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ABSTRACT 

GEOSPATIAL ANALYSIS OF THE ANCIENT MAYA WETLAND 

AGRICULTURAL FIELDS OF NORTHERN BELIZE 

Tanya Catignani, Ph.D. 

George Mason University, 2017 

Dissertation Director: Dr. Paul Houser 

 

This research analyzes the spatial distribution of ancient Maya wetland 

agricultural fields using remotely sensed and geospatial data. The Maya constructed 

wetland agricultural fields during the cultural periods known as the Preclassic and the 

Classic. The extent of these fields is still unclear, as is the approximate size of the 

population they once supported. The study of these wetland agricultural fields will help to 

understand how the Maya civilization was able to thrive in an inhospitable environment 

for thousands of years, and why their population sharply declined around 900 AD. Since 

1981, remotely sensed imagery such as synthetic aperture radar (SAR), multispectral, and 

lidar has been used to study Maya wetland agriculture. This research will employ several 

types of satellite imagery and a number of geospatial data sources to locate and 

predictively model the ancient fields, and analyze the spectral reflectance of their soils.   
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CHAPTER ONE - INTRODUCTION 

Belize is a small country in Central America, situated between Honduras, 

Guatemala, and the Mexican state of Quintana Roo, and is well known for its beaches, 

blue waters, and fascinating cultural history. The landscape in the north changes 

drastically as one travels inland and away from the resort-lined barrier reef along the 

coast, to the flat coastal plains to rolling hills blanketed in tropical forest and dotted with 

sleepy towns where the people represent a broad range of ethnic backgrounds. Many of 

the faces beg the question of whether there was truly ever a “Maya collapse” as one-third 

of the population is of mixed Maya and European descent, or Mestizo. An additional 10% 

are full Maya descendants. The population also consists of one-third Creole, and smaller 

percentages of Afro-Amerindian, East Indian, Chinese, and Europeans and more. In 

many ways Belize has a similar essence that once existed during the height of ancient 

Maya civilization, as the cultural mix influences ideas, design, and technology to create a 

new regional identity.  

Belize is also home to a large number of researchers and scientists who are drawn 

to the exceptional opportunities to explore subjects that are rare and pristine. The ancient 

karst landscape and tropical environment has attracted legions of academics who spend 

seasons, and often years of their lives, exploring the country’s many spectacular 

mysteries. Some of the more common research interests are the beautiful exotic flora and 
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fauna, the towering stone temples, or remnants of the Permian extinction that have been 

forever captured in the local stratigraphy. Less well known in comparison are the ancient 

Maya wetland agricultural fields that sprawl along the landscape of northern Belize, 

peculiar, occasionally unassuming, but always radiating the story of the ancient Maya and 

their expert knowledge of the environment. Drs. Sheryl Luzzadder-Beach and Timothy 

Beach have spent two decades unraveling the mystery of ancient Maya wetland 

agriculture in northern Belize and the surrounding areas. They, and many others, have 

worked to shift the opinion among academics away from the idea that the fields were 

nothing more than natural formations, or that the ancient Maya were simple slash-and-

burn agriculturalists with little understanding of the world around them. These ideas, 

downplaying the resourcefulness of the Maya, kept the complex identity of these ancient 

people trapped in a seemingly unmovable mindset. The Maya’s message to future 

generations had previously been misinterpreted at best and at worst it was dangerously 

silenced. Although many questions still swirl around the drastic population decline 

around 900 A.D., the story of the ancient Maya holds many valuable lessons for modern 

day society, regardless that many of the details have yet to be laid out. The work that Drs. 

Sheryl Luzzadder-Beach and Timothy Beach continue to contribute adds a crucial 

perspective to the Maya’s existence, one that can only be seen through the lens of 

wetland fields which acute proficiency in environmental adaptation. It is this perspective 

that returns the rightful esteem back to the ancient Maya by forcing the modern world to 

acknowledge their true identity. 
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So much of the Maya identity exists in the ancient wetland agricultural fields, and 

those located in northern Belize are some of the most expansive throughout 

Mesoamerica. Researchers have identified, mapped, and studied in a number of field 

systems along the Rio Hondo and New River. During their use, canals were dug to 

transport water to the farthest reaches of the fields. In some places the canals can still be 

seen as a pattern of shallow ditches under dense tropical canopy. In open fields they 

appear as series of irregularly colored lines of vegetation. 

 

 

 

 

Figure 1: Wetland field canals in an open field near Blue Creek, Belize are identified by dark green vegetation 
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The canals divide up the land into smaller units, the smallest of which are 

typically at least 20 by 20 meters in size. Due to their large proportions, and the natural 

effect they have on the vegetation and topography, they’ve become excellent candidates 

for geospatial analysis and remote sensing. This dissertation examines three different 

approaches using geospatial and remote sensing techniques for analyzing wetland fields, 

all of which hold promise for future research. 

The first approach is an in-depth interpretation of the visual characteristics 

displayed by wetland fields in high-resolution multispectral and panchromatic satellite 

imagery. For this, imagery was acquired over most of northern Belize, down to the 

foothills of the Maya Mountains, and Google Earth was supplemented for areas where 

cloud-free imagery was not available. Each image was reviewed for signatures of wetland 

fields. These signatures were determined by first examining areas with previously 

confirmed fields that had been visited on foot or observed by airplane. The similarities in 

size, shape, and color were noted and used to discover additional fields throughout the 

study area. Many of the fields visually identified in imagery were in locations where 

wetland fields had been noted by researchers in the past, such as Albion Island, located at 

the midsection of the Rio Hondo, and Pulltrouser Swamp, located at the midsection of the 

New River. This helped to confirm the methods being used to identify and map the 

location of additional fields. Eventually, the entire study area was inspected and a 

database of field locations, containing specific attributes for each location, was 

developed. This work will help support future analysis of field patterns in space since it 
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will be a comprehensive database of all visible fields in northern Belize along with 

important attributes such as acreage, shape, and pattern.  

The second geospatial approach is a predictive model, based on the database of 

identified fields. A number of environmental variables that could have influenced the 

placement of fields were researched and spatial datasets were acquired from online 

sources, such as soil or bedrock type, developed specifically for this study area, such as 

surface temperature and a couple different vegetation-based remote sensing indices. A 

new sample point data set was created randomly within the boundaries of identified fields 

and also outside these boundaries. Values for each variable were attributed to each 

sample point and the final dataset was rigorously evaluated using logistic regression 

analysis to determine the variables that best correlated with field locations. The 

regression coefficients were then used to develop a spatial data layer to produce a series 

of probability maps that can be built upon in future research or utilized to ground-truth 

highly probable field locations.  

Finally, the third approach is an analysis of wetland soils using reflectance 

spectroscopy, which is the study of electromagnetic radiation interacting with matter. Soil 

samples were collected in northwest Belize, while a parallel sample was collected in 

northeast Ohio, and analyzed to determine whether reflectance spectroscopy can be used 

to detect soil phosphorus and if a difference exists between different locations. Analyzing 

soil spectra in Belize presented a number of challenges such as using fresh samples that 

were not previously dried and sieved, and operating the field spectrometer in a semi-

outdoor environment with fluctuating light and wind, introduced greater opportunities for 
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error. Therefore, the samples collected in Ohio served as a control since they were 

processed in a more stable environment. Understanding phosphorus in archaeological 

soils has been a focus among researchers for several decades and it is widely accepted 

that levels of soil phosphorus are often correlated with human activity. The use of 

reflectance spectroscopy to measure soil phosphorus is less well understood and so while 

this part of the dissertation was more risky, it is important to keep working to improve 

these methods. Although the tropical forests of Belize abound with research opportunities 

for biologists and ecologists, they present a significant challenge in the field of remote 

sensing. Therefore, reflectance spectroscopy provides a way to directly analyze the 

spectral properties of archaeological soils to a degree that may never be possible using 

satellite imagery.  

Improvements in imagery resolution and technology in recent decades are 

creating new opportunities for geospatial research in Maya archaeology. Combined with 

advancements in our understanding of the Maya world, and the ability to build regional 

datasets that are digital and shareable, we are able to make discoveries that were not 

possible just 10 years ago. This is an exciting time for Maya archaeology, and especially 

for geographers who have made it their home. 
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CHAPTER TWO – MAPPING THE ANCIENT FIELDS 

The Maya landscape is known for its dense tropical forests which impede 

archaeological investigation as well as remote sensing research. Researchers have 

struggled over the last century to work around these natural impediments and locate 

archaeological remains, including wetland agricultural fields. In the last fifty years, 

advancements in remote sensing technology have led to new methods of studying the 

Yucatan terrain which has often been difficult to access. In the current decade, Google 

Earth freely provides high-resolution multispectral imagery throughout most of northern 

Belize, marking a new milestone in Maya research. This new opportunity will allow 

archaeologist to improve our knowledge of ancient Maya wetland agriculture at a 

regional scale. 

Introduction 
Ancient Maya wetland fields have been located in several Central American 

countries. This study focuses on the high concentration of wetland fields in northern 

Belize and immediately surrounding areas (Merlín-Uribe, et al. 2013, Dunning, Beach 

and Rue 1997). Northern Belize is a flat landscape with three major rivers: Rio Hondo, 

New River, and the Belize River. In contrast, southern Belize is dominated by the Maya 

Mountains and lacks the large, slower moving rivers of the north. Consequently, the areas 

surrounding northern Belize have significantly different environments and opportunities 

for human occupation. This study focused on a small part of the Maya landscape and will 

help to identify local environmental conditions that were preferred for wetland farming. 
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Modern Farming Practices 
Today, about 265,000 acres in Belize are dedicated to farming, of that 146,000 is 

cropland. Northern Belize agriculture consists mainly of small farms that produce crops 

such as sugar cane, and citrus. Western Belize produces corn, beans, beef, poultry, pork, 

and dairy. Milpa farming is an older practice that is also found in Northern Belize but is 

more common in southern Belize. The word “milpa” comes from a Nahuatl phrase which 

can be translated as “to the field.” This type of farming consists of a cycle beginning with 

two years of cultivation followed by eight years of allowing the land to lie fallow and 

recuperate. This system is designed to produce high yields without the use of fertilizer. 

Although it can be a sustainable practice, milpa farming has the potential to become 

unstable at higher levels of intensity. Over time it has become less common due to the 

high poverty level of the mainly indigenous people who still follow this practice. 

The modern day inhabitants of Belize have modified the landscape, sometimes 

destroying ancient field patterns. Once ancient fields are plowed, it is often difficult to 

distinguish ancient field patterns from naturally forming drainage patterns. Figures 3 and 

4 depict this modern alteration of the landscape. In the first image taken in 2002, the area 

is forested and has no major roads. The second image is from 2010 and modern 

agriculture has taken over. In one section of the modern field, ancient field patterns can 

be seen which are very consistent compared to the naturally occurring drainage pattern. 
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Figure 2: Forested land in study area; image acquired in 2002. 

 

 

 

 

Figure 3: Same area shown in Figure 3. Note that modern agriculture exposes and degrades ancient field 

patterns. Image acquired in 2010. 
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History of Research on the Ancient Maya Wetland Agricultural Fields 
Ancient Maya wetland agricultural fields were first discovered by Alfred Siemens 

in 1968 along the Candelaria River in southern Mexico, but were not initially accepted by 

the archaeological community who suggested the canals were not for irrigation but served 

as fish conservancies or waterways for the movement of timber (M. Pohl 1990, Siemens 

and Puleston 1972). It was later proposed that the fields were more likely the result of 

natural gilgai soil formation (Puleston 1978). Gilgai are small depressions of a few 

meters in size that form in expanding clay soils (Schaetzl and Anderson 2005). They are 

often found in vertisols, a soil type that is prevalent in northern Belize (Garrity and Soller 

2009). Figures 5, 6, and 7 are examples of a gilgai formation in Texas, an ancient Maya 

wetland field with distinct lines, and a wetland field with less distinct lines, respectively.   
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Figure 4: Gilgai formation in Texas (McDaniel 2013). 
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Figure 5: Distinct ancient Maya wetland fields located on the Mexican side of the Rio Hondo.  

 

 

 

 

 
Figure 6: Ancient Maya wetland fields with amorphous shape located on the Mexican side of the Rio Hondo.  
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Alfred Siemens and Dennis Puleston led excavations and aerial surveys to map 

wetland fields and determine their extent in the Yucatan peninsula (Siemens and Puleston 

1972). Their work would eventually be used to understand Maya settlement patterns in 

the region as well. In addition, a group of researchers joined Siemens and Puleston in a 

multidisciplinary approach to understanding Maya wetland agriculture. The collaborative 

group was known as the Rio Hondo Project and included geologists, paleo-

environmentalists, botanists, and soil scientists. Since that time, research has continued 

on this subject by a number of workers (M. Pohl 1990).  

Still, skepticism about the origins of the wetland fields persisted. In the late 

1970’s (Harrison and Turner 1978) again attempted to answer the question of whether the 

fields were natural or anthropogenic. They conducted aerial explorations of fields at a site 

called Pulltrouser Swamp in northern Belize. This work supported the original theory that 

the canals had been constructed by humans and their findings were reinforced through 

ground surveys. Additional archaeological excavations of several field locations 

eventually produced similar conclusions (M. Pohl 1990).  

After the wide-spread acceptance of the fields’ agricultural purpose, researchers 

began debating on the population size the fields could have supported and their overall 

significance in Maya subsistence. One argument stated they provided minor support to 

Maya populations since fields appeared to be confined to certain areas and that swidden 

cultivation of the uplands was of far greater importance in the region (Sanders 1979, 

Pope and Dahlin 1989). Swidden, also known as “slash-and-burn”, refers to the method 
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of shifting between cultivation and fallow in order to allow the soil to regenerate 

(Harrison and Turner 1978). In later years, others have portrayed wetland agriculture as 

one of many adaptations in a patchwork of methods throughout the multifaceted Maya 

territory (N. Dunning, T. Beach and P. Farrell, et al. 1998). More recently, researchers 

have become confident that wetland agriculture probably provided adequate support to 

dense populations (Renard, et al. 2012) 

Physical Characteristics of Mesoamerican Wetland Agricultural Fields 
Ancient Maya wetland agriculture fields in Mesoamerica have been referred to as 

raised fields, ditched fields, chinampas, etc. However, the main function is always the 

same: manipulation of an otherwise limited landscape by regulating soil moisture and 

maintaining a steady supply of nutrients to crops. These systems are dependent on the 

water table and allowed the ancient farmers to extend the range of time during which 

food could be produced. Farmers could also transform inundated land into a productive 

field by adding soil to the growing surface and raising it above the surrounding area, 

allowing ancient Mesoamericans to intensify their food production (Sluyter 1994).  

Wetland fields exhibit a variety of shapes, patterns, and a direct relationship 

between canal depth and the number of canals per field (Figure 13). Geography and 

cultural influence led to the distinction of five regional methods of wetland agriculture 

that spanned three cultural time periods. The regions are the Mesa Central, the Southern 

Highlands, the Gulf Coast, the Maya Lowlands, and the Maya Highlands. These regions 

practiced wetland agriculture during the Preclassic (2500 BC to AD 1), the Classic (AD 1 

to 900) and the Postclassic (AD 900 to 1521), with each period of time coinciding with 
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environmental changes that likely influenced development of wetland agriculture. Over 

time, fields increased in overall length, width, frequency, and amplitude of ditching 

(Sluyter 1994).  

 

 

 

 

Figure 7: Known field shapes and patterns (Sluyter 1994). 

 

 

 

The climate and topography in which wetland agricultural fields exist varies 

greatly in Mesoamerica. Wetland agriculture increased during the Preclassic period, 

which began with a cool and wet climate. By the late Preclassic, the climate became 
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drier. This may have put greater reliance on the wetlands which in turn would have 

provided increased security of food production. This shift in reliance may have grown 

during the Classic Period due to initial success of wetland fields during the Preclassic 

(Sluyter 1994).  

The fields found in the Maya Lowlands exhibit several patterns and shapes as 

described in previous research (Sluyter 1994). Investigation of multispectral satellite 

imagery and imagery available in Google Earth show three common wetland field 

patterns in this region: linear, amorphous, and the larger canals that feed the smaller 

systems (Figures 14 and 15).  

 

 

 

 

Figure 8: Linear-shaped fields 
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Figure 9: Amorphous-shaped fields. 

 

 

 

In several places, large canals can be seen that extend from rivers and lead to 

smaller canals nearby. In figure 16, the small canals that make up wetland fields are 

roughly 700m from the river. This may indicate that in the past, the wetland fields could 

have been more extensive and filled the area between the river and existing fields. 
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Figure 10: Large canals feed river water to smaller systems which may no longer be visible. 

 

 

 

Northern Belize is one of the few locations in Mesoamerica where intensive 

wetland agriculture occurred during all three cultural time periods. Coincidentally, it is 

also one of three locations civilization began in Mesoamerica. In northern Belize, the 

terrain consists of low elevation, karst topography, and a hot and humid climate, where 

fields are often found in bajos and back swamps of streams. According to one estimate, 

the Maya Lowlands region may have 22,900 hectares of wetland fields, the most of any 

region in Mesoamerica, and could have supported up to 255,000 people a year. Even the 

best estimates of field acreage may be skewed since many fields were buried long ago by 

aggradation. Since population estimates are also unclear, it becomes increasingly difficult 

to estimate the importance of wetland agriculture in ancient Maya culture (Sluyter 1994). 
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Remote Sensing in Maya Research 
Since the 1960s, remote sensing has advanced our knowledge of ancient Maya 

wetland agriculture by allowing archaeologists to locate fields and to conduct research in 

spite of the Yucatan Peninsula’s dense tropical vegetation. A timeline of Maya remote 

sensing research, in relation to advances in commercial earth imaging capabilities, can be 

seen in the table below (Bauman 2009, GISGeography n.d., Lavers 2015, Satellite 

Imaging Corporation 2014a, National Aeronautics and Space Administration 2012, 
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Jeffrey 2013, Satellite Imaging Corporation 2014b, Satellite Imaging Corporation 2014c, 

Young 2009)  
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Figure 11: Timeline of research and imaging capabilities 
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The first attempt at what can be considered remote sensing research in Maya 

archaeology began in 1929. Oliver Ricketson and Alfred Kidder carried out the first 

aerial investigation of the Maya region, along with Charles A. Lindbergh, by flying over 

the countries of Mexico, Guatemala, and Belize (Figure 9). The expedition led to the 

discovery of Maya towns and temples, and their findings were documented in an articles 

published in The Scientific Monthly and the Geographic Review in 1930. (Kidder 1930, 

Ricketson and Kidder 1930). 
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Figure 12: Lindbergh and Kidder's flight route and site locations (Kidder, 1930). 

 

 

 

The pair traveled from Belize City to northern Guatemala, photographing sites 

and physical terrain features (Figure 10) and then flew north to southern Mexico, 

discovering new sites along the way. After returning to their base in Belize City, they 

discussed their initial findings and planned a second trip to focus on specific terrain 

features that led them to believe there were Maya sites below the forest canopy. The 
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results of their work highlighted the utility of aerial investigations in the exploration of 

unknown geographic locations and archaeological landscapes (Kidder 1930). 

 

 

 

 

Figure 13: Aerial image taken by Lindbergh and Kidder of a temple at Tikal, Guatemala. 

 

 

 

Several archaeologists have used radar imagery to study Maya sites and wetland 

agricultural fields with varying degrees of success. The first of these attempts was led by 

Richard E. W. Adams in 1981.The goal of this research was to understand the 

discrepancy between the seemingly large ancient Maya population and the questionably 

low potential food sources in the southern lowland region of the Yucatan Peninsula. 
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According to Adams et al., synthetic aperture radar (SAR) surveys performed by NASA 

revealed a more extensive wetland agricultural system than previously known. Ground-

truth of several areas also verified the SAR findings. Previously, archaeologists had 

thought the Maya relied mainly on swidden agriculture. However, shortly after the 

discovery of the wetland fields, evidence began growing that suggested this method was 

unlikely to have been able to support large ancient populations. A more probable 

situation was that the Maya took part in extensive wetland agricultural farming (Adams, 

Brown Jr. and Culbert 1981).  

Since aerial surveys alone were considered a somewhat dubious and subjective 

method for locating the agricultural fields, it was thought that radar imagery would 

provide a more objective and acceptable method. Unfortunately, this study created new 

questions about the validity of the identified fields. It is uncertain if all of the detected 

features are truly human-produced or are actually the result of non-Maya features such as 

roads, trails, or abandoned air strips. There were also questions about whether the 

imagery was able to detect some of the smaller wetland fields or if they were missed due 

to the large spatial resolution (30m) of the SAR imagery (Figure 11). The results of 

Adams (1981) study were critiqued Kevin Pope and Bruce Dahlin (1989). These 

researchers contested that the previous estimates of the extent of wetland agricultural 

fields in the Maya lowlands were exaggerated. They suggested that the fields are only 

concentrated in three areas: northern Belize, southern Quintana Roo in Mexico, and the 

upper Candelaria River in Campeche, Mexico. They based their arguments on their 
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analysis of the same imagery used by Adams et al. and found that only the largest canals 

could be positively identified with the radar imagery (Pope and Dahlin 1989). 

