can be considered as a topology comprised of a number of smaller 

topological networks that are dependent upon properties of individual infrastructure 

elements. At locations with equal demand from multiple consumers, use of laterals with 

equal sizes and materials may be considered to lower costs which can subsequently alter 

network layout. With proper evaluation and configuration of properties of pipes and 

valves, a topological model can be generated that represents an actual water distribution 

network.   

Commercial GIS packages inherently handle connectivity relationships through 

rules which constrain the type of features that connect with one another or a number of 

features of one particular type that can be connected to a specific group of features of 
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another type. Two types of connectivity rules are implemented: edge – junction rules and 

edge – edge rules. An edge – junction rule dictates how an edge may connect to a 

junction, while an edge – edge rule establishes connectivity between two edges through 

junctions. Through the use of subtypes which are essentially a subset of features in a 

feature class that share similar attributes, connectivity rules can be applied between two 

feature classes or subtypes within the same edge feature class. In the water network 

example, ten inch and eight inch transmission mains represented as edges can be grouped 

into subtypes and connected via a subtype of reducer valves in the valves feature class. 

The geoprocessing framework does not support creating connectivity rules for 

utility networks programmatically. In order to implement these constraints in Python, 

requires development of custom functions capable of simulating connectivity and 

accessing feature attribute information to determine the changes in geometric association 

between. Using existing methods such as retrieving geometry and accessing specific 

attribute data provided by the geoprocessing framework, custom code can be developed 

to enforce restrictions such as pipeline features of one specific diameter can only connect 

to another pipe smaller in diameter through a junction. Programmatically, this can be 

achieved by first retrieving all features of the required diameter and iterating through 

each pipe, a buffer is generated and a geometry intersection operation is executed to 

determine adjacent geometries. The pipe diameter of adjacent features is retrieved and 

checked if the pipe diameter is less than that required. The condition once met, the 

feature is identified and a junction represented by a point feature is inserted into the 
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network. Similarly, multiple constraints can be addressed making use of the engineering 

properties which subsequently results in the creation of close to real topological model. 

 

4.4 Dynamic segmentation 

Dynamic segmentation is the process of calculating map locations of point or line 

events stored in a table relative to a line feature using a linear referencing measurement 

system and displaying them on a map. It is built on the concept of avoiding splitting of 

line features into segments based on attribute values. Multiple sets of attributes can be 

associated with any portion of the linear feature irrespective of where it begins or ends. 

From the description of dynamic segmentation, it is evident that the integrity of 

underlying topology remains unaffected. 

From a water distribution perspective, this process can be used to maintain 

attribute information describing characteristics of the pipeline segments such as quality, 

material and diameter without splitting the pipe network. Positions of service and hydrant 

laterals relative to a distribution main linear feature can be linearly referenced and their 

locations computed. Point event locations such as those of system valves and service 

laterals use only a single measure value to describe their location, whereas line events 

such as diameter and material of pipe make use of from- and to- measure values to 

describe the portion of the pipe they associate with. Dynamic segmentation plays a key 

role in large scale pipeline infrastructure systems to track operational conditions and 

hazard prone regions in the network.  
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Figure 4.11: Operating conditions of a road or pipe recorded over time [19] 

 

4.5 Summary 

 The objective of generating a topological model for a water distribution network 

using the principles and tools described in Chapter 3 is highlighted in this chapter. A 

reference model is selected to compare the output of the programmatically generated 

water network topology from land parcels and distribution mains. Service lines for each 

parcel from utility mains are generated to ensure water flow with the assumption that 

service junctions are located at the centroid of parcel polygons. Topological rules of 

proximity and adjacency ensure that service lines do not encroach into neighboring 

parcels and only connect to mains that are nearest. The topological violations which are 

intermediated results in the generation process are illustrated and the verification methods 

employed to rectify such situations are described.  

 The similarities between models and reasons for inconsistency in the number of 

service lines that connect to each main feature are described by using a graph. The 

availability of information such as demand values and location of service junctions within 

the parcel boundary are identified as factors that can result in the production of a more 

robust and accurate model. The following section describes the significance of 

engineering properties of network elements such as pipe diameters and lengths and 
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methods in which they can be programmed in the generation of a realistic model. The last 

section gives a brief overview of dynamic segmentation in the context of water networks.  
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CHAPTER 5 

CONCLUSION AND FUTURE RESEARCH 

 

5.1 Introduction 

The problem of modeling spatial associations between arbitrarily generated 

infrastructure entities under conditions of non-availability of location specific data, and 

subsequently generating network topologies that are representations of the spatial 

organization between infrastructure facilities is addressed. Randomly generated spatial 

data is used as a substitute for lack of location information pertaining to infrastructure 

elements. The spatial dependence between elements or flow of resources between entities 

enables modeling the system as a network of connected elements. The objective is to 

create a programming toolkit capable of generating topologies that represent the spatial 

organization of infrastructure facilities into a network of connected elements. The tools 

are required to be used in the generation of a water distribution network model that 

resembles an actual network from insufficient data.  

