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Abstract

TOPOLOGICAL METHODS FOR EVOLUTION EQUATIONS

Thomas Stephens, PhD

George Mason University, 2016

Dissertation Director: Dr. Thomas Wanner

In this dissertation we develop a framework for rigorously computing the Conley index

of isolated invariant sets for flows generated by finite-dimensional systems of ordinary dif-

ferential equations ẋ = f(x), where f : Rn → Rn. Our main contribution in this area is the

characterization of isolating blocks in terms of the level sets and superlevel sets of two real-

valued functions, u, v : Rn → R. The functions u and v incorporate geometric quantities

computed on the boundary of proposed isolating blocks and relate them to local behavior

of the vector field f . In order to obtain numerically rigorous results in this area, we have

developed a new tool for computing superlevel sets of real-valued functions u : Rn → R

that guarantees our superlevel set approximations are homotopy equivalent to the actual

superlevel sets we are interested in. This new tool is presented as the first logical half of

this document, as it is a significant advance in its own right.

Our work makes use of basic differential geometry on piecewise smooth manifolds, ex-

ploits the interplay between flows and the topology of the underlying phase space (provided

by the Ważewski theorem), and employs interval arithmetic and automatic differentiation.

We provide full details for a collection of algorithms which enable the practitioner to easily

apply our framework to a wide variety of problems in the theory of dynamical systems.



Several examples are provided showing the relative simplicity of our approach over earlier
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efforts.
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Introduction

In this dissertation we provide computational tools to address questions that are usually only

investigated in an abstract setting. Our algorithms use rigorous numerics to provide rapid

and reliable results for a broad range of practical applications. In Chapter 2 we correctly

determine topological features of α-superlevel sets N≥α(Ω, u) := {x ∈ Ω : u(x) ≥ α}, for

differentiable functions u : Ω ⊂ Rn → R, and values α ∈ R which are regular for u. In

Chapter 3 we piece together a start-to-finish workflow for computing the Conley index for

isolated invariant sets for flows. A common strategy in both chapters is the use of indirect

methods to achieve qualitative results. For example, rather than directly computing local

metric information about superlevel sets, we use first derivative information to compute

monotonicity behavior on entire regions R ⊂ Ω and relate that to topological features of

N≥α(R, u). We leverage this algorithm in Chapter 3 where we characterize isolating blocks

B ⊂ Rn through level sets and superlevel sets of smooth functions u, v : ∂B → R. Isolating

blocks are compact sets in the phase space of a system of ordinary differential equations

ẋ = f(x) which hold interesting behavior of the system strictly within their interior, intB.

As a result, we obtain computer-assisted proofs of dynamical behavior within B using the

Conley index, while never actually directly computing solutions of the system.

The work in Chapter 2 culminates in a stand-alone tool that provides a numerically

rigorous approximation to sublevel and superlevel sets of differentiable functions u : Rn →

R, using a CW complex as the underlying data structure. We present the tool as Algorithm

(V) in §2.3.4, and use much of Chapter 2 to develop strategies to avoid several limitations

that are found in previous attempts at this task. In §2.2 we review recent work that is

closely related to our current effort, and point out where we have extended previous work
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or departed from what have been persistent limitations. In Chapter 2 we are able to: (1) Use

interval range enclosures to obtain homotopically equivalent approximations to N≥α(Ω, u),

(2) Avoid nearly all grid alignment failures by employing a non-uniform subdivision strategy

in the construction of the approximating CW complex (see §2.3.4), (3) Obtain the most

general collapsibility conditions that we are aware of, resulting in fewer required subdivisions

and ultimately a lower computational cost (see §2.4.3), and (4) Lower the burden on the user

by using automatic differentiation for all derivatives required by the procedure at runtime

(see §2.3.2), which means that while Algorithm (V) makes repeated use of ∇u, the user only

needs to provide a callable expression for u (see Equation (2.6) in §2.5.1 for an example

where providing a callable expression for ∇u could easily introduce a transcription error).
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Figure 1.1: Homotopy equivalent approximations to superlevel sets for real valued func-
tions. The top figures show the output from common level set approximation tools, such as
contourf() found in MatLab or Python’s numerical libraries. The bottom figures show our
homotopy equivalent approximations to these superlevel sets. We use rectangular, nonuni-
form subdivisions of the domain and homotopy invariants are easily computable from the
resulting data structure.

The goal of constructing Algorithm (V) in Chapter 2 has been to accurately and conve-

niently compute the topological features of superlevel sets of real-valued functions u which

arise in applications ranging from partial differential equation models for pattern formation

in materials science, to computing persistent homology in data analysis. We show the out-

put of the algorithm run on several benchmark examples in §2.5, along with corresponding

Betti numbers computed directly from the resulting data structures as an example of the

type of topological information that is immediately computable upon successful completion

of the algorithm.

Chapter 3 assembles a convenient and numerically rigorous computational framework for
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obtaining the Conley index of isolated invariant sets for flows on Rn. The basics of Conley

index theory were developed in an abstract setting over several years during the 1970’s (see

[13], [12]), and only recently have there been serious computational attempts at realizing its

most practical object – the isolating block. An isolating block is a compact neighborhood

B ⊂ Rn that satisfies conditions relating how the flow behaves on the boundary of the block.

In particular, the set B− ⊂ ∂B where the flow immediately exits B in forward time, must

be closed, and at points p ∈ ∂B for which a section of some orbit is tangent to B, that orbit

section must be exterior to the block, except at p ∈ ∂B. If a particular compact set B can be

shown to be an isolating block for a flow, then Conley index theory allows coarse statements

to be made regarding bounded invariant sets for the flow which are contained strictly within

the interior of the block. We use the homological definition of the Conley index in this work

as it is relatively simple to compute and is often strong enough to deliver the results we

seek. The (homological) Conley index is the relative homology group sequence H∗(B,B−).

In all of our examples this can simply be thought of as a topological description of the

quotient space B/B−.

Isolating blocks have analogy with the admissible sets in the Brouwer degree in the sense

that computations which are made on the boundary of the block (admissible set) may reveal

coarse information about the maximal invariant set in the interior of the block (where in

the Brouwer degree case, the boundary of the admissible set may carry information about

the existence of zeros within the admissible set). The analogy to the Brouwer degree goes

further in that the Conley index is stable with respect to perturbations of the maximal

invariant set inside, and for any particular isolated invariant set there exist many compact

sets B which satisfy the conditions of being an isolating block. These last two features open

the door for rigorous computational approaches to resolving isolating blocks.

The major conceptual contribution of Chapter 3 is the characterization of isolating

blocks through the level and superlevel sets of smooth functions u, v : ∂B → R. The first

step of our strategy is a step away from the existing literature – in which we parameterize

the boundary of a compact set ∂B using a smooth (perhaps piecewise) function r : Ω ⊂

4



Rn−1 → ∂B ⊂ Rn (for example, using r : [0, 2π] × (0, π) → ∂B defined by r(ϕ, θ) =

(cosϕ sin θ, sinϕ sin θ, cos θ), to parameterize the boundary of a ball in R3). The functions

u and v capture geometric information about how the flow generated by a vector field

f : Rn → Rn behaves on ∂B. The geometric picture is this: The zero-set of u identifies

points p ∈ ∂B where f(p) is tangent to ∂B (u is simply the scalar product of the vector

field with an outward normal vector of B). The function v is a local comparison between

a section of the orbit through p and a curve γ ⊂ ∂B through p, where γ′(p) = f(p) (the

function v involves the evaluation of the second fundamental form on TpB along the direction

determined by f(p), so the curve γ is more of an interpretation of the information provided

by the second fundamental form rather than an explicit feature at this step). We construct

the function v as a smooth, real valued indicator on all of ∂B, taking positive values where

orbits curve away from the manifold in both directions, and negative values where orbits

curve into the manifold in both directions. Figure 1.2 is an illustration of the geometric

setup provided by u and v. The characterization of isolating blocks, Theorem 3.5.4 in §3.5,

can now be stated as follows: For a vector field f : Rn → Rn which generates a global flow

ϕ : R× Rn → R, and a compact set B ⊂ Rn whose boundary is a smooth codimension one

manifold parameterized by r : Ω ⊂ Rn−1 → ∂B, we have that B is an isolating block for ϕ

provided that zero is a regular value for u, and the zero-set of u is a subset of the strictly

positive superlevel set of v.
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Figure 1.2: The left panel shows the evaluation of the exit set function u : ∂B → R. Dark
blue indicates positive values of u, revealing where the vector field points outward from B,
and light gray indicates the regions of ∂B where the vector field points inward. The red
point indicates a point p ∈ ∂B where f(p) is tangent to ∂B (so u(p) = 0), and the space
curve shows a section of the orbit through p. The right panel shows the comparison of the
orbit section with the shape of the manifold along a curve γ ⊂ ∂B through p, indicated by
the dashed curve, where γ′(p) = f(p). In this case we have v(p) > 0 for the tangency test
function v : ∂B → R.

The major technical contribution of Chapter 3 is the bootstrapping of Algorithm (V)

from Chapter 2 to rigorously establish user-defined compact sets as valid isolating blocks.

We develop this new procedure as Algorithm (IB) in §3.6, and note that successful comple-

tion of (IB) guarantees that zero is a regular value for u, and guarantees that the set B− is,

indeed, closed.

We propose several candidate isolating blocks for flows generated by ordinary differen-

tial equations in R3 in §3.7, and provide the full output of the isolating block validation

algorithm (IB), including in a case where the algorithm fails to validate a candidate block.

A major benefit of having smooth indicator functions u and v defined on all of ∂B is that

even in cases where the algorithm fails, we are able to recover useful information about how

it failed. The example in §3.7.2 shows how we can use the information obtained from u and

v on an invalid block to construct a new candidate block which does pass the validation

algorithm.
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Chapter 2: Homotopy Equivalent Approximation of

Superlevel Sets

Let X be a topological space and u : X → R a real-valued function. For a subset Ω ⊂ X,

and α ∈ R, consider the partition of Ω determined by the sets on which u is greater than

α, less than α, and equal to α. We make the following

Definition 2.0.1. For the function u : Ω ⊂ X → R, denote

the α-superlevel set of u by N≥α(Ω, u) := {x ∈ Ω : u(x) ≥ α} ,

the α-sublevel set of u by N≤α(Ω, u) := {x ∈ Ω : u(x) ≤ α} , and

the α-level set of u by Nα(Ω, u) := {x ∈ Ω : u(x) = α} .

2.1 Sublevel and Superlevel Sets in Context

Sublevel and superlevel sets are a convenient tool for encoding information. For example,

consider the card game Hearts. This is a game of strategy where you, as a player, must

manage your acquisition of so-called penalty cards as the game unfolds. At the start of the

game you have two basic winning strategies to choose from: (1) trying to avoid collecting

penalty cards, because each one hurts your score; or (2) trying to collect all of the penalty

cards, called shooting the moon, which is considered a feat and is rewarded by passing the

penalties onto your opponents. If you are forced to collect a penalty card (or two) during

the first few hands, then you will find yourself in the position of being able to waver between

the avoidance strategy and shooting the moon. Of course, whatever strategy you choose, at
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some point during the game it becomes a mathematical impossibility to switch strategies

and still expect to win – but, as a player, it is not clear at precisely which point in the game

this tipping point occurs.

α= 0 α= 3. 0 α= 3. 5

Figure 2.1: Approximations to superlevel sets of the function u(x) = −(x21−1)2−x22 + 4 on

Ω ⊂ R2. The darkened regions depict N≥α(Ω, u), and correspond to the winning strategy
space in the Hearts example. Notice that α = 3.0 is a critical value for u in the sense of

Definition 2.1.1. Figure 2.3 shows approximations to N≥0(Ω, u) and N≥3.5(Ω, u) which are

homotopy equivalent to N≥0(Ω, u) and N≥3.5(Ω, u), respectively.

Consider the space Ω ⊂ R2 of all strategies, or possible ways to play a game of Hearts,

including ways to lose. Next, consider a model u that assigns a value to these strategies given

by the continuous and differentiable function u : Ω→ R, given by u(x) = −(x21−1)2−x22+4.

Let α ∈ [0, 4] track the stage of the game such that α = 0 corresponds to the start of the

game and α = 4 marks the end of the game. Finally, let {x ∈ Ω : u(x) ≥ α} denote the

set of winning strategies, and {x ∈ Ω : u(x) < α} the set of losing strategies at the point

in the game corresponding to α.

Denote the best avoidance game play by the point (−1, 0) ∈ Ω, and correctly shooting

the moon by (1, 0) ∈ Ω (see Figure 2.1). Then at the beginning of the game N≥0(Ω, u) is

a connected set - you, as a player, could conceivably start with a plan to shoot the moon,

and then change your mind for a small increase in α, the whole time maintaining a winning
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strategy. As game play unfolds, switching strategies must be done with increasing care,

and eventually N≥α(Ω, u) splits into two regions, locking you into your current position

(perhaps one of your opponents has collected a penalty card, making it impossible for you

to shoot the moon).

Many tools are available to give a qualitative and approximate geometric picture of

sublevel and superlevel sets. In the Hearts example one could imagine plotting contours of

u for more values of the parameter α than are shown in Figure 2.1, which would begin to

yield a dynamic picture of how the family of superlevel sets N≥α(Ω, u), i.e. the sequence of

winning strategy spaces, becomes narrowed, and then disjoint as α ranges through [0, 4] ⊂ R.

This is useful, and it opens many lines of investigation into the game of Hearts, but at some

point, you, as the player, are going to want a definitive answer to the question, “Is it possible

to switch strategies right now and still have a shot to win?”

Figure 2.2: Two snapshots of the phase-field variable u on the cube [0, 1]3, where u(t, x)
describes the distribution of one of the two monomers in a diblock copolymer. Letting
monomer A be represented by blue, and monomer B be represented by red, we see that the
regions of monomer A can form complicated patterns, and likewise for monomer B (monomer
B, partially shown using red in these figures, fills the voids formed by the complement of
the blue ‘tubes’ in this image). The difference between the left and right panels is in the
relative concentrations of A and B in the copolymer itself.
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This is a question about the topology of N≥α(Ω, u). In this case we are talking about

the path-connectedness of N≥α(Ω, u). This model of Hearts is not a very realistic example,

consider the patterns that are formed during microstructure evolution as described in [38],

and illustrated in Figure 2.2. In this case, a smooth function u : [0, 1]3 ⊂ R3 → R is used

as a phase-field variable to represent the distribution of two joined monomers, A and B,

which together form a diblock copolymer in the cube [0, 1]3 ⊂ R3. A free energy functional

is described, and subsequently minimized, in order to drive u(t, x) toward the values −1

and +1 so that the pointwise evaluation of u(t, x) can be interpreted as measuring the

concentration of one of the monomers, say monomer A, at x ∈ [0, 1]3. Then u(t, x) ' +1

indicates that a neighborhood of x ∈ [0, 1]n is currently occupied by only the monomer A,

and u(t, x) ' −1 indicates pure monomer B at this x ∈ [0, 1]n. With this description of

the distribution of monomers in physical space, we can measure features such as cavities,

inclusions, connected components formed by one of the monomers by considering the sets

N≥α([0, 1]3, u) for α ∈ [−1, 1]. The Betti numbers of N≥α([0, 1]3, u) are the computable

topological invariants of interest in this case. We point out that the phase-field variable u

is the solution to a nonlinear partial differential equation, so sets of the form N≥α([0, 1]3, u)

can only be approximated from discrete solution data. See [38], and the references therein,

for a thorough explanation of how computational algebraic topology is being used in modern

materials science.

Typical tools that generate these geometric features (contour lines or isosurfaces) are

not designed to deliver easily quantifiable topological information, and are not adequate

to answer these questions rigorously for several reasons. First, these tools are generally

designed to optimize convenience of use over numerical rigor, and they do an exceptionally

good job to quickly deliver qualitative information. Additionally, the data structure to

compute topological invariants is generally not available (where topological invariants refer

to homotopy invariants, see §2.1.1). And finally, they are not generally useful above three

dimensions due to obvious visualization challenges.
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In this chapter we develop a new tool to rigorously obtain homotopy invariants of sets

N≥α(Ω, u). Our method accurately represents the set N≥α(Ω, u) using a data structure

on which homotopy invariants are computable, and is implemented for general finite di-

mensional domains Ω ⊂ Rn. Over the next several sections we will detail the construction

of a rectangular cell complex cmplx which approximates N≥α(Ω, u), where Ω ⊂ Rn is a

rectangular domain and u : Ω→ R is a C1 function having α as a regular value. Theorem

2.4.4 guarantees that the positive cells in cmplx form an approximation to the α-superlevel

set N≥α(Ω, u) which is homotopy equivalent to N≥α(Ω, u). Figure 2.3 shows an example

of the cell complex cmplx computed for the Hearts domains with α = 0 and α = 3.5 (cf.

Figure 2.1). More examples can be found in §2.5.

−2 2
x

−2

2

y

α= 0. 0
u<α; u>α; u monotone

−2 2
x

−2

2

y

α= 3. 5
u<α; u>α; u monotone

Figure 2.3: Approximations to N≥0(Ω, u) and N≥3.5(Ω, u) for u(x1, x2) = −(x21 − 1)2 −
x22 + 4 which are homotopy equivalent to N≥0(Ω, u) and N≥3.5(Ω, u), respectively. In each
image the approximate contours of u have been overlayed onto the rectangular cell complex
approximation, the heavy line is the α-level set of u.
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2.1.1 Regular Values and the Topology of Superlevel Sets (briefly)

Prior to developing a strategy to compute superlevel sets for C1 functions u : Rn → R,

it is essential to gain some understanding of these objects. Consider again the function

u(x1, x2) = −(x21 − 1)2 − x22 + 4 that appeared in the above paragraphs to model strategies

in the game Hearts. Figure 2.1 suggests that the path connectedness of N≥α(Ω, u) changes

as α moves from α < 3 to α > 3, and that the point (0, 0) ∈ Ω is somehow involved in

this topological change. These facts are encoded in the derivative information of u. In

particular, we find that the partial derivatives ∂u
∂x1

(x) = −2x1(x
2
1 − 1), and ∂u

∂x2
(x) = −2x2

of u are zero at x = (0, 0) ∈ Ω (and also at x = (−1, 0) and x = (1, 0)). This motivates the

following

Definition 2.1.1 (Critical points, their indices, and critical values, [28]). For a

differentiable function u : Rn → R, a point p ∈ Rn is a critical point for u if
∂u

∂xi
(x) = 0

for i = 1, . . . , n. The real number u(p) is a critical value for u.

The index of a critical point p for the C2 function u is the number of negative eigenvalues

of the Hessian matrix of u, evaluated at p.

We intend for Figure 2.1 to also suggests that the path connectedness of N≥α(Ω, u)

remains constant as α ranges through the values in, say, [0, 2]. Path connectedness of the

superlevel sets is preserved under the deformation that carries N≥0(Ω, u) to N≥2(Ω, u) as

α ranges between 0 and 2. Noticing that no critical points of u are contained in the α-level

sets Nα(Ω, u) for α ∈ [0, 2], we make the following

Definition 2.1.2 (Regular points and regular values, [26]). For a differentiable func-

tion u : Rn → R, a point p ∈ Rn is a regular point for u if p is not a critical point. A real

number c is a regular value of u if every point of the level set u−1(c) is a regular point of

u. If u−1(c) = ∅, then c is a regular value of u.

A useful result that accompanies this definition is

12



Theorem 2.1.3 (Sard’s theorem, [34]). For a k-times continuously differentiable func-

tion u : Rn → R, the set of critical values of u have zero measure in R, provided that k ≥ n.

In particular, the set of regular values of u is dense in R.

This language can now be used to discuss the feasibility of approximating superlevel

sets in an accurate and meaningful way. We use the terms accurate and numerically rigor-

ous somewhat interchangeably to refer to our numerical approximations to sets of the form

N≥α(Ω, u) for C1 functions u : Rn → R. That is to say, our method guarantees that the

approximation has the same path connectedness properties and has isomorphic homology

and cohomology groups as the actual superlevel set. Intuitively we can think of our ap-

proximations as being equivalent to the actual superlevel set up to a large class of smooth

deformations, the homotopies.

Definition 2.1.4 (Homotopy and deformation retract, [20], [9]). Let X and Y be

topological spaces. A homotopy is a family of continuous maps ht : X → Y , t ∈ [0, 1], such

that the associated map h : [0, 1]×X → Y given by h(t, x) = ht(x) is continuous.

A subspace A ⊂ X is called a deformation retract of X if there is a homotopy r : [0, 1]×X →

X such that r(0, x) = x, r(1, x) ∈ A, and if r(1, a) = a for all a ∈ A. The homotopy r is

called a deformation retraction. If r(t, a) = a for all t ∈ [0, 1] and a ∈ A, then r is a strong

deformation retraction, and A is called a strong deformation retract of X.

In Section 2.4 we explicitly construct a vector field on Rn which will generate a strong

deformation retraction from N≥α(Ω, u) onto a lower dimensional subset of Ω. The usefulness

of this map is that it preserves homotopy type.

Definition 2.1.5 (Homotopy equivalence, [9]). Two maps f, g : X → Y are homotopic

if there exists a homotopy h : [0, 1] ×X → Y such that h(0, x) = f(x) and h(1, x) = g(x)

for all x ∈ X. If f is homotopic to g, we write f ∼ g.

A map f : X → Y is said to be a homotopy equivalence if there exists a map g : Y → X

such that g ◦ f ∼ idX and f ◦ g ∼ idY . In this case the spaces X and Y are said to be
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homotopy equivalent or to have the same homotopy type, which is denoted by X ∼ Y .

That covers the accuracy part, now we consider when homotopy equivalent approxima-

tions are meaningful. We hope to make it clear that seeking topological information about

the α-superlevel set when α is a critical value is not meaningful in a practical sense. We

saw that u(x1, x2) = −(x21 − 1)2 − x22 + 4 has α = 3 as a critical value (with critical point

p = (0, 0) having index 1 in the sense of Definition 2.1.1), and that for arbitrary ε > 0, the

topology of N≥3−ε(Ω, u) and the topology of N≥3+ε(Ω, u) are different. Thus we should

expect that any numerical inaccuracy has the potential to alter the topology of the set

N≥3(Ω, u), regardless of the approximation technique. When u is a model of some physical

phenomenon, or derived from a model of some phenomenon, or is in any way connected

with reality, then we would like to have that our results are correct even for inaccuracies in

u or in the level α. We offer Figure 2.4 as an example of our method applied to N≥α(Ω, u)

when α is very near a critical value.
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Figure 2.4: The number α = 3.0 is a critical value for the function u(x1, x2) = −(x21 −
1)2 − x22 + 4, and corresponds to the index-one critical point p = (0, 0). This figure shows

a zoomed-in view of N≥α(Ω, u) near the origin for α on two sides of 3.0. As expected, the

topology ofN≥α(Ω, u) changes as αmoves through the value 3.0, and our algorithm correctly

captures that change (cf. Figure 2.1). Observe that the homotopy type of N≥3+ε(Ω, u) is

a disconnected, two-point space, and that the homotopy type of N≥3−ε(Ω, u) is that of a
one-point space. This is consistent with the Attachments theorem, Theorem 2.1.8.

We next state the Regular Level Set theorem which establishes the geometric intuition

that when u : Rn → R is a C1 function and α is a regular value for u, then the α-level

sets of C1 functions u : Rn → R are C1 submanifolds of dimension n − 1. This result is a

consequence of the Implicit Function theorem, and guarantees that the α-level sets are the

boundaries of α-superlevel sets, have measure zero as subsets of Rn, and that these surfaces

do not have self intersections, corners, cusps, or other ‘unstable’ configurations.

Theorem 2.1.6 (Regular Level Sets, [26]). Every regular level set of a smooth map

between smooth manifolds is a properly embedded submanifold whose codimension is equal

to the dimension of the codomain.

In the Hearts example we can see that, away from α = 3 (and away from α = 4),

small changes in α do not change the homotopy type of N≥α(Ω, u). In fact, the Regular
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Interval theorem, Theorem 2.1.7, guarantees this to be the case when α is chosen from an

interval that contains no critical values of u ∈ C1. Furthermore, from Sard’s theorem we

see that critical values are easy to miss – this u has only two. A meaningful numerical

approximation to a superlevel set N≥α(Ω, u) = {x ∈ Ω : u(x) ≥ α} will require: (1) some

flexibility in resolving1 the membership condition u(x) ≥ α on x ∈ Ω; and (2) a reasonable

expectation of finding enough regular values for u. Theorems 2.1.3 and 2.1.7 combine to

justify our efforts.

Theorem 2.1.7 (Regular Interval theorem, [28]). Let u : Ω → R be a smooth real-

valued function on a manifold Ω. Let α < β and suppose that the set u−1[α, β], consisting

of all p ∈ Ω with α ≤ u(p) ≤ β, is compact, and contains no critical points of u. Then

N≥α(Ω, u) is diffeomorphic to N≥β(Ω, u). Furthermore, N≥α(Ω, u) is a deformation retract

of N≥β(Ω, u), so that the inclusion map N≥α(Ω, u) ↪→ N≥β(Ω, u) is a homotopy equivalence.

