

Model-Based Testing for Software Product Lines

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Erika Mir Olimpiew
Master of Science, Virginia Commonwealth University, 1997

Bachelor of Science, Virginia Commonwealth University, 1995

Director: Dr. Hassan Gomaa, Chairman and Professor
Department of Information and Software Engineering

Volgenau School of Information Technology & Engineering

Spring 2008
George Mason University

Fairfax, VA

 ii

Copyright 2008
Erika Mir Olimpiew
All Rights Reserved

 iii

DEDICATION

This dissertation is dedicated to my father Alexandre Olimpiew, my mother
Dorothea Renata Mir Olimpiew, my siblings Igor, Astrid, Christian, Monika, Alex, and in
the memory of my youngest brother Andrew. I would also like to dedicate this
dissertation in the memory of my grandmother Zylnah C.L. Olimpiew.

 iv

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Hassan Gomaa for his patient, thorough and
valuable help for many years, from the development of the idea for this dissertation to its
conclusion. I would also like to thank Dr. Gantz, Dr. Jeff Offutt, Dr. David Rine, and Dr.
Jon Whittle for serving in my committee.

Also, I would like to thank all participants of all applied research projects from
the SWE 796 Directed Reading, and SWE 721 / IT 821 Reusable Software Architecture
classes: Jung-Woo Peter An, Dave Anderson, Lima Beauvais, Dwight Donaldson,
Ahmed Elkhodary, Hatim Hussein, Hugo Kang, Frederic Kneisel, Chris Magrin, Jason
Pepper, Rasheed Rabbi, and Rich Thornett. Thanks are also due to Diana Webber who
developed the initial version of the Banking System SPL and to Vinesh Vonteru who
implemented the version that was tested as described in this dissertation.

Last, but not least, I would like to thank all my friends at GMU that participated
in the Informal Ph.D. sessions and the numerous discussions about this research. I would
like to thank Mazen Saleh for helping to start the Informal Ph.D. sessions, for his help
explaining the separation of concerns method, and for the use and support of a tool he
developed to implement the method.

 v

TABLE OF CONTENTS

LIST OF TABLES... xi

LIST OF FIGURES ... xiv

ABSTRACT.. xvii

1 Introduction .. 1

1.1 Motivation and Scope of Research ... 2

2 Problem Statement and Research Approach .. 5

2.1 Problem Statement .. 5

2.2 Thesis Statement ... 5

2.3 Overview of Approach.. 5

3 Related Research.. 9

3.1 Introduction... 9

3.2 Software Models and Modeling Methods... 9

3.3 Software Product Lines... 11

3.4 Variability Mechanisms .. 16

3.5 Separation of Concerns ... 18

3.6 Software Testing of Single Systems ... 21

3.6.1 White Box Testing .. 22

3.6.2 Black Box or Requirements-based Testing... 23

3.6.3 Regression Testing.. 25

3.6.4 Model-Based Testing.. 25

3.6.5 Test Management.. 27

3.7 Software Testing of Software Product Lines .. 28

3.7.1 A Testing Process for Software Product Lines ... 28

3.7.2 Systematic Reuse of Use Case-Based Tests in a Software Product Line 29

Page

 vi

3.7.3 Variability Management with Separation of Concerns................................. 33

3.7.4 Selecting Representative Applications to Test ... 33

3.8 Comparison and Analysis of Related Research on Software Testing SPLs 35

4 Extending Model-Based Testing for Software Product Lines 40

4.1 Incorporating CADeT and CADeT-SoC within a SPL Development Process. 40

4.2 Model-Based Testing for a Single Application .. 43

4.3 Model-Based Testing for a SPL.. 45

5 CADeT: A Model-Based Testing Method for SPLs .. 48

5.1 Developing Customizable Test Specifications During SPL Engineering......... 48

5.2 Phase I: Creating Activity Diagrams from Use Cases During SPL Engineering
 50

5.2.1 Role Stereotypes in CADeT.. 51

5.2.2 Reuse Stereotypes and Feature Conditions in CADeT................................. 52

5.2.3 Creating Activity Diagrams from Use Cases.. 55

5.2.4 Analyzing the Impact of Features on the Activity Diagrams 56

5.2.5 Example of Creating Activity Diagrams from Use Cases 58

5.3 Phase II: Creating Decision Tables and Test Specifications from Activity
Diagrams During SPL Engineering... 71

5.3.1 Example of Creating Decision Tables from Activity Diagrams................... 75

5.4 Phase III: Defining Feature-Based Test Plan.. 77

5.4.1 Analysis of Feature Model.. 78

5.4.2 Analysis of Relationships between Features and Test Specifications 80

5.4.3 Applying a Feature-Based Coverage Criterion... 81

5.4.4 Example of Defining a Feature-Based Test Plan.. 82

5.5 Phase IV: Applying the Parameterization Variability Mechanism to Decision
Tables and Test Specifications During SPL Engineering ... 85

5.5.1 Tool Support for Parameterization Variability Mechanism.......................... 86

5.5.2 Binding Times Supported by CADeT Tools .. 87

5.5.3 Description of Approach... 88

5.5.4 Example of Applying Parameterization Mechanism 89

5.6 Customizing Test Specifications During Application Engineering.................. 92

 vii

5.7 Phase V: Customizing the Decision Tables and Test Specifications Using the
Parameterization Variability Mechanism .. 93

5.7.1 Selecting Values of Feature Conditions.. 94

5.7.2 Example of Selecting Values of Feature Conditions 94

5.7.3 Applying Test Specification Generator Tool.. 97

5.7.4 Example of Applying Test Specification Generator Tool 97

5.7.5 Applying Test Procedure Definition Tool .. 98

5.7.6 Example of Applying Test Procedure Definition Tool............................... 102

5.7.7 Applying System Test Generator Tool ... 104

5.7.8 Example of Applying System Test Generator Tool.................................... 105

5.8 Phase VI: Selecting Input Data ... 107

5.8.1 Creating Database Structure from Static Entity Model of Application 107

5.8.2 Selecting Input Data to Satisfy Database Constraints................................. 108

5.8.3 Example of Selecting Input Data for Database... 109

5.8.4 Selecting Input Data to Satisfy Execution Conditions in System Tests 111

5.8.5 Example of Selecting Input Data for System Tests 113

5.9 Phase VII: Testing Application... 115

5.10 Summary ... 116

6 CADeT-SoC: Extending CADeT with Separation of Concerns 118

6.1 Separation of Concerns Variability Mechanism in CADeT-SoC................... 120

6.2 Phase IVSoC: Applying Separation of Concerns to Test Specifications During
SPL Engineering.. 121

6.2.1 Extending SCAC for SCT... 121

6.2.2 Applying SCT to the Test Specifications of a SPL..................................... 125

6.2.3 Example of Applying SCT to the Test Specifications of a SPL................. 127

6.2.4 Phase VSoC: Applying Feature-Based Test Derivation using Separation of
Concerns... 130

6.2.5 Example of Applying Feature-Based Test Derivation using SCT.............. 132

6.3 Comparison of CADeT and CADeT-SoC .. 134

6.4 Summary ... 135

7 Evaluation of CADeT and CADeT-SoC.. 137

7.1 Rationale for Selecting Case Study Research Method 138

 viii

7.2 Description of Evaluation ... 139

7.3 Preliminary Study to Evaluate Feasibility of Initial Version of CADeT........ 140

7.3.1 Description of Study ... 140

7.3.2 Results... 142

7.3.3 Interpretation of Results.. 144

7.4 Evaluate Feasibility of Creating and Customizing Test Specifications Using
CADeT (Phases I-V) ... 145

7.4.1 Description of Study ... 146

7.4.2 Characteristics of Requirement Models.. 146

7.5 Application of Phases I-V: Creating and Customizing Test Specifications for
the AHTS SPL... 147

7.5.1 Coverage of All Use Case Scenarios and All Features in AHTS SPL 147

7.5.2 Coverage of All Relevant Feature Combinations in AHTS SPL................ 152

7.5.3 Coverage of All Use Case Scenarios in each Application of the AHTS SPL
 156

7.6 Application of Phases I-V: Creating and Customizing Test Specifications for
the Banking System SPL ... 159

7.6.1 Coverage of All Use Case Scenarios and All Features in Banking System
SPL 159

7.6.2 Coverage of All Relevant Feature Combinations in Banking System SPL 164

7.6.3 Coverage of All Use Case Scenarios in each Application of the Banking
System SPL .. 166

7.6.4 Number of Applications Configured for each SPL..................................... 167

7.6.5 Comparison of Number of Test Specifications Created using CADeT with
alternative approaches.. 167

7.6.6 Number of Test Specifications Created for AHTS SPL 169

7.6.7 Number of Test Specifications Created for Banking System SPL 170

7.7 Evaluate Feasibility and Effort of Customizing Test Specifications and Testing
Applications Using CADeT and CADeT-SoC.. 172

7.7.1 Description of Study ... 173

7.7.2 Results of Applying Each Phase ... 180

7.8 Creating and Customizing Test Specifications Using Parameterization 183

7.8.1 Results for Phase IV: Apply the Parameterization Variability Mechanism 183

 ix

7.8.2 Results for Phase V: Customize Test Specifications for Two Applications
using the Parameterization Variability Mechanism ... 185

7.9 Selecting Test Data for Customized Test Specifications................................ 187

7.9.1 Results for Phase VI: Select Test Data for Two Applications.................... 187

7.10 Results for Phase VII: Test Two Applications ... 190

7.10.1 Results of Executing the Tests.. 190

7.10.2 Coverage of All Use Case Scenarios and All Features........................... 194

7.10.3 Faults Discovered.. 198

7.11 Applying Separation of Concerns... 201

7.11.1 Results for Phase IVSoC: Learn and Apply Separation of Concerns
Variability Mechanism to Test Specifications ... 201

7.11.2 Results for Phase VSoC: Customize Test Specifications for Two
Applications using the Separation of Concerns Variability Mechanism 203

7.12 Applying a Pragmatic Approach... 205

7.12.1 Results of Applying Pragmatic Approach to Create Test Specifications for
Two Applications ... 205

7.13 Results of Questionnaire ... 206

7.14 Interpretation of 3rd Study Results .. 207

7.15 Comparison of CADeT with Previous Research on SPL Testing Methods ... 208

8 Conclusions .. 210

8.1 Contributions... 211

8.1.1 Application of a Feature-Based Coverage Criterion with a Use Case-Based
Coverage Criterion ... 212

8.1.2 Distinguishing Between Coarse-Grained and Fine-Grained Functional
Variability .. 212

8.1.3 Using Separation of Concerns to Customize the Test Specifications of a SPL
 213

8.1.4 Prototype Tools to Customize SPL Test Specifications 213

8.1.5 An Evaluation of CADeT and CADeT-SoC on Two SPLs........................ 214

8.2 Further Study .. 214

8.2.1 Determining a Break-Even Point .. 214

8.2.2 Automating More Phases of CADeT and CADeT-SoC 215

 x

8.2.3 Incorporating Feature-Based and Use Case Scenario-Based Coverage
Criteria with Unit and Integration Testing Criteria.. 215

8.2.4 Evaluating the Impact of SPL Evolution .. 216

8.2.5 Resolving Inconsistencies between Requirement Models.......................... 216

8.2.6 Incremental Testing of SPL .. 216

8.2.7 Integrating Additional Variability Mechanisms ... 217

8.2.8 Detecting Feature-Based Faults .. 217

8.2.9 Evaluating CADeT and CADeT-SoC on Industrial SPLs 217

Appendix A: Banking System SPL case study ... 218

A.1 Requirement Models for Banking System SPL.. 218

A.2 Example of Phase I: Create Activity Diagrams during SPL Engineering 222

A.3 Example of Phase II: Create Decision Tables and Test Specifications from Activity
Diagrams.. 229

A.4 Example of Phase III: Define Feature-Based Test Plan 232

A.5 Example of Phase IV: Apply Parameterization Variability Mechanism.............. 237

A.6 Example of Phase V: Customize Decision Tables and Test Specifications using
Parameterization Variability Mechanism .. 241

A.7 Example of Phase VI: Select Test Data.. 248

A.8 Example of Phase VII: Test Application.. 250

A.9 Example of Applying Separation of Concerns Variability Mechanism in CADeT-
SoC .. 253

Appendix B: Glossary... 258

REFERENCES ... 266

 xi

LIST OF TABLES

Table 1 Comparison of SPL testing methods ... 39

Table 2 Feature condition selection values... 55

Table 3 Feature list for AHTS SPL... 66

Table 4 Excerpt of feature to use case relationship table for the AHTS SPL................... 67

Table 5 Structure of decision table ... 73

Table 6 Decision table for "Enter through transponder enabled booth" use case............. 76

Table 7 Number of possible feature selections for feature conditions.............................. 79

Table 8 Excerpt of feature / test specification relationship table for AHTS SPL............. 83

Table 9 A feature-based combinatorial test plan for the AHTS SPL 85

Table 10 Example of parameterization mechanism applied to decision table.................. 91

Table 11 Feature selections for TS1 ... 95

Table 12 Example of a customized decision table for TS1 .. 96

Table 13 Example of a test specification generated for TS1 .. 97

Table 14 Example of system tests from test procedure document of TS1...................... 104

Table 15 Excerpt of system tests document for TS1 .. 106

Table 16 Relationship between static model notation and database structure................ 108

Table 17 Example of input data selected for database of TS1.. 111

Table 18 Conventions for representing the selection of variable values 112

Table 19 Example of input data selected for a system test ... 114

Table 20 Example of pass / fail status in a test specification.. 117

Table 21 Feature description language ... 123

Table 22 Relationship between insertion points, test specifications and variable test step
file ... 124

Table 23 Representing interacting features in variable file .. 125

Page Table

 xii

Table 24 Number of variable test steps defined for variation points in AHTS SPL
decision tables... 134

Table 25 Studies used to evaluate CADeT and CADeT-SoC... 140

Table 26 Requirements models of AHTS SPL... 141

Table 27 Assessment of initial version of CADeT ... 142

Table 28 Results of questionnaire for first applied project... 144

Table 29 Characteristics of requirement models created for each SPL 147

Table 30 Features / test specifications relationships in AHTS SPL 150

Table 31 Relevant feature combinations in AHTS SPL ... 153

Table 32 Test specifications selected for the applications in the AHTS SPL test plan .. 155

Table 33 Test procedure for TS2 .. 158

Table 34 Features / test specifications relationships in Banking System SPL 163

Table 35 Relevant feature combinations in the Banking System SPL 164

Table 36 Number of application configurations for each SPL 167

Table 37 Number of test specifications created for AHTS SPL..................................... 169

Table 38 Number of test specifications created for Banking System SPL 171

Table 39 Time log template .. 176

Table 40 Total time in man-hours spent learning and applying each phase................... 182

Table 41 Time in man-hours to learn and apply Phase IV ... 184

Table 42 Time in man-hours to learn and apply Phase V... 186

Table 43 Time in man-hours to learn and apply Phase VI ... 189

Table 44 Time in man-hours to learn and apply Phase VII .. 191

Table 45 Test results assigned by participants for test cases .. 192

Table 46 Corrected test results.. 193

Table 47 Features associated with applications of the Banking System SPL................. 195

Table 48 Number of test cases executed against each application 196

Table 49 Faults found in the applications of the Banking System SPL.......................... 199

Table 50 Time in man-hours to learn and apply Phase IV-SoC 202

Table 51 Time in man-hours to learn and apply Phase V-SoC....................................... 204

Table 52 Time in man-hours to learn and apply pragmatic approach 206

Table 53 Results of Questionnaire.. 207

 xiii

Table 54 Feature list for Banking System SPL... 224

Table 55 Feature to use case relationship table for Banking System SPL...................... 225

Table 56 Excerpt of decision table for “Validate pin” use case 230

Table 57 Excerpt of feature / test specification relationships in Banking System SPL.. 235

Table 58 Pair-wise coverage criterion applied to Banking System SPL 237

Table 59 Excerpt from modified “Validate pin” decision table 240

Table 60 Feature selections for application TS1 from the Banking System SPL........... 241

Table 61 Excerpt of customized decision table for “Validate pin” use case 243

Table 62 Card is valid test specification ... 244

Table 63 Example of system test sequences for TS1.. 246

Table 64 Excerpt from “System test 1” of TS1 .. 246

Table 65 Example of input data selected for database of TS1.. 249

Table 66 Test results for “Card Is Valid” test case in system test 1 252

Table 67 Insertion points in “Validate pin” decision table ... 254

 xiv

LIST OF FIGURES

Figure 1 SPL development processes used with PLUS.. 15

Figure 2 Incorporating CADeT within the SPL development process of PLUS.............. 42

Figure 3 Meta-model describing model-based testing for a single application 45

Figure 4 Feature-oriented model-based testing for a SPL .. 47

Figure 5 SPL test development activities.. 50

Figure 6 Example of role stereotypes ... 52

Figure 7 Example of reuse stereotypes ... 53

Figure 8 Feature model for AHTS SPL .. 59

Figure 9 “Enter toll road” use case and extension use cases .. 60

Figure 10 “Enter toll road” use case description .. 61

Figure 11 “Enter through transponder-enabled booth” use case description.................... 62

Figure 12 “Enter through ticket-issuing booth” use case description............................... 63

Figure 13 Initial system level diagram for AHTS SPL... 64

Figure 14 Modified "Enter toll road" use case activity diagram....................................... 69

Figure 15 Activity diagram referenced by “Enter through toll booth” activity node 70

Figure 16 Sub-activity diagrams for adaptable activity nodes.. 71

Figure 17 Example of a simple path trace .. 77

Figure 18 Excerpt of AHTS model with implict feature dependency 84

Figure 19 Association between features and test specifications....................................... 87

Figure 20 Incorporating CADeT within an application engineering process 93

Figure 21 Graph building algorithm ... 100

Figure 22 System test definition tool .. 101

Figure 23 Excerpt of test order graph for TS1.. 103

Figure 24 Excerpt of static model for AHTS SPL.. 110

Figure 25 Association of the alarm feature with a variable test step 122

Page Figure

 xv

Figure 26 Application of SCT during SPL engineering ... 126

Figure 27 Example of test insertion points and variable test step file 128

Figure 28 Excerpt of variable feature file for AHTS SPL.. 129

Figure 29 Application of SCT during feature-based test derivation............................... 131

Figure 30 Code weaver tab in SPLET tool ... 132

Figure 31 Test specification for Invalid Transponder... 133

Figure 32 Example of customized test specification .. 134

Figure 33 Relationship between use case scenarios and test specifications of AHTS SPL
... 149

Figure 34 Test execution sequence graph for TS2.. 157

Figure 35 Execution sequence for system test 1.. 159

Figure 36 Relationship between use case scenarios and test specifications of Banking
System SPL... 161

Figure 37 Total time in man-hours spent learning and applying each phase.................. 181

Figure 38 Time in man-hours to learn and apply Phase IV .. 184

Figure 39 Time in man-hours to learn and apply Phase V ... 186

Figure 40 Time in man-hours to learn and apply Phase VI .. 188

Figure 41 Time in man-hours to learn and apply Phase VII... 191

Figure 42 Time in man-hours to learn and apply Phase IV-SoC.................................... 202

Figure 43 Time in man-hours to learn and apply Phase V-SoC 204

Figure 44 Time in man-hours to learn and apply pragmatic approach 206

Figure 45 Feature model for Banking System SPL .. 219

Figure 46 Use case model for Banking System SPL .. 220

Figure 47 Validate pin use case description ... 221

Figure 48 System level activity diagram for Banking System SPL................................ 223

Figure 49 Activity diagram for “Validate pin” use case... 227

Figure 50 Sub-activity diagrams for adaptable nodes in “Validate pin” activity diagram
... 228

Figure 51 “Display welcome message” adaptable node ... 235

Figure 52 Dependencies between test specifications of TS1.. 246

Figure 53 Debit card class... 248

Figure 54 Static model for Banking System SPL ... 248

 xvi

Figure 55 ATM user interface for TS1 ... 251

Figure 56 Excerpt of variable test step file for Banking System SPL 255

Figure 57 “Card is valid” test specification .. 257

Figure 58 “Card is valid” test specification customized for TS1.................................... 257

ABSTRACT

MODEL-BASED TESTING FOR SOFTWARE PRODUCT LINES

Erika Mir Olimpiew, Ph.D.

George Mason University, 2008

Dissertation Director: Dr. Hassan Gomaa, Chairman & Professor

A Software Product Line (SPL), or family of systems, is a collection of

applications that have so many features in common that it is worthwhile to study and

analyze the common features as well as analyzing the features that differentiate these

applications. Model-based design and development for SPLs extends modeling concepts

for single applications to model the commonality and variability among the members of

the SPL.

Previous research on model-based functional testing methods for SPLs use

existing requirement models, such as feature and use case models, to create reusable test

specifications that can be configured for applications derived from a SPL. Feature-based

test coverage criteria can be applied to determine what applications to test, when it is not

feasible to test all possible applications of a SPL. However, previous research on

functional testing methods for SPLs does not apply feature-based test coverage criteria

together with a use case-based approach of creating reusable test specifications for a SPL.

This research describes a functional test design method for SPLs (Customizable

Activity diagrams, Decision tables and Test specifications, or CADeT) that applies

feature-based test coverage criteria together with a use case-based approach of creating

reusable test specifications for a SPL. Features from a feature model are associated with

test models created from the use cases of a SPL using feature condition variables. The

values of a feature condition represent possible feature selections, so that selecting a

value for the feature condition selects and customizes the test models associated with that

feature.

With CADeT, activity diagrams are created from the use case descriptions of a

SPL. Reusable test specifications are traced from the use case activity diagrams and

described in decision tables. The relationships of features to activity diagrams are also

portrayed in decision tables, and then analyzed to apply a feature-based test coverage

criterion to the SPL. Representative applications configurations are generated to cover all

features, all use case scenarios, and all relevant feature combinations of a SPL. Reusable

test specifications are selected and customized for each application configuration, and

then used to test the corresponding application implementation.

Furthermore, CADeT is extended to use separation of concerns to customize the

reusable test specifications during feature-based test derivation (CADeT-SoC). Instead of

using feature conditions to customize these test specifications, CADeT-SoC separates the

variable test steps from the test specifications, and then weaves selected test steps with

these test specifications during feature-based test derivation. CADeT-SoC is more

suitable than CADeT for customizing the test specifications of a SPL with many variation

points repeated across several use cases. Using CADeT-SoC reduced the effort needed to

define variable test steps for the variation points in test specifications in each SPL.

The feasibility of the CADeT and CADeT-SoC methods was evaluated in three

studies on two SPLs: an Automated Highway Toll System (AHTS) SPL, and a Banking

System SPL. The results of these studies show that CADeT and CADeT-SoC can be used

to create reusable test specifications to cover all use case scenarios, all features, and all

relevant feature combinations on each of these two SPLs. The feature model of each SPL,

and the relationships of features to test specifications were analyzed to determine the

relevant feature combinations, and a feature-based coverage criterion was applied to

reduce the number of application configurations to test. Using CADeT also reduced the

number of test specifications needed to satisfy these criteria, as compared with using two

alternative approaches.

The contribution of this research is CADeT, a model-based test specification

design method, and CADeT-SoC, an extension of CADeT that uses separation of

concerns to customize the test specifications for an application derived from the SPL.

CADeT and CADeT-SoC can help a test engineer create reusable test specifications to

cover all use case scenarios, features and relevant feature combinations of a SPL. These

test specifications can be customized during feature-based test derivation for a set of

applications derived from a SPL. Using CADeT and CADeT-SoC reduces the number of

application configurations and test specifications that need to be created to cover all use

case scenarios, features and relevant feature combinations in a SPL.

 1

1 Introduction

Software applications are developed to fulfill the needs of different users in

various business domains, such as the customers and operators of a banking system. Over

time, a business may develop and deploy several similar applications and configure each

application in a different environment, with variations in language, business rules,

operating system, and hardware features. A Software Product Line (SPL), or family of

systems, is a collection of applications that have so many features in common that it is

worthwhile to study and analyze the common features as well as analyzing the features

that differentiate these applications, in order to more effectively reuse software assets

across members of the family (Parnas 1978; Clements and Northrop 2002). A Software

Product Line (SPL) development method proactively designs a family of applications

with similar characteristics, in order to reuse common features across the members of a

SPL and also to distinguish between the features, or requirements, that differentiate these

applications. Developing a SPL requires more time and resources than developing a

single application. Over time, this additional investment is expected to pay off by

reducing the time to market and costs of deriving and configuring new applications,

which are members of the SPL (Clements and Northrop 2002).

 2

Most research on SPL development methods has investigated the development of

requirements, software models and implementation of a SPL (Kang, Kim et al. 1998;

Weiss and Lai 1999; Clements and Northrop 2002; Gomaa 2005). Although a few

researchers have addressed the management of testing processes and the development of

test specifications for a SPL (McGregor 2001), there are still many open problems in this

area of research. For instance, it is not clear how a testing process should fit within a SPL

development method; how SPL models can be used to create reusable test specifications

that can be configured for any application derived from the SPL; and how to analyze

these models to define an adequate feature-based test coverage criterion.

Managing the testing processes and developing test specifications for a SPL

requires a test design method that is in concert with the SPL development method used to

create the requirements and software models of the SPL. If possible, a functional test

design method for a SPL should leverage existing models, such as the requirements

models, to create black-box system test specifications. Care must be taken to identify

which models should be used; how to extend these models to assist in the planning and

design of test specifications; how to analyze these models to define an adequate feature-

based coverage criterion; and how to apply a mechanism to automate the configuration of

these test specifications for an application derived from the SPL.

1.1 Motivation and Scope of Research

Managing features is an essential part of SPL development. The emphasis in

feature modeling is in capturing the SPL variability, as given by optional and alternative

features, since these features differentiate one member of the family from the others. Use

 3

cases, on the other hand, are a means of describing the functional requirements of an

application in terms of informal, narrative descriptions of interactions between the actor

(application user) and application (Jacobson, Christerson et al. 1992). Use cases can also

serve to describe the functional requirements of a SPL. The goal of the use case analysis

is to get a good understanding of the functional requirements whereas the goal of feature

analysis is to enable reuse (M. L. Griss, J. Favaro et al. 1998). Using a feature-oriented

approach in a SPL-based functional test design method can help a requirements analyst

and test engineer to represent, analyze and manage the relationships of features to

functional requirements, and the test specifications created from these requirements.

Use case-based test design methods for SPLs address the problem of

systematically reusing functional test specifications for the applications derived from an

SPL (Bertolino and Gnesi 2003; Nebut, Fleurey et al. 2003; Reuys, Kamsties et al. 2005).

These methods identify and automatically configure the variability in the test

specifications for an application derived from the SPL, but do not provide a feature-

oriented approach to systematically represent and manage the relationships between the

features and test specifications of a SPL.

A few requirements-based SPL testing methods address the problem of selecting

representative application configurations to test from the configuration space of a SPL, in

situations where the set of applications derived from the SPL is not pre-determined and is

likely to change (McGregor 2001; Scheidemann 2006). For example, a SPL for a mobile

phone may contain several optional features, which can be selected by a prospective

customer. These methods provide a feature-oriented approach to select representative

 4

applications from a SPL, but do not extend this approach to reuse and customize the test

specifications for these applications.

This research builds on previous research on requirements-based test design

methods for a SPL by investigating the problem of representing, analyzing and managing

the relationships of common, optional and alternative features to the use cases of a SPL.

Managing these relationships enables the development of reusable, functional test

specifications that can be configured during feature-based test derivation for an

application derived from the SPL. Reusable test specifications reduce the number of test

specifications that need to be created for a SPL. Furthermore, managing these

relationships reduces the number of application configurations to test, by enabling the

application of a feature-based coverage criterion to cover all features, use case scenarios,

and relevant feature combinations of a SPL.

A feature-oriented functional test design method is proposed in this research to

combine a use case scenario-based test coverage criterion to provide functionality

coverage together with a feature-based test coverage criterion to provide variability

coverage of a SPL. This method systematically represents, analyzes and manages the

relationships of common and variable features to the test specifications of a SPL, so that

these test specifications can be customized during feature-based test derivation to test a

set of applications derived from the SPL.

 5

2 Problem Statement and Research Approach

2.1 Problem Statement

This dissertation investigates and proposes a solution to the problem of testing

applications developed from a SPL in which the functional requirements are expressed as

use cases:

 There is a need for a test design method to create reusable and functional test

specifications to satisfy use case-based and feature-based coverage criteria for a SPL,

where these test specifications can be configured during feature-based test

derivation to test a set of applications derived from the SPL.

2.2 Thesis Statement

 A test design method can be developed to create reusable and functional test

specifications to satisfy use case-based and feature-based coverage criteria for a SPL,

where these test specifications can be configured during feature-based test

derivation to test a set of applications derived from the SPL.

2.3 Overview of Approach

The proposed solution is Creating Customizable Activity Diagrams, Decision

Tables, and Test Specifications (CADeT). CADeT is a model-based test design method

that enables a test engineer to create reusable and configurable test specifications to cover

 6

all use case scenarios and features for a SPL, which can be automatically selected and

configured during feature-based test derivation to test a set of applications derived from

the SPL.

A test engineer uses CADeT to create customizable activity diagrams, decision

tables, and test specifications from the feature and use case models of the Product Line

UML based Software engineering (PLUS) method (Gomaa 2005). PLUS is a UML-

based design method that uses both feature modeling and use case modeling to describe

the requirements of a SPL. CADeT can also be used with other SPL development

methods that use both feature and use case models to describe the SPL requirements.

The CADeT method is divided into four phases during SPL engineering, and

three phases during application engineering. These phases are outlined below:

- Phase I: Create activity diagrams from use cases

- Phase II: Create decision tables and test specifications from activity diagrams

- Phase III: Create a feature-based test plan

- Phase IV: Apply a variability mechanism to customize decision tables.

The remaining three phases are done during application engineering for each

application in the feature-based test plan. During application engineering, phase V is

automated, and phases VI and VII include manual activities. These phases are outlined

below:

- Phase V: Select and customize test specifications for a given application

- Phase VI: Select test data for the application

- Phase VII: Test application.

 7

CADeT-SoC extends CADeT to use a separation of concerns variability

mechanism in phases IV and V of CADeT. CADeT-SoC replaces phases IV and V of

CADeT with the following phases.

During SPL engineering:

- Phase IVSoC: Apply a separation of concerns variability mechanism

The remaining phase is done during application engineering for each application:

- Phase VSoC: Select and customize test specifications using separation of

concerns for a given application.

CADeT and CADeT-SoC were evaluated on two SPLs: an Automated Highway

Toll System SPL and a Banking System SPL. Reusable test specifications were created

for each SPL using CADeT and CADeT-SoC. Then, a set of representative application

configurations was selected to cover features and selected feature combinations in each

SPL. The reusable test specifications were customized for each application configuration

in each SPL using CADeT and CADeT-SoC. The remaining phases (VI “Select test data”

and VII “Test application”) were applied to the Banking System SPL. A set of

applications was derived from a Banking System SPL implementation and then tested

using the customized test specifications.

Chapter 3 describes related research in the area of software modeling, software

testing and software product lines. Chapter 4 describes how a model-based testing

method for a single application is extended to create CADeT and CADeT-SoC. The

CADeT method is described in chapter 5, and CADeT-SoC is described in chapter 6.

 8

Chapter 7 describes the evaluation of these methods on the case studies. Chapter 8

contains the conclusions, contributions, and further study.

 9

3 Related Research

3.1 Introduction

This chapter starts with a broad overview of related research in the more general

areas of software modeling, software product lines, and software testing, and then ends

with a more in-depth review and comparison of related research in the area of software

testing SPLs.

3.2 Software Models and Modeling Methods

A model of a software system is an abstraction of the system from a particular

viewpoint, described with a graphical or textual notation (Rumbaugh, Jacobson et al.

2005). A software modeling method describes how to develop software models using a

modeling notation. Structured analysis and design methods emphasize the functions and

data flow aspects of a system (Yourdon 1989), while object-oriented methods

(Rumbaugh 1991; Jacobson, Christerson et al. 1992; Jacobson, Martin Griss et al. 1997)

emphasize the encapsulation, grouping and categorization of objects in a system.

Bouzeghoub et al survey some well known object-oriented modeling methods

(Bouzeghoub, Gardarin et al. 1997).

Many modeling approaches use several modeling views of a software system,

referred to as multiple-view modeling. Multiple-view modeling includes a context

 10

modeling view to describe the interface of the software system to external devices, actors

and systems, a functional modeling view to describe the functions of the system, a static

modeling view to provide a structural perspective of the system, and a dynamic modeling

view to provide a behavioral perspective of the system. The Concurrent Object Modeling

and architectural design mEThod (COMET) method (Gomaa 2000) is an UML-based

object-oriented software development method that uses multiple-view modeling. A

software engineer uses COMET to develop a use case model that describes the functional

software requirements. In the analysis modeling phase the software engineer develops a

static model, communication diagrams and statecharts from the use cases. Then, in the

design modeling phase, the engineer develops the software application architecture from

these models.

The use case model, first introduced by Jacobson et al. describes use cases, where

a use case groups sequences of interactions that provide a service of value to an outside

user (actor) of the system (Jacobson, Christerson et al. 1992). The 4+1 view model of

software architecture emphasizes the importance of use case modeling as a driver to

determine architectural elements, and as the starting point for testing the system. In the

analysis phase, use cases relate to classes in the static model, object interaction diagrams

in the dynamic model, and test specifications in the test model (Krutchen 1995).

The Unified Modeling Language (UML) is a graphical modeling language which

fully incorporates use case diagrams for modeling requirements, class diagrams for static

modeling, sequence and communication diagrams for inter-object dynamic modeling, and

state diagrams for intra-object dynamic modeling. A UML profile extends the UML

 11

language to a particular domain. A UML profile defines domain-specific stereotypes,

tagged values and constraints on a subset of the UML model elements in terms of the

UML meta-model. A UML meta-model describes relationships between modeling

elements that are applicable to all domains. A stereotype is a classification mechanism

that defines additional semantics for a model element, a tagged value is a set of keyword-

value pairs that define additional properties for a model element, and a constraint is a

restriction on the semantics or value of a model element. The UML notation is used with

a software development method (Rumbaugh, Jacobson et al. 2005; OMG 2007).

In 1997, OMG developed the Object Constraint Language (OCL) to help

formalize the UML models. OCL is a declarative, typed language that is free of side

effects. The OCL language contains several different types of constraints that help

formalize the UML models: invariants, and pre and post conditions. Invariants are

expressions that represent rules, or conditions that are true for a set of model element

instances in an UML model. Precondition and postcondition constraints are associated

with a class operation or other behavioral feature. Precondition constraints specify

conditions that must be true before the operation is executed, while postcondition

constraints specify conditions that must be true after the operation is executed (Warmer

and Kleppe 1999).

3.3 Software Product Lines

A Software Product Line (SPL), or family of systems, is a collection of

applications that have so many features in common that it is worthwhile to study and

analyze the common features as well as analyzing the features that differentiate these

 12

applications, in order to more effectively reuse software assets across members of the

family (Parnas 1978; Clements and Northrop 2002). Several SPL development methods

have been developed in related research (Weiss and Lai 1999; Clements and Northrop

2002; Gomaa 2005; Saleh and Gomaa 2005). Also, the Software Engineering Institute

(SEI) has defined a set of guidelines for SPL development that is based on the framework

developed by Clements and Northrop in (Clements and Northrop 2002).

SPL development consists of SPL engineering and application engineering. SPL

engineering is the development of core assets for a family of systems that comprise the

application domain. Core assets are the requirement models, design models,

implementation, documentation, test specifications and any other artifacts used in the

development of the software product line. Application engineering is the selection and

customization of these assets for an application of the family.

Some SPL modeling methods use several modeling views of a SPL, referred to as

multiple-view modeling. Multiple-view modeling includes a functional modeling view to

describe the functions of the SPL, a static modeling view to provide a structural

perspective of the SPL, and a dynamic modeling view to provide a behavioral perspective

of the SPL (Gomaa and Shin 2004). The functional modeling view can be described with

both feature and use case models. The feature model, first introduced by Kang, is a

diagram that distinguishes between the commonalities and variabilities among the

applications of a SPL (Kang 1990). A feature model describes common, optional and

alternative features, and relationships between these features. A feature is a requirement

or characteristic that is provided by one or more applications of a SPL. A common feature

 13

is present in every application of the SPL; an optional feature is present in some

applications of the SPL, and an alternative feature is mutually exclusive with other

features in the SPL (Kang 1990; Gomaa 2005).

The Product Line UML-Based Software Engineering (PLUS) method describes a

feature-oriented modeling method, process and notation for SPLs based on the UML

notation. The PLUS modeling method is broken down into three phases: requirements,

analysis and design (Gomaa 2005).

In the requirements modeling phase, a SPL engineer creates a feature model, use

case model and a table describing the feature to use case relationships (Gomaa 2005).

The feature model in PLUS is based on the feature model introduced by Kang in (Kang

1990), but is described using the meta-classes and stereotypes of the UML notation. With

PLUS, UML stereotypes are applied to differentiate between «common feature»,

«optional feature» and «alternative feature» (Gomaa 2005). Furthermore, feature groups,

which place a constraint on how certain features can be selected for a SPL member, such

as mutually exclusive features, are also modeled using meta-classes and given

stereotypes, e.g., «zero-or-one-of feature group» or «exactly-one-of feature

group»(Gomaa 2005). The use cases in PLUS are labeled with the stereotypes «kernel»,

«optional» or «alternative» (Gomaa 2005). A kernel use case is required by all members

of the SPL. Other use cases are optional, in that they are required by some but not all

members of the SPL. Some use cases may be alternative, that is different versions of the

use case are required by different members of the SPL. In addition, variation points

specify locations in the use case where variability can be introduced (Jacobson, Martin

 14

Griss et al. 1997; Gomaa and Webber 2004; Gomaa 2005). A feature to use case

relationship table is used to associate features with use cases and use case variation points

in PLUS (Gomaa 2005).

In the analysis modeling phase of PLUS, a SPL engineer creates a static model,

communication diagrams, and statecharts from the use case model. Reuse stereotypes in

the static model categorize classes as kernel, optional, or variant. A feature to class

relationship table is used to associate features with classes, and feature conditions are

used to associate a feature to model elements in the communication diagrams and

statecharts. A feature condition is a variable that associates a model element to a feature

in a feature model, where the values of the feature condition represent possible feature

selections. Selecting values for the feature conditions configures the models for an

application derived from the SPL (Gomaa 2005).

In the design phase of PLUS, a SPL engineer defines the software architecture in

terms of components and connectors. Feature conditions are also used in this phase to

relate features to the model elements in the software architecture (Gomaa 2005).

Figure 1 is an overview of the SPL development processes used with the PLUS

method. A SPL engineer creates reusable requirements models, analysis models and

architecture during SPL engineering and then stores these models into a SPL repository.

Then an application engineer reuses and configures these models for an application

derived from the SPL. The process is iterative, meaning that any unsatisfied

requirements, errors, and adaptations discovered during application engineering are sent

 15

back to the product line engineer, who evolves the SPL models and updates the SPL

repository (Gomaa 2005).

Figure 1 SPL development processes used with PLUS

The Variation Point Model (VPM) is a SPL development method that maps use

case variation points to an application architecture. In VPM, a variation point identifies

one or more locations at which change will occur, and the mechanism for a reuser to

extend it. VPM describes how the parameterization, inheritance, and callback variability

mechanisms are used on the class and sequence diagrams of the system architecture. In

the class diagram, parameterization associates a parameter in a class operation to a

variation point, and parameter values to variation point values. Inheritance associates an

abstract class to a variation point, and its specialized classes to variation point values. In

the sequence diagram, callback associates the interface of a class to a variation point, and

its realization to a variation point value (Webber 2001). The next section describes these

 16

variability mechanisms and other variability mechanisms used to configure the

applications of a SPL.

3.4 Variability Mechanisms

A variability mechanism is a technique that enables automatic configuration of

the variability in an application’s requirements, models, implementation and test

specifications. A variability mechanism is used with a SPL development method to

automate the configuration of the applications of a SPL. Variability mechanisms have

been applied to SPL requirements (Jarzabek 2003), SPL implementations

(Anastasopoulos and Gacek 2001; Muthig and Patzke 2003), and SPL tests (McGregor,

Sodhani et al. 2004) . Some examples of variability mechanisms are:

- Aggregation: Aggregate objects implement the common functionality and

reference contained objects that implement the variant functionality

- Inheritance: Base classes implement the common functionality and specialized

classes implement the variant functionality

- Parameterization: Parameters relate to variation points in the core assets, and

the parameter values correspond to a variation point variant

- Frames: Common code is separated from variant code in separate frames.

Frames are assembled to create application-specific assets (Bassett 1996;

Zhang and Jarzabek 2004).

- Aspects: An aspect facilitates separation of concerns by separating variant

code into an aspect file. Aspect weaving merges the code from the aspect file

with the common code (Kiczales, Lamping et al. 1997).

 17

Several quality criteria have been described for evaluating variability mechanisms

with respect to the construction of product line assets (Anastasopoulos and Gacek 2001;

McGregor 2001; Tirila 2002). Some of these quality criteria are:

- Binding time: The time at which the variability is bound to the asset, which can

be at pre-compile time, at compile time, at initialization time, and at run-time.

- Scope: The smallest entity of variability supported by the mechanism

- Flexibility: The binding times supported by the variability mechanism

- Efficiency: The overhead required to support the variability in the asset using

the variability mechanism

- Separation of Concerns: The ease with which the variability and commonality

in the assets can be decoupled using the variability mechanism.

- Traceability: The ease with which the assets can be traced to the features and

requirements of the SPL.

- Modifiability or adaptability: The ease with which the assets can be modified

during product line evolution using the variability mechanism

- Configurability: The ease with which the assets can be combined and

configured for different application configurations of a product line using the

variability mechanism

Separation of concerns and its impact on the SPL development process is

described in more detail in the next section.

