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Abstract

COPRIME AND NESTED ARRAY PROCESSING OF THE ELBA ISLAND SONAR
DATA SET

Vaibhav Chavali

George Mason University, 2017

Thesis Director: Dr. Kathleen E. Wage

Sensor arrays can provide estimates of the spatial spectrum associated with propagating

waves in a variety of environments, e.g., acoustic waves in the ocean. Vaidyanathan and

Pal [IEEE Trans. Sig. Proc., 2010, 2011] describe coprime and nested array geometries

that provide significant sensor savings when compared to densely populated Uniform Lin-

ear Arrays (ULAs). Coprime Sensor Arrays (CSAs) and Nested Arrays (NAs) consist of

two interleaved subarrays with different sample spacings. To reduce the number of sensors,

at least one of the subarrays is undersampled. There are several approaches to estimating

the spatial power spectrum given a sparse set of CSA or NA measurements. The classical

approach is to implement a multiplicative processor. Multiplication of the beamformed out-

puts of two undersampled subarrays eliminates the ambiguity due to aliasing, but requires

temporal averaging to mitigate cross terms. This approach relies on the assumption that

signals arriving from different directions are uncorrelated. Recently Liu and Buck proposed

an alternative that is not restricted to uncorrelated signals [IEEE SAM, 2016]. Their min

processor uses the minimum of the two subarray outputs as the spectral estimate.



The goal of this thesis is to design and implement CSA and NA processing for data

from an underwater vertical line array deployed near Elba Island. Building on the work

of Adhikari et al. [EURASIP J. Advances Sig. Proc., 2014], this thesis shows that CSA

and NA designs for the Elba experiment can attain beampatterns comparable to a fully

populated ULA using 33% fewer sensors. As noted above, one drawback of the standard

multiplicative processing approach is the need for time averaging to reduce cross terms.

Prior work has not quantified the amount of averaging required. This thesis analyzes cross

terms using a Gaussian signal model and shows that they decay at a rate of 5 dB per decade

of snapshots averaged. Finally, this thesis implements CSA and NA multiplicative and min

processing for the Elba data set. Compared to the conventional spectrum obtained with the

ULA, the multiplicative CSA and NA spectra for the Elba data contain endfire interference

due to cross terms associated with coherent mode arrivals. Liu and Buck’s min processor

applied to the NA design performs the best for the Elba data set.



Chapter 1: Introduction

1.1 Motivation

The human auditory system is a naturally occurring example of a sensor array. This two

sensor array receives acoustic radiation and by processing the received sound it can ob-

tain directional information about the source. In signal processing, this basic concept has

been able to provide with the ability to process propagating waves using an array of sen-

sors/transducers. By combining the outputs of individual sensors intelligently, the user can

gather information about the propagating signals in a given spatial field, e.g., identifying

the source of the propagating signals, characterizing the location of the source with respect

to the array, tracking certain moving sources in space, enhancing certain aspects of the

signal, etc. Array signal processing applications are common in the fields of radar, radio

astronomy, sonar, communications, direction finding, seismology and medical diagnosis and

treatment [1, 2].

Applications require a variety of array geometries, e.g., linear (1-D), planar (2-D), and

volumetric (3-D). This thesis focuses on linear array geometries where all the sensors are

placed along a line. The spacing between sensors may be uniform or non-uniform. Figure

1.1 illustrates an 11-element Uniform Linear Array (ULA) with intersensor spacing d. The

wavefront incident on the sensor array propagating from a source located far from the array

can be idealized as a plane wave.

Plane wave signals received at the individual sensor positions of the ULA are delayed

relative to a reference (zero delay) sensor position. The angle of incidence (θ) the wavefront

makes with respect to the axis of the array can de determined by correcting for the phase

corresponding to the delay observed at the respective sensor positions using the Fourier

relationship of a time delay to a change in phase in the frequency domain. This technique is

1
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Figure 1.1: A 11-element linear array with uniform intersensor spacing d m

called beamforming or spatial filtering and the filter/processor that performs this operation

is called a beamformer [1]. Analogous to sampling a time domain signal at the Nyquist

frequency [3], sampling a spatial field using a ULA requires that the intersensor spacing

must be less than half-wavelength of the propagating signal to avoid spatial aliasing. ULAs

have been studied extensively; see the text by Van Trees [1] for a thorough bibliography.

Comparable to the frequency response of a time-domain filter, the beampattern is the

plane-wave response of the spatial filter/beamformer [4]. An array’s ability to resolve two

closely spaced sources is determined by the mainlobe width of its beampattern. The resolu-

tion is inversely proportional to the width of the mainlobe. For high resolution a ULA must

span a large aperture which typically requires a large number of closely spaced sensors. This

thesis considers the application of sensor arrays to an underwater passive sonar experiment.

Long arrays with dense spacing may be prohibitively expensive because they require large

2



number of sensors and a system architecture capable of high computational throughput. To

reduce the number of sensors and the associated costs, a variety of alternative non-uniform

array geometries have been proposed [5,6,7,8,9,10]. These non-uniform linear arrays require

fewer sensors and provide similar or in some cases better resolution and peak sidelobe levels

than the equally spaced linear arrays. During the late 1960s Moffet proposed one of the

most attractive solutions to the non-uniform array design problem known as a Minimum

Redundancy Array (MRA) [11]. Designing these non-uniform linear arrays requires exten-

sive algorithms to search and identify the exact sensor positions that provide the desired

performance [12, 13]. Moreover, these arrays were designed with the idea of estimating the

covariance matrix using the lags observed in the difference co-array (virtual ULA) and then

proceeding with conventional beamforming to obtain estimates of the spatial spectrum.

In the past multiplicative processors have been used widely in applications related to

radio astronomy and radar. The multiplication of the array patterns of two sparse subarrays

can be matched to the array pattern of a fully populated ULA [14, 15]. Shaw and Davies

show that multiplicative processors are capable of providing improved resolution and low

sidelobe patterns using the subarrays of a given ULA [16,17]. The issue of cross terms was

addressed by Ksienski [18] and Pedinoff [19]. They observed the presence of cross terms or

cross products at the output of a multiplicative processor in multiple target/source scenarios

for radar applications. Davies suggested averaging over multiple snapshots when the two

targets/sources are uncorrelated to reduce their effect [20], although he did not comment

on the number of snapshots needed for averaging.

Vaidyanathan and Pal proposed two such non-uniform array geometries with a clearly

specified sensor arrangement, namely, coprime and nested arrays [21,22]. These arrays use

two interleaved uniform linear subarrays. Since a reduction in the number of sensors was

the main incentive for these designs, at least one of the subarrays was undersampled, i.e.,

the intersensor spacing was greater than half-wavelength. The interleaved subarray design

employed in coprime and nested arrays inspired Vaidyanathan and Pal to suggest the use of

multiplicative processors to estimate a spatial spectrum. By multiplying the beamformed

3



output of the individual subarrays, the multiplicative processors eliminate the ambiguity due

to the undersampling. More recently, Adhikari et al. showed that by adding more sensors

to the subarrays, the multiplicative processors are capable of providing similar sidelobe

levels as the conventional processor using a variety of array shading/tapering functions [23].

Adhikari et al.’s approach allowed for the extension of the subarrays outside the aperture

of the fully populated ULA which is not practical when the array size is limited by cost or

environmental constraints. Liu and Buck propose the use of a min processor, that uses the

minimum of the two subarray outputs as the spectral estimate [24]. This intuitive approach

is an attractive option when the signals sensed by the passive sonar is spatially bandlimited

and it does not require uncorrelated sources.

1.2 Objectives

The previous section highlights some of the issues concerning the design of coprime and

nested arrays that incorporate the use of multiplicative processors. This thesis presents

the problem of designing coprime and nested arrays that make use of a reduced number

of sensors when compared to a fixed aperture ULA used in an underwater passive sonar

experiment near Elba Island. This motivates the need for a detailed analysis of the design

and performance of coprime/nested multiplicative and min processors in estimating the

spatial spectrum using the data received by the 48−sensor ULA used in the Elba experiment.