We close this section with a result from Morse theory that we will not use, but would

be remiss to leave out of this discussion. Together with Theorem 2.1.7, it completely

characterizes the relationship, up to homotopy equivalence, between the sets N≥α(Ω, u)

and N≥β(Ω, u) when we know about the gradient of u on the interval [a, b] 3 α, β.

Theorem 2.1.8 (Attachments, [28]). Let u : Ω→ R be a smooth function, and let p be a

non-degenerate critical point with index λ. Setting u(p) = α, suppose that u−1[α− ε, α+ ε]

is compact, and contains no critical point of u other than p, for some ε > 0. Then, for

all sufficiently small ε, the set N≥α−ε(Ω, u) has the homotopy type of N≥α+ε(Ω, u) with a

λ-cell attached.

2.2 Current State of the Art

The algorithm is the natural extension to work that has been ongoing, in which Wanner,

Kalies, Day, Cochran, and D lotko ([33], [11]) implemented a rigorous, adaptive refinement

1We resolve this condition using interval range enclosures on subsets of Ω, details are given in §2.3.1.
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procedure for approximating superlevel sets based on the concept of deformation retract in

the setting of R2. This chapter can be seen as a capstone to that work in the sense that:

(1) the current algorithm approximates superlevel sets in general finite dimensions; and (2)

we explicitly formulate the deformation retract needed to rigorously establish homotopy

equivalence as a recurrence relation with respect to the domain’s dimension, which turns

out to yield equivalent results when restricted to the plane (see Lemma 2.4.8 in §2.4).

The recent article [23] of Jaquette and Kramar also presents an extension to [33] and [11].

Jaquette and Kramar have the goal of rigorously computing persistent homology for sublevel

sets (essentially superlevel sets of negative u) of [differentiable] functions u : Rn → R. We

establish deformation retracts in a related way as they have, through an application of

Ważewski’s theorem. The main differences between their method and ours are that: (1) our

deformation retract handles more general level set configurations, meaning that we are able

to establish a deformation retract on a coarser subdivision of the domain Ω ⊂ Domain u;

and (2) our subdivisions are more general in that the resulting partition of Ω is non-uniform.

This freedom allows for the possibility for strategic avoidance of grid alignment issues which

will doom any algorithm we can imagine2. While Jaquette and Kramar have successfully

computed persistent homology for complicated functions, their method frequently fails due

to grid alignments. In Section 2.5 we present our method applied to their main example for

comparison between the two approaches.

2.3 Rigorously Computing Homotopy Equivalent Approxi-

mations to Superlevel Sets

Let u : Ω ⊂ Rn → R be continuously differentiable on Rn and have α as a regular value.

We present an algorithm that constructs a numerically rigorous inner approximation to

2Grid alignments occur when the adaptive subdivision algorithm places a vertex on the α-level set of the
function u. The algorithm will later attempt to determine if u is either bounded above, or bounded below
zero on that vertex, which will be impossible. The only way out of this situation is to discard the subdivision
and try a different subdivision, which is only possible if subdivisions are nonuniform. See §2.3.4 for relevant
details of our algorithm.
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N≥α(Ω, u) that is guaranteed to be homotopy equivalent to N≥α(Ω, u). The algorithm

acts on a data structure called cmplx which represents a regular CW complex, having

N≥α(Ω, u) approximated by the positive cells in cmplx, called cmplx+. Working with this

data structure makes the output ideal for rapid and direct computation of topological

invariants of N≥α(Ω, u) (see [14] and [24] for resources on computational topology). In

several examples we provide the Betti numbers computed on our approximation cmplx+,

using the software package PHAT [6].

In the next section we make precise our working definition of rectangular CW complex,

and briefly discuss automatic differentiation and interval arithmetic. Section 2.3.4 details

the simple, computable collapsibility conditions and contains the validation algorithm, and

Section 2.4 builds the theoretical framework required to obtain Theorem 2.4.4 establishing

the homotopy equivalence between N≥α(Ω, u) and cmplx+.

2.3.1 Interval Arithmetic

We use the term rigorous to refer to numerical results obtained using interval arith-

metic. This is a well-established extension of floating-point arithmetic in which interval

range enclosures replace function evaluations at points, and interval arithmetic operations

augment standard floating-point operations. In this framework, the fundamental data type

is the interval. Denoting the set of floating point numbers by FP, we have that the point

a ∈ R becomes the interval [a, a] ⊂ FP, where a ∈ FP is the largest floating-point number

less than a ∈ R, and a ∈ FP is the smallest floating-point number greater than a ∈ R.

Usual subsets [a, b] ⊂ R become [a, b] ⊂ FP, and by denoting interval addition, subtraction,
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multiplication, and division by ⊕, 	, ⊗, �, we have that

[a, b]⊕ [c, d] := [a+ c, b+ d]

[a, b]	 [c, d] := [a− d, b− c]

[a, b]⊗ [c, d] := [min(a c, a d, b c, b d),max(a c, a d, b c, b d)]

[a, b]� [c, d] := [a, b]⊗ [1/d, 1/c] if 0 6∈ [c, d]

The evaluation of a function u : R → R at a point a ∈ R translates to the evaluation of

u on the interval [a, a], and yields the interval range enclosure, denoted by the interval

[u([a, a]), u([a, a])] ⊂ FP, which is guaranteed to contain the actual function value u(a) ∈

R. Interval arithmetic keeps track of rounding error and truncation error throughout all

intermediate calculations in order to arrive at an interval which is guaranteed to contain

the true result. The result is said to be rigorous in the sense that numerical errors are

accounted for. Thus, we are able to evaluate functions on entire intervals, obtaining the

interval range enclosure of the function values. As an example, evaluation3 of sinx, where

x is the interval [0, 2π] ≡ [0, 2π], results in the interval [sin([0, 2π]), sin([0, 2π])] ⊂ FP which

obeys the set inclusion [−1, 1] ⊂ [sin([0, 2π]), sin([0, 2π])]. The interval range enclosure of a

function u : Rn → R evaluated on the interval representation of some rectangle R ⊂ Rn will

henceforth be denoted by [u(R)] rather than by [u(R), u(R)]. The interval range enclosure

of a vector is a vector of interval range enclosures. The range enclosure of u on a k-cell R

is denoted by [u(R)], and [∇u(R)] := 〈
[
∂u
∂x1

(R)
]
, . . . ,

[
∂u
∂xn

(R)
]
〉. Interval range enclosures

are subadditive in the sense that for [a, b] ⊂ [c, d] we have that [u([a, b])] ⊂ [u([c, d])].

In what follows we will use interval arithmetic in order to assemble computer-assisted

proofs from the results of our algorithms. A good reference for this is Ratschek and Rokne

3We hasten to note that the interval range enclosure of a function evaluation on an interval may be poorly
behaved in the sense that the range enclosure may be too large. However, the range enclosure is guaranteed
to trap all possible function values on that interval.
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Geometric Computations with Interval and New Robust Methods [31]. We have found

the third-party toolbox INTLAB (The MATLAB/Octave toolbox for Reliable Comput-

ing [32]), and the third-party C++ library C-XSC http://www2.math.uni-wuppertal.de/

~xsc/ along with the accompanying publication [19], to be excellent for interval arithmetic

operations.

2.3.2 Automatic Differentiation

Automatic differentiation takes as input a callable mathematical expression u, together with

a point x ∈ Domain u, and yields a tuple (u(x), u′(x), u′′(x), . . .) of values taken by u and

its derivatives at the point x. The length of the tuple of derivative values is defined by

the user or the limitations of the implementation. As a black-box procedure, automatic

differentiation yields derivative values computed from exact derivative information rather

than any finite difference approximation. The procedure is an efficient way to obtain the

tuple (u(x), u′(x), u′′(x), . . .), and for u : Rn → R, the point x = (x1, x2, . . . , xn) ∈ Rn can

be replaced by [x] =
(
[x1, x1], . . . , [xn, xn],

)
, a vector of intervals enclosing x ∈ Rn, to yield

a procedure that is consistent with the framework of rigorous numerics. While there exist

several strategies for accomplishing this (see [19]), we describe an implementation that is

based on the framework of dual numbers (and implemented in the C-XSC software package,

found at http://www2.math.uni-wuppertal.de/~xsc/).

Automatic differentiation using dual numbers can be thought of as a marriage between

symbolic differentiation and a new arithmetic (the arithmetic of dual numbers). The strat-

egy is to recognize the expression for u as being made up from basic functions, and then

to replace the terms in the expression for u by a tuple (a dual number) which will be a

placeholder for function and derivative values. The assumption is that the derivative in-

formation for the basic functions which make up u is exactly knowable, and between the

calculus rules for taking derivatives, and the laws of the arithmetic for dual numbers, we can

algorithmically compute u and its derivative(s). At this point it is plausible that automatic

differentiation can be exact – the next paragraphs may make clear how it is different from
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symbolic differentiation.

Let h : R → R be a real valued function which has a derivative at the point x ∈ R.

Label the function evaluations at x by a = h(x) and a′ = h′(x), and create the dual number

A := (a, a′), so that (a, a′) = (h(x), h′(x)), and a, a′ ∈ R. Then for A = (a, a′) and another

dual number B = (b, b′), we record the arithmetic for the dual numbers A and B:

A⊕B = (a, a′)⊕ (b, b′) =
(
a+ b, a′ + b′

)
A	B = (a, a′)	 (b, b′) =

(
a− b, a′ − b′

)
A⊗B = (a, a′)⊗ (b, b′) =

(
ab, a′b+ ab′

)
A�B = (a, a′)� (b, b′) =

(
a/b, (a′b− ab′)/b2

)
b 6= 0

When h(x) = x, the identity function, we write X = (x, 1) rather than A = (a, a′), and

when h(x) = c, the constant function, we write C = (c, 0). Again, the first coordinate of a

dual number holds the function evaluation at x ∈ R, and the second coordinate holds the

evaluation of the derivative at x.

Consider the function u : R → R given by u(x) = 7x + 3, and suppose we seek

(u(x), u′(x)) for x = 2. Straight away, basic calculus reveals (u(2), u′(2)) = (17, 7). Using

automatic differentiation, we write u(x) = h(x)g(x) + j(x), where h(x) = 7, g(x) = x, and

j(x) = 3. Expressing u using dual numbers we have

u((x, 1)) = (7, 0)⊗ (x, 1)⊕ (3, 0).

Evaluating this expression at x = 2, we have

(7, 0)⊗ (2, 1)⊕ (3, 0) = (7 · 2, 0 · 2 + 7 · 1) + (3, 0) = (14 + 3, 7 + 0) = (17, 7).

Dual numbers for the elementary functions must be pre-defined by any implementation
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of automatic differentiation, for example, sin((u, u′)) = (sinu, u′ · cosu) must be accessible

at runtime.

Consider the function u(x) = x sinx/(3− x). In this example we will compute the pair

(u(0), u′(0)) using the same method as above. Notice below that the expression u′(x) =

[(x cosx+ sinx)(3− x)− (x sinx)(−1)] /(3−x)2 is never explicitly evaluated at x = 0, and

never actually appears at all.

(
x sinx

3− x
,
d

dx

x sinx

3− x

)∣∣∣∣
x=0

=
(x, 1) sin(x, 1)

(3, 0)− (x, 1)

∣∣∣∣
x=0

=
(x, 1)(sinx, cosx)

(3− x, 0− 1)

∣∣∣∣
x=0

=
(0, 1)(sin 0, cos 0)

(3− 0, 0− 1)

=
(0, 1)(0, 1)

(3, −1)

=
(0, 0)

(3, −1)

= (0/3, (0 · 3− 0 · −1)/9)

= (0, 0)

The efficiency of this method over symbolic differentiation is in the replacement of the

symbolic terms with numerical values (or intervals, as the case may be) as early as possible.

The drawback is that we do not obtain a callable symbolic expression for the derivative

function u′, which may be useful even if that symbolic expression is extremely cumbersome.

It may look like an odd request to simultaneously seek the function value, along with the

value of its derivative(s) at the same point. Generally exercises are phrased as, “Find u′(x)”,

meaning write down an expression for the function u′ : R → R that is the derivative of u.
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From the perspective of an algorithm which behaves according to the point-wise evaluation

of a function, the function and derivative values may be far more relevant than obtaining an

expression which holds for all x, and then evaluating it at a handful of points. For higher-

order derivatives of functions u : R→ R, dual numbers become longer tuples. Additionally,

this framework extends to functions u : Rn → R, see Chapter 12 of [19].

Algorithm (V) uses automatic differentiation to compute the gradients required in Def-

inition 2.3.2, where the data type is an interval in the sense of §2.3.2. This means that the

user only needs to specify the mathematical expression defining u, the domain Ω, and the

regular value α in order to obtain the approximation to N≥α(Ω, u). In Chapter 3, Theorem

3.5.4 requires evaluation of rather complicated functions involving higher order derivatives

of smooth functions f : Rn → Rm (see §3.5.1, for example, where the second fundamental

form on a manifold B ⊂ Rn given by parametric equations in ). Automatic differentiation

is employed here, too, requiring no derivative expressions to be entered by the user.

2.3.3 Rectangular Cell Complexes: A Realization of Regular CW Com-

plexes

Working with a hierarchy of rectangular building blocks to represent a rectangular domain

Ω ⊂ Rn is conceptually simple and computationally practical. Motivated by the desire to

easily compute topological invariants of superlevel sets, we have required that our approx-

imating data structure capture the features of a CW complex, a topological formalism

invented specifically for this purpose. In practice we only require a very concrete realization

of a CW complex, the finite, rectangular cell complex in Rn, which can be described briefly

as follows:

Let [a, b] ⊂ R be a closed interval. If a = b then this interval is degenerate and in this
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case we put [a, b] := {a}, if a < b then [a, b] is said to be non degenerate4. A rectangular k-

cell Rk ⊂ Rn, for k = 0, . . . , n, is the n-fold product of intervals in R such that the product

has dimension k as a subset of Rn, that is Rk := [a1, b1]× · · · × [an, bn] ⊂ Rn where (n− k)-

many intervals are degenerate. Usually zero-cells are called vertices and one-cells are called

edges. Denoting subspaces of k-cells by Rk, an n-dimensional rectangular cell complex

C on the topological space Ω is an ascending collection of subspaces R0 ⊂ · · · ⊂ Rn such

that Ω =
⋃n
k=0Rk, along with the characteristic maps that specify how the subspaces are

attached to one another5.

Given an n-dimensional cell complex C, and a (k > 0)-cell Rk ∈ C, we define the boundary

of Rk to be the set of (k−1)-cells ∂Rk = Rk ∩Rk−1, which is the intersection of the closure

of the cell Rk with set of cells Rk−1 ⊂ C, and for k = 0 we put ∂R0 := ∅. The co-boundary

of Rk is the set of (k+1)-cells in the intersection of the closure of Rk with Rk+1, which is the

empty set for k = n. These intersections must be taken with respect to the characteristic

maps that specify how the subspaces are attached to one another. The dimension of a cell

complex is defined by the highest dimensional cell contained in the complex. A subcomplex

is a subset of C which satisfies the properties to be a cell complex. The k-skeleton of the

n-dimensional cell complex C is the union of all cells in C of dimension k or lower. The

k-skeleton of the cell Rn ∈ C is the union of all cells in C of dimension k or lower which

intersect the closure of the cell Rn. In our applications, all cells are taken to be closed, so

the k-skeleton of a cell complex C forms a subcomplex, and the k-skeleton of a cell Rn forms

a subcomplex.

4Our data type for the implementation represents a closed interval, so we choose to construct rectangular
cell complexes from closed intervals. CW complexes are usually described using open sets. The only point
of confusion within this writeup is that degenerate open intervals (a, a) might be thought of as empty, which

can be remedied by specifying the point {a} when needed.
5Strictly speaking, characteristic maps act on copies of simple reference sets (the closed unit disc Ek,

open unit disc Uk, and the (k − 1)-dimensional unit spheres Σk−1 ≡ ∂Uk, for k = 1, . . . , n), and specify

their placement into the Hausdorff space Ω that is getting the CW complex structure (see Chapter 4 of

[27]). Our description skips a step by naming our reference sets by the coordinates they will have in the
topological space Ω. The only job left for our ‘characteristic maps’ to do is to specify how k-cells attach
to (k − 1)-cells, for k = 1, . . . , n (which they always do in the simplest fashion, namely by matching up

coordinates). Keeping the language of characteristic maps allows us to keep the hierarchical structure of our
building blocks at the forefront, and using already-mapped reference sets hides a potentially confusing layer
of abstraction.
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As an example, consider putting a cell complex structure on the topological space [0, 1]×

[0, 2] ⊂ R2, which is just a patch in the plane. Using open cells to emphasize the characteris-

tic maps, in the simplest case the vertex set isR0 = {{0}×{0} , {0}×{2} , {1}×{0} , {2}×{1}},

the set of edgesR1 = {(0, 1)×{0} , {1}×(0, 2), (0, 1)×{2} , {0}×(0, 2)}, and the set of two-

cells contains just one element, R2 = {(0, 1)×(0, 2)}. Then the subspaces are attached to

one another in the simplest way – four characteristic maps attach the four vertices to the

points {(0, 0), (1, 0), (0, 2), (1, 2)} ⊂ R2, a single characteristic map attaches two vertices to

an edge, since there are four edges this requires four maps. Finally, a single characteristic

map attaches all four edges to the single two-cell.

It will quickly become evident in Section 2.3.4 that the most general adaptive refinement

of a rectangular set Ω is also the most computationally efficient. The geometric minimum

number of primary faces that a (k > 0)-dimensional rectangle can have is 2k. Requiring

rectangular (k > 0)-cells in cmplx to always have 2k primary faces would introduce un-

necessary refinements6. At the same time, the existence of a deformation retraction on a

k-cell Rk is dependent on fundamentally subadditive information (namely, interval range

enclosures) that must be computed on each element of its (k − 1)-skeleton. Because more

general refinements will lead to a larger (k − 1)-skeleton, it is sometimes profitable to have

a simple surrogate representation for the cell Rk. To this end we take the idea from the

example in the previous paragraph and introduce the following

Definition 2.3.1 (Simple n-dimensional Rectangular Cell Complex S). Given a

closed rectangular n-cell Rn = [a1, b1]×· · ·× [an, bn], form the simple n-dimensional rectan-

gular cell complex S by putting Sn = Rn, so that Sn = {Sn}, and for k = n− 1, . . . , 0 put

Sk = {[a1, b1]× · · · × ∂i[aj , bj ]× · · · × [an, bn]}j=1,...,n
i=1,2 . This generates a cell complex where

every k-cell has exactly 2k boundary elements.

6This is analogous to the concept of a conforming mesh. The more general, non-conforming mesh is
allowed so-called ‘hanging nodes’, which have analogy here to extra vertices along the edges of a rectangular
cell, along with the additional higher dimensional cells that would be attached to those new vertices. See
Figure 2.8 for an example of the general refinement obtained by our method.
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2.3.4 Rigorous Validation Algorithm

The goal of the algorithm is to construct an inner approximation to N≥α(Ω, u) which easily

allows for the correct computation of homotopy invariants of N≥α(Ω, u). The strategy is

to adaptively refine the data structure cmplx until one of the three simple, computable,

mutually exclusive conditions in Definition 2.3.2 can be rigorously determined on each cell

Rk ∈ cmplx, for k = 0, . . . , n. The three conditions correspond to positivity, negativity, or

monotonicity of u on cells in cmplx.

The successful completion of the superlevel set validation algorithm (V) yields the refined

cell complex cmplx where each cellRk has been flagged as having been validated (in the sense

of Definition 2.3.2) as positive, negative, or monotone along a coordinate direction ei, where

i ∈ {1, . . . , n}. In Section 2.4 we show that this information is enough to establish a strong

deformation retraction, for each monotone n-cell Rn ∈ cmplx, from Wn := N≥α(Ω, u)∩Rn

onto part of its (n− 1)-dimensional boundary Wn∩∂Rn. This retraction can be performed

at each dimension k = n, n−1, . . . until W k is just the subcomplex of cells from cmplx which

were flagged as having been validated as positive. We call this subcomplex of positive cells

cmplx+, and Theorem 2.4.4 provides a computer-assisted proof that cmplx+ is homotopy

equivalent to N≥α(Ω, u)7.

The algorithm employs interval arithmetic and automatic differentiation in order to

rigorously evaluate the conditions in Definition 2.3.2 on each n-cell Rn ∈ cmplx. Interval

arithmetic and automatic differentiation are discussed briefly in Sections 2.3.1 and 2.3.2.

In order to use interval arithmetic, and to ensure that the resulting CW complex is in a

format suitable for existing computational topology libraries, the domains we consider must

be rectangular, and we only use rectangular cells in the construction of cmplx. That is,

Ω ⊂ Domain u is rectangular, and cmplx is a rectangular CW complex (cf. Sections 2.3.1

and 2.3.2).

7Thus, in theory, following the successive collapse sequence from the n-dimensional cmplx yields cmplx+,
although in practice we just extract cmplx+ as the subcomplex of cmplx having (rigorously obtained) positive
image under u. See Theorem 2.4.4.
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A refinement step occurs when an n-cell Rn in cmplx cannot be validated in the sense

of Definition 2.3.2, below.

Definition 2.3.2 (Validation of n-dimensional cells). Let u : Ω ⊂ Rn → R be a

differentiable function, let Rn be a closed n-cell in the rectangular cell complex representation

of Ω, and let Sn be the simple n-dimensional rectangular cell complex representation of Rn.

We say that Rn is

• validated as positive if inf
[
u(Rk)

]
> 0 for each k-cell in the n-skeleton of Rn,

• validated as negative if sup
[
u(Rk)

]
< 0 for each k-cell in the n-skeleton of Rn,

• validated as monotone along the coordinate direction ei if Rn cannot be vali-

dated as positive or negative, and either inf [∇u(Rn) · ei] > 0 or sup [∇u(Rn) · ei] < 0

for at least one coordinate direction ei, and every lower dimensional cell in the (n−1)-

skeleton of Sn can be validated as either positive, negative, or monotone along at least

one coordinate direction (where Sn is the simple n-dimensional rectangular cell com-

plex representation of Rn, as in Definition 2.3.1).

If none of the three conditions above can be established for a particular Rn ∈ cmplx,

then Rn does not validate. In this case Rn is removed from cmplx, divided into Rn1 and Rn2 ,

and cmplx is reconstructed to include the new, unvalidated cells Rn1 and Rn2 along with the

needed lower dimensional cells.

Dividing an n-cell Rn is done along the longest edge of Rn in order to preserve a

bounded aspect ratio. Additionally, for each division, the division is made at a random

fraction of the length of the longest edge, where that fraction is chosen at runtime from a

user-specified set. For all validations in this paper we have chosen fractions from the set{
1+
√
5

2 − 1, 2− 1+
√
5

2

}
, which causes the two resulting n-cells to have the golden ratio as

the ratio of their new lengths.

Observe that evaluations such as inf [u(Rn)] > 0 only seek information from one side

of the interval range enclosure of u (or of the vector of interval range enclosures of ∇u, as

27



the case may be). Obtaining tight interval range enclosures is a significant computational

challenge. In our case we only need a strategy to determine positivity of a function on an

k-dimensional rectangle, not a tight interval range enclosure. Still, the infimum of a range

enclosure on a full rectangle Rk ∈ cmplx may lie below 0 ∈ R, even though the function

is strictly positive on Rn, and will directly lead to an unnecessary refinement of cmplx.

In order to limit unnecessary refinements, if inf
[
u(Rk)

]
does not return a strictly positive

value, we take time to evaluate inf
[
u(Rk)

]
on partitions of Rk (here viewing Rn as a set

rather than a member of cmplx). Due to the subadditivity of interval range enclosures

(§2.3.1), and the fact that smaller domains tend to yield tighter interval range enclosures, it

is frequently possible to establish positivity on Rn even when inf [u(Rn)] does not return a

strictly positive value. The complete details of this strategy were developed in §3 of [11] as

an extension of work by Skelboe (see references in [11]). In order to take advantage of the

strategy, all evaluations of interval range enclosures over rectangles Rk are recast as tests for

positivity over Rk, so that a check of sup
[
u(Rk)

]
< 0 becomes a check of inf

[
−u(Rk)

]
> 0,

and a check of sup [∇u(Rn) · ei] < 0 becomes a check of inf [−∇u(Rn) · ei] > 0.

The validation procedure continues until all n-dimensional cells have been validated

(which implies all lower dimensions cells have been validated), or a maximum number of

subdivisions have occurred. We point out that successful completion of the algorithm implies

that α is, indeed, a regular value of u, a requirement discussed in §2.1.1. This is established

in the following

Theorem 2.3.3 (α guaranteed to be regular for u). Let Ω ⊂ Rn denote a closed rect-

angular domain, and let u : Ω→ R be a continuously differentiable function. Furthermore,

assume that Algorithm (V) successfully validates the α-superlevel set N≥α(Ω, u). Then α is

a regular value of u.