 

5.2 Assessment 

Three possible spatial layouts in which infrastructure elements represented as 

point features complying with certain topological rules have been generated via a 

programmatic approach. The tools developed are capable of generating topological 
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models in the form of star, trunk and mesh networks from spatially random data. The 

process of generating a topology from random spatial data to generate network elements 

and the effects of topological constraints on the layout are described. The programming 

methodology involved use of GIS concepts and custom geometric libraries. Applications 

of these network topologies in the real world have been illustrated. Individual tools can 

be combined to produce more complex and realistic networks in which all three layouts 

coexist. 

 The tools are applied to a test case in which a water distribution network is 

generated from minimal data such as parcels and locations of distribution mains with the 

objective to connect service junctions to mains to ensure network flow is maintained. 

Certain rules that represent physical conditions on the ground are enforced to avoid 

erroneous topological layout. The resultant model is compared to a reference model to 

check for similarities and differences between the two models. Variations in connectivity 

at nodes and reasons for dissimilarities are addressed. Additional data that are required in 

the form of engineering properties to produce a more accurate and realistic model is 

described. Depending on the requirements and knowledge of modeling scenarios, 

topological constraints that govern and represent actual connectivity rules between 

facilities can be enforced to generate more accurate and genuine representations of 

networks. 
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5.3 Conclusion 

 Following are the conclusions that can be derived from this work on topological 

modeling. 

 Infrastructure Topology Generator (ITG) is a toolkit comprising tools capable of 

generating realistic or probable topologies for infrastructure systems from 

random data in the absence of spatially complete datasets to model the geometric 

interactions and dependencies that exist between facilities. 

 Unlike existing methods of topology generation as described in chapter 2 which 

only provide a theoretical approach and depend upon the availability of data, the 

programmatic approach presents a practical methodology of growing generalized 

network topologies from random spatial data which can be tailored to specific 

topological requirements. 

 The implementation and programming of topological rules such as proximity and 

adjacency which impact the location of nodes relative to one another and 

connectivity through edges is elucidated. 

 Engineering properties of network elements and topological constraints specific 

to a modeling scenario can be embedded into the code to modify the spatial 

layout of generated networks. 

 GIS based commercial tools and custom spatial libraries provide a suitable 

framework for the creation, storage and visualization of individual and collective 

outputs of topological entities.  
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5.4 Future work 

The tools developed provide a foundation upon which advanced topological 

modeling capabilities can be implemented. In order to enhance the accuracy of results 

produced by the star and topology tools, the code can be modified to support additional 

topological rules that are characteristic of full scale GIS software applications. These 

supplementary features incorporated within the code enable modeling of complex spatial 

relationships between infrastructure elements. The tools can also be customized with the 

properties and functions specific to different types of infrastructure systems. This built in 

intelligence can prove to be of enormous assistance in generating topological models that 

are equivalent to actual infrastructure system networks from completely arbitrary or 

limited data. 

The advantage of developing the topology tools in Python which is an open 

source language provides the opportunity to integrate with the numerous custom libraries 

that are available. Topological modeling can be further enhanced by providing users with 

the ability to interact with the tools via a graphical interface. This presents users with the 

facility to feed data into the tools as information becomes accessible and in addition 

facilitates regulation of requirements that control the modeling output. The proposed 

developments significantly enhance the methods in which infrastructure systems are 

modeled as topological networks. 
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APPENDIX 

 INFRASTRUCTURE TOPOLOGY GENERATOR (ITG) CODE 

 

In order to use these scripts, Python (Python Software Foundation, 2009), Shapely and 

ArcGIS (Environmental Sciences Research Institute, 2009) are required. 

 

topoclasses.py – class module that generates random point coordinates 

# Import module 'random' 

import random 

 

# Class definition 

class randnodes: 

    # Constructor 

    def __init__(self): 

        pass 

 

    # Function to generate random nodes takes number of nodes required as argument     

    def getRandomCoords(self, numberofnodes): 

        self.noofnodesinlist = numberofnodes 

        nodes = range(self.noofnodesinlist) 
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        # Create an empty list to store random generated coordinates 

        self.coords = [] 

        for node in nodes: 

            # Get x and y coordinate values within the specified range 

            xcoord = random.randrange(0,200) 

            ycoord = random.randrange(0,200) 

            # Append generated coordinates to the list 

            self.coords.append(str(xcoord) + "," + str(ycoord)) 

        # Return the coordinates list through the calling object 

        return self.coords             

 

