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Abstract

REVERSE ENGINEERINGOF INTEGRATED CIRCUITS: TOOLS AND TECHNIQUES

Abhijitt Dhavlle

George Mason University, 2022

Thesis Director: Dr. Sai Manoj PD

Consumer and defense systems demanded design and manufacturing of electronics with

increased performance, compared to their predecessors. As such systems became ubiquitous

in a plethora of domains, their application surface increased, thus making them a target for

adversaries. Hence, with improved performance the aspect of security demanded even more

attention of the designers. The research community is rife with extensive details of attacks

that target the confidential design details by exploiting vulnerabilities. The adversary could

target the physical design of a semiconductor chip or break a cryptographic algorithm by

extracting the secret keys, using attacks that will be discussed in this thesis. This thesis

focuses on presenting a brief overview of IC reverse engineering attack and attacks targeting

cryptographic systems. Further, the thesis presents my contributions to the defenses for

the discussed attacks.

The globalization of the Integrated Circuit (IC) supply chain has rendered the advantage

of low-cost and high performance ICs in the market for the end users. But this has also

made the design vulnerable to over production, IP Piracy, reverse engineering attacks and

hardware malware during the manufacturing and post manufacturing process. Logic



locking schemes have been proposed in the past to overcome the design trust issues but the

new state-of-the-art attacks such as SAT has proven a larger threat. This work highlights

the reverse engineering attack and a proposed hardened platform along with its framework.

On the other side, the side-channel attacks (SCAs) has been one of the emerging threats.

These SCAs function by exploiting the side-channels which invariably leak important data

during an application’s execution. The information leaked through side-channels are in-

herent characteristics of the system and is often unintentional. This information can be

microarchitectural or physical information such as power consumption, thermal maps, tim-

ing of the operation, acoustics, and cache-trace. Intercepting secret information based on

the study of power signature is a subdivision of SCAs where power consumption information

serves as a covert channel leaking crucial information about the executed operations. Such

physical SCAs are known to be a significant threat to cryptosystems such as AES (Ad-

vanced Encryption Standard) and can reveal the encryption key efficiently. To overcome

such concerns and protect the data integrity, I introduce Power Swapper in this work.

The proposed Power Swapper thwarts the attack by randomly choosing one of the multi-

ple modules that perform the intended activity, but have power signature different than a

standard implementation and can lead to similar power consumption as one of the other

modules that perform a different operation. To achieve this, I introduce carefully crafted

swapping of the standby modules that are responsible for the AES operation thus deluding

the attacker without hurting the crypto operation. This methodology has been validated

for the AES power analysis attack and the key information observed by the attacker is seen

to be incorrect, indicating the success of the proposed method.



Chapter 1: Introduction

1.1 Introduction to Hardware Security

Consumer and defense systems demanded design and manufacturing of electronics with

increased performance, compared to their predecessors [3]. As such systems became ubiq-

uitous in a plethora of domains, their application surface increased, thus making them a

target for adversaries. Hence, with improved performance the aspect of security demanded

even more attention of the designers. Confidentiality, Integrity and Availability are the ma-

jor building blocks of the state-of-the-art systems. The confidentiality refers to the design

confidentiality; and integrity refers to the design integrity where an adversary should not

make malicious modifications to the design; whereas, availability refers to the system func-

tioning as intended by the designer. Hence, to maintain these tripod principles, hardware

security, a collection of various defense methodologies, emerged. The research community

is rife with extensive details of attacks that target the confidentiality and integrity of the

device. The adversary could target the physical design of a semiconductor chip or break a

cryptographic algorithm by extracting the secret keys, using attacks that will be mentioned

shortly. This thesis focuses on presenting a brief overview of IC counterfeiting attacks and

attacks targeting cryptographic systems. Further, the thesis presents my contributions to

the defenses for the aforementioned attacks. Next, I will be presenting an introduction to

IC reverse engineering (RE) attacks and the physical side-channel attacks (SCA).

1.1.1 IC Reverse Engineering Attacks

IC manufacturing with millions and billions of transistors has become the need of the hour

to support large consumer market that constantly demands increasing performance and
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Figure 1.1: Integrated Chip (IC) supply chain process

speed. The semiconductor industry has progressed a lot in terms of speed and perfor-

mance to satiate the needs but at the cost of manufacturing the IC offshore as a majority

of companies have gone fabless due to various economic, cost and technology reasons thus

exposing the IC supply chain to adversaries/attackers causing trust issues. The base rea-

son for fabricating the design offshore is the smaller technology node, lower the number

better the speed, it offers. The IC fabrication goes through a variety of design processes

and each stage has become an access point where attackers can get their hands on to serve

malicious purposes. The IC manufacturing chain is highly complex and is susceptible to

various threats both from the outside and inside. Figure 1.1 presents the supply chain

process, each process block is vulnerable to different type of attacks [4]. This has impacted

the fabrication business economy due to the threats that are posed by untrusted fabs like

reverse engineering, hardware trojans and IP piracy [5–7]. The IC design house imports the

IP - intellectual property - from the IP vendors which are then integrated with the custom

designs in the design house. The finalized design is thus sent to the Fabrication vendors for

manufacturing. The hardware level attack could be executed at any of these stages. Logic

locking [8–10], aka obfuscation, is a defense mechanism that is used to hide the true func-

tionality of the circuit to prevent design leakage even if the attacker gets the design netlist.

Additional gates are embedded in various parts of the design to hide the functionality and

2



these gates only act as transparent via media when correct logic is supplied. The correct

logic is known as keys which are supplied to the circuit during the activation phase and

are stored in the on-chip tamper proof memory. The activated IC works as designed only

after the correct combination of the keys. The keys is a chain of ‘1’s and ‘0’s which is only

known to the designer. With the state-of-the-art attacks [5–7] prevalent, protection using

only obfuscation technique does not suffice to thwart the attack. A recent state-of-the-art

attack known as SAT attack is based on the assumption that the attacker has access to

the functional IC (IC activated by the designer using the correct key combinations) and

the locked/obfuscated netlist has surged. The SAT attack [11] is based on the application

of Distinguishing Input Patterns (DIPs) where the attack reduces key search space by it-

eratively applying DIPs to the obfuscated design and then applying the same DIPs to the

functional IC thus eliminating incorrect key inputs. Along with logic locking type defense,

split manufacturing [12] is a technique used to ‘split’ and manufacture different blocks of the

design at different fabrication units. As a consequence, an IC responsible for activation of

secondary IC could be manufactured at a trusted foundry, while other IC, at smaller tech-

nology, can be manufactured offshore (potential untrusted foundry). After manufacturing

the designer stacks the two components together so the trusted platform can activate and

control its untrusted counterpart. To achieve this methodology, an application to facilitate

and evaluate different logic locking techniques against SAT attack was indispensable. The

developed application will be described in the next chapter. Also, apart from the applica-

tion, I was entrusted to develop and test hardware communication modules responsible for

secure data transfer between the trusted and untrusted platforms. The same is presented

in the next chapter.

