
ESTIMATING MOTION OF OBJECT CONTOURS FROM DISTANCE TRANSFORMS

by

Kyle Soeder
A Thesis

Submitted to the
Graduate Faculty

of
George Mason University
In Partial fulfillment of

The Requirements for the Degree
of

Master of Science
Computer Science

Committee:

Dr. Zoran Durić, Thesis Director

Dr. Jana Košecká, Committee Member

Dr. Yotam Gingold, Committee Member

Dr. Sanjeev Setia, Chairman, Department
of Computer Science

Dr. Kenneth Ball, Dean
Volgenau School of Engineering

Date: Spring Semester 2015
George Mason University
Fairfax, VA

Estimating Motion of Object Contours from Distance Transforms

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science at George Mason University

By

Kyle Soeder
Bachelor of Science
Loras College, 2011

Director: Dr. Zoran Durić, Associate Professor
Department of Computer Science

Spring Semester 2015
George Mason University

Fairfax, VA

Copyright c© 2015 by Kyle Soeder
All Rights Reserved

ii

Dedication

I dedicate this thesis to my family

iii

Acknowledgments

I would like to thank the three people who helped make this thesis possible. My advisor
Dr. Zoran Durić provided advice, encouragement, and the support I needed to complete
this thesis. I would also like to to thank Sam Gelman and Nalini Vishnoi for providing the
preprocessing software and the Kinnect sequences of human movement. Sam also provided
the segmentation of the gait sequence.

iv

Table of Contents

Page

List of Figures . vi

Abstract . ix

1 Introduction . 1

2 Related Work . 3

3 Technical Background . 6

3.1 Computing Flow from Distance Transform 8

4 Experiments . 13

4.1 Experiment 1: Depth Videos of Common Household Items 13

4.2 Experiment 2: Depth Videos of Human Raising Leg 14

4.3 Experiment 3: Segmented Depth Videos of Human Walking 16

4.4 Discussion . 25

5 Conclusion and Future Work . 30

Bibliography . 31

v

List of Figures

Figure Page

3.1 Distance transform computed with respect to a single binary point on image

(left). The point is the smallest value in the chart. Distance transform

performed on a point cloud (right). 8

3.2 Distance transform and examples of displacements computed for three simple

shapes: square, triangle, ellipse. Distance transforms are shown in the top

row. The bottom row shows displacements computed from blue contours

with respect to green contours. The blue contours are 10 ± 0.5 pixels away

from the green contour (original binary pattern). 9

3.3 Distance transform computed with respect to a binary contour (left) and its

gradients (right). The contour is shown in dark blue, DP (p) = 0, and all

gradients are normalized to 1. 10

3.4 Computing flow from distance transform on a sequence of a moving leg. Top

row: Color frames 0,10,20 from an RGBD video of a moving leg. Middle

row: Depth frames 0,10,20 from the same sequence. Note that the back-

ground subtraction was used to eliminate background pixels. Bottom row:

The image flow computed for the moving leg using the distance transform

and its gradient. Green pixels belong to the current frame, the red pixels

belong to the next (reference) frame. The leg was segmented using depth

and anthropomorphic measures. 11

3.5 Normal flow computed from pairs of frames of a bottle. 12

4.1 Sample depth and color images of common household objects (roll of tape

top, conditioner bottle bottom) . 14

4.2 Contours of bottle after thresholding. 15

4.3 Resulting motion models and residuals for bottle. 15

4.4 Segmented depth images of person raising leg. 17

4.5 Resulting flows of person raising leg. Frames 1-9 18

4.6 Resulting flows of person raising leg. Frames 9-17 19

vi

4.7 Resulting flows of person raising leg. Frames 17-21 20

4.8 Sample depth images of person walking. (Frames 25-60) 21

4.9 Sample depth images of person walking.(Frames 61-80) 22

4.10 Computed flows for frames 26-41 of segmented depth sequence of person

walking . 23

4.11 Computed flows for frames 41-56 of segmented depth sequence of person

walking. 24

4.12 Computed flows for frames 56-72 of segmented depth sequence of person

walking . 26

4.13 Computed flows for frames 72-81. Frames 25-80 are corresponding to ap-

proximately 2 seconds of RGBD images of walking. 27

4.14 Computed affine motion for several frames of human walking. 28

vii

Abstract

ESTIMATING MOTION OF OBJECT CONTOURS FROM DISTANCE TRANSFORMS

Kyle Soeder, M.S.