    # Test function to print generated coordinates             

    def prnt(self): 

        self.getRandomCoords() 

        print self.coords 

 

StarTopology.py – Python script to generate star topology 

# Import arcgisscripting, os, random and topoclasses modules 

import arcgisscripting, os, topoclasses, random 

# Create the geoprocessor object 

gp = arcgisscripting.create() 

# Set the workspace 
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gp.workspace = r"D:\Topology\gentopo.mdb" 

# Create feature class to store random generated points 

inFc = "star_nodes" 

# If feature class already exists in the geodatabase delete it 

if gp.Exists(inFc): 

    gp.Delete(inFc) 

 

try: 

    # Create feature class by using the workspace, name of the feature 

    # class and feature type 

    gp.CreateFeatureClass(gp.workspace, inFc, "Point") 

    # Get the insert cursor     

    insCur = gp.InsertCursor(inFc) 

    # Create a random object of class itg 

    rnd = itg() 

    # Get the coordinates generated into a list     

    rndcoords = rnd.getRandomCoords(20)  

    # Loop through each coordinate pair in the list     

    for coords in rndcoords: 

        # Create an arcgis point object 

        pntObj = gp.CreateObject("point") 

        # Set the point object's X and Y properties from the coordinate pair values 
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        pntObj.X = int(coords.split(',')[0]) 

        pntObj.Y = int(coords.split(',')[1]) 

         # Create a new feature 

        pfeat = insCur.NewRow() 

        # Set the shape of feature to the point geometry         

        pfeat.shape = pntObj    

# Insert the feature into the feature class         

        insCur.InsertRow(pfeat) 

except: 

    print gp.GetMessages(2)   

 

# Read feature class created from random points identify the geometry field 

desc = gp.Describe("star_nodes") 

shapefieldname = desc.ShapeFieldName 

# Create search cursor 

rows = gp.SearchCursor("star_nodes") 

row = rows.Next() 

# Create empty list to hold point feature coordinates 

pnts = [] 

# Enter while loop for each feature 

while row: 

    # Create the geometry object 'feat' 
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    feat = row.GetValue(shapefieldname) 

    pnt = feat.GetPart() 

     # Append point coordinates to the list 

    pnts.append([pnt.x,pnt.y]) 

    row = rows.Next() 

 

# Choose a random point for the hub of the network 

pointHub = random.choice(pnts) 

# Create a point object to store coordinates of the hub of the network 

strpnt = gp.CreateObject("point") 

strpnt.x, strpnt.y = pointHub[0], pointHub[1] 

# Remove the hub point from the list of points  

pnts.pop(pnts.index(pointHub)) 

# Create the output feature class that will store the edges connecting points to hub 

outfc = r"D:\Topology\gentopo.mdb\star_edges" 

# Check if output feature class already exists 

if gp.Exists(outfc): 

    gp.Delete(outfc) 

# Create the edge feature class 

try:   

    gp.CreateFeatureClass(os.path.dirname(outfc), os.path.basename(outfc), "Polyline") 

    cur = gp.InsertCursor(outfc) 
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    lineArray = gp.CreateObject("Array")   

    # Loop through points in the list and create an edge object  

    # between every point and the hub 

    for point in pnts: 

        lineArray = gp.CreateObject("Array") 

        lineArray.add(strpnt) 

        pnt = gp.CreateObject("point") 

        pnt.x, pnt.y = point[0], point[1] 

        lineArray.add(pnt) 

        feat = cur.NewRow() 

        feat.shape = lineArray 

        cur.InsertRow(feat) 

        lineArray.RemoveAll() 

except: 

    print gp.GetMessages(2) 

# Delete the cursors and geoprocessing object 

del rows, cur, insCur, gp 

 

TrunkTopology.py – Python script to generate trunk topology 

# Import the required modules 

import arcgisscripting, os, random, math, topoclasses 

# From Shapely module import LineString object 
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from shapely.geometry import LineString 

 

def readTestPoints(featclass): 

    ''' Read points from a point feature class into a list ''' 

     # Create geoprocessor object 

    gp = arcgisscripting.create() 

    desc = gp.Describe(featclass) 

    shape = desc.ShapeFieldName 

    # Get a search cursor to loop through features in the feature class 

    testpointsrows = gp.SearchCursor(featclass) 

    testpointrow = testpointsrows.Next() 

    # Create an empty list to hold point coordinates     

    testpntslist = [] 

    while testpointrow: 

        testpointfeat = testpointrow.GetValue(shape) 

        testpnt = testpointfeat.GetPart() 

        # Append point coordinates to the testpntslist 

        testpntslist.append([testpnt.x, testpnt.y]) 

        # Get the next row 

        testpointrow = testpointsrows.Next() 