1.1.2 Physical SCA

Data integrity and security became an essential part in the era of digital systems where pri-

vacy and confidentiality needs to be ensured. There have been a plethora of works addressing

the attacks on systems, like those posed by malware [13–16], reverse engineering of hardware
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[17, 18]; attacks on machine-learning assisted hardware-based malware detectors (HMDs)

[19–21], adversarial attacks on machine learning [22], machine learning based attacks on

hardware [23, 24], cache based side-channel attacks [25–27], etc. Of these, side-channel at-

tack and cryptosystem has been discussed in this work. Cyrptographic mechanisms are

employed to offer security to the data by encrypting the data streams with a secret key and

transform the data into a human non-readable format. The attempt to exercise a brute

force to decrypt the information is exhaustive and can even be unfeasible. To efficiently de-

code the secret key and decrypt the information, adversaries target utilizing the information

obtained through side-channels, termed as side-channel attacks. Side-channels are inherent

in any given design and side-channel attacks exploit the information from these rather than

exploiting vulnerabilities in the software. There exist both physical and microarchitectural

side-channels that can leak secure critical information through acoustics, electromagnetic

(EM) radiations, power trace, thermal maps and cache-access information. Power signature

based side-channel threats are a pivotal threat as power consumption is an inherent and

preliminary characteristic of any digital system.

In this work I consider a power signature based side-channel attack on encryption algo-

rithm executing on FPGAs as they are proliferating into data centers for compute-intensive

operations such as encryption. For the power analysis based SCA to be successful, the at-

tacker measures the power traces from the system while triggering crypto operations on the

system. This trace is then studied statistically to deduce the secret key. The fundamental

principle underlying this attack is that different modules (operations) of AES consume dif-

ferent power, and thereby studying the power trace reveals the operation, based on which

the secret key can be deduced.

Pengyuan Yu et al. in [28] propose an intelligent place-and-route technique to facilitate

symmetrical routing as a defense against power analysis SCA on FPGA. Work in [29]

describes how a circuit can be transformed to a larger circuit to defend against probe-based

physical SCAs, but, the technique proposed is very complex. Work in [30] and [31] describes
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algorithmic countermeasures to thwart SCAs which attempts to minimize the correlation

between the intermediate values and the secret key ;and by algorithmically adding noise

respectively. Also, circuit-level countermeasures are presented in papers [32–36]. It is

observed that the existing defenses require modifications in physical designs, leading to

larger overheads and design complexity.

To overcome these challenges and defend against power analysis SCA, I propose Power

Swapper. More details about the proposed Power Swapper will be discussed in the coming

chapters.
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Chapter 2: IC Reverse Engineering Defense

2.1 Trusted-Untrusted Design Integration

As discussed in the introduction section, a design could be subjected to IC reverse engi-

neering (RE) attacks and design integrity attacks. Also, for security critical applications,

the end design should be trustworthy. To address the IC manufacturing supply chain at-

tacks [4–7], the idea of the project is to integrate two chips post manufacturing - one chip

being a trusted chip and other could be manufactured at an offshore untrusted environ-

ment. The trusted environment could be a secure facility/foundry, and the untrusted could

be a manufacturing unit outside the secure zone. To protect the untrusted design (UD)

from attacks, the design would be obfuscated before the tapeout phase. The obfuscation

[8–10, 37–39] adds additional gates to the design that do not contribute to the end func-

tionality, yet inserted to increase robustness against SAT-Solver or SAT attacks [11]. The

design is executed in different phases and evaluating robustness against attacks is one of

the most important parts. Usually, obfuscation of the design is achieved by running various

algorithms on a system, which is a laborious effort. Moreover, after the design framework

is handed over to the end user, the user may not be familiar with the technicalities of the

aforementioned obfuscation defenses and attacks. Automating the frontend tasks was pro-

posed as a panacea to reduce the efforts in evaluating the attack and to render the system

end-user friendly. Next, we will discuss more on the automation tool.

2.2 Automation Tool for Design Security

The automation application as shown in Figure 2.1 provides a user-friendly interface to

obfuscate a design using various algorithms, and to de-obfuscate the same. Please note that
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Figure 2.1: Choosing a design folder to select an input design

the obfuscation algorithms are standard and I have no contributions towards them. My task

was to build the application that could utilize the standard algorithms in the background.

The parameters the application is capable of selecting are listed below:

1. The obfuscation algorithms the application can use are:

• Iolts

• Random

• DAC12

• TOC13MUX

• TOC13XOR

7



Figure 2.2: Choosing an output folder to save the resultant obfuscated design

2. The Attack tab has SAT and SMT type solvers. Within SAT, the application allows

for five different solvers.

• Lingeling

• CMSAT

• Glucose

• Maple minisat

• Minisat

3. Number (in percent) of logic gates to obfuscate.

4. Selecting specific files required for DAC12 algorithm - .MUT and .CLIQUE files.

8



Figure 2.3: Selecting a obfuscation type, obfuscation percentage, and necessary files before
obfuscating a design

5. Select the input and output folders to choose a base design from and to store the

resultant outputs.

Prerequisites to executing the application are:

1. Ensure SAT solvers are installed on the system, which includes the dependencies also.

2. Ensure Python is installed.

9



Figure 2.4: Output of an obfuscated design; the additional gates added at the end accom-
modate the secret key inputs

3. Install Qt designer - this is a GUI designing application that takes less efforts than

directly writing the Python code for the GUI blocks.

4. Install PyQt-4/5 - this is an API to support the GUI designing.

5. The code for recreating the application is provided in Listing 2.1; the user interface’s

XML code is provided in Listing 2.2.

The steps to produce the obfuscated design is as follows:

1. Use the Load tab in the application and select the base design to obfuscate. Refer to

10



Figure 2.5: Automation for deploying different types of SAT attacks against obfuscated
designs for robustness evaluation

Figure 2.1.

2. Select the output folder to store the resultant obfuscated design. Refer to Figure 2.2.

3. Move to the Obfuscate tab of the application and choose the obfuscation algorithm,

percent of gates to obfuscate, and selecting .MUT and .CLIQUE files, if DAC12 was

11



chosen earlier. Refer to Figure 2.3.

4. Hit the ‘obfuscate design’ button to start the task.

5. Find the generated file in the output folder chosen earlier, and verify the change in

the resultant design file. Refer to Figure 2.4.

6. For executing SAT-type attacks, click on the Attacks tab; select the type of solver,

select an obfuscated design and original (unobfuscated) file; click the attack button

to start the process. The results section shows different parameters of the outcome

of the attack. These parameters are parsed by the script and shown in each of the

boxes. Refer to Figure 2.5.