George Mason University, 2015

Thesis Director: Dr. Zoran Durić

plain This thesis develops a method for estimating motion for object contours in depth

video sequences. First the depth image is thresholded to find the foreground object. Con-

tours are then extracted from the thresholded image. Given the contours in two frames

my method estimates the motion that transforms the contour in frame 1 to the contour in

frame 2. First the Euclidean Distance Tansform (DT) is computed for the contour in frame

2. The DT and its gradient at each of the points along the contour in frame 1 are used to

estimate the motion between the contours in the frames. I consider the obtained motion an

estimate of the normal flow between the frames. Finally the normal flow is used to estimate

affine motion between the contours. I demonstrate the method on several synthetic images

corresponding to contours of various shapes. Finally I demonstrate the effectiveness of my

method on several image sequences including household objects, a person raising their leg

and a long sequence of a human walking.

Chapter 1: Introduction

Motion between images has traditionally been estimated using image derivatives or feature

matching ([1]). I am interested in calculating the motion between contours in objects in

depth images, such as images collected from a Kinnect depth camera. In this thesis my

method for calculating the motion will utilize distance transforms and their gradients as

opposed to image derivatives and feature matching.

The motivation for this work was Chamfer Matching, where the distance transform was

used to determine closely matched contours. However, Chamfer Matching can be com-

putationally expensive since it requires computing many correlations between the contour

and the distance transform of a template. For a perfect match one would expect to get a

low value for resulting correlation between the contours and the distance transform. If the

match is not perfect, the matching score could be high even if the contours are very similar

and just slightly displaced.

It can be observed that if one computes the gradients of the distance transform, those

gradients point in the direction normal to the contour. By combining unit vectors obtained

from those gradients and the negative values of the DT, one can obtain vectors that corre-

spond to the normal displacement between pairs of contours.In addition, if it is assumed the

displacement between two contours corresponds to rigid motion, one can compute a para-

metric motion model, such as Affine motion between those contours. In this thesis I have

developed this method for calculating motion models in python using OpenCV libraries.

I applied this method first to a few household objects being moved across a flat surface

in a depth video. I thresholded the images, extracted the contours and then applied the

normal flow calculation to the objects. With the normal flow I then applied the calculation

to obtain the motion model for each of the objects. This experiment is described in further

1

detail in Section 4.1.

The second application of this method was applied to a human raising their leg off the

ground while standing. For this work I obtained depth images from Sam Gelman that had

the background removed already. Applying the same thresholding I again extracted the

contours from the sequence of images. Then I calculated the normal flow for two frames

apart, since the motion between single frames was too small to provide useful results. I

followed the same method for motion calculation after obtaining the normal flows. This

experiment is outlined in further detail in Section 4.2.

The final application of this method was performed on a sequence of a person walking.

For this sequence the images were segmented first into 4 clusters using a K-Means clustering

based on the depth of the pixels. Each cluster was then compared to the cluster of the same

depth in the pairs of images. Each segment was converted to a binary image and had the

contours extracted. The fact that there were several depths caused occlusion to occur, these

occluding contours were removed using a distance calculation against the closer contours in

the image. Once the occluded contours were removed, normal flow and affine motion was

calculated. This final experiment is discussed in further detail in Section 4.3.

Chapter 2: Related Work

There are many different forms of distance transforms that have been established and used

in various algorithms for image matching and image feature computations. Rosenfeld in

([2]) discusses several different distance transforms that can be computed including City

Block, Square, Hexagonal, Octagonal and Euclidean distances. For my thesis I observed all

of these different forms of distance transforms prior to deciding to use Euclidean distance

as my distance transform. Euclidean distance requires lots of computations to calculate,

however there have been several efforts involved in speeding up the process of computing

Euclidean Distance.