The objectives of this thesis are:

• To design coprime and nested array geometries that provide similar multiplicative and

min beampattern performance as the benchmark conventional ULA.

• To analyze the cross terms of a multiplicative processor using a Gaussian signal model

and to derive the cross term decay as a function of snapshots.

• To implement the coprime and nested beamformers for the Elba data set and assess the

performance of the multiplicative and min processors using knowledge of the acoustic

propagation environment.
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1.3 Contributions

Results of this thesis have been published in one conference paper and 2 conference abstracts.

Two journal papers are in preparation. An invited talk will be presented at the upcoming

Acoustical Society of America (ASA) meeting in June 2017.

Publications

• V. Chavali, K. E. Wage, and J. R. Buck, Coprime processing for the Elba Island sonar

data set, in IEEE 48th Asilomar Conference on Signals, Systems and Computers,

2014, pp. 1864-1868.

• —–, Design of coprime and nested arrays to analyze the Elba Island data set using

multiplicative and min processors, to be submitted to The Journal of the Acoustical

Society of America. (Manuscript in preparation).

• V. Chavali, K. E. Wage, Cross term decay in multiplicative processors, to be submitted

to IEEE Signal Processing Letters. (Manuscript in preparation).

Conference Abstracts

• V. Chavali, K. E. Wage, and J. R. Buck, Design of a coprime array for the North Elba

sea trial, Journal of the Acoustical Society of America, vol. 136, no. 4, p. 2147, 2014.

• V. Chavali and K. E. Wage, Design of nested and coprime arrays for the North Elba

sea trial, in IEEE Underwater Acoustic Signal Processing Workshop, Oct. 2015.

• —–, Comparison of multiplicative and min processors for coprime and nested geome-

tries using the Elba Island data set, Journal of the Acoustical Society of America. (to

be presented in June 2017).

1.4 Organization

Chapter 2 provides provides an overview of the the Elba data set using conventional ULA

processing. It also reviews the coprime and nested arrays proposed by Vaidyanathan and

5



Pal. Chapter 3 designs coprime and nested arrays for the Elba ULA and compares the

multiplicative and min beampatterns to the ULA. Chapter 4 formulates the problem of cross

term generation using a Gaussian signal model and derives the decay rate of uncorrelated

cross terms as the output is averaged over multiple snapshots. Chapter 5 analyzes the

performance of estimating the spatial spectrum by comparing the multiplicative and min

processing of the Elba data using the designed coprime and nested arrays. Chapter 6

contains a brief conclusion to the thesis and provides further directions for research.
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Chapter 2: Background

This chapter describes the details of the shallow water passive sonar experiment used to

compare the performance of coprime and nested array processors. The first section provides

a short overview of the experiment, which was performed North of Elba Island near Italy.

Gingras describes the details of the experiment in a short technical report [25]. Section

2.2 reviews the conventional processing of the Elba data using the Vertical Linear Array

(VLA) to estimate the spatial spectrum. Sections 2.3 and 2.4 introduce the multiplicative

and min processors using the coprime and nested array configuration. The remainder of

this chapter compares the multiplicative and min beampatterns to the conventional ULA

beampattern and identifies some of the issues with the traditional design formulation for

nested and coprime arrays.

2.1 Elba Island data set

In 1993 SACLANT Center collected passive sonar data using a 48-sensor VLA deployed

in the Mediterranean Sea north of Elba Island. The Signal Processing Information Base

(SPIB) website [26] has recordings from 25 transmissions made over a 2-day period in

October 1993. The local bathymetry shown in Figure 2.1 identifies the relative locations

of the sensor array, stationary source, and the track of the ship deploying the towed source

indicated by points A and B. In prior work researchers have used this data set to assess

environmental inversion techniques [27] and robust matched field beamforming algorithms

in shallow water environments [28,29,30].

The depth of the water column at the array site was 127 m. The VLA made use of 2

m intersensor spacing. The first sensor was at a depth of 18.7 m and the last sensor at a

depth of 112.7 m. Although the technical report contains plots indicating the array tilt the
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Figure 2.1: Bathymetry near Elba, location of the Vertical Array (VA) and the ship track.

exact sensor locations are not provided, thus tilt cannot be incorporated into the analysis

described below.

A propagating signal with wavelength λ will be guaranteed to be free of spatial aliasing

as long as the following condition holds

d ≤ λ/2. (2.1)

The wavelength λ is defined as λ = c/f where c and f represent the speed of sound in water

(reference c = 1500 m/s) and the temporal frequency of the propagating signal in Hertz,

respectively. The maximum temporal frequency of a propagating signal sensed by the Elba

VLA that is free of spatial aliasing is 375 Hz.

The stationary source (shown as “source” in the bathymetry plot in Figure 2.1) was

located 5.8 km from the VLA at a depth of 79 m. Figure 2.2 shows the vertical underwater
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Figure 2.2: Vertical slit of the underwater column at the Elba array site indicating the
individual sensor placement and the source location. The first sensor is at a depth of 18.7m
from the surface.

column at the array site and the relative sensor and source positions as a function of depth

and range in meters. The source transmitted maximal length sequences (pseudorandom

sequences). The RM2 source transmissions processed in this thesis had a center frequency

of 335 Hz and a bandwidth of ±15 Hz around the center frequency.

2.2 Conventional Processing of the Elba data set

Each element of the ULA receives the pressure field transmitted by the stationary source.

The characteristics of the stationary source are described in the previous section. The sig-

nal transmitted by the stationary source can be analyzed by computing the spectrogram

of the signal received at any one sensor. The spectrogram of the data received at the first

sensor i.e., at 18.7 m from the surface for the two signals with two different center frequen-

cies is shown in Figure 2.3. The recording was 262 s long and used a sampling frequency,
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Figure 2.3: Spectrogram for a 262 s recording of psuedorandom signal at the first sensor with
frequency and bandwidth 335± 15 Hz. The spectrogram was computed using a 1024-point
Hanning window and 50% overlap.

fs = 1, 000 Hz. The spectrogram was obtained using a 1024-point Hanning window and a

50% overlap.

The spatial power spectrum can be obtained using a conventional ULA beamformer. The

block diagram of the conventional beamformer is shown in Figure 2.4 where x,w,y represent

the received narrowband signal vector, the spatial filter/beamformer and the beamformed

output, respectively. A Welch-Bartlett approach splits the received data vector for each

sensor into a number of blocks and the temporal spectra for each block is computed [31].

The input to the conventional processor is the narrowband data corresponding to the fre-

quency bin of interest.

x y(u)
wH

Figure 2.4: Block diagram of a conventional ULA beamformer where x represents the input

vector for a single snapshot and the weights wH , the output of the beamformer steered to
directional cosine u is given by y(u).
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VLAs can only resolve angles from 0 to 180 (because of the circular symmetry). The weight

vector w can be expressed for each angle of arrival in the range, 0o ≤ θ ≤ 180o,

w(n, θ) = wt(n)v(n, θ),

= wt(n) exp

(
− j 2π

λ
(n− 1)d cos(θ)

)
for n = 1, . . . , L,

(2.2)

where, v(θ) represents the array manifold/replica vector for a plane wave with an angle of

incidence θ using the given L sensor ULA with d m intersensor spacing, λ here represents

the wavelength of the impinging wavefront. The array shading/tapering used is represented

by wt.

Using the definition of directional cosine u = cos(θ), the visible region for the directional

cosine cis defined by −1 ≤ u ≤ 1. The weights for different directions in the visible region

can be expressed in a matrix as shown below,

W =


↑ ↑

w(−1) . . . w(1)

↓ ↓


L×Nu

. (2.3)

Nu is the number of discrete points in the visible region of the directional cosine vector

(hence, the subscript u). The beamformer scans across the discrete points in u to provide a

spatial response. The beampattern is the response from a single plane wave impinging the

array at directional cosine, u = us. Mathematically, it can be expressed as

Bul(us) = wH(ul)v(us), (2.4)

where Bul(us) is the beampattern of the ULA steered to directional cosine ul evaluated

at us. Analogous to the frequency response of a time domain filter, the beampattern of a
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Beampattern of Elba ULA using Dolph-Chebychev weighting

Figure 2.5: Conventional beampattern of the 48−sensor ULA using uniform weights nor-
malized to obtain unity gain at source direction, u = 0.

