

GIS Based Topological Modeling for Infrastructure Systems

A thesis submitted in partial fulfillment of the requirements for the degree of Master of

Science at George Mason University

By

Sriharsha Vankadara

Bachelor of Engineering

Birla Institute of Technology and Science, 2005

Director: Michael J. Casey, Assistant Professor

Department of Civil, Environmental and Infrastructure Engineering

Spring Semester 2010

George Mason University

Fairfax, VA

ii

Copyright 2010 Sriharsha Vankadara

All Rights Reserved

iii

DEDICATION

This thesis would be incomplete without a mention of the support given by my parents,

Mr. Sreedhar and Mrs. Rama Devi and my brother, Mr. Sriram.

iv

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Dr. Michael Casey, my advisor for his

constant support and guidance that made my stay at Mason memorable. I would like to

thank my committee members Dr. Houck and Dr. Venigalla for their time. I would also

like to thank my family and friends who were there in times of need.

v

TABLE OF CONTENTS

 Page

List of Figures…………………………………………………………………………..viii

Abstract…………………………………………………………………………………..x

1. Introduction ...…1

1.1 Background ..1

1.2 Problem ..3

1.3 Objectives ..4

1.4 Approach ..4

2. Preliminary Study ...7

2.1 Infrastructure models ...7

2.2 Topology generation ..9

2.3 Geographic Information System tools ...12

2.4 GIS based modeling softwares...14

2.4.1 TransCAD ..14

2.4.2 MIKE SWMM ...15

3. Description Of Topological Modeling Tools ..16

3.1 Overview ..16

3.2 GIS features ...16

3.2.1 Feature class ...17

3.2.2 Geoprocessing ..17

3.3 Python ..18

3.3.1 Shapely ...18

3.4 Infrastructure Topology Generator ..19

3.5 Star topology tool ...21

vi

3.5.1 Tool description ...22

3.5.2 Example ...27

3.6 Trunk topology tool ...28

3.6.1 Tool description ...31

3.6.2 Example ...38

 3.7 Mesh topology tool ..41

 3.7.1 Tool description ...42

 3.7.2 Example ..45

3.7 Discussion ..47

3.8 Summary ..47

4. Modeling a water distribution network ...49

4.1 Overview ..49

4.1.1 Reference data ..49

4.1.2 Purpose ...51

4.2 Network generation ..51

4.2.1 Topological rules ..52

4.2.2 The process ...53

4.2.3 Results ...56

4.3 Generation based on engineering constraints ... 59

4.4 Dynamic segmentation...64

4.5 Summary ..65

5. Conclusion and future research ...67

5.1 Introduction ..67

5.2 Assessment ...67

5.3 Conclusion ...69

5.4 Future work ..70

vii

Appendix: Infrastructure Topology Generator (ITG) Code ..71

References ...105

viii

LIST OF FIGURES

Figure Page

1. Figure 2.1: Route factors and total edge lengths...10

2. Figure 2.1: Hydrologic modeling of a watershed ...……13

3. Figure 3.1: Data transformation in geoprocessing ..17

4. Figure 3.2: Script execution sequence for star topology...22

5. Figure 3.3: Pseudocode for random node generation ...23

6. Figure 3.4: Pseudocode detailing feature class generation from random points25

7. Figure 3.5: Star topology ..26

8. Figure 3.6: Random and scale-free networks ...28

8. Figure 3.7: Script execution sequence for trunk topology ..30

9. Figure 3.8: Random point selection for trunk ...34

10. Figure 3.9: Checking trunk for self-intersection ...34

11. Figure 3.10: Trunk generated from random point features35

12. Figure 3.11: Determination of nearest trunk node ..36

13. Figure 3.12: Creating edge features to trunk points ..37

14. Figure 3.13: Trunk topology with point features connected to trunk38

15. Figure 3.14: Water network depicting distribution mains and service laterals39

16. Figure 3.15: Process workflow for mesh topology generation42

17. Figure 3.16: Mesh node feature generation ..43

18. Figure 3.17: Mesh edge feature generation...44

19. Figure 3.18: Mesh topology ..45

20. Figure 4.1: Reference water distribution network ..50

21. Figure 4.2: Violation of topological rule ..52

22. Figure 4.3: Updated feature attributes after nearest point analysis53

ix

23. Figure 4.4: Service laterals crossing into adjacent parcels54

24. Figure 4.5: Pseudocode for service lateral generation ..56

25. Figure 4.6: Generated network model ..57

26. Figure 4.7: Reference water network model ...57

27. Figure 4.8: Service line connectivity to each utility main feature58

28. Figure 4.9: Engineering properties of pipes ..60

29. Figure 4.10: Diameters of distribution main and service laterals62

30. Figure 4.11: Operating conditions of a road or pipe recorded over time65

ABSTRACT

GIS BASED TOPOLOGICAL MODELING FOR INFRASTRUCTURE SYSTEMS

Sriharsha Vankadara, M.S.

George Mason University, 2010

Thesis Director: Dr. Michael J. Casey

Today‟s society greatly depends on the operations of complex infrastructure

networks such as transportation, utilities and telecommunication. While traditional

modeling tools have provided an insight into the theoretical behavior of infrastructure

networks, they lacked the ability to elucidate the spatial organization between multiple

networks. Accurate modeling of infrastructure systems depends on integration of

dependencies, spatial reliance and properties of each system. The purpose of this research

is to develop a toolkit to model the spatial relationships between randomly generated

infrastructure facilities using a Geographical Information Systems (GIS) based

topological approach.

Topology describes the geometric associations between infrastructure elements

represented as point, line and polygon features. The objective is to generate realistic

topological networks in the absence of spatially complete datasets that represent

infrastructure networks. The toolkit is developed in Python making use of custom GIS

libraries and comprises random topology generators for star, trunk and mesh shaped

networks. The efficiency of the tools is tested by their ability to generate a water

distribution topology from minimal spatial data to compare the created network with that

of a reference distribution network.

1

CHAPTER 1

INTRODUCTION

1.1 Background

Infrastructure generally refers to the underlying framework or features that form

the basis of a system or organization. From a civil engineering point of view,

infrastructure systems are physical facilities and services that are necessary for a society

or economy to function. These facilities typically include buildings, roads, sewers, dams,

telecommunications and other physical structures that are essential to the existence and

development of a society.

A large number of infrastructure works have their functions dependent upon the

existence and operations of other systems. For example, roads provide the accessibility

required for the transportation of raw materials to factories as well as distribution of

finished goods to markets. Besides functional dependency, there is also a spatial reliance

between disparate infrastructure systems. The dependencies among facilities can be

characterized as logical relationships or physical entities on the ground, capable of

transporting resources between elements of an infrastructure system. Accurate modeling

of infrastructure systems depends on integration of dependency, spatial reliance, and

engineering properties of each system. This task is extraordinarily difficult in practice

and consequently results in models that are inaccurate, incomplete, or unrealistic.

2

Methods are needed to provide a flexible and accurate means of modeling infrastructure,

specifically geospatial distribution and dependency.

This thesis focuses on modeling the spatial relationships between these systems

using a Geographic Information Systems (GIS) based approach. GIS is widely used for

spatial modeling as it provides powerful tools for data management, visualization,

presentation and analysis. In a GIS based approach, individual elements of a large

network of infrastructure system are represented as features with spatial attributes defined

in co-ordinate pairs. These elements can be discrete, taking shapes of points (nodes)

linked together to form discrete line features (arcs), or to form closed boundaries

enclosing an area (polygon). A spatial relationship is one that describes the association

between shapes or locations of features.

 A topological model best reflects the geography of the real world, by providing a

mathematical approach to describe the spatial relationships between geographic data

types based on the principles of order, connectivity and adjacency. It helps maintain data

integrity and quality by enforcing rules that model ways in which points, lines and

polygons share geometry. The objective is to generate a topology consistent with a

defined set of rules to model the spatial interactions between similar and dissimilar

facilities represented as standard geographical features. Facilities that are geometrically

polygonal in a geographic context are assumed to be point features in the topological

models. Three distinct models are implemented as part of the work. A random feature

chosen to symbolize the hub of a network is used to generate a star topology. A second

model illustrating a trunk topology with nodes connecting to a main edge feature is

3

described. The third topological network represents nodes and edges organized into a

mesh structure.

1.2 Problem

A thorough understanding of spatial relationships between elements of

infrastructure can be of great assistance in crucial tasks such as planning, design,

operation and maintenance of individual facilities and the system as a whole. Modeling

these relationships, helps gaining better insight into methods in which entities behave and

perform relative to each other in a geospatial context, thus providing an opportunity to

generate near to accurate models that represent actual infrastructure networks on ground.

The foundation of any research problem is data. No amount or depth of data

analysis can substitute for the lack of sufficient data. Of utmost importance is data

acquisition, upon which subsequent modeling and analysis techniques depend which

alternatively governs the accuracy and reliability of results. However, data is not always

available. This essentially depends on the type of data being sought such as sensitive

information pertaining to critical infrastructure. In such situations, random data can be

substituted to simulate actual conditions. This thesis addresses the problem of modeling

spatial associations between arbitrarily generated infrastructure entities and generating

network topologies which under certain given circumstances can be comparable and used

alternatively in place of real network models representing actual infrastructure systems.

4

1.3 Objectives

The objective of the research is twofold. The primary objective is the

development of a toolkit comprising of tools to model spatial associations between

infrastructure facilities by generating topological models from spatially random data

using GIS principles and components. The tools are to be built with the ability to generate

nodes representing entities and edges connecting the nodes symbolizing connectivity

between facilities.

The second objective is to apply the programming techniques implemented in the

tools to generate topology for a water distribution network comprising of distribution

mains, service lines and land parcels from inadequate data such as the lack of location

information pertaining to service laterals and by imposing connectivity restrictions

between elements of the network. The resulting model is to be compared with a reference

water distribution network available for the same geographic location and one that

corresponds to an actual network implemented on ground to assess the reliability and

accuracy of the programmatically generated topology.

1.4 Approach

A programmatic approach has been employed to demonstrate spatial interaction

between features by generating topologies modeled in the form of star, trunk and mesh

networks. A toolkit comprising three distinct tools one for each of the networks is

developed using a popular and widely adopted scripting language. The tools rely on

spatially random data as input, from which nodes representing physical or virtual

5

infrastructure sources producing or consuming resources, and edges representing conduits

for resource flow are generated as geographic features.

The first tool simulates situation in which facilities represented as nodes or point

features connect to a hub or central facility. The second generator tool models how

facilities associate themselves to a trunk or main line running through them. The tool

ensures that certain topological rules pertaining to non-intersection of relations

represented by edges and distance constraints are met in the process. The last tool ensures

that connectivity exists between a node and all other nodes in the network.

The methodology implemented in creating the trunk topology generation tool is

used to program another script tool specifically for modeling a water distribution

network. The tool makes use of land parcel data as input to generate a network model

conforming to topological rules with parcels represented as nodes and water distribution

utilities symbolized as edge features. The model thus generated is compared with a

reference model of the distribution system to understand the effects of connectivity

restraints on topologies and test for accuracy, similarities and feasibility between the

models.

 The modified trunk topology tool was applied over land parcel and utility main

data, to generate service laterals that connect the distribution mains to service endpoints

within parcel boundaries by implementing rules that prevent laterals from crossing over

into adjacent parcels. For real estate that exists along street corners and has two

boundaries available for placement of service laterals, another rule was implemented to

determine the nearest distribution main to which the respective lateral would connect.

6

The results expected were feature containers of nodes and links which together

along with the input data constitute a topological model compliant with proximity and

adjacency rules that were imposed programmatically and bears close resemblance to the

model chosen as reference. The model as a whole is compared to the reference to check

for organization of the layout, similarities between arrangement of service laterals and

accuracy.

7

CHAPTER 2

PRELIMINARY STUDY

Infrastructure modeling is widely researched to understand the behavior and

performance of individual facilities as well as interdependent systems under certain

modeling conditions specific to a study. The following section gives an overview of a

modeling technique to study the impact of one infrastructure facility on dependent

infrastructure. The next section describes methods and approaches for topology

generation followed by GIS tools that are available and often used in infrastructure

modeling. Modeling softwares that implement GIS technology for transportation and

hydrological applications are presented in the final section.