Proof. Assume to the contrary that the algorithm yields the cell complex cmplx in which

every cell Rn has been validated in the sense of Definition 2.3.2, but α is not a regular value

of u. Then there exists a point x ∈ Ω such that both u(x) = 0 and ∇u(x) = 0. Consider
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the cell Rn ∈ cmplx which contains the point x. On this cell Rn, the function u is neither

entirely positive, nor is it entirely negative, so Rn must have validated as monotone. Recall

that validation of monotonicity on Rn implies that ∇u is bounded away from zero on the

entire closed cell Rn, which contradicts the assumption that ∇u(x) = 0.

The superlevel set validation algorithm (V) proceeds as follows: Input: A

function u : Rn → R, and a rectangular region Ω ⊂ Rn of interest.

Output: Failure, or the n-dimensional rectangular CW-complex cmplx, with cells

flagged as positive, negative, or monotone.

(V0) Initialize an unordered list L to hold cells of dimension n. Create the cell complex

cmplx corresponding to Ω and place the n-dimensional cells of cmplx into L.

While L is not empty:

(V1) Remove an n-dimensional cell Rn from L.

(V2) Construct the surrogate representation Sn for the cell Rn (according to Definition

2.3.1)

(V3) Obtain the n-skeleton of the surrogate Sn, and the n-skeleton of the original cell Rk

(V4) For the skeleton in the set { n-skeleton of Sn, n-skeleton of Rn }, operating first on

the entire n-skeleton of Sk,

For cell C in the current skeleton, lowest dimensional first, obtain the boundary

cells of C:

(a) If C is a zero-dimensional cell, obtain the interval range enclosure [u(C)]. If

0 ∈ [u(C)] the algorithm fails. Otherwise, set the flag of C to positive

(negative) based on inf[u(C)] > 0 (sup[u(C)] < 0)

(b) If the boundary cells of C are all positive (negative), and u can be determined

to be positive‡ (negative) on C, then flag C as positive (negative). Else, if u
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cannot be determined to be positive (negative) on C, divide† Rn and place

the two resulting n-dimensional cells into L

(c) If some boundary cells of C are positive and some negative, and the range

enclosure of a single partial derivative [∇u ·ei] is bounded away from zero on

C, flag C as monotone. Else, if the range enclosure of all partial derivatives

contain zero, divide† the original cell Rn and place the two resulting n-

dimensional cells into L

† Division of an n-dimensional cell Rn occurs across its longest side in order to pro-

mote lowest aspect-ratio configurations. In particular, we follow [11] and put Σ :={
0.618034 ≈

√
5−1
2 , 0.381966 ≈ 1−

√
5−1
2

}
(built from golden ratio). Denoting the

longest side of R by L, we divide R along L according to σL, (1− σ)L, where σ ∈ Σ

is chosen randomly at the time of this division. Each original n-dimensional rectangle

comes with a user-defined maximum number of divisions which is inherited by its

children upon division.

‡ Because the computed range enclosure of a function on a rectangle Rn may be an

interval that contains zero when the actual range of the function is bounded above

(below) zero, we have implemented the strategy described at the end of §2.3.4

We provide pseudocode for the above algorithm below. Figure 2.5 illustrates a step-by-

step demonstration of how successive refinements of cmplx lead to the validation of a 2-cell

in the domain Ω := [−1, 1]× [−1, 1] ⊂ R2, for the function u(x, y) = x2 + y2 − 3/4.
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Algorithm (V) 1
cellComplex validate superlevel set(Differentiable u, coordinates Ω)

Input: Continuously differentiable function u, description of rectangular set Ω ⊂

Domain u ⊂ Rn

1: cellComplex cmplx = new cellComplex(Ω)
2: vector< cell > n cells = cmplx.get n cells()
3: while n cells is not empty, do
4: cell n cell = n cells.pop()
5: if !validates using surrogate(u, n cell), then
6: if n cell.depth < max depth, then

7: cell c1, c2

8: cellComplex new cmplx
9: c1, c2, new cmplx = cmplx.split(n cell)

10: cmplx = new cmplx
11: n cells.append(c1,c2)
12: else

13: terminate program, max depth reached before validation

14: return cmplx
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Subroutine
bool validates using surrogate( Differentiable u, cell n cell)

Input: Continuously differentiable function u, cell cell
1: cellComplex surrogate = new cellComplex(n cell.coordinates)
2: vector< vector< cell >> skeleton of n cell = n cell.get n skeleton()
3: vector< vector< cell >> skeleton of surrogate = surrogate.get n skeleton()
4: for skeleton ∈ {skeleton of surrogate, skeleton of n cell} do
5: for dim = 0, 1, . . . , n do
6: vector< cell > dim skeleton = skeleton[dim]
7: if dim == 0, then
8: for cell in dim skeleton do
9: if inf[u(cell)] > 0, then

10: flag cell as positive
11: else if sup[u(cell)] < 0, then
12: flag cell as negative
13: else
14: throw: α-level set crosses vertex
15: else
16: for cell in dim skeleton do
17: if dim-1 skeleton of cell is all positive & inf[u(cell)] > 0, then
18: flag cell as positive
19: else if dim-1 skeleton of cell is all negative & sup[u(cell)] < 0, then
20: flag cell as negative
21: else if dim-1 skeleton of cell is mixed & has monotone direction(u,cell), then
22: flag cell as monotone
23: else
24: return false
25: return true

Subroutine
bool has monotone direction(differentiable u, cell cell)

Input: Continuously differentiable function u, cell cell
1: for i = 1,. . . ,cell.dim do
2: if cell is thin, then
3: continue
4: if inf[∇u(cell) · ei] > 0 or sup[∇u(cell) · ei] < 0, then
5: return true
6: return false
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(a) Initial cmplx, no valida-
tions

(b) R0 cells validated positive (c) R1 cells validated positive

®+

(d) R2 cannot be validated (e) R2 divided

®+

(f) R1 cannot be validated

(g) R1 divided, R0 validated as
negative

→
↑

(h) Two R1 cells positive, two
validated as monotone

→

(i) R2 validated as monotone

Figure 2.5: Illustration of validation steps which lead to the validation of a single 2-cell
in cmplx. From panel (d) to (e), the single 2-cell in cmplx has been divided, and cmplx
has been updated with new vertices and now contains two 2-cells. The top right 2-cell in
panel (i) has been validated as monotone along the horizontal direction, and this 2-cell will
not be revisited by the algorithm. Beyond panel (i), the algorithm will visit one of the
two remaining 2-cells in cmplx and begin the validation on its 2-skeleton, starting with the
lowest dimensional cells which have not yet been validated.
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2.4 Establishing the Homotopy Equivalence Between N≥α(Ω, u)

and cmplx+

Assume that the validation algorithm (V) has completed successfully and has returned the

cell complex cmplx, where every cell Rk ∈ cmplx, for k = 0, . . . , n, has been validated as

either positive, negative, or monotone along a coordinate direction. It is left to show that

the cell complex cmplx+, consisting of cells in cmplx which have been validated as positive,

is homotopy equivalent to N≥α(Ω, u). This the content of Theorem 2.4.4.

The homotopy equivalence is a consequence of the existence of a strong deformation

retraction performed on individual cells Rn ∈ cmplx. This map will be generated by

a Lipschitz vector field that will be explicitly constructed as a recurrence relation with

respect to the dimension of cmplx, and appears as Equation (2.1). Notice that cells in

cmplx which have been validated as negative do not intersect N≥α(Ω, u), and that cells

which have been validated as positive are contained strictly within N≥α(Ω, u) (these facts

follow from the continuity of u). Thus, the deformation retraction will only be necessary

on n-cells Rn ∈ cmplx which have been validated as monotone along a coordinate direction

in the sense of Definition 2.3.2.

We present the path to establishing the theorem in three logical steps. For an indi-

vidual n-cell Rn ∈ cmplx which has been validated as monotone, we: (1st) Collect

information about u on the n-skeleton of Rn that was learned during the validation algo-

rithm (V); (2nd) Rescale the cell Rn to [0, 1]n, and reorder the basis vectors based on the

direction of monotone increase for u; and (3rd) Leverage the information learned during

the validation to construct a collapsing vector field on Rn, where “collapsing” means that

there exists a strong deformation retraction from the set Wn := N≥α(Ω, u) ∩ Rn onto its

(n− 1)-dimensional boundary, Wn ∩ ∂Rn.
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2.4.1 The δ-collar on which Monotonicity is Guaranteed

Consider a (k > 0)-cell Rk in the n-dimensional cell complex cmplx which has been validated

as monotone along the direction ei in the sense of Definition 2.3.2. The continuity of u

allows for
[
∇u(Rk) · ei

]
to be bounded away from zero on an entire n-dimensional open set

containing Rk. In particular, writing Rk = [a1, b1]× ·× [ai, bi]× · · · × [an, bn], there exists a

δ̃ > 0 such that
[
∇u(Rk) · ei

]
is bounded away from zero on the closed δ̃-collar of Rk, given

by [a1 − δ̃, b1 + δ̃] × · · · × [ai, bi] × · · · × [an − δ̃, bn + δ̃]. We put δ̃min := min δ̃, where the

minimum is taken over all (finitely many) validations that were performed by the algorithm.

Considering again a k > 0-cell Rk in the n-dimensional cell complex cmplx which has

been validated as monotone along the direction ei, observe that some cells in the (k − 1)-

skeleton of Rk may have been validated as negative. Similar to the situation above, for

a cell Rj in the k-skeleton which as been validated as negative, i.e. that sup
[
u(Rj)

]
<

0, the continuity of u allows for sup
[
u(Rj)

]
to be bounded below zero on an entire n-

dimensional open set containing Rj . In particular, writing Rj = [a1, b1] × · × [an, bn],

there exists a δ̂ > 0 such that sup
[
u(Rj)

]
< 0 on the closed δ̂-ball containing Rj , given by

[a1− δ̂, b1+ δ̂]×· · ·× [aj , bj ]×· · ·× [an− δ̂, bn+ δ̂]. We put δ̂min := min δ̂, where the minimum

is taken over all (finitely many) validations that were performed by the algorithm.

We define δ := min
{
δ̃min, δ̂min

}
. The fact that we can extend the monotonicity a

positive distance away from Rk is the essential fact that permits us to seek only a single

direction of monotonicity on any given cell (cf. Definition 2.3.2). The fact that we can

extend the negativity of u to an entire neighborhood of a face Rj allows us to collapse

Wn := N≥α(Ω, u) ∩ Rn onto part of its boundary Wn ∩ ∂Rn using a vector field that is

guaranteed to satisfy∇u·ξ > 0 on Wn. See the figures accompanying Equations (2.2), (2.3),

and (2.4) for a visual representation of how we use δ in the construction of the collapsing

vector field ξ.
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2.4.2 Rescaling Rectangular Cells Rn to [0, 1]n, and Reordering the Stan-

dard Basis

In order to simplify the presentation from this point forward, we rescale cells Rn ∈ cmplx

to the unit cube [0, 1]n. Additionally, suppose the cell Rn ∈ cmplx has been validated as

being monotone along the direction ei. To simplify the notation going forward, we reorder

the standard basis {e1, . . . , en} so that en points in the direction along which u(Rn) is

monotonically increasing, so if the relevant validation step yields inf[∇u(Rn) · ei] > 0, we

put en := ei.

Going down one dimension, if the face Rn−1 which is perpendicular to en is not validated

as negative, then it must have been validated as monotone (it is not possible to have been

both validated as positive on a face Rn−1, and validated as monotone increasing in the

direction perpendicular to this same face). We reorder the remaining basis vectors so that

en−1 points in the direction along which u(Rn−1) is monotonically increasing. If, for some

k > 0, the face Rk−1 is negative, then its boundary will be negative, and the ordering of

the remaining basis elements is irrelevant for our purposes (they just need to preserve the

orientation of the rectangle Rn). To summarize, the direction of increasing monotonicity

for the top-dimensional cell Rn determines the direction en points along, and we follow en

backward, to the face Rn−1 to find the direction along which en−1 points. This should be

made more clear by Figure 2.6. Until now we have distinguished the dimension of a cell

from the direction of monotonicity established on that cell – henceforth we can simply use

the same integer.

2.4.3 The Collapsing Vector Field ξ : Rn → Rn

In this section we construct the vector field ξ which will be used to collapse the α-superlevel

set Wn = N≥α(Rn, u) onto Wn ∩ ∂Rn = N≥α(∂Rn, u), for an arbitrary monotone n-cell

Rn in cmplx. At this stage we are only concerned about making this collapse locally, for an

individual cell Rn ∈ cmplx, so ξ : Rn → Rn is constructed using local information obtained
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during the validation8 of Rn. With this in mind, the vector field ξ should be thought of as

acting on the cube [0, 1]n, and simply having continuous extension to zero outside of [0, 1]n.

The verb collapse is being used here to refer to a strong deformation retraction from Wn

onto Wn∩∂Rn, and this retraction which will be built from the global flow ϕ : R×Rn → Rn

generated by ξ. We use the Ważewski theorem9, stated as Theorem 2.4.3, as a convenient

way to obtain a strong deformation retraction from the vector field ξ.

Definition 2.4.1 (Exit set, [12]). Let ϕ : R × Rn → Rn be a flow. Given W ⊂ Rn, let

W ◦ be the set of points x ∈ W such that, for some positive t, ϕ(t, x) 6∈ W . Let W− be the

set of points x ∈W such that, for any positive t, ϕ([0, t), x) 6⊂W . The set W− is contained

in W ◦ and is called the exit set of W .

Definition 2.4.2 (Ważewski set, [12]). The set W (above) is called a Ważewski set if

the following conditions are satisfied:

(a) If x ∈W and ϕ([0, t], x) ⊂ cl(W ) then ϕ([0, t], x) ⊂W ,

(b) W− is closed relative to W ◦.

Theorem 2.4.3 (Ważewski, [12]). If W is a Ważewski set then W− is a strong deforma-

tion retract of W ◦ and W ◦ is open relative to W .

For an arbitrary monotone n-dimensional cell Rn ∈ cmplx, we rescale Rn to [0, 1]n

according to §2.4.2, and define a point x ∈ Rn by x := (x1, . . . , xn). The vector field

ξ(x) := ξn(x) + εη(x)s(x) is constructed in three parts. The first part, ξn, is defined

recursively, pointing always in some convex combination of directions ei along which u has

been rigorously established to be monotone increasing. The second part is a perturbation of

ξn which points out of the cube [0, 1]n. This perturbation εη(x)s(x) is designed specifically

8More specifically, ξ is constructed using information computed on Sn, the simple n-dimensional complex
representation of Rn.

9The Ważewski theorem plays a major role in Chapter 3, and all of §3.3.2 is devoted to discussing the
strong deformation retraction that we are using here.
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to collapse the α-superlevel set Wn onto its (n−1)-dimensional boundary, N≥α(Ω, u)∩∂Rn,

while simultaneously allowing Wn to be a Ważewski set for ϕ, satisfying W o = Wn, and

having exit set W− = Wn ∩ ∂Rn. Lemma 2.4.8 establishes these facts. Finally, the vector

field ξ is extended continuously from the cube [0, 1]n to all of Rn in such a way that ξ ≡ 0

some distance away from [0, 1]n (the particular details of the extension are unimportant,

but ξ must generate a global flow in order to take advantage of the Ważewski theorem).

The first part of the vector field, ξn : Rn → Rn, is defined as follows :

ξ1(x) = e1

ξk(x) = αk(x)ξk−1(x) + (1− αk(x)) ek

(2.1)

where k = 2, . . . , n, and the scalar-valued functions αk : [0, 1]n → [0, 1] are defined by

αk(x) =



1 for 0 ≤ xk ≤
δ

2

−2

δ
xk + 2 for

δ

2
< xk < δ

0 for δ ≤ xk ≤ 1

(2.2)

δδ
2

e 1
 

e2  

α2 (x)

0

1

The perturbation of ξn which pushes points near the boundary of [0, 1]n onto the bound-

ary ∂[0, 1]n is expressed as εη(x)s(x), with ε > 0. We obtain the scalar-valued function

η : [0, 1]n → [0, 1] from the expression
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η(x) =



0 for ‖x− c‖p < r1

‖x− c‖p − r1
r2 − r1

for r1 ≤ ‖x− c‖p ≤ r2

1 for ‖x− c‖p > r2,

(2.3)

δδ
2

δ
4

δ

η(x) p=8

0

1

where c := (12 , . . . ,
1
2) ∈ [0, 1]n, r1 = 1

2 −
δ
2 , r2 = 1

2 −
δ
4 , and p = 2k for k large enough to

keep the support of η within a δ band near the boundary of [0, 1]n (see figure). The vector

field s : [0, 1]n → Rn is given by

s(x) = ∇
n∑
k=1

(
xk −

1

2

)p
(2.4)

δδ
2

δ

η(x)v(x) p=8

2.4.4 Computer-assisted Proof that N≥α(Ω, u) is Homotopy Equivalent to

cmplx+

Theorem 2.4.4. The cell complex cmplx+ is a strong deformation retract of N≥α(Ω, u),

and consequently cmplx+ is homotopy equivalent to N≥α(Ω, u).
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Proposition 2.4.5 (Coordinatewise representation of ξn). The recurrence relation

ξ1(x) = e1, ξk(x) = αk(x)ξk−1(x) + (1 − αk(x))ek for k = 2, . . . , n, can be written coordi-

natewise as

ξn(x) =

n∏
`=2

α`(x) e1 +

n−1∑
k=2

[
n∏

`=k+1

α`(x) (1− αk(x)) ek

]
+ (1− αn(x)) en. (2.5)

Proof. This can be seen with three simple induction arguments. In what follows we will

simply write βk(x), with k ∈ {1, . . . , n}, to refer to the sums and products of αi(x) which

comprise the individual coefficient functions. Notice that each βk satisfies βk(x) ≥ 0 for

x ∈ [0, 1] by definition.

First we look at the coefficient in front of e1. Establish the base case, n = 2:

ξ2 = α2 ξ1 + (1− α2) e2

= α2 e1 + (1− α2) e2, so that

α2 =

2∏
`=2

α`.

Suppose that this holds for n = k, i.e. that the e1 coefficient of ξk is given by

k∏
`=2

α`. We

use this assumption to show that the e1 coefficient of ξn is given by

n∏
`=2

α` for all n. Indeed,
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put n = k + 1. Then we can write

ξk+1 = αk+1ξk + (1− αk+1)ek+1

= αk+1

(
k∏
`=2

α` e1 + β2 e2 + · · ·+ βk ek

)
+ (1− αk+1) ek+1, so that

αk+1

k∏
`=2

α` =
k+1∏
`=2

α`.

This establishes that the e1 coefficient of ξn is given by

n∏
`=2

α` for all n.

Next we consider the coefficients in front of ek for 1 < k < n. We establish the base

case, n = 3:

ξ3 = α3ξ2 + (1− α3) e3

= α3 (α2 e1 + (1− α2) e2) + (1− α3) e3, so that

α3 (1− α2) =
3∏

`=2+1

α` (1− α2) .

Suppose that this holds for n = m, i.e. that the ek coefficients of ξm are given by

m∏
`=k+1

α` (1− αk). We use this assumption to show that the ek coefficients of ξn are given
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by
n∏

`=k+1

α` (1− αk) for 1 < k < m. Indeed, put n = m+ 1. Then

ξm+1 = αm+1ξm + (1− αm+1)em+1

= αm+1

(
m∏
`=2

α` e1 +
m∏

`=2+1

α` (1− α2) e2 + · · ·

+

m∏
`=m+1

α` (1− αm) em

)
+ (1− αm+1) em+1,

so that

αm+1

m∏
`=k+1

α` (1− αk) =
m+1∏
`=k+1

α` (1− αk) .

This establishes that the ek coefficients of ξn are given by
n∏

`=k+1

α` (1− αk) for 1 < k < n.

Finally, writing ξn = β1 e1 + · · · + βn−1 en−1 + (1− αn) en, we can see that the linear

independence of the basis vectors {ek}nk=1 imply that (1− αn) is the coefficient for en, for

any n.

Lemma 2.4.6. ∇u(x) · (ξn(x) + εη(x)s(x)) > 0 for x ∈Wn

Proof. To see this we first establish ρ > 0 such that u(x) · ξn(x) ≥ ρ for all x ∈ Wn. Next

we note that 0 ≤ η(x) ≤ 1, and that ∇f(x) · s(x) may be less than zero. We then establish

ε > 0 ensure that ∇u(x)·ξn(x)+∇u(x)·εη(x)s(x) ≥ ρ+∇u(x)·εη(x)s(x) remains bounded

above zero for x ∈Wn.

To establish ρ :

Put ξn(x) = β1(x) e1 + · · ·+βn(x) en are other names for the coefficients in the

coordinatewise representation of ξn(x) given in Proposition 2.4.5. We will show
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that
⋃
i=1,...,n supp βi = [0, 1]n in order to establish that x ∈Wn is in supp βk for

some k. Finally we show that if x ∈ supp βk, then ∇u(x) ·ek > 0. Compactness

of Wn = N≥α(Ω, u) ∩ [0, 1]n will yield a ρ > 0 such that ∇u(x) · ξn(x) ≥ ρ > 0

for x ∈Wn.

By Proposition 2.4.5 we can write the inner product ∇u(x) · ξn(x) as

∇u(x) · ξn(x) =
n∏
`=2

α`(x)∇u(x) · e1 +
n−1∑
k=2

[
n∏

`=k+1

α`(x) (1− αk(x)) ∇u(x) · ek

]

+ (1− αn(x)) ∇u(x) · en

We collect the following facts for k = 2, . . . , n:

(i) supp αk(x) is the set [0, 1] × · · · × [0, 1] × [0, δ]
kth

× [0, 1] × · · · × [0, 1]. This

is the definition of αk(x) in Equation (2.2).

(ii) supp (1− αk(x)) is the set [0, 1] × · · · × [0, 1] × [ δ2 , 1]
kth

× [0, 1] × · · · × [0, 1].

Since αk(x) = 1 on [0, 1] × · · · × [0, 1] × [0, δ2 ]
kth

× [0, 1] × · · · × [0, 1], then

(1−αk(x)) is supported on the complement of that set (taken with respect

to the ambient set [0, 1]n).

(iii) supp

n∏
`=2

α`(x) is the set [0, 1]× [0, δ]×· · ·× [0, δ]. The support of this prod-

uct is the intersection of the supports, so supp

n∏
`=2

α`(x) =

n⋂
i=2

supp αi(x).

(iv) supp

n∏
`=k+1

α`(x) is the set [0, 1] × · · · × [0, 1] × [0, δ]
(k+1)st

× [0, δ] × · · · × [0, δ].

This follows from (iii) by taking i from k + 1.
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(v) supp
n∏

`=k+1

α`(x)(1− αk(x)) is the set [0, 1]× · · · × [0, 1]× [ δ2 , 1]× [0, δ]
(k+1)st

×

[0, δ]×· · ·×[0, δ]. This is perhaps most easily seen by writing
n∏

`=k+1

α`(x)(1−

αk(x)) as (1 − αk(x))

n∏
`=k+1

α`(x), and then evaluating the product of the

supports in (ii) and (iv) as the intersection of those supports.

Now,
⋃
i=1,...,n supp βi = [0, 1]n, and in fact

⋃
i=n−1,n supp βi = [0, 1]n, which

can be seen from evaluating (ii) with k = n, and evaluating (v) with k = n− 1.

Thus, for x ∈Wn, we have that x ∈ supp βk for some k = 1, . . . , n.

If x ∈ supp βk for some k ∈ {1, . . . , n} and also x ∈ Wn, then x is in the

δ-collar of the (rescaled) k-cell given by [0, 1]× · · · [0, 1]
kth

× [0, δ]× · · · × [0, δ]. By

the construction of δ in §2.4.1, the k-cell must have been validated as either

monotone or positive. By the reordering described in §2.4.2, that k-cell must

have been validated as monotone increasing along ek. Thus, ∇u(x) · ek > 0

for this k. Compactness of Wn = N≥α(Ω, u) ∩ [0, 1]n, and the nonnegativity of

βk(x), guarantees that there exists a ρ > 0 such that ∇u(x) · ξn(x) ≥ ρ > 0 for

x ∈Wn.

To establish ε :

The continuity of u, along with the compactness of Wn, provide for a finite

M > 0 such that 0 ≤ |∇u(x) · s(x)| < M for x ∈Wn. Put ε =
ρ

2M
.

Then ∇u(x) · ξn(x) +∇u(x) · εη(x)s(x) ≥ ρ− εM > 0 for x ∈Wn.