    # delete the geoprocessor and search cursor 

    del gp, testpointsrows 
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    # return the list with point coordinates to the caller 

    return testpntslist 

 

def createFeatureClass(featclass, feattype): 

    ''' Generalized function to create a new feature class with parameters 

    feature class name and type ''' 

    # Create a geoprocessor object 

    gp = arcgisscripting.create() 

    # Delete if feature class already exists 

    if gp.Exists(featclass): 

        gp.Delete(featclass) 

    # Create a new empty feature class with function parameters     

    gp.CreateFeatureClass(os.path.dirname(featclass),os.path.basename(featclass), 

feattype) 

    # Create an insert cursor to add new features to the feature class 

    insertCursor = gp.InsertCursor(featclass) 

    # Return the cursor to the calling object 

    return insertCursor 

    # Delete the geoprocessor object     

    del gp 

 

 



79 
 

def createTrunkList(testpnts, noofpointsintrunk): 

    ''' Create a list of points chosen randomly that make up the trunk ''' 

    # Random selection of points from the points list 

    bool = True 

    while bool: 

        # Create an empty list         

        trunk = [] 

        for n in range(len(testpnts)): 

            # Get a random point 

            trunk_pnt = random.choice(testpnts) 

            print "Trunk Point: ", trunk_pnt 

            # Check to see if the random point already exists in the list             

            if trunk.count(trunk_pnt) == 0: 

                trunk.append(trunk_pnt) 

            # Break out of the loop when points in list match required  

# number of points in trunk 

            if len(trunk) == noofpointsintrunk: 

                break 

        # Check trunk for any feature intersections                     

        bool = checkTrunkValidity(trunk) 

        # If trunk intersects with itself loop back to get new set of points for the trunk         

        if bool is True: 
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            continue 

    # Return the trunk points as a list to the caller         

    return trunk 

     

def checkTrunkValidity(trunklist): 

    ''' Function that implements a check on trunk intersecting itself ''' 

    lines = [] 

    # Create line geometries with points in the trunk list and append to lines[]     

    for i in range(len(trunklist)-1): 

        line = LineString((trunklist[i], trunklist[i+1])) 

        lines.append(line) 

    for i in range(len(lines)-2): 

        for j in range(i+2, len(lines)): 

            print i, j 

            bool = lines[i].crosses(lines[j]) 

            print bool 

            if bool is True: 

                return bool       

             

def createTrunkFC(trunklist): 

    ''' Create a new feature class to hold the trunk main feature ''' 
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# Send the output feature class and its feature type as parameters to the 

#createFeatureClass function and get the insert cursor 

    trunk_inscur = createFeatureClass(r"D:\Topology\gentopo.mdb\trunk_main", 

"Polyline") 

    # Create the geoprocessor object     

    gp = arcgisscripting.create()   

    # Create an array object that will hold points that make up the line feature 

    trunkArray = gp.CreateObject("Array") 

    # Loop through points in the trunk list 

    for p in trunklist: 

        # Create a point object  

        pt = gp.CreateObject("point") 

        pt.x, pt.y = p[0], p[1] 

        # Add points to the array 

        trunkArray.add(pt) 

    # Create a new row in the line feature class 

    trunkmain_feature = trunk_inscur.NewRow()     

    # Set shape of the line feature to array created 

    trunkmain_feature.shape = trunkArray    

    # Insert the line 

    trunk_inscur.InsertRow(trunkmain_feature) 

    # Delete objects     
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    del gp, trunkArray, trunk_inscur 

 

def createFeaturesToTrunk(fpoint, tpoint, topocur): 

    ''' Join features participating in the trunk to other point features in the point fc ''' 

    # Create the geoprocessor object     

    gp = arcgisscripting.create()     

    # Create an array object 

    lineArray = gp.CreateObject("Array") 

    # Create point objects  

    fpnt = gp.CreateObject("point") 

    fpnt.x, fpnt.y = fpoint[0], fpoint[1] 

    tpnt = gp.CreateObject("point") 

    tpnt.x, tpnt.y = tpoint[0], tpoint[1] 

    # Add from and to points to the array 

    lineArray.add(fpnt) 

    lineArray.add(tpnt) 

    # Create a new row for line feature 

    feat = topocur.NewRow() 

    feat.shape = lineArray 

    # Insert the feature using the insert cursor     

    topocur.InsertRow(feat) 

    lineArray.RemoveAll() 
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    # Delete objects     

    del lineArray, gp, topocur 

 

if __name__ == "__main__": 

    # Create random object of the itg class 

    rnd = itg() 

    # Get random coordinates generated     

    rndcoords = rnd.getRandomCoords(20)     

    try: 

        # Create the geoprocessor object 

        gp = arcgisscripting.create() 