2.1 Infrastructure models

Critical infrastructure is one of the most researched topics in the field of

infrastructure modeling. The ramifications that critical infrastructure failure can have on

the societal and economic conditions of a nation make it a commonly modeled problem.

Critical infrastructure as defined by the U.S. Patriot Act comprises

“systems and assets, whether physical or virtual, so vital to the United States that

the incapacity or destruction of such systems and assets would have a debilitating

8

impact on security, national economic security, national public health or safety, or

any combination of those matters” [1].

Innovative modeling approaches are necessary to identify and understand

vulnerabilities within individual infrastructure components, failure of which may have a

devastating effect on connected infrastructures. The research under review identifies that

the problem in modeling cross-infrastructure effects depends on integration and behavior

of individual critical infrastructure elements.

Tolone et. al. [2] adopted an approach that involves utilizing an intelligent agent-

based methodology that develops integration awareness external to the infrastructure

components. Agent-based integration uses knowledge of the context represented in the

form of facts and rules that govern integration between individual infrastructures. A

software agent is an autonomous program, or program component, that is situated within,

aware of, and acts upon its environment in pursuit of its own objectives so as to affect its

future environment. The modeling and simulation environment is designed in ways that

allow the end user to execute simulations within a GIS context. Simulations are initiated

by disabling infrastructure features and consequently viewing the impacts on connected

elements through GIS visualization. The inter-infrastructure simulations are managed by

collection of software agents which observe changes within infrastructure using

knowledge of interdependencies, communicate with one another and based upon mutual

interpretation affect changes across the concerned infrastructures. The agents are capable

of affecting two types of state changes. First, having observed a state change in

infrastructure, agents are capable of discerning impacts using knowledge available and

9

consequently affect changes in state within and across infrastructures. Second, agents can

utilize GIS network analysis to reason and affect state changes.

The results of the simulation are renderings of subsequent state changes across

infrastructures due to impacts caused by disabling certain features within an

infrastructure. The results are graphical solutions viewed in a GIS display.

2.2 Topology generation

 Infrastructure facilities represented as networks provide a useful framework for

the representation and modeling of many physical, biological and social systems. Gastner

and Newman in their study of spatial networks focused on the effects that geography has

on the efficiency of networks [3]. The networks chosen by the authors for study were

specifically distributed such as gas pipelines, sewage systems, and rail or air routes. The

authors assumed that these networks have a root node that acts as a source or sink of the

commodity distributed, for example, a sewage treatment plant [3].

The distribution networks were considered to have two properties that impact

efficiency. The first required the path between a vertex and the root to be relatively short.

This meant that the sum of lengths of the edges along the shortest route between the

vertex and root is not much greater than the Euclidean distance between the same two

vertices. The second property required that the total length of all edges in the network is

less so that the network is economical to build. To evaluate the efficiency of networks in

terms of path lengths and total length of edges, two topological models that are each

optimal respective to one of these criteria are used to compare the measurements. A star

10

model is representative of the shortest path to root node with every vertex connecting to

the root by a straight edge. On the other hand, a minimum spanning tree (MST) is the

optimal network representing a case of minimum total edge length. The comparison with

star graph is achieved by computing the network‟s route factor which is the mean ratio of

distance from a vertex to the root and the Euclidean straight line distance between the

vertices computed over all non-root vertices. The route factor is given by the equation:

 n

q = 1 / n * (∑ li0 / d i0) (1)

 i=1

where li0 is the distance between a vertex and root and di0 is the straight line distance. The

star network is optimal for having the lowest possible router factor of 1.

 number of
vertices

route factor edge length (km)

network actual MST star actual MST star

sewer
system 23922 1.59 2.93 1.00 498 421 102998

gas (WA) 226 1.13 1.82 1.00 5578 4374 245034

gas (IL) 490 1.48 2.42 1.00 6547 4009 59595

rail 126 1.14 1.61 1.00 559 499 3272

Figure 2.1: Route factors and total edge lengths [3]

 The route factors for four networks under study along with their calculated total

edge lengths are shown in Figure 2.1. From the route factors, it is evident that the

networks are efficient with values close to 1. The edge lengths measured for the MST are

also found to be reasonably close in comparison with the values of the actual networks.

The remaining columns indicate that although the MST is optimal in terms of total edge

11

length, its values for route factor deviate to a large extent from those of actual networks

and the reverse is true for the star shaped model. Due to this significant variation, the

authors conclude that neither of these actual networks can function as a viable solution to

the problem of generating an efficient distribution network [3]. Real world networks are

capable of adjusting themselves in such a way that they concurrently possess benefits of

both star and the minimum spanning tree.

 Wang and Provan classify topological model generators into two categories:

explanatory models, which capture topology growth that is based on specifics of the

domain of the resultant model and descriptive models which are exclusively concerned

with random topology generation [4]. The authors propose two possible methods as part

of the explanatory models. The first being spatial preferential attachment which

combines spatial constraints to reduce cost of generating connections and preferential

attachment in which network growth primarily occurs around existing networks [4,5].

The second method that the authors suggest is based on principles of optimization by

minimizing a function that is cumulative of the number of legs or edges a resource has to

be transmitted and the cost of constructing those edges [4]. The concept of random

topology generation, upon which the tools were built for building networks, is referred by

the authors as the generalized random graph (GRG) model that is independent of any

specifics of the network being generated [4]. To better represent real world networks, the

authors suggest extending this random model by including a degree sequence for nodes

which enables selecting at uniform a random graph from all possible graphs for the same

degree sequence [4, 6].

12

 The topology generation techniques described primarily deal with the objectives

of generating efficient topologies that represent real world networks and in the process

make use of domain-specific data or tend to improve upon random generation

methodology. The topology generation toolkit is the programmatic solution to developing

distinct network topologies under conditions of lack of spatial data and subsequently

capable of being modified as per the requirements of specific modeling purposes.

2.3 GIS tools

GIS can be viewed as an integrated package of hardware and software

components, with powerful tools for data management, complex spatial analyses and

visualization. A GIS based approach exposes powerful tools for managing data,

visualization and analysis. GIS based modeling can be most valuable when the region of

study covers a large geographic extent; the spatial and non-spatial attributes of data have

a significant role in the model and when spatial analysis and its results play a key role in

the modeling approach.

The number of tools and depth in support for spatial analyses differ significantly

between several GIS software available in the market. While there has been a tremendous

rise in use of open source GIS tools in recent times, the GIS industry widely relies on

commercial, off-the-shelf (COTS) software such as ArcGIS. Almost all commercial GIS

software offer complex analysis and modeling capabilities in areas such as vector and

raster analysis, cartographic modeling, topological modeling, network analysis,

13

geostatistical estimation, hydrological modeling and visualization of two and three

dimensional data.

Figure 2.2: Hydrologic modeling of a watershed

The availability of such wide range of tools has resulted in the adoption of GIS

technology across various industries such as science, government, academia, business for

applications including real estate, public health, crime mapping, national defense,

sustainable development, natural resources, archaeology, regional and community

planning, transportation and logistics [7].

14

2.4 GIS based modeling softwares

This section gives a brief overview of modeling softwares that integrate GIS

principles and methodologies for topological modeling of infrastructure systems.

2.4.1 TransCAD

TransCAD is a transportation modeling software that leverages the capabilities of

Geographic Information System (GIS) to store, manage, display and analyze

transportation data. It supports all modes of transport and provides modules for routing,

travel demand forecasting, public transit, logistics, site location, territory management,

and decision support systems [8].

TransCAD makes use of a network data structure that aids in routing and network

optimization problems. Modeling transportation networks require accurate data

representation as network distances and travel times depend on the actual shape and

connectivity between transportation features. This is ensured by topological tools

available within the GIS framework. Networks in TransCAD are also capable of

managing complex network attributes such as road blocks, one-way streets and

intersection delays that impact network analysis. The software also supports dynamic

segmentation and linear referencing for transportation network data [9].

The GIS based approach enhances visualization capabilities by providing

graphical solutions which help the non-practitioner comprehend complex technical

information.

15

2.4.2 MIKE SWMM

MIKE SWMM is an engineering software for the modeling and simulation of

hydrology and hydraulics for urban storm water and waste water systems. It integrates the

modeling capabilities of Storm Water Management Model (SWMM) with an improved

user interface and cutting-edge simulation and visualization capabilities [10].

The United States Environmental Protection Agency (EPA) developed SWMM, a

simulation model to estimate rainfall runoff quantity and quality from primarily urban

areas for use in a single event or long-term simulation. The simulation model operates on

a group of subcatchment areas that receive precipitation and generate runoff. The routing

component of SWMM transports the runoff through pipes, channels and treatment

devices. The model then tracks the quantity and quality of runoff generated within each

subcatchment along with flow rates, flow depths and quality of water in each transport

media during a simulation period [11].

MIKE SWMM encompasses GIS capabilities via an ArcView based model

MOUSE (Model for Urban Sewers) GIS to provide spatial and visual representations of

models which can have their data stored in GIS databases. MOUSE GIS is a collection of

model simplification tools with the ability to import and convert sewer and drainage

system data from a wide variety of formats [12].

16

CHAPTER 3

DESCRIPTION OF TOPOLOGICAL MODELING TOOLS

3.1 Overview

The first section in this chapter introduces the concept of GIS and features which

are vital to the development of the modeling toolkit in this thesis. The second gives a

brief overview of the programming language and spatial library used to accomplish

certain geometric tasks within the tool framework. The following sections describe the

principles and methodologies adopted to build star and trunk topologies.

3.2 GIS features

Most current open source GIS software systems support topological modeling, but

Environmental Systems Research Institute‟s (ESRI) commercial mapping platform,

ArcGIS has been chosen due to its wide use and extensive support for integration with

programming languages. ArcGIS is a suite of geospatial products with ArcMap and

ArcCatalog being the primary components used in this research. ArcCatalog serves as the

data management and organizing tool, while ArcMap is primarily used for visualization,

editing and analyzing geographic data. The following sections describe key features of

the ArcGIS framework that play a significant role in the programming approach.

17

3.2.1 Feature class

A feature class is a homogeneous collection of features of type point, line or

polygon and share a common set of attributes. Feature classes can be found in a feature

dataset sharing the same coordinate system and organized into networks or exist

independently in a geodatabase. The geographic data read and generated as part of the

programmatic approach is stored in feature classes.

3.2.2 Geoprocessing

Geoprocessing in general is a GIS operation that manipulates GIS data. A typical

geoprocessing function involves performing an operation on an input dataset and

consequently producing a new dataset. The fundamental purpose of geoprocessing is to

automate tasks involving repetition of work. These tasks can encompass a single tool or a

series of tools combined into a sequence of operations known as workflows.

Figure 3.1: Data transformation in geoprocessing [13]

Geoprocessing in ArcGIS can be tools that run within the realm of the ArcGIS

desktop interface or as standalone Python scripts that build on the capabilities of the

„geoprocessor‟ object. The geoprocessor is an object that manages all the geoprocessing

18

functions available within ArcGIS and exposes these methods for access in Python. The

geoprocessor plays a key role in the development by making it possible to read and write

geometries.

3.3 Python

Python is an interpreted, interactive, object-oriented programming language that

offers strong support for integration with other languages and tools. It‟s easy to learn

syntax emphasizes code readability, modularity and therefore makes it very attractive for

rapid application development and reduced program maintenance. Python‟s extensive

support for modules and packages encourages program modularity and code reuse.

The choice of Python as the preferred language can be attributed to the extensive

support that ArcGIS provides to its geoprocessing framework and widespread use of

Python in its user community. The following section describes a Python package that has

been used to execute geometric operations essential to topology generation.

3.3.1 Shapely

Shapely is a Python package for analysis and manipulation of geospatial

geometries [14]. The „shapely‟ geometry module not only supports standard feature types

– points, lines and polygons but also multi-point, multi-line, multi-polygon geometries

and other complex geometries. It has the capability to produce new geometries such as

buffer, boundary, centroid, convex hull and also test if shapes intersect, cross, contain or

19

touch each other. In this thesis, „shapely‟ has been primarily used to determine scalar

properties such as distance and check geometric association between geometries.