Notation 2.4.7 (The flow ϕ generated by the vector field ξ). For the Lipschitz vector

field ξ : Rn → Rn, and the evolution parameter t ∈ R, let ϕ : R × Rn → Rn be the flow

generated by ξ.
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Lemma 2.4.8. The vector field ξ : Rn → Rn, given by ξ(x) := ξn(x) + εη(x)s(x), is

collapsing on Wn, meaning that the set Wn := N≥α(Ω, u) ∩ [0, 1]n is a Ważewski set for

the flow ϕ, and that W o = W . Additionally, the exit set W− is the (n− 1)-dimensional set

given by W− = Wn ∩ ∂[0, 1]n.

Proof. The set Wn is closed, so the first condition of Definition 2.4.2 is satisfied. We will

establish the second condition of Definition 2.4.2 by noticing W− is closed when we resolve

W− below. The main content of this theorem is to see that W o = Wn and that W− is

the (n − 1)-dimensional set given by W− = Wn ∩ ∂[0, 1]n – or more plainly, that every

point of Wn gets carried out of Wn in finite time, and only through the portions of the

(n− 1)-dimensional faces of [0, 1]n where u is nonnegative.

To obtain W o = Wn, notice first that W o ⊂ Wn by construction. The fact that

Wn ⊂ W o, i.e. that every x ∈ Wn is pushed out of Wn in finite time, we recall the

LaSalle invariance principle (see [1]). The function −u is a (strict) Lyapunov function for

ϕ on the closed set Wn, since ∇(−u(x)) · ξ(x) < 0 for x ∈ Wn. Suppose there exists an

x ∈ W that is not pushed out of W in finite time, i.e. that ω(x) ⊂ Wn. Then LaSalle

invariance requires that ω(x) ⊂ Γ := {y ∈Wn : ∇(−u(y)) · ξ(y) = 0}, but Γ is empty

because ∇(−u(y)) · ξ(y) < 0 for all y ∈Wn. This shows that all x leave Wn in finite time.

To obtain W− = Wn∩∂[0, 1]n, we have (Wn ∩ ∂[0, 1]n) ⊂W− since points from the (n−

1)-dimensional faces of [0, 1]n leave W immediately under ϕ. To see W− ⊂ (Wn ∩ ∂[0, 1]n),

note that x ∈ W− will not be pushed across any level set line by ϕ (by virtue of ∇u(x) ·

ξ(x) > 0), so can only exit through the boundary of the box where u is nonnegative, i.e.

Wn ∩ ∂[0, 1]n.

Finally we see that W− = Wn ∩ ∂[0, 1]n is closed, being the intersection of two closed

sets, so Wn satisfies the second condition of Definition 2.4.2, hence Wn is a Ważewski

set.
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δ
δ
2

↑ →

→
Figure 2.6: The vector field ξ, from Lemma 2.4.8, applied to the set W 2 = N≥α(Ω, u)∩R2.
Cyan indicates the domain on which u is negative, and blue indicates the domain on which u
is positive. Red arrows indicate the direction of monotonicity established by the algorithm
(V). Some trajectories of the flow generated by ξ are drawn as blue lines moving out of the
rectangle. The right panel is an illustration of Lemma 2.4.8, which establishes the fact that
the two-dimensional blue set W 2 collapses onto the one-dimensional set W 2 ∩ ∂R2.

We are now ready to prove Theorem 2.4.4.

Proof. For an arbitrary n-cell Rn ∈ cmplx which has been validated as monotone along

a coordinate direction, Lemma 2.4.8 establishes that the (n − 1)-dimensional set W− =

Wn ∩ ∂[0, 1]n is a strong deformation retraction of Wn = N≥α(Ω, u) ∩ [0, 1]n. This implies

that the (n − 1)-dimensional set W− is the set of fixed points for the strong deformation

retraction (and is therefore closed), hence all of the information from the original validation

procedure remains true on W−. Furthermore, because the vector field ξ is always increasing

with respect to u, the monotone n-cell Rn has been collapsed onto a subset of the (n− 1)-

dimensional cells in cmplx which have either been validated as monotone, or have been

validated as positive. At this point, all of the results established in this section are valid

for arbitrary (n − 1)-dimensional cells Rn−1 which have been validated as monotone, and

the relevant set to collapse is the (n− 1) dimensional set W− = ∂Wn. For some dimension

k > 0 there will be no more cells Rk from cmplx which have been validated as monotone,

and we are left with cmplx+. As these collapses have all carried the homotopy type of the
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k-dimensional set W k onto the (k−1)-dimensional set W−, the homotopy type of N≥α(Ω, u)

is the same as that of cmplx+.

↑

→
Figure 2.7: The left panel shows a cell R2 from cmplx after a collapse from W 2 onto

W 2 ∩ ∂R2, cf. Figure 2.6. Each cell in cmplx still holds information obtained during the
validation algorithm – in this case two one-cells are seen to be monotone along the directions
indicated by the red arrows (the remaining one-cells have been validated as positive). The

panel on the right is illustrates an application of Theorem 2.4.4, with W 1 := W 2 ∩ ∂R2,

to establish the fact that N≥α(Ω, u) ∩ ∂R2 is homotopy equivalent to the subcomplex of
cmplx+ indicated by the two dark blue edges and three dark blue vertices.
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u < 0; u > 0; u monotone

Figure 2.8: The left panel shows the paraboloid used in this example, with minimum below
the (x, y)-plane. The right panel shows the output of the validation algorithm run on this

paraboloid over a patch Ω ⊂ R2. Cells from the rectangular cell complex cmplx have been
flagged as positive (blue), negative (cyan), and validated as monotone (orange). Theorem
2.4.4 establishes that the 0-superlevel set of the paraboloid on this patch is homotopy
equivalent to the subcomplex cmplx+ of cmplx, indicated in dark blue.

2.5 Examples

2.5.1 A Random Trigonometric Polynomial

The algorithm developed in the recent paper [23] is intended to compute persistent homology

of sublevel sets of real-valued functions u : Rn → R. In §2.2 we described the similarity

between their approach and ours, perhaps most notably the appeal to the Ważewski theorem

2.4.3 to establish the correctness of the approximating complex. While the goal of [23] is

different than ours, we still think it is useful to compare the resulting cellular approximations

obtained by their method with ours. In §8.2 of [23], the random trigonometric polynomial

u(x, y) =
5∑
i=1

5∑
j=1

ai,j,1 sin(2πix) sin(2πjy) + ai,j,2 sin(2πix) cos(2πjy)

+ ai,j,3 cos(2πix) sin(2πjy) + ai,j,4 cos(2πix) cos(2πjy),

(2.6)
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where the coefficients ai,j,k are taken from a normal distribution of mean zero and standard

deviation one, is introduced, and the persistence homology of α-sublevel sets (or α-superlevel

sets of−u) is computed. We have applied our algorithm to the function in (2.6) and obtained

the rectangular cell complex shown in the right panel of Figure 2.9. Two fundamental

differences between their work and ours are that: (1) Our subdivisions result in a non-

uniform refinement of the approximating CW complex cmplx, where the side lengths are

chosen randomly at runtime from the set of fractions defined by the golden ratio, as discussed

in §2.3.4. This differs from the algorithm in [23] in that it permits smaller complexes (fewer

overall cells), and is capable of recovering from grid alignment issues because we are free

to discard a particular subdivision and choose a new subdivision point from a user-defined

set; and (2) Our vector field ξ which establishes the collapse is defined for more general

configurations of W k := N≥α(Ω, u) ∩Rk, for cells Rk ∈ cmplx (cf. our §2.4 and §6 of [23]).

This means that we are able to establish a collapse of W k onto ∂W k more easily, resulting

in fewer subdivisions, ultimately resulting in a smaller approximating complex cmplx. We

provide Figure 2.9 for direct comparison with the method in 2.3.4. We report the number

of cells in the approximating complex in the caption of the figure, and note that, for α = 0,

the validation algorithm (V) completes within twenty minutes, on average, for this example.
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Figure 2.9: The CW complex has 642 cells of dimension two, 1, 778 of dimension one, and
1, 137 cells of dimension zero. The panel on the left is an approximation of the surface for
the function u given by Equation (2.6). The right panel shows positive cells in dark blue,
monotone cells in orange, and negative cells in cyan.

2.5.2 An Atoll-like Superlevel Set

The solution set of the following equation describes a downward-opening paraboloid with

a sagging apex. The example comes from [31], Example 6.12, where it is introduced as an

‘ill-posed’ problem in the sense that its zero-level sets can be made arbitrarily close to one

another, making them difficult to resolve numerically. We use it here because as the distance

between the concentric rings becomes smaller, the height of the positive part of the function

also becomes smaller, and thus more susceptible to numerical errors. The superlevel set is

also curved, which we presume to pose a challenge to rectangular approximation. Let

f(x, y) =
(
x2 + y2 − 1

) (
x2 + y2 − 1.01

)
. (2.7)

This function has two zero-level sets in the form of concentric circles centered at the ori-

gin with radius 1 and
√

1.01, where the positive zero-superlevel set is the narrow band

50



between the circles. The input to the algorithm is the function u and the rectangular re-

gion [−1.5, 1.5] × [−1.5, 1.5] ⊂ R2. The output is the CW-complex approximation cmplx,

holding the inner approximation of the superlevel set N≥0(u) as cmplx+. We compute the

Betti numbers from the homology groups of cmplx+ and arrive at β0 = 1, β1 = 1, β2 = 0,

corresponding to the topological characterization of a ring. See Figure 2.10 for a plot of the

individual cells in the CW-approximation to N≥0(Ω, u).

−2 2
x

−2

2

y

u< 0; u> 0; u monotone

x

y

u< 0; u> 0; u monotone

Figure 2.10: The CW complex has 17, 632 cells of dimension two, 27, 308 of dimension one,
and 9, 677 cells of dimension zero. The left panel shows positive cells in dark blue for the
function u given by Equation (2.7). On the right is a zoomed-in image giving a detailed
view of the subdivisions made by the algorithm. Passing the rectangular cell complex to

PHAT [6] yields Betti numbers β0 = 1 and β1 = 1 for the superlevel set N≥0(Ω, u), as
expected.
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2.5.3 The Double-torus, a Three-dimensional Example

Consider the function f : R3 → R given by

f(x, y, z) = −
[
(x2 + y2)2 − x2 + y2

]2 − z2 +
1

100
. (2.8)

The level set
{

(x, y, z) ∈ R3 : f(x, y, z) = 0
}

forms the surface of a double torus in such

a way that N≥0(Ω, u) forms the interior of the torus and N≤0(Ω, u) forms the exterior

of the torus. As input to the algorithm we supply u and the rectangular region Ω :=

[−1, 1]× [−1, 1]× [−0.35, 0.35] ⊂ R3. The output is the CW-complex approximation cmplx,

holding the inner approximation of the superlevel set N≥0(u) as cmplx+. We compute the

Betti numbers from the homology groups of cmplx+ and arrive at β0 = 1, β1 = 2, β2 = 0,

and β3 = 0, corresponding to the topological characterization of the solid double torus (the

positive cells live inside the torus). See Figure 2.11 for a plot of the individual cells in the

CW-approximation to N≥0(Ω, u). Cells of select dimension have been plotted in Figure

2.11.
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Figure 2.11: The CW complex has 2, 797 cells of dimension three, 15, 294 of dimension two,
23, 905 of dimension one, and 11, 409 cells of dimension zero. The figure shows the one
and two dimensional cells in cmplx+ in dark blue, and just vertices in cmplx which were
validated as negative. Monotone cells of dimension one and two are shown in orange. The
Betti numbers β0 = 1, β1 = 2, β2 = 0, and β3 = 0, were computed directly from cmplx+,
and correspond to the topological characterization the solid double torus.
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Chapter 3: Rigorous Isolating Blocks for Flows and their

Conley Indices

The goal of this chapter is to develop a rigorous computational framework to accompany

the Conley index for continuous flows in Rn. We begin with general background introducing

the Conley index in our context in §§3.1, 3.2, and 3.3, and §3.4 outlines the current state of

the art. There are two main contributions in this chapter that are new, namely: (1) A new

perspective on an abstract construction in Conley index theory, the isolating block. This

new perspective allows for a computable characterization of Conley’s abstract object, and

is found in §3.5; and (2) A new, rigorous algorithm based on the work in Chapter 2, which

provides the concrete realization of isolating blocks, and is described in §3.6. This work has

been published in [36], however this chapter contains perspective and details not found in

the paper.

3.1 Flows and Bounded Invariant Sets

The following section establishes the setting we will work in for the entirety of this chapter,

and fixes our notation for some standard concepts in dynamical systems.

3.1.1 Qualitative Perspective

Let f : Rn → Rn be a Lipschitz vector field and consider a model that evolves according to

ẋ(t) :=
dx

dt
= f(x(t)). (3.1)
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For example, consider

ẋ = f(x) =

 x1(1− x1)

−x2

 , (3.2)

which may describe the flow of water over a landscape whose topography corresponds locally

to the height function F (x1, x2) = −x21
2 +

x31
3 +

x22
2 , shown in Figure 3.1. In this scenario f

is defined by the steepest descent along the landscape F , so that f(x) := −∇F (x).

Figure 3.1: Plot of the ‘landscape’ F (x1, x2) = −x21
2 +

x31
3 +

x22
2 , corresponding to (3.2).

The saddle point (0, 0, F (0, 0)) ∈ R3 and the sink (1, 0, F (1, 0)) ∈ R3 are plotted on the
landscape, along with red lines corresponding to the images of the x and y axes.

Given such a model one can describe the path that a floating bead would follow if it were

placed onto this landscape. To accomplish this one specifies the initial value x(0) = ξ ∈ R2,

which is the starting position of the float on the landscape. The path that the float will

take is specified by the solution to the initial value problem x(t) = ξ+
∫ t
0 f(x(s)) ds (Picard-

Lindelöf guarantees, in this setting, that the solution exists and is unique on some time

interval around t0 = 0, [t0− ε, t0 + ε] ⊂ R, ε > 0, meaning that it is also possible to resolve

the path that an object would have taken in order to get where it is now, see [1])1.

1We are not interested integrating the vector field f in this thesis, but we would like to point out that, aside

55



The above paragraph recalls the standard solutions-based perspective of ordinary differ-

ential equations. Individual solutions x(t) parameterize curves in the phase space of (3.2),

which is just the domain of the vector field f : R2 → R2. Plotting several solutions at

once, as in Figure 3.2, begins to reveal how the vector field twists the phase space into

organized structures. For example, several solutions of (3.2) reveal that the topography

of the landscape may have a saddle point with a shallow basin nearby. Resolving features

such as basins of attraction, saddle points, and paths connecting them are topics in the

dynamics-based perspective of differential equations, and this is the perspective that we

will take in this chapter.

In order to move from initial value problems to the more global perspective, we introduce

the map ϕ : R×Rn → Rn defined uniquely by the property that for every ξ ∈ Rn, ϕ is the

unique solution of the initial value problem ẋ = f(x); x(0) = ξ. The map ϕ is referred to

as the flow map generated by f , or just simply the flow for (3.1). The following two useful

properties2 of flows hold for all x ∈ Rn, and for all t1, t2 ∈ R:

(i) ϕ(0, x) = x

(ii) ϕ(t1 + t2, x) = ϕ(t2, ϕ(t1, x))

Notice that (3.2) specifies a system of two separable differential equations, so we can

explicitly write down a mapping ϕ̃ as

ϕ̃ : (t, x) 7→

 x1
x1 + (1− x1)e−t

x2e
−t

 (3.3)

The map ϕ̃ is not a global flow in the sense we require. In particular, points x = (x1, x2) ∈ R2

having x1 < 0 have orbits under ϕ̃ which are not defined for all t ∈ R. Noticing that this

from standard numerical integration techniques such as Runge-Kutta, there exist many rigorous numerical
integrators, such as VNODE [30]

2The map ϕ : R×Rn → Rn is a continuous group action, where the topological group R is acting on the
topological space Rn. Much of the terminology for flows comes from algebra and topology. The map ϕ is
sometimes called a dynamical system generated by the vector field f .
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is a feature of the vector field f in (3.2), we can always recover a global flow through a

reparameterization of the map ϕ̃ by considering the associated equation

ẋ =
f(x)

1 + ‖f(x)‖2
. (3.4)

Equation (3.4) is guaranteed to generate a global flow, and the orbits of (3.4) coincide

with the orbits of (3.2). With this rescaling in mind, we will henceforth refer to the flow

associated with (3.1) by the mapping ϕ : R×Rn → Rn, which may have been generated by

the normalization (3.4).

The benefit of working with ϕ : R × R2 → R2 comes from the fact that entire subsets

of the phase space can be evolved according to (3.2), providing a formal meaning to the

intuitive notion of the ‘flow’ of water over the landscape in our example. We can now

interpret Figure 3.2 as a view of the map ϕ acting on the entire landscape at once, and

is called a phase portrait, and is the most convenient guide in the study of a dynamical

system.
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0 1

0

Figure 3.2: Phase portrait for (3.2). Arrows indicate the path a floating bead would take if
it were placed on the landscape shown in Figure 3.1. These integral curves can be viewed
either as a collection of particular solutions to initial value problems derived from (3.2), or
one can interpret this as an indication of how the flow defined in (3.3) acts on the phase

space R2.

For the differential equation (3.1) and its associated flow ϕ, we call ϕ(R, ξ) ⊂ Rn the

orbit of ξ, or the solution of (3.1) through ξ. This corresponds to the initial value problem

specified by (3.1), with the initial value x(0) = ξ, in the sense that, from the solutions-based

perspective, the solution would be x(t) = ξ+
∫ t
0 f(x(s)) ds, whereas in the present notation

we have ϕ(t, ξ) = x(t), so that ϕ(0, ξ) = x(0) = ξ. Harnessing the full utility of ϕ, we say

that a subset S ⊂ Rn is invariant under the action of ϕ if ϕ(R, S) = S. Of immediate

interest are the bounded invariant sets , sets S ⊂ Rn such that ϕ(R, S) = S and the

diameter of the set S is finite. Examples of bounded invariant subsets of the flow of a

differential equation are fixed points, periodic orbits, heteroclinic, and homoclinic orbits.

Letting R+ denote the nonnegative reals and R− the nonpositive reals, we will use the term

forward orbit of a point ξ ∈ Rn to mean ϕ(R+, ξ), and backward orbit to mean ϕ(R−, ξ). A

set S ⊂ Rn being positively invariant will mean that ϕ(R+, S) ⊂ S, and negatively invariant

will mean that ϕ(R−, S) ⊂ S.

We illustrate the above structures in the phase portrait for Equation (3.2), shown in
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Figure 3.2. Recall that the flow ϕ : R × R2 → R2 is given by (3.3). One can check that

if S = (0, 1) × {0} ⊂ R2, then the orbit of any point ξ ∈ S remains in S. In fact, S is a

bounded invariant set for ϕ. The set {0}× (0,∞) ⊂ R2 is an invariant set under the action

of ϕ, but it is not bounded. Unions of invariant sets are invariant, for example the entire

vertical axis ({0} × (0,∞)) ∪ ({0} × {0}) ∪ ({0} × (0,−∞)) ⊂ R2 is made up from three

invariant sets, and is itself invariant. Finally, we point out that the fixed points (0, 0) and

(1, 0) are bounded invariant sets for ϕ.

3.1.2 Remarks about the Quantitative Perspective

Bounded invariant sets of a flow are comprised of unions of orbits, and computing a single

orbit directly from a flow can be surprisingly difficult. A property of continuous flows

is that orbits do not intersect, that is, for distinct initial values ϕ(0, ξ1) 6= ϕ(0, ξ2), we

obtain ϕ(R, ξ1) ∩ ϕ(R, ξ2) = ∅. Thus, between numerical approximation error and floating

point truncation error, a direct iterative computation along a trajectory from one time step

to the next, i.e. from ϕ(t0, ξ1) to ϕ(t1, ξ1), will almost surely land on ϕ(t1, ξ2) for some

ξ2 6= ξ1. Many flows have orbits that are unstable with respect to the elements they act

upon, meaning that while ϕ(t0, ξ1) and ϕ(t0, ξ2) may be nearby, the points ϕ(t1, ξ1) and

ϕ(t1, ξ2) may be very far apart. This suggests that direct numerical approximation may

lead to vastly different long-term behavior stemming from nearly identical initial states.

In addition to numerical errors along a trajectory, a structural instability of the flow

itself may contribute to incorrect results from direct computation. For example, consider

the equation ẋ = x2 + λ. For λ < 0 the flow generated by this equation has three bounded

orbits consisting of one stable and one unstable equilibrium at x = −
√
|λ| and x =

√
|λ|,

respectively, along with the orbit connecting x =
√
|λ| to x = −

√
|λ|. For λ = 0 this

equation has a single bounded orbit, the degenerate equilibrium x = 0, and for λ > 0 this

equation has no bounded orbits whatsoever. These are significant qualitative dynamical

differences, and each can easily be obtained for perturbations of λ near zero.

59



On the other hand, ϕ is a very nice map in the abstract. We will see that, in the spirit of

the Brouwer degree, one can seek admissible subsets of the phase space, make computations

far away from sensitive behavior, and obtain results that hold for perturbations of the flow at

hand. The framework we consider is Conley index theory, and it offers a means of extracting

information about these sensitive structures indirectly. The results are formulated in the

abstract, using properties of flow maps and the relative compactness of the phase space Rn.

One half of our work in this chapter can be seen as a way to cast the abstract objects of

Conley’s theory in terms of eminently computable information. The other half of our work

is doing the actual computations!

3.2 Isolated Invariant Sets, Isolating Blocks, and the Conley

Index

An isolated invariant set S is the maximal invariant set contained in the interior of a

compact neighborhood of itself. Call such a compact neighborhood an isolating neigh-

borhood NS . The term maximal indicates that an isolated invariant set is made up from

a union of invariant sets, Si. The verbiage ‘interior of a compact neighborhood of itself’ is

used to indicate that S (and therefore each Si) do not touch the boundary of the isolating

neighborhood, ∂NS .

The condition that S =
⋃
Si is contained in intNS should be thought of as a con-

dition on the union rather than on the compact neighborhood NS . To gain some intu-

ition, consider the flow depicted in Figure 3.2. Take S1 = {(0, 0)}, S2 = {(1, 0)}, and

S12 = {(x, 0) : 0 < x < 1}. Each of these sets are bounded invariant sets for the flow given

by (3.3), and S = S1∪S2∪S12 is actually an isolated invariant set. If we choose the compact

set N =
{

(x, y) :
√

(x− 1/2)2 + y2 ≤ 1/2
}

, the disc centered at (1/2, 0), then N is not

an isolating neighborhood for S because the equilibria S1 and S2 touch ∂N . This is not a

deficiency of S, rather a deficiency in our choice of N (to remedy this, simply increase the

radius of the disc N by any positive amount). On the other hand, consider the equation
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ẋ = (x2, −x1), whose phase portrait is shown in Figure 3.3. For any compact N ⊂ R2 which

contains the origin, the maximal invariant set contained in N will touch the boundary ∂N .

This is a deficiency in the structure of the bounded invariant sets for this equation.

1 1

1

1

Figure 3.3: Phase portrait for ẋ = (x2, −x1). Arrows indicate the direction of the flow.
The origin is called a center, and cannot be isolated.

Provided that S is not empty, the closedness of both S and NS permit NS to remain

an isolating neighborhood for any flow generated by a vector field f̃ in a sufficiently small

neighborhood of f (where the ‘neighborhood’ is taken in the C0 topology on Lipschitz vector

fields, see [12], and Theorem 1.7 in [13]). With this we have the first step in the analogy

with the Brouwer degree – the isolating neighborhoods play the role of admissible sets.

A class of isolating neighborhoods suitable for computation are isolating blocks, defined

below.

Definition 3.2.1. An isolating block B ⊂ Rn is an isolating neighborhood with the addi-

tional properties

(i) B− := {x ∈ B : ϕ([0, T ], x) 6⊂ B for all T > 0} is closed, and

(ii) InvT (B, ϕ) := {x ∈ B : ϕ([−T, T ], x) ⊂ B} ⊂ intB for all T > 0.
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We look first at Property (ii). This should be thought of as a condition barring any

‘internal tangencies’, these would be orbits that travel in int B, come to the boundary of

B, and then back into int B. Property (i) concerns the exit set B−, this is the set of

points which immediately leave B in forward time under the flow. We also put B+ :=

{x ∈ B : ϕ([−T, 0], x) 6⊂ B for all T > 0}, denoting the set of points that are immediately

pushed into B in forward time. Note that the closedness of the exit set B− is part of the

definition of an isolating block, and does not follow automatically3 from Property (ii).

Isolating blocks are examples of the more general concept of an index pair introduced by

Conley in [12], but the work in this thesis does not make direct use of them. For reference,

given an isolating block B and its exit set B− ⊂ B, the ‘pair’ is formed by (B, B−).