        # Create feature class and get the returned insert cursor         

        insCur = createFeatureClass(r"D:\Topology\gentopo.mdb\trunk_nodes", "Point") 

        # Loop through each of the randomly generated point coordinate values         

        for coords in rndcoords: 

            # Create an arcgis point object and set its X and Y coordinate attributes 

            pntObj = gp.CreateObject("point") 

            pntObj.X = int(coords.split(',')[0]) 

            pntObj.Y = int(coords.split(',')[1]) 

            # Create a new feature and set its geometry             

            pfeat = insCur.NewRow() 

            pfeat.shape = pntObj 
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            # Insert the feature             

            insCur.InsertRow(pfeat) 

        # Delete objects             

        del insCur, gp 

    except: 

        print "Error creating point objects from random coordinates" 

        print gp.GetMessages(2) 

 

    # Retreive the point geometries of features generated from random points into a list 

    pointslist = readTestPoints(r"D:\Topology\gentopo.mdb\trunk_nodes") 

    # Get the list of points participating in the trunk     

    trunklist = createTrunkList(pointslist, 7) 

    # Loop through each of the trunk points and remove it from the total points list     

    for tstpnt in trunklist: 

        pointslist.remove(tstpnt) 

 

    # Create trunk feature class by passing the trunk points list to function createTrunkFC 

    createTrunkFC(trunklist) 

    # Create the output feature class to contain edges generated and get the insert cursor     

    topocur = createFeatureClass(r"D:\Topology\gentopo.mdb\trunk_topo", "Polyline") 

    # Create an empty list to hold distance values     

    distances = [] 
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    # Loop through points list excluding trunk points     

    for point in pointslist: 

        # For every point in trunk 

        for trpoint in trunklist: 

            # Calculate distance 

            dist = math.sqrt(pow(point[0]-trpoint[0],2) + pow(point[1]-trpoint[1],2)) 

            # Append the distance values to distances list 

            distances.append(dist) 

        # Determine least distance             

        mindist = min(distances) 

        # Determine the trunk point that is nearest         

        seltrnkpnt = trunklist[distances.index(mindist)] 

        # Send the point, nearest trunk point and insert cursor to 

        # the createFeaturesToTrunk function to create edge features 

        createFeaturesToTrunk(point, seltrnkpnt, topocur) 

        # Empty the distances list         

        distances = [] 
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MeshTopology.py – Python script to generate mesh topology 

 

import win32com.client, topoclasses, os, arcgisscripting 

 

def createFeatureClass(featclass, feattype): 

    ''' Generalized function to create a new feature class with parameters 

    feature class name and type ''' 

    # Create a geoprocessor object 

    gp = arcgisscripting.create()     

    # Delete if feature class already exists 

    if gp.Exists(featclass): 

        gp.Delete(featclass)     

    # Create a new empty feature class with function parameters     

    gp.CreateFeatureClass(os.path.dirname(featclass), os.path.basename(featclass), 

feattype) 

     # Create an insert cursor to add new features to the feature class 

    insertCursor = gp.InsertCursor(featclass)     

    # Return the cursor to the calling object 

    return insertCursor 

    # Delete the geoprocessor object     

    del gp 
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def readTestPoints(featclass): 

    ''' Read points from a point feature class into a list '''     

    # Create geoprocessor object 

    gp = arcgisscripting.create() 

    desc = gp.Describe(featclass) 

    shape = desc.ShapeFieldName 

    # Get a search cursor to loop through features in the feature class 

    testpointsrows = gp.SearchCursor(featclass) 

    testpointrow = testpointsrows.Next() 

    # Create an empty list to hold point coordinates     

    testpntslist = [] 

    while testpointrow: 

        testpointfeat = testpointrow.GetValue(shape) 

        testpnt = testpointfeat.GetPart() 

        # Append point coordinates to the testpntslist 

        testpntslist.append([testpnt.x, testpnt.y]) 

        # Get the next row 

        testpointrow = testpointsrows.Next() 

    # delete the geoprocessor and search cursor 

    del gp, testpointsrows 

    # return the list with point coordinates to the caller 

    return testpntslist                       
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def main(): 

    rnd = randnodes() 

    rndcoords = rnd.getRandomCoords(5) 

    try: 

        # Create the geoprocessor object 

        gp = arcgisscripting.create() 

        gp.overwriteoutput = 1 

        # Create feature class and get the returned insert cursor         

        insCur = createFeatureClass(r"D:\Topology\gentopo.mdb\mesh_nodes", "Point") 

        # Loop through each of the randomly generated point coordinate values         

        for coords in rndcoords: 

            # Create an arcgis point object and set its X and Y coordinate attributes 

            pntObj = gp.CreateObject("point") 

            pntObj.X = int(coords.split(',')[0]) 

            pntObj.Y = int(coords.split(',')[1]) 