3.4 Infrastructure Topology Generator (ITG)

The Infrastructure Topology Generator (ITG) is the name given to a set of

scripting tools developed in the Python programming language to create generic models

of randomly generated infrastructure elements. The models provide insight into the

spatial arrangement of elements by collectively organizing infrastructure representations

into star, trunk and mesh network topologies. The scripts function by leveraging the

capabilities of the ArcGIS geoprocessing framework for tasks such as reading and writing

features, creating feature storage containers and managing workspaces. Equally

significant to the tools are programming constructs, modules, functions and methods

inherent to the Python language. The tools have been developed adhering to certain

programming principles such as commenting code wherever necessary, replacing

repetitive chunks of code with functions and deleting objects to reduce memory

consumption.

The tools extensively make use of „lists‟ which is one of the several types of

sequences supported by Python. A list is the most flexible data type available in Python

and is used as a container for items. Most lists implemented across the toolkit store

coordinate pairs of point or line features. List objects support several operations including

adding, indexing, slicing, multiplication, membership and finding largest and smallest

elements. Another important aspect of Python programming is the use of „modules‟.

20

Modules aid in the logical organization of related Python code components for easier

understanding and use. A module is any other Python script capable of being imported

into other scripts exposing its functional aspects in the form of classes, functions and

variables. For example, the geoprocessing features of ArcGIS are imported into the tools

via the module „arcgisscripting‟.

Code developed in scripting languages such as Python can be written in text files

and saved with the required language extension (.py for Python files) before executing

them with the Python interpreter. This being a viable alternative is not best suited when

developing complex programs that require numerous lines of code. In such a scenario, a

software application known as Integrated Development Environment (IDE) helps

maximize productivity by providing a set of integrated tools within a single interface. An

IDE normally consists of [15]:

 A source code editor

 A compiler or an interpreter

 Build automation tools and

 A debugger

The standard Python installation comes with a built-in IDE known as IDLE which

supports features such as syntax highlighting, auto completion and smart indentation

[16]. Due to a lack of adequate support for debugging (process of finding defects in a

computer program) in IDLE, another standalone IDE known as PythonWin with rich

21

feature support and integrated debugging facility has been used in the development of the

toolkit.

The following sections describe in detail the inner workings of the three tools

developed for topology generation. The sections first provide an overview of the process

in which topologies are created and go on to elucidate in detail the programming

constructs.

3.5 Star topology tool

The star topology is a network of nodes connected via edges to a central node or

hub. The topology generation first requires creation of a finite number of random nodes

or abstract points which are consequently converted into features in a point feature class

using the geoprocessing functionality of the ArcGIS framework. The conversion into

ArcGIS point features is essential for visualizing the network.

The point features are looped through one at a time and appended to a Python list.

This is followed by random selection of a central node from which a point object is

created and consequently removed from the list. An empty line feature class to hold the

edges connecting the hub and remaining points is generated. Looping through the nodes

in the list, a line object for every link between the hub and corresponding point is created

and inserted into the line feature class. The steps involved or the flow of program

execution for generating a star topology is depicted in Figure 3.2.

22

A star topology is thus produced with nodes and edges stored in two discrete

feature classes. The next section describes in detail, steps of the procedure from a

programming perspective.

Figure 3.2: Script execution sequence for star topology

3.5.1 Tool description

Python being an interpreted language executes instructions in a sequence. The star

topology generation tool comprises programming statements written in sequence. The

objective and procedure involved in generating star topology being relatively simpler to

that of the trunk tool, and with most operations being non-repetitive, the code has been

23

structured into sequential statements without the use of functions. This enhances code

readability and makes debugging easier.

The program begins by importing required modules whose features are

subsequently utilized in developing the tool. One of these modules is part of the toolkit

and provides the star and trunk tools with the ability to generate random point locations.

The module essentially is a Python file with a class definition and a method to generate

random nodes. The class function utilizes methods exposed by a built-in module within

the standard Python library named random. The module provides functions for generating

random integers between a definite range of numbers or choosing a random item from a

list of items. This custom class module implements one method getRandomCoords by

taking as input the number of points to generate. A coordinate pair is then randomly

generated within the defined bounds and is consequently appended to a list which is

returned to the object calling the function. An information description also known as

pseudocode of the random coordinate generating function is depicted in Figure 3.3.

Figure 3.3: Pseudocode for random node generation

24

Following the import of modules, the much required geoprocessor object is

created and workspace for the tool environment is set. An empty feature class is created

in the workspace to store all the point coordinates that are generated. When creating

feature classes, the code implements a check to verify if a feature class with an identical

name already exists in the workspace. In the event of an already existing file, the

geoprocessor ensures that the feature object container is removed. Inserting features into

a GIS feature class requires a cursor which is a data access object that iterates over rows

in a table. Cursors are provided for searching, inserting and updating features. Each type

of cursor is created by a corresponding geoprocessor method. With the creation of an

insert cursor on the empty feature class, an object of the random class calls the function

getRandomCoords with the required number of points and stores the returned coordinates

in a list. For every point item in the list, a GIS point object is created and its „X‟ and „Y‟

attributes are assigned from coordinates of the respective item. The insert cursor now

creates a new feature (row) for every point whose shape is set to the geometry of the

point object. The cursor then inserts the feature into the container. The pseudocode for

creating a feature class with randomly generated points is illustrated in Figure 3.4.

25

Figure 3.4: Pseudocode detailing feature class generation from random points

The feature class container now consisting of all point features is read using a

search cursor by looping over features and gathering geometry of each point into a

Python list. The next step involves choosing a random point from the list as the hub of the

topology. The random module implements a method of the name choice for random

selection of item in a list. A point is chosen from the list of geometries and stored in a

variable to function as the central node or hub. The point selected is therefore excluded

from the points list and a GIS point object is created from it. Having identified the hub

and point features, the next step in the process is to create line (edge) geometries

26

connecting the hub to its nodes. An empty feature class capable of storing line features is

created upon which an insert cursor is generated. Looping through the points in the list,

an array object to store the two end points is created. The point being iterated over and

the hub object are added to the array which is assigned as the shape of a new feature in

the feature class. The insert cursor creates a new row for the feature and the container is

thus updated with links. The feature class with line geometries connecting the hub to its

nodes is showin in Figure 3.5.

Figure 3.5: Star topology

27

3.5.2 Example

Star shaped networks also referred to as hub-and-spoke networks do not exist

independently in the real world but are often part of larger networks. A pure

implementation of star topology is possible in command and control environments where

a central facility acts as a dispatch and monitoring center responsible for operations of

connected facilities. A star topological network by itself can be non-reliable as failure of

the hub instantly incapacitates the entire network.

In a star topology, the central node has a much higher degree of connectivity than

nodes to which a point-to-point connection exits from the hub. The remaining nodes in

the network which only connect to the hub all have a single degree of connectivity. The

number of links characteristic to a star topology is always one less than the number of

nodes. A large scale implementation of the star model can commonly be found within the

transport industry. The air transportation system in a country is a large network of

connected hubs with each hub signifying center of a star network. Large cities often act

as transportation hubs handling significant traffic volumes and connect to regions with

relatively lesser traffic. The hubs in turn are connected to other hubs making up a larger

network.

Barabasi describes how an air transport system resembles a scale-free network by

comparing it with a highway system that is based on the principles of random networks.

In a highways system, cities representing nodes are connected by highways and there are

no cities that are served by hundreds of highways [17]. The degree distribution of such a

network follows a bell shaped curve indicating that most nodes have equal number of

28

links and nodes with a large number of links do not exist signifying a uniform network.

Air transport networks on the other hand follow a power law distribution in which there

is no single node that is characteristic of all the other nodes, therefore lacking any scale.

In such networks, most nodes only have a few links and are held together by few highly

connected hubs. This is similar to the case in which a large number of smaller airports are

connected to each other through a handful of hubs. Figure 3.6 illustrates random and

scale-free networks.

Figure 3.6: Random and scale-free networks [18]

3.6 Trunk topology tool

The trunk topology generation is a more complex process in the sense that certain

topological rules governing the organization of nodes and edges have to be complied

with. The development for this topology involves breaking down the process into

numerous simple functions to avoid code repetition and reduce complexity. The random

node generation and transformation into ArcGIS point features in a feature class is

similar to that described in star topology construction. The trunk tool generates three

29

feature classes in the process with one containing all point features, one with a single

polyline feature representing the trunk and one with edges connecting nodes to trunk.

The first step involves reading the point features into a Python list which is then

passed to a function that results in a list of nodes participating in the trunk. The points of

the trunk are randomly selected and subjected to a validation function that implements a

procedure to check if the trunk intersects with itself. On successful verification, the points

of the trunk are excluded from the entire points list. The Python list with points of the

trunk is passed to a function that generates a discrete feature class for the trunk main.

The next step is to create a line feature class to store associations between

remaining nodes and the trunk. For every node in the list, its straight line distance to each

participating node in the trunk is computed. The trunk node that is nearest is determined

as the one to which a link must be generated. With this identification of node pairs, the

nodes are passed to a function that creates a line object and inserts it into the line feature

class. Figure 3.7 illustrates the program execution in steps. A detailed description of the

procedure adopted to create this tool is elucidated in the following section.

30

Figure 3.7: Script execution sequence for trunk topology

31

3.6.1 Tool description

Before delving into the specifics of tool development, it is essential to understand

that complex and lengthy code when broken down into smaller chunks of related

instructions with discrete functioning objectives, simplifies code manipulation, prevents

code repetition and makes testing far less complex. Unlike the star topology tool which

has been developed using sequential instructions the trunk tool relies heavily on the use

of functions. The following tasks requisite for trunk network generation are implemented

as functions:

 Reading point geometries from a feature class into a Python list

 Creating feature classes using the geoprocessor

 Identifying random points that make up the trunk

 Check to verify validity of trunk

 Creating a feature class to store the trunk main feature and

 Joining outstanding point features in the list to trunk

The Python tool for trunk topology generation utilizes the custom class similar to

the star tool for generating point coordinates. The script implements a function for

creating feature classes that takes as arguments, the path to the feature class and the type

of features (points, lines or polygons). Upon successful execution the function returns an

insert cursor. By providing a discrete function for creating feature classes, the need to

32

repeat instruction each time for this purpose is avoided thus reducing length and

complexity of code.

An object of the custom class is created and the method for obtaining randomly

generated point coordinates is invoked. The point locations returned are stored in a list.

An empty point feature class is created by passing arguments required by the

createFeatureClass function. The insert cursor returned by the function is used to insert

points in the list after converting them into GIS point objects by looping over one

another.

The points feature class updated with features from the random points list is then

passed as parameter to another function readTestPoints that uses a search cursor to iterate

over the features and retrieves point geometries appended to a list. The list with

coordinates of each point in the feature class is returned and consequently passed onto

another function createTrunkList. This function takes as parameters the node list and a

numerical value that indicates the number of points that should make up the trunk. The

objective of this function is to create a list of points that participate in the trunk. This is

achieved by iterating over the entirety of points received as function argument and

choosing a random point. A check is implemented to ensure that a point once chosen is

not selected again. The point is then appended to an empty list container for points that

create the trunk. Once the required number of non-repetitive random points is

accumulated, the program breaks from the loop. Having identified points of the trunk, the

next task is to validate the trunk for any self-intersections.

33

A topology rule that governs the spatial organization of points creating the trunk

is implemented via a function checkTrunkValidy which requires as input the list of points

forming the trunk. The function makes sure that the points chosen do not result in a trunk

main that crosses itself. This test for geometric association is made possible by the

Shapely library from which a LineString class is imported into the tool. The trunk is

essentially a polyline made up of connected line features or line strings. The trunk points

are iterated over and a line string object is generated by the class imported using a point

and its adjacent in the list. The line string objects are therefore stored in a list object.