2.2.1 PyQt Code for Recreating a Basic Layout

1 from PyQt4 import QtCore , QtGui

2 try:

3 _fromUtf8 = QtCore.QString.fromUtf8

4 except AttributeError:

5 def _fromUtf8(s):

6 return s

7

8 try:

9 _encoding = QtGui.QApplication.UnicodeUTF8

10 def _translate(context , text , disambig):

11 return QtGui.QApplication.translate(context , text , disambig ,

_encoding)

12 except AttributeError:

13 def _translate(context , text , disambig):

14 return QtGui.QApplication.translate(context , text , disambig)

15

16 class Ui_MainWindow(object):

17 def setupUi(self , MainWindow):

18 MainWindow.setObjectName(_fromUtf8("MainWindow"))

19 MainWindow.resize (452, 724)
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20 self.centralwidget = QtGui.QWidget(MainWindow)

21 self.centralwidget.setObjectName(_fromUtf8("centralwidget"))

22 self.gridLayout = QtGui.QGridLayout(self.centralwidget)

23 self.gridLayout.setObjectName(_fromUtf8("gridLayout"))

24 self.label = QtGui.QLabel(self.centralwidget)

25 font = QtGui.QFont ()

26 font.setPointSize (14)

27 self.label.setFont(font)

28 self.label.setObjectName(_fromUtf8("label"))

29 self.gridLayout.addWidget(self.label , 0, 0, 1, 1)

30 self.tabWidget = QtGui.QTabWidget(self.centralwidget)

31 self.tabWidget.setObjectName(_fromUtf8("tabWidget"))

32 self.tab = QtGui.QWidget ()

33 self.tab.setObjectName(_fromUtf8("tab"))

34 self.formLayout = QtGui.QFormLayout(self.tab)

35 self.formLayout.setObjectName(_fromUtf8("formLayout"))

36 self.pushButton_3 = QtGui.QPushButton(self.tab)

37 self.pushButton_3.setObjectName(_fromUtf8("pushButton_3"))

38 self.pushButton_3.clicked.connect(self.fetch_file)

39 self.formLayout.setWidget (0, QtGui.QFormLayout.LabelRole , self.

pushButton_3)

40 self.lineEdit = QtGui.QLineEdit(self.tab)

41 self.lineEdit.setObjectName(_fromUtf8("lineEdit"))

42 self.formLayout.setWidget (0, QtGui.QFormLayout.FieldRole , self.

lineEdit)

43 self.pushButton_4 = QtGui.QPushButton(self.tab)

44 self.pushButton_4.setObjectName(_fromUtf8("pushButton_4"))

45 self.pushButton_3.clicked.connect(self.fetch_output_folder)

46 self.formLayout.setWidget (1, QtGui.QFormLayout.LabelRole , self.

pushButton_4)

47 self.lineEdit_3 = QtGui.QLineEdit(self.tab)

48 self.lineEdit_3.setObjectName(_fromUtf8("lineEdit_3"))

49 self.formLayout.setWidget (1, QtGui.QFormLayout.FieldRole , self.

lineEdit_3)

50 self.tabWidget.addTab(self.tab , _fromUtf8(""))
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51 self.tab_2 = QtGui.QWidget ()

52 self.tab_2.setObjectName(_fromUtf8("tab_2"))

53 self.formLayout_2 = QtGui.QFormLayout(self.tab_2)

54 self.formLayout_2.setFieldGrowthPolicy(QtGui.QFormLayout.

AllNonFixedFieldsGrow)

55 self.formLayout_2.setObjectName(_fromUtf8("formLayout_2"))

56 self.label_4 = QtGui.QLabel(self.tab_2)

57 self.label_4.setObjectName(_fromUtf8("label_4"))

58 self.formLayout_2.setWidget (0, QtGui.QFormLayout.FieldRole , self.

label_4)

59 self.comboBox = QtGui.QComboBox(self.tab_2)

60 self.comboBox.setObjectName(_fromUtf8("comboBox"))

61 self.comboBox.addItem(_fromUtf8(""))

62 self.comboBox.addItem(_fromUtf8(""))

63 self.comboBox.addItem(_fromUtf8(""))

64 self.comboBox.addItem(_fromUtf8(""))

65 self.comboBox.addItem(_fromUtf8(""))

66 self.formLayout_2.setWidget (1, QtGui.QFormLayout.LabelRole , self.

comboBox)

67 self.lineEdit_2 = QtGui.QLineEdit(self.tab_2)

68 self.lineEdit_2.setObjectName(_fromUtf8("lineEdit_2"))

69 self.formLayout_2.setWidget (1, QtGui.QFormLayout.FieldRole , self.

lineEdit_2)

70 self.pushButton_2 = QtGui.QPushButton(self.tab_2)

71 self.pushButton_2.setObjectName(_fromUtf8("pushButton_2"))

72 self.formLayout_2.setWidget (2, QtGui.QFormLayout.FieldRole , self.

pushButton_2)

73 self.tabWidget.addTab(self.tab_2 , _fromUtf8(""))

74 self.gridLayout.addWidget(self.tabWidget , 1, 0, 1, 1)

75 self.pushButton = QtGui.QPushButton(self.centralwidget)

76 self.pushButton.setObjectName(_fromUtf8("pushButton"))

77 self.gridLayout.addWidget(self.pushButton , 2, 0, 1, 1)

78 self.label_2 = QtGui.QLabel(self.centralwidget)

79 self.label_2.setObjectName(_fromUtf8("label_2"))

80 self.gridLayout.addWidget(self.label_2 , 3, 1, 1, 1)
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81 MainWindow.setCentralWidget(self.centralwidget)

82 self.statusbar = QtGui.QStatusBar(MainWindow)

83 self.statusbar.setObjectName(_fromUtf8("statusbar"))

84 MainWindow.setStatusBar(self.statusbar)

85 self.menubar = QtGui.QMenuBar(MainWindow)

86 self.menubar.setGeometry(QtCore.QRect(0, 0, 452, 26))

87 self.menubar.setObjectName(_fromUtf8("menubar"))

88 self.menuHELP = QtGui.QMenu(self.menubar)

89 self.menuHELP.setObjectName(_fromUtf8("menuHELP"))

90 self.menuABOUT = QtGui.QMenu(self.menubar)

91 self.menuABOUT.setObjectName(_fromUtf8("menuABOUT"))

92 MainWindow.setMenuBar(self.menubar)

93 self.actionDont_ask_for_any_help = QtGui.QAction(MainWindow)

94 self.actionDont_ask_for_any_help.setObjectName(_fromUtf8("

actionDont_ask_for_any_help"))

95 self.actionHkjhk = QtGui.QAction(MainWindow)

96 self.actionHkjhk.setObjectName(_fromUtf8("actionHkjhk"))

97 self.actionAbout_3D_SOAL_Automator = QtGui.QAction(MainWindow)

98 self.actionAbout_3D_SOAL_Automator.setObjectName(_fromUtf8("

actionAbout_3D_SOAL_Automator"))

99 self.menuHELP.addSeparator ()

100 self.menuHELP.addAction(self.actionDont_ask_for_any_help)

101 self.menuABOUT.addAction(self.actionAbout_3D_SOAL_Automator)

102 self.menubar.addAction(self.menuHELP.menuAction ())

103 self.menubar.addAction(self.menuABOUT.menuAction ())

104

105 self.retranslateUi(MainWindow)

106 self.tabWidget.setCurrentIndex (0)

107 QtCore.QMetaObject.connectSlotsByName(MainWindow)

108

109 def retranslateUi(self , MainWindow):

110 MainWindow.setWindowTitle(_translate("MainWindow", "3D-SOAL

Automator", None))

111 self.label.setText(_translate("MainWindow", "3D-SOAL AUTOMATION",

None))
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112 self.pushButton_3.setText(_translate("MainWindow", "Open Design",

None))

113 self.pushButton_4.setText(_translate("MainWindow", "Output Folder",

None))

114 self.tabWidget.setTabText(self.tabWidget.indexOf(self.tab),

_translate("MainWindow", "LOAD", None))