 

 

 

 

Figure 14: Fields detected by Adams, Brown Jr., and Culbert (1981). 

 

 

 

In their own analysis, Pope and Dahlin used multispectral satellite imagery to 

detect the locations of agricultural fields. They were attempting to locate canal features 

that had been detected on the ground nearly two decades earlier (Siemens and Puleston 

1972), and aimed to establish a quantifiable method for determining their existence on a 

regional scale. This work was further supported through the analysis of soils, hydrology, 

and vegetation studies. They used Landsat Thematic Mapper (TM) and radar imagery to 

locate wetlands and ancient canals across the Yucatan Peninsula. False color composites 

of the Landsat TM made it possible to detect some of the larger canal features. Small 

lattice patterns were not detectable by the available imagery and were only located while 

flying overhead in an airplane. Canals were detected along the karstic Rio Hondo river 
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but were absent in the non-karstic rivers to the south which are faster-moving and have 

greater fluctuation in their water levels. Also, the back-swamps of karstic rivers are 

perennially flooded whereas the backwaters of non-karstic rivers are only seasonally 

flooded, allowing them to desiccate and crack during the dry season. The findings of 

Pope and Dahlin definitively showed the large canals also crossed over different land 

types, connecting the river channel with karst depressions that were located farther away. 

They were also able to determine that the locations of fields did not coincide with areas 

of high population and so population density was not a likely influence on the selection 

of agricultural field locations. Additionally, they were able to compare regional 

differences in vegetation among the different types of wetlands in a more quantifiable 

way (Pope and Dahlin 1989). 

In 2003, Tom Sever and Daniel Irwin of the NASA Marshall Space Flight Center 

in Huntsville, Alabama, used multispectral imagery to map Maya archaeological features 

and natural terrain features in neighboring northern Guatemala to determine whether 

bajos had been used by the ancient Maya for wetland farming. They began by mapping 

linear features, vegetation, and drainage patterns using Landsat TM and Landsat 

Enhanced Thematic Mapper Plus (ETM+) imagery, and correlated their findings with 

locations of known settlements. They were able to identify canals and also used the 

Normalized Difference Vegetation Index (NDVI) to highlight areas of stressed vegetation 

that may have been manipulated for agriculture or habitation by the ancient Maya. High-

resolution Ikonos multispectral imagery was then used to locate small-scale cultural 

features, and to explore the surrounding terrain. Finally, STAR-3i radar imagery was also 
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used to locate bajo islands (see Figure 12) which are elevated areas within a bajo that are 

not seasonally inundated. Their integrative analytical approach also allowed them to map 

different types of vegetation of which ancient Maya had been aware of and had adapted 

for their use. Overall, the combination of multiple imagery datasets allowed for a more 

thorough understanding of the study area (Sever and Irwin, 2003). 

 

 

 

 

Figure 15: Canals detected with Landsat TM, bajo islands detected with STAR-3i radar (Sever and Irwin, 2003). 

 

 

 

Garrison (2010) used ground survey data from Sever and Irwin’s 2003 research to 

create a land classification map to aid future research in the region. The goal was to 

produce results similar to the ground survey in order to reduce the amount of future field 

work necessary for this type of research using high-resolution imagery. Previous ground 

surveys were done by Sever and Irwin as part of their 2003 study to map Maya settlement 
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sites and related features in the region. For part of their work they used false color 

composites of high resolution Ikonos imagery. They assessed that this type of imagery 

was only useful for discovery and so they relied mainly on 30m spatial resolution Landsat 

imagery for much of their analysis. However, Garrison attempted to find other uses for 

high-resolution imagery that might be more successful and also focus and reduce the 

amount of field work necessary in the future. An unsupervised classification was 

conducted on the Ikonos data but due to an unknown error in the imagery, it produced 

erroneous and unusable results and Quickbird multispectral high-resolution imagery was 

used instead. An unsupervised classification of this data, which incorporated an NDVI as 

a fifth band, produced a map of microenvironments in the region that are known to be 

associated with Maya sites. The result was an overall accuracy of 73% with one category 

reaching nearly 100% accuracy. Since most of the known archaeological features occur 

within the two most accurately classified land types, this method was deemed successful. 

(T. G. Garrison 2010).  

More recently, (Garrison et al., 2011 took part in a radar survey of Maya sites 

throughout Guatemala. They used AIRSAR imagery, collected by a NASA airborne 

sensor which surveyed the Maya territory in 2004, to make a 3-dimensional model of the 

landscape in order to investigate the area in search of new sites. The intent of NASA’s 

2004 mission was to build a SAR database over the Maya expanse so that researchers 

could develop procedures for studying Maya archaeology and for future exploration of 

the region (Garrison, et al. 2011).  
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To build the elevation model, the AIRSAR imagery was first processed by 

performing an image coregistration from two separate radar images to produce and 

interferogram from which topography can be estimated. The AIRSAR-derived digital 

elevation model was compared to Shuttle Radar Topography Mission (SRTM) imagery 

and was found to have an overall difference of half a meter, verifying its accuracy 

(Garrison, et al. 2011). Using a GIS, the team applied a color ramp and performed a 

stretch of two standard deviations which allowed them to quickly locate major temples at 

El Zotz and El Palmar and two new sites: Hilltop Site and La Avispa. At El Zotz, they 

also found expansion sites consisting of basal platforms that held residential mounds, the 

likely locations of non-elite settlements (Garrison, et al. 2011).  

Over the last five years, bare-earth LiDAR imagery has been used to analyze 

Maya sites in fine detail (Chase, Chase and Weishampel 2010, Chase, Chase and 

Weishampel, et al. 2011, Chase, Chase and Fisher, et al. 2012, Chase, Chase and 

Weishampel 2013, A. F. Chase, D. Z. Chase and J. J. Awe, et al. 2014, A. F. Chase, D. Z. 

Chase and J. Awe, et al. 2014). Since vegetation spectra do not always indicate what lies 

beneath it, places that are densely forested require the use high-resolution elevation data, 

such as LiDAR, to see features and structures that are below the surface of the canopy. 

LiDAR can be used to produce elevation data but provides a much higher level of 

information than a typical DEM. It allows researchers to find the faint outlines of features 

that are neither visible through multispectral imagery nor field surveys. Chase and Chase 

have used this technology extensively since 2010 to map features of Maya settlements, 

revealing structures, terracing, and other features obscured by vegetation. LiDAR has 
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proven to be extremely powerful in providing highly detailed maps of ancient Maya cities 

(Chase, Chase and Weishampel 2013, Chase, Chase and Weishampel 2010, Chase, Chase 

and Weishampel, et al. 2011, Chase, Chase and Fisher, et al. 2012).  

In a 2012 study related to the topic of wetland agricultural fields, Morehart (2012) 

performed a remote analysis of chinampas, which are a version of wetland agricultural 

fields that were created by the neighboring Aztec civilization. The chinampas in this 

study are located near the ancient Aztec city of Xaltocan in southern Mexico. Chinampas 

are very similar to the fields in northern Belize, both consist of a system of large canals 

with smaller canals, or ditches, that branch off, and were discovered around the same 

time as the wetland fields of Belize. Although the people that built chinampas were of a 

separate cultural group, they likely shared knowledge of agricultural practices. Morehart 

(2012) used high resolution Quick Bird imagery, aerial photos from the 1950s and also 

Landsat imagery to detect the locations of canals. Their analysis consisted of an initial 

visual inspection of the imagery, creation of false color composites, and also the creation 

of an NDVI image. The latter two methods did not appear to enhance the ability to detect 

canals much more than the original true color images or aerial photos. Their final product 

was a map of a small section of chinampas. Although this research was at a more local 

level, it provides a comparison for similar remote sensing research that has been carried 

out for Maya wetland agricultural fields at a larger scale. 

A Case for Visual Imagery Analysis and Field Detection 
Maya researchers have ultimately employed nearly every major type of imagery 

available in order to detect sites and field systems: aerial photography, SAR, 
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multispectral, and LiDAR. Each attempt identified strengths and weaknesses of the 

imagery and methods involved and from those studies there have been several lessons 

learned. First, imagery with a low spatial resolution will be unlikely to reveal the location 

of canals except for the largest ones. Manipulating the data to create an NDVI does not 

significantly help to identify canal features since the fields span a variety of vegetation 

types and microenvironments resulting in varying success. Although comprehensive 

methods to identify wetland fields throughout this region remain elusive, visual imagery 

interpretation is now possible through high-resolution panchromatic and multispectral 

satellite imagery. Freely available through Google Earth, this resource has become a 

powerful tool in archaeological research and has been used in a number of recent studies 

around the world (Kennedy and Bishop 2011, Sadr and Rodier 2012, Thakuria, et al. 

2013). Due to their large size, the fields are an ideal candidate for archaeological 

prospection using Google Earth. 

In the last five years, Google has made high-resolution multispectral imagery 

available for much of northern Belize through their Google Earth product. Although 

some areas have yet to be updated, large field systems are easily discoverable while 

visually scanning the imagery at large scale, typically at least 1:5,000. While this may 

seem time consuming when compared to automated methods, it is extremely effective. 

By using verified ancient Maya wetland fields as a reference, it is possible to establish a 

set of parameters for identifying new fields and distinguishing them from naturally 

occurring phenomena.  
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Google Earth imagery has a spatial resolution that ranges from 15m to sub-meter, 

depending on the public interest of a given area (Google 2015, Mellen 2014). Imagery is 

continually updated as well as digital elevation data, provided by NASA’s Shuttle Radar 

Topography Mission (SRTM) imagery (Rusli, Majid and Md Din 2014). The program 

allows users to add data and upload hand-held photos which further aid geographical 

analysis. Google Earth’s historical imagery makes it possible to find features that may no 

longer exist or to understand change over time (Google 2015). 

Methods 

Imagery Analysis of Wetland Field Patterns 
In 2013, the Maya Research Program (MRP) conducted an aerial survey along the 

Rio Hondo and identified 15 areas that contained visible field patterns. These locations 

were later visited on foot and verified as actual ancient fields. In order to identify 

additional wetland fields, the patterns and shapes of verified fields were reviewed in 

imagery. 
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Figure 16: Fields located by air. Map created by Tanya Catignani. 

 

 

 

New fields were first located using Google Earth and additional multispectral 

images were acquired from various sources (Ikonos multispectral provided by the Maya 

Research Program, and WorldView, OrbView, and QuickBird multispectral provided by 

The National Geospatial-Intelligence Agency) to further determine if they were natural or 

man-made. The footprints of these additional satellite images can be seen in Figure 18, 

below. 
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Figure 17: Commercial Multispectral Imagery Footprints. Map created by Tanya Catignani. 

 

 

 

The fields mostly follow large rivers and are typically within one to two 

kilometers from their banks. Some still contain defined linear patterns that are consistent 

for hundreds of acres but often only small sections are visible. They are mostly found in 

low-lying flat areas which were irrigated by larger canals. Modern farms can often be 

found adjacent to ancient ones and in several instances, ancient field patterns can be seen 

surrounded by modern fields. In Figure 19, a road cuts through an ancient field but was 

avoided by modern farmers who ploughed around the ancient wetland field. This 

suggests at least some of the land which was valued by the ancient Maya continues to be 
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valued by modern farmers, probably for similar reasons including nutrient-rich soils and 

stable access to water. 

 

 

 

 

Figure 18: Modern road cutting through ancient field. 

 

 

 

Based on the commonalities found among known field locations, the following 

criteria were selected and used to locate additional ancient Maya wetland fields:  

 defined trenches  

 rectangular framework 

 continuous (multiple trenches observed) 

 size of smallest individual units ranging from ~250 m2 to ~1250 m2 
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Defined trenches are the obvious starting point for identifying field patterns but unless 

several of them are visible, it is hard to determine if a trench is truly part of an ancient 

field. Typically, fields were identified by observing a rectangular framework of trenches 

that continued for at least two or more defined field units. In ArcMap, a geographic 

information system (GIS) software created by Environmental Systems Research Institute 

(ESRI), the known fields with the most defined trench lines were defined so that the 

length and width of field units could be accurately measured. In total, 70 individual field 

units were identified, each of which was examined in imagery to determine their size 

range. Using the historic imagery in Google Earth, it was possible to look at the units 

with varying degrees of vegetation growth and determine if they consisted of multiple 

units. An example of this phenomenon can be seen in Figures 20 and 21. 
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Figure 19: This field unit appears to be singular during periods of increased vegetation. 

 

 

 

 

Figure 20: Reviewing historical imagery shows the unit is actually three field units. 
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 The length of individual units was measured to determine a range which was 

found to be ~250m2 to ~1250m2. In figure 22, both sides of this range can been seen at 

one location along the Rio Hondo. 

 

 

 

 

Figure 21: Clear example of the smallest and largest field units typically found in northern Belize. 

 

 

 

Results 
Imagery analysis identified 104 locations and a total of 16,016 acres of visible 

field patterns throughout northern Belize and surrounding areas. Figure 23 shows the 

locations of wetland agriculture fields that have been located using visual interpretation 

of Google Earth and commercial multispectral imagery. 
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Figure 22: Fields located through imagery analysis. Map created by Tanya Catignani. 

 

 

 

Figure 24 contains the locations of previous wetland field research areas which 

closely align with the imagery-identified field locations. This correlation supports the 

methods used here and may even have identified additional fields in the southern part of 

the study area that may be new discoveries. 
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Figure 23: Identified fields and previous research sites. Map created by Tanya Catignani. 

 

 

 

Based on Sluyter’s classifications, the large majority of fields discovered through 

imagery analysis appear to be linear in shape but exhibit a variety of patterns: biaxial, 

irregular, radial, and uniaxial (Sluyter 1994). 
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Table 1: Breakdown of visually identified fields by shape and pattern. 

 

 

 

 

The compilation of ancient Maya wetland field locations and imagery-based 

attribute data has provided a broader understanding of this agricultural practice and will 

act as foundational data for further regional analysis. Regional-scale analysis will also 

help to answer overarching questions about how the Maya learned to masterfully 

manipulate their landscape in support of large populations  

Conclusions 
Google Earth, high-resolution multispectral and panchromatic imagery, SAR and 

Lidar have provided new sources of information and avenues for ancient Maya wetland 

agriculture research. The results of analysis show that fields can be visually identified in 

a reasonable amount of time and new wetland field locations can continue to be 

discovered as spatial resolution improves. Belize’s landscape is steadily changing due to 

modern farming practices which may hinder future research. By studying high-resolution 
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multispectral imagery it is possible to witness these changes as they occur and to preserve 

our understanding of ancient Maya agricultural practices while the physical evidence still 

exists. 
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CHAPTER THREE – PREDICTIVE ANALYSIS OF FIELD LOCATIONS 

Introduction 
The Maya culture thrived for millennia despite a lack of water and food sources, 

and learned to exploit the few opportunities that existed in their region. For example, the 

karst topography of the Yucatan peninsula provided them with flat landscape and shallow 

soils that could be manipulated through irrigation canals. It is clear from the analysis in 

the previous chapter that proximity to a water source was a highly influential factor for 

the Maya when planning the location of these fields, but there were likely additional 

environmental factors that influenced their placement. This article will attempt to identify 

the main environmental variables that were used to select areas for wetland agriculture, 

and use them to estimate the spatial extent of these fields.  

Predictive Modeling in Archaeology 
In archaeology, predictive analysis can be used as a statistical tool to develop an 

understanding of the behavior and choices made by humans in the past. As can be 

expected, it has inherent limitations that should be acknowledged and adhered to but this 

does not mean it should be avoided entirely. Unfortunately, this practice has often come 

under scrutiny by those who feel predictive analysis applied to archaeology is misleading 

at best, and at worst may be fundamentally wrong. This discrepancy is sometimes due to 

the perception of the results which should be used to identify areas of potential 

archaeological significance, and not a literal map of undiscovered sites. (Carleton, 2012) 

Regardless, the statistical analysis of ancient sites and landscape modifications can 
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undoubtedly reveal patterns among the practices of past cultures and begin to explain 

their ways of life.  

Ernestene L. Green (1973) created a statistical model of Maya sites using 

Stepwise Multiple regression and a number of environmental factors including soil type 

and distanced to water. This type of regression attempts to create a best-fit line through 

the data, rotating variables in and out of the equation, to find the best combination of 

variables which can predict additional datasets. Her sample size was unfortunately small 

(22 known sites) but she did find significant relationships between the location of Mayan 

sites and both of these variables. She also noted that their appeared to be a preference for 

lime-enriched soils which offer high agricultural potential. Her results were not very 

exceptional, and only 22% of the variation within the sample could be explained by the 

model. However, it did provide a foundation for future types of analysis in this region. 

(Green, 1973) 

Fedick (1996) created a predictive spatial model of terrace agriculture in the upper 

Belize River area of west central Belize. The model incorporated variables such as soil 

type, parent material, topography, land capability, and seasonal capability. Each variable 

was categorized, ranked, and analyzed in a geographic information system (GIS). The 

final model spatially depicted the locations most likely to contain evidence of ancient 

Maya terrace agriculture and was later tested through ground surveys. The survey results 

were incorporated back into the model in order to refine and improve results. In general, 

the model showed that areas with low slopes and specific soil types that were conducive 

to hand-cultivation were the most likely to contain evidence of ancient terracing.  
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More recently, Sallie Vaughn and Tom Crawford created another statistical 

model, in northwest Belize, using similar variables in a GIS. They chose to use Binary 

Logistic Regression since their data included a range of types including nominal, interval 

and ratio. This type of regression aims to calculate a probability whether data points will 

fall into one of two predetermined groups. The study included 50 sites in their sample as 

well as 50 randomly selected points. Their analysis found that east-facing slopes, and 

greenness (a measure calculated using a Normalized Difference Vegetation Index) were 

correlated with the presence of known sites. Distance to water was not found to be 

significant in this study. The resulting model was able to correctly predict the location of 

66% of known sites and 60% of random points (Vaughn & Crawford, 2009). 

Carleton, Conolly, and Ianonne (2012) outlined the potential pitfalls of predictive 

analysis for archaeological investigations and proposed methods to avoid these past 

miscalculations. In their analysis, they created a raster dataset for each variable that 

contains weighted values, ranging from 0 to 1, indicating site potential. The four resulting 

rasters were then compiled into one model of archaeological site potential. The authors 

claim that this method is superior for several reasons, but mainly that it produces a model 

by assigning each pixel a unique value of site potential, thereby preventing environmental 

phenomena from being parameterized. However, the study did not include any statistical 

measures of accuracy that would allow it to be directly compared to the studies 

completed by Green or Vaughn and Crawford.  

Several concerns are found with Carleton et al.’s work. First, they acknowledge 

that due to the nature of raster datasets, the edges of the model may contain falsely low 
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values as some sites exist on the boundary of pixels. Therefore they are incorrectly 

omitted from the pixel, resulting in inaccurate values of site potential. Second, only four 

environmental variables were taken into consideration, of which soil type, arguably the 

most important, was based on digitized maps that were between 20 and 54 years old. 

Thirdly, this study creates values of site potential based only on known sites, with no 

statistical measures of significance. The resulting model may be biased towards the 

variables of those known sites based on the authors’ incomplete knowledge of site 

locations.  

Collectively, these studies laid valuable groundwork for future predictive models 

of site potential. This research will attempt to consider the successes and pitfalls of these 

previous works, in order to produce predictive model for ancient Maya wetland 

agricultural fields. This study will use a sample size of 521 points randomly selected 

within the boundaries of known field locations in northern Belize and the bordering areas 

of southern Quintana Roo, Mexico. An additional 521 points were randomly selected 

outside the location of known field boundaries for a total point sample size of 1042. 

Geologic History of the Yucatan Peninsula 

In order to understand the environmental challenges the Maya faced while living 

in northern Belize, and the way in which they selected land for wetland agriculture, we 

will explore how this landscape was created. The main force throughout Belize’s 

geological history has been its position near the southern edge of the North American 

tectonic plate. Due to this proximity, the south half of the country is more structurally 
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complex than the north. The Maya Mountains in the south are made of Triassic granites 

and Late Paleozoic siliclastic sediments which have been metamorphosed (Jordan 2002). 