            # Create a new feature and set its geometry             

            pfeat = insCur.NewRow() 

            pfeat.shape = pntObj 

            # Insert the feature             

            insCur.InsertRow(pfeat) 

        # Delete objects             

        del insCur 
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    except: 

        print "Error creating point objects from random coordinates" 

         

    #Retrieve created random point geometries into a list 

    pointslist = readTestPoints(r"D:\Topology\gentopo.mdb\mesh_nodes") 

 

    # Get an insert cursor for creating edges in a polyline feature class     

    edgeInsertCur = createFeatureClass(r"D:\ Topology\gentopo.mdb\mesh_edges", 

"Polyline")       

    # Create an edge for every node in the list to other nodes         

    for i in range(len(pointslist)): 

        for j in range(i+1,len(pointslist)): 

            linArray = gp.CreateObject("Array") 

            pnt1 = gp.CreateObject("point") 

            pnt1.x, pnt1.y = pointslist[i][0], pointslist[i][1] 

            linArray.add(pnt1) 

            pnt2 = gp.CreateObject("point") 

            pnt2.x, pnt2.y = pointslist[j][0], pointslist[j][1] 

            linArray.add(pnt2) 

            feat = edgeInsertCur.NewRow() 

            feat.shape = linArray 

            edgeInsertCur.InsertRow(feat) 
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            linArray.RemoveAll() 

    del gp, edgeInsertCur      

 

if __name__ == "__main__": 

    main() 

 

testcase.py – Python script for water distribution network modeling 

 

# Import all the required modules 

import os, arcgisscripting 

from shapely.geometry import LineString 

from shapely.geometry import asPolygon 

from shapely.geometry import asLineString 

from operator import itemgetter 

from shapely.geometry import Point 

 

# Function definition for getParcelGeometry() 

def getParcelGeometry(): 

    # Create arcgisscripting module 

    gp = arcgisscripting.create() 

    # Read the parcels feature class     

    fc = r"D:\Topology\Landbase1.mdb\Export_Parcels" 



91 
 

    desc = gp.Describe(fc) 

    shpfieldname = desc.ShapeFieldName 

    # Get the search cursor     

    rows = gp.SearchCursor(fc) 

    row = rows.Next() 

    # Create an empty dictionary for pacels     

    parcels = {}   

# Loop through each feature     

    while row: 

        # Create an empty coordinates lsit 

        coords = [] 

        pfeature = row.shape 

        partnum = 0 

        partcount = pfeature.PartCount 

        # If the parcel polygon is made up of multiple parts, get geometry for each part 

        while partnum < partcount: 

            part = pfeature.GetPart(partnum) 

            pnt = part.Next() 

            while pnt: 

                # Append points of the part to the coords list 

                coords.append([pnt.X, pnt.Y]) 

                pnt = part.Next() 
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            # Move to the next part 

            partnum += 1 

        # Create a shapely polygon object 

        pa = asPolygon(coords) 

        # Use the object id of the parcel polygon as key 

        # to reference the shapely polygon geometry 

        parcels[row.GetValue(desc.OIDFieldName)] = pa 

        # Move to the next feature         

        row = rows.Next()    

 # Delete objects and return parcels to function caller         

    del row, rows, pfeature, gp 

    return parcels 

 

# Function definition for createLineGeometry() 

def createLineGeometry(): 

    # Create the geoprocessor object 

    gp = arcgisscripting.create() 

    # Absolute path of the location and name of centroids feature class     

    fc = r"D:\Topology\Landbase1.mdb\parcelsCentroids" 

    desc = gp.Describe(fc) 

    shpfieldname = desc.ShapeFieldName 

    # Get the search cursor on the feature class     
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    rows = gp.SearchCursor(fc) 

    # Move to the first feature     

    row = rows.Next() 

    # Create empty dictionary to store line geometries     

    lines = {} 

    # Loop through each feature in the feature class     

    while row: 

        feat = row.GetValue(shpfieldname) 

        pnt = feat.GetPart() 

        # Create a Shapely LineString object from the centroid coordinate 

        # and the x and y coordinate values of the nearest point 

        line = LineString(((pnt.X, pnt.Y), (row.GetValue("NEAR_X"), 

row.GetValue("NEAR_Y")))) 

        # Use the object id of the parcel centroid to reference 

        # the service line geometry created from the points 

        lines[row.GetValue(desc.OIDFieldName)] = line 

        # Move to next feature         

        row = rows.Next() 

    # Delete cursor, feature and geoprocessor objects 

    del rows, row, feat, gp 

    # Return the lines dictionary     

    return lines 
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# Function definition for readTrunkUtilityGeometry 

def readTrunkUtilityGeometry(): 