115 self.label_4.setText(_translate("MainWindow", "Select % Gates to

Obfuscate", None))

116 self.comboBox.setItemText (0, _translate("MainWindow", "Iolts", None)

)

117 self.comboBox.setItemText (1, _translate("MainWindow", "Random", None

))

118 self.comboBox.setItemText (2, _translate("MainWindow", "DAC", None))

119 self.comboBox.setItemText (3, _translate("MainWindow", "MUX", None))

120 self.comboBox.setItemText (4, _translate("MainWindow", "TOC13", None)

)

121 self.pushButton_2.setText(_translate("MainWindow", "Obfuscate Design

", None))

122 self.tabWidget.setTabText(self.tabWidget.indexOf(self.tab_2),

_translate("MainWindow", "OBFUSCATE", None))

123 self.pushButton.setText(_translate("MainWindow", "Exit", None))

124 self.label_2.setText(_translate("MainWindow", "Created By :SSS , AAD"

, None))

125 self.menuHELP.setTitle(_translate("MainWindow", "HELP", None))

126 self.menuABOUT.setTitle(_translate("MainWindow", "ABOUT", None))

127 self.actionDont_ask_for_any_help.setText(_translate("MainWindow", "

Dont ask for any help!!", None))

128 self.actionHkjhk.setText(_translate("MainWindow", "hkjhk", None))

129 self.actionAbout_3D_SOAL_Automator.setText(_translate("MainWindow",

"About 3D-SOAL Automator", None))

130

131

132 def fetch_file(self):

133 dlg = QFileDialog ()

134 dlg.setFileMode(QFileDialog.AnyFile)
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135 dlg.setFilter("Benchmark File (*. bench)")

136 filenames = QStringList ()

137 self.lineEdit.setText(filenames)

138

139 def fetch_output_folder(self):

140 dlg1 = QFileDialog ()

141 dlg1.setFileMode(QFileDialog.AnyFile)

142 #dlg1.setFilter (" Benchmark File (*. bench)")

143 folder_names = QStringList ()

144 self.lineEdit3.setText(folder_names)

145

146 if __name__ == "__main__":

147 import sys

148 app = QtGui.QApplication(sys.argv)

149 MainWindow = QtGui.QMainWindow ()

150 ui = Ui_MainWindow ()

151 ui.setupUi(MainWindow)

152 MainWindow.show()

153 sys.exit(app.exec_())

Listing 2.1: PyQt code for recreating a basic layout

2.2.2 User Interface (UI) designed in QT Designer

1 <?xml version="1.0" encoding="UTF -8"?>

2 <ui version="4.0">

3 <class >MainWindow </class >

4 <widget class="QMainWindow" name="MainWindow">

5 <property name="geometry">

6 <rect>

7 <x>0</x>

8 <y>0</y>

17



9 <width >452</width >

10 <height >724</height >

11 </rect>

12 </property >

13 <property name="windowTitle">

14 <string >MainWindow </string >

15 </property >

16 <widget class="QWidget" name="centralwidget">

17 <layout class="QGridLayout" name="gridLayout">

18 <item row="0" column="0">

19 <widget class="QLabel" name="label">

20 <property name="font">

21 <font>

22 <pointsize >14</pointsize >

23 </font>

24 </property >

25 <property name="text">

26 <string >3D-SOAL AUTOMATION </string >

27 </property >

28 </widget >

29 </item>

30 <item row="1" column="0">

31 <widget class="QTabWidget" name="tabWidget">

32 <property name="currentIndex">

33 <number >1</number >

34 </property >

35 <widget class="QWidget" name="tab">

36 <attribute name="title">

37 <string >LOAD</string >

38 </attribute >

39 <layout class="QFormLayout" name="formLayout">

40 <item row="0" column="0">

41 <widget class="QPushButton" name="pushButton_3">

42 <property name="text">

43 <string >Open Design </string >
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44 </property >

45 </widget >

46 </item>

47 <item row="0" column="1">

48 <widget class="QLineEdit" name="lineEdit"/>

49 </item>

50 <item row="1" column="0">

51 <widget class="QPushButton" name="pushButton_4">

52 <property name="text">

53 <string >Output Folder </string >

54 </property >

55 </widget >

56 </item>

57 <item row="1" column="1">

58 <widget class="QLineEdit" name="lineEdit_3"/>

59 </item>

60 </layout >

61 </widget >

62 <widget class="QWidget" name="tab_2">

63 <attribute name="title">

64 <string >OBFUSCATE </string >

65 </attribute >

66 <layout class="QFormLayout" name="formLayout_2">

67 <property name="fieldGrowthPolicy">

68 <enum>QFormLayout::AllNonFixedFieldsGrow </enum>

69 </property >

70 <item row="0" column="1">

71 <widget class="QLabel" name="label_4">

72 <property name="text">

73 <string >Select % Gates to Obfuscate </string >

74 </property >

75 </widget >

76 </item>

77 <item row="1" column="0">

78 <widget class="QComboBox" name="comboBox">
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79 <item>

80 <property name="text">

81 <string >Iolts</string >

82 </property >

83 </item>

84 <item>

85 <property name="text">

86 <string >Random </string >

87 </property >

88 </item>

89 <item>

90 <property name="text">

91 <string >DAC</string >

92 </property >

93 </item>

94 <item>

95 <property name="text">

96 <string >MUX</string >

97 </property >

98 </item>

99 <item>

100 <property name="text">

101 <string >TOC13</string >

102 </property >

103 </item>

104 </widget >

105 </item>

106 <item row="1" column="1">

107 <widget class="QLineEdit" name="lineEdit_2"/>

108 </item>

109 <item row="2" column="1">

110 <widget class="QPushButton" name="pushButton_2">

111 <property name="text">

112 <string >Obfuscate Design </string >

113 </property >
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114 </widget >

115 </item>

116 </layout >

117 </widget >

118 </widget >

119 </item>

120 <item row="2" column="0">

121 <widget class="QPushButton" name="pushButton">

122 <property name="text">

123 <string >Exit</string >

124 </property >

125 </widget >

126 </item>

127 <item row="3" column="1">

128 <widget class="QLabel" name="label_2">

129 <property name="text">

130 <string >Created By :SSS , AAD</string >

131 </property >

132 </widget >

133 </item>

134 </layout >

135 </widget >

136 <widget class="QStatusBar" name="statusbar"/>

137 <widget class="QMenuBar" name="menubar">

138 <property name="geometry">

139 <rect>

140 <x>0</x>

141 <y>0</y>

142 <width >452</width >

143 <height >26</height >

144 </rect>

145 </property >

146 <widget class="QMenu" name="menuHELP">

147 <property name="title">

148 <string >HELP</string >
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149 </property >

150 <addaction name="separator"/>

151 <addaction name="actionDont_ask_for_any_help"/>

152 </widget >

153 <widget class="QMenu" name="menuABOUT">

154 <property name="title">

155 <string >ABOUT </string >

156 </property >

157 <addaction name="actionAbout_3D_SOAL_Automator"/>

158 </widget >

159 <addaction name="menuHELP"/>

160 <addaction name="menuABOUT"/>

161 </widget >

162 <action name="actionDont_ask_for_any_help">

163 <property name="text">

164 <string >Dont ask for any help!!</string >

165 </property >

166 </action >

167 <action name="actionHkjhk">

168 <property name="text">

169 <string >hkjhk </string >

170 </property >

171 </action >

172 <action name="actionAbout_3D_SOAL_Automator">

173 <property name="text">

174 <string >About 3D-SOAL Automator </string >

175 </property >

176 </action >

177 </widget >

178 <resources/>

179 <connections/>

180 </ui>

Listing 2.2: UI code designed in QT designer for the application
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2.3 Reconfigurable Modules for Trusted-Untrusted Platform

Communication

The trusted and untrusted platforms are stacked/connected together so the master platform

can control the other untrusted platform. Depending on the scenario and other design

constraints there may arise a need to either establish a serial (less wires and slower data)

communication versus a parallel (more wires and faster data) communication, or vice versa.