Three main geologic events have led to the creation of this unique region, long 

before it became habituated by humans. The first defining event was the Paleozoic era 

deposition of clastic material and subsequent intrusion of Triassic period granite. The 

second event was the deposition of carbonates during the Cretaceous period. The third 

most influential event was the uplift and faulting during the Tertiary period, due to plate 

tectonic activity (Miller 1996). Though some geologic activity has occurred during the 

Quaternary Period, the events that had the most influence in forming the Maya landscape 

occurred millions of years prior (Bundschuh and Induni 2007). The figure below shows 

these key periods in the context of the geologic time scale. 
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Figure 24: Geologic Time Scale (MacRae 1996) 

 

 

 

 

Today, southern Belize is part of a physiographic region known as the Maya 

Highlands. This region consists of morphologically distinct mountain ranges, fault-

controlled canyons and a few broad alluvial valleys. The Maya Highlands exist across a 

Cretaceous-Paleogene fold belt with a crystalline basement and sedimentary cover. The 

geomorphology of this region is controlled by lithologic variations that are exposed in the 

eroding high-altitude mountains (Bundschuh and Induni 2007). The south is physically 

distinct from the north which likely led to cultural differences in agriculture, architecture, 
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and art, based on archaeological evidence (Coe 2011, Perry, Velazquez-Oliman and 

Socki 2003). 

The karst in northern Belize has been developing since the late Miocene, similar 

to much of the Yucatan Peninsula. Northern Belize also has significant surface and 

subsurface drainage that allows precipitation to directly infiltrate the ground water 

reservoirs or flows as surface runoff (T. Beach, S. Luzzadder-Beach, et al., Human and 

natural impacts on fluvial and karst depressions of the Maya Lowlands 2008). The region 

also has few permanently flowing rivers, in the west and southeast including Belize 

River, New River, and the Rio Hondo (Coe 2011). Karst topographies develop a system 

of internal drainage over time (Jordan 2002) and so the geomorphology of the Yucatan 

Platform has a strong relationship with its structure and the depth of the groundwater 

table (Bundschuh and Induni 2007).  

Since the Tertiary, geologic activity in northern Belize has mostly been slow 

subsidence and carbonate deposition. In the south, uplift in the Maya mountain region 

raised the carbonates to 50m above sea level. Additional uplift since that time can be 

witnessed at river terraces, cave levels and marine faunal remains found in inland 

sediments. More recently, Quaternary alluvium from the Maya Mountains filled in 

waterways that had previously extended into the country (Miller 1996). 

Northern Belize is part of physiographic region known as the Yucatan Platform 

consisting of expansive carbonate lowlands (Bundschuh and Induni 2007). More 

commonly known as the Yucatan Peninsula, it is basically a shelf of limestone uplifted 

over time (Coe 2011). Figure 2 is a map of the geologic units throughout the Yucatan 
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peninsula, along with the fault lines that have caused much of the uplift (Garrity and 

Soller 2009). The map also shows the older geologic units in southern Belize, (PZ 

(Paleozoic), MZg (Mesozoic) and K (Cretaceous), which form the Maya Mountains, as 

well as the series of small fault lines that traverse from east to west. Heading north, the 

geologic units shift from older volcanic and plutonic to geologic units that are younger 

and mainly sedimentary, formed after centuries of erosion. These younger units date to 

the Tertiary and Quaternary periods. 

The unique geological setting has greatly influenced the region’s ecosystem as 

well as human inhabitants. Weathering of carbonate landforms has produced minimal soil 

cover and insufficient nutrients. In addition, though rainfall is abundant, drinking water is 

scarce as there are few surface streams by which to transport the vital resource. In pre-

colonial times, natural depressions and hand-dug wells were the main water sources 

(Perry, Velazquez-Oliman and Socki 2003). 
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Figure 25: Yucatan Peninsula Geologic Units and Fault Lines. 

 

 

 

The peninsula is also notably characterized by karst landforms such as sinkholes, 

cenotes, and cave networks. A cenote (Figure 26) is a circular sinkhole formed by the 

collapse of underground caves. They are currently the main source of drinking water 

since they are perennially filled with water percolating through limestone and are often 

served as focal points for native settlements. Another common feature is the bajo (Figure 

27), a wetland depression that fills up in the summer but becomes dry by the winter. 

Additionally, this area also exhibits more distinctly Maya architecture and artwork (Coe 

2011). 
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Figure 26: A cenote in Mexico (Kehnel 2008) 
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Figure 27: Bajo near the site of El Mirador in northern Guatemala (Authentic Maya 2005). 

 

 

 

Environmental Processes of the Yucatan Peninsula during the Holocene 
Since the last glacial maximum, the landscape of the Maya people was impacted 

by natural and human-induced processes. The Yucatan peninsula has undergone several 

climatic changes over the last 10,000 years, causing the human population to find new 

ways to adapt. Although erosion has been a pervasive force, human activity has actually 

been the main driver of surface processes in more recent times (Beach, Dunning, et al. 

2006, T. Beach, S. Luzzadder-Beach, et al. 2008).  

The first inhabitants of the Maya lowlands arrived 5,000 years ago, as determined 

by pollen analysis. As early as 4,000 years ago agriculture began to spread, which led to 



  

55 

 

severe erosion as a result of deforestation. The severe erosion also led to sedimentation of 

the lowlands which peaked in the late Preclassic. However, population levels did not 

peak until the late Classic period. After the well-known population decline of the late 

Classic period, there is evidence that reforestation began to occur, though some areas did 

not experience this process until after European contact (T. Beach, S. Luzzadder-Beach 

and N. Dunning, et al. 2009).  

During the Late Preclassic period, the water table rose and was a likely motivation 

for farmers to begin using ditches to manage the excess water. By the Late Classic, the 

fields were completely flooded, pushing cultivation efforts further upland. At the same 

time, population increased and there was enhanced soil erosion from growing 

deforestation. Also, calcium carbonate and gypsum were being deposited in the Rio 

Hondo, creating layers of silt over the flood plains. When the water level receded during 

the Terminal Classic and Early Postclassic, farmers again created ditches along the fertile 

flood plains (T. Beach, S. Luzzadder-Beach and N. Dunning, et al. 2009).  

Adapting to a Changing Environment 

The ancient Maya and their predecessors were constantly adapting to changes in 

the climate and their environment during the Holocene. Starting with their most basic 

need, the Maya found ways to mitigate the challenge of having scarce water sources 

within the interior of the Yucatan peninsula. Areas away from the coast are limited in 

lakes and rivers, but the Maya developed additional methods of acquiring water by 

constructing reservoirs and water control features. These systems became larger and more 

complex in the late Classic Period when the population was at its peak. For example, the 
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reservoir at Tikal was able to provide 4.8 liters of water per day to an estimated 45,000 to 

62,000 people. They also were able to keep their reservoirs clean by transforming them 

into wetland biospheres and used plants and algae to maintain its purity (Lucero, Gunn 

and Scarborough 2011).  

One of their methods of developing a stable food supply was through wetland 

agriculture. In the Maya lowlands, two types of wetlands have been utilized and 

transformed during the Holocene: bajos, which often have Maya sites nearby, and the 

perennial wetlands. By studying sediment deposits in the wetlands, it is possible to 

identify two periods of slope instability and wetland aggradations which occurred at the 

beginning of the Holocene and at the beginning of the Maya Classic Period (AD 250 – 

900), respectively. On the coast, wetlands may have been modified by the creation of 

raised fields, another form of wetland agriculture where soil is piled up in order to create 

a raised growing surface. Conversely, the existence of additional sediment on coastal 

fields may have been due to natural aggradations through erosion and gypsum 

precipitation that buried the raised fields (T. Beach, S. Luzzadder-Beach and N. Dunning, 

et al. 2009). Maya agriculture was likely a significant factor in the increased soil erosion 

of the region. Stone terraces and slope management practices allowed this process to be 

controlled in some locations. Although these features appear to be limited in number, it is 

possible that additional terraces could exist but are concealed by dense vegetation 

(Dunning and Beach 1994). Essentially, their manipulation of the landscape became so 

intense that the subsequent erosion and deforestation made significant changes to their 

landscape (Luzzadder-Beach and Beach 2009). The environmental changes that occurred 
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at the end of the Classic period may have arrived too quickly for them to make the 

necessary adjustments to their land use methods, and were left unable to deal with them 

effectively (T. Beach, S. Luzzadder-Beach and R. Terry, et al. 2011). 

Paleoclimate evidence shows that during much of the Preclassic (~ 2,000 BCE – 

250 AD), the climate was wet and the bajos were once shallow lakes, but by 250 AD 

these conditions shifted to become drier. This shift contributed to the demise of the large 

Preclassic cities in the northern region of Guatemala. At 585 AD there was a major dry 

event, marking the boundary between Early and Late Classic. By the end of the late 

Classic, population and intensive land use were at their peaks (Coe 2011). During this 

period there is also evidence of widespread drought and simultaneous abandonment of 

many regional Maya sites. In the centuries following this event, populations became 

smaller and dispersed along waterways (T. Beach, S. Luzzadder-Beach and N. Dunning, 

et al. 2009). One drought lasted from AD 800 to 1050 and was the driest period in 3,000 

years. This period saw the collapse of the Classic period in the southern lowlands, after 

the Maya had degraded their environment to the point where it could no longer support 

high populations (Coe 2011).  

Data and Methods 
As shown in Chapter 2, improvements in the resolution of commercial 

multispectral imagery during recent years have led to the identification of ancient Maya 

wetland agricultural fields along the Rio Hondo and several other rivers in northern 

Belize, providing insight into how field locations were selected. In addition, field 

research and excavations have made it clear that certain environmental conditions would 
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have likely influenced the Mayans in their selection of areas in which to construct 

wetland fields (N. Dunning, T. Beach and P. Farrell, et al. 1998, Dunning, Luzzadder-

Beach, et al. 2002). Like modern farmers, the Maya would have required a nearby water 

source. Additionally, they may have also preferred conditions that were conducive to 

farming such as soil type. Slope and elevation are also important factors to consider, 

especially since wetland agriculture was reliant on the ability to manipulate the water 

table. In addition, this type of research may lead to the identification of previously 

unknown environmental influences. 

The data acquired for this study includes vector and raster datasets that describe 

the environmental characteristics of the northern Belize landscape. These vector datasets 

were acquired from multiple sources including The Electronic Atlas of Ancient Mayan 

Sites, The Biodiversity & Environmental Resource Data System of Belize, Data Basin, 

and Mexico’s National Institute of Statistics and Geography (Witschey and Brown 2010, 

Biodiversity and Environmental Resource Data System of Belize (BERDS) 2012, 

Instituto Nacional de Estadistica y Geografia n.d., Selva Maya Consortium 2016). Many 

of these variables are common among similar archaeological predictive modeling studies 

(slope, elevation and distance to water) since these are some of the most limiting factors 

on where humans can live. Other variables, such as soil type, have been used by Green 

(1973) and Vaughn & Crawford (2009) in their earlier models of ancient Mayan sites and 

so for that reason were included in this analysis. 

The spatial model will be developed from the initial database of identified field 

locations, along with values from the variable datasets as attributes. Attributes will be 
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both qualitative and quantitative. The full list of attributes will include distance to water, 

slope, elevation, soil type, bedrock type, and soil moisture.  

Defining the Study Area 
This research will focus on a defined area within the Maya Lowlands. The 

country boundary of Belize, acquired from the online Biodiversity and Environmental 

Resource Data System of Belize (BERDS), is used to create the western and eastern 

extents (minus the islands and the Belize Barrier Reef) of the study area. The southern 

extent is the foothills of the Maya Mountains. The Northern extent was created using the 

outline of the Rio Hondo watershed, obtained from the World Wildlife Fund’s 

Conservation Science Program and created using Shuttle Radar Topography Mission 

elevation data. Since the Rio Hondo has many ancient Maya wetland agriculture fields 

along its sides, in both Belize and Quintana Roo, Mexico, the watershed was selected as a 

more natural boundary. Finally, the western extent of Belize was followed directly north 

to connect to the Rio Hondo Watershed extent. The full study area boundary is shown in 

the map below, highlighted in yellow. 
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Figure 28: Study area boundary. Map by Tanya Catignani. 
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Logistic Regression 
Logistic Regression will be used to determine which of several environmental 

factors were the most influential in selecting land for wetland agriculture. In general, this 

is a regression method that is used when the dependent variable is binary or categorical, 

and can accommodate variables that are both continuous and or categorical. The 

independent variables used in this study include distance to water, slope, elevation, soil 

type, bedrock type, greenness, brightness temperature, and soil moisture. This type of 

regression analysis uses the logistic function to assign a probability score between 0 and 

1 to each sample point. The probability can then be used to determine which category the 

point likely belongs to. The logistic regression model is shown below where 𝛽0 is the y 

intercept and the following values represent the explanatory variables and coefficients.  

ln (
𝑝

1 − 𝑝
) =  𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ 𝛽𝑚𝑥𝑚  

Equation 1: Logistic regression 

  

In order to solve for probability, the model is rewritten as the following. 

𝑝 =  
𝑒(𝛽0+𝛽1𝑥1+𝛽2𝑥2…𝛽𝑚𝑥𝑚)

1 + 𝑒(𝛽0+𝛽1𝑥1+𝛽2𝑥2…𝛽𝑚𝑥𝑚)
 

Equation 2: Logistic regression probability model 

 

To begin the logistic regression analysis, a sample point dataset of 1042 points, 

half of which occur in areas of known wetland fields and the other were randomly 

selected throughout the study area, was created using the Create Random Points tool in 

ESRI’s ArcMap. The dataset was then overlaid onto spatial layers representing each of 
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the selected variables, and the values at each point location were added to the dataset as 

attributes. The “glm” package in R was used to analyze the final dataset. 

The null hypothesis of this study is that the environmental factors selected do not 

statistically differentiate between field and non-field locations. If the null hypothesis is 

correct, the Maya’s selection of land for wetland agriculture was completely random. The 

alternative hypothesis is that the environmental factors do in fact statistically differentiate 

between field and non-field locations. If the alternative hypothesis is correct, one or more 

of the variables were influential in selecting land for wetland agriculture and may be used 

to find similar areas in northern Belize.  

Ho: Environmental factors did not influence the ancient Maya’s selection of land 

for wetland agriculture in the study area. 

Ha: Environmental factors did influence the ancient Maya’s selection of land for 

wetland agriculture in the study area. 

Variables 
Belize lies in zone 16N of the Universal Transverse Mercator coordinate (UTM 

16N) system. All data layers used for this study were converted to this system, in 

accordance to the World Geodetic System 1984 (WGS84) datum. 

Distance to Water 
Many of the wetland fields identified in the previous study are near a currently 

existing body of water, and so distance to water was very likely an influential factor in 

the selection of land for agriculture. Using the “Near” tool in ArcMap, the distance from 

each sample point to the nearest body of water is calculated by locating the closest 

segment of the line or polygon which represents the water feature, and then measuring a 
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straight perpendicular line from the point to the segment (ESRI 2013). Data layers for 

rivers and waterbodies were acquired from BERDS (2012) and from The National 

Institute of Statistics and Geography (Instituto Nacional de Estadistica y Geografia n.d.). 

The distance to water variable was also used in Green (1973) for the predictive model of 

Maya settlement sites. 

Distance to Sites 
The distance from each sample point to the nearest known Maya site was also 

calculated using the “Near” tool in ArcMap. The site location data was acquired online 

from the “Electronic Atlas of Ancient Maya Sites” which was published by Walter R. T. 

Witschey and Clifford T. Brown (2010). The database contains over 6,000 sites, from 

small villages to large urban centers, spanning the ancient Maya world. Since it is likely 

that ancient Maya farmers would have lived near where they worked, this variable may 

help to identify areas that probably experienced wetland agriculture. 

Slope 
Since wetland fields have often been found in areas where the water table is near 

the ground surface, another likely influential factor is terrain slope or lack thereof. Slope 

was calculated for each sample point, using an ASTER 30-meter spatial resolution raster 

digital elevation model (DEM) and the “Extract Values to Points” tool in ESRI’s 

ArcMap. In the tool’s interface, the setting “Interpolate values at point locations” was 

selected so that surrounding pixel values would be considered. This variable was use by 

Vaughn and Crawford (2009) in their predictive model of Maya settlement sites. The 

ASTER L1B data product was retrieved from the online Data Pool, courtesy of the 

NASA Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth 
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Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota, 

https://lpdaac.usgs.gov/data_access/data_pool. 

Elevation 
Many of the known wetland fields are also located at lower elevation levels, but 

this may or may not have precluded fields from having been created at a variety of 

elevations in northern Belize. A high water table may have been a more significant factor 

to wetland field development than elevation alone. This variable will be included the 

model so that its influence can be objectively compared with the rest. Elevation will also 

be determined based on the ASTER 30-meter DEM and the “Extract Values to Points” 

tool in ArcMap. In the tool’s interface, the setting “Interpolate values at point locations” 

was selected so that surrounding pixel values would be considered (ESRI 2016). 

Soil Type 
The Belize soil dataset was acquired online at databasin.org and was developed 

by the Selva Maya consortium. It is one of several datasets created for the Selva Maya 

Ecoregional Planning effort and created at a scale of 1:250,000. Due to a lack of 

geological data for Belize in 2004, the mapping was supplemented by correlating the data 

with known geological features. Although the authors admit the data is not perfectly 

accurate, this data appears to be the most detailed geospatial soil layer publically 

available for Belize (Selva Maya Consortium 2016). Since many of the fields identified 

straddle the Rio Hondo, soil data for the land adjacent to Belize, in Mexico, was acquired 

from INEGI. It was created in 2002 at a scale of 1:1,000,000 (Instituto Nacional de 

Estadistica y Geografia n.d.). 

https://lpdaac.usgs.gov/data_access/data_pool
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Bedrock Geology 
The Belize bedrock dataset was also acquired online at databasin.org, and 

developed by the Selva Maya consortium for the 2004 Selva Maya Ecoregional Planning 

effort. The consortium developed the dataset by studying the soil geomorphology of 

relief formations in Belize, which allowed for the translation of terrestrial processes at 

work as well as the origin of the soil formation. The data was created at a scale of 

1:250,000 (Selva Maya Consortium 2016). A similar dataset for Mexico was created in 

2002 at a scale of 1:1,000,000 (Instituto Nacional de Estadistica y Geografia n.d.). 

Greenness / NDVI 
Greenness, estimated using the Normalized Difference Vegetation Index (NDVI), 

is a measure of vegetation health. It has been used for a wide variety of remote sensing 

applications since the 1970s. This variable of greenness was found to be significant in 

predictive model by Vaughn and Crawford (2009). Here, it will be measured using two 

Landsat 8 images, acquired in November and December 2014. This index is a simple 

ratio of the difference in values between the near infrared (NIR) band and the red band 

per pixel, and the total of NIR and red values per pixel. The equation for NDVI is shown 

below. 

𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑)
 

Equation 3: Normalized Difference Vegetation Index (NDVI) 

 

The Landsat 8 L1T data product was retrieved from the online Data Pool, 

courtesy of the NASA Land Processes Distributed Active Archive Center (LP DAAC), 
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USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South 

Dakota, https://lpdaac.usgs.gov/data_access/data_pool. 

Brightness Temperature / Ts 
Brightness Temperature was derived from Landsat 8 thermal bands 10 and 11. 

This value is a proxy for land surface temperature and was calculated in the ENVI 

software program for imagery analysis and processing. First, the two thermal bands were 

converted from Digital Numbers (DN) to radiance values using an equation provided by 

USGS and ENVI’s band math tool. 

𝐿𝜆 = 𝑀𝐿𝑄𝑐𝑎𝑙 + 𝐴𝐿 

Equation 4: Digital numbers to radiance 

 

In this equation, 𝐿𝜆 represents top of atmosphere (TOA) spectral radiance in 

Watts/( m2 * srad * μm), 𝑀𝐿 represents the band-specific multiplicative rescaling factor 

found in the image metadata, and 𝐴𝐿 represents the band-specific additive rescaling factor 

also from the metadata, and 𝑄𝑐𝑎𝑙 represents the quantized and calibrated standard product 

pixel values, or DN (USGS 2015). 

The new radiance bands were then made into a 3D cube, wavelengths were 

applied to each band in the header file, and then the cube was processed using ENVI’s 

Thermal Atmospheric Correction module. The module uses an algorithm which plots in-

scene maximum brightness temperatures against the radiance for each wavelength in 

order to fit a line along the highest values. The slope and offset of this line can then be 

used to adjust pixel values for a scene-specific thermal atmospheric correction (Harris 

Geospatial Solutions 2016). 

https://lpdaac.usgs.gov/data_access/data_pool
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Finally, the atmospherically corrected 3D cube was converted to temperature in 

Kelvin. ENVI has three methods for this, the one used in this study is the Emissivity 

Normalization technique. Since thermal radiation is a function of both surface 

temperature and emissivity, the Emissivity Normalization technique assumes a fixed 

value for emissivity and then uses this to calculate temperature for each pixel (Harris 

Geospatial Solutions 2016).  

Soil Moisture / TVDI 
The last variable in this model, soil moisture, was measured using the Temperature-

Vegetation Dryness Index (TVDI). This index combines the NDVI with surface 

temperature (Ts), using only satellite derived data, and has been proven to be a 

straightforward and accurate model of soil moisture. It is ideal for use in regional studies, 

and given that Maya fields were often constructed near bajos, this index should help to 

identify prime agricultural land that may not be in close proximity to a river. The figure 

below explains theoretically where different land surface types exist in Ts/NDVI space, 

and how they relate to soil moisture (Sandholt, Rasmussen and Andersen 2002). 
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Figure 29: Simplified Ts/NDVI space (Sandholt, Rasmussen and Andersen 2002). 