 18

3.5 Separation of Concerns

Separation of concerns is the principle that a given problem involves different

kinds of concerns, or aspects, which should be identified and separated in order to

achieve the required engineering quality factors such as robustness, adaptability,

maintainability, and reusability (Aksit, Tekinerdogan et al. 1996). Variability

mechanisms that emphasize separation of concerns, such as Aspect Oriented

Programming (AOP) (Kiczales 1996; Kiczales, Lamping et al. 1997) and frames (Bassett

1996), have been created to achieve cohesion and decoupling of concerns in the software

models and implementation of a single system. These variability mechanisms facilitate

separation of concerns by explicitly naming, separating and associating parts of the code

with the concern.

AOP identifies and separates those system aspects, or characteristics, that cut

across each other and executable code. These system aspects, also called cross-cutting

concerns, increase the complexity of the implementation due to code tangling and

scattering of the concern. Code tangling means that the concern is interwoven with the

functional code of the modules and with the code of other concerns in the system.

Scattering means that the code of a concern is spread out over the system modules, rather

than being localized, or grouped into one location.

AOP uses join points, pointcuts and advice can to modularize and physically

separate these cross-cutting concerns from the code. Join points are the locations in the

code that will be modified by a cross-cutting concern; a pointcut is a predicate over join

points, and describes the join points that will be modified by a concern; an advice

 19

consists of a pointcut and a body, which encapsulates the implementation of a concern.

An aspect weaver executes the code in the body of the advice at the join point locations

described by the pointcut (Kiczales 1996).

Besides AOP, frame technology has been used to achieve separation of concerns

in program code. Frame technology decomposes the solution for a problem into frames,

or default parts that can be reused, adapted, and composed to describe a group of similar

solutions. Frames are organized into a frame hierarchy. The more specific and context-

sensitive frames at the top of the hierarchy can adapt or select the more general and

context-free frames at lower levels in the hierarchy (Bassett 1987; Bassett 1996).

Both Frames and AOP have been extended for SPLs. Zhang and Jarzabek created

the XVCL frames variability mechanism for handling variants in SPLs. A product line

engineer applies separation of concerns principles to identify the commonality and

variability in the textual documents a product line, such as the requirements and

implementation. The engineer then uses XVCL to organize these assets into a layered

frame hierarchy called an x-framework. An application engineer describes the

configuration of an application of the SPL in a specification x-frame (SPC), and then runs

the XVCL processor on this framework to configure the requirements and

implementation assets for that application (Zhang and Jarzabek 2004).

 Loughran et al combined concepts from AOP and Frames into a language called

Framed Aspects to better address the configuration and evolution of features in a SPL.

Framed Aspects uses a subset of XVCL together with AOP’s join points, pointcuts and

advice. Framed Aspects allows the variability of an implementation to be set at pre-

 20

compile time using Frames, and also allows program behavior to be modified at run-time

using AOP (Loughran and Rashid 2004; Loughran, Rashid et al. 2004). XVCL and

Framed Aspects define feature models, and then delineate frames according to the

features in the feature model.

Lee et al also use feature models in their approach, and describe how Feature

Oriented Analysis (FOA) can be combined with AOP in order to enhance the reusability,

adaptability and configurability of the core assets of a SPL. An engineer uses FOA to

develop a feature model that distinguishes between the common and variable features in

the SPL, maps these features to code and then uses AOP to separate the code of the

variable features and feature dependencies from the code of the common features. Lee et

al point out that in general the common features map to the structure of the base modular

components, but it is possible for a common feature to map to an aspect if it cannot be

encapsulated in a modular component. Also, in general the variable features map to

aspects, but it is possible for a variable feature to map to a modular component (Lee,

Kang et al. 2006).

These approaches use feature models together with separation of concerns, but do

not explicitly model the relationships between features and code. Saleh and Gomaa

developed two feature-oriented approaches that explicitly model these relationships, and

use separation of concerns to customize the clients of a web-service based SPL: the Static

Customization of Client applications method (SCAC), and the Dynamic Customization of

Client applications (DCAC) method. Both methods use a feature description language

 21

and SPLET tool to explicitly associate and group variable code with optional or

alternative features in the SPL feature model.

An engineer can apply either one of these customization methods to generate

applications from the SPL implementation. The SCAC method binds the optional and

alternative source code selected for an application with the common code at pre-compile

time, while the DCAC method integrates parameterized variable code with the common

code, and then reads a customization file during system initialization to enable the code

associated with the features selected for an application of the SPL (Gomaa and Saleh

2005; Saleh 2005; Saleh and Gomaa 2005).

3.6 Software Testing of Single Systems

The process of software testing involves choosing one or more software testing

strategies, using the strategies to generate test cases, executing the System Under Test

(SUT) with the test cases, and verifying that the output is correct for all test inputs. A

software testing strategy constructs a model that captures some properties of a SUT,

applies an analysis technique to identify those properties in the SUT, and provides a

means of generating test cases to exercise those properties. The analysis technique

identifies a test coverage criterion, a description of the properties of a program that must

be exercised to constitute a thorough test. A collection of test cases, or test suite, is

adequate if it exercises all of the properties captured by the analysis technique.

Software testing strategies can be black box, white box or gray box, or a

combination of both. White box techniques examine the structure of the system to create

tests, while black box techniques examine the software requirements without knowledge

 22

of the internal structure of the system. Gray box techniques are a combination of white

box and black box techniques. Software testing techniques can be applied at the unit,

module test, integration test, subsystem test, system test and acceptance test levels

(Beizer 1990).

3.6.1 White Box Testing

White box testing techniques analyze the control-flow or data-flow properties of a

program, and select tests that cover these properties. White box testing techniques model

the control-flow properties of a program using a control-flow graph, which is a directed

graph that represents possible execution paths in the program. Path coverage testing

strategies generate and select tests for various path coverage testing criteria of the

control-flow model (Miller, Paige et al. 1974).

Data flow testing strategies create tests that will detect data flow errors. These

strategies use a data flow graph to model the data flow relationships of the variables

defined and used in a program (Laski and Korel 1983; Rapps and Weyuker 1985; Clarke,

Podgurski et al. 1989).

Predicate testing strategies create tests that will detect faults in the predicate logic

of a program. Branch coverage testing is a type of predicate testing strategy that creates a

test suite to cover both the true and false branches of each predicate in a program at least

once. Other predicate testing strategies create a test suite to cover each simple predicate

in compound predicates, or create a test suite to detect faults in compound predicates (Tai

1996).

 23

Fault-based testing strategies examine the introduction and propagation of errors

in a program’s data state. Fault-based testing strategies focus on revealing certain classes

of syntactic and semantic faults (DeMillo, Lipton et al. 1978; Morell 1990; Offutt 1992;

Morell and Murrill 1993; Murrill, Morell et al. 2002). An example of a syntactic fault is a

typing error, like the substitution of one operator for another. An example of a semantic

fault is an error in the computed data state, which consists of the values of all program

variables, registers (including the program counter), and file descriptors.

3.6.2 Black Box or Requirements-based Testing

Black box testing strategies test the execution of the software system against the

requirements of that system. Some of these strategies, like category-partition and pair-

wise testing, define heuristics on selecting input combinations. Other black box testing

strategies, like state-based testing, define heuristics on selecting paths from a behavioral

model of the system.

Category-partition testing partitions the input data space of a system into

categories, or environment properties and input parameters. A tester describes the values,

or choices for each category. A test case is a set of choices from all categories of a

system (Ostrand and Balcer 1988). Boundary-value testing is a type of category-partition

testing technique that selects input data values from the boundaries of a category.

Combinatorial testing techniques select tests that cover pair-wise, triple or n-way

combinations of an application’s parameters (Cohen, Dalal et al. 1997; Grindal 2007).

Priorities and constraints can be added to combinatorial designs to favor or constrain a

particular input combination (Bryce and Colbourn 2006).

 24

Formal specification-based testing strategies create tests from formal system

specifications, such as specifications written in Z notation, or specifications modeled by

state machines. Stocks and Carrington describe a formal specification-based testing

framework using Z notation and test templates, where a test template specifies the

characteristics of the input data that can exercise a test requirement. Test templates can

be used to instantiate test cases (Stocks and Carrington 1996). Amla and Amman

transform Z specifications into category-partition test specifications by mapping the

preconditions of a schema to input and environment variable partitions (Amla and

Ammann 1992). Grieskamp et al generate scenario sequences from a use case

specification with the Spec# executable specification language (Grieskamp, Tillmann et

al. 2004).

State-based testing strategies model the behavior of the system with a state

machine, and generate tests to cover a subset of the possible paths through the state

machine. Chow defines a hierarchy for state-based testing coverage criteria such as

branch (transition) coverage, and switch (transition pair) coverage, among others, based

on their error-detecting power for a class of operation and transfer faults (Chow 1978).

Offutt, Xiong and Lin formalize definitions for four types of test criteria for state-based

testing strategies: transition coverage criterion, full predicate coverage criterion and the

complete sequence coverage criterion (Offutt, Xiong et al. 1999). Offutt and Abdurazik

use the above state machine specification test criteria to generate test cases from UML

statecharts (Offutt and Abdurazik 1999).

 25

3.6.3 Regression Testing

Regression testing is a maintenance task performed on a modified application to

verify that the application has not been adversely affected by the modifications

(Rothermel and Harrold 1994). Selective testing strategies select or regenerate a subset of

the original test suite according to some criteria, such as tests that cover all modifications

made to an application. The selective regression testing criteria used in the techniques

described by Rothermel and Harrold select tests based on changes made to an

application’s implementation (Rothermel and Harrold 1994). Other regression testing

criteria regenerate tests based on changes made to an application’s functional

requirements (Mayrhauser and Zhang 1999).

3.6.4 Model-Based Testing

Model-based testing creates test specifications and test cases from formal or semi-

formal models of a software system. These models can be state machines, or other

software models such as class, activity, and sequence diagrams. More than one software

model can be used to create tests. Model-based testing methods that are based on a formal

specification language can be mapped to an executable language to generate tests.

Informal or semi-formal models need to be supplemented with additional information

before they can be used to generate test specifications.

Mayrhauser et al developed a model-based automated testing environment for

command-based systems. Object and command-language definitions useful for testing

purposes were extracted from a class diagram in order to create test specifications for an

application. Script rules, or constraints on command sequencing, were defined using state

 26

transition diagrams. Test engineers used an automated testing tool called Sleuth to

construct parameterized command sequences and command sequence templates for

system testing and regression testing of several versions of an Automated Cartridge

System (ACS) system and a Spacecraft Command and Data Handling system

(Mayrhauser, Mraz et al. 1994; Mayrhauser 1996).

Poston developed a method to automatically derive test cases from test-ready

object, dynamic, and functional OMT models (Rumbaugh 1991), where a test-ready

model contains enough information to automatically generate test cases for one or more

testing strategies. Testing annotations were added to the object, dynamic and functional

models in order to make them test-ready. The object models described the classes and

class relationships in the system, and were annotated with data domain definitions; the

dynamic models described statecharts and sequence diagrams; and the functional models

described data-flow diagrams, which were annotated with pre and post conditions. These

models were verified for consistency with the help of tools. Then, test specifications were

generated for a group of specification-based testing techniques: Functional testing,

Boundary Value Analysis, Equivalence Class Analysis, Cause-effect graphing, Event-

directed testing and State-directed testing. Manual projection and reference testing were

used to derive the expected output values, and the test specifications were fed into a test

execution tool. A case study showed that the cost of making the models test-ready was

small and beneficial to developers, and that the reduction in testing effort was significant

(Poston 1996).

 27

R. Binder described a fault model and several testing techniques based on some

characteristics of object oriented systems: encapsulation, inheritance, polymorphism and

dynamic binding, and message sequence associated with object state. One of these testing

techniques, the extended use case pattern, shows how decision tables can be created from

use case descriptions (Binder 2002).

Briand and Labiche developed TOTEM, which is a model-based testing method

that is used to create test cases from use cases. A test engineer uses TOTEM to create an

activity diagram describing use case sequences. Then, the test engineer converts the use

case descriptions to sequence diagrams and uses OCL to describe the conditions that

drive a use case scenario in the sequence diagram. Next, the test engineer groups these

conditions into decision tables, which can then be composed to derive system test

sequences over the entire system (Briand and Labiche 2001). The decision table is based

on the extended use case pattern which was first introduced by Binder (Binder 2002).

3.6.5 Test Management

Software testing techniques need to be incorporated within a test plan and test

development method. The IEEE standard 829-1998 describes how to create a test plan

using test design, test case and test procedure specification documents. A test plan

organizes the test design, test case and test procedure specification documents. A test

design specification describes a testing strategy, the functions that will be tested, and the

relationship between the functions and tests. A test case specification describes a test

case, which contains a test objective, inputs, outputs and test case dependencies. A test

procedure specification describes the procedure for executing the tests (IEEE 1998).

 28

3.7 Software Testing of Software Product Lines

The goal of a software testing strategy for a single application is to create tests

that are effective and efficient at revealing faults in that application. SPL-based testing

strategies are based on testing strategies for single applications, and are adapted to fit

within an SPL development process. Besides being integrated within an SPL

development process, SPL-based testing strategies differ from testing strategies for single

applications in the methods used to generate, manage, and reuse test assets. These

methods attempt to reduce the cost of creating, maintaining, and using the test assets over

the set of applications derived from the SPL (Tevanlinna, Taina et al. 2004).

 An orthogonal goal of most SPL-based testing strategies is to enable the

systematic reuse of test assets over the set of applications derived from a SPL. Another

orthogonal goal is to select representative applications to test from all possible

applications that can be derived from a SPL. An application selection criterion is

necessary in situations where the set of applications derived from the SPL is not pre-

determined and is likely to change. The following describes the seminal work in this area.

3.7.1 A Testing Process for Software Product Lines

McGregor developed a testing process for the requirements-based testing of core

assets and applications of a SPL. This process described how test management activities,

requirements-based testing strategies, and test specifications could be adapted to fit

within a SPL development process (McGregor 2001). Kolb highlighted some problems

particular to testing SPLs, such as reusing generic tests and test results, and choosing

which variants to test from a potentially large number of variants (Kolb 2003).

 29

McGregor also defined some quality criteria for constructing software tests for

SPLs, which include: traceability, modifiability, and configurability. Traceability

indicates how easily the testing assets can be traced to the production software and the

requirements. Modifiability is the ease with which the test assets can change when

iterative changes are made to the SPL or to the applications derived from the SPL.

Configurability is the ease with which the test assets can be configured to handle different

combinations of variants for the different applications derived from a SPL (McGregor

2001).

To enhance configurability, McGregor recommended designing a test procedure

that can be used during product line engineering and application engineering (McGregor

2001). A later paper recommended using the same variability mechanism for customizing

the production software implementation and the test implementation in order to improve

the traceability between tests and production software (McGregor, Sodhani et al. 2004).

3.7.2 Systematic Reuse of Use Case-Based Tests in a Software Product Line

Several use case-based testing methods for SPLs have expanded on McGregor’s

work. Use case-based testing strategies create tests from the use case descriptions, or

from functional models developed from the use case descriptions. Most of these

strategies address the problem of systematically reusing test specifications across a set of

applications derived from an SPL. The following describes some of these use case-based

testing techniques.

Bertolino et al. developed Product Line Use case Test Optimization (PLUTO), a

method of creating tests from the use case descriptions of a SPL. Variation points in a use

 30

case description are tagged to create a Product Line Use Case (PLUC) description. The

tags in a PLUC identify alternative, optional and parametric variation points (Bertolino

and Gnesi 2003). The traditional Category Partition (CP) method (Ostrand and Balcer

1988) is adapted for the PLUCs of a SPL by converting each alternative, optional or

parametric tag in a PLUC into a test category, and then making each variation point value

in a test category a possible test input choice. The PLUC’s variations section describes

constraints to limit the combination of input choices. Test instantiation is done in two

steps: First, the tags corresponding to the features selected for an application derived

from the SPL are enabled, selecting a set of test categories and test choices; next, a test

specification is created for each valid combination of selected choices in all selected

categories. The resulting test suite contains test specifications that cover all possible

combinations of choices for the application (Bertolino and Gnesi 2003).

Nebut et al. developed a test design method based on the use case contracts of a

SPL. Customizable use case contracts are created for a SPL, customized for an

application derived from the SPL, and then used to derive use case sequences that satisfy

a predicate coverage criterion. Use case contracts consist of use case precondition and

postcondition predicates. Variant tags are inserted next to the variant parts of a contract,

so that selecting the variant tags for an application extracts the contracts relevant to that

application from the set of contracts of the SPL. Next, a Use Case Transition System

(UCTS) is built for that application by linking the postcondition from one use case to the

preconditions of other use cases. Nebut et al define the following predicate-based

coverage criteria for the UCTS of an application: all instantiated use cases, all

 31

precondition terms, and all false precondition terms. All instantiated use cases means that

a set of test objectives exercises each instantiated use case at least once, where a test

objective is a path in the UCTS. All precondition terms means that a set of test objectives

exercises each use case in as many ways as there are predicate combinations to make its

precondition true. All false precondition terms is a robustness testing criterion, which

exercises each use case in as many ways as there are predicate combinations to make

each precondition false. The robustness testing criterion tests the defensive code of the

application (Nebut, Fleurey et al. 2003).

Other use case-based test design methods generate test specifications from the

activity diagrams created from the use cases of a SPL. Kamsties et al. described a method

of creating reusable test specifications from SPL activity diagrams, and suggested that

some variability mechanisms are more suitable for describing certain types of variability.

For example the parameterization mechanism, which associates variation points to

parameters, is more appropriate for describing and configuring the variability in message

parameters. On the other hand the fragmentation mechanism, which associates variation

points to variability in the control flow of event sequences, is more appropriate for

describing and configuring the variability in use case relationships (Kamsties, Pohl et al.

2003).

Hartmann et al. developed a tool that converts activity diagrams to category-

partition tests for a system, and then extended that tool for a SPL. A test engineer maps

product configurations to nodes and transitions in the activity diagrams. Selecting a

 32

product configuration selects and enables the nodes and transitions in the activity

diagrams that correspond to that product configuration (Hartmann, Vieira et al. 2004).

Reuys et al. further developed the creation and customization of the activity

diagrams in (Kamsties, Pohl et al. 2003) with the Scenario-based TEst case Derivation

(ScenTED) technique and then applied it to an industrial case study at Siemens. A test

engineer uses ScenTED to create hierarchical activity diagrams from the use cases of an

SPL, and then uses the «variant» stereotype to identify decision nodes and activities in

the activity diagrams that correspond to variation points. The test engineer uses ScenTED

to trace paths from the activity diagrams during SPL engineering to satisfy the branch

coverage testing criterion, and then converts these paths to test specifications, which can

be manually customized for an application derived from the SPL (Reuys, Kamsties et al.

2005).

Other software models, such as a decision tree, have also been used to

systematically reuse the test assets of an SPL. Instead of creating tests from use cases,

Geppert et al. re-engineered a legacy system test suite and then configured these tests

with a decision tree for an application of the SPL (Geppert 2004).

Unlike other approaches that investigate systematic reuse, Kishi et al. use a

feature model to associate features to optional transitions in state machines, and then

create a reusable verification model, which can be configured to verify the design of an

application derived from a SPL. The verification model consists of a feature model,

component diagram, and state machines. Optional features in the feature model are

associated with optional components, optional transitions, and optional state machines. A

 33

state machine representation is created for each actor and component, and a model

checker can be used to verify properties expressed in Linear Temporal Logic (LTL) on

the state machine representations (Kishi and Noda 2004; Kishi, Noda et al. 2005).

However, the purpose of the reusable verification model is to verify the design of

applications derived from a SPL, not to design reusable test specifications that can be

customized for an application derived from the SPL.

3.7.3 Variability Management with Separation of Concerns

Pesonen et al. considered the problems and benefits of applying a separation of

concerns technique together with a conventional object-oriented approach to configure

the test procedures for a SPL. The paper suggested that aspects would be beneficial for

implementing features that do not disturb conventional development in both the test

procedures and the code, such as a logging feature. Further, the paper suggested that

aspects would eliminate code tangling in test procedures without degrading performance.

However, Pesonen et al stressed that without a systematic method and tool, the ad-hoc

use of aspects can add to the problem of managing variability by making it difficult to

trace a feature to the aspect implementation and program execution logic (Pesonen,

Katara et al. 2005).

3.7.4 Selecting Representative Applications to Test

The methods in the previous sections described how to create reusable test

specifications that can be selected and customized for an application derived from a SPL,

but did not address the problem of selecting representative applications to test from the

 34

configuration space of a SPL. In some situations, the set of applications derived from the

SPL is not pre-determined and is likely to change. In this case, a set of representative

configurations needs to be selected during early system testing in order to test for and

detect faults caused by the selection of features and feature combinations. Since an SPL

can contain many features which can be combined in different ways to create many

application configurations, often it is not practicable to test every possible application

that can be derived from the SPL.

A few methods describe how to select a set of representative applications to test

from the configuration space of a SPL. McGregor used combinatorial designs, such as

pair-wise testing (Cohen, Dalal et al. 1997), to select a representative set of applications

to test (McGregor 2001). In contrast, Scheidemann selected an optimal set of application

configurations, such that verifying the correctness of this set implied verifying the

correctness of all possible application configurations. Scheidemann’s method defines two

types of relations: relationships between a configuration and the requirements relevant for

that configuration, and relationships between a requirement and the architectural

components relevant for that requirement (locality sets). This method uses a greedy

algorithm to select the minimum set of configurations necessary to verify all

requirements for all configurations, based on the assumption that the verification result

for each requirement is independent of the behavior of the architecture elements that are

not in the locality set (Scheidemann 2006).

 35

3.8 Comparison and Analysis of Related Research on Software Testing SPLs

Most work on requirements-based testing of SPLs addressed the problem of

systematically reusing the test specifications of the SPL (Bertolino and Gnesi 2003;

Kamsties, Pohl et al. 2003; Nebut, Fleurey et al. 2003; Geppert 2004; Reuys, Kamsties et

al. 2005). Bertolino and Gnesi’s technique creates customizable use case descriptions,

which can be adapted to generate category-partition tests for an application derived from

the SPL (Bertolino and Gnesi 2003). Nebut et al.’s technique creates customizable use

case contracts, which can be adapted to generate use case sequences for an application

derived from the SPL (Nebut, Fleurey et al. 2003). Reuys et al.’s technique develops use

case-level and system-level activity diagrams from use case descriptions, generates

black-box test specifications that correspond to paths traced from the SPL activity

diagrams, and then customizes the test specifications for an application derived from the

SPL (Reuys, Kamsties et al. 2005). These test design methods are appropriate for the

functional testing of a set of predetermined applications derived from the SPL.

Requirements-based SPL test design methods that address systematic reuse apply

a variability mechanism to automate the configuration of test specifications for an

application derived from the SPL. Kamsties et al. investigated the use of variability

mechanisms in SPL-based test design methods, and suggested that the certain variability

mechanisms are more suitable for representing and configuring certain types of

functional variability (Kamsties, Pohl et al. 2003). However, requirements-based SPL test

design methods that address systematic reuse (Bertolino and Gnesi 2003; Kamsties, Pohl

et al. 2003; Nebut, Fleurey et al. 2003; Geppert 2004; Hartmann, Vieira et al. 2004;

 36

Reuys, Kamsties et al. 2005) assume one type of functional variability in a SPL, such as a

predicate in a use case contract, and arbitrarily select one type of variability mechanism,

such as parameterization, to configure that functional variability. In reality, a variation

point can represent varying degrees of a functional variability, from the coarse-grained

functional granularity associated with an extension use case, to the fine-grained

functional granularity associated with a parameter in a use case step. Existing

requirements-based SPL test design methods do not provide a feature-oriented approach

for representing and distinguishing between different granularities of functional

variability, and for choosing a suitable variability mechanism configure this variability.

A few papers addressed the problem of selecting representative applications to

test from the configuration space of a SPL, in situations where the applications derived

from the SPL are not pre-determined and are likely to change (McGregor 2001;

Scheidemann 2006). McGregor described how combinatorial testing strategies (Cohen,

Dalal et al. 1997) can be used to select feature combinations for a set of application

configurations (McGregor 2001), while Scheidemann used a feature model and greedy

algorithm to select a minimal set of representative configurations, such that successful

functional verification of this set implied the correctness of the entire SPL (Scheidemann

2006). These methods provided a feature-oriented approach to select representative

applications from a SPL, but did not extend the feature-oriented approach to create

reusable test specifications that could be customized to test these applications.

Representing, analyzing and managing the relationships of features to test specifications

can help a test engineer to identify possible feature interactions, decide on a set of

 37

representative application configurations to cover these feature interactions, and then

customize the test specifications for each application.

Related research described several types of functional test coverage criteria for

black-box system testing of a single application. Some of these criteria have been

extended for an SPL, such as the category-partition coverage criterion (Bertolino and

Gnesi 2003) and the activity branch coverage criterion (Hartmann, Vieira et al. 2004;

Reuys, Kamsties et al. 2005). However, these approaches lack traceability between the

use cases, features and test specifications in that it is difficult to determine what use case

scenarios and features have been tested in each application relative to the total number of

use case scenarios and features in the SPL. A feature-oriented test design method can

help a test engineer choose suitable use case scenario-based and feature-based test

coverage criteria to apply during SPL engineering and application engineering, and to

determine what use case scenarios and features have been tested in each application

relative to the total number of use case scenarios and features in the SPL.

Previous research on systematic reuse focuses on the configurability and

reusability of test specifications but does not provide a method of representing and

managing the relationships of common and variable features to the test specifications of

an SPL. On the other hand, previous research on selecting a set of representative

applications to test does not extend the feature-oriented approach to create reusable test

specifications that can be customized during feature-based application derivation for an

application derived from the SPL. This research combines a feature-oriented approach

with a use case-based test design method for SPLs to allow a test engineer to create

 38

reusable test specifications to cover the use case scenarios in a SPL, select a set of

representative application configurations to cover the features and feature combinations

in a SPL, and choose and apply a variability mechanism to automate the selection and

customization of these test specifications for each application.

Table 1 compares existing requirement-based SPL test design methods against

CADeT, a feature-oriented model-based test design method for SPLs developed in this

research. Some papers based on this research were published in (Gomaa and Olimpiew

2005; Olimpiew and Gomaa 2005; Olimpiew and Gomaa 2005; Olimpiew and Gomaa

2006; Gomaa and Olimpiew 2008). The methods are ordered by the date in which the

method was introduced. If the method is given a name in related research, the method’s

name is shown as the first entry in each column; otherwise the author’s name is shown as

the first entry in each column. The criteria used to compare the methods are shown as the

first entry in each row, such as whether the test design method is used to create reusable

test specifications, is feature-oriented, or is used to select representative configurations to

test. McGregor’s SPL testing process framework (McGregor 2001) is not included in the

comparison because it does not describe and evaluate a specific testing technique for

SPLs, but rather addresses several issues that need to be considered when testing SPLs.

 39

Table 1 Comparison of SPL testing methods

PLUTO (Bertolino
and Gnesi 2003)

Nebut (Nebut,
Fleurey et al.
2003)

Geppert
(Geppert 2004)

ScentTED (Reuys,
E. Kamsties et al.
2005)

Scheidemann
(Scheidemann
2006)

CADeT (This
research)

Creates reusable
test
specifications Yes Yes Yes Yes No Yes

Feature-oriented No No Yes No Yes Yes

Selects
representative
applications No No No No Yes Yes

Functional
variation point

Statement in use
case description

Predicate in use
case contract

Parameter in
requirements

Decision in activity
diagram

Informal
Requirement

Use case scenario,
variation point in use
case scenario

Variability
mechanisms

Parameterize use
case statement

Parameterize use
case predicates

Parameterize
requirements

Parameterize
conditions in decision
nodes Not applicable

Parameterization,
Separation of
concerns

Extent of
functional
coverage

All use cases and
use case
scenarios for an
application

All instantiated
precondition terms,
etc… in contracts
for an application

Selected
parameters and
parameter values
for an application

All branches in all
activity diagrams of
SPL Not applicable

All use case
scenarios of SPL; all
use case scenarios
selected for an
application

Extent of
variability
coverage

All combinations of
variation point
values for an
application

Selected
combinations of
variation point
values for an
application

All features
selected for one
application

Selected
combinations of
variation point values
for an application

Minimum set of
configurations to
verify all SPL
requirements

All features and
selected feature
combinations of SPL

When to apply
coverage criteria

Application
engineering

Application
engineering

Application
engineering SPL engineering SPL Engineering

SPL and application
engineering

 40

4 Extending Model-Based Testing for Software Product Lines

This section describes how model-based testing for a single application is

extended to create a feature-oriented model-based testing method for a SPL, and then

explains how this method is incorporated within an evolutionary SPL development

process. Customizable Activity Diagrams, Decision Tables and Test Specifications

(CADeT) and Customizable Activity Diagrams, Decision Tables and Test Specifications

using Separation of Concerns (CADeT-SoC) are the names of two feature-oriented

model-based test design methods developed in this research to create functional test

specifications for a SPL.

4.1 Incorporating CADeT and CADeT-SoC within a SPL Development Process

CADeT and CADeT-SoC can be incorporated within an evolutionary SPL

development process which supports a feature-oriented use case-based requirements

modeling method. A feature-oriented use case-based requirements modeling method uses

feature models to distinguish between the commonality and variability in a SPL, and use

case models to describe the functional requirements of the SPL.

The Product Line UML-Based Software Engineering (PLUS) (Gomaa 2005)

method can be used within the SPL development process shown in Figure 2. PLUS is a

feature-oriented UML-based design method that uses both feature modeling and use case

 41

modeling to describe the SPL requirements. A test engineer uses CADeT or CADeT-SoC

to create functional test specifications from SPL feature and use case requirement models

created using the PLUS method.

Figure 2 shows how CADeT and CADeT-SoC impact the SPL development

processes used with PLUS (shaded in gray). A SPL engineer develops the SPL

requirement models using PLUS. Then, a test engineer uses CADeT to develop

customizable activity diagrams, decision tables, and test specifications from the feature

and use case SPL requirements models. During application engineering, an application

engineer applies feature-based application derivation to derive one or more applications

from the SPL. A test engineer uses CADeT to apply feature-based test derivation to select

and customize the test specifications for each application, and then test each application.

Any unsatisfied requirements, errors and adaptations are sent back to the SPL

engineers, who change the reusable assets and store them in the SPL repository. The

process of updating the reusable assets, selecting features, deriving and testing each

application is repeated until the applications are ready to be delivered to the customers.

 42

Software Application
Engineering

SPL
Repository

Customized
Test Models

Executable
application

SPL Engineering

PLUS requirements models,
CADeT activity diagrams,
CADeT decision tables, and
CADeT test specifications

Customer

Application
Engineer

Application Test
Engineer

SPL Engineer

SPL Test
Engineer

SPL
Requirements

Unsatisfied Requirements,
Errors, Adaptations

Application
Requirements

Executable
application

SPL
requirement

Models

SPL Test
Models

Feature-based
test derivation

Feature-based
application
derivation

Single system
testing process

Feature model

Figure 2 Incorporating CADeT within the SPL development process of PLUS

The test models created using CADeT and CADeT-SoC are organized around the

test plan structure described in the IEEE Standard for Software Test Documentation

(IEEE 1998). This standard describes the structure of the test design, test case, and test

procedure specification documents. A test design specification describes a testing

strategy, the functions that will be tested, and the relationship between the functions and

tests. A test case specification describes a test case, which contains a test objective,

inputs, outputs and test case dependencies. A test procedure specification describes the

 43

procedure for executing the tests. These documents are supplemented with graphical test

models, such as activity diagrams, to facilitate the identification, creation and derivation

of functional tests for an application.

Then, these models are extended for a SPL using a feature-oriented approach to

manage the variability in the test models, and reuse these models to generate test

specifications for a set of applications derived from the SPL. The next section describes

the model-based testing method for a single application used in this research, and the

following section describes how this method is extended for a SPL.

4.2 Model-Based Testing for a Single Application

CADeT and CADeT-SoC build on model-based functional test design methods

for single applications. Some model-based functional test design methods for single

applications use UML activity diagrams to describe the processing flow and logic of a

use case (Vieira, Johanne Leduc et al. 2006), while other methods use UML activity

diagrams to describe use case sequencing, UML sequence diagrams to describe the flow

of events in a use case, and decision tables to describe the logic of use case scenario

sequences (Briand and Labiche 2001). In this research, the flow of events in a use case is

described with activity diagrams as in (Hartmann, Vieira et al. 2004; Reuys, Kamsties et

al. 2005; Vieira, Johanne Leduc et al. 2006) rather than sequence diagrams, because

activity diagrams allow use case activities to be organized hierarchically, and are more

precise at depicting how the main and alternative sequences of the use case fit together.

The decision tables of (Briand and Labiche 2001) and (Binder 2002) were also included

 44

and extended to allow a test engineer to relate a set of use case conditions and activities

to paths traced from an activity diagram for each use case scenario.

Figure 3 shows the meta-model of a model-based functional test design method

for a single system used in this research. A use case requirements model describes one or

more use cases. Each use case is converted to an activity diagram, in order to formalize

the activity flow and logic of the use case. A path is traced from an activity diagram for

each use case scenario, and then converted into a column in a decision table, which

identifies the conditions and activities covered by the path. The decision table is then

used to generate test specifications.

 45

«test model»
Decision table

«test model»
Activity diagram

«model artifact»
Use case

11

describes sequencing of

«test model»
Test

specification

1

1

describes logic of

1..*

1

generated from

«requirements
model»

Use case model

1..*

1

describes

1

1

describes scenarios of

Figure 3 Meta-model describing model-based testing for a single application

4.3 Model-Based Testing for a SPL

The model-based testing method for a single application is extended in this

research to create a feature-oriented model-based testing method for a SPL. Figure 4 is a

meta-model that describes the relationships between the requirement models of PLUS

and the functional models in CADeT. The feature to use case relationship table in PLUS

associates the features from a SPL feature model with use cases from a SPL use case

model (Gomaa 2005). One feature is associated with one or more use cases, and one use

 46

case is associated with one or more features. An activity diagram and a decision table are

created for each use case in the use case model. The feature to use case associations are

then applied to the activity diagram and decision table created from each use case. Each

feature in the feature model is associated with one or more activity diagrams, and each

activity diagram is associated with one or more features. Each feature in the feature

model is associated with one or more decision tables, and each decision table is

associated with one or more features. Further, each feature in the feature model is

associated with one or more test specifications, or one or more variation point points in a

test specification. Each test specification, or variation point in a test specification, is

associated with one or more features. Mapping features to the activity diagrams, decision

tables, and test specifications allows these models to be selected and configured for an

application derived from the SPL. The next chapter describes the CADeT method.

 47

«CADeT
model»

Decision table

«CADeT model»
Activity diagram

«PLUS model
artifact»

Use case

11

describes sequencing of

«CADeT model»
Test specification

1

1

describes logic of

1..*

1

generated from

«PLUS model»
Use case model

1..*

1

describes

1

1

describes scenarios of

«PLUS model»
Feature model

1..*

1

describes

«PLUS model
artifact»
Feature

1..*

1..*

maps to

1..*

1..*

maps to

1..*

1..*

maps to

1..*1..*

«PLUS model»
Feature to use

case relationship
table

Variation
point

0..*

1
has

0..*

1..*

maps to
0..*

1..*

has

Figure 4 Feature-oriented model-based testing for a SPL

 48

5 CADeT: A Model-Based Testing Method for SPLs

This chapter describes the Customizable Activity Diagrams, Decision Tables and

Test Specifications (CADeT) method for Software Product Lines, and illustrates its

application to excerpts of an Automated Highway Toll System (AHTS) SPL case study.

CADeT is a feature-oriented test design method that can be used to create functional test

specifications for SPLs. These test specifications can be reused and configured during

feature-based test derivation to test a set of applications derived from the SPL. The

following sections describe how CADeT is used to create these test specifications during

SPL engineering, and how these test specifications are configured during application

engineering to test a set of applications derived from the SPL.

5.1 Developing Customizable Test Specifications During SPL Engineering

A test engineer uses CADeT to develop test models in four phases during SPL

engineering:

- Phase I: Create activity diagrams from use cases

- Phase II: Create decision tables and test specifications from activity diagrams

- Phase III: Define and apply feature-based coverage criteria

- Phase IV: Apply the parameterization variability mechanism to decision tables

and test specifications

 49

Figure 5 describes the activities that correspond to these phases, and the artifacts

created by these activities during SPL engineering. In Phase I, CADeT is used to develop

activity diagrams from the PLUS requirement models, and in Phase II a decision table is

created from each activity diagram. In Phase III CADeT is applied to define a feature-

based test coverage criterion for a SPL. In Phase IV, a variability mechanism is applied to

automate feature-based test derivation of the test specifications during application

engineering. Throughout this process, the features in the feature model are mapped to use

cases in the use case model, activities and activity diagrams, decision tables, and test

specifications.

 50

Phase IV: Apply
variability

mechanism

Phase I: Create
activity diagrams

«CADeT SPL
model»

Decision tables
document

Phase II: Create
decision tables

«CADeT SPL
model»

Activity diagram

«PLUS SPL
model»

Feature model

«PLUS SPL
model»

Use case model

Phase III: Define
and apply feature-

based test coverage
criterion

SPL test development

Software Product Line Engineering

Software
Application
Engineering

Unsatisfied Requirements,
Errors, Adaptations

Create
requirements

models

«PLUS SPL
model»

Feature to use
case relationship

table

«CADeT SPL
model»

SPL test plan

Figure 5 SPL test development activities

5.2 Phase I: Creating Activity Diagrams from Use Cases During SPL Engineering

A use case model provides informal, narrative descriptions of interactions

between the actor and system in terms of a main sequence (scenario) and alternative

sequences. A test case coverage criterion based on use case modeling would be to cover

every scenario of the use case, namely the main scenario and all the alternative scenarios.

 51

A more precise description of the use case scenario, in terms of sequencing and

branching, can be given by an activity diagram, which depicts activity nodes and decision

nodes. A test coverage criterion based on activity diagrams would be to cover all paths in

the activity diagrams that correspond to the use case scenarios. In CADeT, the test

coverage criterion is to cover all use case scenarios (which correspond to paths traced

from activity diagrams) and all features and relevant feature combinations in the feature

model of a SPL. The relevant feature combinations are described in more detail in Phase

III.

In CADeT, an activity diagram is created from each use case description, similar

to the ScenTED approach [5]. Unlike ScenTED, a feature model and feature to use case

relationship table are used to analyze the relationships of features to activity diagrams.

Analyzing these relationships helps an engineer to make informed decisions on how to

best configure the variability in the functional models and test models of a SPL.

5.2.1 Role Stereotypes in CADeT

A role stereotype is a UML notation for classifying a modeling element by the

role it plays in an application (Gomaa 2005). CADeT uses role stereotypes to distinguish

between different granularities of functional variability in the activity diagrams of a SPL.

Distinguishing between different granularities of functional variability makes the activity

diagrams more precise for the purpose of testing. The following stereotypes distinguish

between different granularities of functional abstraction in an activity node:

• A «use case» activity node, which describes a use case, as shown by the “Enter Toll

Road” activity node in Figure 6.

 52

• An «extension use case» activity node, which describes an extension use case.

• An «inclusion use case» activity node, which describes an inclusion use case.

• An «aggregate step» activity node, which groups a sequence of activities, or events,

in a use case description, as shown by the “Process Ticket” activity node in Figure 6.

• An «input step», which describes an input event from the actor to the application in a

use case description, as shown by the “Insert Ticket” activity node in Figure 6.

• An «output step», which describes an output event from the application to the actor in

a use case description.

• An «internal step», which documents an internal (non-observable) activity in the

application.

«use case»
Enter Toll Road

«aggregate
step»

Process Ticket

«input step»
Insert Ticket

Figure 6 Example of role stereotypes

5.2.2 Reuse Stereotypes and Feature Conditions in CADeT

The feature to use case relationship table of PLUS (Gomaa 2005) is used together

with reuse stereotypes and feature conditions of CADeT to analyze the impact of

common, optional, and alternative features on the activity diagrams. A feature to use case

relationship table associates a feature with one or more use cases or variation points,

where a variation point is a location at which change can occur in a SPL (Gomaa 2005).

A reuse stereotype is a UML notation that classifies a modeling element in a SPL by its

reuse properties (Gomaa 2005). A feature condition is a variable that associates a model

 53

element to features in a feature model, where the variable values represent possible

feature selections.

In CADeT reuse stereotypes are applied to activity nodes rather than decision

nodes as in (Reuys, Kamsties et al. 2005), since activity nodes can be abstracted or

decomposed to represent different levels of functional granularity. CADeT contains the

following reuse stereotypes to describe how an activity node is reused in the applications

derived from the SPL:

• A «kernel» activity node, which corresponds to a «common» feature in the feature

model, as shown by the “Enter Toll Road” activity node in Figure 7.

• An «optional» activity node, which corresponds to an «optional» feature in the

feature model, as shown by the “Insert Ticket” activity node in Figure 7.

• A «variant» activity node, which corresponds to an «alternative» feature in the feature

model.

• An «adaptable» activity node, which identifies an activity node that is associated with

a use case variation point, as shown by the “Process Ticket” activity node in Figure 7.

«adaptable
aggregate step»
Process Ticket

«optional input
step»

Insert Ticket

«kernel use
case»

Enter Toll Road

Figure 7 Example of reuse stereotypes

Reuse stereotypes are combined with the role stereotypes (Gomaa 2005) to

describe how the activity node is reused in the applications derived from the SPL. The

«kernel» activity node is “reused as is” in all applications derived from the SPL. The

«optional» and «variant» activity nodes are “reused as is” in some applications derived

 54

from the SPL, depending on whether the corresponding feature has been selected for the

application. In contrast, the «adaptable» activity node describes a use case variation

point, and needs to be customized for an application derived from the SPL. Selecting

features for an application of the SPL configures the «adaptable» activity node for that

application by replacing the adaptable activity node with the variants that correspond to

the selected features.

Besides reuse stereotypes, feature conditions are added to associate the variability

in the control flow of an activity diagram with a feature in a feature model. The values of

a feature condition represent possible feature selections. Table 2 shows the feature

conditions fc and feature selections associated with common, optional, alternative and

parameterized features in the feature model of a SPL. A common feature is associated

with a feature condition set to “T”, or True. An optional feature is associated with a

Boolean feature condition that can be set to two possible selections “T” or “F”. A group

of alternative features in a feature model is associated with a feature condition that has

the alternatives as possible selections. A parameterized feature is associated with a

feature condition that has discrete parameter values or a range of values as possible

selections. Setting the value of a feature condition enables or disables the activities

associated with the feature in the activity diagram of an application derived from the

SPL.