With no possibility for two line objects sharing a common point to intersect, each line in

tested with non-adjacent lines utilizing the crosses binary spatial operator. If the test

determines that the trunk is invalid, the execution flow returns to the createTrunkList

function to generate a new set of points. This process repeats itself until a valid set of

points for the trunk are selected. The pseudocode describing the structure of the two

functions and the control flow is depicted in Figures 3.8 and 3.9.

34

Figure 3.8: Random point selection for trunk

Figure 3.9: Checking trunk for self-intersection

35

The identification of a valid trunk is followed by creating a feature class with the

lone trunk main feature. The trunk points are passed on to a createTrunkFC function

which acquires itself an insert cursor from the createFeatureClass function. An array

object with all the trunk point objects is assigned to the shape property of a new feature.

The trunk feature is then inserted into the feature class. Figure 3.10 illustrates a trunk

generated from randomly generated points.

Figure 3.10: Trunk generated from random point features

The trunk having been identified, its points are excluded from the list containing

all points generated for the topology. The last task in the process involves generating

edges that establish spatial connections between the outstanding point features and the

36

trunk. An empty feature class to store edge features is created and an insert cursor is

obtained. It is assumed that points attach to the trunk at nodes closest in distance. This

requires calculating distance between every point feature and points of the trunk. The

point features are iterated upon, and distance of each feature from every point in the trunk

is calculated. The distances for a point feature are appended to a list and being numerical

quantities, Python‟s minimum function is used to determine the least distance from the

list. Utilizing the index of the shortest distance in the list, the trunk point which is closest

to a point feature is deduced. This program flow for this process is described in Figure

3.11.

Figure 3.11: Determination of nearest trunk node

37

The point feature and closest trunk point along with the insert cursor are

parameters to the function createFeaturesToTrunk which creates a line object with the

points and inserts a new edge feature each time it is called. The function with its

parameters and process of generating the output feature class is listed in Figure 3.12.

Figure 3.12: Creating edge features to trunk points

Figure 3.13 illustrates the generated topology with point, trunk and edge feature classes

stacked upon one another forming a network of connected elements.

38

Figure 3.13: Trunk topology with point features connected to trunk

3.6.2 Example

A trunk topology is implemented for systems that require delivery of resources

between sources and sinks by way of a trunk that runs through the network. The trunk

can dispense resources to destinations connected at defined points of distribution that act

as a hub or have sinks connected along its length via individual junctions. Figure 3.13 in

the previous section depicts case of a trunk that connects to service nodes in the network

at defined points along the length of the trunk.

39

A water distribution system best illustrates the application of a trunk based

network. Pump stations represent the source from which water is distributed to customers

(residential, commercial or industrial) using distribution mains that usually run alongside

streets. Each customer is connected to the main via a lateral. The connections between

service endpoints and distribution mains are governed by factors such as location of the

customer relative to the main, purpose of the service and demand. A distribution network

with mains and laterals is illustrated in Figure 3.14.

Figure 3.14: Water network depicting distribution mains and service laterals

40

For every service endpoint, there is just one lateral or link that connects to the

distribution main, hence the degree of connectivity is one. Junctions at which the service

laterals join the main have a constant connectivity degree of three with two links

belonging to the main and one from the service line. Mains are pipes of equal or unequal

diameters connected through junctions. These junctions vary in their nodal degree

depending upon the number of number of mains that they connect to at an intersection.

The degree of connectivity of these junctions can exist between the range of two and

four. Segments of water distribution systems need to be taken out of service from time to

time for maintenance and repairs. Those sections that need to be taken out of service are

limited by the placement of shut-off valves. Higher the densities of these valves, fewer

customers are affected with a reduced impact on the overall system operations. The

number of these valves can vary depending upon design requirements. Since the

objective of these valves is to obstruct flow in a pipe, the degree of connectivity is two. In

the case of trunk topology generated by the tool, it can be observed that nodes of the

trunk resemble hubs of a star network and have higher degree of connectivity than nodes

that connect to them with individual links.

41

3.7 Mesh topology tool

 A mesh topology can be described as a network of nodes and edges in which

every node is attached to all other nodes. The mesh topology generation follows a more

straightforward approach due to participating nodes having equal degree of connectivity.

The Python based tool developed for mesh generation is built upon functions previously

implemented in the trunk tool for creating node and edge feature classes. The coordinate

pairs required for generating nodes are obtained from the custom class object built with

the ability to create random Cartesian coordinates given the required number of points.

The nodes are subsequently converted into features in a point feature class through

geoprocessing techniques and are consequently read into a Python list object. Iterating

over nodes in the list, an in-memory line or edge object is created between the current

and each following node in the list. The edge features thus generated are inserted into a

line feature class. The feature classes together form a mesh topology. The programmatic

workflow involved in generating the network is illustrated in Figure 3.15.

42

Figure 3.15: Process workflow for mesh topology generation

3.7.1 Tool description

 The mesh topology generation involves an unambiguous approach due to the

availability of methods for reading coordinate geometries into native Python objects and

generating output features previously implemented for the trunk tool. The random nodes

required for the network are generated in the manner similar to that demonstrated in the

descriptions for star and trunk tools. An object of the random point generation class –

randnodes, is used to generate coordinate pairs for the required number of mesh nodes.

Figure 3.4 describes the process involved in generating the nodes. An empty feature class

43

for storing the nodes returned is created by the createFeatureClass function depending

upon parameters such as type of feature, name and location on disk and returns an insert

cursor. A geoprocessing point object is created for every node and its corresponding x

and y properties are set before the cursor creates a new feature and the point is assigned

to the feature‟s shape. The cursor consequently inserts the feature into the feature class.

The pseudocode for this process is described in Figure 3.16.

Figure 3.16: Mesh node feature generation

 The node feature class generation is followed by retrieving the coordinates of

each point into a Python list using the readTestPoints function that makes use of a search

cursor to iterate over each point feature. The list thus generated forms the basis for

creating edge features that connect nodes. The feature class for storing edges generated in

the process is created and the corresponding insert cursor is obtained. Each coordinate

pair in the list is iterated upon, and a loop on points following the current point is applied

44

to create an array constituting start and end nodes of the respective edge being generated.

The array thus produced is designated to the shape property of the new line feature

created by the insert cursor and subsequently inserted into the edge feature class. The

pseudocode detailing the edge creation procedure is shown in Figure 3.17.

Figure 3.17: Mesh edge feature generation

The node and edge feature classes together give rise to a topology arranged in the form of

a mesh. A visual inspection of the feature layers as shown in Figure 3.18 corroborates the

process employed in rendering a mesh topology.

45

Figure 3.18: Mesh topology

3.7.2 Example

A mesh topology is a network in which all the nodes are connected to each other.

Each node in a mesh network is independent of other nodes and maintains continuous

flow between nodes. A mesh network is comprised of

n (n – 1) / 2 (2)

links that connect n nodes. Built upon the principle of redundancy, failure of a node does

not disrupt network flow due to availability of alternate connection paths. Due to this

46

capability, mesh networks are known to be self-healing and reliable unlike star shaped

networks.

An electrical distribution system is an example of an infrastructure system that

implements a mesh based topology. It is one of the operations supported by an electrical

network besides electricity generation and transmission. The components responsible for

these operations are interconnected and form the electricity network or grid. The logical

topology of an electrical grid varies depending upon constraints of the budget, system

reliability requirements and the load and generation characteristics. The redundancy

provided by mesh topologies is not deemed cost effective at the distribution level, but is

considered to be a reliable alternative at the transmission level.

Every node in a mesh topology of n nodes has a (n – 1) degree of connectivity. In

the case of a mesh based electrical transmission network, failure or disruption of service

at a generator does not interrupt service due to availability of alternate paths through

which electricity can be transmitted. Though it may seem feasible and effective from a

topological perspective, in a real network, the failure of a node and consequent re-routing

of current to flow from other generators in the network over transmission lines of

insufficient capacity can result in cascading failure and power outage across the entire

network.

47

3.8 Discussion

The star, trunk and mesh topology generators provide a random topological model

of connected nodes and edges which represent physical or virtual entities acting as

sources or conduits for flow of resources or information and can vary significantly in

their purpose depending upon the problem being addressed. These tools provide the

necessary foundation for building spatially random networks for models that require an

understanding of spatial organization and behavior of elements when data available at

hand is limited or cannot be deemed accurate. The geographic bounds and number of

nodes participating in the models can be controlled programmatically depending upon the

spatial domain of the problem. Due to the random nature of topologies, the datasets

produced are devoid of non-spatial information which is essential for most geospatial

analysis procedures. The datasets can be edited to include attribute data as information

becomes available in the course of the process. The spatial layout generated by the tools

can be enhanced to reflect changes that may be induced by specific modeling

requirements capable of improving the accuracy and in turn the results of any analysis

that depend on the network.

3.9 Summary

The process adopted in the development of scripting tools capable of producing

random topological models with spatial layouts in the shape of star, trunk and mesh is

emphasized in this chapter. GIS feature classes serve as containers that hold geometry

objects generated by the tools. The geoprocessing framework of ArcGIS plays a pivotal

48

role in the development of these tools by providing necessary objects that support

reading, writing and analyzing geometric data. The wide adoption of Python within the

GIS domain along with the availability of extensive geometry analysis and manipulation

libraries such as Shapely motivated the use of Python as the preferred language.

Random data generation which is a key requirement for the tools is implemented

as a class module that requires number of nodes as input and consequently generates a list

of random coordinate pair values. The star topology is a network of nodes connected via

edges to a central hub. The steps involved in generating such a topology is illustrated via

a pictorial as well as described in detail. Trunk topology is a network of nodes that

connect to nodes of a trunk. The edge generation between nodes and trunk points is

dependent upon computation of proximity values. The complexities involved in trunk

generation are described at length with code presented in the Appendix. Mesh topology is

a redundant network built upon the requirement that each node must connect to all other

nodes.

The following chapter presents a modeling scenario with the objective of

programmatically generating a water distribution topology model using insufficient data

and comparing the results with a reference model.

49

CHAPTER 4

MODELING A WATER DISTRIBUTION NETWORK

4.1 Overview

As described in Chapter 1, unavailability of data is the driving force behind

adopting a random modeling approach. With the likelihood of results generated from

such an approach varying considerably each time a model is generated, it is beneficial to

have access to a model that can serve as a reference to compare the output with. This

chapter elucidates a modeling scenario in which a close to real water distribution system

of a neighborhood is used as a reference to evaluate a topological model generated

programmatically for the same neighborhood assuming the case of insufficient data.

4.1.1 Reference data

The reference data used in the test case modeling was created by Environmental

Sciences Research Institute (ESRI) using a database structure similar to that of the city of

Montgomery, Alabama. The data is stored in a geodatabase and is comprised of feature

datasets for landbase and water data. The landbase dataset comprises feature class data

for blocks, parcels, road centerlines and edges of pavements. The water dataset

constitutes data representing distribution mains, service laterals to parcels, tanks, system

valves, location of fire hydrants and water network junctions. For the current modeling

50

situation, the reference network data belongs to a small portion of the entire geographic

extent extracted from the south west blocks comprising of land parcels, their distribution

mains along with service laterals to each parcel. Figure 4.1 illustrates the distribution

system with network connectivity used for comparing the results generated network

topology.

Figure 4.1: Reference water distribution network

51

4.1.2 Purpose

The purpose of this test case approach is to programmatically generate a

topological model of network data from insufficient information such as land parcels, and

utility mains, and consequently generating service lines from the mains to the parcels.

The generated model is then compared with the actual reference model to test for

similarities, inconsistencies, degree of accuracy and additional topological rules that can

be administered for better results. The next section describes the procedure involved in

the generation of service lines from mains to a network junction within a parcel.

4.2 Network generation

The modeling approach involves using land parcel data from the reference dataset

as input and utility main features to generate network data comprising of service lines

that connect point features within a parcel boundary to utility lines. The following

sections describe the programmatic approach with illustrations of intermediate results and

topological rules employed to arrive at the optimal and best network model.

The code for generating this topological model is developed in Python with

extensive use of the ArcGIS geoprocessor object and Shapely library methods for

creation of in-memory line and polygon geometry objects. The code developed is

organized into functions with specific objectives and uses Python lists and dictionaries as

intermediate storage objects.