Felzenszwalb in ([3]) discusses one method for speeding up the calculation of Euclidean

distance. In this effort Felzenszwalb introduces a linear time algorithm for the calculation

of Euclidean squared distance. The process followed to perform this calculation is a series

of minimizations described in 3. For my work I am using Euclidean distance since it has

been efficiently implemented in several libraries, such as OpenCV which is what I used for

my calculations.

With more efficient ways to calculate distance transforms, there have been many ef-

forts using the transforms for different matching algorithms. In ([4]) Borgefors discusses a

technique using distance transforms and minimization of distances to match images. Since

matching is computationally expensive at very high resolutions, Borgefors uses a series of

matches starting at low resolution, eliminating irrelevant features in the image, incremen-

tally increasing resolution to high resolutions. The large amount of calculations required

for high resolution is reduced since the low resolution matching eliminated all the irrelevant

features and calculations were not performed on those features at the high resolution.

Another application of distance function occurs in ([5]). In this effort Huttenlocher

3

uses Hausdorf distance to compare images. This is of interest to me as both Hausdorf and

Chamfer matching are computationally expensive and I would like to improve the efficiency

of image matching. This effort discusses how Hausdorf matching requires a matching to be

performed against a model on an image, moving the model across the image collecting the

matching score for every possible position of the model on the image. As is evident the effort

of moving the model over the image and recalculating the match at each location is very

computationally expensive. My method eliminates the need for many of those comparisons.

Derivatives of distance functions are also useful for comparisons of images. In ([6])

Fitzgibbon describes the use of the gradients of distance functions to register point sets

and in turn match point sets to models of objects, an example in the paper is matching

point sets to specific letters in images. This was of interest to me because I am also using

gradients to determine direction of motion, although I am not using gradient descent, I am

simply doing one gradient calculation for direction.

One of the motivations for this effort was to speed up the process of Chamfer Matching.

Several other proposals have been made to speed up this process. Gavrila in ([7]) proposed

a method for grouping similar templates together to speed up Chamfer Matching by reduc-

ing the number of comparisons needing to be made against the different templates. The

templates are also grouped at different resolutions, so the higher the resolution the fewer

the number of templates needed to be matched to the image.

Another hierarchical approach to speeding the Chamfer Matching process is discussed

in ([8]). Svensson in this effort does not use the binarisation process that several other

efforts have implemented, and instead uses distance weighted gradient magnitude in an

effort to keep as much information as possible about the image throughout processing.

This proposal increased the fidelity of the results while still keeping the computations at a

minimum through the use of the hierarchical comparisons that occur.

One other important effort that I wanted to discuss was ([9]). This effort takes into

account distance transforms and directional integral images to perform more accurate and

more efficient matches. This effort takes into account more directions then my own, I only

take into account lateral movement, but this effort could be used in the future to further

my own work by taking into account more directions than just the lateral directions.

The last related work I wanted to discuss was ([10]). The motion models and normal

flow calculations in this research are the basis for my work. I use the normal flow calculation

described in this research, as well as the parameter estimation to give my final affine motion

model once I have calculated the normal flows.

Chapter 3: Technical Background

The first key component to the calculation of both the motion models and performing the

matching in this work is the distance transform. A distance transform of a binary image

specifies the distance of each image pixel to the nearest non-zero pixel. Distance transforms

have been used extensively in computer vision, image processing, and pattern recognition.

We will use a definition of distance transform given in [3, 11, 12]. Let G be a regular

grid and P ⊆ G a set of points on the grid. The distance transform associates to each grid

location the distance to the nearest point in P ,

DP (p) = min
q∈G

(d(p, q) + 1(q)),

where 1(q) is an indicator function for membership in P,

1(q) =

 0 if q ∈ P

∞ otherwise

and d(p, q) is the Euclidean distance, i.e. d(p, q) =
√

(xp − xq)2 + (yp − yq)2. The algorithm

for computing this distance transform is shown in Algorithm 1.