 55

Table 2 Feature condition selection values

Feature category Feature condition selections

Common feature fc = T
Optional feature fc = },{ FT

Alternative feature fc = ,...}2,1{ ealternativealternativ

Parameterized feature fc = ,...}2,1{ parameterparameter

5.2.3 Creating Activity Diagrams from Use Cases

The steps of Phase I are described in more detail below:

1 Create an activity diagram for each use case.

1.1 Stereotype the use case activity diagram as «use case»

1.2 Map the events in the use case description to activity nodes in the activity

diagram. Stereotype these activity nodes as «input step», «output step»,

«internal step» or «aggregate step»

1.3 Map the use case conditions that drive the alternative use case scenarios to

decision nodes and execution conditions in the use case activity diagram. An

execution condition is a tester-controlled variable that affects the control flow

of a path in an activity diagram.

1.4 If a base use case extends or includes another use case, define the activities of

the extension or included use case, and then group these activities in an

activity group using a structured activity node. A structured activity node

(Rumbaugh, Jacobson et al. 2005) references an activity diagram of an

 56

extension or included use case. Stereotype the structured activity node as

«extension use case» or «included use case».

1.5 Add preconditions and postconditions to each use case activity diagram as

described by the UML language reference manual (Rumbaugh, Jacobson et al.

2005). A precondition describes the state of an application before a use case

activity node is executed, and a postcondition describes the state of an

application after a use case activity node has executed. A system state variable

can be used to encode these system states.

1.6 If a use case contains variation points, analyze the impact of the variation

point on the use case activity diagram. This is described in more detail in the

next section.

2 Create a system level activity diagram. A system level activity diagram is an activity

diagram that describes the sequencing between the activity diagrams associated with

the use cases of an application.

2.1 Map each use case activity diagram to an activity node in the system level

diagram.

2.2 New decision nodes, guard conditions, and activity nodes may be added to the

diagram to show control flow dependencies between use cases.

5.2.4 Analyzing the Impact of Features on the Activity Diagrams

The feature to use case relationship table of the PLUS method (Gomaa 2005)

associates a feature with one or more use cases or use case variation points, where a

variation point identifies one or more locations of change in the use cases. This table is

 57

used to analyze the impact of a feature on the system level and use case level activity

diagrams. Feature conditions are created to represent features in the feature model, and

used to control the execution of activities in the activity diagram depending on feature

selection. The following steps describe how feature conditions are added to the activity

diagrams:

3a. If a feature corresponds to one or more use cases:

- Add a feature condition to the decision nodes that control the execution of this

use case in the use case and system level activity diagrams of the SPL.

- If the use case does not contain variation points, stereotype the use case

activity node as «kernel», «optional», or «variant»

3b. If a feature corresponds to one or more variation points, identify which

activity nodes and decision nodes in the use case activity diagram are impacted by the

variation point from the use case description.

3b.1 If the variation point impacts an existing activity node:

 3b.1.1 Stereotype the impacted activity node as «adaptable». Show the

variation point in the parameter list of the «adaptable» activity node.

 3b.1.2 If the variants of the variation point are known, create a sub-activity

diagram for each «adaptable» activity node. In the sub-activity diagram:

- Describe the sequencing logic of the variation point variants.

- Associate each variant with one or more features in the feature model

using feature conditions and reuse stereotypes.

3b.2 If the variation point impacts the control flow of an existing decision node

 58

- Add control flows and activity nodes to the use case activity diagram

for the variation point variant that corresponds to the feature.

- Stereotype the added activity nodes as «kernel», «optional» or

«variant» depending on whether the feature is common, optional or

alternative in the feature model

- Add a feature condition to the decision node to control the execution of

the «optional» or «variant» activity nodes

- If possible, create an «adaptable» activity node to group the newly

added activity nodes. Show the variation points in the parameter list of

the «adaptable» activity node.

5.2.5 Example of Creating Activity Diagrams from Use Cases

The following example illustrates how the CADeT method is used to create the

activity diagrams from the requirements models of an Automated Highway Toll System

(AHTS) SPL. An AHTS consists of a series of toll roads. Each toll road has a series of

fixed toll plazas consisting of one or more toll booths, which serve as collection points

for the toll fees. Customers who use the toll road may pay the tolls by using a transponder

placed in their vehicle or by paying with cash or credit cards at selected toll booths. An

AHTS SPL is a family of Automated Highway Toll Systems that share many similarities

but have some variations, such as the speed limit with which vehicles may pass through,

the types of transponder devices supported, and how the toll amount is calculated.

A feature model, a use case model, and a feature to use case relationship table

have been developed for an AHTS SPL using PLUS (Gomaa 2005). Figure 8 describes a

 59

feature model created for the AHTS SPL, which contains optional Transponder

Entry/Exit Booths, Full Service Entry/Exit Booths and Ticket Entry/Exit Booths features.

There are mutually includes feature dependencies between the toll booth and toll booth

devices, such as Transponder Entry/Exit Booths mutually includes “Transponder

Account”. This dependency indicates the “Transponder Entry/Exit Booths” must be

selected together with the “Transponder Account” feature.

«common»
AHTS Kernel

«optional»
Ticket Entry/Exit

Booths

«default»
Transponder

Entry/Exit
Booths

requires

«optional»
Credit Card

Reader

«default»
Transponder

Account

«optional»
Cash Reader

«optional»
Full Service

Entry/Exit Booths

«at least one of»
Toll Booth Type

«optional»
Operator

«optional»
Ticket reader

mutually
includes

«exactly one of»
Toll Charge

«default»
Variable Toll

Charge

«alternative»
Fixed Toll

Charge

requires

«optional»
Ticket

Dispenser

mutually
includes mutually

includes

mutually
includes

mutually
includes

mutually
includes

mutually
includes

mutually
includes

mutually
includes

requires

«optional»
Barrier

«optional»
Traffic
Light

«zero or more of»
Lane Control

Devices

«optional»
Alarm

«optional»
Camera

mutually
includes

mutually
includes

Figure 8 Feature model for AHTS SPL

Figure 9 describes part of a use case model for the AHTS SPL, which contains the

“Enter Toll Road” use case, the “Enter through Transponder-enabled Booth” and “Enter

through Ticket-issuing Booth” extension use cases. These use cases have been

stereotyped as «kernel» and «optional» using the PLUS notation. The «kernel»

 60

stereotype indicates that the use case is included in all applications of the AHTS SPL, and

the «optional» stereotype indicates that the use case is optionally included in some

applications of the AHTS SPL.

Figure 9 “Enter toll road” use case and extension use cases

The use case descriptions for the “Enter Toll Road”, “Enter through transponder

enabled booth”, and “Enter through ticket issuing booth” use cases are in Figure 10,

Figure 11, and Figure 12, respectively. The “Enter Toll Road” use case has three

variation points: vpBarrier, vpLight, and vpEntryBooth. The variation points vpBarrier

and vpLight refer to barrier and light devices which can be added to the toll booth to

control access to the toll road. The variation point vpEntryBooth extends the “Enter Toll

Road” use case to describe the “Enter through transponder enabled booth” extension use

case in Figure 11 and “Enter through ticket issuing booth” extension use case in Figure

12.

 61

Figure 10 “Enter toll road” use case description

Use case Name: Enter toll road
Reuse category: Kernel
Summary: Vehicle enters toll road through an entry booth
Actor: Vehicle
Precondition: Tollbooth is operational
Description:

1. Vehicle approaches entry booth, and system detects vehicle’s presence.
2. Extend the “Enter through Transponder-enabled Booth” use case.
3. System authorizes vehicle entry
4. System detects vehicle departure
5. System resets toll booth

Alternatives:
None

Postcondition: The vehicle has entered the toll road

Variation Points:

Name: vpBarrier
Type of functionality: Optional
Line numbers: 3, 5
Description of functionality: An optional barrier device can be added to a toll booth. The
barrier can be lowered to prevent a vehicle from leaving a toll booth (line 5) and raised to
allow a vehicle to leave the toll booth (line 3).

Name: vpLight
Type of functionality: Optional
Line numbers: 3, 5
Description of functionality: An optional light device can be added to a toll booth. The light
can turn red, yellow or green. A red light tells the vehicle to stop (line 5), a yellow light is a
warning to the vehicle, and a green light tells the vehicle to go (line 3).

Name: vpEntryBooth
Type of functionality: Optional
Line numbers: 2
Description of functionality: If the ticket entry booth feature is selected for an application of
the SPL, include a ticket printer at an entry booth, and extend the “Enter through ticket booth”
use case in addition to extending the “Enter through transponder booth” use case.

 62

Figure 11 “Enter through transponder-enabled booth” use case description

Use case name: Enter through transponder-enabled booth
Reuse category: Kernel
Summary: Vehicle enters highway through transponder enabled booth.
Actor: Vehicle
Dependency: Extends “Enter Toll Road” use case
Precondition: Booth has detected vehicle presence
Description:

1. System scans transponder
2. If transponder is detected, system stores time and account id of trip transaction.
3. System checks transponder account
4. If transponder account is valid, system stores authorization code

Alternatives:
Line 2: If the transponder is not detected or is invalid, system stores time and id of
transaction for an invalid vehicle entry and warns the vehicle.
Line 4: If the account is invalid, system stores invalid vehicle entry and warns the
vehicle.

Postcondition: The transponder account has been checked.

Variation Points:

Name: vpLight
Type of functionality: Optional
Line numbers: Both alternatives
Description of functionality: The light device can be added to a toll booth. The light can
turn red, yellow or green. A red light tells the vehicle to stop, a yellow light is a warning to
the vehicle, and a green light tells the vehicle to go.

Name: vpAlarm
Type of functionality: Optional
Line numbers: Both alternatives
Description of functionality: The alarm device can be added to a toll booth. The alarm can
sound a warning to the vehicle.

 63

Figure 12 “Enter through ticket-issuing booth” use case description

Activity diagrams were created for each use case of the AHTS SPL. First, the use

case steps in each use case description were mapped to activity nodes. Second, the use

case conditions were identified from the description of the use case alternatives, and then

mapped to decision nodes and execution conditions in each activity diagram. Third, the

system state variable “Vehicle Trip” was created to encode the system states associated

with the pre and post conditions of each use case. Then, an initial system level activity

diagram for the AHTS SPL was created by grouping and referencing use case activity

diagrams using structured activity nodes, as shown in Figure 13. This diagram shows that

the “Exit Toll Road” use case activity diagram is executed after the “Enter Toll Road”

use case activity diagram. The system state variable “VehicleTrip” is defined for each trip

through the toll road. This variable is initially set to “NotInTollRoad” for a vehicle trip, is

updated to “EnteredTollRoad” after the “Enter Toll Road” use case activity diagram is

executed, and then updated to “ExitedTollRoad” after the “Exit Toll Road” use case

activity diagram is executed.

Use case name: Enter through ticket-issuing booth
Reuse category: Optional
Summary: Vehicle enters highway through ticket booth.
Actor: Vehicle
Dependency: Extends “Enter Toll Road” use case
Precondition: Booth has detected vehicle presence
Description:

1. System checks ticket supply
2. System issues ticket with the time, day and booth id
3. Driver takes ticket

Alternatives:
Line 1: If the machine is low on tickets it sends a low ticket warning to an operator.

Postcondition: The driver has taken a ticket
Variation Points:

 64

«extension use case»
1 Exit through

Transponder-enabled Booth

[TransponderBoothExit]

«extension use case»
2 Exit through

Ticket-issuing Booth

«aggregate step»
EX2 Exit through Toll Booth

[TicketBoothExit]

«input step»
EX1 System detects

vehicle

«extension use case»
3 Exit through

Full-service Booth

[FullServiceBoothExit]

[TollPaid]

«output step»
EX6 System resets toll booth

«output step»
EX3 Process

unauthorized vehicle

«output step»
EX4 Authorize vehicle

«input step»
EX5 System detects vehicle departure

[Not TollPaid]

«use case»
EX Exit Toll Road

«precondition»
VehicleTrip = EnteredTollRoad
«postcondition»
VehicleTrip = ExitedTollRoad

«input step»
ET1 System detects vehicle

«output step»
ET3 Authorize vehicle

«output step»
ET5 System resets toll booth

«input step»
ET4 System detects vehicle departure

«use case»
ET Enter toll road

«extension use case»
ET2.1 Enter through

Transponder-enabled Booth

[TransponderBoothEntry]

«extension use case»
ET2.2 Enter through
Ticket-issuing Booth

«aggregate step»
ET2 Enter through Toll Booth

[TicketBoothEntry]

«precondition»
VehicleTrip = NotInTollRoad
«postcondition»
VehicleTrip = EnteredTollRoad

Figure 13 Initial system level diagram for AHTS SPL

 65

Table 3 shows a list of feature conditions created to represent features in the

feature model of the AHTS SPL, and to control the execution of activities in the activity

diagram depending on feature selections. The AHTS SPL contains 16 features, but only 9

of these features (shaded in gray) can be explicitly selected to derive an application

configuration from the AHTS SPL. The Automated Toll System Kernel feature is

represented by the AHTSKernel feature condition with a feature selection of T, since this

feature is always selected for an application derived from the SPL. The toll booth types

and the lane control device features are optional features which map to feature conditions

with },{ FT feature selections. Each of these feature conditions will be set to ‘T’ if the

optional feature is selected for an application of the SPL, else it will be set to ‘F’. The

alternative variable and fixed toll charge features are represented by the tollCharge

feature condition.

Selecting a toll booth will select devices associated with that toll booth:

- IF (ticketBooth = T) THEN ((ticketDispenser AND ticketReader AND

creditCardReader AND cashReader) = T)

- IF (fullServiceBooth = T) THEN ((ticketDispenser AND ticketReader AND

creditCardReader AND cashReader AND operator AND transponderAccount)

= T)

- IF (transponderBooth = T) THEN (transponderAccount = T)

 66

Table 3 Feature list for AHTS SPL

Feature condition Feature Selections
AHTSKernel T
ticketBooth },{ FT
fullServiceBooth },{ FT
transponderBooth },{ FT
camera },{ FT
barrier },{ FT
trafficLight },{ FT
alarm },{ FT
tollCharge {variable, fixed}
ticketDispenser },{ FT
ticketReader },{ FT
creditCardReader },{ FT
cashReader },{ FT
operator },{ FT
transponderAccount },{ FT

Next, the impact of features on the activity diagrams of the AHTS SPL was

analyzed using the feature to use case relationship table together with the use case

descriptions. Table 4 describes an excerpt from a feature to use case relationship table

created for the AHTS SPL.

 67

Table 4 Excerpt of feature to use case relationship table for the AHTS SPL

Feature Name
Feature
Category Use Case Name

Use Case
Category /
Variation
Point (vp)

Variation
Point Name

Enter Toll Road kernel Automated Toll
System Kernel common

Exit Toll Road kernel

Transponder
Entry/Exit Booth

optional,
default

Enter through
Transponder-enabled booth optional

 Exit through Transponder-
enabled booth optional

Ticket Entry/Exit
Booth optional Enter through Ticket-

issuing Booth optional

 Exit through Ticket-issuing
Booth optional

Barrier optional Enter Toll Road vp vpBarrier

 Exit Toll Road vp vpBarrier

Enter Toll Road vp vpLight
Enter through
Transponder-enabled booth vp vpLight Traffic Light optional

Exit Toll Road vp vpLight

Alarm optional Enter through
Transponder-enabled booth vp vpAlarm

The activity diagrams of the AHTS SPL were modified to contain feature

conditions and reuse stereotypes, in order explicitly associate features in the feature

model with activities in the activity diagrams. Figure 14, Figure 15, and Figure 16 show

the modified activity diagrams for the “Enter Toll Road” use case and its two extension

use cases. The feature conditions are underlined in the diagrams to distinguish them from

the execution conditions.

The process of analyzing the impact of features on the activity diagram for the

“Enter Toll Road” use case is described next. The “Enter Toll Road” use case is

 68

associated with the “Automated Toll System Kernel”, “Barrier” and “Traffic Light”

features in Table 4. The “Enter Toll Road” use case contains a variation point in the

“«adaptable aggregate step» ET2: Enter through toll booth” activity node. This variation

point is associated with two extension use cases: “Enter through transponder enabled

booth” and “Enter through ticket issuing booth”. Since “Enter through ticket issuing

booth” is optional, a “ticketBooth” feature condition is added to control the execution of

the activity associated with this use case in the “Enter Toll Road” activity diagram in

Figure 14.

The optional Barrier and Traffic Light features in Table 4 are associated with

vpBarrier and vpLight variation points in the “Enter Toll Road” use case description in

Figure 10. These variation points impact use case steps “3. System authorizes vehicle

entry” and “5. System resets toll booth”, which correspond to the adaptable output steps

“ET3 Authorize vehicle” and “ET5 System resets toll booth” in the activity diagrams of

Figure 14 and Figure 16. The feature conditions and sequencing logic of the variation

point variants associated with the vpBarrier and vpLight variation points are described in

the sub-activity diagrams of Figure 16.

 69

Figure 14 Modified "Enter toll road" use case activity diagram

 70

«adaptable use case»
ET2.1 Enter through
Transponder-enabled
Booth

«optional input step»
1 System scans

transponder

«optional internal
step»

3 Check transponder
account

«adaptable output step»
5 Warn vehicle

(vpAlarm, vpLight)

[TransponderDetected]

[Not TransponderDetected]

[AccountValid][Not AccountValid]

«optional output step»
2 Store time and
account id of trip

transaction«optional output
step»

4 Store time and
booth id of
invalid trip

«optional output
step»

6 System stores
authorization code

[TransponderBoothEntry and
transponderBooth]

«optional output
step»

3 System issues
ticket

«optional input
step»

4 User takes ticket

«optional use case»
ET2.2 Enter through
Ticket-issuing
Booth «optional internal step»

1 System checks ticket
supply

[Not Low]

«optional
output step»

2 System warns
operator

[Low]

«adaptable aggregate step»
ET2 Enter through Toll Booth [TicketBoothEntry and

ticketBooth]

«precondition»
VehicleTrip = EntryDetected
«postcondition»
VehicleTrip = EntryProcessed

Figure 15 Activity diagram referenced by “Enter through toll booth” activity node

 71

«adaptable output step»
ET2.1.5 Warn vehicle
 (vpAlarm, vpLight)

«optional output
step»

1 Sound alarm

«optional output
step»

2 Turn traffic
light yellow

[alarm]

[trafficLight]

[Not alarm]

[Not trafficLight]

«adaptable output step»
ET3 Authorize vehicle
 (vpBarrier, vpLight)

«optional output
step»

1 Raise barrier

«optional output
step»

2 Turn traffic light
green

[barrier]

[trafficLight]

[not barrier]

[not trafficLight]

«adaptable output step»
ET5 System
resets toll booth
 (vpBarrier, vpLight)

«optional output
step»

1 Lower barrier

«optional output
step»

2 Turn traffic
light red

[barrier]

[trafficLight]

[not barrier]

[not trafficLight]

Figure 16 Sub-activity diagrams for adaptable activity nodes

5.3 Phase II: Creating Decision Tables and Test Specifications from Activity

Diagrams During SPL Engineering

In CADeT, a decision table is a chart that represents and organizes the

relationships of conditions and activities in a use case activity diagram to the test

specifications of a SPL. The decision tables in CADeT are similar to the extended use

case pattern decision tables of (Binder 2002) for single applications, but differ in that the

tables in CADeT can be customized for a set of applications derived from an SPL.

Decision tables are used to describe test specifications created from the activity

diagrams of a SPL. Decision tables describe the conditions and sequence of activities

traced from a use case activity diagram for each use case scenario. Each column in a

decision table represents a simple path associated with a use case scenario. A simple path

is a sequence of unique activities traced from an activity diagram. A simple path starts at

a precondition and ends at a postcondition in the activity diagram, does not contain

 72

repeated activity nodes, and can be concatenated with simple paths to represent

sequences of use case scenarios.

Simple paths are converted to test specifications, and then added as columns to

the decision tables. The precondition, feature conditions, execution conditions,

postconditions, and activity nodes traversed by a simple path in the activity diagram are

mapped one to one to the precondition, feature conditions, execution conditions,

postconditions and test steps of a test specification in a column of the decision table.

These test specifications can be concatenated with other test specifications to test

sequences of use case scenarios, and can be selected, deselected, or customized

depending on what features are selected for an application of the SPL.

In CADeT, decision tables also help to represent and manage the relationships of

features in a feature model to the test specifications of a SPL. A feature can be associated

with a test specification, which represents a unit of coarse-grained functionality, or a

feature can be associated with a variation point in a test specification, which represents a

unit of fine-grained functionality. Feature conditions are used to associate a feature with a

test specification, and the «adaptable» stereotype is used to identify a variation point in a

test specification.

The structure of the decision tables is summarized in Table 5. The test

specifications are described in each numbered columns in the table, and the conditions

and actions (test steps) are described in the rows. The value of a condition is entered in

the intersection of the condition with the test specification. If a test step is relevant to a

test specification, then an X is entered in the intersection of that test step with the test

 73

specification, else nothing (null) is entered. The numbers 1 and 2 in the first row

represent labels used to uniquely identify test specifications.

Table 5 Structure of decision table

Id
Name of use case
activity diagram 1 2

 Test specification Main scenario First alternative scenario
Feature
conditions First feature condition

a feature condition
value

 a feature condition
value

Preconditions Precondition label a precondition value a precondition value

Execution
conditions

First execution
condition label

an execution condition
value

an execution condition
value

Actions

1 First test step X or null X or null

2 Second test step X or null X or null
Post
conditions Postcondition label a postcondition value a postcondition value

The following describes the method of mapping the use case activity diagrams to

decision tables in more detail:

1. Create a decision table for each use case activity diagram.

2. For each precondition in the use case activity diagram

- Add the precondition to a row in the preconditions section of the table.

Label the row with the name of the precondition.

3. If the use case activity diagram is associated with a common, optional, or

alternative feature in the feature to use case relationship table

- Add a feature condition that corresponds to the common, optional, or

alternative feature to the feature conditions section of the decision table

4. For each execution condition in the activity diagram

 74

- Add the execution condition to a row in the execution conditions section of

the table. Label the row with the name of the execution condition.

5. For each post condition in the use case activity diagram

- Add the post condition to a row in the post conditions section of the table.

Label the row with the name of the post condition.

6. For each use case scenario

- Trace one or more simple paths from the use case activity diagram for each

use case scenario, beginning at the precondition of the use case activity

diagram, and ending at the next precondition or postcondition reached by

the path.

7. For each simple path traced from the use case activity diagram

- Add a column in the test specifications section of the table. Label the test

specification with a unique name.

- If the path is guarded by a feature condition, enter the value of the condition

in the intersection of the feature condition row with the test specification

column.

- If the path traverses an execution condition, enter the value of the condition

in the table as T (True) or F (False), else leave it blank.

- Enter the value of the precondition and postcondition of the path in the

table.

 75

- List the activity nodes traversed by the path in the actions section of the

table. Each activity node becomes a test step with the same stereotype in the

actions section of the table.

- Mark an X in the row, column intersection of the test step with the test

specification.

8. Distinguish between test specifications that will be reused as is, or adapted for

an application derived from the SPL. Stereotype a test specification as

«adaptable» if it is impacted by a variation point, else stereotype it as «reuse as

is». An «adaptable» test specification contains «adaptable» test steps which

correspond to the «adaptable» activity nodes in the use case activity diagram.

5.3.1 Example of Creating Decision Tables from Activity Diagrams

Phase II of CADeT was applied to create one decision table for each use case

activity diagram of the AHTS SPL. Table 6 is a decision table created from the “Enter

through transponder-enabled booth” use case activity diagram of the AHTS SPL in

Figure 15.

Table 6 shows a decision table created for the “Enter through transponder enabled

booth use case”. The preconditions, feature conditions, preconditions, execution

conditions, postconditions and actions from the activity diagram from Figure 15 were

added to the decision table in Table 6. Simple paths were traced for each use case

scenario of the “Enter through transponder-enabled booth” use case, and then converted

into a test specification column in the decision table. The use case description of “Enter

through transponder-enabled booth” in Figure 11 contains three use case scenarios: a

 76

main scenario, an invalid transponder scenario, and an invalid account scenario. Figure

17 shows an example of a simple path (in bold) traced for the main scenario of the “Enter

through transponder-enabled booth” use case, that corresponds to the “ «reuse as is»

Main scenario” test specification in Table 6.

Table 6 Decision table for "Enter through transponder enabled booth" use case

ET2.1

«adaptable extension use case»
Enter through transponder
enabled booth 3 4 5

 Test Specifications

«reuse as is»
Main
scenario

«adaptable»
Invalid
transponder

«adaptable»
Invalid
account

Feature
conditions transponderBooth T T T

Preconditions VehicleTrip
Entry
Detected EntryDetected EntryDetected

Execution
conditions TransponderBoothEntry T T T
 TransponderDetected T F T
 AccountValid T F

Actions

ET2.1.1
«optional input step» System
scans transponder (in trnspId) X X X

ET2.1.2

«optional output step» System
stores trip transaction (out
accountId, out location) X X

ET2.1.3
«optional internal step» System
checks transponder account X X

ET2.1.4

«optional output step» System
times out and stores invalid trip
transaction (out boothId, out
location) X

ET2.1.5
«adaptable output step» Warn
vehicle (vpAlarm, vpLight) X X

ET2.1.6

«optional output step» System
stores authorization code (out
code) X

Post conditions VehicleTrip
Entry
Processed

Entry
Processed

Entry
Processed

 77

«adaptable use case»
ET2.1 Enter through
Transponder-enabled
Booth

«optional input step»
1 System scans

transponder

«optional internal
step»

3 Check transponder
account

«adaptable output step»
5 Warn vehicle (vpAlarm,

vpLight)

[Transponder
Detected]

[Not TransponderDetected]

[AccountValid][Not AccountValid]

«optional output step»
2 Store time and
account id of trip

transaction«optional output
step»

4 Store time and
booth id of invalid

trip

«optional output
step»

6 System stores
authorization code

[TransponderBoothEntry and
transponderBooth]

«optional output
step»

3 System issues
ticket

«optional input
step»

4 User takes ticket

«optional use case»
ET2.2 Enter through
Ticket-issuing
Booth «optional internal step»

1 System checks ticket
supply

[Not Low]

«optional output
step»

2 System warns
operator

[Low]

«adaptable aggregate step»
ET2 Enter through Toll Booth [TicketBoothEntry and

ticketBooth]

«precondition»
VehicleTrip = EntryDetected
«postcondition»
VehicleTrip = EntryProcessed

Figure 17 Example of a simple path trace

5.4 Phase III: Defining Feature-Based Test Plan

In some SPLs it may not be possible to test all possible application configurations

during early system testing, because the total number of feature combinations can be

large or unbounded. In these SPLs, it is not clear what features and feature combinations

should be covered.

 78

CADeT can be used to create a feature-based test plan that describes a set of

application configurations to test that will cover all features, relevant feature

combinations and all use case scenarios of a SPL. A feature-based test plan describes the

features, feature combinations and use case scenarios that will be covered during testing,

and the associations between features, use case scenarios, and test specifications. A

feature combination is a selection of two or more features from the feature model for an

application of the SPL. A relevant feature combination is a combination of features

participating in a feature dependency or in a feature interaction. The feature model and

the relationship of features in the feature model to the reusable test specifications are

analyzed in Phase III to determine the relevant feature combinations to test.

5.4.1 Analysis of Feature Model

First, the feature model is analyzed to limit the number of application

configurations to test. A feature dependency is a configuration constraint where the

selection of one feature requires or excludes the selection of another feature. Feature

dependencies, such as one feature (A) requires another feature (B), must be tested

together (test combinations ¬A¬B, ¬AB and AB). If one feature (A) mutually includes

another feature (B), then only combination AB must be tested. Feature grouping

constraints, such as mutually exclusive group, also limit the number of possible feature

combinations in a SPL. Parameterized features describe a range of values, which must be

defined during application derivation. The boundary-value test selection criterion can be

applied to select discrete values for the parameterized features of a SPL.

 79

Table 7 describes the number of possible feature selections for feature conditions

associated with the common, optional, alternative and parameterized features of a SPL.

The total number of applications that can be derived from an SPL can be calculated by

multiplying the number of possible feature selections for each feature condition in the

SPL. For example a SPL with three feature conditions f1, f2, f3, where each feature

condition has two possible feature selections, describes 8222 =×× possible application

configurations.

Table 7 Number of possible feature selections for feature conditions

Feature conditions Feature selection Number of feature selections
A feature condition of a
common feature T One
A feature condition of an
optional feature },{ FT 2 (True or False)

A feature condition of an
exactly-one-of feature group ,...}2,1{ alternaltern

,...2,1 alternaltern , or the
number of alternative features in
the feature group

A feature condition of a
zero-or-one-of feature group ,...}2,1,{ alternaltern∅

,...2,1, alternaltern∅ , or the
number of alternative features in
the feature group plus the empty
set

A feature condition of a
zero-or-more-of feature
group ,...}2,1{ optopt

,...2,12 optopt , or two raised to the
power of the number of optional
features in the feature group

A feature condition of an at-
least-one-of feature group ,...}2,1{ optopt

,...2,12 optopt - 1, or two raised to
the power of the number of
optional features in the feature
group minus the empty set

A feature condition of a
parameterized feature ,...}2,1{ paramparam

,...2,1 paramparam or the
number of parameter values in the
set

 80

5.4.2 Analysis of Relationships between Features and Test Specifications

Next, the relationships of features to test specifications are analyzed to reduce the

number of application configurations to test, without omitting any relevant feature

combinations. For each test specification (which corresponds to a use case scenario), the

features that impact the scenario and its variation points must be considered. A test

specification that is associated with two or more features may describe an implicit feature

dependency, or a feature interaction. An implicit feature dependency is a feature

dependency that is not described in the feature model, but is discovered late in the

functional requirements of a SPL. A feature dependency in the functional requirements

occurs when the selection of one feature enables or excludes functional behavior

associated with the selection of another feature.

A feature interaction is a functional behavior that is enabled for a feature

combination selected for an application derived from the SPL, but that is not enabled

when any feature of the combination is selected separately. A feature interaction can

cause desirable (expected) or undesirable system behavior (Zave 2004). In an activity

diagram, a feature interaction is represented as an activity or data value that is enabled by

a combination of two or more features, but is not enabled when any feature of the

combination is selected separately.

The relationship between features and test specifications is summarized in a test

specification / feature table. For each test specification, the features that affect the test

specification, the adaptable test steps in a test specification, and the nature of the feature

interaction (or dependency), are depicted in a feature combination function. The feature

 81

combinations for a given test specification are described with the * or + operator, where

the * operator denotes a relevant feature combination, while the + operator denotes a pair

of independent features. An «adaptable» test specification with k feature conditions,

where the first feature condition has n1 possible values, the second has n2 possible

values, and so forth, can represent up to n1*n2*…*nk variant test specifications. If the

feature conditions associated with a test specification are denoted to be independent, the

number of variant test specifications can be fewer, as in n1+n2+…+nk. The feature

combination function can be simplified by grouping the relevant feature combinations

and then removing duplicate terms.

If this analysis reveals implicit feature dependencies or feature interactions, then

the feature model is revised to be consistent with this analysis. This procedure is limited

to the analysis of feature interactions in a test specification associated with a use case

scenario. Analyzing feature interactions that are associated with the execution of a

sequence of test specifications (inter-use case scenario interactions) is left as an area of

further research.

5.4.3 Applying a Feature-Based Coverage Criterion

Combinatorial testing techniques (Cohen, Dalal et al. 1997; Grindal 2007) can be

used to reduce the number of application configurations to test. CADeT applies a

combinatorial testing technique to select a set of application configurations that cover all

features and relevant feature combinations of a SPL.

CADeT extends combinatorial testing techiques for single applications for SPLs

by applying the notion of a configuration parameter with possible parameter values to a

 82

feature condition with possible feature selections. The notion of constraints in (Cohen,

Dalal et al. 1997) is applied to feature selection constraints in the feature model, such as a

requires dependency between two features. A combinatorial test generation tool, such as

Jenny (Jenkins 2005) is used to describe a representative set of application configurations

that covers all features and relevant feature combinations of the SPL.

The largest number of relevant feature combinations in the feature to test

specification relationship table of a SPL is used to determine a minimum n-way feature-

based combinatorial coverage criterion for that SPL. An n-way combinatorial coverage

criterion covers combinations of at most n features. Alternatively, the feature model can

be used to determine a minimum n-way feature-based combinatorial coverage criterion

for a SPL. Analyzing the feature model to determine a minimum n-way feature-based

combinatorial coverage criterion is left as an area of further research.

5.4.4 Example of Defining a Feature-Based Test Plan

The feature model of the AHTS SPL in Figure 8 has a total of 16 features. Only

nine of these features can be explicitly selected by an application engineer during

application derivation. An application engineer can select or omit the optional Camera,

Barrier, Traffic Light and Alarm features (24); must choose between the alternative

Variable Toll Charge and Fixed Toll Charge features (21); and must choose at least one

toll booth type from the three types of toll booths in the at-least-one-of Toll Booth Type

feature group (23-1). Selecting a toll booth implicitly selects the devices and payment

 83

options that correspond to the toll booth type. With these restrictions an application

engineer can configure a total of ()1222 314 −×× , or 224 applications.

A feature combination function was defined for each test specification of the

AHTS SPL. Table 8 shows an excerpt of a feature / test specification relationship table

for the AHTS SPL. This table shows the feature combination functions associated with

three test specifications from the “Enter through transponder enabled booth” decision

table of the AHTS SPL. All three test specifications are associated with the

transponderBooth feature condition, and two of these test specifications have an

adaptable test step which is impacted by the alarm and trafficLight feature conditions.

Table 8 Excerpt of feature / test specification relationship table for AHTS SPL

Test specification Feature to test
specification

Adaptable test
steps

Feature to
adaptable test step

Feature
combination

function
3. «reuse as is» Enter
through transponder
enabled booth: Main

scenario

transponder
Booth = T N/A N/A

4. «adaptable» Enter
through transponder

enabled booth:
Invalid transponder

transponder
Booth = T

«adaptable
output step»
Warn vehicle

(vpAlarm,
vpLight)

 trafficLight={T,F}
+ alarm={T,F}

(transponderBooth
*trafficLight) +

(transponderBooth*
alarm)

5. «adaptable» Enter
through transponder

enabled booth:
Invalid account

transponder
Booth = T

«adaptable
output step»
Warn vehicle

(vpAlarm,
vpLight)

trafficLight={T,F} +
alarm={T,F}

(transponderBooth*
trafficLight) +

(transponderBooth*
alarm)

The remaining test specifications in the feature / test specification relationship

table of the AHTS SPL were analyzed, and the largest number of relevant feature

combinations in this table is also 2 (see Table 35 in Chapter 7).The feature combination

function (transponderBooth *trafficLight) + (transponderBooth* alarm) in Table 8

 84

describes an implicit feature dependency between the traffic light and alarm lane control

devices, and the transponder toll booth. The selection of a lane control device requires the

selection of a toll booth. Figure 18 shows an excerpt of the feature model of the AHTS

SPL, which has been updated to describe this implicit dependency.

Figure 18 Excerpt of AHTS model with implict feature dependency

The largest number of feature conditions in a relevant feature combination

function in the feature / test specification relationship table of the AHTS SPL is 2. Thus,

at least a 2-way, or pair-wise combinatorial testing strategy was needed to check these

relevant feature combinations. Table 9 shows a feature-based combinatorial test plan that

was generated to cover all valid pair-wise feature combinations in the AHTS SPL using

the Jenny tool (Jenkins 2005). Eight application configurations were generated to cover

all valid pair-wise feature combinations of features in the AHTS SPL.

 85

Table 9 A feature-based combinatorial test plan for the AHTS SPL

TEST PLAN for AHTS SPL
Features: TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8
ticketBooth
a. TRUE x x x
b. FALSE x x x x x
fullServiceBooth
a. TRUE x x x
b. FALSE x x x x x
transponderBooth
a. TRUE x x x x x
b. FALSE x x x
camera
a. TRUE x x x x
b. FALSE x x x x
barrier
a. TRUE x x x x
b. FALSE x x x x
trafficLight
a. TRUE x x x x x
b. FALSE x x x
alarm
a. TRUE x x x x x
b. FALSE x x x
tollCharge
a. Variable x x x x
b. Fixed x x x x

5.5 Phase IV: Applying the Parameterization Variability Mechanism to Decision

Tables and Test Specifications During SPL Engineering

In CADeT, a feature can be associated with a test specification created for a use

case scenario, which represents a unit of coarse-grained functionality, or a feature can be

associated with a variation point value in that test specification, which represents a unit of

fine-grained functionality. As in an activity diagram, a variation point in a test

specification in a test specification is represented using the «adaptable» stereotype. A

 86

variation point value corresponds to an optional or variant test step that can be inserted at

the variation point location. A variability mechanism is a technique that enables the

representation and automatic configuration of the variability in an application’s

requirements, models, implementation and tests. In CADeT, a parameterization

variability mechanism is a technique that uses feature conditions to enable the automatic

configuration of the variability in an application’s test specifications during feature-based

test derivation. Feature conditions are associated with the features of a SPL, and the

values of a feature condition represent possible feature selections.

5.5.1 Tool Support for Parameterization Variability Mechanism

CADeT contains a tool suite based on Excel spreadsheets that automates the

selection and configuration of test specifications for an application derived from the SPL.

This tool suite uses a variability mechanism based on parameterization to select and

configure the test specifications of an SPL. CADeT’s tool suite contains a test generator

tool and a test procedure tool. The test generator tool reads the feature selections in the

feature list for an application configuration and then selects and configures the test

specifications associated with these feature selections. The test procedure tool also reads

the same feature selections, and then creates a test execution graph that describes the

order in which the test specifications can be executed for an application derived from the

SPL. In this graph, a vertex represents a test specification, and an edge represents an

execution dependency between two test specifications.

 87

5.5.2 Binding Times Supported by CADeT Tools

Associations between features and test specifications are represented and bound in

a test specification during SPL engineering, while associations between features and

variation point values are represented in a test specification during SPL engineering but

are bound by the tools during feature-based test derivation. The meta-model in Figure 19

describes the associations between features and test specifications. A feature can be

associated with a either a test specification or a variation point value in the same test

specification.

Figure 19 Association between features and test specifications

Associations between features and test specifications are bound during SPL

engineering, while associations between features and variation point values are

represented during SPL engineering but are bound during feature-based test derivation.

Binding associations between features and test specifications during SPL engineering

 88

allows these test specifications to be selected during feature-based test derivation for an

application of the SPL. Further, binding associations between features and variation point

values during feature-based test derivation allows the selected test specifications to be

customized for that application.

Another option which was considered, but not used in CADeT, was to bind the

variation point values during SPL engineering. However, this required a test engineer to

create test specifications to cover all possible combinations of (possibly unspecified)

variation point values in the SPL, and needlessly increased test development effort.

5.5.3 Description of Approach

Before the tools can be applied to automate the configuration of the test

specifications, the decision tables need to be modified to describe the features and

variation point values associated with each variation point in the adaptable test

specifications. Discrete variation point values need to be defined and then associated with

feature selections from a feature list. This section describes how a parameterization

variability mechanism is applied to the decision tables and test specifications created in

Phase II of CADeT.

The parameterization variability mechanism in this research uses feature

conditions to associate a feature with a test specification of the SPL. The values of a

feature condition variable represent possible feature selections, and selecting a value for

the feature condition automatically configures the decision tables to enable the test

specifications and test steps associated with that feature.

 89

First, a feature list is created to show all feature condition variables associated

with the features of a SPL, as described in Table 2 in Phase I of CADeT. This feature list

is used to customize the decision tables during feature-based test derivation for an

application of the SPL.

Next, the decision tables created in Phase II are modified to describe the feature

conditions associated with adaptable test steps in the test specifications. Furthermore,

these tables are modified to describe the optional or variant test steps associated with the

adaptable test steps in the test specification. Spreadsheet functions are then added to these

tables to enable the selection of optional or variant test steps for a test specification

depending on the selection of a feature or a combination of features.

5.5.4 Example of Applying Parameterization Mechanism

The parameterization variability mechanism was applied to the decision tables of

theAHTS SPL. The feature list in Table 3 was created to show all feature condition

variables associated with the features of the AHTS SPL.

Next, the parameterization variability mechanism is applied to the decision tables

of the AHTS SPL. The following describes how the parameterization mechanism is

applied to the decision table of the “Enter through transponder-enabled booth” use case in

Table 6, to create the modified decision table in Table 10.

The decision table of the “Enter through transponder-enabled booth” use case in

Table 6 has one adaptable test step “«adaptable output step» Warn vehicle (vpAlarm,

vpLight)”. The feature conditions alarm and trafficLight, which impact the variation

 90

points in this adaptable test step (as shown in Table 8 in Phase III), were added to the

feature conditions section of the decision table.

This decision table contains two adaptable test specifications called “Invalid

transponder” and “Invalid account” which include this adaptable test step. The

spreadsheet functions Fc(alarm)={T,F} and Fc(trafficLight)={T,F} were entered in the

intersection of the alarm and trafficLight feature conditions with each test specification,

to display the feature selections associated with an adaptable test step.

Next, the adaptable test step was replaced with optional test steps associated with

the feature selections alarm=T and trafficLight=T. The “«optional output step» Sound

alarm” is associated with feature selection alarm=T and the “«optional output step» Turn

traffic light yellow” is associated with the feature selection trafficLight=T. The

spreadsheet function Fs(alarm=T)= },{ NullX enables “«optional output step» Sound

alarm” when the alarm feature is selected, and disables this step when the alarm feature

is not selected for an application. Likewise, the spreadsheet function

Fs(trafficLight=T)= },{ NullX enables or disables “«optional output step» Turn traffic

light yellow” depending on whether the corresponding feature is selected for an

application derived from the AHTS SPL.