52

4.2.1 Topological rules

The approach to modeling a water distribution system requires the network model

to conform to certain topological rules by maintaining relationships of proximity and

adjacency. One of the rules implemented ensures that service laterals do not cross

adjacent parcels when connecting to their intended service nodes. The other rule applies

only to parcels with more than one boundary available for service line connections. In

such cases, the rule makes sure that service laterals connect to the nearest utility main.

Figure 4.2 depicts violation of topology by service laterals connecting to utility main

intersections.

Figure 4.2: Violation of topological rule

53

4.2.2 The process

The process commences with reading parcel geometries to create point features

that represent a point of connection within the extents of a parcel to the utility main

through service laterals. This conversion of parcel polygons to point features is achieved

by determining the centroids of each polygon feature and subsequently writing these

point geometries into a feature class.

The next step involves determining the nearest utility main for each centroid in

the parcel feature. This is achieved using one of the proximity analysis tools available

within the ArcGIS framework. The tool enables calculation of distance from each point in

the input feature class to the nearest point or line in another feature class of type point or

polyline. The results are distance and location values along with the feature identification

value appended to the attribute table of the input feature class. The input features in this

scenario are the parcel centroids for which nearest distances to the utility mains are

computed and corresponding point of intersection coordinates and identification values of

nearest utility are updated as attributes.

Figure 4.3: Updated feature attributes after nearest point analysis

Upon successful execution of the nearest point analysis tool, virtual in-memory service

line objects are created for each parcel point feature using its geometry and coordinates of

the nearest point on utility retrieved from the point‟s attributes. This is followed by

54

obtaining geometry of each parcel into a Python dictionary object in the form of key

value pairs where the parcel object identification values serve as keys to the polygon

geometry. This step leads to a similar process of acquiring geometries of features that

make up the utility main. At this point of program execution, if the in-memory service

line objects are converted into features in a feature class and visualized, it can be

observed that laterals generated from the output of proximity analysis produce features

that violate topology by crossing into adjacent polygons to connect to the closest main.

This can be seen in Figure 4.4.

Figure 4.4: Service laterals crossing into adjacent parcels

This intermediate undesired output is avoided by storing service lines as objects in

memory. An important observation made and utilized in addressing the crossing laterals

situation is that a parcel polygon, the centroid feature representing it and the service line

55

connecting it to the nearest utility main, all share the same object identification values.

The following step in the process involves looping through each service line and

identifying those polygons through which lines pass but do not share the same

identification values. For every such service line identified, the nearest utility found is

discarded from the utility main geometries derived into a Python dictionary, and the

distance from the corresponding parcel centroid is computed to every other utility

geometry. The shortest of the distances is identified from which the required utility is

obtained and the new point of intersection for the service line is computed which now

conforms to the topological relationship. With the calculation of new closest points and

their distances to the utility mains, the feature class with parcel centroids is updated with

the new attributes. The service lateral features are now created by making use of the

centroid geometry and the updated coordinate attributes for the points of intersection on

utility main features. The pseudocode for service lateral generation procedure is

illustrated in Figure 4.5. The code for the test case modeling is depicted in the Appendix.

56

Figure 4.5: Pseudocode for service lateral generation

4.2.3 Results

The feature classes created as part of the rule based topological modeling process

represent a series of connected nodes and edges in a water distribution network. A visual

inspection of the network suggests that the model generated although not identical to the

reference model, has a similar network layout with the orientation of most service lines

coincident with those in the reference model. Figure 4.6 illustrates the distribution

network when feature classes are stacked upon one another.

57

Figure 4.6: Generated water network model

Figure 4.7: Reference water network model

58

The degree of connectivity for each service connection junction on the utility

main is three and that of network junctions within individual parcels is one in both the

generated topological network and reference model. Utility main intersections have

varying degrees of connectivity depending upon the number of mains that intersect at the

given location. In both models, it can be observed that the connectivity degree varies

between two and four.

From the reference model in Figure 4.7, it can be observed that few parcels have

more than one service line to the utility main such as the top rightmost block. The

absence of this phenomenon in the generated model can be attributed to the lack of

sufficient data. A comparison of generated and reference models to determine the

variations in the number of service line connections to each distribution main results in

the following graph illustrated in Figure 4.8.

Figure 4.8: Service line connectivity to each utility main feature

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Utility main features

Reference Nodes

Generated Nodes

59

From the graph, it can be observed that the maximum difference between service

line allocations to a utility feature is three. The variation in distribution of service lines

across the network for the generated model is more uniform, unlike that in the reference

network where sudden rise in service connections is predominant. This dissimilarity can

be attributed to the presence of multiple service connections to a parcel with a probable

cause of high demand.

With the availability of additional data and information pertaining to the

organization of features such as locations of service endpoints within parcels and demand

requirements, a more accurate data model can be generated by plugging into the code,

modeling requirements specific to the required network.

4.3 Generation based on engineering constraints

The topological models described in Chapter 3 are based on the assumption of

inaccessibility to information and hence depend upon random data generation techniques.

The models being generic and with topology predominantly related to the spatial

orientation of geometric features, it is sufficient to generate data that is geographically

referenced without the need for any non-spatial information pertaining to infrastructure

objects in the model. Although it is possible to produce a model conforming to a standard

set of topological constraints which primarily govern the spatial relationships of features,

the model cannot be considered optimal relative to an actual infrastructure model,

without knowledge of the engineering properties relevant to the scenario for which it is

60

being generated. These attributes play a key role in defining an objective and form the

basis for a constraint based topological model.

The water distribution network model implements topological rules of proximity

and adjacency between service laterals and land parcels but does not take into account the

engineering properties of the network such as diameter, material, age of the pipes or even

the types of soil around the study area. Figure 4.7 depicts attributes of pipes represented

as line features.

Figure 4.9: Engineering properties of pipes

These non-spatial properties stored as attributes in the respective feature classes besides

playing a key role in spatial analysis can have a significant impact on the topological

organization of feature geometries by introducing constraints such as distribution mains

represented as edges with different diameters or materials can only connect via junctions

and fire hydrants can only connect to a hydrant lateral but not a service lateral. To ensure

the flow of water between water mains and service laterals which are usually of different

diameters requires a junction or reducer valve to maintain network connectivity and flow.

61

These constraints, also referred as network connectivity rules in the GIS domain, are not

just limited to water distribution networks but can similarly be applied to other

infrastructure models such as electrical lines, gas pipelines, telephone services and any

network model that aids in the flow of resources.

Water distribution networks are often designed with a primary objective of

meeting demand from consumers. The huge amount of information involved in creating

such a network can be categorized into three important groups - customer information,

data pertaining to infrastructure elements and geographical information of customers and

infrastructure. Demand is a constantly varying parameter depending upon the type of land

use – residential, commercial or industrial. These consumer types and their geographic

locations significantly impact the placement and types of water infrastructure elements

specifically pipes, pumps and valves. From a topological perspective, valves are the

junctions that connect and regulate flow between pipes. Common pipe characteristics

such as diameter, material and length are dependent upon consumption, flow

requirements, pressure levels, durability, cost and their respective function within the

pipe network. Pipes that serve as distribution mains often run along streets and are larger

conduits of flow than service laterals which move water from the mains to consumers.

Due to fluctuations in water demand between adjacent customers, service laterals may be

of different sizes. The network connectivity between distribution mains and service

laterals can be characterized by a trunk topology. Figure 4.8 illustrates connectivity and

diameters of a distribution main and service laterals.

62

Figure 4.10: Diameters of distribution main and service laterals

 Generating a topological model that is in close resemblance to an actual water

network topology on the ground not only requires meeting water demand but must also

take into consideration other governing factors such as cost and reliability. The generated

water network can be considered as a topology comprised of a number of smaller

topological networks that are dependent upon properties of individual infrastructure

elements. At locations with equal demand from multiple consumers, use of laterals with

equal sizes and materials may be considered to lower costs which can subsequently alter

network layout. With proper evaluation and configuration of properties of pipes and

valves, a topological model can be generated that represents an actual water distribution

network.

Commercial GIS packages inherently handle connectivity relationships through

rules which constrain the type of features that connect with one another or a number of

features of one particular type that can be connected to a specific group of features of

63

another type. Two types of connectivity rules are implemented: edge – junction rules and

edge – edge rules. An edge – junction rule dictates how an edge may connect to a

junction, while an edge – edge rule establishes connectivity between two edges through

junctions. Through the use of subtypes which are essentially a subset of features in a

feature class that share similar attributes, connectivity rules can be applied between two

feature classes or subtypes within the same edge feature class. In the water network

example, ten inch and eight inch transmission mains represented as edges can be grouped

into subtypes and connected via a subtype of reducer valves in the valves feature class.

The geoprocessing framework does not support creating connectivity rules for

utility networks programmatically. In order to implement these constraints in Python,

requires development of custom functions capable of simulating connectivity and

accessing feature attribute information to determine the changes in geometric association

between. Using existing methods such as retrieving geometry and accessing specific

attribute data provided by the geoprocessing framework, custom code can be developed

to enforce restrictions such as pipeline features of one specific diameter can only connect

to another pipe smaller in diameter through a junction. Programmatically, this can be

achieved by first retrieving all features of the required diameter and iterating through

each pipe, a buffer is generated and a geometry intersection operation is executed to

determine adjacent geometries. The pipe diameter of adjacent features is retrieved and

checked if the pipe diameter is less than that required. The condition once met, the

feature is identified and a junction represented by a point feature is inserted into the

64

network. Similarly, multiple constraints can be addressed making use of the engineering

properties which subsequently results in the creation of close to real topological model.

4.4 Dynamic segmentation

Dynamic segmentation is the process of calculating map locations of point or line

events stored in a table relative to a line feature using a linear referencing measurement

system and displaying them on a map. It is built on the concept of avoiding splitting of

line features into segments based on attribute values. Multiple sets of attributes can be

associated with any portion of the linear feature irrespective of where it begins or ends.

From the description of dynamic segmentation, it is evident that the integrity of

underlying topology remains unaffected.

From a water distribution perspective, this process can be used to maintain

attribute information describing characteristics of the pipeline segments such as quality,

material and diameter without splitting the pipe network. Positions of service and hydrant

laterals relative to a distribution main linear feature can be linearly referenced and their

locations computed. Point event locations such as those of system valves and service

laterals use only a single measure value to describe their location, whereas line events

such as diameter and material of pipe make use of from- and to- measure values to

describe the portion of the pipe they associate with. Dynamic segmentation plays a key

role in large scale pipeline infrastructure systems to track operational conditions and

hazard prone regions in the network.

65

Figure 4.11: Operating conditions of a road or pipe recorded over time [19]

4.5 Summary

 The objective of generating a topological model for a water distribution network

using the principles and tools described in Chapter 3 is highlighted in this chapter. A

reference model is selected to compare the output of the programmatically generated

water network topology from land parcels and distribution mains. Service lines for each

parcel from utility mains are generated to ensure water flow with the assumption that

service junctions are located at the centroid of parcel polygons. Topological rules of

proximity and adjacency ensure that service lines do not encroach into neighboring

parcels and only connect to mains that are nearest. The topological violations which are

intermediated results in the generation process are illustrated and the verification methods

employed to rectify such situations are described.

 The similarities between models and reasons for inconsistency in the number of

service lines that connect to each main feature are described by using a graph. The

availability of information such as demand values and location of service junctions within

the parcel boundary are identified as factors that can result in the production of a more

robust and accurate model. The following section describes the significance of

engineering properties of network elements such as pipe diameters and lengths and

66

methods in which they can be programmed in the generation of a realistic model. The last

section gives a brief overview of dynamic segmentation in the context of water networks.

67

CHAPTER 5

CONCLUSION AND FUTURE RESEARCH

5.1 Introduction

The problem of modeling spatial associations between arbitrarily generated

infrastructure entities under conditions of non-availability of location specific data, and

subsequently generating network topologies that are representations of the spatial

organization between infrastructure facilities is addressed. Randomly generated spatial

data is used as a substitute for lack of location information pertaining to infrastructure

elements. The spatial dependence between elements or flow of resources between entities

enables modeling the system as a network of connected elements. The objective is to

create a programming toolkit capable of generating topologies that represent the spatial

organization of infrastructure facilities into a network of connected elements. The tools

are required to be used in the generation of a water distribution network model that

resembles an actual network from insufficient data.