ULA is the plane wave response of the designed spatial filter. The beampattern provides

the user with essential information about the resolvability of two closely spaced sources in

space and the ability to reject loud interferers or noise. By taking the squared magnitude

of the beampattern, the received power can be expressed as a function of the directional

cosine.

The weight vectors are normalized in two different ways so as to achieve either (a) unity

gain in the source direction or (b) Power Spectral Density (PSD) [32]. Appendix B provides

a detailed description of the two normalization schemes. The current discussion makes use

of the weights normalized to obtain unity gain in the source direction. i.e., w/||w||11.

Figure 2.5 illustrates the beampattern for the Elba ULA evaluated at us = 0 (broadside),

assuming that d = λ/2. The left panel in the figure makes use of uniform tapering and the

right panel make use of a Dolph-Chebychev tapering with sidelobe levels set to −55 dB.

Using the above designed beamformers one can compute the spatial power spectrum

for the narrowband signals received by the Elba ULA. The narrowband signal for the RM2

source is generated using a Hanning window of block length= 500 samples and a 50%

1||w||1 denotes the L1−norm of the weight vector w.
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Figure 2.6: Scanned spatial response computed for the receptions of the Elba data RM2
source signal at the center frequency of 335 Hz using the beamformers designed with uniform
and Dolph-Chebychev weights with sidelobe levels set to -55 dB.

overlap. A total of 1,000 snapshots were obtained for the narrowband signal with cen-

ter frequency of 335 Hz. The scanned response is generated by steering the beamformer

across different directions in the visible region for the narrowband signal at each time snap-

shot. The scanned spatial response computed using the beamformers designed with uniform

and Dolph-Chebychev tapering is shown in Figure 2.6. The scanned response clearly indi-

cates strong arrivals around broadside. Although uniformly tapered beamformers provide a

beamwidth that is capable of separating closely spaced sources with ease, the peak sidelobe

attained by these beamformers are only -13.5 dB down [33]. The Elba data presents a

challenge due to the large dynamic range, which can be seen when the Dolph-Chebychev

beamformer is applied. The response around endfire is significantly lower when compared

to the response predicted using the beamformer with uniform tapering, indicating presence

of weak sources outside of the strong arrivals around broadside. For the rest of this thesis,

the conventional Dolph-Chebychev tapered beamformer will be used to analyze the Elba

data using the ULA.

The average scanned response as the name suggests is the spatial spectrum averaged

over a number of snapshots of the scanned response. Figure 2.7 illustrates the average

over 1,000 snapshots of Elba data computed using the Dolph-Chebychev beamformer. The
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Figure 2.7: Average scanned response using the Dolph-Chebychev ULA beamformer for the
RM2 signal at the center frequency of 335 Hz.

average scanned response is computed for the narrowband data at the center frequency of

335 Hz.

One of the most useful representations of the receptions made by a passive sonar VLA

receiver is given by the wavenumber-frequency (k − Ω) spectrum, which can be thought of

as computing the averaged scanned spatial response at each frequency bin of the temporal

spectra. A faster way to compute the wavenumber-ferquency spectra is to obtain a 2-D

FFT of the receptions made by the ULA [34]. Figure 2.8 shows the wavenumber-frequency

(k-Ω) spectra for the 262 s reception of the 335 Hz (RM2) signal from the stationary

source. These plots were generated using conventional wavenumber-frequency processing

of 1-second blocks of data and averaging the results over blocks. The processor used a

1024-point Hanning window in the time domain and a 48-point Dolph-Chebychev window

with -55 dB sidelobes in the spatial domain. The plots reveal the general characteristics
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Figure 2.8: Wavenumber-frequency (k-Ω) spectrum for a 262 s recording of psuedoran-
dom signal centered at 335 Hz, broadcast from the stationary source. The spectrum was
computed using conventional processing of the data received by the 48-sensor ULA.

of the background noise. The noise is concentrated near kz = 0, indicating that the noise

field is dominated by low angle rays or trapped modes. These results agree with Krolik’s

observations about the data set [30].

2.3 Coprime Sensor Arrays

Vaidyanathan and Pal [21] proposed an approach using Coprime Sensor Arrays (CSAs) that

reduces the number of sensors without compromising resolution. A coprime sensor array

uses two interleaved undersampled uniform linear arrays with a relatively small number

of sensors to obtain resolution comparable to a single densely populated ULA. The two

subarrays consist of M and N sensors, with intersensor spacings of Nd and Md, respectively.
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Figure 2.9: Array geometry for a 12 sensor ULA and 6 sensor CSA with coprime factors
M = 3 and N = 4. The first element is common to both subarrays.

M and N are coprime integers, i.e., the greatest common divisor is 1. Figure 2.9 shows the

sensor locations for the CSA subarrays designed to sample the same aperture as an L-sensor

ULA. For this example, the ULA has 12 sensors, and the coprime factors are M = 3 and

N = 4. The first sensor is shared by both subarrays.

In order to obtain the response using a CSA, one can make use of the multiplicative

processor as shown in Figure 2.10. Where x, w and y correspond to the received input

signal vector, the spatial filter and the beamformed output, respectively. The subscripts A

and B denote the two subarrays of the CSA. The CSA response is generated by multiplying

the outputs of the individual subarrays processed independently using conventional beam-

formers (as described in the previous section). A multiplicative beampattern (response to a

wH
B conj

wH
A

xA

xB

yA

yB y∗
B

|yAy
∗
B|×

Figure 2.10: Block diagram of the multiplicative processor.
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single plane wave) can be generated by multiplying the individual subarray beampatterns.

The beampatterns of subarray-A processed using a conventional processor designed with

uniform tapers is defined as

BA,ul(us) =
vHA (ul)vA(us)

M
, (2.5)

where BA,ul(us) is the beampattern of subarray-A steered to directional cosine ul and

evaluated at u = us and vA(us) is the replica vector for subarray-A steered to directional

cosine u = us, i.e., vA,us(m) = exp(j 2πλ us(m − 1)Nd) for m = 1, 2, . . . ,M . Note that the

weight vectors are normalized to guarantee unity gain in the source direction, i.e., when

ul = us, BA,us(us) = 1. Similarly, we can express the beampattern of subarray-B as

BB,ul(us) =
vHB (ul)vB(us)

N
, (2.6)

where BB,ul(us) is the beampattern of subarray-B steered to directional cosine ul and

evaluated at u = us and vB(us) is the replica vector for subarray-B steered to directional

cosine u = us, i.e., vB,us(n) = exp(j 2πλ us(n− 1)Md) for n = 1, 2, . . . , N . The multiplicative

beampattern is obtained by multiplying (2.5) and (2.6), i.e.,

BA,ul(us)B
∗
B,ul

(us). (2.7)

Figure 2.11 compares the beampatterns for the 12-sensor ULA and 6-sensor CSA shown in

Figure 2.9. Assuming that the ULA sensor spacing d is less than half-wavelength (λ/2),

the ULA results are guaranteed to be free of spatial aliasing. However, the CSA subarrays

will be aliased since their spacings (Nd and Md) are more than half-wavelength. In order

to compare the multiplicative beampattern with the conventional ULA beampattern, the

squared magnitude of the conventional ULA beampattern is compared to the magnitude
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Figure 2.11: The top plot shows the beampattern of the CSA (solid black) formed by
multiplication of the beampatterns of subarray-M (dashed blue) and subarray-N (dashed
red). The bottom plot compares it to the beampattern of a 12-sensor ULA (dashed green).

of the multiplicative CSA beampattern. An equivalent multiplicative formulation of the

ULA beampattern can be thought of as taking the magnitude of the product of the ULA

beampattern with its conjugate.