A hierarchy of parametric flow models has been proposed including pure translation,

image rotation, 2D affine flow, and 2D homography (6-parameter or simplified quadratic

flow). We will consider all those models here. 6-parameter flow corresponds to the instan-

taneous projected image motion field generated by a moving plane. Other models used here

can be obtained by setting some of the eight parameters to zero. In the 6-parameter model

6

Algorithm 1 Algorithm 1: The distance transform algorithm for the the squared Euclidean
distance in one-dimension.

1: k ← 0 (* Index of rightmost parabola in lower envelope *)
2: v[0]← 0 (* Locations of parabolas in lower envelope *)
3: z[0]← −∞ (* Locations of boundaries between parabolas *)
4: z[1]← +∞
5: for q = 1 to n− 1 (* Compute lower envelope *)

6: s← ((f(q) + q2)− (f(v[k]) + v[k]2))/(2q − 2v[k])
7: if s ≤ z[k]
8: then k ← k - 1
9: goto 6

10: else k ← k + 1
11: v[k] ← q
12: z[k] ← s
13: z[k + 1] ← +∞
14: k ← 0
15: for q = 0 to n - 1 (Fill in values of distance transform)
16: while z[k + 1] < q
17: k ← k + 1
18: Df (q)← (q − v[k])2 + f(v[k])

coordinates of a point (x, y) in the first frame will move to (x′, y′) in the next frame:

 x′

y′

 =

 w1

w4

 +

 w2 w3

w5 w6

 x

y

 (3.1)

Eq. (3.2) relates corresponding points in successive image frames. To obtain the dis-

placement ~u(x, y) = (δx δy)T of (x, y) we subtract (x y)T from both sides of (3.2) to

obtain

 δx

δy

 =

 x′ − x

y′ − y

 =

 w1

w4

 +

 w1
2 w3

w5 w1
6

 x

y

 (3.2)

where w1
2 = w2 − 1 and w1

6 = w6 − 1. The normal displacement field at (x, y) is given by

un(x, y) = δ~rn ·~n = nxδx+nyδy = w1nx +w1
2xnx +w3ynx +w4ny +w5xny +w1

6yny = w ·p,

where ~n = nx~ı + ny~ is the gradient direction, p = (nx xnx ynx ny xny yny)T , and

0
2

4
6

8
10

12

0
2

4
6

8
10

12
0

1

2

3

4

5

6

7

5 10 15 20 25 30

5

10

15

20

25

30
0

2

4

6

8

10

12

14

16

Figure 3.1: Distance transform computed with respect to a single binary point on image
(left). The point is the smallest value in the chart. Distance transform performed on a
point cloud (right).

w = (w1 w
1
2 w3 w4 w5 w

1
6)T is the vector of affine parameters.

We seek the affine model w that minimizes ‖e‖ = ‖b− Pw‖; the solution satisfies the

system P TPw = P Tb and corresponds to the linear least squares (LS) solution. We will

describe the use of this motion model in the sections to follow.

3.1 Computing Flow from Distance Transform

Utilizing the distance trasnform, along with the motion models, I was able to find the affine

motion model between two frames. In order to do so I utilized the gradients to find normal

flows and then performed the aforementioned calculation as follows. It can be seen that

the distance transform DP (p) is a smooth function on G and therefore it has a gradient at

each point p ∈ G. Fig. 3.3 shows the distance transform computed for a small binary image

and its gradients. It can be seen that the gradients point away from the contour and that

they are normal to it. Fig. 3.4 shows examples of image flow computed from a real image

sequence using the proposed method.

The algorithms for computing DP (p) can be modified to compute the nearest point

q ∈ P for each point p ∈ G. However, it can be observed that the nearest point q of any

0 20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

0

20

40

60

80

100

50 100 150 200 250 300

0

50

100

150

200

250

0

20

40

60

80

100

120

140

160

180

200

Figure 3.2: Distance transform and examples of displacements computed for three simple
shapes: square, triangle, ellipse. Distance transforms are shown in the top row. The bottom
row shows displacements computed from blue contours with respect to green contours. The
blue contours are 10± 0.5 pixels away from the green contour (original binary pattern).