 

 

 

In the next image, each of the values used in the TVDI equation are defined. 

“Tsmin” is the lower edge of the Ts/NDVI space and is also known as the Wet Edge. The 

Wet Edge is typically given the value of 0, but the slope of the line can also be used for 

improved accuracy. “Tsmax” is the hypotenuse of the Ts/NDVI space and is also known 

as the Dry Edge. This value is always derived from the slope of the line (Sandholt, 

Rasmussen and Andersen 2002). 
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Figure 30: TVDI variables explained (Sandholt, Rasmussen and Andersen 2002). 

 

 

 

The Landsat thermal bands 10 and 11, which have a spatial resolution of 100m, 

were used to create the TVDI. For this research, the TDVI algorithm was calculated using 

the slope of the Wet Edge for Tsmin and the slope of the Dry Edge for Tsmax. The 

equation is written as 

𝑇𝑉𝐷𝐼 =  
𝑇𝑠 − (𝑎2 + 𝑏2𝑁𝐷𝑉𝐼)

(𝑎1 + 𝑏1𝑁𝐷𝑉𝐼) − (𝑎2 + 𝑏2𝑁𝐷𝑉𝐼)
 

Equation 5: TVDI equation (Sandholt, Rasmussen and Andersen 2002) 

 

Values from the previously calculated NDVI and Ts data are assigned to each 

sample point, resulting a scatterplot which is referred to as Ts/NDVI space. Since Ts 

tends to be more sensitive to water stress than NDVI, the combination of these 

measurements creates a more accurate depiction of soil moisture. The scatterplot is 

shown below. 
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Figure 31: Ts / NDVI Space 

 

 

 

In order to calculate the slope of the dry edge, the NDVI values were binned (.2-.39, .4-

.59, .6-.79, .8-1) and the highest 10 Ts values for each bin was plotted. The slope of these 

points were used for the dry edge equation. 
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Figure 32: Ts / NDVI Space, Dry Edge 

 

 

 

The wet edge was calculated in the same manner, but instead using the lowest 10 

Ts values per bin. This plot is shown below. 
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Figure 33: Ts / NDVI Space, Wet Edge 

 

 

 

The final TVDI value for each sample point was calculated in Excel.  

Results 
The dataset was imported into R for the logistic regression analysis. After creating 

a separate binary variable for each soil and bedrock type, there were 17 independent 

variables in total. They are listed below with a description of their values. 

1) NEAR_Water – The distance in meters from a sample point to the nearest body of 

water. 

2) NEAR_Site – The distance in meters from a sample point to the nearest known 

Maya site. 

3) Slope_deg – The land surface slope in degrees. 

4) Elev_m – Elevation in meters. 

5) NDVI – The greenness index which ranges from 0 to 1. 
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6) TVDI – The soil moisture index which ranges from 0 to 1. 

7) Ts – Brightness temperature, or surface temperature, in degrees Kelvin. 

8) Arenosol – The presence or absence of arenosol soil type (1 or 0). 

9) Cambisol – The presence or absence of cambisol soil type (1 or 0). 

10) Fluvisol – The presence or absence of fluvisol soil type (1 or 0). 

11)  Gleysol – The presence or absence of gleysol soil type (1 or 0). 

12)  Leptosol – The presence or absence of leptosol soil type (1 or 0). 

13)  Vertisol – The presence or absence of vertisol soil type (1 or 0). 

14)  Volcanic – The presence or absence of volcanic bedrock (1 or 0). 

15)  Sedimentary – The presence or absence of sedimentary bedrock (1 or 0). 

16)  Caliza – The presence or absence of caliza (limestone) bedrock (1 or 0). 

17)  Alluvial – The presence or absence of alluvial bedrock (1 or 0). 

The “glm” package in R was used to create a logistic model and explore the 

significance of all variables. The 17 independent variables were used to predict the 

dependent variable, MayaField, which indicates the presence or absence of a known 

ancient Maya wetland field. The following command was run to produce the initial 

results. 

> log_model <-glm(MayaField ~ 
NEAR_Water+Arenosol+Cambisol+Fluvisol+Gleysol+Leptosol+Vertisol+Alluvia
l+Caliza+Volcanic+Sedimentary+Elev_m+Slope_deg+NDVI+TVDI+Ts+NEAR_Site, 
family=binomial(logit), data=model_data) 

The results provided a table of coefficients and diagnostic values that provide 

insight to the quality of the initial model, as well as an error message that indicated there 

was separation in the variables. Separation occurs when one or multiple variables predicts 
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the dependent variable perfectly, for a part or all of the data, causing the model to fail 

(Zumel and Mount 2014). 

> summary(log_model) 

Call: 

glm(formula = MayaField ~ NEAR_Water + Arenosol + Cambisol +  

 Fluvisol + Gleysol + Leptosol + Vertisol + Alluvial + Caliza +  

 Volcanic + Sedimentary + Elev_m + Slope_deg + NDVI + TVDI +  

 Ts + NEAR_Site, family = binomial(logit), data = model_data) 

Deviance Residuals:  

 Min 1Q Median 3Q Max  

-2.4937 -0.4614 0.1006 0.5418 3.7773  

Coefficients: (2 not defined because of singularities) 

 Estimate Std. Error z value Pr(>|z|)  

(Intercept) -1.934e+02 6.490e+02 -0.298 0.76565  

NEAR_Water -2.544e-04 6.298e-05 -4.039 5.37e-05 *** 

Arenosol -3.805e-01 1.219e+03 0.000 0.99975  

Cambisol 2.049e+01 3.455e+03 0.006 0.99527  

Fluvisol 2.673e-01 1.815e+03 0.000 0.99988  

Gleysol 1.523e+01 6.467e+02 0.024 0.98121  

Leptosol 1.509e+01 6.467e+02 0.023 0.98139  

Vertisol NA NA NA NA  

Alluvial -2.321e+00 4.174e-01 -5.561 2.68e-08 *** 

Caliza -7.918e-01 3.419e-01 -2.316 0.02057 *  

Volcanic -1.389e+01 2.400e+03 -0.006 0.99538  

Sedimentary NA NA NA NA  

Elev_m -5.501e-02 6.869e-03 -8.008 1.17e-15 *** 

Slope_deg 3.159e-03 3.344e-02 0.094 0.92474  

NDVI 2.993e+00 1.049e+00 2.853 0.00433 **  

TVDI -5.373e+00 9.453e-01 -5.683 1.32e-08 *** 

Ts 6.178e-01 1.861e-01 3.320 0.00090 *** 

NEAR_Site -1.360e-04 2.888e-05 -4.709 2.49e-06 *** 

--- 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for binomial family taken to be 1) 

 Null deviance: 1444.52 on 1041 degrees of freedom 
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Residual deviance: 741.76 on 1026 degrees of freedom 

AIC: 773.76 

Number of Fisher Scoring iterations: 15 

The output provided a table of coefficients along with standard error, z value, and 

p-value or significance. P-values that are less than 0.5 are considered significant (Zumel 

and Mount 2014). Significant and non-significant variables are also indicated by the 

presence or absence of “*”in the far right column. The coefficients for two variables, 

vertisol and volcanic, were not generated since their presence within the dataset was too 

low. Also, the number of Fisher Scoring iterations was 15 which is too high, suggesting 

that the model is not valid. Ideally, this value should not be higher than 8 (Zumel and 

Mount 2014). 

The Akaike Information Criterion (AIC) is a measure of model quality and is 

comparable to the r-squared used in linear regression. This value can be used to compare 

the quality of two models (Zumel and Mount 2014). 

The model was then run a second time, after removing all non-significant 

variables. Although the AIC dropped to 768.87 and the Fisher Scoring iterations dropped 

to 7, the model still generated and error warning message indicating separation within the 

data. It was suspected that the cause of the error was the relationship between NDVI, Ts, 

and TVDI, since the first two were used to create the later. A scatterplot matrix was 

created to explore the relationships between variables. 
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Figure 34: Scatterplot of all significant variables from logistic regression. 

 

 

 

The scatter plot matrix shows that the relationships between NDVI, Ts, and TVDI 

is high and so the first two were removed from the list of variables. In addition, alluvial 

and caliza were very highly correlated and so alluvial was also removed. The final model 

paired down the original 17 variables to five: NEAR_Water, NEAR_Site, Elev_m, TVDI, 

and Caliza. The results are shown below. 

> summary(log_model) 

Call: 

glm(formula = MayaField ~ NEAR_Water + NEAR_Site + Elev_m + TVDI +  

 Caliza, family = binomial(logit), data = model_data) 
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Deviance Residuals:  

 Min 1Q Median 3Q Max  

-3.0333 -0.5457 0.1059 0.5968 3.7221  

Coefficients: 

 Estimate Std. Error z value Pr(>|z|)  

(Intercept) 3.315e+00 3.248e-01 10.206 < 2e-16 *** 

NEAR_Water -1.616e-04 5.876e-05 -2.750 0.00597 **  

NEAR_Site -1.534e-04 2.650e-05 -5.791 7.02e-09 *** 

Elev_m -5.995e-02 6.143e-03 -9.758 < 2e-16 *** 

TVDI -2.777e+00 3.704e-01 -7.499 6.44e-14 *** 

Caliza 7.967e-01 2.012e-01 3.959 7.53e-05 *** 

--- 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for binomial family taken to be 1) 

 Null deviance: 1444.52 on 1041 degrees of freedom 

Residual deviance: 802.07 on 1036 degrees of freedom 

AIC: 814.07 

Number of Fisher Scoring iterations: 7 

The final model, consisting of five variables, shows a slightly higher AIC value 

than the original. However, all errors and diagnostic indicators have been addressed and 

the final result can be presumed to be valid. A scatter plot matrix of the significant 

variables is shown below. 
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Figure 35: Scatterplot of the final five variables used in the logistic regression analysis. 

 

 

 

The final list of variables and their coefficients were entered into the probability 

equation provided in the previous section, to create a probability map for the study area. 

To do this, each of the variables, except for elevation, needed to be calculated as a 

continuous data layer. First, both the “NEAR_Water” and “NEAR_Site” layers were 

generated using Euclidean Distance tool, resulting in two raster layers where each pixel 

contained the distance to the nearest water feature or site respectively. The TVDI layer 

was calculated by using the Ts and NDVI layers, along with the Wet Edge and Dry Edge 

line equations in TVDI equation. The Caliza data was already in shapefile format so the 

Belize and Mexico layers were merged and then converted to raster where the presence of 
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Caliza contained cell values of 1 and absene of Caliza had a value of 0. The final 

calculation of the probability layer was performed using ArcMap’s raster calculator. The 

final output is shown below. 
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Figure 36: Probability map of ancient Maya wetland fields in northern Belize. 
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The map depicts the probability of an ancient Maya wetland fields existing in any 

part of the study area, and ranges from 0 to 100%. Appendix A contains a series of 

gridded maps that provide the results of the logistic regression analysis in greater detail. 

The visually identified wetland fields are also included in these maps so that their 

locations can be compared to the model’s ability to predict additional field locations. The 

area within the top ranges of probability were calculated at 5% increments. A cloud mask 

was created from the original Landsat-8 images, by conducting an unsupervised 

classification in ArcMap, so that these areas could be removed from this analysis. The 

total study area consists of 3,691,132.05 acres, or 14,937.5 km2, disregarding places with 

cloud cover. 

 

 

 
Table 2: Acreage by probability range and running total. 

Total Area Per Probability Range  Total Area Per Range - Running Total 

Probability Acres Km2  Probability Acres Km2  

95 - 100%  9,270.91   37.52   95 - 100%  9,270.91   37.52  

90 - 95%  16,583.26   67.11   90 - 100%  25,854.17   104.63  

85 - 90%  19,429.43   78.63   85 - 100%  45,283.61   183.26  

80 - 85%  25,084.18   101.51   80 - 100%  70,367.79   284.77  

75 - 80%  32,462.11   131.37   75 - 100%  102,829.90   416.14  

70 - 75%  38,498.43   155.80   70 - 100%  141,328.33   571.94  

65 - 70%  44,662.05   180.74   65 - 100%  185,990.39   752.68  

60 - 75%  52,915.54   214.14   60 - 100%  238,905.93   966.82  

0 - 60%  3,452,226.12   13,970.68   0 - 100%  3,691,132.05   14,937.50  
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The predictive model was tested using five-meter resolution elevation data, 

derived from SAR imagery, at two locations. The first location, La Union, contains a 

previously identified field; the second location, Rio Bravo Conservation Area, has a high 

likelihood of containing fields, as suggested by the model. A preliminary visual 

inspection of the elevation data was conducted for both locations. At La Union, fields 

could not be visually identified, however, at Rio Bravo Conservation Area the changes in 

elevation align with characteristic field patterns found through multispectral image 

analysis, and support the results of the predictive model. The fields at La Union are likely 

too shallow to be visually identified using this data. In Figure 37 below, the La Union and 

Rio Bravo Conservation Areas are shown in the top left and right Google Earth screen 

captures, respectively. The bottom two scenes show the corresponding elevation data as 

shown in ArcGIS. 
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Figure 37: Google Earth image of La Union at top left; Google Earth image of Rio Bravo at top right; Original 

elevation data for La Untion at bottom left; Original elevation data for Rio Bravo at bottom right 

 

 

 

Edge detection algorithms were also applied to the SAR-based elevation data, in 

order to determine if any linear field patterns could be extracted beyond those that were 

visually identifiable. These algorithms identify significant changes in pixel values to 

highlight edges within an image, providing information on the strength of an edge, their 

orientation, and their scale. Edges detection algorithms can be divided into two main 

groups: those that do not use prior knowledge about a scene and those that do. The 

former category is flexible and can be used on any image since they are based solely on 

neighboring pixels. They are appropriate for general purpose edge detection. The latter 

category can only be used in precise instances and are used when images repeatedly 

include the same objects (Jain, Kasturi and Schunck 1995).  
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Edge detection algorithms essentially aim to emphasize real shapes within an 

image and at the same time suppress or remove false edges. This is a challenging task 

since false edges are often the result of general noise within an image or can be created 

during the image acquisition process. Conversely, algorithms may not always recognize 

true edges, which are then dropped from the final output (Jain, Kasturi and Schunck 

1995).  

The ENVI image analysis software program contains several edge detection 

algorithms and more basic smoothing filters (Harris Geospatial Solutions 2017). Three 

were selected for this research including the Sobel, Roberts, and Laplacian algorithms. 

Image 38 below shows the results of these algorithms for the La Union elevation dataset. 

 

Figure 38: Original elevation data for La Union at top left; Sobel top right; Roberts bottom left; Laplacian 

bottom right 
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The edge detection algorithms did not extract any additional information about 

the field patterns beyond that provided by multispectral image analysis. This may be due 

to the fact that the ancient fields have been plowed over by modern ones, or that the range 

of elevation in the scene overpowers them and discarded as noise. These fields may be 

detectable using even higher resolution data such as lidar but for a large scale study it 

may not be cost effective or feasible.  

Image 39 below shows the results of edge detection analysis at the Rio Bravo 

Conservation Area. The original data shows that elevation changes exist which align with 

the field patterns identified through multispectral image analysis. The edge detection 

algorithms aid in understanding the shape of these fields but do not detect any additional 

features. 

 

Figure 39: Original elevation data for Rio Bravo Conservation Area at top left; Sobel top right; Roberts bottom 

left; Laplacian bottom right 
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Discussion 
Based on the analysis performed in Chapter 2, over 16,000 acres of ancient Maya 

wetland agricultural fields were identified. The probability analysis shows that there is a 

much higher amount of land within the study area that could have supported this type of 

agriculture. By itself, the top 10% range of the probability layer contains nearly 10,000 

more acres than the discovery made through visual imagery analysis. At the 60% 

probability level there are over a quarter million acres, or nearly a thousand km2, of 

suitable land. Many of the visually identified fields exist within the areas of high 

probability and several exist within the areas of moderate probability, suggesting that this 

model may even be conservative in its estimates. There is one area of wetland fields, 

above the border with Mexico, which exists in an area of low probability. This may be 

due to a difference in data quality between Belize and Mexico. Since river and waterbody 

layers for each country were made by different organizations (INEGI and BERDS) who 

likely have different data standards, it is possible that some features are missing. A map 

book of visually identified wetland fields and the probability layer was created so that the 

final output could be examined in greater detail.  

Conclusions 
This analysis provides a regional estimate of the extent of ancient Maya wetland 

field in northern Belize. The findings can be used as a baseline for future spatial 

statistical analysis of these features. The variables incorporated here were nearly all 

environmental, aside for the distance to known sites. Although these variables likely 

played an important factor in the selection of land for wetland agriculture, there are likely 
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many more socioeconomic variables that were influential but are outside the scope of this 

paper.  

There are several ways the analysis could be improved for future research. First, 

the data used to calculate distance to sites contained information about the importance of 

each site, ranging from small villages to large cities. Instead of calculating distance to 

site, it may have been possible to create a population density, weighted by the size of 

each site. However, since this may have led to erroneous assumptions about population, it 

was safer to treat each point equally and calculate a simple distance instead. Once more 

detailed and accurate data regarding population estimates becomes available, this may 

improve predictive modelling attempts. In addition, although the soil and bedrock 

datasets used here were more current than those used by other predictive models in this 

region, they are still lacking in detail and are inconsistent across international boundaries. 

It would have been possible to use a worldwide data source such as the ISRIC World Soil 

Information Service (ISRIC World Soil Information Service 2016) which would have 

ensured that standards across boundaries are consistent. However, although this dataset is 

more consistent, it was created at a much lower spatial resolution. This paper 

acknowledges the differences in data quality between Belize and Mexico and presumes 

that the additional spatial resolution of the country-based datasets outweighs the 

standardization of the low-resolution worldwide datasets.  

This study is the first attempt to use geoinformation science in a regional 

predictive model of ancient Maya wetland agricultural fields. It considers a range of 

environmental variables used by previous research and included new raster-based 
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variables. The final model is not the end goal for understanding the distribution of 

wetland fields but rather an opportunity to critically examine the relationships between 

variables that influenced the ancient Maya. Predictive models such as these should be 

continually compared, reconsidered, and improved upon to provide real value. 
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CHAPTER FOUR – REFLECTANCE SPECTROSCOPY OF WETLAND FIELD 

SOIL PHOSPHOROUS 

Introduction 
The analysis of sediments and soils helps to build a holistic understanding of past 

cultures and their environment. For example, human behavior such as agricultural 

activity will impact soil content by raising or lowering the amount of nutrients including 

phosphorus, nitrogen, potassium, and magnesium. Soils are produced when sediments are 

formed from the parent rock, and subsequently impacted by organisms, topography, 

climate and time. As they develop, horizontal layers, or stratigraphy, are formed which 

contain varying levels of biologic material and weathering. Eventually, a full soil profile 

develops. Different climates and ecosystems throughout the world tend to produce soil 

profiles that are unique to their environment. Both environmental and human induced 

events impact the development of soils, often resulting in distinct markings within the 

soil profile that may last for millennia (Rapp and Hill 2006). Reflectance spectroscopy is 

a common tool for the analysis of soils but has only been used to a limited extent to 

understand human impacts. This study is one of the first to apply reflectance 

spectroscopy specifically to the impact of agriculture on soil phosphorus (P). For this 

research, a FieldSpec 4 was used to collect spectral measurements of soil samples in 

northern Belize in July, 2014, from which P values would be predicted. This device 

measures spectra in the range of 350nm to 2500nm. A parallel analysis was conducted in 

2015 on soil samples collected in northeast Ohio, using a FieldSpec 4 at the USGS 

headquarters office in Reston, Virginia. 
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Literature Review 
 

Soil History of Northern Belize 
In Mesoamerica, the transition from the Pleistocene to the Holocene is marked by 

a change in climate, hydrology, and vegetation, which impacted the soils. Human-

induced modifications of the soil began with the hunter-gatherer populations that 

inhabited this region during the Early Hunter Phase (11,000 to 7,000 years ago), by 

participating in early domestication of crops. A more significant impact began to occur 

during the Archaic Period (7,000 to 4,000 years ago) when large scale clearing and more 

intense agriculture began (Piperno and Pearsall 1998). Eventually, farming, land 

clearance, and specifically wetland agriculture in northern Belize, led to the creation of 

the Maya Clays in the lowlands between roughly 3,000 and 400 years ago (Curtis, et al. 

1998). 

The Yucatan Peninsula consist of five main soil types: entisols and inceptisols, 

rendolls, alfisols, histosols, and vertizols. The first three of these types can be described 

as young, fertile, thin, clayey soils that can be up to 50 cm in depth. They are formed 

from organic matter and high amounts of carbonates and silicate minerals, supplied by 

the local limestone bedrock. Alfisols are older, red, iron-rich, less fertile, and generally 

thin, clayey soils. They also form from the limestone bedrock but organic matter 

decomposes more in these soils (Beach, Luzzadder-Beach and Dunning 2006). 

