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For a long time, engineering design research has been focused on the development 

of various design theories, methodologies, methods, tools, and procedures. The design 

methods have been subsequently used by engineers to more efficiently design artifacts.  

However, as the artifacts have grown in complexity, the need for new methods has 

become obvious.  Also, in a nowadays world, increased competition and globalization 

require organizations to reexamine traditional product development strategies.  

Traditional methods focused exclusively on the numerical optimality of produced 

artifacts, or their manufacturing processes, are no longer adequate.  Creativity and 

innovation of designed artifacts provide organizations not only with a competitive 

advantage but are, in fact, a matter of their survival. 

This dissertation addresses this problem by posing and answering the question: 

“How can one construct an effective method for designing engineering systems that 

 



  

would support development of novel/creative designs and their efficient optimization?”  

It proposes a new and conceptually coherent design method, called Emergent 

Engineering Design.  The proposed design method is inspired by the fundamental 

processes occurring in nature, which has arguably created the most fascinating designs 

known to humankind.  All major phases of Emergent Engineering Design are represented 

by complex systems, including cellular automata and evolutionary algorithms, which 

have been successfully used to model the processes governing the complex behavior 

occurring in nature. 

In order to facilitate the development of the proposed design method, Emergent 

Engineering Design was implemented in a computer system called Emergent Designer.  

It is an integrated research and design support tool which applies models of complex 

systems to represent engineering systems and analyze design processes.  Emergent 

Designer was used to conduct the empirical validation of the proposed design method for 

two classes of conceptual design problems in structural engineering.  The extensive 

design experiments reported in this dissertation have shown that Emergent Engineering 

Design not only generates novel design concepts exhibiting remarkable structural shaping 

patterns but it also efficiently optimizes them. 

 

 



 

1. INTRODUCTION 
 
 
 
 

“One of the foundations for change in our society comes 
from designing.  Its genesis is the notion that the world 
around us either is unsuited to our needs or can be 
improved.  The need for designing is driven by a society’s 
view that it can improve or add value to human existence 
well beyond simple subsistence.  As a consequence of 
designing the world which we inhabit is increasingly a 
designed rather than naturally occurring one.” 

 (John Gero) 

In this dissertation, I introduce a new engineering design method called Emergent 

Engineering Design (EED).  The method uses models based on complex systems to 

represent major elements of engineering design processes.  Combinations of several types 

of complex systems have been investigated in modeling design representations, actual 

design processes, as well as their evaluation.   

The goal of the research described in the dissertation was to establish a new 

design method that would satisfy two major engineering design objectives: 

• Develop novel designs, and 

• Optimize engineering designs. 

EED consists of state-of-the-art models and procedures that are inspired by 

complex phenomena occurring in nature.  Research that I present in this dissertation is an 

attempt to formulate a design method that is conceptually coherent and inspired by the 

1 
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fundamental processes occurring in nature.  Nature has arguably created the most 

fascinating designs known to humankind (French 1994). On the other hand, the 

fundamental processes governing the complex behavior occurring in nature have been 

successfully modeled using various complex systems.  It is my belief that this inspiration 

can be effectively used in solving a broad range of engineering design problems. 

1.1. Motivation 

The motivation for this work comes from my recent interests in the area of 

evolutionary design, dynamical systems, and cellular automata.  I frequently observed, in 

various design experiments involving evolution-guided generation of design concepts of 

steel structural systems in tall buildings, formation of emergent and novel structural 

shaping patterns (Kicinger et al. 2002).  Countless examples of emergent phenomena 

generated by complex systems have been also reported by researchers from various 

disciplines (Gero 1992; Ilachinski 2001).  However, little has been done in terms of 

building a coherent engineering design method based on complex systems that 

emphasizes both aspects of a design process: novelty and optimization. 

Engineering design research has been focused on the development of various 

design theories, methodologies, methods, tools, and procedures for a long time 

(Newsome et al. 1988).  The design methods have been subsequently used by engineers 

to more efficiently design artifacts.  However, as the artifacts have grown in complexity, 

the need for new methods has become obvious.  Also, in a nowadays world, increased 

competition and globalization require organizations to reexamine traditional product 

development strategies.  Traditional methods focused exclusively on the 
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quantitative/numerical optimality of produced artifacts, or their manufacturing processes, 

are no longer adequate.  Creativity and innovation of designed artifacts provide 

organizations not only with a competitive advantage but are, in fact, a matter of their 

survival. 

With the emergence of Information Technology, new design methods are being 

developed which are based on various computational models of design processes.  

However, up until very recently, computers in design were used mostly and merely for 

various analytical design activities conducted in the final part of the engineering design 

process, namely in the detailed design stage (Arciszewski and De Jong 2001).  Today, we 

are finally witnessing the emergence of new design support tools applicable both in the 

conceptual and detailed design stages, i.e. tools that are suitable for both generation of 

novel design concepts and their subsequent optimization.  In order to fully benefit from 

this progress, these new tools require new design methods and computer tools. 

1.2. Research Justification 

Our understanding of engineering design has been recently undergoing significant 

changes.  Not only was the previous focus on acquiring engineering knowledge replaced 

by the processing and utilization of available knowledge using advanced computer 

systems and design software, but also the traditional simplified (usually linear) models of 

physical and mathematical interactions are now being substituted with nonlinear models, 

which more accurately represent real-world phenomena (Arciszewski et al. 2003; 

Thompson 1999).  Currently, we are witnessing another emergent trend of replacing 

complicated models with distributed, or parallel, models based on simple rules/programs 
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and interactions among elements that can also generate very complex behavior (Wolfram 

2002).  Thus, even though the models studied in the conceptual design phase are 

becoming more and more complex, it is possible that this complexity can be modeled 

using only very simple rules and programs.  Hence, the complex systems approach to 

conceptual design seems to be a plausible way of capturing the complex nature of the 

design process and may enable us to use simple mathematical and computational models 

to simulate this process.  Also, presently available computing power opens new 

possibilities of designing and modeling complex engineering systems and their dynamic 

evolution.    

Complex systems are dynamical systems that consist of large numbers of 

mutually and, typically nonlinearly, interacting parts.  One of the characteristic properties 

of complex systems is their emergent behavior.  Complex systems can also be 

characterized by their adaptive behavior, i.e. an underlying mechanism to adapt and 

survive in uncertain environments.  From an engineering point of view, it is important to 

ensure that engineering designs can adapt to changing design requirements and 

constraints because that guarantees their robustness, a required property of almost all 

engineering products (Gen and Cheng 2000). 

Besides adaptation, another important and inherent property of complex systems 

is their spatio-temporal evolution.  The process of evolution can be understood in a very 

broad sense as a gradual transformation of a system over time, but it also has its narrower 

meaning in biology, namely as a Darwinian evolutionary system (Darwin 1859).  The 

Darwinian concept of evolution by means of natural selection provided inspiration for 

 



5 

researchers in evolutionary computation (EC) and resulted in a family of modern 

heuristic search algorithms called evolutionary algorithms (EA).  The Darwinian 

evolutionary system is also one of the prominent examples of a complex adaptive system.  

Computationally simulated evolution is an important basis for understanding life 

(Holland 1975), but it has also been applied for studying and solving problems in other 

disciplines.  Among newly developed computational paradigms, evolutionary 

computation is now recognized as particularly appropriate for various traditional and 

novel computational applications in engineering.  This paradigm has already been applied 

to many engineering design problems including both optimization as well as creative 

design problems.  This application has been done with much success, and even a subfield 

within EC community, called evolutionary design, has emerged (Bentley 1999a; Parmee 

1999).   

Evolutionary design support tools allow researchers and engineers to produce 

thousands or even hundreds of thousands of feasible design concepts in a relatively short 

period of time.  On the contrary, human designers tend to limit the range of design 

concepts being considered to only a few alternatives.  The evolutionary design process is 

not merely a random search process; it is a fitness guided generation of design concepts.  

Thus, two goals that are extremely important in engineering design are achievable.  First, 

one can build a collection of design points in a given representation space, or a so-called 

‘big picture’ of a design representation space, and thus acquire a significant amount of 

design knowledge.  Second, an evolutionary guided intelligent search within this design 

space can support discovery of novel designs (Arciszewski et al. 2003). 
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Another important type of an evolutionary complex adaptive system is a 

coevolutionary system.  Here again, the inspiration comes from biological processes 

encountered in many natural ecosystems.  Coevolutionary processes can be modeled by a 

class of coevolutionary algorithms.  Initial ideas of using coevolution as an optimization 

procedure were formulated by Axelrod (1984; 1987) in the context of competitive fitness 

functions.  Potter and De Jong (1994) proposed a cooperative coevolutionary model and 

developed a cooperative coevolutionary evolutionary algorithm (CCEA).  Complex 

adaptive coevolutionary approaches (both competitive and cooperative) have strong 

potential in engineering design but almost no work has been done in this area.   

Cellular automata (CAs) are examples of complex systems with enormous and 

still unexplored potential to develop novel designs. They are one of the simplest 

mathematical and computational representations of complex systems.   As such, they can 

be used as useful idealizations of the dynamical behavior of various systems. They appear 

to capture many essential features of complex self-organizing cooperative behavior 

observed in real world systems.  CAs have been devised to model complex systems and 

processes consisting of a large number of identical, simple, locally interacting 

components.  CAs can be used to study pattern formation and gain some insight into self-

organization processes (Ilachinski 2001).  The CAs research has generated great interest 

over the last forty years because of their ability to exhibit complex patterns of behavior 

using a set of simple underlying rules.  However, very little has been done in terms of 

their application to engineering design problems.   
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The significance of the CAs in engineering design can be explained considering 

several facts. First, they can inherently model spatial relations of various elements in an 

engineering system.  Second, they can explicitly represent local interactions among 

elements of an engineering system.  Third, CAs are known to produce various kinds of 

emergent behavior. This property is highly relevant in many engineering design 

problems, e.g. novel structural shaping patterns.  Finally, it is a fact that even designers of 

complex and sophisticated engineering systems (bridges, tall buildings, etc.) use only a 

small set of design/decision rules to develop design concepts.  This set of design/decision 

rules can be represented by the transformation rules of a CA.  From the engineering 

perspective, CAs can be viewed as “black-box” concept generators that, given some input 

and a representation of an engineering system, use simple transformation rules and local 

interactions among design elements to produce an output (a final design concept), that 

possibly contains some interesting patterns. 

The behavior of complex systems is, as their name well suggests, very difficult to 

describe formally in terms of traditional mathematical models.  On the other hand, as it 

was shown in (Wolfram 2002), the apparent complexity of behavior does not imply the 

complexity of underlying mechanisms causing this complicated behavior.  On the 

contrary, in many cases the underlying rules can be extremely simple.  Some theoretical 

approaches have also been proposed to describe this seemingly random behavior.  They 

include dynamical systems theory and chaos theory (Alligood et al. 1996) which provide 

quantitative models of studying complex nonlinear phenomena well founded in 

traditional mathematics.  They identify and formally describe classes of dynamical 
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behavior (fixed point behavior, periodic orbits, chaotic orbits), and provide appropriate 

measures to quantify this behavior, e.g. Lyapunov exponents.    On the other hand, 

Wolfram (2002) provides qualitative and computational models based on the iteration of 

simple programs.   

Using dynamical systems theory and chaos theory to describe evolutionary 

processes has profound justification.  First, evolution is an inherently dynamical process 

during which individuals change in both space and time.  We may express the complex 

behavior of an evolutionary system using available mathematical models, e.g. Lotka-

Volterra (Lotka 1925; Volterra 1926) model of predator-prey evolution.  Also, 

evolutionary algorithms can be formally described using dynamical systems theory (Vose 

1999b). Second, as it has been reported by some researchers (Packard 1988), the 

emergent patterns in complex systems occur at the stages of evolution when systems 

undergo phase transitions, which can be well described using bifurcation theory, a 

subfield of dynamical systems theory.   It has also been argued that the most interesting 

patterns occur when the system is about to change its behavior to chaotic, that is at “the 

edge of chaos” (Packard 1988).  It has already been discovered by design researchers that 

novel design concepts emerge when a significant change occurs; For example, a change 

in the representation space during the constructive induction process (Arciszewski et al. 

1995). 

This last interpretation is consistent with a much broader philosophical discussion 

concerning the process of discovery.  Charles Peirce (1998), one of the most prolific 

American philosophers, has proposed the third kind of inferential process, called 
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abduction, which he claimed was involved in the processes of discovery.  In some 

modern interpretations of Peirce’s abduction, the process of mental activity involved in 

discovery is considered to be chaotic in nature and consisting of various free associations 

that on the surface seem disorganized and unsystematic (Koestler 1990).  Koestler claims 

that flashes of insight, as suggested by Peirce to accompany episodes of discovery, can be 

explained by what he terms bisociation.  Bisociations represent intersections of two 

different frames of reference, or knowledge representations, or knowledge from two 

domains, which can be modeled as bifurcations.  Yet another outlook on the process of 

discovery is presented by Singer (1995).  He regards the process of discovery as an 

emergent phenomenon and claims that the new insights somehow emerge as a result of 

the nonlinear aggregations of an imaginably complex collection of interacting neural 

elements in the brain.   Similar opinion is presented by Crutchfield (1994), who describes 

discovery as a result of synthesis of tools from dynamical systems, computation, and 

inductive inference.  The synthetic interpretation of the process of discovery is very close 

to the tradition of synesthesia (from Greek, syn = together + aisthesis = perception), 

proposed by Leonardo da Vinci, one of the greatest discoverers and creators in the 

history. 

As it has been argued above, complex systems method for engineering design can 

be justified from various perspectives and might bring broader fundamental 

understanding of design processes as well as a new generation of design support tools.  

Using the new method, it should be possible to model and implement the processes of 

creative design in many areas of engineering that traditionally use strictly defined sets of 
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codes, or sophisticated rules due to complexity of their domains and developed through 

incremental experience.  This method considers both aspects of engineering design, i.e. 

novelty and optimality.  Potential for novelty in design is introduced by using state-of-

the-art representations of engineering systems and mechanisms to generate design 

concepts.  Optimality can be achieved by using evolutionary and coevolutionary search 

processes guided by the fitness of design concepts.  This method might also be useful for 

building a global (holistic) picture of a given engineering domain and hence provide 

significant amounts of new domain knowledge, which can be subsequently utilized.  

Available theoretical foundations should provide useful mathematical models and 

quantitative methods of analysis of engineering design processes. 

1.3. Organization 

The remainder of the dissertation is organized as follows: 

Chapter 2 contains background material that is relevant for understanding the rest 

of the dissertation.  It contains state-of-the-art overviews of the disciplines related to this 

research.  It also serves as a helpful reference material to which I frequently point to in 

the remainder of this dissertation. 

Chapter 3 introduces Emergent Engineering Design, the major objective of this 

dissertation, and provides a description of its assumptions.  It also discusses the structure 

of the argument presented in this dissertation in the form of research questions and 

hypotheses and offers a detailed description of the validation methodology. 
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Chapter 4 proposes novel design representations based on models of complex 

systems which are investigated in this dissertation.  Several types of design 

representations based on cellular automata are introduced and described in detail. 

In chapter 5, Emergent Designer, a unique design support tool, is introduced and 

presented.  It is an integrated research and design support tool which implements 

Emergent Engineering Design, the design method proposed in this dissertation. 

Chapter 6 begins the experimental part of this dissertation.  It investigates specific 

instances of complex systems, namely cellular automata, as design concept generators of 

structural systems and subsystems.  This chapter focuses on the aspects of novelty in 

design processes and does not discuss evolutionary based optimization mechanisms. 

Chapter 7, on the contrary, focuses exclusively on design optimization issues.  It 

describes evolutionary based optimization using standard parameterized representations.  

Various design experiments reported in this chapter focus on optimization of several 

structural systems and subsystems.  The experimental results are accompanied with the 

quantitative analysis and presentation of the best design concepts. 

Chapter 8 presents a combined approach, called morphogenic evolutionary 

design, in which generative representations based on cellular automata are evolved using 

evolutionary algorithms.  It describes results of applying this new design method to the 

same problems considered in the previous two chapters and compares the outcomes.  

Also, the qualitative and quantitative analysis of the results is presented. 

Extensive experimental work described in chapters 6 - 8 is divided into sections.  

All experimental parameters and their values as well as obtained results are reported in 
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individual sections while the summary of major findings can be found at the end of each 

section. 

In the final chapter 9, conclusions and discussion on the findings are presented.   

Also, the contributions of this dissertation to the field of engineering design are 

discussed.  Finally, some recommendations for the most promising paths of future 

research are offered. 

Appendix A provides a chronological classification of applications of 

evolutionary computation in structural engineering.  Relevant publications since the 

beginning of the field were classified with respect to the application domain and the 

structural problem addressed. 

Appendix B contains a complete collection of 256 design concept generated using 

elementary cellular automata with periodic boundary conditions while Appendix C shows 

another set of design concepts of wind bracing systems developed using elementary 

cellular automata but this time with nonperiodic boundary conditions. 

A suggested sequence for reading this dissertation consists of the following 

chapters: 

Chapter 1 - Introduction 

Chapter 3 - Emergent Engineering Design 

Chapter 4 - Design Representations 

Chapter 6 - Design Concept Generation Using Cellular Automata 
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Chapter 7 - Evolutionary Optimization 

Chapter 8 - Morphogenic Evolutionary Design 

Chapter 9 - Closure 

Chapter 2 may be skipped at first reading.  It provides background material to which I 

refer when necessary in the remainder of this dissertation.  Chapter 5 is very technical 

and discusses the implementation details and information flow in Emergent Designer.  It 

is recommended for readers interested in building modern design support tools. 

 
 

 



 

2. BACKGROUND 
 
 
 
 

“If I have seen further it is by standing on the shoulders of Giants" 
 (Isaac Newton) 

This chapter contains a background material that provides some context necessary 

for understanding the rest of the dissertation.  It describes recent developments in the 

disciplines relevant to Emergent Engineering Design, the design method proposed in this 

dissertation.  The interdisciplinary character of this dissertation influenced the 

extensiveness of the review.  It is aimed to provide an introductory material on the topics 

discussed in this dissertation to readers with different backgrounds and to present high-

level overview of the current research developments in the relevant disciplines.  It will 

also serve as a useful reference to which I will frequently point to in the remainder of this 

dissertation. 

Figure 1 shows an organization chart of the background review included in this 

chapter.  It is divided into five major parts which are presented in five subsections.    

First, a comprehensive survey of evolutionary computation (EC) and evolutionary design 

is provided in section 2.1.  EC is one of the key components of Emergent Engineering 

Design.  The goal of this survey is to show current research developments in this field 

with an emphasis on design optimization and creative design, two important objectives of 

engineering design addressed in this dissertation.  The last part of section 2.1 provides a 

14 
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chronological overview of the applications of evolutionary computation in structural 

design and a discussion on the advantages and limitations of this approach when 

compared to traditional optimization methods.  Finally, open issues in the field are 

discussed as well as the most promising directions of future research. 
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Figure 1. Organization of the background review 
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Section 2.2 contains a brief overview of another important component of 

Emergent Engineering Design, namely cellular automata (CAs).  CAs are proposed in 

this dis

tion, I propose an engineering design method which uses models of 

various

d methods.  The 

section

sertation as design concept generators which produce novel design concepts.  The 

section introduces one-dimensional and two-dimensional CAs and discusses the richness 

of behavioral patterns generated by these simple instances of complex systems.  CAs play 

an important role in a recently proposed the New Kind of Science (NKS) (Wolfram 2002) 

which is also briefly described. 

In this disserta

 complex systems to represent major elements of engineering design processes.  I 

also propose dynamical systems approach to analyze design processes.  Hence, a high-

level introduction to dynamical systems, chaos theory, and complex adaptive systems is 

offered in section 2.3.  It introduces definitions of dynamical systems and complex 

adaptive systems and provides some historical background.   Also, some applications of 

dynamical systems and chaos theory in structural engineering are presented at the end of 

the section. 

In order to better place the proposed design method in the context of state-of-the-

art (SOTA) in engineering design, section 2.4 describes recent developments in this field.  

The particular emphasis is put on design theories, methodologies, an

 also contains a classification of existing approaches to modeling engineering 

design processes.  The classification is subsequently used to define Emergent 

Engineering Design. 
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This dissertation claims to add a new scientific knowledge to the field of 

engineering design.  But in order to make such claims, the new scientific knowledge must 

be first verified.  Throughout the history of science, many different views have been 

presented on how to best validate scientific knowledge.  They are briefly reviewed in the 

first part of section 2.5.  The issue of validation of a new scientific knowledge is 

particularly relevant to the field of engineering design which is mainly concerned with 

open problems that involve both objective and subjective elements and have no single 

right answer.  A recently introduced framework for validation of design methods, called 

Validation Square, is introduced in the second part of section 2.5.  The framework has 

been used in this dissertation to validate Emergent Engineering Design. 

The proposed design method has been validated empirically in the context of 

structural design problems.  Thus, each section of this chapter contains a subsection that 

discusses relevance of the major ideas presented in the section to structural engineering 

and presents current research developments. 

 

Evolutionary computation (EC) is a modern search technique which uses 

computational models of processes of evolution and selection.  Concepts and mechanisms 

of Darwinian (1859) evolution and natural selection are encoded in evolutionary 

algorithms and used to solve problems in many fields of engineering and science. 

2.1. Overview of Evolutionary Computation 

2.1.1. Evolutionary Computation 
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Strong resemblance to biological processes as well as their initial applications for 

modeli

ns.  The actual 

represe

tegy to be used and representation on which EAs operate. 

ng complex adaptive systems (Holland 1975) influenced the terminology used by 

EC researchers.  It borrows a lot from genetics, evolutionary theory and cellular biology.  

Thus, a candidate solution to a problem is called an individual while an entire set (or 

more accurately a superset) of current solutions is called a population.  For some problem 

domains a population may be broken into several subpopulatio

ntation (encoding) of an individual is called its genome or chromosome.  Each 

genome consists of a sequence of genes, i.e. attributes that describe an individual.  A 

value of a gene is called an allele.  When individual solutions are modified to produce 

new candidate solutions they are said to be breeding and the new candidate solution is 

called an offspring or a child.  During the evaluation of a candidate solution, it receives a 

grade called fitness, which indicates the quality of the solution in the context of a given 

problem.  When the current population is replaced by offspring, the new population is 

called a new generation.  Finally, the entire process of searching for an optimal solution 

is called evolution (Luke 2000). 

Evolutionary Algorithms 

Evolutionary algorithms are a family of population-based search algorithms that 

simulate the evolution of individual structures by interrelated processes of selection, 

reproduction, and variation.  There is a variety of EAs that have been proposed and 

studied.  They all share a common set of underlying assumptions but differ in the 

breeding stra
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Historically, three major EAs have been developed: evolution strategies (ES) 

(Rechenberg 1965; Schwefel 1965), evolutionary programming (EP) (Fogel et al. 1966), 

and genetic algorithms (GAs) (Holland 1975).  These algorithms have been mostly used 

to evolve solutions to parameterized problem domains. On the other hand, the fourth 

major EA developed more recently, genetic programming (GP) (Koza 1992), has been 

used to evolve actual computer programs to solve a number of computational tasks (Luke 

2000).  There are also many hybrid models incorporating various features of the above 

paradigms, including the CHC algorithm (Eshelman 1991), the structured GA (Dasgupta 

and MacGregor 1991),  the breeder GA (Mühlenbein and Schlierkamp-Voosen 1993), the 

messy GA (Goldberg et al. 1989), and many others. 

From the engineering point of view, EC can be understood as a search and 

optimization process in which a population of solutions undergoes a process of gradual 

changes.  This process depends on the fitness (a formal measure of perceived 

performance) of the individual solutions as defined by the environment (objective 

function).   

Figure 2 shows the structure of a canonical EA.  Before an actual evolutionary 

process begins, an initial population of individuals (solutions) is created.  Traditionally, 

the initial population is created randomly but several other initialization techniques have 

also been used (e.g. starting from a set of previously known or arbitrarily assumed 

solutions).  Next, each individual in the initial population is evaluated and assigned a 

fitness value. 
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Figure 2. Structure of a canonical evolutionary algorithm 
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 Using the fitness scores, the selection mechanism chooses a subset of the current 

population as parents to create new individuals.  When the selection mechanism uses bias 

toward individuals with better fitness, the created offspring will, more likely, have higher 

fitness.  Once the set of parents has been selected, the new individuals are created by 

copying them and applying variation operators.   

There are several commonly used selection strategies within EC community. 

Fitness-proportional selection (Holland 1975) normalizes the fitness values of all 

individuals in the population and assigns these normalized values as probabilities that 

their respective individuals will be selected.  Ranked selection works by first ranking all 

individuals in the population by their fitness, and use these ranks, rather than actual 

fitness values, to determine selection probabilities of the individuals.  A common form of 

ranked selection is a linear ranking (Grefenstette and Baker 1989; Whitley 1989) where 

individuals are first sorted in an increasing order according to their fitness values.  Each 

individual is then selected with a probability based on some linear function of its sorted 

rank. Another popular selection strategy is a tournament selection.  In this strategy, a 

pool of n individuals is picked at random from the population.  Each of the individuals in 

the pool is selected independently and it might be the case that the same individual will 

be selected multiple times.  Next, an individual from the pool with highest fitness value is 

selected to form the new population.  This procedure is repeated as many times as 

necessary to create either an entirely new population or a subset of it.  The pool size is a 

parameter that controls the magnitude of the selection pressure.  Finally, the truncation 

selection chooses only a certain proportion of the best individuals in the population.  This 
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strategy is most popular within the ES community, where it is used in two basic flavors: 

(µ, λ) and (µ+λ) (Schwefel 1977).  In the former case, the selection operates on the 

offspring population only, whereas in the latter case it selects individuals from a joint 

population of both parents and offspring. 

The two most popular variation operators are mutation and recombination.  

Mutation acts on a single individual and works by applying some variation to one or 

more genes in the individual’s chromosome (similar to a variation operator used in other 

search mechanisms like hill climbing or simulated annealing).  Recombination, on the 

other hand, operates on multiple individuals (usually two) and combines parts of these 

individuals to create new ones.  

The newly created individuals are evaluated and assigned fitness values.  Then, 

either all or only a subset of the current population is replaced by these new individuals.  

If the entire population is replaced by the new individuals then the algorithm is called a 

generational EA.  On the other hand, if only a subset of the original population is 

replaced then it is called a steady-state EA.  Steps 3-6 of the canonical EA defined earlier 

are performed until an assumed stopping criterion is met, which is usually defined as an 

arbitrary number of generations or fitness function evaluations. 

Evolutionary Computation and Engineering Design 

This basic evolutionary process described above is called a ‘simple evolutionary 

algorithm’ in a sense that it contains the minimal set of features necessary to be a 

Darwinian evolutionary system.  These simple EAs have surprisingly useful properties, 

primarily related to solving difficult global optimization problems.  They perform well 

 



23 

when applied to problems with nonlinear, stochastic, temporal, or chaotic components, 

where traditional optimization techniques, like gradient descent, hill climbing, and purely 

random search, are generally unsatisfactory.  It is in this context that much of the work on 

engineering applications has taken place historically: using simple EAs for design 

optimization. 

The three main issues in applying EAs to an engineering design problem are:  

1. Selecting an appropriate representation for engineering designs.  

2. Defining efficient genetic operators. 

3. Providing an adequate evaluation function for estimating the ‘fitness’ of generated 

solutions (points in the search space). 

An appropriate representation of an engineering system is one of the most crucial 

elements of evolutionary design.  This issue is particularly important when 

creativity/novelty of designs produced by evolutionary processes is one of the major 

goals.  The process of creating an efficient and adequate representation of an engineering 

system for evolutionary design is complicated and involves elements of both science and 

art.  One has to take into account not only important aspects of understanding traditional 

modeling of an engineering system, but also relevant computational issues that include 

search efficiency, scalability, and mapping between a search space (genotypic space) and 

a space of actual designs (phenotypic space).  A more detailed discussion of EA 

representations is presented in section 2.1.3. 

An appropriate choice and implementation of genetic operators, i.e. mutation and 

recombination operators, and careful tuning of their rates is an important issue as it can 
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have a big impact on the success of EAs.  This issue has therefore been a subject of both 

theoretical (Spears 2000) as well as experimental investigations (Fairley 1991; Fogarty 

1989; Schaffer and Eshelman 1991).  Any particular implementation of a mutation or 

recombination operator is representation dependent.  Thus, for example GAs with binary 

string representations uses the bit-flip mutation and 1-, or 2-point crossover, while ES 

with real-valued vectors use the Gaussian mutation and a recombination operator that 

swaps/averages parents’ alleles.  Genetic operators are primary sources of exploration in 

EAs.  On the other hand, selection mechanisms provide EAs with exploitative power.  

Thus, by properly defining and controlling the variation mechanisms (genetic operators), 

one can achieve a higher level goal of finding “an effective balance between further 

exploration of unexplored regions of the search space and exploiting the regions already 

explored.” (De Jong to appear). 

Another important issue in successful application of EAs is to choose an adequate 

fitness evaluation function for a problem domain.  Evaluation functions provide EAs with 

feedback about the fitness of each individual in the population. EAs use this feedback to 

bias the search process in order to improve the population’s average fitness.  Naturally, 

the details of a particular fitness function are problem specific. 

Table 1 provides a description of all commonly used EAs in terms of decisions 

that are made during an implementation of a particular EA.  It is a modified table initially 

proposed in (Arciszewski and De Jong 2001).  The particular decisions are summarized 

in terms of attributes and their values. Using this characterization, it is then 
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straightforward to describe a given EA, e.g. a GA or ES, and its relationship to other EAs 

(Arciszewski and De Jong 2001). 

Table 1. Attributes describing commonly used EA implementations 

Attribute Attribute Value(s) 

Encoding Binary Real-
valued 

Graph-
based 

Compu-
ter code Other 1. Solution 

representation 
Length Fixed Variable    

Mechanism 
Random 
genera-
tion 

from a 
group of 
known 
solutions 

User   

Selection 

defined 2. Population 
initialization 

Population size 1 Fixed Variable   

3. Parent selection mechanism tion Ranking 
Fitness 
propor-
tional ment UniformTrunca- Tourna-

Type Bit-flip Gaussian Subtree User 
defined  

Mutation 
Rate 0 Fixed Adaptive Random  

Type N-point Swap Uniform Subtree defined 
User 

4. Variation 

Crossover 

mechanism 

Rate 0 Fixed Adaptive Random  

5. Survival selection mechanism tion Ranking 
Fitness 
propor-
tional ment UniformTrunca- Tourna-

 

Advanced Evolutionary Algorithms 

Various modern trends in EC relax some of the assumptions found in the 

canonical EA.  For example, in multiobjective EAs, a requirement of a single fitness value 

determining the quality of an individual is replaced by several independent fitness 
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criteria

el EA (Cohoon et al. 1987), evolution 

occurs in multiple parallel subpopulations evolving independently with occasional 

‘migrations’ of some individuals among subpopulations.  CEAs typically use multiple 

subpopulations but additionally modify another fundamental assumption, namely that 

individuals are no longer evaluated independently of one another.  Two common models 

of CEAs include cooperative CEAs (Potter and De Jong 2000), where the fitness of an 

individual is assessed through ‘cooperation’ with individuals from other subpopulations, 

and competitive CEAs (Angeline and Pollack 1993), where the fitness of an individual is 

determined by its competition against individuals from other populations.  

Coevolutionary EAs are discussed in more detail in section 2.1.6. 

The next section presents 

directly related to engineering design problem

and emergence in engineering design processes. 

2.1.2. 

deas from computer science 

(evolut cience) and evolutionary biology (natural 

selection) to solve engineering design probl ajor categories 

of problem

.  Another assumption of using a single evolving population is relaxed in parallel, 

or distributed, EAs as well as in coevolutionary algorithms (CEAs).  In a fairly popular 

model of a parallel EA, called the island-mod

a subfield of EC, called evolutionary design, which is 

s. It also discusses the issues of creativity 

Evolutionary Design and Creativity 

Evolutionary design is a branch of EC that integrates i

ionary algorithms), engineering (design s

ems (Bentley 1999c).  Four m

s considered by evolutionary design include evolutionary design optimization, 

creative evolutionary design, evolutionary art, and evolutionary artificial life forms. 
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Common attributes shared by evolutionary techniques, which are relevant to 

engineering design processes include (Parmee 1999): 

• little, if any, a priori knowledge of the search environment 

• excellent search capabilities due to efficient sampling of the design search 

space 

• ability to avoid local optima 

• ability to handle high dimensionality 

• robustness across a wide range of problem classes 

• provision of multiple good solutions 

• ability to locate the region of the global optimum solution 

Research on evolutionary computation in engineering design has a relatively long 

history.  It was initiated in Europe in the early seventies by Rechenberg (1973) in the 

areas of fluid mechanics, pipe design and structural engineering.  Early applications of 

gineering (Hoeffler et al. 1973; Lawo and Thierauf 1982) used ES 

which 

EC in structural en

evolved from structural optimization approaches in the early 1960’s. Further 

significant progress in this area has taken place mainly during the last fifteen years.  In 

the United States, Goldberg (1987; 1989) did the first application of GAs, which emerged 

from the machine learning community, in engineering optimization in the area of 

complex gas pipeline systems.  Just about the same time, in the late 80’s and early 90’s, 

many researchers started applying this new optimization method to a large spectrum of 

engineering design problems.  Current state-of-the-art (SOTA) reviews are provided in 

(Arciszewski and De Jong 2001; Bentley 1999a; Bentley and Corne 2002; Chawdhry et 
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al. 1998; Coello Coello et al. 2002; Cvetkovic and Parmee 1999; Dasgupta and 

Michalewicz 1997; Gen and Cheng 1997; Gen and Cheng 2000; Parmee 1999; Parmee 

2001; Parmee 2002).   

Creative Design 

Evolutionary design optimization and creative evolutionary design are the two 

categories of evolutionary design that are particularly relevant to civil and structural 

engineering applications.  From a computational point of view, the dividing line between 

the two categories is not sharp and is mostly related to the potential of achieving 

novelty/creativity during the processes of generating design concepts as well as 

properties that novel/creative designs need to possess.  For Gero (1996) creativity in 

design “is not simply concerned with the introduction of something new into a design, 

although that appears to be a necessary condition for any process that claims to be labeled 

creativ

rly, Boden (1992) suggests that 

resentation, and 

by find

e.  Rather, the introduction of ‘something new’ should lead to a result that is 

unexpected (as well as being valuable).”  Gero concludes that an evolutionary design 

process is creative when it explores not only values of attributes (decision variables) 

within individual design spaces but also evolves the number of these attributes, i.e. when 

changes in the representation space occur.  Simila

achieving creativity is only possible by going beyond the bounds of a rep

ing a design that could not have been defined by that representation. The same 

concept was explored by Arciszewski and co-workers in the context of Inferential Design 

Theory (Arciszewski and Michalski 1984) and constructive induction (Arciszewski et al. 

1995).  A detailed discussion of commonly used representations in evolutionary design, 
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including generative representations supporting creative design processes can be found in 

section 2.1.3.   

Less restrictive definition of creativity in design was given by Rosenman (1997).  

He suggested that the distinguishing feature of all creative evolutionary design systems is 

the 

(for ith random initial conditions), and being guided throughout 

the evolutionary process only by perfor

Evolution

volutionary design can also be analyzed from a broader perspective, 

nam oblem solving (TRIZ) introduced by Altshuller 

(1969; 1999).  Altshuller discovered that the evolution of engineering systems is not a 

random process, but is governed by a class of paradigms. These paradigms can be 

subsequently used to develop a system considering its technical evolution, i.e. by 

determining and implementing innovations.  Altshuller introduced five levels of 

innovation in the context of an engineering design problem (Arciszewski et al. 1995): 

1. Selection 

 only selection operation and 

a population of known design solutions, rather than randomly 

generated ones. 

 

ability to generate entirely new designs starting from little or almost no knowledge 

 example when starting w

mance criteria. 

ary Design and Theory of Inventive Problem Solving 

Creativity in e

ely based on the theory of inventive pr

“A design concept is selected from a group/class of known concepts in a given 

engineering domain.”   

This level of innovation corresponds to an EA using

that is initialized with 
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2. Modification 

“A design concept is produced as a combination and/or modification of known 

eering designs.  

efinition of creativity in design is most closely related to this paradigm 

design concepts from a given domain.  The modification process can be performed 

either deterministically or using a random generation process.”   

This paradigm is equivalent to an EA searching for an optimal solution in a 

parameterized representation space of a class of engin

Rosenman’s d

and hence it becomes obvious that his prerequisites of creativity are fairly weak 

when compared to Altshuller’s innovation taxonomy. 

3. Innovation 

“A design concept is produced as a combination of known concepts from a given 

domain and other domains.”   

This paradigm can be best represented as the island-model EA where various 

populations of designs evolve independently and occasionally exchange some 

individuals through a migration process.  The migrations can model injection of 

knowledge from other domains to a particular engineering domain. 

4. Invention 

“A design concept is produced as a combination of known concepts from a given 

domain and new concepts based on a new technology, which have been recently 

introduced.”   
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EA can achieve this level when it evolves not only the values of attributes but 

also the attributes themselves (Rosenman and Gero 1999).  In other words, it can 

  The mappings can 

reu

use various transformation operators (Arciszewski et al. 1995) for a representation 

space including attribute addition (introduce new attributes/genes to the 

representation space), attribute elimination (removing unimportant attributes), 

attribute abstraction (combining attributes into larger units, or components, and 

subsequently exploring the component based representation (Bentley 2000)), and 

attribute construction (creating new attributes by a simple or complex transformation 

of the initial attributes).  This level of innovation is most closely related to Gero’s 

definition of creativity in design as well as changes in the representation space 

introduced in the constructive induction process (Arciszewski et al. 1995). 

5. Discovery 

“A design concept is produced as a combination of known concepts from a given 

domain and new concepts based on new scientific principles.”   

This highest level of innovation in Altshuller’s taxonomy can most likely be 

achieved by evolutionary design processes.  However, special types of 

representations, namely the generative representations (Hornby 2003) (described in 

section 2.1.3), seem to be necessary to accomplish it.  Generative representations use 

compact representations (genotypes) of existing design knowledge and mappings 

that translate these representations to actual designs (phenotypes).

se elements of the representations during the process of translation.  Thus, the 

compact representations can be thought of as storing existing knowledge on a given 
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engineering domain, whereas mappings correspond to new scientific principles that 

can transform the known concepts to new, and possibly creative, design concepts.  

The mappings are usually simple programs that take the compact representations as 

 produce actual design concepts as output.  Despite their simplicity, they 

can

 first two paradigms, i.e. selection and modification, can only produce routine 

designs

res explicit, that 

implicit.”  He also suggests that emergence plays an important role 

in intro

input and

 generate designs that can be defined as creative (Bentley and Kumar 1999).  

Recently, Wolfram (2002) suggested that all scientific principles and natural 

processes can be modeled in terms of simple programs that can nevertheless produce 

complex behavior.  EA using the generative representations will search both the 

space of compact representations and the space of simple transformation programs 

(scientific principles) and will generate creative design concepts. 

The

. In both cases, no changes occur in the representation space (Arciszewski et al. 

1995).  The last three paradigms, i.e. innovation, invention and discovery, can generate 

novel/creative designs. In all these cases, changes in the representation space do occur 

(Arciszewski et al. 1995).   

Emergence 

Emergence is an important property which is closely related to creativity in 

design.  Gero (1992) defines emergence as “a process of making featu

were previously only 

ducing new attributes to the representation space (Gero 1996).  Emergence can 

also be easily recognized through the visual examination of representations of structures, 
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for example of structural patterns of steel structural systems in tall buildings (Kicinger et 

al. 2002). 

The notion of an emergent concept generation has also been introduced by 

Arciszewski et al. (1995) as a part of a constructive induction process that was originally 

propos

espect to some objective.  An overview of the 

SOTA 

ed in the field of machine learning.  An emergent design concept is defined as a 

constructed attribute (representing an unknown design concept) whose introduction may 

simplify and improve effectiveness or quality of a design process.  A constructed attribute 

is derived from the initial attributes by an application of constructive induction operators. 

It is usually more abstract than the attributes from which it was derived. 

Integrated Design 

Most applications of evolutionary methods in civil and structural engineering 

were focused on a detailed design stage of a design process, where the objective was to 

find the optimal configuration of attribute values for a previously selected and 

parameterized design concept.  Thus, only routine design concepts could be generated, 

even though they were optimized with r

in evolutionary design applications in civil and structural engineering can be 

found in section 2.1.7. 

There has also been some work in applying evolutionary design methods at the 

conceptual stage of an engineering design process, where the emphasis is on the 

generation of novel and original design concepts, and not on finding the globally best 

solution in terms of numerical values in the context of a specific design concept.  Gero 

and Schnier (1995) worked on the evolution of a design knowledge representation, using 
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genetic algorithms and Rosenman and Gero (1999) used genetic engineering to evolve 

architectural floor plans.  Arciszewski et al. (1999) used evolutionary computation to 

produce creative designs.  Bentley (1999b) developed a generic evolutionary design 

system, which was able to evolve a range of various designs from scratch.  The system 

performed evolutionary design with an emphasis on the evolution of creative design 

concepts rather than their optimization.   

The concept of integrated design utilizing various forms of evolutionary 

computation at each stage of a design process as well as incorporating designer’s 

knowledge and intuition within the search and exploration process has been pioneered by 

Parmee (1995; 2001).  In the mid-90’s, this research was initiated on the utility of 

evolutionary/adaptive search within the generic domain of an engineering design process 

as a whole.  Parmee, following Pahl and Beitz (1996), distinguishes three major stages of 

an engineering design process: conceptual design, embodiment design, and detailed 

design.  He considers conceptual design as “a search across an ill-defined space of 

possible solutions using fuzzy objective functions and vague concepts of the structure of 

the final solution.”  Embodiment design operates with a selected (during the conceptual 

design stage) initial design configuration and aims to further specify the subsets forming 

the whole system.  Design decisions at this stage are made based on both qualitative and 

quantitative criteria which usually are difficult to be formally defined using mathematical 

models and hence difficult to include in a scalar objective (fitness) function.  Finally, at a 

detailed design stage, design decisions are made based on solely quantitative criteria 

which are well described by mathematical models, even though they may be 
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computationally expensive and may require complex analysis techniques.  Contrary to 

traditional and simplified definitions of engineering design process which assume little or 

no interaction between the stages (Pahl and Beitz 1996), Parmee argues that considerable 

overlaps exist among the three stages and they should be taken into account in the 

integrated design model.  He suggests that a model of a design optimization process 

should be considered to “represent a long-term, highly complex process commencing 

with high-risk conceptual/whole-system design and continuing through the uncertainties 

of embodiment/preliminary design to the more deterministic, relatively low-risk stages of 

detailed design and the eventual realization of an optimal engineering solution.”   

The objective of Parmee’s integrated design was to develop co-operative 

frameworks involving a number of evolutionary/adaptive computing techniques and 

integrate them with each stage of the engineering design process.  During this research, 

various forms of evolutionary computation were considered in the context of integrated 

design, including structured genetic algorithms (Dasgupta and MacGregor 1991), 

GAANT algorithms (Parmee 1996), and ant colony algorithms (Bilchev and Parmee 

1995; Colorni et al. 1992) as well as constraint satisfaction (Michalewicz et al. 1996).  

Next, Parmee investigated evolutionary computation in the context of searching “whole-

system design hierarchy” described by both nominal and numerical attributes (1998a), 

and he applied it to designing hydropower systems (1998b).  Later, Vekeria and Parmee 

(1996) proposed the use of evolutionary computation in conceptual design of structural 

systems, including the determination of the topology of their members.  Recently, he has 

been focused on the “innovative conceptual design” in the context of variable mutation 
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cluster-oriented genetic algorithms (vmCOGA) and successfully used them in the area of 

aerospace engineering (Bonham and Parmee 2000). 

2.1.3. Evolutionary Design Representations 

Representations in engineering design incorporate both representation of an 

artifact being designed as well as representation of a design process, i.e. a process by 

which the design is completed.  The line distinguishing artifact representation and design 

process representation is often blurred.  Building a representation of an artifact is similar 

to the process of its numerical/mathematical modeling in engineering science.  It is, 

however, significantly broader because it encompasses much more knowledge than can 

be set into mathematical formulas and their numerical realizations.  Generally, a 

representation of a designed artifact should describe its function, form, intent, legal 

requirements, etc.  Advances in computer science, and evolutionary computation in 

particular, made it possible to use symbolic representations to describe objects, attributes, 

relationships, concepts, etc.  Thus, it is now possible to capture more abstract and 

conceptual design knowledge (Dym 1994). 

A representation of an engineering design is a computational description of an 

engineering system (that usually does not yet exist) expressed in terms of attributes 

(Arciszewski et al. 1995).  In the most straightforward EC representation, each gene 

corresponds to an attribute and represents a dimension of the search space.  Each such 

dimension can have an appropriate set of values (discrete or continuous) that a feature 

represented by this dimension can take on.  In the simplest case, these representations use 

binary genes denoting the presence, or absence, of a feature. In such representations each 
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individual consists of a fixed-length binary string of genes, or a genotype, representing 

some subset of a given set of features.  Often, in complex engineering applications, multi-

valued attributes are more natural to use (Arciszewski and De Jong 2001).   

A representation space for an engineering design is a multidimensional space 

e used to describe an engineering design (Arciszewski et al. 

1995). 

ity in terms of numerical values in the context of a specific design 

concept, or on generation of creative design concepts.  When the focus is on finding an 

spanned over attributes that ar

 Attributes can be symbolic (when they take values from an unordered or partially 

ordered set) or numerical (when they take numerical values representing quantities or 

measurements).  Symbolic attributes that take values from an unordered set are called 

nominal attributes; when they take values from a partially ordered set, they are called 

structured.  Design concepts are typically described in terms of symbolic attributes.  

Numerical attributes are used for a detailed description of a design. 

A design concept is understood as a description of a future engineering system, 

actual or abstract, in terms of a feasible combination of symbolic attributes and their 

values.  After a conceptual design process is completed, a given design concept is used 

next in the detailed design process to produce a detailed design.  A detailed design is 

understood here as a detailed description of a future engineering system in terms of both 

symbolic and numerical attributes (dimensions, weights, etc.) (Arciszewski et al. 1995). 

Optimality vs. Creativity 

A choice of a particular representation of an engineering system for an 

evolutionary design process is highly influenced by the designer’s goal, i.e. whether the 

emphasis is on optimal
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optima

tions.  Representations that have been used in creative design are 

pically, phenotype representations 

are qui

range 

from direct representations, as in voxel-based representations (Baron et al. 1997) or 

array-b auer 1996), to 

highly 

rules on how to build these solutions.  

represe

l design, designers’ attention is usually restricted to a particular concept or at most 

several concepts of existing designs.  In this case, design representations usually take a 

form of parameterizations of an engineering system, or its parts.  The parameters are then 

encoded as genes and their alleles are evolved using evolutionary algorithms in order to 

find the best design that maximizes (or minimizes) given objective(s).  Thus, for strictly 

engineering optimization problems, representations should be direct (i.e. they should 

encode possible solutions) and parameterized (allowing only for slight variations).  

Traditional representations frequently used in engineering optimizations problems, like 

binary representations, integer representations, and real-valued representations can be 

included in this category. Additionally, representations used in optimization problems 

usually incorporate domain knowledge, to smaller or larger extent, in order to make the 

search more efficient. 

Creative evolutionary design requires, however, more general and usually more 

complex representa

diverse but nevertheless share some similarities.  Ty

te general and thus capable of representing large numbers of alternative shapes, 

forms, or morphologies (forms together with structures) (Bentley 1999c).  They 

ased representations (Kane and Schoenauer 1995; Kane and Schoen

indirect representations, i.e. representations that do not encode solutions but rather 

The most popular examples of indirect 

ntations are grammars (Roston 1994), trees (Bentley 1996; Funes and Pollack 
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1999), 

1980), nd Kim 

1999), oates 1997; Hornby 2003; Jacob 1994), and embryogenies (Bentley 

and Ku

Select

represe

ree possible cases, the 

uld be particularly avoided because it corresponds to multiple 

e.  In this case, an additional 

ation of an encoding corresponds to a solution.” 

: infeasibility of a 

shape grammars (Grabska 1993; Schmidt and Cagan 1998; Shea et al. 1997; Stiny 

graphs and matroids (Shai 2001), cellular automata (Frazer 1995; Hajela a

L-systems (C

mar 1999). 

ing Appropriate Design Representations 

Gen and Cheng (2000) discuss five major requirements for designing good 

ntations (genotype-phenotype mappings) for evolutionary design problems: 

1. Non-redundancy 

“The mapping between encodings and solutions should be 1-to-1.” 

There should be a unique pairing of each element of a genotypic space with a 

corresponding element of a phenotypic space.  Out of all th

1-to-n mapping sho

phenotypic representations of the same genom

procedure would have to be employed to determine the actual phenotype. 

2. Legality 

“Any permutation or combin

It is important to distinguish between two basic concepts

solution and its illegality.  Infeasible solution means that a phenotype decoded 

from a genotype lies outside of a feasible region (defined by the constraints) in the 

phenotypic space.  Illegal solution means that a genotype does not represent any 

phenotype for a given problem.  The implicit significance of the legality 

 



40 

requirement is that it implies that standard genetic operators can be easily applied 

to a representation satisfying this requirement. 

3. Completeness 

“Any solution has a corresponding encoding.” 

This requirement guarantees that any phenotype has a corresponding genotype, 

n-Lamarckian case, the offspring 

 parents.  Generally, the representation should have 

ent focuses on the preservation of neighborhood structures.  The 

appropriate choice of genotype-phenotype mapping in combination with the 

 successful evolutionary search process 

(Sendhoff et al. 1997).  For a successful introduction of new information by an 

operator, the operator should preserve the neighborhood structure in the 

and hence it is accessible to genetic search.   

4. Lamarckian property  

“The meaning of alleles for a gene is not context dependent.” 

This requirement “concerns the issue of whether or not one chromosome can pass 

on its merits [learned traits] to future populations through common genetic 

operators” (Cheng et al. 1996).  If the meaning of alleles for a gene is interpreted 

in a context-dependent manner, as in the no

usually inherit nothing from

the Lamarckian property so that offspring can inherit goodness from parents.   

5. Causality (also known as Continuity) 

“Small variations on the genotype space due to mutation imply small variations in 

the phenotype space.” 

This requirem

genetic operators is important for a
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corresponding phenotype space.  Search processes that preserve the neighborhood 

structure are said to exhibit strong causality.   

Taxonomy of Representations 

Representations used in evolutionary design have been classified with respect to 

many different criteria.  Table 2 presents a compilation of classification schemes in which 

attributes and their values correspond to various categorizations of evolutionary design 

representations proposed by several researchers (De Jong to appear; Hornby 2003; 

Popovici 2003). 

Table 2. Classification of EA representations 

Attribute Attribute value(s) 
EA level Genotypic Phenotypic 
Structure Linear Nonlinear 
Length Fixed Variable 

Encoding scheme Direct Indirect 
Accuracy of solution specification  Parameterization Open-ended 
Ability to reuse encoding Non-generative Generative 
Genotype-phenotype correspondence Explicit Implicit 

Change during evolution Static Dynamic 

 

 One of the most important representational issues is the choice between a 

genotypic and phenotypic representation.  This issue has some important consequences 

not only for EC in general but also for evolutionary design.  When one decides to use a 

genotypic representation (as it is the case in the canonical GA) then an appropriate 
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genotype-phenotype mapping has to be constructed, hopefully satisfying all five major 

requirements stated earlier.  A particular attention has to be paid to satisfy the causality 

requirement. The lack of correlation between variation at the genotype level and variation 

at the phenotype level can cause serious problems (De Jong to appear).  When a 

genotypic representation is used, mutation and recombination operate at the genotypic 

level while the fitness evaluation and selection are performed at the phenotypic level.  

One of

ary and hence 

all fiv

nal representation usually in a form of a 

string 

 the advantages of using genotypic representations is the ability to reuse standard 

genetic operators for multiple problem domains. 

Alternatively, one can just use phenotype level encodings (as it is the case in the 

canonical ES) to both explore and exploit a design space.  The significant advantage of 

this approach is that no mapping between genotype and phenotype is necess

e requirements stated earlier are automatically satisfied.  One can focus on 

achieving useful exploration only at the phenotypic level.  The disadvantage of 

phenotypic representations is that the genetic operators become problem dependent and 

have to be carefully crafted for each individual problem domain (De Jong to appear).  

Phenotypic encodings have been widely used within the ES community and applied to 

many engineering optimization problems. 

A structure of an evolutionary design encoding is another relevant criterion.  

Generally, representations can be divided into linear and nonlinear.  A linear 

representation can be thought of as a 1-dimensio

(binary, real-valued, integer-valued), list, etc.  Nonlinear representations, on the 

other hand, have 2-, or higher- dimensional structure, e.g. trees, arrays, etc. 
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Another distinguishing property of evolutionary design representations is their 

length.  They can be divided into two groups: fixed-length and variable-length 

representations.  The length of a genome is constant during an entire evolutionary process 

when 

ve been widely used in 

evoluti

an divide representations into static and dynamic.  This is a more 

general

fixed-length encodings are used.  It is not the case with variable-length 

representations where an individual can be represented by a genome that changes its 

length every generation.  Consequently, a population may consist of individuals whose 

genomes have different lengths.  Fixed-length representations ha

onary design optimization while variable-length representations have been applied 

to creative evolutionary design (Bentley 1999a). 

Depending on whether, or not, a representation can change during an evolutionary 

design process, one c

 classification than the one based on a change of the length of a genome because it 

considers not only a time-dependent change of the length of a genome but also time-

dependent changes made to its structure. 

Direct representations encode essentially the actual design concepts, while 

indirect representations encode rules on how to construct these concepts.  Again, direct 

representations are used mostly for evolutionary design optimization and indirect 

encodings for evolving creative design concepts (Hornby 2003). 

In the case, when the topology of a design is established in advance and specified 

in sufficient detail, i.e. it is parameterized; the representation is called a parameterization.  

On the other hand, when the topology of a design is changeable then the representation is 

called open-ended.   
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Representations that can reuse some parts of an encoded design from a genotype 

during the phenotype construction phase are called generative.  Generative 

represe

 as implicit or explicit.  Implicit representations consist of a set of simple rules 

ify a design property, e.g. its shape, through an 

iterativ

 

which 

ntations are always indirect.  Non-generative representations can not reuse 

elements of the encoding.  They can be either direct or indirect.  Generative 

representations offer several advantages when compared to non-generative ones.  Their 

ability to reuse elements of an encoded design improves the search efficiency in large 

design spaces as well as scalability by capturing design dependencies (Hornby 2003). 

Depending on the nature of a relationship between the elements of a genotype and 

the elements of a generated phenotype, generative representations can be further 

classified

(e.g. cellular automata) that implicitly spec

e construction process.  Explicit representations are like procedural programs for 

constructing designs in an explicit manner. 

Recently, there have been several attempts to coevolve representations of 

engineering systems during the evolutionary processes.  This corresponds to a process in

a learning system adapts its own representation.  De Jong and Oates (2002) 

proposed a coevolutionary approach to representation development where building 

blocks and their assemblies are coevolved.  Also, Gero and Schnier (1995) worked on the 

evolution of the design knowledge representation, using genetic algorithms, in the 

context of case–based design. Such evolution is often necessary to produce inventive 

designs. 
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Tradit

 

crossov

ional Design Representations 

The majority of evolutionary design applications in structural engineering 

reported in the literature used relatively straightforward representations consisting of 

either binary strings or real-valued vectors.  Thus, it is important to be aware of the 

strengths and weaknesses of both common approaches to represent engineering systems. 

Binary representations are standard representations for canonical GA.  The most 

straightforward and at the same time most common approach involves binary strings of 

fixed length.  This type of representation is best suited for problem domains where 

solutions can be naturally represented as binary vectors, e.g. in some combinatorial 

optimization problems.  In engineering design this type of representations has been 

widely used in structural topology optimization, e.g. in the ground structure approach 

(Dorn et al. 1964). 

When a problem domain cannot be defined in terms of binary vectors, then a 

mapping from the binary space (genotypic space) to the domain space (phenotypic space) 

is necessary.  Using this principle, binary string representations have been applied to 

continuous parameter optimization problems (Michalewicz 1996).  In this case, a 

mapping between binary strings and real-valued parameters had to be specified.  This 

approach has been widely used in many engineering design applications.  Its advantage is 

that the standard GA operators (e.g. the bit-flip mutation, and one-, or two-point

er) can be used.  There are, however, some important drawbacks of this approach, 

too.  Michalewicz (1996) argues that it is not appropriate because the problem space the 

GA is operating in is fundamentally different to that of the originally defined problem. 
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Thus, search and optimization are conducted in a different space than the original one.  

Hence, the optimal results obtained in the binary search space might in fact not be 

optima

eter optimization problems.  Historically, they have 

been a

somehow related.  First, real-valued encodings allow for representation of only very 

l for the original problem.  The genotype-phenotype mapping also introduces some 

additional nonlinearity to the objective function, and hence it may happen that the 

modified problem is more difficult to solve than the original one.  Bäck (1996) points out 

another serious drawback of mappings from continuous to binary spaces.  The mappings 

impose some granularity (resolution) and hence not all the points in the original 

continuous space can be expressed as binary vectors. So, it is possible that the optimal 

solution will not be found simply because it is not represented in the binary search space. 

Another important problem with binary representations is related to the fact that 

one of the five major requirements on genotype-phenotype mappings, namely causality or 

continuity requirement, does not hold.  In other words small changes in the binary space 

correspond to large changes in the real-valued parameter values and vice-versa.  A 

frequently employed solution in this case is to use Gray encoding scheme (Bäck 1996). 

Real-valued representation spaces have been traditionally used by ES researchers 

to solve complex continuous param

pplied to engineering design problems, specifically to various fine tuned 

optimization problems.  In ES, real-valued representations have traditionally been used as 

phenotypic representations, where no mapping between a genotype and a phenotype is 

necessary.  Thus, the drawbacks associated with the mappings are eliminated in this case.  

There are, however, two major problems with real-valued representations which are 
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specific problem domains, and that usually corresponds to fine-tuned optimization 

problems.  As such, they are not applicable for creative design problems as I discussed 

earlier.  The second problem is that not every design problem can be expressed as a real-

valued vector.  There are many design problems, conceptual design problems being a 

good example of, that involve some symbolic or qualitative variables which cannot be 

encoded as real-valued parameters. 

As stated earlier, representations are one of the three key elements in a successful 

implementation of evolutionary design.  Throughout the years, enormous amount of 

experimental work has been devoted to studying various types of evolutionary 

representations.  Despite this fact, very little is known theoretically about their influence 

on the performance of an EA.  Initial framework for evolutionary representation theory 

has been recently proposed by Rothlauf (2002), but it is just the beginning of research on 

this important topic in EC. 

2.1.4. Constraint-Handling Methods in Evolutionary Design 

The vast majority of engineering design problems involves constraints of some 

kind.  Thus, appropriate methods of handling constraints are extremely important for any 

optimization/search mechanism exploring designs spaces.  Evolutionary algorithms, on 

the other hand, are unconstrained optimization procedures and hence it is necessary to 

 constraints into them.  This section reviews the SOTA in 

constra

somehow incorporate

int-handling methods in the context of evolutionary design.  It also provides 

references to actual applications in structural engineering. 
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Coello Coello (2002) classifies constraint-handling methods used with EA into the 

following five major groups: 

1. Penalty functions 

2. Special representations and operators 

5. Hybrid methods 

Penalty Functions 

Penalty functions have traditionally been the most common way of handling 

constraints incorporated in EA (Goldberg 1989; Michalewicz 1995).  This method was 

initially proposed in the early 1940’s in the conte

3. Repair algorithms 

4. Separation of objectives and constraints 

xt of traditional mathematical 

optimiz

been adopted by EC researchers to solve constrained optimization 

problem

most popu tudies (Richardson et al. 

1989), 

constraine gmenting the objective 

functio

present in ).  Contrary to classical optimization 

methods which use penalty functions of two kinds (i.e. exterior and interior), 

ation by Courant (1943) and later extended by the operation research (OR) 

community in the 1960’s (Caroll 1961; Fiacco and McCormick 1968).  In the 1980’s, 

penalty functions have 

s (Goldberg 1989; Goldberg and Samtani 1986) and since then have become the 

lar, albeit not best as it has been shown in several s

method of handling constraints.  Penalty functions effectively transform a 

d design problem into an unconstrained one by au

n with a penalty term whose value determines the amount of constraint violation 

 a particular solution (Coello Coello 2002
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evoluti

they do no

Va  

classifi

(Coello C

1. nalty functions which remain constant during an entire evolutionary 

2. functions which change throughout an evolutionary run 

ible 

onary design focused almost exclusively on exterior penalty functions because 

t require initial feasible solution to start with. 

rious types of penalty functions have been proposed and studied.  A general

cation of the most commonly used types of penalty functions is presented below 

oello 2002): 

Static pe

process (Carlson 1995; Goldberg and Samtani 1986). 

Dynamic penalty 

(usually increase over time) (Joines and Houck 1994). 

3. Annealing penalty functions which use techniques based on simulated 

annealing (Michalewicz and Attia 1994). 

4. Adaptive penalty functions which change according to feedback received from 

the search process (Bean and Hadj-Alouane 1992; Hadj-Alouane and Bean 

1997; Nanakorn and Meesomklin 2001; Rasheed 1998; Smith and Tate 1993). 

5. Coevolutionary penalty functions in which solutions are evolved in one 

population and penalty factors evolve in another population (Coello Coello 

2000d). 

6. Death penalty functions which immediately reject infeasible solutions 

(Schwefel 1981). 

One of the major challenges in any application of penalty functions concerns 

achieving an appropriate balance of the penalty value.  Large penalty values discourage 

EAs from exploring infeasible regions and the search is quickly moved inside the feas
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region.

infeasible r

proposed th  penalty rule’ which states that “penalty should be kept as low as 

possibl ju

Coello 200

application sually the constraints are not expressed in an algebraic form but 

instead as o

of the boun ecified. 

been studie

can be used

• stance from the feasible region are 

raints are not likely to find 

s 

  On the other hand, low penalty values do not prohibit EA from searching 

egions most of the time.  As a result of these findings, several EC researchers 

e ‘minimum

e, st above the limit below which infeasible solutions are optimal” (Coello 

2).  The problem with this formulation, especially for structural design 

s, is that u

utcomes produced by structural analysis packages.  Hence, an exact location 

daries between feasible and infeasible regions cannot be sp

Methods of designing/configuring penalty functions for EC applications have 

d by Richardson et al. (1989).  They offer several guidelines/heuristics that 

 to make evolutionary search in constrained design spaces more efficient: 

“Penalties which are functions of the di

better than those which are merely functions of the number of violated 

constraints. 

• For a problem having few constraints, and few solutions, penalties which are 

solely functions of the number of violated const

solution

• Good penalty functions can be constructed from two quantities, the maximum 

distance and the expected distance to the feasible region. 

• Penalties should be close to the expected distance to the feasible region, but 

should not frequently fall below it.  The more accurate the penalty, the better 
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the solutions will be found.  When penalty often underestimates this distance, 

then the search may not find a solution.” 

A number of applications showed, however, that there are many difficulties 

associated with penalty functions (Richardson et al. 1989), including, for example, a 

problem of defining good penalty factors.  Thus, over the years, alternative approaches to 

handling constraints have been proposed by EC researchers.  

Other Methods 

Alternative attempts to handle constraints in evolutionary design include the 

development of special representations that simplify the shape of the search space and 

special genetic operators that preserve feasibility of generated solutions during the 

evolutionary run.  Examples of applications of these methods include Bean’s (1994) 

‘random keys encodings’, Davidor’s (1989) ‘analogous crossover,’ Michalewicz’s (1996) 

GENOCOP, and Kowalczyk’s (1997) constraint consistent GAs.  Schoenauer and 

Michalewicz (1996) proposed a method that restricts the search to the boundary of a 

feasible region.  It is based on a heuristic that in many cases the global solution lies on 

the boundary of a feasible region.  In this method, the search mechanism crosses the 

feasibility boundary back and forth and special genetic operators are used to restrict the 

variation to the boundary of the feasible region (Schoenauer and Michalewicz 1997).  

The last set of methods in this category uses decoders (Michalewicz 2000a).  In this case, 

chromosomes encode instructions on how to construct feasible solutions (Koziel and 

Michalewicz 1999).  Each decoder imposes a mapping between a feasible solution and a 

decoded solution (Kim 1998; Koziel and Michalewicz 1999).  Koziel and Michalewicz 
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(1999) reported that decoders provided much better results than any other constraint-

handling method on a representative set of  test problems. They seem to be a very 

promising area of research in structural design because they can be used with problems of 

any dimensionality and do not require the objective function given in an algebraic form 

(Coello Coello 2002). 

Repair algorithms are particularly well-suited for combinatorial optimization 

problems (Michalewicz 2000b).  They are particularly efficient when the cost of 

transformation of an infeasible solution into a feasible one is low (Coello Coello 2002).  

They h

, or not, a repaired individual should 

replace

choices ra

and the or

and Vose

repaired o

been sugg ity by 

the rep

have been l structural 

system

ave been applied to many optimization problems (Liepins and Vose 1990; 

Michalewicz and Nazhiyath 1995; Mühlenbein 1992; Tate and Smith 1995).  An 

interesting aspect of repair algorithms is whether

 the original infeasible individual in the population.  The spectrum of possible 

nges from no replacement (repaired individuals are used only for evaluation 

iginal individuals remain in the population) (Liepins and Potter 1991; Liepins 

 1990) to the full replacement (all infeasible individuals are replaced with the 

nes) (Nakano and Yamada 1991).  Also, some intermediate approaches have 

ested where original infeasible solutions are replaced with some probabil

aired solutions (Orvosh and Davis 1994).  In structural design, repair algorithms 

 used e.g. in (Kicinger 2004) to repair design concepts of stee

s in tall buildings not satisfying the symmetry requirement. 
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 Another group of constraint-handling techniques can be broadly categorized as 

ased on separation of constraints and objectives (Coello Coello 2002).   Most 

tive techniques in this category include: 

Competitive coevolution in which potential solutions (possibly infeasible) are 

evolved in one populatio

methods b

representa

1. 

n and constraints are contained (but not evolved) in 

epresenting a constraint 

2. 

3. 

 the constraints 

4. 

e transformed problem (Coello Coello 

2000a; Coello Coello 2000b; Parmee and Purchase 1994; Surry and Radcliffe 

1997; Surry et al. 1995). 

Finally, the last category of constraint-handling methods includes hybrid methods 

in which EAs are combined with other methods to solve constrained problems.  In this 

category, several interesting methods were proposed, including: 

another population (Paredis 1994).  Individuals representing potential solutions 

have high fitness when they satisfy a large number of constraints from the 

other population.  On the other hand, an individual r

has high fitness if this constraint is violated by many potential solutions. 

Superiority of feasible points which assumes that all feasible solutions are 

better than infeasible ones (Deb 2000; Powell and Skolnick 1993). 

Behavioral memory that uses a special technique of ordering constraints in 

which the algorithm proceeds by sequentially satisfying

imposed on the problem (Schoenauer and Xanthakis 1993). 

Multiobjective optimization methods in which an original single-objective 

problem is transformed into a multiobjective one by treating all constraints in 

the original problem as objectives in th
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1. Lagrangian multipliers in which a hybrid EA is formed by integration of a 

penalty function with mathematical programming methods including the 

primal-dual method and an augmented Lagrangian function (Adeli and Cheng 

2. 

 allow a higher degree 

ptimization problems (Forrest and Perelson 1990; 

ed to solve constrained optimization 

; Colorni 

1994) that guarantees the generation of feasible solutions during the search 

(Kim and Myung 1997; Myung et al. 1995). 

Fuzzy logic in which an EA is combined with fuzzy logic.  In this method the 

original constraints are replaced by fuzzy constraints to

of tolerance for violating constraints that may occur close to the boundary of 

the feasible region (Le 1995; Le 1996). 

3. Immune system models which have been initially proposed to maintain 

diversity in multi-modal o

Smith et al. 1993) and later extend

problems (Hajela and Lee 1995b; Hajela and Lee 1996; Yoo and Hajela 1999). 

4. Cultural algorithms which have been initially used to model cultural evolution 

(Reynolds 1994) and later applied to numerical optimization problems 

involving constraints (Chung and Reynolds 1996; Reynolds et al. 1995). 

5. Ant colony algorithms inspired by colonies of real ants and initially proposed 

for solving combinatorial optimization problems (Colorni et al. 1991

et al. 1992) and subsequently extended to constrained optimization problems 

(Bilchev and Parmee 1995; Bilchev and Parmee 1996) 
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Excellent state-of-the-art reviews presenting theoretical and practical aspects of 

constraint-handling methods in evolutionary computation can be found in (Coello Coello 

1999; Coello Coello 2002; Dasgupta and Michalewicz 1997; Michalewicz 1995; 

Michalewicz and Schoenauer 1996). 

2.1.5. Multiobjective Evolutionary Design 

Evolutionary multiobjective optimization (EMOO) is one of the most active 

research subfields within the EC community nowadays.  EMOO methods are also highly 

relevant to engineering design problems because they were designed to handle multiple 

conflicting objectives which usually occur in real-world design problems.  This section 

introduces the SOTA in evolutionary multiobjective optimization and presents recent 

developments in applications of these techniques to structural design problems. 

There are two major goals of multiobjective optimization. First, one wants to find 

a large number of Pareto-optimal (Pareto 1896) solutions to a given problem.  Second, 

the solutions to the problem should be widely differentiated (Deb 1999).  Classical search 

and optimization methods (like weighted sum method (Chankong and Haimes 1983) or ε-

constraint method (Haimes et al. 1971)) are not efficient for multiobjective problems 

because most of them cannot find multiple solutions in a single run, and even multiple 

runs do not guarantee finding different optimal solutions.  On the other hand, EAs are 

well-suited to solve these kinds of problems because they are population-based and this 

property allows them to find an entire set of Pareto-optimal solutions in a single run.  

Additionally, they are significantly more robust, compared to the classical methods, 
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particular

concern (C

Ini

problems 

genetic se

population

Schaffer ( fully applied the vector 

evaluat

machine 

dominated

researcher

The most 

1999; Deb

may be generated in the presence of non-convex search spaces 

regardless of the weights used (Coello Coello 2000c). 

ly when issues like the shape or continuity of the Pareto front are a matter of 

oello Coello 2000c). 

tial research on using evolutionary methods for solving multiobjective 

was conducted by Rosenberg (1967).  He suggested, but did not implement, a 

arch method involving multiple biochemical properties and objectives of a 

 of single-celled organisms.  The first actual implementation was conducted by 

1984).  In his dissertation, he proposed and success

ed genetic algorithm (VEGA) to multiclass pattern discrimination tasks in 

learning.  Next significant progress in the field came with Goldberg’s non-

 sorting procedure outlined in (Goldberg 1989).  Since that time, many 

s have developed various versions of multiobjective optimization algorithms.  

popular approaches reported in the literature include (Coello Coello 2000c; Deb 

 2001): 

1. Aggregating functions in which multiple objectives are combined into a single 

one using addition, multiplication, or any other combination of arithmetic 

operations (Syswerda and Palmucci 1991).  Frequently, the weighted sum 

approach is adopted in which the objectives are multiplied by weighting 

coefficients representing the relative importance of the objectives (Jakob et al. 

1992; Yang and Gen 1994).  The major drawbacks of this method include 

difficulties in determining the appropriate weights and the fact that improper 

Pareto solutions 
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2. Vector evaluated genetic algorithm (VEGA) proposed by Schaffer (1985).  It 

handles multiple objectives by modifying the survival selection mechanism of 

the simple GA.  Several variations of the original VEGA have been proposed 

and applied to various problems, including a groundwater pollution 

containment problem (Ritzel et al. 1994), and conceptual design of airframes 

(Cvetkovic et al. 1998). 

Target vector approaches in which targets or goals have to be defin3. ed by a 

4. 

individual based on the number of individuals in 

ne 

decision maker for each objective (Coello Coello 2000c).  This group of 

approaches includes goal programming (Charnes and Cooper 1961), goal 

attainment (Chen and Liu 1994), and min-max approach.  This last method, the 

weighted min-max, has been used by Haleja and Lin (1992) to optimize a 10-

bar plane truss in which weight and displacement were to be minimized, and 

by Coello Coello and Christiansen to optimize I-beams (1998) and truss 

designs (2000). 

Multiobjective genetic algorithm (MOGA) proposed by Fonseca and Fleming 

(1993).  It defines a rank of an 

the current population by which it is dominated.  MOGA has been used in 

many engineering design applications including for example a gas turbi

controller (Chipperfield and Fleming 1995) and supersonic wings (Obayashi 

1998; Obayashi 2002).  Grierson and Khajehpour applied a variation of 

MOGA (called MGA) to conceptual design of office buildings (2002). 
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5. Non-dominated sorting genetic algorithm (NSGA) defined by Srinivas and Deb 

(1994) and based on Goldberg’s (1989) notion of non-dominated sorting with a 

niche and speciation method.  An improved version of this algorithm, called 

NSGA-II (Deb et al. 2000), equipped with elitisms and parameter-free sharing 

approach has been recently applied to a topological optimum design problem 

by Hamda et al. (2002b).  In their approach, both the mass and the maximum 

displacement of a cantilever plate were minimized.  Deb and Goel (2001) used 

a hybrid approach, NSGA-II and a hill climber, to solve several engineering 

shape optimization problems. 

6. Niched Pareto genetic algorithm (NPGA) proposed by Horn and Nafpliotis 

(1993).  It uses a tournament selection scheme based on Pareto dominance.   

7. Strength Pareto evolutionary algorithm (SPEA) proposed by Zitzler and Thiele 

(1998) which integrates ideas from various existing evolutionary 

multiobjective optimization methods and adds some new elements to the 

evolutionary multiobjective algorithm.  

Comprehensive surveys of various evolutionary multiobjective optimization 

methods, including detailed discussion on their strengths and weaknesses, can be found in 

(Coello Coello 1999; Coello Coello 2000c; Coello Coello et al. 2002; Deb 1999; Deb 

2001; Van Veldhuizen and Lamont 1998). 