5.2 Assessment

Three possible spatial layouts in which infrastructure elements represented as

point features complying with certain topological rules have been generated via a

programmatic approach. The tools developed are capable of generating topological

68

models in the form of star, trunk and mesh networks from spatially random data. The

process of generating a topology from random spatial data to generate network elements

and the effects of topological constraints on the layout are described. The programming

methodology involved use of GIS concepts and custom geometric libraries. Applications

of these network topologies in the real world have been illustrated. Individual tools can

be combined to produce more complex and realistic networks in which all three layouts

coexist.

 The tools are applied to a test case in which a water distribution network is

generated from minimal data such as parcels and locations of distribution mains with the

objective to connect service junctions to mains to ensure network flow is maintained.

Certain rules that represent physical conditions on the ground are enforced to avoid

erroneous topological layout. The resultant model is compared to a reference model to

check for similarities and differences between the two models. Variations in connectivity

at nodes and reasons for dissimilarities are addressed. Additional data that are required in

the form of engineering properties to produce a more accurate and realistic model is

described. Depending on the requirements and knowledge of modeling scenarios,

topological constraints that govern and represent actual connectivity rules between

facilities can be enforced to generate more accurate and genuine representations of

networks.

69

5.3 Conclusion

 Following are the conclusions that can be derived from this work on topological

modeling.

 Infrastructure Topology Generator (ITG) is a toolkit comprising tools capable of

generating realistic or probable topologies for infrastructure systems from

random data in the absence of spatially complete datasets to model the geometric

interactions and dependencies that exist between facilities.

 Unlike existing methods of topology generation as described in chapter 2 which

only provide a theoretical approach and depend upon the availability of data, the

programmatic approach presents a practical methodology of growing generalized

network topologies from random spatial data which can be tailored to specific

topological requirements.

 The implementation and programming of topological rules such as proximity and

adjacency which impact the location of nodes relative to one another and

connectivity through edges is elucidated.

 Engineering properties of network elements and topological constraints specific

to a modeling scenario can be embedded into the code to modify the spatial

layout of generated networks.

 GIS based commercial tools and custom spatial libraries provide a suitable

framework for the creation, storage and visualization of individual and collective

outputs of topological entities.

70

5.4 Future work

The tools developed provide a foundation upon which advanced topological

modeling capabilities can be implemented. In order to enhance the accuracy of results

produced by the star and topology tools, the code can be modified to support additional

topological rules that are characteristic of full scale GIS software applications. These

supplementary features incorporated within the code enable modeling of complex spatial

relationships between infrastructure elements. The tools can also be customized with the

properties and functions specific to different types of infrastructure systems. This built in

intelligence can prove to be of enormous assistance in generating topological models that

are equivalent to actual infrastructure system networks from completely arbitrary or

limited data.

The advantage of developing the topology tools in Python which is an open

source language provides the opportunity to integrate with the numerous custom libraries

that are available. Topological modeling can be further enhanced by providing users with

the ability to interact with the tools via a graphical interface. This presents users with the

facility to feed data into the tools as information becomes accessible and in addition

facilitates regulation of requirements that control the modeling output. The proposed

developments significantly enhance the methods in which infrastructure systems are

modeled as topological networks.

71

APPENDIX

 INFRASTRUCTURE TOPOLOGY GENERATOR (ITG) CODE

In order to use these scripts, Python (Python Software Foundation, 2009), Shapely and

ArcGIS (Environmental Sciences Research Institute, 2009) are required.

topoclasses.py – class module that generates random point coordinates

Import module 'random'

import random

Class definition

class randnodes:

 # Constructor

 def __init__(self):

 pass

 # Function to generate random nodes takes number of nodes required as argument

 def getRandomCoords(self, numberofnodes):

 self.noofnodesinlist = numberofnodes

 nodes = range(self.noofnodesinlist)

72

 # Create an empty list to store random generated coordinates

 self.coords = []

 for node in nodes:

 # Get x and y coordinate values within the specified range

 xcoord = random.randrange(0,200)

 ycoord = random.randrange(0,200)

 # Append generated coordinates to the list

 self.coords.append(str(xcoord) + "," + str(ycoord))

 # Return the coordinates list through the calling object

 return self.coords

 # Test function to print generated coordinates

 def prnt(self):

 self.getRandomCoords()

 print self.coords

StarTopology.py – Python script to generate star topology

Import arcgisscripting, os, random and topoclasses modules

import arcgisscripting, os, topoclasses, random

Create the geoprocessor object

gp = arcgisscripting.create()

Set the workspace

73

gp.workspace = r"D:\Topology\gentopo.mdb"

Create feature class to store random generated points

inFc = "star_nodes"

If feature class already exists in the geodatabase delete it

if gp.Exists(inFc):

 gp.Delete(inFc)

try:

 # Create feature class by using the workspace, name of the feature

 # class and feature type

 gp.CreateFeatureClass(gp.workspace, inFc, "Point")

 # Get the insert cursor

 insCur = gp.InsertCursor(inFc)

 # Create a random object of class itg

 rnd = itg()

 # Get the coordinates generated into a list

 rndcoords = rnd.getRandomCoords(20)

 # Loop through each coordinate pair in the list

 for coords in rndcoords:

 # Create an arcgis point object

 pntObj = gp.CreateObject("point")

 # Set the point object's X and Y properties from the coordinate pair values

74

 pntObj.X = int(coords.split(',')[0])

 pntObj.Y = int(coords.split(',')[1])

 # Create a new feature

 pfeat = insCur.NewRow()

 # Set the shape of feature to the point geometry

 pfeat.shape = pntObj

Insert the feature into the feature class

 insCur.InsertRow(pfeat)

except:

 print gp.GetMessages(2)

Read feature class created from random points identify the geometry field

desc = gp.Describe("star_nodes")

shapefieldname = desc.ShapeFieldName

Create search cursor

rows = gp.SearchCursor("star_nodes")

row = rows.Next()

Create empty list to hold point feature coordinates

pnts = []

Enter while loop for each feature

while row:

 # Create the geometry object 'feat'

75

 feat = row.GetValue(shapefieldname)

 pnt = feat.GetPart()

 # Append point coordinates to the list

 pnts.append([pnt.x,pnt.y])

 row = rows.Next()

Choose a random point for the hub of the network

pointHub = random.choice(pnts)

Create a point object to store coordinates of the hub of the network

strpnt = gp.CreateObject("point")

strpnt.x, strpnt.y = pointHub[0], pointHub[1]

Remove the hub point from the list of points

pnts.pop(pnts.index(pointHub))

Create the output feature class that will store the edges connecting points to hub

outfc = r"D:\Topology\gentopo.mdb\star_edges"

Check if output feature class already exists

if gp.Exists(outfc):

 gp.Delete(outfc)

Create the edge feature class

try:

 gp.CreateFeatureClass(os.path.dirname(outfc), os.path.basename(outfc), "Polyline")

 cur = gp.InsertCursor(outfc)

76

 lineArray = gp.CreateObject("Array")

 # Loop through points in the list and create an edge object

 # between every point and the hub

 for point in pnts:

 lineArray = gp.CreateObject("Array")

 lineArray.add(strpnt)

 pnt = gp.CreateObject("point")

 pnt.x, pnt.y = point[0], point[1]

 lineArray.add(pnt)

 feat = cur.NewRow()

 feat.shape = lineArray

 cur.InsertRow(feat)

 lineArray.RemoveAll()

except:

 print gp.GetMessages(2)

Delete the cursors and geoprocessing object

del rows, cur, insCur, gp

TrunkTopology.py – Python script to generate trunk topology

Import the required modules

import arcgisscripting, os, random, math, topoclasses

From Shapely module import LineString object

77

from shapely.geometry import LineString

def readTestPoints(featclass):

 ''' Read points from a point feature class into a list '''

 # Create geoprocessor object

 gp = arcgisscripting.create()

 desc = gp.Describe(featclass)

 shape = desc.ShapeFieldName

 # Get a search cursor to loop through features in the feature class

 testpointsrows = gp.SearchCursor(featclass)

 testpointrow = testpointsrows.Next()

 # Create an empty list to hold point coordinates

 testpntslist = []

 while testpointrow:

 testpointfeat = testpointrow.GetValue(shape)

 testpnt = testpointfeat.GetPart()

 # Append point coordinates to the testpntslist

 testpntslist.append([testpnt.x, testpnt.y])

 # Get the next row

 testpointrow = testpointsrows.Next()

 # delete the geoprocessor and search cursor

 del gp, testpointsrows

78

 # return the list with point coordinates to the caller

 return testpntslist

def createFeatureClass(featclass, feattype):

 ''' Generalized function to create a new feature class with parameters

 feature class name and type '''

 # Create a geoprocessor object

 gp = arcgisscripting.create()

 # Delete if feature class already exists

 if gp.Exists(featclass):

 gp.Delete(featclass)

 # Create a new empty feature class with function parameters

 gp.CreateFeatureClass(os.path.dirname(featclass),os.path.basename(featclass),

feattype)

 # Create an insert cursor to add new features to the feature class

 insertCursor = gp.InsertCursor(featclass)

 # Return the cursor to the calling object

 return insertCursor

 # Delete the geoprocessor object

 del gp

79

def createTrunkList(testpnts, noofpointsintrunk):

 ''' Create a list of points chosen randomly that make up the trunk '''

 # Random selection of points from the points list

 bool = True

 while bool:

 # Create an empty list

 trunk = []

 for n in range(len(testpnts)):

 # Get a random point

 trunk_pnt = random.choice(testpnts)

 print "Trunk Point: ", trunk_pnt

 # Check to see if the random point already exists in the list

 if trunk.count(trunk_pnt) == 0:

 trunk.append(trunk_pnt)

 # Break out of the loop when points in list match required

number of points in trunk

 if len(trunk) == noofpointsintrunk:

 break

 # Check trunk for any feature intersections

 bool = checkTrunkValidity(trunk)

 # If trunk intersects with itself loop back to get new set of points for the trunk

 if bool is True:

80

 continue

 # Return the trunk points as a list to the caller

 return trunk

def checkTrunkValidity(trunklist):

 ''' Function that implements a check on trunk intersecting itself '''

 lines = []

 # Create line geometries with points in the trunk list and append to lines[]

 for i in range(len(trunklist)-1):

 line = LineString((trunklist[i], trunklist[i+1]))

 lines.append(line)

 for i in range(len(lines)-2):

 for j in range(i+2, len(lines)):

 print i, j

 bool = lines[i].crosses(lines[j])

 print bool

 if bool is True:

 return bool

def createTrunkFC(trunklist):

 ''' Create a new feature class to hold the trunk main feature '''

81

Send the output feature class and its feature type as parameters to the

#createFeatureClass function and get the insert cursor

 trunk_inscur = createFeatureClass(r"D:\Topology\gentopo.mdb\trunk_main",

"Polyline")

 # Create the geoprocessor object

 gp = arcgisscripting.create()

 # Create an array object that will hold points that make up the line feature

 trunkArray = gp.CreateObject("Array")

 # Loop through points in the trunk list

 for p in trunklist:

 # Create a point object

 pt = gp.CreateObject("point")

 pt.x, pt.y = p[0], p[1]

 # Add points to the array

 trunkArray.add(pt)

 # Create a new row in the line feature class

 trunkmain_feature = trunk_inscur.NewRow()

 # Set shape of the line feature to array created

 trunkmain_feature.shape = trunkArray

 # Insert the line

 trunk_inscur.InsertRow(trunkmain_feature)

 # Delete objects

82

 del gp, trunkArray, trunk_inscur

def createFeaturesToTrunk(fpoint, tpoint, topocur):

 ''' Join features participating in the trunk to other point features in the point fc '''

 # Create the geoprocessor object

 gp = arcgisscripting.create()