The beampattern properties of a beamformer designed with uniform weights are well es-

tablished. The null-to-null beamwidth of the ULA beamformer, BWNN = 2λ/Ld. Similarly,

the null-to-null beamwidth of the CSA subarray beamformers are 2λ/MNd and 2λ/NMd

respectively for subarray-A and subarray-B. Since the multiplicative beampattern will also

have similar beamwidth, this gives us the first and most important constraint to guarantee

CSA designs that achieve similar resolution as an L−sensor ULA, i.e., MN = L [35]

2λ

MNd
=

2λ

Ld
. (2.8)
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Since the CSA subarrays are undersampled by factors M and N , the subarrays will

have grating lobes (aliased copies) at intervals of λ/Nd and λ/Md for subarray-A and

subarray-B, respectively. The grating lobes in the top panel of Figure 2.11 can be seen to

be located at u = ±0.5 and u = ±0.667 when us = 0 and d = λ/2 for the CSA design

(M,N) = (3, 4). Due to the coprimality of M and N these grating lobes never intersect and

the multiplication of the two beampatterns helps to successfully eliminate the ambiguity

due to undersampling. The multiplicative CSA beampattern (shown in solid black) is the

multiplication of the subarray beampatterns, and it does not contain grating lobes. The

bottom panel in Figure 2.11 compares the conventional ULA beampattern with that of the

multiplicative beampattern. The beamwidth of the CSA is equivalent to the ULA. Unfor-

tunately, the sidelobes of the CSA beampattern are substantially higher than those in the

ULA beampattern. This motivates a detailed study to design multiplicative beamformers

using different tapers, preferably adjustable windows like the Dolph-Chebychev, to gain

significant control over the beampattern properties [33].

2.4 Nested Arrays

Similar to the CSA, Nested Arrays (NAs) also incorporate the interleaved subarray design.

In particular, the nested array designs used in this thesis make use of a 2-level nest, the outer

nest/subarray makes use of P sensors with Qd spacing, whereas, the inner nest/subarray

makes use of Q sensors with d spacing. The outer subarray is the aliased subarray, which,

if processed independently, has grating lobes or copies of the source signal at the grating

lobe locations in the spatial spectrum. The inner subarray which does not occupy the entire

aperture of the ULA provides a large beamwidth (since the beamwidth is inversely propor-

tional to the aperture spanned by the linear array/subarray). By using a multiplicative

processor as shown in Figure 2.10, the ambiguity produced by the grating lobes can be

reduced effectively. As an example, consider generating the multiplicative beampattern for

a 6 sensor NA as shown in Figure 2.12. The inner subarray makes use of 3 sensors with d
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Figure 2.12: Array geometry for a 12 sensor ULA and 6 sensor NA with the inner nest using
Q = 3 sensors with d m spacing and the outer nest with P = 4 sensors and 3d m spacing.
The first element is common to both subarrays.

m spacing (the same spacing as the ULA) and the outer subarray occupies an aperture of

(4− 1)× 3d using 4 sensors with 3d m spacing.

The multiplicative beampattern for the 6 sensor NA design is shown in Figure 2.13.

The two important beampattern properties that provide us with a comparison to the 12

sensor ULA are the beamwidth and the peak sidelobe level attained by the NA design using

multiplicative processing. The beamformers designed using uniform weights are normalized

in order to obtain unity gain in the source direction for the NA subarrays and the ULA [32].

The beamwidth of the multiplicative processor is predicted by the beamwidth of the outer

subarray (it occupies a larger aperture than the inner subarray), comparing the null-to-null

beamwidth attained by the ULA and the outer subarray,

2λ

PQd
=

2λ

Ld
. (2.9)

The above equation provides the important constraint to obtain NA designs which attain

similar resolution as an L sensor ULA, i.e., PQ = L. The inner subarray has a null-to-null

beamwidth of 2λ/Qd, i.e., when the beampatterns are evaluated at us = 0, the first null

of the beamwidth occurs at u = −λ/Qd and u = +λ/Qd, the nulls coincide exactly with

the grating lobe locations of the outer subarray which are present at intervals of λ/Qd in u
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Figure 2.13: The top plot shows the beampattern of the CSA (solid black) formed by
multiplication of the beampatterns of subarray-M (dashed blue) and subarray-N (dashed
red). The bottom plot compares it to the beampattern of a 12-sensor ULA (dashed green).

space. The multiplicative beampattern which is obtained by multiplying the two subarray

beampatterns, eliminates the ambiguity produced by the grating lobe due to the inherent

null-grating lobe cancellation offered by the NA design.

The ULA beampattern Bu(u) is expressed in terms of the power received from dif-

ferent angles/directions by taking the squared magnitude of the beampattern, |Bu(u)|2.

Using 10 log10 |Bu(u)|2, the beampattern can be express the power in units of decibels

(dB). However, the multiplicative CSA beampattern is computed by multiplying the two

individual subarray beampatterns, i.e., let BA,u(u) and BB,u(u) be the two individual sub-

array beampatterns for subarray-A and subarray-B, respectively. The CSA multiplica-

tive beampattern can be given as, BA,u(u) · B∗B,u(u). The power pattern can be ob-

tained using the CSA multiplicative beampattern by taking, 10 log10 |BA,u(u) · B∗B,u(u)| =

10 log10 |BA,u(u)|+ 10 log10 |BB,u(u)|.
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Figure 2.14: Comparison of the multiplicative beampatterns achieved using a 6 sensor CSA
and NA as discussed in the previous sections to the conventional beampattern achieved
using the 12 sensor ULA.

Figure 2.14 compares the multiplicative beampatterns generated using the 6 sensor NA

and CSA to that of the 12 sensor ULA. Both the sparse arrays achieve similar beamwidth

as the 12 sensor ULA processed using a conventional beamformer. Although the NA

beamwidth is slightly wider than the CSA and ULA due to the presence of the non-aliased

inner subarray, which occupies a short aperture providing with a wider beamwidth. The

sidelobe levels in the multiplicative beampatterns are quite high when compared to the

ULA beampatterns. The NA design provides a much more smoothed sidelobe structure

due to the null-grating lobe cancellation as described, whereas the coprime design relies on

the cancellation of the non-intersecting grating lobe locations (since grating lobe locations

depend on the coprime factors) resulting in a non-uniform sidelobe structure.
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Figure 2.15: Block diagram of the min processor.

2.5 Min processor

In recent literature Liu and Buck introduced an intuitive approach to estimate the spatial

spectrum from the individual subarrays of the CSA using a min processor [24]. Figure 2.15

shows a block diagram for the min processor, where x,w,y represent the received signal

vector, the spatial filter/beamformer and the beamformed output, respectively. The output

of the min processor is obtained by taking the minimum between the spectral estimates

obtained by processing the two subarrays independently, i.e.,

ymin(u) = min(|yA(u)|2, |yB(u)|2). (2.10)

The min beampattern is obtained by taking the minimum between the two subarray beam-

patterns (squared magnitude of the beampatterns). As an example, the min beampattern

computed for the 6 sensor NA and CSA designs is compared in Figure 2.16. As noted by

Liu and Buck, the min processor provides reduction in the sidelobe levels when compared

to the multiplicative beampattern.
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2.6 Summary

This chapter provided the background required to design the coprime and nested arrays for

the Elba ULA. By analyzing the Elba data using the 48 sensor Elba ULA, the conventional

beamformer acts as a benchmark for the design of the multiplicative and min processors.

It is evident from the initial formulation of the CSA and NA designs, that although the

beampattern of these sparse processors attain similar resolution, the peak sidelobe of the

multiplicative and min CSA/NA beampatterns are significantly higher than the beampat-

tern of the fully populated ULA obtained using a conventional processor.
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Figure 2.16: Comparison of the multiplicative vs. min vs. ULA beampattern for the 6 sensor
CSA and NA designed as in Figure 2.9. Each beampattern is expressed in decibels, the power
response of the min processors can be obtained by taking 10 log10 squared magnitude of
the output, whereas, the power response from the multiplicative processors can be obtained
by taking 10 log10 magnitude of the output. The multiplicative and min beampatterns are
compared to the 12 sensor conventional ULA beampattern.
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Chapter 3: Coprime and nested geometries for the Elba ULA

The previous chapter introduced the CSA and NA designs within a general array process-

ing framework and illustrated the generation of multiplicative and min beampatterns. As

mentioned in the text by Van Trees, the beampattern of an array is a crucial factor in eval-

uating its performance [1]. The purpose of this chapter is to explore the design of coprime

and nested array geometries for the 48−sensor ULA used in the Elba experiment and select

suitable CSA and NA designs by comparing the multiplicative and min beampatterns to

the conventional ULA beampattern.