In northern Belize, along the Rio Hondo where a large number of wetland fields 

have been discovered, soils are predominantly vertisols (Beach, Dunning, et al. 2003, 

Dunning, Jones, et al. 2003). Typically found between 45° north and 45° south latitude, 
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vertisols are dark clays which are known to shrink and swell in response to seasonal 

fluctuations in moisture. Over time, the change in moisture, which causes constant 

expanding and contracting, leads to large cracks forming in the soil profile. However, 

vertisols are excellent for agriculture due to their ability to retain large amounts of water. 

(Beach, Dunning, et al. 2003).  

The vertisols of northern Belize, on which the Maya once farmed, now comprise a 

paleosol that is buried under a layer of sediment. The term paleosol is used to describe an 

ancient living surface and generally exist in two different states: on the surface of the 

landscape or buried within stratigraphic layers. Serving as indicator of human occupation, 

buried paleosols often appear as dark, well developed soil horizons between less-well 

developed stratigraphic layers. The dark color, resulting from an increase in organic 

material, may also indicate human activity such as trash pits and fire hearths. They tend 

to be wetter than soil layers above or below, since they are usually below the water table. 

They also tend to be more yellow in color, resulting from reduction in oxidation, a 

process known as gleying. They also often have poor horizonation due to their expanding 

and contracting nature (Beach, Dunning, et al. 2003). In Belize, insoluble minerals have 

accumulated in the soil which further classifies them as calcisols. Calcisols have a 

pronounced calcic horizon that contains calcretes and caliche and are commonly found in 

soils along the Rio Hondo (Beach, Dunning, et al. 2003, Rapp and Hill 2006).  

The Rio Hondo, which starts in the highlands of Guatemala and Mexico then 

flows to the Caribbean Sea, forms the border between Belize and Mexico and contains a 

bifurcation at its middle known as Albion Island. The length of the river’s banks are 
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marked by sinkhole lakes and wetlands. Past excavation of the Rio Hondo’s stratigraphy 

revealed a complex history. It is constructed of a base made of gleyed clay, overlaid by 

peat and silt bands that alternate between dark and light colors. Above this is a layer of 

clay that is rich in calcium carbonate and Maya artifacts. The organic middle of the soil 

profile is a remnant of Maya agricultural activity. Nearby canal systems are a snapshot of 

the most recent Maya farming since the canals were regularly maintained and excess soil 

was removed. Therefore it is difficult to determine when they were originally constructed 

(Stein 1990).  

Although it has been presumed that the Maya practice of swidden agriculture 

adequately allowed for soil nutrients to be restored, it has been a surprise to some that 

there has been no evidence of an organic fertilizer. One theory is that they utilized algae, 

also known as periphyton, as a fertilizer. Periphyton is abundant in the wetlands of the 

region and is an important nutrient source. Since phosphorus levels in calcaric soils are 

often low, this would provide the needed nutrients for wetland farming (Beach, Dunning, 

et al. 2003).  

Phosphorus in the Environment 
Phosphorus (P) is essential for plant growth and is one of the main ingredients in 

fertilizers. P is used by the plant to transfer energy and is constantly being removed from 

the soil when land is used for agriculture. It is not toxic by itself, but it can have a 

negative effect on water quality. Soils often retain most P but some can be released into 

water. Since it is found at higher levels in finer sediments, this suggests erosion will 



  

93 

 

move phosphorus out of the soil, potentially polluting nearby water bodies (Busman, et 

al. 2002).  

P, as found in nature, is often part of a chemical compound. Soil can contain a 

number of phosphorus compounds, or phosphates, which together make up the total 

amount of inorganic phosphorus. P cycles through the environment much like other 

mineral nutrients. It is absorbed by plant roots, transferred to animals by consumption, 

and then returned back to the soil as waste. It exists in the soil as several different forms. 

The term “total phosphorus” refers to all forms collectively. Solution P is the small 

amount that is used by the plants. Active P refers to that which is returned or added to the 

soil. Active P is a much larger percentage of the total P and its role is to replenish the 

solution P as it is removed by plants. Fixed P is the result of microorganisms breaking 

down organic P and becomes mineralized. This form of P is often crystalline and 

undergoes minimal conversion back to organic forms. Therefore it adds little value to the 

soil’s nutrient levels (Busman, et al. 2002).  

 

 

 

 

Figure 40: Phosphorus cycle (Busman, et al. 2002) 
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As P travels through this cycle, it exists as either organic (Porg) or inorganic 

(Pin), depending on where it is in the cycle. This is significant to archaeologists because 

the amounts of these two categories of P can provide clues to the type and intensity of 

human activity that may have occurred in a specific location. Humans add P to the soil 

through the disposal of garbage and waste, burials, and fertilizer. Subsequently, if 

fertilizer is not continuously added to soil then agricultural activity will result in a 

depletion of P. When it is first deposited in the soil, P exists as phosphate which is stable 

and mostly immobile once it has been absorbed in the soil. It is also less susceptible to 

leaching than other chemical elements used as indicators of human activity, so for this 

reason it is one of the most used by archaeologists (Holiday and Gartner 2007).  

Analysis of Phosphorous in Archaeology 
Anthropogenic biogeochemistry can be mapped out to create a three-dimensional picture 

that identifies human-induced soil features such as graves, trash pits, and even 

agricultural areas. One way this is done is through soil coring which allows for the 

measurement of soil nutrients at various depths. A number of soil nutrients are critical for 

plant life, such as nitrogen, phosphorus, potassium, calcium, magnesium, and sulfur. 

When humans remove vegetation, the nutrient level in soil decreases. Nutrients are added 

to the soil where humans discard food and waste. P is especially interesting to 

archaeologists since it doesn’t fluctuate in soil as much as much as other nutrients, aside 

from soil erosion due to mass wasting and removal, and is a strong indicator of human 

activity (Rapp and Hill 2006). 
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Soil P is categorized by archaeologists into three types or physical states: easily 

extractable (associated with agriculture), tightly bound (associated with human activity), 

and natural geologic phosphate. Although not always a straightforward interpretation, the 

analysis of P in a soil is a valuable tool that continues to be improved by archaeologists 

(Rapp and Hill 2006). Soil P analysis in archaeology can be grouped into three main 

categories: prospection to locate or delineate sites, the delineation of specific activity 

areas, and to examine past agricultural practices.  

There are several methods for measuring phosphorus in agricultural soils, one of 

the most acceptable is to extract the soluble phosphorus and then measure it 

quantitatively. The Mehlich-III test employs this methodology and has been used in 

recent years by archaeologists in Mesoamerica, as well as earlier versions (Mehlich and 

Mehlich-II) (Terry, et al. 2000). However, while the Mehlich-III method can be 

conducted fairly easily and inexpensively in the field, a faster and potentially less costly 

method is reflectance spectroscopy. Using a hand-held spectrometer, such as the 

FieldSpec 4, instant results may be provided and unlimited tests conducted. The results of 

this testing may also produce more accurate data as well, considering the reduction of 

steps and processing required in comparison to chemical tests (Bogrekci and Lee 2005). 

Reflectance Spectroscopy and Phosphorous 
Reflectance Spectroscopy is the study of electromagnetic radiation and its 

interaction with matter. It is a powerful scientific tool for determining material 

composition. It may be applied in the field with a portable device as well as through the 

use of remotely sensed imagery, specifically hyperspectral, which contains hundreds of 
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spectral bands throughout the electromagnetic spectrum. Geologic material (e.g., rocks 

and sediments) often possesses unique chemical compositions that produce equally 

unique spectral signatures. Hyperspectral imaging is therefore an ideal tool for geologic 

mapping, especially in areas with little or no vegetation. In regions such as northern 

Belize, where dense vegetation prohibits the use of hyperspectral imaging for the analysis 

of soil, reflectance spectroscopy can still be conducted by collecting spectral 

measurements in the field using a hand-held spectrometer (Eismann 2012).  

The electro-optical (EO) region of the electromagnetic spectrum ranges from 400 

nm to 14,000 nm (0.4 µm to 14µm) wavelength. The two main sources of energy for 

passive remote sensing are reflected sunlight and thermal emissions. The propagation of 

electromagnetic radiation, or radiative transfer, from material in an image scene to the 

sensor is affected by a number of factors such as other objects in the scene, and the 

atmosphere. The spectral radiance is defined in Equation 6 (Eismann 2012). 

 

Equation 6: Spectral radiance as measured by an electro-optical satellite sensor 

𝐿𝑝(𝜆) =  
𝜏𝑎(𝜆)𝜌(𝜆)

𝜋
 [𝐸𝑠(𝜆) + 𝐸𝑑(𝜆)] + 𝐿𝑎(𝜆) 

 

A benefit of the use of a hand-held spectrometer is that a number of these factors may be 

removed or reduced if there are minimal environmental influences, such as in a lab 

environment, allowing for a more accurate spectral measurement (Clark, et al. 2003). 

In the last two decades, advances in reflectance spectroscopy have allowed for 

improved analysis of phosphates in soil. During this time, near- and mid-infrared 
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wavelengths specifically have proven to be successful in detecting soil compounds, 

including phosphates. Bogrekci and Lee (2005) report on a study to detect four different 

phosphates from soil samples taken from the Lake Okeechobee basin in Florida. The 

samples were leached using HCl and de-ionized water to remove any existing 

phosphorus. Different amounts of the phosphate compounds were then added: CaPO4 

(calcium phosphate), AlPO4 (aluminum phosphate), FePO42H2O (iron-III phosphate 

dihydrate, and Mg(PO4)2H2O (magnesium phosphate dihydrate). After seven days of 

incubation, spectral measurements were taken of the samples. The samples were then 

oven-dried and sent to a lab for chemical analysis of total phosphorus concentrations. The 

results showed that absorbance spectra for the four compounds each had distinct 

absorbance bands in the near-infrared and ultraviolet regions of the electromagnetic 

spectrum. The spectral measurements were also found to be positively correlated with the 

results of chemical tests through the use of a partial least squares statistical analysis test 

(Bogrekci and Lee 2005). 

Methodology 
This study has two main research goals – and thus two hypotheses to test. The 

first is to determine if there is a significant difference in P levels between ancient wetland 

agricultural fields and areas where this type of agriculture likely did not exist. The second 

goal is to determine if this difference can be detected using reflectance spectroscopy. If 

both null hypotheses are rejected, this will indicate that reflectance spectroscopy has the 

potential to be a valuable tool for additional research on ancient wetland agriculture – in 

the field and in the laboratory. 
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Hypothesis #1: 

Ho: There is no significant difference in P between ancient wetland fields and non-fields. 

Ha: There is a significant difference in P between ancient wetland fields and non-fields. 

 

Hypothesis #2: 

Ho: Reflectance spectroscopy cannot detect P in soil samples. 

Ha: Reflectance spectroscopy can detect P in soil samples. 

Soil samples were collected in northern Belize in 2014, and also from three 

modern farms in northeast Ohio in 2014. Spectral measurements were then collected 

from each sample prior to undergoing the Mehlich-III chemical test. Both the Belize and 

Ohio samples underwent the same analytical process, the main difference being that the 

Ohio samples were collected and spectrally measured in a more controlled environment. 

Finally, the spectra and P levels were analyzed using partial least squares regression 

(PLSR) to answer the research questions.  

Soil Sampling Methods in Ohio 
Forty-five soil samples were collected from three modern agricultural fields in 

Trumbull County, Ohio, and were used as a control sample for the Belize soil analysis. 

Each field has been managed differently, growing different crops and using different 

fertilizers, and was expected to have phosphorus levels that were significantly different. 

The three locations are annotated on the map below.  
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Figure 41: Soil sample field locations in Trumbull County, Ohio. 

 

 

 

The Catignani farm was forested until the early 1970s when it was cleared and the 

top soil removed. It was left fallow until the mid-1990s when it began being used as an 

agricultural field to grow soy beans, corn, and hay. For the last seven to ten years it has 

again laid fallow. During its use, the agricultural fields were fertilized using manure only. 

The property contains a number of land types (agriculture, forest, residential) and so soil 

samples were collected from the fields and surrounding areas using a stratified random 

sampling method, to ensure representation from each type. Stratified random sampling 
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divides samples among subsets, or in this case land types, and sample locations are 

selected randomly within each subset. For the Catignani farm samples, eight were taken 

from the agricultural land, another eight were taken from the residential area, and four 

were taken from just outside the agricultural land along the pond and in the forested area. 

Another version of this method is known as stratified systematic sampling which also 

divides samples among subsets, but then samples are selected along a grid or transect. 

Stratified sampling can generate the most accurate results if accurate subset sizes are 

known but if the sizes are incorrect then this can lead to unintentionally biased results 

(Zhang 2007). The two types of stratified sampling are shown below in Figure 42. 

 

 

 

 
Figure 42: Stratified random and stratified systematic sampling methods. 
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Figure 43: Soil sample locations at Catignani field and residential property. 

 

 

 

The Burr farm is currently used to each year to grow hay for livestock. The land is 

fertilized using manure and chemical fertilizer. The property is mostly made up of 

agricultural land, and soil samples were collected from the fields and surrounding areas 

using a random point sampling method. To create a random line, one might produce pairs 

of random numbers and sample the line that connects the pair of locations.  To create a 

random area, for example, the random selection point might delineate the bottom-left 

corner of a square of pre-determined size. The benefits of random sampling are that it is 

unbiased and can be used to sample populations of any size. The disadvantages are that if 

the population is too large it may produce a poor representation of the total population 

(Zhang 2007). An illustration of the three types of random sampling is show below in 

Figure 44. 
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Figure 44: Random point, random line, and random area sampling methods 

 

 

 

 
Figure 45: Soil sample locations at the Burr farm. 
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The Dominic farm is currently used to each year to grow corn. This farm has been 

completely organic for over 40 years and has only been fertilized using manure. Since 

this property was solely agricultural land and not mixed-use, soil samples were collected 

here using a systematic line sampling method. Systematic sampling is done by selecting 

locations that are evenly distributed such as on a grid or transect. This method can also be 

broken down into point, line, and area sampling. Systematic point sampling is done by 

producing a grid over the study area, then taking samples at each intersection of grid 

lines. Systematic line sampling uses the same principle but is done using a single straight 

line. Systematic area sampling is simply using either one of the previous techniques but 

sampling an entire area at regular intervals rather than points. The benefits of systematic 

sampling are that it provides good coverage of the entire population or study area. The 

disadvantage is that not all locations in a study area have an equal chance of being 

sampled since the regular interval will inherently skip areas and so this method is subject 

to the resolution of the grid or transect (Zhang 2007). An illustration of systematic 

sampling is show below in Figure 46. 

 

 

 

 
Figure 46: Systematic point, systematic line, and systematic area sampling methods 
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Figure 47: Soil sample locations at Dominic fields. 

 

 

 

Spectral Analysis of Ohio Soil Samples 
In April of 2015, the 45 soil samples from Ohio (collected during the previous 

year) were air-dried for three days and then brought to the soil spectroscopy lab at the US 

Geological Survey (USGS) in Reston, VA. This lab does not have natural lighting or 

windows, allowing lighting, temperature, humidity, and airflow to be constant, which 

provided a very controlled atmosphere. The samples were then passed through using a 2 

mm sieve. Five spectral measurements were taken for each sample, rotating the sample 
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plate prior to each consecutive measurement. The five measurements were later averaged 

to produce more accurate values.  

 

 

 

 

Figure 48: Work space at the USGS Soil Spectroscopy lab in Reston, VA 

 

 

 

Soil Sampling Methods in Belize 
The soil samples used for the Belize analysis were taken from Ulmer (2015). The 

samples were collected from five areas in northern Belize which are depicted in the map 

below: Akab Muclil, Crocodile Lake, Crystal Creek, Laguna Verde, and RB73 (Rio 
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Bravo). The sampling strategy used in Belize can be described as stratified random 

sampling since a variety of environments is represented, split between both 

anthropogenic and natural soils. They were also chemically tested using the Mehlich-II 

which provides a range of soil nutrients and properties, including total phosphorus values, 

which can be found in Appendix C (Ulmer 2015). 

 

 

 

 
Figure 49: Soil sample field locations in northern Belize. 
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Akab Muclil – These samples were collected from a wetland area nearby the Maya site 

of Akab Muclil. Chemical analysis indicated that some samples contained evidence of 

maize cultivation (Ulmer 2015). 

Crocodile Lake – This area is located in a canyon and the immediate area was not likely 

inhabited by the ancient Maya. However, surrounding areas may have been farmed. The 

samples collected in this area showed evidence of maize cultivation but it is unknown if 

they may have been contaminated by sediment from other areas (Ulmer 2015). 

Crystal Creek – Samples from this area were collected at the toe slope of the Rio Bravo 

Escarpment in a valley that is heavily flooded during the rainy season. Some of the 

samples collected here showed weak evidence of maize cultivation while others showed 

very strong evidence (Ulmer 2015). 

Laguna Verde – This lake is located at the toe slope of the Rio Bravo Escarpment. The 

toe slope contains no evidence of ancient farming. However, soils collected at the back 

slope of the escarpment do contain evidence of maize cultivation, likely through terracing 

(Ulmer 2015). 

RB73 – This is a Maya site located near La Milpa, one of the largest Maya sites in 

Belize. Nearly all of the samples collected here showed no evidence of maize cultivation 

(Ulmer 2015). 

Spectral Analysis of Belize Soil Samples 
The Belize soil samples were analyzed in the Maya Research Program’s 

archaeology lab, in July of 2014. The samples were not air-dried or sieved before taking 

spectral measurements and so the data reflects their natural state. This lab has both 
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natural and synthetic lighting which creates fluctuations in light, temperature, humidity, 

and airflow. Although the atmosphere was more controlled than the outdoors, there were 

significant challenges while using the FieldSpec 4 due to these fluctuations. Compared to 

working at the USGS, there was significant decrease in the time it took the instrument’s 

white reference measurement to become degraded. The instrument was also much more 

sensitive to changes in light. In addition, the natural state of the samples, which contained 

small roots and rock fragments, likely altered the true reflectance spectra of the samples.  
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Figure 50: Operating the Field Spec 4 in the Maya Research Program's artifact lab. 

 

 

 

Melich-III Soil Testing 
The Belize soil samples were chemically tested by Ulmer (2015) using the 

Mehlich-II soil test. The Ohio soil samples were sent in spring, 2015, to the Pennsylvania 
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State University Agricultural Analytical Services Lab for chemical testing using the 

Mehlich-III soil test (see Appendix B for results). These tests are commonly used to 

measure soil micronutrients and determine the amount that should be added to the soil to 

improve crop production. Phosphorous is measured in one of three ways: inductively 

coupled plasma (ICP), the ammonium molybdate colormetric method, or the ammonium 

vanadate colorimetric method. Since ICP is the most efficient of the three, it is used in the 

majority of labs in the northeast United States (Wolf and Beegle 1995). 

Partial Least Squares Regression 
PLSR is a quantitative multivariate statistical analysis tool created to handle 

multiple independent and dependent variables and also employs dimension reduction to 

allow for analysis of data that are multicollinear and contains noise (Hecker, et al. 2012). 

It blends principal component analysis (PCA) and multiple linear regression to predict 

one or more dependent variables from a matrix of independent variables (H. Abdi 2010). 

This prediction is achieved by extracting from the predictors a set of orthogonal factors 

called latent variables which have the best predictive power. The resulting principal 

components are used in a regression to determine coefficient scores instead of the 

original data. Ultimately, this allows for the extraction of latent variables that are 

otherwise impossible to detect in multicollinear data (Hecker, et al. 2012). PLSR was 

specifically selected since phosphorus is not expected to have a strong impact on the 

reflectance spectra and its detection will require a tool for extracting latent variables.  

The PLSR method can be explained as follows. To begin, most general 

multivariate regression analysis often starts with the equation 
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𝑦 = 𝑏1𝑥1 + 𝑏2𝑥2 +. . . + 𝜀 

Equation 7: Multivariate regression 

 

which can also be written in vector format such as the following 

𝒚 = [𝑥1, 𝑥2, 𝑥3, … 𝑥𝑚]

[
 
 
 
 
𝑏1

𝑏2

𝑏3

…
𝑏𝑚]

 
 
 
 

+ 𝜀  

Equation 8: Multivariate regression in vector format 

 

where y is the predicted (dependent) value, x is a vector of independent variables, b is a 

vector of regression coefficients, and ε represents the residual error (Wehrens 2011). 

PLSR can be more easily written in vector form as 

𝑌 = 𝑋𝐵 +  𝜀 

Equation 9: Multivariate regression in matrix format, or PLSR 

 

where Y is the matrix (or vector) of independent variables (phosphorus content), X is the 

matrix of dependent variables (spectra), B is the matrix of regression coefficients and ε is 

again the residual error. The structure of Eq. (3) is nearly the same as that of Eq. (1) but 

now will be used to derive PLS components in order to predict Y (here, phosphorus 

content) instead of relying only on the explained variance of the predictors. In other 

words, both the dependent and independent variables in PLSR can matrix-derived 

components (Garcia and Filzmoser 2011). 