5 10 15 20 25 30

5

10

15

20

25

30
0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25 30

5

10

15

20

25

Figure 3.3: Distance transform computed with respect to a binary contour (left) and its
gradients (right). The contour is shown in dark blue, DP (p) = 0, and all gradients are
normalized to 1.

point p is in the direction of negative gradient

∇DP (p) =
∂DP (p)

∂x
~i+

∂DP (p)

∂y
~j

and its distance is DP (p), therefore we can write

q ≈ p−DP (p)
∇DP (p)

‖∇DP (p)‖
= p− ~vP (p), (3.3)

where ~vP (p) can be treated as a(n) (approximate) displacement of p with respect to some

q ∈ P . Similarly, given a binary pattern R we can compute the distance function DR(p)

and define the displacement ~vR(p) with respect to R.

Given the displacement calculated from the distance tranform and it’s gradients, the

flow between two contours can also be calculated. Normal flow is the projection of image

motion (optical flow) onto the edge gradient direction [13]. It is usually computed from

image derivatives resulting in very noisy measurements. In addition, since it corresponds

to edge motion in the normal direction only it gives rise to the aperture problem—i.e., in

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450
0

500

1000

1500

2000

2500

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450
0

500

1000

1500

2000

2500

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450
0

500

1000

1500

2000

2500

200 250 300 350 400
−420

−400

−380

−360

−340

−320

−300

−280

−260

−240

−220

180 200 220 240 260 280 300 320 340 360 380

−380

−360

−340

−320

−300

−280

−260

−240

−220

180 200 220 240 260 280 300 320 340 360

−380

−360

−340

−320

−300

−280

−260

−240

−220

Figure 3.4: Computing flow from distance transform on a sequence of a moving leg. Top
row: Color frames 0,10,20 from an RGBD video of a moving leg. Middle row: Depth
frames 0,10,20 from the same sequence. Note that the background subtraction was used to
eliminate background pixels. Bottom row: The image flow computed for the moving leg
using the distance transform and its gradient. Green pixels belong to the current frame,
the red pixels belong to the next (reference) frame. The leg was segmented using depth and
anthropomorphic measures.

a small region along a straight edge it does not contain any information about tangential

motion of the edge. This problem is usually solved by assuming that the motion in a

sufficiently large region, that includes edges of varying orientations, obeys some simple

model so that the information over the whole region can be used to recover the missing

information. The method used here estimates the normal flow from pairs of successive color

image frames without image derivatives [14]. The normal flow computed from images is

shown in Fig. 3.5.

340 350 360 370 380 390 400 410 420 430

−240

−230

−220

−210

−200

−190

−180

−170

Figure 3.5: Normal flow computed from pairs of frames of a bottle.

Chapter 4: Experiments

I performed several different experiments to validate the usefulness of the methods described

above. The first experiment is focused on common household items being moved across a

flat surface. The second and third experiments focused on two different sequences of human

movements.

4.1 Experiment 1: Depth Videos of Common Household Items

Using a Microsoft Kinnect depth camera, I took 30 frames of different household objects

at a distance of approximately 2 meters from the camera. The object was moved about a

centimeter per frame. The resulting images are depth images from the Kinnect that describe

the depth of each pixel in the frame. I have provided examples of all the different objects

in 2 separate frames as well as a single color frame in Fig. 4.1.

Using these depth images, I thresholded the image to obtain the objects in a binary image

format. From the binary image I extracted the boundaries. The extracted boundaries for

two sample frames of the bottle are shown in Fig. 4.2 (resulting boundary images). The

implementation of this boundary finding process is shown below.

Thresholding Process :

Load the image

Set a l l va lues g r e a t e r than max depth thre sho ld to zero

Set a l l va lues l e s s than min depth thre sho ld to zero

Set a l l va lues with in thre sho ld to p i x e l value o f 244

Contour Finding Process :

Run Canny image de t e c t i on

Use OpenCV f ind contours a lgor i thm to return the contours

13

Figure 4.1: Sample depth and color images of common household objects (roll of tape top,
conditioner bottle bottom)

The next step applies the flow calculation formula described in section 3. The imple-

mentation in Python is shown in (code for python implementation). The resulting flow

from frames in Fig. 4.2 are shown in Fig. 4.3. The methods described in section 3 are used

to estimate the motion models between frames for the bottle. The resulting motion models,

flows and residuals are given in Fig. 4.3.