 # Create an array object

 lineArray = gp.CreateObject("Array")

 # Create point objects

 fpnt = gp.CreateObject("point")

 fpnt.x, fpnt.y = fpoint[0], fpoint[1]

 tpnt = gp.CreateObject("point")

 tpnt.x, tpnt.y = tpoint[0], tpoint[1]

 # Add from and to points to the array

 lineArray.add(fpnt)

 lineArray.add(tpnt)

 # Create a new row for line feature

 feat = topocur.NewRow()

 feat.shape = lineArray

 # Insert the feature using the insert cursor

 topocur.InsertRow(feat)

 lineArray.RemoveAll()

83

 # Delete objects

 del lineArray, gp, topocur

if __name__ == "__main__":

 # Create random object of the itg class

 rnd = itg()

 # Get random coordinates generated

 rndcoords = rnd.getRandomCoords(20)

 try:

 # Create the geoprocessor object

 gp = arcgisscripting.create()

 # Create feature class and get the returned insert cursor

 insCur = createFeatureClass(r"D:\Topology\gentopo.mdb\trunk_nodes", "Point")

 # Loop through each of the randomly generated point coordinate values

 for coords in rndcoords:

 # Create an arcgis point object and set its X and Y coordinate attributes

 pntObj = gp.CreateObject("point")

 pntObj.X = int(coords.split(',')[0])

 pntObj.Y = int(coords.split(',')[1])

 # Create a new feature and set its geometry

 pfeat = insCur.NewRow()

 pfeat.shape = pntObj

84

 # Insert the feature

 insCur.InsertRow(pfeat)

 # Delete objects

 del insCur, gp

 except:

 print "Error creating point objects from random coordinates"

 print gp.GetMessages(2)

 # Retreive the point geometries of features generated from random points into a list

 pointslist = readTestPoints(r"D:\Topology\gentopo.mdb\trunk_nodes")

 # Get the list of points participating in the trunk

 trunklist = createTrunkList(pointslist, 7)

 # Loop through each of the trunk points and remove it from the total points list

 for tstpnt in trunklist:

 pointslist.remove(tstpnt)

 # Create trunk feature class by passing the trunk points list to function createTrunkFC

 createTrunkFC(trunklist)

 # Create the output feature class to contain edges generated and get the insert cursor

 topocur = createFeatureClass(r"D:\Topology\gentopo.mdb\trunk_topo", "Polyline")

 # Create an empty list to hold distance values

 distances = []

85

 # Loop through points list excluding trunk points

 for point in pointslist:

 # For every point in trunk

 for trpoint in trunklist:

 # Calculate distance

 dist = math.sqrt(pow(point[0]-trpoint[0],2) + pow(point[1]-trpoint[1],2))

 # Append the distance values to distances list

 distances.append(dist)

 # Determine least distance

 mindist = min(distances)

 # Determine the trunk point that is nearest

 seltrnkpnt = trunklist[distances.index(mindist)]

 # Send the point, nearest trunk point and insert cursor to

 # the createFeaturesToTrunk function to create edge features

 createFeaturesToTrunk(point, seltrnkpnt, topocur)

 # Empty the distances list

 distances = []

86

MeshTopology.py – Python script to generate mesh topology

import win32com.client, topoclasses, os, arcgisscripting

def createFeatureClass(featclass, feattype):

 ''' Generalized function to create a new feature class with parameters

 feature class name and type '''

 # Create a geoprocessor object

 gp = arcgisscripting.create()

 # Delete if feature class already exists

 if gp.Exists(featclass):

 gp.Delete(featclass)

 # Create a new empty feature class with function parameters

 gp.CreateFeatureClass(os.path.dirname(featclass), os.path.basename(featclass),

feattype)

 # Create an insert cursor to add new features to the feature class

 insertCursor = gp.InsertCursor(featclass)

 # Return the cursor to the calling object

 return insertCursor

 # Delete the geoprocessor object

 del gp

87

def readTestPoints(featclass):

 ''' Read points from a point feature class into a list '''

 # Create geoprocessor object

 gp = arcgisscripting.create()

 desc = gp.Describe(featclass)

 shape = desc.ShapeFieldName

 # Get a search cursor to loop through features in the feature class

 testpointsrows = gp.SearchCursor(featclass)

 testpointrow = testpointsrows.Next()

 # Create an empty list to hold point coordinates

 testpntslist = []

 while testpointrow:

 testpointfeat = testpointrow.GetValue(shape)

 testpnt = testpointfeat.GetPart()

 # Append point coordinates to the testpntslist

 testpntslist.append([testpnt.x, testpnt.y])

 # Get the next row

 testpointrow = testpointsrows.Next()

 # delete the geoprocessor and search cursor

 del gp, testpointsrows

 # return the list with point coordinates to the caller

 return testpntslist

88

def main():

 rnd = randnodes()

 rndcoords = rnd.getRandomCoords(5)

 try:

 # Create the geoprocessor object

 gp = arcgisscripting.create()

 gp.overwriteoutput = 1

 # Create feature class and get the returned insert cursor

 insCur = createFeatureClass(r"D:\Topology\gentopo.mdb\mesh_nodes", "Point")

 # Loop through each of the randomly generated point coordinate values

 for coords in rndcoords:

 # Create an arcgis point object and set its X and Y coordinate attributes

 pntObj = gp.CreateObject("point")

 pntObj.X = int(coords.split(',')[0])

 pntObj.Y = int(coords.split(',')[1])

 # Create a new feature and set its geometry

 pfeat = insCur.NewRow()

 pfeat.shape = pntObj

 # Insert the feature

 insCur.InsertRow(pfeat)

 # Delete objects

 del insCur

89

 except:

 print "Error creating point objects from random coordinates"

 #Retrieve created random point geometries into a list

 pointslist = readTestPoints(r"D:\Topology\gentopo.mdb\mesh_nodes")

 # Get an insert cursor for creating edges in a polyline feature class

 edgeInsertCur = createFeatureClass(r"D:\ Topology\gentopo.mdb\mesh_edges",

"Polyline")

 # Create an edge for every node in the list to other nodes

 for i in range(len(pointslist)):

 for j in range(i+1,len(pointslist)):

 linArray = gp.CreateObject("Array")

 pnt1 = gp.CreateObject("point")

 pnt1.x, pnt1.y = pointslist[i][0], pointslist[i][1]

 linArray.add(pnt1)

 pnt2 = gp.CreateObject("point")

 pnt2.x, pnt2.y = pointslist[j][0], pointslist[j][1]

 linArray.add(pnt2)

 feat = edgeInsertCur.NewRow()

 feat.shape = linArray

 edgeInsertCur.InsertRow(feat)

90

 linArray.RemoveAll()

 del gp, edgeInsertCur

if __name__ == "__main__":

 main()

testcase.py – Python script for water distribution network modeling

Import all the required modules

import os, arcgisscripting

from shapely.geometry import LineString

from shapely.geometry import asPolygon

from shapely.geometry import asLineString

from operator import itemgetter

from shapely.geometry import Point

Function definition for getParcelGeometry()

def getParcelGeometry():

 # Create arcgisscripting module

 gp = arcgisscripting.create()

 # Read the parcels feature class

 fc = r"D:\Topology\Landbase1.mdb\Export_Parcels"

91

 desc = gp.Describe(fc)

 shpfieldname = desc.ShapeFieldName

 # Get the search cursor

 rows = gp.SearchCursor(fc)

 row = rows.Next()

 # Create an empty dictionary for pacels

 parcels = {}

Loop through each feature

 while row:

 # Create an empty coordinates lsit

 coords = []

 pfeature = row.shape

 partnum = 0

 partcount = pfeature.PartCount

 # If the parcel polygon is made up of multiple parts, get geometry for each part

 while partnum < partcount:

 part = pfeature.GetPart(partnum)

 pnt = part.Next()

 while pnt:

 # Append points of the part to the coords list

 coords.append([pnt.X, pnt.Y])

 pnt = part.Next()

92

 # Move to the next part

 partnum += 1

 # Create a shapely polygon object

 pa = asPolygon(coords)

 # Use the object id of the parcel polygon as key

 # to reference the shapely polygon geometry

 parcels[row.GetValue(desc.OIDFieldName)] = pa

 # Move to the next feature

 row = rows.Next()

 # Delete objects and return parcels to function caller

 del row, rows, pfeature, gp

 return parcels

Function definition for createLineGeometry()

def createLineGeometry():

 # Create the geoprocessor object

 gp = arcgisscripting.create()

 # Absolute path of the location and name of centroids feature class

 fc = r"D:\Topology\Landbase1.mdb\parcelsCentroids"

 desc = gp.Describe(fc)

 shpfieldname = desc.ShapeFieldName

 # Get the search cursor on the feature class

93

 rows = gp.SearchCursor(fc)

 # Move to the first feature

 row = rows.Next()

 # Create empty dictionary to store line geometries

 lines = {}

 # Loop through each feature in the feature class

 while row:

 feat = row.GetValue(shpfieldname)

 pnt = feat.GetPart()

 # Create a Shapely LineString object from the centroid coordinate

 # and the x and y coordinate values of the nearest point

 line = LineString(((pnt.X, pnt.Y), (row.GetValue("NEAR_X"),

row.GetValue("NEAR_Y"))))

 # Use the object id of the parcel centroid to reference

 # the service line geometry created from the points

 lines[row.GetValue(desc.OIDFieldName)] = line

 # Move to next feature

 row = rows.Next()

 # Delete cursor, feature and geoprocessor objects

 del rows, row, feat, gp

 # Return the lines dictionary

 return lines

94

Function definition for readTrunkUtilityGeometry

def readTrunkUtilityGeometry():

 # Function that retrieves utility main geometry

 gp = arcgisscripting.create()

 fc = r"D:\Topology\Landbase1.mdb\Export_Distribmains"

 desc = gp.Describe(fc)

 shpfieldname = desc.ShapeFieldName

 # Get search cursor

 rows = gp.SearchCursor(fc)

 row = rows.Next()

 # Create empty dictionary object to store trunk geometry

 trunk = {}

 # Loop through each feature

 while row:

 coords = []

 lfeat = row.GetValue(shpfieldname)

 partnum = 0

 partcount = lfeat.PartCount

 while partnum < partcount:

 part = lfeat.GetPart(partnum)

 pnt = part.Next()

95

 while pnt:

 coords.append([pnt.X, pnt.Y])

 pnt = part.Next()

 partnum += 1

 # Create a Shapely line object using utility feature coordinates

 li = asLineString(coords)

 trunk[row.GetValue(desc.OIDFieldName)] = li

 row = rows.Next()

 del row, rows, lfeat, gp

 return trunk

Function definiton for getNear_Fid

Function to get the object id of the nearest utility main feature

def getNear_Fid(k):

 gp = arcgisscripting.create()

 # The centroids feature class

 fc = r"D:\Topology\Landbase1.mdb\parcelsCentroids"

 desc = gp.Describe(fc)

 shpfieldname = desc.ShapeFieldName

 # Create a search cursor on the feature class

 rows = gp.SearchCursor(fc)

 row = rows.Next()

96

 lines = {}

 # Loop through centroid features

 while row:

 # If objectid equals function argument k break the loop

 if row.GetValue(desc.OIDFieldName) == k:

 return row.GetValue("NEAR_FID")

 break

 row = rows.Next()

 # Delete objects

 del rows, row, feat, gp

Function definition for calculating point where

service line intersects the utility main

def calculatePOI(k, pnt, street):

 cx = list(pnt.coords)[0][0]

 cy = list(pnt.coords)[0][1]

 ax = list(street.coords)[0][0]

 ay = list(street.coords)[0][1]

 bx = list(street.coords)[len(list(street.coords))-1][0]

 by = list(street.coords)[len(list(street.coords))-1][1]

 r_numerator = (cx-ax)*(bx-ax) + (cy-ay)*(by-ay)

 r_denominator = (bx-ax)*(bx-ax) + (by-ay)*(by-ay)

97

 r = r_numerator / r_denominator

 px = ax + r*(bx-ax);

 py = ay + r*(by-ay);

 p = [px,py]