 91

Table 10 Example of parameterization mechanism applied to decision table

ET2.1

Enter through
transponder enabled
booth 3 4 5

 Test Specifications

«reuse as is»
Main
scenario

«adaptable»
Invalid
transponder

«adaptable»
Invalid account

Feature
conditions transponderBooth T T T

 alarm
Fc (alarm) =

},{ FT
Fc (alarm) =

},{ FT

 trafficLight

Fc
(trafficLight)
= },{ FT

Fc (trafficLight) =
},{ FT

Pre-
conditions VehicleTrip

Entry
detected

Entry
detected Entry detected

Execution
conditions TransponderBoothEntry T T T
 TransponderDetected T F T
 AccountValid T F

Actions

1

«optional input step»
System scans transponder
(in trnspId) X X X

2

«optional output step»
System stores trip
transaction (out accountId,
out location) X X

3

«optional internal step»
System checks transponder
account X X

4

«optional output step»
System times out and
stores invalid trip
transaction (out boothId,
out location) X

5.1
«optional output step»
Sound alarm

Fs(alarm=T)
= },{ NullX

Fs(alarm=T) =
},{ NullX

5.2
«optional output step»
Turn traffic light yellow

Fs(traffic
Light=T) =

},{ NullX
Fs(trafficLight=T)
= },{ NullX

 92

6

«optional output step»
System stores
authorization code (out
code) X

Post
conditions VehicleTrip

Entry
Processed

Entry
Processed EntryProcessed

5.6 Customizing Test Specifications During Application Engineering

The remaining phases of CADeT are applied during application engineering to

customize the test specifications for an application derived from the SPL:

- Phase V: Customize the decision tables and test specifications using the

parameterization variability mechanism

- Phase VI: Select test data for an application

- Phase VII: Test application

The activities that correspond to these phases, and the artifacts created by these

activities are shown in Figure 20. The CADeT tools (described in Phase IV) are used to

automate the generation of the test specification, test procedure and system test

documents during feature-based test derivation for application of the SPL

 93

Software Application Engineering

Phase V: Feature-based
test derivation Select values of

feature conditions
for application of

SPL

Apply test
specification

generator tool

Apply test
procedure definition

tool

Apply system test
generator tool

«CADeT SPL
model»

Decision tables
document

«CADeT
application model»

Customized
decision tables

document

«CADeT
application model»
Test specifications

document

«CADeT
application model»

Test procedure
document

«CADeT
application model»

System tests
document

Phases VI and VII:
Single system testing

process

Unsatisfied Requirements,
Errors, Adaptations

«PLUS application
model»

Static model

«CADeT
application model»
System tests log

«CADeT SPL
model»

SPL test plan
«PLUS SPL

model»
SPL static model

Software
Application
Engineering

Figure 20 Incorporating CADeT within an application engineering process

5.7 Phase V: Customizing the Decision Tables and Test Specifications Using the

Parameterization Variability Mechanism

The parameterization variability mechanism uses feature conditions to associate

features with the test specifications of a SPL. Selecting a value for a feature condition

automatically configures the decision tables to enable the test specifications and test steps

 94

associated with that feature. Tools are used during feature-based test derivation in Phase

V to automate the configuration of the decision tables, and to generate test specification,

test procedure and system tests documents. This process is described in more detail in the

following sections, and then illustrated with examples from the AHTS SPL.

5.7.1 Selecting Values of Feature Conditions

First, the feature selection values in the feature list of the SPL are set to

correspond to the feature selections of an application derived from the SPL. The feature

list, decision tables and test specifications of a SPL are stored in a spreadsheet document,

which is created in Phase II, and then updated in Phase IV with the parameterization

variability mechanism. This document contains functions that automatically configure the

decision tables based on the features selected for the application.

5.7.2 Example of Selecting Values of Feature Conditions

The following example describes the customization process for TS1, an

application from the test plan of the AHTS SPL in Table 9. First, the feature list from

Table 3 is customized for application TS1, as shown in Table 11. The “Feature selections

for TS1” column in Table 11 shows the feature selections associated with TS1 for each

feature condition in the AHTS SPL.

 95

Table 11 Feature selections for TS1

Feature condition Feature Selections
AHTSKernel T
ticketBooth T
fullServiceBooth T
transponderBooth T
camera F
barrier F
trafficLight T
alarm F
tollCharge fixed
ticketDispenser T
ticketReader T
creditCardReader T
cashReader T
operator T
transponderAccount T

Setting the feature conditions in the feature list automatically customizes the SPL

decision tables for TS1. Table 12 is an example of a customized decision table for the

“Enter through transponder enabled booth” use case. The Transponder Booth and Traffic

Light features have been selected for TS1, so the values of the feature conditions

associated with these features has been set to ‘T’ in the decision table. The Alarm feature

has not been selected for TS1, so the value of the Alarm feature condition has been set to

‘F’ in the decision table. Setting the Traffic Light feature condition to ‘T’ enables test

step “5.2 Turn traffic light yellow” in the “Invalid transponder” and “Invalid account”

test specifications. Setting the Alarm feature condition to ‘F’ disables test step “5.1

Sound alarm” in these test specifications.

 96

Table 12 Example of a customized decision table for TS1

ET2.1
Enter through transponder
enabled booth 1 2 3

 Test Specifications

«reuse as
is» Main
scenario

«adaptable»
Invalid
transponder

«adaptable
» Invalid
account

Feature
conditions transponderBooth T T T

 alarm F F

 trafficLight T T

Preconditions VehicleTrip
Entry
Detected

EntryDetecte
d

Entry
Detected

Execution
conditions TransponderBoothEntry T T T
 TransponderDetected T F T
 AccountValid T F
Actions

1
«optional input step» System
scans transponder (in trnspId) X X X

2

«optional output step» System
stores trip transaction (out
accountId, out location) X X

3
«optional internal step» System
checks transponder account X X

4

«optional output step» System
times out and stores invalid trip
transaction (out boothId, out
location) X

5.1
«optional output step»
Sound alarm

5.2
«optional output step»
Turn traffic light yellow X X

6

«optional output step» System
stores authorization code (out
code) X

Postconditions VehicleTrip
Entry
Processed

Entry
Processed

Entry
Processed

 97

5.7.3 Applying Test Specification Generator Tool

Next, the test specification generator tool is used to generate the test

specifications document from the customized decision tables. This tool uses feature-

based test derivation to select test specifications in the decision tables that correspond to

features selected for an application of the SPL, and then write the selected test

specifications to a test specifications document for that application.

5.7.4 Example of Applying Test Specification Generator Tool

Only test specifications that are relevant to an application are included in the test

specifications document for that application. Since application TS1 contains the

Transponder Booth feature (see Table 11), the test specifications document for TS1

includes all test specifications from the customized “Enter through transponder enabled

booth” decision table in Table 12.

Table 13 shows an example of a test specification generated for application TS1.

The “Invalid transponder” column from the customized “Enter through transponder

enabled booth” decision table in Table 12 has been reformatted to show only the

conditions and actions that are relevant to that test specification.

Table 13 Example of a test specification generated for TS1

Use case name Enter through transponder enabled booth
Test specification name «adaptable» Invalid transponder
Feature conditions
 transponderBooth T
 alarm F
 trafficLight T
 Preconditions

 98

 VehicleTrip
Entry
detected

Execution conditions
 TransponderBoothEntry T
 TransponderDetected F
Actions

«optional input step» System scans transponder
(in trnspId)

«optional output step» System times out and
stores invalid trip transaction (out boothId, out
location)

«optional output step»
Turn traffic light yellow

Post conditions

 VehicleTrip
Entry
processed

5.7.5 Applying Test Procedure Definition Tool

Next, the test procedure definition tool is used to create a test procedure document

for the application. The test procedure document describes a collection of system tests,

where a system test describes the order in which a sequence of test cases will be executed

for an application derived from the SPL. A test case is an instance of a reusable test

specification that describes the input and output data values selected to satisfy the

predicates in the test specification.

This tool applies a graph building algorithm to construct a test order graph from

the customized decision tables during feature-based test derivation. The test order graph

sorts the test specifications by pre and post conditions, thus constraining the order in

which these specifications can be executed for the application.

 99

The pseudo code for the graph building algorithm is shown in Figure 21. A test

specification is included in the graph if the values of its feature conditions match the

values of the feature selections for the application derived from the SPL. A test

specification in a decision table is mapped to a vertex in the test order graph, and an

execution dependency between test specifications is mapped to an edge in the graph. An

execution dependency is a relationship between two test specifications, where the

precondition of one test specification matches the postcondition of another test

specification.

 100

Figure 21 Graph building algorithm

After the graph is created, a test engineer uses an interface provided by the tool to

create system tests, save these tests to a test procedure document, and view the

percentage of test specifications covered by the test procedure.

var IncludeTest As Boolean
type TestSpecType As {
 TestId As String
 Pre As String
 Post As String
 hasEdge As Integer ‘True if the pre of this spec matches the post of another
spec, else false }

var testSpecification As TestSpecType
var max As Integer ‘The maximum number of test specifications

var AM [0.. max, 0..max] of testSpecification ‘AM is the adjacency matrix that encodes
the graph

BuildGraph() {
 Initialize AM

FOR each decision table in the SPL
 FOR each test specification in the decision table
 IncludeTest = True

 FOR each feature condition in test specification
Look up the feature selection for this feature condition
in the Feature list
IF the feature selection in the feature list does not
match the feature condition value set for this test
specification THEN

IncludeTest = False
 END IF

 END FOR
 IF IncludeTest = True THEN
 Add testSpecification to a row and column in AM
 END IF
 END FOR

END FOR
FOR each testSpec in row of AM

 FOR each adjTest in column of AM
 IF testSpec.Post matches adjTest.Pre THEN

AM [row, column].testSpecification.hasEdge = True
 END IF
 END FOR
 END FOR}

 101

The user interface of the test procedure definition tool is shown in Figure 22. A

test engineer initializes the tool with the name and initial value of a system state variable

defined for the application. The tool displays all test specifications in the test suite that

have a precondition that matches this initial state. Then, the test engineer uses this tool to

create system tests for the application. The test engineer creates a system test by clicking

the “Begin Test” button, and then double-clicks one of the available test specifications to

add it as a test case to the system test. The tool updates the current system state to match

the post condition of the selected test specification, and then displays only those test

specifications that have a precondition that matches the current system state. The test

engineer continues adding test cases to the system test until he or she decides to end the

system test. Then, the test engineer saves the system test to the test procedure document,

which updates the percentage of test specifications covered by the test procedure. The test

engineer continues creating system tests until all test specifications in the application’s

test suite have been covered at least once (percent coverage = 100%).

Figure 22 System test definition tool

 102

However, it is possible that errors in the description of pre and post conditions of

can prevent a test specification from being added to a system test. In this case, the use

case requirements and activity diagrams need to be checked for errors and then updated.

Covering all test specifications in an application’s test suite does not imply that all

possible execution orderings of the test specifications have been covered. Stronger

coverage criteria can be applied to the customized graph, such as covering all edges, or

covering all preconditions of the test specifications in the graph. Applying stronger

coverage criteria improves the effectiveness of a test procedure, but also increases the

effort needed to execute the procedure. Even with a small number of test specifications,

the number of possible paths in a test execution sequence graph can be large.

5.7.6 Example of Applying Test Procedure Definition Tool

The test procedure definition tool shown in Figure 22 was used to create a test

procedure document for application TS1. A test order graph was generated for TS1,

sorting the test specifications of the AHTS SPL according to the pre and post conditions

defined in the use case and system level activity diagrams of the AHTS SPL in Phase I

(see Figure 13) and then mapped to test specifications in Phase II. Then paths were traced

from this graph to define system tests for the test procedure document. Figure 23 is an

excerpt of the test order graph generated for TS1, which shows the execution

dependencies between some of the test specifications selected for TS1. The “Enter toll

Road: Init entry” test specification must be executed first, followed by one of the test

specifications from the “Enter through transponder enabled booth” or “Enter through

 103

ticket issuing booth” use cases. The feature conditions are underlined in the graph to

distinguish them from the execution conditions.

Enter toll
road: Init

entry

Enter through
transponder

enabled
booth: Main

Enter
through

ticket issuing
booth: Main

Enter toll
road: Post

entry

Enter through
transponder

enabled booth:
Invalid

transponder

[VehicleTrip = EntryDetected AND
transponderBooth = T]

[VehicleTrip = EntryDetected AND
transponderBooth = T]

[VehicleTrip = EntryDetected AND
ticketBooth = T]

[VehicleTrip = EntryProcessed]
[VehicleTrip = EntryProcessed]

[VehicleTrip = EntryProcessed]

Exit toll
road: Init

exit

[VehicleTrip = EnteredTollRoad]

Enter
through

ticket
reading

booth: Main

Process
ticket:
Ticket

recognized

Pay with
cash: Pay
with exact

cash
amount

Exit toll
road: Toll

paid

[VehicleTrip = ExitDetected AND
ticketBooth = T]

[VehicleTrip = WaitingForTicket]

[VehicleTrip = WaitingForPayment]

[VehicleTrip = TollPaid]

[VehicleTrip = ExitDetected AND
fullServiceBooth = T]

Enter through
full-service

booth:
Transponder

detected

Pay with
transponder

account:
Account

valid

[VehicleTrip = TransponderDetected]

[VehicleTrip = TollPaid]

Figure 23 Excerpt of test order graph for TS1

 104

Figure 23 also shows a path traced from this graph to define a system test for TS1

(shown in bold). This path describes a system test for a vehicle trip where a driver enters

the toll road through a ticket issuing entry booth, exits the toll road through a ticket

reading exit booth, and then pays the toll using an exact cash amount. This path

corresponds to “System test 1” in an excerpt from the test procedure document of TS1 in

Table 14.

Table 14 Example of system tests from test procedure document of TS1

System test 1
Enter Toll Road: «reuse as is» Init entry sequence
Enter through ticket-issuing booth: «reuse as is» Main scenario
Enter Toll Road: «adaptable» Post entry sequence
Exit Toll Road: «reuse as is» Init exit sequence
Exit through ticket reading booth: «reuse as is» Main
Process ticket: «adaptable» Ticket recognized
Pay with Cash: «reuse as is» Pay with exact cash amount
Exit Toll Road: «adaptable» Toll paid
System test 2
Enter Toll Road: «reuse as is» Init entry sequence
Enter through transponder enabled booth: «reuse as is» Main scenario
Enter Toll Road: «adaptable» Post entry sequence
Exit Toll Road: «reuse as is» Init exit sequence
Exit through full-service booth: «reuse as is» Transponder detected
Pay with transponder account: «adaptable» Account valid
Exit Toll Road: «adaptable» Toll paid

5.7.7 Applying System Test Generator Tool

Next, the system test generator tool is used to generate a system tests document

from the test specifications and test procedure documents of an application. The system

tests document describes the details of the test cases referenced by a test procedure, such

as the inputs and outputs selected to satisfy test predicates, and the test results. Before

generating a system tests document, the test specifications of a SPL can be refined to

 105

describe the actual input and environment variables used by an SPL implementation. The

system tests document is used in Phase VI to select test data for an application, and in

Phase VII to test the application.

5.7.8 Example of Applying System Test Generator Tool

The system test generator tool was applied to generate a system tests document

for application TS1. Table 15 shows an excerpt of the system tests document for TS1.

Besides describing the conditions and actions of each test case in a system test, the

system test document has columns to enter selected inputs, expected outputs and test

results.

 106

Table 15 Excerpt of system tests document for TS1

System test 2
Inputs /
Outputs

Pass /
Fail

Test specification name
Enter Toll Road: «reuse as is» Init
entry sequence

Feature conditions:
AHTSKernel T
Preconditions:
VehicleTrip Not in Toll Road
Execution conditions:
Actions:

«kernel input step» System detects
vehicle

«adaptable aggregate step» Invoke
“Enter through toll booth”

Postconditions:
VehicleTrip Entry detected

Test specification name
Enter through transponder enabled
booth: «reuse as is» Main scenario

Feature conditions:
transponderBooth T
Preconditions:
VehicleTrip Entry detected
Execution conditions:
TransponderBoothEntry T
TransponderDetected T
AccountValid T
Actions:

«optional input step» System scans
transponder (in trnspId)

«optional output step» System stores
trip transaction (out accountId, out
location)

«optional internal step» System checks
transponder account

«optional output step» System stores
authorization code (out code)

Postconditions:
VehicleTrip Entry processed

 107

5.8 Phase VI: Selecting Input Data

In Phase VI the test engineer selects input data for the database and system tests

of the application. This process is similar to the process of selecting input data for the

database and system tests of a single application, with also the same limitations. The

problem of determining whether a particular input data exists to satisfy a test requirement

is undecideable in general (DeMillo and Offutt 1991; Allen, Wang et al. 1994). The

instructions for Phase VI are described in the following sections.

5.8.1 Creating Database Structure from Static Entity Model of Application

Transaction-based software applications usually interface with a database, which

needs to be created and initialized prior to testing the application. A database structure

can be created from the static entity class model of an application. A static entity class

model for an application is derived from the static entity class model of a SPL created

using the PLUS method (Gomaa 2005) during SPL engineering. The feature to class

dependency table in PLUS (Gomaa 2005) describes the relationship between the features

and classes of a SPL. The SPL class model is customized for an application by removing

optional and alternative classes that are not associated with the features selected for the

application.

To create the database structure, classes, constraints and associations in the static

class model are mapped to tables and constraints in the database, as described in (Hoffer,

George et al. 2005). Table 16 summarizes the relationship between the elements in the

static model and the database structure. One table is created for each class in the static

model. The class attributes map to fields in the table, and constraint on class attributes

 108

map to constraints on field values. A class instance, or object, is represented by rows in a

database table. A constraint on an association maps to a constraint on the database table

rows and keys of the related tables.

Table 16 Relationship between static model notation and database structure

Static model Database structure
Class Table
Class attribute Field in table
Constraint on class attribute (type, range of values) Constraint on field value
Class instance (object) Row in table
Constraint on association (cardinality) Constraint on table rows and table keys

5.8.2 Selecting Input Data to Satisfy Database Constraints

Next, the test engineer initializes the database tables by selecting input data for the

database tables that satisfy database constraints. These database constraints may be

comprised of three types of constraints: The maximum number of table rows; the

relationship between a table key and another table’s foreign key; and the type and range

of table field values. The constraint on maximum number of table rows corresponds to

the constraint in the cardinality of a related class association; the relationship between a

table key and another table’s foreign key corresponds to the type of association between

two classes (e.g. unary, binary) and the cardinality of the association (e.g. 1 to 1..*, 1 to

1); and the type and range of table field values corresponds to a constraint on a class

attribute.

 109

5.8.3 Example of Selecting Input Data for Database

A database structure was created from the static entity class model of TS1, an

application derived from the AHTS SPL test plan in Table 9. Then, input data was

selected to satisfy the constraints in the database and in the system tests of TS1.

An excerpt of the static model for TS1 is shown in Figure 24, and an excerpt of

the database created from some classes in this static model is shown in Table 17. The

TollStation, TollBooth, Transponder and TransponderAccount tables in the database

correspond to the classes with the same name in the static model of Figure 24. The

primary keys in each table are underlined and the foreign keys are italicized. Some of the

associations in the static model of Figure 24 have been mapped to database constraint

rules in Table 17. For example, the one-to-many association between the TollStation and

TollBooth classes in Figure 24 corresponds to a constraint on the relationship between

the TollStation and TollBooth objects: “A toll station object has one or more toll booth

objects.” This constraint is described in Rule 1 in Table 17 as “For each unique

TollStation.stationid there exists one or more rows in TollBooth where

TollStation.stationId = TollBooth.stationId”.

After mapping the class model to a database structure, the database tables were

initialized to satisfy the constraints in the database tables, as shown in Table 17. For

example, the TollBooth table has two entries with ids B1 and B2. Each of these enteries

references entry T0001 in the TollStation table.

 110

trnspId: String
accountId: String
dateCreated: Date
dateInactive: Date
availableAmount: Real
status: String

«optional»
«entity»

TransponderAccount

accountId: String
status: String
hasPhoto: Boolean

«kernel»
«entity»

Transaction1..*1
Is updated

by

stationId: String
name: String
location: String

«kernel»
«entity»

TollStation

boothId: String
type: String
location: String

«kernel»
«entity»

TollBooth

1 1..*

has

1..*

1
processes

1..*

1
reads status from

entryTime: String
entryLocation: String

«kernel»
«entity»

EntryTransaction
exitTime: String
exitLocation: String
tollCharges: Real
tollPaid: Real

«kernel»
«entity»

ExitTransaction

trnspId: String
type: String
ownerName: String

«optional»
«entity»

Transponder

1

1

has{Transponder.trnspId =
TransponderAccount.trnspId}

Figure 24 Excerpt of static model for AHTS SPL

 111

Table 17 Example of input data selected for database of TS1

Database tables
TollStation
stationId: String name: String location: String
T0001 TollStation1 Dulles, VA

Rule1: For each unique TollStation.stationid there exists one or more rows in TollBooth where
TollStation.stationId = TollBooth.stationId
TollBooth
boothId: String type: String stationId: String
B1 Ticket Entry Booth T0001

B2
Transponder Entry
Booth T0001

Transponder
trnspId: String type: String ownerName: String
TR1 Interior Joe Shmoe

Rule2: For each unique Transponder.trnspId there exists exactly one row in
TransponderAccount where Transponder.trnspId = TransponderAccount.trnspId
TransponderAccount
trnspId: String accountId: String availableAmount: Real status: String
TR1 112233 $30.00 Active

5.8.4 Selecting Input Data to Satisfy Execution Conditions in System Tests

Most transaction-based software applications also provide a user interface, which

allows a human actor to provide inputs to an application, and also to observe the outputs

of the application.The system tests document provided by CADeT can be used by a test

engineer to select and enter input data values for user interface commands, and derive

expected output values for user interface display actions.

A system test in a system tests document describes a sequence of test cases. Each

test case has one or more execution conditions that constrain the values of input

parameters in one or more «input test step»s, or commands invoked in the user interface

 112

of the application. Further, each test case has one or more «output test step»s, or user

interface display actions, that may contain output parameter values. A test engineer

selects inputs for the input parameters in the «input test step»s that satisfy the execution

conditions in the test specification. Then, the test engineer derives the expected values of

the output parameters and database state of subsequent output test steps.

Table 18 describes the conventions used in CADeT to represent the selections of

input parameter values, output parameter values, and database attribute values. Some of

these conventions, such as using a question mark to indicate the selection of a new input,

are adapted from the Z notation.(Diller 1994).

Table 18 Conventions for representing the selection of variable values

Variable Description Convention
input parameter Select new actor input variableName?
output parameter Derive expected output variableName!
database attribute Match any database attribute value *databaseAttribute

input parameter, output
parameter or database
attribute

Reference a previously selected
variable value

variableName or
databaseAttribute

It is possible that no input data exists that can satisfy that particular combination

of execution conditions. This may occur if the input data selected for the database is

incomplete, or if no input data exists that can satisfy the combination of execution

conditions in the system test. In the first case, test data can be added to, changed, or

removed from the database. In the second case, the conditions in the test specifications

need to be compared with the original requirements to detect possible inconsistencies or

errors.

 113

5.8.5 Example of Selecting Input Data for System Tests

After initializing the database, input data was selected to satisfy the execution

conditions of the test cases in the system tests of TS1. Table 19 shows an example of

input data selected for the test case “Enter through transponder enabled booth: «reuse as

is» Main scenario” in the system test of TS1. The execution condition “AccountValid”

constrains the values of the input parameter trnspId in “«optional input step» System

scans transponder (in trnspId)”, the “trnspId” field in the Transponder table, and the

related “status” field in the TransponderAccount table. The input value “trnspId=TR1”

was selected to satisfy the execution condition “AccountValid: (trnspId =

Transponder.trnspId) and (TransponderAccount.status = Valid)” in this test case.

 114

Table 19 Example of input data selected for a system test

System test 2
Inputs /
Outputs

Pass
/ Fail

Test specification name
Enter Toll Road: «reuse as is» Init
entry sequence

Feature conditions:
AHTSKernel T
Preconditions:
VehicleTrip Not in Toll Road
Execution conditions:
Actions:

«kernel input step» System detects
vehicle (in vehicleId)

vehicleId =
V1

«adaptable aggregate step» Invoke
“Enter through toll booth”

Postconditions:
VehicleTrip EntryDetected

Test specification name
Enter through transponder enabled
booth: «reuse as is» Main scenario

Feature conditions:
transponderBooth T
Preconditions:
VehicleTrip EntryDetected
Execution conditions:
TransponderBoothEntry T
TransponderDetected T
AccountValid: (trnspId =
Transponder.trnspId) and
(TransponderAccount.status =
Valid) T

Actions:

«optional input step» System scans
transponder (in trnspId)

trnspId =
TR1

«optional output step» System stores
trip transaction (out accountId, out
location)

location =
B2,
accountId
= 112233

«optional internal step» System
checks transponder account

«optional output step» System stores
authorization code (out code)

code =
ValidEntry

Postconditions:
VehicleTrip EntryProcessed

 115

5.9 Phase VII: Testing Application

An executable of the application is derived from the SPL during feature-based

application derivation. The test engineer deploys this executable, and then follows the

system tests document to run the executable against the selected input data. This process

is similar to the manual testing process for a single application. The test engineer enters

the input data in the user interface of the executable, observes the actual output, compares

the actual output with the expected output, and then logs the test results. A “Pass”, “Fail”,

or “Inconclusive” test result is logged for each input and output test step in each test case

in the system tests document.

A “Pass” result means that the observed outputs matched the expected outputs; a

“Fail” result means that the observed outputs did not match the expected outputs, which

may be the result of a fault being executed in the implementation; and an “Inconclusive”

result means that the test engineer could not determine with certainty whether the test

step passed or failed. The test results of each test step are aggregated to describe a test

result for a test case, and the results of each test case are aggregated to describe a test

result for a system test. A test case passes if all of its test steps have a “Pass” result, and a

system test passes if all of its test cases have a “Pass” result. Else, if any test step in a test

case of a system test has a “Fail” result, then the system test has a Fail result.

The example in Table 20 shows how the Pass or Fail status might be entered

during a test run of “System test 2” for a fictional AHTS simulator configured for

application TS1. The simulator is initialized to model a vehicle V1 entering a toll road

 116

through a transponder enabled booth with a transponder id of TR1. Then, System test 2 is

executed against the simulator. If the actual outputs match the expected outputs a Pass

status is entered in the intersection of each output step with the Pass / Fail column, as

shown in Table 20.

5.10 Summary

This chapter has described the CADeT approach and illustrated it on examples

from an AHTS SPL. CADeT defines and applies a feature-based test coverage criterion

together with a use case-based coverage criterion to a SPL: Cover all use case scenarios,

all features and all relevant feature combinations of a SPL.

With the CADeT approach, use case descriptions are converted to activity

diagrams, and reusable test specifications are created from these activity diagrams for

each use case scenario. Then, the feature model, and the relationships of features to test

specifications are analyzed to determine feature combinations relevant for a SPL. A test

coverage criterion is applied to select a set of applications to cover these feature

combinations. Next, the SPL test specifications are customized during feature-based test

derivation for each of these applications.

Chapter 6 describes CADeT-SoC, an extension of the CADeT approach that uses

a separation of concerns variability mechanism to customize the SPL test specifications.

Chapter 7 describes the validation of CADeT on an AHTS SPL and a Banking System

SPL. The application of CADeT and CADeT-SoC to the Banking System SPL is

described in more detail in Appendix A.

 117

Table 20 Example of pass / fail status in a test specification

System test 2
Inputs /
Outputs

Pass
/ Fail

Test specification name
Enter Toll Road: «reuse as is» Init
entry sequence

Feature conditions:
AHTSKernel T
Preconditions:
VehicleTrip Not in Toll Road
Execution conditions:
Actions:

«kernel input step» System detects
vehicle (in vehicleId)

vehicleId =
V1

Pass

«adaptable aggregate step» Invoke
“Enter through toll booth”

 Pass

Postconditions:
VehicleTrip EntryDetected

Test specification name
Enter through transponder enabled
booth: «reuse as is» Main scenario

Feature conditions:
transponderBooth T
Preconditions:
VehicleTrip EntryDetected
Execution conditions:
TransponderBoothEntry T
TransponderDetected T
AccountValid: (trnspId =
Transponder.trnspId) and
(TransponderAccount.status
= Valid) T

Actions:

«optional input step» System scans
transponder (in trnspId)

trnspId =
TR1

Pass

«optional output step» System stores
trip transaction (out accountId, out
location)

location =
B2,
accountId =
112233

Pass

«optional internal step» System checks
transponder account

«optional output step» System stores
authorization code (out code)

code = Valid
Entry

Pass

Postconditions:
Vehicle Trip Entry processed

 118

6 CADeT-SoC: Extending CADeT with Separation of Concerns

This chapter describes how CADeT is extended to use a separation of concerns

variability mechanism to form CADeT-SoC. In CADeT, feature conditions are used to

associate features with test specifications in a decision table, and to associate features

with variation point values in a test specification. CADeT distinguishes between the

binding times of coarse-grained functional variability (feature to test specification) and

fine-grained variability (feature to variation point). The values of feature conditions

associated with test specifications are bound during SPL engineering, while the values of

feature conditions associated with variation points are bound during feature-based test

derivation. Delaying the binding of the fine-grained variability improves the reusability

of the test specifications by reducing the number of test specifications that need to be

created and maintained for a SPL.

However, applying a parameterization mechanism in CADeT incurs additional

overheads, such as the effort needed to implement this mechanism to configure variation

points during SPL engineering. If a use case variation point contains a larger number of

values, a decision table (created from a use case activity diagram) will need to be

modified during SPL engineering to describe all the variable test steps associated with

these values. Also, if the same use case variation point is repeated across several decision

tables, then the same variable test step needs to be described repeatedly in each of these

 119

decision tables. For example, suppose a variation point with three values impacts four

decision tables. Each of these four decision tables needs to be modified to describe each

of these three values, resulting in a total of 3+3+3+3, or 3*4=12 modifications.

Separation of concerns alleviates some problems with configuring the fine-

grained variability in the test specifications of a SPL that has many variation points

repeated across several use cases (and hence across several decision tables). Separation of

concerns is the principle that a given problem involves different kinds of concerns, or

aspects, which should be identified and separated in order to achieve the required

software engineering quality factors such as robustness, adaptability, maintainability, and

reusability (Aksit, Tekinerdogan et al. 1996).

CADeT-SoC is an extension of CADeT that uses a separation of concerns

variability mechanism to configure the fine-grained functional variability in the decision

tables of a SPL. Separation of concerns is not used to configure the large-grained

variability in these tables, since they are designed in Phase II in Chapter 5 to be separate

documents that can be grouped and associated with features from a SPL.

Separation of concerns is used in CADeT-SoC to physically separate the variable

test steps that correspond to a variation point from a decision table. Then, these variable

test steps are explicitly grouped and associated with the corresponding feature during

SPL engineering. Thus, each unique variable test step is defined at one time in one

location, regardless of the number of times a variation point is repeated in the decision

tables. This facilitates the maintenance and reuse of the fine-grained variability in the test

specifications of a SPL.

 120

6.1 Separation of Concerns Variability Mechanism in CADeT-SoC

Four different separation of concerns variability mechanisms were considered for

integration with CADeT-SoC: AOP (Kiczales, Lamping et al. 1997), Framed Aspects

(Loughran and Rashid 2004), XVCL Frames (Zhang and Jarzabek 2004), and the Static

Client Application Customization (SCAC) technique (Saleh 2005; Saleh and Gomaa

2005). AOP (Kiczales, Lamping et al. 1997) and Framed Aspects (Loughran and Rashid

2004) were considered, but not selected, because these mechanisms required the test

specifications to be written in the Java programming language, and do not include built-in

constructs to associate features with variation point in a test specification. XVCL Frames

(Zhang and Jarzabek 2004) is language independent, but was not selected, because like

the former variability mechanisms, XVCL does not include built-in constructs to

associate features with variation points in a test specification. The SCAC pattern and tool

(Saleh 2005; Saleh and Gomaa 2005) was selected because it is language independent,

easy to learn, and contains built-in constructs to associate features with variable test

steps. Furthermore, SCAC enables the application code and test specifications to be

customized together during feature-based application and test derivation for an

application configuration.

CADeT-SoC adapts the SCAC technique (Saleh 2005; Saleh and Gomaa 2005) to

configure the variability in the test specifications of a SPL. CADeT-SoC replaces phases

IV and V of CADeT with the following phases:

- Phase IVSoC: Apply separation of concerns to test specifications during SPL

engineering

 121

 The following phase is done during application engineering for each application:

- Phase VSoC: Apply feature-based test derivation using separation of concerns

The following sections describe Phases IVSoC and VSoC of CADeT-SoC.

6.2 Phase IVSoC: Applying Separation of Concerns to Test Specifications During

SPL Engineering

The SCAC technique (Saleh 2005; Saleh and Gomaa 2005) was selected and

extended to implement separation of concerns in CADeT-SoC. Instead of using the

SCAC technique to represent and bind the variability in program code, CADeT-SoC

extends SCAC to represent and bind the variability in the test specifications of a SPL.

The Static Customization of Test Specifications (SCT) technique is an extension of

SCAC that can be used to separate variable test steps from the test specifications of a

SPL, and then associate these test steps with an alternative or optional feature from the

SPL.

6.2.1 Extending SCAC for SCT

An insertion point is a notation used by the SCAC method to uniquely identify

and name a location of variation in the code (Saleh and Gomaa 2005). In SCT, a test

insertion point is a notation used to uniquely identify and name a location of variation in

the decision tables.

SCAC provides a feature language that is used to relate features to variable code,

and then relate the variable code to insertion points in the common code of a SPL (Saleh

and Gomaa 2005). In SCT, this language is used to relate features to variable test steps,

 122

and then relate the variable test steps to test insertion points in the SPL decision tables,

and test specifications generated from these tables.

The keywords of this feature description language are described in Table 21. A

feature scope is identified using the $FEATURE[featureName] and $ENDFEATURE

keywords, where featureName identifies an optional or alternative feature in the SPL.

Enclosed within a feature scope are one or more test insertion point names preceded by

$START-$END keywords. The variable test steps that correspond with the feature are

identified within the scope of a test insertion point name (as shown in Figure 25).

Figure 25 Association of the alarm feature with a variable test step

A combination of features can also be associated with a variable test step. The

$FEATUREINTERACTION[C, D] and $ENDFEATUREINTERACTION keywords are

used to associate a combination of features to one or more test insertion points. The

parameters C, D identify two optional feature names. The $IF-$ELSEIF conditional

statement within a feature interaction describes the combinations in which both, one, or

the other feature are selected. A combination of more than two features can be described

by inserting additional parameters after the $FEATUREINTERACTION keyword, as in

[C, D, E, …, Z].

$FEATURE[Alarm]

$START insD
«optional output step» Sound warning alarm
$END insD

$ENDFEATURE[Alarm]

 123

Table 21 Feature description language

Keyword Description
$FEATURE[featureName]
 $START testInsertionPointName
 Variable test step
 $END testinsertionPointName
$ENDFEATURE[featureName]

Explicitly groups and associates a
feature with one or more variable test
steps.

$FEATUREINTERACTION[C,D]
$START testinsertionPointName
$IF FEATURE[C,D] //Both
 Variable test step 1
$ELSEIF FEATURE[C] //C Only
 Variable test step 2
$ELSEIF FEATURE[D] //D Only
 Variable test step 3
$ENDIF
$END testinsertionPointName
$ENDFEATUREINTERACTION[C,D]

Explicitly associates a combination of
features with one or more variable test
steps.

A variable file is a document used by the SCAC method to represent the

relationships between the features, insertion points, and variable code to the common

code of a SPL (Saleh 2005; Saleh and Gomaa 2005). In SCT, a variable test step file is a

document that represents the relationships between the features, test insertion points, and

variable test steps to the decision tables and test specifications of a SPL.

Table 22 shows the relationships between test insertion points in a test specification,

and between features, test insertion points and variable test steps in a variable test step

file. The test insertion point insA identifies a location of variation in the test specification

text file. This test insertion point is impacted by two features, f1 and f2, which are

associated with different optional test steps in the variable test step file. Selecting feature

f1 will insert “<optional step> test step a1” at all insA test insertion points in the SPL test

specifications during feature-based test derivation. Likewise, selecting feature f2 will

 124

insert “<optional step> test step a2” at all insA test insertion points in the SPL test

specifications during feature-based test derivation.

Table 22 Relationship between insertion points, test specifications and variable test

step file

Test Specification Variable Test Step File

Feature conditions $FEATURE[f1]
Preconditions... $START insA
Execution conditions... <optional step> test step a1
Actions $END insA
<step>... $ENDFEATURE[f1]
$START insA <adaptable step> test step x
<step>.... $FEATURE[f2]
<step>... $START insA
<step>... <optional step> test step a2
Postconditions.... $END insA
 $ENDFEATURE[f2]

Sometimes the features associated with an adaptable test step interact, as shown

by the relationship of the f1 and f2 parameters to test insertion point insB in Table 23. The

$FEATUREINTERACTION keyword is used in the variable test step file to describe a

feature interaction between f1 and f2, followed the insertion point name insB, and a

conditional statement describing the combinations in which both, one, or the other feature

are selected. If both f1 and f2 are selected, then “<optional step> test step b1” will be

inserted at all insB test insertion points in the SPL test specifications during feature-based

test derivation. Else, if either f1 or f2 is selected, then either “<optional step> test step b2”

or “<optional step> test step b3” will be inserted at all insB test insertion points in the

SPL test specifications during feature-based test derivation.

 125

Table 23 Representing interacting features in variable file

Test specification text file Variable File
Feature conditions... $FEATUREINTERACTION[f1,f2]

Preconditions…

 $START insB

Execution conditions... $IF FEATURE(f1, f2)
Actions <optional step> test step b1
<step>... $ELSEIF FEATURE(f1)
$START insA <adaptable step> test step x <optional step> test step b2
<step>.... $ELSEIF FEATURE(f2)
$START insB <adaptable step> test step y <optional step> test step b3
<step>... $ENDIF
Postconditions.... $END insB
 $ENDFEATURE[f1, f2]

6.2.2 Applying SCT to the Test Specifications of a SPL

An overview of how the SCT technique is applied to the test specifications of a

SPL during SPL engineering is shown in Figure 26. First, test insertion points are

manually added to tag the variation points in the decision tables created using CADeT. A

test specifications document is generated from these modified decision tables using

CADeT’s test specification generator tool. Next, the decision tables, and test

specifications in the test specifications document are exported as separate text files, in

order to be compatible with the tools in the Software Product Line Environment Tool

 126

(SPLET) (Saleh 2005; Saleh and Gomaa 2005).

Add insertion points to
test specifications in

decision tables
(manual)

Generate test
specification

document using Test
Specification

Generator
(automated)

CADeT tool suite and decision table editor

Test
specification

document

Export test
specifications
(automated)

Test specification
text file

Export decision tables
(automated)

Decision tables
document

Decision table
text file

Updated
relationships in
SPL Database

Map test
specifications to
features using
Feature Editor

Features
from SPL
Database

SPLET tool suite

Variable
Test Step

File

Create variable
test step file using

Variable File
Editor

Figure 26 Application of SCT during SPL engineering

SPLET (Saleh 2005; Saleh and Gomaa 2005) is a tool that automates part of the

SCT technique. SPLET is used to associate the features in the SPL with the exported test

specification and decision table text files. The Feature Editor component of SPLET is

used to map the test specification text files to the features of the SPL. The Variable File

Editor component is used to map the test insertion points in the decision table text files to

the features of the SPL. Then, the Variable Editor component is used to generate a

 127

variable test step file, which contains a list of features in the SPL, the test insertion points

that are associated with each feature, and the variable test steps.

6.2.3 Example of Applying SCT to the Test Specifications of a SPL

The following example illustrates how SCT is applied to the “Enter through

transponder-enabled booth”decision table and related test specifications of the AHTS

SPL. First, test insertion points are added to identify the adaptable test steps in the

decision table. Figure 27 shows the test insertion points and excerpt from variable test

step file created for the “Enter through transponder-enabled booth”decision table of the

AHTS SPL. The test insertion point “$START insD” was added to identify a location of

variation in the “«adaptable output step» Warn vehicle” in the decision table in Figure 27.

A variable test step file was created to show the features and variable test steps associated

with the insD test insertion point. The variable test step “«optional output test step»

Sound warning alarm” is associated with the selection of the Alarm feature, and the

variable test step “«optional output test step» System turns light yellow” is associated

with the selection of the Traffic Light feature at insD.

This process is repeated for each feature at each insertion point, until each

insertion point is associated with at least one feature in the SPL. An excerpt of the

variable test step file generated for the AHTS SPL is shown in Figure 28. This file is read

during feature-based test derivation to customize the test specifications for an application

nof the AHTS SPL.

 128

ET2.1
Enter through transponder enabled
booth use case

 Test Specifications

Feature conditions TransponderBooth

Preconditions VehicleTrip

Execution conditions TransponderBoothEntry

 TransponderDetected

 AccountValid

Actions

1
«optional input step» System scans
transponder (in trnspId)

2

«optional output step» System stores
trip transaction (out accountId, out
time)

3
«optional internal step» System checks
transponder account

4

«optional output step» System times
out and stores invalid trip transaction
(out boothId, out time)

5
$START insD «adaptable output step»
Warn vehicle (vpAlarm, vpLight)

6
«optional output step» System stores
authorization code (out code)

Post conditions VehicleTrip

Figure 27 Example of test insertion points and variable test step file

$FEATURE[Alarm]

$START insD
«optional output step»
Sound warning alarm
$END insD

$ENDFEATURE[Alarm]

$FEATURE[Traffic
Light]

$START insD
«optional output step»
System turns light
yellow
$END insD

$ENDFEATURE[Traffic
Light]

 129

Figure 28 Excerpt of variable feature file for AHTS SPL

Text specification files were generated from the “Enter through transponder-

enabled booth” decision table of the AHTS SPL. These files were then mapped to the

TransponderBooth feature of the AHTS SPL using the Feature Editor component of

SPLET.