4.2 Experiment 2: Depth Videos of Human Raising Leg

Using a Microsoft Kinnect depth camera, two sequences of 20 frames were captured of

a person raising their left leg. The images are the side profile of the person and were

provided by Sam Gelman. The person was stationary and approximately 4 meters from the

camera. The person raised their left leg, bending at the knee moving the leg approximately

2 centimeters per frame. The resulting images are depth images from the Kinnect that

describe the depth of each pixel in the frame. I have provided images of the sequences in

Figure 4.2: Contours of bottle after thresholding.

360 380 400 420 440

170

180

190

200

210

220

230

240

bottle
2
921

340 360 380 400 420 440

180

200

220

240

Affine model flow

340 360 380 400 420 440

170

180

190

200

210

220

230

240

Rotation model flow

340 360 380 400 420 440

170

180

190

200

210

220

230

240

Constant model flow

Figure 4.3: Resulting motion models and residuals for bottle.

Fig. 4.4.

Using these depth images, I thresholded the image to obtain the image of the body in a

binary image format. From the binary image I extracted the boundaries. For my next step

I applied the same flow calculation formula described in experiment 1. The resulting flow

from the sequence in Fig. 4.4 is shown in Fig.(4.5, 4.6, and 4.7). The methods described

in section 3 are used to estimate the motion models between frames for the leg raising. The

resulting flows are given in Fig. 4.5- 4.7.

4.3 Experiment 3: Segmented Depth Videos of HumanWalk-

ing

Using a Microsoft Kinnect depth camera, a sequence of 55 frames, approximately 2 seconds

of RGBD images of walking, was captured of a person walking in front of the camera.

The images are the side profile of the person walking. The distance from the camera

approximately 4 meters away. The images were then segmented using a K-Means clustering

to cluster parts of the image based on the depth of each pixel in the image. The resulting

segments are as follows, segment 1 is the left arm and is blue in the depth images, segment

two is the left leg and the body it is green in the depth images, segment 3 is the right

leg and is orange in the depth images, lastly depth 4 is the right arm and is red in the

depth images. The segmentation is used to generate the contours much like the previous

experiments except that this time the specific depth (1,2,3 or 4) is used to create the binary

image, where all the other values except the specific depth being tested is 0 and the depth

being tested is set to 1. I have provided the depth images of the sequence in Fig. 4.8 and

Fig. 4.9.

One of the issues that I had to resolve in these frames was the occlusion that occurs when

looking at depths 2 through 4 in the image. Since there were up to four segments in each

frame, I had to work through occlusion at the deepest 3 levels. The first depth didn’t have

any occlusion so I followed the same process to get the flows and motion as was followed

Figure 4.4: Segmented depth images of person raising leg.

1 − 3 2 − 4 3 − 5 4 − 6

5 − 7 6 − 8 7 − 9 8 − 10

Figure 4.5: Resulting flows of person raising leg. Frames 1-9

9 − 11 10 − 12 11 − 13 12 − 14

13 − 15 14 − 16 15 − 17 16 − 18

Figure 4.6: Resulting flows of person raising leg. Frames 9-17

17 − 19 18 − 20 19 − 21 20 − 22

Figure 4.7: Resulting flows of person raising leg. Frames 17-21

Figure 4.8: Sample depth images of person walking. (Frames 25-60)

Figure 4.9: Sample depth images of person walking.(Frames 61-80)

26 − 27 27 − 28 28 − 29 29 − 30 30 − 31

31 − 32 32 − 33 33 − 34 34 − 35 35 − 36

36 − 37 37 − 38 38 − 39 39 − 40 40 − 41

Figure 4.10: Computed flows for frames 26-41 of segmented depth sequence of person walk-
ing