The homological 4 Conley index of an isolated invariant set S is defined by

CH∗(S) := H∗(B,B−), (3.5)

where H∗(B,B−) is relative homology. In all of our applications, the relative homology

operation can be thought of as collapsing B− ⊂ B to a point, and then computing the

reduced homology groups of the resulting space. In all computations we will report the

3 More should be said here. First of all, we will need closedness so that B− may coincide with the set of

x
y

zz

fixed points of a strong deformation retraction (cf. §3.3.2). Additionally,

Property (ii) does not automatically imply that B− is closed. Indeed, let ϕ

be generated by (ẋ, ẏ, ż) = (0,−y−1,−15x2y−y2), and let B coincide with

the plane z = 0 in a neighborhood of the origin (0, 0, 0) ∈ R3. Selected

trajectories of this system are shown to the right. For p→ (0, 0, 0) along

the line {(x, 0, 0) : x ≥ 0}, we see that p ∈ B−, except at the origin, so

B− is not closed, while at the same time ϕ([−ε, ε], p) 6⊂ B, so these points

do not destroy Property (ii). In the language of Lemmas 3.5.2 and 3.5.3,

we have that u(p) > 0 on the open line segment, and that u(p) = v(p) = 0
at the origin. This is a pathological scenario, and zero is not a regular
value of u, so B can be perturbed locally to avoid this configuration.

4If one considers an isolating block B and its exit set B− ⊂ B as forming an index pair, then the Conley
index of the maximal invariant set S in intB is defined as the homotopy type of the pointed topological

space (B/B−,
[
B−]), where B/B− is the quotient of B by B−, and

[
B−] is the equivalence class: x ∼ y if

and only if x, y ∈ B−, which essentially collapses B− to a point. For results on pointed topological spaces
we refer the reader to [27], [29], [25], and [12]. We use the weaker homological formulation of the Conley
index because homology is a computable homotopy invariant of a topological space, and often homology
groups are sufficient to distinguish between two spaces having different homotopy type (refer to §2.1.1 for

definitions related to homotopies and homotopy equivalence).
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homological Conley index as the sequence of abelian groups {CHk(S)}∞k=0, written as

CH∗(S) = {CH0(S), CH1(S), CH2(S), . . .} . (3.6)

Example: the Conley index of a hyperbolic fixed point. Consider the ordinary

differential equation ẋ = f(x) = (x1,−x2). The flow generated by f can be written explicitly

as ϕ : (t, x) 7→ (x1e
t, x2e

−t). If B is the unit disc, we can see that B is a compact set, and

the union of all bounded invariant sets for ϕ contained B is also contained in intB (S is

just the origin), hence it is an isolating neighborhood for the flow ϕ. Figure 3.4 shows B

in light blue, and the exit set B− ⊂ ∂B as two disjoint dark blue segments. Red arrows

indicate the direction of the flow on B, and we can see that B satisfies Properties (i) and

(ii) of Definition 3.2.1, and is therefore an isolating block for ϕ. It therefore makes sense to

compute H∗(B,B−) using this block. Taking the quotient B/B− in two steps, first identify

the disjoint segments of B− to form a sort of empty taco with the flaps touching each other,

and second imagine collapsing the rest of the shell to a thin ring, as in the right image of

Figure 3.4. The Conley index of the (Morse) index-one hyperbolic equilibrium point which

comprises S is CH∗(S) = (0,Z, 0, . . .). A fact which will not be proved here is that the

Conley index of a hyperbolic equilibrium of (Morse) index k has the same homotopy type

as the k-sphere Σk, see [12]. For reference, the k-sphere has reduced homology H∗(Σ
k) =

(0, . . . , Z
kth
, 0, . . .).
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Figure 3.4: The left image shows an isolating block around a hyperbolic equilibrium point.
The light blue disc is the block B ⊂ R2, and the two disjoint dark blue segments form the
exit set B− ⊂ ∂B. The gray region indicates the portion of the flow which enters B and
never leaves (as it converges onto the origin). Red arrows indicate the direction of the flow
on B. The image on the right shows a topological space that is homotopy equivalent to the
collapse of B− in Figure 3.4. The Conley index of S, which is just the (Morse) index-one
hyperbolic equilibrium at the origin, is expressed as the reduced homology groups of this
space, so CH∗(S) = (0,Z, 0, . . .).

In the next section we collect properties of the Conley index that we use in our work, as

well as present some perspective on how information on the boundary of an isolating block

can hold information about the maximal invariant set S inside the block. We also give an

indication of what can be learned from the index when S is not known, which we expect

would be the case in applications of our work.

3.3 Properties of, and Perspectives on, the Conley Index

Observe that the Conley index is a description of an isolated invariant set S, but one only

needs information about an isolating block for S in order to compute it. Consequently,

one can propose a block B, verify that properties (i) and (ii) hold, and if H∗(B,B−) is

not trivial, one can ‘discover’ S (see §3.3.3). How this works, and what one can expect to

discover about S, is the subject of the next several subsections.
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3.3.1 (Property) Isolating Blocks Exist

Let ϕ : R × Rn → Rn be a global flow, and let the compact set NS ⊂ Rn be an isolating

neighborhood for the isolated invariant set S. From a practical perspective, the two most

important considerations at this point are whether or not there exists an isolating block for

S, and whether or not the Conley index of S depends on the choice of block.

A fundamental result in the theory is that given any isolated invariant set S, there exists

an isolating block for it. The existence proof is constructive, albeit not computable, and is

given in [13]. A second fundamental feature of the theory is that the Conley index CH∗(S)

does not depend on the choice of isolating block B (or, for that matter, the choice of index

pair). This result appears as the first theorem in Chapter III, §5.1, of [12].

3.3.2 (Perspective) Isolating Blocks as Ważweski Sets

This section addresses how information about an isolated invariant set S can be transmitted

to the boundary of an isolating block B having S as the maximal invariant set in its interior.

Consider the set of points ξ ∈ B which are carried out of B by the flow in positive finite

time, that is B◦ := {ξ ∈ B : ∃ t > 0 with ϕ(t, ξ) 6∈ B}. If the forward orbit of ξ ∈ B does

not leave B through B−, then it must converge onto S. In other words S = ω(B\B◦), where

the ω-limit set ω(B\B◦) is defined as
⋂
s∈R {ϕ(t, ξ) : ξ ∈ B \ B◦, t > s}. With this notation

we see that the definition of an isolating block B coincides with that of a Ważewski set

(cf. Definition 2.4.2 in §2.4.3), where B− is closed relative to B◦. We restate Theorem 2.4.3

from §2.4.3 with the current notation.

Theorem 3.3.1 (Ważewski, from [12] with adapted notation). If B is a Ważewski

set then B− is a strong deformation retract of B◦, and B◦ is open relative to B.

The strong deformation retraction of the theorem is built using from the flow map ϕ.

In particular, putting τ(ξ) := sup {t ≥ 0 : ϕ(t, ξ) ∈ B}, then for ξ ∈ B◦, and σ ∈ [0, 1], we
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define h : [0, 1]× B◦ → B◦ by

h : (σ, ξ) 7→ ϕ(στ(ξ), ξ). (3.7)

The claim is that h is a strong deformation retraction (refer back to Definition 2.1.4 in

§2.1.1). That is, h is continuous in both t and ξ, and for all ξ ∈ B◦ we have

h(0, ξ) = ϕ(0, ξ) = ξ,

h(1, ξ) = ϕ(τξ, ξ) ∈ B−, and

h(σ, ξ ∈ B−) = ϕ(0, ξ), so h(σ,B−) = idB− .

(3.8)

The equations in 3.8 hold by construction. The claim that h is, indeed, a strong deformation

retraction, requires verification that h is continuous, and in particular, that τ is. It is here

where we find that B− must be closed (see [12] for more detail, and cf. Footnote 3 in §3.2).

Having defined the isolating block B to have its isolated invariant set strictly within

its interior, Conley built the room necessary to use this feature of flows to shuttle the

dynamics of B◦ away from S. To quote Conley directly5, “. . . the index is a measure of

the impossibility of deforming B to B−; in particular if the index is nontrivial, B \ B◦, and

consequently S = ω(B \ B◦), is nonempty.”

3.3.3 (Property) Ważweski: If the Index of S is Nontrivial, then so is S

The Ważweski property was stated above in passing, but it is important enough to stand

on its own.

Theorem 3.3.2 (Ważewski Property, [12]). If CH(S) is non-trivial, then S 6= ∅.

We will use this property of the Conley index several times in our proposed computer-

assisted proofs of the existence of heteroclinic orbits in §3.7. (In accordance with our analogy

5The quote appears in the first paragraph of Chapter III, on page 43 of [12].
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to the Brouwer degree, if an isolated invariant set S has trivial Conley index, then S is not

necessarily empty.)

3.3.4 (Property) Summation Formula

A useful property of the Conley index is known as the summation formula, “The index

of the disjoint union of two isolated invariant sets is the sum of their indices6.” Suppose we

have isolated invariant sets S1 = {p1} and S2 = {p2}, isolated by blocks B1 and B2, where

p1 and p2 are just equilibrium points. Suppose further that one can find an isolating block

B12 such that the disjoint union S12 := S1 ∪ S2 is the maximal invariant set contained by

B12 (hence S12 is an isolated invariant set). Then

CH(S12) ' CH(S1)⊕ CH(S2).

This is useful because in certain situations we can propose a maximal invariant set, say

S∗, comprised only of simpler, known isolated invariant sets S i, and test if the summation

formula holds. If it does not hold, then S∗ is comprised of more than just the known S i.

With some assumptions on the flow of interest we can describe the additional bounded

invariant sets that must be in S∗. We make repeated use of this in §3.7.

3.3.5 (Perspective) Usefulness of the Conley Index

The usefulness of the Conley index is that it provides a coarse description of the structure

of the dynamics on an isolated invariant set S, and this information is robust with respect

to small perturbations of the differential equation. The canonical example of the type of

information measured by the index can be seen in the following

Example: Bifurcation in a simple one parameter family. Consider the one-parameter

family of differential equations defined as

ẋ = f(x) = x(1− x2)− λ, (3.9)

6This is a direct quote from [12], page 54,
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and consider its bifurcation diagram in Figure 3.5.

1 0 1

1

0

1

x

Figure 3.5: Bifurcation diagram for (3.9), with phase portraits for various values of λ ∈ R.
Interval markers define the isolating blocks A := [−1.5, 1.5] and B := [−1.5, 0] along the

abscissa. An orange dot appears at (λ∗, x) =
(
1
√

3
(
1
√

3− 1
)
,−1
√

3
)
, where there is a

degenerate equilibrium point for (3.9).

The interval A := [−1.5, 1.5] forms an isolating block for the flow generated by f in

(3.9) when λ ∈ (−1, 1). The exit set for A is empty for all values of λ ∈ (−1, 1), meaning

that the flow generated by (3.9) is attracting on the interval [−1.5, 1.5] for all values of

λ ∈ (−1, 1). The Conley index computed from the block A with empty exit set is defined

as the two-pointed space, and therefore has the homotopy type of the zero-sphere.

The interval B := [−1.5, 0] forms an isolating block for the flow generated by f in (3.9)

when λ ∈ (−1, 0), and again when λ ∈ (0, 1). For λ = 0, the interval [−1.5, 0] fails to be

an isolating block because the maximal invariant set S contained in B is not isolated, in

particular the equilibrium x = 0 intersects the boundary of B when λ = 0. In contrast to
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A, the flow is not attracting on B. In fact, for λ ∈ (−1, 0), the Conley index of the compact

set B is trivial (to see this note that B is contractible, and B− is a single point).

This example appears in most discussions of the Conley index (see [12],[25],[35]) as an

illustration of just how coarse the information provided by the Conley index is. The Conley

index computed from the block A remains constant for λ ∈ (−1, 1), while A variously iso-

lates the invariant sets S1, the single hyperbolic equilibrium (for λ ∈ (−1, λ∗)), the invariant

set S2, being the union of the single hyperbolic equilibrium, a degenerate equilibrium, and

the heteroclinic between them (for λ = λ∗), and S3, the union of three hyperbolic equilibria

and the heteroclinics between them. Thus, CH∗(S1) ' CH∗(S2) ' CH∗(S3). The isolated

invariant sets S1, S2, and S3 are said to be related by continuation.

Notice that A cannot isolate a pair of hyperbolic equilibria on the line. Additionally,

notice that B variously isolates the empty set S0 as an isolated invariant set (for λ ∈

(−1, λ∗)), the set S01 consisting of the single degenerate equilibrium (for λ = λ∗), and the

set S02 consisting of the union of two hyperbolic points and the heteroclinic connecting

them (for λ ∈ (−λ∗, 0)). Evidently, the isolated invariant sets S0, S01, and S02 are related

by continuation.

A useful property of the Conley index is that it can be used to rule out certain behavior

on entire regions of phase space. Furthermore, as this example illustrates, the Conley index

is stable under perturbation of the vector field. Combined, these two features say that if a

perturbation does not destroy the isolating block B, then the isolated invariant set within

B may change its structure, but can only do so ‘up to continuation.’ See [12] and [25] for a

more complete discussion.

The purported analogy with the Brouwer degree is finally evident; where the Brouwer

degree yields existence results for zeros of a function in the interior of an admissible compact

set, and those existence statements are robust under perturbation, the Conley index yields

existence results (and slightly more) for an isolated invariant set S in the interior of a

compact isolating block, and while the structure of S may change under perturbation, its

Conley index will not.
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3.4 Current State of the Art

An early effort in this field is due to Boczko [7] and Boczko, Kalies, and Mischaikow in

[8]. In this work the authors directly build isolating blocks and obtain index pairs. Their

effort can be briefly described as first explicitly moving to a discrete dynamical system that

is guaranteed to be an outer approximation to the flow defined by an ordinary differential

equation and computing a triangulation of the (discrete) phase space that: (1) Is flow-

transverse, meaning that it does not permit tangencies of the flow with the boundary of

the triangulation; and (2) Forms an index pair from collections of triangles, ultimately

capturing ’recurrent’ dynamics. We point out here that one of the highlights of the current

chapter is the relaxation of the flow-transverse requirement (see Theorem 3.5.4). Theirs is

a monumental effort, intellectually and computationally, and culminates in an interesting

aside – that the invariant sets can be resolved ‘arbitrarily closely’ by tuning the triangulation

parameters (i.e. forcing more triangles). The reason this is interesting in our context is that

it appears that they are able to not only prove existence, but also deliver a quantitative and

graphical description of what those dynamics look like. Their method explicitly constructed

index pairs from an approximating discrete dynamical system – the work is highly technical

and appears to suffer from enormous computational overhead. However, it is important

because these authors faced the challenge of constructing sets satisfying the requirement

to be an isolating block. Furthermore, in their conclusion section they suggest the use of

robust methods (interval arithmetic) in order to obtain computer-assisted proofs of these

results.

We point out that our work is rather more in line with an effort that appears in the

doctoral thesis of Eberlein [17], and shortly after in Eberlein, Scheurle [18]. The similarity

is found in the goal of surrounding some suspected isolated invariant set with an approxi-

mation to a topological manifold in a data structure that permits homology computations.

Their technique is (roughly) to construct a polytope outer approximation to some isolat-

ing neighborhood and then refine this polytope in order to resolve the exit set and ensure
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there are no internal tangencies. We point out several difficulties in this approach and how

they proceeded through them. First, establishing transversality of the flow on a face of a

polytope is simply a matter of checking whether the vector field has a nonzero component

in the normal direction to the face. The geometry of the situation is simple, but the nu-

merics are not - the Eberlein/Scheurle work does not address the numerical accuracy of

this computation. Second, resolving the ’internal tangency’ criterion for isolating blocks is

essential. Their approach integrates the flow for some time and see where it ends up (inside

or outside of the polytope). This directly addresses the question of whether or not the

flow exits the polytope, but does not amount to a numerically rigorous result. Their work

is an important first step and has identified several challenges that we have been able to

resolve, and remains an inspiration for more automated procedures for proposing candidate

isolating blocks. However, in each of the challenges listed above, we are able to provide a

more simple and completely rigorous approach.

3.5 Characterization of Isolating Blocks via Superlevel Sets

The definition of an isolating block B ⊂ Rn, its isolated invariant set S, and the Conley index

of CH∗(S) := H∗(B,B−) naturally provide for the following eminently practical workflow

for dynamical systems. For a wide class of ordinary differential equations ẋ = f(x) which

permit a global flow ϕ : R × Rn → Rn, one can: (1) Propose a compact set B ⊂ Rn as a

candidate isolating block; (2) Validate properties (i) and (ii) in Definition 3.2.1 to establish

that the candidate B is, indeed, an isolating block for ϕ; and (3) Compute H∗(B,B−) to

yield new information about the dynamics of ϕ on B.

The purpose of this section is to address Step (2) above, by establishing Theorem 3.5.4,

which is an easily stated condition, which can be validated algorithmically using rigorous

computations based on interval arithmetic, and which either provides a computer-assisted

proof that the given candidate B is an isolating block, or provides guidance as to where B

has to be adjusted in order to arrive at an isolating block.
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The basic idea is to observe that once a suitable candidate block B has been chosen,

it is only left to: (1) Approximate B− ⊂ ∂B up to homotopy equivalence, and establish

that it is closed; and (2) Establish that any points p ∈ ∂B where the flow is tangent to B,

that the tangency is external in the sense of Property (ii) in Definition 3.2.1. We point

out that items (1) and (2) describe geometric relationships between the vector field f and

the boundary of the candidate block B. Our strategy is to construct smooth, real-valued

functions on ∂B which characterize the exit set B−, and identify any tangencies as internal

or external, in terms of their zero level sets and positive superlevel sets, respectively (this

is the content of Lemmas 3.5.2 and 3.5.3). The algorithmic validation of these conditions

is explained in §3.6, where we build on the α-superlevel set validation algorithm (V) in

Chapter 2.

For the remainder of this dissertation we concern ourselves with α-superlevel sets, α-

sublevel sets, and α-level sets of smooth functions where α = 0. In order to set unambiguous

notation, make the following

Definition 3.5.1. For the function u : Ω ⊂ X → R, denote

the positive superlevel set of u by N+(Ω, u) := {x ∈ Ω : u(x) > 0} ,

the negative sublevel set of u by N−(Ω, u) := {x ∈ Ω : u(x) < 0} , and

the zero level set of u by N0(Ω, u) := {x ∈ Ω : u(x) = 0} .

Our method begins with the specification of a candidate isolating block B ⊂ Rn which

satisfies the following assumption:

(A1) The set B ⊂ Rn is connected and compact, and ∂B ⊂ Rn−1 is a smooth, compact,

orientable embedded manifold of codimension one in Rn .

We write TpB ⊂ Rn to denote the tangent space of B at the point p ∈ ∂B, and we use
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νp 6= 0 ∈ Rn to denote an outward normal vector. For q ∈ Rn, we put

π>p q := q − 〈q, νp〉
〈νp, νp〉

· νp,

the orthogonal projection of q onto TpB ⊂ Rn, where 〈·, ·〉 denotes the standard scalar

product on Rn.

In order to evaluate flow tangencies at points p ∈ ∂B as internal or external, we are

led to compare the vector field f with the local curvature of the manifold ∂B at p in the

direction of f(p). This can be accomplished by evaluating the second fundamental form

II : TpB×TpB → R along the single direction7π>p f(p), and will appear as II(π>p f(p), π>p f(p))

for points p ∈ ∂B. A good reference for the differential geometry employed here can be found

in [37]. Several steps in the proofs below require slightly deeper results, and references are

given as needed. We also point the reader to §3.5.1 for detailed calculations using these

quantities.

With this notation in place, we present Lemmas 3.5.2 and 3.5.3 characterizing the exit

sets and external tangencies, respectively.

Lemma 3.5.2. Consider the ordinary differential equation (3.1) with smooth right-hand

side f : Rn → Rn, and suppose that B ⊂ Rn is a compact set as in (A1). Furthermore,

define the function u : ∂B → R as

u(p) = 〈f(p), νp〉 , (3.10)

7For concreteness, a codimension-one smooth manifold M embedded in R3, locally parameterized by

r : Ω ⊂ R2 → R3, has second fundamental form II : TpB × TpB → R, given by

(λ, µ) 7→
(
λ1 λ2

)( 〈rθθ(p), νp〉 〈rθϕ(p), νp〉
〈rϕθ(p), νp〉 〈rϕϕ(p), νp〉

)(
µ1

µ2

)
,

for λ, µ ∈ TpM. One can roughly think of evaluating II at the pair (λ, λ) as akin to taking a second derivative
on the manifold, along the direction λ.
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where p ∈ B, and νp denotes a normal vector at p. Then we have the inclusions

N+(∂B, u) ⊂ B− \ B+ and N−(∂B, u) ⊂ B+ \ B− ,

where N±(∂B, u) were defined in Definition 3.5.1, and B± where defined along with B in

Definition 3.2.1.

Proof. Let p ∈ ∂B. According to [26, Proposition 5.16], there exists a neighborhood U ⊂ Rn

of p and a smooth submersion Φ : U → R such that ∂B∩U is the zero set of Φ. Since ∇Φ(p)

is orthogonal to TpB, we can assume without loss of generality that ∇Φ(p) is a positive

multiple of νp. Thus, for all q ∈ U we have q 6∈ B if and only if Φ(q) > 0, and q is contained

in the interior of B if and only if Φ(q) < 0.

Now let x(t) denote the solution of (3.1) satisfying x(0) = p. Evaluating Φ along the

solution x(t) close to p and differentiating with respect to t then furnishes

d

dt
Φ(x(t)) = 〈∇Φ(x(t)), ẋ(t)〉 = 〈∇Φ(x(t)), f(x(t))〉 .

For t = 0 one therefore has

d

dt
Φ(x(t))

∣∣∣∣
t=0

= 〈∇Φ(p), f(p)〉 = c · u(p) ,

where c > 0 is a positive scalar. If we now assume u(p) > 0, then there exists a T > 0 such

that Φ(x(t)) > 0 for all t ∈ (0, T ], and Φ(x(t)) < 0 for all t ∈ [−T, 0). Together with the

above characterization of the interior and exterior of B in U given above, this immediately

implies N+(∂B, u) ⊂ B− \ B+. Since the proof of N−(∂B, u) ⊂ B+ \ B− is completely

analogous, Lemma 3.5.2 follows.

Notice that the above lemma only uses the normal vector field ν on the manifold ∂B,

and it allows us to locate the exit set B− up to points at which u(p) = 0. However, in the
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setting of the lemma we cannot make any statements about the behavior of the flow near

points p ∈ ∂B with u(p) = 0. These points of course are candidates for flow tangencies

with the boundary of B. In order to exclude internal tangencies, understanding the local

curvature of the manifold in the direction of the flow is crucial. The following lemma makes

use of the second fundamental form of the manifold ∂B at these points.

Lemma 3.5.3. Consider the ordinary differential equation (3.1) with smooth right-hand

side f : Rn → Rn, and suppose that B ⊂ Rn is a compact set as in (A1). Let u denote the

function from (3.10), and define the function v : ∂B → R as

v(p) = 〈Df(p)f(p), νp〉 − II
(
π>p f(p), π>p f(p)

)
,

where p ∈ B, and νp denotes the normal vector field at p, and II is the second fundamental

form on TpB. If the point p ∈ ∂B satisfies u(p) = 0 and v(p) > 0, then the solution of (3.1)

through p forms an external tangency with ∂B, i.e., there exists a time T > 0 such that

ϕ([−T, T ], p)∩B = {p}, where ϕ denotes the flow associated with (3.1). On the other hand,

if u(p) = 0 and v(p) < 0, then the solution of (3.1) through p forms an internal tangency

with ∂B, i.e., there exists a time T > 0 such that ϕ([−T, T ], p) \ {p} ⊂ int B.

Proof. Let p ∈ ∂B. As in the proof of the previous lemma, there exists a neighborhood U ⊂

Rn of p and a smooth submersion Φ : U → R such that ∂B ∩ U is the zero set of Φ, and

that ∇Φ(p) is a positive multiple of νp. Now let α : U → R+ be a smooth function with

α(q) = ‖νq‖ for all q ∈ ∂B ∩ U . Such a function can always be constructed, possibly after

choosing a smaller neighborhood U . For example, using a tubular neighborhood of ∂B ∩U

as in [21, Theorem 5.1], one can simply define α to be constant on each of the normal fibres.

If we then define Ψ : U → R via Ψ(q) = α(q)Φ(q)/‖∇Φ(q)‖ for all q ∈ U , then also Ψ is a

smooth submersion such that ∂B ∩ U is the zero set of Ψ. In addition, one can easily see

that

∇Ψ(q) = νq for all q ∈ ∂B ∩ U . (3.11)
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Thus, we still have for all q ∈ U that q 6∈ B if and only if Ψ(q) > 0, and q is contained in

the interior of B if and only if Ψ(q) < 0. But in addition, the smooth vector field ∇Ψ is an

extension of ν· onto U .