To address this, I was asked to design and test a parallel-to-parallel hardware communication

modules. The interface of both the platforms is a serial connection, the final ends being a

parallel data-in and data-out approach. The two platforms may have different operating

clock speeds. This could also be referred as a clock domain crossing scenario. Hence, it

is necessary to realize the design using finite state machine (FSM) approach. The block

diagram of the communication blocks is shown in Figure 2.6; the block diagrams of the state

machine is shown in Figure 2.7. Referring to Figure 2.6, the modules use a AXI interface to

communicate with each other and other blocks of the higher level design. The AXI interface

has standardized signal names to denote their functionality. The data bus could be an input

or a output that takes data into the block or out from the block. The valid signal denotes

that the content on the data bus is ‘valid’ and ready to be consumed. The valid could be

an input or an output signal depending on whether it is placed on the consumer side or

the generator side. A consumer block accepts the data from the block previous to it; a

generator block generates some data and feeds it to the consumer block after it. A ready

signal indicates the block is ready to process next piece of data.

The two state machines with different clocks is shown in Figure 2.7. The state machine

begins in Idle state; part (a) waits for the valid signal and content on the data bus. The

Check Busy state checks if the done signal goes high, after which the ready-out signal is set

to ‘1’. The done signal is active when the data is processed by the block and ready to be

transferred to the next block. In part (b), the Check Busy state expects a busy wait signal

based on which it moves to the next state, Send Data, which converts the parallel data into
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Figure 2.6: Hardware communication modules that establish communication between the
trusted and untrusted platforms

serial data. While this conversion occurs, the state machine checks for the last piece of data

to be processed in the Check Last state. After the conversion of data, the Send Data block

will transfer the data out on the bus if the Ready-in signal is active.

The modules were realized in VHDL language and Xilinx Vivado was used to simulate,

synthesize and generate waveforms. The simulation waveforms for 64, 128, and 512 bit

data input are shown in Figure 2.8, 2.9, and 2.10. It can be seen in the diagrams that the

ready-out signal is set to ‘1’ when the data processing is complete. The code for the parallel

to serial hardware module is presented in Listing 2.3. The resource utilization for 64, 128

and 512-bits configuration implemented on a Zedboard FPGA is shown in Figure 2.1, 2.2,

and 2.3.

2.3.1 VHDL code for Parallel to Serial Module

1

2 library IEEE;

3 use IEEE.STD_LOGIC_1164.ALL;

4 use IEEE.STD_LOGIC_SIGNED.ALL;

5 use IEEE.numeric_std.all;

6 use work.my_package.all;
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Figure 2.7: Finite State Machine (FSM) diagrams for input and output side, which utilize
two different clocks
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Figure 2.8: Simulation waveform for 64-bit parallel input
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Figure 2.9: Simulation waveform for 128-bit parallel input
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Figure 2.10: Simulation waveform for 512-bit parallel input
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7

8 entity P2S is

9 generic(

10 w_out : integer := 1;

11 w_in : integer := 512

12 );

13 Port ( data_in : in STD_LOGIC_VECTOR (w_in -1 downto 0);

14 valid_in : in STD_LOGIC;

15 ready_out : out STD_LOGIC;

16 clk1 : in STD_LOGIC;

17 clk2 : in STD_LOGIC;

18 rst : in STD_LOGIC;

19 data_out : out STD_LOGIC_VECTOR (w_out -1 downto 0);

20 valid_out : out STD_LOGIC;

21 ready_in : in STD_LOGIC);

22 end P2S;

23

24 architecture Behavioral of P2S is

25

26 type state_type1 is (FSM1_IDLE , FSM1_CHKDIN , FSM1_CHKBUSY , FSM1_READYOUT);

27 type state_type2 is (FSM2_IDLE , FSM2_CHKBUSY , FSM2_SEND_DATA ,

FSM2_CHK_READYIN , FSM2_CHKLAST , FSM2_DONE);

28

29 type T_SLVV is array (NATURAL range <>)of std_logic_vector(w_out -1 downto 0)

;

30 signal state1 , next_state1 : state_type1;

31 signal state2 , next_state2 : state_type2;

32

33 --Declare internal signals for all outputs of the state -machine

34

35 signal busy_wait : std_logic; -- example output signal

36 signal done : std_logic; -- example output signal

37 signal count: std_logic_vector(log2(w_in/w_out) -1 downto 0);

38 signal mux_in : T_SLVV (w_in/w_out -1 downto 0);

39
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40 signal ready_out_buff : std_logic; -- example output signal

41 signal valid_out_buff : std_logic; -- example output signal

42

43 --other outputs

44 begin

45 valid_out <= valid_out_buff;

46 ready_out <= ready_out_buff;

47

48 --FSM1 defined

49 FSM1_state_update: process (clk1)

50 begin

51 if (clk1 ’event and clk1 = ’1’) then

52 if (rst = ’1’) then

53 state1 <= FSM1_IDLE;

54 else

55 state1 <= next_state1;

56 end if;

57 end if;

58 end process;

59

60 FSM1_ready_out: process (state1 , rst , clk1 , done , valid_in , count)

61 begin

62 if (state1 = FSM1_IDLE) then

63 ready_out_buff <= ’1’;

64 elsif(state1 = FSM1_READYOUT) then

65 ready_out_buff <= ’1’;

66

67 elsif(state1 = FSM1_CHKDIN and valid_in = ’1’) then

68 ready_out_buff <= ’0’;

69 else

70 ready_out_buff <= ready_out_buff;

71 end if;

72

73 end process;

74
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75 FSM1_busy_wait: process (state1 , rst , clk1 , done , valid_in)

76 begin

77 if (state1 = FSM1_CHKDIN and valid_in = ’1’) then

78 busy_wait <= ’1’;

79 elsif(state1 = FSM1_READYOUT) then

80 busy_wait <= ’0’;

81 elsif(state1 = FSM1_IDLE) then

82 busy_wait <= ’0’;

83 else

84 busy_wait <= busy_wait;

85 end if;

86 end process;

87

88 FSM1_digram: process (state1 , rst , clk1 , done , valid_in)

89 begin

90 next_state1 <= state1;

91 case (state1) is

92 when FSM1_IDLE =>

93 next_state1 <= FSM1_CHKDIN;

94 when FSM1_CHKDIN =>

95 if valid_in = ’1’ then

96 next_state1 <= FSM1_CHKBUSY;

97 else

98 next_state1 <= FSM1_CHKDIN;

99 end if;