2.1.6. Coevolutionary Design 

Another important branch in evolutionary computation research that has recently 

received significant research attention is coevolution.  I refer to coevolution as a 
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phenomenon occurring when two or more populations (some researchers also include in 

this category single population models) simultaneously evolve and where no objective 

fitness 

oblem 

domain

function exists but rather individual’s fitness is a subjective function of its 

interactions with individuals from coevolving populations (Rosin and Belew 1996; 

Wiegand 2003).  Biological coevolution encountered in many natural processes has been 

an inspiration for a class of coevolutionary algorithms.  Initial ideas of modeling 

coevolutionary behavior were formulated by Maynard Smith (1982) and Axelrod  (1984; 

1987).  The competitive approach to coevolution has been since widely used in many 

game-theoretic models that arise in various disciplines, including economics, decision 

sciences, social sciences, etc. Initial ideas were further extended by Hillis (1991), Paredis 

(1994; 1995), and others and resulted in a new optimization procedure called 

coevolutionary genetic algorithm (CGA).  Competitive coevolutionary models are 

especially suitable for problem domains where it is difficult to explicitly formulate an 

objective fitness function, for example in AI game-playing strategies, etc. Paredis (1994) 

applied competitive coevolutionary algorithms to constrained optimization problems.  

Recently, they have been used e.g. to coevolve cellular automata and the training cases 

for the majority classification problem (Pagie and Mitchell 2002). 

Potter and De Jong (1994) proposed another approach to coevolution, namely a 

cooperative coevolutionary model.  The motivation for this model comes from pr

s where explicit notions of modularity have to be introduced (Potter 1997).  This 

model also provides appropriate framework for evolving solutions in the form of co-

adapted subcomponents, and hence is of crucial importance for many engineering design 
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problems.  Usually, complex engineering design problems are decomposed into simpler 

problems and solved independently.  This works fine for problem domains where the 

princip

ty, methods of fitness 

assignment, methods of interaction, update timing, problem decomposition, spatial 

topology, and population structure. 

Coevolutionary models have been applied to several engineering design problems, 

particularly in architectural design.  Maher and Poon (1996) suggested that it is often the 

case in a design process

le of superposition can be applied, i.e. for problems that can be linearly 

decomposed.  That is no longer the case, however, for complex designs where nonlinear 

interactions take place among the subcomponents and make interacting members highly 

dependent on one another.  For these domains cooperative coevolutionary model is more 

suitable because it allows for an explicit subcomponent coadaptation.  Potter and De Jong 

(2000) proposed a cooperative coevolution architecture for evolving coadapted 

subcomponents and defined cooperative coevolutionary evolutionary algorithm (CCEA).  

This architecture has been subsequently analyzed from the evolutionary dynamics 

perspective (Luke and Wiegand 2002; Wiegand 2003) as well as from the perspective of 

collaboration methods that have been used (Wiegand 2003; Wiegand et al. 2001).  

In general, coevolutionary design processes can be defined by 7 major attributes 

shown in Table 3.  They describing ways in which coevolutionary systems can be set up 

(Wiegand 2003).  The attributes include the payoff quali

 that requirements are reconsidered when a design solution is 

offered. Maher (1994) introduced the idea of coevolutionary design, where requirements 

and solutions evolve separately.  Maher and co-workers (Maher and Poon 1995; Maher 
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and Poon 1996; Maher et al. 1996; Maher and Wu 1998; Poon and Maher 1996a; Poon 

and Maher 1996b; Poon and Maher 1997) have been working on coevolutionary design 

in which two interrelated evolutionary processes occur.  The first one is the evolution of 

design solutions while the second one is the evolution of requirements.  In this case, the 

fitness function evolves with the requirements and it is different (local) at various stages 

of the coevolutionary design process. Also, the fitness function is used to identify the 

surviving solutions, but its convergence simply means that there is no progress in the 

evolution since no new and better solutions are being produced. 

Table 3. Attributes describing coevolutionary architectures 

Attribute Attribute value(s) 
Payoff quality Cooperative Competitive Non-competitive 
Methods of fitness 
assignment 

Credit 
assignment 

Problem decomposition Partitioning Temporal  

Spatial topology Spatial Non-spatial  

Population structure Single Multiple  

Implicit Explicit  

Methods of interaction Sample size Selective bias 

Update timing Sequential Parallel  

methods decomposition  

embedding embedding 

  

The only work known at this time which uses cooperative coevolutionary 

algorithms in structural optimization was conducted by Nair and Keane (2002).  They 

used CCEA to optimize cross-sections of members of planar truss systems (single 
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objective weight minimization problem).  The optimized truss systems were decomposed 

and coevolved in separate populations.   

2.1.7. Evolutionary Computation in Structural Engineering 

The history of evolutionary computation in structural engineering can be traced 

back to the mid 1970’s and early 1980’s (Goldberg and Samtani 1986; Hoeffler et al. 

1973; Lawo and Thierauf 1982).  The vast majority, if not all, of early papers discussing 

EC applied to structural engineering were focused on structural optimization problems.  

Strong emphasis on various aspects of structural optimization remained the major focus 

of research in this f tively few exceptions which mostly addressed 

the issues

representations of structural 

latively well-formed problems in which the 

structural configuration of m

ield until now with rela

 of creativity in structural design and more sophisticated forms of 

systems (Hamda et al. 2002a).  

Emergence of EC in structural optimization was a consequence of encountered 

problems and deficiencies of formal methods, including mathematical programming and 

the optimality criteria method (Berke and Khot 1987), when applied to more complicated 

structural design domains.  Formal structural optimization methods based on the 

assumption of continuity worked well on re

embers was assumed and fixed during an optimization 

process while the task was to find the optimal sizing (dimensions) of members’ satisfying 

at the same time imposed design requirements and constraints.  The simple generalization 

of this problem by allowing variations of a system’s configuration greatly increased the 

complexity of the optimization task and rendered many traditional methods inadequate.  
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This issue became a starting point for a development of two major approaches to 

structural optimization that exist today: enhanced formal methods and heuristic methods. 

Structural Design Problems 

The problems addressed by structural optimization can be divided into three major 

categories: 

• Topology (layout) optimization also known as topological optimum design 

• Shape optimization (SO) – seeking optimal contour, or shape, of a structural 

• Sizing optimization – searching for optimal cross-sections, or dimensions, of 

ization methods and heuristic 

methods.   

(TOD) – looking for an optimal material layout of an engineering system 

system whose topology is fixed 

elements of a structural system whose topology and shape is fixed 

A structural design problem in each of the categories can be further classified as a 

continuum or discrete optimization problem.  Figure 3, a modified version of a figure 

presented in (Jakiela et al. 2000), shows the three categories of structural optimization for 

continuum design problems while Figure 4 shows the same categories for discrete 

problems. 

The three categories are closely related to three major stages of engineering 

design process described earlier, i.e. TOD is conducted in the conceptual design stage, 

SO in the embodiment design stage, and finally sizing optimization is performed in the 

detailed design stage.  As stated earlier, the three categories of structural optimization 

problems have been addressed by both formal optim
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Figure 3. Topology, shape, and sizing optimization for continuum structural design 
problems 

 

Figure 4. Topology, shape, and sizing optimization for discrete structural design 
problems 

Formal methods have been most successful when applied to sizing optimization 

problems which are usually well-defined in terms of mathematical models.  Mathematical 

programming methods (Schmit 1981) and optimality criteria method (Berke and Khot 

1987) have been efficiently applied to solve these problems.  Heuristic methods, 
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including EAs, have also been applied to structural sizing problems (Lin and Hajela 

1993; Schoenauer and Wu 1993).  On the other hand, TOD problems, located on the 

other end of the structural complexity spectrum, have been most successfully approached 

using heuristic methods, including simulated annealing (Anagnostou et al. 1992) and EAs 

(Chapman et al. 1994; Hajela and Lee 1995a; Jensen 1992; Kane and Schoenauer 1996).  

Structural shape optimization has been a kind of middle ground where both formal and 

heuristic methods are used and complement one another. 

Topological Optimum Design 

TOD has been an area of significant research efforts for the last forty years.  

Initial investigations in the late 1970’s and early 1980’s were conducted using formal 

methods. Generally, TOD problems can be divided into two major groups: continuum 

TOD and discrete TOD.  In the continuum TOD, the design domain is discretized into 

small, rectangular elements (rectangular grid) where each element contains material or 

void.  Formal methods addressing this problem include the homogenization method 

(Bendsoe and Kikuchi 1988) in which each element in a grid contains composite material 

of continuously-variable density in [0,1] and orientation.  Xie and Steven (1992) 

proposed evolutionary structural optimization (ESO) method which follows the concept 

of removing lightly stressed elements.  The name of this method is confusing because the 

method is not based on EC principles but rather evolution is understood in a more general 

context as a process of gradual removal of inefficient material from a structure. The EC 

approach to the continuum TOD problem based on GAs has been developed by Sandgren 

et al. (1990) and Jensen (1992).  In their approach, a GA determines the optimal layout of 
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material and void in a cantilever plate (represented as a bit array) such that the structure’s 

weight is minimized subject to displacement and/or stress constraints.  This work has 

been subsequently extended by Chapman et al. (1994) to optimize finely-discretized 

design domains and to obtain families of highly fit designs.  Recently, more advanced 

forms of representations for continuum TOD problems have been proposed, including 

Vorono

 evolutionary multiobjective optimization problem. 

oblems consist in determining the optimal element connectivity 

from a

i-based representations (Periaux and Winter 1995; Schoenauer 1996), which are 

based on concepts of Voronoi diagrams studied in computational geometry, and IFS 

representations based on fractal theory (Hamda et al. 2002a).  Also, Hamda et al. (2002b) 

considered a continuum TOD as an

Discrete TOD pr

 finite, albeit large, number of possible connections (Topping 1983).  Two major 

problem domains addressed in early research in this area include truss structures and 

frame structures.  An initial problem formulation in the context of linear programming 

using the ground structure approach was proposed by Dorn et al. (1964).  While 

traditional linear programming methods proved to be successful in finding optimal 

topologies for small problems, they were rendered inadequate when the size of the 

problems considered was scaled up (increase in the number of design variables or the 

number of grid points in the ground structure approach). The discontinuous nature of this 

design problem was another reason for inefficiency of formal methods.  Initial 

applications of GAs to optimize topology of discrete-member trusses were conducted by 

Shankar and Hajela (1991), Hajela et al. (1993), Grierson and Pak (1993a), and Hajela 

and Lee (1995a).  Bramlette and Bouchard (1991) used EC to three-dimensional 
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structures in the context of aircraft design.  Koumousis & Georgiou (1994) applied GAs 

to the topology optimization of steel truss structures.  Bohnenberger et al. (1995)  applied 

GAs to optimize topologies of truss structures in pylons.  Rajan (1995) applied GAs to 

optimize topology, shape and member sizing of truss structures.  Nakanishi and Nakagiri 

(1996; 1997) used GAs to solve 2D topology optimization problems for both frames and 

panel structures.  Rajeev and Krishnamoorthy (1997) used variable-length string 

representations to optimize truss structures.  Murawski et al. (2001) and Kicinger et al. 

(2004) applied ES to optimize topology of steel structural systems in tall buildings.  Soh 

and Yang (2001) introduced a GP-based approach to TOD of truss structures.  In a 

subsequent work (2002), they proposed a GP-based methodology for the automated 

optimum design of structures.  Recently, Azid et al. (2002) applied a GA with real-valued 

representations to optimize topologies of three-dimensional trusses. 

SOTA reviews of current research in formal methods for TOD problems can be 

found in Rozvany et al. (1995), Bendsoe and Sigmund (2002), and Xie and Steven (1997) 

whereas recent research developments in applications of EC to TOD problems can be 

found in (Hajela and Vittal 2000). 

Shape Optimization 

Shape optimization maintains a fixed topology of structural designs but changes 

their shape or node locations.  Similar to the TOD case, shape optimization problems can 

be divided into two major groups: continuum SO and discrete SO.  Continuum SO 

addresses shape optimization problems in the context of 2D or 3D continuum structures.  

Traditionally, in continuum SO, “a shape is defined by the oriented boundary curves [2D 
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structures] or boundary surfaces [3D structures] of the body … and the optimal form of 

these boundaries is computed” (Bendsoe and Sigmund 2002).  Formal methods for 

solving

ization 

 Evolutionary computation methods have also been applied to 

solve c

 continuum SO problems are well-established and extensive literature is available 

(Bennet and Botkin 1986; Haslinger and Neittaanmaki 1996; Pironneau 1984).  

Sensitivity analysis for shape optimization problems is discussed in (Sokolowski and 

Zolesio 1992) and application of the homogenization method to this problem is offered in 

(Allaire et al. 1997).  ESO, introduced earlier, has also been used to shape optim

(Xie and Steven 1992).

ontinuum SO problems.  Research on shape optimization of structural members 

has been conducted by Jenkins (1991a; 1991b), Richards and Sheppard (1992), and 

Watabe and Okino (1993).  Kita and Tanie (1998; 1999) and Annicchiarico and Cerrolaza 

(1999; Cerrolaza and Annicchiarico 1999) used GAs to optimize the shape of continuum 

2D structures through B-spline functions.  A GA was used to find optimal locations of 

knots of B-spline functions.  Wibowo and Besari (1998) applied GAs to optimize shapes 

of oval axially symmetric shells.  Annicchiarico and Cerrolaza (2001) applied GAs to 

shape optimization of 3D finite element models. Woon et al. (2001) investigated 

alternative encodings of GAs for continuum SO using the actual coordinates of boundary 

nodes. 

Discrete SO methods conduct shape optimization through variations in geometry 

of discrete truss and frame structures introduced through changes in locations of nodes 

(Pedersen 1987; Vanderplaats 1975).  Various mathematical programming methods have 

been used to discrete SO problems, including linear, nonlinear, and dynamic 
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programming (Topping 1983).  In the case of shape optimization of truss structures, 

discrete TOD methods using the ground structure approach have been extended to 

e nodal point locations for a given number and connectivity of 

nodal p

s to continuum shape 

optimiz

Recent

(Bends

applica

Sizing

thickne

the eas imization problems discussed earlier and relatively 

wel hese kinds of problems has a 

long h

applica

optimiz

include optimization of th

oints (Bendsoe and Sigmund 2002).  Initial applications of EC methods to discrete 

SO problems have been conducted by Grierson and Pak (1993a; 1993b) in the context of 

truss structures.  Soh and Yang (1996) applied fuzzy controlled GAs to optimize the 

shape of planar and spatial truss structures.  Bohnenberger et al. (1995) applied GAs to 

optimize shapes of truss structures in pylons.  Keane and Brown (1996) used GAs to 

optimize the shape of a satellite boom with respect to its vibration performance.  

SOTA reviews in traditional mathematical approache

ation problems are presented in (Allaire and Henrot 2001; Kawohl et al. 2000).  

 developments in formal methods for discrete SO problems can be found in 

oe and Sigmund 2002; Nishino and Duggal 1990).  Recent developments in 

tions of GAs to design of steel structures are described in (Pezeshk 2002). 

 Optimization 

Sizing optimization problems involve finding optimal cross-sections, or 

sses, of elements of a structural system whose topology and shape is fixed.  It is 

iest of the three structural opt

l-understood.  Research on formal methods of solving t

istory and extensive literature is available on the topic (Arora 1989).  First 

tions of EC to structural optimization problems involved these types of 

ation problems.  Lawo and Thierauf (Lawo and Thierauf 1982) used ES to 
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optimiz

and Sa

plane 

membe

beams.

frame 

section

to desi n frames and compared their performance with other nonlinear 

opt d representation space. 

Histor

the mid

classifi

the rep

method

structu in the development of the field: 

d of early explorations (1986-1995) 

.  Researchers focused on 

ary strings and real-valued vectors, 

e members of a planar six-story frame subjected to earthquake loading.  Goldberg 

mtani (1986) applied a GA to optimize cross-sections of members of a 10-bar 

truss.  Hajela (1990; 1992) investigated cross-section optimization of discrete 

r trusses using GAs.  Deb (1991) applied GAs to optimize designs of welded 

  Jenkins (1992) proposed a GA-based design environment to optimize plane 

structures.  Rajeev and Krishnamoorthy (1997) applied GAs to optimize cross-

s of generalized trusses.  Recently, Jarmai et al. (2003) applied genetic algorithms 

gn welded I-sectio

imization algorithms operating in a constraine

ical Perspective 

 A summary of major applications of EC in structural design since its beginning in 

 1970’s is provided in a chronological order in Appendix A. The applications are 

ed with respect to the application domain and major EC characteristics, including 

resentation type, the evolutionary algorithm used, the fitness function, and 

s of handling constraints.  A chronological classification of the EC applications in 

ral design clearly shows three major periods 

1. Perio

During this initial stage, simple evolutionary algorithms (mainly, if not 

exclusively ES and GAs, sometimes combined with other traditional optimization 

methods) were applied to relatively simple structural engineering problems 

(sizing optimization of simple 2D engineering systems)

using standard design representations, i.e. bin
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single objective fitness functions (usually the minimization of weight), and fairly 

traditional constraint-handling methods involving various variations of the penalty 

functions (see section 2.1.4). 

Period of exploration & exploitation (1996-2000) 

This period can be best characterized as a period of exploring alternative choices 

for various components of the evolutionary algorithms and improving the process 

of optimization of more complex design problems.  Researchers explored various 

kinds of representations of engineering systems, including Voronoi-based 

representations and integer-based representations.  Significant research efforts 

were also focused on tuning the genetic operators to particular problems, e.g. by 

adapting mutation and crossover rates during the evolutionary design processes.  

Initial exploration of alternative constraint-handling methods has also been 

conducted, including immune networks, behavioral memory, and fuzzy logic.  

Several multiobjective approaches to structural design problems have been 

reported as well. 

Period of rapid growth (2001-present) 

Currently, evolutionary computation is a fully recognized struct

2. 

3. 

ural optimization 

 not only by researchers but also by practitioners.  

Nowadays, research efforts are focused on solving much more complex structural 

design problems and on studying more advanced evolutionary models, including 

parallel EA, multiobjective optimization, and variable-length representations, in 

paradigm and is frequently used
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the context of structural design.  Also, initial exploration of the potential of using 

coevolutionary models is being conducted. 

ary 

The field of evolutionary design and its applications to engineering design is far 

aturity and continues to rapidly grow and develop in many exciting new 

ns.  In this section, I summarize several of the most promising areas of new 

h.  They can be grouped into the following five classes: 

Integrated structural design support tools 

Summ

from m

directio

researc

1. 

As the size and complexity of structural problems in the field of evolutionary 

design continues to increase, there are several scaling-up issues that need to be 

l architectures.  Computation 

sist in the future.  Second, parallel computer 

ble.  Considering also the fact that EA have a 

natural mapping onto parallel architectures, it is my belief that computational 

costs should not be the primary factor in developing new integrated evolutionary-

addressed, including computation time and paralle

time in evolutionary design mostly depends on the evaluation of the fitness of 

generated designs (frequently 90-95%, or more, of computation time).  In the past, 

when computational costs were high, researchers developed a variety of 

techniques to minimize the computational effort.  One of the most popular 

techniques involved separation of the stages of conceptual, preliminary, and 

detailed design, and developing separate tools for each stage (Arciszewski and De 

Jong 2001). Nowadays, however, the cost of computation continues to decrease 

and this trend is likely to per

architectures are now readily availa
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based structural design support tools.  These tools will treat all the stages of a 

design process as phases of a single integrated design process.  Research efforts in 

this direction are led by Parmee and co-workers (Parmee 2001). 

Open-ended representations 2. 

An appropriate representation of an engineering system is one of the key issues in 

any structural design application.  Today, it becomes even more important 

because the increased complexity of considered design problems raises some 

difficult internal EA issues on how to best represent and evolve complex designs 

Another motivation comes from the fact that 

3. 

Almost every structural design problem involves some kind of constraints.  Up to 

very recently, various variations of penalty functions were virtually the only 

(Arciszewski and De Jong 2001).  

there is an emerging trend to apply evolutionary design techniques not only to 

strictly optimization tasks but rather this technique is being gradually more and 

more useful in finding creative/novel design concepts.  Both issues lead to open-

ended representations which don’t encode entire designs but rather rules on how 

to construct these designs (see section 2.1.3).  Representations of this type are also 

inspired by the processes occurring in nature, where we observe evolution 

manipulating the genetic plans for complex objects rather than the objects 

themselves.  The organisms are then built from the plans via a developmental 

process called morphogenesis.   

Alternative constraint-handling methods 
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method of handling constraints.  On the other hand, a number of applications 

showed that there are many difficulties associated with this approach when 

applied to highly constrained optimization problems.  Studies focused on 

estimating a true potential of alternative constraint-handling methods (discussed 

in section 2.1.4) constitute another promising area for future research of vital 

importance to structural design. 

4. Multiobjective structural design 

ome one of the most 

 findings coming from evolutionary 

Structural design problems are inherently multiobjective and often involve a large 

number of conflicting criteria.  So far, research in evolutionary structural design 

concentrated almost exclusively, with few notable exceptions, on single objective 

problems.  At the same time, the field of evolutionary multiobjective optimization 

provides new and efficient methods, described in section 2.1.5, of solving these 

types of problems.  Multiobjective structural design may bec

promising areas of research in structural design, particularly when not a single 

optimal design solution is sought but rather a set of alternative optimal designs. 

5. Coevolutionary structural design 

Coevolutionary design is an emerging area of research with many unanswered 

questions.  There is a lot to be done to understand the true potential of this 

paradigm in structural design.  Initial

computation community suggest that coevolutionary models might be particularly 

suitable for complex design spaces that can be relatively well decomposed and 
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when the major goal is not the optimality of design solutions in a global sense, but 

rather their robustness (design for reliability) (Wiegand 2003).  As stated earlier, 

very little has been done in this area and it is potentially one of the most 

promising paths of future research. 

Research reported in this dissertation is mostly related to points 1 and 2 described 

above, i.e. building integrated design support tools and using open-ended representations 

in engineering design.  

2.2. Overview of Cellular Automata 

2.2.1. 

utomata are one of the simplest mathematical representations of 

com e

behavi ear to capture many essential features of a complex 

self g

comple processes consisting of a large number of identical, simple, and 

loc

some i rganization processes.  The CAs research has generated great 

inte

of beha

suggested that cellular automata and other simple programs may better model nature’s 

most es

Cellular Automata 

 Cellular a

pl x systems (Wolfram 1983).  As such, they are useful idealizations of a dynamical 

or of various systems. They app

-or anizing behavior observed in real world systems.  CAs are prototypical models of 

x systems and 

ally interacting components.  CAs can be used to study pattern formation and gain 

nsight into self-o

rest over the last forty years because of their ability to exhibit very complex patterns 

vior using a set of relatively simple underlying rules.  Recently, Wolfram (2002) 

sential mechanisms than traditional mathematical equations. 

 



76 

The origins of CA research are commonly associated with two people: John von 

Neumann and Slanislaw Ulam.  Von Neumann proposed CAs as a reductionist model for 

biological evolution (1951).  Following suggestions by Ulam (1952; 1974), he used 

discrete rather than continuous dynamics to construct a two-dimensional self-replicating 

automaton.  It was the first discrete parallel computational model formally shown to be a 

universal computer as defined by Turing (1936). 

CAs have been successfully applied in physics, biology, chemistry, economy, 

geology, and other disciplines.  Some specific examples of modeled phenomena include 

fluid and chemical turbulence (d'Humieres and Lallemand 1986; Gerhadrt and Schuster 

1989), growth of crystals (Kessler et al. 1990), DNA evolution, social dynamics (Axtell 

and Epstein 1996), patterns of electrical activity in neural networks (Franceschetti et al

riables, 

path planning for mobile robots (Marchese 2002), etc.  There have also been several 

ring applications of cellular automata, including models of traffic flow and of 

transpo

. 

1992), discrete versions of partial differential equations in one or more spatial va

enginee

rtation systems (Marinosson et al. 2002; Nagel 2002).  Structural engineering 

applications of CAs are discussed in section 2.2.3. 

Following Ilachinski (2001), we can distinguish 5 generic characteristics of CAs: 

• Discrete lattice of cells: the system consists of usually 1-, 2-, or 3-dimensional 

lattice of cells (higher dimensional extensions are also possible but rarely used in 

practice). 

• Homogeneity: all cells are equivalent (although there are also models using non-

uniform CAs (Sipper 1997)). 
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• Discrete states: each of the cells can be in one of the finite number of possible 

discrete states. 

• Local interactions: each cell interacts only with cells contained in its local 

neighborhood. 

• Discrete dynamics: at each discrete time unit, each cell updates its current state 

according to a transition rule taking into account the states of cells in its 

. Results of 

a process of iteration of an elementary CA are presented in Figure 5a).  

neighborhood. 

The simplest possible CAs, called elementary CAs, consist of a one-dimensional 

lattice of cells, in which each cell can be in one of two possible states.  The value of each 

cell at a next time step is determined by a value of the cell itself and its two closest 

neighbors.  In other words, an elementary CA is a one dimensional CA with binary states 

and with a local neighborhood of size 3 (or a neighborhood radius equal to 1)

 

Figure 5. a) Process of iteration of an elementary CA and b) a transformation rule 
determining the values of cells at a next time step 
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 The top row of cells (step 1 in Figure 5a)) is iterated 14 times (steps 2-15) using a 

ext time step (bottom row).  Increasing the number of cell state values 

or the s

 each cell 

dep d

their in es (Wolfram 2002).  For example, due to averaging, there are only 

218  

to 7,625,597,484,987 rules found in the corresponding standard CAs.  

ree state values (see 

Figure 

CA transformation (or update) rule shown in Figure 5b).  The CA transformation rule 

specifies all possible (8 in the case of an elementary CA) combinations of cell state 

values in a local neighborhood of size three (the top row) and the values achieved by the 

central cells at a n

ize of the local neighborhood causes a rapid growth in the number of possible CA 

rules.  For example, changing the number of cell state values to 3 with the same size of 

the local neighborhood yields 7,625,597,484,987 possible CA rules compared 256 CA 

rules for elementary CAs.  There is, however, a way to significantly reduce it by 

introducing a concept of a totalistic CA.  In a totalistic CA, a new value of

en s only on the average value of the neighboring cells and the cell itself, and not on 

dividual valu

7 possible totalistic CAs with 3 values and the neighborhood of size three compared

Figure 6 shows a process of iteration of a totalistic CA with th

6a)) and a totalistic CA transformation rule (see Figure 6b)).  In this particular 

example, the rule specifies all 7 possible local neighborhoods of size three corresponding 

to 7 possible average cell state values, i.e. 0, 0.33, 0.66, 1, 1.33, 1.66, and 2.  They are 

denoted graphically by various shades of gray (the top row).  The values achieved by the 

central cells at a next time step, i.e. 0, 1, and 2 are shown in the bottom row.   
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Figure 6. a) Process of iteration of a totalistic CA and b) its transformation rule 

Formally, a one-dimensional CA (1D CA) can be defined in the following way.  

Let  denote the value of the ith cell at time t. A CA evolves according to a rule F that 

 and other cells that are within a neighborhood r of : 

r

Each cell can take on one of the k possible values, that is 

( )ic t

is a function of ( )ic t ( )ic t

1 1( 1) ( ( ), ( ),..., ( ), ( ))i i r i r i r ic t F c t c t c t c t− − + + − ++ =  

{ }( ) 0,1,..., 1ic t k∈ − . 

ed to each of the 

 neighborhood. Since F itself 

)-tuples, there are a total of 

Thus, the rule F is completely defined by specifying the value assign

k2r+1 possible (2r+1)-tuple configurations for a given r

assigns any of k values to each of the k2r+1 possible (2r+1

 possible rules.  

When looking at CAs from a dynamical systems perspective (see section 2.3), 

they can be treated as abstract discrete dynamical systems that produce inherently 

interesting, and potentially novel, behavioral patterns.  As Wolfram (1983) has shown, all 

one-dimensional CAs evolving from random initial configurations generate patterns that 

can be classified into one of only four basic behavioral classes: 

2 1rkk
+
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• Evolution leads to a homogenous state, in which all cells eventually attain the 

same value 

• Evolution leads to either simple stable states or periodic and separated structures 

• Evolution leads to chaotic nonperiodic patterns 

• Evolution leads to complex, localized propagating structures 

Figure 7 shows graphically the four classes of behavior defined above.  

Dynamical behavior of an elementary CA presented in Figure 7a) represents a 

homogeneous state behavior, i.e. a class one behavior in the taxanomy defined above.  

Figure 7b) presents periodic behavior in which the period’s length is equal to 2 (a class 

two behavior).  Figure 7c) shows much more complex behavior where no regularity and 

periodicity can be found (a class three behavior).  Finally, Figure 7d) shows a CA 

exhibiting a class four behavior with localized, propagating structures. 

The first three behavioral patterns qualitatively resemble behavior observed in 

continuous systems (see section 2.3).  Homogenous states are analogous to fixed-poin

 limit cycles, 

and finally chaotic states are analogous to strange attractors.  More complex structures 

occurri

t 

attracting states, asymptotically periodic states are analogous to continuous

ng in systems exhibiting a class four behavior do not seem to have obvious 

analogues in continuous systems.  Sometimes they are characterized as soliton-like 

structures in their appearance (Ilachinski 2001). 
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Figure 7. Four classes of dynamical behavior produced by elementary CAs 

In the examples, even the complex, nonperiodic behavior shown in Figure 7c) was 

generated by the simplest possible cellular automata.  Thus, an apparent complexity of 

behavior does not necessarily imply the complexity of mechanisms generating that 

behavior.  Conversely, even the simple systems, like elementary cellular automata, can 

exhibit a very irregular and counter-intuitive behavior.  This observation contributed to 

the development of a recently proposed New Kind of Science (Wolfram 2002). 
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Two-dimensional cellular automata (2D CAs) are generalizations of one-

dimensional systems in which the lattice of cells is no longer one-dimensional but it is 

extended to two dimensions.  2D CAs can be defined using a set of parameters known 

from 1D CAs but with several additional properties.  These additional properties include 

an initial configuration of cells which is now two-dimensional as well as CA 

transformation rules that now have to take into account two-dimensional local 

neighborhoods of a current cell.  In order to fully define a 2D CA transformation rule one 

not only has to specify a radius of the local neighborhood r but also its shape.  Two most 

popular shapes of 2D local neighborhoods include von Neumann neighborhood 

(diamond-shaped neighborhood) and Moore neighborhood (square-shaped 

neighborhood).  Figure 8 shows the impact of the shape and radius on a two-dimensional 

local neighborhood in a 2D CA. 

 

Figure 8. Impact of the shape and radius parameters on a local neighborhood in a 2D CA 
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 As was the case with 1D CAs, the 2D CA transformation rules can be also 

defined based on average values of the cells in the local neighborhood.  In this way, so-

called totalistc 2D CAs are defined.  In fact, this type of 2D CA is more common due to 

the fact that the number of possible transformation rules (and hence the size of the search 

space) rapidly increases.  Figure 9 shows several steps of a process of iteration of a 

totalistic 2D CA started with a 2D lattice of cells with a single cell with the state value 

equal to 1 (a single black cell in the middle of the 2D lattice shown at step 0). 

 

Figure 9. Several steps of iteration of a two-dimensional cellular automaton 
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2.2.2. Numbering Scheme for Cellular Automata Rules 

The numbering scheme presented here and used in the remainder of this 

dissertation has been initially proposed by Wolfram (1983) for elementary CA rules.  It 

can be, however, generalized to describe arbitrary CAs.  A detailed description of the 

Figure 10 shows an example of a transformation rule of an elementary CA.  

Above

scheme is given below. 

, in the top row, all 2 1 32 8rk + = =  possible combinations of values of three 

variables (neighborhood of size three) are given.  Below, in the bottom row, values 

achieved by the central cells at a next time step are given.  Thus, if we assume the same 

 row of Figure 10 then any 

elementary CA rule can be uniquely defined 

ordering of the local neighborhoods as shown in the top

by a single eight-digit binary number.  Each 

digit in this number specifies the value achieved by the central cell at a next time step for 

a given combinations of cells in a local neighborhood.  This binary number can be also 

written as a decimal value, and this is what I call in this dissertation a CA transformation 

rule number, or simply a CA rule.  An example of a CA rule shown in Figure 10 defines 

the rule 110.  Any elementary CA can be uniquely defined by a rule number from 0 to 

255. A graphical representation of the numbering scheme is presented in the middle of 

Figure 10.  Here, a black square denotes 1 and a white square denotes 0.   

 

Figure 10. Numbering scheme for elementary CAs 
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As stated earlier, the numbering scheme can be generalized to describe an 

arbitrary type of a CA.  For example, for a CA with 3 possible state values the only 

difference in the numbering scheme would involve a change in the base.  In this case the 

base would not be binary but rather ternary.  The value in a ternary base can be 

subsequently written as a decimal value, as I discussed earlier.  The scheme also works 

for totalistic CAs.  Figure 11 shows an exemplary totalistic CA with three possible state 

values and with a local neighborhood of size three. 

 

Figure 11. Numbering scheme for totalistic CAs 

In this particular case, a totalistic CA can be uniquely defined by a seven-digit 

ternary number, which can be subsequently converted to a decimal value. 

et al. (1994; 1998).  They used local rules such as 'death', 

'birth', and 'division' to investigate self-organization of topologies in structural systems.  

Kundu et al. (1997) applied CAs to optimize the shape of structural plates.  Kita and 

2.2.3. Cellular Automata in Structural Engineering 

As discussed earlier, CAs have been a subject of significant research interests in 

various disciplines of science.  There have also been several studies on using cellular 

automata in structural engineering.  One of the first applications of CAs to shape 

optimization is due to Inou 
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Toyoda of two-dimen

 to optimize cross-sections in truss structures (2001).  

Hajela  01) a lied GAs to search the space of CA rules in structural analysis 

of 2D elastic structures. 

2.3. Overview of Dynamical Systems, Chaos, and Complex Systems 

2.3.1. Dynamical Systems and Chaos Theory 

The beginnings of the field of dynamical systems and chaos theory are commonly 

associated with Henri Poincaré who in 1890’s studied a simplified model of a solar 

system consisting of three bodies.  Using his innovative methods of modeling dynamical 

systems (a qualitative approach) he discovered that even this very simplified model 

produced incredibly complicated behavior (1897).  Poincaré’s methods proved to be very 

useful for describing the behavior of a wide variety of physical systems.  After Poincaré, 

other important contributions were made by Birkhoff (1927), Cartwright (Cartwright and 

Littlewood 1951), Kolgomorov (1958), and others.  Rapid progress in the science of 

complexity, however, was possible only with the advent of personal computers in 1960’s 

and 1970’s.  

Lorenz (1963) published his famous work on deterministic nonperiodic flow 

occurring in his computer model of a global weather.  He discovered a surprising order in 

the middle of a chaotic motion, now called Lorenz attractor.  He was also able to identify 

another hallmark of chaos, namely the sensitivity to initial conditions.  Scientists 

equipped with a modern research tool, i.e. a personal computer, have started numerical 

 used CAs to optimize both the shape and the topologies sional 

elastic structures (2000) as well as

and Kim (20 pp
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explorations of chaotic dynamics in almost all disciplines of science: mathematics, 

physics, biology, physiology, engineering, and many others. The underlying rules proved 

to be universal for all fields. 

Formally, a dynamical system can be defined as a function :ϕ Τ×Μ →Μ  such 

that the following properties hold: 

1. ( )0, x xϕ =  for all x∈Μ  

2. ( )( ) ( ), , ,t s x t s xϕ ϕ ϕ= +  for all , ,t s x∈Τ ∈Μ  

where T is a time set, and M is a state space. 

havior of an entire 

system

2.3.2. Complex Systems 

A complex system is a dynamical system that consists of large number of mutually 

and typically nonlinearly interacting parts.  The field of complex systems is, however, a 

relatively young discipline of science and, as such, not yet well defined.  One of its 

distinguishing features is an emergent behavior, i.e. a type of global be

 which exhibits some characteristics neither possessed by, nor directly derived 

from, any of its parts (Ilachinski 2001).  It is not enough to understand a complex system 

in terms of its components out of which it is constructed but one also has to include in the 

model both the topology of interconnections and interactions between these components. 

Complex systems can be found on many levels in nature and society.  On a micro 

level, they are found in spin systems as well as in reaction-diffusion systems which give 

rise to a complex spatio-temporal behavior.  On macro scales, they are present at various 
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societal levels, for example in economic and social systems where the agents interact, 

compete for resources, and cooperate.  But, certainly the richest source of examples of 

complex systems is found in nature.  Biological systems consist of a large number of 

small interacting components at one level and their interaction gives rise to new 

structures at a higher level, including e.g. bio-molecules, cells, specific organs, 

organisms, populations, and finally entire ecosystems.  Morphogenesis, or formation of 

structures in nature, is always produced by complex growth processes (Jacob 1994).  

Biological systems can also be characterized by their adaptive behavior, i.e. their 

underlying mechanism to adapt and survive in uncertain environments.  Hence, they are 

often referred to as complex adaptive systems that can appropriately adapt to the 

environmental changes.  From an engineering point of view, it is important to ensure that 

engineering designs can adapt to changing environmental conditions because that 

guarantees their robustness, a required property of almost all engineering products. 

 One of the most prominent examples of a complex system is human brain.  It is 

arguably the most complex system on the Earth, regarded by many as the ‘cathedral of 

complexity’ (Schum 2001).  It consists of the order of 10  neurons, and each neuron is 

connected to 10 -10  other neurons.  This extremely complicated spatial topology of 

neurons and richness of their interconnections can produce incredibly complex behavior 

that cannot be found nor derived from any set of neurons in the brain. 

After almost 40 years of intensive scientific research, the techniques of nonlinear 

dynamics have been relatively well developed.  Nevertheless, a current state of 

knowledge in this field is largely limited to low-dimensional systems in which there are 

10

3 4
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only a 

ments in all of 

these f

2.3.3. Dynamical Systems in Structural Engineering 

Engineers are often confronted with nonlinear phenomena and dynamical systems 

simply because they are confronted with nature.  Little has been done so far, however, in 

terms of research progress in the context of dynamical systems approach to nonlinear 

engineering problems.  Due to complexity of the problems and available computational 

resources, usually simplified linear models were assumed rather than nonlinear ones.  

This situation, however, is gradually changing (Thompson 1999).  A short summary of 

several recent applications of dynamical systems and chaos theory in structural 

engineering is presented below. 

Elastic buckling is a nonlinear problem of great importance for engineers. Almost 

all engineering structures that are designed and built nowadays must be checked against 

buckling resistance.  This problem has been recently analyzed from a dynamical systems 

perspective by Holmes et al. (2000; 1999).  In their study, the problem of elastic buckling 

of an inextensible rod with free ends has been investigated.  The rod was confined to the 

plane and subjected to distributed body forces derived from a potential field.  This 

few important dynamical variables.  At present, scientific efforts are focused on 

much bigger, high-dimensional, dynamical systems.  Major areas of research include 

spatio-temporal chaos, synchronization, quantum chaos, pattern formation and complex 

growth, and time-series analysis.  It’s impossible to present recent develop

ields even in a very general outline.  The following section presents only a short 

summary of recent developments in this field which are relevant to structural 

engineering. 
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boundary value problem (BVP) may be written as a Hamiltonian system with three 

degrees of freedom.  Numerical studies performed by Holmes et al. revealed that this 

system has chaotic solutions.  They have investigated local bifurcations of these solutions 

as well as homoclinic and heteroclinic orbits.   

In the example described above, dynamical systems and chaos theory have been 

successfully applied to a boundary value problem in nonlinear mechanics.  This new 

approach brings a broader/holistic understanding of mechanical phenomena in a sense 

that it generates a “global picture” of a behavior of an engineering system. 

Another interesting research problem, which is related to structural engineering, 

involves excited heated plate systems.  Such systems are used for example in hypersonic 

skin panels in transatmospheric vehicles and have been thoroughly studied by many 

scientific teams.  Recently, Fermen-Coker et al. (2000) conducted numerical simulations 

using dynamical systems approach to analyze chaotic oscillations that occur under 

various external loading and boundary conditions.  They have also examined the impact 

of the panels’ geometry on the system’s dynamic response.  Chaos has been detected 

through the computation of Lyapunov exponents (Alligood et al. 1996).  They have also 

considered other parameters which affect the panels’ dynamical behavior: their size and 

aspect ratio as well as their thickness.  It has been found that the critical temperature 

increase varies significantly when the aspect ratio is close to 1, i.e. when the panels are 

square. The closer the panel to the square shape, the more sensitive the critical buckling 

temperatures are to the changes in the aspect ratio of the panel. This effect is increased if 

the plate dimensions are smaller. 
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Research in aerospace engineering on controlling or prevention of chaotic 

oscillations in real-world systems has been mainly focused on the use of adaptive 

structu

 

exampl

 for engineers. 

2.3.4. Dynamical Systems Model of a Simple Genetic Algorithm 

As I discussed earlier, evolutionary algorithms are also instances of complex 

adaptive systems.  As such, they can be modeled and analyzed using available dynamical 

systems theory and tools.  One of such models considers a simple version of a genetic 

algorithm, called a simple genetic algorithm (SGA), and is due to Vose (1999b).  The 

model establishes a mathematical framework in which actions of basic genetic operators 

like proportional selection, mutation, and crossover can be analyzed.  In its initial 

formulation (Vose 1990), the dynamical system model of an SGA considered only binary 

representations, mutation determined by rate, one-point crossover, and used a simplifying 

assumption of infinite population. Subsequently, the model has been extended and 

generalized to Random Heuristic Search, which is sufficiently general to describe a 

ral concepts (Hall II and Hanagud 1991). Fermen-Coker et al. study brings a new 

understanding and a global picture of this design space.  It is aimed to establish new 

design rules that can be incorporated at the design stage, so that the use of active control 

may be minimized, or if possible, eliminated.  Their research resulted in discovering 

interesting relations between the panels’ geometry, the critical temperature, and the 

amplitude of the excitation force that can be used in a design process.  It is a good

e of how this new approach can be successfully applied to engineering and may 

bring new tools

 



92 

var

program

n the 

space 

or and 

move it to another point in the population space.  Thus, for example the action of the 

nal matrix, where each entry defines a ratio of 

nd the average fitness of all individuals in the population.  

rential at the fixed point has no 

eigenvalue with modulus equal to 1.  

iety of search methods including genetic algorithms, simulated annealing, and genetic 

ming (Vose 1999a).  

Vose’s model of an SGA considers a population of solutions as a point i

of population vectors.  Then the action of the SGA moves this population into 

another point in this space.  The points visited by subsequent generations of the SGA 

form a trajectory.  Hence, we can consider the action of the SGA as a discrete dynamical 

system. 

The action of the SGA from generation to generation is determined by different 

genetic operators.  The action of the proportional selection, mutation, and crossover are 

modeled as mathematical operators (matrices) which act upon a population vect

proportional selection is defined as a diago

the fitness of each individual a

There are three principle conjectures concerning the dynamical model of the SGA 

(Rowe 2001): 

• “It is focused under reasonable assumptions about crossover and mutation, that is, 

given any population vector the sequence converges to a fixed point. This is 

known to be true if the mutation is defined bitwise with mutation rate < 0.5 and 

there is no crossover (Vose 1997). 

• Fixed points are hyperbolic, meaning that the diffe
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• 

initely many fixed-points. 

2. The probability of picking a population vector such that iterates of SGA applied to 

this vector converge to an unstable fixed-point is zero. 

right and Bidwell (1997) have shown, the SGA 

can also exhibit a stable cyclic beha

Wright and Agapie (2001) discovered that the 

infinite population model can exhibit a stable cyclic/chaotic behavior, which implies that 

ggest that the chaotic behavior can be useful for 

restorin

2.4. Overview of Engineering Design 

Any operator on the population space is well-behaved, meaning that it always 

maps volumes into other volumes (image of a volume never has fewer dimensions 

than that volume).” 

Assuming that an SGA is focused, well-behaved, and has hyperbolic fixed-points, 

the following properties hold (Rowe 2001): 

1. “There are only f

3. The infinite population SGA converges to a fixed-point in logarithmic time.” 

Thus, the majority of infinite population models of the SGA always seem to 

converge to a fixed point.  However, as W

vior corresponding to untypical mutation and 

crossover distributions.  In another paper, 

the heuristic is not focused.  They also su

g diversity in a run of a genetic algorithm that is not making any progress.  

 

2.4.1. Engineering Design 

Engineering design and design in general have a long history which can be traced 

back to the beginnings of the humankind.  A brief history of design and its distinction 
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from a craft can be found in (Cross 1989).  SOTA reviews of engineering design, design 

theories, methodologies, and methods are discussed in (Antonsson and Cagan 2001; 

Cross 

002; Newsome et al. 1988; Pahl and Beitz 1996; Tong and Sriram 

1992a; 92b; Tong and Sriram 1992c). 

nitions of engineering design that have been suggested by 

various researchers (Dix  1994; Mostow 1985; Simon 1981).  A definition 

that is 

fields of engineering.  Good introductions to the 

1984; Dym 1994; Dym and Little 2000; Finger and Dixon 1989a; Finger and 

Dixon 1989b; Gero 2

 Tong and Sriram 19

There are many defi

on 1987; Dym

most closely related to the proposed research was proposed by Dym (1994): 

“Engineering design is the systematic, intelligent generation and evaluation of 

specifications for artifacts whose form and function achieve stated objectives and satisfy 

specified constraints.” 

Dym (1994) describes engineering design problems as open-ended and ill-

structured.  Design problems are said to be open-ended because they usually have many 

acceptable solutions, and hence the uniqueness assumption required by many traditional 

analysis techniques cannot be satisfied.  Ill structure of design problems is caused by the 

fact that their solutions cannot be normally found by routinely applying a mathematical 

formula in a structured way. 

The following two sections present recent developments in engineering design 

methods and conceptual design. 

2.4.2. Engineering Design Methods 

Research on design theories, methodologies, and methods is one of the most 

active fields of research in various sub

 



95 

field can be found in (Dym and Little 2000; Finger and Dixon 1989a; Finger and Dixon 

1989b; Waldron and Waldron 1991).  Two main research areas in this field include 

methods of representing artifacts (engineering systems) as well as methods of modeling 

design processes, i.e. processes by which designs are completed.  I discussed SOTA in 

method of representing engineering systems in the context of evolutionary design in 

section 2.1.3.  Recent developments in methods of modeling engineering design 

processes are presented below. 

The proposed models of engineering design processes can be generally divided 

into three categories: 

• Formal models 

• Heuristic models 

• Agent-based models 

The goal of formal approaches to modeling design processes is to establish 

engineering design science (Dixon 1987; Suh 1990).  A systematic approach to 

engineering design has been first proposed by Pahl and Beitz (1984).  In their seminal 

work, four major phases of engineering design are distinguished: clarification of the task, 

conceptual design, embodiment design, and detailed design.  Other models of major 

phases of a design process were proposed by French (1992) and Cross (1989).  An 

axiomatic approach to engineering design process was introduced by Suh (1990).  He 

proposed axiomatic design theory (ADT) which is based on two axioms: independence 

axiom and information axiom.  Formal grammars, both context-free and context-

sensitive, have been introduced to engineering design by Mullins and Rinderle (1991; 
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Rinderle 1991).  Shape grammars have been suggested by Stiny (1980) and applied to 

mechanical design problems by Schmidt and Cagan (1994).  Finally, TRIZ (a Russian 

acronym for the theory of inventive problem solving discussed earlier in section 2.1.2) 

proposed by Altshuller (1969; 1999) provides a systematic methodology of creative 

problem solving in engineering design. 

Heuristic models of an engineering design process are based on the generate-and-

test, or trial-and-error, method.  Here, several methods have been proposed.  Arciszewski 

(1977) proposed morphological analysis in conceptual design.  Protocol analysis based on 

empirical data was used by Stauffer et al. (1987) in mechanical design.  Simulated 

annealing with shape grammar representations was introduced by Shea et al. (1997).  

Roston (1994) proposed genetic design, a design method based on formal grammars and 

genetic algorithms/genetic programming.  Evolutionary computation has a long history in 

modeling design processes which was introduced earlier in section 2.1.2.  Cellular 

automata representations combined with evolutionary algorithms have been proposed in 

the context of architectural design by Frazer (1995).  Chan et al. (2000; 2002) have 

recently introduced an evolutionary framework with dynamic hierarchical representations 

to enhance design process. 

distribu

design sys

constant e

high degree of adaptability.  On the other hand, additional challenges have to be properly 

Agent-based models of an engineering design process provide modular, 

ted, and knowledge-based approach to solving design problems.  Multi-agent 

tems (MADS) can address some important issues in a design process, including 

volution of standards and technologies, dynamic marketplace demands, and 
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resolve

processes onflicts (Lander 1997).  Research in MADS can be traced back 

to the ulti-agent environment for 

engineering design.  D’Am

conceptua ced a multi-agent system for design space 

decomposition.  Ca

n in the following way: 

d, including interoperability among heterogeneous agents, coordination of design 

, and managing c

mid 1990’s.  Shen and Barthes (1995) proposed a m

brosio and Birmingham (1995) used preferences and agents in 

l design.  Parmee (1996) introdu

mpbell et al. (1999) proposed agent-based approach to conceptual 

design in dynamic environments.  Cvetkovic (2000) used agents for a multiobjective 

decision support system in conceptual design.  Gero and Kannengiesser (2003) proposed 

a function-behavior-structure framework for situated agents.  Current SOTA reviews can 

be found in (Gero and Brazier 2002; Lander 1997; Shen and Norrie 1999). 

2.4.3. Conceptual Design 

Conceptual design forms an initial stage of a design process.  Pahl and Beitz 

(1996) define the conceptual desig

“Conceptual design is that part of the design process in which, by the 

identification of the essential problems through abstraction, by the establishment of 

function structures and by the search for appropriate working principles and their 

combination, the basic solution path is laid down through the elaboration of a solution 

principle.  Conceptual design determines the principle of a solution.”  

Dym (1994) defines conceptual design from a more computational perspective.  

He considers the conceptual design phase of a design process as a phase that “… has as 

its output a concept.  This goal is achieved by:  

• identifying the most crucial or essential problems 
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• establishing a function structure, i.e. a framework in which the artifact will 

perform its primary function, including a decomposition of the primary 

function into subfunctions that will be performed by subsystems or individual 

components 

• formulation of a solution procedure that can be successfully applied to the 

design problem 

• preparing concepts or skeleton designs or schemes 

• evaluating candidate schemes against the relevant criteria, including both 

economic and technical matters.” 

Recently Arciszewski et al. (2003) proposed a new approach to conceptual design 

ontext of chain the c os.  They distinguish two types of conceptual design processes based 

on   a 

limited

onds to a single design concept.  On the other hand, a Type II process allows one 

the number of design concepts generated.  The first type (Type I) occurs when only

 number (one or a few) of design concepts are produced.  This type corresponds to 

a traditional approach to conceptual design.  The second type (Type II) appears when 

many design concepts are generated, on the order of thousands or even hundreds of 

thousands.  The latter type is equivalent to a situation when a designer uses various 

conceptual design support tools.   

When conceptual design process is analyzed as a process of learning, or acquiring 

engineering knowledge, then a Type I process results in a limited amount of additional 

background knowledge.  Therefore, this type can be called a point design, because only a 

limited number of points in the design space can be identified, where each point 

corresp

 



99 

to acqu

t will become soon a predominant type of a conceptual design process.   

They also propose a chaos-based model for the Type II conceptual design process.  

It has three major assumptions:  

• “It is a search process, conducted through the design space, for design concepts 

and acquiring background 

 design process.  When all generated points 

ire significant amount of additional background knowledge.  Thus, it can be called 

apicture building design.  This picture is created considering together a large number of 

points in the design space.  All these points taken together form an invaluable picture of a 

given engineering design domain and give a new insight into it on a conceptual level. 

The Type I conceptual design process has been the subject of design research for 

the last 30 years that resulted in many design theories and methods (see section 2.4.2). 

However, very little is known about the Type II process, although, as Arciszewski et al. 

suggest, i

that satisfy given requirements and constraints. 

• It can be classified at the Type II conceptual design process, which involves the 

generation of a large number of design concepts 

knowledge. 

• It can be analyzed using concepts and models developed in the field of chaos.” 

In their view, a conceptual design process can be considered as a dynamical 

search process iterated many times, and each time a design concept is produced 

(corresponding to a single point in the design space).  The generation of the individual 

design concepts is driven by a specific mechanism, which can be a heuristic method or an 

evolutionary computation algorithm.  Such a single concept generation can be assumed as 

occurring on the local level of the conceptual
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in the d

ell-known design concepts attract the 

attentio  

2.4.4. Design of Structural Systems in Tall Buildings 

The empirical validation of the design method proposed in this dissertation (see 

section 3.6 for a detailed description of the entire validation process) was conducted 

using two classes of design problems in the domain of steel structural systems in tall 

buildings.  Hence, in this section I introduce the problem of designing steel structural 

systems in tall buildings and discuss its major characteristics. 

Steel skeleton structures in tall buildings are considered the most complicated 

structures designed and built.  Their conceptual and physical complexity can only be 

compared to such complex structural systems as, for example, large span bridges or large 

span space structures.  Usually, steel structural systems in tall buildings are designed as a 

esign space are analyzed together, then the global picture of the conceptual design 

process emerges.  This picture can be assumed as appearing on the global level of the 

conceptual design process, and it can be studied from the dynamical systems point of 

view.  

When one uses a dynamical systems approach to analyze a design process, then 

the well-known design concepts can be treated as attractors in the design (search) space.  

It has been proved (Clarke 2000) that such w

n of human designers. This phenomenon has been described as an inertia vector.  

Chaos-based model of conceptual design implemented in a design support tool could be 

then focused on minimizing the influence of inertia vector (avoiding the basin of 

attraction of a well-known design concept) and searching the design space for novel 

designs. 
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system of vertical members called columns, horizontal members called beams, and 

various diagonal members called wind bracings, since they are added to columns and 

beams to increase the flexural rigidity of the entire system and that is driven mostly by 

stiffness requirements related to wind forces. 

Skeleton structures are designed to provide a structural support for tall buildings.  

They have to satisfy numerous requirements regarding the building’s stability, transfer of 

loads, including gravity, wind and earthquake loads, deformations, vibrations, etc.  For 

this reason, the design of structural systems in tall buildings requires the analysis of their 

behavi

ns of all members (including beams, columns, and wind bracings) are optimized 

during 

or under various combinations of loading and the determination of an optimal 

configuration of structural members.  It is a difficult, complex, and still not fully 

understood domain of structural engineering.   

The two design problems considered in this dissertation represent two classes of 

design problems characterized by distinct levels of their structural complexity.  First, a 

relatively simpler problem of designing a wind bracing system in a tall building is 

investigated.  In this problem, an optimal configuration (topology) of wind bracing 

members in a steel structure is sought assuming the same configurations of beams, 

columns, and supports throughout an entire design process.  In this case, however, cross-

sectio

the detailed design stage (sizing optimization).  Next, this problem was extended, 

and novel as well as optimal configurations of the entire structural system, which 

includes beams, columns, wind bracings and supports, were sought.   

 



102 

The two design problems described above exhibit some important properties 

shared by a much larger class of problems in structural engineering and engineering 

design in general.  First, both classes of investigated engineering systems consist of a 

relatively large number of identical, simple, and locally interacting structural members.  

For example, in the problem of designing an optimal wind bracing system, a 

configuration of wind bracing members is represented by attributes which assume 

identical sets of possible values.  Also, the configuration of wind bracing members forms 

a simple and uniform structural grid contained within adjacent vertical and horizontal 

grid lines defined by columns members and beam members, respectively.  The wind 

and with the column and beam 

membe

a design 

concep

bracing members locally interact with each other 

rs placed in their neighborhood.  A global behavior of the structural system 

emerges from the local interactions of all structural members from which the steel 

structure is formed. 

In the conducted design experiments, the process of design is considered as a 

three-stage process.  The first stage, design concept generation, produces 

t, or a class of design concepts.  By this term, an abstract description of a future 

structural system is understood, and it is provided in terms of qualitative, or symbolic, 

attributes.  The second stage, topology/shape optimization, identifies an optimal 

configuration (topology) of a structural system, the nature of connections, materials, etc. 

Finally, the third stage (sizing optimization), produces a detailed design, and it involves 

the structural analysis, dimensioning, and numerical optimization.  A detailed discussion 
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on the phases of the design process assumed in this dissertation is presented in section 

3.4. 

One of the most difficult and important parts of the design process is the 

determination of an appropriate configuration (topology) of a structural system for a 

given building.  In terms of novelty and weight of a structural system, the optimization of 

its con

2.5. Overview of Epistemology and Validation of Design Methods 

 two major philosophical 

schools

figuration is much more important than the final numerical optimization of 

individual structural members, or even of an entire structural system, if an incorrect 

design concept is selected.  Traditionally, however, due to the complexity of this 

problem, a structural system configuration is selected considering only very few design 

concepts which are not necessarily optimal for a given building (Mustafa and 

Arciszewski 1992).  In this dissertation, I address this problem by proposing novel 

mechanisms of generation of design concepts and their optimization based on models of 

complex systems (see chapter 3). 

2.5.1. Historical and Philosophical Perspective 

Epistemology (the theory of knowledge) has a long history that can be traced back 

to Phyrro and his skeptics in ancient Greece.  Historically,

 emerged regarding the criterion for truth and the validation of new scientific 

knowledge: Foundationalist/Formalist/Reductionist School of Epistemology and 

Holistic/Social/Relativist School of Epistemology (Barlas and Carpenter 1990). 
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Foundationalist school started by Aristotle and Plato assumes that there are 

absolute truths that are independent of time, place, and context.  Two major trends 

emerged within this school, including rationalism and empiricism.  Rationalism was 

founded by Descartes ([1641] 1931) who asserted that “the truth is innate and prior to all 

experience” and “human knowledge about the truth is based on reasoning.”  The latter 

assertion was challenged by Locke ([1690] 1894), the father of the empiricism, who 

argued that “all human knowledge about the truth is based on experience rather than 

reasoning.”  More recently, foundationalist view was reintroduced by Russell (Russel 

1962; Slater 1988) and his logical atomism, and Wittgenstein ([1921] 1961), the father of 

logical

 regarded truth as a 

process and not as a fixed state of things.  In his view knowledge is socially, culturally, 

and historically dependent and hence entirely objective verification of knowledge claims 

in not possible.  More recently, foundationalist view was challenged by Kuhn ([1962] 

1970) who presented a historical analysis of how science progresses and argued that a 

 positivism.  Logical positivism asserted that “knowledge can only be claimed if 

judged true by meaning [analytically true] or true by virtue of experience [synthetically 

true]” (Pedersen et al. 2000).   

Foundationalist views were first questioned by Kant ([1781] 1933) who asserted 

that “all knowledge starts from experience” but “not all knowledge arises out of 

experience.”  Kant first suggested that not all truths are innate and absolute.  His views 

were later extended by Hegel ([1817] 1959) who totally rejected the idea of innate truths 

and introduced a new logic, called the coherence theory.  In Hegel’s logic conflict and 

contradictions are regarded as necessary elements of truth.  He
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change to a new paradigm in science cannot be based strictly on logical reason.  The 

second part of the last century brought further attacks on empiricism and led to the 

relativist philosophies of science (Barlas and Carpenter 1990). 

The two schools of epistemology discussed earlier formed two opposing 

philosophies of validating new scientific knowledge.  First, logical empiricist validation, 

founde

s that have right 

or wro

s 

approac

).  Thus, relativist approach 

is more ap p d hence it 

was selected to validate Emergent Engineering Design, the design method proposed in 

this dissertation.  The follwoing section introduces a framework for validating design 

d by the Foundationalist/Formalist/Reductionist School of Epistemology, is a 

“strictly formal, algorithmic, reductionist, and ‘confrontational’ process, where new 

knowledge is either true or false.  The validation becomes a matter of formal accuracy 

rather than practical use.  This approach is appropriate for closed problem

ng answers associated with them, like mathematical expressions or algorithms” 

(Pedersen et al. 2000).  Relativist validation, on the other hand, is based on the 

Holistic/Social/Relativist School of Epistemology, and can be defined as a “semiformal 

and communicative process, where validation is seen as a gradual process of building 

confidence in the usefulness of the new knowledge (with respect to a purpose).  Thi

h is appropriate for open problems, where new knowledge is associated with 

heuristics and non-precise representations“ (Pedersen et al. 2000).   

As I discussed in section 2.4.2, engineering design problems are open-ended (have 

many acceptable solutions) and ill-structured (solutions cannot be normally found by 

routinely applying a mathematical formula in a structured way

pro riate for validation of design methods (Pedersen et al. 2000) an
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method

sented in section 3.6. 

2.5.2. Validation Square – A Framework for Validation of Design Methods 

Validation of traditional analytical engineering research, based on mathematical 

modeling, has been mostly conducted using a logical empiricist validation approach.  

Design m

modeling but also on subjective statements and various heuristics.  Engineering design is 

mainly

elements ess).  It requires both science and 

art to a

to be bette

Hence, research validation in this dissertation is conducted using the relativist 

approach, and more specifically using the Validation Square methodology recently 

proposed to validate design methods and research (Pedersen et al. 2000).  The validation 

strategy assumed in this dissertation is based on the following statement: 

“Scientific knowledge in the field of engineering design is defined as socially 

justifiab

nowledge validation becomes a process of 

building confidence in its usefulness with respect to a purpose” (Pedersen et al. 2000). 

s, called the Validation Square.  A detailed description of the validation 

methodology (based on the Validation Square framework) which I use in this dissertation 

to validate the proposed design method is pre

ethods for engineering design, however, rely not only on mathematical 

 concerned with open problems that involve both objective and subjective 

and have no single right answer (non-uniquen

chieve its goal (Pedersen et al. 2000). Hence, relativist validation approach seems 

r suited for validation of design methods. 

le belief according to the Relative School of Epistemology.  It is due to the open 

nature of design method synthesis, where new knowledge is associated with heuristics 

and non-precise representations.  Thus, k
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The process of validation of a design method, according to the Validation Square 

k, is shown in Figure 12 (adapted from (Pedersen et al. 2000)).  As stated framewor

earlier, the validation of new scientific knowledge is a process of building confidence in 

the use

of a desig  major criteria:  

s correct design solutions. 

Correct solutions are understood in this context as solutions with acceptable 

performance.  Effectiveness provides a qualitative evaluation of the design method while 

s quantitative assessment. 

 Accepting the internal consistency of the way the constructs are put together in 

• Accepting the appropriateness of the example problems that will be used to 

verify the performance of the method (Empirical Structural Validity) 

 

fulness of the proposed design method with respect to a purpose.  The usefulness 

n method is associated with the two

• Effectiveness - the method provides design solutions correctly. 

• Efficiency - the method provide

efficiency gives it

Effectiveness of a design method can be realized by conducting the qualitative 

process of structural validation.  This process consists of three major stages (Pedersen et 

al. 2000): 

• Accepting the individual constructs constituting the method (Theoretical 

Structural Validity) 

•

the method (Theoretical Structural Validity) 
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Figure 12. Validation Square framework for validation of design methods 

Efficiency of a design method can be realized by conducting the quantitative 

process of performance validation.  This process also consists of three major stages 

(Pedersen et al. 2000): 

• Accepting that the outcome of the method is useful with respect to the initial 

purpose for some chosen example problem(s) (Empirical Performance 

Validity) 
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• Accepting that the achieved usefulness is linked to applying the method 

(Empirical Performance Validity) 

• Accepting that the usefulness of the method is beyond the case studies 

(Theoretical Performance Validity) 

A detailed description of how the Validation Square methodology was used in this 

dissertation to validate Emergent Engineering Design is presented in section 3.6. 

2.6. Summary 

onding to the 

components of the proposed design m

ntroduced the classes of design problems considered in this 

chapter gave a historical perspective on the 

roblem of validation of new scientific knowledge and described the validation 

methodology which was used in this dissertation to validate Emergent Engineering 

Design. 

The first section of this chapter introduced evolutionary computation and 

canonical evolutionary algorithms.  It also provided description of the current research 

developments in the subfields of evolutionary computation related to engineering design.  

The topics discussed in this section included evolutionary design and creativity, new 

In this chapter, I presented relevant background knowledge to provide some 

context necessary for understanding the rest of this dissertation.  The first part of this 

chapter introduced current research developments in the fields corresp

ethod, i.e. evolutionary computation, cellular 

automata, and complex systems.  The second part provided an overview of engineering 

design in general as well as i

dissertation.  Finally, the last part of this 

p
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ways of representing design, methods of handling constraints, multiobjective 

evolutionary design, and coevolutionary design.  Also, together with a comprehensive 

review of the appli engineering, open 

issues and most promising research directions were discussed. 

The second section of this chapter introduced cellular automata and the New Kind 

of Science.  ex behavior. 

Four classes o tomata were 

discussed: fix d localized 

propagating s  was 

part of

rtation.  Finally, two conceptual design problems in structural engineering, 

namely conceptual design of wind bracing systems and conceptual design of the entire 

cations of evolutionary computation in structural 

It showed that even very simple programs can produce compl

f the dynamical behavior exhibited by elementary cellular au

ed-point behavior, periodic behavior, chaotic behavior, an

tructures.  Also, a numbering scheme of cellular automata rules

introduced as it will be used extensively in the remaining part of this dissertation. The last 

 this section reported several examples of applications of cellular automata in 

structural engineering. 

The third section provided a high-level material on dynamical systems, chaos 

theory, and complex adaptive systems.  Also, a few applications of dynamical systems 

and chaos theory in structural engineering were presented.  The last part of this section 

introduced a dynamical systems model of a simple genetic algorithm to show 

applicability of these theoretical tools to model complex adaptive systems. 

The fourth section of this chapter introduced engineering design and presented a 

classification of existing design methods.  It also presented in more detail an initial stage 

of the design process, called conceptual design, which will be specifically addressed in 

this disse
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steel s

Having provided relevant background knowledge, I can now introduce Emergent 

Engineering Design, the design method proposed in this dissertation.  It will be described 

in detail in the next chapter. 

 
 

tructural systems in tall buildings, we described.  They will be used in the 

remainder of this dissertation to empirically validate Emergent Engineering Design. 

The last section of this chapter provided philosophical and historical perspective 

on validation of new scientific knowledge.  Also, the Validation Square, a framework for 

validation of design methods, was introduced and described in detail.  This framework 

will be used in this dissertation to validate Emergent Engineering Design. 

 



 

3. EMERGENT ENGINEERING DESIGN 

art of this chapter, in sections 3.1 and 3.2, I state the problem addressed by 

the pro

 
 
 
 

“Living organisms are examples of design strictly for 
function, the product of blind evolutionary forces rather 
than conscious thought, yet far excelling the products of 
engineering.  When a designer looks at nature he sees 
familiar principles of design being followed, often in 
surprising and elegant ways.  Sometimes, as in the case of 
flight, he is inspired to invention: more commonly, he 
discovers his ideas embodied in some animal or plant.”  

 (Michael French) 

In this chapter, I propose and define Emergent Engineering Design, a design 

method based on models of complex systems and the main objective of this dissertation.  

In the first p

posed design method and relate it to the open issues in the field of engineering 

design which I identified in the background review presented in chapter 2.  Next, I define 

Emergent Engineering Design and introduce the structure of the argument presented in 

this dissertation in the form of research questions and the corresponding research 

hypotheses.  I start section 3.3 with the fundamental question and the fundamental 

hypothesis of this dissertation and subsequently decompose them into research questions 

and research hypotheses corresponding to the major phases of a conceptual design 

process. 

112 
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Furthermore, in section 3.4, I discuss the scope of research reported in this 

dissertation and provide a detailed description of the assumptions incorporated in the 

proposed design method.  I also provide an outline of the conducted research in section 

3.5.  In the last part of this chapter, in section 3.6, a detailed description of the validation 

methodology which was used to validate Emergent Engineering Design is presented.  

Figure 13 shows an organization chart of chapter 3 with all sections discussed above. 

  Chapter 3 
Emergent Engineering Design

Problem Open  Research Research Research Validation 
Assumptions Outline Questions and 

Hypotheses 
Issues Statement Methodology

Theoretical 
Structural 
Validation 

Empirical 
Structural 
Validation 

Empirical 
Performance 
Validation 

Theoretical 
Performance 

WHAT? WHY? HOW?

 

Figure 13. Organization of chapter 3 

Validation 

ement 

lso provide a new understanding of 

3.1. Problem Stat

The underlying problem I addressed in this dissertation can be stated in the 

following way: how to establish a method for designing engineering systems based on 

models of complex systems and inspired by the processes occurring in nature? If such a 

method can be discovered, developed, and implemented, it may be applied to a broad 

spectrum of engineering design problems.  It may a
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engine

ing 

design 

quired at each stage would involve 

approp

y, chaos theory, models of various 

complex systems), and biology (processes of natural selection, evolution and 

coevolution) that made this goal achievable. 

ering design as well as significantly enhance traditional engineering design 

processes and achieve their two important objectives: development of novel designs and 

their optimization. 

Development of a new design method implies a general framework for do

of engineering systems.  Thus, it cannot be limited to a particular sub-domain but 

it must be applicable to a broad spectrum of engineering problems.  Generality of the 

proposed method should also encourage its use at all stages of a design process, i.e. it 

must be applicable to conceptual design, embodiment design, as well as detailed design 

(see section 2.1.2).  The only modifications re

riate tuning of the representation accuracy (granularity) and its nature (symbolic, 

symbolic + numerical, numerical), concept generation mechanisms (more generative and 

creative versus more parameterized and optimization oriented), and an evaluation 

procedure. 

At first, the problem statement and scope of the research seem to be too ambitious 

and difficult to achieve.  It is my opinion, however, that all the required pieces necessary 

to succeed are already available and they have to be properly assembled and integrated.  

It is the appropriate synthesis/fusion of knowledge coming from computer science 

(algorithms, data structures), engineering (design representation spaces, design 

evaluation), mathematics (dynamical systems theor
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The proposed design method requires some domain specific knowledge in a form 

of a design representation as well as a design evaluation procedure.  However, the 

process of building a representation of an engineering system should not be as tedious as 

it is the case with some previous approaches, e.g. formal grammars (Roston 1994), or 

shape grammars (Schmidt and Cagan 1998).  Also, the issue of providing a proper design 

evaluation procedure can be handled quite efficiently.  In structural engineering, for 

example, a single structural analysis package would be able to evaluate many design 

concepts, including simple frames and trusses as well as complex steel structural systems 

in tall buildings. 

It is, of course, impossible to investigate the proposed design method in its 

entirety within the timeframe of the dissertation.  Hence, several decisions were made to 

restrict the scope of research and to make it more manageable.  Thus, in this dissertation I 

investigate Emergent Engineering Design in the context of conceptual design problems 

only (s

3.2. Open Issues 

As I discussed in sections 2.1.3 and 2.4.2, there have been many suggested 

approaches to develop methods for engineering design.  However, in my opinion, most of 

them were focused exclusively on only one of the two important aspects of engineering 

design, i.e. either on creativity or on optimization.  Hence, there is a need to develop a 

method that could account for both of these aspects. 

ee section 2.4.3).  Furthermore, the applications and empirical validation of the 

proposed design method are restricted to structural engineering problems (see section 

2.4.4). 
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Another issue is that many of the proposed design methods tended to be 

assembled from conceptually diverse components and thus not giving a coherent view of 

a design process.  It is my belief that it is important, and at the same time possible, to 

develop a coherent engineering design method based on models of complex systems. 

Yet another relevant, and so far unexplored, issue is the possibility of modeling 

natural

a. 

One of the major properties of complex systems is the richness of local 

interactions among the systems’ elements and their emergent behavior.  This issue has 

been investigated by several researchers in the context of engineering design, mainly in 

architectural design (Chan et al. 2002; Frazer 1995; Poon and Maher 1996b).  There are, 

however, very few applications of these ideas in civil and structural engineering.  On the 

other hand, structural engineering systems are known to exhibit large sensitivity to local

interac

able.  It may provide a more qualitative and holistic approach to this traditionally 

strictly quantitative and optimization-oriented field. 

3.3. Research Questions and Hypotheses 

The argument for this dissertation is structured in a way that corresponds to the 

Scientific Method.  The structure of this argument has been adapted from (Pedersen 

 phenomena using simple programs rather than systems of complicated partial 

differential equations, as has been done in traditional science.  As suggested by Wolfram 

(2002), complex systems modeled by simple programs might provide completely new 

understanding of many processes and phenomen

 

tions among structural elements.  Thus, further investigation of the potential of 

representing structural systems using simple rules that model local interactions is highly 

justifi
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1999).  Research questions are used to determine research issues.  Research hypotheses 

provide an intellectual value to the research supporting answers to research questions.  

Hypothesis testing is employed to justify claims of contribution to the field in which the 

research is conducted (Pedersen 1999).  When presented in the context of Natural 

Science, research questions correspond to observations (articulating the ‘truth’), 

hypoth

ich new scientific 

knowle

t is scientific knowledge, and what constitutes 

confirmation of a knowledge claim?” 

The formulation of the fundamental research question this dissertation attempted 

to answer was motivated by the problem stated in section 3.1, the nature of the problem 

outlined in chapters 1 and 2, as well as open issues in the field of engineering design 

discussed in section 3.2.  The fundamental research question can be expressed in the 

followi

eses correspond to explaining the observations (understanding the ‘truth’), and 

hypothesis testing corresponds to validating the explanation (accepting knowledge about 

the ‘truth’) (Pedersen 1999).  Hence, as it is argued in Pedersen (1999), “in the context of 

engineering design, hypothesis-testing becomes the vehicle by wh

dge is accepted and added to the current pool of knowledge.  This ties research 

validity discussion strongly to a fundamental problem addressed early in epistemology 

and later in the philosophy of science: wha

ng way:  
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Correspondingly, the formulation of the fundamental research hypothesis of this 

dissertation is based on the concepts of complex systems discussed in section 2.3.2 and 

inspired by the processes and phenomena occurring in nature.  The fundamental 

hypothesis is formulated in the following way: 

Given the funda

hypothesis, the ultimate o

way: 

Emergent Engineeri

engineering design (i

evaluation) are model

Fundamental Research Question 

How can one construct an effective method for designing engineering systems that 

would support development of novel designs and their efficient optimization? 

 

Fundamental Research Hypothesis 

ng Design, a design method in which all major elements of 

.e. design representation, actual design process, and design 

ed as complex systems, can effectively produce novel designs 

and efficiently optimize them. 

 

mental research question and the fundamental research 

bjective of this dissertation can be expressed in the following 
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The proposed desig

(EED).  The method is und

of models, procedures, an

proposed method will provi

The ultimate dissert

facilitate the development o

divided into four sub-issues

• Identification of 

creativity and des

• Determination of

into sub-problem

• Selection of effic

Develop an engineerin

provides a conceptually

• Establishing mec

robustness 

The four issues disc

numbered 1 to 4, respective

 

Ultimate Dissertation Objective 

g design method based on models of complex systems that 

 coherent framework for producing novel designs and their 

efficient optimization. 
 

n method has been named Emergent Engineering Design 

erstood here as a basic conceptual system consisting of a class 

d algorithms for engineering design.  The validity of the 

de an answer to the fundamental question. 

ation objective is, out of necessity, very general.  In order to 

f the proposed method in a more structured way, it has been 

 pertaining to: 

mechanisms to accomplish design novelty (see discussion on 

ign in section 2.1.2) 

 effective ways of decomposing complex design problems 

s  

ient optimization mechanisms 

hanisms to evaluate designs in a way to guarantee their 

ussed earlier are addressed in the following research questions 

ly. 
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f

r

t

d

 

Research Question 1 (Represent): 

Based on the existing knowledge on how to represent engineering systems;  

what mechanisms and models can be used to produce novel designs? 