$FEATURE[Alarm]

$START insD

 «optional output step» Sound warning alarm

$END insD

$START insE

 «optional output step» Sound unauthorized entry alarm

$END insE

$ENDFEATURE[Alarm]

//

$FEATURE[Barrier]

$START insB

 «optional output step» System raises barrier

$END insB

$START insC

 «optional output step» System lowers barrier

$END insC

$ENDFEATURE[Barrier]

//

$FEATURE[Traffic Light]

$START insB

 «optional output step» System turns traffic light green

$END insB

$START insC

 «optional output step» System turns traffic light red

$END insC

$START insD

 «optional output step» System turns light yellow

$END insD

$ENDFEATURE[Traffic Light]

 130

6.2.4 Phase VSoC: Applying Feature-Based Test Derivation using Separation of

Concerns

In the SCAC method, the SPLET tool is used to select features for an application

of the SPL (feature-based application configuration), and then apply feature-based

application derivation to generate code for an application of that SPL (Saleh 2005).

During feature-based application configuration, features are selected for an application of

the SPL. The selected features are checked for consistency, and then a customization file

is generated describing the selected features. During feature-based application derivation

the SPLET tool uses separation of concerns to select variable code according to the

selected features, and then combine the variable code with the common code of the SPL.

In Phase VSoC of CADeT-SoC, the SCAC method and tool are adapted in the SCT

technique to apply feature-based test derivation to the test specifications of an SPL.

Figure 29 shows an overview of how the SCT technique (shaded in gray) is applied to the

test specification of a SPL. The File Extractor component of SPLET reads the

customization file (which was generated during application configuration) to

automatically select a set of test specifications for the application. The Static Code

Weaver component reads the feature selections from the customization file, the variable

test steps from the variable test step file, and the references to test insertion points from

the adaptable test specifications. Then, the Static Code Weaver replaces the test insertion

points in the adaptable test specifications with the variable test steps associated with

feature selections of an application.

 131

Feature-based
test derivation

Variable
Test Step

File

Customization
File (feature
selections)

Select features for
application using Feature

Selector

Check consistency of
selections using

Consistency Checker

Generate customization
file using

Customization File
Generator

Automatically select test
specifications for

application using File
Extractor

Weave variable steps
with adaptable test
specifications using

Static Code Weaver

Adaptable test
Specification for

application

Customized Test
Specification for

Application

Features
from SPL
Database

SPL Test
Specification text

file

SPLET tool suite

SCT in Phase
V-SoC

Feature-based
application

configuration

Figure 29 Application of SCT during feature-based test derivation

Figure 30 shows the Code Weaver tab in the SPLET tool. The names of the

variable file, customization file, directory of the adaptable test specifications, and output

directory are provided by the application test engineer. The “Static” button has been

selected to apply feature-based test derivation using SCAC.

 132

Figure 30 Code weaver tab in SPLET tool

6.2.5 Example of Applying Feature-Based Test Derivation using SCT

Application TS1 from the AHTS SPL test plan in Table 9 has been configured to

include all toll booth types and the Traffic Light feature. The following example

describes how SCT is used to apply feature-based test derivation to the test specifications

of the “Enter through transponder-enabled booth” use case decision table (see Figure 27)

for TS1.

First, the File Extractor component of SPLET is used to select a set of test

specifications for TS1, which includes the “«adaptable» Invalid transponder” test

specification of the “Enter through transponder-enabled booth” use case decision table

shown in Figure 31. Then, the Static Code Weaver component of SPLET is used to

configure the test insertion points in the test specifications of TS1.

 133

Figure 31 Test specification for Invalid Transponder

Figure 32 shows an example of how the “«adaptable» Invalid Transponder” test

specification in Figure 31 is customized for TS1. Both the Alarm and Traffic Light

features of the AHTS SPL impact insD , but only the Traffic Light feature has been

selected for TS1. The test insertion point insD has been removed and replaced with

“«optional output step» System turns light yellow”, which corresponds to the Traffic

Light feature.

Use case name: Enter through transponder enabled booth
Test specification name: «adaptable» Invalid transponder
Feature conditions:
 TransponderBooth = T
Preconditions:
 VehicleTrip = EntryDetected
Execution conditions:
 TransponderBoothEntry = T
 TransponderDetected = F
Actions:
 «optional input step» System scans transponder (in trnspId)
 «optional output step» System times out and stores invalid trip transaction
 $START insD «adaptable output step» Warn vehicle (vpAlarm, vpLight)
Post conditions:
 VehicleTrip = EntryProcessed

 134

Use case name: Enter through transponder enabled booth
Test specification name: «adaptable» Invalid transponder
Feature conditions:
 TransponderBooth = T
Preconditions:
 VehicleTrip = EntryDetected
Execution conditions:
 TransponderBoothEntry = T
 TransponderDetected = F
Actions:
 «optional input step» System scans transponder (in trnspId)
 «optional output step» System times out and stores invalid trip transaction
 // $START insD «adaptable output step» Warn vehicle (vpAlarm, vpLight)
 «optional output step» System turns light yellow
Post conditions:
 VehicleTrip = EntryProcessed

Figure 32 Example of customized test specification

6.3 Comparison of CADeT and CADeT-SoC

Table 24 compares the number of variable test steps defined using

parameterization for each adaptable test step in the decision tables of the AHTS SPL,

against the number of variable test steps defined using separation of concerns for each

adaptable test step in the same decision tables. Only 11 variable test steps needed to be

defined using separation of concerns in CADeT-SoC, instead of the 18 variable test steps

defined using parameterization in CADeT.

Table 24 Number of variable test steps defined for variation points in AHTS SPL

decision tables

Decision table Adaptable test steps Parameterization Separation of
Concerns

«adaptable output step» Authorize
Vehicle (vpBarrier, vpLight) 2 2

Enter Toll Road
 «adaptable output step» System resets

toll booth (vpBarrier, vpLight) 2 2

 135

Enter through
transponder enabled
booth

«adaptable output step» Warn vehicle
(vpAlarm, vpLight) 2 2

Enter through ticket-
issuing booth None 0 0

«adaptable output step» Process
unauthorized vehicle (vpCamera,
vpAlarm)

2 1

«adaptable output step»
Authorize vehicle (vpBarrier, vpLight) 2 0

Exit Toll Road

«adaptable output step»
System resets toll booth (vpBarrier,
vpLight)

2 0

Exit through
transponder-enabled
booth

None 0 0

«adaptable output step»
System calculates toll from transponder
(vpTollCharge)

2 2 Pay with transponder
account
 «adaptable output step» Warn vehicle

(vpAlarm, vpLight) 2 0

Exit through ticket-
issuing booth None 0 0

Process ticket
«adaptable output step»
System calculates toll from ticket
(vpTollCharge)

2 2

Exit through full-
service booth None 0 0

Pay with Cash None 0 0
Pay with Credit Card None 0 0
Pay Operator None 0 0
Total number
variable test steps 18 11

6.4 Summary

This chapter described an alternative variability mechanism that uses separation

of concerns to customize the fine-grained functional variability in the test specifications

of an SPL. Like the parameterization variability mechanism in Chapter 5, this technique

delays the binding time of the fine-grained functional variability in the test specifications,

in order to increase reusability by reducing the number of test specifications that need to

 136

be created and maintained for an SPL. However, this technique is more suitable than

parameterization for configuring the test specifications of a SPL that has many variation

points repeated across several use cases. With this separation of concerns technique, each

unique variable test step is defined one time in one location, regardless of the number of

times a variation point is repeated in the test specification suite. This facilitates the

maintenance and reuse of the fine-grained variability in the test specification suite of a

SPL.

 137

7 Evaluation of CADeT and CADeT-SoC

 This research applied the case study method (see rationale in section 7.1) to

evaluate the following hypothesis on two SPLs:

 A test design method can be developed to create reusable and functional test

specifications to satisfy use case-based and feature-based coverage criteria for a SPL,

where these test specifications can be configured during feature-based test

derivation to test a set of applications derived from the SPL.

In this research, the selected use case-based and feature-based coverage criteria

required the test specifications to cover all use case scenarios, features and relevant

feature combinations of a SPL.

CADeT and CADeT-SoC were applied to two SPLs in three separate studies: an

Automated Highway Toll System (AHTS) SPL and a Banking System SPL. Reusable test

specifications were created to cover all use scenarios in each SPL. Then, a set of

representative application configurations was selected to cover all features and relevant

feature combinations in each SPL. The reusable test specifications were customized for

each application configuration in each SPL using CADeT and CADeT-SoC. A set of

 138

applications was derived from a Banking System SPL implementation and then tested

using the customized test specifications.

7.1 Rationale for Selecting Case Study Research Method

The case study research method is an empirical investigation of the effect of a

contemporary phenomenon (method, tool, etc…) within its real life context, when the

boundaries between the phenomenon and context are not clearly distinguishable, and in

which multiple sources of evidence are used. A case study research method is relevant in

situations where the research question is explanatory (asks how, why?), a researcher has

little to no control over behavioral events, and the research focuses on contemporary

events rather than historical events (Yin 2003). The goal of an exploratory study is to

formulate a hypothesis, while the goal of an explanatory case study is to test a hypothesis

to evaluate the cause and effect relationships of a contemporary phenomenon (method,

tool, etc…) on one or more cases. Analytic, rather than statistical generalization is used to

relate the results to hypothesis (Yin 2003).

An explanatory case study research method was selected to investigate whether

the CADeT and CADeT-SoC test design methods could be used to create reusable and

functional test specifications to cover all use case scenarios, features and relevant feature

combinations of a SPL, and then configure these test specifications during feature-based

test derivation to test a set of applications derived from the SPL. The case study method

was relevant because the research question was explanatory; there was little control over

external factors, such as the context in which the test methods might be used; and the

research evaluated a contemporary event.

 139

7.2 Description of Evaluation

Table 25 describes the three studies (labeled 1, 2, 3) undertaken to assess the

hypothesis against an Automated Highway Toll System (AHTS) SPL (described in

Chapter 5), and a Banking System SPL (described in Appendix A). The purpose of these

studies was to evaluate whether CADeT and CADeT-SoC could be used to create

functional test specifications to cover the use case scenarios of each SPL (Phases I-II);

determine the relevant feature combinations, and apply a feature-based coverage criterion

to select a set of representative applications for each SPL (Phase III); configure these test

specifications during feature-based test derivation for each application (Phases IV, IV-

SoC, V, V-SoC); and then test these applications (Phases VI-VII).

Different phases of CADeT and CADeT-SoC were evaluated over a span of

several semesters on one or both SPLs. This was because some phases of the method

needed to be defined and tested before the remaining phases could be applied. The

subject matter experts (persons with expertise in a particular area) in the first and third

studies were graduate students from an advanced software design class. The subject

matter expert in the second study was the researcher.

 140

Table 25 Studies used to evaluate CADeT and CADeT-SoC

Type of study Subject matter experts Purpose of study AHTS
SPL

Banking
System

SPL
1. Single case Five graduate students

(A, B, C, D, E)
Evaluate an initial version
of CADeT (Phase I-II). √

2. Multiple case Researcher Evaluate Phases I-V of
CADeT √ √

3. Single case Five graduate students
(F, G, H, I, J)

Evaluate phases IV-VII of
CADeT and phases IV-
SoC and V-SoC of
CADeT-SoC

 √

7.3 Preliminary Study to Evaluate Feasibility of Initial Version of CADeT

The first study was a preliminary study to assess whether a graduate student could

follow an initial version of CADeT to create activity diagrams, decision tables and test

specifications from the feature model, use case model, and feature to use case

relationship table of a SPL.

7.3.1 Description of Study

In this study, five graduate students (participants) from an advanced software

design class learned and applied four sets of instructions from an initial version of

CADeT to the requirement models of an AHTS SPL. Each participant in the study had

created a feature model, use case model, and feature to use case relationship table for an

AHTS SPL as part of a group project. Table 26 shows the requirements models assigned

to each participant in the study. Three different sets of models, created earlier by three

groups, are labeled as g1, g2, and g3. The number of use cases in each use case model

 141

consisted of between 8 and 13 use cases, and the number of features in each feature

model consisted of between 21 and 22 features.

Table 26 Requirements models of AHTS SPL

 Participant A B C D E
Group g1 g2 g2 g3 g3
Use cases 8 13 13 11 11
Features 21 22 22 22 22

Each participant followed four sets of instructions to apply Phases I-II of an initial

version of CADeT to a set of use case and feature models. With the first set of

instructions, “Create activity diagrams for a single system”, participants were directed to

ignore the variability in the use case descriptions of the AHTS SPL and to manually

create activity diagrams from these use case descriptions in the same way as for a single

system. With the second set of instructions, “Create activity diagrams for a SPL”,

participants were directed to map features from the feature model to use case activity

diagrams and activity nodes. With the third set of instructions, “Create decision tables for

a SPL”, participants were directed to create decision tables for some of the use cases in

the SPL, manually trace paths from the use case activity diagrams for each use case

scenario, and then map these paths to columns in the decision tables. With the fourth set

of instructions, “Create Test Templates for a SPL”, participants were asked to run a

macro to generate partial test specifications from the decision tables.

 Each phase was scheduled to take about two weeks. During that time,

participants were encouraged to ask questions to get help correcting the models, and to

keep track of the time spent creating the models. As soon as a participant completed the

 142

instructions, the models were evaluated by the researcher and modifications were

suggested via email. Sometimes the researcher or the participant would schedule a

meeting to help clarify the instructions. After the study was completed, each participant

answered a questionnaire that asked about the participant’s background, time spent

completing each phase, perceptions on the difficulty of each phase, and suggestions for

improvement.

7.3.2 Results

The evaluation of the models consisted of checking whether the participant was

able to follow and understand the rules in each set of instructions. Table 27 summarizes

the ability of participants to follow each set of instructions. A check mark means that the

participant was able to follow the instructions without additional assistance from the

researcher to create the models correctly; a check minus mark means that the participant

had difficulty understanding and applying the instructions, and needed help from the

researcher to correct the models.

Table 27 Assessment of initial version of CADeT

Instruction set A B C D E
Create Activity Diagrams for a Single System √ √ √ √- √-
Create Activity Diagrams for a SPL √- √ √- √- √-
Create Decision Tables for a SPL √- √- √ √- √-
Create Test Templates for a SPL √- √- √- √- √-

Three out of five participants were able to follow the first set of instructions to

create activity diagrams for a single system, but almost all participants had difficulty

 143

adapting these activity diagrams for a SPL. Further, almost all participants had difficulty

representing variability in the decision tables and test specifications.

The results of the questionnaire are shown in Table 28. Only one of the

participants had some experience with software testing, and all had some background in

UML modeling methods. Although each participant was asked to keep track of the time

spent creating the models, only participant C actually recorded the time spent in each

phase. The other times are approximations based on what the participant remembered.

 144

Table 28 Results of questionnaire for first applied project

 A B C D E
Experience w/
UML modeling
methods

4 classes at
GMU 2 years 8 years

2 classes at
GMU

4 classes at
GMU

Experience w/
software
testing None None

1 class at
GMU, some
industry
experience None None

Time to create
activity
diagrams from
use cases 9 hours 6 hours 18-20 hours 24 hours 8 hours
Time to create
decision tables
from activity
diagrams 9 hours 6 hours

8-10 hours + 4
hours revising
models 24 hours 5 hours

Time to create
test
specifications
from decision
tables 9 hours 6 hours 6 hours 24 hours 2 hours

What is the
easiest phase?

Create activity
diagrams from
use cases

Create activity
diagrams from
use cases

Create test
specifications
from decision
tables

Create test
specifications
from decision
tables

Create test
specifications
from decision
tables

What is the
most difficult
phase?

Create decision
tables from
activity
diagrams

Create decision
tables from
activity
diagrams

Create decision
tables from
activity
diagrams

Create activity
diagrams from
use cases

Create
activity
diagrams
from use
cases

How can the
method be
improved? Define terms

Improve
instructions
and add
examples

Add
automation;
give tutorials;
define terms

Use color-
coding to
group related
variation
points

Use examples
to illustrate
method

7.3.3 Interpretation of Results

This study showed it was possible, but difficult for a graduate student with some

background in SPL modeling methods to follow an initial version of CADeT to represent

variability in the activity diagrams and decision tables of a SPL. One reason for this may

 145

be attributed to the way the method was taught to the participants, as several participants

indicated a need for more tutorials and examples (see Table 28).

The results of this study prompted revisions to CADeT, and revisions to the

approach used to teach CADeT to other participants in a later study. Initially, CADeT

required each participant to manually map the test specifications in decision tables to test

specifications of the SPL. This mapping was automated in a later version of CADeT.

Also, a mechanism of automatically selecting the test specifications during feature-based

test derivation was implemented in the later version of CADeT. Some of the participant’s

suggestions for improving the teaching of the method, such as adding examples, were

incorporated in the third study.

7.4 Evaluate Feasibility of Creating and Customizing Test Specifications Using

CADeT (Phases I-V)

The second study was applied by the researcher, to evaluate whether CADeT

could be used to create functional test specifications to cover the use case scenarios of

each SPL (Phases I-II); analyze the relationships of features to test specifications to

determine the relevant feature combinations, and then apply a feature-based coverage

criterion to select a set of representative applications for each SPL (Phase III); and

configure these test specifications during feature-based test derivation for each

application (Phases IV, V). Furthermore, the researcher compared the number of test

specifications created using CADeT against the number of test specifications created

using two alternative test design methods to cover all use case scenarios, all features and

all relevant feature combinations in each SPL.

 146

7.4.1 Description of Study

In this study, the researcher took the role of a subject matter expert, and applied

PLUS (Gomaa 2005) to create a feature model, use case model, and feature to use case

relationship table for the AHTS SPL and Banking System SPLs. The following sections

describe the characteristics of the requirement models created in this study for each SPL,

summarize the activities applied in each phase, and then describe the results of applying

these activities to each SPL.

7.4.2 Characteristics of Requirement Models

Table 29 summarizes the characteristics of the requirements models created in

this study using PLUS (Gomaa 2005) for each SPL. The researcher created an AHTS

with 11 use cases, 28 use case scenarios and 16 features. Ten out of sixteen features of

the AHTS SPL were associated with one or more use cases. Seven out the ten features

were associated with use cases and variation points (e.g. the TranponderBooth feature

maps to vpEntryBooth in “Enter Toll Road” use case and the “Enter through

Transponder-Enabled Booth” extension use case).

The Banking System SPL of (Webber 2001) was adapted to use the PLUS method

in this study (see Appendix A). The Banking System SPL had 7 use cases, 21 use case

scenarios, and 12 features. The ATM kernel feature was associated with every use case in

the Banking System SPL, and the remaining features were associated with variation

points in the Banking System SPL. The following sections describe the application of

phases I-V of CADeT to each SPL.

 147

Table 29 Characteristics of requirement models created for each SPL

 ATHS SPL Banking System SPL
Use cases 11 7
Use case scenarios 28 21
Features 16 12
Features associated with use cases 3 1
Features associated with both use cases
and variation points 7 0
Features associated with variation points 6 11

7.5 Application of Phases I-V: Creating and Customizing Test Specifications for

the AHTS SPL

The researcher applied phase I of CADeT to create activity diagrams for each use

case of the AHTS SPL in Table 29. Excerpts from these activity diagrams were used to

illustrate the CADeT method in Chapter 5.

7.5.1 Coverage of All Use Case Scenarios and All Features in AHTS SPL

Then, the researcher followed phase II of CADeT to trace paths from the activity

diagrams for each use case scenario, and then map these paths to test specifications in

decision tables. Excerpts from these decision tables are shown in Chapter 5. A total of 30

test specifications were created to cover the 28 use case scenarios of the AHTS SPL.

Figure 33 shows the associations between the 28 use case scenarios and 30 test

specifications of the AHTS SPL. Each scenario in Figure 33 was covered by at least one

test specification. Some scenarios, such as “Enter toll road: Main scenario”, were covered

by more than one test specification because the flow of the scenario was diverted by an

extension or included use case scenario. Other scenarios, such as “Exit through Ticket-

 148

issuing Booth: Ticket not recognized” and “Exit through Full-Service Booth: Ticket not

recognized” were covered by the same test specification, because these scenarios

described common behavior that was factored out into a “Process Ticket” aggregate

activity decision table.

The set of test specifications created for the AHTS SPL also covered all features

of this SPL. Table 30 shows the relationship of each feature to the test specifications of

the AHTS SPL. The “Feature” column lists the features of the AHTS SPL. Each feature

in the AHTS SPL is associated with at least one test specification, and each test

specification is associated with at least one feature. Six out of the sixteen features

(Camera, Barrier, Traffic Light, Alarm, Variable Toll Charge, Fixed Toll Charge) are

associated with a variation point in one or more adaptable test specifications while the

remaining ten features are associated with an entire reuse as is or adaptable test

specification. Thus, most of the variable features of the AHTS SPL represented a coarse

granularity of functional variation in these test specifications (refer to explanation of fine-

grained and coarse-grained variability in phase IV of Chapter 5).

 149

Use case Scenario Use case or aggregate activity: Test specification
Enter toll road 1. Main scenario 1. Enter Toll Road: «reuse as is» Init entry sequence
Enter through transponder-enabled boot2. Main scenario 2. Enter Toll Road: «adaptable» Post entry sequence

3. Invalid transponder 3. Enter through transponder enabled booth: «reuse as is» Main scenario
4. Invalid account 4. Enter through transponder enabled booth: «adaptable» Invalid transponder

Enter through ticket booth 5. Main scenario 5. Enter through transponder enabled booth: «adaptable» Invalid account
6. Low on Tickets 6. Enter through ticket-issuing booth: «reuse as is» Main scenario

Exit Toll Road 7. Main scenario 7. Enter through ticket-issuing booth: «reuse as is» Low on tickets
8. Unauthorized exit 8. Exit Toll Road: «reuse as is» Init exit sequence

Exit through transponder-enabled booth9. Main scenario 9. Exit Toll Road: «adaptable» Toll paid
10. No transponder 10. Exit Toll Road: «adaptable» Toll not paid

Pay with transponder account 11. Main scenario 11. Exit through transponder-enabled booth: «reuse as is» Main
12. Account out of funds 12. Exit through transponder-enabled booth: «reuse as is» No transponder

Exit through ticket-issuing booth 13. Main scenario 13. Pay with transponder account: «adaptable» Account valid
has Process Ticket aggregate activity 14. Ticket not recognized 14. Pay with transponder account: «adaptable» Account not valid

15. Driver lost ticket 15. Exit through ticket-issuing booth: «reuse as is» Main
Exit through full-service booth 16. Main scenario 16. Process ticket: «adaptable» Ticket recognized
has Process Ticket aggregate activity 17. Pay with transponder account 17. Process ticket: «reuse as is» Ticket not recognized

18. Ticket not recognized 18. Process ticket: «reuse as is» Lost ticket
19. Driver lost ticket 19. Exit through full-service booth: «reuse as is» No transponder detected

Pay with cash 20. Main scenario 20. Exit through full-service booth: «reuse as is» Transponder detected
21. Overpayment 21. Pay with Cash: «reuse as is» Pay with exact cash amount
22. Insufficient payment 22. Pay with Cash: «reuse as is» Amount exceeds toll

Pay with credit card 23. Main scenario 23. Pay with Cash: «reuse as is» Amount is not sufficient
24. Not authorized 24. Pay with Card: «reuse as is» Payment authorized

Pay operator 25. Main scenario (Pay with credit card) 25. Pay with Card: «reuse as is» Payment not authorized
26. Credit card not authorized 26. Pay Operator: «reuse as is» Payment authorized
27. Pay with cash 27. Pay Operator: «reuse as is» Payment not authorized
28. Cannot pay 28. Pay Operator: «reuse as is» Cash sufficient

29. Pay Operator: «reuse as is» Cash not sufficient
30. Pay Operator: «reuse as is» Cannot pay

Figure 33 Relationship between use case scenarios and test specifications of AHTS SPL

 150

Table 30 Features / test specifications relationships in AHTS SPL

Feature
Use case or aggregate
activity Test specification

Variation
point

1.«reuse as is» Init entry
sequence Enter Toll Road
2.«adaptable» Post entry
sequence
8.: «reuse as is» Init exit
sequence
9. «adaptable»Toll paid

«common» Automated Toll
System Kernel

Exit Toll Road

10. «adaptable» Toll not paid
6. «reuse as is» Main scenario
7. «reuse as is» Low on tickets

«optional» Ticket
Entry/Exit Booths

Enter through ticket-
issuing booth

13. «reuse as is» Main
19. «reuse as is» No
transponder detected «optional» Full Service

Exit Booth

Exit through full-service
booth 20. «reuse as is» Transponder

detected

3. «reuse as is» Main scenario
4. «adaptable» Invalid
transponder

Enter through transponder
enabled booth

5. «adaptable» Invalid account
11. «reuse as is» Main

«optional» Transponder
Entry/Exit Booths

Exit through transponder-
enabled booth 12. «reuse as is» No

transponder
6. «reuse as is» Main scenario «optional» Ticket

Dispenser

Enter through ticket-
issuing booth

7. «reuse as is» Low on tickets
16. «adaptable»Ticket
recognized
17. «reuse as is»Ticket not
recognized

«optional» Ticket Reader

Process ticket

18. «reuse as is» Lost ticket
24. «reuse as is» Payment
authorized «optional» Credit Card

Reader

Pay with Card
25. «reuse as is» Payment not
authorized
21. «reuse as is»Pay with exact
cash amount
22. «reuse as is» Amount
exceeds toll «optional» Cash Reader

Pay with Cash

23. «reuse as is» Amount is
not sufficient

«optional» Operator

Pay Operator 26. «reuse as is» Payment
authorized

 151

27. «reuse as is» Payment not
authorized
28. «reuse as is»Cash
sufficient
29. «reuse as is» Cash not
sufficient

30. «reuse as is» Cannot pay
13. «adaptable» Account valid «optional» Transponder

Account

Pay with transponder
account 14. «adaptable» Account not

valid

«optional» Camera Exit Toll Road 10. «adaptable» Toll not paid vpCamera

Enter Toll Road 2. «adaptable» Post entry
sequence vpBarrier
9. «adaptable» Toll paid vpBarrier

«optional» Barrier

 Exit Toll Road

10. «adaptable»Toll not paid vpBarrier

Enter Toll Road 2. «adaptable» Post entry
sequence vpLight
9. «adaptable» Toll paid vpLight Exit Toll Road
10. «adaptable» Toll not paid vpLight
4. «adaptable» Invalid
transponder vpLight Enter through transponder

enabled booth
5. «adaptable» Invalid account vpLight

«optional» Traffic Light

Pay with transponder
account

14. «adaptable» Account not
valid vpLight
4. «adaptable» Invalid
transponder vpAlarm Enter through transponder

enabled booth
5. «adaptable» Invalid account vpAlarm

Exit Toll Road 10. «adaptable» Toll not paid vpAlarm
«optional» Alarm

Pay with transponder
account

14. «adaptable» Account not
valid vpAlarm

Pay with transponder
account 13.«adaptable» Account valid vpCharge «alternative» Variable Toll

Charge
 Process ticket 16. «adaptable» Ticket

recognized vpCharge
Pay with transponder
account 13. «adaptable» Account valid vpCharge «alternative» Fixed Toll

Charge
 Process ticket 16. «adaptable»Ticket

recognized vpCharge

 152

7.5.2 Coverage of All Relevant Feature Combinations in AHTS SPL

Next, the researcher analyzed the feature model and test specifications of the

AHTS SPL, and applied a feature-based combinatorial coverage criterion to the AHTS

SPL to select a set of representative application configurations to test (as described in

Phase III of CADeT in Chapter 5).

The feature model of the AHTS SPL was analyzed to calculate a total of 224

possible application configurations (as described in Phase III of Chapter 5). Next, the

relationships of the features to test specifications were analyzed to determine the relevant

feature combinations.

Table 31 shows the feature combinations associated with the test specifications of

the AHTS SPL. The feature condition of the “Automated Toll System Kernel” feature is

omitted from the analysis because it is always selected for any application derived from

the SPL. The feature conditions that correspond to mutually included features are not

selectable, and are denoted in italics. The largest number of feature conditions in a

relevant feature combination in Table 31 is two. Thus, at least a pair-wise feature based

coverage criterion is needed to check the feature combinations described by these test

specifications. A pair-wise feature based coverage criterion was applied using the Jenny

tool (Jenkins 2005) to select 8 representative applications for the AHTS SPL. The test

plan in Table 9 in Chapter 5 describes the features selected for each of these 8 application

configurations.

 153

Table 31 Relevant feature combinations in AHTS SPL

Use case or aggregate
activity Test specification Feature combinations

1. «reuse as is» Init entry
sequence -

Enter Toll Road

2. «adaptable» Post entry
sequence barrier + trafficLight
3. «reuse as is» Main
scenario transponderBooth
4. «adaptable» Invalid
transponder

(transponderBooth * trafficLight)+
(transponderBooth * alarm)

Enter through
transponder enabled
booth

5. «adaptable» Invalid
account

(transponderBooth * trafficLight)+
(transponderBooth * alarm)

6. «reuse as is» Main
scenario ticketBooth * ticketDispenser

Enter through ticket-
issuing booth

7. «reuse as is» Low on
tickets ticketBooth * ticketDispenser
8. «reuse as is» Init exit
sequence -

9. «adaptable» Toll paid barrier + trafficLight

Exit Toll Road

10. «adaptable» Toll not
paid camera + barrier + trafficLight + alarm

11. «reuse as is» Main transponderBooth
Exit through
transponder-enabled
booth 12. «reuse as is» No

transponder transponderBooth
13. «adaptable» Account
valid transponderAccount * tollCharge

Pay with transponder
account

14. «adaptable» Account
not valid

(transponderAccount * trafficLight) +
(transponderAccount * alarm)

Exit through ticket-
issuing booth 15. «reuse as is» Main ticketBooth

16. «adaptable» Ticket
recognized ticketReader * tollCharge
17. «reuse as is» Ticket
not recognized ticketReader

Process ticket

18. «reuse as is» Lost
ticket ticketReader
19. «reuse as is» No
transponder detected fullServiceBooth

Exit through full-service
booth

20. «reuse as is»
Transponder detected fullServiceBooth

 154

21. «reuse as is» Pay with
exact cash amount cashReader
22. «reuse as is» Amount
exceeds toll cashReader

Pay with Cash

23. «reuse as is» Amount
is not sufficient cashReader
24. «reuse as is» Payment
authorized creditCardReader

Pay with Card

25. «reuse as is» Payment
not authorized creditCardReader
26. «reuse as is» Payment
authorized operator
27. «reuse as is» Payment
not authorized operator
28. «reuse as is» Cash
sufficient operator
29. «reuse as is» Cash not
sufficient operator

Pay Operator

30. «reuse as is» Cannot
pay operator

Next, the researcher applied the parameterization variability mechanism to the

AHTS test specifications, in order to automate the configuration of these test

specifications for each of the representative applications of the AHTS SPL (see phase IV

of CADeT in Chapter 5. The feature conditions in the feature list in Table 3 were

associated with test specifications in the decision tables of the AHTS SPL, as described

in Chapter 5. Then, the researcher customized these test specifications to cover all

features, and relevant feature combinations described in the AHTS SPL test plan in Table

9 in Chapter 5.

 155

Table 32 Test specifications selected for the applications in the AHTS SPL test plan

Use case or aggregate
activity Test Specifications TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8

1. «reuse as is» Init entry
sequence √ √ √ √ √ √ √ √

Enter Toll Road

2. «adaptable» Post entry
sequence √ √ √ √ √ √ √ √

3. «reuse as is» Main
scenario √ √ √ √ √ √ √
4. «adaptable» Invalid
transponder √ √ √ √ √ √ √

Enter through
transponder enabled
booth

5. «adaptable» Invalid
account √ √ √ √ √ √ √

6. «reuse as is» Main
scenario √ √ √ √

Enter through ticket-
issuing booth

7. «reuse as is» Low on
tickets √ √ √ √
8. «reuse as is» Init exit
sequence √ √ √ √ √ √ √ √
9. «adaptable» Toll paid √ √ √ √ √ √ √ √

Exit Toll Road

10. «adaptable» Toll not
paid √ √ √ √ √ √ √ √

11. «reuse as is» Main √ √ √ √ √
Exit through
transponder-enabled
booth

12. «reuse as is» No
transponder √ √ √ √ √

13. «adaptable» Account
valid √ √ √ √ √ √ √

Pay with transponder
account

14. «adaptable» Account not
valid √ √ √ √ √ √ √

Exit through ticket-
issuing booth 15. «reuse as is» Main √ √ √

16. «adaptable» Ticket
recognized √ √ √ √
17. «reuse as is» Ticket not
recognized √ √ √ √

Process ticket

18. «reuse as is» Lost ticket √ √ √ √

19. «reuse as is» No
transponder detected √ √ √

Exit through full-service
booth

20. «reuse as is»
Transponder detected √ √ √

21. «reuse as is» Pay with
exact cash amount √ √ √ √
22. «reuse as is» Amount
exceeds toll √ √ √ √

Pay with Cash

23. «reuse as is» Amount is
not sufficient √ √ √ √

 156

24. «reuse as is» Payment
authorized √ √ √ √

Pay with Credit Card

25. «reuse as is» Payment
not authorized √ √ √ √
26. «reuse as is» Payment
authorized √ √ √
27. «reuse as is» Payment
not authorized √ √ √
28. «reuse as is» Cash
sufficient √ √ √
29. «reuse as is» Cash not
sufficient √ √ √

Pay Operator

30. «reuse as is» Cannot pay √ √ √
 Total number of test

specifications = 149 30 12 28 27 16 12 12 12

7.5.3 Coverage of All Use Case Scenarios in each Application of the AHTS SPL

In Phase V, feature-based test derivation was applied to select the test

specifications for each application configuration in the AHTS SPL test plan. Table 32

shows the test specifications selected for each application of the AHTS SPL test plan in

Table 9.

Next, the researcher used the CADeT tools to generate a test execution graph for

each of the eight application configuration in the AHTS SPL test plan. A set of system

test sequences was traced from each customized graph for each application of the AHTS

SPL. These system test sequences covered all use case scenarios of the application.

Figure 34 shows an example of a test execution graph generated for TS2 (one of

the applications from the AHTS SPL test plan). TS2 contains the “Transponder Exit

Booth”, “Camera”, “Barrier”, and “Alarm” features, and the alternative “Variable Toll

Charge” features (see Table 9 in Chapter 5). The graph in Figure 34 shows the order in

which the test specifications can be executed for application TS2. With the exception of

 157

the “start” and “end” nodes, each node in this graph represents a test specification

selected during feature-based test derivation for TS2, and each edge an execution

dependency between two test specifications.

0 1

3

4

5

2 8

11

12

13

14

10

9

15

Key
0 Start
1 Enter Toll Road: «reuse as is» Init entry sequence
2 Enter Toll Road: «adaptable» Post entry sequence
3 Enter through transponder enabled booth: «reuse as is» Main scenario
4 Enter through transponder enabled booth: «adaptable» Invalid transponder
5 Enter through transponder enabled booth: «adaptable» Invalid account
8 Exit Toll Road: «reuse as is» Init exit sequence
9 Exit Toll Road: «adaptable»Toll paid
10 Exit Toll Road: «adaptable»Toll not paid
11 Exit through transponder-enabled booth: «reuse as is» Main
12 Exit through transponder-enabled booth: «reuse as is» No transponder
13 Pay with transponder account: «adaptable» Account valid
14 Pay with transponder account: «adaptable» Account not valid
15 End

Figure 34 Test execution sequence graph for TS21

Next, the researcher created a test procedure document for each application of the

AHTS SPL test plan. System test sequences were traced from the test execution graph,

and were added to the test procedure document for an application, as described by Phase

V in Chapter 5. Each test procedure document included all test specifications associated

with the use case scenarios and features selected for the application.

1 The picture of this graph was created using GraphViz

 158

Table 33 shows a test procedure document for TS2 which includes all test

specifications selected for TS2. For example, the system test sequence “System test 1”

corresponds to the nodes “0-1-3-2-8-11-13-9” traced from the test execution sequence

graph in Figure 35, and describes the situation where a vehicle with a valid transponder

account enters a toll road through a transponder enabled entry booth and then exits the

toll road through a transponder enabled exit booth.

Table 33 Test procedure for TS2

System test 1
1. Enter Toll Road: «reuse as is» Init entry sequence
3. Enter through transponder enabled booth: «reuse as is» Main scenario
2. Enter Toll Road: «adaptable» Post entry sequence
8. Exit Toll Road: «reuse as is» Init exit sequence
11. Exit through transponder-enabled booth: «reuse as is» Main
13. Pay with transponder account: «adaptable» Account valid
9. Exit Toll Road: «adaptable»Toll paid
System test 2
1. Enter Toll Road: «reuse as is» Init entry sequence
4. Enter through transponder enabled booth: «adaptable» Invalid transponder
2. Enter Toll Road: «adaptable» Post entry sequence
8. Exit Toll Road: «reuse as is» Init exit sequence
12. Exit through transponder-enabled booth: «reuse as is» No transponder
10. Exit Toll Road: «adaptable» Toll not paid
System test 3
1. Enter Toll Road: «reuse as is» Init entry sequence
5. Enter through transponder enabled booth: «adaptable» Invalid account
2. Enter Toll Road: «adaptable» Post entry sequence
8. Exit Toll Road: «reuse as is» Init exit sequence
11. Exit through transponder-enabled booth: «reuse as is» Main
14. Pay with transponder account: «adaptable» Account not valid
9. Exit Toll Road: «adaptable» Toll paid

 159

Figure 35 Execution sequence for system test 1

7.6 Application of Phases I-V: Creating and Customizing Test Specifications for

the Banking System SPL

The researcher applied phase I of CADeT to create activity diagrams for each use

case of the Banking System SPL in Table 29. Excerpts from these activity diagrams are

shown in Appendix A.

7.6.1 Coverage of All Use Case Scenarios and All Features in Banking System SPL

Then, the researcher followed phase II of CADeT to trace paths from the activity

diagrams for each use case scenario, and then map these paths to test specifications in

decision tables. Excerpts from these decision tables are shown in Appendix A. The set of

test specifications created for the Banking System SPL covered all use case scenarios of

this SPL. A total of 23 test specifications were created to cover the 21 use case scenarios

in the Banking System SPL.

Figure 36 shows the test specifications created to cover all use case scenarios in

the Banking System SPL. Each scenario in Figure 36 was covered by at least one test

 160

specification. Some scenarios, such as “Validate Pin: Main”, were covered by more than

one test specification. The main scenario of the “Validate Pin” use case contained a loop

(see the “Validate Pin” use case activity diagram in Figure 49 of Appendix A). The “Card

is valid” and “Pin is valid” test specifications in Figure 36 were created to cover this

loop. This enabled these two test specifications to be combined with other test

specifications (e.g. “Pin is invalid less than max times”) to create different loop execution

sequences (e.g. [Card is valid; Pin is invalid less than max times; Pin is valid]).

 161

Use case Scenario Use case: Test specification
Validate Pin 1. Main scenario 1. Validate Pin: «adaptable» Card is valid

2. Card is not recognized 2. Validate Pin: «adaptable» Pin is valid
3. Card is expired 3. Validate Pin: «adaptable» Card not recognized
4. Card is lost or stolen 4. Validate Pin: «adaptable» Card is expired
5. Pin is invalid 5. Validate Pin: «adaptable» Card is stolen
6. Maximum invalid pin attempts 6. Validate Pin: «adaptable» Pin is invalid less than max times
7. Customer cancels session 7. Validate Pin: «adaptable» Pin is invalid max times

Query 8. Main scenario 8. Validate Pin: «adaptable» Transaction is canceled during pin prompt
9. Account is not valid 9. Validate Pin: «adaptable» Transaction is canceled during transaction prompt

Transfer 10. Main scenario 10. Query: «adaptable» Account is valid
11. From account is not valid 11. Query: «adaptable» Account is not valid
12. To account is not valid 12. Transfer: «adaptable» Accounts are valid and there are sufficient funds
13. Insufficient funds 13. Transfer: «adaptable» From account is not valid

Withdraw 14. Main scenario 14. Transfer: «adaptable» To account is not valid
15. Account is not valid 15. Transfer: «adaptable» Insufficient funds
16. Insufficient funds 16. Withdraw: «adaptable» Accounts are valid and there are sufficient funds
17. Maximum withdrawal limit exceeded 17. Withdraw: «adaptable» Invalid account
18. ATM is out of funds 18. Withdraw: «adaptable» Insufficient funds

Startup 19. Main scenario 19. Withdraw: «adaptable» Exceeded daily limit
Add Cash 20. Main scenario 20. Withdraw: «adaptable» ATM is out of funds
Shutdown 21. Main scenario 21. Startup: «adaptable» Main scenario

22. Add Cash: «reuse as is» Main scenario
23. Shutdown: «reuse as is» Main scenario

Figure 36 Relationship between use case scenarios and test specifications of Banking System SPL

 162

The set of test specifications created for the Banking System SPL also covered all

features of this SPL. Table 34 shows the relationship of each feature to the test

specifications of the Banking System SPL. The “Feature” column lists the features of the

Banking System SPL. Each feature in the Banking System SPL is associated with at least

one test specification, and each test specification is associated with at least one feature.

With the exception of the ATM Kernel, all features in the Banking System SPL are

associated with a variation point parameter in one or more adaptable test specifications.

Thus, all optional, alternative and parameterized features in the Banking System SPL

represented a small granularity of variation in these test specifications (refer to

explanation of fine-grained and coarse-grained variability in phase IV of Chapter 5).