100 when FSM1_CHKBUSY =>

101 if done = ’1’ then

102 next_state1 <= FSM1_READYOUT;

103 else

104 next_state1 <= FSM1_CHKBUSY;

105 end if;

106 when FSM1_READYOUT =>

107 next_state1 <= FSM1_CHKDIN;

108 when others =>

109 next_state1 <= FSM1_IDLE;
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110 end case;

111 end process;

112

113 --FSM2 defined

114 FSM2_state_update: process (clk2)

115 begin

116 if (clk2 ’event and clk2 = ’1’) then

117 if (rst = ’1’) then

118 state2 <= FSM2_IDLE;

119 else

120 state2 <= next_state2;

121 end if;

122 end if;

123 end process;

124

125 FSM2_done_proc: process (state2 , rst , clk2 , count)

126 begin

127 if (state2 = FSM2_CHKLAST and count = w_in/w_out -1) then

128 done <= ’1’;

129 elsif (state2 = FSM2_CHKBUSY or state2 = FSM2_IDLE) then

130 done <= ’0’;

131 else

132 done <= done;

133 end if;

134 end process;

135

136 FSM2_valid_out: process (state2 , rst , clk2 , count , busy_wait)

137 begin

138 if (state2 = FSM2_SEND_DATA and busy_wait = ’1’) then

139 valid_out_buff <= ’1’;

140 elsif (state2 = FSM2_CHK_READYIN) then

141 valid_out_buff <= ’0’;

142 elsif (state2 = FSM2_CHKLAST and count /= w_in/w_out -1) then

143 valid_out_buff <= ’0’;

144 elsif (state2 = FSM2_CHKBUSY or state2 = FSM2_IDLE) then
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145 valid_out_buff <= ’0’;

146 else

147 valid_out_buff <= valid_out_buff;

148 end if;

149 end process;

150

151 FSM2_digram: process (state2 , rst , clk2 , busy_wait , ready_in , count)

152 begin

153 next_state2 <= state2;

154 case (state2) is

155 when FSM2_IDLE =>

156 next_state2 <= FSM2_CHKBUSY;

157 when FSM2_CHKBUSY =>

158 if busy_wait = ’0’ then

159 next_state2 <= FSM2_CHKBUSY;

160 else

161 next_state2 <= FSM2_SEND_DATA;

162 end if;

163 when FSM2_SEND_DATA =>

164 next_state2 <= FSM2_CHK_READYIN;

165 when FSM2_CHK_READYIN =>

166 if ready_in = ’0’ then

167 next_state2 <= FSM2_CHK_READYIN;

168 else

169 next_state2 <= FSM2_CHKLAST;

170 end if;

171 when FSM2_CHKLAST =>

172 if count = w_in/w_out -1 then

173 next_state2 <= FSM2_CHKBUSY;

174 else

175 next_state2 <= FSM2_SEND_DATA;

176 end if;

177 when others =>

178 next_state2 <= FSM2_IDLE;

179 end case;
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180 end process;

181

182 --process for counter

183 Counter: process (clk2)

184 begin

185 if clk2=’1’ and clk2 ’event then

186 if (rst = ’1’) then

187 count <= (others => ’0’);

188 elsif state2 = FSM2_CHKLAST then

189 count <= count + 1;

190 elsif(state2 = FSM2_CHKBUSY)then

191 count <= (others => ’0’);

192 elsif (state2 = FSM2_IDLE) then

193 count <= (others => ’0’);

194 else

195 count <= count;

196 end if;

197 end if;

198 end process;

199

200 --original one commented below

201 generate_data_out : for i in 0 to (w_in/w_out) -1 generate

202 mux_in(i) <= data_in ((I*w_out)+w_out -1 downto I*w_out);

203 end generate;

204 data_out <= mux_in(to_integer(unsigned(count)));

205

206 end Behavioral;

Listing 2.3: VHDL code for realizing the parallel to serial converter hardware module
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Table 2.1: Resource utilization for P2S and S2P module for 64-bit parallel input data

Total Resource
Slice LUTs Slice Registers F7 Muxes F8 Muxes Bonded IOB BUFCTRL
53200 106400 26600 13300 200 32

Top Wrapper

Utilization (%)

0.10 0.09 0.03 0.03 67.50 6.25

P2S Utilization (%)
0.07 0.02 0.03 0.03 0.0 0.0

S2P Utilization (%)
0.03 0.08 0.0 0.0 0.0 0.0

Table 2.2: Resource utilization for P2S and S2P module for 128-bit parallel input data

Total Resource
Slice LUTs Slice Registers F7 Muxes F8 Muxes
53200 106400 26600 13300

Top Wrapper

Utilization (%)

0.15 0.16 0.06 0.06

P2S Utilization (%)
0.11 0.02 0.06 0.06

S2P Utilization (%)
0.04 0.14 0.0 0.0

Table 2.3: Resource utilization for P2S and S2P module for 512-bit parallel input data

Total Resource
Slice LUTs Slice Registers F7 Muxes F8 Muxes Bonded IOB BUFCTRL
53200 106400 26600 13300 200 32

Top Wrapper

Utilization (%)

0.35 0.52 0.26 0.24 515.50 6.25

P2S Utilization (%)
0.30 0.02 0.26 0.24 0.0 0.0

S2P Utilization (%)
0.04 0.50 0.0 0.0 0.0 0.0
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Chapter 3: Defense Against CPA-based Physical

Side-Channel Attack

3.1 Physical Side-Channel Attack

In this section, an introduction to physical side-channel attacks is provided, followed by the

setup used for power measurement and a background of correlation power analysis (CPA).

Data integrity and security became an essential part in the era of digital systems where

privacy and confidentiality needs to be ensured. There have been a plethora of works ad-

dressing the attacks on systems, like those posed by malware [13–16], reverse engineering

of hardware [17, 18], attacks on machine-learning assisted hardware-based malware detec-

tors (HMDs) [19,20], adversarial attacks on machine learning [22], cache based side-channel

attacks [25, 27, 40], etc. Of these, side-channel attack on cryptosystem is discussed in this

work. To prevent such attacks, cyrptographic mechanisms are employed to offer security

to the data by encrypting the data streams with a secret key and transform the data into

a human non-readable format. The attempt to exercise a brute force to decrypt the infor-

mation is exhaustive and can even be unfeasible. To efficiently decode the secret key and

decrypt the information, adversaries target utilizing the information obtained through side-

channels, termed as side-channel attacks. Side-channels are inherent in any given design and

physical side-channel attacks exploit the information from these rather than exploiting vul-

nerabilities in the software. There exist both physical and microarchitectural side-channels

that can leak secure critical information through acoustics, electromagnetic (EM) radia-

tions, power trace, thermal maps and cache-access information [41–45]. Power signature

based side-channel threats are a pivotal threat as power consumption is an inherent and

preliminary characteristic of any digital system.
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This work considers a power signature based side-channel attack on encryption algorithm

executing on FPGAs as they are proliferating into data centers for compute-intensive oper-

ations such as encryption. For the power analysis based SCA to be successful, the attacker

measures the power traces from the system while triggering crypto operations on the sys-

tem. This trace is then studied statistically to deduce the secret key. The fundamental

principle underlying this attack is that different modules (operations) of AES consume dif-

ferent power, and thereby studying the power trace reveals the operation, based on which

the secret key can be deduced.