It is clear from the preceding discussion that although the multiplicative processors

attain similar resolution as the conventional ULA processor, they fail to achieve similar

peak sidelobe levels. This problem was investigated by Adhikari et al. who showed that

by extending the subarrays and applying tapers it is possible to achieve a multiplicative

beampattern with similar properties to a ULA beampattern [23]. Adhikari et al.’s approach

allowed arbitrary extension of the subarrays. Since we wish to estimate the Elba spectrum

using the designed CSA and NA, the extension of the subarrays must be restricted to the

aperture of the Elba ULA.

Designing coprime and nested arrays to analyze the Elba data set requires a strategy

to tackle the issue of high peak sidelobes posed by the multiplicative beamformers. When

analyzed using the conventional ULA, the Elba data showed a large dynamic range (40 -

50 dB) of signal powers in the received data. This indicates that the desired beamformer

peak sidelobe levels should be −55 dB or less (the ULA beamformer made use of −55 dB

Dolph-Chebychev tapering).

This chapter explores all possible designs of the coprime and nested array geometries

for the fixed aperture ULA used in the Elba experiment and compares the beampattern
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performance of each design with the conventional ULA beampattern. The selection of the

“best” coprime and nested array is shown to be a tradeoff between the total number of

sensors and beampattern performance.

Section 3.1 provides a detailed explanation of the coprime array design for the Elba

ULA. Note that this research appeared in a paper presented at the Asilomar Conference on

Signals, Systems and Computers (SS&C) in 2014 [36]. Section 3.2 shows all possible designs

for the nested configuration of the Elba ULA. Section 3.3 illustrates the min processor

applied to each of the selected CSA and NA designs. Section 3.4 provides a comparison

of each of the chosen CSA/NA designs by comparing the beampatterns obtained using

multiplicative and min processors. The design criteria is focused on satisfying two major

beampattern properties, (a) peak sidelobe level achieved should be at least −55 dB and (b)

each designed beamformer should attain similar beamwidth for further comparison of the

estimated spatial spectrum in the later chapters.

3.1 Coprime array design for the Elba ULA

In previous work [23], the number of sensors added to each subarray was selected to reduce

sidelobes by extending the array outside of that fixed aperture. The Elba Island ULA has

48 elements, spanning an aperture of 47d, where d = 0.44λ ≈ λ/2 for the 335 Hz source. In

this study the goal is to design the CSA such that the the extended subarrays fit within the

total aperture, i.e., (Me − 1)Nd ≤ 47d and (Ne − 1)Md ≤ 47d, where, Me and Ne are the

total number of sensors in each extended subarray. As we add more sensors to the subarrays

the aperture increases, this increase in aperture in turn provides a reduction in the width

of the main lobe and the grating lobe, the peak sidelobe of the multiplicative beampattern

is caused due to the interaction of the grating lobes. Hence, it is essential to extended the

subarrays as much as possible in order to accommodate for the high dynamic range in the

Elba data.

To design a CSA that has the resolution of an 48−sensor ULA, the coprime integers M
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Figure 3.1: Coprime integer pairs for 1 ≤ M ≤ 25 and 1 ≤ N ≤ 25. The dashed-blue lines
indicate the constraints MN = 48 and M = N . Each point is associated with extension
factors that would fit the 47d aperture of the full ULA. The colorbar represents the peak
sidelobe level in dB for each design.

and N are chosen such that

MN ≤ 48. (3.1)

Adhikari et al. [23] showed that to minimize the total number of sensors, M and N should

be as close to equal as possible, i.e., N = M + 1. The scatter plot shown in Figure 3.1

provides all possible co-prime pairs for 1 < M < 25 and 1 < N < 25 that satisfy the given

constraints for the Elba ULA. Without loss of generality, assume that N > M , thus the

coprime pairs of interest lie to the right of the dashed line. There are 29 coprime pairs that

satisfy the basic constraint given by equation (3.1). Each coprime pair is associated with

extension factors determined by extending both the subarrays to fit inside the 47d aperture.

The points closest to the intersection of the two constraints provide the desired resolution

with the smallest number of sensors. Extension factors for the subarrays increase as we
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move away from the constraint lines (dashed-black). The color of the circles represents the

peak sidelobe level (dB) achieved by each CSA design determined by a coprime pair. The

sidelobe levels were computed by searching for the minimum sidelobe level achievable using

Dolph-Chebychev shading on the two subarrays.

The coprime design using M = 6, N = 7 is the closest to the intersection of the two

constraint lines. This design uses extension of each subarray by one sensor to fit inside the

47d aperture. Figure 3.2 shows the sensor placement and the effective beampatterns for the

subarrays and the CSA. This coprime design uses the smallest number of sensors to span

the aperture, i.e., 14 sensors (≈ 70% reduction in the number of sensors compared to the

full ULA). The lowest peak sidelobe of -6 dB was achieved when the subarrays were tapered

with a Dolph-Chebychev window set to -12 dB sidelobes.

The CSA design using coprime factors M = 2 and N = 3 allows for the largest extension

of the two subarrays and results in the lowest peak sidelobe for the given constraint on ULA

aperture. Figure 3.3 shows the sensor placement and the beampatterns for this configu-

ration. In this design subarray-A has 16 sensors with 3d spacing and subarray-B has 24

sensors with 2d spacing. The CSA contains 32 sensors, which is a 33% reduction compared

to the 48-sensor ULA. Of the 29 possibilities shown in Figure 3.1, this design achieves the

lowest peak sidelobe level of −65 dB when the two subarrays are tapered with a Dolph-

Chebychev windows of −130 dB sidelobes. The CSA design that shall be considered for

analyzing the Elba data will make use of subarrays tapered with −110 dB sidelobes of the

Dolph-Chebychev window. The resolution also improves by relaxing the peak sidelobe level

requirement to the desired at −55 dB.
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Figure 3.2: beampatterns for the CSA with M = 6 and N = 7 with a maximum exten-
sion by 1 sensor. The sensor placement is shown in (a) where the dashed lines indicate
the shared sensors and (b) shows the multiplicative beampattern designed using subarray
weights shaded with a Dolph-Chebychev window of -12 dB sidelobes (beampatterns for the
coprime subarrays are also plotted on a 10 log10 scale).
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Figure 3.3: beampatterns for the CSA with M = 2 and N = 3 extended to fit inside
the 47d aperture. The sensor placement is shown in a) where the dashed lines indicate
the shared sensors and (b) shows the multiplicative beampattern designed using subarray
weights shaded with Dolph-Chebychev windows of -130 dB sidelobes (beampatterns for the
coprime array are plotted on a 10log10 scale).
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Figure 3.4: Sensor positioning of the NA designed for the 48-sensor ULA using Q = 3 and
two extension factors c = 1 and c = 2.

3.2 Nested array design for the Elba ULA

The NA makes use of an undersampled outer subarray and a non-aliased inner subarray.

The outer subarray makes use of P sensors with Qd spacing and the inner subarray uses Q

sensors with d spacing. The aperture of the outer subarray dictates the resolution attained

by the multiplicative beampattern. In order to ensure similar resolution as the 48-sensor

Elba ULA, it is required that PQ = 48, i.e., for a given choice of Q the outer subarray is

extended to span the aperture of 47d. The number of sensors in the outer subarray can be

obtained by

P =

⌈
48

Q

⌉
. (3.2)

The peak sidelobe in the beampattern of an NA is the result of the interaction between

the mainlobe of the inner subarray and the grating lobe of the outer subarray. By intro-

ducing more periods of the inner subarray, the width of the main lobe reduces and the

interaction with the grating lobes results in lower sidelobes for the NA beampattern. The

total number of sensors in the inner subarray can be given by cQ, where c is the extension

factor. Figure 3.4 illustrates the sensor placement for a nested design using Q = 3 and two

extension factors c = 1 and c = 2.