 163

Table 34 Features / test specifications relationships in Banking System SPL

Feature
Use case

Test specification Variation point
«common» ATM
Kernel

All
All

«alternative» Spanish

All except
Shutdown and
Add cash

All except Shutdown: «reuse as is»
Main scenario and Add cash: «reuse
as is» Main scenario vpLanguage

«alternative» French

All except
Shutdown and
Add cash

All except Shutdown: «reuse as is»
Main scenario and Add cash: «reuse
as is» Main scenario vpLanguage

«alternative» English

All except
Shutdown and
Add cash

All except Shutdown: «reuse as is»
Main scenario and Add cash: «reuse
as is» Main scenario vpLanguage

«alternative» Eject
Expired Card Validate Pin 4. «adaptable» Card is expired vpExpiredCardAction
«alternative»
Confiscate Expired
Card

Validate Pin
4. «adaptable» Card is expired vpExpiredCardAction

«optional» Call Police
Action Validate Pin 5. «adaptable» Card is stolen vpStolenCardAction
«optional» Phone
Branch Action Validate Pin 5. «adaptable» Card is stolen vpStolenCardAction
«optional» Alarm
action Validate Pin 5. «adaptable» Card is stolen vpStolenCardAction

2. «adaptable» Pin is valid vpPinFormat
4. «adaptable» Card is expired vpPinFormat
5. «adaptable» Card is stolen vpPinFormat
6. «adaptable» Pin is invalid less
than max times vpPinFormat
7. «adaptable» Pin is invalid max
times vpPinFormat

«parameterized» Pin
Format

Validate Pin

9. «adaptable» Transaction is
canceled during transaction prompt vpPinFormat
6. «adaptable» Pin is invalid less
than max times vpPinAttempts «parameterized» Pin

Attempts

Validate Pin
7. «adaptable» Pin is invalid max
times vpPinAttempts
4. «adaptable» Card is expired vpGreeting
5. «adaptable» Card is stolen vpGreeting
8. «adaptable» Transaction is
canceled during pin prompt vpGreeting

Validate Pin

 9. «adaptable» Transaction is

canceled during transaction prompt vpGreeting

«parameterized»
Greeting

 Startup 21. «adaptable» Main scenario vpGreeting

 164

7.6.2 Coverage of All Relevant Feature Combinations in Banking System SPL

Next, the researcher applied phase III of CADeT to analyze the test specifications

of the Banking System SPL, and apply a feature-based test coverage criterion to select a

set of representative application configurations to test, as described in Chapter 5.

The feature model of the Banking SPL was analyzed to calculate a total of 864

possible application configurations (as described in Appendix A). Next, the relationships

of the features to test specifications were analyzed to determine the relevant feature

combinations.

Table 35 shows the feature combinations associated with the test specifications of

the Banking System SPL. The feature condition of the “ATM Kernel” feature is omitted

from the analysis because it is always selected for any application derived from the SPL.

The largest number of feature conditions in a relevant feature combination in Table 35 is

two. Thus, at least a pair-wise feature based coverage criterion is needed to check the

feature combinations described by these test specifications. A pair-wise feature based

coverage criterion was applied using the Jenny tool (Jenkins 2005) to select 13

representative applications for the Banking System SPL. The test plan in Table 58 in

Appendix A describes the features selected for each of these 13 application

configurations.

Table 35 Relevant feature combinations in the Banking System SPL

Use case Test specification Feature combinations

1. «adaptable» Card is valid greeting*language Validate
Pin 2. «adaptable» Pin is valid pinFormat + language

 165

3. «adaptable» Card not recognized (greeting*language)

4. «adaptable» Card is expired (greeting*language) + pinFormat +
(language*expiredCardAction)

5. «adaptable» Card is stolen
(greeting*language) + pinFormat +
callPoliceAction + phoneBranchAction +
alarmAlarmAction

6. «adaptable» Pin is invalid less
than max times pinFormat + language + pinAttempts

7. «adaptable» Pin is invalid max
times pinFormat + language + pinAttempts

8. «adaptable» Transaction is
canceled during pin prompt greeting*language

9. «adaptable» Transaction is
canceled during transaction prompt (greeting*language) + pinFormat

10. «adaptable» Account is valid language
Query 11. «adaptable» Account is not

valid language

12. «adaptable» Accounts are valid
and there are sufficient funds language

13. «adaptable» From account is not
valid language

14. «adaptable» To account is not
valid language

Transfer

15. «adaptable» Insufficient funds language
16. «adaptable» Accounts are valid
and there are sufficient funds language

17. «adaptable» Invalid account language
18. «adaptable» Insufficient funds language
19. «adaptable» Exceeded daily
limit language

Withdraw

20. «adaptable» ATM is out of
funds language

Startup 21. «adaptable» Main scenario greeting*language
Add Cash 22. «reuse as is» Main scenario -
Shutdown 23. «reuse as is» Main scenario -

Next, the researcher followed phase IV of CADeT to apply the parameterization

variability mechanism to the Banking System SPL test specifications, in order to

automate the configuration of these test specifications for each of the representative

 166

applications of the Banking System SPL. A feature list was created for the Banking

System SPL, as shown in Table 54 of Appendix A, and all decision tables of this SPL

were parameterized, as illustrated by the sample decision table in Table 59 of Appendix

A.

7.6.3 Coverage of All Use Case Scenarios in each Application of the Banking

System SPL

In phase V, test specifications were selected and customized using the

parameterization mechanism of CADeT for each of the 13 application configurations in

the test plan of the Banking System SPL. All 23 test specifications of the Banking System

SPL were selected and customized for each application in the test plan in Table 58.

The test procedure generator tool was used to generate a test execution graph and

to create a test procedure document for each of the 13 application configurations in the

Banking System SPL test plan in Table 58 (see Appendix A). A set of system test

sequences was traced from each customized graph for each application of the Banking

System SPL. These system test sequences covered all use case scenarios of the

application.

The test execution graph of each application of the Banking System SPL

contained 23 nodes, which corresponded to the 23 test specifications of the Banking

System SPL, and 130 edges, which corresponded to execution dependencies between

these test specifications. The test execution graph of each application was equivalent to

the test execution graph of the Banking System SPL, because the common “ATM kernel”

 167

feature was associated with all test specifications, while the variable features were

associated with variation points in these test specifications.

A test procedure document was also created for each of the 13 application

configurations in the test plan of the Banking System SPL. Each test procedure document

included all test specifications associated with the use case scenarios and features

selected for each of these applications.

7.6.4 Number of Applications Configured for each SPL

Table 36 compares the number of application configurations generated to cover

the pair-wise feature combinations in the test plan of each SPL against the number of

application configurations needed to cover all feature combinations in each SPL. Less

application configurations were generated to cover the relevant (2-way) feature

combinations in each SPL.

Table 36 Number of application configurations for each SPL

 AHTS SPL Banking System SPL

All feature combinations 224 864
Pair-wise combinations 8 13

7.6.5 Comparison of Number of Test Specifications Created using CADeT with

alternative approaches

Next, the number of test specifications created using CADeT for each SPL was

compared against the number of test specifications needed to cover the same use case

scenarios, features and feature combinations using two alternative approaches. The first

 168

approach was a “no reuse” approach. In this approach, test specifications are created for

each application in the SPL, without reusing test specifications created for other

applications of that SPL. The number of test specifications that needed to be created

using a “no reuse” approach was estimated by adding the number of test specifications

created for each application in the test plan of each SPL.

The second approach was an approach that reused the coarse-grained functionality

but did not reuse the fine-grained functionality described in the test specifications of a

SPL. This approach is similar to the approach described in (Olimpiew and Gomaa 2005).

With the “reuse coarse-grained functionality” approach, test specifications are created for

each use case scenario and feature combination in the test plan of the SPL, and then

reused “as is” by selecting test specifications that have already been created for another

application of the SPL. The fine-grained functionality in the test specifications has to be

manually customized for each application of the SPL. The number of test specifications

created for the “reuse coarse-grained functionality” approach was estimated by adding

the number of reuse “as is” test specifications to the number of variant test specifications

generated for each application of the SPL.

The CADeT approach is used to automatically configure both the coarse-grained

and fine-grained functionality in the test specifications of a SPL. The following describes

the application of the “no reuse”, “reuse coarse-grained functionality” (some reuse) and

“reuse fine-grained and coarse-grained functionality (CADeT) approaches to each SPL.

 169

7.6.6 Number of Test Specifications Created for AHTS SPL

The CADeT approach was used to create a total of 30 test specifications for the

AHTS SPL. Of these, 8 test specifications were identified as «adaptable», and the

remaining 22 as «reuse as is». The test plan in Table 9, Chapter 5 described 8 application

configurations that satisfy a pair-wise feature-based coverage criterion over the AHTS

SPL.

Table 37 shows the number of test specifications created for the AHTS SPL using

“no reuse”, “some reuse” and the CADeT approaches. The “some reuse” column

describes the actual number of test specifications created to cover the pair wise

combinations of the eight applications in the AHTS test plan. In Table 37, 30 test

specifications were created using CADeT to cover all use case scenarios and pair-wise

feature combinations in the AHTS SPL. Almost five times as many test specifications

need to be created using the “no reuse” approach, and almost twice as many test

specifications need to be created using the “some reuse” approach to cover the same use

case scenarios and feature combinations of the AHTS SPL.

Table 37 Number of test specifications created for AHTS SPL

Use case or
aggregate
activity

Test
Specification Feature combinations No

reuse
Some
reuse CADeT

Enter Toll Road
2. «adaptable»
Post entry
sequence

barrier + trafficLight 8 4 1

4. «adaptable»
Invalid
transponder

(transponderBooth *
trafficLight) +
(transponderBooth * alarm)

7 4 1
Enter through
transponder

enabled booth 5. «adaptable»:
Invalid account

(transponderBooth *
trafficLight)+
(transponderBooth * alarm)

7 4 1

 170

9. «adaptable»
Toll paid barrier + trafficLight 8 4 1

Exit Toll Road
10. «adaptable»
Toll not paid

camera + barrier +
trafficLight + alarm 8 7 1

13. «adaptable»
Account valid

transponderAccount *
tollCharge 7 2 1

Pay with
transponder

account
14. «adaptable»
Account not
valid

(transponderAccount *
trafficLight) +
(transponderAccount *
alarm)

7 4 1

Process ticket
16. «adaptable»
Ticket
recognized

ticketReader * tollCharge 4 2 1

*
22 «reuse as is»
test
specifications

 93 22 22

 Totals 149 52 30

7.6.7 Number of Test Specifications Created for Banking System SPL

The CADeT approach was used to create a total of 23 test specifications for the

Banking System SPL. Of these, 21 test specifications were identified as «adaptable», and

the remaining 2 as «reuse as is». The test plan in Table 58, Appendix A describes 13

application configurations that satisfy a pair-wise feature-based coverage criterion for the

Banking System SPL.

Table 38 shows the number of test specifications created for the Banking System

SPL using “no reuse”, “some reuse” and the CADeT approaches. The “some reuse”

column describes the actual number of test specifications created to cover the pair wise

combinations of the 13 applications in the Banking System SPL test plan.

 Table 38 demonstrates that 23 * 13, or 299 test specifications would have been

created without reuse, and that that 127 test specifications (2 «reuse as is» test

 171

specifications plus 125 variant test specifications) would have been created with “some

reuse” for all of the applications in the test plan of the Banking System SPL. Using

CADeT reduces that number to 23 test specifications.

Table 38 Number of test specifications created for Banking System SPL

 Use case Test specification Feature combinations No
reuse

Some
reuse CADeT

1. «adaptable» Card
is valid greeting * language 13 6 1

2. «adaptable» Pin is
valid pinFormat + language 13 9 1

3. «adaptable» Card
not recognized greeting * language 13 6 1

4. «adaptable» Card
is expired

(greeting * language) +
pinFormat + (language *
expiredCardAction)

13 11 1

5. «adaptable» Card
is stolen

(greeting * language) +
pinFormat + callPoliceAction +
phoneBranchAction +
alarmAlarmAction

13 13 1

6. «adaptable» Pin is
invalid less than max
times

pinFormat + language +
pinAttempts 13 12 1

7. «adaptable» Pin is
invalid max times

pinFormat + language +
pinAttempts 13 12 1

8. «adaptable»
Transaction is
canceled during pin
prompt

geeting * language 13 6 1

Validate
Pin

9. «adaptable»
Transaction is
canceled during
transaction prompt

(greeting * language) +
pinFormat 13 11 1

10. «adaptable»
Account is valid language 13 3 1

Query
11. «adaptable»
Account is not valid language 13 3 1

Transfer

12. «adaptable»
Accounts are valid
and there are
sufficient funds

language 13 3 1

 172

13. «adaptable»
From account is not
valid

language 13 3 1

14. «adaptable» To
account is not valid language 13 3 1

15. «adaptable»
Insufficient funds language 13 3 1

16. «adaptable»
Accounts are valid
and there are
sufficient funds

language 13 3 1

17. «adaptable»
Invalid account language 13 3 1

18. «adaptable»
Insufficient funds language 13 3 1

19. «adaptable»
Exceeded daily limit language 13 3 1

Withdraw

20. «adaptable»
ATM is out of funds language 13 3 1

Startup 21. «adaptable»
Main scenario greeting * language 13 6 1

Add Cash 22. «reuse as is»
Main scenario - 13 1 1

Shutdown 23. «reuse as is»
Main scenario - 13 1 1

 Totals 299 127 23

The next section describes a third and final study that was implemented to

evaluate the remaining phases of CADeT and CADeT-SoC, which describe how to

implement and apply each variability mechanism to configure the test specifications for a

set of applications derived from a SPL, and then test these applications.

7.7 Evaluate Feasibility and Effort of Customizing Test Specifications and Testing

Applications Using CADeT and CADeT-SoC

The third study evaluated the feasibility of applying the remaining phases of

CADeT and CADeT-SoC to the Banking System SPL. Phases IV-VII of CADeT describe

 173

how to apply a parameterization mechanism to the test specifications of a SPL, customize

these test specifications for an application of the SPL, select test data for the customized

test specifications, and then test the application. Phases IV-SoC and V-SoC of CADeT-

SoC describe how to apply a separation of concerns variability mechanism instead of a

parameterization mechanism to customize the test specifications of a SPL.

7.7.1 Description of Study

In this study, five graduate students (participants) from an advanced software

design class took the role of subject matter experts. Participants were asked to apply

phases IV-VII of CADeT and phases IV-SoC and V-SoC of CADeT-SoC to a set of

decision tables and test specifications created by the researcher for the Banking System

SPL. The instructions for these phases are in Chapters 5 and 6, and examples from the

Banking System SPL are in Appendix A. The order in which these phases were applied

by each participant is outlined below:

Customize test specifications using parameterization mechanism

1. Phase IV: Apply the parameterization variability mechanism to decision tables

and test specifications of the Banking System SPL.

2. Phase V: Customize the decision tables and test specifications using the

parameterization mechanism for two application configurations (assigned by

researcher) from the Banking System SPL test plan.

 Test two applications using customized test specifications

3. Phase VI: Select test data for the test specifications of these two applications.

 174

4. Phase VII: Test two application implementations derived from a Banking System

SPL implementation, which correspond to the assigned application

configurations.

 Customize test specifications using separation of concerns mechanism

5. Phase IV-SoC: Apply a separation of concerns variability mechanism to the

decision tables and test specifications of the Banking System SPL.

6. Phase V-SoC: Configure test specifications for the same two application

configurations using the separation of concerns variability mechanism.

 Apply a pragmatic approach to customize test specifications

7. Apply a “No reuse”, or pragmatic approach to copy and modify the decision

tables for two applications from the test plan.

All participants were required to participate in tutorial sessions. Tutorial sessions

were given prior to the 1st, 2nd, 3rd and 5th activities. Additional meetings were held

between the participant and researcher as the need arose. A week was scheduled for each

activity, with some additional time for revisions. Participants were asked to enter the

date, begin and end times for each activity in a time log template, as shown in Table 39.

At the completion of a phase, the participant sent the results to the researcher. The

researcher checked these results against the expected results, and then sent suggestions

for revisions back to the participant. Besides the number of man-hours recorded in the

time log, two other sources of quantitative and qualitative data were collected and

analyzed in this study to evaluate the main hypothesis of this research. The quantitative

data were the test results from the 4th activity, “Phase VII: Test test two application

 175

implementations”, and the qualitative data were the results of a survey administered to

the participants.

The following section describes the activities of each phase in more detail.

 176

Table 39 Time log template

 Date ->
I. Apply parameterization Begin Time End Time
 Reading and understanding instructions
 Adding features to "Feature" worksheet
 Modifying Validate Pin decision table
 Modifying Query decision table
 Modifying Transfer decision table
 Modifying Withdraw decision table
 Modifying Startup decision table
 Modifying AddCash decision table
 Modifying Shutdown decision table
 Date ->
II. Customize decision tables using parameterization Begin Time End Time
 Reading and understanding instructions
 Generating test specifications for <TS1>
 Creating system test sequences for <TS1>
 Generating test specifications for <TS2>
 Creating system test sequences for <TS2>
 Date ->
III. Application testing Begin Time End Time
 Updating database for <TS1>
 Selecting inputs for <TS1>
 Installing <TS1>
 Running tests on <TS1> and recording results
 Updating database for <TS2>
 Selecting inputs for <TS2>
 Installing <TS2>
 Running tests on <TS2> and recording results
 Date ->
IV. Apply separation of concerns Begin Time End Time
 Reading and understanding instructions
 Modifying Validate Pin decision table
 Modifying Query decision table
 Modifying Transfer decision table
 Modifying Withdraw decision table
 Modifying Startup decision table
 Exporting text files
 Installing and running SPLET
 Using SPLET to associate features with identifiers in Validate Pin
 Using SPLET to associate features with identifiers in Query
 Using SPLET to associate features with identifiers in Transfer
 Using SPLET to associate features with identifiers in Withdraw
 Using SPLET to associate features with identifiers in Startup

 177

 Date ->
V. Customize decision tables using separation of concerns Begin Time End Time
 Reading and understanding instructions
 Generating test specifications for SPL
 Exporting text files
 Using SPLET to customize test specifications for <TS1>
 Using SPLET to customize test specifications for <TS2>
 Date -> Begin Time End Time
VI. Pragmatic approach
 Modifying decision tables for <TS1>
 Modifying decision tables for <TS2>

1. Phase IV: Apply the parameterization variability mechanism to decision tables

and test specifications during SPL engineering

Participants started out with seven base decision tables created from the activity

diagrams of the Banking system SPL in the previous study. Each decision table was

associated with a use case from the Banking system SPL use case model in Figure 46 in

section A.1: Validate Pin, Query, Transfer, Withdraw, Startup, Add Cash and Shutdown.

Each decision table contained one or more columns, which described 23 test

specifications associated with the use case scenarios of the Banking System SPL in

Figure 36. Some of these test specifications were tagged as adaptable to indicate that they

needed to be customized for each application derived from the SPL. An example of a

base decision table for the Validate Pin use case is shown in Table 56 in appendix A.3.

Each participant followed the instructions in section 5.5 to create the feature list in

Table 54 and to associate features from the feature model to the adaptable test

specifications in the decision tables using feature conditions. Participants replaced each

adaptable test step with the variant or optional test steps associated with the selection of a

 178

variable feature, and made these test steps configurable using Excel formulas. An

example of a feature list for the Banking System SPL and parameterized decision table

for Validate Pin use case is described in Table 59 in appendix A.5.

2. Phase V: Customize the decision tables and test specifications using the

parameterization mechanism during application engineering

The participants were assigned two different applications from the Banking

System SPL test plan in Table 58 in section A.4. An application implementation was

derived for the corresponding application configurations from a Banking System SPL

implementation (Vonteru 2001).

Each participant configured the feature list for the two assigned application

configurations, which enabled test steps associated with selected features, and disabled

test steps not associated with selected features in the decision tables. Then, the participant

used CADeT’s test specification generator tool to generate the test specifications

document from customized decision tables for each of the two applications. Each column

in the decision table became a test specification in the application’s test specifications

document. Next, the participant used CADeT’s test procedure definition tool to order and

compose system tests for each application, until the test procedure covered all test

specifications of the application. A test procedure document and system test documents

were generated for each application. An example of customizing the decision tables and

generating these documents for an application derived from the Banking System SPL is

described in appendix A.

 179

4. Phase VI: Select test data for the test specifications of these two applications

Each participant followed the instructions of Phase VI in Chapter 5 to select test

data for the database and system tests of each application. An example of selecting test

data for the database and system tests of an application derived from the Banking System

SPL is described in appendix A.

5. Phase VII: Test two application implementations

Each participant installed, executed, tested, and logged test results for two

application implementations using the previously selected database and input values. An

example of testing an application derived from the Banking System SPL is described in

appendix A.8.

6. Phase IVSoC: Apply the separation of concerns variability mechanism to decision

tables and test specifications during SPL engineering

Each participant applied a separation of concerns variability mechanism to the

same base decision tables created from the activity diagrams of the Banking system SPL.

The participant followed the instructions for Phase IV-SoC in section 6.2 to modify the

decision tables to use the separation of concerns variability mechanism, and to create the

variable feature file for the Banking System SPL, as described in appendix A.9.

 180

7. Phase VSoC: Configure test specifications using separation of concerns variability

mechanism during application engineering

Each participant customized the test specifications using the separation of

concerns variability mechanism for the same two application configurations assigned by

the researcher. The participant followed the instructions in section 6.2.4 to customize the

test specifications for each application derived from the Banking System SPL using the

separation of concerns variability mechanism, as described in section A.9 in Chapter 7.

8. Apply a pragmatic approach

Some participants also applied a pragmatic approach to customize the test

specifications for two applications derived from the SPL. The pragmatic approach is the

“No reuse” approach described earlier in the second stuy. Instead of applying a variability

mechanism to automate the configuration of the test specifications for an application

derived from the SPL, the participant copied the test specifications created for one

application of the SPL, and then manually modified these test specifications for another

application of the SPL.

7.7.2 Results of Applying Each Phase

Each participant attended tutorials, read detailed instructions for each phase and

then followed the instructions for each activity. Before starting an activity in a phase,

each participant entered the date and begin time for that activity, carried out the activity,

and recorded the end time for that activity as shown in the time log template in Table 39.

 181

Total time in man-hours spent learning and applying each phase

Phase IVPhase IVPhase IVPhase IV Phase IVPhase IV

Phase V

Phase VPhase V

Phase V

Phase V

Phase V
Phase VI

Phase VI Phase VI

Phase VI

Phase VI

Phase VI

Phase VII

Phase VII

Phase VII

Phase VII

Phase VII

Phase VII

Phase IV-SoC

Phase IV-SoC

Phase IV-SoC

Phase IV-SoC

Phase IV-SoC
Phase V-SoC

Phase V-SoC

Phase V-SoC

Phase V-SoC
Phase V-SoC

Pragmatic

Pragmatic

Pragmatic

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

F G H I J Average

Participant

M
an

-h
ou

rs

Phase IV Phase V Phase VI Phase VII Phase IV-SoC Phase V-SoC Pragmatic

Figure 37 Total time in man-hours spent learning and applying each phase

 182

Table 40 Total time in man-hours spent learning and applying each phase

 F G H I J Average Median StdDev
Phase IV: Learn and
apply parameterization
variability mechanism 2.57 5.13 7.42 2.18 2.18 3.90 2.57 2.32
Phase V: Customize test
specifications for two
applications using the
parameterization
variability mechanism 0.57 1.07 2.00 2.23 0.92 1.36 1.07 0.72
Phase VI: Select test data
for two applications 1.93 1.58 11.25 2.88 1.83 3.90 1.93 4.14
Phase VII: Test two
applications 1.77 4.60 4.42 2.72 3.15 3.33 3.15 1.19
Phase IV-SoC: Learn and
apply the separation of
concerns variability
mechanism 1.25 1.42 2.80 3.30 N/A 2.19 2.11 1.01
Phase V-SoC: Customize
test specifications for two
applications using
separation of concerns
variability mechanism 0.22 0.25 1.80 1.33 N/A 0.90 0.79 0.79
Apply pragmatic
approach to customize
test specifications for two
applications 0.23 N/A N/A N/A 0.42 0.33 0.33 0.13
Total time 8.53 14.05 29.68 14.65 8.50 15.90

The total time in man-hours for applying each Phase to the decision tables of the

Banking System SPL is shown in a stacked column chart in Figure 37 for participants F,

G, H, I and J. This chart also shows the average, median and standard deviation of the

time in man-hours taken to apply each phase over all participants. The actual values and

averages are shown in Table 40. In the table, an entry of “N/A” means that the participant

did not perform the activity. This table shows that all participants were able to learn and

apply Phases IV-VII of CADeT within an average time of 16 man-hours. All participants

 183

who applied Phases IV-SoC and V-SoC of CADeT-SoC were also able to learn and apply

these phases within the allotted time. On average, “Phase IV: Learn and apply

parameterization variability mechanism” and “Phase VI: Select test data for two target

systems” took the most time (about 4 man-hours), while “Phase V-SoC: Customize two

target system test suites using separation of concerns variability mechanism” took the

least amount of time (1 man-hour). Only two participants applied the pragmatic approach,

which on average took less time than any of the phases (0.33 man-hours).

Several factors influenced the time in man-hours of applying each of these phases.

The order in which the phases were applied affected the results. Initially, all participants

were not familiar with the Banking System SPL requirement models and the decision

tables, so the time spent learning Phase IV also included time spent understanding the

Banking System SPL and the concept of decision tables. After a participant understood

these concepts he was able to spend less time applying Phases IV-SoC and V-SoC, and

the pragmatic approach. Another factor is that one of the participants took substantially

more time than other participants to apply some of the phases, because of problems

installing and using the tools. The following sections distinguish between the activities

performed by each participant in each Phase.

7.8 Creating and Customizing Test Specifications Using Parameterization

7.8.1 Results for Phase IV: Apply the Parameterization Variability Mechanism

The total time in man-hours to learn and apply “Phase IV: Apply the

parameterization variability mechanism” during SPL engineering is shown in Figure 38,

 184

and the actual values, average, median and standard deviation are shown in Table 41. The

time spent learning includes any time spent with the tutorials, reading and understanding

instructions, and any additional meetings. The time spent applying Phase IV includes the

time spent creating the feature list and modifying the decision tables to use the

parameterization variability mechanism as described in Chapter 5.

Time in man-hours to learn and apply Phase IV:
Apply parameterization variability mechanism

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

F G H I J

Ave
rag

e

Participant

M
an

-h
ou

rs

Apply Phase IV
Learn Phase IV

Figure 38 Time in man-hours to learn and apply Phase IV

Table 41 Time in man-hours to learn and apply Phase IV

 F G H I J Average Median StdDev

Learn Phase IV 1.02 2.38 1.15 1.00 0.92 1.29 1.02 0.62

Apply Phase IV 1.55 2.75 6.27 1.18 1.27 2.60 1.55 2.14

Total time 2.57 5.13 7.42 2.18 2.18 3.90 2.57 2.32

 185

Phase IV was a manual approach that was susceptible to a wide variety of

differences in an individual’s unique learning style, prior experience, and abilities.

Participants G and H took a considerably longer time to learn and apply the method than

the average time. Participant G encountered technical problems updating Microsoft Excel

spreadsheet formulas on a Macintosh, while participant H had difficulty understanding

the structure and purpose of the decision tables.

Each participant submitted a set of modified decision tables to the researcher, who

compared the submitted results against expected results. If the submitted results were

inconsistent with the expected results, the researcher requested revisions or additional

meetings with the participant. Initially, all participants had trouble analyzing the impact

of features in the decision tables, but were later able to correct these problems.

7.8.2 Results for Phase V: Customize Test Specifications for Two Applications

using the Parameterization Variability Mechanism

The total time in man-hours to learn and apply “Phase V: Customize the test

suites for two applications using the parameterization variability mechanism” during

application engineering is shown in Figure 39, and the actual values, average, median and

standard deviation are shown in Table 42. The time spent learning includes the time

spent with the tutorials, reading and understanding instructions, and any additional

meetings. The time spent applying Phase V to each application includes the time spent

generating the test specifications document using the test specification generator tool and

the time spent creating the test procedure document using the test procedure definition

tool described in Chapter 5.

 186

Time in man-hours to learn and apply Phase V:
Customize using parameterization variability mechanism

0.00

0.50

1.00

1.50

2.00

2.50

F G H I J

Ave
rag

e

Participant

M
an

-h
ou

rs

Create test procedure for
second application

Create test procedure for first
application

Generate test specifications
for second application

Generate test specifications
for first application

Learn Phase V

Figure 39 Time in man-hours to learn and apply Phase V

Table 42 Time in man-hours to learn and apply Phase V

 F G H I J Average Median StdDev
Learn Phase V 0.12 0.60 0.90 1.23 0.67 0.70 0.67 0.41
Generate test
specifications for first
application 0.17 0.02 0.20 0.07 0.02 0.09 0.07 0.09
Generate test
specifications for second
application 0.02 0.02 0.30 0.08 0.02 0.09 0.02 0.12
Create test procedure
for first application 0.17 0.28 0.25 0.48 0.17 0.27 0.25 0.13
Create test procedure
for second application 0.10 0.15 0.35 0.37 0.05 0.20 0.15 0.15

Total time 0.57 1.07 2.00 2.23 0.92 1.36 1.07 0.72

 187

Phase V was partly automated. Each participant used a test specification generator

tool to generate the test specifications document and a test procedure definition tool to

create the test procedure document for each application. Participants took from 0.02 to

0.20 man hours to generate the test specifications document for the first application, and

from 0.02 to 0.30 man hours to generate the test specifications document for the second

application using the test specification generator tool. Participants took from 0.17 to 0.48

man hours to create a test procedure document for the first application, and from 0.05 to

0.37 man hours to create a test procedure document for the second application using the

test procedure definition tool.

All participants were able to understand and use the test specification generator

tool to generate the test specifications document for each application. Some participants

did not understand the purpose of the test procedure definition tool, and did not realize

that a system test described the order in which test cases were going to be executed

during system testing. All of these participants were able to correct these problems after

the researcher explained and demonstrated the idea with an example.

7.9 Selecting Test Data for Customized Test Specifications

7.9.1 Results for Phase VI: Select Test Data for Two Applications

The total time in man-hours to learn and apply “Phase VI: Select test data for two

applications” is shown in Figure 40, and the actual values, average, median and standard

deviation are shown in Table 43. The time spent learning includes the time spent with the

tutorials, reading and understanding instructions, and any additional meetings. The time

 188

spent applying Phase VI to each application includes the time spent selecting test data for

the database and system tests of each application as described in Chapter 5.

Time in man-hours to learn and apply Phase VI:
Select data for two applications

0.00

2.00

4.00

6.00

8.00

10.00

12.00

F G H I J

Ave
rag

e

Participant

M
an

-h
ou

rs

Select test data for system
tests of second application

Select test data for system
tests of first application

Select test data for database
of second application

Select test data for database
of first application

Learn Phase VI

Figure 40 Time in man-hours to learn and apply Phase VI

 189

Table 43 Time in man-hours to learn and apply Phase VI

 F G H I J Average Median StdDev

Learn Phase VI 0.50 0.50 0.50 1.00 0.50 0.60 0.50 0.22
Select test data for
database of first
application 0.33 0.35 3.00 0.25 0.22 0.83 0.33 1.21
Select test data for
database of second
application 0.33 0.27 3.50 0.08 0.07 0.85 0.27 1.49
Select test data for
system tests of first
application 0.43 0.27 2.00 0.90 0.43 0.81 0.43 0.71
Select test data for
system tests of
second application 0.33 0.20 2.25 0.65 0.62 0.81 0.62 0.83
Totals 1.93 1.58 11.25 2.88 1.83 3.90 1.93 4.14

Phase VI was a manual approach that was susceptible to a wide variety of

differences in an individual’s unique learning style, prior experience, and abilities.

Participants took from 0.22 to 3 man-hours to select test data for the database of the first

application, and from 0.07 to 3.50 man hours to select test data for the database of the

second application. Participants took from 0.27 man-hours to 2 man-hours to select test

data for the system tests of the first application and from 0.20 to 2.25 man-hours to select

test data for the system tests of the second application. Participant H took a considerably

longer time to select test data than the other participants, and had some problems

updating the time log in this phase. It is not clear whether the additional time was due to

problems updating the time log or difficulty understanding and applying the instructions.

Almost all participants had difficulty selecting the test data for database tables and

for the test specifications associated with alternative use case scenarios, such as “Validate

 190

Pin: Customer uses a stolen card”. Some of the test data selected for these database tables

and tests was incorrect because it did not satisfy the database rules or the predicates in the

tests. However, most participants were able to correct these problems after the researcher

pointed out the inconsistencies.

7.10 Results for Phase VII: Test Two Applications

Ten out of the thirteen applications described in the Banking System SPL test

plan of Table 58 were derived from an implementation of the Banking System SPL and

then tested by the participants of this study. Each participant was given two application

implementations, which corresponded to the two application configurations earlier

assigned to the participant.

7.10.1 Results of Executing the Tests

The total time in man-hours to learn and apply “Phase VII: Test two applications”

is shown in Figure 41, and the actual values, average, median and standard deviation are

shown in Table 44. The time spent applying Phase VII to test each application includes

the time spent installing the application and the time spent executing each system test,

observing the outcomes, and recording the results as described in Chapter 5.

 191

Time in man-hours learn and apply Phase VII:
Test two applications

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00

F G H I J

Ave
rag

e

Participant

M
an

-h
ou

rs Test second application
Test first application
Install second application
Install first application

Figure 41 Time in man-hours to learn and apply Phase VII

Table 44 Time in man-hours to learn and apply Phase VII

 F G H I J Average Median StdDev
Install first application 0.03 0.83 0.67 0.13 2.05 0.74 0.67 0.81
Install second application 0.07 0.10 0.25 0.33 0.17 0.18 0.17 0.11
Test first application 1.00 2.07 3.00 0.83 0.62 1.50 1.00 1.01
Test second application 0.67 1.60 0.50 1.42 0.32 0.90 0.67 0.57
Totals 1.77 4.60 4.42 2.72 3.15 3.33 3.15 1.19

Phase VII was also a manual approach that was susceptible to a wide variety of

differences in an individual’s unique learning style, prior experience, and abilities. Some

of the variation in the time is due to unexpected problems encountered during testing.

Participant J took considerably longer than the average to install the first application

 192

(2.05 man-hours), because of a problem with an incompatible Java security policy.

Participant G installed a JDK version that was not compatible with the application, and

Participant H’s computer crashed during testing for unknown reasons.

Table 45 summarizes the number of Passed, Failed and Invalid test results

assigned by the participants for each test case in the system test plan of one of the

applications of the Banking System SPL. A participant executed each test case against the

assigned application, observed the actual outputs, and then compared the actual with the

expected outputs. The “Passed” row describes the number of test cases executed for an

application that were assigned a “Pass” test result (actual output = expected output). The

“Failed” row describes the number of test cases executed for an application that were

assigned a “Fail” result (actual output <> expected output). The “Inconclusive” row

describes the number of test cases executed for an application that were assigned an

“Inconclusive” result (actual output ? expected output). The “Not tested” result is the

number of test cases in the system test plan that was not tested. The “Total tests

executed” is the number of test specifications instances from the application’s system test

plan that were executed by a participant, and “Total in test plan” is the number of test

cases in the application’s test plan.

Table 45 Test results assigned by participants for test cases

 TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8 TS9 TS10
Participant F F G G H H I I J J
Passed 48 52 124 82 71 64 76 65 34 37
Failed 10 12 5 6 15 15 6 13 15 17
Inconclusive 4 0 0 0 1 0 2 0 0 0
Not tested 2 0 0 3 0 0 0 8 0 0
Total executed 62 64 129 88 87 79 84 78 49 54

 193

Total in test
plan 64 64 129 91 87 79 84 86 49 54

The test data and test results were further verified by the researcher to make sure

they were consistent with the predicates described in the test specifications, and to

determine whether the failed test results described an actual fault. Table 46 shows the

corrected test results. The “False positives” row describes the test results that the

researcher determined to be incorrectly classified as Passed, and the “False negatives”

row describes the test results that the researcher determined to be incorrectly classified as

Failed. A test result was incorrectly classified if the inputs selected by the participant did

not satisfy the execution conditions in the test case. The “Corrected passed”, “Corrected

failed” and “Corrected total” describes the corrected test results.

Test data selection and test execution are manual processes in CADeT and depend

in part on an individual’s ability to select test data to satisfy the predicates and to

calculate the expected outputs from this data. On average, each participant was able to

execute about 80% of all test cases in the system test plan of an application.

Table 46 Corrected test results

 TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8 TS9 TS10
Participant F F G G H H I I J J
False positives 1 2 29 15 3 10 15 6 6 4
Corrected
passed 47 50 95 67 68 54 61 59 28 33
False negatives 1 0 3 1 10 10 5 9 12 16
Corrected
failed 9 12 2 5 5 5 1 4 3 1
Total tests 64 64 129 91 87 79 84 86 49 54
Corrected total 62 62 97 75 74 59 64 71 31 34

 194

7.10.2 Coverage of All Use Case Scenarios and All Features

Table 47 shows the features associated with each of the ten applications of the

Banking System SPL. Table 48 shows the number of test cases (derived from each test

specification) that were executed against each application of the Banking System SPL.

These test cases executed all use case scenarios of the Banking System SPL, and also

covered the feature combinations shown in Table 47. Most of the relevant feature

combinations of the Banking System SPL in Table 35, such as greeting*language =

{(enhanced, english), (standard, english), (enhanced, french), (standard, french),

(enhanced, spanish), (standard, spanish)} are covered by these ten applications.

 195

Table 47 Features associated with applications of the Banking System SPL

Feature condition
Feature
selections TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8 TS9 TS10

ATMKernel T T T T T T T T T T T

language
{eng, fre,
spa} eng fre spa fre eng spa eng fre spa eng

expiredCardAction
{conf,
eject} conf eject eject conf eject conf conf conf eject conf

callPoliceAction {T, F} T F F T F T F T T T
phoneBranchAction {T, F} F T F T T F F T T F
alarmAction {T, F} F T T F T F F T F F
pinFormat {3, 4, 10} 3 4 10 10 3 4 4 3 3 10
pinAttempts {1, 3, 5} 1 3 5 5 1 3 5 5 1 3
greetingPrompt {enh, sta} enh sta enh sta sta enh sta enh sta sta

 196

Table 48 Number of test cases executed against each application

 Use case: Test specifications TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8 TS9 TS10 Total test cases

1. Validate Pin: «adaptable» Card is valid 13 13 21 17 15 14 17 19 12 12 153

2. Validate Pin: «adaptable» Pin is valid 11 11 16 14 13 12 14 18 11 11 131

3. Validate Pin: «adaptable» Card not recognized 1 1 3 2 2 1 2 1 1 1 15

4. Validate Pin: «adaptable» Card is expired 1 1 3 2 1 1 2 1 1 1 14

5. Validate Pin: «adaptable» Card is stolen 1 1 5 3 2 1 4 2 1 1 21

6. Validate Pin: «adaptable» Pin invalid less than max times 1 1 17 5 1 3 6 5 0 2 41

7. Validate Pin: «adaptable» Pin invalid max times 1 1 5 2 1 1 1 1 1 1 15

8. Validate Pin: «adaptable» Transaction is canceled during pin
prompt 1 1 2 1 1 1 2 2 1 1 13

9. Validate Pin: «adaptable» Transaction is canceled during
transaction prompt 1 1 6 5 1 1 4 4 1 1 25

10. Query: «adaptable» Account is valid 1 1 2 2 3 2 5 5 1 1 23

11. Query: «adaptable» Account is not valid 1 1 2 1 1 1 1 2 1 1 12

 197

12. Transfer: «adaptable» Accounts are valid and there are
sufficient funds 1 1 3 2 1 1 1 2 1 1 14

13. Transfer: «adaptable» From account is not valid 1 1 0 1 1 1 1 1 1 1 9

14. Transfer: «adaptable» To account is not valid 1 1 1 1 1 1 1 1 1 1 10

15. Transfer: «adaptable» Insufficient funds 1 1 1 1 1 1 1 1 1 1 10

16. Withdraw: «adaptable» Accounts are valid and there are
sufficient funds 1 1 1 1 1 1 1 1 1 1 10

17. Withdraw: «adaptable» Invalid account 1 1 2 1 1 1 0 1 1 1 10

18. Withdraw: «adaptable» Insufficient funds 1 1 1 1 1 1 1 1 1 1 10

19. Withdraw: «adaptable» Exceeded daily limit 1 1 1 2 1 1 1 2 1 1 12

20. Withdraw: «adaptable» ATM is out of funds 1 1 2 1 1 1 1 1 1 1 11

21. Startup: «adaptable» Main scenario 20 20 26 24 19 17 15 13 7 9 170

22. Add Cash: «reuse as is» Main scenario 1 1 4 1 1 1 2 1 1 1 14

23. Shutdown: «reuse as is» Main scenario 1 1 5 1 17 14 1 1 1 2 44

Total test cases 64 64 129 91 87 79 84 86 49 54 787

 198

7.10.3 Faults Discovered

Table 49 describes the faults found in each of the ten applications derived from

the Banking System SPL by the participants this study. A total of 13 faults were

discovered during testing. Most of these faults (11 out of 13) were found while executing

test specifications of alternative use case scenarios associated with common features of

the Banking System SPL (such as transferring money from an invalid account).

The two other faults were feature related. Fault d in Table 49 is a feature

interaction error in which a transaction receipt was printed in English when the T2

application was configured in the French language. This fault was present in all

applications of the Banking System SPL that were configured with either the French or

Spanish language, but was not detected by all participants. The second feature-related

fault b was found during the execution of the “5. Validate Pin: Card is stolen” test case in

application TS4: “The call police and phone branch actions do not execute after the card

is determined to be stolen.” The command to configure the stolen card actions had been

inadvertently commented out in the initialization file for application TS4.

The approach each participant followed to select test data and to test the

applications of the Banking System SPL is described in Phases VI-VII in Chapter 5.

Appendix A has additional examples that illustrate how Phases VI-VII in Chapter 5 were

applied to the Banking System SPL.

 199

Table 49 Faults found in the applications of the Banking System SPL

Test specification TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8 TS9 TS10 Description of fault

3. «adaptable»Validate Pin:
Card not recognized X X X X X

a. Entering a non-empty string for a card id
will make the application recognize the non-
existent card

5. «adaptable» Validate Pin:
Card is stolen X

b. The call police and phone branch actions do
not execute after the card is determined to be
stolen, because application TS4 was
configured incorrectly.

8. «adaptable» Validate Pin:
Transaction is canceled during
pin prompt X c. Transaction canceled message is not shown

10. «adaptable» Query:
Account is valid X

d. The receipt is not printed in French in TS2.
All receipts are printed in English in all
applications.