Research Question 2 (Decompose): 

Knowing that complex engineering design problems are usually decomposed into sub- 

problems; how can a decomposition of an engineering system be defined and how can 

a decomposed system be effectively designed? 

Research Question 3 (Generate and Optimize): 

One of the major objectives of almost all engineering design processes is achieving 

optimality; what mechanisms should be used to efficiently optimize engineering 

designs? 

Research Question 4 (Evaluate): 

Evaluation of design concepts is one of the most important stages of a design process; 

how can the evaluation process be performed to accomplish robustness of designs? 

 

Finding answers to these questions is coupled with a successful development of 

 upon which the EED is built.  The 

ormulation of the four research hypotheses, corresponding to the previously stated 

esearch questions, is presented below.   

he proposed method of engineering design.  The models, procedures, and algorithms 

iscussed in chapters 1 and 2 form hypotheses
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 hypotheses in relation to the posed research questions is 

based o

g invalidated.  In this dissertation, the research questions and 

Research Hypothesis 1 (Represent): 

Evolutionary design and complex syst

Evolutionary computation provides a framework for conducting engineering design 

processes and optimizing engineering designs. 

 4 (Evaluate): 

Comp

ems provide a framework for defining 

generative representations, i.e. representations of engineering systems based on 

simple programs, which can successfully produce novel designs. 

Research Hypothesis 2 (Decompose): 

Cooperative coevolutionary models provide an efficient framework for a 

decomposition of complex design problems and conducting design processes using 

cooperative coevolutionary algorithms. 

Research Hypothesis 3 (Generate and Optimize): 

Research Hypothesis

etitive coevolutionary models are suitable for adaptive testing and evaluation of 

engineering design concepts and can successfully increase robustness of generated 

designs.  

Selection of the research

n the discussion and justification presented in chapters 1 and 2.   In the Scientific 

Method, research questions are answered when the corresponding research hypotheses 

are tested and resist bein
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corresponding research hypotheses are incorporated in the structure of EED, as shown in 

Figure 14.   

 

Figure 
questions and corresponding research hypotheses 

igure 14 shows that answering the fundamental research question is coupled 

with the validation of the supporting research hypotheses, which in turn is coupled with 

14. Phases of Emergent Engineering Design and their relationship to four research 

F
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the validation of Emergent Engineering Design.  A detailed description of the validation 

methodology will be presented later in section 3.6. 

Even though the fundamental research question and the fundamental research 

hypothesis have been considerably refined, the resulting four research questions and four 

research hypotheses are still quite general and rather vague.  However, at this stage, they 

need to be for

design m  them, some domain and problem specific 

info  must be added, e.g. we have to define what we mean by a novel, or optimal, 

design, a

refineme (structural 

s (conceptual design of wind bracing systems 

and conceptual design of steel structures in tall buildings).  The refined research 

questio

mulated in this manner due to the intended generality of the proposed 

ethod.  In other to further refine

rmation

nd an effective, or efficient, design process.  Chapters 6-8 show the process of 

nt of the research questions 1 and 3 for a specific domain 

engineering) and specific design problem

ns will be sufficiently precise to form the basis for hypotheses that can be tested 

and possibly falsified. 

In the remainder of this dissertation, I investigate the core of the proposed design 

method, i.e. phases 1 (represent) and 3 (generate and optimize).  Phases 2 (decompose) 

and 4 (evaluate) will become a part of the future work. 

3.4. Research Assumptions 

This section presents research assumptions incorporated in the proposed method 

regarding the major phases of an engineering design process and a level of generality of 

design representations.   
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The first set of assumptions is related to the process of modeling of a conceptual 

design process.  EED assumes four major phases of conceptual design in engineering.  

The phases correspond to similar phases in traditional conceptual design, as shown in 

Figure 15.  

 

Figure 15. Major phases of Emergent Engineering Design and their relationship to phases 
of traditional conceptual design 

A brief description and comparison of the identified phases in traditional 

conceptual design and the proposed EED is presented below.   
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Phase 1 

In this phas

prepared. 

Traditional:  

Appropriate model of an engineering system is defined, including all 

requirements and constraints. 

EED: 

A design representation space is created, and the requirements as well as 

e, an abstract description of an engineering system to be designed is 

constraints on the values representing specific attributes are defined. 

Phase 2 

This phase involves a decomposition of a design problem.  This phase is optional 

and is usually conducted only for complex design problems. 

A decomposition of an engineering system can be established at two levels. First, 

an engineering system’s geometry might suggest a possible decomposition of a problem.  

In this case, the design problem can be divided into a set of decoupled sub-problems 

which are independently solved and finally asse

concept.  Second, separate functions of vari

suggest ano

identified by perform

domain of steel stru

mbled together to form a complete design 

ous parts of an engineering system might 

ther plausible decomposition.  In that case, design components can be 

ing different functions in an engineering system.  For example, in a 

ctural systems of industrial buildings designers traditionally 
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decompose  

is performed se

of the structure in structural system is complete). 

Traditional

Design

or func  and simplifying assumptions. 

EED: 

Design

represe

subseq

Frequen

conceptual desi

method, howeve

used to design c

Phase 3

the problem into two sub-problems, i.e. design of the main structural system 

parately from design of a system of wind bracings that assure the rigidity 

(usually done after the ma

:  

 decomposition is performed manually by designers based on geometric 

tional criteria using various heuristics

 decomposition is explicitly specified at a representational level by 

nting each solution to a sub-problem as a separate individual and 

uently coevolving the individuals in several populations. 

tly, phases 1 and 2 are combined together and treated as one phase of the 

gn, called problem formulation (Arafat et al. 1992).  In the proposed 

r, they are treated separately because different models and algorithms are 

omplex engineering systems that can be decomposed. 

 

In this p ls/representations 

specified in pha

Traditional

Selecti

conside

 

hase, feasible design concepts, represented by mode

ses 1 and 2, are generated and optimal solutions are sought. 

:  

on of feasible concepts is performed.  Usually, a human designer 

rs only a few alternative design concepts. 

 



127 

EED: 

Thousa ere, various 

onary and cooperative 

Phase 4

nds of designs concepts are generated automatically.  H

complex systems modeled by simple programs, e.g. one-dimensional and two-

dimensional cellular automata, are used to generate design concepts 

(representations of engineering systems) and evoluti

coevolutionary algorithms to perform design optimization (representations of 

design processes). 

 

EED: 

The evaluation process is combined with generation and optimization of 

engineering design concepts.  When a new generation of design concepts is 

produced, the behavior of individual designs is analyzed/simulated by a 

structural analysis package.  The process of analysis/simulation of behavior of 

engineering systems represented by design concepts requires one, or sometimes

more, evaluation scenarios.  They can be determined in the following ways:  

In this phase, evaluation of design concepts, generated earlier in phase 3, is 

conducted.  

Traditional:  

A structural analysis package is used to perform simulation of behavior of an 

engineering system represented by a design concept.  Its subsequent evaluation 

is performed by the designer. 
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• Standard evaluation scenarios which are used in practice, e.g. types, 

locations, and magnitudes of loads and load combinations determined by 

structural design codes. 

• Coadapted evaluation scenarios which are coevolved together with 

design concepts.  In this process, called adaptive testing, competitive 

coevolutionary algorithms are used. 

In the competitive coevolutionary model, two competing populations are 

coevolved: a population of design concepts (topologies of structural 

systems) and a population of evaluation scenarios (locations, types, and 

magnitudes of loads and load combinations).  The two populations 

coevolve in the following way.  The fitness of each individual design in 

the population of design concepts is determined by measuring how well 

s against the evaluation scenarios from the population of 

cceed to satisfy design requirements (like max. stresses, max. 

horizontal displacement, etc.) under this loading case.   

This approach seems more natural than standard load tables, codes, and 

might be indispensable when robustness of designs is one of the key 

issues. Robustness of the design concepts can be improved, e.g. by 

it perform

scenarios.  On the other hand, the fitness of each scenario depends on the 

number of design concepts it “defeated,” i.e. how many designs didn’t 

su

loading combinations traditionally used in structural engineering.  It 
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testing sensitivity of various engineering systems to certain classes of 

scenarios that would never be applied by human designers. 

re generated and subsequently evaluated.  

In 

me

rep

modeling design evaluation processes. 

siders the generality of representations of 

engineering systems.  When building a representation space, the assumed level of 

generality is of great importance and may significantly affect the quality of obtained 

solutions.  As m

engineering systems is considered.  The spectrum of possible choices of generality of 

representations in structural engineering is presented in Figure 16.   

In EED thousands of designs concepts a

this case, the evaluation phase provides feedback to the algorithm generating 

and optimizing design concepts, as shown in Figure 15. 

The four phases described earlier can be related to existing engineering design 

thods described in section 2.4.2.  Phases 1 and 2 correspond to formulating 

resentations of artifacts, phase 3 to modeling design processes, and phase 4 to 

Another set of assumptions con

entioned earlier, in this dissertation, conceptual design of structural 

 

Figure 16. Spectrum of generality of representations of structural systems  
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The most general representation would consider engineering systems as 

nsisting of individual atoms and a seaco rch mechanism would navigate through the space 

of , of course, infeasible with 

computatio

co

str

de

sys eved when 

the representation consists of single members, or small sets of members, as basic 

her hand, emergent structural shaping phenomena are 

expecte

 Engineering Domain and Building Representations 

Part one was devoted to choosing a structural engineering domain and 

building appropriate representations of engineering systems.  The issues involved at 

this stage of research included selection of engineering systems and building their 

structural as well as computational models.  Particular attention was paid to choose 

possible configurations of atoms.  This approach is

nal power available today.  The other end of the representational spectrum 

nsists of entire structures.  In this case, the representation simply parameterizes the 

ucture and an optimal set of parameter values is being sought. 

One of the major objectives of EED is to accomplish novelty in generation of 

sign concepts.  Thus, the level of generality of the representation of an engineering 

tem has to be rather high.  It is believed that appropriate results can be achi

representational units.  On the ot

d to appear at the component, or substructure, level. 

3.5. Research Outline 

Research described in this dissertation has been divided into four parts, which 

partially overlap with the major phases of Emergent Engineering Design described in the 

previous section. 

• Part One – Selection of an
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appropriate representations which would enhance the search for novel design 

concepts.  The results produced in this part are described in chapter 4. 

• Part Two – Implementation of the EED 

This part consisted of developing a design support tool, named Emergent 

Designer, that implemented the proposed design method as well as representations of 

structural systems defined in part one.  Emergent Designer is an integrated research 

and design support tool which applies models of complex systems to represent 

engineering systems and to analyze design processes.  It is described in detail in 

chapter 5. 

• Part Three – Experimental Work 

As stated in section 3.3, in this dissertation I focused on the core of the 

proposed design method, i.e. on phases 1 and 3 shown in Figure 15.  Phase 1 is related 

to the research question 1 and phase 3 is linked to the research question 3 as shown in 

Figure 14.  Hence, the two research questions have been further refined to address 

conceptual design problems in structural engineering.  When the questions were 

precise enough, they formed the bases for hypotheses that could be tested empirically. 

The third part of this dissertation included experimental work performed 

using Emergent Designer.  The conducted experiments were directly related to the 

process of the empirical validation of Emergent Engineering Design which will be 

described in detail in the next section.  They involved empirical validation of design 

 

 design, a combined approach in which 

concept generation mechanisms (chapter 6), evolutionary optimization mechanisms

(chapter 7), and morphogenic evolutionary
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desi

odology 

2.5.2.  The validity of EED supports the claim of the advancement of scientific 

knowledge in the field of engineering design.  The outline of the validation methodology 

17.  It is an extended version of Figure 12 

in whic

gn concept generation mechanisms (generative representations) were evolved by 

evolutionary algorithms (chapter 8). 

• Part Four – Analysis of the Experimental Results 

The results obtained in the conducted experiments have been analyzed both 

qualitatively (chapters 6 and 8) and quantitatively (chapters 7, 8).  The qualitative 

analysis involved visual inspection of generated design concepts and a search for 

interesting and emergent structural shaping patterns.  The quantitative analysis 

considered statistical properties of the design processes.  Here, the performance of 

generated designs and efficiency of the design processes were investigated. 

3.6. Validation Meth

Emergent Engineering Design was validated using the Validation Square 

(Pedersen et al. 2000), a framework for validation of design methods, introduced in 

section 

used in this dissertation is presented in Figure 

h all major stages of the validation process have been exemplified with specific 

tasks required to validate EED.  
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Figure 17. Outline of the validation methodology of Emergent Engineering Design using 
the Validation Square framework 
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The bottom part of Figure 17 shows four elements of the Validation Square 

framework, i.e. Theoretical Structural Validity (TSV), Empirical Structural Validity 

(ESV), Empirical Performance Validity (EPV), and Theoretical Performance Validity 

(TPV).  The four elements were used to evaluate effectiveness and efficiency of EED.  

TSV a

oth qualitative and quantitative 

measur

supports th s significant.  On the other hand, 

novelty of

presented 

offered in s

A d

Design, br

below. 

3.6.1. Theoretical Structural Validation 

Theoretical Structural Validity was supported by accepting the individual 

components constituting EED and accepting the internal consistency of the way the 

components were integrated.  The validity of the individual components and their 

synthesis pertain to structural soundness of the proposed design method in a general, or 

theoretical, sense (Pedersen et al. 2000). 

The confidence in validity of the individual components of EED was built based 

on the available scientific literature.  It included evolutionary design and complex 

nd ESV provided qualitative measures of EED’s effectiveness, while EPV and 

TPV gave quantitative measures of EED’s efficiency.  B

es were utilized to demonstrate the usefulness of EED.  The usefulness of EED 

e claim that the new scientific knowledge i

 the proposed design method was justified based on the literature reviews 

in chapter 2 as well as a discussion on the open issues in engineering design 

ection 3.2. 

etailed description of the tasks involved to validate Emergent Engineering 

oken down by each of the four elements of the Validation Square, is presented 

 



135 

system

section 3.3), and evolutionary computation defining mechanisms of generation and 

optimizatio

3.3).  One

establish c

On the oth

the components were integrated. 

re was an adequate 

input available, that the anticipated output from the component was likely to occur based 

on the input and that the anticipated output is an adequate input for the next component.  

A detailed description of the flow of information in the proposed design method and in a 

computer system, called Emergent Designer, implementing the method is offered in 

chapter 5. 

ere used to test the proposed design method.  

The validit

method.   

As t

for conceptua  classes of 

s defining generative representations (see Phase I in Figure 14 and Hypothesis 1 in 

n of design concepts (see Phase III in Figure 14 and Hypothesis 3 in section 

 of the major goals of the literature review presented in chapter 2 was to 

onfidence in validity of individual components of the proposed design method.  

er hand, the goal of chapter 4 was to establish confidence in validity of the way 

The confidence in internal consistency of EED was built using flow-chart 

representations of information flow within the proposed design method and within each 

of its components.  It was demonstrated that for each component the

3.6.2. Empirical Structural Validation 

Empirical Structural Validity of EED was supported by accepting the 

appropriateness of example problems that w

y of the example problems pertains to the empirical soundness of the design 

sta ed in section 3.1, this dissertation investigates the proposed method only 

l design problems in structural engineering.  Hence, two
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conceptual design problems from the structural engineering domain were selected, 

namely design of a wind bracing system in a tall building and design of the entire steel 

structural system in a tall building.  A brief description of the two classes of design 

problems and justification of their choice is offered in section 2.4.4. 

The confidence in appropriateness of the example problems chosen to evaluate 

EED’s performance was built by (Pedersen et al. 2000): 

1. Documenting that the example problems are similar to the problems for which 

EED’s components are generally accepted. 

SOTA overviews of all components of the proposed design method are 

included in chapter 2.  The overviews discuss current research developments 

in these fields from the perspective of their relevance to engineering design.  

Moreover, each section in chapter 2 contains a subsection presenting 

structural engineering applications, if any, of the main ideas discussed there.  

In this way, the confidence in accepting the applicability of the components to 

the example problems was built. 

2. Documenting that the example problems represent the actual problems for 

which EED is intended. 

The justification for the choice of the two example problems is presented in 

section 2.4.4.  Moreover, chapter 4 demonstrates that the selected problems 

exhibit the properties of problems for which EED is intended, e.g. they consist 

of a relatively large number of identical, simple, and locally interacting 

structural members. 
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3. Documenting that the data associated with the example problems can support 

a conclusion. 

As discussed in section 2.4.4, the example problems investigated in this 

dissertation are considered as one of the most complex and time-consuming 

design tasks in structural engineering.  Therefore, they are of suitable 

complexity for the demonstration of the usefulness of the proposed design 

method. 

Theoretical Structural Validity and Empirical Structural Validity qualitatively 

validate EED.  The quantitative validation of the design method was tested by several 

perform

3.6.3. Empirical Performance Validation 

Empirical Performance Validity was supported by accepting that the outcome of 

EED is useful with respect to the initial purpose for the example problems.  It was also 

accepted that the achieved usefulness was linked to the application of EED.   

The purpose of the proposed design method for the example problems was 

directly related to the ultimate objective of this dissertation, i.e. generation of novel 

design concepts and their efficient optimization.  The task of validating EED’s 

performance empirically was divided into: 

 two subtasks in which the empirical performance of the individual 

components of EED was measured for the example problems  

 a third subtask in which the empirical performance of integrated 

components of EED was measured for the example problems 

ance measures which are described in the following sections. 
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As stated in section 3.3, this dissertation investigated only the research questions 1 and 3 

corresponding to phases 1 and 3 of the proposed design method.  Hence, the first two 

subtasks tested the individual research hypotheses (the first subtask tested the research 

hypothesis 1 and the second subtask tested the research hypothesis 3) by measuring the 

performance of the corresponding component of EED, i.e. the generative representations 

component and the evolutionary computation component, for the example problems.  The 

third subtask tested the fundamental hypothesis of this dissertation by measuring the 

performance of the integrated components of EED for the example problems. 

The process of the empirical performance validation of EED was conducted in the 

following way.  First, the usefulness of the generative representations component of EED 

in producin n

chapter 6).  In

complex syste

generative p

qualitatively a andomly generated design concepts 

and to the t

Second

measured in o ineering systems.  Here, on the other hand, the 

emphas

g ovel design concepts was tested empirically for the example problems (see 

 this subtask, no optimization algorithms were applied.  Instead, various 

ms, modeled by simple programs, were used to explore the space of 

re resentations of structural systems.  The produced design concepts were 

nd quantitatively compared to both r

bes  designs known from the structural engineering literature. 

, the performance of the evolutionary computation component of EED was 

ptimizing the designs of eng

is was put on strictly optimization issues. Hence, the optimized engineering 

systems were represented by standard parameterized representations rather than by the 

generative ones (see chapter 7).  Evolutionary-based optimization was initialized with a 

randomly generated initial population of solutions or with a set of design concepts that 
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included state-of-the-art solutions known from the structural engineering literature.  The 

design concepts optimized by the evolutionary computation component were compared to 

the solutions incorporated in the initial population of designs (thus, the improvement of 

the generated solutions was measured) and to the best designs known from the structural 

literature.  The goodness/fitness of generated designs was measured in terms of the 

following evaluation criteria: the total weight of a steel structural system (which gives a 

reasonable estimate of the cost of a steel structure), and the maximum horizontal 

displacement of a steel structural system (which gives an estimate of the structure’s 

stiffness). 

Finally, the usefulness of the integrated components of EED was determined by 

measuring their performance both in producing novel design concepts and in their 

subsequent optimization.  The obtained performance measures were compared to the 

results obtained using evolutionary-based methods utilizing standard parameterized 

representations which constitute the state-of-the-art in conceptual design of structural 

systems (topology optimization).  Although traditional topology optimization methods 

based on linear programming techniques proved to be successful in finding optimal 

topologies for small design problems, they were rendered inadequate when the size of the 

problems considered was scaled up (see a detailed discussion presented earlier in section 

2.1.7).  Additional difficulties of traditional methods arise due to discontinuous nature of 

the design problems considered in this dissertation which was another reason for not 

including them in EED’s empirical performance validation process.  The obtained 

performance measures were analyzed statistically using appropriate statistical tests.   
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Also, v

3.6.4. Theoretical Performance Validation 

Theoretical Performance Validity was supported by accepting that the usefulness 

of EED extends beyond the example problems.  The confidence in generality of the EED 

was built by induction that involved results from all previous validation steps, i.e. 

Theoretical Structural Validation, Empirical Structural Validation, and Empirical 

Performance Validation.  The inductive argument was structured in the following way: 

• Theoretical Structural Validity demonstrates that the individual 

components of EED are generally accepted for the applications the design 

method is intended.  It also shows the internal consistency of EED.  

• Empirical Structural Validity shows that the components of EED are 

applied within their accepted ranges. 

• Empirical Performance Validity demonstrates the usefulness of EED for 

the example problems as well as that the usefulness is achieved due to the 

application of the method. 

Based on that, the generality of EED was claimed, which is understood in this 

dissertation as its usefulness beyond the example problems (see chapter 9).  Hence, 

Theoretical Performance Validity involved a ‘leap of faith’ to produce belief in a general 

usefulness of the proposed design method.  The purpose of the previous steps in the 

arious experimental analyses and comparisons with state-of-the-art methods were 

conducted to demonstrate that the achieved usefulness was due to the application of EED 

(see chapter 8). 
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Validation Square was to show ‘circumstantial’ evidence to facilitate this leap of faith 

(Pedersen et al. 2000). 

3.7. Summary 

In this chapter, I proposed and defin ergent Engineering Design, the major 

objective of ented in this 

dissertation.  In m considered 

n this dissert

engineering systems which addresses both important objectives of engineering design: 

development of novel designs and their optimization.   In the following section, I showed 

that this problem is closely related to the open issues in the field of engineering design.   

The third section defined Emergent Engineering Design, a design method based 

on models of complex systems and inspired by the processes occurring in nature.  I 

presented the structure of the argument in the form of research questions and research 

hypotheses.  I also described the scope of research conducted in this dissertation. 

The fourth section of this chapter provided a detailed description of the 

assumptions incorporated in the proposed design method.  First, an assumption of four 

phases of the conceptual design process (representation space definition, representation 

space decomposition, generation and optimization of design concepts, and fitness 

evaluation and adaptive testing) was debated and subsequently related to the 

corresponding phases in traditional design.  Second, a discussion on the choice of the 

appropriate level of generality of representations of engineering systems (single structural 

elements or small sets of elements) was presented. 

ed Em

this dissertation, and described the structure of the argument pres

itially, in the first section of this chapter I defined the proble

ation, i.e. a need for a conceptually coherei nt method for designing 
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The fifth section outlined the conducted research while the sixth section of this 

chapter provided a detailed description of the validation methodology that was used to 

validate EED.  The process of validation was based on the Validation Square framework 

(see section 2.5.2) and consisted of four major parts: Theoretical Structural Validation, 

Empirical Structural Validation, Empirical Performance Validation, and Theoretical 

Performance Validation.  Each of them was described in detail and linked to the 

appropriate chapters of this dissertation. 

 



 

4. DESIGN REPRESENTATIONS 
 
 
 
 

“… the key element of design is representation. … 
representation in design incorporates both representation 
of the artifact being designed as well as representation of 
the process by which the design is completed.” 

 (Clive L. Dym) 

In this chapter, I introduce computational representations of two classes of 

structural systems: wind bracing systems in tall buildings and entire steel structural 

systems in tall buildings.  In doing that I conduct the first stage of the Theoretical 

Structural Validation process of EED (see section 3.6.1), in which I want to establish 

confidence in validity of the way the components of the proposed design method are 

integra

 of parameterized representations of steel 

structural systems in tall buildings.  At this point, I am ready to propose a new approach 

ted at the representational level.  I will demonstrate that by first proposing several 

design concept generation mechanisms based on models of complex systems and then 

showing how these mechanisms can be encoded in the generative representations suitable 

for evolutionary optimization processes. 

Figure 18 shows organization of this chapter.  First, I present a general overview 

of representations of structural systems and a brief discussion on the level of their 

generality that is suitable for conceptual design.  Next, I discuss traditional approaches to 

represent engineering systems in the form

143 
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based on models of complex systems and inspired by the processes of morphogenesis 

occurring in nature.  I define several types of design concept generation mechanisms 

based on cellular automata and discuss their computational and representational 

advantages and disadvantages.  I also show how these mechanisms can be encoded as the 

generative representations which are suitable for evolutionary optimization processes. 

Chapter 4 
Design Representations 

Parameterized Representations of 

Design 

Design Generative 
Representations Structural Systems 

in Conceptual 
Representations 

Inspired by Nature
Representations of 

Engineering 
Designs 

Single 1D 
Embryo and a 

Single CA 
Rule

Multiple 1D 
Embryos and 

CA Rules 

Single 2D 
Embryo and a 

R
Single 2D CA 

ule 

Multiple 1D 
Embryos and 

 

Figure 18. Organization of chapter 4 

1D CA Rules 

4.1. R

ocess by which the design is produced 

epresentations of Structural Systems in Conceptual Design 

As I discussed earlier in section 2.1.3, representations in engineering design 

incorporate (Dym 1994): 

• representation of an artifact (engineering system) being designed, and 

• representation of a pr
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In this chapter and in chapter 6, I focus on the new ways of representing engineering 

system

 compared to its traditional model in engineering science because it 

encomp

s (artifacts) while in chapters 7-8 I introduce representations of design processes.  

A representation of an engineering system can be defined as its computational 

description expressed in terms of attributes (Arciszewski et al. 1995).  Attributes 

describing the system can be defined as a formal representation of its various 

characteristics including the structure’s topology, its weight, etc.  These attributes can be 

divided into two major groups: quantitative and qualitative.  Quantitative attributes 

describe detailed characteristics of an engineering system that can be measured 

(Arciszewski 1988).  These attributes are mostly considered in the analytical stage of a 

design process.  On the other hand, qualitative attributes describe a general form of an 

engineering system and its characteristics that can not be explicitly measured, like shape, 

color, material used, etc.  These attributes are usually multi-valued and take values from 

an unordered or partially ordered set of symbols  (Arciszewski and De Jong 2001). 

In general, a representation of an engineering system is a significantly broader 

description

asses much more knowledge than can be set into mathematical formulas and their 

numerical realizations (Dym 1994).  This is particularly important in conceptual design, 

where most of the attributes describing a future engineering system are qualitative rather 

than quantitative and their selection involves significant amount of background 

knowledge.  Hence, representations of structural systems in conceptual design usually 

consist of symbolic attributes. 

 



146 

In section 2.4.4, I introduced the two design problems considered in this 

dissertation to validate the proposed design method.  They include the problem of 

designing a wind bracing system in a tall building and the problem of designing an entire 

steel structural system in a tall building.  Both problems are examples of conceptual 

design problems and they can be naturally represented in terms of attributes taking 

appropriate set of symbolic values (see section 2.1.3). 

A choice of a particular type of representation of an engineering system is highly 

influenced by a designer’s goal, i.e. whether the emphasis is on optimality in terms of 

numerical values in the context of a specific design concept, or on generation of novel 

design 

When a designer focuses on generation of novel design concepts, more general 

and us

concepts.  In the former case, the attention is usually restricted to a particular 

concept or at most several concepts of existing designs and representations usually take a 

form of parameterizations.  These types of representations have been traditionally used in 

evolutionary structural optimization (Kicinger et al. 2004b).  I introduce parameterized 

representations of engineering systems in section 4.2.  I will also investigate them 

experimentally in chapter 7 in which I empirically validate evolutionary optimization 

component of EED. 

ually more complex representations are used.  Generative representations of 

engineering systems based on models of complex systems and inspired by the processes 

of morphogenesis occurring in nature are introduced in section 4.4.  They are investigated 

experimentally in chapters 6 and 8. 
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4.2. Parameterized Representations 

Parameterized representations are examples of direct representations (see section 

2.1.3) in which each gene corresponds to an attribute encoding a dimension of the search 

space.  Each such dimension represents an appropriate set of values, discrete, or 

continuous, which the attribute represented by this dimension can assume.  As discussed 

earlier, in conceptual design, discrete values are usually preferred because they naturally 

encode symbolic values of attributes.  In the simplest case, these representations use 

binary genes denoting the presence, or absence, of a feature.  In such representations each 

individual consists of a fixed-length binary string of genes representing some subset of a 

given set of features.  Often, in more complex engineering applications, as is the case 

i-valued attributes 

are used.  In this dissertation representations of steel structural systems in tall buildings 

are encoded using integer-valued attributes.  Parameterized representations described in 

this section are generalized versions of the encodings used in Inventor 2001 (Murawski et 

al. 2001). 

In the design problems studied in this dissertation, a structural system of a tall 

building is considered as a system of identical parallel planar transverse structures, which 

are the subject of design.  The representation space has been developed using the concept 

n be described as 

a part of the structural grid contained within the adjacent vertical and horizontal grid lines 

(Murawski et al. 2001). 

with engineering design problems investigated in this dissertation, mult

of division of the structural grid of the building (the system of vertical and horizontal 

lines of columns and beams, respectively) into units, or cells.  A cell ca
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Representations of steel structural systems in tall buildings considered in this 

dissertation encode the following types of structural members: bracings, beams, columns, 

and supports.  Depending on the investigated design problem, either only a subset of the 

structural members or the entire set of all structural members was considered.  Thus, in 

the wind bracing system design problem only bracings were used.  In this case, all other 

structural members were assumed the same during the entire design process.  On the 

other hand, in the problem of designing the entire steel structural system in a tall 

buildin

rious types 

of bracings (no bracing, diagonal bracing \, diagonal bracing /, K bracing, V bracing, 

simple X bracing, and X bracing).  Their phenotypic, or design, representation is 

presented in Figure 19a).  Figure 19c) shows genotypic values of the attributes 

representing bracing elements where alleles take on subsequent integer values from 0 to 

6.  

In Figure 20, phenotypic (see Figure 20a)), symbolic (see Figure 20b)), and 

genotypic (see Figure 20c)) values of attributes representing beam elements are 

presented.  Each attribute representing a beam in a steel structural system can have up to 

enotypic (design) 

g, all structural members, including bracings, beams, columns, and supports, were 

considered and subjected to changes. 

Figure 19 shows the values of the attributes representing wind bracing elements in 

a steel structural system at a phenotypic, symbolic, and genotypic level.  Each such 

attribute can have up to seven symbolic values (see Figure 19b)) encoding va

five symbolic values encoding various types of beams (no beam, pinned-pinned beam, 

fixed-fixed beam, pinned-fixed beam, and fixed-pinned beam).  The ph
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representation of beam attributes is presented in Figure 20a) while their genotypic values 

taking on subsequent integer values from 0 to 4 are shown in Figure 20c). 

 

representation, b) symbolic representation, c) genotypic representation 
Figure 19. Values of the attributes describing bracing elements a) phenotypic 

 

Figure 20. Values of the attributes describing beam elements a) phenotypic 
representation, b) symbolic representation, c) genotypic representation 
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Phenotypic, symbolic, and genotypic values of attributes representing column 

elements are presented in Figure 21.  Here, similar to beam attributes, up to five symbolic 

values (see Figure 21b)) encoding various types of columns (no column, pinned-pinned 

column, fixed-fixed column, pinned-fixed column, and fixed-pinned column) can be 

used.  Design representation of column attributes is presented in Figure 21a) while their 

genotypic values taking on subsequent integer values from 0 to 4 are shown in Figure 

21c). 

Finally, Figure 22 shows phenotypic, symbolic, and genotypic values of attributes 

representing supports.  Here, four possible types of supports are allowed and encoded by 

four symbolic values (no support, pinned support, fixed support, and roller support) as 

shown in Figure 22b).  Design representation of support attributes is presented in Figure 

22a) and their genotypic values ranging from 0 to 3 are shown in Figure 22c). 

 

Figure 21. Values of the attributes describing column elements a) phenotypic 
representation, b) symbolic representation, c) genotypic representation 
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Figure 22. Values of the attributes describing supports a) phenotypic representation, b) 

e entire design process.  Figure 23a) shows a configuration of bracing elements 

in a st

symbolic representation, c) genotypic representation 

When parameterized representations are employed, a given structural system can 

be encoded as a sum of representations of its individual cells, each described an attribute 

identifying the existence and the type of a structural member.  Figure 23 shows a simple 

example of this approach.  A 10-story building with 4 bays is divided into 40 cells 

contained within the adjacent vertical and horizontal grid lines (see Figure 23a)).  In this 

problem, only wind bracing elements are the subject of design and all other structural 

elements of the steel structure, i.e. beams, columns, and supports, are assumed the same 

during th

eel structure which represents a design concept.  The representation of a design 

concept at this level is called a phenotypic representation, or simply a phenotype.  The 

phenotype is created (decoded) from a genotypic representation involving 40 integer-

valued attributes that represent 40 bracing elements in the steel structure as shown in 

Figure 23b).  
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Figure 23. a) Phenotypic representation of a wind bracing system, b) The same system 

system that is manipulated by an evolutionary algorithm 
represented by multi-valued integer attributes, c) Linear genome representation of the 

e, that is manipulated by an 

evoluti articular example, 

it is a s

 the domain. 

As is it discussed above and shown in Figure 23, in the design problems 

considered in this dissertation a clear distinction between genotypic and phenotypic 

Usually, the actual genotypic representation, or genom

onary algorithm, is linearized and encoded as a string.  In this p

tring of integer values (see Figure 23c)).  All genotypic representations considered 

in this dissertation are linear.  A collection of all such genotypes forms a genotypic space 

of the domain.  A collection of all phenotypes corresponding to all combinations of 

attribute values (all genotypes), forms a phenotypic space of
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spaces is made.  Evolutionary search operates in the genotypic space but fitness 

evaluation is performed in the phenotypic space.   

As mentioned earlier, the two design problems investigated in this dissertation 

include conceptual design of wind bracing systems in tall buildings, and conceptual 

design of the entire steel structures in tall buildings.  In the former case, the subject of 

design is the placement and type of bracing elements only.  In the latter case, design 

involves the placement and type of all structural elements discussed earlier, i.e. beams, 

bracings, columns, and supports. 

In this dissertation, fixed-length genotypes are used as representations of various 

steel structural systems.  The length of a genotype used in a given situation, however, 

depends on the design problem being studied (wind bracing system or the entire steel 

structural system) and on the number of cells in the structural system being considered.  

s 

 properties of a tall building 

are determined, then the length of the genotype is completely defined and does not 

The number of cells is obviously related to the number of stories and the number of bay

in a tall building.  Once the design problem and topological

change. 

When the parameterized representations are used, the lengths of genotypes for the 

wind bracing system design problem are simply equal to the number of cells in a given 

tall building.  For example, in the simple design problem described earlier and shown in 

Figure 23, the genome representing a parameterized design concept of a 10-story building 

with 4 bays has the length of 40 genes (bracing attributes).  The situation is more 

complicated when design of the entire steel structure is considered.  In this case, all 
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structural elements, including beams, bracings, columns, and supports are represented.  

Figure 24 shows the same 10-story building with 4 bays for which the entire steel 

structural system is being designed. 

Figure 24a) shows a configuration of a steel structure in a tall building in which 

all structural elements are represented.  This configuration forms a phenotype of a 

he phenotype is created (decoded) from a genotypic 

represe

40 intege ibutes that represent 40 beam elements, 50 integer-valued attributes 

ments, and 5 integer-valued attributes that represent 5 

suppor

(attribute pletely define this steel structural system in this parameterized 

 The structure of the actual linear genome manipulated by 

an EA 

E

•

•

T me all 

column

nstance, that during the design process the only allowed values for beam 

attribut

particular design concept.  T

ntation involving 40 integer-valued attributes that represent 40 bracing elements, 

r-valued attr

that represent 50 column ele

ts in the steel structure (see Figure 24b)).  Hence, the total number of genes 

s) that com

representation is equal to 135. 

and consisting of 135 genes is presented in Figure 24c). 

mergent Designer, which will be introduced in chapter 5, allows for a choice of: 

 Structural elements considered in design, 

 Values of attributes defining types of structural elements.   

hus, one can, for example, consider only bracings and beams and assu

s and supports the same during the entire design process.  Similarly, one can 

choose, for i

es are pinned-pinned beams and fixed-fixed beams.  
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Figure 24. a) Phenotypic representation of an entire steel structural system, b) The same 

the system that is manipulated by an evolutionary algorithm 

4.3.  Design Representations Inspired by Nature 

Parameterized representations discussed in the previous section have been widely 

used in 

system represented by multi-valued integer attributes, c) Linear genome representation of 

engineering optimization.  This dissertation, however, emphasizes both novelty 

and op

for the design representations introduced in this section comes again from nature’s 

timality in engineering design.  To achieve the ultimate objective of this 

dissertation, i.e. generation of novel design concepts and their efficient optimization, 

other types of representations of engineering systems had to be proposed.  The inspiration 
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manipulation of the rules for growing complex organisms, called ‘genetic plans’, rather 

than the complex organisms themselves.  The organisms are then built from the plans via 

a developmental process called morphogenesis (Thompson 1942).  Morphogenesis can be 

described in several ways, including the following 3 definitions (adapted from Principia 

Cybernetica): 

Definition 1. Morphogenesis 

“Morphogenesis is an evolutionary development of the structure of an organism 

or a part.” 

Definition 2. Morphogenesis 

“Morphogenesis is an embryological development of the structure of an organism 

or a part.” 

Definition 3. Morphogenesis 

“Morphogenesis is the process in complex system-environment exchanges that 

tends to elaborate a system's given form or structure. Examples are the growth 

of an animal from a fertilized ovum, biological evolution, learning, and societal 

development. A morphogenic system is capable of maintaining its continuity and 

integrity by changing essential aspects of its structure or organization.” 

The definitions 1 and 2 are most closely related to the ideas presented in this 

representations within the field of engineering design, this dissertation introduces a new 

term morphogenic evolutionary design

dissertation. 

Due to the lack of appropriate terminology describing the use of generative 

.  By combining the definitions of morphogenesis 
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and engineering design (introduced earlier in section 2.4.1), I can define morphogenic 

engineering design in the following way. 

Definition 4. Morphogenic Evolutionary Design1 

Morphogenic evolutionary design is the systematic generation and evaluation of 

representations of engineering systems or their parts whose form and function 

achieve stated objectives and satisfy specified constraints. It is done using the 

mechanisms inspired by the processes of developmental biology and evolution. 

One of the key aspects of morphogenic engineering design is representation of an 

engineering system being designed.  Recently, several researchers investigated the 

potential of using indirect and generative representations inspired by the processes of 

morphogenesis in creative design (Bentley and Kumar 1999; Hornby 2003).  As 

discussed in section 2.1.3, indirect representations do not encode complete design 

concepts, as in parameterized representations, but rather rules on how to develop, or 

grow, these designs.  Generative representations are examples of indirect representations 

that can reuse some parts of an encoded design during the phenotype construction phase. 

Their ability to reuse elements of an encoded design improves the search efficiency in 

large design spaces as well as scalability by capturing design dependencies (Hornby 

2003). 

Figure 25 illustrates the concept of design inspired by nature in the context of 

designing steel structural systems in tall buildings.  Similarly as in nature (see the bottom 

part of Figure 25), a building is developed from an initial seed (called here the design 

                                                 
1 I would like to thank Prof. Toma
suggestions that helped me improv

sz Arciszewski and Dr. Sanjeev Kumar for their comments and 
e this definition. 

 



158 

embryo n

design, is 

process of 

) a d then ‘grown’ to its fully-developed form.  This process, called morphogenic 

inspired by the processes of morphogenesis occurring in nature, e.g. in the 

development of plants. 

 

by the processes of morphogenesis occuring in nature 

The next section further extends the ideas presented here and proposes specific 

examples of generative representations of steel structures in tall buildings based on 

Figure 25. Process of development of a steel structural system in a tall building inspired 
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various models of complex systems, including one-, and two-dimensional cellular 

automata.  It also proposes the generative representations of the entire steel structural 

system

4.4. Generative Representations of Engineering Designs 

In this section, I propose and define generative representations of the two design 

problems considered in this dissertation.  These representations are based on models of 

complex systems.  The generative representations proposed here, and inspired by the 

processes of biological development, consist of two parts: encoding of a ‘design embryo’ 

and encoding of a ‘design rule,’ which is applied to the design embryo to develop a 

design concept from it. 

A design embryo is understood in this dissertation as an ordered set of cell values 

representing an initial configuration (one-, or two- dimensional) of structural members 

(e.g. wind bracing types) from which a design concept is developed. 

A design rule, on the other hand, is a formal description of a transformation that 

changes the current configuration of structural members into a new configuration.  This 

transformation defines a unit time step.  In this dissertation, various types of one- and 

two-dimensional cellular automata are considered as representations of the design rules. 

Thus, it is possible to provide a more specific definition of a design rule in this context.  

It is defined as a systematic definition of a transformation that updates the current 

configuration of cell values (representing the corresponding types of structural members) 

into a new configuration of cells at a subsequent time step.  This transformation consists 

of three major components: 

s in tall buildings. 
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• A complete set of decision rules whose conditions incorporate all possible 

combinations of cell values (types of structural members) in the given local 

neighborhoods and their outcomes specify the values of the central cells of 

these neighborhoods at a next time step, 

• Assigned sequence/ordering of the individual decision rules, which is assumed 

the same for the entire class of the design rules and hence can uniquely define 

every design rule belonging to this class, 

• A complete set of outcomes associated with individual decision rules and 

having the same ordering as for the decision rules. 

The genomes encoding the generative representations proposed in this dissertation 

have, in general, the following structure.  The first part of each genome encodes the 

 

the 

the corresponding design rules. 

4.4.1. Single 1D Embryo and CA Rule Representing Wind Bracings 

One of the simplest instances of generative representations proposed in this 

dissertation consists of a design embryo formed by a single one-dimensional initial 

configuration of cells and a design rule represented by a single 1D CA rule.  This rule is 

applied to the design embryo and develops a design concept of a wind bracing system in 

a tall building.  In this case, the design embryo is the configuration of the first story in a 

design embryo while the second part encodes the corresponding design rule.   

The following sections introduce several types of generative representations and

instantiate the ideas presented above. They also provide detailed descriptions of 

processes of development of design concepts using various kinds of design embryos and 
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wind bracing system of a tall building.  The design rule is applied to the design embryo 

and iterated once less than the number of stories in a tall building.   

The process of applying this type of generative representation to develop, or grow, 

a design concept of a wind bracing system is illustrated graphically in Figure 26.  First, 

Figure 26a) shows the process of iteration of an elementary CA.  In this case, the 

individual cell states have only binary values and local neighborhoods affecting the 

iteration of a considered cell are formed by this cell and its immediate left and right 

neighbors.  Therefore, groups of three cells are considered in each local neighborhood 

and suc

e used to 

iterate 

h situation is called a ‘local neighborhood of size 3’.  The bottom row of Figure 

26a) consists of 6 squares (cells) denoting an initial configuration of cells (t=0).  In this 

particular case, the initial configuration consists of cell state values 0 0 0 1 1 0.  White 

squares in Figure 26 denote cell state values equal to 0 while black squares represents cell 

state values equal to 1.  A graphical representation of the particular CA rul

this initial configuration for 15 time steps is presented in Figure 26b).  As 

discussed earlier, a CA rule can be understood in the context of this dissertation as a 

complete set of decision rules whose conditions incorporate all possible combinations of 

cell state values in a given local neighborhoods (here of size 3) and the outcomes 

determine the values of the considered cells (usually central cells in a local 

neighborhood) at the next time step.  If the ordering of the individual decision rules 

shown in Figure 26b) is assumed the same, then any CA rule can be uniquely defined by 

the outcome values (the top row in Figure 26b)) associated with individual decision rules. 
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Figure 26. a) Process of iteration of a 1D CA starting with an initial configuration 
consisting of 6 cells, b) Graphical representation of a 1D CA rule assigning values to a 
central cell in a local neighborhood (the top row) at a next time step (the bottom row), c) 
Process of generation of a wind bracing design concept from a design embryo using a 1D 
CA design rule, d) Graphical representation of a design rule based on a 1D CA which 
assigns values to a central cell in a local neighborhood (the top row) at a next time step 
(the bottom row) 

A design concept of a wind bracing system is created analogically.  Figure 26c) 

shows a process of development of a design concept from its design embryo (the initial 

6d).  

The design rule represented by a 1D CA can be thought of as a complete set of decision 

rules whose conditions (the bottom part of Figure 26d)) incorporate all possible 

combinations of types of bracings in the given local neighborhoods and the outcomes 

configuration of bracings at the first floor) using a design rule presented in Figure 2
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specify the values of the central cells of these neighborhoods at a next time step (the top 

part of Figure 26d)).  In this case, only two values of the attributes representing bracing 

elements are used: no bracing (empty cell) and K bracing.  The design embryo forms the 

first story in the generated design concept (t=0).  As shown in Figure 26c), the 1D CA 

design rule is iterated once less than the number of stories in a tall building.  The process 

starts at the bottom level and gradually moves upwards.  This choice, however, is 

arbitrary and other starting conditions can be specified, e.g. a design concept can be built 

downw

dic) 

boundary conditions are used, meaning that the rightmost cell in the initial configuration 

ards starting from the design embryo located at the top level. 

Figure 26 illustrates an incremental mechanism of generation of design concepts 

using a design embryo and a 1D CA design rule.  It does not explicitly show, however, 

how subsequent configurations of stories are obtained, or in other words, it does not show 

how a 1D CA works.  That is presented in Figure 27 which demonstrates the process of 

determining the configurations of cells at subsequent time steps in more detail.  

Figure 27b) shows the same 1D CA rule as in Figure 26b) that is applied to the 

same initial configuration of cells as in Figure 26a).  The process of generation of 

subsequent configurations at time steps t=1, 2, 3 … is presented graphically in Figure 

27a). First, a set of local neighborhoods of size 3 (it is an elementary CA) is constructed 

by taking each cell from the initial configuration together with its left and right neighbors 

and placing them respectively in the middle, left, and right of the lattice defining each 

local neighborhood (see the set of 6 local neighborhoods of size 3 placed above the initial 

configuration in Figure 27a)).  In this particular example, so-called cyclic (or perio
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becomes the left neighbor of the leftmost cell in the initial configuration, and vice versa 

(denoted by dashed lines in Figure 27a)). 

 

Figure 27. a) Generation of subsequent configurations (t=1, 2, 3, ..) of the lattice of cells 
during 
consist

the process of iteration of a 1D CA starting with an initial configuration (t=0) 
ing of 6 cells, b) Graphical representation of a 1D CA rule used in part a) 

Next, the local neighborhoods created that way are compared to the local 

neighborhoods shown in the bottom row of Figure 27b).  When the two match, the value 
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shown in the top row of Figure 27b) defines the new value of the central cell at the next 

time step.  This process is repeated for each local neighborhood and the values obtained 

are placed in appropriate positions in the new configuration of cells at time t=1, thus 

completely defining this configuration.  The process is repeated for an arbitrary number 

of steps.  Figure 26a) shows the results of the iteration process for the first 15 steps.  

Figure 27a) gives a detailed representation of the process of determining the new 

configuration at a subsequent time step of the first 3 iterations only. 

Representations defined in this section can be used as design concept generators 

(see chapter 6).  They can be also evolved using evolutionary algorithms (see chapter 8).  

In this case, however, a design embryo and a design rule used to develop a design 

concept of a wind bracing system have to be appropriately encoded in a genome that is 

manipulated by an evolutionary algorithm.  Figure 28a) shows a schematic view of the 

structu

er of genes encoding the 

design 

re of such genome.  It consists of two parts: a design embryo encoded in the first 

part of the genome (gray cells) and a design rule occupying the second part of the 

genome (white cells).  The number of genes encoding the design embryo is equal to the 

number of bays in a tall building.  On the other hand, the numb

rule depends on the number of possible cell state values (types of bracing 

elements) and the size of the local neighborhood.  In order to encode a design rule in a 

genome in this way, one also has to assume an ordering of the individual decision rules 

making up the design rule.   This ordering must be the same for the entire class of the 

design rules so that every design rule belonging to this class can be uniquely defined. 
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Figure 28. a) Schematic view of the structure of a genome encoding the generative 

and a single design rule (white cells), b) graphical illustration of an encoding of a design 

encoding of the same design concept as in part b) but in an actual numerical form that is 

Figure 28b) graphically illus

representation of a wind bracing system consisting of a single design embryo (gray cells) 

concept using the design embryo shown in part e) and the design rule shown in part d), c) 

manipulated by an evolutionary algorithm 

trates the genome encoding a design concept of a 

ryo is 

represe

wind bracing systems presented earlier in Figure 26c).  Here, the design emb

nted by genes a-f in Figure 28b).  As shown in Figure 28e), the design embryo 

encoded in the first part of the genome defines the configuration of the first story in a 

wind bracing system of a tall building (cells a-f at t=0).  This choice, however, is 

arbitrary and other starting configurations can be used, e.g., the design embryo located at 

the top of a tall building.   

The design rule, encoded in the second part of the genome (genes 1-8 in Figure 

28b)), is represented by a 1D CA rule (see Figure 28d)).  In this case, the design rule uses 

only two possible cell state values (empty cell denoting no bracing, and non-empty cell 

denoting K bracing), and the neighborhood of size 3.  As defined earlier, it consists of a 
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complete set of decision rules whose conditions (the bottom part of Figure 28d)) 

incorporate all possible combinations of types of bracings in the given local 

neighborhoods and the outcomes specify the values of the central cells of these 

neighborhoods at a next time step (the top part of Figure 28d)).  All possible 

combinations of conditions of the design rule (see Figure 28d)) are ordered from 1 to 8.  

If this ordering is assumed the same for the entire class of the design rules with binary 

cell sta

sentations of wind bracing systems in tall 

buildin

te values and the local neighborhood of size 3, then the outcome values (shown in 

the top part of Figure 28d)) uniquely define every rule belonging to this class.  This 

important feature has been used in the definition of the encoding of the design rule in the 

genome shown in Figure 28b).  Here, genes 1-8 encode the outcome values produced by 

the design rule presented in Figure 28d) and, given the assumed ordering, uniquely define 

it. 

The genome encoding the repre

gs described in this section consists of homogeneous genes representing integer-

valued attributes of bracing elements.  As it was shown in Figure 19, the attributes 

representing types of bracing elements can have up to 7 values. 

The advantages of this representation include compactness and excellent 

scalability.  A genome encoding a wind bracing system shown in  Figure 26c) is 14 genes 

long when 2 cell state values (types of wind bracing elements) are used and 349 genes 

long when 7 cell state values are used.  The representation can be even more compact 

when the design rule is represented by a 1D totalistic CA rule.  In a totalistic CA the 

value of the current cell at the next time step depends on the average value of cells in the 
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local neighborhood, and not on their individual values.  Figure 6 (page 79) illustrates the 

process of iteration of a totalistic CA with three cell state values (see Figure 6a)) and the 

structure of a corresponding totalistic CA rule used in this process (see Figure 6b)).  If the 

design rule is represented by a totalistic CA rule, then the genome encoding the design 

concept of a wind bracing system is 10 genes long when 2 types of bracings are used and 

25 genes long when all 7 types of bracings are utilized. 

The disadvantage of this approach is that a single design rule is applied at each 

story of a wind bracing system and hence it is impossible to diversify design rules for 

various parts of the wind bracing system, e.g. in traditional design different design rules 

may be used in the bottom part of the structure, where internal forces are the largest, 

compared to the upper part of the structure where internal forces are the smallest but local 

stiffness requirements are the same. 

One of the limitations of the generative representations described in the previous 

section is the lack of diversification of design rules for various parts of a wind bracing 

system.  Generative representations introduced in this section are aimed to remedy this 

problem.  These representations consist of a set of one-dimensional initial configurations 

of cells and a set of 1D CA rules.  Similar to the representations introduced in the 

previous section, each initial configuration, or design embryo, consists of a lattice of cells 

tion also 

yos and the number of corresponding design 

rules (represented by 1D CA rules) are equal to the number of stories in a tall building.  

4.4.2. Multiple 1D Embryos and CA Rules Representing Wind Bracings 

whose length is equal to the number of bays in a tall building.  This representa

assumes that both the number of design embr
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Figure 

ing. 

to design embryo 1, design rule 2 to design embryo 2, etc., and iterated an arbitrary 

numbe f t

of design ru

The iteratio ynchronously.  The final configuration 

ese embryos.  Similar to the 

represe

29 shows how a design concept of a wind bracing system is developed using this 

type of generative representations.  In this case, a concept of a wind bracing system for a 

16-story tall building is developed from 16 design embryos and 16 design rules (1D CA 

rules).  In this particular example, only 3 cell state values (denoted by 3 colors: white, 

gray, and black) are used and correspond to three types of wind bracing elements, e.g. no 

bracing (empty cell), K bracing, and X brac

Each design rule is applied to its own design embryo, e.g., design rule 1 is applied 

r o imes, denoted in Figure 29 by iteration_max.  Thus, the number of iterations 

les (iteration_max) becomes an additional parameter for this representation.  

n of all design rules is performed s

obtained during this process, i.e. configuration at t=iteration_max, forms a design 

concept which is subsequently evaluated. 

Figure 30 shows a schematic view of the structure of the genome manipulated by 

an evolutionary algorithm.  The genome consists of twice as many parts as the number of 

stories in a tall building.  Gray cells in Figure 30 encode design embryos for various 

stories, while white cells encode design rules applied to th

ntation introduced in the previous section, the number of genes defining any 

design embryo depends only on the number of bays in a tall building.  Also, the number 

of genes encoding a design rule represented by a 1D CA rule is determined by the 

number of possible cell state values (types of bracing elements) and by the size of the 

local neighborhood.  The encoding of all design rules in the genome is analogical to the 
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one described in the previous section.  The genome consists of homogeneous genes 

representing integer-valued attributes. 

 

Figure 
of design embryos and a set of design rules 

29. Process of generation of a design concept of a wind bracing system from a set 

 

Figure 30. Schematic view of the structure of a genome encoding the generative 

cells) and multiple design rules (white cells) 
representation of a wind bracing system and consisting of multiple design embryos (gray 
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The advantages of this type of representation include previous mentioned 

diversification of the design rules in various parts of the wind bracing system.  The main 

disadvantage of this representation is the fact that it scales well with neither the number 

of cell state values (types of bracing elements) nor with the number of stories and bays in 

a tall building.  The genome encoding the wind bracing system shown in Figure 29 

consists of the following number of genes: 

• Each design embryo is represented by a string of ternary values consisting of 

6 genes, 

• Each design rule is represented by a string of ternary values consisting of 27 

genes (when a 1D CA rule with 3 cell state values and the local 

neighborhood of size three is used). 

Hence, the entire genome of a 16-story building is encoded as a string of 528 genes.  

Increasing the number of cell state values to 7 would lengthen the genome to 5,584 

genes.  In this case, a more feasible approach involves design rules represented by 1D 

totalistic CA rules (see a brief discussion of totalistic 1D CA rules in the previous section 

and on page 79).  Then, the length of the genome would be equal to 208 and 400, when 3 

and 7 cell state values are used, respectively. 

Generative representations described in this and previous sections form two 

extreme cases of representations of wind bracing systems involving one-dimensional 

embryos and the design rules represented by 1D CA rules.  The generative representation 

introduced in the previous section develops the entire design concept of a wind bracing 

this system from a single design embryo and a single design rule.  On the other hand, 
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section

e the smallest.  Such representations would constitute a knowledge-

driven 

4.4.3. Single 2D Embryo and 2D CA Rule Representing Wind Bracings 

Representations of a wind bracing system proposed in this section are based on 

two-dimensional cellular automata (2D CAs).  Here, a design rule is represented by a 2D 

CA and acts upon a design embryo which is now a two-dimensional array.  This array 

represents an initial configuration of an entire wind bracing system.  Figure 31 shows a 

process of developing a design concept of a wind bracing system using this generative 

representation. 

A design embryo, in the form of a 2D array, is iterated an arbitrary number of 

times (iteration_max times) using a design rule represented by a 2D CA rule. Here, 

similar to the representation introduced in the previous section, the number of iteration 

steps (iteration_max) becomes an additional parameter that needs to be defined.  

 defines the representation with the maximum possible (limited by the number of 

stories in a tall building) number of design embryos and design rules.  One can, of course, 

easily define generative representations located somewhere in between the two extremes, 

i.e., a design concept of a wind bracing system can be developed from, for example, three 

design embryos and three design rules.  In such a case, the first embryo and the first 

design rule would develop the bottom part of the structure, where the internal forces are 

the largest, the second embryo and rule would build the middle part of the structure, and 

finally the last embryo and rule would generate the upper part of the structure where 

internal forces ar

engineering design in which available background knowledge on the design 

problem is incorporated in the representation of the considered engineering system. 
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Moreover, one more parameter has to be defined for this representation, namely the shape 

of the local neighborhood, to completely define the design rule.  The two most popular 

and frequently used shapes of the local neighborhood include von Neumann 

neighborhood (von Neumann 1966) and Moore neighborhood (Moore 1962) (see a 

detailed description of these neighborhoods in section 2.2.1).  Several other shapes of 

local neighborhood were considered in this dissertation.  They will be described in 

chapter 6.  The final configuration obtained during this process of iteration, i.e. 

configuration at the time step t=iteration_max, defines a design concept which is 

subsequently evaluated. 

 

Figure 31. Process of generation of a design concept of a wind bracing system from a 
single 2D design embryo and a single design rule based on a 2D CA 
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Figure 32a) shows a schematic view of the structure of the genome that encodes 

the design embryo (gray squares) and the design rule represented by a 2D CA rule (white 

squares).  Similar to the generative representations described in the previous sections, one 

has to assume an ordering of individual decision rules making up the design rule (in this 

case represented by a 2D CA rule) in order to uniquely define it and encode it in the 

genome.  Figure 32c) shows an example of the ordering (denoted by r1-r19683) of all 

possible combinations of cell state values in the given local neighborhoods (here two-

dimensional 3 by 3 square neighborhoods consisting of 9 cells, i.e. Moore 

neighborhoods). 

The design embryo in this representation is a two-dimensional array encoding the 

entire initial configuration of a wind bracing system in a tall building (see Figure 32d)).  

The initial part of the genome encodes a linearized version of this array and its length is 

equal to the total number of cells in the configuration of a wind bracing system in a tall 

building, i.e., number of bays * number of stories.  In the particular example of a tall 

building with 6 bays and 30 stories shown in Figure 32d), the initial configuration 

consists of 180 cells, and hence 180 leftmost genes in the genome (genes denoted e1-

e180 in Figure 32b)) encode the design embryo, as shown in Figure 32b).  
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Figure 32. a) Schematic view of the structure of a genome encoding the generative 
represe
(lineari

s 

(bottom

ntation of a wind bracing system and consisting of a single design embryo 
zed 2D array) and a single design rule based on a 2D CA, b) specific instance of 

the genome encoding the initial configuration shown in part d) (genes e1-e180) and the 
design rule (a 2D CA rule) shown in part c) (genes r1 - r19683) 

The design rule consists of a complete set of decision rules whose condition

 rows representing 3 by 3 squares of cells in Figure 32c)) incorporate all possible 

combinations of cell state values in the given local neighborhoods (here Moore 

neighborhoods) and the outcomes (cells placed above the corresponding squares in 

Figure 32c) specify the values of the central cells in these neighborhoods at a next time 
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step.  As discussed above, all possible combinations of conditions for the design rule 

shown in Figure 32c) are ordered from r1 to r19683.  If this ordering is assumed fixed for 

the entire class of the design rules, then the outcome values uniquely define every rule 

belonging to this class.  This fact has been used in previous sections to define encodings 

of the design rules represented by 1D CA rules.  It has been generalized here to uniquely 

define design rules represented by 2D CA rules.  The actual encoding of the design rule 

shown in Figure 32c) in the genome is presented in Figure 32b).  Here, genes r1-r19683 

ented in 

The number of genes necessary to encode the design rule depends on several 

parame

encode the corresponding outcome values produced by the design rule pres

Figure 32c) and, given the assumed ordering, uniquely define it. 

ters.  As was the case with the design rules represented by 1D CA rules, the 

number of possible cell state values and the size of the local neighborhood significantly 

affect the length of the encoding of a design rule.  Besides, the length is also linked to the 

shape of the local neighborhood.  In the case of the design rule shown in Figure 32c) with 

3 cell state values, the neighborhood radius equal to 1, and Moore neighborhood, the 

number of genes necessary to encode this rule in the genome is equal to 19,683 genes.  

Increasing the number of cell state values to 7 causes a rapid growth of the length of the 

genome.  For example, 40,353,787 genes are necessary compared to 19,863 genes when 3 

cell state values were used.  In such cases, the only feasible approach involves design 

rules represented by totalistic 2D CAs.  Then, the genome length is equal to 199 and 235 

genes, when 3 and 7 cell state values are used, respectively. 
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One of the major advantages of this representation is the fact that it allows for an 

explicit representation of two-dimensional interactions among design elements.  It is 

possible to investigate various ranges of interaction among elements by selecting 

differen

 used in the majority of the design experiments reported in this 

disserta

4.4.4. Multiple 1D Embryos and 1D CA Rules Representing Steel Structures 

Previously described representations of steel structural systems in tall buildings 

were focused only on one, albeit important, part of the system, i.e., a system of wind 

bracings.  A complete design concept of a steel structural system, however, should 

represent not only the system of wind bracings, but also beams, columns, and supports.  

An approach to encode complete design concepts of steel structures in tall 

buildings is presented in this section.  It makes use of an idea of combining several 

generative representations of various subsystems of a steel structure into one genome.  In 

order to achieve it, an approach similar to the one described in section 4.4.1 is employed.  

t shapes of the local neighborhood as well as by changing its radius.  This 

property might be particularly important in modeling complex engineering systems where 

local and highly nonlinear interactions among structural members are impossible to 

describe using traditional mathematical formulas. 

A major disadvantage of this approach is the problem of scalability.  As discussed 

earlier, increasing the number of cell state values or the size of the local neighborhood 

causes a rapid growth in complexity.  Hence, the design rules represented by totalistic 2D 

CA rules will be

tion (see sections 6.4 and 8.2.3). 
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Figure 33 shows a schematic view of the structure of the genome representing a complete 

design concept of an entire structural system. 

 

Figure 33. Schematic view of the structure of a genome encoding the generative 
representation of an entire steel structural system in a tall building and consisting of 
multiple design embryos and multiple design rules represented by 1D CAs 

The linear genome encodes design embryos of a wind bracing system, a beam 

system, and a column system (gray cells) and design rules represented by 1D CA rules 

(white cells).  The design rules generate the systems of wind bracings, beams, and 

columns from the corresponding design embryos.  Additionally, a configuration of 

supports is also encoded at the end of the linear genome (gray cells) but it is not iterated 

because there is no need to develop a two-dimensional structure of supports (building 

supports are completely defined by a one-dimensional configuration of support types).  

Significant differences of this representation compared to the representations discussed

 

s.  Various parts of the genome encode different 

subsystems of the steel structure and hence different attributes are used to represent them.  

These attributes, in general, can have different number of possible values, e.g., attributes 

 

earlier include the fact that it not only encodes the entire steel structural system but it also

consists of non-homogenous gene
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represe

sented in Figure 34.  Each design rule is applied to its corresponding 

design embryo and iterated once less than the number of stories in a tall building.  In this 

way, the systems of wind bracings, beams, and columns are formed.  The configuration 

of supports represented by the rightmost genes is not iterated.  Once the complete 

configurations of all subsystems are developed, they are assembled together and form a 

complete representation of a design concept.  At this point, the complete design concept 

can be evaluated. 

The advantages of this approach are similar to the ones described in section 4.4.1, 

i.e. compactness and excellent scalability.  A genome encoding a complete design 

concept of a tall building with 30 stories and 6 bays and consisting of a wind bracing 

system with 3 types of bracings, a beam system with 2 types of beams, a column system 

with 2 types of columns, and with 2 types of supports has 69 genes.  When all possible 

types of structural elements are considered in the representation, i.e. 7 types of wind 

bracing elements, 5 types of beam elements, 5 types of column elements, and 4 types of 

supports, then the length of the genome is equal to 683 genes.  In the case when totalistic 

1D CA rules are used, the length of the genome is reduced to 81 genes compared to 683 

genes required for standard 1D CA rules. 

nting bracing elements can have up to seven values while the attributes 

representing beams and columns can have up to five values.  The attributes representing 

supports in a steel structure can have up to 4 values (see section 4.2). 

The process of development of a complete design concept from its generative 

representation is pre
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Figure 34. Process of developing the entire steel structural system in a tall building from 
a genome consisting of multiple design embryos and multiple design rules represented by 
one-dimensional cellular automata 
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The disadvantage of this representation is also similar to the one described in 

section 4.4.1, namely the lack of diversification of design rules.  Additional drawback 

involves the necessity to perator, even though the 

modifications required in adapting a standard mutation operator to this representation 

should be minimal. 

4.5. Summar

In the hapter, I provided a general overview of 

representations of structural systems and discussed what distinguishes them from 

traditional models of structural systems used in engineering science.  I also argued that 

representations consisting of attributes with symbolic values are suitable for the 

conceptual design problems.  Thus, they could be used for the two design problems 

investigated in this dissertation. 

The second section of this chapter introduced state-of-the-art representations of 

steel structural systems in conceptual design.  For these types of representations, called 

parameterized representations, each gene represents an attribute corresponding to a 

dimension of the search space.  I also described in detail the attributes representing major 

elements of steel structural systems in tall buildings, including bracings, beams, columns, 

and supports.  

In the third section, I proposed a new approach to represent engineering systems 

based on models of complex systems and inspired by the processes of morphogenesis 

occurring in nature.  These new representations do not encode complete design concepts, 

as in the parameterized representations, but rather rules on how to develop, or grow, these 

create a specialized mutation o

y 

 first section of this c
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designs.  At the end of this section, I also provided a definition of morphogenic 

evolutionary design. 

The fourth section of this chapter extended the ideas presented in the preceding 

section and proposed several types of design concept generation mechanisms based on 

one-dimensional and two-dimensional cellular automata. It also discussed their 

computational and representational advantages and disadvantages.  Furthermore, I 

demonstrated how each type of a design concept generation mechanism can be encoded 

in a generative representation consisting of two parts: a design embryo and a design rule.  

The design embryo defines an initial configuration of structural elements and the design 

rule defines a transformation that changes the current configuration of structural members 

into a new configuration.  A complete design concept of an engineering system is 

developed by applying the design rule to the corresponding design embryo. 

In the next chapter, I will introduce Emergent Designer, an integrated research 

and design support tool, which implements the design method proposed in this 

dissertation as well as the representations of steel structural systems discussed in this 

chapter. 

 

 



 

5. EMERGENT DESIGNER 
 
 
 
 

“Our minds are finite, and yet even in these circumstances of 
finitude we are surrounded by possibilities that are infinite, 
and the purpose of human life is 
can out of the infini

to grasp as much as we 
tude.” 

 

f the Theoretical Structural Validation (see section 3.6.1) whose objective 

was to

.2 provides diagrams of the flow of information within 

EED/Emergent Designer as well as the input/output relationships among the individual 

(Alfred North Whitehead) 

In this chapter, I introduce Emergent Designer, an integrated research and design 

support tool which implements Emergent Engineering Design.  The system was used to 

conduct all design experiments reported in this dissertation (see chapters 6-8).  The 

chapter also discusses the flow of information within EED and within the individual 

phases which constitute the proposed design method.  It describes the results of the 

second stage o

 build confidence in the internal consistency of EED.  The discussion of the 

information flow within EED and within its individual phases is instantiated by detailed 

descriptions of the flow of information within Emergent Designer and its components   

Emergent Designer is a unique research and design support tool which applies 

models of complex systems to represent engineering systems and design processes, and 

to analyze their results.  A high-level overview of the system and its architecture is 

provided in section 5.1.  Section 5

183 
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phases of the design method/components of the system.  Finally, section 5.3 describes the 

actual implementation of Emergent Designer.  Figure 35 shows organization of chapter 5 

as well as major components of Emergent Designer. 

Chapter 5 
Emergent Designer 

System 
Components 

Implementation General 
Overview 

Architecture Information 
Flow 

Problem 
Definition 

Component

Design 
Components 

Analysis 
Components 

Visualization 
Components 

Basic Statistical 
Analysis 

Component 

Basic Dynamical 

Visualization 
Component 

Report 

 

Representation 

Component 

Systems Analysis 
Component 

Generation 
Component 

and 
Decomposition 

Concept 

Component 

Advanced 

Component 

Statistical 
Analysis 

Generation and 
Optimization 

Evaluation and Advanced Time 
Simulation 
Component 

Series Analysis 
Component 

 

Figure 35. Organization of chapter 5 
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5.1. Gen

Em

implemen method proposed in this 

disserta

 the major 

contributions of this dissertation. 

Emergent Designer’s architecture, discussed in section 5.1.1, has been built upon 

the structure of the proposed design method.  Consequently, major components/modules 

of the system implement major phases of EED described in section 3.4.  Further, the 

components/modules of the system implement models, procedures, and algorithms 

directly related to the research hypotheses posed in this dissertation and presented in 

section 3.3. Therefore, they are directly linked to the fundamental hypothesis of this 

dissertation.  

ng design experiments in the area of 

structural design and for analysis of their results using methods, models, and tools from 

hus, it can be used as a design support tool equipped 

with state-of-the-art mechanisms for the generation of novel design concepts and for 

conducting their optimization.  It is at the same time a versatile research tool that 

implements advanced methods and tools for the analysis of the design processes and of 

eral Overview 

ergent Designer is an integrated research and design support tool that 

ts Emergent Engineering Design, the design 

tion.  It is based on the ideas proposed in this dissertation, including the ideas on 

how to represent engineering systems and design processes using various models of 

complex systems.  As discussed in section 9.2, the system forms one of

Emergent Designer is intended for conducti

statistics and time series analysis.  T

the obtained experimental results. 
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The following subsection provides a high-level overview of the system’s 

architecture and briefly describes its major components/modules.  Subsection 5.1.2 

presents the flow of information within the system and discusses integration of its 

components and their interactions. 

5.1.1. Architecture 

Emergent Designer consists of 10 major components/modules which can be 

divided into three major groups: 

• Design components 

These implement Emergent Engineering Design, the design method proposed 

in this dissertation. They form the core of the system and conduct the actual 

design processes. 

• Analysis components 

These implement tools and methods for the analysis of the experimental results 

and design processes. The components included in this group are aimed to 

provide quantitative information about the conducted design processes as well 

as statistical estimates of the performance of the design method.  They are also 

intended to provide deeper understanding of the dynamics of design processes 

and the structure of the design spaces from a global/holistic perspective. 

• Visualization components 

generation mechanisms.  They include tools which support visualization of the 

results of various analyses, e.g. statistical or time series, conducted by the 

These components implement various visualization methods and report 
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system’s components.  Also, automated tools for the generation of 

experimental reports that include detailed descriptions of experimental 

parameters and obtained results are implemented. 

A high-level overview of the architecture of Emergent Designer is presented in 

Figure 36.  It shows the individual components of the system contained in each of the 

groups discussed above.  They will be discussed in more detail in section 5.2. 

 

Figure 36. Architecture of Emergent Designer 

5.1.2. Information Flow 

The flow of information in Emergent Designer is presented in Figure 37. It 

provides an overview of the relationships among the components discussed in the 

previous section and shows where user input/decisions are expected.  It doesn’t show

l components which are discussed in 

section 5.2.   

, 

however, the information flow within the individua
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Once Emergent Designer has been started, a user has a choice of conducting a new 

design experiment or using advanced statistical and time series analysis tools to analyze 

data saved from previous experiments.  By default, a new design experiment is selected 

and the Problem Definition Component is called to define a design problem. 

Problem Definition Component is intended to select a domain of interest, e.g. steel 

skeleton structures in tall buildings, and a specific design problem that will be solved, e.g. 

design of a wind bracing system.  This component allows for specification of values of 

the parameters defining the considered design problem, e.g. the number of stories in a tall 

bui

mechan

previou

not to

Decom  If the design problem is to be 

deco

lding, or the height of a story.  Problem Definition Component also implements 

isms for saving the system’s parameters and their values to a file, and retrieving 

sly saved values from a file. 

When the design problem is completely defined, a user has to decide whether or 

 decompose the problem into several sub-problems.  Representation and 

position Component is used for this purpose. 

mposed, then a user selects one of the several decomposed representations.  On the 

other hand, if the design problem is considered as a whole, then one of the 

representations of the entire engineering systems can be chosen.  In this case, the 

spectrum of possible representations includes parameterized representations and 

generative representations (see section 5.2.2).  Representation and Decomposition 

Component also supports the specification of values of representation specific 

parameters, e.g. the shape of the local neighborhood in generative representations based 

on cellular automata. 
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Figure 37. Information flow in Emergent Designer 
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When the design problem and its representation have been fully defined, the 

Concept Generation and Optimization Component is used to specify the type of a concept 

generation mechanism and to determine whether or not the topology optimization and/or 

sizin

nism, e.g. an evolutionary algorithm, is used together with traditional 

parameterized representations of engineering systems (see chapter 7). 

2. If both generation of novel design concepts and their subsequent optimization are 

considered as important objectives then an optimization mechanism is combined 

with generative representations (see chapter 8). 

The design concepts produced by the design concept generation and/or optimization 

mechanisms are transferred to the Evaluation and Simulation Component which evaluates 

itness measures are used in the multiobjective 

evalu

g optimization should be conducted.  If only a concept generation mechanism is 

selected, i.e. no optimization is performed, then the design concepts are produced by the 

design concept generators based on generative representations, e.g. iteration of 1D or 2D 

cellular automata (see chapter 6).  On the other hand, when the optimization of 

engineering systems is to be performed then a user has two possible choices: 

1. If the focus is on design optimization issues then only an optimization 

mecha

them and assigns fitness value(s) (multiple f

ation).  This component is used to select an evaluation model assumed in a given 

design experiment and the values of evaluation specific parameters, e.g. methods for the 

determination of wind loads acting on structural system, or magnitudes of dead and live 

loads, etc.  Also, simulation parameters, including the number of runs, the termination 

criteria, etc., need to be defined in order to run a design experiment. 
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The four components described earlier, i.e. Problem Definition Component, 

Representation and Decomposition Component, Concept Generation and Optimization 

Component, and Evaluation and Simulation Component, form a group of design 

com

ts 

have b  values are also used where possible), the actual design 

exp m mical 

Systems Analysis Component support online monitoring of design processes by providing 

best-so

r values used in the design experiment as well as 

its ualization Component are employed 

during the process of the automat n experimental report.  Report 

Ge  

ex   It also collects important 

sta ponent.  Visualization 

Co zation graph, if applicable, and 

ch ments.  When all the 

ponents that implements the actual design method. 