After these preparations, let p ∈ ∂B be a point with u(p) = 0, and let x(t) denote

the solution of (3.1) with x(0) = p. If we define the real-valued function τ in a small

neighborhood of 0 ∈ R via τ(t) = Ψ(x(t)), then τ(0) = Ψ(p) = 0. Furthermore, due to

the above construction of Ψ, the solution x(t) forms an external tangency with ∂B, if there

exists a time T > 0 such that τ(t) > 0 for all t ∈ [−T, T ] \ {0}. Similarly, x(t) forms an

internal tangency if we have τ(t) < 0 on [−T, T ] \ {0}. As in the proof of Lemma 3.5.2, the

derivative of τ can be computed as

τ ′(t) =
d

dt
Ψ(x(t)) = 〈∇Ψ(x(t)), ẋ(t)〉 = 〈∇Ψ(x(t)), f(x(t))〉 ,

which implies τ ′(0) = 〈∇Ψ(p), f(p)〉 = 〈νp, f(p)〉 = u(p) = 0 due to (3.11). The second

derivative of τ is

τ ′′(t) = 〈∇Ψ(x(t)), Df(x(t))f(x(t))〉+ 〈Hess Ψ(x(t))f(x(t)), f(x(t))〉 ,

and evaluation at t = 0 furnishes in combination with (3.11) the identity

τ ′′(0) = 〈νp, Df(p)f(p)〉+ 〈Hess Ψ(p)f(p), f(p)〉 .

According to our above discussion, the solution x(t) forms an external tangency with ∂B,

if τ ′′(0) > 0, and an internal tangency if τ ′′(0) < 0. Thus, in order to complete the proof

of the lemma it suffices to show that τ ′′(0) = v(p). Since we already know that f(p) ∈ TpB

(recall that u(p) = 0), this in turn follows immediately from the fact that

II (y, z) = −〈Hess Ψ(p)y, z〉 for all y, z ∈ TpB , (3.12)
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which will be established in the remainder of the proof.

In order to verify (3.12), we make use of some results from Riemannian geometry. Ac-

cording to [15, Chapter 6, Proposition 2.3], the second fundamental form is

II(y, z) = −〈π>p ∇y∇Ψ(p), z〉 for all y, z ∈ TpB . (3.13)

In this formula, π>p denotes the orthogonal projection from Rn onto TpB, and ∇ denotes the

Riemannian connection on Rn. For any vector field N on Rn, the latter is the directional

derivative ∇yN = DNy, see [15, pp. 51–56]. This yields

π>p ∇y∇Ψ(p) = π>p Hess Ψ(p)y = Hess Ψ(p)y − 〈Hess Ψ(p)y, νp〉
〈νp, νp〉

· νp ,

as well as II(y, z) = −〈Hess Ψ(p)y, z〉, since z ∈ TpB implies 〈νp, z〉 = 0. This completes the

verification of (3.12), and thus also of Lemma 3.5.3.

The following theorem characterizes isolating blocks via zero level sets and positive

superlevel sets. It says that the candidate block B is an isolating block if all tangencies are

external, and that if zero is a regular value of u, then B− is closed. This theorem makes it

possible to adapt the superlevel set validation algorithm (V) in order to rigorously establish

candidate blocks as valid isolating blocks.

Theorem 3.5.4 (Isolating Blocks via zero level sets and positive superlevel sets).

Consider the flow ϕ associated with the ordinary differential equation (3.1), and suppose

that B ⊂ Rn is a compact set as in (A1).

Furthermore, define the smooth functions u, v : ∂B → R via

u(p) = 〈f(p), νp〉 , (3.14)

v(p) = 〈Df(p)f(p), νp〉 − II
(
π>p f(p), π>p f(p)

)
. (3.15)

77



If in addition we have

N0(∂B, u) ⊂ N+(∂B, v) , and if zero is a regular value of u , (3.16)

then B is an isolating block for (3.1) in the sense of Definition 3.2.1. In this case, the exit

set B− defined in (3.2.1) is

B− = N+(∂B, u) ∪N0(∂B, u) = N+(∂B, u) , (3.17)

i.e., it is the closure of the positive superlevel set N+(∂B, u) of u.

Proof. According to the definition of positive superlevel sets and the zero level set in Defi-

nition 3.5.1, the boundary of B can be partitioned in the form

∂B = N+(∂B, u) ∪N0(∂B, u) ∪N−(∂B, u) .

Due to Lemma 3.5.2 we have both N+(∂B, u) ⊂ B− \ B+ and N−(∂B, u) ⊂ B+ \ B−. Now

let p ∈ N0(∂B, u) be arbitrary. Then (3.16) implies p ∈ N+(∂B, v), and Lemma 3.5.3 shows

that the solution of (3.1) through p forms an external tangency with B, i.e., there exists a

T > 0 such that ϕ([−T, T ], p) ∩ B = {p}, where ϕ denotes the flow associated with (3.1).

This readily implies p ∈ B− ∩B+, i.e., we have N0(∂B, u) ⊂ B− ∩B+. As mentioned above,

the sets N±(∂B, u) and N0(∂B, u) form a partition of ∂B. Since in addition the sets B−\B+,

B+ \ B−, and B− ∩ B+ are pairwise disjoint, we obtain both

∂B =
(
B− \ B+

)
∪
(
B+ \ B−

)
∪
(
B− ∩ B+

)
,

as well as

N+(∂B, u) = B− \ B+ , N−(∂B, u) = B+ \ B− , and N0(∂B, u) = B− ∩ B+ .
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The first statement shows that Property (ii) in Definition 3.2.1 is satisfied. Moreover, due

to the second statement we have B− = N+(∂B, u) ∪ N0(∂B, u), and thus B− = {p ∈ ∂B :

u(p) ≥ 0}. Due to the continuity of u, this set is closed. Together this implies that the

set B is an isolating block in the sense of Definition 3.2.1.

In order to complete the proof we still need to verify that B− = N+(∂B, u). Due

toN+(∂B, u) ⊂ B− and the closedness of B− one clearly hasN+(∂B, u) ⊂ B−. Since we have

already established B− = N+(∂B, u) ∪N0(∂B, u), we only need to show that N0(∂B, u) ⊂

N+(∂B, u). According to [26, Corollary 5.14](reprinted as Theorem 2.1.6 in Chapter 2),

the level set N0(∂B, u) ⊂ ∂B is a properly embedded submanifold of codimension one,

since we assumed that zero is a regular value of u. Now let p ∈ N0(∂B, u) be arbitrary.

Since u is a submersion at p, every neighborhood of p in ∂B has to contain points which lie

in N+(∂B, u), and points in N−(∂B, u). This readily shows that p ∈ N+(∂B, u), and this

completes the proof of the theorem.

3.5.1 A Worked Example

In this section we will define a candidate isolating block B for the flow ϕ generated by the

simple ordinary differential equation 3.18, and then present a detailed evaluation of both

u and v from Theorem 3.5.4 at a single point p ∈ ∂B. We will show images from a non-

rigorous numerical approximation to argue that N0(u) ⊂ N+(v) for the block B, and show

by hand that zero is a regular value of u, which together are the assumptions required by

Theorem 3.5.4 to validate B as an isolating block. Along the way we will see that the flow

makes an external tangency with B at the point p, and we verify that v(p) > 0. Finally, we

will compute the Conley index of the maximal invariant set S contained in the interior of

B, and use it in conjunction with standard results for gradient systems to show8 that S is

simply the (Morse) index 2 hyperbolic equilibrium point at the origin.

8The result shown in this section is completely non-rigorous as presented due to the appeal to Figure 3.7

to show that N0(u) ⊂ N+(v). In §3.6 we will introduce the rigorous numerical algorithm (IB), which has

been designed specifically to produce a computer-assisted proof of the fact that N0(∂B, u) ⊂ N+(∂B, v),
and that zero is a regular value for u.
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Let ẋ = f(x), where x = (x, y, z) ∈ R3. Suppose this differential equation is given by

the following system

ẋ = −x

ẏ = y

ż = z

(3.18)

Put B :=
{

(x, y, z) ∈ R3 :
√
x2 + y2 + z2 ≤ 1

}
. Then ∂B =

{
(x, y, z) ∈ R3 :

√
x2 + y2 + z2 = 1

}
is a smooth, compact, orientable manifold in accordance with Assumption (A1) in §3.5.

From Theorem 3.5.4, we have the functions ∂B → R given by

u(p) := 〈f(p), νp〉

and

v(p) := 〈Df(p)f(p), νp〉 − II(π⊥p f(p), π⊥p f(p)).

Consider the point p = (1/
√

2, 0, 1/
√

2) ∈ ∂B. Notice that Figure 3.6 suggests that the

solution of the differential equation 3.18 through the point p is tangent to B, implying that

u(p) = 0. In order for B to be a valid isolating block we need to show that this tangency is

external (which appears to be), i.e. we need to show that v(p) > 0.

We first compute u(p) = 〈f(p), νp〉. The vector f(p) is f(1/
√

2, 0, 1/
√

2) = (−1/
√

2, 0, 1/
√

2).

In general, the outward normal vector νp can be obtained either from a parameterization

r : Ω ⊂ Rn−1 → Rn of ∂B, or from νp = ∇Ψ(p), where Ψ is an explicit smooth level set

expression Ψ : Ω ⊂ R3 → R, having ∂B =
{

(x, y, z) ∈ R3 : Ψ(x, y, z) = 0
}

. In the present
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case of ∂B being the unit sphere centered at the origin, we simply have νp = p. Thus

u(p) = 〈f(p), νp〉

= 〈(−1/
√

2, 0, 1/
√

2), (1/
√

2, 0, 1/
√

2)〉

= 0, (3.19)

indicating that the flow is tangent to B at the point p. Figure 3.6 shows the point p and

a segment of the solution of 3.18 through p. A numerical approximation to the positive

superlevel set N+(Ω, u) is shown in Figure 3.7.

Next we compute v(p) = 〈Df(p)f(p), νp〉 − II(π⊥p f(p), π⊥p f(p)). The vector Df(p)f(p)

is the Jacobian matrix of f applied to the vector f(p), and appears as

Df(p)f(p) =


−1 0 0

0 1 0

0 0 1



−1/
√

2

0

1/
√

2

 =


1/
√

2

0

1/
√

2

 . (3.20)

At this point we have expressions for the inner product 〈Df(p)f(p), νp〉 forming the first

term of v(p). We now look at the projection π⊥p := q − 〈q,νp〉‖νp‖ νp. Thus, π⊥p f(p) projects the

vector field f passing through the point p ∈ ∂B onto the tangent plane of the manifold B at

p. We have chosen p = (1/
√

2, 0, 1/
√

2)T so that the vector field has no normal component

to the unit sphere at this point, so π⊥p f(p) = f(p) = (−1/
√

2, 0, 1/
√

2).

Next we evaluate the second fundamental form on ∂B in the direction π⊥p f(p) =

(−1/
√

2, 0, 1/
√

2) ∈ TpB. We proceed through the standard notation. Let the two-dimensional

surface ∂B be locally smoothly embedded in R3 as a graph over the parametric domain

Ω ⊂ R2 given by r : Ω ⊂ R2 → B. Denote the preimage of the point p ∈ ∂B by p̂ ∈ Ω. Let
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TpB denote the tangent space of B at p ∈ ∂B. Then we have

II(λ, λ) := L(λ1)2 + 2Mλ1λ2 +N(λ2)2, (3.21)

where λ = (λ1, λ2) ∈ TpB, and

L := 〈rθθ(p̂), νp〉 (3.22)

= 〈(−1/
√

2, 0, 0), (1/
√

2, 0, 1/
√

2)〉

= − 1/2

M := 〈rθϕ(p̂), νp〉 (3.23)

= 〈(0, 1/
√

2, 0), (1/
√

2, 0, 1/
√

2)〉

= 0

N := 〈rϕϕ(p̂), νp〉 (3.24)

= 〈(−1/
√

2, 0, −1/
√

2), (1/
√

2, 0, 1/
√

2)〉

= − 1

The standard parametric equations for the unit sphere will form our chart, so we put (ϕ, θ) ∈

Ω := [0, 2π] × [0, π], and specify r : (θ, ϕ) 7→ (cos θ sinϕ, sin θ sinϕ, cosϕ). Technically, for

p = (0, 0, 1) or (0, 0,−1), i.e. the poles of the sphere, we will need a different chart because

r−1(0, 0, 1) is the entire line [0, 2π] × {0}, so something like r : (θ, ϕ) 7→ (cos θ sin(ϕ +

ε), sin θ sin(ϕ+ ε), cos(ϕ+ ε)) with ε ∈ (0, π) will do. This is not a problem in practice, see
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§3.5.2.

Recall our setting: B is the unit ball with boundary ∂B, the unit sphere. The point

p ∈ ∂B defines the tangent plane TpB. For the point p, the second fundamental form provides

access to a local quadratic approximation to ∂B as a graph over TpB. In particular, the

second fundamental form at p ∈ B, in the direction λ ∈ TpM, (denoted II(λ, λ)) yields the

quadratic term of the Taylor expansion of the curve γ : [−ε, ε] → ∂B, with γ(0) = p, and

having γ′ = αλ (α ∈ R). This implies that in order to compute the second fundamental

form in the direction of π⊥p f(p), we need this vector to be written as a linear combination

of the vectors spanning the tangent plane to B at p (cf. Equation 3.21). In particular, we

need to solve

[rθ(p̂); rϕ(p̂)]λT =


− sin θ sinϕ cos θ cosϕ

cos θ sinϕ sin θ cosϕ

0 − sinϕ


 λ1

λ2


∣∣∣∣∣∣∣∣∣∣
(θ,ϕ)=p̂

= π⊥p f(p). (3.25)

We have that p̂ = (0, π/4), and π⊥p f(p) = (−1/
√

2, 0, 1/
√

2), so Equation (3.25) appears

as

[rθ(0, π/4); rϕ(0, π/4)]λT =


0 1/

√
2

1/
√

2 0

0 −1/
√

2


 λ1

λ2

 =


−1/
√

2

0

1/
√

2

 , (3.26)

so that λ = (0,−1). That is, we can express the projection of the vector f(p) onto TpB in

a local basis for TpB. We now have

π⊥f(p) = 0 · rθ(p̂)− 1 · rϕ(p̂). (3.27)
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Finally, we can compute v(p) from Theorem 3.5.4.

v(p) = 〈Df(p)f(p), νp〉 − II (π⊥p f(p), π⊥p f(p))

= 〈(−1/
√

2, 0, 1/
√

2), (1/
√

2, 0, 1/
√

2)〉 − II((0,−1), (0,−1))

= 0 −
(
L(0)2 + 2M(0)(1) +N(−1)2

)
= −

(
−1(−1)2

)
= 1 (3.28)

We have arrived at the fact that see that p is in the zero level set N 0(Ω, u), and also in

N+(Ω, v), where Ω = [0, 2π]× [0, π]. We have not resolved the sets N 0(Ω, u) and N+(Ω, v).

In order to use Theorem 3.5.4 to validate B as an isolating block for Equation (3.18),

the set inclusion N 0(u) ⊂ N+(v) must be shown to be valid at each point p ∈ ∂B, or

equivalently for the chart r above, N 0(u) ⊂ N+(v) must be shown to be valid at each point

p̂ ∈ Ω = [0, 2π]× (0, π), and zero must be shown to be regular value of u.

The regularity of zero can be achieved in this example by noting that∇u(p) = (−2x, 2y, 2z),

which is nonzero for all p ∈ ∂B =
{

(x, y, z) ∈ R3 :
√
x2 + y2 + z2 = 1

}
. This is a rigorous

statement in the sense that it does not come from an approximation, numerical or otherwise.
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Figure 3.6: Selected trajectories of the system (3.18). The left panel shows the sphere

B isolating the fixed point at the origin. The point p = (1/
√

2, 0, 1/
√

2) is shown by
the red dot. The right panel shows the tangent plane TpB spanned by {Φθ(p̂),Φϕ(p̂)},
along with a normal vector νp in orange. A segment of the solution of (3.18) through p

is shown by the red and green curve (for forward time, red indicates moving away from p

and green indicates moving toward p), and π⊥f(p) = f(p) ∈ TpM is indicated in purple.

The dashed curve lies in ∂B, and has tangent vector f(p) at p. The tangency test function

v(p) = 〈Df(p)f(p), νp〉 − II(π⊥f(p), π⊥f(p)) can be thought of as comparing the second
derivatives of these two curves at p, where the orientation of the space curves is taken
relative to νp.

At the moment we offer only a numerical approximation of the level sets of both u and v

to argue that the set inclusion N 0(u) ⊂ N+(v) holds. Figure 3.7 shows the output of calls

to contour(u) and contour(v) over the domain Ω = [0, 2π]× [0 + ε, π − ε] from a typical

numerical library (in this case we used numpy from the Python programming language).

In the left image we have plotted N+(Ω, u) in dark blue and N−(Ω, u) in light blue. The

right image shows N+(Ω, v) and N−(Ω, v), along with the level set N0(Ω, u). The fact that

the level set does not appear to cross into any region where v is negative suggests that

N0(Ω, u) ⊂ N+(Ω, v) (in fact, N−(Ω, v) = ∅).
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Figure 3.7: The patches Ω = [0, 2π] × (0, π) in both panels represent the domain of the
parameterization r : Ω→ B in Figure 3.6. The left panel shows a the evaluation of u on Ω,
where the dark blue region indicates u > 0 and the light blue indicates u < 0. The (image
under r of the) border of these two regions corresponds to lines along ∂B where u = 0, that

is N0(Ω, u) ⊂ ∂B. The right panel shows a filled contour plot of v on Ω (although v > 0

on all of Ω), with an overlay of N0(Ω, u). It is essential that the contours N0(Ω, u) do not
intersect regions on the right which are not positive, and in fact the it is the purpose of
(IB) to establish this fact rigorously (cf. Theorem 3.5.4).

In §3.6 we present the numerically rigorous Algorithm (IB), which builds on Algorithm

(V) from Chapter 2, and we present Theorem 3.6.1 establishing that successful completion of

Algorithm (IB) guarantees B is an isolating block. Section 3.7 contains several examples of

the rigorous, algorithmic validation of isolating blocks in systems that are more complicated

than the current example.

This final paragraph discusses the computation of the Conley index given the information

that B is a valid isolating block, and knowledge of B− ⊂ ∂B up to homotopy equivalence.

Observe that in Figure 3.6, the isolating block B is the closed unit ball, and the exit set

B− ⊂ ∂B forms a belt around the ball. With some effort, the configuration of B− can also

be seen from Figure 3.7. Computing H∗(B̃, B̃−), where B̃ is a cubical set that is homotopy

equivalent to B, and B̃− ⊂ ∂B̃ is a cubical set homotopy equivalent to B−, is automated

using the computer program homcubes, which is a utility provided by the Computational

Homology Project, CHomP [10]. Figure 3.8 shows the cube B̃ ⊂ R3 as a cubical set
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representing B, along with the cubical set B̃− ⊂ B̃ representing B−. These cubes are used

to obtain the Conley index of the maximal invariant set S in the interior of B,

CH∗(S) = H∗(B,B−) = (0, 0,Z, 0, . . .),

and corresponds to an isolated invariant set having the structure of a hyperbolic fixed point

of (Morse) index 2.

Figure 3.8: Cubical set representing the isolating block B and B− ⊂ ∂B which appears
in the left panel of Figure 3.6. This cubical representation of B and B− can be passed to
the computer program homcubes to compute the relative homology groups H∗(B,B−), and
therefore CH∗(S) for the maximal invariant set in intB. The Conley index of the (Morse)
index-2 hyperbolic equilibrium S from (3.18) is CH∗(S) = (0, 0,Z, 0, . . . ), corresponding to

the homology groups of the two-sphere Σ2.

3.5.2 Local Charts and Piecewise-smooth Boundaries

We briefly indicate a possible extension of our approach. So far, we have always assumed

that the boundary of the potential isolating block B is given by a smooth manifold. For

some applications, however, it might be useful to consider regions with piecewise smooth

boundary ∂B. Of course, on each of the maximal smooth subsetsMk of ∂B, we can still use

the isolating block validation algorithm to verify the assumptions of Theorem 3.5.4. But

87



what can be said about the points in ∂B at which the smooth submanifolds with boundary

meet? For this, let M1 ⊂ ∂B and M2 ⊂ ∂B denote two closed smooth submanifolds of ∂B

with boundary, and assume that their intersection is contained in each of their boundaries.

Furthermore, assume that both submanifolds satisfy the assumptions of Theorem 3.5.4,

and that along their intersection, the region B is convex in the following sense, which is due

to [17]:

(C) If p ∈ M1 ∩M2, then there exists a neighborhood U of p in ∂B, such that for any

point p1 ∈ M1 ∩ U and any point p2 ∈ M2 ∩ U their connecting line segment is

completely contained in B.

In this case, at all points p ∈M1∩M2 the flow of (3.1) either enters or exits in a non-trivial

way, i.e., we have p ∈ B+ \ B− or p ∈ B− \ B+, respectively, or there exists a time T > 0

such that ϕ([−T, T ], p) ∩ B = {p}. In other words, it suffices to study only the smooth

submanifolds up to and including their boundaries to establish an isolating block.

3.6 Rigorous, Algorithmic Validation of Candidate Isolating

Blocks

We present a new algorithm that starts with a candidate isolating block B for S and

either: (1) Rigorously proves that the candidate is a valid isolating block and returns a

CW approximation to ∂B and B− ⊂ ∂B; or (2) Fails to prove the candidate is a valid

isolating block, yet returns a CW approximation to B−, and reveals where the candidate

block needs to be altered in order to succeed; or (3) Fails to produce a CW-approximation

to B− entirely9.

In §2.3.4 we established that the superlevel set validation algorithm (V) constructs CW

complex approximations to N+(Ω, u), where u : Ω ⊂ Rn → R, with the property that the

positive cells in the resulting complex cmplx are guaranteed to be homotopically equivalent

9After all, the algorithm bootstraps the superlevel set algorithm (V).
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to the set N+(Ω, u). Recall also that the algorithm does not attempt to trace the zero level

set, but uses interval arithmetic to determine if a zero level set crosses any given cell. Thus,

once the top-dimensional cells cmplx are obtained, we can revisit those cells which were

flagged as being monotone, and evaluate v on them (and only on them).

Let the boundary of a candidate isolating block be given by a coordinate chart r : Ω ⊂

Rn−1 → Rn, where Ω is a rectangular region. For example, if the candidate block is the

unit sphere embedded in R3 then one could have r : (θ, ϕ) 7→ (sin θ cosϕ, sin θ sinϕ, cosϕ),

where Ω = [0, 2π]× [0, π] ⊂ R2. This permits the direct application of Theorem 3.5.4 since

u and v can be computed immediately from this chart (we refer to 3.5.1 for a more complete

construction). Given this,

The isolating block validation algorithm (IB) proceeds as follows:

Input: The functions u and v, and the rectangular region Ω.

Output: One of three possible pairs:

(Success, CW-complex) The algorithm was able to validate the as-

sumptions of Theorem 3.5.4 on Ω, and

the rigorous CW-complex approximation to
N+(Ω, u) on Ω from the Algorithm (V).

(No Success, CW-complex) The algorithm was not able to validate the

assumptions of Theorem 3.5.4 on Ω, yet the
Algorithm (V) was able to generate the rigor-

ous CW-complex approximation to N+(Ω, u).

(No Success, No CW-complex) The algorithm was not able to validate the as-

sumptions of Theorem 3.5.4 on Ω because the
Algorithm (V) failed to generate the rigorous

CW-complex approximation to N+(Ω, u) on
Ω.

(IB1) Apply the superlevel set validation algorithm (V) to the function u on the region

Ω ⊂ Rn−1. If this algorithm fails then the isolating block validation algorithm fails

as well. If it succeeds, initialize the list Q with the (n − 1)-cells of the resulting
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CW-complex cmplx.

(IB2) For C ∈ Q:

(a) If the boundary cells of C were all positive or all negative (as determined in step

(V4, b)†), add C to the list V.

(b) If some boundary cells of C were positive and some negative, and C was validated

as monotone (as determined in step (V4, c)), obtain the range enclosure [v(C)].

If v can be determined to be positive on C, then add C to the list V, otherwise

add C to the list T .

If the list T is empty after all cells in Q have been examined, then the algorithm

returns True – this is a valid isolating block. Otherwise, proceed to (IB3).

(IB3) For C ∈ T , divide C to obtain the (n − 1)-dimensional cells C1 and C2. Apply the

superlevel set validation algorithm to the function u on the cells C1 and C2. If this

algorithm fails then the isolating block validation algorithm fails as well. If it succeeds,

add the (n− 1)-dimensional cells of the resulting CW-complex to the list Q. Once T

is empty, return to step (IB2) to examine all cells in Q‡.

† This requires adding another flag in the superlevel set validation algorithm at steps

(V4b) and (V4c).

‡ There is a user-defined number of times step (IB2) can be re-entered.

We include the following theorem for future reference:

Theorem 3.6.1 (Isolating Block Verification). Let r : Ω → ∂B, where Ω ⊂ Rn−1 and

∂B ⊂ Rn, be a parameterization for the manifold ∂B, and let u, v : ∂B → R denote the

smooth exit set and tangency test functions from the theorem, expressed in coordinates on

Ω. If the isolating block validation algorithm (IB) successfully finishes when applied to u, v

on Ω, then (3.16) is satisfied on the closed subset of ∂B which is parametrized over Ω.
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Moreover, if the above holds for a finite number of parametric domains whose images cover

the manifold ∂B, then the set B is an isolating block for (3.1).