11. «adaptable» Query:
Account is not valid X X X e. A receipt is printed for a phony account

12. «adaptable» Transfer:
Accounts are valid and there
are sufficient funds X X

f. Application showed a blank screen after an
amount > 20 was transferred between two
accounts

13. «adaptable» Transfer:
From account is not valid X X X

g. A bogus account was associated to a debit
card in the database. The application froze on
the wait screen during a transfer from this
bogus account.

14. «adaptable» Transfer: To
account is not valid X X

h. Transferred $20 to a bogus account
associated with the debit card in the database.
Application deducted the funds from the first
account, showed a successful transaction and
printed a receipt.

14. «adaptable» Transfer: To
account is not valid X

i. Transferred $80 to a bogus account
associated with a debit card in the database.
Application froze

 200

15. «adaptable» Transfer:
Insufficient funds X X X X

j. Application showed a blank screen after an
amount > 20 is transferred between two
accounts

16. «adaptable» Withdraw:
Accounts are valid and there
are sufficient funds X X X X

k. Application showed a blank screen after an
amount > 20 is withdrawn from an account

17. «adaptable» Withdraw:
Invalid account X

l. Withdrew $20 from a bogus account
associated with the debit card in the database.
Application showed "Insufficient funds"
message instead of "Invalid account" error.

17. «adaptable» Withdraw:
Invalid account X X X

m. Application showed a blank screen after an
amount > 20 is withdrawn from an invalid
account

18. «adaptable» Withdraw:
Insufficient funds X X X

n. Application showed a blank screen after an
amount > 20 is withdrawn from an account
with insufficient funds

19. «adaptable» Withdraw:
Exceeded daily limit X X X

o. Application showed a blank screen after an
amount > 20 is withdrawn from an invalid
account

20. «adaptable» Withdraw:
ATM is out of funds X X X

p. Application showed a blank screen after an
amount > 20 is withdrawn from an invalid
account

 201

7.11 Applying Separation of Concerns

7.11.1 Results for Phase IVSoC: Learn and Apply Separation of Concerns

Variability Mechanism to Test Specifications

The total time in man-hours to learn and apply “Phase IV-SoC: Learn and apply

the separation of concerns variability mechanism” during SPL engineering is shown in

Figure 43, and the actual values, average, median and standard deviation are shown in

Table 50. The time spent learning includes the time spent with the tutorials, reading and

understanding instructions, and any additional meetings. The time spent applying phase

IV-SoC includes the time spent adding insertion points to the decision tables and creating

the variable feature file as described in Chapter 6.

 202

Time in man-hours to learn and apply Phase IV-SoC:
Apply separation of concerns variability mechanism

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

F G H I

Ave
rag

e

Participant

M
an

-h
ou

rs

Apply Phase IV-SoC
Learn Phase IV-SoC

Figure 42 Time in man-hours to learn and apply Phase IV-SoC

Table 50 Time in man-hours to learn and apply Phase IV-SoC

 F G H I Average Median StdDev
Learn Phase IV-SoC 0.58 0.65 0.67 1.00 0.73 0.66 0.19
Apply Phase IV-SoC 0.67 0.77 2.13 2.30 1.47 1.45 0.87
Totals 1.25 1.42 2.80 3.30 2.19 2.11 1.01

Phase IVSoC was partly automated. Participants H and I took a considerably longer

time to apply the method than the average time. Participant H had difficulty using the

SPLET tool (Saleh and Gomaa 2005) to generate the variable feature file but it is not

known why participant I took a longer than average time.

Each participant submitted a set of modified decision tables and a variable feature

file to the researcher, who compared the submitted results against expected results.

 203

Initially, participants G, H, and I were missing descriptions of the optional and variant

test steps associated with the expired card and stolen card actions. After the researcher

requested revisions to the file, all participants were able to correct these problems.

7.11.2 Results for Phase VSoC: Customize Test Specifications for Two Applications

using the Separation of Concerns Variability Mechanism

The total time in man-hours to learn and apply “Phase V-SoC: Customize test

specifications for two applications using the separation of concerns variability

mechanism” during application engineering is shown in Figure 43 and the actual values,

average, median and standard deviation are shown in Table 51. The time spent learning

includes the time spent with the tutorials, reading and understanding instructions, and any

additional meetings. The time spent applying Phase V-SoC to customize the test

specifications for each application includes the time spent running the SPLET tool (Saleh

and Gomaa 2005) to weave the variable test steps with the test specifications as described

in Chapter 6.

 204

Time in man-hours to learn and apply Phase V-SoC:
Customize using separation of concerns variability mechanism

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

F G H I Average

Participant

M
an

-h
ou

rs

Customize test
specifications of second
application
Customize test
specifications of first
application
Learn Phase V-SoC

Figure 43 Time in man-hours to learn and apply Phase V-SoC

Table 51 Time in man-hours to learn and apply Phase V-SoC

 F G H I Average Median StdDev

Learn Phase V-SoC 0.12 0.18 0.47 0.58 0.34 0.33 0.22
Customize test specifications
of first application 0.08 0.03 0.67 0.58 0.34 0.33 0.33
Customize test specifications
of second application 0.02 0.03 0.67 0.17 0.22 0.10 0.30
Totals 0.22 0.25 1.80 1.33 0.90 0.79 0.79

Phase V-SoC was automated using the SPLET tool. Table 51 shows that

participants H and I took a considerably longer time to customize the test specifications

for the first and second applications, because of problems using the SPLET tool.

 205

Participant H’s feature file was formatted incorrectly, causing the SPLET tool to crash;

and participant I found a bug during code weaving in the SPLET tool. Both participants

were able to resolve these problems after consulting with the researcher.

7.12 Applying a Pragmatic Approach

7.12.1 Results of Applying Pragmatic Approach to Create Test Specifications for

Two Applications

The total time in man-hours to learn and apply the pragmatic approach to create

test specifications for two applications is shown in Figure 44 and Table 52. Because of

time constraints, only two participants were able to apply the pragmatic approach. It took

less time for each participant to learn and apply the pragmatic approach (0.33 man-hours)

as compared with learning and applying the parameterization mechanism (3.9 man-hours

in Phase IV, and 1.36 man-hours in Phase V in Table 40) and learning and applying the

separation of concerns mechanism (2.19 man-hours in Phase IV-SoC, and 0.9 man-hours

in Phase V-SoC in Table 40). However, several factors biased the results in favor of the

pragmatic approach. The pragmatic approach was applied after the participants had

become familiar with the test specifications of the Banking System SPL. Also,

uncontrolled external factors (such as using the CADeT tools on a Mac) caused some

paritipants spent substantially more time than other participants learning and applying

CADeT.

 206

Time in man-hours to learn and apply pragmatic
approach

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

F J Average

Participant

M
an

-h
ou

rs

Modify test
specifications for
second application
Modify test
specifications for first
application
Learn pragmatic
approach

Figure 44 Time in man-hours to learn and apply pragmatic approach

Table 52 Time in man-hours to learn and apply pragmatic approach

 F J Average Median StdDev
Learn pragmatic approach 0.08 0.13 0.11 0.11 0.04
Modify test specifications for first
application 0.10 0.15 0.13 0.13 0.04
Modify test specifications for second
application 0.05 0.13 0.09 0.09 0.06
Totals 0.23 0.42 0.33 0.33 0.13

7.13 Results of Questionnaire

Table 53 shows the results of the questionnaire given to each participant after the

applied project was completed. Most participants thought that applying the

parameterization customization method was the most difficult part of the project. The

participants that tried out the pragmatic approach thought that this was the easiest part of

the project.

 207

Table 53 Results of Questionnaire

 F G H I J
Experience
with UML
modeling
methods

Two
classes and
some
industry

At least one
class

Three
classes Two classes Two classes

Experience
with
software
testing

Almost
none

One class and
some industry

Some
industry None

Almost
none

Phases
worked on All

All except
pragmatic

All except
pragmatic

All except
pragmatic

All except
separation
of concerns

Easiest
phase Pragmatic

Separation of
concerns

Parameteri-
zation

Application
testing Pragmatic

Most
difficult
phase

Parameteri
-zation

Parameteri-
zation

Separation
of concerns

Parameteri-
zation

Parameteri-
zation

How can
project be
improved?

Explain
outputs

State all system
requirements
before testing
system

Clarify error
messages in
SPLET

More detailed
instructions

More
detailed
instructions

7.14 Interpretation of 3rd Study Results

All participants were able to apply the parameterization mechanism to automate

the customization of the test specifications of the Banking System SPL for two

applications, and then test these applications. All participants were also able to apply the

separation of concerns variability mechanism to automate the customization of the test

specifications of the Banking System SPL for the same two applications.

 However, several factors affected the validity of the questionnaire and time log

results results, such as the order in which the phases were applied, and uncontrolled

external factors. These factors should be addressed in future studies to determine when a

 208

break-even point is reached, where the benefits of automatically deriving test

specifications for a set of applications from the SPL exceeds the initial effort spent

implementing the variability mechanism.

7.15 Comparison of CADeT with Previous Research on SPL Testing Methods

Existing functional testing methods for SPLs such as PLUTO (Bertolino and

Gnesi 2003), Nebut’s method (Nebut, Fleurey et al. 2003), ScenTED (Reuys, Kamsties et

al. 2005), and Geppert’s method (Geppert 2004) address the problem of systematic reuse,

but do not provide a feature-based approach of selecting representative application

configurations to test. In some SPLs the set of possible application configurations is not

entirely predetermined, and it is not feasible to test all possible application

configurations.

CADeT can be used to apply a feature-based approach to select representative

application configurations to test for a SPL. This reduces the number of representative

application configurations to test, while covering all features, all use case scenarios and

all relevant feature combinations of the SPL.

Other methods, such as Scheidemann’s (Scheidemann 2006) address the problem

of selecting representative application configurations to test from the potentially large

configuration space of an SPL, but do not provide a method for creating reusable

functional test specifications that can be configured during feature-based test derivation

for an application derived from a SPL. A method of creating reusable test specifications

is necessary to reduce the effort needed to create test specifications for each

representative application of a SPL.

 209

CADeT can be used to create reusable test specifications for a SPL, which can be

customized during feature-based test derivation for an application of the SPL. Besides

combining a feature-based coverage criterion with a use case scenario-based coverage

criterion, CADeT differs from other functional testing methods for SPLs by

distinguishing between two variability mechanisms to configure the fine-grained

variability in the test specifications of a SPL. The parameterization variability mechanism

of CADeT or separation of concerns variability mechanism of CADeT-SoC can be used

to automate the configuration of the fine-grained variability in the test specifications of a

SPL.

CADeT is flexible and can be incorporated with other functional testing methods

for SPLs. For instance, a feature model and feature to use case relationship table can be

used to analyze the relationships of features to activity diagrams in ScenTED (Reuys,

Kamsties et al. 2005). Alternatively, the method of creating reusable test specifications

from activity diagrams in CADeT can be integrated with another feature-oriented method

of selecting representative configurations to test, such as the method described by

(Scheidemann 2006).

 210

8 Conclusions

The approaches described in this research builds on the ideas of systematically

reusing and configuring the test specifications of a SPL and of selecting representative

configurations to test. CADeT and CADeT-SoC are test design methods for SPLs that

combine a use case scenario-based test coverage criterion to provide functionality

coverage together with a feature-based test coverage criterion to provide variability

coverage of a SPL. In these test design methods, features from a feature model are

associated with activity diagrams created from the use case descriptions of a SPL.

Reusable test specifications are traced from the use case activity diagrams and described

in decision tables. The relationships of features to activity diagrams are also portrayed in

decision tables, and a feature-based test coverage criterion is applied to select

representative application configurations for the SPL. Next, the reusable test

specifications are selected and customized for each application configuration, and then

used to test the corresponding application implementation.

CADeT uses a parameterization variability mechanism to select test

specifications, and then customize the test specifications during feature-based test

derivation for an application derived from the SPL. However, implementing the

parameterization mechanism requires additional effort to customize the test specifications

of a SPL with many variation points, when these variation points have many variable test

 211

steps that are repeated across several use cases. CADeT-SoC extends CADeT by

applying a separation of concerns variability mechanism, rather than parameterization, to

customize the test specifications during feature-based test derivation. Separation of

concerns is more suitable than parameterization for customizing the test specifications of

a SPL with many variation points repeated across several use cases. Using CADeT-SoC

reduced the number of variable test steps that needed to be defined to realize the variation

points in each SPL.

The feasibility of the CADeT and CADeT-SoC methods were evaluated in three

studies on two SPLs. The results of these studies show that CADeT and CADeT-SoC can

be used to create reusable test specifications to satisfy use case-based and feature-based

coverage criteria for these two SPLs. The feature model of a SPL, and the relationships of

features to test specifications were analyzed to determine the relevant feature

combinations, and a feature-based coverage criterion was applied to reduce the number of

application configurations to test. Test specifications were created to cover all use case

scenarios, features, and relevant feature combinations in each SPL. Using CADeT

reduced the number of test specifications to satisfy these criteria, as compared to using

two alternative approaches.

8.1 Contributions

The main contribution of this research is a feature-based test design method that

can be used to create reusable and functional test specifications from the use case and

feature models of a SPL, and then customize these test specifications during feature-

 212

based application derivation for any application from that SPL. The other contributions

are described next:

8.1.1 Application of a Feature-Based Coverage Criterion with a Use Case-Based

Coverage Criterion

Previous research (McGregor 2001; Bertolino and Gnesi 2003; Nebut, Fleurey et

al. 2003; Geppert 2004; Reuys, Kamsties et al. 2005; Scheidemann 2006) has not applied

a feature-based coverage criterion together with a use case-based coverage criterion for a

SPL. CADeT and CADeT-SoC apply both criteria to a SPL, which reduces the number of

application configurations to test and the number of test specifications created for each

SPL.

8.1.2 Distinguishing Between Coarse-Grained and Fine-Grained Functional

Variability

Previous research (McGregor 2001; Bertolino and Gnesi 2003; Nebut, Fleurey et

al. 2003; Geppert 2004; Reuys, Kamsties et al. 2005; Scheidemann 2006) has not

distinguished between the representation and binding times of coarse-grained and fine-

grained variability in the functional requirements of a SPL. This research distinguished

between the representation of coarse-grained and fine-grained functional variability in the

activity diagrams, and between the binding times of coarse-grained and fine-grained

functional variability during feature-based test derivation. Delaying the binding of the

fine-grained variability during feature-based test derivation reduced the number of test

specifications that needed to be created for each SPL.

 213

8.1.3 Using Separation of Concerns to Customize the Test Specifications of a SPL

Previous research has used the parameterization variability mechanisms to

customize functional test specifications for a SPL (Bertolino and Gnesi 2003; Kamsties,

Pohl et al. 2003; Nebut, Fleurey et al. 2003; Geppert 2004). Pesonen et al suggested using

separation of concerns to automatically configure the test specifications of a SPL

(Pesonen, Katara et al. 2005), but did not apply this mechanism to customize functional

test specifications for a SPL.

This research described and applied parameterization and separation of concerns

variability mechanisms to customize reusable test specifications during feature-based

application derivation for a set of applications of a SPL. These two mechanisms were

applied and evaluated on two SPLs. Mazen Saleh’s method and tool (Saleh and Gomaa

2005) was extended in Static Customization of Test specifications (SCT) to apply

separation of concerns to the test specifications of a SPL (see Chapter 6).

8.1.4 Prototype Tools to Customize SPL Test Specifications

A set of prototype tools were developed in this research to automate the

customization of the test specifications during feature-based test derivation in the CADeT

approach. These tools applied the parameterization variability mechanism to select and

customize these test specifications for an application derived from the SPL. Furthermore,

an algorithm was developed to automate the generation of a test order graph for an

application derived from the SPL.

 214

8.1.5 An Evaluation of CADeT and CADeT-SoC on Two SPLs

This research evaluated all phases of CADeT and CADeT-SoC on two SPLs: An

Automated Highway Toll System (AHTS) SPL, and a Banking System SPL. The results

demonstrated that CADeT and CADeT-SoC can be used to create reusable and functional

test specifications to cover all use case scenarios, features and relevant feature

combinations of each SPL, and then configure these test specifications during feature-

based test derivation to test a set of applications derived from eeach SPL

8.2 Further Study

This approach has revealed several areas of further study, such as determining a

break-even point, and automating more phases of the CADeT and CADeT-SoC test

design methods, which are described next.

8.2.1 Determining a Break-Even Point

Extra effort (time in man-hours) was needed to learn and apply CADeT and

CADeT-SoC to create feature-based reusable test specifications for a SPL. Although this

reduced the number of test specifications and application configurations to test for each

SPL, in general it is not clear when a break even point will occur. Further research needs

to be done to determine when a break-even point will occur, where the benefits of

automatically deriving test specifications for a set of applications from a SPL exceeds the

initial effort spent applying CADeT or CADeT-SoC.

 215

8.2.2 Automating More Phases of CADeT and CADeT-SoC

Some manual processes in CADeT and CADeT-SoC could be automated in order

to scale these methods to larger SPLs. Tools developed to automatically generate

decision tables from the activity diagrams of a single application (Vauthier 2006) could

be extended to automatically generate decision tables from the activity diagrams of a SPL

in phase II. Further, tools could be developed to partly automate the analysis of relevant

feature combinations in phase III.

In phase VI, input data was selected by hand to satisfy the execution conditions in

the test specifications of an application. Tools developed to automatically generate input

data to satisfy the test predicates of a single application (Grieskamp, Tillmann et al. 2004)

could be extended to automatically generate input test data to satisfy the execution

conditions of the test specifications created with CADeT. The execution conditions of the

test specifications would need to be formalized according to the language used by the

tool.

In phase VII, test cases were manually executed against each application

implementation. Tools developed to automate test execution (such as IBM Rational

Functional Tester) could be extended to automate the execution of test cases created with

CADeT or CADeT-SoC.

8.2.3 Incorporating Feature-Based and Use Case Scenario-Based Coverage

Criteria with Unit and Integration Testing Criteria

This research did not describe how feature-based and use case scenario-based

coverage criteria could be incorporated with unit and integration testing criteria.

 216

Integration testing includes testing of the variability in components and component

connectors. Analyzing the impact of features on the implementation of a SPL can

uncover feature interactions and implicit feature dependencies in the implementation.

8.2.4 Evaluating the Impact of SPL Evolution

This research did not evaluate the impact of SPL evolution on the test

specifications created using CADeT and CADeT-SoC. Additional studies could be done

to evaluate the effect of changing the feature and use case models of a SPL on the test

specification suite of the SPL.

8.2.5 Resolving Inconsistencies between Requirement Models

Additional studies could be done to identify and resolve inconsistencies between

the feature model and the functional requirements of a SPL. For instance, a feature

interaction or implicit feature dependency in the functional requirements may indicate an

undesirable inconsistency between the functional requirements and the feature model.

8.2.6 Incremental Testing of SPL

Instead of testing all features of a SPL, incremental testing could be applied to test

a subset of all features, and then test additional features as the need arises. The test

specification suite of the SPL could be extended and updated incrementally.

 217

8.2.7 Integrating Additional Variability Mechanisms

Additional studies could be done to evaluate the feasibility and cost in man-hours

of applying other variability mechanisms, such as XVCL Frames (Zhang and Jarzabek

2004), to customize the functional test sepecifications of a SPL.

8.2.8 Detecting Feature-Based Faults

Testing applications derived from an implementation of a Banking System SPL

revealed some feature-based faults (see Table 49). However, this research did not

compare the effectiveness of using CADeT against the effectiveness of using other

functional testing approaches to discover feature-based faults in a SPL implementation.

Additional studies could be done to compare the effectiveness of using CADeT against

the effectiveness of using other functional testing methods to discover feature-based

faults in a SPL implementation.

8.2.9 Evaluating CADeT and CADeT-SoC on Industrial SPLs

CADeT and CADeT-SoC were applied to create reusable test specifications from

the requirement models of an AHTS SPL and a Banking System SPL. These SPLs were

academic studies that had 12 to 16 features and 7 to 11 use cases. Additional studies

could be done to evaluate CADeT and CADeT-SoC, on more realistic, industrial size

problems (e.g. SPLs with several hundred features and use cases).

 218

Appendix A: Banking System SPL case study

The Banking System Case Study Common Core (BSCS-CC) from (Webber 2001)

described a use case model and variation points for a reusable version of the Banking

System Case Study (BSCS) in (Gomaa 2000). Vonteru in (Vonteru 2001) implemented

BSCS-CC and four target system implementations, which were used as a proof of

concept for Webber’s Variation Point Model (VPM) in (Webber 2001). In order to be

able to apply CADeT and CADeT-SoC to BSCS-CC, these models were extended in this

research to include a feature model, feature to use case relationship table, and use case

descriptions in the format used by the PLUS method in (Gomaa 2005) .

This chapter describes the feature model, use case model, and feature to use case

relationship table of the Banking System SPL, and then describes how CADeT and

CADeT-SoC were applied to these models to create test specifications for the Banking

System SPL.

A.1 Requirement Models for Banking System SPL

Figure 45 describes the feature model for the Banking System SPL, which

contains the optional Call police, Phone branch, and Alarm actions, an exactly-one-of

Language feature group with alternative English, Spanish and French features, an

exactly-one-of Expired Card action feature group with alternative Confiscate and Eject

 219

actions, and three parameterized features: Greeting, Pin format and Pin attempts. The

Greeting feature refers to the welcome text prompt displayed at each ATM in the banking

system. The Pin format feature refers to the pin length, which is set to a default of three

numeric characters, but can vary depending on the application configuration. The Pin

attempts feature refers to the maximum number of invalid pin attempts that can be

entered by a customer in an ATM transaction.

Figure 45 Feature model for Banking System SPL

Figure 46 describes the use case model for the Banking System SPL, which

contains use cases initiated by Customer and Operator actors. The customer initiates the

kernel use cases Query Account, Transfer Funds, and Withdraw Funds, all which include

 220

the abstract Validate Pin use case. The operator initiates the kernel use cases Startup,

Shutdown, and Add cash to ATM.

 The Validate Pin use case contains several variation points, which are shown

graphically in the use case model of Figure 46 and written up in the use case description

of Figure 47: variation points vpGreeting, vpExpiredCardAction, vpPinFormat,

vpMaxPinAttempts, vpStolenCardAction, and vpLanguage.

Customer

Operator

«includes»

«includes»

«includes»

vpLanguage

«kernel»
Query Account

vpLanguage

«kernel»
Transfer Funds

vpLanguage

«kernel»
Withdraw Funds

vpLanguage, vpGreeting, vpExpiredCardAction,
vpPinFormat, vpMaxPinAttempts,

vpStolenCardAction

«kernel»
Validate Pin

vpLanguage, vpGreeting

«kernel»
Startup

«kernel»
Add Cash

«kernel»
Shutdown

Figure 46 Use case model for Banking System SPL

 221

Figure 47 Validate pin use case description

Name: Validate PIN Abstract use case
Reuse category: kernel
Related to features: ATM kernel
Summary: System validates customer PIN
Actor: ATM Customer
Precondition: ATM is idle and displaying a welcome message
Description:
1. Customer inserts the ATM Card into the Card Reader
2. If the system recognizes the card, it reads the card number
3. System prompts customer for PIN number
4. Customer enters PIN
5. System checks the expiration date and whether the card is lost or stolen
6. If card is valid, the system then checks whether the user-entered PIN matches the card PIN in the system.
7. If PIN numbers match, the system checks what accounts are accessible with the ATM Card
8. System displays customer accounts and prompts customer for transaction type: Withdrawal, Query or Transfer
Alternatives
- Line 2: If the system does not recognize the card, the card is ejected
- Line 5: If the system determines that the card date has expired, the card is confiscated
- Line 5: If the system determines that the card has been reported lost or stolen, the card is confiscated
- Line 6: If the customer-entered PIN does not match the card PIN, the system re-prompts for the PIN
- Line 6: If the customer enters the incorrect PIN three times, the system confiscates the card
- Lines 3, 8: If the customer enters Cancel, the system cancels the transaction and ejects the card.
Postcondition (for main scenario): ATM is waiting for transaction
Variation points
Name: vpExpiredCard; Type of functionality: alternative
Lines: 5
Description: If the card is expired, the system can be configured to specify an alternate action besides confiscating
the card. Confiscating the card is the default action

Name: vpPinFormat; Type of functionality: parameterized
Lines: 4
Description: The system can be configured to have an alternate PIN format. The default value is four.

Name: vpPinAttempts; Type of functionality: parameterized
Lines: 6
Description: The system can be configured to specify the maximum number of times a customer can enter a PIN.
Three times is the default action.

Name: vpStolenCard; Type of functionality: optional
Lines: 5
Description: The system can be configured to add an optional action as a result of a stolen card. The default action
is to confiscate the card.

Name: vpLanguage; Type of functionality: mandatory alternative
Lines: 3, 8
Description: Prompts and error messages will be in one of the specified languages: English, Spanish or French.

 222

A.2 Example of Phase I: Create Activity Diagrams during SPL Engineering

CADeT’s Phase I (described in Chapter 5) was applied to create activity diagrams

from each use case of the Banking System SPL. A use activity diagram was created from

each use case description of the Banking System SPL. The use case steps and conditions

in each use case description were mapped to activity nodes and decision nodes in the

activity diagram, and additional control flows and activities were added to make the

sequencing of activities more precise. An ATM system state variable was added to store

the precondition and precondition states of each use case activity diagram. Then, the use

case activity diagrams of the Banking System SPL were combined in a system level

activity diagram (shown in Figure 48).

 223

Figure 48 System level activity diagram for Banking System SPL

A feature list was created to describe the feature conditions and feature selections

that correspond to features of the Banking System SPL in Table 54. The ATM Kernel

feature condition represents the ATM Kernel feature and has a feature selection of T,

which means that this feature is always selected for an application derived from the SPL.

The alternative features english, french, spanish are represented by a language feature

condition with },,{ SpanishFrenchEnglish feature selection values. The alternative

features confiscate and eject expired card are represented by an expiredCardAction

 224

feature condition with },{ ejectconfiscate feature selection values. The optional features

call police action, phone branch action, and alarm action are represented by feature

conditions with },{ FT feature selections. The parameterized feature pinFormat refers to

the pin length, which can range from 3 to 10 numeric digits; the parameterized feature

pinAttempts refers to the maximum number of invalid pin attempts, which can range

from one to five attempts; and the parameterized feature greetingPrompt refers to the

welcome text prompt.

Table 54 Feature list for Banking System SPL

Feature condition FeatureSelection

ATMkernel T
language },,{ SpanishFrenchEnglish
expiredCardAction },{ ejectconfiscate
callPoliceAction },{ FT
phoneBranchAction },{ FT
alarmAction },{ FT
pinFormat [3..10]
pinAttempts [1..5]
greetingPrompt [0..max] of character

Then, the impact of the SPL features on the activity diagrams was analyzed using

the feature to use case relationship table together with the use case descriptions, as

described in Chapter 5. Table 55 describes an excerpt from a feature to use case

relationship table created for the Banking System SPL. The initial activity diagrams for

the Banking System SPL were modified to describe feature conditions and reuse

stereotypes, in order to explicitly associate activities in the activity diagrams to features

in the feature model.

 225

Table 55 Feature to use case relationship table for Banking System SPL

Feature Name Feature Category Use Case Name

Use Case
Category /
Variation
Point (vp)

Variation
Point Name

ATM kernel common Validate Pin kernel
 Query Account kernel
 Transfer Funds kernel
 Withdraw Funds kernel
 Add Cash kernel
 Startup kernel
 Shutdown kernel
english default, alternative Validate Pin vp vpLanguage
 Query Account vp vpLanguage
 Transfer Funds vp vpLanguage
 Withdraw Funds vp vpLanguage
 Startup vp vpLanguage
french alternative Validate Pin vp vpLanguage
 Query Account vp vpLanguage
 Transfer Funds vp vpLanguage
 Withdraw Funds vp vpLanguage
 Startup vp vpLanguage
spanish alternative Validate Pin vp vpLanguage
 Query Account vp vpLanguage
 Transfer Funds vp vpLanguage
 Withdraw Funds vp vpLanguage
 Startup vp vpLanguage
confiscate expired card
action default, alternative Validate Pin vp

vpExpired
Card

eject expired card action alternative Validate Pin vp
vpExpired
Card

call police action optional Validate Pin vp vpStolenCard
Phone branch action optional Validate Pin vp vpStolenCard
alarm action optional Validate Pin vp vpStolenCard
confiscate stolen card
action common Validate Pin vp vpStolenCard

greeting parameterized
Startup, Validate
Pin vp vpGreeting

pin attempts parameterized Validate Pin vp
vpPin
Attempts

pin format parameterized Validate Pin vp vpPinFormat

 226

The feature to use case relationship table in Table 55 shows that the ATM kernel

feature is associated with all use cases in the Banking System SPL, and that each optional

and alternative feature in the feature model is associated with a variation point in one or

more use cases in the Banking System SPL. For example, the vpLanguage variation point

in the feature to use case relationship table is associated with the alternative English,

French and Spanish language features. The vpLanguage variation point impacts all

display prompt and error message activity nodes in the Validate Pin use case activity

diagram in Figure 49. These activity nodes have been stereotyped as adaptable. Also, the

the vpLanguage variation point has been added to the parameter list of each activity node.

 227

Figure 49 Activity diagram for “Validate pin” use case

 228

Figure 50 shows sub-activity diagrams created for the “Confiscate stolen card”,

“Confiscate expired card”, and generic “Display message” adaptable activity nodes. The

feature conditions are underlined to distinguish them from the execution conditions in the

activity diagrams.

Figure 50 Sub-activity diagrams for adaptable nodes in “Validate pin” activity

diagram

 229

A.3 Example of Phase II: Create Decision Tables and Test Specifications

from Activity Diagrams

CADeT’s Phase II (described in Chapter 5) was applied to create a decision table

from each use case of the Banking System SPL. This section describes how a decision

table was created from the “Validate Pin” use case activity diagram in Figure 49.

Table 56 shows an excerpt from a decision table created from the “Validate Pin”

use case activity diagram. The preconditions, feature conditions, executions conditions

and postconditions from the activity diagram were added to rows in the decision table.

The activity nodes from the “Validate Pin” use case activity diagram were mapped to test

steps in the decion table. Further, test specifications were traced on the activity diagram

for each use case scenario of the “Validate Pin” use case. The “Validate Pin” use case

contains one main scenario and six alternative scenarios. Nine test specifications were

traced for these seven scenarios. Some scenarios, such as the main scenario of “Validate

Pin”, covered a loop in the activity diagram, and needed to be covered by more than one

test specification.

 230

Table 56 Excerpt of decision table for “Validate pin” use case

1 Validate Pin 1 2 3 4 5 6 7

 Test specification
«adaptable»
Card is valid

«adaptable»
Pin is valid

«adaptable»
Card not
recognized

«adaptable»
Card is
expired

«adaptable»
Card is
stolen

«adaptable»
Pin is invalid
less than max
times

«adaptable»
Pin is invalid
max times

Feature
conditions ATM Kernel T T T T T T T

Preconditions ATM Idle WaitingForPin Idle Idle Idle WaitingForPin WaitingForPin
Execution
conditions Valid card T T F T T T T

 CancelDuringPinPrompt F F F F F
 Expired F T F F
 Stolen F T F F
 Valid pin T F F
 >= Max attempts F T

CancelDuringTrans
Prompt F F F

Actions

1

«adaptable output step»
System displays
welcome message
(vpGreeting,
vpLanguage) X X X X

2
«kernel input step»
Insert card X X X X

3

«adaptable output step»
Prompt for pin
(vpLanguage) X X X

 231

4
«adaptable input step»
Enter pin (vpPinFormat) X X X X X

5

«adaptable output step»
Prompt for transaction
type (vpLanguage) X

6

«adaptable output step»
Display invalid card
msg (vpLanguage) X

7

«adaptable output step»
Cancel transaction and
display transaction
canceled (vpLanguage)

8
«kernel output step»
Eject card

9

«adaptable output step»
Confiscate stolen card
(vpLanguage,
vpStolenCardAction) X

10

«adaptable output step»
Confiscate expired card
(vpLanguage,
vpExpiredCardAction) X

11

«adaptable output step»
Display error message
and reprompt for pin
(vpLanguage) X

12

«adaptable output step»
Display max attempts
error and confiscate
card (vpLanguage) X

13

«adaptable output step»
Display card ejected
(vpLanguage)

Post
conditions ATM WaitingForPin

WaitingFor
Transaction Idle Idle Idle WaitingForPin Idle

 232

A.4 Example of Phase III: Define Feature-Based Test Plan

A feature-based test plan was created for the Banking System SPL. The Banking

System SPL has a total of 12 features: one common feature, the ATM Kernel; three

alternative features, English, Spanish, and French, which are part of an exactly-one-of

Language feature group; three parameterized features, Greeting, Pin Format, and Pin

Attempts; three optional features, Call Police action, Phone Branch action, and Alarm

action; and two alternative features Confiscate action and Eject action, which are part of

an exactly-one-of Expired card action feature group.

The Greeting, Pin Format, and Pin Attempts parameterized features describe

values which must be defined during application derivation. The type and range of values

was defined for each parameterized feature, and then the boundary-value test selection

criterion was applied to select discrete values for each of these features. The type, range,

and discrete values of each parameterized feature were defined as follows:

Greeting: The ATM user interface can display zero to four lines of text to greet

the customers. The Greeting feature consists of a set of four text strings, where each text

string has [0..50] characters. Two discrete values were selected for the Greeting

parameterized feature: standard greeting and enhanced greeting. An application can be

configured to have a standard greeting, which uses two lines of text to welcome the

customer to a bank, or an enhanced greeting, which uses all four lines of text to welcome

the customer and to advertise a bank service.

Pin Format: The Banking System can be configured to allow a customer to enter

a pin of a specific length. The Pin Format feature is an integer, defined to be within the

 233

range [3..10]. Three discrete values were selected for the Pin Format feature. An

application can be configured to have a minimum pin length of three numeric characters,

a maximum pin length of ten numeric characters, or a default pin length of four numeric

characters.

Pin Attempts: The Banking System can be configured to allow a customer a

maximum number of invalid pin attempts. The Pin Attempts feature is an integer, defined

to be within the range [1..5]. Three discrete values were selected for the Pin Attempts

feature. An application can be configured to allow a customer a minimum number of one

invalid pin attempt, a maximum number of five invalid pin attempts, or a default number

of three invalid pin attempts.

With these restrictions an application engineer can configure a total of:

21 x 32 x 31 x 23 x 21, or 864 possible application configurations, where 21 refers

to the 2 values selected for the Greeting feature; 32 refers to the 3 values selected for the

Pin Format and Pin Attempts features; 31 refers to the 3 feature selections of the

alternative language features; 23 refers to the two feature selections (T or F) of each of the

3 optional features: Call Police action, Phone Branch action, and Alarm action; and 21

refers to the 2 feature selections of the alternative features Confiscate action and Eject

action.

Then, the relationships of features to test specifications of the Banking System

SPL were analyzed as described in Chapter 5. Table 57 shows an excerpt of a feature /

test specification relationship table for the Banking System SPL. This table shows the

feature combination functions associated with two test specifications from the “Validate

 234

Pin” decision table of the Banking System SPL. The first test specification “1.

«adaptable» Validate Pin: Card is valid” has two adaptable test steps. One of these

adaptable test steps, “«adaptable output step» System displays welcome message

(vpGreeting, vpLanguage)” contains two variation points, which are impacted by the

greeting and language feature conditions, respectively. The sub-activity diagram

associated with this adaptable node (in Figure 51) shows that the language features

interact with the greeting features: a standard or enhanced greeting will be displayed in

each language. Thus, in Table 57 the feature combination function greeting*language is

associated with this adaptable test step. Next, the functions of each adaptable test step in

the test specification are combined to create a feature combination function for the entire

test specification. The functions greeting*language and language are combined to create

the feature combination function greeting*language+ language for the “Card is valid”

test specification. The former is associated with the “«adaptable output step» System

displays welcome message”, and the latter is associated with the «adaptable output step»

Prompt for pin” in Table 57. This feature combination function can be simplified by

removing feature conditions that are already part of a feature interaction. For example,

language was removed from the greeting*language+ language feature combination

function of the “Card is valid” test specification to get greeting*language.

In contrast, the second test specification in Table 57 has two adaptable test steps

that do not describe a feature interaction. The pinFormat and language features impact

each adaptable test step, but these features do not interact, and are described by the

feature combination function pinFormat + language.

 235

Table 57 Excerpt of feature / test specification relationships in Banking System SPL

Use case: Test
specification

Feature to
test
specification

Adaptable test steps Feature to
adaptable test step

Feature
combination
function

«adaptable output
step» System displays
welcome message
(vpGreeting,
vpLanguage)

greeting*language Validate Pin : 1.
«adaptable»
Card is valid

ATM Kernel =
T

«adaptable output
step» Prompt for pin
(vpLanguage)

language

greeting*language

«adaptable input step»
Enter pin
(vpPinFormat)

pinFormat
Validate Pin: 2.
«adaptable» Pin
is valid

ATM Kernel =
T «adaptable output

step» Prompt for
transaction type
(vpLanguage)

language

pinFormat +
language

Figure 51 “Display welcome message” adaptable node

 236

The largest number of feature conditions in a relevant feature combination

function in Table 57 is 2. The remaining test specifications in the feature / test

specification relationship table of the Banking System SPL were analyzed, and the largest

number of feature conditions in a relevant feature combination in this table was also

determined to be 2. Thus, at least a 2-way, or pair-wise combinatorial testing strategy was

needed to check the feature combinations described by the test specifications of the

Banking System SPL. Table 58 shows a feature-based combinatorial test plan that was

generated to cover all valid pair-wise feature combinations in the Banking System SPL

using the Jenny tool (Jenkins 2005). Thirteen application configurations were generated

to cover all valid pair-wise feature combinations of features in the Banking System SPL.

 237

Table 58 Pair-wise coverage criterion applied to Banking System SPL

TEST PLAN for Banking System
Features: T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13
ATM Kernel
a. TRUE x x x x x x x x x x x x x
Language
a. English x x x x x
b. French x x x x x
c. Spanish x x x
Expired card action
a. Confiscate action x x x x x x x x
b. Eject action x x x x x
Call police action
a. TRUE x x x x x x
b. FALSE x x x x x x x
Phone branch action
a. TRUE x x x x x x x
b. FALSE x x x x x x
Alarm action
a. TRUE x x x x x x
b. FALSE x x x x x x x
Pin format [3..10]
a. Default: 4 x x x x
b. Min: 3 x x x x x
c. Max: 10 x x x x
Pin attempts [1..5]
a. Default: 3 x x x x
b. Min: 1 x x x x x
c. Max: 5 x x x x
Greeting
a. Standard x x x x x x x
b. Enhanced x x x x x x

A.5 Example of Phase IV: Apply Parameterization Variability Mechanism

The parameterization variability mechanism was applied to the decision tables of

the Banking System SPL.

 238

The feature list in Table 54 was created to show all feature conditions and feature

selections associated with the features of the Banking System SPL. This feature list was

used to customize the decision tables during feature-based test derivation for each

application of the Banking System SPL.

Table 59 shows an excerpt from the “Validate Pin” decision table, which has been

modified to describe the feature conditions and variable (variant or optional) test steps

associated with the variation points in the test specifications. The parameterization

variability mechanism was applied to the “Validate Pin” decision table in Table 56 to

create the modified decision table in Table 59.

The language, pinFormat, and greeting feature conditions (which are associated

with vpLanguage, vpPinFormat, and vpGreeting variation points in the adaptable test

steps in Table 56) were added to the “Validate Pin” decision table. Functions were added

to associate the feature selections of a feature condition with test specifications in Table

59. For example, the language feature condition impacts the “«adaptable» Card is valid”

and “«adaptable» Pin is valid” test specifications. A spreadsheet function was added to

associate the },,{ SpanishFrenchEnglish feature selections of the language feature

condition with each of these test specifications.

The adaptable steps in the “Validate Pin” decision table in Table 56 have been

replaced with variant test steps in Table 59. These variant test steps are associated with

variant activity nodes in the sub-activity diagram of the “«adaptable output step» Display

message” node in Figure 50. Functions were added to enable or disable variant test steps

depending on whether the corresponding feature is selected. Table 59 shows an

 239

},{ NullX entry in the intersection of the variant output test steps with the “Card Is

Valid” and “Pin is Valid” test specifications. Selecting a language feature, such as

English, during feature-based test derivation will enable the variant test steps associated

with the English feature (replace },{ NullX with X), and disable variant test steps

associated with other features (replace },{ NullX with Null)

 240

Table 59 Excerpt from modified “Validate pin” decision table

1 Validate Pin 1 2

 Test specification
«adaptable»
Card is valid

«adaptable»
Pin is valid

Feature
conditions ATM Kernel T T

 language

{english,
french,
spanish}

{english,
french,
spanish}

 greeting [0..max]

 pinFormat [3..10]

Preconditions ATM Idle
WaitingForP
in

Execution
conditions Valid card T T
 CancelDuringPinPrompt F
 Expired F
 Stolen F
 Valid pin T
 >= Max attempts
 CancelDuringTransPrompt F
Actions

1a
«variant output step» System displays welcome in
English (vpGreeting) },{ NullX

1b
«variant output step» System displays welcome in
Spanish (vpGreeting) },{ NullX

1c
«variant output step» System displays welcome in
French (vpGreeting) },{ NullX

2 «kernel input step» Insert card X

3a «variant output step» Prompt for pin in English },{ NullX

3b «variant output step» Prompt for pin in Spanish },{ NullX

3c «variant output step» Prompt for pin in French },{ NullX
4 «adaptable input step» Enter pin (vpPinFormat) X

5a
«variant output step» Prompt for transaction type
in English },{ NullX

5b
«variant output step» Prompt for transaction type
in Spanish },{ NullX

5c
«variant output step» Prompt for transaction type
in French },{ NullX

Post
conditions ATM WaitingForPin

WaitingFor
Transaction

 241

A.6 Example of Phase V: Customize Decision Tables and Test Specifications

using Parameterization Variability Mechanism

The following example describes the customization process for TS1, one

application from the test plan of the Banking System SPL in Table 58. Table 60 shows

the feature list of the Banking System SPL customized for TS1. The features selected for

application TS1 are the English language feature, Confiscate action for an expired card,

Call police action for a stolen card, a pin format of length 3, a maximum of one invalid

pin attempt, and an enhanced greeting prompt.