Once the values of all the parameters implemented in this group of componen

een determined (default

eri ent can be initiated.  Basic Statistical Analysis Component and Basic Dyna

-far fitness values and trajectories of points (design concepts) in the design spaces.  

Basic Statistical Analysis Component also provides the mechanisms for collecting 

relevant experimental data and saving them in files. 

When a design experiment is finished, Basic Statistical Analysis Component can be 

used to calculate and display average best-so-far fitness values with corresponding 95% 

confidence intervals.  At that point, a user can also generate a complete experimental 

report listing all the parameters and thei

 results.  Report Generation Component and Vis

ic generation of a

neration Component gathers the names and values of the parameters used in the

periment and extracts relevant experimental results.

tistical data calculated by the Basic Statistical Analysis Com

mponent can be used to produce a landscape visuali

arts representing progress of individual runs in the design experi
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textual, numerical, and graphical data are available, Report Generation Component 

compiles them together into a single document that is subsequently displayed as an 

experimental report. 

At this point, the user can choose to start a new design experiment, or to analyze the 

experimental data using advanced statistical and time series analysis tools, or simply exit 

the system.  If a new design experiment is selected, Problem Definition Component is 

called again and the entire process described above is repeated.  On the other hand, if 

advanced statistical analysis, or advanced time series analysis, is chosen then Advanced 

Statistical Analysis Component or Advanced Time Series Analysis Component is utilized, 

respectively. 

5.2. System Components 

This section describes in detail each of the system’s components that were briefly 

introduced in the previous section.  It discusses the information flow within each of the 

system’s components and describes the parameters and their allowable values set by each 

component.  Section 5.3 discusses the actual implementation of the components. 

5.2.1. Problem Definition Component 

Problem Definition Component implements the preliminary phase of the proposed 

design method in which a design problem is defined.  The output of this component, i.e. a 

complete description of a design problem in terms of parameters and their values, 

mponent.  This 

component provides necessary domain knowledge and specifies parameters of the 

becomes the input to the Representation and Decomposition Co
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co which are transferred to the 

co men ng th actual It is used to perform the following 

tasks: 

esign of a wind bracing system, or design of the entire 

within the Problem Definition 

Co ines the overall purpose (what to 

de the design should satisfy.  

Ba  it is necessary to define domain 

sp es, le, 

wh  struc y the 

fol lues

 D

nsidered design problem.  It defines the input data 

mponents imple ti e  design method.  

 Domain selection, e.g. steel skeleton structures in tall buildings. 

 Problem selection, e.g. d

steel structural system. 

 Specification of the problem parameters, e.g. the number of stories, or story 

height. 

Figure 38 shows the flow of information 

mponent.  The external input to the component def

sign), requirements, and constraints (feasibility criteria) 

sed on this input, a design domain is selected.  If

ecific parameters and their valu then they are defined in the next step.  For examp

en a domain of steel skeleton tures has been selected, it is necessary to specif

lowing parameters and their va :  

 Dimensionality:    2D, 3D 

esign type:    truss, frame, other 

 Structural analysis type: analysis, optimization, verification 

 Behavior type:   first-order, P-∆  

 Sidesway:   prevented, permitted 

 Cross-section database:  AISC, CISC, other 

 Unit system:   metric, U.S. customary 
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Figure 38. Information flow within the Problem Definition Component 
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  Length unit:   mm, m, in, ft 

 Force unit:   N, kN, lbs, kips 

As discussed in more detail in section 5.3, Problem Definition Component 

assumes some default values of the parameters listed above but gives the user flexibility 

to adjust them appropriately.   

When the domain and its parameters have been defined, a design problem can be 

selected, e.g. conceptual design of steel structural systems in tall buildings.  Here again, 

some problem specific parameters and their values have to be defined.  They include: 

 Number of stories:  30 (default) 

 Number of bays:   7 (default) 

 Story height:   14.0 in (default) 

 Bay width:   20.0 in (default) 

 Types of bracing elements: a subset of the bracing types shown in Figure 19 

 Types of beam elements: a subset of the beam types shown in Figure 20 

 Types of column elements: a subset of the column types shown in Figure 21 

 Types of supports:  a subset of the support types shown in Figure 22 

The values of the first 4 parameters are default values assumed by the system.  

They can be arbitrarily changed and can take on any feasible value in the context of the 

problem domain.  When all the parameters defining a domain and design problem have 

been defined, a complete definition of a design problem has been established.  It forms 

the output of the Problem Definition Component which subsequently becomes an input to 

the Representation and Decomposition Component and Report Generation Component. 
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5.2.2. 

entation Space Definition and Representation Space 

De  engineering system and its 

de

definition of the design problem which 

Component.  The output produced by the Re  

defines

 

osition Component 

is rip ign problem is a starting point 

of When 

Representation and Decomposition Component 

Representation and Decomposition Component is used to conduct the first and 

second phases of EED, i.e. Repres

composition (see Figure 15), in which representation of an

composition, if any, are defined.  The input to this component consists of a complete 

is obtained from the Problem Definition 

presentation and Decomposition Component

 the representation of the engineering system being designed.  This component is 

used to conduct the following tasks: 

 Selection of a representation for the design problem, e.g. a parameterized 

representation, or a generative representation based on one-dimensional or two-

dimensional cellular automata. 

Selection of a decomposition of a given problem. 

 Specification of parameters for a given type of representation (e.g., resolution for 

binary representations, or the neighborhood shape and the neighborhood radius 

for generative representations). 

The flow of information within the Representation and Decomp

shown in Figure 39.  The complete desc tion of the des

the development of a representation of the engineering system being designed.  

the design problem is complex, it might be decomposed into sub-problems.  In this case, 

the decomposition of the problem has to be specified. 
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Figure 39. Information flow within the Representation and Decomposition Component 

 



198 

Decomposition specific parameters and their values, if any, are defined in the next 

step.  Examples of decomposition specific parameters for the problem of designing steel 

structures in tall buildings include: 

 Number of sub-problems:  2, 3, 4 

 Types of elements in sub-problems: [(bracings), (beams, columns, supports)], 

erative (see section 2.1.3).   

d, the 

representation of an engineering system is completely specified.  The representation 

becomes the output of the Representation and Decomposition Component which is 

[(bracings), (beams,  columns), (supports)], 

[(bracings), (beams), (columns), (supports)] 

When all the decomposition parameters have been specified, or when there is no 

decomposition, the actual encoding of the engineering system has to be defined.  Here, 

several types of encodings can be used as discussed in chapter 4.  The encodings 

supported by the Representation and Decomposition Component can be divided into two 

major groups: parameterized and gen

When the encoding type has been determined, it is usually necessary to define 

some additional parameters and their values.  For example, when generative 

representations based on one-dimensional cellular automata (see section 4.4.1) have been 

selected, the following encoding specific parameters must be defined: 

 CA type :    regular, totalistic 

 Local neighborhood radius:  1 (default) 

 Number of cell state values:  determined by the problem definition 

When all the decomposition and encoding parameters have been define
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subsequently utilized by the Concept Generation and Optimization Component and 

Report Generation Component. 

5.2.3. Concept Generation and Optimization Component 

Concept Generation and Optimization Component is utilized to conduct the third 

phase of the proposed design method, namely Generation and Optimization of Design 

Concepts (see Figure 15).  This component defines representations of engineering design 

processes.  As discussed in chapter 3, EED assumes the model of the design process 

based on generate-and-test, or trial-and-error, principle.   

The following tasks are handled using this component: 

 Selection of the mechanisms for generation of design concepts, e.g. various types 

of cellular automata (1D, totalistic 1D, 2D, totalistic 2D). 

 Selection of the mechanisms for optimization of design concepts, e.g. various 

types of evolutionary algorithms. 

 Specification of parameters of optimization mechanisms, i.e. parent and offspring 

population sizes, types of genetic operators, etc. 

Representation of an engineering system obtained from the Representation and 

Decomposition Component forms the input to Concept Generation and Optimization 

Component.  The produced output consists of feasible design concepts with assigned 

fitness value(s). 

The internal structure of this component is much more complex than of the other 

components in this group.  The flow of information within the Concept Generation and 

Optimization Component is shown in Figure 40.  It consists of three major 
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subc

e evaluation criteria, and the best 

designs

d/or the member sizing level (detailed design) utilizing the 

Sizing . 

omponents: Concept Generation Component, Topology/Shape Optimization 

Component, and Sizing Optimization Component.  Depending on the type of a 

representation of an engineering system provided as input and the decisions made 

regarding the optimization mechanisms, either only one subcomponent, or two, and even 

all three subcomponents, can be utilized in the design process. 

If merely the Concept Generation Component is used, then the design concepts are 

produced solely by the concept generation mechanisms, e.g. 1D or 2D cellular automata.  

In this case, no optimization mechanisms are employed during the design process.  

Generated design concepts are evaluated, given som

 are identified at the end of a design process.  Thus, in this case the focus of the 

design processes is shifted towards novelty.  Design concept generation mechanisms are 

studied experimentally in chapter 6. 

On the other hand, if an engineering system is represented using a parameterized 

encoding then no concept generation mechanism is necessary to produce the design 

concept from its representations (there is a direct mapping between the representation and 

the attributes describing an engineering system).  In this case, the design processes focus 

exclusively on optimality issues.  Design optimization mechanisms can be applied at the 

topology/shape level (conceptual/embodiment design) using the Topology/Shape 

Optimization Component an

Optimization Component.  These mechanisms are investigated in chapter 7
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Figure 40. Information flow within the Concept Generation and Optimization Component 
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It is also possible to combine design concept generation mechanisms with design 

optimization mechanisms, which is one of the key ideas presented in this dissertation.  

Th c ncepts and their 

optima

co the Concept Generation 

Co m d using the Topology/Shape 

Op  Sizing

mechanisms utilizing generative represen ary 

de n

If the representation of an engineeri epresentation 

and Decomposition Component, is generativ

co ntation have to he Concept Generation 

Co , when 1D or 2D tations are used, then cellular 

autom pts from their representations.  

Th ing the 

repres ed as input.  Additionally, the 

values 

is orresponds to the situation in which novelty of generated design co

lity are equally important design objectives.  To achieve both objectives, the 

ncept generation mechanisms need to be specified using 

mponent and optimization mechanisms ust be determine

timization Component and/or the  Optimization Component.  The combined 

tations, named morphogenic evolution

sig  (see section 4.3), are investigated in chapter 8. 

ng system, obtained from the R

e, then the mechanisms of producing design 

ncepts from this represe  be defined using t

mponent.  For example  CA represen

ata need to be determined to develop design conce

e parameters required here include the parameters used in the process of defin

entation of an engineering system which is obtain

of two more parameters, namely the Design rule and the Design embryo, must be 

defined.  They determine a specific CA rule and initial configuration of cells used to 

generate design concepts.   

The following parameters are necessary to fully define cellular automata: 

 CA dimension:  (1D or 2D) determined by the representation 

of an engineering system; higher-
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dimensional CA can also be used for some 

problem domains but they are not studied in 

this dissertation 

 CA type : (regular or totalistic) determined by the 

representation of an engineering system 

 Local neighborhood shape: (Moore, von Neumann, etc.) determined by 

the representation of an engineering system 

(2D CA only) 

 Local neighborhood radius: determined by the representation of an 

quire additional 

param ge

parameter is the maximum number of iterat ar automaton (iteration_max), 

which 

engineering systems are 

em

For example, when an evolutionary algorith to optimize topology/shape of 

engineering system 

 Number of cell state values: determined by the representation of an 

engineering system 

 Design rule (CA rule):   randomly generated, arbitrarily assumed 

 Design embryo (initial configuration): randomly generated, arbitrarily assumed 

Some types of representations of engineering systems re

eters to fully determine the concept neration mechanism.  An example of such a 

ions of a cellul

was defined in sections 4.4.2 and 4.4.3.   

When the combined approach is used (generative representation and optimization 

mechanisms), or when parameterized representations of 

ployed, then the parameters defining optimization mechanisms need to be specified.  

m is employed 
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an g g param

Topology/Shape Optimization Component: 

 

one gene, all genes 

 M

 only): 0.2 (default) 

Sizing optimization, if used, solves the problem of finding the optimal cross-

sections of all structural members of an engineering system being designed.  This type of 

structural optimization is conducted when the topology/shape of a given design concept 

has been already determined, or when it is assumed constant.  Sizing optimization has 

been traditionally, and successfully, performed using mathematical optimization methods 

(see section 2.1.7).  It is also possible to employ evolutionary algorithms to solve this task 

 en ineering system, the followin eters and their values must be defined by the 

Type of evolutionary algorithm:  GA, ES, EP, or unified EA 

 Generational model: overlapping, non-overlapping 

 Parent population size:  5 (default) 

 Offspring population size:  25 (default) 

 Parent selection mechanism: uniform deterministic, uniform stochastic, 

fitness proportional,  binary tournament 

 Survival selection mechanism: uniform stochastic, fitness proportional,  

binary tournament, truncation 

 Mutation type: none, bitflip,  Gaussian, delta,  integer-based 

 Mutation frequency: 

utation step size: 1.0 (default) 

 Mutation adaptation value: 0.1 (default) 

 Crossover type: none, one-point, two-point, uniform 

 Crossover frequency (uniform
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and, in fact, one of the earliest applications of EA considered the sizing optimization of 

simple truss systems (see the survey in section 2.1.7).  When sizing optimization is 

conducted, the optimization mechanism needs to be specified first by the Sizing 

Optimization Component.  Once it is defined, additional sizing optimization parameters 

and e  

to solv their values are similar to 

the e  a traditional 

mathem d 

must b

optimiz  conditions and 

method

y function, repair algorithm, etc. (see 

) 

ected ethod, some additional 

param r examp

then additional parameter values might be required, including: 

ype: ee 

section 2.1.4) 

 th ir values, if any, have to be determined.  When an evolutionary algorithm is used

e the sizing optimization problem, the parameters and 

 on s used for topology/shape optimization.  On the other hand, when

atical optimization method is employed, then parameters specific to this metho

e defined. 

When all the parameters defining the design concept generation, topology/shape 

ation, and sizing optimization are set, the feasibility check

s of handling constraints (see section 2.1.4) need to be specified.  They define 

mechanisms of determining feasibility of produced design concepts and mechanisms that 

are applied when an infeasible design concept is identified.  The constraint-handling 

method can be defined using the following parameters and their values: 

 Constraint-handling method type:  penalt

section 2.1.4

Depending on the type of a sel constraint-handling m

eters might be necessary.  Fo le, when a penalty function method is used, 

 Penalty function t static, dynamic, death penalty, etc. (s
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 V

d, if successful, the design concept is passed to the Evaluation and 

Simula

eration and Optimization Component consists of 

fea ts with assigned fitn ubsequently passed to 

the a ent, Basic Dynamical System Analysis Component, 

an

5.2.4. Evaluation and Simulation Component 

Evaluation and Simulation Component implements the last phase of EED, namely 

Fitness Evaluation (see Figure 15).  It defines design evaluation models and general 

mechanisms of managing and monitoring simulations of design processes.  The input to 

this component consists of a phenotypic representation of a design concept which is 

obtained from the Concept Generation and Optimization Component.  The output 

alue of the penalty factor: constant, determined by a formula (penalty 

term), etc. 

Each generated design concept is tested for feasibility.  When it satisfies all 

feasibility criteria defined by the Problem Definition Component, then it is passed to the 

Evaluation and Simulation Component where it is evaluated and assigned fitness 

value(s).  On the other hand, when a produced design concept is proved infeasible, then 

constraint-handling methods need to be employed, e.g. a repair algorithm or a penalty 

method.  In the case when a repair algorithm is used, an attempt is made to repair the 

design concept an

tion Component and assigned a fitness value(s).  If the repair is unsuccessful 

though, the design concept is determined infeasible and assigned worst possible fitness 

value(s) (death penalty method). 

The output of the Concept Gen

sible design concep ess values which are s

 B sic Statistical Analysis Compon

d Report Generation Component. 
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produced by the Evaluation and Simulation Component consists of the same design 

concept provided as input but this time with an assigned fitness value, or fitness values in 

the case of multiobjective evaluation.  The following tasks are conducted using this 

component: 

 Specification of the load conditions considered during an evaluation process, e.g. 

wind loads acting on a steel structure in a tall building. 

 Selection of an evaluation model and mechanisms used to measure 

goodness/fitness of generated design concepts, e.g. a structural analysis package 

to calculate the total weight of the structural system. 

 Specification of general simulation parameters, e.g. the number of runs, lengths of 

individual runs, etc., and monitoring of the simulation progress. 

The flow of information within the Evaluation and Simulation Component is 

shown in Figure 41.  First, an evaluation model needs to be selected.  The model defines 

the number of objectives and the number and type of evaluation criteria that will be used 

to determine goodness of a design concept provided as input.  The evaluation model is 

defined by considering the following parameters:  

 Number of objectives: 1, 2, 3, etc. 

 Number of evaluation criteria: 1, 2, 3, etc. 

 Type of evaluation criteria: total weight, maximal deflection, total cost, 

etc. 

 Type of weights: uniform, non-uniform, summing to 1, etc. 
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The value of the parameter specifying the number of objectives determines 

whether a standard single-objective evaluation should be conducted (when the value is 

equal to 1), or rather multiobjective evaluation methods ought to be employed (when the 

value is greater than one).  The parameters specifying the number and type of evaluation 

criteria

rameters describe types of loads considered in a given design 

sit i nclude the 

fol

 T

eed to be determined.  Also, specific loading 

model 

 define the quantities that are measured and subsequently utilized by the 

evaluation model.  It is worth mentioning that multiple evaluation criteria may be used 

even when a single-objective evaluation is performed.  In this case, the evaluation criteria 

are combined into a single objective function through the normalization and arbitrarily 

assigned weights. 

The next step defines a loading model which is applied to the structural system 

being designed.  Several pa

uat on as well as the number and types of load combinations.  They i

lowing parameters and their values: 

 Types of loads: dead, live, wind, etc. 

 Number of load combinations: 1, 2, 3, etc. 

ypes of load combinations: (wind + live + dead), etc. 

When the types of loads considered in a given design situation are set, then the 

magnitudes and locations of specific loads n

parameters have to be defined, including coefficients applied to various load types 

for a given load combination, etc. 
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Figure 41. Information flow within the Evaluation and Simulation Component 
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When the evaluation and loading models are established, the evaluation method 

must be specified.  Here, several types of structural analysis methods can be considered, 

including the displacement method, finite elements method, etc.  If the selected 

evaluation method requires additional parameters, they are defined at a subsequent step. 

Finally, general simulation settings need to be determined.  They describe the 

overall length of a design experiment in terms of the number of runs (evolutionary based 

design processes are stochastic in nature and any inferences based on the experimental 

results have to be justified statistically).  They also specify initialization and termination 

criteria for individual runs in terms of random seed values used during the initialization 

process and the maximum number of fitness evaluations, respectively.  The following 

parameters need to be set: 

 Number of runs: 10 (default) 

 Number of fitness evaluations: 1000 (default) 

 Random seed values used (name of the file storing the seeds) 

 Number of CA iterations: 30 (default) 

When all evaluation and simulation parameters are specified, then all phases of 

the proposed design method are completely defined.  The system is ready to conduct a 

design experiment as shown in Figure 37.   

The remaining components of Emergent Designer, described below, implement 

methods, models, and tools for the analysis of experimental results, their visualization 

and automatic report generation. 
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5.2.5. 

ed during 

rformed using this 

component: 

 Collection of the experimental data and calculation of the best-so-far fitness 

statistics. 

 Calculation of various statistical estimates that quantitatively describe design 

processes, including average best-so-far fitness and confidence intervals around 

the mean. 

 Comparison of statistical estimates (means and confidence intervals) calculated 

from the results obtained in design experiments with multiple runs. 

The first two tasks described above are performed online, i.e. during the actual 

design processes while the last task is conducted offline, when no design experiments are 

running. 

The flow of information within the Basic Statistical Analysis Component is shown 

in Figure 42.  When a new design concept has been generated and evaluated, its fitness 

value(s) and birth date are collected.  These data are subsequently saved in the files 

storing the experimental results.  Next, the data are analyzed and best-so-far statistics are 

Basic Statistical Analysis Component 

Basic Statistical Analysis Component implements basic statistical tools for the 

analysis of the results of design processes.  The input to this component is obtained from 

the Concept Generation and Optimization Component and consists of design concepts 

with their fitness values as well as their data regarding when they were generat

the simulation (their “birth dates”).  The following tasks are pe

 



212 

calculated.  They are also saved in the files storing statistical analysis results.  At the 

same time, best-so-far statistics are passed to the Visualization Component.  

 

Figure 42. Information flow within the Basic Statistical Analysis Component 
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 When the design process is finished, the average best-so-far statistics for the 

entir

Basic Dynamical Systems Analysis Component implements basic tools and methods 

for the analysis of the results of the design processes from the dynamical systems 

perspective.  In this type of analysis, the design processes are considered as dynamical 

systems operating in the design spaces.  Its input consists of design concepts, their fitness 

values, and their birth dates and is obtained from the Concept Generation and 

Optimization Component.  The subjects of analyses are the properties of trajectories 

(coordinates of the generated points in the design space) of design processes and 

identification of attractors in the design spaces.  The following tasks are conducted using 

this component: 

 Collection of the trajectories data (coordinates of the generated points in the 

design space). 

 Reconstruction of attractors in the design spaces from the experimental data. 

These tasks are also performed online and show the actual dynamics of the design 

processes. 

The flow of information within the Basic Dynamical Systems Analysis Component 

is shown in Figure 43.  First, the experimental results data are collected.  The trajectory 

e experiment are calculated and saved in a file.  At the same time, they are also 

transferred to the Visualization Component.  The output produced by the Basic Statistical 

Analysis Component consists of basic statistical analysis results, which are subsequently 

passed to the Visualization Component and the Report Generation Component. 

5.2.6. Basic Dynamical Systems Analysis Component 
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information is extracted from the collected data and passed to the Visualization 

Component.  Further, the trajectory data are analyzed and methods and tools of attractor 

reconstruction are employed, e.g. delay coordinates.  The results of these analyses are 

subsequently transferred to the Visualization Component.   The output produced by the 

Basic Dynamical Systems Analysis Component consists of basic dynamical systems 

analysis data and is utilized by the Visualization Component. 

 

Figure 43. Information flow within the Basic Dynamical Systems Analysis Component 
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5.2.7. 

en conducted.  The input is obtained from the files storing the 

Basic Statistical Analysis 

Component.  Advanced Statistical Analysis Component contains the tools for the analysis 

of the sample distributions and making inferences about their means and medians.  The 

following types of tasks are performed using this component: 

 Reading the experimental data from file(s). 

 Qualitative and quantitative analysis of the sample distributions, e.g. histograms, 

normal scores plots, skewness and kurtosis estimates, etc. 

 Estimation of statistical quantities from the data (e.g. means and medians) using 

various point estimates and interval estimates. 

 Saving the analyses results in files. 

The flow of information within the Advanced Statistical Analysis Component is 

shown in Figure 44.  First, the experimental results data are read from the files.  Next, the 

qualitative and quantitative analysis of the sample distributions is conducted, if desired.  

This type of analysis involves various histograms, normal scores plots, and skewness and 

kurtosis estimates.  It helps to determine the overall qualitative properties, e.g. the shape 

of a sample distribution. 

Advanced Statistical Analysis Component 

Advanced Statistical Analysis Component implements advanced statistical analysis 

methods, models, and tools for the analysis of the experimental results.  The statistical 

analysis conducted by this component is performed offline, i.e. after the design 

experiments have be

experimental results which were previously saved using the 
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Figure 44. Information flow within the Advanced Statistical Analysis Component 
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When the shape of a sample distribution is better known, then appropriate 

meth

Advanced Time Series Analysis Component implements advanced tools and models 

from the linear and nonlinear time series analysis.  The analysis, similar to the one 

performed by the Advanced Statistical Analysis Component, is conducted offline.  Also, 

the input consists of the experimental results stored in previously saved files.  The 

following types of tasks can be conducted using this component: 

 Reading the time series data from a file(s). 

 Qualitative and quantitative analysis of the time series data using various methods 

and tools, e.g. delay coordinates, power spectrum, autocorrelation, etc. 

 Saving the analysis results in a file. 

The flow of information within the Advanced Time Series Analysis Component is 

shown in Figure 45.  First, the experimental data need to be read from files.   Next, a 

method of the time series analysis must be selected.  If the chosen analysis method 

requires some additional parameters, e.g. time lag and embedding dimension in the delay 

coordinates plot, they are specified at the next step.  When all the parameters have been 

defined, the time series analysis of the experimental data can be conducted.  The results 

ods and tools for estimation of various statistical quantities, i.e. means, medians, 

etc., can be employed.  The results of these analyses are transferred to the Visualization 

Component and subsequently displayed in a form of charts, graphs, and histograms 

and/or saved in files. 

5.2.8. Advanced Time Series Analysis Component 
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of these analyses are subsequently transferred to the Visualization Component and/or 

saved in a file. 

 

Figure 45. Information flow within the Advanced Time Series Analysis Component 
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5.2.9. Visualization Component 

Visualization Component implements various methods of data visualization.  It 

sup r

fun o ts.  The 

inp to s 

compo this 

com

 

po ts a qualitative analysis of the experimental results and offers necessary 

cti nality to save produced graphs and charts in files and experimental repor

ut  this component consists of the experimental data and it is obtained from variou

nents of the system.  The following types of tasks can be conducted using 

ponent: 

Display of generated design concepts. 

 Interactive display of simple three-dimensional fitness landscapes. 

 Display of statistical, dynamical, and time series analyses conducted using various 

components of the system. 

The flow of information within the Visualization Component is presented in 

Figure 46.  First, the experimental results obtained as input are collected and information 

relevant to display and visualization purposes is extracted from the data.  Next, 

depending on the data source, appropriate graphs and charts are produced including line 

charts, scatter plots, histograms, and renderings.   The produced graphs are displayed by 

Emergent Designer’s graphical user interface (GUI).  Each generated graph may also be 

saved in a file. This last option is implicitly used by the Report Generation Component 

which utilizes various graphs produced by the Visualization Component during the 

process of automatic generation of experimental reports.  The graphs included in the 

reports are first saved in files and subsequently read by the Report Generation 

Component. 
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Figure 46. Information flow within the Visualization Component 

5.2.10. Report Generation Component 

Report Generation Component supports the automatic generation of experimental 

reports.  It is intended to provide complete information about the experimental 

parame ained results.  The input to this component ters and their values as well as the obt
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is obtained from various components of the system. The following types of tasks are 

conducted using this component: 

 Collection of the experimental parameters and their values used in the experiment. 

 Collection of the numerical results of various runs in a given experiment. 

 Collection of statistical analysis data and various graphs illustrating progress of 

individual runs and average performance during the entire design experiment. 

 Automatic generation of a full report containing all above mentioned elements. 

The flow of information within the Report Generation Component is presented in 

Figure 47.  First, the parameters and their values used in the experiment are collected 

from the components implementing the proposed design method, i.e., Problem Definition 

Component, Representation and Decomposition Component, Concept Generation and 

Optimization Component, and Evaluation and Simulation Component.   They are grouped 

together and placed in the initial part of the experimental report.  Next, Basic Statistical 

Analysis Component provides quantitative data on the results obtained in various runs as 

well as simple statistics, e.g. best-of-run fitness, etc.  The quantitative data describing the 

individual runs are accompanied by the qualitative information received from the 

Visualization Component in the forms of graphs displaying the best, average, and worst 

fitness values obtained in individual runs.   Thus, each run of a design experiment is 

described both quantitatively and qualitatively.  This analysis concludes the section two 

 the entire design 

experiment is reported in which average best-so-far fitness values and the corresponding 

confidence intervals are given.  Also, graphs showing best-so-far fitness of all runs as 

of the experimental report.  In the last section, a ‘global’ analysis of
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well as average fitness values are included.  An experimental report containing all data 

mentio

5.3. Implementation 

Emergent Designer has been implemented with a fully functional graphical user 

interface using Java. The decision to use this particular programming language was made 

due to the fact that several of the system’s components were built upon existing packages 

written in Java.  Moreover, Emergent Designer integrates several commercially available 

systems (e.g., Mathematica© (Wolfram 2003) and OpenOffice.org) and communicates 

with them using available Java APIs. 

Another important aspect that influenced the choice of the programming language 

was the fact that Java is portable and network-oriented.  Portability offers the flexibility 

of running the system on various platforms.  Built-in networking capabilities open the 

possibility of using distributed architectures.  Both of these issues are particularly 

important in structural design where the process of evaluation of generated design 

concepts is usually computationally expensive and conducted using specialized structural 

analysis software. 

 

 

ned above is automatically generated and may be subsequently saved in a file.  

Each generated graph may also be saved in a file. Hence, the output produced by the 

Report Generation Component consists of a complete experimental report which is 

displayed in the system’s GUI and/or saved in a file. 
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Figure 47. Information flow within the Report Generation Component 
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5.3.1

 real-valued (parameterized) 

 integer-valued  (parameterized) 

 cellular automata (generative)  

The first two types are used mostly for real-valued problems while the latter two 

are applied to encode the designs concepts of steel structural systems in tall buildings.  

Real-valued and binary representation implementations were inherited from the existing 

evolutionary computation package called ec3 (De Jong to appear).  On the other hand, 

. Design Components 

Components implementing the proposed design method constitute the core of 

Emergent Designer.  Their functionality, described in sections 5.2.1 - 5.2.4, was either 

directly implemented or borrowed from several existing packages and commercial 

systems that were integrated with Emergent Designer.   

Two domains have been implemented in the Problem Definition Component the 

domain of steel structural systems in tall buildings and the domain of real-valued 

functions (added for testing purposes and analysis of the behavior of various components 

of the system).  The domain of steel structural systems includes two major classes of 

design problems: design of a wind bracing system in a tall building and design of an 

entire steel structural system in a tall building. 

Representation and Decomposition Component supports four types of 

representations:  

 binary (parameterized) 
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integer-valued and cellular automata representations were directly implemented in the 

system. 

Concept Generation and Optimization Component has been built upon four major 

existing packages and commercially available systems.  Design concept generation 

utilizing various types of cellular automata is conducted by Mathematica© kernel which 

was integrated with Emergent Designer via JLink™.  All major types of CA are 

supported, including 1D CA, totalistic 1D CA, 2D CA, and totalistic 2D CA.   

Topology/shape optimization using evolutionary algorithms is supported by ec3 

package (a Java-based evolutionary computation toolkit (De Jong to appear)).  Here, all 

canonical evolutionary algorithms can be utilized, including genetic algorithms, 

evolutionary programming, and evolution strategies.   The system also offers a possibility 

of employing a unified EA (De Jong to appear) in which all major elements of an EA, i.e. 

generational model, parent selection, offspring selection, population sizes, operators, etc., 

can be tuned to a particular design problem. 

Sizing optimization, if applied, is conducted using a sophisticated optimization 

algorithm based on traditional mathematical programming method and implemented in 

SODA©.  It is a commercially available structural analysis, design and optimization 

system developed by Waterloo Systems in Waterloo, Ontario, Canada.  It was integrated 

with Emergent Designer to perform evaluation of designs and their sizing optimization.  

A detailed description of the optimization algorithm and some theoretical background can 

be found in (Grierson 1989). 
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Evaluation and Simulation Component implements evaluation models used to 

determine fitness of generated solutions.  Current status of the system supports a single 

objective evaluation of individual design concepts only using one of the two evaluation 

criteria: the total weight (an estimate of the cost) or the maximal horizontal displacement 

(an estimate of the stiffness) of the steel structural system.   The determination of a least-

weight structure is performed by SODA and is conducted in conformance with the 

strength (stability) and stiffness (displacement) provisions of several commonly used 

steel codes, including AISC-ASD-89, AISC-LRFD-86, AISC-LRFD-93, CSA-Sl6.1-

M89, or CSA-Sl6.1-94.  Loading model required for evaluation of generated design 

concepts includes dead, live, and wind loads determined in conformance with the 

corresponding design codes.  Wind forces are calculated for a given design case using a 

modified version of a commercial system Wind Load© V2.2.S developed by Novel 

CyberSpace Tools. 

es are conducted online, i.e. during the actual design processes.  Basic statistical 

analysi

5.3.2. Analysis Components 

Methods and models of basic statistical and dynamical systems analysis, described 

earlier in sections 5.2.5-5.2.6, have been implemented directly in Java.  These analytical 

process

s involves best-so-far fitness statistics calculated for individual runs and average 

best-so-far fitness statistics and 95% confidence intervals computed for the entire design 

experiment.  This analysis is also automatically saved in files. 

Implemented methods of simple dynamical systems analysis include trajectory 

analysis which shows the dynamics of the processes in the design spaces as well as delay 

 



227 

coordinates analysis.  Delay coordinates are computed from the best-so-far fitness values 

with an arbitrarily assumed time lag. 

Contrary to the basic analyses described above, advanced statistical and time series 

analyses are performed offline.  Advanced statistical analysis includes estimation of 

sample distributions using histograms, normal scores plots, symmetry plots, and 

estimators of sample kurtosis and sample skewness.  Advanced Statistical Analysis 

Component also implements various estimators of means and medians (e.g. the sample 

mean, the sample median and the trimmed mean) and the corresponding confidence 

intervals (normal approximation, Student’s t test, Johnson’s modified t test, and the sign 

test).  Several advanced statistical analysis tools and methods have been implemented 

directly and but some of them were borrowed from JMSL© Numerical Library which 

was integrated with Emergent Designer. 

Advanced Time Series Analysis Component implements the following methods of 

analysis of the experimental data: visual analysis of the time series data, delay 

coordinates plots with adjustable parameters (e.g. the embedding dimension and the time 

lag), power spectrum analysis, autocorrelation analysis with a flexible specification of 

autocorrelation lag and standard error bars according to either Barlett’s or Moran’s 

formula, and two types of recurrence plots (i.e. regular and thresholded) with a flexible 

specification of the embedding dimension, time lag, and the norm to calculate the 

distances between the points of a time series.  As was the case with the Advanced 

Statistical Analysis Component, several tools and methods of advanced time series 
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analysi

5.3.3. Visualization Components 

There are three major methods of visualizing experimental data in Emergent 

Designer.  First, line plots and scatter plots (or more generally signal plots) are used to 

visualize experimental data transferred from the Basic Statistical Analysis Component 

and Basic Dynamical Systems Analysis Component. The plots are produced by a Java-

based signal plotter called PtPlot developed at UC Berkeley.  They are embedded in the 

Emergent Designer’s GUI and can be subsequently saved as bitmap files.  Second, 

histograms are employed to visualize sample distributions.  They are produced by the 

Advanced Statistical Analysis Component.  These types of graphs are created using 

JMSL© Graphical Library integrated with Emergent Designer.  They are also embedded 

in the system’s GUI and provide functionality to save the produced graphs as bitmap 

files.  Finally, interactive renderings of fitness landscapes can be produced for simple 

real-valued functions.  These types of visualizations are produced using Mathematica’s 

advanced graphical capabilities and their display in the system’s GUI is supported by 

JLink. 

Automatic report generation capabilities, described in section 5.2.10, have been 

achieved through the integration of Emergent Designer with OpenOffice.org© and its 

Java API.  Report Generation Component collects and organizes textual, numerical and 

graphical data produced during the design processes and includes them in an 

experimental report.  This report is subsequently displayed as an OpenOffice.org 

s were directly implemented in the system while several of them have been 

borrowed from JMSL© Numerical Library. 
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document.  The report can be later saved in a file in any of the supported formats.  In this 

way, it provides a complete summary of the parameters and the obtained results produced 

i

5.4. Summary 

In th al Structural 

Validation of E  information 

flow among t ents, I have 

attepm consis n method.   

 

analysi

asks performed by the component 

were li

relationships among components. 

n the design experiments. 

is chapter, I conducted the second stage of the Theoretic

mergent Engineering Design.  By presenting and discussing

he phases of the EED and within its individual compon

pted to build confidence in internal tency of the proposed desig

At the same time, I introduced Emergent Designer, an integrated reseach and 

design support tool that implements EED.  In the first section of this chapter, I described 

the overall architecture of Emergent Designer and related individual components of the 

system to the phases of the proposed design method.  The components of Emergent 

Designer were divided into three major groups: design components implementing the 

actual design method, analysis components offering various tools and methods for the

s of the experimental results and design processes, and visualization components 

implementing various visualization methods and report generation tools.  Also, a detailed 

description of the information flow within EED/Emergent Designer has been provided. 

The second section of this chapter individually discussed each of the 10 

components of Emergent Designer.  In each case, the t

sted and described.  Also, the diagrams of the flow of information within the 

individual components were provided with detailed descriptions of the input/output 
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Finally, in the third section of this chapter, I discussed the actual implementation 

of Emergent Designer.  It is a Java-based system with a fully-functional GUI that 

implements the proposed design method.  It also integrates several open source and 

commercially available packages, e.g. Mathematica and OpenOffice.org, and 

communicates with them using available Java APIs.  Implementation specific issues, i.e. 

algorithms, methods, functionality, etc., were discussed separately for each group of 

components of Emergent Designer. 

The actual design experiments conducted using Emergent Designer are described 

in the following chapters. 

 

 

 



 

6. DESIGN CONCEPT GENERATION USING CELLULAR AUTOMATA 
 
 
 
 

“Order is not sufficient. What is required is something much 
more complex.  It is order entering upon novelty; so that 
the massiveness of order does not degenerate into mere 
repetition; and so that the novelty is always reflected upon 
a background system” 

(Alfred North Whitehead) 

ed earlier in 

chapter 4.  The experiments described here have been conducted using Emergent 

ed earlier in chapter 5.   

 

In this chapter, I begin the experimental part of this dissertation.  I report results 

of various design experiments focused on generating novel design concepts of steel 

structural systems in tall buildings.  In order to achieve this goal I utilize several types of 

concept generator mechanisms based on generative representations propos

Designer, an integrated research and design support tool introduc

The experimental results reported in this chapter constitute the first stage of the 

Empirical Performance Validation process, as discussed in section 3.6.3, in which the 

usefulness of the generative representations component of Emergent Engineering Design 

has been tested empirically for producing novel design concepts of wind bracing systems 

and the entire steel structural systems in tall buildings. 

Figure 48 shows organization of this chapter. First, in introductory section 6.1, I 

revisit the research question 1 and the research hypothesis 1 (see section 3.3) and refine 
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232 

them in the context of the design problems considered in this dissertation.  I also describe 

the types of experiments reported in this chapter.  Next, sections 6.2 - 6.4 describe the 

results of the experiments in which design concepts of wind bracing systems in tall 

buildings were generated using types of generative representations based on cellular 

automa

and tests the impact of several representational parameters on the quality 

of generate

ta.  Section 6.2 investigates the simplest generative representations based on 

elementary CAs 

d design concepts.   
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Figure 48. Organization of chapter 6 
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Furthermore, in section 6.3, more complex types of generative represtations are 

studied involving two types of one-dimensional CAs: standard 1D CAs (subsection 6.3.1) 

and totalistic 1D CAs (subsection 6.3.2).  Section 6.4 considers even more complex 

generative representations based on two-dimensional CAs. A particular emphasis in this 

case was put on explicit modeling of planar interactions among structural members by 

using various shapes and radii of the 2D local neighborhoods. As in the previous section, 

two types of 2D CAs were investigated: standard 2D CA (subsection 6.4.1) and totalistic 

2D CA (subsection 6.4.2).   

Finally, in section 6.5, I scale up the difficulty of the considered design problems 

and experimentally study design concept generators of the entire steel structural systems 

in tall buildings.  I discuss the results of the experiments with generative representations 

consisting of multiple one-dimensional CAs (standard and totalistic) in which individual 

1D CAs were employed to generate various subsystems of steel structures.   

6.1. Novel Design Concepts of Steel Structural Systems 

s in tall buildings.  Earlier in section 2.1.2, I 

discuss

n the remainder of this dissertation, I will 

employ the definition given by Gero (1996) who concludes that creativity in design “is 

As stated earlier, in this chapter I describe results of the first stage of the 

Empirical Performance Validation process in which I empirically test the usefulness of 

the generative representations component of EED for producing novel design concepts.  

First, however, I need to define what I mean by a novel design concept in the context of 

conceptual design of steel structural system

ed the issue of creativity in design and provided several definitions of what makes 

a design concept creative.  In this chapter, and i
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not simply concerned with the introduction of something new into a design, although that 

appears to be a necessary condition for any process that claims to be labeled creative.  

Rather, the introduction of ‘something new’ should lead to a result that is unexpected (as 

well as being valuable).”   

Thus, according to this definition, there are three important aspects of a novel 

design concept: 

1. Something new 

2. Something unexpected 

3. Something valuable 

In the context of conceptual design of steel structural systems in tall buildings we can 

translate these 3 conditions into the following criteria that a novel design concept must 

satisfy: 

• It should be an unknown design concept. 

• The introduced newness cannot be a mere random variation of a known 

design concept, or a design concept generated completely at random.  On 

the contrary, a novel design concept must exhibit an unexpected structural 

shaping pattern. 

• The value/quality of a design concept can be measured by its performance 

and feasibility.  In the case of a steel structural system this performance 

can be measured by the total weight of a steel structure (a good estimate of 

its cost) and/or its maximum horizontal displacement (a good estimate of 

its stiffness).   
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Based on the discussion above, I can refine the research que

research hypothesis 1 in the specific context of a conceptual design o

systems in tall buildings. 

stion 1 and the 

f steel structural 

T

d

b

i

c

p

 

Research Question 1 (Refined): 

Based on the existing knowledge on how to represent engineering systems;  

what mechanisms and models can be used to produce novel design concepts of steel 

structural systems in tall buildings? 

Research Hypothesis 1 (Refined): 

Evolution y fining 

generativ e

simple progr  

interesting structural shaping patterns and good performance in terms of the total 

weight of the structural systems and/or their maximum horizontal displacements. 

ar  design and complex systems provide a framework for de

e r presentations, i.e. representations of engineering systems based on 

ams, which can successfully produce novel design concepts exhibiting
 

he refined research hypothesis 1 is more precise and can be tested empirically.  The 

esign experiments with generative representations of steel structural systems in tall 

uildings reported in this chapter were conducted to test this hypothesis.  Also, the 

nfluence of some representation specific parameters on the quality of obtained design 

oncepts was investigated experimentally.   

In general, the experiments reported in this chapter can be classified using the 

arameters and their values shown in Table 4.   



236 

Table 4. Parameters and their values describing the types of experiments reported in this 
chapter 

 

Generative representations for both design problems, i.e. design of a wind bracing 

system and design of an entire steel structural system in a tall building, were studied 

experimentally.  The design concept generation mechanisms based on one-dimensional 

and two-dimensional CAs (described earlier in chapter 4) were used in the conducted 

experiments.  Additionally, the influence of several representation specific parameters on 

the obtained results was investigated, including the location of the design embryo (top vs. 

bottom), the type of boundary conditions (periodic vs. nonperiodic), the type of the rule 

(standard vs. totalistic), and the way the design embryo is initialized (arbitrarily vs. 

randomly generated).  Finally, I studied the possibility of adding specific domain 

knowledge, in this case the symmetry requirement which should improve designs’ 

performance, and the impact of accuracy of the conducted structural analysis (first-order 

vs. P-Delta) on the quality of generated design concepts.  The results of these parameter 

sensitivity studies were later considered in planning morphogenic evolutionary design 

experiments reported in chapter 8. 
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A small icon, similar to the one shown on the right, is placed at 

the beginning of each section of this chapter to indicate the values of 

the experim  (defined in Table 4) which were used in 

the experim or example, the icon shown 

on the rig i d experiments the following 

values wer s

cing system was considered, 

• no symmetry constraint and periodic boundary conditions were imposed, 

• structural analysis was conducted using the first-order analysis only. 

 

6.2. Design Concept Generators Based on Elementary Cellular Automata 

In this section, I begin with the simplest possible generative 

representation of a wind bracing system proposed earlier in section 4.4.1.     

I investigate one-dimensional cellular automata with only 2 possible cell 

values and the local neighborhood of size 3.  These CAs are commonly 

called elementary CAs (see section 2.2).  Elementary CAs were used to 

generate design concepts of wind bracing systems in tall buildings.  The 

design concept generation mechanism used here is based on the generative representation 

ental parameters

ents reported in that section.  F

ht ndicates that in the reporte

e u ed: 

• design of a wind bra

• arbitrarily assumed design embryos were employed, 

• design embryos were located at the bottom of the structural system,  

• design rules based on standard 1D CA rules were used,  

 



238 

consist

her hand, 

the top

ons of 

structural members were selected from the catalog of standard shapes specified in 

(American Institute of Steel Construction 1989).  An arbitrary assumption was made, 

motivated by manufacturability issues, that the cross-sections of each type of structural 

members were allowed to change every three stories in a steel structural system.  In other 

words, cross-sections of each type of structural members were assumed the same if the 

members were located within the same 3-story segment of the steel structural system.  

For example, all K bracings located from story 1 to story 3 were assigned the same cross-

sections, all K bracings located from story 4 to story 6 had the same cross-sections that 

could be, in general, different to the cross-section of K bracing located below, etc. 

In the structural analysis conducted by SODA, dead, live, and wind loads were 

considered.  The magnitudes of loads used in the design experiments reported in this 

ing of a single design embryo and a single design rule.  In the conducted 

experiments, the concept generation mechanisms based on elementary CAs defined the 

topologies/configurations of a wind bracing system in a tall building.  On the ot

ologies/configurations of the beam system and the column system in a tall building 

were arbitrarily assumed and kept the same in all experiments.   

When the topology/configuration of a wind bracing system was defined, the sizing 

optimization algorithm implemented in SODA and described in (Grierson 1989) was 

used to determine the optimal cross-sections of structural members in the entire steel 

structural system.  In other words, the sizing optimization was conducted not only for the 

wind bracing elements but also for beams and columns.  The optimal cross-secti

dissertation are provided in Table 5.  Five load combinations were considered, following 
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the des

• 0.75(Dead + Live + Wind) 

• 0.75(Dead + Wind) 

• 0.75(Dead – Wind) 

The negative sign placed in front of the wind loads indicates that the wind forces 

considered in a given load combination act in the opposite direction, i.e. wind pressure is 

replaced by wind suction and vice versa, when compared to the case when the plus sign is 

used. 

Table 5

ign specifications for steel, concrete, and composite structures in tall buildings 

given in (Taranath 1998).   They included the following combinations of loads: 

• Dead + Live 

• 0.75(Dead + Live – Wind) 

. Magnitudes of dead, live, and wind loads used in design experiments 

Load Parameter Value(s) 
Dead load magnitude 50 psf (2.39 kN/m2) 

Live load magnitude:  

   -  building 100 psf (4.78 kN/m2) 

Wind load:  

   -  Wind speed 100 mph (160.9 km/h) 

   -  Wind importance factor 1.0 

   -  roof 30 psf (1.43 kN/m2) 

   -  Wind exposure category C  
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 In SODA, the structural analysis can be conducted using either first order or P-∆ 

analysis.  In the experiments reported in this section, both types of structural analysis 

were performed and the differences in obtained values subsequently compared. 

When the topology of a wind bracing system has been defined and optimal cross-

sections of all structural members have been computed, the total weight of the steel 

structure and the maximum horizontal displacement (sway) of the steel structure 

(measured at the top rightmost node of the structural system as shown in Figure 49) were 

calculated.  This sizing optimization process was conducted without imposing any 

maximum displacement constraints (serviceability conditions).  The obtained values are 

reported in this section together with the topologies of the steel structural systems. 

 

Figure 49. Sway: measuring maximum horizontal displacement of a structural system 
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The values of the parameters defining the domain, as discussed earlier

5.2.1, are shown in Table 6.  The majority of the parameters included in 

have the same values in all design experiments reported in this dissertation. 

 in section 

this table will 

Table 6. Domain parameters and their values used in the reported experiments 

Domain Parameter Value(s) 
Design code AISC-LRFD-93 
Problem dimensionality 2D 
Design type Frame 
Behavior (analysis) type First-order, or P-∆ 
Sidesway Permitted 
Cross-sections database AISC 
Unit system U.S. customary 
Length unit ft 
Force unit lbs  

Table 7 shows the parameters of the design problem considered in this section.  

As discussed earlier, elementary CAs, i.e. CAs with two cell state values and the 

neighborhood of size three, were used to generate design concepts of wind bracing 

systems in tall buildings.  Thus, two types of wind bracing elements could be used in 

each design experiment utilizing elementary CA.  In the reported experiments, two 

groups of wind bracing elements were employed.  The group No.1 included no bracing 

(empty cell) and simple X bracing while the group No.2 contained no bracing and K 

bracing. 
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Table 7. Problem parameters and their values used in experiments with elementary CAs 

Problem Parameter Value(s) 
Problem type Design of a wind bracing system in a tall building

Number of stories 30 

Number of bays 5 

Bay width

Story height 14 feet (4.27 m) 

Distan

Types of column elements Fixed-Fixed columns (only) 

 20 feet (6.01 m) 

ce between transverse systems 20 feet (6.01 m) 

Types of bracing elements None and simple X bracings, None and K bracings 

Types of beam elements Fixed-Fixed beams (only) 

Types of supports Fixed supports (only) 
 

The design experiments with elementary CAs were divided into three parts:  

etry 

s. 

1. Experiments with arbitrarily assumed design embryos.  

2. Experiments with randomly generated design embryos.  

3. Experiments with the symmetry constraint.  In this case, the symm

constraint was imposed on the design rules which were subsequently 

applied to a set of symmetric design embryos. 

The obtained results are discussed in the following subsection

6.2.1. Arbitrarily Assumed Design Embryos 

In the first group of experiments utilizing elementary CAs as design concept 

generators, arbitrarily assumed design embryos were used.  The design embryos 

consisted of five cells due to the fact that 5-bay buildings were considered here (see 
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problem parameters in Table 7).  Depe

wind bracing elements used in the expe

bracings and simple X bracings), or gr

bracings), the central cell in the design embryo had a value representing 

either simple X bracing (group No.1) or K bracing (group No.2).  The 

remaining four cells had values representing no bracings (for both 

groups), as shown in Figure 50. 

nding on the group of types of 

riments, either group No.1 (no 

oup No.2 (no bracings and K 

 

Figure 50. Design embryos iterated by elementary CAs when bracings from a) the group 
No. 1, b) the group No. 2 are used 

There are 256 design rules based on elementary CAs (see explanations in section 

2.2).  All of them were applied to the design embryos and iterated once less than the 

number of stories in a tall building, i.e. 29 times for 30-story buildings considered here.  

In this way the entire configuration of a wind bracing system was developed from the 

design embryo shown in Figure 50a), or Figure 50b), using the corresponding design rule.  

When the topology of the wind bracing system was defined, the sizing optimization was 

performed as discussed in the previous section.  Finally, the total weight of the steel 

structure and its maximum horizontal displacement were calculated using both first-order 

analysis and P-∆ effects.  
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The impact of several representation specific parameters on the quality of 

obtained design concepts was tested experimentally in this section, including the 

following parameters: 

 Location of the design embryo (bottom vs. top of a structural system) 

 Type of boundary conditions (periodic vs. nonperiodic) 

 Initial experiments considered elementary CA rules with periodic boundary 

conditions and the design embryo located at the bottom of a structural system.  Next, the 

same elementary CA rules were employed but this time, the design embryo was located 

at the top.  Finally, the third set of experiments investigated elementary CA rules with 

nonperiodic boundary conditions.  The results of these experiments are reported in the 

following subsections. 

Design Embryo at the Bottom and Periodic Boundary Conditions 

The experiments reported in this subsection involved the design 

embryo (see Figure 50) located at the bottom of a steel structural 

system and periodic boundary conditions (see section 4.4.1).  The 

results of all these experiments, i.e. the complete set of all 256 design 

concepts of wind bracings systems, are presented in Appendix B.   

Table 8 shows only the 12 best designs with respect to the total 

weight of the steel structural systems obtained in these experiments.   Each cell in Table 8 

contains the number of a design rule at the top (see the explanation of the numbering

scheme of cellular automata rules in section 2.2.2), the actual design developed from the 

design embryo by this rule (center), and four values arranged in 2 x 2 array (the bottom 
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part) as

le design rules represented by elementary CA rules.  

 in Appendix B repeat due to the simplicity of the arbitrarily chosen design 

embryo and imposed periodic boundary conditions. 

 

 shown on the right.  This array 

contains four values representing the 

total weight of the steel structural 

system (first row) and its maximum horizontal displacement (second row).  The first 

column contains measurements obtained using the first-order structural analysis while the 

second column contains the values produced by a more accurate and at the same time 

more computationally expensive P-∆ analysis.  The values of the total weight of the steel 

structural system presented in the first row are measured in lbs. whereas the values of the 

maximum horizontal displacement, shown in the second row, are measured in inches.   

All 256 design concepts of wind bracing systems presented in Appendix B were 

generated by the simplest possib

Structural Shaping Patterns 

Appendix B shows a great diversity of structural shaping patterns generated by the 

design rules based on elementary CA rules.  All these diverse patterns were created using 

the simplest possible design embryo (single simple X bracing located in the central bay) 

and simplest possible design rules (elementary CA rules).  Thus, there is a great potential 

for developing novel designs of structural systems even using this simplest type of 

generative representations.  In fact, the set of 256 design concepts in Appendix B 

contains 144 unique structural shaping patterns of wind bracing systems.  Some shaping 

patterns found
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Table 8. Best designs in terms of the total weight of the steel structural system (calculat
using the P-∆ analysis) produced by elementary CA rules with periodic bou

ed 
ndary 

conditions and the design embryo located at the bottom 
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Several interesting structural shaping patterns found in Appendix B are presented 

in Table 9.  A few design concepts generated by the design rules based on elementary 

CAs and shown in Table 9 are similar, and sometimes even identical, to the shaping 

patterns known from the structural engineering literature and presented in Table 10.  For 

example, the structural pattern developed by rules 4, 12, etc. shown in Table 9 is identical 

to the concept of a vertical truss (see Design 6 in Table 10).  Similarly, the pattern 

generated by rules 151, 159, etc. presented in Table 9 is similar to the concept of a fully 

braced frame (see Design 1 in Table 10).  As shown in Table 9, elementary CAs can 

produce not only shaping patterns known from the structural engineering literature (first 

four designs in row 1 in Table 9) but also many novel configurations of bracing elements 

that exhibit good performance. 

Classification of Structural Shaping Patterns 

One can attempt to categorize structural shaping patterns in many ways, e.g. in 

terms of the quality of produced design concepts, their physical appearance, etc.  A 

classification presented below exploits the dynamical properties of the design concept 

generation mechanism based on cellular automata.  It divides the structural shaping 

patterns into four distinct classes, based on four classes of dynamical behavior of cellular 

automata.  This classification was initially proposed by Wolfram (1983) (see section 

2.2.1 for more details) and has been adapted to structural design problems in this 

dissertation.  
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Table 9
periodic boundary conditions and the design embryo located at the bottom 

. Interesting structural shaping patterns produced by elementary CA rules with 
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Table 10. Examples of design concepts of wind bracing systems from the structu
engineering literature 

ral 
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This classification of structural shaping patterns is presented in Table 11.  It is 

based on four distinct classes of dynamical behavior of cellular automata that generate 

shaping patterns: fixed-point behavior, periodic behavior, apparently ‘chaotic’ behavior, 

and localized propagating structures.  The first class (fixed-point behavior or class 1) 

include

les 26, 82, 154, etc.  This 

group 

are characterized by apparent irregularity/randomness. 

s uniform patterns produced by the design rules 0, 4, 8, etc. (see Table 11).  These 

patterns correspond to the fixed-point behavior in dynamical systems, i.e. configurations 

of wind bracings at subsequent stories in a tall building (eventually) converge to an 

identical configuration of wind bracings.  The second class (periodic behavior or class 2) 

consists of periodically repeating patterns generated by the design rules 1, 23, 33, etc.  

Repetition periods of the shaping patterns vary depending on the design rule used.  This 

group of patterns corresponds to periodic/cyclic behavior in dynamical systems, i.e. 

configurations of wind bracings at subsequent stories in a tall building (eventually) repeat 

with a constant repetition period. 

The third class (apparently ‘chaotic’ behavior or class 3) includes shaping patterns 

of apparent irregularity/randomness produced by the design ru

can be related to the chaotic behavior produced by some classes of dynamical 

systems.  Of course, in the case of structural shaping patterns generated by the simplest 

elementary CA, the actual chaotic behavior cannot be obtained due to discreteness and 

finiteness of this design space.  On the other hand, the shaping patterns generated by rules 

26, 82, etc. have no apparent regularity or periodicity, as was the case with the patterns 

discussed earlier.  Hence, they have been placed in class 3 because the shaping patterns 
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Table 11. Categorization of structural shaping patterns based on four classes of 
dynamical behavior of cellular automata 
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 Interestingly, these apparently ‘chaotic’ structural shaping patterns exhibit very 

good performance.  For example, the shaping pattern generated by rule 82 (and at the 

same ti

ting 

ix B), form emergent 

concep

ings 

and rul

l system and its maximum horizontal displacement (see 

Table 8).  Finally, an interesting macro bracing pattern is generated by rule 227 (see 

me by rule 210) is the 8th best design concept (see Table 8) with respect to the 

total weight of the steel structural system.   

Finally, the last group consists of shaping patterns characterized by localized and 

propagating structures, e.g. as the ones generated by the design rules 2, 14, 38, 46, 57, 

etc.  This group corresponds to so-called localized propagating structures behavior in 

Wolfram’s hierarchy.  From the structural design point of view, the localized propaga

structures, shown in Table 11 (and also many others in Append

ts of so-called macro bracings, or super diagonals. The macro bracings shown in 

Table 12 have various widths measured by the number of adjacent bracing elements 

forming the macro bracing.  For example, the macro bracing generated by the rule 2, 10, 

etc. has the width equal to 1 bracing, the one produced by rule 14, 46, etc. has the width 

equal to 2 bracings.  Rule 143 generates the macro bracing of width equal to 3 brac

e 175 produces one with the width equal to 4 bracings.  

Another interesting design concept of a macro bracing emerges from the design 

rules 177, 163, 99, 57 (see Table 8 and Table 12) in which the macro bracing pattern has 

the width of 2 but the adjacent bracing elements are located at a distance equal to one 

story.  In fact, these design concepts exhibit very good performance in terms of both the 

total weight of the steel structura
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Table 12) in which 2 macro bracings, one of width 1 and the other of width 2, are 

interwoven.   

Table 12. Emergent shaping patterns of macro bracings (super diagonals) generated by 
elementary cellular automata 

 

 As is it shown in Table 8, the design concepts with emergent macro bracings 

form 2nd, 3rd, 4th, and 5th best designs generated by elementary CA rules.  The overall best 

design (with respect to the total weight of the structural system) produced by elementary 

CA rules is generated by rule 51.  It develops another interesting structural shaping 

pattern consisting of two subpatterns: the emergent pattern of crossed diagonal bracings 
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located

placement of the steel structural system. 

Elemen

sis.  Examples of 

12 desi

he first-

order analysis were considered.  

 in the center of the structural system and the emergent pattern of horizontal 

trusses located every two stories in a structural system.  

Rule 105 generates an intriguing structural shaping pattern with good performance 

(see 7th best design in Table 8).  Previously mentioned rules 82, 210, 26, and 154 produce 

mirrored design concepts of apparently ‘chaotic’ patterns which exhibit good 

performance (8th and 9th best).  Finally, rules 50 and 178 develop an interesting macro 

pattern (a type of a checkerboard pattern) which proves to perform well in terms of the 

total weight and the maximum horizontal dis

tary Cellular Automata vs. Randomly Generated Designs 

The design concepts shown in Appendix B were also compared qualitatively and 

quantitatively with randomly generated configurations of wind bracings systems.  In 

order to do that a comparable sample of configurations of wind bracing systems was 

randomly generated and evaluated using the first-order structural analy

gns (out of 250) from this randomly generated sample are shown in Table 13. 

It is clear that there are large qualitative differences between designs generated by 

elementary CA rules (see Table 8 and Appendix B) and randomly generated ones (see 

Table 13).   In the quantitative comparison of both samples, i.e. the sample of designs 

generated by elementary CAs and the sample generated randomly, the total weight of the 

structural systems and their maximum horizontal displacement calculated using t
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Table 13. Examples of randomly generated design concepts of wind bracing systems in 
tall buildings  
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 In the analysis of the distribution of the total weight of generated structural 

systems, only feasible design concepts were considered.  The design concept was 

included in the group of feasible designs if its total weight was less than 1,000,000 lbs. 

(this value was arbitrarily assumed). The number of designs generated by elementary 

CAs satisfying this criterion was equal to 172 while the number of randomly generated 

designs satisfying the same criterion was equal to 221. The dotplot displaying both 

sample distributions is presented in Figure 51.  Basic descriptive statistics for both 

sample distributions are shown in Table 14. 

Figure 51 and Table 14 show that the two distributions differ.  Elementary CAs 

produce structural shaping patterns that exhibit better performance (in terms of the 

 

randomly generated design concept has the total weight smaller than 570,000 lbs. while 

f better 

performance are further supported by the analysis of the distributions of the maximum 

horizontal displacement for both sample distributions. Figure 52 and Table 15 provide 

qualitative and quantitative comparison of both sample distributions.  Again, elementary 

CAs generate structural shaping patterns that exhibit better performance with respect to 

maximum horizontal displacement than the design concepts generated randomly. 

reduced total weight) compared to randomly generated design concepts.  In fact, no

there are 22 such designs in the sample generated by elementary CAs.   

Advantages of elementary CAs in producing design concepts o
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Figure 51. Dotplot comparing the distributions of the total weight of steel structural 
systems generated by elementary CAs and generated randomly 

Table 14. Descriptive statistics summarizing the sample distributions of the total weight 
of structural systems generated by elementary CAs and generated randomly 

Quantity Elementary CA Randomly Generated 
Sample size 172 221 
Minimum weight 560,646 571,922 
Maximum weight 707,354 733,310 
Mean weight 598,517 605,285 
Median weight 590,875 598,269 
Standard Deviation 29,247 28,091 
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Figure 52. Dotplot comparing the distributions
of steel structural systems ge

 of the maximum horizontal displacement 
nerated by elementary CAs and generated randomly 

Table 15. Descriptive statistics summarizing the sample distributions of the maximum 
horizontal displacement of structural systems generated by elementary CAs and 
generated

Randomly Generated 

 randomly 

Quantity Elementary CA 
Sample size 172 221 
Minimu d
Maximum 
Mean displacement 5.593 5.1296 
Median dis 5 5.1075 
Standard Deviation 0.153 0.0256 

m isplacement 3.892 4.2407 
displacement 10.939 6.5566 

placement 4.95
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Finally, Figure 53 compares both distributions with respect to the two objectiv

i.e. the total

es, 

 weight of structural systems and their maximum horizontal displacements.  It 

is clear that the design concepts produced by elementary CAs are better than the design 

concepts produced randomly with respect to both objectives.  In other words, using the 

multiobjective optimization terminology (see section 2.1.5), design concepts generated by 

elementary CAs dominate the ones produced randomly. 

 

Figure 53. Comparison of both sample distributions with respect to two objectives: the 
total weight of steel structures (horizontal axis) and their maximum horizontal 
displacements (vertical axis) 
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K Bracings 

The design experiments reported above were repeated with the second group of 

bracing elements consisting of K bracings and no bracings (empty cells).  In these 

experiments, the design embryo shown in Figure 50b) was used.  As before, it was 

located at the bottom of a steel structural system.  Also, periodic boundary conditions 

were imposed.  As in the previous experiments, the entire set of 256 elementary CA rules 

was employed to develop design concepts of wind bracing systems.  Table 16 shows the 

best designs (in terms of the total weight calculated using the P-∆ analysis) obtained in 

these experiments. 

The twelve best design concepts shown in Table 16 exhibit four distinct structural 

shaping patterns, including: 

• fully braced pattern (designs 1-5), similar to the one in Design 1 shown in 

Table 10 

• pattern of horizontal trusses located every two stories (designs 6-9) 

sisting of crossed diagonal bracings located in the 

center of the structural system and horizontal trusses located every two 

stories (design 11) 

 

 

 

 

• checkerboard pattern (designs 10 and 12) 

• combined pattern con
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Table 1
elementary CA rules with periodic boundary conditions and the design embryo located at 

6. Best designs of wind bracing systems consisting of K bracings produced by 

the bottom 
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Simple X bracings vs. K Bracings 

Table 16 also shows that a significant reduction of the total weight of the 

produced structural systems can be obtained when K bracings are used instead of simple 

X bracings.  At the same time, however, the stiffness of structural systems is reduced as 

they exhibit larger horizontal displacements.  These observations have been further 

confirmed by simple statistics reported in Table 17.  In this table, design concepts 

developed using the same elementary CA rules were compared, i.e. design concepts with 

identical structural shaping patterns which differed only in the group of bracing elements 

used (group No.1 or group No.2).  In other words, pairs of design concepts (one with 

simple X bracings and one with K bracings) developed using identical elementary CA 

rules were compared in terms of the total weight of the generated structural system and

sons, 

Table 17. Comparison of design concepts generated by elementary CA rules utilizing 

 

its maximum horizontal displacement.  Then, based on the results of these compari

some simple statistics were calculated. 

simple X bracings and K bracings 

Quantity 1st order P-∆ 
Number of design concepts with reduced weight 192 203 
Number of design concepts with increased 
horizontal displacement 

173 187 

Median weight reduction 72,896 lbs. 77,055 lbs. 
Median percentage of weight reduction 13.0% 14.3% 

Median percentage of displacement increase 13.6% 17.1% 
Median displacement increase 0.8484 in. 0.9393 in. 
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Table 17 shows that 192 out of 256 design concepts (75 percent), or 203 out of 

256 design concepts (79 percent) in the case of the P-∆ analysis, developed using 

elementary CA rules with K bracings have reduced total weight compared to the same 

design concepts constructed with simple X bracings.  At the same time, 173 design 

e case of the P-∆ 

analysi

 of simple X 

ms from the 

n 70,000 lbs.  

 On the other 

parable sample of 250 randomly generated designs with respect to two 

 weight of the steel structural system and its maximum horizontal 

displac

concepts (67 percent) consisting of K bracings, or 187 (73 percent) in th

s, have increased horizontal displacements compared to design concepts 

constructed with simple X bracings.  When K bracings are used in place

bracings, the median reduction of the total weight of the structural syste

sample of 256 designs developed using elementary CA rules is larger tha

This corresponds to 13 percent (median) reduction of steel consumption. 

hand, the use of K bracings instead of simple X bracings causes a median increase of 

horizontal displacement of about 0.85 inch, or 13.6 percent. 

Elementary Cellular Automata vs. Randomly Generated Designs 

Further, 256 design concepts developed by elementary CA rules were compared 

to a com

objectives, i.e. the total

ement, as shown in Figure 54.  It shows only design concepts whose total weight 

was less than 800,000 lbs., i.e. 197 design concepts developed by elementary CA rules, 

and 232 designs generated randomly. 
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Figure 54. Comparison of design concepts with K bracings generated randomly and 

structures (horizontal axis) and their maximum horizontal displacements (vertical axis) 

Also in this case, design concepts developed by elementary CA rules dominate the 

ones generated randomly with respect to both objectives.  One can easily r

developed by elementary CA rules with respect to two objectives: the total weight of steel 

ecognize in 

Figure 54 three distinct regions in this performance space.  On the left hand side, there is 

a very small region of high performance with respect to both objectives.  Only the design 

concepts developed by elementary CA rules can be found in this region.  In the middle, 

there is a large region composed of both designs developed by elementary CA rules and 

designs generated randomly.  It is also clear that in this region designs developed by CA 

rules dominate designs produced randomly.  Finally, a medium-sized region of designs 
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characterized by good performance with respect to horizontal displacement but rather 

poor performance with respect to the total weight of the structural systems.  Also in the 

latter region, the designs developed by elementary CA rules dominate designs produced 

randomly. 

Design Embryo at the Top and Periodic Boundary Conditions 

In the experiments reported in the previous section, the location of 

the design embryo was arbitrarily chosen at the bottom of the steel 

structural system.  In this section, the results of the experiments are 

described in which the design embryo was located at the top of the 

structural system, and the design concepts of wind bracing systems were 

developed downwards.  They were subsequently compared with the design concepts 

obtained in the experiments reported in the previous section.  As earlier, the experiments 

were conducted for two groups of bracings elements, i.e. the group consisting of simple 

X bracings and no bracings (empty cells), and the other group with K bracings and no 

bracings. 

Best Design Concepts 

The 12 best design concepts (in terms of their total weight calculated using the P-

∆ analysis) produced by elementary CA rules with the design embryo located at the top 

and with the first group of wind bracing elements (simple X bracings and no bracings) 

are presented in Table 18.  When we compare the design concepts shown in Table 18 

with the ones included in Table 8 (where the design embryo was located at the bottom), 

we clearly see that there are only 2 out of 12 design rules that repeat in both tables, 
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namely rule 50 (and at the same time rule 178 which produced exactly the same design 

concep

le 50, or rule 178, but with different 

locations of the design embryo, i.e. at the bottom and at the top, we observe that when the 

design embryo is placed at the top, we obtain a better design concept in terms of the total 

2.4 percent. The reduced steel consumption is achieved at a cost of increasing maximum 

horizontal displacement of the structural system by 0.07 inch, or 1.7 percent. 

 

 

 

 

t) and rule 51.  Incidentally, the 2 repeating design rules have exactly switched 

order when we compare Table 18 to Table 8, i.e. rule 51 produces the best design when 

the design embryo is located at the bottom (Table 8) and 11th best design when the design 

embryo is located at the top (Table 18) whereas rule 50 (and rule 178) develops 11th best 

design when the design embryo is located at the bottom (Table 8), and the best design 

when the design embryo is located at the top (Table 18).  

The best design developed using the design embryo located at the top of the 

structural system (rule 50 and 178) is better than the one generated using the design 

embryo located at the bottom (rule 51) by about 6,350 lbs.  Also, when we compare two 

design concepts developed using the same ru

weight of the structural system by about 14,000 lbs. (calculated using P-∆ analysis), or 
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Table 18. Best designs of wind bracing systems consisting of simple X bracings produced 
by elementary CA rules with periodic boundary conditions and the design embryo located 
at the top 
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 Design Embryo at the Top vs. at the Bottom 

However, when we compare all pairs of the design concepts developed using the 

same design rules but with different locations of the design embryo (top and bottom) we 

observe no significant differences, as shown in Table 19.  The median total weight 

reduction and horizontal displacement reduction are close to 0.  138 design concepts out 

of all 256 design concepts (or 147 when the P-∆ analysis is conducted) developed by 

elementary CA rules from the design embryo located at the top, have a reduced total 

weight of the structural system, when compared to the design concepts developed using 

the same rules but from the design embryo located at the bottom.  This roughly 

corresponds to half of the design concepts with a reduced total weight and half of the 

design concepts with an increased total weight. 

Table 19. Comparison of the design concepts composed of simple X bracings and 
generated by elementary CA rules with the design embryo located at the bottom and at 
the top of a steel structural system 

r Quantity 1st orde P-∆ 
Number of design concepts with reduced weight 138 147 
Number of design concepts with increased 
horizontal displacement 

85 116 

Median weight reduction 0 lbs. 0 lbs. 
Median percentage of weight reduction 0 % 0 % 
Median displacement reduction 0.0073 in. 0.0001 in. 
Median percentage of displacement reduction 0.43 % 0.01 %  
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K Bracings 

The same experiments were repeated with the second group of bracing elements 

(K bracings and no bracings).  The 12 best designs produced in these experiments are 

shown in Table 20.  11 designs shown in this table represent various variations of the 

fully braced frame.  The 12th best design, the design developed by rule 179, is the only 

design that exhibits qualitatively different structural shaping pattern, i.e. the checkerboard 

pattern.  When we compare Table 20 with Table 16, we observe that 6 out of 12 best 

designs shown in both tables are generated by the same rules, i.e. rule 151 (and others 

genera

omparison of all pairs of design concepts developed using the same design 

rules b

ting the same pattern), 222 (and 254), 251, 235, 249, and 179.  In both cases, i.e. 

when the design embryo is located at the bottom and at the top, the best design produced 

by elementary cellular automata is developed by rule 151.  Rule 151 develops a better 

design concept (in terms of the total weight of the steel structural system calculated using 

P-∆ analysis) when the embryo is located at the bottom.  The reduction of the steel 

consumption is, however, almost negligible and equal to 879 lbs., or 0.2 percent.  

The c

ut with different locations of the design embryo (top and bottom) is presented in 

Table 21. 
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Table 20. Best designs of wind bracing systems consisting of K bracings produced by 

the top 
elementary CA rules with periodic boundary conditions and the design embryo located at 
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Table 21. Comparison of design concepts with K bracings generated by elementary CA 

system 

Quantity 1st order P-∆ 

rules with the design embryo located at the bottom and at the top of a steel structural 

Number of design concepts with reduced weight 124 148 
Number of design concepts with increased 
ho

134 104 

Median wei
 % 

Median displacement reduction -0.0003 in. 0.0016 in. 
M ia

rizontal displacement 
ght increase 1,204 lbs. 0 lbs. 

Median percentage of weight increase 0.23 % 0.0

ed n percentage of displacement reduction -0.004 % 0.082 %  

le 21 shows that about half of the design c Tab oncepts (124 for the first order 

structur a

embryo is 

the number of designs with an increased horizontal displacement.  The median estimates 

for the tota

as was the 

bracings).  

Con subsection show that the 

locatio

 other hand, as it was discovered in the previous subsection (see Table 17), 

there are significant differences between the design concepts composed of simple X 

al nalysis and 148 for P-∆ analysis) have a reduced total weight when the design 

located at the top.  Roughly the same proportions are obtained with respect to 

l weight increase and the horizontal displacement reduction are close to zero, 

case with the first group of wind bracing elements (simple X bracings and no 

 

cluding, the experimental results presented in this 

n of the design embryo has no impact on the quality of the obtained design 

concepts.  Both in the case of the first group (simple X bracings and no bracings) and the 

second group (K bracings and no bracings) of wind bracing elements, the obtained 

median estimates are close to zero (see Table 19 and Table 21).   