Proof. Let V denote the collection of validated rectangles at the end of algorithm (IB). Since

each of these rectangles has passed the validation steps from (V), Theorem 2.3.3 implies

that zero is a regular value over each rectangle, hence over all of Ω.

Now let p ∈ ∂B be any point with u(p) = 0. Then there exists a rectangle R ∈ V with

r−1(p) ∈ R. Since R has passed step (IB2) and contains a zero of u, it must have passed

step (IB2)(b). This shows that v > 0 on R, and therefore we have v(p) > 0. This completes

the proof of the theorem.

Psuedocode is provided for Algorithm (IB) below.
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Algorithm (IB) 4
(cellComplex, vector< cell >, bool) isolating block validation(
Differentiable exit set u, Differentiable tangency test v, coordinates U)

Input: Continuously differentiable functions exit set u and tangency test v, description of
rectangular set U ⊂ Domain u, v ⊂ Rn

1: bool is valid block = False
2: cellComplex Q original = validate superlevel set(exit set u, U)
3: vector< cell > Q = Q original.get n dimensiona cells()
4: list T,V
5: while Q is not empty, do
6: for q in Q do
7: if has mixed boundary(q), then
8: T.append(q)
9: else

10: V.append(q)
11: Q.remove(q)
12: while T is not empty, do
13: cell t = T.pop()
14: if tangency test v is positive on t, then
15: V.append(t)
16: else
17: cell t1, t2
18: t1,t2 = split(t)
19: cellComplex A = validate superlevel set(exit set, t1.coordinates)
20: cellComplex B = validate superlevel set(exit set, t2.coordinates)
21: vector< cell > A n cells = A.get n dimensiona cells()
22: vector< cell > B n cells = B.get n dimensiona cells()
23: Q.append(A n cells)
24: Q.append(B n cells)
25: if T is empty, then
26: is valid block = True
27: return (Q original, V, is valid block)

Subroutine bool has mixed boundary(cell cell)

Input: Validated cell cell
1: bool has mx bd = False
2: bool contains neg = False
3: bool contains pos = False
4: vector< cell > skeleton of cell = cell.get n skeleton()
5: while skeleton of cell is not empty, do
6: cell boundary cell = skeleton of cell.pop()
7: if boundary cell is validated as negative, then
8: contains neg = True
9: else if boundary cell is validated as positive, then

10: contains pos = True
11: if contains neg & contains pos, then
12: has mx bd = True
13: break
14: return has mx bd
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3.7 Applications: Computer-assisted Proofs of Dynamical

Behavior using the Conley Index

In this section we will consider ordinary differential equations ẋ = f(x) which permit a

global flow ϕ : R × Rn → Rn. The isolated invariant sets we identify may be thought

of as benchmarks of sorts, because in each case10 the isolated invariant sets we discover

are either known, or have been found by other means. We are pleased to be able to meet

these benchmarks with a single, unified method. Furthermore, the infrastructure teardown

and rebuild between examples is very minor. That is, transitioning between examples

requires only obtaining a parameterization or a level set description of the boundary ∂B of

a candidate block B (cf. §3.5.2). Obtaining a computer-assisted proof about the structure

of the maximal invariant set S isolated by B requires the successful completion of Algorithm

(IB) applied to B, and typically some knowledge about the vector field f (for example, that

f is gradient-like on some subset of B, or that f is invariant on some subset of B).

The first result, Result (1), of the first example is explained in great detail in order to

firmly establish our framework. With this in place, we progress easily through the remaining

examples. For all examples, the workflow will follow the general pattern:

1. Identify a region of interest in the phase space of the flow generated by a vector field

f : Rn → Rn

2. Propose compact sets Bi ⊂ Rn as candidate isolating blocks for the flow

3. Apply Algorithm (IB) to the candidate blocks Bi, and if Algorithm (IB) succeeds

4. Compute the Conley index CH(Si) of the isolated invariant sets Si ⊂ Bi

5. Combine information from the Conley index and facts about the vector field f to

obtain computer-assisted proofs of the structure of the isolated invariant sets Si
10Each case except one – to our knowledge, the heteroclinics in §3.7.1 between the equilibria p0 and p2,

and between the equilibria p1 and p2, have not been individually identified. The statement obtained in [17]
was along the lines of ‘at least one of the heteroclinics is guaranteed to exist.’
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3.7.1 A Simple Gradient System

Our first example is taken from Eberlein’s thesis [17] and is the system

ẋ = 2x(z − y) ,

ẏ = 1 + z − x2 , (3.29)

ż = −1 + y + x2 .

This system is a gradient system with associated potential

V (x, y, z) = x2y − x2z − yz − y + z , (3.30)

i.e., the right-hand side of (3.29) is given by −∇V (x, y, z), and the flow generated by (3.29)

decreases the potential V .

The system (3.29) has exactly three equilibrium solutions given by p0 = (−1, 0, 0),

p1 = (1, 0, 0), and p2 = (0, 1,−1). Each of these are hyperbolic with (Morse) indices 2, 2,

and 1, respectively.

In this section we will show: Result (1) The result in [17]: establishing that there is

at least one heteroclinic connection between p2 and an isolated invariant set S01 satisfying

p0 ∈ S01 and p1 ∈ S01; Result (2) There exists a heteroclinic connection between p0 and

p2; and Result (3) There exists a heteroclinic connection between p1 and p2. (Note that

Results (2) and (3) sharpen Result (1).)

To show Result (1): We first propose three candidate isolating blocks, namely the block

A01, which isolates the equilibria p0 and p1, the block A2, isolating the equilibrium p2, and

A012, which isolates all three equilibria p0, p1, and p2.

• The candidate block A01, shown in Figure 3.9, is an ellipse centered at the origin,

where the boundary of A01 is parameterized by r : [0, 2π]× (0, π)→ ∂A01, defined as

r(ϕ, θ) = (a cosϕ sin θ, b sinϕ sin θ, c cos θ) , with a = 6/5, b = 3/10, c = 3/10
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• The candidate blockA2, shown in Figure 3.13, is a sphere centered at p2 = (x2, y2, z2) =

(0, 1,−1), with radius ρ = 1/5. The boundary of the block is parameterized using

spherical coordinates r : [0, 2π]× (0, π)→ ∂A2, however the boundary of the exit set

A−2 intersects the “north pole” of the sphere if we use the standard parameterization.

This can be remedied by rotating the standard parameterization, for example letting

r take the form

r(ϕ, θ) = ρ (cosϕ sin(θ − π/4) + x2, sinϕ sin(θ − π/4) + y2, cos(θ − π/4) + z2)

• The candidate block A012, shown in Figure 3.12, is the sphere of radius ρ = 3/2 cen-

tered at (x012, y012, z012) = (0, 1/2,−1/2), and the boundary of A012 is parameterized

by r : [0, 2π]× (0, π)→ ∂A012, defined as

r(ϕ, θ) = ρ (cosϕ sin θ + x012, sinϕ sin θ + y012, cos θ + z012)

Figure 3.9 shows the candidate block A01 in the phase space. The boundary of the

candidate has been shaded dark blue where the vector field (3.29) points outward from

A02, and light blue where it points inward. The vector field is tangent to A02 along the

boundary between these shaded regions. The left panel of Figure 3.10 shows a numerical

approximation of the exit set function u(p) = 〈f(p), νp〉 from Lemma 3.5.2 on the parametric

domain Ω = [0, 2π] × (0, π). Thus, one can imagine the patch shown in the left panel to

wrap around the sphere defining A01, so that the lines {0} × (0, π) and {2π} × (0, π) are

identified to form a meridian, and the entire line [0, 2π] × {π} is the “north pole” of A01,

while [0, 2π] × {0} is the “south pole”. The right panel of Figure 3.10 shows a numerical

approximation of the tangency test function v(p) = 〈Df(p)f(p), νp〉 − II(π>p f(p), π>p f(p))

from Lemma 3.5.3 on the parametric domain Ω = [0, 2π] × (0, π). Again, one can imagine

the patch shown in the right panel to wrap around the sphere defining A01, however in this

case the tangency test is only relevant where u(p) = 0. An approximation to the level set
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N0(Ω, u) has been superimposed over the evaluation of v to help indicate regions on the

boundary of the block where the flow is both tangent (u = 0), and forms an internal tangency

(v < 0). We emphasize that Algorithm (IB) must be applied to the boundary of the block

in order to guarantee that the points p ∈ ∂A01 where u(p) = 0 satisfy the condition that

v(p) > 0, thereby establishing that 0 is a regular value of u, and that N0(Ω, u) ⊂ N+(Ω, v)

(cf. Theorems 2.3.3 and 3.5.4).
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Figure 3.9: Several trajectories of Equation (3.29), along with the isolating block A01. Red
trajectories are leaving their respective equilibria, and orange, green, and blue trajectories
are traveling toward their respective equilibria.

We are ready to apply Algorithm (IB) to each candidate block. The output of the

algorithm applied to A01 is shown in Figure 3.10. Algorithm (V) does not resolve N0(Ω, u)

explicitly, but it does resolve rectangular subsets of Ω on which u takes both positive and

negative values (the monotone cells), and in the figure these cells are marked in red. The
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right panel shows information from the successful completion of Algorithm (IB). Algorithm

(IB) operates on cells Rn which are red on the left, and tests them for internal tangencies

using v – if the cell Rn is red, and inf[v(Rn)] is not bounded above zero, then Rn is

divided and the resulting cells are submitted to (V). Green rectangles Rn in the right panel

indicate that u takes both positive and negative values on Rn, and that inf[v(Rn)] > 0, thus

eliminating the possibility for internal tangencies on the portion of the block parameterized

over Rn.
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(a) Positive and negative regions of u and v over the domain Ω = [0, 2π] × (0, π). The left panel
shows the zero level set of v superimposed onto the plot of u. The right panel shows the zero level
set of u superimposed onto the plot of v, and in this example it appears that N0(Ω) ⊂ N+(Ω, v).
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(b) Validation that the candidate block A01 is, indeed, an isolating block for Equation 3.29. The
left panel shows all cells in cmplx constructed by Algorithm (V) applied to u over Ω. The function
u takes both positive and negative values on the red cells (the monotone cells in cmplx), and this
is corroborated by the contour lines of u superimposed onto the colored cell complex. The right
panel illustrates the work done by Algorithm (IB). Contours of v have been superimposed in red.

In order to establish N0(Ω, u) ⊂ N+(v), Algorithm (IB) evaluates v on each red rectangle from the
left, subdividing red rectangles if necessary. See Figure 3.17 for an example where these further
subdivisions were necessary to establish N0(Ω, u) ⊂ N+(v).

Figure 3.10: The candidate block A01 is an isolating block.

The successful completion of Algorithm (IB) on the candidate block A01 allows us to

use A01 to compute the Conley index CH(S01) = H∗(A01,A−01), the Conley index of the

98



maximal invariant set S01 contained within the interior of A01. The first step to computing

H∗(A01,A−01) is to submit cmplx+, the homotopy equivalent approximation to N+(Ω, u)

produced by Algorithm (V), to the computational topology toolbox PHAT [6]. This step

produces the Betti numbers of N+(Ω, u), which allow us to create an accurate cubical rep-

resentation of the pair (A01,A−01), which can then be sent to the program homcubes, from

CHomP [10], to compute the relative homology. Figure 3.11 shows a cubical representa-

tion of A01 and A−01 ⊂ ∂A01. The program homcubes computes the relative homology

H∗(A01,A−01), which reveals the Conley index of S01 to be

CH(S01) =
(
0, 0,Z2, 0, . . .

)

Figure 3.11: Cubical representation of A01 ⊂ R3. The darkened cubes represent a set that

has the same Betti numbers as A−01 ⊂ ∂A01. The program homcubes computes the relative

homology H∗(A01,A−01), yielding H∗(A01,A−01) = CH∗(S01) = (0, 0,Z2, 0, . . . ).

The candidate blocks A2 and A012 are shown positioned in the phase space in Figures

3.13 and 3.12, below. Algorithm (IB) applied to these candidate blocks is successful, and
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the output of (IB) is shown in Figures 3.15 and 3.16. The Conley indices of S2 and S012

are computed precisely as above, resulting in

CH(S2) = (0,Z, 0, 0, . . . )

CH(S012) = (0, 0,Z, 0, . . . )
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Figure 3.12: Several trajectories of Equation (3.29), along with the isolating block A012

surrounding p0, p1, and p2. Red trajectories are leaving their respective equilibria, and
orange, green, and blue trajectories are traveling toward their respective equilibria.

At this point we turn back to Equation 3.29, and combine information from Conley

index with facts about the vector field 3.29 to obtain Result (1) There is at least one

heteroclinic connection between p2 and an isolated invariant set S01. To see this, assume

that S01 and p2 comprise the maximal invariant set isolated by the block A012. By the
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summation formula discussed in §3.3.4, we expect to have CH(S012) ' CH(S01)⊕CH(S2).

However, the homomorphism does not hold:

CH(S012) = (0, 0,Z, 0, . . . )

6'
(
0, 0,Z2, 0, . . .

)
⊕ (0,Z, 0, 0, . . . ) = CH(S01)⊕ CH(S2)

This immediately implies that S012 contains more than S01 and S2. This, together with

the fact that 3.29 is a gradient system with three hyperbolic fixed points, the only other

type of globally bounded orbits are heteroclinic orbits between these equilibrium solutions,

therefore the maximal invariant set S012 contains at least one heteroclinic orbit.
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Figure 3.13: Trajectories of Equation (3.29), along with the isolating blocks A0, A1, and
A2 individually surrounding p0, p1, and p2, respectively. Red trajectories are leaving their
respective equilibria, and orange, green, and blue trajectories are traveling toward their
respective equilibria.
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To show Results (2) and (3): We will use A2 from Result (1) and propose four new

candidate isolating blocks, namely

• The candidate blockA0, shown in Figure 3.13, is the sphere centered at p0 = (x0, y0, z0) =

(−1, 0, 0), with radius ρ = 3/20. The boundary of the block is parameterized using

spherical coordinates r : [0, 2π] × (0, π) → ∂A2, however once again the boundary

of the exit set A−0 intersects the “north pole” of the sphere if we use the standard

parameterization. Therefore we let r take the form

r(ϕ, θ) = ρ (cosϕ sin(θ − π/4) + x0, sinϕ sin(θ − π/4) + y0, cos(θ − π/4) + z0)

• The candidate blockA1, shown in Figure 3.13, is the sphere centered at p1 = (x1, y1, z1)

= (1, 0, 0), with radius ρ = 3/20, with boundary parameterized by

r(ϕ, θ) = ρ (cosϕ sin(θ − π/4) + x1, sinϕ sin(θ − π/4) + y1, cos(θ − π/4) + z1)

• The candidate blocks A02 and A12, shown in Figure 3.14, are congruent 2-norm ellip-

soids which are centered at the points (x02, y02, z02) = (−1/2, 1/2,−1/2) and (x12, y12, z12)

= (1/2, 1/2,−1/2), respectively. The parameterization of ∂A02 is given by

r(ϕ, θ) =


1/
√

3

1/
√

3

−1/
√

3

 a sin θ cosϕ+


−1/
√

2

1/
√

2

0

 b sin θ sinϕ

+


−1/
√

6

−1/
√

6

−2/
√

6

 c cos θ +


x02

y02

z02

 ,
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r(ϕ, θ) =


1/
√

3

1/
√

3

−1/
√

3

 a sin θ cosϕ+


−1/
√

2

1/
√

2

0

 b sin θ sinϕ

+


−1/
√

6

−1/
√

6

−2/
√

6

 c cos θ +


x02

y02

z02

 ,

and the parameterization of ∂A12 is given by

r(ϕ, θ) =


−1/
√

3

1/
√

3

−1/
√

3

 a sin θ cosϕ+


1/
√

2

1/
√

2

0

 b sin θ sinϕ

+


1/
√

6

−1/
√

6

−2/
√

6

 c cos θ +


x12

y12

z12

 ,

where a = 12/5, and b = c = 6/5.
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Figure 3.14: Trajectories of Equation (3.29), along with the isolating block A02 (left) around
p0 and p2, and A12 (right) around p1 and p2.

Just as in Result (1), we first validate the new blocks using Algorithm (IB). The output

of (IB) on the four new blocks is shown in Figures 3.18, 3.19, 3.17 and 3.20. Next we

assume A02 contains only S0 and S2, the maximal invariant sets isolated by A0 and A2,

respectively. This assumption sets up the summation formula, which is immediately seen

to fail. In particular,

CH(S02) = (0, 0, 0, 0, . . .)

6' (0, 0,Z, 0, . . .)⊕ (0,Z, 0, . . .) = CH(S0)⊕ CH(S2), and

CH(S12) = (0, 0, 0, 0, . . .)

6' (0, 0,Z, 0, . . .)⊕ (0,Z, 0, . . .) = CH(S1)⊕ CH(S2).

In this case we have that S02 contains bounded invariant sets other than just the equilibria

isolated by A0 and A2, and similarly, S12 contains more than just the equilibria in A1 and

A2. In each case, combining this Conley index information with the fact that (3.29) is a
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gradient flow with only hyperbolic equilibria, we see that there is a heteroclinic connection

between p0 and p2, and another connection between p0 and p2. This completes all results for

this example, below are figures corresponding to the validations of the candidate isolating

blocks used above.
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(a) Positive and negative regions of u and v over the domain Ω = [0, 2π] × (0, π). The left panel
shows the zero level set of v superimposed onto the plot of u. The right panel shows the zero level
set of u superimposed onto the plot of v.
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(b) Validation that the candidate block A2 is, indeed, an isolating block for Equation 3.29. The color
red is used in the left panel to indicate cells in cmplx where u is takes both positive and negative
values. This is emphasized by the contour lines of u superimposed onto the colored cell complex.
The right panel illustrates the work done by Algorithm (IB). Contours of v have been superimposed
in red. The tangency test function v was easily established as positive on all monotone cells from
cmplx.

Figure 3.15: The candidate block A2 is an isolating block.
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(a) Positive and negative regions of u and v over the domain Ω = [0, 2π] × (0, π). The left panel
shows the zero level set of v superimposed onto the plot of u. The right panel shows the zero level
set of u superimposed onto the plot of v.
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(b) Validation that the candidate block A012 is, indeed, an isolating block for Equation 3.29. The
color red is used in the left panel to indicate cells in cmplx where u is takes both positive and negative
values. This is emphasized by the contour lines of u superimposed onto the colored cell complex.
The right panel illustrates the work done by Algorithm (IB). Contours of v have been superimposed
in red. The tangency test function v was easily established as positive on all monotone cells from
cmplx.

Figure 3.16: The candidate block A012 is an isolating block.
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(a) Positive and negative regions of u and v over the domain Ω = [0, 2π] × (0, π). The left panel
shows the zero level set of v superimposed onto the plot of u. The right panel shows the zero level
set of u superimposed onto the plot of v.
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(b) Validation that the candidate block A02 is, indeed, an isolating block for Equation 3.29. The
right panel illustrates the work done by Algorithm (IB). It is apparent from this figure that the
monotonicity information from u had to be tightened by (IB, step (b)) in order to establish the
positivity of v in those regions (most notably, near the top left of the panel).

Figure 3.17: The candidate block A02 is an isolating block.
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(a) Positive and negative regions of u and v over the domain Ω = [0, 2π] × (0, π). The left panel
shows the zero level set of v superimposed onto the plot of u. The right panel shows the zero level
set of u superimposed onto the plot of v.
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(b) Validation that the candidate block A0 is, indeed, an isolating block for Equation 3.29. The color
red is used in the left panel to indicate cells in cmplx where u is takes both positive and negative
values. This is emphasized by the contour lines of u superimposed onto the colored cell complex.
The right panel illustrates the work done by Algorithm (IB). Contours of v have been superimposed
in red.

Figure 3.18: The candidate block A0 is an isolating block.
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(a) Positive and negative regions of u and v over the domain Ω = [0, 2π] × (0, π). The left panel
shows the zero level set of v superimposed onto the plot of u. The right panel shows the zero level
set of u superimposed onto the plot of v.
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(b) Validation that the candidate block A1 is, indeed, an isolating block for Equation 3.29. The color
red is used in the left panel to indicate cells in cmplx where u is takes both positive and negative
values. This is emphasized by the contour lines of u superimposed onto the colored cell complex.
The right panel illustrates the work done by Algorithm (IB). Contours of v have been superimposed
in red.

Figure 3.19: The candidate block A1 is an isolating block.
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(a) Positive and negative regions of u and v over the domain Ω = [0, 2π] × (0, π). The left panel
shows the zero level set of v superimposed onto the plot of u. The right panel shows the zero level
set of u superimposed onto the plot of v.
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(b) Validation that the candidate block A12 is, indeed, an isolating block for Equation 3.29. The
color red is used in the left panel to indicate cells in cmplx where u is takes both positive and
negative values. This is emphasized by the contour lines of u superimposed onto the colored cell
complex. The right panel illustrates the work done by Algorithm (IB). Contours of v have been
superimposed in red.

Figure 3.20: The candidate block A12 is an isolating block.

3.7.2 Asymptotic Behavior of Ground States

In [22], Hulshof & van der Vorst studied the asymptotic behavior of ground states of coupled

semilinear Poisson equations. Their approach could reduce the problem to establishing the
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existence of a certain heteroclinic orbit in a three-dimensional ordinary differential equation.

This equation was later considered by Boczko et al. [8] as a test case for their polygonal flow

approximations. In the following, we will show that our isolating block validation algorithm

can be applied in this situation as well. We consider the ordinary differential equation

ẋ = −x(x+ 1)− z ,

ẏ = y(2 + 6x− y) + 3x+ z , (3.31)

ż = z(2− x+ 5y) .

This ordinary differential equation has equilibria at the points p0 = (0, 0, 0) and p1 =

(−1,−1, 0). Additionally, this equation has equilibria at (2, 0,−6), (0, 2, 0), (−1,−3, 0),

and (−3,−1,−6). None of these will be relevant in the following, as they will lie outside all

constructed isolating blocks.

In this section we will show: Result (1) The result in [8]: There exists a heteroclinic

connection between p0 and p1. Along the way we will observe how our procedure can still

provide useful information, even when Algorithm (IB) fails.
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Figure 3.21: Trajectories of Equation (3.31), along with the isolating blocks B0 and B1. Red
trajectories are leaving their respective equilibria in forward time, and green trajectories
are traveling toward their respective equilibria.

To show Result (1): As in the first example, finding isolating blocks around the equilib-

rium solutions is an easy task, we simply propose two spheres B0 and B1, defined below.

Finding an isolating block B01 encompassing both p0 and p1, as well as the anticipated

heteroclinic orbit proves to be slightly more involved. As shown in [8], the orbit has the

general shape of a parabola connecting the equilibria, and reaching almost to a height of 1.

Thus, it seems reasonable to construct B01 as the ρ-neighborhood of the parabolic space

curve

r(θ) =


θ − 1

θ − 1

4hθ(1− θ) + c

 for 0 ≤ θ ≤ 1 , (3.32)

for suitable constants c and h, and with a suitable circular cross section of radius ρ. We
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parameterize the surface of the tube in the following way. For 0 ≤ θ ≤ 1 the standard

Frenet-Seret frames are used to describe the circular cross section of B01 with the plane

through r(θ) and spanned by the unit binormal b := (r′(θ) × r′′(θ))/(r′(θ) × r′′(θ)) and

unit normal n(θ) := (b(θ) × r′(θ))/(b(θ) × r′(θ)) vectors at this point. In this way, the

cylindrical surface is parameterized using 0 ≤ θ ≤ 1 along the curve, and using 0 ≤ ϕ ≤ 2π

along the circular cross section. For −1/2 ≤ θ < 0 and for 1 < θ ≤ 3/2 we use spherical

coordinates to parameterize the spherical caps at the ends of B01 in such a way that the

equator of one cap matches the tubular cross section at θ = 0, and the other at θ = 1. With

this discussion in mind, consider the following candidates:

• The candidate blocks B0 and B1, shown in Figure 3.21, are the spheres of radius

ρ = 3/20, centered at p0 + (0, 0, 11/100) = (x0, y0, z0) = (0, 0, 11/100) and p1 +

(0, 0, 11/100) = (x1, y1, z1) = (−1,−1, 11/100), respectively. Their parameterizations

are the standard spherical parameterizations r : Ω = [0, 2π] × (0, π) → ∂Bk, for

k = 0, 1.