Table 60 Feature selections for application TS1 from the Banking System SPL

Feature condition Feature selection
ATM kernel T
language English
expired card action Confiscate
call police action T
phone branch action F
alarm action F
pinFormat 3
pinAttempts 1
greetingPrompt Enhanced

Setting the feature conditions in the feature list customizes the decision tables for

TS1. Table 61 is an excerpt of a customized decision table for the “Validate Pin” use

case of the Banking System SPL. The English language, Enhanced greeting prompt, and

pinFormat = 3 features have been selected for TS1, and the values of the feature

conditions associated with these features in the “Validate Pin” decision table have been

set accordingly. In the “Card is Valid” test specification, the test steps “1a «variant output

 242

step» System displays welcome in English” and “3a «variant output step» Prompt for

pin” in English have been enabled because these steps are associated with the English

feature, but the test steps associated with the French and Spanish features are disabled in

all test specifications of the Banking System SPL.

In the “Pin is Valid” test specification the test step “«variant output step» Prompt

for transaction type in English” is enabled because it is associated with the English

feature. The parameterized feature pinFormat constrains the possible values of the pin

input variable in test step “4 «adaptable input step» Enter pin (vpPinFormat)”. The value

of this input variable is selected in Phase VI of CADeT.

Next, the test specification generator tool is used to generate the test

specifications document from the customized decision tables. Table 62 is an example of a

test specification generated for the “Card is Valid” test specification of the Validate Pin

decision table in Table 61.

 243

Table 61 Excerpt of customized decision table for “Validate pin” use case

1 Validate Pin

 Test specification
«adaptable»
Card is valid

«adaptable»
Pin is valid

Feature
conditions ATM Kernel T T

 Language English English

 Greeting Enhanced

 pinFormat 3

Preconditions ATM Idle
WaitingForP
in

Execution
conditions Valid card T T

 CancelDuringPinPrompt F
 Expired F
 Stolen F
 Valid pin T
 >= Max attempts

 CancelDuringTrans Prompt F

Actions

1a
«variant output step» System displays welcome in
English X

1b
«variant output step» System displays welcome in
Spanish

1c
«variant output step» System displays welcome in
French

2 «kernel input step» Insert card X

3a «variant output step» Prompt for pin in English X

3b «variant output step» Prompt for pin in Spanish

3c «variant output step» Prompt for pin in French

4 «adaptable input step» Enter pin (vpPinFormat) X

5a
«variant output step» Prompt for transaction type in
English X

5b
«variant output step» Prompt for transaction type in
Spanish

5c
«variant output step» Prompt for transaction type in
French

Post
conditions ATM

WaitingFor
Pin

WaitingFor
Transaction

 244

Table 62 Card is valid test specification

Use case name Validate Pin
Test specification «adaptable» Card is valid
Feature
conditions
 ATM kernel T
 language English
 greeting Enhanced
Preconditions
 ATM Idle
Execution
conditions
 Valid card T
Actions

«variant output step» System displays welcome
message in English

 «kernel input step» Insert card
 «variant output step» Prompt for pin in English
Post conditions
 ATM WaitingForPin

Next, the test procedure definition tool i used to create a test procedure document

for application TS1. The test procedure definition tool in CADeT generates a graph from

the test specifications selected for TS1 and allows a test engineer to trace paths through

this graph in order to create system tests. The tool sorts the test specifications according

to the preconditions and postconditions described in the system level activity diagram of

the Banking System SPL in Figure 48. Each path is saved as a system test in the test

procedure document for TS1. The test procedure definition tool also keeps track of the

percentage of test specifications covered by the system tests in the test procedure

document.

 245

Figure 52 is an excerpt of the graph generated for TS1, which shows the

execution dependencies between some of the test specifications selected for TS1. Table

63 shows two system tests traced from this graph for the test procedure of TS1. The first

system test (highlighted in Figure 52) describes the situation where the ATM customer

enters a valid card and valid pin, and then queries his or her account. The second system

test describes the situation where the ATM customer enters an invalid pin. Since the

maximum number of pinAttempts in TS1 is 1, entering an invalid pin once causes the

application to display a max invalid pin attempts error and to eject the card.

Startup:
Main

scenario

Validate Pin:
Card is
invalid

Validate
Pin: Pin is

valid

Validate
Pin: Card is

valid

[ATM=Idle] [ATM=Idle]

[ATM = WaitingForPin]
[ATM = WaitingForPin]

Query:
Account is

valid

[ATM = WaitingForTransaction]

Validate Pin:
Pin is invalid
max times

[ATM=Off]

[ATM=Idle]

[ATM=Idle]

 246

Figure 52 Dependencies between test specifications of TS1

Table 63 Example of system test sequences for TS1

System test 1
Startup: «adaptable» Main scenario
Validate Pin: «adaptable» Card is valid
Validate Pin: «adaptable» Pin is valid
Query: «adaptable» Account is valid

System test 2
Startup: «adaptable» Main scenario
Validate Pin: «adaptable» Card is valid
Validate Pin: «adaptable» Pin is invalid max times

The test specifications of the Banking System SPL were refined to describe the

actual input and environment variables used by the Banking System SPL implementation,

and a system tests document was generated for application TS1. Table 64 shows an

excerpt of “System test 1”, which is referenced in the test procedure in Table 63. In Table

64 the execution condition “Valid card” is described in terms of the input variable cardId

and the attributes from the DebitCard class, which are described in Figure 53. The static

model for the Banking System SPL is described in Figure 54.

Table 64 Excerpt from “System test 1” of TS1

Use case name Validate Pin
Inputs &
Outputs

 Pass
/ Fail

Test
specification «adaptable» Card is valid
Feature
conditions
 ATM kernel T
 language English
 greeting Enhanced
Preconditions
 ATM Idle
Execution

 247

conditions

Valid card: (cardId? =
*DEBIT_CARD.cardId AND
DEBIT_CARD.status = 0) T

Actions

«variant output step» System displays
welcome message in English (out greeting) greeting!

 «kernel input step» Insert card (in cardId) cardId?

«variant output step» Prompt for pin in
English

Post conditions

 ATM
WaitingFor
Pin

Use case name Validate Pin
Test
specification «adaptable» Pin is valid
Feature
conditions
 ATM kernel T
 Language English
Preconditions

 ATM
WaitingFor
Pin

Execution
conditions
 Valid card T
 CancelDuringPinPrompt F
 Expired: DEBIT_CARD.exp_date < today F
 Stolen F
 Valid pin: DEBIT_CARD.pin = pin? T
 CancelDuringTransPrompt F
Actions
 «variant input step» Enter pin (in pin) pin?

«variant output step» Prompt for
transaction type in English

Post conditions

 ATM
WaitingFor
Transaction

 248

cardId: String
pin: String
startDate: Date
expirationDate: Date
status: Integer
limit: Real
total: Real

«entity»
DebitCard

Figure 53 Debit card class

Figure 54 Static model for Banking System SPL

A.7 Example of Phase VI: Select Test Data

Next, input data was selected for the database and system tests of application TS1.

An excerpt of the database for the application TS1 is shown in Table 65. The tables in the

database correspond to classes with the same name in the static model in Figure 54. In

Table 65, the association constraints between the classes in the static model have been

 249

mapped to test data selection rules. Table 65 shows input data selected to satisfy the test

data selection rules in the database of TS1.

Table 65 Example of input data selected for database of TS1

1. There exists at least one bank
BANK
bank_name address
Bank One ABCD

2. There exists at least one ATM in ATM_INFO, and a bank is associated to at least one ATM
ATM_INFO
id location address bank_name

1 XXXX YYYY Bank One

3. There exists at least one customer in CUSTOMER
CUSTOMER
id name address

5678 Nelly ZZZZ

4a. There exists at least one checking account
CHECKING_ACCOUNT
account_number balance last_deposit

12345 50 0

4b. There exists at least one savings account
SAVINGS_ACCOUNT
account_number balance interest

23456 1000 4

5. A customer has one or more accounts
CUSTOMER_ACCOUNT
cust_id account_number

5678 12345
5678 23456

6. A customer has zero or more debit cards. There exists at least one valid card, one expired card, and one
stolen card.
The debit card pin must conform to the pin format selected for this target system
DEBIT_CARD
card_id pin start_date exp_date status limit total cust_id

10 123 1/1/2004 1/1/2010 0 150 0 5678
11 123 1/1/2004 1/1/2006 0 150 0 5678
12 123 1/1/2004 1/1/2010 220 150 0 5678

 250

7. A debit card is associated to one or more accounts
CARD_ACCOUNT
card_id account_number

10 12345
10 23456
11 12345
12 12345

Test data was selected to satisfy the execution conditions in the system tests

document of TS1. Table 64 describes the execution condition “Valid card: (cardId? =

*DEBIT_CARD.cardId AND DEBIT_CARD.status = 0) = T” in the “«adaptable» Card

is valid” test case in System test 1 of TS1. The “card id?” input variable refers to a card id

entered by an ATM customer. This input must match a selection of any “card_id” with a

0 (valid) status from the “DEBIT_CARD” database table of the application. For example,

“card id?=10” will satisfy this condition since the database table of TS1 contains a valid

card id of “10” in Table 65. In a similar manner, test data was selected to satisfy the

execution condition “Valid pin: DEBIT_CARD.pin = pin?” in Table 64. The “pin?” input

variable refers to a pin entered by an ATM customer. This pin must match the pin of the

previously selected card_id from “DEBIT_CARD” database table of the application. For

example, “pin?=123” will satisfy this condition since card_id “10” in the DEBIT_CARD

table has “pin=123” in Table 65.

A.8 Example of Phase VII: Test Application

An application was derived from the BSCS-CC implementation of the Banking

System SPL by Vonteru in (Vonteru 2001) for each application described in the test plan

for the Banking system SPL in Table 58. Then, the test cases were executed against each

 251

application implementation of the test plan. This section explains how test cases were

executed against the implementation of application TS1.

The database of TS1 was initialized to contain the values in Table 65. Then, client

and server programs of application TS1 were installed on a Personal Computer (PC) with

Windows O/S and the Java Run Time library (JRE). Then, the server and client program

were initialized. Figure 55 shows the ATM user interface for the client program of TS1.

Figure 55 ATM user interface for TS1

 252

Next, test cases from the system tests document of TS1 were executed against the

client program by manually entering the inputs, observing the outputs, and comparing the

actual outputs with the expected outputs of each test step. The test engineer assigned a

Pass result to a test case if the actual outputs matched the expected outputs; else, the test

engineer assigned a Fail result along with an explanation of the failure.

Table 66 shows how test results were entered for the “Card is valid” test case in

System test 1. The test engineer simulated a card insertion in the ATM client program in

Figure 55 by entering 10 for the card id, and then clicking on the “Insert Card” button in

the user interface. The ATM program validated the card id and then displayed a pin

prompt in English. This observed sequence of events matched the expected sequence of

test steps in the “Card is valid” test case. Thus, Pass results were assigned by the test

engineer to all test steps, and a Pass result was inferred for the entire test case.

Table 66 Test results for “Card Is Valid” test case in system test 1

Use case name Validate Pin
Inputs &
Outputs

Pass /
Fail

Test specification «adaptable» Card is valid
Feature
conditions
 ATM kernel T
 Language English
 Greeting Enhanced
Preconditions
 ATM Idle
Execution
conditions

Valid card: (cardId? =
DEBIT_CARD.card_id AND
DEBIT_CARD.status = 0) T

Actions

«variant output step» System displays
welcome message in English Pass

 253

 «kernel input step» Insert card (in cardId)
cardId?
10 Pass

«variant output step» Prompt for pin in
English Pass

Post conditions
 ATM WaitingForPin

A.9 Example of Applying Separation of Concerns Variability Mechanism in

CADeT-SoC

The separation of concerns variability mechanism was applied to the decision

tables created from the use case activity diagrams of the Banking System SPL in Phase II.

The following example describes how Phase IV-SoC in chapter 6 was applied to define

test insertion points in the decision table of the “Validate Pin” use case in Table 67, and

to create the variable test step file in Figure 56.

Table 67 shows unique test insertion points added to each adaptable test step in

the “Validate Pin” use case decision table. The test insertion points $START insA,

$START insB and $START insC precede the adaptable output steps “System displays

welcome message (vpGreeting, vpLanguage)”, “Prompt for pin (vpLanguage)”, and

“Prompt for transaction type (vpLanguage).” This decision table was exported into a text

file format, to be compatible with the SPLET tool (Saleh and Gomaa 2005).

Figure 56 shows an excerpt from the variable test step file created for the Banking

System SPL. The variable test step file describes the variable test steps and test insertion

points associated with each feature. The “«adaptable output step» System displays

welcome message (vpGreeting, vpLanguage)” is associated with the parameterized

Greeting and alternative Spanish, French, and English language features. In Figure 56,

 254

each language feature is associated with variable test steps that impact insertion points

insA, insB, and insC.

Table 67 Insertion points in “Validate pin” decision table

1 Validate Pin

 Test specification
«adaptable»
Card is valid

«adaptable
» Pin is
valid

Feature
conditions ATM Kernel T T
Preconditio
ns ATM Idle

WaitingFor
Pin

Execution
conditions Valid card T T
 CancelDuringPinPrompt F
 Expired F
 Stolen F
 Valid pin T
 >= Max attempts
 CancelDuringTrans Prompt F

Actions

1

$START insA «adaptable output step»
System displays welcome message
(vpGreeting, vpLanguage) X

2 «kernel input step» Insert card X

3
$START insB «adaptable output step»
Prompt for pin (vpLanguage) X

4
«adaptable input step» Enter pin
(vpPinFormat) X

5
$START insC «adaptable output step»
Prompt for transaction type (vpLanguage) X

Post
conditions ATM

WaitingForPi
n

WaitingFor
Transaction

 255

Figure 56 Excerpt of variable test step file for Banking System SPL

//
$FEATURE[English]

$START insA
<variant output step> System displays welcome message in English.
$END insA

$START insB
<variant output step> Prompt for pin in English.
$END insB

$START insC
<variant output step> Prompt for transaction type in English.
$END insC

$ENDFEATURE[English]

//
$FEATURE[French]

$START insA
<variant output step> System displays welcome message in French.
$END insA

$START insB
<variant output step> Prompt for pin in French.
$END insB

$START insC
<variant output step> Prompt for transaction type in French.
$END insC

$ENDFEATURE[French]

//
$FEATURE[Spanish]

$START insA
<variant output step> System displays welcome message in Spanish.
$END insA

$START insB
<variant output step> Prompt for pin in Spanish.
$END insB

$START insC
<variant output step> Prompt for transaction type in Spanish.
$END insC

 256

The following example describes how test specifications were customized for TS1

(from the test plan of the Banking System SPL in Table 58), using the Static

Customization of Test specifications (SCT) approach described in Phase V-SoC in

chapter 6.

The English language, Enhanced greeting features, Confiscate expired card

action, call police action, pinFormat = 3 and pinAttempts = 1 features were selected for

TS1. A test specifications document was generated from the modified decision tables,

and the test specifications in this document were exported to text files. Then, the code

weaver component of the SPLET tool (Saleh and Gomaa 2005) was applied to customize

the adaptable test steps in the test specifications selected for TS1. Figure 58 shows how

the “Card is Valid” test specification Figure 57 was customized for TS1. The insertion

points $START insA and $START insB have been replaced with the variant output test

steps “System displays welcome message in English” and “Prompt for pin in English”,

since both of these test steps are associated with the English language feature.

 257

Figure 57 “Card is valid” test specification

Figure 58 “Card is valid” test specification customized for TS1

Use case name: Validate Pin
Test specification name: «adaptable» Card is valid
Feature conditions:
 ATMKernel = T
Preconditions:
 ATM = Idle
Execution conditions:
 ValidCard = T
Actions:
 //$START insA «adaptable output step» System displays welcome message
(vpGreeting, vpLanguage)
 «variant output step» System displays welcome message in English.
 «kernel input step» Insert card
 //$START insB «adaptable output step» Prompt for pin (vpLanguage)
 «variant output step» Prompt for pin in English.
Post conditions:
 ATM WaitingForPin

Use case name: Validate Pin
Test specification name: «adaptable» Card is valid
Feature conditions:
 ATMKernel = T
Preconditions:
 ATM = Idle
Execution conditions:
 ValidCard = T
Actions:
 $START insA «adaptable output step» System displays welcome message
(vpGreeting, vpLanguage)
 «kernel input step» Insert card
 $START insB «adaptable output step» Prompt for pin (vpLanguage)
Post conditions:
 ATM WaitingForPin

 258

Appendix B: Glossary

Activity diagram: A UML diagram that shows the decomposition of an activity

into its parts, which may contain other activities. An activity is a behavioral specification

that describes the sequential and concurrent steps of a computational procedure

(Rumbaugh, Jacobson et al. 2005).

Adaptable test specification: A test specification created with the CADeT

method that is customized and then selected for an application of the SPL during feature-

based test derivation.

Aggregate step: A role stereotype assigned to an activity node (in an activity

diagram created with the CADeT method) that describes a group of related activities

corresponding to a sequence of events in a use case description.

Aspect: In aspect-oriented programming, a modular, cohesive unit of

functionality that physically separates and encapsulates a cross-cutting feature from the

rest of the code.

Binding time: The time at which the variability is set, or fixed, for a test

specification, for example, at design time, during feature-based test derivation, or at run-

time.

Case study research method: An empirical investigation of the effect of a

contemporary phenomenon (method, tool, etc…) within its real life context, when the

 259

boundaries between the phenomenon and context are not clearly distinguishable, and in

which multiple sources of evidence are used (Yin 2003).

Code tangling: In separation of concerns, a concern that is interwoven with the

functional code of modules in an application, and with the code of other concerns in the

application. See separation of concerns, cross-cutting concern and scattering.

Configurability: A quality criterion used to evaluate the ease with which the test

specifications can be configured for the applications of a SPL

Controlled inputs: A test input sent by actor into an application, that satisfies the

precondition and execution conditions of a test specification.

Cross-cutting concern: In separation of concerns, an aspect, or system

characteristic, that cuts across other aspects and across executable code. These system

characteristics cannot be decoupled from other functions in the program, and cannot be

encapsulated in a generalized procedure. Some examples of cross-cutting concerns are

non-functional features that affect the semantics or performance of a program.

Cross-cutting feature: A feature that cuts across other features and across

executable code.

Customization method: A method of applying a variability mechanism to the

reusable assets of an SPL, so that these assets can be customized for each application

derived from the SPL.

Decision table: A table used in CADeT to describe and group the test

specifications associated with a use case’s scenarios. Each column describes one test

specification and each row describes the conditions or steps of the test specifications. A

 260

check in the intersection of a condition or step row with a test specification column

indicates that the condition or step is relevant for the test specification.

Dynamic Customization of Client applications (DCAC): A method of

customizing the code for an application of a SPL at system initialization time during

application engineering. This method reads a customization file that contains the

application’s selected features and values of parameterized variables (Saleh 2005).

Execution condition: A test predicate in a test specification that constrains the

values of controlled input variables and environment variables. This predicate must be

satisfied during testing in order execute the test steps in the expected sequence.

Expected output: A test output that is expected to be sent from an application to

an actor during testing.

Explanatory case study: A case study research method where a hypothesis is

formulated and then tested to evaluate the cause and effect relationships of a

contemporary phenomenon (method, tool, etc…) on one or more cases. Analytic, rather

than statistical generalization is used to to relate the results to hypothesis (Yin 2003).

Exploratory case study: A case study research method where the effects of a

contemporary phenomenon (method, tool, etc…) are explored on one or more cases to

develop or refine a hypothesis (Yin 2003).

Feature: A requirement or characteristic that is provided by one or more

applications of a software product line.

Feature-based application derivation: A method of deriving an application

implementation based on the features selected for an application of a SPL.

 261

Feature-based test derivation: A method of deriving test specifications based on

the features selected for an application of a SPL.

Feature condition: A variable that associates a model element to features in a

feature model, in which the variable values represent possible feature selections. In an

activity diagram, a feature condition associates the control flow and activities in an

activity diagram to features in a feature model.

Feature dependency: A configuration constraint where the selection of one

feature requires or excludes the selection of another feature.

Feature interaction: A functional behavior that is enabled for a feature

combination selected for an application derived from the SPL, but that is not enabled

when any feature of the combination is selected separately.

Feature to use case relationship table: A table used with the PLUS method to

associates a feature in the feature model with one or more use cases or use case variation

points (Gomaa 2005).

Insertion point: A notation used by the SCAC and DCAC methods to uniquely

identify and name a location of variation in the code of a SPL (Saleh 2005). See variable

feature file, Static Customization of Client Applications (SCAC) and Dynamic

Customization of Client applications (DCAC).

Modifiability: A quality criterion used to evaluate the ease with which the test

specifications can change when iterative changes are made to the feature model of the

SPL.

 262

Pair-wise testing: A combinatorial testing criterion where each feature must be

tested with another feature at least once, in order to reveal faults caused by combinations

of at most two features.

Parameterization variability mechanism: A technique that uses feature

conditions to enable the automatic configuration of the variability in an application’s test

specifications during feature-based test derivation. Feature conditions are associated with

the features of a SPL, and the values of a feature condition represent possible feature

selections.

Precondition: A predicate which describes the value of a state-dependent

variable, which must be satisfied before an activity or test specification can be executed.

Postcondition: A predicate which describes the value of a state-dependent

variable, which must be satisfied after an activity or test specification is executed.

Reuse stereotype: A UML notation used in the PLUS method to classify a

modeling element in a SPL by its reuse properties (Gomaa 2005).

Role stereotype: A UML notated used in the PLUS method to classify a

modeling element by the role it plays in the application (Gomaa 2005).

Scattering: A separation of concerns quality criterion used to describe the

dispersion of the code implementing a concern over the system modules. See separation

of concerns, cross-cutting concern and code tangling.

Static Customization of Test Specifications (SCT): A technique that extends

SCAC to separate variable test steps from the test specifications of a SPL, and then

 263

associate these test steps with an alternative or optional feature from the SPL. See Static

Customization of Client applications (SCAC).

Separation of concerns: A quality criterion used to evaluate the ease with which

the variability and commonality in the implementation can be decoupled and associated

with a concern. See cross-cutting concern.

Separation of concerns variability mechanism: A variability mechanism used

in CADeT-SoC to achieve feature-based separation of concerns in the test specificiations

of a SPL.

Simple path: A sequence of unique activities traced from an activity diagram,

which starts at a precondition and ends at a postcondition in the activity diagram, and

does not contain repeated activity nodes.

Software Product Line (SPL): A collection of applications that have so many

features in common that it is worthwhile to study and analyze the common features as

well as analyzing the features that differentiate these applications, in order to efficiently

develop next generation applications.

Static Customization of Client applications (SCAC): A method of customizing

an application of a SPL at pre-compile time by integrating common source code with

only the optional and alternative source code selected for the application (Saleh 2005).

Sub-activity diagram: An activity diagram that describes the decomposition of a

structured activity node.

Structured activity node: An activity node that groups subordinate activity

nodes in an activity diagram (OMG 2007).

 264

System level activity diagram: An activity diagram that describes the

sequencing between the activity diagrams associated with the use cases of an application.

System state variable: A variable that encodes the system states of an

application. These states can be described in the precondition and postcondition of a use

case scenario.

Test case: An instance of a reusable test specification that describes the input and

output data values selected to satisfy the predicates in the test specification.

Test design specification: A document in a test plan that specifies the details of a

test approach for a software feature or a combination of software features, and identifies

the associated tests (IEEE 1998).

Test driver: A software program that invokes a system under test, provides test

inputs to the system, controls and monitors the execution of the tests, and reports test

results.

Test insertion point: A notation used to uniquely identify and name a location of

variation in the decision tables in SCT. See Static Customization of Test Specifications

(SCT).

Test procedure specification: A document specifying the sequence of actions for

the execution of a test (IEEE 1998). In CADeT, it is a document describing the order in

which test cases will be executed for an application of the SPL.

Test specification: A document in a test plan that specifies the inputs, predicted

results, and a set of execution conditions for a test item (IEEE 1998). In CADeT, this

 265

document describes the predicates, controlled input variables and expected output

variables of reusable test specifications for a SPL.

Traceability: A quality criterion that evaluates the ease with which the test

specifications can be traced to the requirements models of a SPL.

Use case scenario: A sequence of actions that illustrate the execution of a use

case instance (Rumbaugh, Jacobson et al. 2005).

Variability mechanism: A technique that enables the representation and

automatic configuration of the variability in an application’s requirements, models,

implementation and tests.

Variable feature file: A document used by SCAC and DCAC that represents the

relationships between the features, insertion points and variable code to the common code

of a SPL. See insertion point, Static Customization of Client Applications (SCAC) and

Dynamic Customization of Client Applications (DCAC).

Variable test step file: A document used by SCT that represents the relationships

between the features, test insertion points, and variable test steps to the decision tables

and test specifications of a SPL. See Static Customization of Test Specifications (SCT).

Variation point: A notation that identifies one or more locations at which change

will occur, and the mechanism for a reuser to extend it (Webber 2001).

 266

REFERENCES

 267

Aksit, M., B. Tekinerdogan, et al. (1996). "Achieving Adaptability through Separation
and Composition of Concerns." Special Issues in Object-Oriented Programming:
12-23.

Allen, G., T. C. Wang, et al. (1994). Applications of Feasible Path Analysis to Program
Testing. Proceedings of the 1994 ACM SIGSOFT Int'l Symposium on Software
Testing and Analysis, Seattle, Washington, ACM.

Amla, N. and P. Ammann (1992). Using Z Specifications in Category Partition Testing.
7th Annual Conference on Computer Assurance (COMPASS). Gaithersburg, MD:
3-10.

Anastasopoulos, M. and C. Gacek (2001). Implementing Product Line Variabilities.
Proceedings of the 2001 Symposium on Software Reusability (SSR'01). Toronto,
Canada.

Bassett, P. G. (1987). Frame-Based Software Engineering. IEEE Software. 4: 9-16.

Bassett, P. G. (1996). Framing Software Reuse: Lessons from the Real World. Upper
Saddle River, New Jersey, Prentice Hall.

Beizer, B. (1990). Software Testing Techniques. N.Y., Van Nostrand Reinhold.

Bertolino, A. and S. Gnesi (2003). PLUTO: A Test Methodology for Product Families.
5th Int'l Workshop on Software Product-Family Engineering. Siena, Italy.

Binder, R. (2002). Testing Object-Oriented Systems: Models, Patterns, and Tools.
Reading, MA, Addison-Wesley.

Bouzeghoub, M. G. Gardarin, et al. (1997). Object Technology Concepts and Methods,
International Thomson Computer Press.

Briand, L. C. and Y. Labiche (2001). A UML-Based Approach to System Testing. Proc.
4th Int'l Conf. on the Unified Modeling Language (UML). Toronto, Canada: 194-
208.

 268

Bryce, R. and C. Colbourn (2006). Test Prioritization for Pairwise Interaction Coverage.
Advances in Model-based Testing, St. Louis, Missouri, IEEE Computer Society.

Chow, T. S. (1978). "Testing Software Design Modeled by Finite State Machines." IEEE
Transactions on Software Engineering SE-4(3): 178-187.

Clarke, L., A. Podgurski, et al. (1989). "A Formal Evaluation of Data Flow Path
Selection Criteria." IEEE Transactions on Software Engineering 15(11): 1318-
1332.

Clements, P. and L. Northrop (2002). Software Product Lines Practices and Patterns.
Boston, MA, Addison-Wesley.

Cohen, D. M., S. Dalal, et al. (1997). "The AETG System: An Approach to Testing
Based on Combinatorial Design." IEEE Trans. on Software Engineering 23(7):
437-444.

DeMillo, R., A and A. J. Offutt (1991). "Constraint-Based Automatic Test Data
Generation." IEEE Transactions on Software Engineering 17(9): 900-910.

DeMillo, R. A., R. J. Lipton, et al. (1978). Hints on Test Data Selection: Help for the
Practicing Programmer. IEEE Computer. 11: 34-41.

Diller, A. (1994). Z: An Introduction to Formal Methods, 2nd Edition, Chichester, John
Wiley & Sons.

Geppert, B., J. Li, F. Roessler, and D. M. Weiss (2004). Towards Generating Acceptance
Tests for Product Lines. 8th Int'l Conference on Software Reuse. J. a. C. K.
Bosch. Madrid, Spain, Springer-Verlag. 3107: 35-48.

Gomaa, H. (2000). Designing Concurrent, Distributed and Real-Time Applications with
UML, Addison-Wesley.

Gomaa, H. (2005). Designing Software Product Lines with UML: From Use Cases to
Pattern-based Software Architectures, Addison-Wesley.

 269

Gomaa, H. and E. Olimpiew (2005). The Role of Use Cases in Requirements and
Analysis Modeling. Workshop on Use Cases in Model-Driven Software
Engineering. Montego Bay, Jamaica.

Gomaa, H. and E. Olimpiew (2008). Managing Variability in Reusable Requirement
Models for Software Product Lines. Proc. 10th International Conference on
Software Reuse. Beijing, China.

Gomaa, H. and M. Saleh (2005). Software Product Line Engineering for Web Services
and UML. IEEE Int'l Conference on Computer Systems and Applications. Cairo,
Egypt.

Gomaa, H. and M. E. Shin (2004). A Multiple-View Meta-modeling Approach for
Variability Management in Software Product Lines. Int'l Conf. on Software
Reuse. J. Bosch and C. Krueger, Springer-Verlag: 274-285.

Gomaa, H. and D. L. Webber (2004). Modeling Adaptive and Evolvable Software
Product Lines Using the Variation Point Model. Hawaii Int'l Conference on
System Sciences. Hawaii.

Grieskamp, W., N. Tillmann, et al. (2004). "Instrumenting Scenarios in a Model-Driven
Development Environment." Information and Software Technology 46: 1027-
1036.

Grindal, M. (2007). Handling Combinatorial Explosion in Software Testing. Department
of Computer and Information Sciences. Linkopings, Sweden, Linkopings
University.

Hartmann, J., M. Vieira, et al. (2004). A UML-based Approach for Validating Software
Product Lines. 1st Int'l Software Product Line Testing Workshop (SPLiT '04).
Boston, U.S.A., Avaya Labs Technical Report: 58-64.

Hoffer, J. A., J. F. George, et al. (2005). Chapter 10: Designing Databases. Modern
System Analysis and Design. Upper Saddle River, NJ, Pearson Education, Inc.:
328-367.

IEEE (1998). IEEE Standard for Software Test Documentation. IEEE Std 829-1998.

 270

Jacobson, I., M. Christerson, et al. (1992). Object-Oriented Software Engineering: A Use
Case Driven Approach. Reading, MA, Addison-Wesley.

Jacobson, I., Martin Griss, et al. (1997). Software Reuse: Architecture, Process and
Organization for Business Success. Reading, Massachusetts, Addison-Wesley.

Jarzabek, S., W. Chun Ong, and Hongyu Zhang (2003). "Handling Variant Requirements
in Domain Modeling." Journal of Software and Systems 68(3): 171-182.

Jenkins, B. (2005). Jenny: A Pairwise Testing Tool at
http://burtleburtle.net/bob/math/jenny.html. Last accessed on March 2008.

Kamsties, E., K. Pohl, et al. (2003). Testing Variabilities in Use Case Models. 5th Int'l
Workshop on Software Product-Family Engineering Siena, Italy.

Kang, K. (1990). Feature Oriented Domain Analysis. Pittsburg, PA, Software
Engineering Institute.

Kang, K. C., S. Kim, et al. (1998). "FORM: A Feature-Oriented Reuse Method with
Domain-Specific Reference Architectures." Annals of Software Engineering 5:
143-168.

Kiczales, G. (1996). "Aspect-Oriented Programming." ACM Computing Surveys
28(4es): 154.

Kiczales, G., J. Lamping, et al. (1997). Aspect-Oriented Programming. European
Conference on Object-Oriented Programming. Finland, Springer-Verlag.

Kishi, T. and N. Noda (2004). Design Testing for Product Line Development based on
Test Scenarios. Software Product Line Testing Workshop (SPLiT). Boston, MA:
19-26.

Kishi, T., N. Noda, et al. (2005). Design Verification for Product Line Development.
Software Product Line Conference (SPLC '05). Rennes, France.

 271

Kolb, R. (2003). A Risk-Driven Approach for Efficiently Testing Software Product
Lines. 2nd Int'l Conference on Generative Programming and Component
Engineering. Erfurt, Germany.

Krutchen, P. (1995). Architectural Blueprints - The "4+1" View Model of Software
Architecture. IEEE Software. 12: 42-50.

Laski, J. W. and B. Korel (1983). "A Data Flow Oriented Testing Strategy." IEEE
Transactions on Software Engineering 9(3): 347-354.

Lee, K., K. C. Kang, et al. (2006). Combining Feature-Oriented Analysis and Aspect-
Oriented Programming for Product Line Asset Development. 10th Int'l Software
Product Line Conference. Baltimore, MD, IEEE Computer Society: 103-112.

Loughran, N. and A. Rashid (2004). Framed Aspects: Supporting Variability and
Configurability for AOP. Software Reuse: Methods, Techniques and Tools: 8th
Int'l Conference (ICSR). Madrid, Spain.

Loughran, N., A. Rashid, et al. (2004). Supporting Product Line Evolution with Framed
Aspects. 3rd AOSD Workshop on Aspects, Components, and Patterns for
Infrastructure Software (ACP4IS). Lancaster, UK.

M. L. Griss, J. Favaro, et al. (1998). Integrating Feature Modeling with the RSEB.
International Conference on Software Reuse. Victoria, Canada, IEEE Computer
Society.

Mayrhauser, A. v., R. T. Mraz, et al. (1994). Domain Based Testing: Increasing Test
Case Reuse. Proceedings of the IEEE Int'l Conference on Computer Design.
Boston, MA: 484-491.

Mayrhauser, A. v., R. T. Mraz and P. Ocken (1996). On Domain Models for System
Testing. Proc. of the 4th Int'l Conf. on Software Reuse. Orlando, FL: 114-123.

Mayrhauser, A. V. and N. Zhang (1999). "Automated Regression Testing using DBT and
Sleuth." Journal of Software Maintenance: Research and Practice 11(2): 93-116.

 272

McGregor, J. D. (2001). Testing a Software Product Line, SEI.

McGregor, J. D., P. Sodhani, et al. (2004). Testing Variability in a Software Product
Line. Software Product Line Testing Workshop (SPLiT). Boston, MA, Avaya
labs: 45-50.

Miller, E., M. Paige, et al. (1974). Structured Techniques of Program Validation.
COMPCON '74. San Francisco, USA: 161-164.

Morell, L. and B. Murrill (1993). "Semantic Metrics through Error Flow Analysis."
Journal of Systems and Software 20(3): 253-265.

Morell, L. J. (1990). "A Theory of Fault-Based Testing." IEEE Transactions on Software
Engineering 16(8): 844-857.

Murrill, B., L. Morell, et al. (2002). A Perturbation-Based Testing Strategy. Proceedings
of the 8th Int'l Conf. on Engineering of Complex Computer Systems. Greenbelt,
MD, IEEE Computer Society: 145-152.

Muthig, D. and T. Patzke (2003). "Generic Implementation of Product Line
Components." Lecture Notes in Computer Science 2591/2003: 313-329.

Nebut, C., F. Fleurey, et al. (2003). A Requirement-Based Approach to Test Product
Families. Software Product-Family Engineering: 5th Int'l Workshop. Siena, Italy.

Offutt, J. (1992). "Investigations of the Software Testing Coupling Effect." ACM
Transactions on Software Engineering and Methodology 1(1): 3-18.

Offutt, J. and A. Abdurazik (1999). Generating Tests from UML Specifications. Proc. of
the 2nd IEEE Int'l Conf. on the Unified Modeling Language. Fort Collins, CO.
1723: 416-429.

Offutt, J., Y. Xiong, et al. (1999). Criteria for Generating Specification-Based Tests.
Proceedings of the 5th IEEE Int'l Conference on Engineering of Complex
Computer Systems (ICECCS '99). Las Vegas, NV: 119-129.

 273

Olimpiew, E. M. and H. Gomaa (2005). Executing Reusable System Tests for
Applications Derived from Software Product Lines. 2nd Int'l Workshop on
Software Product Line Testing (SPLiT 2005). Rennes, France.

Olimpiew, E. M. and H. Gomaa (2005). Model-based Testing for Applications Derived
from Software Product Lines. Advances in Model-based Testing Workshop. St.
Louis, Missouri.

Olimpiew, E. M. and H. Gomaa (2006). Customizable Requirements-Based Test Models
for Software Product Lines. 3rd Int'l Workshop on Software Product Line Testing
(SPLiT 2006). Baltimore, MD, Mannheim University of Applied Sciences.

OMG (2007). Unified Modeling Language: Superstructure, version 2.1, Object
Management Group.

Ostrand, T. J. and M. J. Balcer (1988). "The Category-Partition Method for Specifying
and Generating Functional Tests." Communications of the ACM 31(6): 676-686.

Parnas, D. L. (1978). Designing Software for Ease of Extension and Contraction. Proc. of
the 3rd Int'l Conference on Software Engineering. Atlanta, Georgia, U.S.A.: 264 -
277.

Pesonen, J., M. Katara, et al. (2005). Evaluating an Aspect-Oriented Approach for
Production-Testing Software. Proceedings of the 4th AOSD Workshop on
Aspects, Components, and Patterns for Infrastructure Software. Chicago, Illinois,
College of Computer and Information Science, Northeastern University: 36-40.

Poston, R. M. (1996). Automated Testing from Object Models. Automating
Specification-Based Software Testing. R. Poston. Los Alamitos, CA, IEEE
Computer Society Press: 24-35.

Rapps, S. and E. Weyuker (1985). "Selecting Software Test Data Using Data Flow
Information." IEEE Transactions on Software Engineering 11(4): 367-375.

Reuys, A., E. Kamsties, et al. (2005). "Model-Based Testing of Software Product
Families." Lecture Notes in Computer Science 3520: 519-534.

 274

Rothermel, G. and M. J. Harrold (1994). A Framework for Evaluating Regression Test
Selection Techniques. Proc. of the 16th Int'l Conf. on Software Engineering.
Sorrento, Italy: 201-210.

Rumbaugh, J., I. Jacobson, et al. (2005). The Unified Modeling Language Reference
Manual, 2nd Ed. Boston, MA, Addison-Wesley.

Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy and W. Lorensen (1991). Object-
Oriented Modeling and Design. Englewood Cliffs, NJ, Prentice Hall, Inc.

Saleh, M. (2005). Software Product Line Engineering based on Web Services.
Information and Software Engineering. Fairfax, VA, George Mason University:
290.

Saleh, M. and H. Gomaa (2005). Separation of Concerns in Software Product Line
Engineering. Workshop on the Modeling and Analysis of Concerns in Software
Product Line Engineering. St. Louis, Missouri.

Scheidemann, K. (2006). Optimizing the Selection of Representative Configurations in
Verification of Evolving Product Lines of Distributed Embedded Systems. 10th
Int'l Software Product Line Conf. Baltimore, MD, IEEE Computer Society Press:
75-84.

Stocks, P. and D. A. Carrington (1996). "A Framework for Specification-Based Testing."
IEEE Transactions on Software Engineering 22(11): 777 -793.

Tai, K.-C. (1996). "Theory of Fault-Based Predicate Testing for Computer Programs."
IEEE Transactions on Software Engineering 22(8): 552 - 562.

Tevanlinna, A., J. Taina, et al. (2004). "Product Family Testing: A Survey." SIGSOFT
Software Engineering Notes 29(2): 1-6.

Tirila, A. (2002). Variability Enabling Techniques for Software Product Lines.
Department of Information Technology, Tampere University of Technology: 59.

 275

Vauthier, J.-C. (2006). Decision Tables: A testing technique using IBM Rational
Functional Tester at http://www-
128.ibm.com/developerworks/rational/library/jun06/vauthier/. IBM
DeveloperWorks, IBM. Last accessed on March 2008.

Vieira, M., Johanne Leduc, et al. (2006). Automation of GUI Testing Using a Model-
Driven Approach. Proceedings of the 2006 Int'l workshop on Automation of
Software Test Shanghai, China, ACM: 9-16.

Vonteru, V. (2001). Java Implementation of Banking System Case Study. Fairfax, VA,
George Mason University.

Warmer, J. and A. Kleppe (1999). The Object Constraint Language: Precise Modeling
with UML. Reading, MA, Addison-Wesley.

Webber, D. (2001). Variation Point Model for Software Product Lines. Fairfax, VA,
George Mason University.

Weiss, D. M. and C. T. R. Lai (1999). Software Product-Line Engineering: A Family-
Based Software Development Process. Reading, MA, Addison-Wesley.

Yin, R. K. (2003). Case Study Research Design and Methods. Thousand Oaks,
California, Sage Publications.

Yourdon, E. (1989). Modern Structured Analysis. Upper Saddle River, NJ, Yourdon
Press.

Zave, P. (2004). FAQ Sheet on Feature Interaction at
http://www.research.att.com/~pamela/faq.html. Last accessed on March 2008.

Zhang, H. and S. Jarzabek (2004). "XVCL: A Mechanism for Handling Variants in
Software Product Lines." Science of Computer Programming 53(3): 381-407.

 276

CURRICULUM VITAE

Erika Mir Olimpiew was born on December 25, 1972, in Belgium. Originally
from Brasil, she became an American citizen in May 1998. She graduated from South
Lakes High School, in Reston, Virginia, in 1991. She received her Bachelor of Science
degree in Mathematical Sciences and her Master of Science degree in Computer Science
from Virginia Commonwealth University in 1995 and in 1997, respectively. Ms.
Olimpiew worked as a software engineer for a satellite communications company from
July 1996 to December 2002, and as a teaching assistant for George Mason University
from January 2003 until May 2008.