On the
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bracin

Table 22. Comparison of design concepts generated by elementary CA rules utilizing 
op 

r 

gs and the design concepts consisting of K bracings.  This fact is further 

confirmed by Table 22 which shows that the design concepts developed from the design 

embryo located at the top and composed of K bracings use about 13 percent less steel 

than the same design concepts consisting of simple X bracings.  At the same time, they 

exhibit about 22 percent larger horizontal displacements. 

simple X bracing and K bracing elements with the design embryo located at the t

Quantity 1st orde P-∆ 
Number of design concepts with reduced weight 204 172 
Number of design concepts with increased 
horizontal displacement 

195 185 

Median weight reduction 103,791 lbs. 72,972 lbs. 
Median percentage of weight reduction 12.9% 12.0% 
Median displacement increase 0.9891 in. 0.9852 in. 
Median percentage of displacement increase 23.0% 22.4%  

Design Embryo at the Bottom and Nonperiodic Boundary Conditions 

Design experiments reported so far involved exclusively 

elementary CAs with periodic boundary conditions.  However, 

nonperiodic boundary conditions seem more natural for the design 

problems considered in this dissertation.  For example, it is hard to 

imagine from a structural design point of view that a wind bracing 

element located in the rightmost bay strongly interacts with the wind 

bracing element located in the leftmost bay, and vice versa.  Thus, elementary CAs with 
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nonperiodic boundary conditions seem to be more appropriate to represent interactions 

among structural members in the considered design problems.  The results of the design 

experiments investigating these types of concept generation mechanisms are reported in 

this subsection. 

In the design experiments with elementary CAs and nonperiodic boundary 

conditions the following assumptions regarding the boundaries were made: 

• The value of the left neighbor of the leftmost cell in the initial configuration of 

wind bracing elements (design embryo) was assumed to be equal to no 

bracing, i.e. it had value of 0 (see Figure 19). 

•  Similarly, the value of the right neighbor of the rightmost cell in the initial 

configuration of wind bracing elements was assumed to be equal to no 

• The same boundary conditions (no bracing as a left neighbor for the leftmost 

configurations of wind bracings at subsequent stories which were obtained 

during the process of iteration of an elementary CA. 

A graphical illustration of this process is presented in Figure 55.  Even though the 

design embryo and the design rule are exactly the same as the ones used in Figure 26 

where elementary CAs with periodic boundary conditions were investigated, the 

developed structural shaping pattern shown in Figure 55 is different to the one presented 

in Figure 26. 

bracing. 

cell and as a right neighbor for the rightmost cell) were applied to all 
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As in the previous two subsections, the experiments conducted with elementary 

CAs with nonperiodic boundary conditions used both groups of wind bracings elements.  

Depending on the group of wind bracing elements, the entire set of 256 elementary CA 

rule were applied to either the design embryo shown in Figure 50a) or the one shown in 

Figure 50b).  The collection of 256 design concepts developed by all elementary CAs 

with nonperiodic boundary conditions and the first group of types of wind bracing 

elements, i.e. no bracings and simple X bracings, is presented in Appendix C.  In these 

experiments, the design embryo was located at the bottom of the steel structure. 

Best Designs 

Table 23 shows twelve best design concepts in terms of the total weight of the 

steel structural system (calculated using P-∆ analysis) developed using elementary CAs 

with nonperiodic boundary conditions and with the design embryo located at the bottom.  

It shows that the best design was generated by rule 51, as was the case with 

elementary CAs with periodic boundary conditions.  Also, when nonperiodic boundary 

conditions are imposed, then rule 179 develops exactly the same structural shaping 

pattern as rule 51.  When we compare the design concept developed by rule 179, as 

shown in Table 23, with the designs concept developed by the same rule and the same 

design embryo and presented in Table 8, we can see that we obtain a dramatically 

different structural shaping pattern. 
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Figure 55. Graphical illustration of a process of generating a design concept of a wind 
bracing system using elementary CAs with nonperiodic boundary conditions 

 There are only 5 design concepts that appear in the group of best design 

generated by elementary CA rules with periodic boundary conditions and the group of 

designs produced with nonperiodic boundary conditions.  They include the previously 

mentioned design concept developed by rule 51 as well as designs generated by rules 19, 

50 (and 178), 23 (and 55), and 7.   
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Table 23. Best designs of wind bracing systems consisting of simple X bracings produced 
by elementary CAs with nonperiodic boundary conditions and the design embryo located 
at the bottom 
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Structural Shaping Patterns 

Half of the design concepts in the group of 12 best designs developed with 

nonperiodic boundary conditions exhibit the horizontal trusses pattern.  Elementary CAs 

with nonperiodic boundary conditions generate many more design concepts with the 

checkerboard pattern compared to the case when periodic boundary conditions are 

imposed.  Table 23 shows that 3rd, 4th, and 6th best design concepts developed by a total 

of 12 rules exhibit this structural shaping pattern.  Another interesting finding is the fact 

that many macro bracing patterns identified in Table 12 are locally disrupted and 

sometimes even completely changed by nonperiodic boundary conditions.  The only two 

examples of macro bracings patterns found among the best 12 designs in Table 23 are 

two mirror design concepts (11th and 12th best) that exhibit the macro bracing pattern of 

width equal to 1 bracing which is locally disrupted at the boundaries. 

same elementary CA rules with imposed nonperiodic boundary conditions (see Appendix 

C) to the ones with periodi

developed  design concepts into the following 3 groups: 

1. Design concepts in both cases are identical. 

Examples of elementary CA rules that generate the same design concepts with 

periodic and nonperiodic boundary conditions include rules 0, 1, 12, 18, 19, 23, 50, 

 the entire set of 256 designs that are identical in both 

cases.  Table 24 shows several designs concepts belonging to this group. 

In general, when we compare the structural shaping patterns generated by the 

c boundary conditions (see Appendix B), we can divide the 

51, etc.  There are 55 designs in
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Table 24. Examples of design concepts which are identical regardless of whether periodic
or nonperiodic boundary conditions are used 

 

 

2. Design concepts developed with nonperiodic boundary conditions have some local 

disruptions of the pattern near the structural system’s boundaries. 

The disruption of the pattern can be localized within a limited space of the structural 

system or they can persist throughout the entire boundary region.  Table 25 shows 

several examples of design concepts where the disruptions of the pattern are restricted 

to a small region close to the boundary, or close to both boundaries.  Such design 

concepts are generated for example by rules 7, 37, and 203. 
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Table 25. Examples of design concepts with some small and local disruptions of the
pattern when nonperiodic boundary conditions are used 

 

 

In several instances, the local disruptions of the pattern are propagated throughout the 

entire boundary region of the structural system.  Table 26 presents 3 examples of 

design rules that can be included in this group.  They include rules 5, 31, 47, and 

others. 
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Table 26. Examples of design concepts with local disruptions of the pattern propagating 
throughout the boundary region when nonperiodic boundary conditions are used 

 

3. Design concepts developed with nonperiodic boundary conditions exhibit completely 

different pattern than the ones generated with periodic boundary conditions. 

In several cases, the local disruption of the pattern is propagated beyond the boundary 

region and produces a qualitatively different structural shaping pattern.  Table 27 

shows several examples of design concepts which exhibit completely different 

structural shaping patterns depending on the type of boundary conditions used. 
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Table 27. Examples of design rules generating completely different patterns whe
periodic and nonperiodic boundary conditions are used 

n 

 

But what is the impact of the nonperiodic boundary conditions on the 

performance, i.e. the total weight and the maximum horizontal displacement, of the steel 

structural systems?  

 



282 

Periodic Boundary Conditions vs. Nonperiodic Boundary Conditions 

The best design concept developed by elementary CA rules with nonperiodic 

boundary conditions, i.e. the design concept generated by rule 51, is exactly the same as 

the one produced with periodic boundary conditions.  When we compare the 

corresponding pairs of design concepts presented in Table 8 (periodic boundary 

conditions) and Table 23 (nonperiodic boundary conditions), i.e. 2nd best in Table 8 with 

2nd best in Table 23, etc., we conclude that all design generated with periodic boundary 

conditions are better in terms of the total weight of the steel structural system (calculated 

using the P-∆ analysis) than the ones developed with nonperiodic boundary conditions. 

However, when we take into consideration all 256 pairs of design concepts and 

calculate basic statistics, we observe no significant differences between the two samples 

Table 28 shows that when nonperiodic boundary conditions are imposed then 100 out of 

256 design concepts have reduced total weight and 99 design concepts have increased 

total weight (55 designs are exactly the same as discussed earlier).  The median reduction 

of the total weight and median reduction of the horizontal displacement are either very 

close to or even equal to 0.  The negative sign at the median displacement reduction value 

calculated using the first-order analysis means that the horizontal displacement was 

increased rather than reduced.  Thus, there are no significant advantages for using 

nonperiodic boundary conditions over periodic boundary conditions for the design 

problem considered in the experiments. 
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Table 2
elementary CA rules with nonperiodic and periodic boundary conditions 

r 

8. Comparison of design concepts with simple X bracings generated by 

Quantity 1st orde P-∆ 
Number of design concepts with reduced weight 100 100 
Number of design concepts with reduced horizontal 
displacement 

65 91 

Median weight reduction 0 lbs. 0 lbs. 

Median displacement reduction -0.0218 in. 0.0000 in. 
Median percentage of weight reduction 0 % 0 % 

Median percentage of displacement reduction 0.50 % 0.00 % 
  

K Bracings 

e 29 shows the 12 best designs 

produced in these experiments.  Contrary to the experiments with the first group of wind 

bracings, the majority of elementary CA rules that produced best designs with 

nonperiodic boundary conditions also proved to perform well when periodic boundary 

conditions were imposed (compare designs in Table 16 with the ones in Table 29).  Major 

differences between the contents of Table 29 and Table 16 include significantly larger 

number of design concepts exhibiting the checkerboard pattern produced by nonperiodic 

boundary conditions.  Also, the design concept produced by rule 95 (and 127) has been 

improved (by reducing the total weight and horizontal displacements) by imposing 

nonperiodic boundary conditions which change the pattern along the structure’s 

boundaries. 

Similar experimental work has been conducted with the second group of wind 

bracing elements, i.e. no bracings and K bracings.  Tabl
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Table 29. Best designs of wind bracing systems consisting of K bracings produced by 

the bottom 
elementary CAs with nonperiodic boundary conditions and the design embryo located at 
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Table 30 presents some basic statistical estimates comparing two samples of 256 

design concepts with K bracings developed using nonperiodic or periodic boundary 

conditi

Table 30. Comparison of design concepts with K bracings generated by elementary CA 
rules with nonperiodic and periodic boundary conditions 

r 

ons.  The table shows that there are some differences when using nonperiodic 

boundary conditions compared to the case when periodic boundary conditions are 

imposed.  They can be easier identified when the P-∆ analysis is conducted.  Elementary 

CAs with nonperiodic boundary conditions generate design concepts with an increased 

total weight (by about 4%) and at the same with a reduced horizontal displacement (by 

about 1%). 

Quantity 1st orde P-∆ 
Number of design concepts with reduced weight 73 48 
Number of design concepts with reduced horizontal 
displacement 

112 

Median weight reduction -53 lbs. -

Median displaceme

126 

21,195 lbs. 
Median percentage of weight reduction 0 % -4.14 % 

nt reduction 0.0000 in. 0.0123 in. 
Median percentage of displacement reduction 0.0000 % 1.31 % 

  

Summary 

In the last three subsections I investigated the simplest generative representations 

studied in this dissertation and composed of the design rule based on an elementary CA 

rule and the design embryo consisting of a single simple X bracing, or K bracing, located 
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in the 

 to perform better in terms of both the 

 the steel structural system and its maximum horizontal displacement.  The 

develop

n the other hand, simple X bracings 

produced structural designs with significantly better stiffness (smaller horizontal 

displacements).   

he results of the design experiments investigating the impact of the 

representation parameters have shown that there is no difference in terms of performance 

of generated designs when the design embryo is located at the top.  Hence, in the 

central bay.  Even these extremely simple generative representations produced 

novel structural shaping patterns with good performance.  I also classified the obtained 

structural shaping patterns with respect to the dynamical behavior CA rules that 

generated these patterns.  In this way, four classes of the shaping patterns were identified: 

fixed-point behavior, periodic behavior, apparently ‘chaotic’ behavior, and localized 

propagating structures.   

I compared the design concepts of wind bracing systems with the design concepts 

generated randomly and found out that they proved

total weight of

ed design concepts were also compared to designs known from the structural 

engineering literature.  I also discovered that many traditionally known designs were 

generated by the simple generative representations based on elementary CAs. 

In the conducted experiments, I compared two groups of wind bracing elements.  

The first group consisted of simple X bracings and no bracings (empty cells) while the 

second group included K bracings and no bracings.  The results of the experiments have 

shown that the same structural shaping patterns consisting of simple X bracings were 

heavier than the ones composed of K bracings.  O

T
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remainder of this dissertation, I will assume the location of the design embryo at the 

bottom of a structural system. 

Another set of design experiments has shown that there is no benefit in using 

nonperiodic boundary conditions when simple X bracings are used.  On the contrary, they 

may increase the total weight of the steel structural systems by several percent when K 

bracings are used.  Their usage can be justified only when better stiffness performance of 

wind bracing systems consisting of K bracings is desired.  In this case, however, usually 

simple X bracings are preferred because they provide better stiffness of a steel structural 

system as it was shown earlier in Table 17.  Thus, periodic boundary conditions have 

been assumed in further experiments reported in this dissertation. 

6.2.2. Randomly Generated Design Embryo 

So far, I have investigated the simplest design rules based on 

elementary CAs and the simplest design embryos consisting of a single 

simple X bracing (or a K bracing) in the middle of the initial 

configuration of cells.  

In this section, I will consider slightly more complicated 

experimental settings in which the design embryos are no longer 

restricted to assume the simplest configuration described above but may take on any 

possible configuration of wind bracing elements.  In fact, in the experiments reported in 

this section, the configurations of design embryos were generated randomly.  The design 

rules investigated here were exactly the same as before, i.e. based on elementary CA 

rules. 

 



288 

The design experiments involved the entire set of 256 elementary CA rules.  Each 

rule w

 and its 

maxim

.  Its total weight 

was eq

as applied to 5 randomly generated design embryos and developed 5 design 

concepts of wind bracing systems from them.  As before, the experiments were 

conducted with two groups of wind bracing elements, i.e. group No.1 consisting of no 

bracing and simple X bracing and group No.2 containing K bracings and no bracings.  

This time, however, each developed design concept was evaluated using the first-order 

analysis only.  The values of the total weight of the steel structural system

um horizontal displacement were recorded. 

Best Designs 

The best design concepts (in terms of the total weight of the steel structural 

system) produced by the group No.1 are presented in Table 31.  The overall best design 

concept found in this group of experiments was generated by rule 154

ual to 550,336 lbs.  When we compare the total weight of this design with the total 

weight of the best design generated from the simple design embryo (see Table 8), we 

observe that the weight was reduced by more 10,000 lbs.  In fact, 8 out of 12 best designs 

shown in Table 31 have better performance, i.e. smaller total weight, than the best design 

generated by rule 51 from a simple design embryo. 
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Table 31. Best designs of wind bracing systems consisting of X bracings produced by 
elementary CAs with a randomly generated design embryo located at the bottom 
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 Structural Shaping Patterns 

Design concepts shown in Table 31 exhibit all four major types of structural 

shaping patterns.  The most common pattern occurring in this group is the previously 

identified pattern of macro bracings of width 2 in which the simple X bracings are 

located at a distance equal to 1 story.  7 out of 12 best designs found in Table 31 exhibit 

several variations of this pattern.  The checkerboard pattern occurs in 3 design concepts 

shown in Table 31, including the concepts generated by rules 186, 178, and 58. 

There are also two novel structural shaping patterns of very good performance in 

the group of design concepts shown in Table 31.  First, rule 154 generated the best design 

concept with an intriguing ‘tree like’ pattern.  Second, rule 19 developed an interesting 

pattern in which horizontal trusses located every two stories are connected through 

simple X bracings situated in the outer bays of the intermediate stories. 

Examples of several other interesting structural shaping patterns produced by 

elementary CA rules with randomly generated design embryos are presented in Table 32.  

The group of design concepts shown here includes diverse structural patterns of 

reasonable performance.  It is worth mentioning that even greater diversity of generated 

structural shaping patterns was obtained by relaxing the assumption of using only the 

simplest design embryo. 

K Bracings 

Another set of experiments with the second group of wind bracing elements also

showed that elementary CA rules applied to randomly generated design embryos produce 

superior results.  The best design concepts generated in these experiments are presented 
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in Table 33.  The total weight of the best design concept was equal to 449,521 lbs.  It was 

the best design generated by elementary CA rules.  In fact, all 12 best design concepts 

shown in Table 33 outperformed the best design concepts generated by elementary CA 

rules with an arbitrarily assumed design embryo. 

Structural Shaping Patterns 

All design concepts presented in Table 33 exhibit the fully braced pattern in 

which all cells from the second story up to the topmost story are occupied by K bracings.  

The differences among the design concepts are restricted to various configurations of the 

design embryo.  Interestingly, the fully braced pattern in which the entire configuration of 

a wind bracing system, including all cells of the design embryo, is composed of K 

bracings turned out not to be the optimal design concept with respect to the total weight 

of the structural system.  Its total weight was more than 8,500 lbs. larger than the best 

design concepts shown in Table 33. 

The design experiments with randomly generated design embryos and the second 

group of wind bracing elements also generated interesting structural shaping patterns of 

good performance.  Several examples of such patterns are presented in Table 34.  As 

before, when elementary CA rules are applied to randomly generated design embryos, 

they produce even greater diversity of interesting structural shaping patterns. 
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Table 32. Interesting structural shaping patterns produced by elementary CA rules with 
randomly generated design embryos 
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Table 33. Best designs of wind bracing systems composed of K bracings produced 
elementary CA rules with a randomly generated design embryo located at the bottom 

by 

 

 

 



294 

Table 3
by elementary CA rules with randomly generated design embryos located at the bottom 

4. Interesting structural shaping patterns composed of K bracings and produced 

 

 

 



295 

Table 34 cont. Interesting structural shaping patterns composed of K bracings and 

bottom 
produced by elementary CA rules with randomly generated design embryos located at the 
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Thus, the design experiments with both groups of wind bracing elements have 

shown that by making the generative representation based on elementary CA slightly 

more general (and less constrained), not only the qualitative difference has been achieved 

(larger selection of structural patterns) but also the performance of generated design 

experiments reported in chapter 8 in the following way.  Instead of using fixed design 

embryos and evolving only design rules whic

both elements of the generative representation, i.e. the embryo and the rule, will be 

blem and incorporate it in the 

generat

an imposed symmetry constraint develop symmetric design concepts from the 

symmetric design embryos.  I will also compare the symmetric design concepts with 

concepts has been improved.  This fact will be utilized in the morphogenic design 

h are subsequently applied to the design 

embryos both the embryo and the rule will be evolved.  The optimal configurations of 

sought. 

6.2.3. Design Concept Generators with Symmetry Constraint 

In this section, I will demonstrate how we can make use of 

background knowledge on the design pro

ive representation.  The domain knowledge effectively reduces 

the size of the design space and acts as a constraint.  I will illustrate 

that with a simple example of a symmetry constraint.  In this case, I 

will apply the structural design knowledge that symmetric structural 

systems usually outperform asymmetric ones.  Next, I will show how we can incorporate 

this knowledge in the generative representation of a wind bracing system in order to 

develop symmetric design concepts.  Furthermore, I will demonstrate that elementary CA 

rules with 
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asymmetric ones in terms of their total weight and their maximum horizontal 

displacements. 

Symmetry of structures is an important property from a structural engineering 

perspective.  Almost all steel structural systems are symmetric and that is considered 

highly desirable for various reasons (aesthetics, constructability, structural behavior, etc.). 

Thus, symmetry is one of the most frequently used requirements in structural design. 

The process of imposing a symmetry constraint on the design rules based on 

elementary CA rules is straightforward and consists of two steps: 

1. Imposing a so-called reflection symmetry on CA rules (Wolfram 1983), 

and 

2. Imposing symmetry on the design embryos. 

two 

constraints on the CA rule.  First, the CA rule has to yield the same outcome value for the 

local neighborhoods 100 and 001.  Second, the CA rule must give the same outcome 

value for the local neighborhoods 110 and 011.  Graphical illustration of the reflection 

symmetry property is presented in Figure 56.  

In the case of elementary CA rules, the reflection symmetry introduces 

 

Figure 56. Graphical illustration of the reflection symmetry of a design rule based on an 
elementary CA rule 
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When the reflection symmetry is imposed, the space of design rules based on 

elementary CA rules is restricted to 64 rules (compared to 256 rules when no constraint is 

imposed) of the form: 

1 2 3 4 2 5 4 6α α α α α α α α , 

where { }0,1α ∈  and the same ordering of the local neighborhoods is assumed as in 

Symmetry of the design embryo is another necessary condition in order to 

embryos, as shown in Figure 57.  In this case, rule 19, or in binary form 00010011, was 

i

Figure 56. 

produce symmetric design concepts.  Even symmetric design rules do not necessarily 

produce symmetric design concepts when they are applied to asymmetric design 

applied to a symmetric design embryo (left) and an asymmetric design embryo (right).  It 

le develops an asymmetric design concept 

when applied to an asymmetric embryo.  

In the design experiments reported in this section, the entire set of 64 symmetric 

embryos shown in Figure 58 and generated 8 design concepts of wind bracing systems 

bracing elements.  The developed design concepts were evaluated using both the first-

order and the P-∆ analysis.  The values of the total weight of the steel structural system 

and its maximum horizontal displacement calculated during these analyses were 

recorded. 

is clear that even this symmetric design ru

design rules was investigated.  Each rule from the set was applied to 8 symmetric design 

from them.  As before, the experiments were conducted using both groups of wind 
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Figure 57. Design concepts developed from the symmetric rule 19 when a symmetric 
design embryo is used (left) and an asymmetric design embryo is used (right) 

 

ght types of symmetric design embryos used in the experim
les 

Figure 58. Ei ents with 
symmetric design ru
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Best Designs 

Table 35 shows the best results generated by elementary CA rules with the 

symmetry constraint.  The three best design concepts developed by elementary CA rules 

with symmetry constraint were produced by rule 50.  They exhibit various variations of 

the previously identified checkerboard pattern.  The differences among the three design 

concepts occur only in the lowest part of the steel structure (3 lowest stories) due to 

different configurations of the design embryos used in the experiments.  In fact, rule 50 

developed the checkerboard pattern starting from all design embryos shown in Figure 58 

except for two extreme cases when the design embryo consisted of all no bracings (empty 

cells) (see Figure 58a)) and all simple X bracings (see Figure 58h)).  All design concepts 

developed by rule 50 from symmetric design embryos are shown in Table 36.   

Symmetric Designs vs. Asymmetric Designs 

When we compare the best symmetric design concepts (see Table 35) with the 

ones generated from random design embryos (see Table 31), we observe that there are no 

significant differences in their performance.  The overall best design concept was 

produced from a randomly generated design embryo by rule 154 (see Table 31) but two 

best symmetric designs shown in Table 35 outperform the second best design produced 

from a random design embryo. Only 2 out of 12 design concepts shown in Table 31 are 

symmetric, namely the 7th and the 8th best designs developed by rules 19 and 178, 

respectively.  In fact, the same design concepts can be found in Table 35.  Rule 19 

generates the 4th best symmetric design while rule 178 generates the 7th best symmetric 

design. 
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Table 35. Best symmetric designs of wind bracing systems consisting of simple X 
bracings produced by elementary CA rules with the symmetry constraint 
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Table 36. Symmetric designs of wind bracing systems produced by elementary rule 50 
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K bracings 

The best design concepts produced by elementary CA rules with the second group 

of win

Table 37. Best symmetric designs of wind bracing systems composed of K bracings and 

d bracing elements are shown in Table 37.  All of them exhibit the fully braced 

pattern in which all cells from the second story up to the topmost story of the structural 

system are occupied by K bracings.  The differences among the design concepts shown in 

Table 37 are limited to the configurations of the design embryo. 

produced by elementary CA rules with the symmetry constraint 

 

The total weight of the best design concept was equal to 449,376 lbs. (calculated 

using the first-order structural analysis) and was slightly better than the weight of the best 
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design 

cepts are developed from 

more g

6.2.4. Summary 

In this section, I empirically investigated the simplest generative representations 

of wind bracing systems based on elementary cellular automata.  These representations 

concept produced in the experiments with randomly generated design embryo (see 

Table 33).  In general, the best design concepts produced in the experiments with the 

symmetry constraint were of similar, if not identical, performance as the best design 

concept produced with randomly generated design embryos. 

Configuration of the Design Embryo 

Both Table 35 and Table 37 show that better design con

eneral configurations of the design embryo than the simplest design embryo 

studied in section 6.2.1.  In fact, only 1 out of 12 best design concepts presented in Table 

35 and 1 out of 6 best design concepts shown in Table 37 were generated from the 

simplest design embryo consisting of either a single simple X bracing or K bracing 

located in the middle bay.  The remaining design concepts presented in Table 35 and 

Table 37 were developed from more general configurations of the design embryo.  Thus, 

it is beneficial to employ more complex configurations of the design embryos in 

order to generate design concepts of better performance.  This result exactly 

corresponds to the findings discussed in the previous section in which I found that it is 

not sufficient to use the simplest design embryos and search only the space of the design 

rules.  One should rather search both the space of design embryo configurations and the 

space of the design rules applied to these embryos. 
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consist of a design rule based on an elementary CA rule and a design embryo determining 

the initial configuration of wind bracings. 

In the first subsection, I described the results of design experiments in which I 

exhaustively searched the space of the design rules and applied them to an arbitrarily 

assumed design embryo.  The simplest configuration of the design embryo was assumed 

which consisted of a single simple X bracing, or K bracing, located in the central bay.  

Even these extremely simple experimental settings were able to produce novel structural 

shaping patterns of good performance.  I also compared the design concepts of wind 

bracing systems developed by elementary CAs with the design concepts generated 

randomly and found out that the former perform better in terms of both the total weight of 

the steel structural system and its maximum horizontal displacement.  I compared the 

developed design concepts with the designs known from the structural engineering 

literature.  I discovered that many traditionally known structural shaping patterns could 

be generated by elementary CA rules. 

Furthermore, I investigated the impact of various representation specific 

parameters on the quality of generated design concepts.  I found that the location of the 

design embryo (bottom vs. top of the steel structure) has on average no influence on the 

performance of the produced design concepts. On the other hand, the use of nonperiodic 

boundary conditions may increase the total weight of the steel structural systems by 

several percent when K bracings are used and has no impact on the quality of produced 

design concepts when X bracings are employed. 
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In the second subsection, I empirically studied more general configurations of the 

design embryo.  Here, the design embryos were no longer restricted to assume the 

simplest possible configuration but were instead generated randomly.  The results of the 

experiments have shown that these more complex configurations of the design embryo 

produced better results.  This result shows that both the space of the design embryos and 

the space of the design rules should be searched concurrently.  

In the third subsection, I demonstrated how we can incorporate domain 

knowledge in the generative representations.  I illustrated that with the symmetry 

requirement frequently applied in structural design.  I showed how we can constrain both 

components of the generative representation, i.e. the design embryo and the design rule, 

so that it develops symmetric design concepts.  I also described the results of the design 

experiments with the symmetry constraint.  They showed that on average no performance 

gain is achieved (in terms of the total weight of the structural system) when the symmetry 

ployed to estimate 

 The design experim

constraint also confirmed the previous results that more complex 

configu

constraint is imposed compared to the situation when no symmetry constraint is used and 

the design concepts are developed from random design embryos.  In these experiments, 

however, only a single objective measure was em the quality of the 

produced design concepts.  It might be the case that the results will be different when 

more complex evaluation models will be assumed. ents with the 

symmetry 

rations of the design embryo produce on average better results. 

In the following sections, I will further investigate more general representations of 

wind bracing systems.  First, I will extend the number of types of wind bracing elements 
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to more than 2.  Then, I will experimentally investigate the design rules based on both 

standard and totalistic CAs (see explanations in section 2.2).  Finally, I will empirically 

study the design rules based on two-dimensional CAs which are applied to 2D design 

embryos. 

6.3. Design Concept Generators Based on 1D Cellular Automata 

All experiments reported in section 6.2 considered only two 

types of wind bracing elements at a time.  For these types of problems, 

elementary CAs were adequate to generate design concepts of wind 

bracing systems.  However, for many design problems, we cannot 

restrict the design space to only two types of structural elements.  On 

the contrary, the majority of structural elements considered in ‘real-

world’ design problems will have more than 2 possible types.  From the representational 

point of view this corresponds to attributes having multiple values (see for example 

Figure 19 which graphically illustrates the values of attributes representing wind bracing 

elements with 7 possible values).   

For these types of problems design concept generators based on elementary CAs 

are not sufficient and more general CAs must be used.  In this section, one-dimensional 

cellular automata (1D CAs) are studied where each cell may have in general more than 

two values.  One can also vary the size of the local neighborhood and thus control the 

radius of local interactions among cells. 

Two types of 1D CAs have been studied.  First, section 6.3.1 investigates standard 

1D CAs as design concept generators of wind bracing systems in tall buildings.  Here, 
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cells representing wind bracing attributes have 7 possible values as shown in Figure 19.  

The following section explores the space of design rules based on totalistic 1D CAs (see 

section 6.3.2).  

6.3.1. Standard 1D Cellular Automata 

In this section, the results of the experiments are reported in 

which standard 1D CA were used to develop design concepts of wind 

bracing systems.  Each cell had 7 possible values representing 7 types 

of wind bracing elements: no bracing, diagonal bracing \, diagonal 

bracing /, K bracing, V bracing, simple X bracing, and X bracing (see 

Figure 19). 

As discussed earlier in section 2.2.1, increasing the number of possible cell values 

causes a rapid growth in the number of possible 1D CA rules.  For example, when there 

al to  rules.  

When 

hen the radius of the local neighborhood is equal to 1 and the number of cell 

states i al to 7, then there are 343 (i.e. 

 
322 256=are only 2 possible cell values then the size of the rule space is equ

we increase the number of cell states (and keep the same size of the local 

neighborhood, i.e. equal to 3) to 7 then there are 
37 343 2897 7 7.4 10= = ⋅  possible 1D CA 

rules. When we also increase the radius of the local neighborhood to 2, then the rule 

spaces become even larger.  In this case, there are 
57 16807 142037 7 3.6 10= = ⋅  possible 1D 

CA rules!   

W

s equ 7 7 7⋅ ⋅ ) possible combinations of cell values in 

the local neighborhood of size 3 compared to 8 possible combinations corresponding to 

 



309 

binary l g a fixed ordering of the local neighborhoods, we can 

represe

of 343 dig

the outcom

local neigh

1D CA ru

digits. 

 size of the 1D CA rule space with 7 possible cell values is truly 

enormo

sections w

conducted 

Tab

reported in ll values representing 7 types 

of wind

d were studied: 1 and 2.  They correspond to the 

sizes of the local neighborhood equal to 3 and 5, respectively.  All experiments reported 

in this section used CA rules with periodic boundary conditions. 

wo samples of 10,000 design concepts each (one sample for each radius length) 

were developed in this way and evaluated using the first-order analysis.  The values of 

the total weight of the structural system and its maximum horizontal displacement were 

recorded.  The results of the experiments are presented below separately for each radius. 

cel  values.  Thus, assumin

nt any 1D CA rule with 7 possible cell values and the radius equal to 1 as a string 

its.  Each digit in this string can have a value from 0 to 6.  The string contains 

e values determined by a 1D CA rule and, given the assumed ordering of the 

borhoods, uniquely defines each 1D CA rule.  Similarly, we can represent any 

le with 7 possible cell values and the radius equal to 2 as a string of 14,203 

In any case, the

us.  It is impossible to search this space exhaustively, as I did in the previous 

ith elementary CAs.  Hence, only a random search of this vast space was 

and its results are reported in this section. 

le 38 shows the parameters and their values used in the design experiments 

 this section.  As stated earlier, 1D CAs with 7 ce

 bracings were used.  A randomly selected design rule was applied to a randomly 

generated design embryo and developed a design concept of a wind bracing system from 

it.  Two radii of the local neighborhoo

T
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Table 38. Parameters and their values used in the design experiments with 1D CAs 

Experimental Parameter Value(s) 
Number of cell values  7 

Radius of the local neighborhood  1, or 2 

Boundary conditions Periodic 

Embryo generation mechanism Random 

Design rule search mechanism Random 

Random sample size 10,000 
  

Best Designs 

Table 39 shows 12 best design concepts developed by 1D CA rules when the 

radius of the local neighborhood was equal to 1.  Four best designs presented in Table 39 

exhibit various stages of development of a fully braced pattern in which either K bracings 

or V bracings were used.  The best design concept exhibits the most developed fully-

braced pattern covering the majority of the height of the structure.   

As I discussed earlier, each design rule based on a 1D CA rule with 7 possible cell 

values can be expressed as a number consisting of 343 digits in base 7 or, when we use 

the numbering scheme introduced in section 2.2.2, as a number in base 10.  Thus, using 

this convention we can represent the design rule that developed the best design concept 

shown in Table 39: 
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• In base 7 (343 digits):  

 the configuration of the design 

embryo

 545424016642342320424165131406366022446402234265021410423614042

121051331221632254010664300221413632410526110465544133323530533

241332233604355205233401513516364151313501116364250165353441123

466640412666131401200413235553540210402560315154002505466264024

054236631205530054635654315602235505131154224004411301630421312

2315110415253064214554553504 

• In base 10: 

 600277640749251490111461707339861568437408432431431112142452964

393652349072790748987865666957215330331863709429633064657691093

016999508397425187657229731217052211026584365118722738548997128

368028323939157875755782157066793619622057542688580843881427759

96248566390499007620882232169303078198 

When we know the number of the design rule and

, i.e. in this case the string consisting of 5 digits - 06640, we can uniquely define a 

design concept developed by this rule. 
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Table 3
the local neighborhood equal to 1 

9. Best designs of wind bracing systems developed by 1D CAs with the radius of 
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Structural Shaping Patterns 

Table 39 contains several interesting structural shaping patterns of good 

performance.  First, the 5th and the 12th best designs concepts exhibit two variations of the 

horizontal truss pattern.  The former pattern was formed by V bracings located every two 

stories and it covers almost the entire height of the structural system.  The latter one was 

generated by an interesting combination of K and V bracings which form two-story 

horizontal trusses.  The two-story trusses cover more than half of the height of the 

structural system.  Second, the 6th, 7th, and 10th design concepts exhibit elaborate versions 

of the macro bracing pattern.  Here, the widths of the macro bracing patterns are equal to 

either 3 or 4 stories.  The macro bracings are formed from a combination of various types 

of wind bracing elements, e.g. diagonal /, K, and V bracing in the case of the 7th design 

concept.  Finally, the 8th design concept exhibits a new pattern which is formed by a 

combination of simple X bracings, V bracings, and K bracings. 

Impact of an Increased Size of the Local Neighborhood 

In the second group of design experiments, the impact of the increased size of the 

local neighborhood was investigated.  The best design concepts produced by 1D CA rules 

with the radius equal to 2 are shown in Table 40. 

In this case, the best design concept exhibits the fully-braced pattern formed by V 

bracings which spans the entire height of the structural system.  The total weight of the 

steel structure is comparable to the best design found in the experiments with K bracings

(see Table 16).  Various stages of the development of this pattern can also be found in the 

3rd, 4th, and 7th design concept shown in Table 40.   
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The macro bracing patterns can be identified in the 2nd, 6th, 11th, and 12th design 

concept.  The first two design concepts exhibit relatively simple versions of this patterns 

consisting of either V and diagonal \ bracings, or V, K, and diagonal \ bracings.  The 

latter two macro bracing patterns are much more complex and formed by all 7 types of 

wind bracings elements. 

When we compare the performance of the design concepts generated by 1D CA 

rules (see Table 39 and Table 40) with the ones developed by elementary CA rules (see 

Table 8 and Table 16), we observe that they are better than designs produced by X 

bracings but worse than designs consisting of K bracings.  This statement, however, 

cannot be generalized too far because the two rule spaces were not sampled equally.  In 

the case of elementary CA rules, the entire rule space has been exhaustively searched.  In 

the case of 1D CA rule, only a tiny portion of the design rule space was sampled. 

 

 

 

Finally, the 7th, 9th, and 10th design concepts exhibit apparently chaotic patterns 

where no regularity can be found.  It is worth mentioning that even the design concepts 

with the ‘chaotic’ patterns have better performance than the best design concepts 

composed of simple X bracings and produced by elementary CA rules. 

One-dimensional CAs vs. Elementary CAs 
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Table 40. Best designs of wind bracing systems developed by 1D CAs with the radius of 
the local neighborhood equal to 2 
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I demonstrated earlier in this section that the rule space is enormous even when 

the smallest radius of the local neighborhood is used.  It grows even more rapidly when 

we incr

ms (evolutionary algorithms) are 

ces for good design rules. 

6.3.2. Totalistic 1D Cellular Automata 

In the previous section, I demonstrated that the number of 1D 

CA rules grows rapidly when we increase the number of possible cell 

values and/or the radius of the local neighborhood.  There is a way, 

however, to substantially reduce the number of 1D CA rules by using 

totalistic 1D CA.  The idea of a totalistic CA is to take the new value of 

each cell to depend only on the average value of the neighboring cells, 

and not on their individual values (see section 2.2.1 and Figure 6).   

By using totalistic 1D CAs, we can reduce the size of rule space from 

89  to 0  when the radius is equal to 1 and from 

 to  when the radius is equal to 2.  Thus, totalistic 

ease the radius.  Thus, it is impossible to search this space exhaustively.  We need 

to find ways to improve our possibilities of identifying good design rules in these vast 

rule spaces.   

One of possible ways to achieve this goal is described in the following section.  It 

discusses the use of totalistic 1D CAs instead of standard 1D CAs.  Totalistic 1D CAs 

significantly reduce the size of the rule spaces.  Another possibility is described in 

chapter 8, in which more intelligent search mechanis

used to search the vast rule spa

37 27 7.4 10= ⋅ 3 7 2 19 167 7 1.1 1⋅ − = = ⋅

57 142037 3.6 10= ⋅ 5 7 4 31 267 7 1.5 10⋅ − = = ⋅
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1D CAs can reduce the size of the rule space by hundreds, or even thousands, of orders of 

magnitude.   

In the case of a totalistic 1D CA with 7 possible cell values, there are only 19, i.e. 

, possible combinations of cell values in the local neighborhood of size 3.  

ilarly, there are  possible combinations of cell values in the local 

neighborhood of size 5.  Thus, by applying a totalistic 1D CA instead of a standard 1D 

CA, we reduce the representation of a design rule from 343 digits to only 19 digits and 

from 14,203 to 31 digits when the radius of the local neighborhood is equal to 1 and 2, 

respectively.  As before, each of the 19 or 31 digits can have a value from 0-6.  Given the 

assumed ordering of the local neighborhoods, each string of 19 or 31 digits uniquely 

defines a totalistic 1D CA rule. 

Even though the space of totalistic 1D CA rules is significantly smaller than the 

space of standard 1D CA rules, it is still vast and cannot be searched exhaustively.  

Hence, as before, a random search of this rule space was performed.  Randomly selected 

design rules based on totalistic 1D CAs were applied to randomly generated design 

embryos.  Also in this case, two samples of 10,000 design concepts (one for each radius 

length) were produced in this way. 

Best Designs 

The best design concepts developed by totalistic 1D CA rules with the radius of 

the local neighborhood equal to 1 are shown in Table 41.  All design concepts presented

in the table exhibit the fully braced pattern in which either K bracings or V bracings were 

3 7 2⋅ −

Sim 5 7 4 31⋅ − =
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used.  

 

best on  

 

pattern

e design rules that 

generated novel shaping patterns of good performance which were only slightly inferior 

to the designs exhibiting the fully braced pattern.  Several such patterns are presented in 

Table 42. 

The only differences among the design concepts occur in the lowest part of the 

building (first 3 stories of the structural system).   

When we compare the performance of the developed design concepts we observe 

that all of them outperform (in terms of the total weight of the steel structural system) the 

best design concept developed by standard 1D CA rules with the neighborhood radius 

equal to 1 (see Table 39).  They are also better than all design concepts, except for the

e; generated by standard 1D CA rules with the radius equal to 2 (see Table 40). 

Thus, due to reduced size of the rule (search) space, totalistic 1D CA can much more 

easily produce design concepts of good performance.   

Structural Shaping Patterns 

Totalistic 1D CA rules not only produced design concepts of good performance 

but also generated several interesting structural shaping patterns.  The fully braced

 outperformed other structural shaping patterns in terms of the total weight of the 

steel structural system.  Moreover, it was produced by a relatively large number of design 

rules based on totalistic 1D CA rules. Hence, all design concepts shown in Table 41 

exhibit this pattern.  There were, however, many examples of th
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Table 41. Best designs of wind bracing systems developed by totalistic 1D CAs with the 
radius of the local neighborhood equal to 1 
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Among the patterns shown in Table 42, we can find elaborate versions of the 

horizontal truss pattern in which multi-story trusses are formed.  For example, the 9th and 

10th design concepts presented in the table exhibit horizontal truss pattern in which 

trusses formed by a combination of X and K bracings span two stories of a structural 

system.  The 2nd design in Table 42 contains three-story horizontal trusses produced by a 

combination of 3 types of wind bracing elements, namely K, V, and simple X bracings.   

The 4th design shown in the table exhibits an interesting variation of the fully-

braced pattern.  Here, both V bracings and K bracings are used interchangeably every two 

stories.  More complex patterns produced by a large number of wind bracing elements 

(virtually every cell is braced!) can be found in 4 design concepts shown in Table 42, i.e. 

in the 5th, 6th, 11th, and 12th designs.  On the other hand, the 7th design contains very few 

wind bracing elements and nevertheless exhibits comparable performance. 

D CA rules with an increased size of the local neighborhood (the 

radius 

Totalistic 1

equal to 2) produced similar results to the ones reported above for the radius equal 

to 1.  Hence, only the 3 best designs produced in these experiments are shown in Table 

43 and a detailed discussion of the obtained results has been omitted. 
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Table 42. Interesting structural shaping patterns produced by totalistic 1D CA rules with 
the radius of the local neighborhood equal to 1 
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Table 43. Best designs of wind bracing systems developed by totalistic 1D CAs with the 
radius of the local neighborhood equal to 2 

 

6.3.3. 

s to generate design 

concep

 

Summary 

In this section, I extended the number of possible types of wind bracing elements 

to 7 and used more general types of cellular automata, namely 1D CA

ts of wind bracing systems.  Also, I tested the impact of an increased size of the 

local neighborhood (increased radius of local interactions) on the performance of the 

produced design concepts. 

In the first subsection, I investigated the design rules based on standard 1D CA 

rules which work in a similar way as elementary CA rules studied in the previous section.  

I discussed a rapid growth of the sizes of 1D CA rule spaces when the number of cells 

states and the radius of the local neighborhood increase.  This property prevents one from
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conducting an exhaustive search of the rule spaces, as was the case with elementary CAs.  

Hence, only a random search in these vast spaces was performed. 

The conducted experiments have shown that 1D CA rules with 7 types of wind 

bracing elements generate interesting structural shaping patterns.  The patterns are even 

more elaborate than the ones discovered in the experiments with elementary CAs.  The 

performance of the produced design concepts of wind bracing systems was better than the 

concepts composed of X bracings but worse than the ones consisting of K bracings.  No 

significant impact of the increased radius of the local neighborhood on the performance 

In the second subsection, I introduced the design rules based on totalistic 1D CA 

rules.  

these experiments are of comparable 

perform

of the design concepts was observed. 

Totalistic 1D CA rules substantially reduce the sizes of the rule spaces so that they 

can be searched more efficiently.  The conducted experiments with totalistic 1D CA rules 

have shown that they not only generated intriguing structural shaping patterns but they 

also produced design concepts of significantly better performance than standard 1D CA 

rules.  The best design concepts generated in 

ance to the best design concepts produced by elementary CA rules and composed 

of K bracings (see Table 33) and much better than the concepts consisting of simple X 

bracings. 
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6.4. Design Concept Generators Based on 2D Cellular Automata 

Design concept generators studied so far in this chapter 

investi

g structural members are important from the structural 

engineering/design point of view and should be explicitly modeled.  In order to achieve 

generators in section 4.4.3.  

As was the case with 1D CAs, there are two types of 2D CAs: standard and 

totalistic.  Both types of 2D CAs have been investigated in this dissertation and the 

obtained results are reported in sections 6.4.1 and 6.4.2, respectively. 

When using generative representations based on 2D CAs, one has to specify not 

only the radius of the local neighborhood (2D neighborhood in this case) but also its 

shape.  Two most frequently used shapes of the local neighborhood in scientific literature 

include Moore neighborhood and von Neumann neighborhood (see section 2.2.1 and 

Figure 8).  In this dissertation, a larger selection of shapes of the local neighborhood was 

tudied, including Moore neighborhood, von Neumann neighborhood, diagonal 

neighborhood, north-south neighborhood, and east-west neighborhood (see Figure 59).   

gated only one-dimensional cellular automata.  The structural 

systems considered in this dissertation are, however, inherently two-

dimensional.  There also exist planar interactions among structural 

elements that are not accounted for using concept generators based on 

1D CAs. 

The underlying motivation behind the experiments reported in this section is that 

the planar interactions amon

it, two-dimensional cellular automata (2D CAs) have been proposed as design concept 

s
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with design concept generators based on 2D CAs 

An additional experimental parameter

Figure 59. Shapes of the two-dimensional local neighborhoods used in the experiments 

 that had to be specified for the generative 

2D CAs is the number of iterations of a 2D CA rule.  This 

parame

al parameters and the

 number of types of wind bracing elements was restricted 

to 3 on

senting spatial interactions among 

representations based on 

ter was introduced earlier in section 4.4.3 and named iteration_max.  Several 

sensitivity analyses were performed to determine the impact of the value of this 

parameter on the performance of obtained results. 

Table 44 shows the experiment ir values used in the design 

experiments with 2D CAs.  The

ly: no bracing, K bracing, and simple X bracing in order not to cause an explosion 

of the size of the rule spaces (which were already vast).  This resulted in a significant 

reduction of the search space.  On one hand, a large number of potentially fit design 

concepts were omitted because they could not be represented.  On the other hand, this 

assumption helped me focus on various aspects of repre
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structu

(see section 4.4.3).  The design rules were 

subsequently iterated the same number of times as the value of the iteration_max 

parameter.  At each step, a new design concept was produced and evaluated using the 

first-order structural analysis. 

Table 44. Parameters and their values used in the design experiments with 2D CAs 

ral elements.  They were investigated experimentally by varying the shape and 

radius of the local neighborhood of 2D CA rules.   

As in the previous sections, a random sample of 10,000 design concepts was 

generated for each shape of the local neighborhood.  Randomly selected design rules 

based on 2D CA were applied to randomly generated design embryos (now in the form of 

2D configurations) of wind bracing elements 

Experimental Parameter Value(s) 
Number of cell values  3 

Shape of the local neighborhood Moore, von Neumann, diagonal, north-
south, east-west 

Radius of the local neighborhood  1 or 2 

Embryo generation mechanism Random 

Design rule search mechanism Random 

Number of iterations of a 2D CA rule 
(iteration_max) 

5, 10, 20, 50, 100, 1000 

Random sample size 10,000 
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6.4.1. Standard 2D Cellular Automata 

local neighborhood were 

investigated experimentally.  Due to enormous sizes of the standard 2D CA rule spaces, 

only one length of the radius of the local neighborhood was investigated, i.e. the radius 

ed results are reported separately for each of the considered 

neighborhoods in the following subsections. 

Moore Neighborhood 

The experiments reported in this subsection involved randomly generated design 

embryos in a form of 2D configurations of wind bracing elements and randomly selected 

design rules based on 2D CA rules with Moore neighborhood (see Figure 59).  The size 

of this 2D CA rule space was equal to  (cells had 3 possible values 

and the radius was equal to 1). 

Assuming a fixed ordering of the local neighborhoods, we can represent any 2D 

CA rule with 3 possible cell values and Moore neighborhood as a string of 19,683 digits

where each digit can have a value from 0 to 2.  As described before, the string contains 

the outcome values determined by a 2D CA rule and, given the assumed ordering of the 

local neighborhoods, uniquely defines each such rule. 

In this section, experimental results obtained using standard 2D 

CAs are presented.  In these experiments, design rules based on 

standard 2D CA rules were applied to 2D design embryos and 

developed design concepts of wind bracing systems from them.  As 

stated earlier, the number of types of wind bracing elements was 

restricted to 3 only.  5 shapes of the 

equal to 1.  Obtain

93 19683 93913 3 1.5 10= = ⋅
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Several values of the iteration_max parameter, i.e. the parameter defining the 

numbe

d.   

r of iterations of a 2D CA rule, were investigated.  Figure 60 shows typical results 

obtained in the design experiments with the value of iteration_max parameter equal to 5.  

In this case, the initial 2D configuration of wind bracing elements was generated 

randomly (t=0) and a 2D CA rule was applied 4 times.  In this way, 5 design concepts 

were generated and subsequently evaluate

 

Figure 60. Design concepts of wind bracing systems generated by 5 iterations of a 2D CA 
rule with Moore neighborhood 
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Best Designs 

The best design concepts developed by 2D CA rules with Moore neighborhood 

able 45.  The best design concept had the total weight equal to 537,086 

lbs. wh

Table 45. Best design concepts of wind bracing systems developed by 2D CA rules with 

are shown in T

ereas the median total weight of the entire sample of design concepts was equal to 

570,751 lbs.  It is difficult to identify any structural shaping patterns shared by several 

design concepts shown in Table 45.  On the contrary, they exhibit random looking 

configurations of K and simple X bracings. 

Moore neighborhood 
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Impact of the Number of Iterations 

Also, no significant differences were detected in terms of the impact of the 

number of iterations (iteration_max) on the performance of generated design concepts.  

For example, the following median values of the total weight of the steel structural 

systems produced after the number of iterations specified by the value of the 

 obtained: 

• 5 iterations:  570,229 lbs. 

• 10 iterations:  574,777 lbs. 

• 20 iterations:  571,047 lbs. 

• 50 iterations:  568,925 lbs. 

• 100 iterations:  574,188 lbs. 

• 1000 iterations: 569,721 lbs. 

In this case, the best median value was achieved for the design concepts generated after 

50 iterations of a 2D CA rule with Moore neighborhood.   However, the differences 

between the median values are small and insignificant.  Hence, it is difficult to uniquely

point out to a specific value of the iteration_max parameter which produces the best 

re neighborhood. 

Von N

153 8.7 10= ⋅  (but still very large!).  Each 2D CA rule with 3 cell 

iteration_max parameter were

 

results for 2D CAs with Moo

eumann Neighborhood 

In this subsection, the same experimental parameters were used with one 

exception: von Neumann neighborhood (see Figure 59) was employed instead of Moore 

neighborhood.  In this case, the size of the 2D CA rule space was significantly smaller 

and equal to 
533 = 243 1
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values 

rhood.  The best design concept found had the total weight equal to 536,390 lbs. 

slightly better (by 696 lbs. or 0.1 percent) than the best design concept 

produc

There are, 

ely, the 4th and 6th design concepts exhibit some forms of 

emerge

s presented in Table 46 were generated in the 

experim

e total weight of steel structural 

and von Neumann neighborhood could be represented as a string of 243 digits (in 

0-2 range), given the same assumption on the ordering of the local neighborhoods. 

Best Designs 

Table 46 shows the best designs produced by 2D CA rules with von Neumann 

neighbo

and was only 

ed using Moore neighborhood.  The median total weight of the entire sample of 

design concepts was equal to 572,063 lbs., which is slightly more than the median value 

obtained for Moore neighborhood. 

Structural Shaping Patterns 

As was the case with Moore neighborhood, most of the design concepts shown in 

Table 46 have random looking configurations of K and simple X bracings.  

however, two exceptions. Nam

nt macro bracing patterns, particularly in the lower and middle parts of the 

structural system.  The 6th design concept has more wind bracing elements located in the 

outer bays of the structural system and hence, the macro bracing pattern is not readily 

visible.   

Impact of the Number of Iterations 

Half of the design concept

ents with 50 iterations of a 2D CA rule, 2 design concepts in the experiments 

with 10 iterations of the rule, and 1 in the experiments with 100 iterations of the design 

rule.  The differences between the median values of th
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systems obtained after various numbers of iterations of 2D CA rules were, again, small.  

The lowest median (565,826 lbs.) was obtained when the iteration_max parameter was 

equal to 100 and the largest value (575,093 lbs.) was achieved when it was equal to 50. 

Table 46. Best design concepts of wind bracing systems developed by 2D CA rules with 
von Neumann neighborhood 

 

Diagonal Neighborhood 

In this group of experiments, design rules based on 2D CA rules with the diagonal 

neighborhood (see Figure 59) were investigated.  The diagonal neighborhood was 

selected because it explicitly models the interactions among the current cell and its 

neighbors located along the diagonals, a pattern that frequently occurred in so-called 

macro bracings.   
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In this case, the size of the 2D CA rule space was exactly the same as in the case 

of von Neumann neighborhood (but this is only true when the radius of the local 

neighborhood is equal to 1!), i.e.  
53 243 1153 3 8.7 10= = ⋅ .  Hence, each 2D CA rule with 3 

cell values and the diagonal neighborhood could also be represented using a string of 243 

Best design concepts obtained in this group of experiments are presented in Table 

47.  The total weight of the best design was equal to 542,354 lbs. and was slightly worse 

(by about 5,000-6,000 lbs.) than the best design concepts generated by 2D CA rules with 

Moore and von Neumann neighborhoods.  The overall median total weight (572,311 lbs.) 

of the entire sample of design concepts was almost identical to the median values 

obtained for the two previously investigated shapes of the local neighborhood. 

Structural Shaping Patterns 

Table 47 also shows that there are no qualitative differences with respect to the 

structural shaping patterns exhibited by the best design concepts.   As before, most of 

them show fairly random looking configurations of K and simple X bracing.  In three 

cases, namely 2nd, 5th and 6th design concepts shown in Table 47, emergent macro bracing 

Impact of the Number of Iterations 

iteration_max parameter were, as before, insignificant and oscillated between 568,485 

lbs. (20 iterations) and 578,041 lbs. (1,000 iterations).   

digits. 

Best Designs 

patterns are being formed mainly in the central part of the structural system. 

The differences between the medians obtained for various values of the 
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Table 47. Best design concepts of wind bracing systems developed by 2D CA rules with 
the diagonal neighborhood 

 

North-South Neighborhood 

The design rules based on 2D CA rules with the north-south neighborhood 

explicitly modeled vertical interactions among wind bracing elements in a structural 

 rule space was equal to 2  (as before, 3 

possibl

st design concepts rules with the north-

south neighborhood.  The best design concept had the total weight equal to 458,274 lbs. 

and was significantly better than the best design concepts produced by 2D CA rules with 

 
33 27 13 3 7.6 10= = ⋅system.  Here, the size of the

e cell values were used).  In this case, any 2D CA rule with the north-south 

neighborhood could be represented by a string of 27 digits. 

Best Designs 

Table 48 shows 6 be  developed by 2D CA 
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other shapes of the local neighborhood described previously.  In fact, all design concepts 

shown 

Table 48. Best design concepts of wind bracing systems developed by 2D CA rules with 

in Table 48 have better performance then any of the best design concepts 

generated using 2D CA rules with Moore, von Neumann, or diagonal neighborhoods. 

the north-south neighborhood 

 

The overall median value of the total weight of the entire sample of design 

concepts generated using 2D CA rules with the north-south neighborhood was equal to 

573,875 lbs. and almost identical to the median values reported previously for various

shapes of the local neighborhood.  Also, as before, no significant differences were 

detecte

 

d in terms of the performance of the design concepts generated using the range of 
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values of the iteration_max parameter.  The medians changed from 564,626 lbs. (100 

iterations) to 575,601 lbs. (10 iterations). 

Structural Shaping Patterns 

Design concepts shown in Table 48 exhibit qualitatively different structural 

shaping patterns than the ones produced previously by 2D CA rules with other shapes of 

e 5 best design concepts have the fully-braced pattern 

compo

attern has been developed only in the middle part of the structural system 

fferent variations of this pattern are visible in the lower and upper parts of 

the stru

 

the stru

the local neighborhood.  Th

sed of K bracings.  The best design concept exhibits a fully developed pattern in 

which all structural cells are occupied by K bracings.  The other 4 design concepts exhibit 

slight variations of the fully braced pattern in which some cells contain either simple X 

bracing or no bracings.  The 6th best design concept shown in Table 48 has an interesting 

structural shaping pattern which is similar to (but not exactly the same) the checkerboard 

pattern identified previously in the design experiments with elementary CA.  The exact 

checkerboard p

while two di

cture. 

East-West Neighborhood 

The east-west local neighborhood explicitly modeled horizontal interaction among

ctural elements.  In this case, the size of the rule space and the length of its 

representation, as a string of digits, were exactly the same as for the north-south 

neighborhood and equal to 
33 27 123 3 7.6 10= = ⋅  and 27, respectively. 
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Best Designs 

Best design concepts developed by 2D CA rules with the east-west neighborhood 

are sho

Table 49. Best design concepts of wind bracing systems developed by 2D CA rules with 
the eas

wn in Table 49.  The total weight of the best design concept found was equal to 

476,944 lbs. and was worse than the total weight of the best design concept generated by 

the north-south neighborhood by more than 18,500 lbs.  On the other hand, it was 

significantly better (by about 60,000 lbs.) than the total weight of the design concepts 

generated by Moore, von Neumann, and diagonal neighborhoods. 

t-west neighborhood 

 

The overall median value of the total weight of the entire sample of design 

concepts generated using 2D CA rules with the east-west neighborhood was equal to 
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580,460 lbs.  It was the highest (worst) value obtained in all design experiments with 

standard 2D CA rules.  Also, the observed variations in median total weights of the 

design concepts developed for different values of the iteration_max parameter were the 

largest (more than 20,000 lbs.) and ranged from 567,947 lbs. (50 iterations) to 588,841 

lbs. (100 iterations). 

Structural Shaping Patterns 

The structural shaping patterns shown in Table 49 are similar to the ones 

produced by 2D CA rules with the north-south neighborhood.  All 6 design concepts 

presented in the table exhibit slight variations of the fully braced pattern in which most of 

the cells are occupied by K bracings.  It is, however, interesting to observe the influence 

of the shape of the local neighborhood in this case.  All disruptions of the uniform pattern 

produced by K bracings occur along the horizontal direction (within a single story of the

Summary 

ance of design 

concep

 

tall building). 

In this section, I empirically investigated generative representations based on 

standard 2D CAs.  These representations consist of a design rule based on a standard 2D 

CA rule and a design embryo in a form of a 2D configuration of wind bracing elements. 

Five subsections reported the results of the experiments in which I studied the 

influence of 5 different shapes of the local neighborhood on the perform

ts of wind bracing systems in tall buildings.  I also investigated the impact of the 

number of iterations of a 2D CA rule, denoted in this dissertation by the iteration_max 

parameter, on the quality of produced design concepts.  The experimental results reported 
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in this section focused on the qualitative (patterns) and quantitative (best and median 

performance) aspects of the design generation processes. 

In the first 3 subsections, I investigated Moore, von Neumann, and diagonal 

neighb

inly random looking 

configuration of K and simple X bracing.  In several cases, however, some emergent 

macro bracing patterns were formed. 

The situation was different for the remaining two shapes of the local 

neighborhood, namely the north-south neighborhood and the east-west neighborhood.  

The best design concepts generated by standard 2D CA rules with these two shapes 

showed good performance, which is comparable to the performance of the best design 

concepts generated by 1D CA rules. 

These findings are illustrated graphically in Figure 61 which shows the median 

and best performance of the design concepts generated by 2D CA rules with 5 different 

shapes of the local neighborhood. 

orhoods.  The conducted design experiments have shown that these 3 

neighborhood shapes produce generally inferior results in terms of the total weight of the 

design concepts compared to generative representations based on 1D CA.  The best 

design concepts generated in these experiments exhibited ma
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Figure 61. Comparison of the median and best performance of the design concepts 

 61 clearly shows that the differences among median values of the total 

 generated using various shapes of the local neighborhood are 

small a

 the north-south 

er 3 shapes of the loca

generated by standard 2D CA rules with 5 shapes of the local neighborhood 

Figure

weight of design concepts

nd negligible.  The differences, however, do occur for the best design concepts 

developed by 2D CA rules with and east-west neighborhoods which 

substantially outperformed the oth l neighborhood. 

Figure 62 illustrates the influence of the value of the iteration_max parameter on 

the median performance of the generated design concepts.  It shows that there is no 

preferred value of this parameter which produces the best design concepts.  On the 
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contrary, for some shapes of the local neighborhood (von Neumann, north-south) a large 

number of iterations of a 2D CA rule was preferred while for other shapes (diagonal, 

east-west) smaller values produced better results. 

In this figure, only the median values of the total weight of the structural systems 

were considered.  The values of the iteration_max parameter had a significant impact of 

the dynamics of the design processes.  Their influence on the dynamics of design 

processes also changed with the shape of the local neighborhood.  

 

Figure 62. Impact of the value of the iteration_max parameter on the median total weight 
of generated design concepts for different shapes of the local neighborhood 

 



342 

6.4.2. Totalistic 2D Cellular Automata 

As I showed in the previous section, the sizes of the standard 

2D CA rule spaces are enormous even for moderate values of cell 

states (3) and radii of the local neighborhood (1).  When a larger 

number of cell states needs to be considered or when the radius of the 

local neighborhood is larger than 1 then the only computationally 

feasible approach involves totalistic 2D CAs.  In this section, I report 

the experimental results obtained using design rules based on totalistic 2D CA rules.   As 

in the previous section, the design rules were applied to 2D design embryos and 

developed design concepts of wind bracing systems from them.  Also, only 3 types of 

wind bracing elements were considered.  This time, however, 2 values of the radius of the 

local neighborhood were studied experimentally, i.e. the radius equal to 1 and 2.  As 

before, the obtained results are divided with respect to the shapes of the local 

neighborhood that were used in the experiments and reported in the following 

subsections. 

Moore Neighborhood 

The size of the totalistic 2D CA rule space with 3 possible cell values and Moore 

neighborhood was equal to 09 3 8 19 93 3 1.1 1⋅ − = = ⋅

25 3 24 51

 when the radius of the local 

neighborhood was equal to 1 and 0  when the radius equaled 2.   

Thus, we can represent any totalistic 2D CA rule with 3 possible cell values and

Moore neighborhood as a string of 19 digits and 51 digits, when the radius is equal to 1 

and 2, respectively.  This corresponds to the reduction of the length of the representation 

243 3 2.1 1⋅ − = = ⋅
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of a design rule by several orders of magnitude.  In the case of standard 2D CA rules with 

the rad

A rule with Moore neighborhood.  The overall 

re, however, larger than the overall median value 

obtaine

 

ius of 1 and 3 possible cell values we needed 19,683 digits whereas for a totalistic 

2D CA rule with the same parameters we need only 19 digits. 

Best Designs 

Best design concepts developed by totalistic 2D CA rules with Moore 

neighborhood are shown in Table 50.  The top row presents the 6 best design concepts 

generated with the radius of the local neighborhood equal to 1 while the bottom row 

shows the 6 best concepts produced with the radius equal to 2. The total weight of the 

best design concept was equal to 458,274 lbs. for both lengths of the radius of the local 

neighborhood.  It was significantly better (more than 78,000 lbs.) than the best design 

concept produced by a standard 2D C

median values for both radii we

d for standard 2D CA rules.  They were equal to 581,002 lbs. and 615,461 lbs. for 

the radius equal to 1 and 2, respectively.   
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Table 50. Best design concepts of wind bracing systems developed by totalistic 2D CA 

top row) and 2 (the bottom row) 
rules with Moore neighborhood and the radius of the local neighborhood equal to 1 (the 
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Structural Shaping Patterns 

All 12 design concepts shown in Table 50 exhibit the fully-braced structural 

shaping pattern consisting of K bracings.  The two best design concepts, one for each 

radius, exhibit a fully developed pattern with all cells occupied by K bracings.  The 

remaining 10 design concepts display some variations of the fully braced pattern.  The 

influence of the increased radius of the local neighborhood on the generated patterns can 

be observed in the bottom row of Table 50.  Specifically, the disruptions of the uniform 

pattern of K bracings by either simple X bracings or no bracings spread across the entire 

stories.  This is not the case with the patterns generated by totalistic 2D CA rules with the 

radius equal to 1 (see the top row of Table 50).  Here, the disruptions are localized to 2, 

or at most 3, cells within a single story. 

Von Neumann Neighborhood 

When von Neumann neighborhood was employed instead of Moore 

neighborhood, the size of the totalistic 2D CA rule space was even smaller and equal to 

 when the radius was equal to 1 and 05 3 4 113 3 177,147⋅ − = = 13 3 12 27 123 3 7.6 1⋅ − = = ⋅  when the 

radius was equal to 2.  Thus, each totalistic 2D CA rule with 3 possible cell values and 

von Neumann neighborhood could be represented as a string of 11 digits and 27 digits, 

respectively. 

Best Designs 

Best design concepts developed by totalistic 2D CA rules with von Neumann 

neighborhood are shown in Table 51.  As before, the top row contains the best design 

concepts generated by the design rules with the radius equal to 1 while the bottom row 
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shows 

 standard 2D CA rules with 

von Ne

s of the fully-braced 

pattern composed of K bracings.  The best design concepts had a fully developed pattern 

consisting exclusively of K bracings.  The remaining design concepts presented in Table 

51 contain some localized disruptions of the pattern in which K bracings are replaced by 

simple X bracings or no bracing. An interesting pattern was formed in the central part of 

the 6th best design produced by a totalistic 2D CA rule with the radius equal to 2 (see the 

bottom row and sixth column of Table 51).  Here, an emergent ‘circular’ pattern, whose 

width is equal to 2 stories/bays, is surrounded by simple X bracings located on the 

diagonals and no bracings located in the horizontal/vertical directions.  The entire 

structural shaping pattern is symmetric. 

the best designs produced with the radius equal to 2.  The best design concepts 

developed in both cases were identical and their total weight was equal to 458,274 lbs.  

These concepts were also the same as the best concepts produced by totalistic 2D CA 

rules with Moore neighborhood (see Table 50).   

The best concepts shown in Table 51 were significantly (more than 78,000 lbs. or 

14 percent) better than the best design concepts produced by

umann neighborhood (see Table 46).  The overall median total weights of the two 

samples of design concepts generated with the radii 1 and 2 were equal to 574,208 lbs. 

and 576,644 lbs., respectively.  They were slightly larger (by 2,000-4,000 lbs.) than the 

overall median obtained for standard 2D CA rules with von Neumann neighborhood. 

Structural Shaping Patterns 

All design concepts shown in Table 51 exhibit variation
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Table 51. Best design concepts of wind bracing systems developed by totalistic 2D CA 
rules with von Neumann neighborhood and the radius of the local neighborhood equal to 
1 (the top row) and 2 (the bottom row) 
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Many other interesting structural shaping patterns have been identified during the 

process of iteration of totalistic 2D CA rules with von Neumann neighborhood.  Figure 

63 shows the process of iteration of the design rule 7366334203861 applied to a random 

configuration of wind bracing elements.   The design rule produced more than 30 

different design concepts, some of good performance, until it reached the configuration of 

the fully developed braced pattern consisting of K bracings. 

During the process of iteration, some unique patterns emerged, particularly in the 

central part of the structural system.  For example, at the iteration step t=29, a structural 

shaping pattern emerges which consists of 3 qualitatively diverse parts.  The top and 

bottom parts contain the fully braced pattern consisting of K bracings.  The situation is 

different in the central part where a pattern in the form of number 8 emerges.  It consists 

mostly of simple X bracings located in the central bays and stories. 
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Figure 63. Process of iteration of a totalistic 2D CA rule with von Neumann 
neighborhood and the radius of the local neighborhood equal to 2 
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Figure 
neighborhood and the radius of th

63 cont. Process of iteration of a totalistic 2D CA rule with von Neumann 
e local neighborhood equal to 2 
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Figure 63 cont. Process of iteration of a totalistic 2D CA rule with von Neumann 
neighborhood and the radius of the local neighborhood equal to 2 
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Diagonal Neighborhood 

In yet another group of experiments, I investigated totalistic 2D CA with 3 cell 

values and the diagonal neighborhood.  They formed the design rule space of size 

5 3 4 113 3 177,147⋅ − = =  when the radius was equal to 1 and 9 3 8 19 93 3 1.1 10⋅ − = = ⋅  when the 

radius equaled 2.  Thus, totalistic 2D CA r values and the diagonal 

epresented by strings of 11 (radius = 1) and 19 digits (radius = 2). 

Best Designs 

ules with 3 cell 

neighborhood were r

esign concepts developed by totalistic 2D CA rules with the diagonal 

neighb

 median 

values 

lue produced in 

 2D CA rules and the diagonal neighborhood. 

Structu

of the uniform pattern of K bracings by either simple X bracings and no 

bracings occurring in the diagonal directions (see the bottom row of Table 52). 

Best d

orhood are shown in Table 52.  The best design concept generated by 2D CA rules 

with the diagonal neighborhood and the radius of 1 had the total weight equal to 450,209 

lbs..  It outperformed all design concepts found so far by about 8,000 lbs.  In fact, there 

were 4 other design concepts which had better performance than the best fully-braced 

design concept found previously (see the top row of Table 52).  The overall

of the total weight of the entire samples of generated design concepts were equal 

to 590,924 lbs. and 580,407 lbs. for the radius equal to 1 and 2, respectively.  They were 

larger by more than 8,000 lbs. and 18,000 lbs. than the overall median va

the experiments with standard

ral Shaping Patterns 

The influence of the shape of the local neighborhood can be observed in several 

design concepts shown in Table 52.  For example, the 2nd and 5th design concepts have 

disruptions 
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Table 52. Best design concepts of wind bracing systems developed by totalistic 2D CA 
rules with the diagonal neighborhood and the radius of the local neighborhood equal to 1 
(the top row) and 2 (the bottom row) 
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North-South Neighborhood 

s were used, then 

he rule space was equal to  (the radius of 1) and 

3 ⋅ − =

re shown in Table 53.  Here, the design concept produced by a totalistic 

2D CA

edian values obtained for totalistic 2D CA rules with the radius 

 578,711 lbs. and 590,746 lbs., respectively, and were again 

larger a

ause the disruptions of the uniform pattern mostly occur along vertical 

directions. 

 

The north-south neighborhood and the east-west neighborhood defined the 

totalistic 2D CA rule spaces with smallest sizes.  When the design rules based on 

totalistic 2D CA rules with north-south neighborhood and 3 cell value

the size of t 3 3 2 73 3 2,187⋅ − = =

5 3 4 113 177,147=  (the radius of 2).  In this case, each totalistic 2D CA rule was 

represented by a string of 7 and 11 digits, respectively. 

Best Designs 

The best design concepts developed by totalistic 2D CA rules with the north-south 

neighborhood a

 rule with the radius equal to 2 (the bottom row) is slightly better than the design 

concept produced with the radius equal to 1.  It has the total weight of 458,274 lbs. and 

exhibits the previously identified fully-braced pattern consisting of K bracings.   

The overall m

equal to 1 and 2 were equal to

nd the value obtained for the corresponding standard 2D CA rule. 

Structural Shaping Patterns 

All the best design concepts presented in Table 53 exhibit various variations of 

the fully braced pattern.  The influence of the shape of the local neighborhood can also be 

identified here bec
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Table 53. Best design concepts of wind bracing systems developed by totalistic 2D CA 
rules with the north-south neighborhood and the radius of the local neighborhood equal to 
1 (the top row) and 2 (the bottom row) 
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East-West Neighborhood 

 has been identified.  Its total weight was equal to 449,776 lbs.  It exhibits the 

same f

Structu

The final group of design experiments with totalistic 2D CA rules involved the 

east-west neighborhood.  Here, the sizes of the rule spaces were exactly the same as in 

the case of the north-south neighborhood (see the previous subsection). 

Best Designs 

Table 54 shows the best design concepts developed by totalistic 2D CA rules with 

the east-west neighborhood.  Here, the best design concept of a wind bracing system 

found so far

ully-braced pattern consisting of K bracings but with a different configuration of 

the first story. 

The overall median values obtained for the radii of 1 and 2 were equal to 606,918 

lbs. and 622,112 lbs., respectively.  They were significantly larger (by 26,000 lbs. and 

42,000 lbs.) than the overall median value obtained for the corresponding standard 2D 

CA rule. 

ral Shaping Patterns 

As before, the best design concepts exhibited slight variations of the fully-braced 

pattern.  Also, the shape of the local neighborhood had an impact on the properties of the 

disruptions of the uniform pattern which occur mostly along horizontal directions.  The 

increased radius length produced longer disruptions of the uniform pattern which spanned 

the entire stories. 
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Table 54. Best design concepts of wind bracing systems developed by totalistic 2D CA 
rules with the east-west neighborhood and the radius of the local neighborhood equal to 1 
(the top row) and 2 (the bottom row) 
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Summary 

The results reported in this section describe experimental studies of generative 

representations based on totalistic 2D CAs.  As was the case with generative 

representations based on standard 2D CAs, they consist of a design rule and a design 

embryo in a form of a 2D configuration of wind bracing elements.  The design rule, 

however, was based on a totalistic 2D CA rather than on a standard 2D CA.  This resulted 

in a significant reduction of the size of the rule space, in some cases by several orders of 

magnitude. 

As in the previous section, this section was divided into five subsections which 

described results of the experiments obtained with 5 different shapes of the local 

neighborhood.  Figure 64 compares the best design concepts generated by totalistic 2D 

CA rules with 5 different shapes and 2 radii of the local neighborhood.  It also relates

d 

Figure 64 clearly shows that there are no longer significant differences among the 

results 

 large impact on the 

perform

 

these results to the best design concepts produced using standard 2D CA rules discusse

in the previous section. 

produced by Moore, von Neumann, and diagonal neighborhoods and the north-

south and the east-west neighborhoods, as was the case with standard 2D CA rules.  On 

the contrary, all shapes of the local neighborhood produced comparable best design 

concepts when totalistic 2D CA rules were employed.  The results reported in this section 

also showed that the radius of the local neighborhood does not have a

ance of the produced design concepts but it influences the structural shaping 

patterns which are formed during the iterative processes. 
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Figure 64. Comparison of the performance of the best design concepts generated by 

relationship to the results obtained using standard 2D CA rules 

Even though the perfo

totalistic 2D CA rules with 5 shapes and two radii of the local neighborhood and their 

rmance of totalistic 2D CA rules was similar, significant 

differe

design experiments with standard 2D CA rules. 

nces did exist in dynamical properties of the design processes generated by 

totalistic 2D CA rules with various shapes of the local neighborhood. 