 # Return the point

 return p

Function definition for updating centroids feature class

with new intersection coordinates

def updateFCCentroids(pois):

 # Create the arcgisscripting object

 gp = arcgisscripting.create()

 fc = r"D:\Topology\Landbase1.mdb\parcelsCentroids"

 desc = gp.Describe(fc)

 shpfieldname = desc.ShapeFieldName

 # Get the geoprocessor object

 rows = gp.UpdateCursor(fc)

 row = rows.Next()

 # Loop through features and update new near coordinates

 while row:

 for a, b in pois.iteritems():

 if (row.GetValue(desc.OIDFieldName) == a):

98

 row.near_x = b[0]

 row.near_y = b[1]

 rows.UpdateRow(row)

 row = rows.Next()

 # Delete objects

 del rows, row, gp

Function definition for creating service laterals

def createLaterals(fcCentroids):

 # Create the geoprocessor object

 gp = arcgisscripting.create()

 desc = gp.Describe(fcCentroids)

 shapefieldname = desc.ShapeFieldName

 # Output feature class

 outSub = r"D:\Topology\Landbase1.mdb\parcelsLaterals"

 # If feature class already exists delete it

 if gp.Exists(outSub):

 gp.Delete(outSub)

 # Create the feature class using workspace, name and feature type parameters

 gp.CreateFeatureClass(os.path.dirname(outSub), os.path.basename(outSub),

"Polyline")

 # Get the insert cursor

99

 insCur = gp.InsertCursor(outSub)

 # Get the search cursor on the parcel centroids feature class

 featCurCentroids = gp.SearchCursor(fcCentroids)

 featCentroid = featCurCentroids.Next()

 # Loop through the centroid features

 while featCentroid:

 # Create a array object

 lineArray = gp.CreateObject("Array")

 pntfeat = featCentroid.GetValue(shapefieldname)

 parcelpnt = pntfeat.GetPart()

 # Add centroid geometry to the array

 lineArray.add(parcelpnt)

 # Create a new point object and set its geometry

 # from the centroids attribute values NEAR_X and NEAR_Y

 pnt = gp.CreateObject("point")

 pnt.x = featCentroid.GetValue("NEAR_X")

 pnt.y = featCentroid.GetValue("NEAR_Y")

 # Add the point to array

 lineArray.add(pnt)

 # Create a new line feature and set its geometry

 # Insert the feature in the feature class

100

 linefeat = insCur.NewRow()

 linefeat.shape = lineArray

 insCur.InsertRow(linefeat)

 lineArray.RemoveAll()

 # Move to next centroid feature

 featCentroid = featCurCentroids.Next()

 # Delete objects

 del insCur, featCentroid, featCurCentroids, gp

Function definition to retrieve centroid geometries

def getCentroids(featclass):

 gp = arcgisscripting.create()

 rows = gp.SearchCursor(featclass)

 rows.Reset()

 row = rows.Next()

 centroids = []

 while row:

 # Use the feature's centroid property to get the value

 feat = row.shape

 # append the geometry to list

 centroids.append(feat.Centroid)

 row = rows.Next()

101

 # Delete objects and return the list

 del gp, rows, row

 return centroids

Function definition for creating a feature class with centroids

def createCentroidsFc(centroids):

 gp = arcgisscripting.create()

 outfc = r"D:\Topology\Landbase1.mdb\parcelsCentroids"

 if gp.Exists(outfc):

 gp.Delete(outfc)

 gp.CreateFeatureClass(os.path.dirname(outfc), os.path.basename(outfc), "Point")

 insCur = gp.InsertCursor(outfc)

 for cnt in centroids:

 pnt = gp.CreateObject("point")

 pnt.x = cnt.split()[0]

 pnt.y = cnt.split()[1]

 pntfeat = insCur.NewRow()

 pntfeat.shape = pnt

 insCur.InsertRow(pntfeat)

 del gp, insCur, pnt

 return outfc

102

if __name__ == "__main__":

 # Set the parcels and main feature classes

 fc = r"D:\Topology\Landbase1.mdb\Parcels"

 fcUtility = r"D:\Topology\Landbase1.mdb\Distribmains"

 # Get centroids in a list

 lstCentroids = getCentroids(fc)

 # Create a feature class of centroid features by passing the list as parameter

 fcCentroids = createCentroidsFc(lstCentroids)

 # Proximity analysis tool near

 try:

 gp = arcgisscripting.create()

 gp.near(fcCentroids, fcUtility,"","LOCATION","")

 del gp

 except:

 print gp.GetMessages()

 # Get the service line geometries

 lines = createLineGeometry()

 # Get geometry of parcels in a list

 polygons = getParcelGeometry()

 # Get the geometry of line features of trunk

 utility_main = readTrunkUtilityGeometry()

103

 # Backup the utility main geometry list

 utility_main_bkp = utility_main.copy()

 # Create an empty dictionary to hold service line junction points on the trunk

 pois = {}

 # For every service line

 for k, v in lines.iteritems():

 # For every parcel

 for i, j in polygons.iteritems():

 # If service line crosses parcel and their object ids do not match

 if v.crosses(j) and k != i:

 # Get the object id of the utility main the service line presently connects

 utilityToDiscard = getNear_Fid(k)

 # Get the parcel point

 pnt = Point(list(lines[k].coords)[0])

 # Delete the utility from list

 del utility_main[utilityToDiscard]

 # Empty dictionary of distances

 dictDist = {}

104

 # For every feature in the utility main feature class

 for s, t in utility_main.iteritems():

 # Get distance from centroid and include in the dictionary

 dist = pnt.distance(t)

 dictDist[s] = dist

 # Sort the dictionary and get the nearest utility

 listDict = sorted(dictDist.items(), key=itemgetter(1))

 shortestDistanceUtility = listDict[0][0]

 # Calculate the point where service line intersects by calling the

 # calculatePOI function and store it in a dictionary

 poi = calculatePOI(k, pnt, utility_main[shortestDistanceUtility])

 pois[k] = poi

 utility_main = utility_main_bkp.copy()

 # Update the centroid features with new values

 updateFCCentroids(pois)

 # Create the output feature class with service laterals

 createLaterals(r"D:\Topology\Landbase1.mdb\parcelsCentroids")

105

REFERENCES

106

REFERENCES

1. As cited in: The President‟s National Strategy for Homeland Security (2002)

2. Tolone et al. (2004). Critical Infrastructure Integration Modeling and Simulation.

Retrieved November 25, 2009, from

http://www.sis.uncc.edu/~anraja/PAPERS/ISI04.pdf

3. Gastner, M. T. (2006). Shape and efficiency in growing spatial distribution networks.

Retrieved February 25, 2010, from

http://www.cabdyn.ox.ac.uk/complexity_PDFs/ECCS06/Conference_Proceedings/PD

F/p82.pdf

4. Wang, J. & Provan. G. (2009). A Comparative Analysis of Specific Spatial Network

Topological Models. Retrieved April 5, 2010, from http://www.cs.ucc.ie/ccsl/GP-

papers/2009/Wang_ICCS_2009_2.pdf

5. Wang, J. & Provan. G. (2008). Generating Application-Specific Benchmark Models

for Complex Systems. Retrieved April 5, 2010, from

http://www.aaai.org/Papers/AAAI/2008/AAAI08-090.pdf

6. Newman, M. E. J., Strogatz, S.H. & Watts, D. J. (2001). Random graphs with

arbitrary degree distributions and their applications. The American Physical Society,

64(026118). doi: 10.1103/PhysRevE.64.026118

http://www.sis.uncc.edu/~anraja/PAPERS/ISI04.pdf
http://www.cabdyn.ox.ac.uk/complexity_PDFs/ECCS06/Conference_Proceedings/PDF/p82.pdf
http://www.cabdyn.ox.ac.uk/complexity_PDFs/ECCS06/Conference_Proceedings/PDF/p82.pdf
http://www.cs.ucc.ie/ccsl/GP-papers/2009/Wang_ICCS_2009_2.pdf
http://www.cs.ucc.ie/ccsl/GP-papers/2009/Wang_ICCS_2009_2.pdf
http://www.aaai.org/Papers/AAAI/2008/AAAI08-090.pdf

107

7. Geographic information system. (2009). Wikipedia. Retrieved December 2, 2009,

from http://en.wikipedia.org/wiki/Geographic_information_system

8. TransCAD. (2009). Retrieved November 30, 2009, from

http://www.caliper.com/tcovu.htm

9. TransCAD. (2009). Wikipedia. Retrieved November 30, 2009, from

http://en.wikipedia.org/wiki/TransCAD

10. MIKE SWMM. (2009). Retrieved December 2, 2009, from http://www.dhi-

italia.it/doc/home/Mike%20SWMM_colon_int-

dhi.pdf?PHPSESSID=tvusa567rmc8kkrlbv43o8tga5

11. Storm Water Management Model (SWMM). (2009). Urban Watershed Management

Research. Retrieved December 1, 2009, from

http://www.epa.gov/ednnrmrl/models/swmm/index.htm

12. Mouse GIS. (2009). GIS And Water Resource Modeling At DHI. Retrieved December

1, 2009, from http://www.crwr.utexas.edu/gis/gishyd98/dhi/mouse/mousmain.htm

13. Geoprocessing [Flowchart]. (2007). ArcGIS 9.2 Desktop Help. Retrieved January 30,

2010, from

http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=What_is_geoproce

ssing?

14. Shapely. (2010). GIS & Python & Invention. Retrieved January 30, 2010, from

http://trac.gispython.org/lab/wiki/Shapely

15. Integrated development environment. (2010). Wikipedia. Retrieved February 2, 2010

from http://en.wikipedia.org/wiki/Integrated_development_environment

http://en.wikipedia.org/wiki/Geographic_information_system
http://www.caliper.com/tcovu.htm
http://en.wikipedia.org/wiki/TransCAD
http://www.dhi-italia.it/doc/home/Mike%20SWMM_colon_int-dhi.pdf?PHPSESSID=tvusa567rmc8kkrlbv43o8tga5
http://www.dhi-italia.it/doc/home/Mike%20SWMM_colon_int-dhi.pdf?PHPSESSID=tvusa567rmc8kkrlbv43o8tga5
http://www.dhi-italia.it/doc/home/Mike%20SWMM_colon_int-dhi.pdf?PHPSESSID=tvusa567rmc8kkrlbv43o8tga5
http://www.epa.gov/ednnrmrl/models/swmm/index.htm
http://www.crwr.utexas.edu/gis/gishyd98/dhi/mouse/mousmain.htm
http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=What_is_geoprocessing?
http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=What_is_geoprocessing?
http://trac.gispython.org/lab/wiki/Shapely
http://en.wikipedia.org/wiki/Integrated_development_environment

108

16. IDLE (Python). (2010). Wikipedia. Retrieved February 4, 2010 from

http://en.wikipedia.org/wiki/IDLE_(Python)

17. Barabasi, L. (2003). Linked. Cambridge, MA: Perseus Publishing

18. Holmes, B. J. & Scott, J. M. (2004). Transportation Network Topologies. Retrieved

April 5, 2010, from

http://www.airborneinternet.com/Docs/Holmes/ICNS_2004_Holmes_Scott.pdf

19. Multiple sets of attributes for road features [Graphic]. (2007). ArcGIS 9.2 Desktop

Help. Retrieved January 30, 2010, from

http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Some_linear_refer

encing_scenarios

http://en.wikipedia.org/wiki/IDLE_(Python)
http://www.airborneinternet.com/Docs/Holmes/ICNS_2004_Holmes_Scott.pdf
http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Some_linear_referencing_scenarios
http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Some_linear_referencing_scenarios

109

CURRICULUM VITAE

Sriharsha Vankadara is a native of Hyderabad, India and obtained his B.E. (Hons) degree

in Civil Engineering from Birla Institute of Technology and Science (BITS), Pilani in

2005. He worked as a GIS programmer and analyst for RMSI Pvt. Ltd., India on projects

for Tele Atlas. While pursuing his M.S. degree, he worked as a Graduate Research

Assistant on BIM and GIS integration and GIS applications in transportation modeling.