Principal components are derived from the matrix of spectral reflectance values, 

i.e. X, which will become a new matrix, T. Each value within T will represent a linear 
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combination of vectors in the original X matrix. Then, the T matrix will be used to 

predict values in Y and can be written as  

𝑌 =  𝒕1𝒄′1 + 𝒕2𝒄′2+ . . . + 𝒕𝑘𝒄′𝑘 +  𝜀   𝑜𝑟   𝑌 = 𝑇𝐶′ + 𝜀 

Equation 10: Equation of Y matrix, derived from PLSR components 

 

where Y is equal to the sum of all the products of T vectors and the transposed matrix of 

coefficients vectors, plus the residual ε (Sanchez n.d.). 

The PLSR analysis was implemented using packages for the R statistical analysis 

and programming language environment. This statistical software has a robust set of 

extensions and graphical capabilities that make it more efficient than Excel or SPSS for 

this work since it allows for greater customization and does not limit the maximum 

number of independent or dependent variables (R Development Core Team 2016). 

Results 

Hypothesis #1 
A preliminary analysis of P differences was conducted on the soil samples 

collected from three agricultural fields in northeast Ohio. An F-test was first run on the 

samples to determine the equality of variance between datasets. The names of the three 

farms have been abbreviated in the tables below as CAT, DOM, and BUR. 

 

 

 
Table 3: F-Test Two-Sample for Variances: CAT and DOM 

  CAT DOM 

Mean 5.595 6.214 

Variance 0.494 0.341 

Observations 19 14 

df 18 13 
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F 1.447  
P(F<=f) one-tail 0.252  
F Critical one-tail 2.484    

 
 

 

Table 4: F-Test Two-Sample for Variances: DOM and BUR 

  DOM BUR 

Mean 6.131 5.067 

Variance 0.264 0.165 

Observations 13 9 

df 12 8 

F 1.600  
P(F<=f) one-tail 0.257  
F Critical one-tail 3.284   

 

 

 

Table 5: F-Test Two-Sample for Variances: CAT and BUR 

  CAT BUR 

Mean 5.595 5.067 

Variance 0.494 0.165 

Observations 19 9 

df 18 8 

F 2.993  
P(F<=f) one-tail 0.059  
F Critical one-tail 3.173   

 

 

 

The results of the three F-tests resulted in p-values that were all above the 

threshold of 0.05 which indicates the variances among the sample datasets collected at 

the three farms are not significantly different. Based on these results, a t-test assuming 

equal variances was used to determine if there was a significant different between P 

values of at the three Ohio farms. 
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Table 6: t-Test: Two-Sample Assuming Equal Variances: CAT and DOM 

  CAT DOM 

Mean 5.595 6.214 

Variance 0.494 0.341 

Observations 19 14 

Pooled Variance 0.430  
Hypothesized Mean Difference 0  
df 31  
t Stat -2.683  
P(T<=t) one-tail 0.006  
t Critical one-tail 1.696  
P(T<=t) two-tail 0.012  
t Critical two-tail 2.040   

 

 

 

Table 7: t-Test: Two-Sample Assuming Equal Variances: DOM and BUR 

  DOM BUR 

Mean 6.214 5.067 

Variance 0.341 0.165 

Observations 14 9 

Pooled Variance 0.274  
Hypothesized Mean Difference 0  
df 21  
t Stat 5.130  
P(T<=t) one-tail 0  
t Critical one-tail 1.721  
P(T<=t) two-tail 0  
t Critical two-tail 2.080   

 

 

 

Table 8: t-Test: Two-Sample Assuming Equal Variances: CAT and BUR 

  CAT BUR 

Mean 5.595 5.067 

Variance 0.494 0.165 

Observations 19 9 
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Pooled Variance 0.393  
Hypothesized Mean Difference 0  
df 26  
t Stat 2.083  
P(T<=t) one-tail 0.024  
t Critical one-tail 1.706  
P(T<=t) two-tail 0.047  
t Critical two-tail 2.056   

 

 

 

The calculated two-tail p-value for all three t-tests were below the threshold of 

.05, therefore the null hypothesis is rejected. This shows that there is a significant 

difference in phosphorus levels between all three farms. 

In order to determine whether there is a significant difference in P between 

natural soils and the anthropogenic soils of the ancient wetland agricultural fields of 

northern Belize, data were acquired from Ulmer (2015). Fifty-two P values were 

provided for soil samples collected at five locations in northern Belize in 2014. The 

samples were collected from both areas known to contain wetland fields and areas that 

are believed to have not been used for this purpose. These values are listed below. 

 

 

 
Table 9: Natural versus Anthropogenic P values for Belize soil samples 

Natural Anthropogenic 

5.3 15.1 

5 5.1 

4.8 5.2 

9.4 5.7 

5.3 4.5 

3.9 5.7 

5.2 4.7 

5.2 4.3 
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5 3.7 

4.3 4 

4.5 3.6 

5.7 3.7 

5.4 3.1 

5.3 2.5 

10.1 3.7 

3.8 3.3 

3.7 3.7 

3.4 3.6 

3.3 5.5 

3.5 6.3 

2.6 6 

4 5.9 

3.3 4 

3.9  
3.5  
3.4  
3.4  
3.7  
3.5  
2.8  
3  

A preliminary F-test was run on these data in Microsoft Excel to determine the 

equality of variances. The results showed that the variances of the natural and 

anthropogenic soil datasets were significantly different, with F=2.43 and p=0.02. 

 

 

 
Table 10: F-Test Two-Sample for Variances: Natural and Anthropogenic 

  Natural Anthropogenic 

Mean 4.463 4.445 

Variance 2.809 1.156 

Observations 30 22 

df 29 21 

F 2.430  
P(F<=f) one-tail 0.019  



  

117 

 

F Critical one-tail 2.016   

 

 

 

Based on these results, a t-test assuming unequal variances was used to determine 

if there was a significant difference in P values between natural soils and anthropogenic 

wetland agricultural field soils. 

 

 

 
Table 11: t-Test: Two-Sample Assuming Unequal Variances: Natural and Anthropogenic 

  Natural Anthropogenic 

Mean 4.463 4.445 

Variance 2.809 1.156 

Observations 30 22 

Hypothesized Mean Difference 0  
df 49  
t Stat 0.047  
P(T<=t) one-tail 0.481  
t Critical one-tail 1.677  
P(T<=t) two-tail 0.963  
t Critical two-tail 2.010   

 

 

 

The calculated t-statistic is 0.047 and the two-tail p-value for this test is p=0.96. 

Since the p-value is greater than 0.05, the null hypothesis is accepted that the two 

samples do not have significantly different levels of phosphorus.  

Hypothesis #2 

PLSR of Ohio Samples 
 Spectral reflectance was measured for the 45 samples from Ohio using the 

FieldSpec spectrometer. Each sample was measured five times, and the sample dish was 

rotated after each measurement. Then, the five measurements were averaged. The data 
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were imported into R. Each spectrum contains 2,151 reflectance measurements from 350 

nm to 2500 nm. The 45 spectra and the Mehlich-III derived P values were used to 

conduct PLSR analysis using the “pls” package (Mevick, Wehrens and Liland 2016), 

where P is the dependent variable and the spectra are the independent variables. The 

complete matrix used in this analysis contains 45 rows and 2152 columns, the last being 

the P values.   

Following the methods provided in the package documentation, the PLSR model 

was created using the following command which uses the P values and VNIR spectra as 

the Y and X data respectively. It also creates ten components and selects cross-validation 

as the validation method. The results of this model are provided below. 

> Ohio_pls = plsr(Oh_P ~ Oh_VNIR, ncomp = 10, data = Oh_Spectra,  
validation="LOO") 
 
> summary(Ohio_pls) 
Data:  X dimension: 45 2151  
 Y dimension: 45 1 
Fit method: kernelpls 
Number of components considered: 10 
 
VALIDATION: RMSEP 
Cross-validated using 45 leave-one-out segments. 
      (Intercept)  1 comps  2 comps  3 comps  4 comps  5 comps  6 comps 
CV         8.804    9.019    8.704    8.755    8.523    8.673    8.658 
adjCV      8.804    9.024    8.697    8.740    8.511    8.661    8.647 
 
       7 comps  8 comps  9 comps  10 comps 
CV       9.035    11.56    10.77     10.45 
adjCV    9.008    11.46    10.69     10.38 
 
TRAINING: % variance explained 
     1 comps  2 comps  3 comps  4 comps  5 comps   
X    98.4877   99.31    99.47    99.87    99.93     
Oh_P 0.4905    12.88    24.97    28.16    32.66     
 
      6 comps  7 comps  8 comps 9 comps  10 comps 
X       99.97    99.98    99.98   99.99     99.99 
Oh_P    37.22    45.06    65.84   71.02     75.07 
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The model generates two tables of information, the first provides the root mean 

squared error of prediction (RMSEP), the standard deviation of residuals indicating how 

far the data points are spread away from the regression line. The RMSEP is calculated for 

two cross-validation estimates: the cross-validation (CV) estimate which segments the 

data for evaluation, and the adjusted cross-validation (adjCV) which attempts to correct 

for the reduced performance of the model on smaller subsets of a larger dataset. (Mevik 

and Cederkvist 2004) The method of CV used here is Leave One Out (LOO). The second 

table of information generated by the model contains calculations of variance between the 

original and predicted y values and each of the components.  

The lowest cross-validation values occur at four components. Figure 51 below 

allows for the visual inspection of the RMSEP values by plotting them as a function of 

the number of components. 
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Figure 51: RMSEP as a function of components for Ohio PLSR model 

 

 

 

The first four components can be further examined using the style of plot shown 

in Figure 52 which reveals the amount of variance shared between each of the 

components.  
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Figure 52: Explained variance for Ohio PLSR model 

 

 

 

The fit of the model is displayed in Figure 53, which plots the original versus 

predicted y values. 
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Figure 53: P measured versus predicted for Ohio PLSR model 

 

 

 

 The final step is to calculate the R2 for the model, using the original P values 

measured using the Mehlich-III test and the predicted values. This value represents the 

amount of variance in the dependent variable, the measured y values, that can be 

predicted from the independent variables, or components. The R2 for this model is 

0.1524213.  

> y = Oh_Spectra$Oh_P 
> ypred = (Ohio_pls$fitted.values[,,4]) 
> SST = norm(y-mean(y), type = "2") 
> SSE = norm(y-ypred, type="2") 
> R2 = 1-(SSE/SST) 
> R2 
[1] 0.1524213 
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PLSR of Belize Samples 
 Spectral reflectance was measured for 30 of the samples collected by Ulmer 

(2015) using the FieldSpec 4 spectrometer. Each sample was measured three times, and 

the sample dish was rotated after each measurement. Then, the three measurements were 

averaged in Microsoft Excel to create a more accurate spectral representation of the soil. 

The data was imported into R and the PLSR was conducted using the final 30 averaged 

spectra and the Mehlich-II derived P values (Ulmer, 2015). Eight of the wavelengths 

contained null values, leaving 2143 complete spectra. The complete matrix for this 

analysis contains 30 rows, or observations, and 2144 columns, or variables. P is once 

again the dependent variable, and the spectra are the independent variables.   

The results of the PLSR model are provided below, which was created using the 

the P values and VNIR spectra as the Y and X data respectively.  

> Belize_pls = plsr(Bz_P ~ Bz_VNIR, ncomp = 10, data = Belize_SpectraP, 
validation="LOO") 
 
> summary(Belize_pls) 
Data:  X dimension: 30 2143  
 Y dimension: 30 1 
Fit method: kernelpls 
Number of components considered: 10 
 
VALIDATION: RMSEP 
Cross-validated using 30 leave-one-out segments. 
     (Intercept)  1 comps  2 comps  3 comps  4 comps  5 comps  6 comps 
CV         2.502    2.568    3.017    3.988    4.558    4.403    4.522 
adjCV      2.502    2.565    3.003    3.953    4.501    4.357    4.468 
 
       7 comps  8 comps  9 comps  10 comps 
CV       4.828    5.199    5.920     6.301 
adjCV    4.765    5.131    5.826     6.198 
 
TRAINING: % variance explained 
      1 comps  2 comps  3 comps  4 comps  5 comps   
X      93.649    98.59    99.44    99.54    99.73     
Bz_P    3.915    14.37    19.04    44.92    51.81    
 
      6 comps  7 comps  8 comps 9 comps  10 comps 
X       99.79    99.84    99.88   99.89     99.90 
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Bz_P    66.71    74.35    79.95   92.95     97.01 
 

Figure 54 below is a plot of the Belize RMSEP values as a function of the number 

of components. For this dataset, the RMSEP continually increases, making it difficult to 

select the appropriate number of components to use. Since the RMSEP dips slightly at 

five components, this number was selected for the rest of this dataset’s analysis. 

 

 

 

 

 

 

Figure 54: RMSEP as a function of components for Belize PLSR model 

 

 

 

The explained variance for each of these components is shown in Figure 55. 
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Figure 55: Explained variance for Belize PLSR model 

 

 

 

A plot of original versus predicted values, using the first five model components, 

is shown in Figure 56.  
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Figure 56: P measured versus predicted for Belize PLSR model 

 

 

 

The final step is to use the test dataset to determine the model’s performance. The 

P values for the test dataset are calculated below. The R2 of the model is 0.305782. 

> y = Belize_spectraP$Bz_P 
> ypred = (Belize_pls$fitted.values[,,5]) 
> SST = norm(y-mean(y), type = "2") 
> SSE = norm(y-ypred, type="2") 
> R2 = 1-(SSE/SST) 
> R2 
[1] 0.305782 

Discussion 
Although the models indicate that over 90% of the variance in each dataset can be 

explained, the R2 shows that the overall predictive power is low. It would be possible to 

increase the number of components used in order to improve the predictive power but it 
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is necessary to consider the RMSEP of each component used. Therefore, adding too 

many components in order to improve R2 would falsely improve the final results. In 

addition, the datasets used here are relatively small and future work should consider using 

a more robust dataset to determine the predictive power of PLSR and reflectance 

spectroscopy for the detection of soil phosphorus.  

Conclusions 
The results of the Belize and Ohio soil spectroscopy analysis show that it is 

possible to detect differences in P levels between different areas although there was not a 

statistically significant difference between anthropogenic and natural soils from Belize. It 

is likely that having larger sample sizes, and representing more distinct locations, may 

have produced better results. Also, selecting more samples from key wetland field areas, 

such as Albion Island, may have also improved the results. Regardless, the use of soil 

spectroscopy for archaeological analysis is still a new area of research, and should be 

explored in the future to gain new insights regarding human activity across the ancient 

Maya landscape. Applying these same methods to the long-wave infrared range of the 

electromagnetic spectrum may also provide future opportunities to measure soil P in the 

wetland fields. For decades, Maya archaeologists have appreciated the knowledge that 

soils offer towards understanding this ancient culture; soil spectroscopy is well suited to 

complement that area of research and provides a link for additional geospatial and remote 

sensing research in this region. Much of the remote sensing research in Maya 

archaeology has focused on lidar in recent years which certainly has improved our 

understanding of Maya cities and their spatial characteristics and relationships. However, 
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there are many other tools for geospatial analysis, including reflectance spectroscopy, 

which can provide new insight on the ancient Maya civilization. The technological 

advances that are currently on the horizon, such as new satellite imaging sensors and their 

data being made freely available, will be especially important for challenging landscapes 

such as in Belize. By branching out and exploring these opportunities, one day the 

ancient Maya may be far less of a mystery than they are today. 
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CHAPTER FIVE – COMPARISON OF VNIR, M-LWIR, AND XRF 

CAPABILITIES IN DETECTING SOIL PHOSPHORUS 

Introduction 
For decades, archaeologists have been interested in phosphorus in soils as a proxy 

for locating and understanding ancient human activity. Phosphorus, a relatively stable 

soil nutrient, has aided in the study of sites because its concentration is often the result of 

activities such as food preparation or disposal. Agriculture is also known to affect soil 

phosphorus levels. Fertilization may increase these levels while a continuous cycle of 

plant growth may remove nutrients from the soil and consequently decrease phosphorus 

concentration (Holiday and Gartner 2007). This research will evaluate and compare two 

non-traditional and a third more commonly used method for measuring soil phosphorus 

in agricultural areas: visible/near- and shortwave-infrared spectroscopy (VNIR/SWIR), 

mid to long wave infrared spectroscopy (M-LWIR), and x-ray fluorescence (XRF). These 

will be compared to the more widely used Mehlich-III soil nutrient test. The goal is to 

show which of these methods can produce the most reliable soil phosphorus 

measurements in order to avoid costly and laborious chemical-based methods used in 

archaeology today. In addition, the success of these methods would enable remote 

sensing based techniques for studying broader areas. 

Much of the research on archaeological soil phosphorus has utilized the chemical 

based Melich-III soil nutrient test and has frequently been applied in ancient Maya 

research. The cost of such tests can quickly add up, becoming a limiting factor and 

making research at larger scales less attainable. In addition, it can be logistically 
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challenging to transport soils that originated from an archaeological site, as many 

countries place strict regulations on any materials related to their own heritage. The 

United States also has strict regulations on importing foreign soils that specify designated 

labs throughout the country where they must be sent, and also the exact procedures for 

their destruction once no longer needed. Essentially, although soil itself is cheap and easy 

to procure, there are a whole host of challenging obstacles that archaeologists must 

endure when incorporating them in their research. Reliable and largely chemistry-free 

methods for soil analysis are needed in order to advance archaeological research 

centered, especially on regional-scale studies. This research will attempt to build on the 

current body of knowledge surrounding this research need.  

Background 

The Use of VNIR/SWIR Spectroscopy in Detecting Soil Phosphorus 
As mentioned in the previous chapter, research in VNIR/SWIR reflectance 

spectroscopy in recent years has shown progress towards the detection of phosphorus in 

soil. A handful of studies which used similar methods to those used here, found 

significant correlations in their analysis. Bogrekci and Lee (2005) detected phosphates 

from soil samples of the Lake Okeechobee basin in Florida. The results showed that 

absorbance spectra had distinct bands in the near-infrared and ultraviolet regions of the 

electromagnetic spectrum and were positively correlated with the results of chemical tests 

through partial least squares regression (PLSR) analysis (Bogrekci and Lee 2005).  

Idowa et al. (2008) used PLSR to detect phosphorus in agricultural soils to 

determine whether it could be a less expensive and faster option than the Cornell Soil 
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Health Test. They collected spectra using a Panalytical FieldSpec Pro in the range of 350-

2,500 nm and a spectral resolution of 1 nm. In total, 387 soil samples were air-dried and 

their spectra measured five times each for averaging. The PLSR ultimately showed that 

phosphorus was only moderately predictable, with an R2 of 0.63, when using reflectance, 

as opposed to absorbance, moving averages, or the first derivative of the reflectance.  

More recently, Abdi et al. (2012) were able to predict total phosphorus in agricultural 

soils, using the 1100 to 2500 nm spectral range and PLSR, producing an R2 of 0.78. 

However, other phosphorus-related properties such as P-uptake and P-budget were not 

successfully predicted.  

Xue-Yu (2013) significantly predicted phosphorus among 448 soil samples using 

the 350 to 2,500 nm spectral range and PLSR to produce an R2 of 0.65. The predicted 

phosphorus values were verified using the Student’s T statistical test. In addition, other 

studies have attempted to model soil phosphorus using multispectral band combinations 

and indices such as the normalized difference vegetation index (NDVI) and leaf area 

index (LAI). 

To date, reflectance spectroscopy-based soil phosphorus research in archaeology 

has focused on individual sites and the features they contain (Holiday and Gartner 2007, 

Matney, et al. 2014), but few if any have specifically applied this method to regional 

studies such as ancient agricultural areas. A related study used VNIR and midwave-

infrared (MWIR) spectroscopy to study Amazonian Dark Earths (ADE), also known as 

terra preta or terra mulata, in Brazil (Araújo, et al. 2015). It is unclear whether ADE was 

the result of intentional or unintentional human influences, and whether they were created 
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through habitation, agriculture, or both (Glaser, 2007). Unfortunately, the research 

conducted by Araújo, et al. (2015) was not able to accurately predict phosphorus in soils 

applying PLSR to VNIR/MWIR spectra.  

The Use of M-LWIR Spectroscopy in Detecting Soil Phosphorus 
Mid to longwave infrared spectroscopy may also be a potential tool for the 

detection of phosphorus in archaeological contexts. Its use has been less documented but 

there is growing interest after a handful of studies in recent years on its application. For 

example, M-LWIR spectroscopy has been used to study the impact of weathering and 

rainfall on soils (Howington, Ballard Jr. and Wilhelms 2012, Ballard, Howington and 

Wilhelms 2013, Rozenstein and Karnieli 2015), and for mineral mapping (Riley and 

Janaskie 2012, Notesco, Ogen and Ben-Dor 2015). Nevertheless, the technology has been 

rarely used for the detection of phosphates. An early study (Pierzynski, et al. 1990) used 

Fourier-transform infrared (FTIR) and several other instruments to quantitatively analyze 

phosphorus-rich particles in soil but found the FTIR results were not successful. A 

handful of other studies have used FTIR to understand phosphorus sorption and 

molecular changes, but not specifically for its quantification in soil (Eisazadeh, Kassim 

and Nur 2012, Xue-Yu 2013).  