Figure 3.5 shows all possible nested array designs for the Elba ULA, the colorbar indi-

cates the lowest possible sidelobe achieved (in dB) by the multiplicative beampattern for
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Figure 3.5: Nested array designs for the Elba ULA, 2 ≤ Q ≤ 24 and 1 ≤ c ≤ 12. The
dashed-black lines indicate the constraint cQ ≤ 24. The colorbar represents the peak
sidelobe level in dB attained by each design.

each of the designs using Dolph-Chebychev shading of the two subarrays. The motivation in

using Dolph-Chebychev weighting was the ability of this window to control the two beam-

pattern parameters. The black dashed line represents a constraint, cQ ≤ 24, to ensure that

the inner subarray does not occupy more than half the aperture of the ULA. This is done as

the goal of this research is to obtain a NA design that provides a reduction in the number

of sensors compared to the ULA. The total number of sensors used in the nested array can

be obtained by,

Tna =

⌈
48

Q

⌉
+ cQ− c. (3.3)

The nested design with parameters Q = 3 and c = 8 makes use of an inner subarray with
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24 sensors and d spacing and the outer subarray uses 16 sensors with 3d spacing, a total of

32 sensors, i.e., a 33% reduction in the number of sensors compared to the ULA. The inner

subarray of the designed NA spans half the aperture of the Elba ULA. In order to use this

NA design to analyze the Elba data set, the inner subarray can span either the bottom/top

portion of the Elba ULA or placing the inner subarray centered around the middle of the

ULA. The ULA analysis of the Elba data indicates strong arrivals around broadside, which

suggests placing the inner subarray centered around the middle of the ULA to guarantee

symmetric sampling of the propagating modes. Placing the inner subarray at the bottom

or top of the Elba ULA will ensure sampling of the modeshapes corresponding to higher or

lower mode numbers, respectively [37].

Figure 3.6 shows the sensor placement and multiplicative beampattern for this NA

design as well as the individual subarray beampatterns compared to the conventional ULA

beampattern. This design achieves the desired peak sidelobe of −55 dB using Dolph-

Chebychev tapering of the subarray weights.
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Figure 3.6: The sensor placement for the Nested array with Q = 3 and c = 8 is shown in
(a) and (b) illustrates the multiplicative beampattern designed for subarrays tapered with
Dolph-Chebychev shading of -110 dB sidelobes. Each of the subarray beampatterns are
plotted on a 10 log10 scale.
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Figure 3.7: The designed CSA-min beampattern for subarrays tapered with Dolph-
Chebychev window with -110 dB sidelobes. The peak sidelobe achieved by this processor
is -88 dB.

3.3 Min beampatterns for the designed CSA/NA

The min processor generates the beampattern by taking the minimum of the squared mag-

nitude of the two subarray beampatterns. The subarrays for this processor make use of

Dolph-Chebychev tapers for the two designs with sidelobes set to -110 dB. The peak sidelobe

level achieved varies for the two designs. The peak sidelobe in the CSA-min beampattern

may be higher than -110 dB if there exists any overlap between the grating lobes of the

two subarrays as shown in Figure 3.7. The peak sidelobe achieved by the CSA using a min

processor is -88 dB.

The peak sidelobe of the NA-min beampattern may be greater than the subarray peak

sidelobe of -110 dB if there exists an overlap between the grating lobe of the inner subarray

and the main lobe of the outer subarray. The NA design as obtained in the previous section

does not have any overlap between the grating lobe and main lobe providing a peak sidelobe
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Figure 3.8: The designed CSA-min beampattern for subarrays tapered with Dolph-
Chebychev window with -110 dB sidelobes. The peak sidelobe achieved by this processor
is -88 dB.

of −110 dB as shown in Figure 3.8

3.4 Comparison of the multiplicative and min CSA/NA pro-

cessors designed for the Elba ULA

The multiplicative beamformers designed in the previous sections achieve the desired peak

sidelobe level of −55 dB when the subarrays are tapered with Dolph-Chebychev windows of

−110 dB sidelobes. It is well known that the beamwidth and peak sidelobe level are inversely

proportional to each other. The beamwidth of the designed multiplicative beamformers are

wider when compared to the conventional ULA processor using Dolph-Chebychev tapers

with sidelobes set to −55 dB.

The designed multiplicative beamformers provide sufficiently low peak sidelobe levels

in order to discriminate between the strong and weak arrivals in the Elba data. In order
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Figure 3.9: Comparison of the designed multiplicative CSA/NA beampatterns to the con-
ventional ULA beampattern obtained using Dolph-Chebychev tapering. The conventional
processor is fine tuned to achieve similar beamwidth as the multiplicative processors.

to provide even grounds of comparison with the conventional processors, it is essential to

ensure the resolution/beamwidth attained by both processors is the same. Using adjustable

tapers like the Dolph-Chebychev window grants the added advantage to tune the beamwidth

by altering the sidelobe levels. Hence, the conventional ULA processor that shall be used

for comparing the performance will make use of Dolph-Chebychev tapers with −103 dB

sidelobes which ensures that the beamwidth attained by the multiplicative processors is

the same as the conventional processor. Figure 3.9 compares the multiplicative CSA/NA

beampatterns to the conventional processor providing with the equivalent beamwidth and

desired peak sidelobe level. Although, the null-to-null beamwidth equivalence is ensured,

the inner subarray of the designed NA provides with the expansion of the mainlobe structure

in the resultant NA beampattern. The peak sidelobe achieved by each design is sufficiently

low to compensate for the high dynamic range in the Elba data. Figure 3.10 compares the
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Figure 3.10: Comparison of the designed min CSA/NA beampatterns to the conventional
ULA beampattern obtained using Dolph-Chebychev tapering.

min beampatterns of the designed CSA and NA to the conventional ULA beampatterns.

3.5 Summary

In summary, a ULA spans a fixed aperture of (L− 1)d using L sensors and d m spacing. A

CSA design can be formulated by choosing appropriate values of the undersampling factors

M and N , where M and N are coprime integers chosen to satisfy MN ≤ L. The subarrays

of the CSA span apertures of (Me − 1)Nd and (Ne − 1)Md, respectively. Subarray-A uses

Me =
⌈
L
N

⌉
sensors with Nd spacing. Subarray-B uses Ne =

⌈
L
M

⌉
with Md spacing.

The NA design requires a choice of the undersampling factor of the outer subarray, Q,

such that the outer subarray spans the aperture of the ULA using P = dLQe sensors with

Qd spacing. The inner subarray is non-aliased and makes use of cQ sensors with d spacing,
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where c is the extension factor. The constraint applied in the NA design restricts extending

the inner subarray beyond half the aperture of the ULA, i.e., cQ ≤ L/2, since extending the

inner subarray beyond half the length of the ULA would be essentially the same as using

the ULA itself.

This chapter presented the design of multiplicative and min CSA/NA processors to be

used to analyze the Elba data set. The designed CSA/NA provide a 33% reduction in the

number of sensors. The multiplicative and min beamformers successfully satisfy the two

design criteria: (1) desired peak sidelobe ≤ −55 dB and (2) similar resolution, across all

processors. Table 3.1 provides a comparison of the designed CSA/NA multiplicative and

min beamformer properties with the conventional beamformer. The selected designs will

be analyzed in the next chapter using a Gaussian signal model to highlight the issue with

cross terms at the output of the multiplicative processors.

Table 3.1: Comparison of the multiplicative and min processors using the CSA and NA
designed for the Elba ULA.