    # Function that retrieves utility main geometry 

    gp = arcgisscripting.create() 

    fc = r"D:\Topology\Landbase1.mdb\Export_Distribmains" 

    desc = gp.Describe(fc) 

    shpfieldname = desc.ShapeFieldName     

    # Get search cursor 

    rows = gp.SearchCursor(fc) 

    row = rows.Next() 

    # Create empty dictionary object to store trunk geometry     

    trunk = {} 

 

    # Loop through each feature     

    while row: 

        coords = [] 

        lfeat = row.GetValue(shpfieldname) 

        partnum = 0 

        partcount = lfeat.PartCount 

        while partnum < partcount: 

            part = lfeat.GetPart(partnum) 

            pnt = part.Next() 
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            while pnt: 

                coords.append([pnt.X, pnt.Y]) 

                pnt = part.Next() 

            partnum += 1 

        # Create a Shapely line object using utility feature coordinates 

        li = asLineString(coords) 

        trunk[row.GetValue(desc.OIDFieldName)] = li 

        row = rows.Next()         

    del row, rows, lfeat, gp 

    return trunk 

 

# Function definiton for getNear_Fid 

# Function to get the object id of the nearest utility main feature 

def getNear_Fid(k): 

    gp = arcgisscripting.create() 

    # The centroids feature class     

    fc = r"D:\Topology\Landbase1.mdb\parcelsCentroids" 

    desc = gp.Describe(fc) 

    shpfieldname = desc.ShapeFieldName 

    # Create a search cursor on the feature class     

    rows = gp.SearchCursor(fc) 

    row = rows.Next() 
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    lines = {} 

    # Loop through centroid features 

    while row: 

        # If objectid equals function argument k break the loop 

        if row.GetValue(desc.OIDFieldName) == k: 

            return row.GetValue("NEAR_FID") 

            break 

        row = rows.Next() 

    # Delete objects 

    del rows, row, feat, gp 

 

# Function definition for calculating point where 

# service line intersects the utility main 

def calculatePOI(k, pnt, street): 

    cx = list(pnt.coords)[0][0] 

    cy = list(pnt.coords)[0][1] 

    ax = list(street.coords)[0][0] 

    ay = list(street.coords)[0][1] 

    bx = list(street.coords)[len(list(street.coords))-1][0] 

    by = list(street.coords)[len(list(street.coords))-1][1] 

    r_numerator = (cx-ax)*(bx-ax) + (cy-ay)*(by-ay) 

    r_denominator = (bx-ax)*(bx-ax) + (by-ay)*(by-ay) 
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    r = r_numerator / r_denominator 

    px = ax + r*(bx-ax); 

    py = ay + r*(by-ay); 

    p = [px,py] 

    # Return the point 

    return p 

 

# Function definition for updating centroids feature class 

# with new intersection coordinates 

def updateFCCentroids(pois): 

    # Create the arcgisscripting object 

    gp = arcgisscripting.create() 

    fc = r"D:\Topology\Landbase1.mdb\parcelsCentroids" 

    desc = gp.Describe(fc) 

    shpfieldname = desc.ShapeFieldName 

    # Get the geoprocessor object 

    rows = gp.UpdateCursor(fc) 

    row = rows.Next()     

   # Loop through features and update new near coordinates 

    while row: 

        for a, b in pois.iteritems(): 

            if (row.GetValue(desc.OIDFieldName) == a): 
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                row.near_x = b[0] 

                row.near_y = b[1] 

                rows.UpdateRow(row) 

        row = rows.Next() 

    # Delete objects     

    del rows, row, gp         

 

# Function definition for creating service laterals 

def createLaterals(fcCentroids): 

    # Create the geoprocessor object 

    gp = arcgisscripting.create() 

    desc = gp.Describe(fcCentroids) 

    shapefieldname = desc.ShapeFieldName 

    # Output feature class     

    outSub = r"D:\Topology\Landbase1.mdb\parcelsLaterals" 

    # If feature class already exists delete it     

    if gp.Exists(outSub): 

        gp.Delete(outSub) 

 # Create the feature class using workspace, name and feature type parameters 

    gp.CreateFeatureClass(os.path.dirname(outSub), os.path.basename(outSub), 

"Polyline") 

    # Get the insert cursor     
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    insCur = gp.InsertCursor(outSub)    

    # Get the search cursor on the parcel centroids feature class     

    featCurCentroids = gp.SearchCursor(fcCentroids) 

    featCentroid = featCurCentroids.Next() 

    # Loop through the centroid features 

    while featCentroid: 

        # Create a array object 

        lineArray = gp.CreateObject("Array") 

        pntfeat = featCentroid.GetValue(shapefieldname) 

        parcelpnt = pntfeat.GetPart() 