Pengyuan Yu et al. in [28] propose an intelligent place-and-route technique to facilitate

symmetrical routing as a defense against power analysis SCA on FPGA. Work in [29]

describes how a circuit can be transformed to a larger circuit to defend against probe-based

physical SCAs, but, the technique proposed is very complex. Work in [30] and [31] describes

algorithmic countermeasures to thwart SCAs which attempts to minimize the correlation

between the intermediate values and the secret key ;and by algorithmically adding noise

respectively. Also, circuit-level countermeasures are presented in papers [32–36]. It is

observed that the existing defenses require modifications in physical designs, leading to

larger overheads and design complexity.

To overcome these challenges and defend against power analysis SCA, I propose Power

Swapper. More details on the proposed Power Swapper are presented below.

3.1.1 Introduction to Correlation Power Analysis

The setup harnessed for measuring the power is described in this section followed by a brief

introduction to the process of CPA (Correlation Power Analysis) analysis for key extraction.

3.1.1.1 FOBOS Setup

The setup is built specially for measuring FPGA core power for physical side-channel attack

analysis. The setup is termed as FOBOS (Flexible Open-source workBench fOr Side-channel
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analysis) [1, 2]. Figure 3.1 shows the block diagram of the FOBOS setup, Figure 3.2 is a

photo of the components connected together for power measurement. The Controller is an

Artix-7 based FPGA that receives the test vectors from the PC and communicates with

the DUT FPGA (Device Under Test) which is the target FPGA platform running the AES

implemenatation. The target initiates instances of the AES cryptosystem and delivers the

results to the controller. Meanwhile, the controller also triggers Picoscope measurement

cycle at the same time as the AES and delivers the measured power and the cipher text

to the PC. The Picoscope captures the entire trace of the AES cycle and keeps iterating

for every new AES cycle. The PC runs the Python scripts that are responsible for sending

the test vectors and key (secret key) to the controller and accumulating all the results in

a numpy array. The FOBOS is completely reconfigurable to suit the specific needs of the

measurements and application. The setup is described in more detail in [1, 2].

Picoscope

PC
ControllerDUT FPGA

Figure 3.1: In-house setup for measuring the power of the DUT running AES implementa-
tion [1, 2]
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Figure 3.2: Actual photo of the FOBOS setup for power measurement [1, 2]
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Figure 3.3: The process of Correlation Power Analysis (CPA) to extract the correct sequence
of key used by the AES

3.1.1.2 Attack Model

The attack model and the assumptions for a successful attack have been described below:

1. Physical access: The adversary needs to have physical access to the cryptosystem for

obvious reasons - the CPA analysis needs power traces as one of its inputs to calculate

key bytes. The physical access taps the power input to the FPGA so the traces can
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Figure 3.4: Measured power traces with two different sample sizes

be captured.

2. Access to PT: The attacker also has access to the plaintext(PT) which is used by the

system.

3. Access to the AES implementation: The adversary needs to have an idea of how

the AES has been implemented internally. This is needed to choose the appropriate

attack point and decide whether only PT and power traces are sufficient to succeed

the attack phase.

4. AES timing: It is helpful for the attacker to have access to the time it takes for the

intermediate values to be processed and be available at the output of the point of

attack. This has been discussed in the next section.

3.1.1.3 CPA Analysis

Figure 3.3 illustrates the process of how CPA analysis is performed on the system to derive

the correct combination of key input. In design, the length of the plain text, cipher text
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Figure 3.5: Correlation Power Analysis (CPA) steps

Figure 3.6: Example of correlation between measured and hypothetical power

and the key is 128 bits wide. The adversary must try to derive as much correct key bits

as possible to break the cryptosystem security. Once the correct key has been derived, the
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adversary gets access to the systems where the same key was used for providing security.

There are some assumptions that are precursory to the tampering of the system which have

been discussed previously. The CPA attack is one of the ways in which an adversary can

gain access to the AES key. Referring to Figure 3.3, the attacker begins by deciding the

point of attack. The point of attack is selected such that the value (output) available relates

to the combination of the plaintext and the key (the attacker does not have access to the key,

partial or whole). The block in conventional AES implementation that is chosen is the ‘sbox’

aka substitution box. The contents of this lookup table is open sourced and hence even the

attacker has access to it. As discussed previously, the attacker has access to the time it takes

for the data to reach the point of attack or the sbox in this case. Proceeding further, the

power to the DUT FPGA is measured and stored. Power values corresponding to one full

AES cycle are known as samples, whereas, the individual runs of the AES (with different

test vector, with the same key) are known as traces; sample traces with different sample sizes

is shown in Figure 3.4. The CPA then involves calculating the hypothetical intermediate

and the hypothetical power, shown in Figure 3.5. The output of a sbox block is tried to

mimic here to calculate the hypothetical power. Thing to note here is the attacker has no

access to the actual key used and hence, it tries to generate all possible values (typically

it is done byte wise, so a total of 256 possible values). After the output value of the sbox

is known, by a combination of guessed key and plaintext, hamming weight or distance is

calculated to represent power. This hypothetical power and the actual measured power

are then correlated to see which power output value (hypothetical) corresponds strongly

with the actual measured value and the correct key is the one that corresponds to that

hypothetical value calculated previously; the process of correlation is shown in Figure 3.6.

By iterating through this process a number of times the full key is derived.
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a conventional unprotected cryptosystem and a system protected by the proposed Power
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3.2 Power-Swapper: Proposed Defense Against CPA-based

Side-Channel Attack

The proposed Power Swapper has been outlined in Figure 3.7 where part (a) shows the

internal structure of a conventional FPGA cryptosystem where each module has its own

power consumption rating. The attacker then performs the power analysis on the system and

then through statistical methods the adversary tries to deduce the secret key information.

This is possible due to the fact that the instantaneous power consumption value would

correspond to the operation of module. Based on these sequence of operations, the attacker

can deduce the secret information. As shown in Figure 3.7(c), the power consumption

waveform has seven peaks in total each corresponding to some operation. For instance,

peak 1 and 5 have the same magnitude and inferred to belong to the same operation ‘OP-

1’; peaks 2, 3 and 4 belong to ‘OP-2’ and so on. The information leakage in this case is
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maximum and it is highly correlating the power traces which can lead to leakage of secret

information.

On the contrary, Figure 3.7(b) shows the cyrptosystem being secured by Power Swapper

where the internally implemented functional modules still perform the same tasks as in a

conventional FPGA shown previously except for the fact that there are other approximate-

blocks that perform the same function but are designed in such a way that they have different

power consumption ratings. These approximate blocks are chosen randomly during runtime

by the selection logic which is controlled by the Power Swapper. Since each block still does

the same task, there will not be any deviations in the functionality of the application.

Power-Swapper uses physically unclonable function (PUF) block within the Power Swapper

to make the selection process random and unpredictable to the attacker. Figure 3.7(c)

shows the waveform of the power traces corresponding to the proposed Power Swapper

where some of the peaks show different values compared to the conventional FPGA power

trace. Peak 1 which previously would give information of operation OP-1 now corresponds

to OP-2 as per the attacker based on the power analysis.