An infrared spectrometer collects a spectrum of light displaying absorption 

features in regions where the infrared frequency matches the vibrational frequency of 

chemical bonds within the sample, in this case a soil sample. Groups of bonds can 

therefore provide unique information about a material’s chemical properties. (Bradley 

2016). The Nicolet FTIR spectrometer measures the intensity of an infrared beam after it 



  

133 

 

has passed through a suitably prepared sample. The resulting acquired signal is referred 

to as an interferogram which contains information about the material it passed through. 

The accompanying software called OMNIC inputs the interferogram and applies the 

fourier transform to recover the IR spectrum of the sample (Thermo Fisher Scientific 

2016). 

The spectrum, or energy curve, is displayed in arbitrary units on the Y-axis and 

frequency in the X-axis. The general shape resembles that of an infrared energy source, 

with dips indicating frequencies that were absorbed by the material. The OMNIC 

software program divides the sample energy curve by the background energy curve 

(created using a gold-plated disc) to produce a transmission spectrum, which represents 

the percentage of energy that passed through the sample at each frequency (Thermo 

Fisher Scientific 2016). 

The Nicolet FTIR collects data in wavenumber, cm-1, which can be converted to 

wavelength. The equation below converts the wavenumber 700 cm-1 to wavelength in 

µm. 

 

 

 

Equation 11: Conversion of wavenumber to wavelength 

1𝑐𝑚−1

700
×

1𝑚

100𝑐𝑚
×

1 × 109𝑛𝑚

1𝑚
×

0.001𝜇𝑚

1𝑛𝑚
= 14.29𝜇𝑚 

 

 

 

The FTIR instrument used for this research utilizes an integrating sphere, a common 

accessory for collecting reflectance measurements of diffuse surfaces. Specifically, the 

reflectance collected by the integrating sphere is biconical (Figure 57), which means the 
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incident and reflected light are confined to narrow and specific ranges. The integrating 

sphere is ideal for obtaining accurate quantitative measurements for two reasons: 1) the 

highly reflective and uniform, or Lambertian, interior coating, and 2) the spherical shape 

which creates constant uniform irradiance of the sample surface, allowing it to be 

accurately collected by the detector (Hanssen and Snail 2002). 

 

 

 

 

Figure 57: Biconical reflectance (Hanssen and Snail, 2002); Nicolet FTIR integrating sphere, USGS Reston VA. 

 

 

 

The Use of X-Ray Fluorescence Spectroscopy in Detecting Soil Phosphorus 
X-ray fluorescence (XRF) has been the most prevalent of these three techniques 

discussed here among archaeological applications. It has been proven to be a fast and 

cost-effective method for chemical element analysis in the field and has been utilized by 

archaeologists since the 1960s. The earliest applications focused on analyses of obsidian, 

ceramic, and other rock-related provenance (Shackley 2011). 
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In recent years there have been a number of studies that use XRF to understand 

intra-site patterns and those of specific archaeological soil features (Frahm, et al. 2016, 

Neff, Voorhies and Umaña 2012). Specifically, Mesoamerican studies incorporating XRF 

have frequently considered phosphorus among sites and soil features (Ulmer 2015) and 

have even been able to map linear phosphorus patterns at an ancient Maya plaza that 

likely served as a marketplace (Coronel, et al. 2015).  

XRF requires calibration specific to each instrument as well as the material being 

analyzed (Shackley 2011). In a recent study, Speakman and Shackley (2013) highlighted 

a number of pitfalls that archaeologists often ignore and the complexities of XRF analysis 

that must be addressed prior to any quantitative analysis. Ultimately, they place the onus 

of responsible science on the user and not the technology itself (Speakman and Shackley 

2013). 

Ideally, a sample should be homogenous, and for this reason the XRF uses a 

homogenous metal alloy reference standard to maintain its calibration. Soil samples, 

however, are never truly uniform, and each reading will generate slight variations. In 

addition, humidity can cause samples to become denser, making it more difficult for x-

rays to pass through the material. Elevation and changes in air density can also affect the 

consistency of XRF measurements (Bruker 2016).  

When taking XRF measurements of soils in-situ, moisture should not exceed 

20%. If it is necessary to do so, then additional measurements should be taken after the 

soil has been allowed to dry. Measurements of semi-prepared samples, where large debris 

has been removed, can be taken while the soil is in a plastic bag so long as it is not too 
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thick. Fully prepared soil samples are ones that have been sieved using a large mesh to 

improve homogeneity, and covered with 4µm polypropylene film which does not 

attenuate returning x-rays when measuring light elements to include phosphorus (Bruker 

2016). For this research, soil samples were dried for over a week and ground using a 

mortar and pestle to ensure uniformity. 

Study Area – Soils of Northeast Trumbull County Ohio 
Trumbull County, Ohio was once covered by glaciers and the soils there are 

formed from glacial deposits. They are part of the Mahoning-Canfield-Rittman-Chili Soil 

Region, as defined by the Ohio Department of Natural Resources, and range from course 

to fine-textured. Trumbull County is relatively flat and the soils generally consist of silty 

loams with 0 to 6 percent slopes (Williams 1992). 

One-hundred and thirty soil samples were collected from five locations in 

northeast Trumbull County, Ohio, during the summer of 2016. Four of them have been 

described in the previous chapter and they vary in the type of crops grown as well as their 

frequency of use. These five locations include four agricultural areas and a churchyard 

that has been in existence for at least 142 years (Everts 1874, US Geological Survey 

1907). The first church to be built on this property no longer exists, but the current 

structure was built in 1899 (Figure 58) and is surrounded by around five acres of land. 
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Figure 58: Johnston Federated United Methodist Church, current structure built in 1899. 

 

 

 

The samples collected around the church will be used as a baseline for the area’s 

natural soil nutrient levels since this area has not been farmed since it was first settled and 

this location is likely to have experienced the least amount of disruption during that time. 

It is possible that it may have been used for agriculture prior to being settled by 

Europeans.  

The sampling locations for this study are shown in the map in Figure 59. Twenty-

six samples were collected from the fields labeled DOM, SUN, CAT, and Church. 

Twenty-seven samples were collected from the field labeled BUR for a total of 131 

samples (Figure 59). 
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Figure 59: Soil sample field locations. 
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Methods 
Although the goal is to determine which combination of methods would be best 

for field use, it is important to accurately portray the capabilities of the instruments prior 

to drawing conclusions about their potential. The soil samples used in this research were 

minimally prepared before taking measurements. First, large plant debris, insects, and 

rocks were removed from the samples. Then, the soils were air-dried for roughly one 

week in a lab at the USGS headquarters in Reston, VA prior to analysis. Each sample was 

then roughly split in half and one part was sent to the Soil Analysis Lab at Pennsylvania 

State University in State College, PA, for wet chemistry analysis using the Mehlich-III 

soil nutrient test. The test provides a range of soil nutrient and property values including 

phosphorus in parts per million (ppm). 

An analysis of variance (ANOVA) was conducted on the resulting Mehlich-

derived phosphorus values to determine if a significant difference existed between each 

of the five locations where soil samples were collected. The null hypothesis of this 

statistical test is that the amount of soil phosphorus is roughly equal among each of the 

five fields, or in other words, the difference between each field is not significant. The 

alternative hypothesis is that the amount of soil phosphorus at each of the five fields is 

significantly different.  

 

 

 
Table 12: Analysis of Variance among five sample locations. 

SUMMARY       

Groups # Samples 
Sum P 
ppm Average Variance   

BUR 27 420 15.556 30.487   
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CAT 26 225 8.654 16.635   

Church 26 294 11.308 57.742   

DOM 26 426 16.385 118.646   

SUN 26 1329 51.115 153.386   

       

       

ANOVA       

Source of 
Variation SS df MS F P-value F critical 

Between 
Groups 31315.301 4 7828.825 104.352 5.06E-39 2.444 
Within Groups 9452.897 126 75.023    

       

Total 40768.198 130         
 

 

 

 

In the first table, the summary data provide descriptive statistics showing the 

average Mehlich-derived phosphorus value for each field, as well as the amount of 

variance at each location. The second table contains the ANOVA results which are based 

on the descriptive statistics. The F-value represents the ratio of variation between field 

locations and the variation within each field. If the F-value is larger than the F-critical 

value, this indicates that the null hypothesis can be rejected and there is a significant 

difference in soil phosphorus among the five fields. If the results of either the VNIR, M-

LWIR, or XRF analysis are significant, it may then be possible to determine if they 

cannot only be used to detect soil phosphorus, but also identify differences between 

fields. 

VNIR 
The 131 air-dried soil samples were first measured using an ASD/PANalytical 

Field Spec VNIR/SWIR spectrometer which collects reflectance from 350nm to 2500 
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nm. Each sample was rotated under the sensor and measured three times each, then the 

measurements were averaged in order to create a more representative dataset. The Field 

Spec passively collects reflected light using the RS3 version 6.0 software, which also 

calibrates the instrument. These reflectance files were exported to text files using the 

ViewSpec Pro version 6.0 software for further analysis in Microsoft Excel.  

M-LWIR 
Next, the samples were measured using a Thermo Nicolet fourier transform 

infrared (FTIR) spectrometer (Figure 60) 5DXB and integrating sphere which collects 

reflectance spectra from approximately 2,000 nm to 14,000 nm. The Nicolet FTIR is 

operated by the OMNIC software program. The program was set to collect the full range 

of data, which includes 1,000 scans of the sample material. Each measurement requires 

15 minutes to complete, and the instrument was calibrated every 45 minutes (or after 

every 3 sample measurements) using a gold-plated calibration disk, placed directly under 

the instrument’s integrating sphere. The final measurement of each sample was saved as a 

.csv file for processing and further analysis.  
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Figure 60: Thermo Nicolet 5DXB FTIR Spectrometer at USGS in Reston, VA. 

 

 

 

XRF 
Finally, 30 of the 131 soils samples were analyzed using a Bruker Tracer-III 

Handheld x-ray fluorescence (XRF) analyzer. XRF is a non-destructive method for 

identifying chemical elements in a sample material. It works by firing x-rays at a sample 

material, knocking electrons out of place, which releases energy that is then read by the 

detector. Since the energy produced by the movement of electrons for each element is 

unique, the measurement produced by the XRF is similarly unique. Bruker’s ARTAX 

software interprets the measurements and identifies the elements that are contained in the 

material (Bruker, 2016). The Bruker Tracer-III is a hand-held device that can be setup in 

a lab environment, similar to the arrangement seen in Figure 61 and requires calibration 

in order for the data to be interpreted accurately (Speakman and Shackley 2013). 
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Figure 61: Bruker Tracer-III equipment setup (MSITECH, 2011) 

 

 

 

Calibration of the XRF for soil phosphorus analysis was conducted by first creating a 

P-containing solution with a known quantity of P ppm. The solution was then added to 

soil samples at known increments which covered their P range, which was found to be as 

low as 2ppm for some samples. The final mixtures were measured with the XRF and the 

net count rate was plotted against their known phosphorus ppm values. If an XRF is 

precise and accurate, then the plotted data points should theoretically form a straight line, 

the slope of which can be used to calculate P content (in ppm) in subsequent 

measurements. A detailed list of the calibration steps is described below. 
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1) Since phosphorus does not exist in nature on its own, it was necessary to use a 

potassium phosphorus compound (K2HPO4•3H2O) standard for the initial 

solution. This compound was measured using a Mettler Toledo AE50 analytical 

balance (3.3218 g) and added to a 200ml flask. The molecular weight (MW) of 

the compound was calculated as: 

2K+7H+1P+7O = 2(39.0983) + 7(1.00794) + 1(30.9736) + 7(15.9994) = 228.218  

2) The 200 ml flask was then filled with deionized water. Based on the atomic 

weight and the total volume of the flask, the concentration of stock solution was 

calculated as: 3.3218 g / (228.218 MW * 0.2) = 0.072846 

3) Soil from two samples, CAT-109 which contained the least P (2 ppm) and SUN-

319 which contained the most P (91 ppm), were ground with a mortar and pestle 

and used to create six samples cups containing 2 grams of ground soil, for a total 

of 12 cups.  

4) Solution (V1) and regular deionized water was added to both sets of cups in 

varying amounts for a total of 2ml each (V2). The P ppm was calculated by first 

determining the concentration in moles per liter, then eventually converting to 

ppm as shown in Table 2. 

 

 

 

Table 13: Calculation of P ppm for serial dilution calibration. 

Sample V1 (ml) V2 (ml) M2 (mole/L) mM (molex10^3/L) g/L P ppm 

Cup 0 0.00 2 0.0000 0.0000 0.0000 0.0000 

Cup 1 0.10 2 0.0036 3.6423 0.1128 112.8174 

Cup 2 0.25 2 0.0091 9.1058 0.2820 282.0434 
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Cup 3 0.50 2 0.0182 18.2116 0.5641 564.0868 

Cup 4 0.75 2 0.0273 27.3174 0.8461 846.1302 

Cup 5 1.00 2 0.0364 36.4232 1.1282 1128.1736 

 

 

 

5) An XRF measurement was taken for each of these solutions using the following 

settings selected to enhance the phosphorus since it is at the low end of the 

detection range. These selected settings follow the recommendations for elements 

with low atomic numbers (McGlinchey 2012). 

a. Time – 240 seconds 

b. kilovolts (kV) – 15 

c. microamperes (µA) – 55 

d. no filter 

e. vacuum on 

6) The results were analyzed in the ARTAX software program and a Bayesian 

deconvolution was performed to determine which elements were contained in the 

soil samples. This step allows the software to calculate quantitatively the amount 

of influence that phosphorus has in the detection and provides an XRF net count 

rate for each element in the sample. An example of this analysis is shown in 

Figure 62. The location of the phosphorus within the detection is flagged and 

labeled “P”. There is a single blue line that does not fit with the rest, this is the 

Bayesian model fit; fit changes as different elements are added or removed, 

depending on whether they influenced the final shape of the total XRF spectrum. 
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Figure 62: Screen capture showing the ARTAX Bayesian Deconvolution modeling 
 

 

 

7) Finally, the XRF counts derived from the Bayesian deconvolution were then 

plotted against the known P ppm (Figure 63) to determine the relationship 

between these two sets of data, and to build a calibration curve to be applied to 

the rest of the soil XRF measurements. The results indicate that the XRF net 

count rate and the known P ppm are highly correlated and the instrument is 

properly calibrated. 
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Figure 63: Serial Dilution of Soil Samples for XRF Calibration; the high P sample originally contained 91 ppm 

before adding P solution and the low P sample originally contained 2 ppm 
 

 

 

Once the calibration was performed, the slope of the calibration line was then 

used to estimate the P ppm for the rest of the soil samples analyzed using XRF. Thirty 

soil samples were randomly selected, six from each field, and were then ground, and 2 

grams were placed in a sample cup and covered with ProleneThin-Film specifically 

designed for XRF use (Chemplex, 2016). 

 

 

 
Table 14: Soil samples used in XRF analysis 

BUR-405 CAT-100 Church-501 DOM-201 SUN-300 

y = 3.9158x + 1970.2
R² = 0.9444
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BUR-409 CAT-102 Church-505 DOM-202 SUN-304 

BUR-420 CAT-105 Church-510 DOM-205 SUN-308 

BUR-417 CAT-114 Church-521 DOM-210 SUN-311 

BUR-420 CAT-116 Church-522 DOM-218 SUN-323 

BUR-426 CAT-125 Church-524 DOM-219 SUN-324 

 

 

 

These soil samples did not have any liquid added to them since sensor 

manufacturer (Bruker) advises that this is not necessary, and that liquid may actually 

lessen the detection abilities. In fact, after drying some of the calibration samples and 

retesting them, a slightly higher detection was found. However, since the XRF net count 

rate and known P ppm was high using the wet samples it was not recreated using dried 

samples. Each of the randomly selected samples were then analyzed using the same 

settings as the calibration (240 seconds of acquisition time, 15 kV, 55 µA, no filter, 

vacuum on). They were then analyzed using the ARTAX software and the derived XRF 

net count rate for each was plotted against the Mehlich-III P ppm.  

Results 
The VNIR, M-LWIR datasets were each compiled into a single table, along with 

the Mehlich-III P ppm values. The data was ingested into the R statistical computing 

software program, and a PLSR was calculated for each dataset in order to evaluate how 

well each of the three types of measurements were able to model and predict P. The 

output of the models were then plotted to determine how well they performed. 
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VNIR Reflectance and PLSR Results 
The PLSR model was calculated using the “pls” package in R. The model uses the 

original P values and VNIR spectra as the Y and X data respectively. The results of this 

model are provided in Appendix D, which include the LOO cross-validation results, and 

the calculations of variance between the original and predicted y values and each of the 

components.  

Since the dataset used here is larger than the one used in the previous chapter, it 

was possible to calculate 50 components when running the model. The cross-validation 

values plateaued at around 15 components and reached their lowest scores by around 45 

components. For this model, 15 components are used. Figure 64 allows for the visual 

inspection of the RMSEP values by plotting them as a function of the number of 

components. 

 

Figure 64: RMSEP as a function of number of components for VNIR/PLSR model 
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The first five components can be further examined using the plot shown in Figure 

65 which reveals the amount of variance shared between each of the components. 

 

 

 

 

Figure 65: Explained variance for VNIR/PLSR model 

 

 

 

The fit of the model is displayed in Figure 66, which plots the original versus 

predicted y values. 
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Figure 66: P measured versus predicted for VNIR/PLSR model 

 

 

 

The final step is to calculate the R2 for the model, using the original P values 

measured using the Mehlich-III test and the predicted values. This value represents the 

amount of variance in the dependent variable, the measured y values, that can be 

predicted from the independent variables, or components. The R2 for this model is 

0.6935764. 

> y = Oh_VNIR_Spectra$ASD_Ref_P 
> ypred = (Ohio_VNIR_pls$fitted.values[,,15]) 
> SST = norm(y-mean(y), type = "2") 
> SSE = norm(y-ypred, type="2") 
> R2 = 1-(SSE/SST) 
> R2 
[1] 0.6935764 
 

M-LWIR Reflectance and PLSR Results 
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The cross-validation values for the M-LWIR/PLSR model were lowest at 14 

components (See Appendix E). Figure 67 plots the RMSEP values as a function of the 

number of the components of components calculated. 

 

 

 

 

Figure 67: RMSEP as a function of number of components for the M-LWIR/PLSR model 
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The first five components can be further examined using the plot shown in Figure 

68 which reveals the amount of variance shared between each of the components. 

 

  

 

 

Figure 68: Explained variance of first five components of the M-LWIR/PLSR model 

 

 

 

The fit of the model is displayed in Figure 69, which plots the original versus 

predicted y values. 
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Figure 69: Explained variance for M-LWIR/PLSR model 

 

 

 

The R2 for the model using 14 components is 0.4855194. 

> y = Oh_LWIR_Spectra$FTIR_Ref_P 
> ypred = (Ohio_LWIR_pls$fitted.values[,,9]) 
> SST = norm(y-mean(y), type = "2") 
> SSE = norm(y-ypred, type="2") 
> R2 = 1-(SSE/SST) 
> R2 
[1] 0.4855194 

XRF Results 
 

Since the XRF data collected for the soil samples is only one value per sample, a 

PLSR model could not be created. Instead, the net count rates for thirty of the soil 

samples were plotted against the Mehlich-III P values, resulting in an R2 of 0.507 (Figure 

70). 
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Figure 70: XRF Net Count Rate versus Mehlich-III P 

 

 

 

 A PLSR model was created for the VNIR and M-LWIR datasets, this time using 

the XRF net count rate in place of the Mehlich-III. The VNIR/PLSR model results are 

below.   

> summary(XRF_VNIR_pls) 
Data:  X dimension: 30 2151  
 Y dimension: 30 1 
Fit method: kernelpls 
Number of components considered: 10 
 
VALIDATION: RMSEP 
Cross-validated using 30 leave-one-out segments. 
    (Intercept)  1 comps  2 comps  3 comps  4 comps  5 comps  6 comps 
CV        752.8    749.0    766.1    748.9    907.7    922.7    948.1 
adjCV     752.8    748.3    763.8    749.7    901.5    911.1    932.5 
 
       7 comps  8 comps  9 comps  10 comps 
CV       898.9    919.1    939.4     986.1 
adjCV    888.8    908.4    926.8     970.5 
 
TRAINING: % variance explained 
         1 comps  2 comps  3 comps  4 comps  5 comps  6 comps  7 comps 
X         96.390    98.28    99.36    99.56    99.59    99.66    99.75 

y = 0.0164x - 18.522
R² = 0.5072
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XRF_VNIR_P 5.508    20.84    25.48    44.20    70.47    79.52    84.63 
 
            8 comps  9 comps  10 comps 
X             99.80    99.84     99.85 
XRF_VNIR_P    89.83    93.67     97.40 

 

 

 The RMSEP for this model is lowest using three components (Figure 71), 

however, the RMSEP values are significantly higher than in previous PLSR models. 