Processor Type Array design Total no. of Peak sidelobe level Beamwidth BWNN in
sensors in (dB) u-space at d = λ/2

Conventional
ULA 48 -103 dB 0.338

processor

CSA 32 -55 dB 0.338
Multiplicative

Processor
NA 32 -55 dB 0.338

CSA 32 - 88 dB 0.338
Min

Processor
NA 32 -110 dB 0.338
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Chapter 4: Narrowband simulation of designed CSA/NA

multiplicative and min beamformers

The previous chapter was focused on selecting appropriate CSA and NA designs for the

fixed 48−sensor Elba ULA. The selected designs are shown to provide the best tradeoff

between the total number of sensors used and beampattern performance. The min and

multiplicative beamformers were designed intelligently with prior knowledge of the Elba

data analyzed using the ULA.

As noted in Chapter 1, multiplicative processors have been used widely in applications

related to radio astronomy and radar since the 1960’s. Ksienski and Pedinoff observed the

presence of cross terms or cross products at the output of a multiplicative processor in

multiple target/source scenarios for radar applications [18,19]. Davies suggested averaging

over multiple snapshots when the two targets/sources are uncorrelated to reduce their effect

[20].

In this chapter we approach the issue of cross terms by identifying the different types

of cross terms using a Gaussian signal model for a single source in spatially white noise.

Adhikari and Buck studied the detection problem of a similar signal model using coprime

arrays. Their work however was focused on the detection of the source signal of interest

and they did not consider cross terms effects [38].

The output of the multiplicative processor is analyzed and the contribution of each term

at the output is compared to the overall spatial spectrum estimate for a range of Signal-

to-Noise Ratio (SNR) values. The analytical derivation for the decay of the uncorrelated

cross terms is provided. The numerical simulations and analytical results are shown to have

good agreement. The output of a min processor is computed by taking the minimum of the

two subarrays processed independently. Since the output of at least one of the subarrays is
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guaranteed to be aliased, this chapter will illustrate the cases when the min processor will

fail to eliminate the ambiguity.

Section 4.1 illustrates the generation of cross terms at the output of a multiplicative

processor using a narrowband signal model and identifies the locations of the cross term

peaks in the visible spectrum. Section 4.2 provides the derivation of the cross term decay

as the output of the multiplicative processor is averaged over snapshots. Section 4.3 shows

the issues with estimating a spatial spectrum using the min processors.

4.1 Problem Formulation

Consider processing a plane wave source and noise using the 48−sensor Elba ULA. The

direction of arrival of the signal wavefront at the array axis can be represented by the

directional cosine u1 = cos(θ1) where θ1 is the angle of incidence. The signal amplitude

s1 is modeled as a zero-mean complex Gaussian random variable, s1 ∼ CN (0;σ21) and

n is the received noise vector modeled as a zero-mean complex Gaussian random vector,

n ∼ CN (0;σ2nIL×L). The signal and noise components are assumed to be independent of

each other. The Signal-to-Noise Ratio (SNR) is defined as SNR = σ21/σ
2
n. The input to the

ULA is,

x = s1v1 + n (4.1)

where v1 is the replica vector/array manifold vector corresponding to the ULA for the source

arriving from the direction u1, propagating with wavelength λ, i.e., v1(l) = exp(j 2πλ u1(l −

1)d) for l = 1, 2, . . . , L [1]. The input to the individual subarrays of the CSA as designed in

Figure 3.3 are defined as

xA = s1vA,1 + nA, xB = s1vB,1 + nB, (4.2)

where vA,1 and vB,1 are the source replica vectors corresponding to subarray-A and subarray-

B, respectively, i.e., vA,1(m) = exp(j 2πλ u1(m − 1)Nd) for m = 1, 2, . . . ,Me and vB,1(n) =

42



exp(j 2πλ u1(n − 1)Md) for n = 1, 2, . . . , Ne. The received noise vectors nA and nB, for

subarray-A and subarray-B, respectively, are extracted from the ULA noise vector n. The

output from subarray-A can be evaluated as a function of the directional cosine u in the

visible region, i.e., −1 ≤ u ≤ 1, by applying a spatial filter, wA,

yA(u) = wA
HxA = s1wA

HvA,1︸ ︷︷ ︸
BA,u(u1)

+wA
HnA. (4.3)

BA,u(u1) is the beampattern of subarray-A steered to directional cosine u evaluated at u1.

Similarly, the output of subarray-B can be evaluated by applying a corresponding spatial

filter wB
H ,

yB(u) = wB
HxB = s1wB

HvB,1︸ ︷︷ ︸
BB,u(u1)

+wB
HnB, (4.4)

where BB,u(u1) is the beampattern of subarray-B steered to u evaluated at u1. The weights

wA and wB are normalized such that the source signal is passed through the beamformer

with unity gain [32]. The output of the multiplicative processor consists of four terms

y(u) = yAy
∗
B = |s1|2BA,u(u1)B

∗
B,u(u1) + wA

HnAnB
HwB

+ s1BA,u(u1)nB
HwB︸ ︷︷ ︸

cross term 1

+ s∗1B
∗
B,u(u1)wA

HnA︸ ︷︷ ︸
cross term 2

.
(4.5)

The spatial power spectrum can be obtained by evaluating the magnitude of the output,

|y(u)| across different directions in the visible region, i.e., −1 ≤ u ≤ 1. Figure 4.1 compares

the contribution of the four terms to the overall spatial spectrum computed using the

multiplicative processor for a single snapshot reception of the plane wave source at u1 = 0 in

spatially white noise with Signal-to-Noise Ratio in dB given by SNRdB = 10 log10 SNR = 40

dB. The first term in equation (4.5) represents the straight-through source term, i.e., when
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Figure 4.1: The CSA spectrum for source reception at broadside, i.e., u1 = 0 with SNRdB =
40 dB, denoted by black dashed line. The colored lines represent the contribution of the
individual terms described in the signal model.

both the subarrays process the the signal component. This can be easily predicted by the

multiplicative CSA beampattern evaluated at u1 = 0. Figure 4.2 (a) shows the magnitude

of the multiplicative beampattern evaluated for u1 = 0 for the given CSA design. Both the

subarrays make use of Dolph-Chebychev weights with −110 dB sidelobe levels. The second

term in equation (4.5) corresponds to the straight-through noise term, i.e., when both the

subarrays process the noise component. The output consists of shared and non-shared

sensor terms, i.e.,

wA
HnAnB

HwB =
∑
i

w∗A,iwB,i|ni|2 +
∑
i 6=j

∑
j

w∗A,iwB,jn
∗
i nj . (4.6)
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subarrays as shown in Figure 3.3. The subarray beampatterns are plotted on a 10 log10
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The last two terms in equation (4.5) are called source-noise cross terms. These are highest

when the two subarray beamformers are steered to direction uc,

uc =

{
u1 ±

iλ

Md
;u1 ±

iλ

Nd

}
∀i ≥ 0, i ∈ Z. (4.7)

uc are the locations of the source-noise cross term peaks in the visible spectrum, i.e., for

−1 ≤ uc ≤ 1. The grating lobe of one of the subarrays aligns perfectly with the source

location u1, passing the signal component through the output of the beamformer with

unity gain. The noise is processed through the output of the other subarray. Figure 4.2 (b)
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illustrates the individual beampatterns of the CSA subarrays steered to uc = u1 − λ/Nd,

using the coprime pair (M,N) = (2, 3) and d = λ/2. The grating lobe of subarray-A

aligns perfectly with the source location at u1 = 0. The next section analyzes the effect of

averaging the output of the multiplicative processor over multiple snapshots.

4.2 Analysis of Cross terms

Figure 4.3 compares the individual contributions of the four terms described in equation

(4.5) to the received output power using multiplicative processing of the 32 sensor CSA

design. The output power is computed at the location of the source-noise cross term peaks,

specifically, uc = u1−λ/Nd. The comparison is done as a function of SNR, since SNR = σ21

(assuming unit noise power, σ2n = 1). For very high SNR (σ21 >> σ2n), the source-noise cross

terms are buried beneath the peak sidelobe of the multiplicative beampattern designed for

the given CSA.