        # Add centroid geometry to the array 

        lineArray.add(parcelpnt) 

 

        # Create a new point object and set its geometry 

        # from the centroids attribute values NEAR_X and NEAR_Y 

        pnt = gp.CreateObject("point") 

        pnt.x = featCentroid.GetValue("NEAR_X") 

        pnt.y = featCentroid.GetValue("NEAR_Y") 

        # Add the point to array         

        lineArray.add(pnt) 

        # Create a new line feature and set its geometry 

        # Insert the feature in the feature class 



100 
 

        linefeat = insCur.NewRow() 

        linefeat.shape = lineArray 

        insCur.InsertRow(linefeat) 

        lineArray.RemoveAll() 

        # Move to next centroid feature         

        featCentroid = featCurCentroids.Next() 

    # Delete objects 

    del insCur, featCentroid, featCurCentroids, gp       

 

# Function definition to retrieve centroid geometries 

def getCentroids(featclass): 

    gp = arcgisscripting.create() 

    rows = gp.SearchCursor(featclass) 

    rows.Reset() 

    row = rows.Next() 

    centroids = [] 

    while row: 

        # Use the feature's centroid property to get the value 

        feat = row.shape 

        # append the geometry to list         

        centroids.append(feat.Centroid) 

        row = rows.Next() 
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    # Delete objects and return the list     

    del gp, rows, row 

    return centroids 

 

# Function definition for creating a feature class with centroids 

def createCentroidsFc(centroids): 

    gp = arcgisscripting.create() 

    outfc = r"D:\Topology\Landbase1.mdb\parcelsCentroids" 

    if gp.Exists(outfc): 

        gp.Delete(outfc) 

    gp.CreateFeatureClass(os.path.dirname(outfc), os.path.basename(outfc), "Point") 

    insCur = gp.InsertCursor(outfc) 

    for cnt in centroids: 

        pnt = gp.CreateObject("point") 

        pnt.x = cnt.split()[0] 

        pnt.y = cnt.split()[1] 

        pntfeat = insCur.NewRow() 

        pntfeat.shape = pnt 

        insCur.InsertRow(pntfeat) 

 

    del gp, insCur, pnt 

    return outfc 
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if __name__ == "__main__": 

    # Set the parcels and main feature classes     

    fc = r"D:\Topology\Landbase1.mdb\Parcels" 

    fcUtility = r"D:\Topology\Landbase1.mdb\Distribmains" 

    # Get centroids in a list 

    lstCentroids = getCentroids(fc) 

    # Create a feature class of centroid features by passing the list as parameter 

    fcCentroids = createCentroidsFc(lstCentroids) 

    # Proximity analysis tool near 

    try: 

        gp = arcgisscripting.create() 

        gp.near(fcCentroids, fcUtility,"","LOCATION","") 

        del gp 

    except: 

        print gp.GetMessages() 

 

    #  Get the service line geometries        

    lines = createLineGeometry() 

    # Get geometry of parcels in a list 

    polygons = getParcelGeometry()   

    # Get the geometry of line features of trunk 

    utility_main = readTrunkUtilityGeometry() 
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    # Backup the utility main geometry list     

    utility_main_bkp = utility_main.copy()     

    # Create an empty dictionary to hold service line junction points on the trunk 

    pois = {} 

 

    # For every service line     

    for k, v in lines.iteritems(): 

        # For every parcel         

        for i, j in polygons.iteritems(): 

            # If service line crosses parcel and their object ids do not match             

            if v.crosses(j) and k != i: 

                # Get the object id of the utility main the service line presently connects                 

                utilityToDiscard = getNear_Fid(k) 

                # Get the parcel point                 

                pnt = Point(list(lines[k].coords)[0]) 

                # Delete the utility from list                 

                del utility_main[utilityToDiscard] 

                # Empty dictionary of distances                 

                dictDist = {} 
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                # For every feature in the utility main feature class                 

                for s, t in utility_main.iteritems(): 

                    # Get distance from centroid and include in the dictionary 

                    dist = pnt.distance(t) 

                    dictDist[s] = dist 

                # Sort the dictionary and get the nearest utility                 

                listDict = sorted(dictDist.items(), key=itemgetter(1)) 

                shortestDistanceUtility = listDict[0][0] 

                # Calculate the point where service line intersects by calling the 

                # calculatePOI function and store it in a dictionary 

                poi = calculatePOI(k, pnt, utility_main[shortestDistanceUtility]) 

                pois[k] = poi 

                utility_main = utility_main_bkp.copy()               

    # Update the centroid features with new values  

    updateFCCentroids(pois) 

    # Create the output feature class with service laterals     

    createLaterals(r"D:\Topology\Landbase1.mdb\parcelsCentroids") 
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