Figure 65 shows median total weight values of the entire samples of design 

concepts produced using totalistic 2D CA rules with 5 shapes and 2 radii of the local 

neighborhood.  It also compares the median values to the corresponding values obtained 

in the 
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Figure 65. Comparison of the median performance of the design concepts generated by 
totalistic 2D CA rules with 5 shapes and two radii of the local neighborhood and their 
relationship to the results obtained using standard 2D CA rules 

Figure 65 clearly shows that there is a tendency to generate on average heavier 

design concepts when we use totalistic 2D CA rules instead of standard 2D CA rules.  

Besides, the larger the radius of the local neighborhood in totalistic 2D CA rules the 

heavier the structural systems produced.  The second trend occurs for all shapes of the 

local neighborhood with an exception of the diagonal neighborhood.  

y hypothetical explanation of these results is the following:  Totalistic 2D CAs 

significantly reduce the size of the rule spaces by taking into consideration only average 

M
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values of cells in the local neighborhood.  This property allows them to more quickly 

generate various variations of the fully braced pattern which exhibit good performance.  

Hence, for all 5 shapes of the local neighborhood, the design concepts with this structural 

shaping pattern were found.  On the other hand, by the same property, totalistic 2D CA 

rules generate much larger changes in 2D configurations of wind bracings from iteration 

to iteration.  This, in many cases, may produce inferior design concepts and thus, the 

median total weight values are larger for totalistic 2D CAs rules than for standard 2D 

CAs.  When we increase the radius of the local neighborhood, then the changes from 

iteration to iteration are even larger and hence the overall median value increases again.  

 the diagonal neighborhood, may 

be related to correspond to 

ctions along 

 the same as the ones presented in Figure 62.  Thus, they have been omitted 

here. 

The only exception to this trend, which is produced by

 to the emergent pattern of macro bracings which proved 

design concepts of good performance.  In this case, the increased radius of the local 

neighborhood may provide additional spatial information in the diagonal dire

which the macro bracing patterns are being formed.  Hence, the median value obtained 

for totalistic 2D CAs with the radius equal to 2 is smaller (better) than the value obtained 

when the radius is equal to 1. 

I also investigated the impact of the number of iterations of a totalistic 2D CA 

rule, denoted earlier by the iteration_max parameter, on the quality of produced design 

concepts.  As in the previous section, there was no preferred value of this parameter 

which corresponds to better design concepts.  The graphs showing these results were 

qualitatively
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6.5. Cellular Automata Generating Designs of the Entire Structural Systems 

So far, I have only studied the design concept generators of 

wind bracing systems.  In this section, I consider a more complex 

design problem and investigate design concept generators of the entire 

steel structural systems in tall buildings.  They are based on multiple 

one-dimensional cellular automata and each 1D CA develops a 

separate subsystem of a steel structure, e.g. one 1D CA generates a 

subsystem of beams, another one a subsystem of columns, etc.  A detailed description of 

the representations studied in this section was presented earlier in section 4.4.4.   

As in the previous sections, two types of 1D CA rules have been studied.  First, in 

section 6.5.1, I investigate the design concept generators based on multiple standard 1D 

CAs.  Next, section 6.5.2 explores the space of design rules based on multiple totalistic 

1D CAs.  In both cases, I investigate only one length of the radius of the local 

neighborhood for each 1D CA, namely the radius equal to 1.  The parameters and their 

values used in the experiments reported in this section are presented in Table 55. 

 

 

 

 

 

 

 



363 

Table 55. Parameters and their values used in the design experiments with 1D CAs 
generating the entire steel structural systems in tall buildings 

Experimental Parameter Value(s) 
Number of cell values (bracings) 7 
Number of cell values (beams) 2 
Number of cell values (supports) 2 

Radius of the local neighborhood  1 

Boundary conditions Periodic 

Design rule search mechanism Random 

Random sample size 10,000 

Embryo generation mechanism Random 

 

 the design rule 

generat

6.5.1. Multiple Standard 1D Cellular Automata 

In this section, I describe the results of the experiments in 

which multiple standard 1D CAs were used to develop design concepts 

of the entire steel structural systems.  The concept generators studied 

here used separate design embryos and separate design rules based on 

1D CA to develop the subsystems of beams, wind bracings, and 

supports.  As shown in Table 55, the design embryo and

ing a wind bracing subsystem had 7 possible cell values, the design embryo and 

the design rule developing a beam subsystem had 2 possible cell values, and the design 

embryo encoding the supports had also 2 possible cell values.  The best design concepts 

of the entire steel structural system produced in these experiments are shown in Table 56. 
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Table 56. Best designs of the entire steel structural systems in tall buildings produced by 
multiple standard 1D CA rules 
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Structu

g patterns.  The overall best design, whose 

total weight was equal to 523,247 lbs., exhibits a uniform pattern consisting of V 

bracings and pinned beams.  The third best design concept exhibits yet another type of 

the macro bracing pattern composed of 3 types of wind bracing elements: X bracings, 

diagonal bracings and V bracings.  In this case, the beam subsystem is mostly composed 

of fixed beams with occasional occurrences of pinned beams.  The macro bracing pattern 

can be also identified in the 6  best design concept.  In this case, it emerges from a 

combination of X bracings, and K and V bracings.  The remaining design concepts shown 

in Table 56 exhibit more elaborate structural shaping patterns composed of all 7 types of 

wind bracings elements.  The majority of these design concepts have a beam subsystem 

composed of fixed beams only.  There is, however, no predominant pattern in terms of 

the preferred configurations of supports.  In some cases, only fixed supports were used 

but a vast majority of support configurations include one or more pinned supports. 

ed as in the previous subsection (see Table 55) but with one 

excepti

 wind bracings, beams, and supports were 

eveloped from the corresponding design embryos and design rules. 

ral Shaping Patterns 

Table 56 shows that the best design concepts generated by multiple 1D CA rules 

exhibit several interesting structural shapin

th

6.5.2. Multiple Totalistic 1D Cellular Automata 

In this subsection, I describe results of the experiments in which exactly the same 

parameters were us

on: the design rules were based on totalistic 1D CA rules rather than on standard 

1D CA rules.  As before, the subsystems of

d
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Best Designs 

The best design concepts of the entire steel structural systems 

produced in these experiments are shown in Table 57.  It is clear that 

there are large qualitative and quantitative differences between the 

design concepts produced by totalistic 1D CA rules (see Table 57) and 

standard 1D CA rules (see Table 56).  The best design concept of the 

entire steel structural system in a tall building developed by totalistic 

1D CA rules is more than 64,000 lbs., or 12 percent, better than the best concept 

produced by standard 1D CA rules. 

Structural Shaping Patterns 

Table 57 also shows that totalistic 1D CA rules produced qualitatively different 

structural shaping patterns than the standard 1D CA rules.  In this case, the most 

successful design concepts exhibited uniform patterns consisting of either V bracings or 

K bracings.  Also, generally two types of beam subsystems were developed: composed of 

fixed beams only, or composed of pinned beams only.  The design concepts exhibiting 

these patterns were of comparable performance with the total weights from about 

460,000 lbs. to 480,000 lbs.  

In the group of 12 best design concepts shown in Table 57, there is only one 

design concept which exhibits a qualitatively different structural shaping pattern, namely 

the 11th best design.  It exhibits the pattern of horizontal trusses composed of V bracings. 
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As in the previous section, no clear pattern in terms of the best configuration of 

suppor

6.5.3. Summary 

In this section, I investigated design concept generators of the entire steel 

structural systems.  They consisted of multiple design embryos and multiple design rules 

based on 1D CAs which generated various subsystems of the steel structure.   Two types 

of design rules were investigated: based on standard 1D CA rules and based on totalistic 

1D CA rules. 

The experimental results confirm the findings reported in the previous sections in 

which a design of wind bracing systems was considered.   Namely, standard 1D CA rules 

develop more diverse structural shaping patterns than totalistic 1D CA rules.  The former, 

however, are of inferior performance (total weight) than the latter. 

The design experiments have also shown that good design concepts of the entire 

structural systems emerge when uniform bracing patterns composed of either V bracings 

or K bracings are combined with uniform configurations of beams.  Also, the uniform 

configuration of beams composed of either pinned beams or fixed beams produce 

comparable results. 

On the other hand, no clear patterns in terms of the best configurations of supports 

were observed in the conducted experiments. 

 

ts was identified.  Support configurations shown in Table 57 include various 

combinations of fixed and pinned supports. 
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Table 57. Best designs of the entire steel structural systems in tall buildings produced by 
multiple totalistic 1D CA rules 
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6.6. Summary 

In this chapter, I conducted the first stage of Empirical Performance Validation of 

Emergent Engineering Design, as discussed in section 3.6.3.  By presenting and 

of this chapter, I revisited the research question 1 and the 

researc

ms based on elementary CAs.  First, I 

exhaus

tal displacement.  I also 

compar

discussing the results of the design experiments with various types of concept generation 

mechanisms based on cellular automata, I have attempted to build confidence in the 

usefulness of the generative representations component of EED.  I have also shown that 

generative representations based on one- and two-dimensional cellular automata can 

produce novel design concepts of steel structural systems in tall buildings.   

In the first section 

h hypothesis 1 and refined them in the context of the design problems considered 

in this dissertation.  I also defined the criteria which were used in this dissertation to 

determine whether a generated design concept is novel.  

In the second section of this chapter, I empirically investigated the simplest 

generative representations of wind bracing syste

tively searched the space of the design rules and applied them to the simplest 

configuration of the design embryo which was arbitrarily assumed.  Even these very 

simple experimental settings produced novel structural shaping patterns of good 

performance.  I compared the design concepts of wind bracing systems with the design 

concepts generated randomly and found that they perform better in terms of both the total 

weight of the steel structural system and its maximum horizon

ed the developed design concepts with the designs known from the structural 

 



370 

engineering literature.  I discovered that many traditionally known designs could be 

generated by the design rules based on elementary CA. 

Furthermore, I investigated the impact of various representation specific 

parameters on the quality of generated design concepts.  I found that the location of the 

design embryo (bottom vs. top of a steel structure) has on average no influence on the 

performance of produced design concepts. On the other hand, the use of nonperiodic 

bounda

were no longer 

restrict

ncorporate some domain knowledge in 

the gen

cepts.  The design experiments with symmetry constraint have shown that, on 

average, no performance gain is achieved (in terms of the total weight of the structural 

stem) when the symmetry constraint is imposed compared to the situation when no 

ry conditions may increase the total weight of steel structural systems by several 

percent when K bracings are used and has no impact on the quality of produced design 

concepts when X bracings are employed. 

Next, I slightly generalized these generative representations by allowing more 

general configurations of the design embryo.  Here, the design embryos 

ed to assume the simplest possible configuration but they were generated 

randomly.  The experimental results have shown that these more complex configurations 

of the design embryo produce better results and that both the space of the design embryos 

and the space of the design rules should be searched concurrently.  

Furthermore, I demonstrated how we can i

erative representation by imposing the symmetry constraint frequently used in 

structural design.  I showed how we can constrain both components of the generative 

representation, i.e. the design embryo and the design rule, so that it develops symmetric 

design con

sy
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symmetry constraint is used and the design concepts are developed from random design 

embryos. 

In the third s ore generalized 

representations based on 1D CAs.  Here, the number of wind bracing types was no longer 

restricted to 2.  In fact, in the design experim nts with 1D CAs, 7 types of wind bracings 

elements wer  empirically: 

standard 1D C n concepts of 

good performance were found.  Als atterns were 

discove

wn that the shape of the local 

neighb

l neighborhood was 

employ

the performance of generated design concepts have shown that there was no preferred 

ection of this chapter, I studied empirically even m

e

e used.  Two types of 1D CA rules were introduced and studied

A rules and totalistic 1D CA rules.  In both cases, novel desig

o, interesting structural shaping p

red in many cases. 

In the fourth section of this chapter, generative representations based on two-

dimensional CAs were investigated experimentally.  Also here, two types of 2D CA rules 

were studied: standard 2D CAs and totalistic 2D CAs.  Additional parameters that needed 

to be specified in this type of representation included the shape of the local neighborhood 

and the number of iterations of the design rule.   

The experiments with 2D CAs have sho

orhood has a significant influence on the performance of best design concepts only 

when the standard 2D CA rules are used.  Totalistic 2D CA rules generated design 

concepts of comparable performance no matter what shape of the loca

ed.  2D CA rules produced several interesting structural shaping patterns which 

could not be generated by 1D CA rules due to their limitations.  

The empirical studies on the impact of the number of iterations of 2D CA rules on 
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value of this parameter which produced the best design concepts.   On the contrary, for 

some shapes of the local neighborhood, large numbers of iterations of a 2D CA rule were 

preferred while for other shapes smaller values produced better results.   There were, 

however, significant differences in the dynamical properties of the design processes when 

small or large numbers of iterations of the design rules were tried.  The dynamics was 

also affected by the shape of the local neighborhood. 

Finally, in the fifth section of this chapter, I investigated design concept 

generators of the entire steel structural systems in tall buildings.  They consisted of 

multiple design embryos and multiple design rules based on 1D CAs which generated 

various subsystems of the steel structure.  As in the previous sections, two types of design 

rules were investigated: standard 1D CA rules and totalistic 1D CA rules. 

The experimental results confirmed my previous findings on the impact of type of 

1D CA rules on generated structural shaping patterns and on the performance of the 

produced design concepts.  Standard 1D CA rules developed more interesting patterns 

than totalistic 1D CA rules but at the same time showed inferior performance measured in 

terms of the total weight of the structural system. 

The design experiments have also shown that very good design concepts of the 

entire structural systems emerge when uniform bracing patterns composed of either V 

bracings or K bracings are combined with uniform configurations of beams (either pinned 

or fixed). 

 
 

 

 



 

7. EVOLUTIONARY OPTIMIZATION 
 
 
 
 

“I have seen something else under the sun: the race is not to 
the swift or battle to the strong, nor does food come to the 
wise or wealth to the brilliant or favor to the learned; but 
time and chance happens to them all.” 

 
(King Solomon, Ecclesiastes 9:11) 

periments reported in this chapter have been conducted using Emergent 

Designer.  The results presented here constitute the second stage of the Empirical 

Performance Validation process as discussed earlier in section 3.6.3. 

Figure 66 shows how this chapter is organized. First, in an introductory section 

7.1, I discuss the criteria of optimality of steel structural systems in tall buildings.  I also 

revisit the research question 3 and the research hypothesis 3, as in chapter 6, and refine 

In this chapter, I empirically investigate the evolutionary computation component 

of Emergent Engineering Design and its usefulness in optimizing steel structural systems 

in tall buildings.  I describe results of a large number of design experiments which were 

focused strictly on design optimization issues.  Due to emphasis on optimization, this 

chapter studies only parameterized representations of structural designs described earlier 

in section 4.2.  The combined approach, i.e. the generative representations evolved by 

evolutionary algorithms, is investigated in chapter 8. 

Ex

373 



374 

them in the context of the design problems considered in this dissertation.  I also provide 

an overview of types of experiments reported in this chapter. 
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Figure 66. Organization of chapter 7

In section 7.2, I describe results of design optimization experiments in which the 

topology of wind bracing systems was optimized using evolutionary algorithms.  The 

experiments reported in this section are divided in two groups: experiments in which only 

two types of wind bracings elements were used (subsection 7.2.1) and experiments with 

seven types of wind bracings elements (subsection 7.2.2).   
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The usefulness of the evolutionary computation component of EED in optimizing 

more complex engineering systems, i.e. the entire steel structural systems in tall 

buildings, is investigated in the remainder of this chapter.  Section 7.3 reports the results 

of single-objective optimization experiments in which the entire steel structural systems 

in tall buildings were optimized (minimized) with respect to the total weight.  The impact 

of the initialization method, i.e. random initialization vs. initialization with a set of 

designs known from the structural engineering literature, is investigated in subsections 

7.3.1 and 7.3.2, respectively. 

On the other hand, section 7.4 discusses multiobjective evolutionary optimization 

processes in which steel structural systems were optimized with respect to two objectives, 

i.e. the total weight of the steel structure and its maximum horizontal displacement.  This 

is particularly relevant for engineering design because many design problems have more 

e two 

obj i  combined into a single fitness 

functio

than one objective.  Usually, these objectives are conflicting.  In this section, a simple 

multiobjective evolutionary optimization method was employed in which th

ect ves were assigned arbitrarily defined weights and

n. 
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7.1. Optimal Design Concepts of Steel Structural Systems 

In chapter 6, I introduced two measures of performance of steel structural systems 

in tall buildings: the total weight of the steel structure and its maximum horizontal 

displacement.  The total weight of a steel structure provides a good estimate of the cost of 

a steel structural system while the maximum horizontal displacement estimates its 

stiffness.  Each of the two performance measures can be used as an objective with respect 

to which the produced design concepts are optimized (minimized).  However, the two 

ure 

increases its maximum horizontal displacement (and thus reduces its stiffness) and vice 

versa. 

The mutual interaction of the two objectives is particularly visible in steel 

structural systems with a large aspect ratio (see section 7.3.2).  In this case, excessive 

reduction of the weight of a steel structural system may yield horizontal displacements 

that exceed provisions of the design code.  Thus, the maximum horizontal displacement 

should be controlled when the total weight of the steel structural system is reduced as a 

result of the topology optimization. 

In the experiments reported in the following two sections of this chapter, design 

concepts of wind bracing systems and the entire steel structural systems in tall buildings 

were optimized with respect to the total weight of the steel structure only.  The maximum 

horizontal displacements were, however, monitored so that the design code provisions 

were satisfied.  Later, in section 7.4, both objectives were assigned arbitrarily de ned 

weights and multiobjective evolutionary optimization processes were investigated.  

objectives are usually conflicting.  The reduction of the weight of a steel struct

fi
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As I did in chapter 6, I can now refine the research question 3 and research 

hypothesis 3 in the specific context of design problems considered in this dissertation, i.e. 

conceptual design of steel structural systems in tall buildings. 

T

e

 

Research Question 3 (Refined): 

One of the major objectives of almost all engineering design processes is achieving 

optimality; what mechanisms should be used to efficiently optimize steel structural 

systems in ta

Research Hypothesis 3 (Refined): 

ll buildings? 

Evolutionary computation provides a framework for conducting engineering design 

processes and efficient optimization of steel structural systems in tall buildings with 

respect to given objective(s). 

 

his refined hypothesis is more precise and can be tested empirically.  The efficiency of 

volutionary optimization processes was determined by the following two criteria: 

• 

re compared to 

 literature and to 

hapter 6). 

performance of the designs concepts 

he performance of the design concepts at the end of evolutionary optimization 

processes was compared to the performance of initial design concepts from which 

the evolutionary optimization processes were started.  The comparisons involved 

Performance of the produced design concepts  

The design concepts optimized with evolutionary algorithms we

the state-of-the-art designs known from the structural engineering

the best designs produced by the generative representations (see c

• Improvements of the average best 

T
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the best design concepts found in these processes as well as average performance 

improvements over a number of evolutionary optimization runs. 

Design experiments with parameterized representations (see section 4.2) were 

conducted to test the research hypothesis 3.  Table 58 presents the layout of design 

experiments reported in this chapter.  All sections in this chapter are organized to follow 

this layout.   

Table 5  this chapter 8. Overview of evolutionary optimization experiments reported in

 Short-term Experiments Long-term Experiments 

Mutation rates 

Crossover rates 

Size of parent population 

Size of offspring population 

Generational model 

Se
ns

iti
vi

ty
 A

na
ly

is
 

 

s

Evolutionary algorithm 

Performance comparison of best design concepts produced in 
evolutionary optimization processes and best designs known from the 
structural engineering literature 

Performance comparison of best design concepts produced in 

generative representations (chapter 6) 
evolutionary optimization processes and best designs produced by 

Performance improvement of the best design concept at the end of an 
evolutionary optimization process compared to the best design from 
an initial population 

Pe
rf

m
a

ce
 A

al
ys

i
or

n
n

s 

Performance improvement of an average design concept at the end of 

from an initial population 
an evolutionary optimization process compared to an average design 
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The experiments were divided into two major groups depending on the 

termination criteria used in individual evolutionary optimization runs, namely short-term 

experiments (up to 1,000 fitness evaluations) and long-term experiments (up to 10,000 

fitness 

short-term experiments. 

They involved the following evolutionary computation parameters: mutation rates, 

crossover rates, sizes of parent and offspring populations, the type of the generational 

model, and the type of evolutionary algorithm. Optimal settings for the

were sought and, once found, later utilized in the long-term experim

performance analysis of evolutionary optimization processes was conducted for both the 

short-term and the long-term experiments.  It included four perform

presented in the bottom part of Table 58. 

As I did in the previous chapter, I categorized all experiments 

reported here using the parameters and their values shown in Table 59.  

Also, an icon, similar to the one shown on the right, is placed at the 

beginning of each section to indicate the values of the parameters used 

in the experiments reported in that section. 

 

evaluations).  This distinction is important from the structural design point of view 

because evaluations of generated design concepts are usually very expensive (more than 

99% of computational time).   

Extensive sensitivity analyses were conducted during the 

se parameters 

ents.  The 

ance criteria 
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Table 59. Parameters and their values describing the types of experiments reported in this 
chapter 

 

7.2. Optimization of Wind Bracing Systems 

In the experiments reported in this section, the evolutionary 

computation component of EED was employed to optimize the 

topology of wind bracing systems in tall buildings.  The fitness of the 

produced design concepts was determined by the total weight of the 

steel structural system (single-objective optimization) represented by these concepts.  It 

was calculated using the first-order structural analysis.   

Both short-term and long-term evolutionary optimization processes were 

ization processes, I refer to design 

processes in which up to 1,000 fitness evaluations were conducted.  The long-term design 

experiments involved significantly larger number of evaluations, even as m   

Evolutionary optimization processes were repeated several times for all com

parameter values and each time initialized with a different random seed value. 

As mentioned earlier, an extensive evolutionary parameter search (sensitivity 

analysis) was conducted during the short-term optimization processes.  The analysis 

involved the sizes of parent and offspring populations, the type of the generational model, 

conducted.  By short-term evolutionary optim

any as 10,000.

binations of 
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and rates of mutation and crossover operators.  The optimal combination of parameters’ 

values found in the short-term processes was subsequently used in the long-term 

experiments. 

The following subsections report the results of the evolutionary optimization 

experiments in which either only 2 types of wind bracing elements were used (as in 

section 6.2 in which elementary CA were studied) or all 7 types of wind bracings were 

employed (as in section 6.3 in which 1D CA were investigated).  

7.2.1. Optimization with Two Types of Wind Bracings 

The experiments reported in this subsection involved two types 

of wind bracing elements.  As in section 6.2, two groups of wind 

bracing elements were considered, each consisting of two types of 

wind bracings.  The group No. 1 consisted of simple X bracings and 

no bracings (empty cells) while the group No. 2 included K bracings and no bracings (see 

Figure 19).  The rem

problem considered in this subsection. 

As discussed earlier, the design experiments with 2 types of wind bracings were 

divided into two groups.  First, the short-term design processes were employed to 

conduct the sensitivity analysis involving various types of evolutionary computation 

parameters.  Next, the optimal values of these parameters were used in the long-term 

aining types of elements of steel structural systems in tall buildings, 

i.e. columns, beams, and supports, were kept the same during the entire evolutionary 

optimization processes.  Table 60 shows parameters and their values of the design 
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evoluti

Table 60. Problem parameters and their values used in the evolutionary optimization 

onary optimization processes.  The results of both groups of experiments are 

reported in the following two subsections. 

experiments with two types of wind bracing elements 

Problem Parameter Value(s) 
Problem type Design of a wind bracing system in a tall building

Number of stories 30 

Number of bays 5 

Bay w

Story height 14 feet (4.27 m) 

idth 20 feet (6.01 m) 

Distance between transverse systems 20 feet (6.01 m) 

Types of bracing elements None and Simple X, or None and K 

Types of beam elements Fixed-Fixed 

Types of column elements Fixed-Fixed 

Types of supports Fixed 
  

experim . 

Short-term Evolutionary Optimization 

In this group of experiments, the short-term evolutionary 

optimization processes involving two types of wind bracing elements 

were conducted.  Evolutionary computation parameters used in the 

ents reported in this subsection are presented in Table 61
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Table 61. Evolutionary computation parameters and their values used in the short-term 
optimization experiments with two types of wind bracing elements 

EC Parameter Value(s) 
Evolutionary algorithm Evolution Strategies (ES), Genetic Algorithm (GA)
Generational model Overlapping for ES(µ+λ), 

Nonoverlapping for ES(µ,λ) and GA 
Population sizes (parent, offspring) (1,5), (5,25), or (50,250) for ES(µ+λ) 

(5,25), or (50,50) for GA 

Crossover (type, rate) (uniform, 0), (uniform, 0.2), (uniform, 0.5) 

the first-order analysis) 

Constraint handling method Death penalty (infeasible designs assigned 0 
fitness) 

Termination criterion 1,000 fitness evaluations 
Number of runs 5 in each experiment 

(5,25) for ES(µ,λ) 
Selection (parent, survival) (uniform stochastic, truncation) for ES, 

(fitness proportional, uniform stochastic) for GA 
Mutation rate 0.025, 0.1, 0.3, or 0.5 

Fitness Total weight of the steel structure (determined by 

Initialization method Random 

  

Table 61 shows that two types of evolutionary algorithms were employed in the 

short-term experiments: evolution strategies (ES) and genetic algorithms (GA). 

Furthermore, two kinds of ES were applied, namely ES(µ+λ) and ES(µ,λ).  ES(µ+λ) uses 

the overlapping generational model in which the survival selection acts on a combined 

population of parents and offspring.  On the other hand, ES(µ,λ) employs the 

nonoverlapping generational model in which the survival selection considers only the 

population of offspring to choose the members of the population that will survive to the 

next generation (see section 2.1.1). 
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An extensive parameter search was conducted involving the following 

evolutionary parameters and their values: parent and offspring population sizes, the rate 

of mutation operator, and the rate of crossover operator.  For all combinations of parent 

and offspring population sizes shown in Table 61, an exhaustive search for optimal rates 

of mutation and crossover was conducted.  In each case, 12 combinations of mutation and 

crossover rates were considered, i.e. (mutation rate 0.025, crossover rate 0), (mutation 

rate 0.025, crossover rate 0.2), etc.  The design processes were repeated 5 times for each 

combination of parameter values using a different value of a random seed each time. 

The initial population of parents was generated randomly in every experiment 

reported in this section.  Each design concept was represented by a fixed-length genome.  

The genome consisted of 150 genes (30 stories ⋅ 5 bays) with binary values.  The genes 

represented binary attributes in which the value of 0 denoted no bracing (empty cell) and 

oup of 

esign experiment.   

The fitness of a design concept was determined by the total weight of the steel 

structu

the value of 1 encoded either simple X bracing or K bracing depending on the gr

wind bracing elements used in a specific d

ral system calculated using the first-order structural analysis.  Whenever an 

infeasible design concept was generated, it was assigned the fitness value of 0.  In other 

words, the death penalty method was used to handle infeasible solutions (see section 

2.1.4).  Finally, each experiment was conducted for 1,000 fitness evaluations.   

The following subsections describe the obtained results. 
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Optimal Rates of Mutation and Crossover Operators 

Initial experiments focused on finding the optimal rates of mutation and crossover 

operators understood here as the rates which produced the best progress of evolutionary 

optimization processes.  An extensive parameter search was conducted to determine the 

optimal rates.  It involved 12 combinations of mutation and crossover rates.   

The obtained results differed for various types of evolutionary algorithms.  

Typical results for ES are presented in Figure 67 which shows the average best-so-far 

fitness values and 95% confidence intervals (vertical lines) calculated using Johnson’s 

modified t test (Johnson 1978) obtained in a series of design experiments with ES(5+25).  

In these experiments, the rate of uniform crossover was equal to 0.2. 
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Figure 67. The influence of the mutation rate on the progress of the short-term 
evolutionary optimization processes when two types of wind bracing elements (no 
bracing and simple X bracing) were used 

A clear pattern can be identified in Figure 67 regarding the impact of the mutation 

rate on the fitness of produced design concepts: the lower the mutation rate the better 

fitness (i.e. lower because it is a minimization problem) of design concepts produced.  

This pattern was observed in all design experiments involving ES with various parent and 

offspring population sizes, and crossover rates, as it is illustrated graphically in Figure 68. 
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Figure 68. Average fitness values (and 95% confidence intervals) obtained after 1,000 
t and 

Figure 68 clearly shows that the best performance of ES(µ+λ) in the short-term 

evolutionary design processes was obtained when the mutation rate was the lowest and 

equal to 0.025.  The same pattern was observed in the design experiments with the 

second group of wind bracing elements, i.e. the group consisting of no bracings and K 

bracings.  Figure 69 shows a typical example of the impact of various mutation rates on 

the performance of the evolutionary optimization process.  It specifically shows the 

results of the experiments in which ES(5,25) was used and the crossover rate was equal to 

0.2. 

evaluations using ES with the overlapping generational model and various paren
offspring population sizes, and mutation and crossover rates 
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Figure 69. The influence of the mutation rate on the progress of the short-term 
evolutionary optimization processes when K bracings were used 

A search for the optimal rate of the crossover operator was conducted by 

analyzing the results of the design experiments in which various crossover rates were 

ed 

ents.  It shows the average best-so-far fitness values and 95% confidence 

intervals obtained in the design experiments with ES(5+25) and 3 different rates of 

crossov

used but the mutation rate was kept the same.  Figure 70 presents typical results obtain

in these experim

er, i.e. 0.0, 0.2, and 0.5.  The mutation rate was kept the same and equal to 0.025. 
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Figure 70. The influence of the crossover rate on the progress of the short-term 
evolutionary optimization processes when two types of wind bracing elements (no 
bracing and simple X bracing) were used 

Figure 70 shows that various crossover rates yielded only slight differences in the 

fitness of produced design concepts.  No clear pattern could be observed, as was the case

lts 

pecific crossover 

rates.  On the contrary, in some cases the best results were achieved with no crossover at 

all and

 

with the mutation operator.  These observations were further confirmed by the resu

presented in Figure 71.  It shows that there was no trend which favored s

 sometimes the best results were obtained when very high crossover rates are used, 

i.e. when the rate was equal to 0.5.  Figure 71 also shows that even if there were 
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differences among the fitness values obtained with various crossover rates, they were not 

significant (confidence intervals overlap in all cases).  These results were consistent for 

both groups of wind bracing elements used in the experiments. 

 

Figure 71. Average fitness values (and 95% confidence intervals) obtained after 1,000 
evaluations using ES with the overlapping generational model and various parent and 
offspring population sizes, and mutation and crossover rates (sorted with respect to the 
mutation rate) 

As I mentioned earlier, the results obtained using GAs were quite different to the 

ones produced by ES.  Figure 72 compares the results produced by the two algorithms.  

Here, the graphs produced by ES(5,25) (left), using this time the nonoverlapping 
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generational model, are compared to the graphs produced by GA(5,25) (center) and 

GA(50,50) (right).  GAs traditionally employ the nonoverlapping generational models.  

Hence, the nonoverlapping generational model was used in all experiments involving 

GA. 

 

Figure 72. Average fitness values (and 95% confidence intervals) obtained after 1,000 

parent and offspring population sizes, and mutation and crossover rates 

It is clear that ES with the nonoverlapping generational model exhibits the same 

pattern as the one produced by ES with the overlapping generation model shown earlier 

evaluations using ES and GA with the nonoverlapping generational model and various 
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in Figure 67.  On the other hand, the results produced by GAs suggest the opposite trend: 

higher mutation rates produce better results, particularly when low crossover rates are 

used.  In this case, however, the differences among the results produced by GAs with 

various rates of mutation are small.  Finally, as in the case of ES, GAs do not exhibit any 

clear pattern in terms of preferred crossover rates.  The graph showing these results was, 

howev

al crossover rates. 

Optima

offsprin

er, omitted. 

Concluding, ES seem to produce the best results when low rates of mutation 

operator are used, e.g. 0.025.  On the other hand, higher rates of mutation seem to be 

preferred by GAs but the differences in the obtained results are not as significant as in the 

case of ES.  Neither ES nor GAs exhibit any pattern in terms of optim

l Sizes of Parent and Offspring Populations 

The next group of experiments focused on determining the optimal sizes of 

populations of parents and offspring.  Three different combinations of sizes of parent and 

g populations were considered for ES and two combinations for GAs.   

Typical results obtained for ES are presented in Figure 73.  It shows the results of 

the evolutionary optimization experiments in which three combinations of the parent and 

offspring population sizes were used, including ES(1+5), ES(5+25), and ES(50+250).  

Mutation and crossover rates were kept the same in all experiments shown in Figure 73 

and equal to 0.025 and 0.2, respectively. 
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Figure 73. The influence of the sizes of parent and offspring populations on the progress 
of the short-term evolutionary optimization processes when ES with the overlapping 
generational model are used 

It is clear that ES using large population sizes, i.e. ES(50+250), produced inferior 

results compared to the other two ES with smaller population sizes.  On the other hand, it 

also produced the smallest variance.  The other two ES with smaller population sizes 

achieved almost the same optimization progress in terms of the average best-so-far fitness 

of the produced design concepts.  However, ES(1+5), i.e. the ‘greedy’ ES which 

preserves only the best individual to the next generation, exhibited much larger variance 

compared to ES(5+25) which preserves the top 5 individuals to the next generation.  
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Thus, in this case parallel search conducted by ES(5+25) reduces the variance of the 

obtained results without decreasing the performance of the algorithm.  On the other hand, 

when we increase the size of the populations too much, e.g. as in ES(50+250), the 

reduction of variance comes at a cost of a substantial decrease of the performance of the 

algorithm. 

The outcomes were again different for GAs.  In both cases, i.e. for GA(5,25) and 

GA(50,50), the performance of the algorithm was almost identical.  Figure 74 shows 

typical results of the design experiments involving GA(5,25) and GA(50,50). The 

specific results presented in this figure were produced by the two algorithms with the 

same mutation and crossover rates equal to 0.3 and 0.5, respectively. 

The two best-so-far curves are almost identical.  The only difference between the 

two curves is the reduction of variance for the algorithm with larger population sizes, i.e

Concluding, small population sizes seem to be preferred by ES in this problem 

domain.  However, too s

. 

for GA(50,50).  Similar behavior was also observed for ES. 

mall population sizes increase the variance of the obtained 

results.  Good results in terms of both performance and variance were produced when 

moderate sizes of population sizes were employed, e.g. 5 in the case of the parent 

population and 25 in the case of the offspring population.  The impact of the sizes of 

parent and offspring populations on the performance of GAs seems to be negligible and 

related only to the reduction of variance of the obtained results.  It didn’t influence the 

actual performance of the algorithm in this problem domain. 
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Figure 
of the short-term evolutionary optimization processes when GAs are used 

utation and 

crossover rates (see Table 61).  Figure 75 shows typical results obtained in these 

experiments.  Here, mutation and uniform crossover rates were equal to 0.025 and 0.2, 

respectively. 

74. The influence of the sizes of parents and offspring populations on the progress 

Optimal Generational Model 

The influence of the type of the generational model (overlapping vs. 

nonoverlapping) was tested in a series of design experiments involving two kinds of ES: 

ES(5+25) and ES(5,25).  The design experiments included a total of 24 design 

experiments (12 for each algorithm) utilizing all 12 combinations of m
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Figure 75. The influence of the type of the generational model on the progress of short-
term evolutionary optimization processes 

gure 75) but in other cases it 

results.  The differences between the two generational models were, 

howev

Figure 75 shows that there are no significant differences between ES(5,25) and 

ES(5+25).  This type of behavior was observed in all conducted experiments.  In several 

cases ES(5+25) slightly outperformed ES(5,25) (as in Fi

produced inferior 

er, small both in terms of variance and fitness of the generated design concepts.  

Generally, it can be concluded that ES with the overlapping and nonoverlapping 

generational model produce comparable results in this problem domain. 
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Optimal Evolutionary Algorithm 

As discussed earlier, short-term experiments with two types of wind bracing 

elemen

r were equal to 0.025 and 0.2, respectively. 

better results, on average, produced by ES.  The performance improvement (see Table 

58) between an average design concept produced after 1,000 fitness evaluations and an 

ts involved two types of evolutionary algorithms: ES and GAs.  Sensitivity 

analyses were conducted for various parameters in the case of both algorithms. 

Figure 76 shows a comparison of the behavior of the two algorithms optimizing a 

wind bracing system in a tall building.  Two average best-so-far curves in the upper part 

of Figure 76 correspond to the best results obtained with GAs with two combinations of 

parents and offspring population sizes, i.e. GA(5,25) and GA(50,50).  In both cases the 

mutation rate was equal to 0.3 and crossover rate was equal to 0.5.  The results produced 

by GAs are compared to the average best-so-far performance produced by ES with the 

overlapping (ES(5+25)) and nonoverlapping (ES(5,25)) generational model.  In this case, 

the rates of mutation and crossove

Figure 76 clearly shows that ES outperformed GAs in this problem domain.  The 

average fitness value produced by GA(5,25) after 1,000 evaluations was equal to 569,056 

lbs. compared to 542,029 lbs. achieved by ES(5+25).  This corresponds to almost 5% 

average initial parent was equal to 19,434 lbs., or 3.3%, for GA(5,25).  On the other hand, 

for ES(5+25) these values were equal to 46,461 lbs. and 7.9%, respectively. 
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Figure 76. Comparison of the performance of GAs and ES in the optimization of a wind 

t-term evolutionary optimization 

processes with 2 types of wind bracing elements are presented separately for each group 

of wind bracing elements.  First, results of the experiments are reported in which the 

group No.1 was used, i.e. no bracings and simple X bracings.  Subsequently, I discuss the 

bracing system 

Concluding, the results of the design experiments revealed that ES performed 

better than GAs in this problem domain.  Hence, they were employed in the design 

experiments reported in the remainder of this dissertation. 

Optimal Designs 

Optimal design concepts produced by the shor
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best design concepts obtained with the second group of wind bracing elements, i.e. no 

bracings and K bracings. 

Short-term experiments with the group No.1 produced design concepts which 

outperformed not only the best design concepts produced by elementary CA rules (see 

Table 18 and Table 31) but also the design concepts known from the structural 

engineering literature (see Table 10).  Table 62 shows 6 best design concepts of wind 

bracings systems consisting of simple X bracings and produced in the short-term 

experiments.  The fitness of the best design found in short-term experiments was equal to 

531,790 lbs. and was better by more than 18,500 lbs., or 3.5 percent, than the best design 

generated by elementary CA rules (see Table 31).  It also outperformed the design 

concepts known from the structural engineering literature and shown in Table 10 by more

than 15,500 lbs., or 2.8 percent.   

restrict the maximum horizontal displacement to 

 

All design concepts shown in Table 62 satisfy provisions of the design codes 

regarding the maximum allowed horizontal displacement.  Most rigorous provisions 

1
600

In these experiments, 30 story buildings were considered and the story height was equal 

to 14 feet.  Thus, the maximum allowed horizontal displacement was equal to 8.4 inches.  

All design concepts presented in Table 62 have the maximum horizontal displacements

 of the height of the tall building.  

 

smaller than this value and thus, satisfy the provisions of the design codes. 
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Table 62. Best design concepts of wind bracing systems produced in the short-term 
evolutionary optimization experiments with two types of bracings (no bracings and 
simple X bracings) 

 

Structu

e 63 identifies several 

emerge

ral Shaping Patterns 

Table 63 shows another interesting phenomenon.  Several design concepts shown 

in the table exhibit an emergent pattern of crossed macro bracings in the lower and/or 

middle part of the structural system.  This pattern is similar to the one known from the 

structural engineering literature (see Design 5 in Table 10).  Tabl

nt patterns of crossed macro bracings shared by the best design concepts.  They 

occur in 5 out of 6 design concepts shown in this table. 
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Table 63. Emergent patterns of crossed macro bracings in the best design concepts found 
in the short-term experiments 

 

The experimental results obtained with the group No.2 were quite different.  The 

best design concepts produced by evolutionary optimization processes were worse than 

the ones generated by elementary CA rules.  Table 64 shows the best design concepts 

found i

 is also difficult to 

identify any emergent pattern shared by several design concepts shown in Table 64.   

n the short-term experiments.  The fitness of the best design was equal to 489,876 

lbs. and was about 40,000 lbs., or 9 percent, worse than the best design found in the 

experiments with elementary CAs (see Table 16 and Table 33).  It
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Table 64. Best design concepts of wind bracing systems produced in the short-term 
evolutionary optimization experiments with two types of bracings (no bracings and K 
bracings) 

 

When we compare the best design concepts consisting of simple X bracings with 

the ones composed of K bracings, we observe that the latter produce design concepts of a 

significantly reduced total weight.  On the other hand, they also exhibit larger horizontal 

displacements than the design concepts consisting of simple X bracings.  These results 

are consistent with the previous findings reported in section 6.2.1. 

In the next subsection, I will investigate the impact of the length of evolutionary 

optimization processes on the performance of the produced design concepts.  

Specifically, I will be interested in determining whether evolutionary optimization 

processes can find better design concepts of wind bracing systems composed of simple X 

bracings and what performance gain, if any, they can achieve.  I will also try to determine 
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whether longer evolutionary optimization processes can produce better design concepts 

of wind bracings systems consisting of K bracings than the ones produced by elementary 

CAs.  

Long-term Evolutionary Optimization 

In this group of experiments, long-term evolutionary 

optimization processes involving two types of wind bracing elements 

were conducted.  As before, two groups of wind bracing elements were 

considered.  The length of the long-term evolutionary optimization 

processes was significantly larger than the short-term processes and involved 10,000 

fitness evaluations. 

Extensive sensitivity analyses conducted during the short-term optimization 

processes were aimed to identify the best combination of evolutionary computation 

he 

previous subsection.  Based on that, the best combination of the evolutionary 

compu

ents. 

parameters for this problem domain.  The results of these analyses were reported in t

tation of parameters and their values was selected.  It is presented in Table 65. 

The same experimental parameters were used for both groups of wind bracing 

elements.  The results of the long-term evolutionary optimization experiments are 

discussed below separately for each group of wind bracing elem
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Table 65. Evolutionary computation parameters and their values used in the long-ter
evolutionary optimization with two types of wind bracing elements 

m 

EC Parameter Value(s) 
Evolutionary algorithm Evolution Strategies 
Population sizes (parent, offspring) (5,25) 
Generational model Overlapping (µ+λ) 
Selection (parent, survival) (uniform stochastic, truncation) 
Mutation rate 0.025 
Crossover (type, rate) (uniform, 0.2) 
Fitness Total weight of the steel structure (determined by 

the first-order analysis) 
Initialization method Random 
Constraint handling method Death penalty (infeasible designs assigned 0 

fitness) 
Termination criterion 10,000 fitness evaluations 
Number of runs 5 in each experiment 

  

Performance Improvement 

rmance improvement when evolutionary optimization 

process

Figure 77 shows the progress of the long-term evolutionary optimization process 

for the first group of wind bracing elements.  It also compares the average best-so-far 

performance of the long-term optimization process to the average best-so-far fitness 

obtained after 1,000 evaluations (the short-term process).  Figure 77 clearly shows that 

there is a significant perfo

es are conducted for a larger number of fitness evaluations.  However, sufficient 

computational resources must be available because the long-term processes take, in this 

case, 10 times longer than the short-term optimization processes2. 

                                                 
 Average computation time for the

evaluations was equal to 25 days on
2  long-term experiments with 5 independent runs and 10,000 fitness 

 computers with Pentium4 2.0GHz processors and 512MB RAM. 
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Figure 77. Average performance of the long-term evolutionary optimization processes 
with 2 types of wind bracing elements (no bracings and simple X bracings) 

The average performance improvement of the long-term processes with respect to 

the short-term processes was equal to about 15,500 lbs., or 3 percent.  The improvement 

between the average fitness after 10,000 fitness evaluations and the average fitness of 

initial parents was equal to almost 62,000 lbs., or 10.5 percent. 

Optimal Designs 

nts 

with the group No.1.  They were produced in two independent runs (designs 1-4 in one 

run and designs 5-6 in the other run). 

Table 66 shows 6 best design concepts produced in the long-term experime
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Table 66. Best design concepts of wind bracing systems produced in the long-term 
evolutionary optimization experiments with two types of bracings (no bracings and 
simple X bracings) 

 

The fitness of the best design concept was equal to 520,349 lbs. and was more 

than 11,000 lbs., or 2 percent, better than the fitness of the best design produced in the 

short-term experiments (see Table 62).  In fact, all 6 best design concepts shown in Table 

66 had better fitness than the best design concept produced in the short-term experiments.   

Structural Shaping Patterns 

Table 62 shows another interesting phenomenon, namely the emergence of two 

distinc

which is similar to the pattern produced by rule 105 (see Table 35), emerges in the central 

part of the structural system. 

t patterns in different parts of the structural system.  The previously identified 

crossed macro bracing pattern emerges in the lower part of the structure.  A new pattern, 
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Performance Improvement 

Figure 78 shows the progress of the long-term evolutionary optimization in the 

with the second group of wind bracing elements.  Here, as before, the long-

term p

experiments 

rocesses produced better design concepts than the short-term processes.  The 

average performance improvement between the long-term process and the short-term 

process was equal to 8,500 lbs., or 1.7 percent.  It is only about half of the improvement 

which was achieved in the case of the first group of wind bracing elements.   

 

Figure 78. Average performance of the long-term evolutionary optimization processes 
with 2 types of wind bracing elements (no bracings and K bracings) 
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Optimal Designs 

Figure 78 also shows that the long-term evolutionary optimization processes were 

not able to produce as good designs as the ones produced by elementary CAs.  In fact, 

they were substantially inferior to the best design concept shown in Table 16.  The best 

designs

Table 67. Best design concepts of wind bracing systems produced in the long-term 

bracings) 

 produced in the long-term experiments are presented in Table 67. 

evolutionary optimization experiments with two types of bracings (no bracings and K 

 

The fitness of the best design concept was equal to 482,276 lbs.  It was more than 

32,000 lbs. worse than the best design concept developed by an elementary CA.  It is also 
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difficult to identify any patterns which are common to several design concepts shown in 

Table 67. 

Summary 

In this section, I described the results of the experiments in which systems of wind 

bracings in tall buildings were optimized using evolutionary algorithms.  In order to make 

fair comparisons of the results produced by evolutionary optimization processes and the 

ones produced by elementary CAs (see section 6.2), the number of types of wind bracing 

elements considered during the optimization processes was restricted to 2 in each 

 of 

y investigated in the evolutionary optimization 

experiments.  

 the sizes of parent and 

experiment.  As in section 6.2, two groups of wind bracing elements, each consisting

two types of wind bracings, were separatel

Furthermore, I also investigated the influence of several evolutionary computation 

parameters on the performance of the optimization processes, including the rates of 

mutation and crossover operators, sizes of parent and offspring populations, the type of 

the generational model (overlapping vs. nonoverlapping), and the type of the 

evolutionary algorithm (ES vs. GA).  An extensive sensitivity analysis was conducted 

during the short-term processes to identify the optimal values of these parameters.  They 

were later applied in the long-term evolutionary optimization processes. 

The sensitivity analysis showed that the rate of mutation operator had a strong 

impact on the performance of the optimization processes when ES were employed.  The 

lowest rate of the mutation operator, equal to 0.025, produced the best results.  On the 

other hand, the impact of the crossover rate was negligible.  Also,
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offspring populations significantly affected the performance of ES but had limited impact 

on the performance of GAs in this problem domain. Generally, ES with small sizes of 

parent of offspring populations significantly outperformed the ones with large 

populations. 

The impact of the type of the generational model was studied in the context of two 

kinds of ES: ES(5+25) (overlapping) and ES(5,25) (nonoverlapping).  The results of 

these experiments revealed that both algorithms produce comparable results.  Finally, the 

performance of two evolutionary algorithms was compared, namely ES and GAs.  The 

blem 

Optimal design concepts of wind bracing systems produced in the short-term 

experiments were also presented and discussed.  The average performance improvement 

(difference in average performance of the design concepts at the end of evolutionary 

optimization processes and of the initial parents) achieved in the short-term optimization 

processes was equal to 46,461 lbs., or 7.9 percent, in the case of the first group of wind 

ith the group No.2 (K 

bracing Later, in the final 

ased in the long-

mple X bracings, 

d in Figure 79.  

experimental results showed that ES outperformed GAs by a large margin in this pro

domain. 

bracing elements (simple X bracings).  The results produced w

s) were slightly worse and equal to 26,633 lbs., or 5.1 percent.  

subsection, I reported that the average performance improvement incre

term processes and exceeded 61,000 lbs., or 10 percent, in the case of si

and 35,000 lbs., or 6 percent, for K bracings.  These results are illustrate
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Figure 79. Comparison of the average performance improvements produced in the 
evolutionary optimization of wind bracing systems with 2 types of bracing elements in 
the short-term and long-term experiments 

During the performance analysis phase, I also compared the best design concepts 

produced in the evolutionary optimization processes with the ones generated using 

generative representations based on elementary CAs (see section 6.2).  The obtained 

results differed for each group of wind bracing elements.  Evolutionary optimization 

processes produced better results than generative representations for simple X bracings.  

However, the opposite results were achieved for K bracings.  Here, the best design 

concept generated by elementary CAs significantly outperformed (by more than 8 

percent) the best design concept found in the evolutionary optimization experiments.  As 

reported in the final subsection, even the long-term processes did not produce better 

design concepts composed of K bracings than the ones generated by elementary CA 

rules.  These comparisons are presented graphically in Figure 80. 

 



412 

 

 

Figure 80. Comparison of the performance improvements between the best designs 
produced in the evolutionary optimization experiments and the best designs generated by 
elementary CAs (negative values correspond to situations in which elementary CAs 
produced better design concepts than evolutionary optimization processes) 

In the next section, I will empirically test whether better design concepts of wind 

bracing

ere used (see Figure 19) in 

  As was the case with the 

experim

 systems can be produced when the entire selection of 7 types of wind bracing 

elements is used during the optimization process. 

7.2.2. Optimization with Seven Types of Wind Bracings 

In this section, I describe results of the design experiments in 

which 7 types of wind bracing elements w

the evolutionary optimization processes.

ents reported in the previous section, a sensitivity analysis was 
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conducted first during the short-term processes in order to determine the most suitable 

combination of evolutionary computation parameters.  Once this combination of 

parameters has been found, it was used in the long-term optimization experiments. 

Short-term Evolutionary Optimization 

Table 68 shows the evolutionary computation parameters a used in the short-term 

experiments.  Only one type of evolutionary algorithm was used in the design 

experiments with 7 types of wind bracing elements.  Experimental results reported in the 

previous section indicated that GAs produce inferior results to ES in this problem 

domain. Thus, ES were selected as the only evolutionary algorithm which conducted 

evolutionary optimization processes.   Two kinds of ES were used: ES(µ+λ) and ES(µ,λ). 

The results reported in the previous section have shown that large population sizes 

produce inferior results in this problem domain.  Hence, only small population sizes were 

o 

combinations of parent and offspring population sizes, i.e. (1,5) and (5,25), were 

investi

used in the design experiments with 7 types of wind bracing elements.  Tw

gated for ES(µ+λ) and one combination, i.e. (5,25), for ES(µ,λ).  

Six combinations of mutation and crossover rates were studied experimentally in 

the short-term experiments.  High mutation and crossover rates, i.e. mutation and 

crossover rates equal to 0.5, were excluded from the set of rates investigated in this 

section because they previously produced inferior results. 
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Table 68. Evolutionary computation parameters and their values used in the short-term 
optimization experiments with 7 types of wind bracing elements 

EC Parameter Value(s) 
Evolutionary algorithm Evolution Strategies (ES) 
Generational model Overlapping for ES(µ+λ), 

Nonoverlapping for ES(µ,λ) 
Population sizes (parent, offspring) (1,5), or (5,25) for ES(µ+λ) 

Selection (parent, survival) (uniform stochastic, truncation) 
Mutation rate 0.025, 0.1, or 0.3 

Fitness 

(5,25) for ES(µ,λ) 

Crossover (type, rate) (uniform, 0), (uniform, 0.2) 
Total weight of the steel structure (determined by 
the first-order analysis) 

Initialization method Random 
Constraint handling method Death penalty (infeasible designs assigned 0 

fitness) 
Termination criterion 1,000 fitness evaluations 
Number of runs 5 in each experiment 

  

The same fitness measure was used, i.e. the total weight of the steel structural 

system calculated using the first-order structural analysis.  As before, infeasible designs 

were assigned the fitness value of 0.  Each design experiment involving a single 

combination of parameter values consisted of 5 independent runs.  Each run was 

terminated after 1,000 fitness evaluations. 

Optimal Mutation and Crossover Rates 

Figure 81 shows typical results regarding the impact of the mutation rate on the 

performance of the evolutionary algorithm.  In this case, experimental results obtained 

using ES(5,25) are presented with the crossover rate equal to 0.2.  
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Figure 81. The influence of the rate of mutation operator on the progress of the short-term 
evolutionary optimization processes when 7 types of wind bracing elements were used 

As before, the lowest mutation rates produced the best results.  Figure 81 clearly 

shows that the best optimization progress was achieved when the mutation rate was equal 

to 0.025 and it decreased when higher mutation rates were applied.  No such pattern was 

observed for crossover rates.  On the contrary, similar results were obtained with various 

crossover rates.  These findings are analogical to the ones reported in the previous section 

for evolutionary optimization processes with 2 types of wind bracing elements. 
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Performance Improvement 

Figure 82 compares the performance of the short-term evolutionary optimization 

with 7 types of wind bracing elements to the results achieved when 2 types of bracing 

elements were used.  Here, ES(5+25) was used with the mutation and crossover rates 

equal to 0.025 and 0.2, respectively.  It is clear that when 7 types of wind bracing 

elements are used, the fitness of produced design concepts is, on average, better than the 

design concepts consisting of simple X bracings and worse than the design concepts 

composed of K bracings.   

The average fitness obtained after 1,000 evaluations in the experiments with 7 

types of bracing elements was equal to 511,480 lbs. and was more than 30,500 lbs. better 

than the average fitness obtained in the experiments with simple X bracings.  At the same

time, it was more than 18,500 lbs. worse than the value obtained in the experiments with 

K brac

simple X bracings, and K bracings were equal to 

 

ings. 

The overall performance improvements in the short-term experiments shown in 

Figure 82 for 7 types of wind bracings, 

6.1%, 7.9%, and 5.1% percent, respectively. 
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Figure 82. Comparison of the performance of the evolutionary optimization when 2 types 
and 7 types of wind bracing elements were used 

Optimal Designs 

These findings were further confirmed by the results presented in Table 69.  It 

shows the best design concepts produced in the short-term experiments with 7 types of 

wind bracing elements.  The fitness of the best design concept found in the short-term 

experiments was equal to 504,162 lbs. and was more than 27,500 lbs better than the 

fitness of the best design concept produced in the experiments with simple X bracings 

(see Table 62).   On the other hand, it was more than 14,000 lbs. worse than the best 

design concept composed of K bracings (see Table 64). 
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Table 6
evolutionary optimization experiments with 7 types of bracing elements 

9. Best design concepts of wind bracing systems produced in the short-term 

 

All design concepts shown in Table 69 exhibit rather random-looking 

configurations of wind bracing elements.  It is hard to identify any structural shaping 

patterns shared by the design concepts. 

Long-term Evolutionary Optimization 

The sensitivity analysis conducted in the short-term experiments helped identify 

the best combination of evolutionary computation parameters and their values.  It 

revealed that the best combination included exactly the same parameters and values as 

the ones used in the long-term processes with 2 types of wind bracing elements.  Thus, 

the parameters shown in Table 65 were also used in the long-term experiments with 7 

types of wind bracing elements. 

 



419 

Performance Improvement 

Figure 83 shows the progress of the long-term evolutionary optimization in the 

experiments with 7 types of wind bracing elements and compares it to the average fitness 

obtained after 1,000 evaluations.  The average performance improvement between the 

long-term processes and short-term processes was equal to about 21,900 lbs., or 4.3 

percent, and it was the largest performance improvement in the long-term experiments 

reported so far.  The difference between the average fitness after 10,000 fitness 

evaluations and the average fitness of the initial parents was equal to more than 55,500 

lbs., or 10.2 percent.  

 

Figure 83. Average best-so-far performance of the long-term evolutionary optimization 
processes with 7 types of wind bracing elements 
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There are two major qualitative differences between the average best-so-far curve 

shown in Figure 83 and the curves obtained in the long-term experiments with 2 types of 

wind bracing elements (see Figure 77 and Figure 78).  First, Figure 83 shows that there is 

a sustained evolutionary optimization progress during the entire run when 7 types of wind 

bracing elements are used.  On the other hand, the best-so-far curves in the optimization 

experiments with 2 types of wind bracing elements level off much faster during the long-

term runs.  Secondly, the experimental results obtained with 7 types of wind bracing 

elements show much larger variance than the ones with 2 types of wind bracing elements.  

This suggests that there is much larger amount of exploration of the design space being 

performed even in the late stages of the optimization process.   

These differences can be easily identified in Figure 84 which compares the 3

long-term experiments.  It clearly shows that the average best-so-far curves for the 

involving 2 types of wind bracing elements level off after about 7,000 fitness 

evaluat

 

experiments 

ions.  It is not the case with the curve representing the results of the experiment 

with 7 types of wind bracing elements which shows steady optimization progress 

throughout the entire run. 
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Figure 84. Comparison of the evolutionary optimization progress in the long-tem 
experiments with 2 and 7 types of wind bracing elements 

Optimal Designs 

Table 70 presents 6 best designs produced in the long-term experiments with 7 

types of wind bracings.  The fitness of the best design was equal to 485,081 lbs. and was 

more than 19,000 lbs. better than the fitness of the best design produced in the short-term 

experiments.  It was only slightly worse (about 3,000 lbs.) than the fitness of the best 

design concept produced in the long-term experiments with K bracings. 
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Table 7
evolutionary optimization experiments with 7 types of bracing elements 

0. Best design concepts of wind bracing systems produced in the long-term 

 

Summary 

In this section, I reported the results of the design experiments in which the entire 

selection of 7 types of wind bracing elements was used to optimize the topology of a 

wind bracing system in a tall building.  As in the previous section, both short-term and 

long-term design experiments were performed. 

The sensitivity analysis conducted during the short-term processes revealed that 

 

experiments with 2 types of wind bracing elements (see section 7.2.1) also produced the 

best results in the experiments with 7 types of wind bracing elements. 

the same evolutionary computation parameters which worked well in the design
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The short-term experiments showed that the best design concepts produced by 

evolutionary optimization processes with 7 types of wind bracing elements are better (in 

terms of the total weight) than the ones consisting of simple X bracings but worse than 

the design concepts composed of K bracings. 

Figure 85 compares the average performance improvements achieved in the 

evolutionary optimization experiments with 7 and 2 types of wind bracings elements.  It 

shows that the improvement of 6.4 percent obtained in the short term-experiments with 7 

types of wind bracing elements locates them in the middle of a performance improvement 

range achieved for simple X bracings (7.9 percent) and K bracings (5.1 percent).  The 

performance significantly increases in the long-term experiments (the improvement 

exceeds 10 percent) and almost reaches the level obtained in the long-term experiments 

with simple X bracings (10.5 percent). 

 

evolutionary optimization of wind bracing systems with 7 and 2 types of b
Figure 85. Comparison of the average performance improvements produced in the 

racing 
elements in the short-term and long-term experiments 
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Figure 86 compares the performance improvements between the best design 

concepts produced in the evolutionary optimization processes (with 7 and 2 types of wind 

bracing

ceeded 12 and 8 percent in the short-term and the long-term experiments, 

respect

 elements) with the best ones generated using generative representations based on 

elementary and one-dimensional CAs (sections 6.2 and 6.3).  It shows that also in the 

case of the optimization with 7 types of bracing elements, evolutionary algorithms 

produced inferior design concepts as the ones generated by one-dimensional CAs.  The 

differences ex

ively. 

 

Figure 86. Comparison of the performance improvements between the best designs 
produced in the evolutionary optimization experiments and the best designs generated by 
elementary and one-dimensional CAs 

In the next section, I will experimentally investigate the evolutionary computation 

component of EED in optimizing the entire steel structural systems in tall buildings.  In 

 



425 

these experiments, not only the topology of the wind bracing system was optimized but 

also op

 

In this section, I will empirically investigate the usefulness of 

the evolutionary computation component of EED in optimizing more 

complex engineering systems, namely the entire steel structural 

ocesses.  First, in subsection 7.3.1, I will 

investigate evolutionary optimization processes which were initialized with randomly 

y 

evolutionary optimization processes in which background knowledge of the problem 

domain was used to initialize evolutionary algorithms.  Specifically, a set of designs 

known from the structural engineering literature was be used as the initial population of 

parents.  The results produced in both groups of experiments will be subsequently 

compared. 

7.3.1. Starting from Randomly Generated Designs 

Experiments reported in this subsection considered the 

optimization of the entire steel structural systems in tall buildings.  The 

evolutionary optimization processes were initialized, as before, with 

timal configurations of beams and supports were sought. 

7.3. Optimization of the Entire Steel Structural Systems 

systems in tall buildings.   

The experimental work reported in this section has been divided into two parts to 

investigate whether or not domain knowledge encoded in the initial parents improves the 

performance of the evolutionary optimization pr

generated parents.  On the other hand, in subsection 7.3.2, I will experimentally stud

 



426 

random

f both 

groups

Table 71. Problem parameters and their values used in the conducted experiments 

ly generated parents.  Thus, no domain knowledge was added in this section to 

start evolutionary optimization processes. 

In the conducted experiments, 7 types of wind bracing elements (see Figure 19), 

two types of beams (see Figure 20), and two types of supports (see Figure 22) were 

considered.  Columns, however, were kept the same during the entire evolutionary 

optimization processes.  Table 71 shows parameters of the design problem studied in this 

subsection.   

As in the previous sections, 30 story buildings with 5 bays were considered. Also, 

two groups of experiments were performed: short-term and long-term. Results o

 of experiments are reported in the following subsections. 

Problem Parameter Value(s) 
Problem type Design of the entire steel structural system in a 

tall building 

Number of stories 30 

Num

Story height 14 feet (4.27 m) 

No, Diagonal \, Diagonal /, K, V, Simple X, and X 

Types

Types

ber of bays 5 

Bay width 20 feet (6.01 m) 

Distance between transverse systems 20 feet (6.01 m) 

Types of bracing elements 

 of beam elements Pinned-Pinned, and Fixed-Fixed 

 of column elements Fixed-Fixed (only) 

Types of supports Pinned, and Fixed 
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Short-term Evolutionary Optimization 

In this group of experiments, the short-term evolutionary 

optimization of the entire steel structural systems in tall buildings was 

conducted.  Evolutionary computation parameters used in these 

experiments are presented in Table 72. 

Table 72 shows that ES with the overlapping generational model, i.e. ES(µ+λ), 

was employed in the experiments reported in this subsection. Furthermore, three 

combinations of parent and offspring population sizes were investigated.  For each 

combination of population sizes, an extensive parameter search was conducted involving 

9 combinations of mutation and crossover rates. 

Table 72. Evolutionary computation parameters and their values used in the short-term 
optimization experiments of the entire structural systems in tall buildings 

EC Parameter Value(s) 
Evolutionary algorithm Evolution Strategies (ES) 
Generational model Overlapping for ES(µ+λ) 
Population sizes (parent, offspring) (1,5), (5,25), or (50,250) 
Selection (parent, survival) (uniform stochastic, truncation) 
Mutation rate 0.025, 0.1, or 0.3 
Crossover (type, rate) (uniform, 0), (uniform, 0.2), or (uniform, 0.5) 
Fitness Total weight of the steel structure (determined by

the first-order analysis) 
 

Initialization method Random 
Constraint handling method Death penalty (infeasible designs assigned 0 

fitness) 
Termination criterion 1,000 fitness evaluations 
Number of runs 5 in each experiment 
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The design processes were repeated 5 times for each combination of parameter 

values using a different value of the random seed each time.  Each run was terminated 

after 1,000 fitness evaluations.  The initial population of parents was generated randomly 

in every experiment reported in this subsection.  Each design concept was represented as 

a fixed-length genome with 306 genes.  In this case, however, the genome was 

nonhom

using the first-order structural analysis.  

sible design concept was generated, it was assigned the fitness value of 

0 (deat

meters, i.e. the values which 

provide

ind bracing systems also 

worked best in optimizing the entire steel structural systems in tall buildings.  For 

ogeneous, i.e. it contained genes which encoded attributes that didn’t have the 

same number of possible values.  More specifically, 150 genes representing types of wind 

bracing elements had 7 possible values, 150 genes representing types of beams had 2 

possible values, and 6 genes representing types of supports had 2 possible values.  

As previously, the fitness of each design concept was determined by the total 

weight of the steel structural system calculated 

Whenever an infea

h penalty). 

The following subsections describe the obtained results. 

Optimal Evolutionary Computation Parameters 

As before, one of the major goals of the short-term experiments was to determine 

the optimal values of the evolutionary computation para

d the best optimization progress.  These values were subsequently used in the 

long-term optimization experiments. 

The results of the short-term experiments revealed that the same parameters which 

proved to perform well in the evolutionary optimization of w
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example, Figure 87 shows the impact of the parent and offspring population sizes on the 

fitness of produced design concepts.  The average best-so-far fitness curves shown in 

Figure 87 are very similar to the ones obtained in the short-term optimization of wind 

bracing systems (see Figure 73). 

 

Figure 87. Influence of the sizes of parents and offspring populations on the progress of 
the sho

, 

rt-term optimization of the entire steel structural systems in tall buildings 

Figure 87 shows that ES with smaller population sizes significantly outperformed 

the ones with large population sizes in the short-term experiments.  On the other hand
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there a

evolutionary optimization progress was achieved when the 

lowest mutation rates were used.  The experimental results showed similar relationships 

between the mutation rates and the average best-so-far fitness of the produced design 

concepts, as the ones presented earlier in Figure 67.  The graph showing these findings 

was, however, omitted.  Thus, the same parameter values as the ones included in Table 

65 were selected for the long-term experiments. 

Optimal Designs 

Table 73 shows the best design concepts of the entire steel structural systems in 

tall buildings produced in the short-term evolutionary optimization experiments.  The 

fitness of the best design concept was equal to 518,448 lbs. and was more than 58,500 

lbs., or 12 percent, worse than the best design produced by the generative representations 

based on multiple 1D CAs (see Table 57 in section 6.5.2). 

As in Table 69, the best design concepts of the entire steel structural systems 

presented in Table 73 exhibit random looking configurations of structural members.  In a 

 

re no significant differences between ES(5,25) and ES(1,5) in terms of the average 

best-so-far performance of the produced design concepts.  The latter, however, 

introduced much larger variance than the former.  These findings fully agree with the 

previous results obtained in the evolutionary optimization of wind bracing systems (see 

section 7.2). 

Similarly, the best 

few cases, however, in the middle part of the structural system, a macro bracing patterns 

formed by simple X bracings and X bracings begin to emerge. 
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Table 7
in the short-term evolutionary optimization experiments 

3. Best design concepts of the entire structural systems in tall buildings produced 

 

 

Long-term Evolutionary Optimization 

In this group of experiments, the long-term optimization of the 

entire steel structural systems in tall buildings was conducted using the 

evolutionary computation parameters presented in Table 65. 

Performance Improvement 

Figure 88 shows the average best-so-far performance of the long-term 

evolutionary optimization processes.  It also compares the obtained results to the average 

outcomes produced in the short-term optimization experiments (after 1,000 evaluations) 

and the fitness of the best design concept generated by multiple 1D CAs (see Table 57). 
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The average fitness of the design concepts produced in the long-term experiments 

equaled 502,879 lbs. and was more than 21,500 lbs., or 4.1 percent, better than the 

average fitness obtained in the short-term experiments.  The overall progress rate gained 

in the long-term experiments was, on average, equal to more than 58,000 lbs., or 10.3 

pared to about 36,000 lbs., or 6.4 percent, achieved in the short-term 

optimiz

percent, com

ation experiments. 

 

Figure 88. Average best-so-far fitness of the entire steel structural systems in tall 
buildings obtained in the long-term evolutionary optimization processes 
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On the other hand, the long-term evolutionary optimization processes did not 

produce design concepts of steel structural systems whose fitness was even close to the 

total weight found in the experiments with generative representations based on multiple 

1D CAs (see section 6.5). 

Optimal Designs 

The best design concepts of the entire steel structural systems produced in the 

long-term evolutionary optimization experiments are presented in Table 74.     

Table 74. Best design concepts of the entire structural systems in tall buildings produced 
in the long-term evolutionary optimization experiments 

 

The fitness of the best design concept was equal to 498,917 lbs. and was about 

39,000 lbs., or 8.5 percent, worse than the fitness of the best design concept generated by 
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multiple 1D CA rules (see Table 57).  As was the case with design concepts produced in 

the short-term experiments, it is difficult to identify any structural shaping patterns in 

Table 74.  All of them exhibit random looking configurations of wind bracings, beams, 

and supports. 

Summary 

In this section, I studied evolutionary optimization of the entire steel structural 

systems in tall buildings.  As in the previous section, the optimization processes reported 

here were initialized randomly.  Also, short-term and long-term design experiments were 

conducted.  The short-term processes showed that the same evolutionary computation 

ed to 

s. 

The average performance improvement achieved during the short-term 

experim

 compares the average performance 

improvements obtained in the experiments reported in this section with the ones reported 

earlier in the evolutionary optimization of wind bracing systems. 

parameters identified as optimal in the previous sections can be successfully us

optimize the entire steel structural systems in tall building

ents exceeded 6 percent while the corresponding improvement for the long-term 

experiments was greater than 10 percent.  They were almost identical to the improvement 

levels achieved during the optimization of the wind bracing systems with 7 types of wind 

bracing elements (see section 7.2.2).  Figure 89
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Fig  ort- 
and long-term evolutionary optimization of the entire steel structural systems and wind 
bra g

 improvement exceeded 10 percent in the long-term 

exp m utionary optimization processes were 

sub n

graphic  compares them to the performance improvements 

obt e systems and reported in the 

pre u

ure 89. Comparison of the average performance improvements produced in the sh

cin  systems 

Even though the performance

eri ents, the best designs produced in the evol

sta tially inferior to the best designs generated by multiple 1D CAs.  Figure 90 

ally illustrates these results and

ain d in the evolutionary optimization of wind bracing 

vio s sections. 
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Figure 90. Comparison of the performance improvements between the best designs 
produced in the evolutionary optimization experiments and the best designs generated by 
the generative representations base on cellular automata 

In the next section, I will empirically investigate whether, or not, the domain 

knowledge can improve the evolutionary optimization processes.  The structural 

engineering knowledge will be added in a form of a set of structural designs known from 

the literature, which will be used as initial parents. 

7.3.2. Starting from Known Designs 

In this section, the impact of applying domain knowledge on 

the performance of evolutionary optimization processes has been 

investigated.  The structural engineering knowledge was incorporated 

in the initialization method which utilized a set of designs known from 

the engineering literature as the initial population of parents.  The optimization processes 
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initializ

The individual designs within the group can be described as: 

• Design No.1: one-bay centrally located rigid frame 

• Design No.2: two one-bay rigid frames located in outer bays 

• Design No.3: three-bay rigid frame 

• Design No.4: one-bay centrally located rigid frame with one horizontal truss 

• Design No.5: one-bay centrally located rigid frame with one vertical truss 

• Design No.6: two one-bay rigid frames located in outer bays with two vertical 

trusses located in outer bays 

• Design No.7: three one-bay vertical trusses 

• Design No.8: one-bay centrally located rigid frame with one horizontal truss and 

ated vertical truss 

• ntrally located vertical truss 

• esign No.10: two one-bay vertical trusses located in outer bays 

• esign No.11: three-bay rigid frame with three vertical trusses 

• Design No.12: three-bay rigid frame with one horizontal truss 

ed with known designs were subsequently compared with the ones that were 

initialized randomly. 

The set of initial parents, shown in Table 75, included 12 designs that were 

considered as appropriate (called here ‘sub-optimal’) for the class of tall buildings 

considered in this section, e.g. designs No. 7 and 11, as well as designs that could be 

characterized as rather inappropriate (called here ‘poor’), e.g. designs No. 1, 2, 4, and 5.  

centrally loc

Design No.9: one-bay ce

D

D
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Table 75. Set of 12 designs known from the structural engineering literature and used as 
initial parents in the experiments 
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Table 76 shows the problem parameters and their values used in the experiments 

reported in this section.  As shown in Table 75, 36-story buildings with 3 bays were 

studied.  For this class of tall buildings, i.e. for buildings with a large value of the aspect 

ratio, the serviceability conditions play an important role in determining the feasibility of 

generated design concepts.  They constrained the maximum horizontal displacement of 

structural systems to be no more than 1
600

 of the height of a tall building.  These 

constraints were imposed on the sizing optimization algorithm, implemented in SODA, 

which adjusted the sizes of all structural members so that the serviceability conditions 

were satisfied.  If a produced design concept did not satisfy the serviceability conditions, 

it was regarded as infeasible and assigned 0 fitness value (death penalty).  As in the 

previous sections, the fitness of produced design concepts was determined by the total 

weight of the steel structural systems calculated using the first-order structural analysis.  

Also, 7 types of wind bracings elements, 2 types of beams, and 2 types of supports were 

considered. 

As before, the design experiments were divided into two groups: the short-term 

and the long-term optimization processes.  Their results are reported in the following 

subsections. 
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Table 76. Problem parameters and their values used in the conducted experiments 

Problem Parameter Value(s) 
Problem type Design of the entire steel structural system in a 

tall building 

Number of stories 36 

Bay width 20 feet (6.01 m) 

Number of bays 3 

Story heig  

Distance betw

Types of bracing elements No, Diagonal \, Diagonal /, K, V, Simple X, and X 

Types of m d Fixed-Fixed 

Types of u ) 

Types of supports Pinned, and Fixed 

ht 14 feet (4.27 m) 

een transverse systems 20 feet (6.01 m) 

bea  elements Pinned-Pinned, an

col mn elements Fixed-Fixed (only

 

sed.  A sensitivity analysis 

conduc

m initialization.  Table 77 shows the evolutionary computation parameters used in 

the experiments reported in this subsection. 