 

 

 

 
Figure 71: RMSEP as a function of components for the XRF/VNIR PLSR model 

 

 

 

 The explained variance for the first three components used is shown below in 

Figure 72. The original versus predicted y values are shown in Figure 73. 
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Figure 72: Explained variance of XRF/VNIR PLSR model components 

 

 

 

 
Figure 73: Original y values versus predicted for the XRF/VNIR PLSR model 

 

 

 

The calculated R2 of the XRF VNIR PLSR model is 0.1367354. 

> y = XRF_VNIR_Spectra$XRF_VNIR_P 
> ypred = (XRF_VNIR_pls$fitted.values[,,3]) 
> SST = norm(y-mean(y), type = "2") 



  

158 

 

> SSE = norm(y-ypred, type="2") 
> R2 = 1-(SSE/SST) 
> R2 
[1] 0.1367354 

The same analysis was conducted using the XRF net count rate as original y 

values and the M-LWIR data in a PLSR model. The results of this model are shown in 

Appendix E. Figure 74 shows the RMSEP as a function of components for this model. 

The lowest value occurs at 15 components. 

> XRF_LWIR_pls = plsr(XRF_P ~ as.matrix(XRF_LWIR), ncomp = 15, data = X
RF_LWIR_Spectra, validation="LOO") 
> summary(XRF_LWIR_pls) 
Data:  X dimension: 30 2231  
 Y dimension: 30 1 
Fit method: kernelpls 
Number of components considered: 15 
 
VALIDATION: RMSEP 
Cross-validated using 30 leave-one-out segments. 
  (Intercept)  1comps  2comps  3comps  4comps  5comps  6 comps  7comps 
CV    752.8    686.3   678.8   739.3   891     774.2   721.1    733.8 
adjCV 752.8    685.5   677.7   738.4   880     729.0   695.0    725.5 
        
   8comps  9comps  10comps  11comps  12comps  13comps  14comps  15comps 
CV    648  641.2   667.4    659.4    664.5    663.2    663.2    663.1 
adjCV 641  630.7   656.0    648.4    653.4    652.0    652.0    652.0 
 
TRAINING: % variance explained 
       1comps  2comps  3comps  4comps  5comps  6comps  7comps  8comps   
X       95.29  98.68   99.20   99.30   99.36   99.56   99.83   99.91   
XRF_P   23.71  31.01   37.09   59.36   77.95   85.83   89.78   93.08    
 
      9comps 10 comps  11 comps  12 comps  13 comps  14 comps  15 comps 
X      99.92  99.93     99.94     99.95    99.95     99.96     99.96 
XRF_P  98.58  99.71     99.94     99.99    100.00    100.00    100.00 
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Figure 74: RMSEP as a function of components for the XRF/M-LWIR PLSR model 

 

 

 

The explained variance for the first three components used is shown below in 

Figure 75. The original versus predicted y values are shown in Figure 76. 

 

 

 

 
Figure 75: Explained variance of the first five components for the XRF/M-LWIR PLSR model 
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Figure 76: Original y values versus predicted for the XRF/M-LWIR PLSR model 
 
 
 

 The R2 for this model is 0.9997253 
 
> y = XRF_LWIR_Spectra$XRF_P 
> ypred = (XRF_LWIR_pls$fitted.values[,,15]) 
> SST = norm(y-mean(y), type = "2") 
> SSE = norm(y-ypred, type="2") 
> R2 = 1-(SSE/SST) 
> R2 
[1] 0.9997253 

Discussion 
 The models generated a range of results, some of which indicate that reflectance 

and x-ray fluorescence spectroscopy may be useful for archaeological soil P field 

measurements. The first two models indicate that VNIR reflectance is more highly 

correlated with Mehlich-III P than M-LWIR reflectance, but both VNIR and M-LWIR 

models indicate a significant correlation with Mehlich-III that warrants future research. 

Since XRF-derived P ppm was not closely correlated with the Mehlich-III P ppm, more 

research is required before the XRF-derived P ppm values can be used in similar PLSR 
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soil models. However, the XRF calibration showed that the relationship between net 

count rate and P ppm was highly correlated, producing an R2 of .94, so it is likely a much 

better benchmark than Mehlich-III. Mehlich-III measures only the available phosphorus, 

which may not exist at a constant ratio to total phosphorus in these fields.  

Conclusions 
 This research shows that although VNIR, M-LWIR, and XRF spectroscopy 

cannot easily replace laboratory-based wet chemistry tests for soil phosphorus, there may 

be avenues for improvement. For example, future work should consider using XRF as a 

benchmark instead of Mehlich-III. The XRF may actually be the best choice for 

collecting measurements in the field due to its accuracy, portability, and relative 

durability. Also, XRF can take measurements of samples that have had little to no 

preparation, as long as they are not too wet. Future work attempting to correlate field 

measurements to satellite or airborne imagery will still require the use of reflectance 

spectroscopy.  
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CHAPTER SIX - CONCLUSION 

The three articles presented in this dissertation utilized geospatial analysis and 

remote sensing to identify the location of ancient Maya wetland agricultural fields, model 

the probability of their spatial extent, and determine the impact of agriculture on wetland 

soils. The first article explained how high-resolution imagery has become an essential 

tool in locating and the spatial analysis of wetland fields. Commercial imagery has 

rapidly improved over the last decade to enable researchers and students to greatly 

benefit from its use. Google Earth is a freely available imagery resource that also 

contains historic imagery, providing a way to follow changes on the earth’s surface. In 

Belize, modern agriculture and deforestation is uncovering new fields and ancient cities, 

and the number of visible archaeological features is increasing all the time. Although this 

sometimes results in the loss of archaeological information, it is important to record it 

while it still exists.  

The second article showed the location of wetland fields can be predictively 

modeled in order to determine estimates of their past extent. A number of environment 

variables were selected based on past research and current knowledge of wetland fields. 

These variables were used in a binary logistic regression analysis to determine which 

variables were correlated with wetland field locations. The analysis was run multiple 

times to find the best combination of variables and the coefficients produced were used to 

develop a spatial model of field probability. Finally, the probability equation was applied 

to the entire study area and the results showed the amount of suitable land is far greater 
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than the 16,000 acres of wetland fields initially identified using high-resolution 

multispectral imagery. The odds of finding even more fields that has been discovered so 

far is high. This analysis can also be used to help answer other questions regarding the 

variety of subsistence techniques and population size.   

The third article attempted to use reflectance spectroscopy of visible and near-

infrared wavelengths to detect and measure soil phosphorus. Soil samples were collected 

in northwest Belize and spectra were measured using a Field Spec 4 reflectance 

spectrometer. A parallel analysis was conducted on samples collected in northeast Ohio 

for comparison. Unfortunately, the null hypotheses were not rejected but since this area 

of research is in its early stages, it would be useful to attempt this work again using 

different algorithms. Phosphorus plays a significant role in archaeology and 

understanding past cultures. It will continue to be used as an indicator of human activity 

on the landscape and should therefore continue to be studied using reflectance 

spectroscopy. The advantage of a field spectrometer is that it can provide information 

while working in the field. The ability to determine phosphorus levels quickly and 

efficiently using a field spectrometer would create even more avenues for remote sensing 

and geospatial analysis in Maya archaeology. This technique would also be extremely 

valuable to modern day farmers around the globe.   

This dissertation builds on the regional knowledge of wetland fields of northern 

Belize and will help to accelerate the discovery of previously unknown field locations. 

Ultimately, it is important to understand where the fields once existed to better 

understand their significance in the lives of the ancient Maya. This will explain the 
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amount of food they could have produced from year to year and the size of the population 

they supported. The ancient Maya relied on a variety of agricultural techniques to procure 

food, and understanding the role that each of them played will lead to a broader 

understanding of their existence over several millennia and sharp decline around 900 

A.D. In addition, the methods used in this research could be applied to other parts of the 

world where wetland agriculture was use by other ancient societies, and may be valuable 

to conduct similar research on a much broader scale. The far-reaching impact of studying 

ancient Maya wetland fields is that modern civilizations can learn from the lessons of the 

Maya. Beyond the interests of the Maya archaeology community, societies and 

governments around the world will benefit from understanding how a civilization adept at 

supporting large numbers of people with minimal resources was unable to avoid a 

dramatic decline. 

The ability to study wetland fields, or any other remnants of ancient Maya life, 

may have a time limit. In recent years, historical imagery in Google Earth clearly shows 

the continual destruction of forest to make way for modern agriculture. Stories in the 

news explain how temples are being demolished and used for building materials. Many 

temples that are discovered have also been tunneled into and looted. Although 

archaeologists continue to discover entire cities buried deep within the jungles of Belize 

and other parts of Mesoamerica, many others may also become lost before they are ever 

found.  
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Figure 77: Looter’s trench in the side of a temple at the Maya site of La Milpa. 

 

 

 

There is no way to know exactly how many more are still undiscovered since 

nature has skillfully reclaimed them. High-resolution elevation data such as Lidar has 

quickened the pace of discovery in some areas, but until it is feasible to collect this type 

of data for all of Mesoamerica, we will only be able to speculate where and how many 

Maya cities once existed. Even still, the ability to collect this data will require further 

research to understand aspects such as the timeline of their creation or destruction. 

Remote sensing and geospatial analysis will therefore play an important role in Maya 
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research in the future since historic satellite images may one day be all that is left of some 

ancient places. 

 

 

 

 

Figure 78: Mask Temple at Lamanai 
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APPENDIX A – PROBABILITY MAP SERIES 
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APPENDIX B – OHIO SOIL SAMPLE MEHLICH-III P VALUES AND PLSR 

PREDICTED P VALUES 

 Mehlich-III PLSR Y Predicted 

V1 8.0 13.197 

V2 38.0 20.958 

V3 28.0 18.922 

V4 14.0 13.108 

V5 14.0 11.137 

V6 12.0 11.770 

V7 15.0 11.749 

V8 6.0 11.219 

V9 25.0 11.198 

V10 12.0 13.893 

V11 25.0 24.450 

V12 18.0 19.922 

V13 7.0 15.304 

V14 17.0 18.922 

V15 14.0 15.036 

V16 7.0 14.998 

V17 10.0 13.233 

V18 4.0 5.579 

V19 12.0 12.011 

V20 4.0 7.336 

V21 15.0 14.649 

V22 32.0 16.093 

V23 18.0 12.004 

V24 24.0 13.656 

V25 16.0 20.938 

V26 21.0 14.368 

V27 22.0 15.375 

V28 39.0 12.891 

V29 22.0 12.139 

V30 4.5 13.244 

V31 8.0 13.383 

V32 6.0 14.981 

V33 17.0 18.501 

V34 13.0 16.534 

V35 10.0 20.036 
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V36 10.0 18.053 

V37 18.0 18.722 

V38 9.0 16.167 

V39 11.0 14.399 

V40 23.0 20.665 

V41 10.0 13.448 

V42 8.0 10.969 

V43 5.0 9.820 

V44 7.0 13.726 

V45 4.0 13.800 
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APPENDIX C – BELIZE SOIL SAMPLE MEHLICH-II P VALUES AND PLSR 

PREDICTED P VALUES 

 Mehlich-II PLSR Y Predicted 

V1 5.3 5.070 

V2 5.0 5.103 

V3 4.8 4.980 

V4 9.4 4.448 

V5 5.3 6.016 

V6 3.9 6.218 

V7 15.1 8.042 

V8 5.1 5.151 

V9 5.7 5.268 

V10 5.4 5.367 

V11 5.3 5.224 

V12 10.1 5.532 

V13 3.8 5.643 

V14 5.7 4.956 

V15 5.7 4.464 

V16 4.7 5.113 

V17 4.5 5.214 

V18 4.3 4.589 

V19 4.0 4.288 

V20 3.6 4.590 

V21 3.7 4.815 

V22 3.1 4.628 

V23 2.5 4.674 

V24 3.7 4.772 

V25 3.3 8.155 

V26 3.7 4.398 

V27 6.3 4.896 

V28 6.0 4.988 

V29 5.9 6.002 

V30 4.0 6.297 
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APPENDIX D – OHIO VNIR PLSR MODEL SUMMARY 

> Ohio_VNIR_pls = plsr(ASD_Ref_P ~ as.matrix(ASD_Ref_VNIR), ncomp = 50, 
data = Oh_VNIR_Spectra, validation="LOO") 
> summary(Ohio_VNIR_pls) 
Data:  X dimension: 131 2151  
 Y dimension: 131 1 
Fit method: kernelpls 
Number of components considered: 50 
 
VALIDATION: RMSEP 
Cross-validated using 131 leave-one-out segments. 
    (Intercept)  1 comps  2 comps  3 comps  4 comps  5 comps  6 comps 
CV        17.78    17.48    16.82    16.66    16.28    16.39    16.97 
adjCV     17.78    17.48    16.82    16.66    16.28    16.38    16.95 
    7 comps  8 comps  9 comps  10 comps  11 comps  12 comps  13 comps 
CV    16.70    16.73    16.18     16.16     16.60     16.11     15.64 
adjCV 16.68    16.73    16.15     16.14     16.56     16.08     15.60 
   14 comps  15 comps  16 comps  17 comps  18 comps  19 comps  20 comps 
CV    15.87     15.51     15.57     15.57     15.79     15.78     15.62 
adjCV 15.84     15.47     15.52     15.53     15.74     15.72     15.56 
   21 comps  22 comps  23 comps  24 comps  25 comps  26 comps  27 comps 
CV    15.62     15.54     15.50     15.54     15.52     15.59     15.60 
adjCV 15.57     15.49     15.45     15.48     15.46     15.53     15.54 
   28 comps  29 comps  30 comps  31 comps  32 comps  33 comps  34 comps 
CV    15.57     15.55     15.57     15.58     15.54     15.53     15.53 
adjCV 15.51     15.49     15.51     15.52     15.48     15.47     15.47 
   35 comps  36 comps  37 comps  38 comps  39 comps  40 comps  41 comps 
CV    15.54     15.51     15.50     15.47     15.46     15.44     15.43 
adjC  15.48     15.45     15.44     15.41     15.40     15.38     15.37 
   42 comps  43 comps  44 comps  45 comps  46 comps  47 comps  48 comps 
CV    15.42     15.42     15.42     15.41     15.41     15.41     15.41 
adjCV 15.36     15.36     15.36     15.35     15.35     15.35     15.35 
   49 comps  50 comps 
CV    15.41     15.41 
adjCV 15.35     15.35 
 
TRAINING: % variance explained 
       1 comps  2 comps  3 comps  4 comps  5 comps  6 comps  7 comps 
X        97.39    98.46    99.26    99.53    99.60    99.65    99.69 
ASD_Ref_P 4.59    14.53    18.95    28.67    36.25    46.62    56.44 
     8 comps  9 comps  10 comps  11 comps  12 comps  13 comps  14 comps 
X      99.79    99.81     99.83     99.84     99.86     99.87     99.88 
ASD_Ref_P 58.68  66.58    71.95     79.26     83.22     85.83     87.96 
           15 comps  16 comps  17 comps  18 comps  19 comps  20 comps 
X             99.89     99.90     99.90     99.91     99.91     99.92 
ASD_Ref_P     90.61     92.72     94.66     95.68     96.76     97.72 
           21 comps  22 comps  23 comps  24 comps  25 comps  26 comps 
X             99.92     99.93     99.93     99.93     99.94     99.94 
ASD_Ref_P     98.22     98.59     99.02     99.27     99.42     99.61 
           27 comps  28 comps  29 comps  30 comps  31 comps  32 comps 
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X             99.94     99.94     99.95     99.95     99.95     99.95 
ASD_Ref_P     99.73     99.84     99.90     99.92     99.95     99.96 
           33 comps  34 comps  35 comps  36 comps  37 comps  38 comps 
X             99.96     99.96     99.96     99.96     99.96     99.96 
ASD_Ref_P     99.97     99.98     99.99     99.99    100.00    100.00 
           39 comps  40 comps  41 comps  42 comps  43 comps  44 comps 
X             99.97     99.97     99.97     99.97     99.97     99.97 
ASD_Ref_P    100.00    100.00    100.00    100.00    100.00    100.00 
           45 comps  46 comps  47 comps  48 comps  49 comps  50 comps 
X             99.97     99.97     99.98     99.98     99.98     99.98 
ASD_Ref_P    100.00    100.00    100.00    100.00    100.00    100.00 
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APPENDIX E – OHIO LWIR PLSR MODEL SUMMARY 

> summary(Ohio_LWIR_pls) 
Data:  X dimension: 131 2231  
 Y dimension: 131 1 
Fit method: kernelpls 
Number of components considered: 50 
 
VALIDATION: RMSEP 
Cross-validated using 131 leave-one-out segments. 
    (Intercept)  1 comps  2 comps  3 comps  4 comps  5 comps  6 comps 
CV        17.78    17.77    17.53    16.99     16.6    16.15    15.38 
adjCV     17.78    17.77    17.53    16.99     16.6    16.14    15.38 
      7 comps  8 comps  9 comps  10 comps  11 comps  12 comps  13 comps 
CV      14.39    13.63    13.37     13.70     13.54     13.48     13.42 
adjCV   14.39    13.62    13.36     13.68     13.58     13.45     13.38 
   14 comps  15 comps  16 comps  17 comps  18 comps  19 comps  20 comps 
CV    13.34     13.51     13.53     13.61     13.60     13.62     13.62 
adjCV 13.29     13.46     13.48     13.56     13.55     13.57     13.57 
   21 comps  22 comps  23 comps  24 comps  25 comps  26 comps  27 comps 
CV    13.62     13.62     13.62     13.62     13.62     13.62     13.62 
adjCV 13.57     13.57     13.57     13.56     13.56     13.56     13.56 
   28 comps  29 comps  30 comps  31 comps  32 comps  33 comps  34 comps 
CV    13.62     13.62     13.62     13.62     13.62     13.62     13.62 
adjCV 13.56     13.56     13.56     13.56     13.56     13.56     13.56 
   35 comps  36 comps  37 comps  38 comps  39 comps  40 comps  41 comps 
CV    13.62     13.62     13.62     13.62     13.62     13.62     13.62 
adjCV 13.56     13.56     13.56     13.56     13.56     13.56     13.56 
   42 comps  43 comps  44 comps  45 comps  46 comps  47 comps  48 comps 
CV    13.62     13.62     13.62     13.62     13.62     13.62     13.62 
adjCV 13.56     13.56     13.56     13.56     13.56     13.56     13.56 
       49 comps  50 comps 
CV        13.62     13.62 
adjCV     13.56     13.56 
 
TRAINING: % variance explained 
         1 comps  2 comps  3 comps  4 comps  5 comps  6 comps  7 comps 
X        91.5497   97.798    98.74    99.33    99.59    99.69    99.76 
FTIR_Ref_P 0.9998    5.874    14.94    20.12    28.58    40.43    53.40 
            8 comps  9 comps  10 comps  11 comps  12 comps  13 comps 
X             99.82    99.83     99.85     99.88     99.89     99.90 
FTIR_Ref_P    63.55    73.53     80.46     86.85     94.19     96.17 
            14 comps  15 comps  16 comps  17 comps  18 comps  19 comps 
X              99.90     99.91     99.91     99.91     99.91     99.92 
FTIR_Ref_P     98.74     99.50     99.86     99.96     99.99    100.00 
            20 comps  21 comps  22 comps  23 comps  24 comps  25 comps 
X              99.92     99.92     99.92     99.92     99.92     99.92 
FTIR_Ref_P    100.00    100.00    100.00    100.00    100.00    100.00 
            26 comps  27 comps  28 comps  29 comps  30 comps  31 comps 
X              99.92     99.93     99.93     99.93     99.93     99.93 
FTIR_Ref_P    100.00    100.00    100.00    100.00    100.00    100.00 
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            32 comps  33 comps  34 comps  35 comps  36 comps  37 comps 
X              99.93     99.93     99.93     99.93     99.93     99.94 
FTIR_Ref_P    100.00    100.00    100.00    100.00    100.00    100.00 
            38 comps  39 comps  40 comps  41 comps  42 comps  43 comps 
X              99.94     99.94     99.94     99.94     99.94     99.94 
FTIR_Ref_P    100.00    100.00    100.00    100.00    100.00    100.00 
            44 comps  45 comps  46 comps  47 comps  48 comps  49 comps 
X              99.94     99.94     99.94     99.94     99.95     99.95 
FTIR_Ref_P    100.00    100.00    100.00    100.00    100.00    100.00 
            50 comps 
X              99.95 
FTIR_Ref_P    100.00 
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