• The candidate block B01, shown in Figure 3.22, being defined as the union of three

manifolds with boundary, given by the parameterizations γ· : Ω = [0, 2π]×[−0.5, 1.5]→
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∂B01, defined as

for θ ∈ [−0.5, 0] : γ−(ϕ, θ) = r(0) + n(0) ρ sin (π(θ + 1.5)) cosϕ

+ b(0) ρ sin (π(θ + 1.5)) sinϕ

+ r′(0) ρ cos (π(θ + 1.5))

for θ ∈ [0, 1] : γ0(ϕ, θ) = r(θ)− n(θ) ρ cosϕ− b(θ) ρ sinϕ

for θ ∈ [1, 1.5] : γ+(ϕ, θ) = r(1) + n(1) ρ sin (π(θ + 0.5)) cosϕ

+ b(1) ρ sin (π(θ + 0.5)) sinϕ

+ r′(1) ρ cos (π(θ + 0.5))
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Figure 3.22: The tubular neighborhood B01. The boundary of this closed tube is parame-
terized as three smooth manifolds made up of the two spherical caps described by γ+ and
γ− above, and the parabolic section given by γ0.

As a first attempt, we choose h = 1, c = 0, and thickness ρ = 1/5. The corresponding exit

set, and a plot of the tangency test function v are shown in the top row of Figure 3.23.

Note that while the exit set would give B01 a trivial Conley index, thus establishing the

connecting orbit (since the sum CH(S0) and CH(S1) is not trivial, revisited below), it turns

out that for these parameter values B01 is not in fact an isolating block — the collection of

tangencies of the flow on B01 intersects the yellow region of internal tangencies, in particular

N0(Ω, u) ∩ N≤0(Ω, v) 6= ∅. Upon closer inspection one can see that this yellow region is

located at the bottom bend of the tubular neighborhood, where the relatively high curvature

of r(θ) is larger than the curvature of the flow. Thus, in order to achieve an isolating
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neighborhood one needs to decrease the curvature of r(θ) at the bend, while still maintaining

isolation of the heteroclinic orbit. This can be accomplished by decreasing h, while at the

same time increasing c and possibly also ρ. More precisely, if we choose h = 1/2, c = 1/5,

and thickness ρ = 1/4, we obtain a tubular neighborhood B01 whose exit set, along with

the evaluation of tangency test function v, are shown in Figure 3.23. Applying the isolating

block validation algorithm from Section 3.6 does indeed establish the new set as an isolating

block with trivial Conley index which contains p0 and p1, as seen in the bottom panel of

3.23. Since the equilibria have (Morse) indices 2 and 1, we have that

CH(S01) = (0, 0, 0, . . .)

6' (0, 0,Z, 0, . . .)⊕ (0,Z, 0, . . .)

= CH(S0)⊕ CH(S1),

so the maximal invariant set in B01 has to contain at least one additional orbit.

It remains to identify the additional part of the isolated invariant set as a connecting

orbit. For this, one just has to note that in the quadrant 2− x+ 5y > 0 and z > 0, whose

closure contains p0, the z-component of the flow of (3.31) is strictly increasing, while in

the quadrant 2 − x + 5y < 0 and z > 0, whose closure contains p1, the z-component is

strictly decreasing. It turns out that the part of the plane 2− x+ 5y = 0 in which the flow

field of (3.31) is transverse to the plane with decreasing x- and y-coordinates contains a

complete cross section of B01. In other words, the only possible additional full orbit in B01

is a heteroclinic orbit which leaves p0 with increasing z-component until it traverses this

plane, and then drops down towards p1.
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Figure 3.23: The top panel shows filled contour plots for the exit set and the tangency test
function for a tubular neighborhood of the parabolic space curve (3.32) with h = 1, c = 0
and thickness ρ = 1/4. Since the boundary of the exit set intersects with the yellow region,
there are internal tangencies — and this neighborhood is not an isolating block. The middle
row shows a corrected tubular neighborhood, with h = 1 and c = 0 and thickness ρ = 1/5.
The bottom row illustrates a successful application of the validation algorithm (IB) applied
to ∂B01, defined piecewise over the domains Ω− = [0, 2π] × (−1.5, 0), Ω0 = [0, 2π] × (0, 1),
and Ω+ = [0, 2π]× (1, 1.5).
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(a) Positive and negative regions of u and v over the domain Ω = [0, 2π] × (0, π). The left panel
shows the zero level set of v superimposed onto the plot of u. The right panel shows the zero level
set of u superimposed onto the plot of v.
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(b) Validation that the candidate block B0 is, indeed, an isolating block for Equation 3.31. The color
red is used in the left panel to indicate cells in cmplx where u is takes both positive and negative
values. This is emphasized by the contour lines of u superimposed onto the colored cell complex.
The right panel illustrates the work done by Algorithm (IB). Contours of v have been superimposed
in red.

Figure 3.24: The candidate block B0 is an isolating block.
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(a) Positive and negative regions of u and v over the domain Ω = [0, 2π] × (0, π). The left panel
shows the zero level set of v superimposed onto the plot of u. The right panel shows the zero level
set of u superimposed onto the plot of v.
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(b) Validation that the candidate block B1 is, indeed, an isolating block for Equation 3.31. The color
red is used in the left panel to indicate cells in cmplx where u is takes both positive and negative
values. This is emphasized by the contour lines of u superimposed onto the colored cell complex.
The right panel illustrates the work done by Algorithm (IB). Contours of v have been superimposed
in red.

Figure 3.25: The candidate block B1 is an isolating block.

3.7.3 A Planar Hopf Bifurcation

Our final example is concerned with an essentially planar system undergoing a Hopf bi-

furcation. The planar version of this example was considered in the work of Eberlein &
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Scheurle [18]. Since our focus is the study of three-dimensional flows, we instead consider

the system

ẋ = λx+ y − x3 ,

ẏ = −x+ λy , (3.33)

ż = 5z ,

which is obtained from [18, p. 396] by adding an unstable z-direction. This system depends

on a real parameter λ, and we are interested in the dynamics of (3.33) as λ increases through

zero.

The origin is an equilibrium for (3.33), which is unstable with (Morse) index 1 for λ < 0,

and unstable with index 3 for λ > 0. As λ increases through zero, the linearization of (3.33)

at the origin has a pair λ ± i of complex eigenvalues which cross the imaginary axis with

nonzero speed — hence triggering a Hopf bifurcation.

In this section we will show: Result (1) For λ = −1/10, the Conley index on each of

two concentric spheres, C1 and C2, around the origin corresponds to an index-1 hyperbolic

fixed point, as expected; and Result (2) Equation (3.33) undergoes a Hopf bifurcation as λ

moves from −1/10 to 1/10. In particular, for λ = 1/10, the block C2 \C1 captures a periodic

orbit denoted by S21, and there exists at least one connecting orbit from the now-unstable

equilibrium at the origin to S21.
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Figure 3.26: Trajectories of Equation (3.33) for λ = −1/10 (left), and λ = 1/10 (right). Red
lines are moving away from the origin, and green lines are moving toward the origin. The
small sphere C1 around the origin is a valid isolating block for (3.33) with λ = −1/10. The
same sphere is a valid isolating block for (3.33) with λ = 1/10, however it must fail to be
in isolating neighborhood at some value λ ∈ (−1/10, 1/10) due to the different topological

type of C−1 for λ = ±1/10.

To show Result (1): (λ = −1/10) We first propose two candidate isolating blocks

isolating the origin.

• The candidate block C1, shown for λ = −1/10 in the left panel of Figure 3.26, is a

ball of radius 3/10 centered at the origin. The boundary of C1 is parameterized using

the usual spherical coordinates r : Ω = [0, 2π]× (0, π)→ ∂C1.

• The candidate block C2 is an ellipsoid centered at the origin, shown for λ = −1/10

in left panel of Figure 3.27, with major axes rotated around the z-axis. We use the

parameterization r : Ω = [0, 2π]× (0, π), given by

r(ϕ, θ) =


1/
√

5

2/
√

5

0

 a sin θ cosϕ +


−2/
√

5

1/
√

5

0

 b sin θ sinϕ +


0

0

1

 c cos θ,
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where a = 3, and b = c = 2.

Our validation algorithm can be applied to both neighborhoods C1 and C2, and it confirms

both as isolating blocks when λ = −1/10. The validations are illustrated in Figures 3.28

and 3.29.
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Figure 3.27: Trajectories of Equation (3.33) for λ = −1/10 (left), and λ = 1/10 (right).
Red lines are moving away from the origin, and green lines are moving toward the origin.
The sphere C2 around the origin is larger than C1 in Figure 3.26, and C2 is a valid isolating
block for (3.33) with λ = −1/10. The same sphere is a valid isolating block for (3.33) with

λ = 1/10, and in fact, the topological type of the exit set C−2 is the same for both parameter
values.

The Conley indices of the maximal invariant sets S1 and S2 are simply CH(S1) =

CH(S2) = (0,Z, 0 . . .), corresponding to (Morse) index-1 hyperbolic equilibria.

To show Result (2): (λ = 1/10) Our validation algorithm still can be applied successfully

to both C1 and C2 from above, however the configuration of the exit set on C1 has changed

(cf. Figures 3.28 and 3.30). For λ = 1/10 in Equation 3.33, the exit set function u turns

out to be strictly positive on Ω = [0, 2π] × (0, π), so the resulting grid contains only one

rectangle, and step (IB2) in the validation algorithm completes without any evaluation of
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the tangency test function v. This can be observed in Figure 3.30 For the isolating block C2,

its exit set is shown in dark blue in the upper left image of Figure 3.31.

These images show that while the homological Conley index of the isolating block C2

remains unchanged as λ moves through zero, the Conley index computed using C1 is now

CH∗(S1) ' (0, 0, 0,Z, 0, . . .) ,

which is the expected Conley index of a (Morse) index 3 unstable equilibrium. Of course,

this equilibrium is the origin which is contained in C1. We would like to point out that

in contrast to the case λ < 0, in the present case the differential equation (3.33) has the

additional equilibria ±
(√

λ+ 1/λ ,
√

1/λ+ 1/λ3 , 0
)

for λ > 0 . Yet, for the present choice

of λ = 1/10, one can easily verify that these additional equilibrium solutions lie outside the

isolating blocks C1 and C2.

We now combine this Conley index information with some observations about the vector

field (3.33) to obtain a computer-assisted proof of the existence of a Hopf bifurcation for

λ ∈ [−1/10, 1/10]. From our above discussion of the equilibrium solutions we see that

both C1 and C2 only contain one equilibrium, namely the origin — and as λ increases

from −1/10 to 1/10 no other equilibria enter these isolating blocks. Thus, the index change

implies the bifurcation of an invariant set which has to touch ∂C1 for some λ-value strictly

between −1/10 and 1/10. But we can say even more at λ = 1/10. Since the surface ∂C1

consists only of exit points, as shown in Figure 3.26, it is straightforward to construct the

isolating block C := C2 \ C1, and use this to compute the homological Conley index

CH(S) = H∗(C, C−) ' (0,Z,Z, 0, 0, . . .) .

This index is non-trivial, and therefore the interior of C = C2 \ C1 contains a maximal

isolated invariant set S 6= ∅. As discussed earlier, the set S cannot contain any equilibria.

Furthermore, due to the form of (3.33), every globally bounded invariant set has to be
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contained in the x-y-plane. But then the Poincaré-Bendixson theorem implies that S has

to contain a periodic orbit. Note that this is consistent with the above Conley index

information, as the index is that of an unstable periodic orbit with two-dimensional unstable

manifold. Finally, due to

CH∗(S2) = (0,Z, 0, . . .)

6' (0, 0, 0,Z, 0, . . .)⊕ (0,Z,Z, 0, . . .) = CH∗(S1)⊕ CH∗(S),

there has to be at least one connecting orbit from the unstable origin to the isolated invariant

set S.
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(a) Positive and negative regions of u and v over the domain Ω = [0, 2π] × (0, π). The left panel
shows the zero level set of v superimposed onto the plot of u. The right panel shows the zero level
set of u superimposed onto the plot of v.
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(b) Validation that the candidate block C1 is, indeed, an isolating block for Equation 3.29 with
λ = −1/10. The color red is used in the left panel to indicate cells in cmplx where u is takes both
positive and negative values. This is emphasized by the contour lines of u superimposed onto the
colored cell complex. The right panel illustrates the work done by Algorithm (IB). Contours of v
have been superimposed in red.

Figure 3.28: The candidate block C1 is an isolating block.
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(a) Positive and negative regions of u and v over the domain Ω = [0, 2π] × (0, π). The left panel
shows the zero level set of v superimposed onto the plot of u. The right panel shows the zero level
set of u superimposed onto the plot of v.
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(b) Validation that the candidate block C2 is, indeed, an isolating block for Equation 3.29 with
λ = −1/10. The color red is used in the left panel to indicate cells in cmplx where u is takes both
positive and negative values. This is emphasized by the contour lines of u superimposed onto the
colored cell complex. The right panel illustrates the work done by Algorithm (IB). Contours of v
have been superimposed in red.

Figure 3.29: The candidate block C2 is an isolating block.
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(a) Positive and negative regions of u and v over the domain Ω = [0, 2π] × (0, π). The left panel
shows the zero level set of v superimposed onto the plot of u. The right panel shows the zero level
set of u superimposed onto the plot of v.
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(b) Validation that the candidate block C1 is, indeed, an isolating block for Equation 3.29 with

λ = 1/10. In fact, the function u from Lemma 3.5.2 which characterizes the exit set ∂C−1 ⊂ ∂C1 is

positive on the entire parametric domain Ω = [0, 2π] × (0, π). The output of Algorithm (V) is the
single two-cell, its four edges and four vertices, shown in blue in the left panel. The solid color of
the right panel indicates that no steps beyond (IBa) were required in Algorithm (IB).

Figure 3.30: The candidate block C1 is an isolating block.
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(a) Positive and negative regions of u and v over the domain Ω = [0, 2π] × (0, π). The left panel
shows the zero level set of v superimposed onto the plot of u. The right panel shows the zero level
set of u superimposed onto the plot of v.
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(b) Validation that the candidate block C2 is, indeed, an isolating block for Equation 3.29 with
λ = 1/10. The color red is used in the left panel to indicate cells in cmplx where u is takes both
positive and negative values. This is emphasized by the contour lines of u superimposed onto the
colored cell complex. The right panel illustrates the work done by Algorithm (IB). Contours of v
have been superimposed in red.

Figure 3.31: The candidate block C2 is an isolating block.
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Concluding Remarks

In the following paragraphs we revisit some challenges that arose during the course of this

research, and leave some remarks for possible next steps.

The superlevel set approximation algorithm in Chapter 2 is developed in what we con-

sider to be quite general terms. The collapse criteria only require monotonicity along a

single direction on the top-dimensional cell, and the collapse itself is built through a re-

currence relation, making use of monotonicity information acquired at each dimension of

the rectangular cell complex. Furthermore, the subdivision of the domain is non-uniform.

Together, we believe these features provide a perfect compromise between conceptual sim-

plicity and computational efficiency. The alternative is to aim for some purely topological

collapse criterion, and achieve even fewer subdivisions of the domain.

One feature of our approach that we did not take full advantage of is the flexibility

provided by taking nonuniform subdivisions of the domain Ω. Even with our golden ratio

subdivision strategy, it is possible that a vertex R0 may land in Ω at a place where the

interval range enclosure [u(R0)] cannot be bounded away from zero. This causes the current

implementation of the algorithm to fail. The much better strategy is to keep the previous

instance of the cell complex data structure so the algorithm can recover from the poor

choice which created R0. Uniform subdivisions cannot recover from this because there

are no options at this point. Nonuniform subdivisions permit any number of alternative

subdivisions to be tried, one of which which may position R0 in a better place in Ω, and

allow the algorithm to continue. We do not foresee any technical challenge to handling this

exception in the code.

130



With regard to constructing candidate isolating blocks for flows in Rn, our current ef-

forts have been restricted to systems in R3 even though the theory holds for arbitrary finite

dimensions. Additionally, obtaining parameterizations for smooth manifolds in Rn which

satisfy some geometric conditions is a significant technical challenge. In some contexts,

these challenges have been met by following flows expressed as geometric partial differen-

tial equations in order to evolve hypersurfaces using deforming finite element meshes. In

this procedure one typically constructs an energy functional defined for a codimension one

smooth manifoldM, where the energy penalties arise from local geometric properties of the

manifold – for example, J(M) :=
∫
M(H(s)− c0(s))2ds, where H(s) is the mean curvature

at s ∈ M, c0(s) defines a preferred curvature, and ds is the surface measure on M. The

minimization of this energy (in some Banach space) from some initial manifold M0 gener-

ates a family of manifolds, Mt for t > 0, which evolve to bring the surface into agreement

with c0(s). See [16] for examples of how to take the first variation, or ‘shape derivative’, of

such functionals, and [4], [3], and [5] for examples of finite element simulation strategies for

evolving surfaces under geometric constraints.

Recall that our candidate isolating block B ⊂ Rn has a codimension one smooth manifold

∂B as boundary, parameterized through r : Ω ⊂ Rn−1 → ∂B, u, v : ∂B → R are smooth

functions which depend on geometric data computed on ∂B, and that we must rigorously

establish the condition N0(Ω, u) ⊂ N>0(Ω, v) (along with the regularity of zero for u) in

order to establish the candidate as an isolating block. Because this is a local condition on

the boundary of the block, it is plausible that one may start with a somewhat arbitrary

candidate and deform it in such a way as to satisfy the condition. An expression such as

e−u
2
e−v is mostly concentrated near zero for u, and is positive and large where v < 0,

meaning that evolving the boundary of a candidate block by driving
∫
∂B e

−u(s)2e−v(s)ds

toward a minimum may have a chance to settle into a configuration that satisfies N0(Ω, u) ⊂

N>0(Ω, v). Technical difficulties will arise with calling Algorithm (V) on the finite element

mesh which represents the manifold due to the fact that the mesh is only a polyhedral
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approximation to ∂B, so that u := 〈f(p), νp〉 is not defined along any edge or at vertex of

the mesh since νp is not well defined there. Additionally, in order to use interval arithmetic

the domain must permit rectangular subdivisions, hence the finite element mesh must be

rectangular, but efficient finite element meshes are merely quadrilateral. We point the

interested reader to the open source finite element library deal.ii at www.dealii.org, [2],

and set this exploration aside for now.
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α-level set, 6

α-sublevel set, 6

α-superlevel set, 6

k-cell, 22

k-skeleton, 22

cmplx+, 24

cmplx, 24

Algorithm (IB), see Isolating Block Valida-

tion Algorithm

Algorithm (V), see Superlevel Set Validation

Algorithm

automatic differentiation, 18

backward orbit, 55

bifurcation, 64

boundary, 22

bounded invariant set, 55

Brouwer degree, 56, 66

candidate isolating block, 68, 77

cell complex, see rectangular cell complex

characteristic map, 22

co-boundary, 22

collapsing, 32, 42

computer-assisted proof, 17, 68, 89

Conley index, 59, 63, 83

continuation, 64

critical point, 11

critical value, 11

cubical representation, 84, 95

CW complex, see rectangular cell complex

deformation retract, 12

deformation retraction, 12

degenerate (rectangle), 21

dimension (of a cell complex), 22

dual number, 18

dynamical system, 53

edge, 22

exit set, 35, 58, 70

external tangency, 69, 72

flow, 42, 53, 65

forward orbit, 55

global flow, 54

homological Conley index, see Conley index

homotopy, 12

homotopy equivalence, 12

index (of a critical point), 11
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index pair, 59

internal tangency, 58, 69, 72

interval, 16

interval arithmetic, 17, 85

interval range enclosure, 17

invariant set, see bounded invariant set

isolated invariant set, 57, 63, 89

isolating block, 58, 62, 63, 65, 87

Isolating Block Validation Algorithm, 86

isolating neighborhood, 57

level set, see α-level set

maximal invariant set, 57

Morse theory, 14

negative sublevel set, 69

negatively invariant, 55

non degenerate (rectangle), 22

nonuniform subdivision, 25

numerically rigorous, 16

one-parameter family, 64

orbit, 55

orthogonal projection, 69, 78

outward normal vector, 69

parameterization (of isolating block), 79

phase space, 53

pointed topological space, 59

positive superlevel set, 69

positively invariant, 55

rectangle, 21

rectangular cell complex, 22

Regular Interval theorem, 14

Regular Level Set theorem, 13

regular point, 11

regular value, 11, 26

relative homology, 59

rigorous, see numerically rigorous

rigorous numerical integration, 52

Sard’s theorem, 11

second fundamental form, 70, 78

Simple n-dimensional Rectangular Cell Com-

plex, 23

Skelboe, 26

solution, see orbit

strong deformation retract, 62

strong deformation retraction, 12, 62

subadditive, 17

subcomplex, 22

sublevel set, see α-sublevel set

summation formula, 64

superlevel set, see α-superlevel set

Superlevel Set Validation Algorithm, 27, 86

surrogate cell, see Simple n-dimensional Rect-

angular Cell Complex

tangent space, 69
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validation of n-dimensional cell, 25

vertex, 22

Ważewski set, 35, 62

Ważewski theorem, 35, 62

Ważweski property, 63

zero level set, 69
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[16] Günay Doğan and Ricardo H. Nochetto. First variation of the general curvature-

dependent surface energy. European Series in Applied and Industrial Mathematics:

Mathematical Modeling and Numerical Analysis, 46:59–79, 2012.

[17] Dominik Eberlein. Topologische Methoden zur Analyse dynamischer Systeme. PhD

thesis, Technische Universität München, 2004.

[18] Dominik Eberlein and Jürgen Scheurle. Algorithmic computation of the Conley index.

Journal of Difference Equations and Applications, Vol. 12(3-4):385–398, 2006.

[19] R Hammer, U Hocks, Kulisch, M, and Ratz. C++ Toolbox for Verified Scientific

Computing-Theory, Algorithms and Programs: Basic Numerical Problems. Springer-

Verlag New York, Inc., 1995.

137



[20] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2001.

[21] Morris W Hirsch. Differential topology, volume 33 of graduate texts in mathematics,

1994.

[22] Josephus Hulshof and Robertus van der Vorst. Asymptotic behaviour of ground states.

Proceedings of the American Mathematical Society, 124(8):2423–2431, 1996.

[23] Jonathan Jaquette and Miroslav Kramar. On ε approximations of persistence diagrams.

Mathematics of Computation, TO APPEAR, 2016.

[24] Tomasz Kaczynski, Konstantin Mischaikow, and Marian Mrozek. Computational Ho-

mology. Springer, 2004.

[25] Efthimios Kappos. The Conley index and global bifurcations. I. Concepts and theory.

International Journal of Bifurcation and Chaos, Vol. 5(4):937–953, 1995.

[26] John M Lee. Smooth manifolds. Springer, 2003.

[27] William S Massey. A basic course in algebraic topology, volume 127. Springer Science

& Business Media, 1991.

[28] John Willard Milnor. Morse theory. Princeton University Press, 1963.

[29] Konstantin Mischaikow and Marian Mrozek. Conley index. Handbook of dynamical

systems, 2:393–460, 2002.

[30] Nedialko S Nedialkov and Kenneth R Jackson. The design and implementation of an

object-oriented validated ODE solver. Kluwer Academic Publishers, 2002.

[31] Helmut Ratschek and Jon Rokne. Geometric Computations with Interval and New Ro-

bust Methods: Applications in Computer Graphics, GIS and Computational Geometry.

Harwood Publishing, 2003.

138



[32] S.M. Rump. INTLAB - INTerval LABoratory. In Tibor Csendes, editor, Develop-

ments in Reliable Computing, pages 77–104. Kluwer Academic Publishers, Dordrecht,

1999. http://www.ti3.tuhh.de/rump/.

[33] Sarah Day and William D. Kalies and Thomas Wanner. Verified homology com-

putations for nodal domains. SIAM Journal on Multiscale Modeling & Simulation,

7(4):1695–1726, 2009.

[34] Arthur Sard et al. The measure of the critical values of differentiable maps. Bull.

Amer. Math. Soc, 48(12):883–890, 1942.

[35] Joel Smoller. Shock Waves and Reaction-Diffusion Equations. Springer-Verlag, New

York, second edition, 1994.

[36] Thomas Stephens and Thomas Wanner. Rigorous validation of isolating blocks for

flows and their Conley indices. SIAM Journal on Applied Dynamical Systems, 13(4):pp.

1847–1878, 2014.

[37] Victor A Toponogov. Differential geometry of curves and surfaces. Springer, 2006.

[38] Thomas Wanner. Topological analysis of the diblock copolymer equation. In Yasumasa

Nishiura and Motoko Kotani, editors, Mathematical Challenges in a New Phase of

Materials Science. Springer Proceedings in Mathematics and Statistics, 2016.

139

http://www.ti3.tuhh.de/rump/


Curriculum Vitae

Thomas Stephens usually measures five feet and ten inches tall. He is the grateful possessor
of two eyes, one nose, and a mouth. Thomas spent many years believing that the doctoral
degree in Mathematics would come with a free guide to The Knowledge of the Universe,
and has recently found out that this is not the case. Nevertheless, he will presently finish
this biography of himself, and step out into the world with an invigorated appreciation for
all things to which mathematics does not pertain – but especially for those things to which
mathematics does pertain.

140