41 − 42 42 − 43 43 − 44 44 − 45 45 − 46

46 − 47 47 − 48 48 − 49 49 − 50 50 − 51

51 − 52 52 − 53 53 − 54 54 − 55 55 − 56

Figure 4.11: Computed flows for frames 41-56 of segmented depth sequence of person walk-
ing.

for the first 2 experiments. For the second depth and deeper I had to take into account

the front contours and remove any occluded contours created by the closer contours. For

example, if the front arm covered part of the front of the body, that would get included as

a contour if I didn’t remove the contour created from the overlap. By applying a distance

transform to the front contour and removing all the contour points in the second depth

that were within 3 pixels of the front depth I excluded any occluded contours and calculate

motion on the specific contours for each segment. I followed this same process for depths 3

and 4 excluding any contours that were within 3 pixels to any of the front contours. Once

all the contours were accurately defined and the occluded contours were removed, I ran into

an issue when motion grew beyond the width of the arms and legs in the frames. To resolve

this issue, I split the contours into left and right sides, and compared only the left contours

in frame 1 to the left contours in frame 2 and the same for the right contours. To perform

this split, I did a search to find the first non-zero pixel on the left side of the frame and the

first non-zero pixel on the right side of the frame for each row in the frame. Then I took a

distance transform from those pixels and sorted the contour points based on their proximity

to those non-zero pixels. The flows were then calculated according to the correct sides of

the contours being compared to one another. The resulting flows are show in Fig. 4.10 -

Fig. 4.13.

Once the flows were calculated for each image, I applied the same calculation to deter-

mine the six parameter affine motion model as was previously used in Experiment 1 and 2.

A few examples of the motion models are shown in Fig. 4.14 The motion for the front arm

is cyan, the front leg is blue, the back leg is magenta, and the back arm is black.

4.4 Discussion

The primary goal of these experiments was to demonstrate the application of the discussed

method to estimate the motion of several different objects. In the first experiment I demon-

strated how motion of household objects which have rigid contours can be obtained using

the normal flow calculation. There were some minor issues with this experiment as the

56 − 57 57 − 58 59 − 60 60 − 61 61 − 62

62 − 63 63 − 64 64 − 65 65 − 66 66 − 67

67 − 68 68 − 69 69 − 70 70 − 71 71 − 72

Figure 4.12: Computed flows for frames 56-72 of segmented depth sequence of person walk-
ing

72 − 73 73 − 74 74 − 75 75 − 76 76 − 77

77 − 78 78 − 79 79 − 80 80 − 81

Figure 4.13: Computed flows for frames 72-81. Frames 25-80 are corresponding to approx-
imately 2 seconds of RGBD images of walking.

35 − 36 40 − 41 55 − 56

57 − 58 66 − 67 71 − 72

Figure 4.14: Computed affine motion for several frames of human walking.

Kinnect camera has a low resolution. So these results could be improved upon with a bet-

ter resolution camera. The results did should clear and accurate motion estimation for the

objects.

The second experiment was used to demonstrate the validity of this method on a non-

rigid object, a human, moving. This sequence of frames shows a person raising his left

leg while not moving laterally at all. This concentration on only one part of the body

moving allowed me to test my method against a relatively simple motion. The difficulty

in this sequence was that the leg contour changed significantly as the gap between the

front leg and back leg developed, creating a frame that didn’t exist in one frame that did

exist in another. This was only visible in a couple frames and the end result didn’t cause

major anomalies in the calculated flows. The results could be improved if segmentation

was performed on the different parts of the leg and foot that were rotating and moving in

different directions. For example the foot is moving backwards at some points when the leg

is moving up, that causes some discrepancy when the final motion model is calculated.

The last experiment was the most effective in demonstrating the method on non-rigid,

as well as multi-directional movement. Since the frames were segmented prior to process-

ing, I was able to perform flow calculations on specific parts of the body. These images

demonstrate the capability of this method to be able to describe large motion. there were

some frames in which the entire arm moved outside of the previous contour, and with my

splitting of the contours I showed how well this method can describe larger motion. These

results show clear, accurate motion of the different phases of gait. This method could be

used potentially to create models for phases of gait estimation in the future.