 

Short-Term Evolutionary Optimization 

In this subsection, I investigate short-term evolutionary 

optimization processes in which, as before, a relatively low budget of 

1,000 fitness evaluations per run was u

ted during the short-term experiments included the following 

evolutionary computation parameters: mutation and crossover rates, and parent and 

offspring population sizes.  Also, two methods of initialization of evolutionary 

optimization processes were studied in order to compare the advantages of applying 

domain knowledge (initialization using a set of known designs) over traditionally used 

rando
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Table 77. Evolutionary computation parameters used in the short-term optimization 
experiments 

EC Parameter Value(s) 
Evolutionary algorithm Evolution Strategies 
Population sizes (parent, offspring) (3,15) or (12,60) 
Generational model Overlapping (µ+λ) 
Selection (parent, survival) (uniform stochastic, truncation) 
Mutation rate 0.025, 0.1, 0.3, or 0.5 
Crossover (type, rate) (uniform, 0), (uniform, 0.2), or (uniform, 0.5) 
Fitness Total weight of the steel structure (determined by 

the first-order analysis) 
Initialization method Known designs, or random 
Constraint handling method Death penalty (infeasible designs assigned 0 

fitness) 
Termination criterion 1,000 fitness evaluations 
Number of runs 15 in each experiment 

 

First, the short-term optimization processes were started with small pop

consisting of 3 designs.  Next, a larger popula

ulations 

tion of all 12 parents was used to optimize 

the steel structural systems in tall buildings.  An extensive parameter search of mutation 

and crossover rates was conducted for all 

population sizes to determine their optimal values. The results of these experimental 

 

combinations of parent and offspring 

studies were later compared and the optimal experimental setups were used in the long-

term experiments. 
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Small Population Sizes 

In this group of experiments, the set of 12 known designs 

shown 

optimizing population No.1.  

Specifically, the results of four experiments are presented in which 4 different rates of 

mutation were used.  The uniform crossover rate was kept the same and equal to 0.2.  The 

vertical lines represent 99.9% confidence intervals calculated using Johnson’s modified t 

test. 

in Table 75 was arbitrarily divided into four populations, each 

of three parents.  All populations were then independently evolved.  

The four populations consisted of the following designs: 

• Population No.1: designs No.1, 5, and 9 

• Population No.2: designs No.2, 6, and 10 

• Population No.3: designs No.3, 7, and 11 

• Population No.4: designs No.4, 8, and 12 

As discussed earlier, in this chapter parameterized representations of the entire 

steel structural systems were studied (see section 4.2).  For the problem parameters 

shown in Table 76, the genotypes consisted of 220 genes.  108 genes had seven values 

(attributes representing types of wind bracings), 108 genes had two values (attributes 

representing beams), and four genes had two values (attributes representing supports). 

Optimal Mutation and Crossover Rates 

Typical experimental results are presented in Figure 91 which shows the average 

best-so-far performance of evolutionary algorithms 
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Figure 91. The influence of the mutation rate on the progress of the evolutionary 
optimization of population No.1 

Figure 91 clearly shows that there exists a pattern regarding the influence of the 

mutatio

too disruptive at the end of the run and finally produced inferior results.  The 

best evolutionary optimization progress in the short-term experiments was obtained when 

n rate: The higher the mutation rate the faster the optimization progress in the 

initial stages of evolution (see the zoom in window on the left hand side in Figure 91).  

Even though the lowest mutation rates produced inferior results in the initial stages of the 

optimization process, they eventually outperformed higher mutation rates at the end of 

the run (see the zoom in window on the right in Figure 91).  High mutation rates turned 

out to be 
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the rate

and, the impact of the crossover operator was limited only to an 

increase, or reduction, of variance of the fitness of the produced design concepts.  It did 

not influence the average progress of the evolutionary optimization processes.  The 

results with smallest variance were obtained when the crossover rate equaled 0.2 whereas 

the largest variance occurred when the crossover operator was not applied at all 

(crossover rate 0).  The graph showing these findings was, however, omitted. 

Experimental results have shown that conclusions drawn for population No.1 

were also valid for populations No.2 and No.4.  However, the situation was different in 

the case of population No.3 which contained the sub-optimal designs No.7 and 11.  

Figure 92 shows the impact of the rate of mutation on the progress of evolutionary 

optimization of population No.3.  In this case, high mutation rates, i.e. 0.3 and 0.5, 

produced almost no optimization progress (less than 1 percent in the case of mutation rate 

equal to 0.5).  The best results were obtained when the lowest mutation rate was used, i.e. 

0.025.  As before, no significant impact of various crossover rates on the average 

 of mutation was equal to 0.1.  Thus, the most successful rate was higher than the 

optimal rate identified in the experiments reported in the previous sections.  

On the other h

performance of the evolutionary algorithm was observed. 
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Figure 92. The influence of the mutation rate on the progress of the evolutionary 
optimization of population No. 3 

Performance Improvement 

The average performance improvements obtained in the design experiments were 

highly dependent on the fitness of the initial parents.  The biggest improvement was 

achieved when evolutionary optimization processes were started with poor parents, i.e. 

when populations No.1 and No.2 were used.  The smallest optimization progress rates 

were produced by population No.3 which already contained sub-optimal designs No.7 

and 11.   
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Figure 93 compares the average best-so-far fitness curves obtained in the short-

term experiments with 4 populations.  Vertical lines in this figure represent 99.9% 

confidence intervals. 

 

Figure 93. Comparison of the average best-so-far fitness of the entire steel structural 
systems in tall buildings obtained in the short-term experiments with 4 populations 

Figure 93 shows than even though populations No.1 and No.2 achieved the 

biggest optimization progress during the short-term processes, they did not outperform 

design concepts generated by population No.3.  Optimization of population No.3 
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produc

ely and quantitatively similar to the ones shown below.  The fitness of the 

s. and was almost 315,000 lbs., or 25 percent, 

better t

Table 78. Best design concepts produced by population No.4 in the short-term 

ed significantly better end results compared to the other 3 populations.  In fact, the 

end results produced by populations No.1, No.2, and No.4 were similar in terms of the 

average fitness of the best design concepts. 

Optimal Designs 

The best design concepts generated by population No.4 are presented in Table 78.  

As mentioned above, the best design concepts produced by populations No.1 and No.2 

were qualitativ

best design concept was equal to 958,189 lb

han the fitness of the best initial parent (see design No.12 in Table 75). 

experiments 
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The best design concepts generated by population No.3 are shown in Table 79.  

They not only outperformed the best design concepts generated by other populations but 

also exhibited qualitatively different structural shaping patterns.  All design concepts in 

Table 79 show variations of the fully braced pattern composed of K bracings.  

Occasionally, single K bracings were replaced by other types of wind bracing elements 

but the overall pattern composed of K bracings could be easily identified.  Thus, all best 

concepts produced during the evolution of population No.3 were restricted to slight 

mutations of the sub-optimal initial parents (designs No.7 or No.11 in Table 75). 

Table 79. Best design concepts produced by population No.3 in the short-term 
experiments 
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The fitness of the best design concept generated by population No.3 was equal to 

933,24 itness of the best 

ore than 3 

se evolutionary 

s.  The average 

n 

.1 

l parents from population No.3.  On the other hand, the 

end res

5 lbs.  It was more than 80,000 lbs., or 8 percent, better than the f

initial parent (design No.7 in Table 75).  This performance improvement is m

times smaller than the one achieved by population No.4 but in this ca

optimization processes were initialized with already sub-optimal design

performance improvement of 8 percent for such fit designs constitutes quite a good 

achievement. 

Known Designs vs. Random Initializatio

The short-term evolutionary optimization processes started from known designs 

were also compared to the processes initialized randomly.  Figure 94 shows a typical 

average best-so-far curve obtained for randomly initialized populations and compares it 

to the corresponding curves (produced using exactly the same parameters) generated by 

populations No.3 and No.4.  It clearly shows that the fitness of randomly initialized 

parents is, on average, better than the initial parents from population No.4 (and also No

and No.2) but worse than the initia

ults obtained in the short-term experiments were only slightly better than the end 

results achieved by population No.4 (statistically insignificant when 95% confidence 

intervals are considered, see Figure 94).  The randomly initialized population did not 

produce design concepts comparable to the ones generated by population No.3. 

The performance improvement achieved by the randomly initialized population in 

the short-term experiments exceeded 100,000 lbs., or 9 percent.  The fitness of the best 

design concept produced by this population was equal to 967,642 lbs.  Thus, it was worse 
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than the best design concepts produced by both population No.4 (see Table 78) and 

population No.3 (see Table 79). 

 

Figure 94. Comparison of the average best-so-far fitness of the entire steel structural 
systems obtained in the short-term experiments with populations No.3 and No.4 and a 
population initialized randomly 

 

the parent population on the fitness of produced design concepts. 

 

In the following subsection, I will investigate the impact of increasing the size of
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Large Population Sizes 

ossover Rates 

A sensitivity analysis involving mutation and crossover rates revealed that the 

same mutation rates that worked well in the case of population No.3 also generated the 

 the entire set of 12 known designs.  

The best evolutionary optimization progress was obtained when the rate of mutation 

equaled 0.025.  As before, choice of crossover rates did not influence the fitness of the 

produced design concepts.  Graphs showing these results have been, however, omitted. 

Large vs. Small Population Sizes 

Figure 95 compares the average best-so-far curves obtained in the experiments 

with the large population initialized with known designs, the large population initialized 

randomly, and population No.3.  It shows that both small and large populations initialized 

with known design concepts significantly outperform the large population which was 

initialized randomly.  The differences in the optimization progress between population 

No.3 and the large population occur mainly in the initial stages of evolution.  The end 

results, however, are similar and the differences between average fitnesses are 

In the design experiments reported in this subsection, the entire 

set of 12 known designs was employed is a single large population of 

initial parents.  Also, in order to compare the impact of the initialization 

method on the fitness of produced design concepts, another group of 

design experiments was conducted in which exactly the same parameters were used but 

the initial population of parents was generated randomly. 

Optimal Mutation and Cr

best results for the large population initialized with
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statistically insignificant.  In fact, the average fitness of the best design concepts 

generated by the large population slightly outperformed the value produced by population 

No.3.  Similar relationships have been identified between small and large populations 

initialized randomly. 

 

Figure 95. Comparison of the average best-so-far performance obtained in the short-term 

population initialized randomly, and population No.3 
experiments with the large population initialized with known design concepts, the large 
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Optimal Designs 

The best design concepts produced during the evolutionary optimization of the 

ns are presented in Table 80.  As was the 

case w e Table 79), all 

y-braced pattern 

design concepts 

ation initialized 

large population initialized with known desig

ith the best design concepts generated by population No.3 (se

designs shown in Table 80 exhibit various mutations of the full

composed of K bracings.  They were qualitatively different to the 

produced during the evolutionary optimization of the large popul

randomly (see Table 81). 

Table 80. Best design concepts produced in the short-term design experiments by the 
large population initialized with 12 known designs 
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Table 81. Best design concepts produced in the short-term design experiments with a 
large population of randomly generated initial parents 

 

Perfor

zed with known design concepts.  In 

mance Improvement 

The performance improvements achieved in the short-term experiments with the 

population initialized with known designs and the population initialized randomly 

exceeded 8 percent and 9.5 percent, respectively.  The fitness of the best design concept 

produced by the former population was equal to 932,216 lbs. and was slightly better than 

the fitness of the best design concept produced by population No.3 (see Table 79).   

In the next subsection, I will describe results of the long-term evolutionary 

optimization experiments with populations initiali

 



455 

this gro

Next, I compare them with the results 

produced by evolutionary optimization processes with exactly the same 

parameters but initialized randomly. 

Table 82 shows the evolutionary computation parameters that were used in the 

experiments reported in this section.  The most successful rates of mutation and 

crossover, identified in the short-term experiments, were employed here in the long-term 

optimization processes. 

In the first group of experiments, all populations (both small and large) were 

evolved with the mutation rate equal to 0.1 (this rate was identified as optimal for 

populations No.1, No.2, No.4 and the populations initialized randomly).  In the second 

group of experiments, evolutionary optimization experiments were repeated for 

population No. 3 and the large population initialized with known designs, this time using 

the mutation rate of 0.025 (previously identified as the optimal rate for population No.3 

and the large population). 

up of experiments, the optimal evolutionary computation parameters, described 

above, were employed. 

Long-Term Evolutionary Optimization 

In this subsection, I describe results of the long-term design 

experiments involving both small and large populations initialized with 

known design concepts.  
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Table 8
optimization experiments of the entire steel structural systems in tall buildings 

2. Evolutionary computation parameters and their values used in the long-term 

EC Parameter Value(s) 
Evolutionary algorithm Evolution Strategies 
Population sizes (parent, offspring) (3,15) or (12,6
Generational model Overlapping (

0) 
µ+λ) 

Selec
Mutation rate 0.1 for all populations 

Initialization method Known designs, or random 
 

fitness) 
Term

tion (parent, survival) (uniform stochastic, truncation) 

0.025 for population No.3 and the large population
Crossover (type, rate) (uniform, 0.2) 
Fitness Total weight of the steel structure (determined by 

the first-order analysis) 

Constraint handling method Death penalty (infeasible designs assigned 0

ination criterion 10,000 fitness evaluations 
Number of runs 5 in each experiment 

 

over Rates 

and 0.2, respectively. 

 

Optimal Mutation and Cross

Figure 96 compares average fitness values obtained at the end of the short-term 

and long-term experiments for all populations investigated in this section.  Vertical lines 

in this figure represent 95% confidence intervals.  The average fitness values and 

confidence intervals corresponding to the short-term processes were taken from the 

experiments in which optimal crossover and mutation rates were employed for each 

population.  On the other hand, the results corresponding to the long-term processes come 

from experiments in which the rates of mutation and crossover were uniform across all 

populations and equal to 0.1 
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Figure 96 illustrates several interesting phenomena which occurred in this group 

of experiments.  First, all populations, for which the optimal values of mutation and 

crossover values were employed, produced significantly better results in the long-term 

experiments than in the short ones.  However, population No.3 and the large population 

initialized with known designs produced worse results in the long-term experiments than 

in the short-term processes. 

 

Figure 96. Comparison of the average best-so-far fitness obtained in short-term and long-
term experiments 
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For these two populations, the optimal rate of mutation was equal to 0.025.  Thus, 

by using inappropriate rates of genetic operators in evolutionary optimization 

experiments, inferior results might be obtained even when significantly longer 

evolutionary optimization processes are conducted. 

Finally, Figure 96 clearly shows dissimilarities between variances obtained using 

the two initialization methods.  The variance of the obtained results was substantially 

larger when populations had been initialized randomly.  However, as the rightmost part 

ows, it was significantly reduced in the long-term evolutionary 

optimization processes involving the randomly initialized population of large size. 

Figure 97 illustrates the impact of the rate of mutation on the performance of the 

evolutionary optimization of population No.3 and the large population.  It clearly shows 

that when optimal values of the mutation rate are used, i.e. 0.025, the produced results are 

significantly better than in the case when inappropriate rate is applied (here 0.1).   

Performance Improvement 

The average performance improvements in the long-term experiments were equal 

to 22,600 lbs. (2.3 percent) and 21,900 lbs. (2.3 percent) for population No.3 and the 

large population, respectively.  Figure 97 also shows that the large population produced 

better results than population No.3 for both mutation rates.  It outperformed population 

No.3, on average, by almost 7,000 lbs., or 0.7 percent, and at the same time produced 

smaller variance.  This is different from the results obtained in the evolutio ry 

optimization of wind bracing systems (see section 7.2) where smaller population sizes 

proved to be more efficient. 

of Figure 96 sh

na
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Optimal Designs 

The best design concepts produced in the long-term experiments are presented in 

Table 83. 5 out of 6 design concepts in this table were produced by the large population 

initialized with known design concepts while the remaining one was generated by 

population No.3.  The fitness of the best design concept was equal to 926,268 lbs. and 

was almost 90,000 lbs., or 8.8 percent, better than the fitness of the sub-optimal initial 

parent, i.e. design No.7 in Table 75. 

 

Figure 97. The impact of the mutation rate of the performance of the long-term 
evolutionary optimization processes for population No.3 and the large population 
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None of the populations initialized randomly produced design concepts of 

comparable performance.  The fitness of the best design concept produced by the large 

population initialized randomly was equal to 947,859 lbs. and was more than 21,500 lbs., 

or 2.3 percent, worse than the overall best design concept found in the long-term 

experiments (see Table 83). 

Table 83. Best design concepts of the entire steel structural systems produced in the long-
term experiments 
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Summary 

In this section, I investigated the impact of the domain knowledge on the 

performance of evolutionary optimization processes.  The structural engineering 

knowledge was applied in a form of a set of 12 known designs of the entire steel 

structural systems in tall buildings which were used as the initial parents.  As in the 

previous sections, short-term and long-term design experiments were conducted and the 

impact of selected evolutionary computation parameters was tested empirically in the 

sensitivity analysis phase. 

First, the short-term evolutionary optimization processes were investigated with 

tes 

initial parents.  When poor design concepts are used in the initial population of parents 

then h

also shown that the optimal rates of genetic 

operators should be carefully determined during the short-term processes.  Otherwise, 

when inappropriate rates are used the results produced by the long-term optimization 

processes may be inferior to the results obtai

both small and large population sizes.  The experiments have shown that the optimal ra

of mutation which produced the best optimization progress are related to the quality of 

igher mutation rates, i.e. 0.1, are preferred.  On the other hand, if the initial 

population contains a highly fit design concept then significantly lower mutation rates 

produce better results.  The results were consistent for both small and large population 

sizes.  The long-term experiments have 

ned in much shorter optimization processes. 

Evolutionary optimization processes started from poor design concepts achieved 

superior average performance improvements.  However, the overall best design concepts 

were produced by populations that contained the sub-optimal design concepts as initial 
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parents.  Also, evolutionary algorithms with larger population sizes proved to perform 

better in this problem domain.  These findings are illustrated in Figure 98 and Figure 99.  

Figure 98 shows a comparison of the average performance improvements produced in the 

short-term and long-term experiments by all populations considered in this section while 

Figure 99 compares the fitness of the best design concepts produced by these populations. 

 

Figure 98. Comparison of the average performance improvements achieved in the 
evolutionary optimization of the entire steel structural systems in the short-term and long-
term experiments 
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Figure 99. Comparison of the fitness of the best design concepts produced in the long-
term optimization experiments by all populations considered in this section (lower values 
correspond to better designs) 

In the next section, I will extend the fitness evaluation from single-objective 

models to multiobjective approaches.  I will achieve it by including the maximum 

horizontal displacement of the structural system as the second objective with respect to 

which the design concepts are optimized. 

7.4. Multiobjective Optimization of the Entire Steel Structural Systems 

So far, evolutionary optimization processes considered only one 

objective, namely the total weight of a structural system.  The second 

performance measure, i.e. the maximum horizontal displacement, was 

either only monitored (see sections 7.2 and 7.3.1) or treated as a 
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constraint for structural systems with high aspect ratios (see section 7.3.2).  In this 

section, I investigate more general evaluation models in which both performance 

measur eel structural 

systems are optimized.   

A simple multiobjective evolutionary algorithm based on aggregating functions 

(see section 2.1.5) was used in the experiments reported here.  Both objectives were 

combined into a single fitness function using a set of arbitrarily assigned weights which 

determined the relative importance of each of the two objectives.  By considering several 

combinations of the weights I have attempted to identify the changes of the optimal 

topologies of steel structural systems when the importance of each of the two objectives 

was modified.  I also tried to determine the approximate shape of the Pareto front in this 

two-objective performance space.  

The problem parameters and their values used in the experiments reported in this 

section were exactly the same as the ones used in section 7.3.2.  They are presented in 

Table 76.  As in section 7.3.2, two methods of initialization of multiobjective 

evolutionary optimization were considered: a random initialization and an initialization 

using a set of known designs.  In this section, only the long-term multiobjective 

evolutionary optimization experiments were conducted.  The values of evolutionary 

computation parameters, i.e. population sizes and mutation and crossover rates, were 

assumed based on the results of the short-term experiments reported in section 7.3.2. 

Table 84 shows the evolutionary computation parameters and their values used in 

the long-term multiobjective evolutionary optimization experiments. 

es are considered as objectives with respect to which the entire st
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Table 84. Evolutionary computation parameters and their values used in the 
multiobjective evolutionary optimization experiments 

EC Parameter Value(s) 
Evolutionary algorithm Evolution Strategies 
Population sizes (parent, offspring) (12,60) 
Generational model Overlapping (µ+λ) 
Selection (parent, survival) (uniform stochastic, truncation) 
Mutation rate 0.1 
Crossover (type, rate) (uniform, 0.2) 
Fitness Weighted average involving two objectives: 

the total weight of the structural system 
the maximum horizontal displacement of the 
structural system (‘sway’) 

Weighting coefficients 0.0, 0.2, 0.4, 0.6, 0.8, or 1.0 
Initialization method Known designs, or random 
Constraint handling method Death penalty (infeasible designs assigned 0 

fitness) 
Termination criterion 10,000 fitness evaluations 
Number of runs 5 in each experiment 

 

As discussed ea

 

rlier, the fitness of a design concept was calculated as a weighted 

average of the normalized total weight of a structural system and the related normalized 

maximu

in the multiobjective design experiments, including 0.0 W+1.0 D, 0.2 W+0.8 D, etc., 

where W denotes the total weight of the structural system and D its maximum horizontal 

displacement.  Each design concept was represented by a fixed-length genome consisting 

of 220 genes.  108 genes encoded attributes defining types of wind bracing elements.  

These genes had 7 possible values representing 7 types of wind bracing elements.  108 

m horizontal displacement.  6 combinations of weighting coefficients were used 

⋅ ⋅ ⋅ ⋅
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genes encoded attributes representing beams.  These genes had binary values.  Finally, 4 

genes encoded types of supports and also had binary values. 

The experimental results are presented in the following subsections. 

7.4.1. Impact of the Initialization Method 

Figure 100 shows two normalized average best-so-far fitness curves obtained in 

the multi-objective evolutionary optimization experiments with randomly initialized 

parents and known designs used as initial parents.  The vertical lines represent 95% 

confidence intervals calculated using the modified Johnson’s t test. In this case, the 

fitness of the design concepts was calculated using the following coefficients: 0.2 for the 

total weight and 0.8 for the maximum displacement. Figure 100 clearly shows that in this 

case the evolutionary processes initialized with known design concepts outperformed the 

ones initialized randomly.  However, evolutionary optimization processes initialized with 

known parents did not always produce superior results. 
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Figure 100. Comparison of the normalized average best-so-far fitness obtained in the 
multiobjective evolutionary optimization experiments with randomly initialized parents 
and known designs used as the initial parents (here the fitness was calculated using the 
formula: 0.2W+0.8D) 

ther 

Here, both multiobjective evolutionary design 

processes produced similar results.  In general, the following pattern was observed in the 

conducted experiments.  For low values of the weighting coefficient associated with the 

total weight of the steel structural system, the evolutionary optimization processes 

initialized with known design concepts significantly outperformed the ones initialized 

randomly.  However, when the value of this coefficient was increased (and the value of 

Figure 101 shows the normalized average best-so-far curves for ano

combination of weighting coefficients.  
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the coefficient associated with the maximum displacement was decreased) then both 

initialization methods produced similar results.  In some cases, random initialization 

slightly outperformed the initialization with known designs. 

 

Figure 101. Comparison of the normalized average best-so-far fitness obtained in the 
multiobjective evolutionary optimization experiments with randomly initialized parents 
and known designs used as the initial parents (here the fitness was calculated using the 
formula: 0.6W+0.4D) 

7.4.2. Approximate Shape of the Pareto Front 

 

experiments involving various combinations of weighting coefficients were analyzed 

The best design concepts of steel structural systems produced in all design
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with respect to the values of both objectives.  The results of this analysis are presented in 

Figure 102.   

 

Figure 102. Approximate shape of the Pareto front in the performance space spanned 
over of the total weight of the steel structural system and its maximum horizontal 
displacement 

It shows an approximate shape of the Pareto front spanned over the performance 

space form

maximum horizontal displacements of the structural systems ranged from 4 inches to 

ed by the total weight of the structural system and its maximum horizontal 

displacement.  It clearly shows that the total weight of the optimal structural designs 

varied from about 500,000 lbs. to more than 6,500,000 lbs.  At the same time, the 
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almost 22 inches.  Figure 102 also shows that there is a strong trade-off between the two 

objectives. 

7.4.3. Optimal Topologies of Steel Structural Systems 

The best design concepts shown in Figure 102 were also analyzed qualitatively for 

changes in their topologies occurring when the importance of each of the two objectives 

was modified.  Figure 103 shows the topologies of the structural systems associated with 

the approximate Pareto front which was discussed in the previous subsection. 

 

Figure 103. Topologies of the optimal structural systems associated with various regions 
of the approximate Pareto front 
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Figure 103 clearly shows that there are significant qualitative differences among 

the topologies of structural systems located in various parts of the Pareto front.  The 

leftmost design, which corresponds to the region of the Pareto front with the smallest 

horizon

 beams and 

column

we compare the design concepts shown in Figure 103 to the ones generated 

in the design experiments in which the total weight of the structural system was used as 

the only objective and the maximum horizontal displacement was imposed as a constraint 

(see Table 83), we can identify significant qualitative and quantitative differences.  The 

designs shown in Table 83 are almost 50% heavier than the rightmost designs shown in 

Figure 103.  At the same time they exhibit substantially smaller (also about 50%) 

horizontal displacements.   

The quantitative characteristics of the structural systems shown in Table 83, i.e. 

their total weights and the maximum horizontal displacements, show that these designs 

are located close to the central region of the Pareto front.  If we use this information we 

tal displacements and the largest total weight, exhibits a dramatically different 

structural shaping pattern than the second design shown to the left.  In the former case, a 

fairly uniform pattern of K bracings can be identified with occasional occurrences of X 

bracings.  In the latter case, wind bracing elements appear only occasionally and the 

stiffness of the structural system is provided by the increased cross-sections of

s.   The three rightmost designs in Figure 103 are again different to the previously 

described designs.  Here, combinations of relatively large numbers of X and K bracings 

can be identified.  The topologies of the three rightmost design concepts are much more 

similar than the leftmost designs. 

When 
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can more accurately approximate the shape of the Pareto front in this two-objective 

performance space, as shown in Figure 104. 

 

Figure 104. More accurate approximation of the shape of the Pareto front in the 

maximum horizontal displacement 

7.4.4. Summary 

In this section, I studied multiobjective evolutionary optimization of the entire 

steel structural systems in tall buildings.  A simple multiobjective evolutionary algorithm 

based on aggregating functions was used in these experiments.  In the experiments, two 

objectives were considered: the total weight of a structural system and its maximum 

performance space spanned over of the total weight of the steel structural system and its 
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horizontal displacement.  Both objectives were combined into a single fitness function 

using a set of arbitrarily assigned weights which determined the relative importance of 

each of the two objectives.   

I identified the approximate shape of the Pareto front in this two-objective 

performance space by considering several combinations of weighting coefficients.  The 

conduc

ing to various 

regions of the Pareto front exhibit quite different structural shaping patterns.  

The conducted experiments provided new insights on the ranges of variability of 

the two objectives in which the optimal design concepts of the entire steel structural 

systems can be found. They also provided a broader understanding of this complex 

structural design problem by identifying the optimal topologies for various regions of the 

Pareto front. 

7.5. Summary 

In this chapter, I described the results of the second stage of the Empirical 

Performance Validation process (see section 3.6.3) in which I investigated the 

evolutionary computation component of Emergent Engineering Design.  I have attempted 

to build confidence in the usefulness of this component of EED by presenting and 

discussing the results of a large number of evolutionary optimization experiments. 

In the first section of this chapter, I discussed criteria of optimality of steel 

structural systems in tall buildings and revisited the research question 3 and the research 

ted analysis has shown that there is a strong trade-off between the two objectives.  

I also found that the topologies of the steel structural systems correspond
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hypothesis 3.  I also refined them in the context of design problems considered in this 

dissertation. 

In the se n experiments 

in which wind bracing systems in tall buildings were optimized.  I investigated the impact 

of various evolutionary computation parame rs on the performance of the evolutionary 

algorithm in meters. I also 

ore than 10 percent) in the long-term optimization experiments.  In some cases, 

however, they produced substantially inferior designs to the ones generated by the 

generative representations (see the results reported in chapter 6). 

In the third section of this chapter, I investigated evolutionary optimization of a 

more complex design problem, namely conceptual design of the entire steel structural 

systems in tall buildings.  I empirically showed that evolutionary algorithms performed 

well in this complex problem domain and achieved significant performance 

improvements which again exceeded 10 percent.  I also described how one can add 

domain knowledge to the evolutionary optimization processes in the form of a set of 

known design concepts used as the initial parents.  I demonstrated that adding this 

knowledge improves the performance of the evolutionary optimization processes. 

In the fourth section of this chapter, I extended the traditional single-objective 

evaluation models and investigated the multiobjective evolutionary optimization of the 

entire steel structural systems in tall buildings in which the design concepts were 

minimized with respect to both the total weight and the maximum horizontal 

cond section of this chapter, I described results of the desig

te

this problem domain and defined optimal values of these para

evolutionary algorireported that thms achieved significant performance improvements 

(m
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displacement.  I empirically showed the approximate shape of the Pareto front. It 

provided a ‘big picture’ of this two-objective performance space.  I also found that there 

were strong trade-offs between the two objectives.  Furthermore, I demonstrated how the 

optimal topologies of the steel structural systems change in various regions of the Pareto 

front. 

In the next chapter, I will empirically investigate integrated components of EED, 

i.e. the generative representations combined with evolutionary algorithms. 

 



 

8. MORPHOGENIC EVOLUTIONARY DESIGN 

In this chapter, I discuss results of the design experiments in which integrated 

components of Emergent Engineering Design, i.e. the generative representations 

component and the evolutionary computation component, were tested to effectively 

generate novel design concepts of steel structural systems in tall buildings and to 

e third stage of the 

Empiri

the considered design problems.  I also 

provide

 
 
 
 

“The most extensive computation known has been conducted 
over the last billion years on a planet-wide scale: it is the 
evolution of life.” 

 (David Rogers) 
 

efficiently optimize them.  The results presented here constitute th

cal Performance Validation process, as discussed earlier in section 3.6.3.  As 

before, the design experiments reported in this chapter have been conducted using 

Emergent Designer. 

Figure 105 shows the organization of this chapter.  First, in section 8.1, I revisit 

the fundamental research question and the fundamental research hypothesis of this 

dissertation and refine them in the context of 

 an overview of the morphogenic evolutionary design experiments reported in this 

chapter. 
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Figure 105. Organization of chapter 8 

Next, section 8.2 describes the results of the morphogenic evolutionary design of 

wind bracing systems in tall buildings.  The experiments reported in this section were 

divided into three groups:  

1. Experiments in which the generative representations of wind bracing 

systems based on elementary CAs were evolved using evolutionary 

algorithms (see subsection 8.2.1). 
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2. Experiments with one-dimensional CAs with 7 cell values representing 7 

types of wind bracings elements evolved by evolutionary algorithms (see 

8.1. Novel and Optimal Designs of Steel Structural Systems 

As stated earlier, in this chapter, I describe results of the third and last stage of the 

Empirical Performance Validation process in which I empirically test the usefulness of 

the integrated components of EED for producing novel design concepts of steel structural 

systems and for efficiently optimizing them.  By measuring the performance of the 

integrated components for the example problems, I will test the fundamental research 

hypothesis of this dissertation (see section 3.3). 

As I did in chapters 6 and 7, I will now refine the fundamental research hypothesis 

in the context of the design problems considered in this dissertation.  In order to do that, I 

will use the same criteria as in chapter 6 to determine novelty of generated design 

concepts and the same performance criteria as in chapter 7 to test their optimality.  I will 

subsection 8.2.2).  

3. Experiments in which generative representations based on two-

dimensional CAs were evolved (see subsection 8.2.3). 

Finally, the experimental results of the morphogenic evolutionary design of the 

entire steel structural systems in tall buildings are reported in section 8.3.  Here, the 

generative representations of all subsystems of the steel structural system in a tall 

building, i.e. the wind bracing subsystem, the beam subsystem, and the supports, were 

evolved by evolutionary algorithms.  The generative representations investigated in this 

section were based on multiple one-dimensional CAs. 
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also use the same performance measure as in chapters 6 and 7, i.e. the total weight of the 

structural system, as the objective with respect to which the design concepts will be 

optimized.   

Thus, I can refine the fundamental research question and the fundamental research 

is in the specific context of conceptual design of steel structural systems in tall 

buildings in the following way: 

m

t

s

hypothes

 

Fundamental Research Question (Refined): 

How can one construct an effective method for conceptual design of steel structural 

systems in tall buildings that would support development of novel designs and their 

efficient optimization? 

Fundamental Research Hypothesis (Refined): 

Emergent Engineering Design, a design method in which all major elements of 

engineering design (i.e. design representation and actual design process) are modeled 

as complex systems, can effectively produce novel design concepts exhibiting 

interesting structural shaping patterns and efficiently optimize them with respect to a 

given objective(s). 

 

 

This refined fundamental research hypothesis can now be tested empirically.  The 

orphogenic evolutionary design experiments reported in this chapter were conducted to 

est this hypothesis.  In these experiments, generative representations of steel structural 

ystems in tall buildings were evolved by evolutionary algorithms.  I have also 
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empiric

dividual evolutionary optimization runs: short-term experiments and long-term 

experiments.  Extensive sensitivity analyses involving both evolutionary computation 

parameters and generative representation parameters were conducted during the short-

term experiments. The following evolutionary computation parameters were considered: 

mutation rates, crossover rates, sizes of parent and offspring populations, and the type of 

the generational model.  Only one type of evolutionary algorithm was used in all 

morphogenic evolutionary design experiments, namely ES, because the experiments 

reported in chapter 7 have shown that ES significantly outperformed GAs in this problem 

domain.   

The generative representation parameters investigated in the short-term 

experiments included the type of CA rules (standard vs. totalistic), the radius of the local 

neighborhood, and the shape of the local neighborhood (2D CAs only).  These 

parameters were identified in chapter 6 as having the biggest impact on the quality of the 

generated design concepts. 

Optimal settings for both evolutionary computation and generative representation 

parameters were sought in the short-term experiments and, once found, later utilized in 

the long-term experiments.  The performance analysis of morphogenic evolutionary 

ally investigated the impact of several representation specific parameters and 

evolutionary computation parameters on the quality of produced design concepts.   

Table 85 presents the layout of design experiments reported in this chapter.  All 

sections in this chapter are organized to follow this layout. As in chapter 7, the 

experiments were divided into two major groups depending on the termination criteria 

used in in
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design processes was conducted for both the short-term and the long-term experiments.  

It included the four performance criteria presented in the bottom part of Table 85. 

Table 85. Overview of morphogenic evolutionary design experiments reported in this 
chapter 

  Short-term Experiments Long-term Experiments 

Mutation rates 

Crossover rates 

Size of parent population 

Size of offspring population 
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evolutionary design experiments and best designs produced in evolutionary 
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In general, I will use the same parameters and their values as in chapters 6 and 

chapter 7 to categorize morphogenic evolutionary design experiments reported in this 

chapter.  Also, two small icons, which were previously introduced in chapters 6 and 7, 

will be placed at the beginning of each section to indicate the values of the experimental 

parameters (defined in Table 4 and Table 59) used in the experiments reported in that 

section

8.2. Morphogenic Evolutionary Design of Wind Bracing Systems 

In this section, I describe results of the design 

experiments involving various types of generative 

These representations were evolved by evolutionary 

algorithms in order to find optimal design concepts.  All types of 

representations considered in this section were introduced earlier in 

chapter 4. 

In the design experiments reported in this section, I experimentally investigated 

the new engineering design paradigm inspired by the developmental processes occurring 

in nature (generative representations) and the processes of evolution (evolutionary 

algorithms).  It was defined in section 4.3 and named morphogenic evolutionary design 

(see Definition 4).  The obtained results were subsequently compared to the results 

produced by the parameterized representations of engineering systems (see section 4.2) 

evolved by evolutionary algorithms (see chapter 7) which constitute the state-of-the-art in 

engineering design.  I also compared the best design concepts produced in the 

.  

representations of wind bracing systems in tall buildings.  
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morpho

d bracing elements 

(as in section 6.3), and 

 two-dimensional cellular automata (as in section 6.4). 

ere evolved using evolutionary 

algorithms. 

8.2.1. Evolution of Elementary Cellular Automata 

The experiments reported in this subsection 

involved elementary CAs with 2 possible cell values 

representing 2 types of wind bracing elements.  As before 

(see sections 6.2 and 7.2.1), two groups of wind bracing 

elements were considered, each consisting of two types of wind bracings. 

The group No.1 included simple X bracings and no bracings (empty cells) 

while t

genic evolutionary design experiments to the best design concepts generated in 

the experiments reported in chapter 6. 

The following three subsections describe the results of the morphogenic 

evolutionary design experiments in which the following types of generative 

representations were used: 

 elementary cellular automata with 2 types of wind bracings elements (as in 

section 6.2),  

 one-dimensional cellular automata with 7 types of win

In all three cases, the generative representations w

 

he group No.2 contained K bracings and no bracings.  The remaining members of 

the steel structural systems in tall buildings, i.e. beams, columns, and supports, were kept 

the same during the entire morphogenic evolutionary design processes.   
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The problem parameters and their values that were used in the design experiments 

described in this section are given in Table 86.  As earlier, 30-story buildings with 5 bays 

were th

.1. 

Table 86. Problem parameters and their values used in the morphogenic evolutionary 

e subject of design.  The geometry of the steel structural systems, i.e. heights of 

the stories and bay widths, were also the same as in the experiments reported in the 

previous chapters. 

The generative representations considered in this subsection consisted of a single 

1D design embryo and a single design rule based on an elementary CA rule.  A detailed 

description of this type of generative representation was presented earlier in section 4.4

design experiments with elementary CAs 

Problem Parameter Value(s) 
Problem type Design of a wind bracing system in a tall building

Number of stories 30 

Number of bays 5 

Bay width 20 feet (6.01 m) 

Distance between transverse systems 20 feet (6.01 m) 

Types of bracing elements None and Simple X, or None and K

Types of column elements Fixed-Fixed 

Story height 14 feet (4.27 m) 

 

Types of beam elements Fixed-Fixed 

Types of supports Fixed 
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The experimental results with design concept generators reported in chapter 6 

provided some guidance as far as the choice of the most appropriate parameters’ settings 

is conc

 the 

design embryo (at the bottom of the structural system) were investigated.  Table 87 

shows all generative representation parameters and their values which were used in the 

Table 87. Generative representation parameters and their values used in the morphogenic 
evolutionary design experiments with elementary CAs 

erned.  Based on the previous research findings, both elements of the generative 

representation, i.e. the design embryo and the design rule, were evolved using 

evolutionary algorithms.  Also, only periodic boundary conditions and one location of

morphogenic evolutionary design experiments with elementary CAs. 

Representation Parameter Value(s) 
Representation type Cellular automata 

CA dimension 1D 

Number of cell states 2 

CA rule type Standard CA rule, or totalistic CA rule 

Neighborhood radius 1, or 2 

Boundary conditions Periodic 

Design embryo location Bottom 

Design embryo initialization Random 
  

The generative representations based on elementary CAs were evolved by 

evolutionary algorithms.  As in chapter 7, both short-term and long-term morphogenic 

evolutionary design processes were conducted.  In the short-term processes, the 
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experiments were terminated after 1,000 fitness evaluations.  The long-term morphogenic 

evolutionary design experiments involved as many as 10,000 fitness evaluations per run. 

An extensive parameter search was conducted during the short-term processes.  It 

involved not only evolutionary computation parameters (i.e. parent and offspring 

population sizes, mutation and crossover rates, and the type of the generational model) 

but als

sections. 

Short-

ported in this subsection.  It shows that two 

kinds 

lation sizes,  mutation and crossover rates, types of CA 

rules (standard or totalistic), and the length of the radius of the local neighborhood (1 or 

o the generative representations parameters (the type of the CA rule and the radius 

of the local neighborhood).  As in chapter 7, the optimal values of these parameters were 

identified and later used in the long-term morphogenic evolutionary design processes. 

The results of the short-term and the long-term processes are described in the 

following sub

term Morphogenic Evolutionary Design 

In this group of experiments, short-term 

morphogenic evolutionary design of wind bracing 

systems in tall buildings was investigated.  Table 88 

presents evolutionary computation parameters used in 

the design experiments re

of ES were employed: ES(µ+λ) with the overlapping 

generational  model and ES(µ,λ) with the nonoverlapping generational model.  

The sensitivity analysis conducted during the short-term experiments involved the 

following evolutionary computation and generative representation parameters and their 

values: parent and offspring popu
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2).  T

Table 88. Evolutionary computation parameters and their values used in the short-term 
morphogenic evolutionary design experiments with elementary CAs 

he morphogenic evolutionary design processes were repeated 5 times for all 

combination of parameter values, each time using a different value of the random seed. 

The fitness of each design concept was determined, as before, by the total weight 

of the structural system calculated using the first-order structural analysis.  Whenever an 

infeasible concept was generated, it was assigned a fitness value of 0 (death penalty). 

EC Parameter Value(s) 
Evolutionary algorithm Evolution Strategies (ES) 
Generational model Overlapping for ES(µ+λ), 

Nonoverlapping for ES(µ,λ) 
Population sizes (parent, offspring) (1,5), (5,25), or (50,250) for ES(µ+λ) 

(5,25) for ES(µ,λ) 
Selection (parent, survival) (uniform stochastic, truncation) 
Mutation rate 0.025, 0.1, or 0.3 
Crossover (type, rate) (uniform, 0), (uniform, 0.2), (uniform, 0.5) 
Fitness Total weight of the steel structure (determined by 

the first-order structural analysis) 
Initialization method Random 
Constraint handling method Death penalty (infeasible designs assigned 0 

fitness) 
Termination criterion 1,000 fitness evaluations 
Number of runs 5 in each experiment 

  

The initial population of parents was initialized randomly in all experiments 

reported here.  Each individual was represented as a fixed-length genome.  The structure 

of the genome was introduced earlier in section 4.4.1 (see Figure 28).  It consisted of two 
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concate

genes for standard CA 

rules a

nated parts: the encoding of the design embryo and the encoding of the design 

rule based on an elementary CA rule.  Thus, the genome did not encode a complete 

design concept, as was the case with the parameterized representations studied in chapter 

7, but instructions (encoded in the design rule) on how to develop a complete design 

concept from the initial seed (encoded in the design embryo).   

In order to evaluate fitness of a design concept encoded using this type of 

generative representation, a complete configuration of a wind bracing system had to be 

first fully developed from the design embryo by the application of the design rule. A 

detailed description of the developmental process was presented in section 4.4.1 (see also 

Figure 26).   

The length of the genome depended on the type of the CA rule (standard vs. 

totalistic) and the radius of the local neighborhood.  In the experiments reported in this 

section, the genomes had the following lengths: 13 genes and 37 

nd 9 genes and 11 genes for totalistic CA rules with the radius equal to 1 and 2, 

respectively.  The obtained results are presented in the following subsections. 

Optimal Mutation Rates 

The initial experiments investigated evolutionary computation parameters in  

order to determine their optimal values for morphogenic evolutionary design processes.  

First, an extensive parameter search was conducted to identify the optimal rates of 

mutation and crossover operators.  Table 88 shows that 9 combinations of mutation and 

crossover rates were considered. 
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Figure 106 shows typical results regarding the impact of various mutation rates on 

the fitness of generated design concepts in the short-term experiments with the group 

No.1 of wind bracing elements (simple X bracings and no bracings).  The results 

presented in this figure were produced in the experiments with ES(5+25) and the 

generative representation based on standard elementary CA rules with the neighborhood 

radius equal  to 1.  The rate of the uniform crossover operator equaled 0.2.  The vertical 

lines represent 95% confidence intervals calculated using Johnson’s modified t test. 

 

Figure 106. The influence of the mutation rate on the fitness of design concepts generated 
nic evolutionary design experiments with elementary CAs 
g elements) 

in the short-term morphoge
(group No.1 of wind bracin
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Figure 106 shows that higher mutation rates were preferred in the short-term 

morphogenic evolutionary design experiments.  Specifically, the best and comparable 

results were obtained when mutation rates were equal to 0.1 and 0.3.  When the lowest 

mutation rate was employed, i.e. 0.025, then not only the worst results were obtained but 

they also showed the highest variance.  Similar results were observed in the majority of 

the short-term morphogenic evolutionary design experiments, as it is illustrated 

graphically in Figure 107.  It shows the average fitness values obtained after 1,000 

evaluations in the morphogenic evolutionary design experiments with the group No.1 of 

wind bracing elements (simple X bracings and no bracings). The results presented in this 

figure were produced by ES(5+25) with two types of elementary CA rules (standard or 

totalistic) and two lengths of the radius of the local neighborhood (1 and 2).   In all cases, 

the average end-of-run results produced by 9 combinations of mutation and crossover 

values are presented and sorted with respect to the crossover rate. 

A clear pattern can be identified in Figure 107 regarding the impact of the 

mutation rate on the fitness of the produced design concepts: the higher the mutation rate 

the better design concepts produced.  This pattern was observed in all experiments with 

standard CA rules with one exception: when the radius equaled 2 and mutation and 

crossover rates were equal to 0.1 and 0, respectively.  The same pattern was observed in 

 In 

this case, all mutation rates produced the same results.  An explanation of this fact will be 

presented later at the end of this section. 

the experiments with totalistic CA rules and the radius of 1.  However, the situation was 

different when the radius was increased to 2 and totalistic CA rules were employed. 

 



491 

 

Figure 107. Comparison of the average fitness values (and 95% confidence intervals) 
term morphogenic evolutionary 

design experiments with elementary CAs  

Optimal Crossover Rates 

No such pattern was observed for crossover rates.  In some cases the best results 

were obtained when high rates of crossover operator were applied and sometimes when 

the crossover operator was not used at all.  The graph showing these results was, 

however, omitted. 

Optimal Population Sizes 

In another group of experiments, the impact of the sizes of parent and offspring 

populations on the fitness of generated design concepts was tested.  Figure 108 shows the 

obtained after 1,000 fitness evaluations in the short-
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results of the experiments in which 3 combinations of parent and offspring population 

sizes were used: ES(1+5), ES(5+25), and ES(50+250).  All other evolutionary 

computation parameters and generative representation parameters had the same values in 

these experiments.  Specifically, the mutation and crossover rates were equal to 0.3 and 

0.2, respectively, and standard CA rules with the radius of 1 were employed. 

 

Figure 108. The influence of the sizes of parents and offspring populations on the 

No.1 of wind bracing elements 
progress of the short-term morphogenic evolutionary design processes with the group 

 



493 

Figure 108 shows that all combinations of the population sizes produced 

comparable results in terms of the average best-so-far fitness.  The substantial differences 

occurred only in the level of variance.  Small population sizes, i.e. ES(1+5) and ES(5+25) 

showed higher variance than the large population sizes ES(50+250). 

Optimal Generational Model 

Finally, Figure 109 compares the results of experiments in which the impact of the 

type of the generational model on the fitness of produced design concepts was 

investigated.  Here, two kinds of ES were employed: ES(5,25) with the nonoverlapping 

generation model and ES(5+25) with the overlapping generational model.  As earlier, all 

other p

 the generative representation parameters, i.e. the type of the CA 

rule and the length of the radius of the local neighborhood, was dramatically different for 

each group of wind bracing elements.  Hence, the obtained results are discussed 

separately for the group No.1 (simple X bracings) and the group No.2 (K bracings). 

arameters’s values were kept the same. 

Figure 109 clearly shows that ES with the overlapping and nonoverlapping 

generational models produced almost identical results in terms of both the average best-

so-far fitness and the variance of produced results. 

Optimal Generative Representation Parameters 

The impact of
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Figure 109. The influence of the type of the generational model on the short-term
morphogenic evolutionary design processes with the group No.1 of wind bracing 
elements 

 

Simple X Bracings 

Figure 110 shows typical results regarding the impact of both generative 

representation parameters on the average best-so-far fitness obtained in the design 

experiments with the first group of wind bracing elements.  Specifically, these results 

were produced by ES(5+25) with the mutation rate equal to 0.1 and crossover rate equal 

to 0.2.  Vertical lines denote 95% confidence intervals. 
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Figure 110 clearly shows that standard CA rules produced better results than 

totalistic CA rules in the morphogenic evolutionary design experiments with the first 

group of wind bracing elements.  It also revealed that the impact of the increased length 

of the radius of the local neighborhood on the fitness of design concepts was distinct for 

each type of elementary CA rules.  Standard CA rules with the radius equal to 2 produced 

significantly better results than the ones with the radius equal to 1.  The situation was, 

howev

y standard CA rules with the radius equal to 2.  On the other hand, the 

l because all 5 runs produced exactly the same 

best de

er, different for totalistic CA rules.  In this case, the design experiments with the 

smaller radius produced slightly better results compared to the results generated with the 

radius equal to 2.  

Interestingly, there were also significant differences among variances obtained in 

the design experiments shown in Figure 110.  The results with the largest variance were 

produced b

smallest variance (in fact, no variance at al

sign concept) was obtained in the design experiments with totalistic CA rules and 

the radius equal to 2. 
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Figure 110. The influence of the type of the CA rule and the radius of the local 
neighborhood on the fitness of design concepts generated in the short-term morphogenic 
evolutionary design experiments with elementary CAs (group No.1 of wind bracing 
elements) 

K Bracings 

As I mentioned earlier, the results were different when the second group of wind 

bracing elements (K bracings and no bracings) was employed.  Figure 111 shows typical 

results obtained in these experiments.  Here, ES(5+25) was used with the mutation rate 

equal to 0.1 and the crossover rate equal to 0.2.  It clearly shows that both standard and 

totalistic CA rules produced the design concepts of almost identical fitness.  The 

differences among the design processes utilizing standard and totalistic CA rules 
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occurred only in the initial stages of evolution (up to 100 fitness evaluations).  

Specifically, totalistic CA rules generated better solutions faster than standard CA rules.  

The impact of the increased radius of the local neighborhood was also restricted to the 

initial stages of the design processes only (first 100 fitness evaluations).  The longer 

radius did not influence the average fitness of the best design concepts obtained in the 

short-term experiments. 

Unlike the experiments with the group No.1 of wind bracing elements, the 

experiments with K bracings did not show any significant differences among variances of 

the results.  The variance of the fitness of generated design concepts was high in the 

initial stages of evolution (up to 50 fitness evaluations), particularly for totalistic CA 

rules, but it was quickly reduced and after 300 fitness evaluations became almost 

negligible. 

K Bracings - Performance Improvement 

As discussed earlier, the results of the morphogenic evolutionary design processes 

with elementary CAs substantially differed for the two groups of wind bracing elements.  

These differences could also be identified when the performance improvements and 

optimal design concepts produced in the morphogenic evolutionary design experiments 

e were compared to the ones obtained in the evolutionary optimization processes (se

chapter 7). 
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Figure 111. The influence of the type of the CA rule and the radius of the local 
neighborhood on the fitness of design concepts generated in the short-term morphogenic 
evolutionary design experiments with elementary CAs (group No.2 of wind bracing 
elements) 

Figure 112 compares the average best-so-far fitness of the design concepts 

produced in the evolutionary optimization experiments (see section 7.2.1) and the 

morphogenic evolutionary design experiments with the group No.2 of wind bracing 

elements (K bracings).  In the former case, the parameterized representations of wind 

bracing systems were used (see section 4.2).  In the latter case, the generative 

representations based on elementary CAs (standard CA rules and totalistic CA rules) 

were employed.  In both cases, the optimal values of evolutionary computation 
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parameters were applied, i.e. ES(5+25) with the mutation rate equal to 0.025 

crossover rate eq

and the 

ual to 0.2 for the parameterized representations and ES(5+25) with the 

mutation rate equal to 0.1 and the crossover rate equal to 0.2 for the generative 

representations. 

 

Figure 112. Comparison of the average best-so-far fitness produced in the evolutionary 
optimization experiments (parameterized representations) and morphogenic evolutionary 
design experiments with elementary CAs (standard CA rules and totalistic CA 
the group No.2 of wind bracing elements 

rules) for 
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Figure 112 shows that the morphogenic design processes significantly 

outperformed the evolutionary optimization processes when the group No.2 of wind 

bracing elements was employed.  The performance improvement obtained after 1,000 

evaluations beetween the generative representations based on elementary CAs and the 

parameterized representations exceeded 43,000 lbs., or 8.5 percent.  The average 

performance improvement achieved in the morphogenic evolutionary design experiments 

was equal to about 68,200 lbs., or 13.2 percent, for standard CA rules and 59,700 lbs., or 

11.7 percent, for totalistic CA rules compared to 26,600 lbs., or 5.1 percent, obtained in 

the evolutionary optimization processes. 

K Bracings - Optimal Designs 

The best design concepts of wind bracing systems composed of K bracings are 

presented in Table 89.  The fitness of the best design concept found in the morphogenic 

design experiments was equal to 449,376 lbs.  It was about 40,500 lbs., or 8.2 percent, 

better than the best design produced in the short-term evolutionary optimization 

experiments (see Table 64).  At the same time, it achieved the same fitness as the best 

design concept found in the exhaustive search of elementary CA rules reported in chapter 

6 (see Table 37). 
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Table 8
generated in the short-term morphogenic evolutionary design experiments with 

9. Best design concepts of wind bracing systems composed of K bracings 

elementary CAs 

 

K Bracings - Structural Shaping Patterns 

Thus, morphogenic evolutionary design processes significantly outperformed 

evolutionary optimization processes in this problem domain.  They also generated 

interesting structural shaping patterns of good performance that were qualitatively 

different to the patterns obtained in the optimization experiments reported in chapter 7.  

Several examples of the design concepts of wind bracing systems with interesting 

structural shaping patterns composed of K bracings are presented in Table 90. 
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Table 90. Interesting structural shaping patterns generated in the short-term morphogenic 

bracing elements 
evolutionary design experiments with elementary CAs and the group No.2 of wind 
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Table 90 contains several interesting patterns which were previously identified in 

chapter 6 in the design experiments with elementary CAs as well as a few novel ones.  

For example, the patterns of horizontal trusses (see the 1st and 12th design concepts in 

Table 90) and of macro bracings (see the 2nd, 4th, and 5th design concepts in Table 90) 

have been previously found and described in chapter 6.  On the other hand, the structural 

shaping patterns exhibited by the 6th, 7th, 8th, 9th, and 10th design concepts and produced 

by the standard CA rules with the radius equal to 2 represent novel configurations of K 

bracings. 

Simple X Bracings - Performance Improvement 

processes 

with the group No.1 of wind bracing elements (simple X bracings and no bracings) 

produced somewhat different results, particularly with respect to the optimization of wind 

bracing systems. Figure 113 compares the average best-so-far fitness of the design 

concepts produced in morphogenic evolutionary design experiments with elementary 

CAs (standard CA rules with the radii of the local neighborhood equal to 1 or 2) to the 

results obtained in evolutionary optimization experiments reported in chapter 7.  In both 

cases, the optimal values of evolutionary  computations parameters were employed. 

Figure 113 clearly shows that even though the morphogenic evolutionary design 

processes outperformed the evolutionary optimization processes in the initial stages of 

evolution (up to 200 evaluations), they later produced inferior results.  The average 

performance improvement after 1,000 fitness evaluations was about 14,700 lbs., or 2.7 

percent, worse (i.e. negative) for standard CA rules with the radius equal to 1 and about 

As discussed earlier, the results of the morphogenic evolutionary design 
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8,600 lbs., or 1.6 percent, worse when the radius was equal to 2 compared to the average 

fitness obtained in the evolutionary optimization experiments. 

 

Figure 113. Comparison of the average best-so-far fitness p

design experiments with elementary CAs (standard CA rules and totalistic

roduced in the evolutionary 
optimization experiments (parameterized representations) and morphogenic evolutionary 

 CA rules) for 
the group No.1 of wind bracing elements 

 Simple X Bracings – Optimal Designs 

The best design concepts generated in the morphogenic design experiments with 

the group No.2 of wind bracing elements are presented in Table 91.  It shows four best 

design concepts produced in the experiments with four combinations of the generative 
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representation parameters.  The overall best design concept produced in the short-term 

morphogenic design experiments was generated by standard CA rules with the radius of  

the local neighborhood equal to 2.  Its fitness was 548,243 lbs. and it was more than 

rse than the best design concept produced in the short-term 

evoluti

Table 91. Best design concepts of wind bracing systems composed of X bracings 

elementary CAs 

16,000 lbs., or 3 percent, wo

onary optimization experiments (see Table 62 in chapter 7).  At the same time, it 

slightly outperformed (by about 2,000 lbs., or 0.4 percent) the best design concept 

generated by elementary CAs (see Table 31 in chapter 6). 

generated in the short-term morphogenic evolutionary design experiments with 
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The remaining 3 design concepts had worse fitness than the best concepts 

generated in the design experiments with elementary CAs and the best design concepts 

produced in the evolutionary optimization experiments.  On the other hand, they 

exhibited interesting and diverse structural shaping patterns, including the checkerboard 

pattern, the horizontal truss pattern, and a pattern identical to the one which was 

generated by the elementary rule 105 (see Table 35). 

In the next subsection, I will investigate the long-term morphogenic evolutionary 

design processes and test whether they can produce better design concepts than the long-

term evolutionary optimization processes described in chapter 7.  I will also compare the 

results of the long-term and the short-term morphogenic evolutionary design 

experiments. 

Long-term Morphogenic Evolutionary Design 

elementary CAs are described.  As before (see chapter 

7), th

th the two groups of wind bracing elements produced 

dramatically different results.  The short-term morphogenic design experiments with the 

group No.2 (K bracings) significantly outperformed the short-term evolutionary 

In this subsection, the results of the long-term 

morphogenic evolutionary design processes involving 

e length of the long-term processes was 

siginifcantly larger than of the short-term processes and involved 

10,000 fitness evaluations.  The obtained results are presented below. 

In the previous subsection, I reported that the short-term morphogenic 

evolutionary design experiments wi
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optimization processes by producing on average 8.5 percent fitter design concepts.  

Moreover, the optimal design concepts were found very quickly, i.e. within the first 100 

fitness evaluations when totalistic CA rules were used.   

Performance Improvement 

Figure 114 compares the results of the short-term morphogenic evolutionary 

design experiment with totalistic CA rules to the results produced in the long-term 

evolutionary optimization using parameterized representations (see section 7.2.1).  It is 

clear that even the long-term evolutionary optimization processes were significantly 

inferior to the short-term morphogenic evolutionary design processes in this problem 

domain.  The average fitness achieved in the long-term evolutionary optimization 

experiment was more than 35,000 lbs., or 7.8 percent, worse than the average fitness 

produced in the short term morphogenic evolutionary design experiment.  Thus, the 

icantly better results 

than the evolutionary optimization processes but they also achieved this performance in a 

fraction of a computational effort required by the latter. 

The short-term morphogenic evolutionary design experiments with the group 

No.1 of wind bracing elements (simple X bracings) showed that the obtained results were 

worse than the ones obtained in the short-term evolutionary optimization experiments.  In 

the experiments described below I investigated if and by how much the performance of 

the morphogenic evolutionary design processes can be improved in the long-term 

processes. 

morphogenic evolutionary design processes not only produced signif

 



508 

 

Figure 114. Comparison of the average best-so-far fitness produced in the long-term 

morphogenic evolutionary design experiments with elementary CAs (totalistic CA rules) 

The optimal values of evolutionary computation and the generative representation 

parameters, identified in the short-term experiments, were employed in the long-ter

evolutionary optimization experiments (parameterized representations) and the short-term 

with the group No.2 of wind bracing elements (K bracings) 

m 

processes with the group No.1 of wind bracing elements.  The evolutionary computation 

parameters and their values are presented in Table 92 while the generative representation 

parameters are shown in Table 93. 
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Table 92. Evolutionary computation parameters and their values used in the long-term 
morphogenic evolutionary design experiments with elementary CAs 

EC Parameter Value(s) 
Evolutionary algorithm Evolution Strategies (ES) 
Generational model Overlapping for ES(µ+λ) 
Population sizes (parent, offspring) (5,25) 
Selection (parent, survival) (uniform stochastic, truncation) 
Mutation rate 0.1 
Crossover (type, rate) (uniform, 0.2) 
Fitness Total weight of the steel structure (determined by 

the first-order structural analysis) 
Initialization method Random 
Constraint handling method Death penalty (infeasible designs assigned 0 

fitness) 
Termination criterion 10,000 fitness evaluations 
Number of runs 5 in each experiment 

  

Table 93. Generative representation parameters and their values used in the long-term 
morphogenic evolutionary design experiments with elementary CAs 

Representation Parameter Value(s) 
Representation type Cellular automata 

CA dimension 1D 

2 

CA rule type Standard CA rule 

Neig

Design embryo initialization Random 

Number of cell states 

hborhood radius 2 

Boundary conditions Periodic 

Design embryo location Bottom 
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Figure 115 compares the results of the long-term morphogenic evolutionary 

design experiment to the long-term evolutionary optimization experiment with the group 

No.1 of wind bracing elements.  It clearly shows that, as in the short-term processes, the 

latter significantly outperformed the former in the long-term experiments.  The difference 

exceeded 

21,500 lbs., or 4.1 percent.  Also, the average performance improvement between the 

long-term and the short-term morphogenic design experiments was very small and equal 

to about 2,300 lbs., or 0.4 percent.  It was a significantly smaller improvement than the 

one obtained in the evolutionary optimization experiments where the corresponding 

improvement level was equal to 15,500 lbs., or 2.8 percent. 

Optimal Designs 

The best design concepts generated in the long-term morphogenic evolutionary 

design experiments are presented in Table 94.  The fitness of the overall best design 

concept was equal to 547,428 lbs. It was more than 27,000 lbs., or 5.2 percent, worse 

than the best design concept produced in the evolutionary optimization experiments (see 

Table 62 in chapter 7).  However, it was almost 3,000 lbs., or 0.5 percent, better than the 

oncept generated by elementary CAs (see Table 31 in chapter 6). 

between the average best-so-far fitness obtained after 10,000 evaluations 

best design c
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Figure 115. Comparison of the average best-so-far fitness produced in the long-term 

morphogenic evolutionary design experiments with elementary CAs and the group No.1 

 Structural Shaping Patterns 

Even though the best design concepts in the morphogenic evolutionary design 

experiments with the group No.1 of wind bracing elements did not represent better 

solutions in terms of the total weight of the steel structural system, they generated 

interesting and qualitatively different structural shaping patterns.  A prominent example 

of that is the best design shown in Table 94 in which an emergent pattern of crossed 

evolutionary optimization experiments (parameterized representations) and the long-term 

of wind bracing elements 

macro bracings can be easily identified.  The two other design concepts exhibit 
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interes

Table 94. Best design concepts of wind bracing systems composed of X bracings 

elementary CAs 

ting variations of the macro bracing pattern which were not found in the design 

experiments with elementary CAs (see chapter 6). 

generated in the long-term morphogenic evolutionary design experiments with 

 

Summ

of two types of wind bracings, were studied separately in the morphogenic evolutionary 

ary 

In this section, I described the results of the morphogenic evolutionary design 

experiments with the simplest generative representations based on elementary CAs.  The 

number of types of wind bracing elements considered in the experiments was limited to 2 

only.  As in sections 6.2 and 7.2.1, two groups of wind bracing elements, each consisting 
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design processes.  The obtained results were dramatically different for these two design 

problems. 

Initial sensitivity analyses conducted in the short-term experiments have shown 

that higher mutation rates, i.e. 0.1 or 0.3, were preferred in the morphogenic evolutionary 

design processes for both design problems.  No such pattern was observed for the 

crossover operator.  In some cases the best results were produced when high crossover 

rates were used and sometimes when crossover was not applied at all.  It was also found 

that neither the size of the parent and offspring populations nor the type of the 

generational model had any significant impact on the average fitness of the generated 

design concepts. 

The impact of the generative representation parameters, i.e. the type of CA rules 

and the radius of the local neighborhood, on the fitness of produced design concepts was 

different for each of the two design problems.  For K bracings, both types of CA rules 

generated the same end results but totalistic CA rules found the optimal solutions much 

faster (within 100 fitness evaluations) than standard CA rules.  For simple X bracings, 

standard CA rules produced significantly better results than totalistic CA rules.  

Moreover, there were important differences in the fitness of generated design concepts 

when the increased length of radius of the local neighborhood was employed.  In this 

case, standard CA rules with the radius of 2 produced the overall best results.  At the 

same time, totalistic CA rules with the radius equal to 2 produced the overall worst 

results.  My hypothetical explanation of these facts is presented below. 
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The two design problems, i.e. design of a wind bracing system composed of 

simple X bracings and design of a wind bracing system composed of K bracings, 

represent two different classes of problems.  The optimal solutions for the latter problem 

have a form of regular configurations of K bracings (variations of the fully-braced 

pattern).  On the contary, the optimal design concepts for the former problem exhibit very 

elaborate configurations/shaping patterns of simple X bracings.   

The generative representations based on elementary CAs reduce the sizes of the 

design spaces and thus significantly limit the number of possible configurations of wind 

bracing elements that can be generated.  The amount of the reduction of the design space 

is affected by two parameters: the type of the CA rule and the radius of the local  

neighborhood.  Standard CA rules offer much bigger potential for developing elaborate 

patterns but at a cost of significantly larger sizes of CA rule spaces.  Thus, they are 

oriented more towards novelty.  On the other hand, totalistic CA rules rapidly decrease 

the sizes of the CA rules spaces but at a cost of generating only a small fraction of the 

patterns that can be produced by standard CA rules.  Due to the averaging process, 

totalistic CA rules are biased towards generation of fairly uniform or periodic patterns.   

An increased size of the radius of the local neighborhood affects the standard and 

totalistic rule spaces in two different ways.  In the former case, it increases the number of 

configurations that can be attained but at the same time makes the standard CA rule 

spaces even larger.  In the latter case, it increases the amount of averaging and hence 

c CA further decreases the number of configurations that can be produced.  Thus, totalisti
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rules w

ussed in the previous chapter.  They also achieved siginificantly 

higher levels of performance improvement in the case of K bracings.  Figure 116 shows 

that in this case the improvement level exceeded 11.5% in the short-term experiments. 

ith the longer radius of the local neighborhood are even more biased towards 

generation of uniform patterns. 

Figure 116 shows the average performance improvements obtained in the short- 

and long-term morphogenic evolutionary design experiments for both groups of wind 

bracing elements.  It clearly illustrates that the morphogenic evolutionary design 

processes achieved high levels of performance improvement in the initial stages of 

evolution (the short-term improvements are almost the same as the long-term 

improvements).  Hence, they produced good results much faster than the parameterized 

representations disc

 

Figure 116. Comparison of the average performance improvements produced in the 
morphogenic evolutionary design of wind bracing systems with 2 types of bracing 
elements in the short-term and long-term experiments 
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The results of the short-term and the long-term morphogenic evolutionary design 

experiments were also compared to the results obtained in the evolutionary optimization 

experiments (see chapter 7).  Figure 117 shows the average performance improvements 

between the morphogenic evolutionary design and evolutionary optimization achieved in 

the conducted experiments.  It clearly shows that morphogenic evolutionary design 

process

ents) when simple 

X bracings were employed.  

es significantly outperformed the evolutionary optimization processes in the 

design problem in which K bracings were used.  However, they produced inferior results 

(shown in this figure as negative values of the performance improvem

 

Figure 117. Comparison of the average performance improvements produced in the 

with 2 types of bracing elements in the short-term and long-term experiments 
morphogenic evolutionary design and evolutionary optimization of wind bracing systems 
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Finally, Figure 118 illustrates the performance improvements between the best 

design concepts of wind bracing systems produced in morphogenic evolutionary design 

entary CAs (see section 6.2).  It 

shows iments produced slightly better  

osed of simple X bracings than 

olutionary design processes 

esign concepts composed of K 

rm and the long-

experiments and the best designs generated by elem

that the morphogenic evolutionary design exper

(by about 0.5%) designs of wind bracing systems comp

elementary CAs.  On the other hand, both morphogenic ev

and elemenatry CAs produced exactly the same best d

bracings (performance improvement was equal to 0 in both the short-te

term experiments). 

 

Figure 118. Comparison of the performance improvements between the best designs 
produced in the morphogenic evolutionary design experiments and the best designs 
generated by elementary CAs 
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In this section, I also showed that morphogenic evolutionary design processes 

generated interesting structural shaping patterns for both design problems.  In the case of 

design concepts composed of simple X bracings, a unique structural shaping pattern of 

crossed macro bracings has been discovered.  This pattern has not been found in the 

design experiments with elementary CAs reported in chapter 6. 

In the next section, I will slightly scale up the design problem considered by the  

morphogenic evolutionary design processes by using the entire selection of 7 types of 

wind bracing elements rather than only 2 types, as I did in this section. 

8.2.2. Evolution of 1D Cellular Automata 

In this section, I report the results of the 

morphogenic evolutionary design experiments in which 

7 types of wind bracing elements were used (see Figure 

19).  The generative representations used in these 

experiments were based on one-dimensional CAs with 7 possible cell 

values.  They are generalized versions of the generative representations 

studied in the previous section. A detailed description of this type of generative 

representations was presented in section 4.4.1. 

As before, the experiments were divided into groups: the short-term processes and 

the long-term processes.  In the short-term experiments the optimal values of the 

generative representation parameters, i.e. the type of CA rules and the radius of the local 

neighborhood, were sought.  On the other hand, the values of the evolutionary 

computation parameters were assumed based on the results of the short-term 
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morphogenic evolutionary design experiments with elementary CAs (see Table 92) 

reported in the previous section. 

Short-term Morphogenic Evolutionary Design 

Table 95 shows the generative representation 

parameters and their values which were used in the 

short-term morphogenic evolutionary design 

experiments.  As in the previous section, two types of 

CA rules were investigated: standard and totalistic.  In both cases, two 

lengths of the radius of the local neighborhood were studied 

experimentally to determine the optimal combination of the generative representation 

parameters for this design problem. 

Table 95. Generative representation parameters and their values used in the short-term 
morphogenic evolutionary design experiments with 1D cellular automata 

Representation Parameter Value(s) 
Representation type Cellular automata 

CA dimension 1D 

Boundary conditions Periodic 

Number of cell states 7 

CA rule type Standard CA rule, or totalistic CA rule 

Neighborhood radius 1, or 2 

Design embryo location Bottom 

Design embryo initialization Random 
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The lengths of genomes encoding the generative representations of wind bracing 

systems with 7 types of wind bracing elements were quite different for standard CA rules 

and totalistic CA rules.  In the former case, they consisted of 348 and 16,812 genes for 

the radius of the local neighborhood equal to 1 and 2, respectively.  In the latter case, the 

corresponding lengths were equal to 24 and 36 genes.  In all cases, the genomes were 

homogenous, i.e. all genes had the same number of possible values (i.e. 7, encoded as 

integers from 0 to 6) which represented various types of wind bracing elements (see 

Figure 19). 

Optimal Generative Representation Parameters 

Figure 119 compares the average best-so-far fitness curves obtained in the short-

term morphogenic evolutionary design experiments with 7 types of wind bracing 

elements.  It clearly shows that totalistic CA rules significantly outperformed standard 

CA rules in this problem domain.  The overall best results were produced by totalistic CA 

rules with the radius of the local neighborhood equal to 2.  The average end-of-run fitness 

obtained in this experiment was equal to 449,194 lbs. and was more than 45,500 lbs., or 

9.2 percent, better than the average fitness produced by standard CA rules (with the 

 

CA rules with two different radii of the local neighborhood was small and equaled about 

2,800 lbs., or 0.6 percent.  Thus, both design experiments with totalistic CA rules 

produced comparable results. 

 

radius = 1).  The difference between the average end-of-run fitness produced by totalistic

 



521 

 

Figure 119. Comparison of the average best-so-far fitness produced in the short-term 
morphogenic evolutionary design experiments with 7 types of wind bracing elements 

Performance Improvement 

Figure 120 compares the results of the short-term morphogenic evolutionary 

design experiments (standard CA rules and totalistic CA rules) to the ones produced in 

the evolutionary optimization experiments (see section 7.2.2).  It shows that the average 

best-so-far fitness of the design concepts generated by standard CA rules and totalistic 

CA rules was better than the average best-so-far fitness obtained in the evolutionary 

optimization processes.  However, the results produced by standard CA rules exhibited 

significantly higher variance (by an order of magnitude) than the results of the other two 
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design experiments.  The overall best results were produced by totalistic CA rules.  The 

average performance improvement achieved in this case exceeded 56,000 lbs., or 11 

percent. 

 

Figure 120. Comparison of the average best-so-far fitness produced in the short-term 

evolutionary design experiments with 7 types of wind bracing elements 

Optimal Designs 

Table 96 presents the best design concepts generated in the short-term 

morphogenic evolutionary design experiments.  The fitness of the best design was equal 

to 448,597 lbs.  It was the best design of a wind bracing system found so far.  In fact, all 

evolutionary optimization experiments (parameterized representations) and morphogenic 
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design concepts shown in Table 96 were better than the best design concept produced in 

the evolutionary optimization experiments (see Table 70 in chapter 7) and the best design 

concept produced in the experiments with 1D cellular automata (see Table 43 in chapter 

6).  All design concepts presented in Table 96 exhibit the fully braced pattern consisting 

of K bracings.  The differences among them occur only in the configurations of the 

design embryo.  The fitness of all design concepts shown in Table 96 was improved by 

introduction of a single or several simple X bracings in the configuration of the design 

embryo.  

Table 96. Best design concepts of wind bracing systems generated in the short-term 
morphogenic evolutionary design experiments with 7 types of wind bracing elements 
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Structural Shaping Patterns 

The morphogenic evolutionary design processes 

elements generated many interesting structural shaping p

such patterns are shown in Table 97.  The first 5 patterns w

rules.  The majority of them can be classified as elaborat

pattern utilizing several types of wind bracing elements.  The remain

shaping patterns were produced by totalistic CA rules.   

Table 97 clearly shows that there are substantial qualitative differences among the 

patterns produced by these two types of CA rules.  Standard CA rules generate more 

sophisticated macro bracings patterns or checkerboard patterns which propagate 

throughout the structural system.  Totalistic CA rules, on the other hand, produce fairly 

uniform or periodic patterns in which the entire configurations of individual stories are 

occupied by a single type of wind bracings. 