Peak 3, which belonged to OP-2 now corresponds to the power consumption similar to OP-

1. As can be seen, the victim is not altered yet the power traces are completely different

and they are not known to and which mislead the attacker. Even if the attacker tries to

study a large number of patterns to find the power trace modifications injected by the ap-

proximate modules, the efforts would become futile as the trace will keep sweeping between

different power magnitudes due to the randomness derived from the PUF block. The power

consumption magnitudes of the alternate implementations of basic blocks range from p1 to

p5 where p1 < p2< p3< p4< p5 and the range of the alternate block-1 performing the

operations is in the range p1 to p3, while that of the block-2 would be in range of p2 to p4

while yet another block would have it in p3 to p5 range. As there is overlap in the power

consumption range, one approximate block’s power corresponds to some other block’s range

when they both are swapped during runtime. Hence, the attacker would be forced to deduce
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the sequence of operations as two different ones whereas internally the same row shifting

operation was performed with two different power signatures.

Refer to Figure 3.8 which shows the power trace of AES implementation without the pro-

posed method. The trace was observed with the following parameters: DUT clock as 1

MHz, sampling frequency of 50 MHz and ADC sampling rate of 50MSps. If we observe

the magnitude of the waveform and compare that with the magnitude shown in Figure 3.9,

the change can be vividly seen owing to the approximate modules that perform essentially

the same task but with a different power consumption. The way this disrupts the CPA

power analysis is: the hypothetical intermediate that will be calculated by the adversary

will remain the same (as discussed previously); key and the plaintext remain the same for

a particular AES cycle. On the contrary, the actual power consumption would come out to

be different and hence, if not for all the parts of the key but for some, parts of the key the

adversary derives is incorrect disrupting the CPA analysis. Figure 3.9 illustrates an increase

in the magnitude but it can also be the opposite depending how the approximate modules

are designed. Hence, theoretically, if one harnesses the approximate modules for enhancing

security in FPGA based crypto implementations, power analysis based side channel attacks

could be thwarted.

3.2.1 Experimental Results

The experimental setup used for capturing AES traces (without Power Swapper) was: 1.

Artix-7 based FPGA controller, CW305 Artix FPGA Target DUT board, PicoScope 5000

series for capturing the power traces, system clock frequency used was 1 MHz. The cyrpto

application implemented on the DUT board was AES [1] with 128 bits of plaintext, key

and output cipher text. Pearson correlation was used to calculate hypothetical power.

Automation scripts were used to provide test vectors to the DUT and 1 million traces were

collected for analysis.

Refer to Table 3.1 for the power traces observed by the attacker with Power Swapper. As can

be seen from table, the information deduced by the attacker based on power consumption

45



values are completely different compared to the actual operation executed on the core. The

modified power signatures observed by the attacker are highlighted in red. The modified

signatures are a result of the Power Swapper choosing one of the approximate blocks.

Similarly, referring to Table 3.2, the key derived using CPA without and with Power Swapper

has been shown. The bytes/nibble that were wrongly correlated to the key guesses - as

described previously - have been highlighted. These wrong portions of the keys are observed

as the effect of the approximate modules introduced by Power Swapper . It is to be noted

that the length of the plaintext and key does not in anyway affect the efficacy of the proposed

method. The results in the Tables 3.1, 3.2 provide sufficient proof that by employing

approximate modules, cryptosystems can be rendered resilient against power analysis based

side-channel attacks.

Ovehead Analysis: As with every system, the proposed methodology will also have over-

heads. The Power Swapper requires that approximate modules be added to the original

implementation of AES and these modules will be selected during the application execution.

Needless to say, the modules will require additional space on the FPGA fabric along with

some increase in power consumption. Switching between these modules will also lead to

small overheads. The small, if not insignificant, overhead would be the trade off between

security and power/area. The resource utilization for two variants of AES is shown in Ta-

ble 3.3 and 3.4. One variant is implemented as a base version, without any pragmas in

Vivado HLS 2019; Table 3.3 presents the resource utilization results. Another variant is

implemented using pipeline and loop unroll pragmas; the results are presented in Table 3.4.

Both variants essentially function the same except that the power signatures are different.

The total hardware resource utilization will be decided based on how many variants of AES,

or blocks within AES, is utilized to include a range of power signatures for each block. The

results presented in Table 3.3 and 3.4 are for reference only; they will scale based on the

security to area/power tradeoff chosen as per the required resiliency against attack.
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Figure 3.8: Power trace of AES engine implemented on FPGA

Table 3.1: Impact of Power Swapper on power trace extraction
Scenario Victim Power Trace Power Trace with Power Swapper

Instance-1 Instance-2

Scenario-1 OP-1/OP-2/OP-3/OP-4 OP-3/OP-2/OP-1/OP-4 OP-2/OP-3/OP-4/OP-1

Scenario-2 OP-1/OP-1/OP-4/OP-3 OP-2/OP-3/OP-2/OP-1 OP-3/OP-1/OP-1/OP-3

3.2.2 Conclusion and Future Work

In this work, I discussed the physical power SCAs, discussed the severity of the threats

posed and delineated the works in the past. In contrast to the existing works, proposed

Power Swapper will preserve the victim’s secret information without any modifications to

the victim algorithm in itself. I hope the community will be intrigued by the preliminary
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Figure 3.9: Power trace of AES controlled by Power Swapper . The magnitude is seen to
increase(in this case) given the presence of approximate functional blocks

Table 3.2: Impact of Power Swapper on keys
Trace # Correct key Incorrect key with Power Swapper

Trace-1 51720187c36e0c8523acb8535a870703 51522187ca6ea28523acb8e35a870793

Trace-2 d14a900c7391d64101fe33a85b0793cb a14a90dc7391d63201fe33a85b1693cb

results discussed in this work and I plan to develop this work in future to deliver more

details of the mechanism that would benefit the security critical processes.
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Table 3.3: Resource utilization of AES without pragmas implemented on a Zedboard FPGA

Name BRAM 18K DSP48E FF LUT URAM

DSP - - - - -

Expression - - 0 64 -

FIFO - - - - -

Instance 0 - 1245 6648 -

Memory - - - - -

Multiplexer - - - 183 -

Register 0 - 1311 32 -

Total 0 0 2556 6895 0

Available 280 220 106400 53200 0

Utilization (%) 0 0 2 12 0

Table 3.4: Resource utilization of AES with loop unroll and pipeline pragmas implemented
on a Zedboard FPGA

Name BRAM 18K DSP48E FF LUT URAM

DSP - - - - -

Expression - - 0 1478 -

FIFO - - - - -

Instance 0 - 4356 16698 -

Memory - - - - -

Multiplexer - - - 162 -

Register 0 - 3717 32 -

Total 0 0 8073 18370 0

Available 280 220 106400 53200 0

Utilization (%) 0 0 7 34 0
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Chapter 4: Conclusion

This thesis discussed the importance of security to computing systems. We discussed the

attacks, like reverse engineering, threatening the security community and their capabilities

to disrupt design confidentiality. Further, defense against IC reverse engineering attacks was

discussed which includes the automation application for logic locking defense and robustness

evaluation against attacks, followed by the design of hardware communication modules.

Further, physical side-channel attack on crypto systems on FPGA was discussed in detail

along with a proposed defense against such attack. The thesis also includes full working

code for the automation application and hardware module.
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