Chapter 5: Conclusion and Future Work

Through these experiments I demonstrated my motion estimation method on several image

sequences with varying complexities of motion. In doing so I demonstrated the viability of

this method on rigid and non-rigid contours extracted from RGBD videos collected from a

Kinnect depth camera. I also showed how one can use a Euclidean distance transform and

its derivatives on an image to estimate motion of objects between frames. The results from

the experiments have shown that this method is fast and reliable and can be used for fairly

large displacement, especially when contour orientation is incorporated into the method.

Although the results were very positive, there are some improvements that could be

made in the future. First off, the resolution of the camera taking the images needs to be

improved upon, and the latest version of the Kinnect camera has resolved this issue, so

all new image collection could use the new camera to collect better data. Between the

new camera and some improved contour smoothing, these results could be improved upon.

Another improvement that could be made is to take into account contour orientation for

comparison, as I only split into left and right halves the contours could be split into more

pieces and compared accordingly. Lastly I would suggest performing motion calculations

on each segment in the sequence instead of just an overall motion calculation. Given these

improvements, future efforts in this area could lead to even more accurate and efficient

results.

30

Bibliography

31

Bibliography

[1] R. Szeliski, Computer vision: algorithms and applications. Springer Science & Business
Media, 2010.

[2] A. Rosenfeld and J. L. Pfaltz, “Distance functions on digital pictures,” Pattern recog-
nition, vol. 1, no. 1, pp. 33–61, 1968.

[3] P. Felzenszwalb and D. Huttenlocher, “Distance transforms of sampled functions,”
Cornell University, Tech. Rep., 2004.

[4] G. Borgefors, “Hierarchical chamfer matching: A parametric edge matching algo-
rithm,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 10,
no. 6, pp. 849–865, 1988.

[5] D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge, “Comparing images using
the hausdorff distance,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 15, no. 9, pp. 850–863, 1993.

[6] A. W. Fitzgibbon, “Robust registration of 2d and 3d point sets,” Image and Vision
Computing, vol. 21, no. 13, pp. 1145–1153, 2003.

[7] D. M. Gavrila and V. Philomin, “Real-time object detection for smart vehicles,” in
Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference
on, vol. 1. IEEE, 1999, pp. 87–93.

[8] S. Svensson and I.-M. Sintorn, “Hierarchical chamfer matching based on propagation
of gradient strengths,” in Discrete Geometry for Computer Imagery. Springer, 2006,
pp. 308–319.

[9] M.-Y. Liu, O. Tuzel, A. Veeraraghavan, and R. Chellappa, “Fast directional chamfer
matching,” in Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Confer-
ence on. IEEE, 2010, pp. 1696–1703.

[10] H. Wechsler, Z. Duric, F. Li, and V. Cherkassky, “Motion estimation using statistical
learning theory,” Pattern Analysis and Machine Intelligence, IEEE Transactions on,
vol. 26, no. 4, pp. 466–478, 2004.

[11] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient belief propagation for early vi-
sion,” International journal of computer vision, vol. 70, no. 1, pp. 41–54, 2006.

[12] ——, “Distance transforms of sampled functions.” Theory of computing, vol. 8, no. 1,
pp. 415–428, 2012.

[13] Y. Aloimonos and Z. Duric, “Estimating the heading direction using normal flow,”
International Journal of Computer Vision, vol. 13, no. 1, pp. 33–56, 1994.

[14] Z. Duric, F. Li, Y. Sun, and H. Wechsler, “Using normal flow for detection and tracking
of limbs in color images,” in Pattern Recognition, 2002. Proceedings. 16th International
Conference on, vol. 4. IEEE, 2002, pp. 268–271.

Curriculum Vitae

Kyle Soeder received his Bachelor of Science in Computer Science and Mathematics from
Loras College in 2011. He worked as a Software engineer for a couple years before applying
to the Masters of Science in Computer Science Program at George Mason University. He
worked as a Software Engineer through the process of completing his Master of Science
degree.