In the next subsection, I will investigate the long-term experiments and test if and 

how much they can improve the performance of morphogenic evolutionary design 

processes.  I will also compare the results of the long-term and the short-term 

morphogenic evolutionary design experiments as well as results of the long-term 

evolutionary optimization processes with 7 types of w

with 7 types of wind bracing 

atterns.  Several examples of 

ere generated by standard CA 

e versions of the macro bracing 

ing 7 structural 

ind bracing elements (see section 

7.2.2). 
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Table 97. Interesting structural shaping patterns generated in the short-term morphogenic 
evolutionary design experiments with 7 types of wind bracing elements 
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Long-term Morphogenic Evolutionary Design 

ly one radius of 

the loc

Figure 121 compares the average best-so-far fitness curves obtained in the two 

long-term morphogenic evolutionary design experiments with 7 types of wind bracing 

elements.  It clearly shows that totalistic CA rules outperformed standard CA rules by a 

wide margin.  They also exhibited several orders of magnitude smaller variance than 

The short-term experiments with 1D CAs 

showed that generative representations with both 

standard and totalistic CA rules outperformed 

parameterized representations of wind bracing systems 

with 7 types of wind bracing elements.  There were, however, 

significant differences between the two types of CA rules in terms of 

the variance and the average best-so-far fitness.  The performance of both types of CA 

rule was further investigated in the long-term experiments and compared to the results of 

the long-term evolutionary optimization experiments.  Hence, the same generative 

representation parameters were used in the long-term experiments as the ones used in the 

short-term experiments (see Table 95).  The only exception was that on

al neighborhood was investigated for each type of CA rules.  Standard CA rules 

were evolved with the radius equal to 1 whereas totalistic CA rules used the radius equal 

to 2.  This choice was motivated by the results of the short-term morphogenic 

evolutionary design experiments reported in the previous subsection.  Evolutionary 

computation parameters used in the long-term experiments were exactly the same as the 

ones used in the short-term processes (see Table 92).   
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standard CA rules.  The average fitness of design concepts after 10,000 evaluations 

produced using totalistic CA rules was equal to 448,785 lbs. compared to 482,821 lbs. 

obtained by standard CA rules.  Thus, totalistic CA rules outperformed, on average, 

standard CA rules by more than 34,000 lbs., or 7 percent. 

 

Figure 121. Comparison of the average best-so-far fitness produced in the long-term 
morphogenic evolutionary design experiments with 7 types of wind bracing elements 
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Performance Improvement 

Figure 122 compares the results of the long-term morphogenic evolutionary 

design experiments (totalistic CA rules with the radius equal to 2) to the ones produced in 

the evolutionary optimization experiments (see section 7.2.2).  It shows that the average 

best-so

nary design processes 

exceeded 56,500 lbs., or 11.2 percent.  It was only slightly better (by about 500 lbs. or 0.1 

percent) than the average performance improvement obtained in the short-term 

At the same time, the long-term morphogenic evolutionary design processes 

outperformed the long-term evolutionary optimization processes by more than 42,500 

lbs., or 8.6 percent.  Thus, the performance improvements achieved in the long-term 

morphogenic evolutionary design experiments with 7 types of wind bracing elements 

were similar to the ones obtained in the long-term morphogenic evolutionary design 

processes with 2 types of wind bracing elements and the group No.2 (K bracings). 

-far fitness of the design concepts generated by totalistic CA rules was far better 

than the average best-so-far fitness obtained in the evolutionary optimization processes.  

Also, the results produced by totalistic CA rules exhibited significantly smaller variance 

than the results of the evolutionary optimization experiments.  The average performance 

improvement achieved in the long-term morphogenic evolutio

morphogenic evolutionary design experiments with totalistic CA rules.   
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Figure 122. Comparison of the average best-so-far fitness produced in the long-term 
evolutionary optimization experiments (parameterized representations) and morphogenic 
evolutionary design experiments with totalistic CA rules and 7 types of wind bracing 
elements 

Optimal Designs 

The best designs produced in the long-term morphogenic evolutionary design 

experiments with 7 types of wind bracing elements are presented in Table 98.  The fitness 

of the best design was equal to 448,414 lbs.

than the best design concept found in the short-term morphogenic evolutionary design 

  It was the best design of a wind bracing 

system (as far as the total weight of the structural system is concerned) found in the 

design experiments reported in this dissertation.  It was slightly better (by about 180 lbs.) 
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processes (see Table 96).  It also outperformed the best design concept produced in the 

long-term evolutionary optimization experiments (see Table 70 in chapter 7) by about 

36,600

Table 98. Best design concepts of wind bracing systems produced in the long-term 

 lbs., or 7.5 percent, and the best design concept produced in the experiments with 

1D CAs (see Table 43 in chapter 6) by 670 lbs., or 0.15 percent.   

As in the previous subsection, all design concepts presented in Table 98 exhibit 

the fully-braced pattern consisting of K bracings.  The differences among them occur 

only in the configurations of the design embryo.  Here, the performance improvements 

were achieved by an introduction of a single simple X bracing, or a combination of two 

diagonal bracings, into the configurations of the design embryos. 

morphogenic evolutionary design experiments with 7 types of wind bracing elements 

 

 



531 

Thus, these results confirm my previous assumption of evolving/optimizing both 

parts of the generative representation, i.e. the design embryo and the design rule.  When 

the high-performance design rules have been found, the morphogenic evolutionary design 

processes finely tuned the configurations of the design embryos.  This resulted in an 

improved performance of the generated design concepts of wind bracing systems. 

Summary 

In this section, I described the results of both the short-term and the long-term 

morphogenic evolutionary design experiments with the generative representations based 

on one-dimensional CAs.  The number of types of wind bracing elements considered in 

 

The sensitivity analysis conducted in the short-term experiments focused on the 

generative representation param

the experiments was increased to 7 and it included all types of wind bracings shown in

Figure 19. 

eters only.  It included the type of the CA rules and the 

radius of the local neighborhood, i.e. the parameters that had been previously identified 

as having the biggest impact on the quality of generated design concepts (see chapter 6).  

On the other hand, the optimal values of the evolutionary computation parameters were 

assumed based on the results of the short-term morphogenic evolutionary design 

experiments with elementary CAs (see section 8.2.1)  

Both the short-term and the long-term morphogenic evolutionary design 

experiments have shown that the totalistic CA rules produced significantly better results 

than the standard CA rules.  As in the previous section, they also found the optimal 
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solutions much faster (within 700-800 fitness evaluations).  On the other hand, standard 

CA rules produced more interesting structural shaping patterns. 

Figure 123 shows the average performance improvements obtained in the short- 

and long-term morphogenic evolutionary design experiments with 7 types of wind 

bracing elements and compares them to the improvements achieved in the experiments 

with 2 types of wind bracing elements reported in the previous section.  It clearly 

illustrates that the morphogenic evolutionary design processes achieved high levels of 

performance improvement (more than 11 percent).  These results are similar to the ones 

obtained in the experiments with K bracings (see section 8.2.1).  Also, the performance 

improvements achieved in the short-term experiments and the long-term experiments are 

almost identical which means that the optimal solutions were produced in the early stages 

of the morphogenic evolutionary design processes, i.e. the optimal solutions were found 

quickly. 
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Figure 123. Comparison of the average performance improvements produced in the 
morphogenic evolutionary design of wind bracing systems with 2 and 7 types of bracing 
elements in the short-term and long-term experiments 

As in the previous section, I compared the results of the short-term and the long-

evolutionary optimization experiments (see chapter 7).  Figure 124 shows the average 

performance improvements between the morphogenic evolutionary design and the 

evolutionary optimization achieved in the conducted experiments.  It also compares them 

to the corresponding values obtained in the experiments with 2 types of wind bracing 

elements reported in the previous section.  Figure 124 clearly shows that morphogenic 

evolutionary design processes significantly outperformed the evolutionary optimization 

processes.  The obtained performance improvement levels were even higher than in the 

term morphogenic evolutionary design experiments to the results obtained in the 
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case of morphogenic evolutionary design experiments with K bracings.  They exceeded 

12 perc  processes, respectively. ent and 8 percent in the short-term and the long-term

 

Figure 

g elements 

produc

124. Comparison of the average performance improvements produced in the 
morphogenic evolutionary design and evolutionary optimization of wind bracing systems 
with 2 and 7 types of bracing elements in the short-term and long-term experiments 

Finally, Figure 125 shows the performance improvements between the best design 

concepts of wind bracing systems produced in morphogenic evolutionary design 

experiments with 2 and 7 types of wind bracing elements and the best designs generated 

by elementary and one-dimensional CAs (see sections 6.2 and 6.3).  It shows that the 

morphogenic evolutionary design experiments with 7 types of wind bracin

ed only slightly worse designs (by about 0.02 percent) in the short-term 
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experiments.  However, in the long-term experiments they generated better design 

concepts (by about 0.1 percent) than one-dimensional CAs. 

 

Figure 125. Comparison of the performance improvements between the best designs 
produced in the morphogenic evolutionary design experiments with 2 and 7 types of wind 
bracing elements and the best designs generated by elementary and one-dimensional CAs 

In the next section, I will further investigate morphogenic evolutionary design of 

wind bracing systems in tall buildings.  This time, however, 2D cellular automata and 2D 

design embryos will be studied empirically.  Particular emphasis will be put on explicit 

modeling of the local interactions among the structural members using various shapes 

and radii of the local 2D neighborhood. 
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8.2.3. 

section 6.4, the structural systems considered in this 

 1D CAs.  

Hence, generative representations based on two-dimensional cellular automata (2D CAs) 

were proposed in section 4.4.3 to account for these interactions.  Initial studies with 

design concept generators based on 2D CAs were reported in section 6.4.  In this section, 

I will describe the results of morphogenic evolutionary design experiments in which the 

generative representations based on 2D CAs were evolved by evolutionary algorithms. 

As was the case with 1D CAs, two types of 2D CAs rules were investigated: 

standard and totalistic.  In the case of generative representations based on 2D CAs, one 

has to specify not only the radius of the local neighborhood (2D neighborhood in this 

case) but also its shape. As in section 6.4, five shapes of the local neighborhood were 

studied, including Moore, von Neumann, diagonal, north-south, and east-west 

neighb

hows that 2D CAs with 3 possible 

Evolution of 2D Cellular Automata 

So far, morphogenic evolutionary design 

processes involved only generative representations 

based on one-dimensional CAs.  But as I discussed in 

dissertation are inherently two-dimensional.  The planar interactions 

among structural elements cannot be explicitly modeled using

orhoods (see Figure 59).  One length of the radius of the local neighborhood (equal 

to 1) was used in the experiments with standard 2D CA rules while the experiments with 

totalistic 2D CA rules considered two lengths of the radius (equal to 1 and 2). 

The generative representation parameters and their values used in the experiments 

reported in this section are presented in Table 99.  It s
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cell va concept generators 

 The values corresponded to 3 types of wind bracing 

elemen

ing which the design 

concepts of wind bracing systems were produced from the design embryos is presented in 

section 4.4.3. 

Table 99. Generative representation parameters and their values used in the morphogenic 
evolutionary design experiments with 2D CAs 

lues were used similarly to the design experiments with design 

based on 2D CAs (see section 6.4). 

ts: no bracings (empty cells), X bracings, and K bracings.  The design embryos 

had a form of 2D configurations of wind bracing elements and they were initialized 

randomly in all design experiments reported in this section.  The design rules based on 

2D CA rules were applied to these 2D design embryos and iterated 50 times.  Hence, the 

value of the iteration_max parameter was equal to 50.  A detailed description of this type 

of generative representation and the developmental process dur

Representation Parameter Value(s) 
Representation type Cellular automata 

CA dimension 2D 

Number of cell states 3 

CA rule type Standard CA rules, or totalistic CA rules 

Neighborhood radius 1, or 2 

Boundary conditions Periodic 

Shape of the local neighborhood Moore, von Neumann, diagonal, north-south, 
or east-west 

Design embryo initialization Random  
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On the other hand, Table 100 presents the evolutionary computation parameters 

and their values used in the design experiments.  It shows that the values of the 

evolutionary computation parameters were selected based on the results of morphogenic 

evolutionary design experiments reported in the previous sections. 

morphogenic evolutionary design experiments with 2D CAs 

EC Parameter Value(s) 

Table 100. Evolutionary computation parameters and their values used in the 

Evolutionary algorithm Evolution Strategies (ES) 
Generational model Overlapping for ES(µ+λ) 
Population sizes (parent, offspring) (5,25) 
Selection (parent, survival) (uniform stochastic, truncation) 
Mutation rate 0.1 
Crossover (type, rate) (uniform, 0.2) 

t of the steel structure (determined by 
the first-order structural analysis) 

Initia

Fitness Total weigh

lization method Random 
Constraint handling method Death penalty (infeasible designs assigned 0 

fitness) 
Termination criterion 10,000 fitness evaluations 
Number of runs 5 in each experiment 

  

Thus, no sensitivity analyses were conducted in the case of evolutionary 

computation parameters but the most successful values of these parameters determined in 

the previous morphogenic evolutionary design experiments were employed.  Hence, only 

the long-term experiments were conducted with the generative representations based on 

2D CAs and they involved 10,000 fitness evaluations. 
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The obtained results are reported in the following subsections. 

Optimal Type of 2D CA Rules 

In this group of experiments, I investigated the impact of the type of the 2D CA 

rules on the fitness of produced design concepts.  As discussed above, two types of 2D 

CA rules were employed in these experiments: standard 2D CA rules and totalistic 2D 

CA rules.  Figure 126 shows typical results obtained in these experiments.  Specifically, 

the results of two design experiments are presented, each involving the diagonal 

neighborhood and the radius of the local neighborhood equal to 1. 

 

Figure 126. Impact of the type of a 2D CA rule on the average best-so-far fitness of the 
produced design concepts of wind bracing systems 
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The results shown in Figure 126 are similar to the ones observed in the 

morphogenic design experiments with 1D CAs (see for example Figure 119).  

Specifically, morphogenic evolutionary design processes with totalistic 2D CA rules 

produced design concepts of better fitness than the ones with standard 2D CA rules.  At 

the sam

ariances generated in these two morphogenic evolutionary design 

ults with much higher variance than 

totalist

ighborhood 

od and hence was omitted in this figure).  It clearly shows that the 

differences among the curves occurred only in the initial stages of evolution up to 1,500 

e time, totalistic 2D CA rules found the optimal design concepts much faster than 

standard 2D CA rules.  Figure 126 also shows that there were significant differences 

between the v

processes.  Standard 2D CA rules produced res

ic 2D CA rules.  Thus, the results obtained in the morphogenic evolutionary design 

experiments with standard and totalistic 2D CA rules were consistent with my previous 

findings described in sections 8.2.1 and 8.2.2. 

Optimal Shape of Local 2D Ne

In this group of experiments, the impact of the shape of the local neighborhood on 

the average best-so-far fitness of morphogenic evolutionary design processes was 

investigated.  As discussed above, 5 shapes of the local neighborhood were studied 

experimentally, including Moore, von Neumann, diagonal, north-south, and east-west 

neighborhoods. 

Figure 127 illustrates the average best-so-far fitness curves obtained in the 

morphogenic evolutionary design experiments with 4 different shapes of the local 

neighborhood (the east-west neighborhood produced virtually identical results as the 

north-south neighborho

 



541 

fitness evaluations (see the zoom in window on the left hand side in Figure 127).  At the 

end of the long-term design processes all shapes of the local neighborhood produced 

comparable results.   

 

Figure 127. Impact of the shape of the local neighborhood on the average best-so-far 
fitness of design concepts of wind bracing systems produced by morphogenic 
evolutionary design experiments with 2D CAs 

The fastest progress in the initial stages of evolution was achieved when von 

Neumann neighborhood and the north-south neighborhood were used.  On the other hand, 

2D CA rules with Moore neighborhood achieved the smallest progress in the initial part 
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of the morphogenic evolutionary design process but at the end of the run generated the 

overall best results (see the zoom in window on the right hand side in Figure 127).  

However, the differences among the end-of-run fitness produced by various shapes of the 

local n

this group of experiments, the impact of the radius of the 2D local 

neighb

uations the two morphogenic evolutionary design processes produced almost 

identical results in terms of the average best-so-far fitness of generated design concepts 

as well as its variance. 

eighborhood were small and not statistically significant. 

In the next subsection, I will investigate another important parameter defining the 

extent of the interactions in the local neighborhoods, namely the radius of the local 

neighborhood. 

Optimal Radius of Local 2D Neighborhood 

In 

orhood on the average best-so-far fitness of generated design concepts was 

investigated.  As described earlier, two sizes of the radius of the local neighborhood were 

studied for totalistic 2D CA rules. 

Figure 128 shows typical results regarding the impact of the length of the radius 

on the progress of morphogenic evolutionary design processes.  In this case, 2D CA rules 

with the diagonal neighborhood were employed and two lengths of the radius 

investigated, namely 1 and 2.  Figure 128 clearly shows that the differences in the 

performance were limited only to the initial stages of evolution, as was the case with the 

shape of the local neighborhood discussed in the previous subsection.  After about 1,500 

fitness eval
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Figure 128. Impact of the radius of the local 2D neighborhood (here the diagonal 
neighborhood) on the average best-so-far fitness of design concepts of wind bracing 
systems produced by morphogenic evolutionary design experiments with 2D CAs 

Summary 

In this section, I described the results of the long-term morphogenic evolutionary 

design experiments with 2D CAs.  The experiments reported in this section focused on 

modeling the local interactions among structural members using various shapes and radii 

of the local 2D neighborhoods and on testing their impact on the progress of 

morphogenic evolutionary design processes.  Hence, I investigated two important 

generative representation parameters which define the local neighborhoods in 2D CAs: 
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the shape of the local neighborhood and the radius of the local neighborhood.  Besides, 

the  impact of the type of CA rules (standard 2D CAs vs. totalistic 2D CAs) on the 

performance of morphogenic evolutionary  design processes was also  studied. 

The experimental results presented in the first subsection confirmed my previous 

findings (see sections 8.2.1 and 8.2.2) regarding the impact of the type of CA rules on the 

performance of morphogenic evolutionary design processes.  Totalistic 2D CA rules 

outperformed standard 2D CA rules both in producing design concepts of better fitness 

and in 

d be 

identifi

finding these optimal solutions faster.  They also showed significantly smaller 

variance. 

The remaining two subsections investigated the parameters which define the 

shape and size of the local neighborhoods.  The conducted experiments showed that the 

impact of these two parameters on the progress of morphogenic evolutionary design 

processes was limited to the initial stages of evolution.  Specifically, 2D CA rules with 

von Neumann and north-south neighborhoods found better solutions faster than the 2D 

CA rules with other shapes of the local neighborhood.  Similarly, 2D CA rules with a 

longer radius of the local neighborhood found optimal solutions faster than the 2D CA 

rules with the smaller radius.  The average end-of-run results were,  however, comparable 

for all shapes and radii of the local neighborhood and no significant differences coul

ed. 
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8.2.4. Summary 

In this section, I described the results of morphogenic evolutionary design 

experim

tterns which were qualitatively different to the patterns produced in 

the evo

lements used in the design process (simple X bracings or K bracings).  

ents involving various types of generative representations of wind bracing 

systems in tall buildings.  These generative representations were evolved by evolutionary 

algorithms in order to find optimal design rules and optimal design embryos which 

subsequently developed optimal design concepts.  All types of representations considered 

in this section were introduced earlier in chapter 4. 

In the first subsection, I described the results of the morphogenic evolutionary 

design experiments in which the simplest generative representations based on elementary 

CAs were studied.  The number of types of wind bracing elements considered in these 

experiments was limited to 2 only.  Even these simple generative representations 

produced design concepts of very good performance.  They also exhibited interesting 

structural shaping pa

lutionary optimization experiments (see chapter 7).  Initial sensitivity studies 

conducted during the short-term experiments have shown that optimal mutation rates for 

morphogenic evolutionary design porcesses are higher than the ones used in the 

evolutionary optimization procesees.  They also showed that totalistic CAs usually 

produce better design concepts in this problem domain and at the same time find the 

optimal solutions faster than standard CAs.  

The average performance improvements achieved in the short-term and the long-

term experiments varied between 5 and 11 percent depending on the group of wind 

bracing e
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Morph

n 6.2).  They also produced significantly better results than evolutionary 

optimization experiments when the second group of wind bracing elements was 

employed, i.e. K bracings.  They, however, produced inferior results to the evolutionary 

optimization processes when the first group of wind bracing elements was used (simple X 

bracings). 

In the second subsection, I considered a more general design problem in which all 

7 types of wind bracing elements were used in the design processes.  In this case, 

morphogenic evolutionary design  processes employed the generative representations 

based on one-dimensional CAs.  The sensitivity analysis conducted in the short-term 

experiments showed that two generative representation parameters, i.e. the type of CA 

rules and the radius of the local neighborhood, have the biggest impact on the quality of 

generated design concepts.  Both the short-term and the long-term morphogenic 

evolutionary design experiments have shown that totalistic CA rules produced 

significantly better results than standard CA rules.  As in the previous section, they also 

found the optimal solutions much faster (within 700-800 fitness evaluations).  On the 

other hand, standard CA rules produced more interesting structural shaping patterns. 

The performance improvements achieved in the morphogenic evolutionary design 

processes exceeded 11 percent both in the short-term and in the long-term experiments.  

These processes significantly outperformed evolutionary optimization processes (see 

ogenic evolutionary design processes also found better design concepts of wind 

bracing systems than the ones found in the experiments with design concept generators 

(see sectio
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section 7.2.2).  They also generated better design concepts of wind bracings systems than 

the design concepts generators studied in section 6.3. 

In the final subsection, I reported the results of the long-term morphogenic 

evolutionary design experiments with 2D CAs.  The experiments focused on modeling 

the local interactions among structural members using various shapes and radii of the 

local 2D neighborhoods and on testing their impact on the progress of morphogenic 

c 2D CA rules 

produce better design concepts than standard 2D CA rules in this problem domain and 

they find these optimal solutions faster.  Thus, these results were consistent with the 

findings reported in the previous subsections.  The experiments also showed that the 

impact of the shape and the radius of the local neighborhood is limited to the initial stages 

of evolution.   The end-of-run results were comparable for all shapes and radii of the 

local neighborhood. 

In the experimental part of this dissertation, I also studied the generative 

representations of wind bracing systems based on multiple 1D CAs (see section 4.4.2).  I 

conducted several morphogenic evolutionary design experiments to test these types of 

generative representations.  The obtained results were,  however, significantly inferior to 

other ty

evolutionary design processes.  The experiments showed that totalisti

pes of generative representations discussed in this section and hence not included 

in this chapter.  These types of generative representations turned out to be too disruptive 

to create structural shaping patterns of good performance.  Besides, the morphogenic 

evolutionary design processes involving these representations exhibited very high 

variance. 

 



548 

In the next section, I will scale up the difficulty of the design problem and 

consider morphogenic  evolutionary design of the entire steel structural systems in tall 

buildings. 

8.3. Morphogenic Evolutionary Design of the Entire Steel Structures 

In this section, I will empirically investigate the 

context of the entire steel structural systems in tall 

buildings.  As before, the experiments reported in this 

section were divided into two groups: the short-term experiments and 

the long-term experiments.  During the short-term experiments an 

extensive search of the evolutionary computation parameters and the generative 

representation parameters was conducted in order to find their optimal values.  The 

optimal values of these parameters were later used in the long-term experiments. 

The obtained results are reported in the following subsections. 

Short-term Morphogenic Evolutionary Design 

In this group of experiments, the short-term 

morpho

ted in chapter 7, the columns were kept the same 

during the entire morphogenic evolutionary design processes.  Table 101 shows the 

morphogenic evolutionary design processes in the 

genic evolutionary design processes of the entire 

steel structural systems in tall buildings were conducted.  

In the experiments, 7 types of wind bracing elements, 2 

types of beams, and 2 types of supports were considered.  As in the 

experiments repor
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parameters of the problem investigated in this subsection.  Here, 30-story buildings with 

6 bays were considered.  The heights of stories and bay widths were exactly the same as 

in the experiments reported in previous sections and equal to 14 feet and 20 feet, 

respectively. 

Table 101. Problem parameters and their values used in the short-term morphogenic 
evolutionary design of the entire steel structural systems in tall buildings 

Problem Parameter Value(s) 
Problem type Design of the entire steel structural system in a 

tall building 

Number of stories 30 

Number of bays 6 

Bay width 20 feet (6.01 m) 

Story

Types of bracing elements No, Diagonal \, Diagonal /, K, V, Simple X, and X 

 height 14 feet (4.27 m) 

Distance between transverse systems 20 feet (6.01 m) 

Types of beam elements Pinned-Pinned, and Fixed-Fixed 

Types of column elements Fixed-Fixed (only) 

Types of supports Pinned and Fixed 
  

The evolutionary computation parameters and their values are presented in Table 

102.  As in the experiments reported in the previous sections, ES with the overlapping 

generational model, i.e. ES(µ+λ), were employed.   Four combinations of parent and 

offspring population sizes were studied.  Also, nine combinations of mutations and 

crossover rates were investigated to find their optimal rates.  The experiments were 
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repeated 30 times for each combination of mutation and crossover rates, using a different 

value of the random seed each time.  As before, the fitness of the generated design 

concepts was determined by the total weight of the steel structural system and calculated 

by the first-order structural analysis.   

Table 102. Evolutionary computation parameters and their values used in the short-term 
morphogenic evolutionary design of the entire steel structural systems 

EC Parameter Value(s) 
Evolutionary algorithm Evolution Strategies (ES) 
Generational model Overlapping for ES(µ+λ) 
Population sizes (parent, offspring) (1,25), (1,125), (5,25), or (5,125) 
Selection (parent, survival) (uniform stochastic, truncation) 
Mutation rate 1/L, 0.025, 0.1, 0.3, or 0.5 
Crossover (type, rate) (uniform, 0), or (uniform, 0.2) 
Fitness Total weight of the steel structure (determined by 

the first-order structural analysis) 
Initialization method Random 
Constraint handling method Death penalty (infeasible designs assigned 0 

fitness) 
Termination criterion 1,000 fitness evaluations 
Number of runs 30 in each experiment 

 

equal to 1. 

 

The generative representation parameters and their values are presented in Table 

103.  It shows that both standard CA rules and totalistic CA rules were studied in the 

experiments reported in this section.  Unlike the experiments described in the previous 

section, only one length of the radius of the local neighborhood was investigated, i.e. the 

radius 
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Table 103. Generative representation parameters and their values used in the short-term 
morphogenic evolutionary design of the entire steel structural systems 

Representation Parameter Value(s) 
Representation type Cellular automata 

CA dimension 1D 

CA rule type Standard CA rules, or totalistic CA rules 

Neighborhood radius 1 

Boundary conditions Periodic 

Design embryo location Bottom 

Number of cell states 7 (wind bracings), and 2 (beams) 

Design embryo initialization Random 
  

t of the mutation rate on the progress of evolution are presented in 

Figure 129.  It shows the results of the experiments in which the generative 

representations based on standard CA rules were used.  The rate of the crossover operator 

was equal to 0.2. 

Optimal Mutation and Crossover Rates 

The sensitivity analysis conducted during the short-term morphogenic 

evolutionary design experiments was aimed to determine the optimal rates of mutation 

and crossover operators as well as parent and offspring population sizes.  Typical results 

regarding the impac
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Figure 129. The influence of the mutation rate on the fitness of the design concepts 
generated in the short-term morphogenic evolutionary design experiments with the en
steel structural systems 

tire 

that the best evolutionary progress was achieved when the 

mutatio

Figure 129 shows 

n rate was equal to 0.1.  Similar results were obtained in the design experiments 

with the generative representations with totalistic CA rules. The impact of the crossover 

rate was insignificant on the average best-so-far fitness of the produced design concepts.  

In some cases, better results were produced when the rate was equal to 0.2 and sometimes 

the best evolutionary progress was achieved when the crossover operator was not applied 

at all. 

 



553 

Optimal Population Sizes  

In another group of experiments, the impact of the sizes of parent and offspring 

populations on the fitness of produced design concepts was investigated.  As shown in 

Table 102, 4 combinations of parent and offspring population sizes were considered: 

ES(1+5), ES(1+125), ES(5+25), and ES(5+125).  Figure 130 shows typical results 

obtained in these experiments.  Here, the generative representations based on totalistic 

CAs were used with these four combinations of parent and offspring population sizes.  

All other evolutionary computation parameters, i.e. mutation and crossover rates, were 

the same in the experiments shown in this figure.  

Figure 130 clearly shows that the best results were produced with the parent 

population size equal to 5 and the offspring population size equal to 25.  On the other 

hand, the worst results were produced by the ‘greedy’ ES(1+25) in which only the best 

individual in the population survives to the next generation.  Thus, ES(5+25) were 

subsequently used in the long-term morphogenic evolutionary design of the entire steel 

structural systems. 
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Figure 130. The impact of the parent and offspring population sizes on the fitness of the 

entire steel structural systems 

Optimal Type of CA rules 

design concepts generated in the short-term morphogenic evolutionary design of the 

The sensitivity analysis conducted during the short-term morphogenic 

evolutionary design experiments also involved the generative representation parameters. 

Specifically, the impact of the type of the CA rules, i.e. standard vs. totalistic, was 

investigated.  Figure 131 presents typical experimental results produced by standard CA 

rules and totalistic CA rules.  It clearly shows that totalistic CA rules outperformed 

standard CA rules in this problem domain.  They also produced the optimal design 
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concepts of the entire structural systems faster than standard CA rules.  The results shown 

in Figure 131 were produced in morphogenic evolutionary design processes in which 

ES(5+25) was employed and the mutation and crossover rates were equal to 0.1 and 0.2, 

respectively.  The difference between the average best-so-far fitness after 1,000 fitness 

evaluations between totalistic CA rules and standard CA rules was equal to 35,000 lbs., 

or 6.2 percent.  The results shown in Figure 131 are consistent with the findings reported 

in the previous section in which the morphogenic evolutionary design of a wind bracing 

system was considered. 

 

Figure 131. The impact of the type of the CA rule on the fitness of the design concepts 
e steel structural 

systems 
generated in the short-term morphogenic evolutionary design of the entir
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Performance Improvement 

Figure 132 compares the average best-so-far fitness curves produced in the 

morphogenic evolutionary design processes (standard CA rules and totalistic CA rules) to 

the results obtained in the evolutionary optimization experiments.  It shows that both 

types of the generative representations significantly outperformed the parameterized 

representations in this problem domain.  The average end-of-run fitness of design 

concepts produced by totalistic CA rules was equal to 526,592 lbs.  It was more than 

57,000 lbs., or 9.7 percent, better than the average end-of-run fitness produced by the 

parameterized representations.  Also, standard CA rules generated, on average, better 

design concepts than the parameterized representations by almost 35,000 lbs., or 6.6 

percent. The average performance improvement of the morphogenic evolutionary design 

processes in the short-term experiments was equal to 68,300 lbs. (11.5 percent) and 

59,050 lbs. (9.5 percent) for totalistic CA rules and standard CA rules, respectively.  

Thus, it was comparable to the average performance improvements achieved in the short-

term morphogenic evolutionary design of wind bracing systems (K bracings and 7 types 

of wind bracings) reported in the previous section. 
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Figure 132. Comparison of the average best-so-far fitness produced in the evolutionary 
optimization experiments (parameterized representations) and morphogenic evolution
design experiments with standard CA rules and totalistic CA rules 

ary 

Long-term Morphogenic Evolutionary Design 

The short-term experiments with 1D CAs showed 

that generative representations with both standard and 

totalistic CA rules outperformed parameterized

representations of the entire steel structural systems in tall 

buildings.  The performance of both types of CA rules was further 

investigated in the long-term experiments and compared to the results 
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of the 

om the morphogenic evolutionary design of wind bracings systems 

and the short-term morphogenic evolutionary design of the entire steel structural systems. 

long-term experiments with parameterized representations.  Hence, the same 

generative representation parameters were used in the long-term experiments as the ones 

used in the short-term experiments (see Table 103).  Evolutionary computation 

parameters used in the long-term experiments involved ES(5+25), the mutation rate 0.1, 

and the crossover rate equal to 0.2. 

Figure 133 compares the average best-so-far fitness curves obtained in the two 

long-term morphogenic evolutionary design experiments with standard and totalistic CAs 

and compares them to the results produced in the long-term evolutionary optimization 

experiments.  It clearly shows that totalistic CA rules also outperformed standard CA in 

the long-term processes by about 11,500 lbs., or 2.1 percent.  Both long-term 

morphogenic evolutionary design processes were significantly better than the long-term 

evolutionary optimization process (parameterized representations).  The average fitness 

of design concepts after 10,000 evaluations produced using totalistic CA rules was equal 

to 531,830 lbs. compared to 621,425 lbs. obtained in the evolutionary optimization 

experiment.  Also, standard CA rules outperformed the parameterized representations by 

more than 78,000 lbs., or 12.5 percent.  Again, these results are consistent with the 

previous findings fr
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Figure 

ionary computation parameters and 

one generative representation parameter (the type of the CA rules).   

133. Comparison of the average best-so-far fitness of design concepts of the entire 
steel structural systems produced in the long-term morphogenic evolutionary design 
experiments (standard CA rules and totalistic CA rules) and the long-term evolutionary 
optimization experiments (parameterized representations) 

 

Summary 

In this section, I described the results of both the short-term and the long-term 

morphogenic evolutionary design experiments with the generative representations of the 

entire steel structural systems in tall buildings.  The sensitivity analysis conducted in the 

short-term experiments focused on the optimal evolut
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In the short-term experiments, I identified the optimal rates of mutation (equal to 

0.1) and the sizes of parent and offspring populations (5 and 25, respectively).  The 

experiments with totalistic and standard CA rules showed that the former significantly 

outperformed the latter both in the short-term and in the long-term experiments.  They 

also found the optimal solutions much faster. 

Figure 134 shows the average performance improvements obtained in the short- 

and long-term morphogenic evolutionary design experiments with the entire steel 

structural systems.  It clearly illustrates that the morphogenic evolutionary design 

processes achieved high levels of performance improvement (almost 20 percent in the 

the 

2).  

Also, the performance improvements achieved in the short-term experiments and the 

ents are almost identical for the totalistic CA rules which means that 

the optim

case of totalistic CA rules).  These results were even  better than the ones obtained in 

experiments with K bracings and 7 types of wind bracings (see sections 8.2.1 and 8.2.

long-term experim

al solutions were produced in the early stages of the morphogenic evolutionary 

design processes.  On the other hand, standard CA rules exhibited a steady progress and 

ultimately produced the performance improvement levels close to the ones achieved by 

totalistic CA rules. 
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Figure 134. Comparison of the average performance improvements produced in the 
morphogenic evolutionary design of the entire steel structural systems with standard and 
totalistic CA rules in the short-term and long-term experiments 

As in the previous section, I compared the results of the short-term and the long-

term morphogenic evolutionary design experiments to the results obtained in the 

evolutionary optimization experiments.  Figure 135 shows the average performance 

improvements between the morphogenic evolutionary design and the evolutionary 

optimization achieved in the conducted experiments.  It clearly shows that both 

morphogenic evolutionary design processes significantly outperformed the evolutionary 

optimization processes both in the short-term and in the long-term experiments.  The 

obtained performance improvement levels were higher than any achieved in the 

experiments reported in this dissertation.  They exceeded 16 percent and 14 percent in the 

short-term and the long-term processes, respectively. 
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Figure 135. Comparison of the average performance improvements produced in the 
morphogenic evolutionary design and the evolutionary optimization of the entire steel 
structural system with standard and totalistic CA rules in the short-term and long-term 
experiments 

8.4. Summary 

In the design experiments reported in this chapter, I experimentally investigated 

the new engineering design paradigm inspired by the developmental processes occurring 

in nature (generative representations) and the processes of evolution (evolutionary 

algorithms).  It was named morphogenic evolutionary design (see chapter 4).   

The experimental results reported in this chapter constitute the third and last stage 

of the Empirical Performance Validation process (see section 3.6.3) in which I 

investigated the integrated components, i.e. the generative representation component and 

the evolutionary computation component, of Emergent Engineering Design.  I have 

attempted to build confidence in the usefulness of the integrated components of EED by 
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reporting and discussing the results of a large number of morphogenic evolutionary 

design experiments. 

In the first section of this ch riteria of novelty and optimality of 

steel structural systems in tall buildings which were previously defined in chapters 6 and 

7).  As before, I also revisited the fundam mental 

research hyp idered in this 

dissertation. 

 parameters.  The results showed that the 

optimal values found here were different to

e, morphogenic evolutionary design 

processes generated interesting structural shaping patterns which were qualitatively 

different to the patterns produced in the evolutionary optimization processes.   

apter, I restated c

ental research question and the funda

othesis and refined them in the context of design problems cons

In the second section of this chapter, I reported the results of the morphogenic 

evolutionary design of wind bracing systems.  In three subsections, I investigated 

morphogenic evolutionary design processes with different types of generative 

representations: based on elementary CAs, based on 1D CAs, and based on 2D CAs.  I 

conducted extensive sensitivity analyses in the short-term morphogenic evolutionary 

design experiments to determine the optimal values of the evolutionary computations 

parameters and the generative representations

 the ones identified in the evolutionary 

optimization experiments.  They also showed that the morphogenic evolutionary design 

processes achieved high level of performance improvement.  They produced better design 

concepts than design concept generators studied in chapter 6.  Also, in most of the cases 

(with one exception only), they outperformed evolutionary optimization processes in 

optimizing wind bracing systems.  At the same tim
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In the third section of this chapter, I investigated morphogenic evolutionary 

design of the entire steel structural systems in tall buildings.  I showed empirically that 

the integrated components of EED performed well in this complex problem domain and 

achieved very high levels of performance improvement which exceeded 20 percent. 

In the next chapter, I will discuss the final stage of the validation process of EED, 

namely Theoretical Performance Validation.  I will also describe the contribution of this 

dissertation to the field of engineering design.  Finally, I will briefly discuss the 

limitations of the proposed approach as well as the most promising directions of future 

research. 

 

 



 

9. CLOSURE 
 
 
 
 

“By wisdom a house is built and through understanding it is 
established, through knowledge its rooms are filled with 
rare and beautiful treasures.” 

(King Solomon, Proverbs, 24:3) 
 

In this dissertation, I proposed, presented, developed, and tested a new design 

method, called Em

g Design to a closure by demonstrating that I have accomplished 

the fundamental research objective of this dissertation and have answered the research 

questions posed (see chapter 3). 

I will do it by first showing that new scientific knowledge has been added to the 

field of engineering design (see section 9.1).  The Validation Square methodology will be 

used to demonstrate that.  Next, I will describe the contributions of the research presented 

in this dissertation by discussing the new knowledge added to the field of engineering 

design (see section 9.2.1), showing its originality and significance (see section 9.2.2), and 

presenting research deliverables (see section 9.2.3).  

ergent Engineering Design, which uses models based on complex 

systems and inspired by the processes occurring in nature to represent major phases of 

engineering design processes.  The objective of this chapter is to bring the development 

of Emergent Engineerin
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Furthermore, I will discuss the limitations of Emergent Engineering Design (see 

section 9.3) and suggest most promising directions of the future research (see section 

9.4).  Finally, in section 9.5, I will provide concluding remarks. 

9.1. Research Validity   

In this section, I will again use the Validation Square methodology to show that 

Emergent Engineering Design adds new knowledge to the field of engineering design.  

First, in section 9.1.1, I will revisit the research questions and the research hypotheses 

which were posed in section 3.3.  Next, in section 9.1.2, I will provide an overview of the 

procedure for validating Emergent Engineering Design.  In sections 9.1.3 through 9.1.6, I 

will report the results of the four stages of the validation process (described in the 

previous chapters of this dissertation) and demonstrate that new knowledge has been 

added to the field of engineering design. 

9.1.1. Revisiting the Research Questions and Hypotheses 

The validation of new scientific knowledge in the context of Ph.D. research rests 

on three major elements (Pedersen 1999): 

1. Answering the posed research questions 

2. Conformity of the answers with the research hypotheses 

3. Acceptability of the answers from the Ph.D. requirement perspective  

Hence, I will begin with revisiting the fundamental research question and the 

fundamental research hypotheses of this dissertation.  
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As discussed in section 3.3, the fundamental research question has been divided 

into 4 research questions in order to facilitate the development of the proposed method in 

a more structured way.  The research questions and the corresponding hypotheses are 

presented below. 

Ho

Emergent Engineerin

engineering design (i.e

evaluation) are modele

w can one construct

would support devel

 

Research Question 1 (Represent): 

Based on the existing knowledge on how to represent engineering systems;  

what mechanisms and models can be used to produce novel designs? 

Research Hypothesis 1 (Represent): 

Evolutionary design and complex systems provide a framework for defining 

generative representations, i.e. representations of engineering systems based on 

simple programs, which can successfully produce novel designs. 
Fundamental Research Question 

ficient optimization? 

Fundamental Research Hypothesis 

g Design, a design method in which all major elements of 

. design representation, actual design process, and design 

d as complex systems, can effectively produce novel designs 

and efficiently optimize them. 

 an effective method for designing engineering systems that 

opment of novel designs and their ef
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Research Question 2 (Decompose): 

problems; how can a decomposition of an engineering system be defined and how can 

Cooperative coevolutionary models provide an efficient framework for a 

cooperative coevolutionary algorithms. 

One o

engineering design 

s of a design process; 

ustness of designs? 

Knowing that complex engineering design problems are usually decomposed into sub- 

a decomposed system be effectively designed? 

Research Hypothesis 2 (Decompose): 

decomposition of complex design problems and conducting design processes using 

Research Question 3 (Generate and Optimize): 

f the major objectives of almost all engineering design processes is achieving 

optimality; what mechanisms should be used to efficiently optimize engineering 

designs? 

Research Hypothesis 3 (Generate and Optimize): 

Evolutionary computation provides a framework for conducting 

processes and optimizing engineering designs. 

Research Question 4 (Evaluate): 

Evaluation of design concepts is one of the most important stage

how can the evaluation process be performed to accomplish rob

Research Hypothesis 4 (Evaluate): 

Competitive coevolutionary models are suitable for adaptive testing and evaluation of 

engineering design concepts and can successfully increase robustness of generated 

designs.  
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The relationship of the phases of Emergent Engineering Design to the four 

research questions and hypotheses is presented in Figure 136. 

 

Figure 136. Phases of Emergent Engineering Design and their relationship to the four 
research questions and hypotheses 
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In this dissertation, I specifically addressed the research questions No.1 and No.3.  

The re

ion process and its relationship to the chapters 

of this 

9.1.2. Validating New Scientific Knowledge – an Overview 

The process of answering the research questions posed is directly related to the 

process of validating the corresponding hypotheses.  Hence, in order to answer the 

fundamental research question, each of the supporting hypotheses, i.e. the hypotheses 

No.1 and 3, had to be validated.  The validation methodology used in this dissertation and 

based on the Validation Square was discussed in section 3.6.  The four quadrants of the 

square shown to the right represent four steps of the validation 

process, i.e. Theoretical Structural Validity, Empirical 

Structural Validity, Empirical Performance Validity, and 

Theoretical Performance Validity.  Each of these steps was 

applied to test the sup

results of the validation pro he relationships between the 

chapters of this dissertation and places where the results of each of the steps of the 

search questions No.2 and 4 will become part of the future work, as discussed in 

section 9.3.  As stated earlier, the validation of the research in the context Ph.D. 

requirements is based on answering the research questions according to the hypotheses in 

a satisfactory manner.  In this dissertation, the answers correspond to the research 

hypotheses and the hypotheses were tested for validity according to the process described 

in section 3.6.  An overview of the validat

dissertation is presented in the following section. 

porting hypotheses.  The following subsections summarize the 

cess of EED.  Figure 137 shows t

validation process were reported. 
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Figure 137. Overview of the relationships between the chapters of this dissertations and 
places where the hypotheses were tested 
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9.1.3. Testing

Theore

As discussed i s 

constitutin h

are integrated epting TSV we can assert that the results produced 

by the design 

input the meth

The ‘co

was demonstr

consistency of onstrating how the components were integrated 

togethe

as 

demonstrated in the following way: 

• TSV of the generative representation component was demonstrated in 

sections 2.1.3 (Design Representations), 2.2 (Cellular Automata), and 2.3 

(Complex Systems). 

• TSV of the evolutionary computation component was demonstrated in 

section 2.1 in general and in section 2.1.7 in the specific context of 

structural engineering applications. 

The internal consistency of EED was demonstrated in chapters 4 and 5.  Chapter 4 

showed how the generative representation and evolutionary computation components are 

 the Theoretical Structural Validity 

tical Structural Validity (TSV) was the first stage of the validation process.  

n section 2.5.2, it is based on ‘correctness’ of the individual component

g t e design method and the internal consistency of the way the components 

in the method.  By acc

method are obtained in a correct and consistent manner, i.e. for a valid 

od produces a valid output. 

rrectness’ of the individual components of Emergent Engineering Design 

ated by providing extensive literature references while the internal 

 EED was shown by dem

r and presenting flow-chart representations of the method. 

Specifically, TSV of the individual components of EED, i.e. the generative 

representation components and the evolutionary computation component, w
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integrated. h

them with sep

components. 

Thu b

consistency of

Theoretically ly Valid. √ 

9.1.4. Testing the Empirical Structural Validity 

Empirical Structural Validity (ESV) formed the second stage of the validation 

process.  As discussed in section 2.5.2, ESV is based on accepting the appropriateness of 

the example problems that are used to verify the performance of the method.   

This was done in the following way: 

ilar to the problems 

hapter 2.  The overviews 

eas discussed there. 

  C apter 5 described in detail all phases of the design method and illustrated 

arate flow-charts emphasizing the information flow among and within its 

s, y taking TSV of the hypothesized components of EED and the internal 

 the proposed method, I can assert that Emergent Engineering Design is 

Structural

• By demonstrating that the example problems are sim

for which EED components are generally accepted.   

This was achieved by providing state-of-the-art overviews of all 

components of the proposed design method in c

discussed current research developments in these fields from the 

perspective of their relevance to engineering design.  Moreover, each 

section in chapter 2 contained a subsection presenting structural 

engineering applications, if any, of the main id

• By showing that the example problems represent the actual problems for 

which EED is intended. 
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The justification for the choice of the two example problems was 

presented in section 2.4.4.  Also, chapter 4 demonstrated that the selected 

• ng that the data associated with the example problems can 

xample problems investigated in this 

eering Design, I assert that EED is Empirically Structurally Valid. √ 

9.1.5. Testing the Empirical Performance Validity 

Empirical Performance Validity (EPV) formed the third stage of the validation 

d on accepting that EED produces useful results for the selected 

exampl

 wind bracing systems and the entire steel 

structural system in tall buildings was demonstrated in chapter 6. 

problems exhibit the properties of problems for which EED is intended.   

Documenti

support a conclusion. 

As discussed in section 2.4.4, the e

dissertation were considered as one of the most complex and time-

consuming design tasks in structural engineering.  Therefore, they were of 

suitable complexity for the demonstration of the usefulness of the 

proposed design method. 

Given that the example problems of conceptual design of wind bracing systems 

and conceptual design of the entire steel structural systems are appropriate for testing 

Emergent Engin

process.  EPV is base

e problems and that the components of EED contribute positively to this 

usefulness.  EPV was demonstrated in the following way: 

• The usefulness of the generative representations component in generating 

novel design concepts of
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• The usefulness of the evolutionary computation component in optimizing 

s was demonstrated in chapter 7. 

g them was demonstrated in 

chapter 8. 

Having demonstrated that Emergent Engineering Design is useful in producing 

novel design concepts and efficiently optimizing them, and that the components of the 

EED positively contribute to this usefulness, I can assert that EED is useful at least for 

the example problems.  Hence, I can assert that EED has Empirical Performance 

Validity. √ 

9.1.6. Testing the Theoretical Performance Validity 

nd the example problems, i.e. it 

is more general.  TPV of EED will be demonstrated as follows. 

The confidence that Emergent Engineering Design can produce useful results 

beyond the example problems, i.e. the conceptual design of wind bracing systems and  

the conceptual design of the entire steel structural systems in tall buildings, will be build 

based on the results of the previous validation steps, namely: 

• TSV of EED demonstrated that the components of EED are applicable 

beyond the example problems (see sections 2.1 and 2.2). 

design concepts of wind bracing systems and the entire steel structural 

system in tall building

• The usefulness of the integrated components of EED in producing novel 

design concepts and efficiently optimizin

Theoretical Performance Validity (TPV) is the last stage of the validation process.  

It is based on building confidence that EED is valid beyo
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• ESV showed the selected example problems represent a more general class 

of problems for which EED is intended. 

• EPV demonstrated that EED was at least useful for the selected example 

problems. 

The final acceptance that EED has Theoretical Performance Validity requires, 

however, a ‘leap of faith’ (Pedersen et al. 2000). √ 

TPV concludes the validation of the hypotheses of this dissertation and hence, the 

answering of the research questions posed.  Thus, it can be accepted that new scientific 

knowledge has been added to the field of engineering design.  I can also assert that I have 

accomplished the ultimate objective of this dissertation, i.e. I have developed an 

engineering design method based on models of complex systems that provides a 

conceptually coherent framework for producing novel designs and their efficient 

optimization. √ 

The originality and significance of Emergent Engineering Design will be 

9.2. Contributions 

butions this dissertation makes to the field of 

enginee

discussed in the following section. 

This section outlines the contri

ring design.  The contributions from the successful development and 

implementation of the proposed method of engineering design can be expressed in terms 

of its validity, usefulness, and novelty.    
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9.2.1. Contributions to the Field of Engineering Design 

The major contributions of Emergent Engineering Design to the field of 

enginee

• It introduces a design method that is inspired by the processes occurring in 

nature. All the processes involved in generation, evolution, and evaluation of 

engineering designs model processes occurring in nature. 

• It emphasizes both important aspects of the design process, i.e. novelty and 

.  

 

and the foundations it is built on is shown in Figure 138. 

ring design are listed below: 

• It establishes an integrated and conceptually coherent framework for 

engineering design based on complex systems. 

optimization

• It proposes novel ways of representing engineering systems based on cellular 

automata. 

A graphical representation of the contributions of Emergent Engineering Design
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Figure 138
based on 

9.2.2. Origin

As wa

approaches to 

them were foc  of engineering 

. Contributions of Emergent Engineering Design and the foundations it is 

ality and Significance 

s discussed in sections 2.1.3 and 2.4.2, there have been suggested many 

develop methods for engineering design.  However, in my opinion, most of 

used exclusively on only one of the two important aspects
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design, i.e

developed and

Anothe

assembled from

the design pr

integrated app

Yet an

engineering de cesses 

occurring in nature can be successfully used to represent engineering systems and design 

processes.  Thus, this dissertation builds a bridge between design by nature and 

engineering design. 

ergent Engineering Design are discussed in the next section. 

 of this research.  

The m

. either on creativity, or on optimization.  In this dissertation, I proposed, 

 implemented a design method which addresses both of these aspects. 

r issue is that many of the proposed design methods tended to be 

 conceptually diverse components and thus not giving a coherent view of 

ocess.  On the contrary, Emergent Engineering Design represents an 

roach to engineering design based on models of complex systems. 

other significant contribution of this dissertation is a demonstration that 

sign processes can be greatly enhanced by nature.  Models of pro

The generality of models, procedures, and algorithms proposed in this dissertation 

makes them well-suited for a wide range of engineering design applications.  Some of the 

potential applications of Em

9.2.3. Research Deliverables 

The ultimate dissertation objective was stated in section 3.3.  Hence, the design 

method based on models of complex systems is the major deliverable

ethod has been implemented in a design support tool called Emergent Designer.  

Thus, apart from the major deliverable, the dissertation produced the following results 

that can be divided into four groups: 
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1. A consistent system of models, procedures, and algorithms regarding engineering 

design with a strong emphasis on both novelty and optimization. 

2. A class of representations based on models of complex systems of both engineering 

esses inspired by the processes occurring in nature. 

3. 

9.3. Limitations   

Extensive empirical studies conducted in this dissertation allowed me to identify 

several limitations of the proposed design method and of the generative representations 

proposed in this dissertation.  They are presented below: 

1. The sizes of cellular automata rules spaces grow rapidly when the number 

of cell values increases (e.g. in two-dimensional CAs).  Thus, the 

representations proposed in this dissertation, particularly the ones based on 

standard CA rules, might not be satisfactory for design problems in which 

attributes have many possible values, e.g. more then 10.  For these types of 

problems, more sophisticated representations may be necessary (see the 

discussion in the next section describing the future work).  

systems and design proc

Emergent Designer, a design support tool implementing the proposed design 

method. 

4. Experimental results in the domain of steel structural systems in tall buildings that 

proved feasibility, novelty, and potential practical value of the proposed design 

method. 
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2. The proposed generative representations based on elementary and one-

dimensional CAs effectively reduce the sizes of the design spaces and bias 

the search process n of design concepts exhibiting 

interesting patterns.  In some  however, this reduction of the search 

space may be disadvantageous and optimal design concepts may be lost 

systems composed of simple X bracings presented in section 8.2.1). 

n be extended in many ways.  First, the 

remain ition and 

design evaluation, will be studied and answers to the research questions presented in 

section 3.3 ll

Another potential area of further development of Emergent Engineering Design is 

in the exploration of various types of simple programs, including L-systems, mobile 

automata,  lar automata (e.g. non-uniform CAs, 

continu

ious section, the generality of this method makes 

it well-suited for a wide range of engineering design problems.  Thus, Emergent 

Engineering Design will be applied to other types of discrete design problems, e.g. design 

of space structures, or design of bridges.  It offers also a great potential for continuum 

towards generatio

 cases,

because they simply cannot be generated by these representations (see for 

example the results of morphogenic evolutionary design of wind bracing 

9.4. Future Work   

The work presented in this dissertation ca

ing two phases of the engineering design process, i.e. design decompos

wi  be sought. 

and more elaborate versions of cellu

ous CAs), to model engineering systems and design processes.   

Finally, as mentioned in the prev
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design problems, e.g. topology optimization of plates or shell structures.  In this case, it 

can be easily combined with traditionally used design evaluation methods based on finite 

y

is e th  o En eeri  b ntinued 

and will provide some tion a as new questi blems for other 

tu sp  off ous 

n dis ne

s potentia d optimality 

will be successfully used to better des rld we inhab

element anal sis. 

9.5. Concluding Remarks 

It my hop at the work

 inspira

n Emergent 

s well 

gin ng Design will

ons and pro

e co

researchers working in this field.  I believe that na re in ired methods er enorm

potential for many fields of engineeri g and other cipli s.  They may introduce a new 

paradigm of engineering design in which nature’

ign the wo

l for novelty an

it. 

 



 

APPENDIX A 
 
 
 
 

In this appendix, a chronological overview of the major applications of 

evolutionary computation in structural design is presented.   The overview begins with 

the initial applications of evolutionary algorithms in sizing optimization of simple truss 

systems in the mid 1980’s and provides a summary of major developments in this area 

until now.  A detailed discussion of the field and its most promising future research 

directions was presented earlier in section 2.1.7. 

The applications are classified with respect to several criteria, including: 

• application domain,  

• representation type,  

• evolutionary algorithm,  

• fitness function, and  

• methods of handling constraints.  

A detailed discussion on the importance of these criteria for structural design 

applications was provided in chapter 2. 
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Reference Domain Problem Represen-
tation 

EA 
used 

Fitness 
function 

Con-
straint-

handling 
method 

(Hoeffler et al. 
1973) 

Shape 
optimization 

Location of 
joints in truss 
systems 

Fixed-length, 
real-valued 
vectors 

ES 
Single objective, 
weight 
minimization 

N/A 

(Lawo and 
Thierauf 1982) 

Sizing 
optimization 

Planar frame 
under 
earthquake 
loading 

Fixed-length, 
real-valued 
vectors 

ES 
Single objective, 
weight 
minimization 

N/A 

(Goldberg and 
Samtani 1986) 

Sizing 
optimization 

Cross-sections 
in planar truss 
systems 

Fixed-length, 
binary strings GA 

Single objective,  
weight 
minimization 

Penalty 
function 

(Hajela 1990)  Sizing 
optimization 

Cross-sections 
in planar truss 
systems 

Fixed-length, 
binary strings GA 

Single objective,  
weight 
minimization 

N/A 

(Sandgren et al. 
1990) 

Continuum 
TOD 

Planar cantilever
plates 

Fixed-length, 
2D binary arrays 
(bitarrays) 

GA 
Single objective,  
weight 
minimization 

N/A 

(Deb 1991) Sizing 
optimization Welded beams Fixed-length, 

binary strings GA 
Single objective,  
weight 
minimization 

N/A 

(Jenkins 1991b) 
and (Jenkins 
1991a) 

Continuum 
SO 

Shape of 
structural 
members 

Fixed-length, 
2D binary arrays 
(bitarrays) 

GA 
Single objective,  
weight 
minimization 

Penalty 
function 

(Shankar and 
Hajela 1991) 

Discrete 
TOD 

Planar truss 
systems 

Fixed-length, 
binary strings GA 

Single objective, 
weight 
minimization 

N/A 

(Hajela 1992) Sizing 
optimization 

Cross-sections 
in planar truss 
systems 

Fixed-length, 
binary strings GA 

Single objective,  
weight 
minimization 

N/A 

(Hajela and Lin 
1992) 

Sizing 
optimization 

Planar truss 
systems 

Fixed-length, 
binary strings GA Multiobjective, 

min-max  N/A 

(Jensen 1992) Continuum 
TOD 

Planar cantilever
plates 

Fixed-length, 
2D binary arrays 
(bitarrays) 

GA 
Single objective,  
weight 
minimization 

N/A 

(Rajeev and 
Krishnamoorthy 
1992) 

Sizing 
optimization 

Cross-sections 
in planar trusses

Fixed-length, 
binary strings GA 

Single objective,  
weight 
minimization 

N/A 

(Richards and 
Sheppard 1992) 

Continuum 
SO 

Shape of 
structural 
members 

Fixed-length, 
binary strings GA 

Single objective,  
weight 
minimization N/A 

(Sandgren and 
Jensen 1992) 

Continuum 
TOD 

Planar cantilever
plates 

Fixed-length, 
2D binary arrays 
(bitarrays) 

GA 

Single objective,  
weight 
minimization N/A 
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(Adeli and 
Cheng 1993) 

Sizing 
optimization 

Spatial truss 
systems 

Fixed-length, 
binary strings GA 

Single objective,  
weight 
minimization 

Penalty 
function  

(Chapman et al. 
1993) 

Continuum 
TOD 

Planar cantilever
plates 

Fixed-length, 
2D binary arrays 
(bitarrays) 

GA 
Single objective,  
weight 
minimization 

N/A 

(Lin and Hajela 
1993) 

Sizing 
optimization 

Cross-sections 
in planar truss 
systems 

Fixed-length, 
binary strings GA 

Single objective,  
weight 
minimization 

N/A 

(Hajela et al. 
1993) 

Discrete 
TOD 

Planar truss 
systems 

Fixed-length, 
binary strings GA 

Single objective,  
weight 
minimization 

Penalty 
function 

(Grierson and 
Pak 1993a) 

Discrete 
TOD, SO, 
and sizing 
optimization 

Planar frame 
systems 

Fixed-length 
binary strings GA 

Single objective,  
weight 
minimization 

N/A 

(Schoenauer and 
Xanthakis 1993) 

Sizing 
optimization 

Planar truss 
systems 

Fixed-length, 
real valued 
vectors 

GA 
Single objective,  
weight 
minimization 

Behavioral 
memory 

(Watabe and 
Okino 1993) 

Continuum 
SO 

Shape of 
structural 
members 

Fixed-length, 
binary strings GA 

Single objective,  
weight 
minimization 

N/A 

(Sakamoto and 
Oda 1993) 

Discrete 
TOD and 
sizing 
optimization 

Planar truss 
systems 

Fixed-length, 
binary strings 

GA + 
optimali
ty crite-
ria me-
thod 

Single objective,  
weight 
minimization 

N/A 

(Adeli and 
Cheng 1994) 

Sizing 
optimization 

Spatial truss 
systems 

Fixed-length 
binary strings GA  

Single objective,  
weight 
minimization 

Penalty 
function and 
augmented 
Lagrangian 

(Chapman et al. 
1994) 

Continuum 
TOD and SO 

Planar cantilever
plate 

Fixed-length, 
binary strings GA 

Single objective, 
weight 
minimization 

Penalty 
function 

(Coello Coello 
et al. 1994) 

Sizing 
optimization 

Planar and 
spatial truss 
systems 

Fixed-length, 
binary strings GA 

Single objective, 
weight 
minimization 

Penalty 
function 

(Koumousis and 
Georgiou 1994) 

Discrete 
TOD and SO 

Planar steel 
truss roofs 

Fixed-length, 
binary strings 

GA + 
logic 
program

Single objective, 
weight 
minimization 

N/A 

(Keane 1994) Discrete SO 
Planar truss 
system (satellite 
boom) 

Fixed-length, 
binary strings GA 

Single objective, 
minimization of 
vibration 

Penalty 
function 

(Bohnenberger 
et al. 1995) 

Discrete 
TOD Pylon structures Fixed-length, 

binary strings 
GA and 
ES 

Single objective, 
weight 
minimization 

N/A 

(Rajan 1995) 

Discrete 
TOD , SO 
and sizing 
optimization 

Spatial truss 
systems 

Fixed-length, 
binary strings GA 

Single objective, 
weight 
minimization 

Penalty 
function 

 



586 

(Hajela and Lee 
1995a) 

Discrete 
TOD 

Planar truss 
systems 

Fixed-length, 
binary strings GA 

Single objective, 
weight 
minimization 

Penalty 
function 

(Ohsaki 1995) Discrete 
TOD 

Planar truss 
systems 

Fixed-length, 
binary strings GA Single objective, 

total cost 
Penalty 
function 

(Hajela and Lee 
1995b) and 
(Hajela and Lee 
1996) 

Discrete 
TOD 

Planar truss 
systems 

Fixed-length, 
binary strings GA 

Single objective, 
weight 
minimization 

Immune 
network 

(Keane and 
Brown 1996) Discrete SO 

Spatial truss 
systems 
(satellite boom)

Fixed-length, 
binary strings GA 

Single objective, 
minimization of 
vibration 

N/A 

(Soh and Yang 
1996) Discrete SO 

Planar and 
spatial truss 
systems 

Fixed-length, 
binary strings 

GA + 
fuzzy 
logic 

Single objective,  
weight 
minimization 

Fuzzy logic 

(Ramasamy and 
Rajasekaran 
1996) 

Discrete 
TOD and 
sizing 
optimization 

Planar truss 
systems 

Fixed-length, 
binary strings 

GA + 
neural 
net-
work 

Single objective,  
weight 
minimization 

Penalty 
function 

(Nakanishi and 
Nakagiri 1996) 
and (Nakanishi 
and Nakagiri 
1997) 

Discrete 
TOD 

Planar frame 
and panel 
structures 

Fixed-length, 
binary strings GA 

Single objective, 
weight 
minimization 

N/A 

(Cheng and Li 
1997) 

Sizing 
optimization 

Planar truss 
systems 

Fixed-length, 
binary strings 

Pareto 
GA, 
MOGA 

Multiobjective, 
with 2 or 3 
objectives 

Fuzzy 
penalty 
function 

(Parmee et al. 
1997) and 
subsequent 
papers 

Discrete 
TOD, SO, 
and sizing 
optimization 

Various 
problems 
considered 

Various 
encodings 
(binary, real, 
etc.) 

(GA, 
CHC,  
and ES)

Single and 
multiobjective 
approaches 

Various 
constraint-
handling 
methods 

(Yang and Soh 
1997) Discrete SO Planar truss 

systems 
Fixed-length, 
binary strings GA 

Single objective,  
weight 
minimization 

N/A 

(Rajeev and 
Krishnamoorthy 
1997) 

Discrete 
TOD, SO, 
and sizing 
optimization 

Planar truss 
structures 

Variable-length, 
binary strings GA 

Single objective,  
weight 
minimization 

N/A 

(Jenkins 1997) 
Discrete SO 
and sizing 
optimization 

Planar 
multistory frame
structure with 
truss-supported 
hangers 

Fixed-length, 
binary strings GA 

Single objective, 
weight 
minimization 

Penalty 
function 

(de Barros Leite 
and Topping 
1998) 

Discrete 
TOD and 
sizing 
optimization 

Welded beam, 
planar truss 
systems, and 
prestressed  
I-sections 

Fixed-length, 
binary strings GA 

Single objective, 
weight 
minimization 

Penalty 
function 
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(Camp et al. 
1998) 

Sizing 
optimization 

Planar truss and 
frame structures

Fixed-length, 
binary strings GA 

Single objective, 
various fitness 
functions 

Penalty 
function 

(Chen and Rajan
1998) 

Discrete 
TOD, SO, 
and sizing 
optimization 

Planar frame 
systems 

Fixed-length, 
binary strings GA 

Single objective, 
weight 
minimization 

Adaptive 
penalty 
function 

(Nair et al. 
1998) 

Sizing 
optimization 

Planar truss 
system N/A 

GA + 
approxi-
mation 
model 

Single objective, 
weight 
minimization 

Penalty 
function 

(Ohmori and 
Kito 1998) 

Discrete 
TOD 

Planar and 
spatial truss 
systems 

Fixed-length, 
binary strings GA 

Single objective, 
weight 
minimization 

Penalty 
function 

(Hajela et al. 
1998) 

Discrete 
TOD 

Planar and 
spatial grillage 
structures 

Fixed-length, 
binary strings GA 

Single objective, 
weight 
minimization 

Penalty 
function 

(Soh and Yang 
1998) 

Discrete 
TOD, SO, 
and sizing 
optimization 

Planar bridge 
trusses 

Fixed-length, 
binary strings 

GA + 
domain 
know-
ledge 

Single objective, 
weight 
minimization 

Penalty 
function 

(Shrestha and 
Ghaboussi 
1998) 

Discrete 
TOD 

Planar truss 
systems 

Fixed-length, 
binary strings GA 

Single objective, 
weight 
minimization 

N/A 

(Topping and de 
Barros Leite 
1998) 

Sizing 
optimization 

Cable-stayed 
bridge 

Fixed-length, 
binary strings 

Parallel 
GA Single objective N/A 

(Wibowo and 
Besari 1998) 

Continuum 
SO 

Oval axially 
symmetric shells

Fixed-length, 
binary strings GA 

Single objective, 
weight 
minimization 

N/A 

(Kita and Tanie 
1998) and (Kita 
and Tanie 1999) 

Continuum 
SO Planar structuresFixed-length, 

binary strings GA 
Single objective,  
weight 
minimization 

N/A 

(Annicchiarico 
and Cerrolaza 
1999) 

Continuum 
SO Planar structuresFixed-length, 

binary strings GA 
Single objective,  
weight 
minimization 

Penalty 
function 

(Hajela and Kim 
1999) 

Continuum 
structural 
elasticity 
analysis 

Planar structuresCellular 
automata GA 

Single objective,  
strain energy 
minimization 

Penalty 
function 

(Coello Coello 
and Christiansen 
2000) 

Sizing 
optimization 

Planar and 
spatial truss 
systems 

Fixed-length, 
binary strings 

GA + 
min-
max 
strategy

Multiobjective, 
weight, 
displacement, and 
stress minimization 

Penalty 
function 
(death 
penalty) 

(Pezeshk et al. 
2000) 

Sizing 
optimization 

Planar multi-
story frame 
systems 

Fixed-length, 
binary strings GA 

Single objective,  
weight 
minimization 

Penalty 
functions 
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(Arciszewski 
and De Jong 
2001) 

Discrete 
TOD and 
sizing 
optimization 

Steel skeleton 
structures in tall 
buildings 

Fixed-length, 
integer 
encodings 

Parallel 
EA, 
island 
model 

Single objective,  
weight 
minimization 

Penalty 
function 
(death 
penalty), 
repair 
mechanisms

(Woon et al. 
2001) 

Continuum 
SO 

2D spanner head
and flange 
webbing 

Fixed-length, 
binary strings GA 

Single objective, 
weight and  
deflection 
minimization  

None 

(Greiner et al. 
2001) 

Sizing 
optimization 

Planar frame 
structures 

Fixed length, 
binary strings 

GA, 
CHC, 
and 
NSG 

Single objective 
(weight), and 
multiobjective 
(weight and number 
of member cross-
sections) 

Penalty 
functions 

(Murawski et al. 
2001) 

Discrete 
TOD and 
sizing 
optimization 

Steel skeleton 
structures in tall 
buildings 

Fixed-length, 
integer 
encodings 

ES 
Single objective, 
weight 
minimization 

Penalty 
function 
(death 
penalty), 
repair 
mechanisms

(Annicchiarico 
and Cerrolaza 
2001) 

Continuum 
SO 

3D cantilever 
plate with 
circular hole 

Fixed-length, 
binary strings GA 

Single objective, 
minimization of 
volume 

Penalty 
function 

(Hajela and Kim 
2001) 

Continuum 
structural 
elasticity 
analysis 

Planar structures

Binary and real 
encodings and 
cellular 
automata 

GA 
Single objective,  
strain energy 
minimization 

Penalty 
function 

(Nanakorn and 
Meesomklin 
2001) 

Sizing 
optimization 

Planar truss 
systems and 
frame 

Fixed-length, 
binary strings GA 

Single objective, 
weight 
minimization 

Adaptive 
penalty 
function 

(Deb and Gulati 
2001) 

Discrete 
TOD , SO 
and sizing 
optimization 

Planar and 
spatial truss 
systems 

Fixed-length, 
real valued 
vectors 

GA 
Single objective, 
weight 
minimization 

Penalty 
function 

(Deb and Goel 
2001) 

Continuum 
SO 

Planar plate 
structures 

Fixed-length, 
binary strings 

NSGA-
II + hill 
climber 

Multiobjective, 
weight and 
displacement 
minimization 

(Sarma and 
Adeli 2001) 

Sizing 
optimization 

Spatial 
multistory frame
structures 

Fixed-length, 
binary strings 

Parallel 
GA, 
island 
model 

Single and 
multiobjective 

(Yang and Soh 
2002) 

Discrete 
TOD 

Planar truss 
systems 

Variable-length, 
parse trees GP 

Single objective, 
weight 
minimization 

Penalty 
function 

(Nair and Keane 
2002) 

Sizing 
optimization 

Planar truss 
systems 

Fixed-length, 
binary strings CCEA 

Single objective, 
weight 
minimization 

Penalty 
function 
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(Azid et al. 
2002) 

Discrete 
TOD 

Planar and 
spatial truss 
systems 

Fixed-length, 
real valued 
vectors 

GA 
Single objective, 
weight 
minimization 

Penalty 
function 

(Hamda et al. 
2002a) 

Continuum 
TOD 

Planar and 
spatial 
cantilever plates

Variable-length, 
Voronoi-based, 
and fractal-
based 

GA 
Single objective, 
weight 
minimization 

Penalty 
function 

(Hamda et al. 
2002b) 

Continuum 
TOD 

Planar cantilever
plate 

Variable-length, 
Voronoi-based 

NSGA-
II 

Multiobjective, 
weight and 
displacement 
minimization 

(Kicinger et al. 
2003) 

Discrete 
TOD 

Steel skeleton 
structures in tall 
buildings 

Fixed-length, 
integer 
representations 

ES 
Single objective, 
weight 
minimization 

Penalty 
function 
(death 
penalty), 
repair 
mechanisms

(Dimou and 
Koumousis 
2003) 

Sizing 
optimization 

Planar truss 
systems 

Fixed-length, 
binary strings 

Parallel 
GA  

Single objective for 
individuals in each 
population – total 
cost  

Penalty 
function 

(Pullmann et al. 
2003) 

Discrete 
TOD 

Reinforced 
concrete tall 
buildings 

Fixed-length, 
integer strings 

Unified 
EA and 
fuzzy 
sets 

Single objective, 
total cost Fuzzy logic 

(Kicinger et al. 
2004d) 

Discrete 
TOD and 
Sizing 
optimization 

Wind bracing 
systems  in  tall 
buildings 

Generative 
representations 
based on 
cellular 
automata (1D 
and 2D) 

ES Single objective,  
the total weight 

Penalty 
function 
(death 
penalty), 
repair 
mechanisms

(Kicinger et al. 
2004c) 

Discrete 
TOD and 
Sizing 
optimization 

Steel structural 
systems in tall 
buildings 

Generative 
representations 
based on 1D 
cellular 
automata 

ES Single  objective,  
the total weight 

Penalty 
function 
(death 
penalty), 
repair 
mechanisms

(Kicinger et al. 
2004a) 

Discrete 
TOD and 
sizing 
optimization 

Steel structural 
systems in tall 
buildings 

Fixed-length, 
integer 
representations 

Distribu-
ted EA 
(island-
model) 

Single  objective,  
the total weight 

Penalty 
function 
(death 
penalty), 
repair 
mechanisms

(Kicinger and 
Arciszewski 
2004) 

Discrete 
TOD and 
sizing 
optimization 

Steel structural 
systems in tall 
buildings 

Fixed-length, 
integer 
representations 

ES 

Multiobjective 
(aggregate 
function), the total 
weight and the 
maximum 
horizontal 
displacement 

Penalty 
function 
(death 
penalty), 
repair 
mechanisms
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APPENDIX B 
 
 
 
 

In this appendix, the entire set of 256 design concepts of wind bracing systems in 

tall buildings generated by elementary CAs is presented.  The designs have been 

generated from the simplest design embryo consisting of a single X bracing located in the 

central bay.  All designs shown in the following table were generated by elementary CAs 

with periodic boundary conditions.   

Each cell in this table contains the number of the design rule at the top, the actual 

design developed from the design embryo by this rule (center), and four values arranged 

in a 2 x 2 array (the bottom part) as shown on the right.  This array contains four values 

representing the total weight of the steel 

structural system (the first row) and its 

maximum horizontal displacement (the 

second row).  The first column contains measurements obtained using the first-order 

structural analysis while the second column contains the values produced by a more 

accurate and at the same time more computationally expensive P-∆ analysis.   The values 

of the total weight of the steel structural system presented in the first row are measured in 

lbs. whereas the values of the maximum horizontal displacement, shown in the second 

row, are measured in inches. 
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APPENDIX C 
 
 
 
 

In this appendix, the entire set of 256 design concepts of wind bracing systems 

generated by elementary CAs with nonperiodic boundary conditions is presented.  As in 

Appendix A, the designs have been generated from the simplest design embryo 

consisting of a single X bracing located in the central bay.   

Each cell in this table contains the number of a design rule at the top, the actual 

design developed from the design embryo by this rule (center), and four values arranged 

in a 2 x 2 array (the bottom part) as shown on the right.  This array contains four values 

representing the total weight of the steel 

structural system (the first row) and its 

maximum horizontal displacement (the 

second row).  The first column contains measurements obtained using the first-order 

structural analysis while the second column contains the values produced by a more 

accurate and at the same time more computationally expensive P-∆ analysis.   The values 

of the total weight of the steel structural system presented in the first row are measured in 

lbs. whereas the values of the maximum horizontal displacement, shown in the second 

row, are measured in inches. 
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