4.2.1 Noise-noise cross terms

When the signal power is much lower than the noise power (i.e., σ21 << σ2n), the output

power at uc, obtained using the multiplicative processor can be predicted by the straight-

through noise terms as shown in equation (4.6). The output of the multiplicative processor

is a product of two dependent complex Gaussian random variables (since the output consists

of shared and non-shared sensor terms)

yA ∼ CN (0, σ2nwA
HwA)

yB ∼ CN (0, σ2nwB
HwB).

(4.8)

The received noise power |y| = |yAy∗B|, follows the distribution of the product of two de-

pendent Rayleigh random variables [39]. Using the fact that |yA| and |yB| are correlated
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Rayleigh random variables, with correlation coefficient, ρ given by,

ρ =

∑
i=shared

w∗A,iwB,i√
(wA

HwA)(wB
HwB)

. (4.9)

The output |y| follows the distribution of the product of two dependent Rayleigh random

variables,

f(|y|) =
4|y|

σ2aσ
2
b (1− ρ2)

· I0
( 2|y||ρ|
σaσb(1− ρ2)

)
·K0

( 2|y|
σaσb(1− ρ2)

)
(4.10)

where I0(·) and K0(·) are the zeroth order modified Bessel functions of the first and second

kind, respectively, and σ2a and σ2b are the variances at the outputs of the subarray-A and
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subarray-B, respectively. The expectation of the pdf (4.10) using the required correlation

coefficient provides an estimate of the output power at the first snapshot [38]. The output

of the multiplicative processor averaged over K snapshots can be given by,

yK(u) =
1

K

K−1∑
k=0

y(u, k). (4.11)

The output at the Kth snapshot consists of the sum of chi squared random variables (shared

sensor terms) and the sum of the product of two uncorrelated complex Gaussian random

variables (non-shared sensor terms). These are also called as the noise-noise cross terms. By

applying the law of large numbers, the non-shared sensor term converges in distribution to

a zero mean complex Gaussian random variable with the variance decreasing as a function

of 1/K. Hence, for a sufficient K large (or theoretically, as K → ∞) the output of the

CSA at the Kth snapshot is mainly dictated by the shared sensor terms i.e., yK converges

in distribution to a Chi-squared random variable. Hence the magnitude of the averaged

output at the Kth snapshot is defined as

FNP = lim
K→∞

E[|yK |] = σ2n

∣∣∣∣ ∑
i=shared

w∗A,iwB,i

∣∣∣∣. (4.12)

This quantity is referred to as the Final Noise Power (FNP ).

4.2.2 Source-noise cross terms

For high SNR (σ21 > σ2n), the multiplicative spectra at uc is dominated by the contribution

of the source-noise cross term, i.e., when the source signal is processed through the output
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of subarray-A and the noise through the output of subarray-B,

yA(uc) ∼ CN (0, σ21)

yB(uc) ∼ CN (0, σ2nwB
HwB).

(4.13)

The output of the multiplicative processor at uc for a single snapshot is a product of two

independent complex Gaussian random variables, also known as a complex double Gaussian

random variable [40]. Since the signal and noise components are assumed to be independent

of each other, the output power is obtained by taking the magnitude follows the distribution

of the product of two independent Rayleigh random variables, |y1(uc)| = |yA(uc)|.|yB(uc)|,

E[|y1(uc)|] = E[|yA(uc)|]E[|yB(uc)|],

=

√
πσ21

4

√
πσ2nwB

HwB

4
,

(4.14)

E[|y1(uc)|] =
π

4
σ1σn

√
wB

HwB. (4.15)

As the output is averaged over multiple snapshots, each y(uc, k) is a product of two inde-

pendent complex Gaussian random variables and since each snapshot is independent, the

law of large numbers suggests that the sum of the product of two independent complex

Gaussian random variables for large K approaches a complex Gaussian random variable.

As the real and imaginary parts of the sum will follow the sample distribution of a Gaussian

random variable, i.e., as K →∞, yK(uc) ∼ CN (0, σ21σ
2
nwB

HwB/K). The output power at

the Kth snapshot can be estimated as

E[|yK(uc)|] =

√
π

K

σ1σn
√
wB

HwB

2
. (4.16)
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Combining equations (4.15) and (4.16), a relationship for the decay of the cross terms due

to averaging can be obtained,

E[|y1(uc)|]
E[|yK(uc)|]

=

√
πK

2
(4.17)

Taking 10 log10 on either side of the equation shown above and using the fact that 10 log10
√
π
2 =

−0.5246. For large values of K,

10 log10E[|y1|]− 10 log10E[|yK |] ≈ 5 log10K (4.18)

The source-noise cross terms decay with averaging over snapshots by a factor of 5 log10K

dB, i.e., the cross term peaks decay at a rate of 5 dB per decade of snapshots the output

is averaged over. When the source-noise cross terms attain a significant amount of decay

(i.e., after sufficient snapshot averaging), the output power at uc approaches the final noise

power value predicted by equation (4.12). We define the ratio CTNR (Cross Term-to-Noise

Ratio) as a function of the number of snapshots averaged,

CTNR(k) =
E[|yk(uc)|]|
FNP

. (4.19)

In Figure 4.4, the solid colored lines indicate the ratio of the total power obtained using

the multiplicative CSA processor to the final noise power as a function of the number of

snapshots averaged obtained using simulated signals of varied signal strengths, the result

is averaged over 1,000 Monte Carlo trials. The dashed lines indicate the CTNR using

analytical predictions of the source-noise cross term decay showing excellent agreement

with the simulated results.

As a final evaluation step, let us compare the cumulative average of the scanned response

as a function of the number of snapshots averaged. Figure 4.5 uses an SNRdB = 40 dB

and the average is performed over 106 number of snapshots. There is a clear evidence of

the presence of source-noise cross-terms at endfire as predicted by the analysis done before.
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Figure 4.4: The figure illustrates the decay observed at the cross term peaks as a function
of snapshot averaging. The solid colored lines indicate the ratio of the total power obtained
using the multiplicative CSA processor to the final noise power using simulated signals of
various SNR values. The dashed lines represent the CTNR using the analytical predictions.

With averaging, since the signal and noise are assumed to uncorrelated a significant decay

is observed as the number of snapshots averaged increases. Using Figure 4.4 the CTNR

computed for the SNRdB = 40 dB at the 106 snapshot reaches to the final noise power

(FNP). This is in agreement with the cumulative average scanned response. Figure 4.6

compares the first and last snapshot slices of the cumulative response indicating the overall

decrease from the first to the last snapshot.
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Cumulative average scanned response (CSA)
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Figure 4.5: Cumulative average scanned response of the formulated signal model using
a single source in noise with an SNR=40 dB, the scanned response is averaged over 106

snapshots, illustrating the decay observed at the cross terms peaks.

4.2.3 Source-source cross terms

Consider processing two sources with directional cosines u1 and u2 using the CSA. Cross

terms observed at the output of the multiplicative processor occur when one source falls in

the grating lobe of subarray-A and the other source appears in the grating lobe of subarray-

B, i.e., when the two sources are the difference |u2 − u1| = |λ/Md − λ/Nd| apart in u

space, the cross term puts maximum energy outside the bandwidth of the source signal.

These cross terms are known as source-source cross terms. Let s2 ∼ CN (0, σ22) be the signal

component of the second source, the output of the multiplicative processor at the peak of

these cross terms, usc is dominated by the term,

y(usc) = s1s
∗
2BA,usc(u1)B

∗
B,usc(u2) (4.20)
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Figure 4.6: The averaged scanned response at the first snapshot and the 106 snapshot is
compared showing the overall decay observed at the cross term peaks.

If s1 and s2 are perfectly correlated random variables, the source-source cross terms will

exist in the multiplicative CSA spectrum and will not decay. Whereas, if s1 and s2 are

uncorrelated, the source-source cross terms will also decay at a rate of 5 log10K. As an

illustration consider the signal model consisting of two sources in noise, the output of the

multiplicative processor will now consist of 9 terms, 2 straight-through source terms, 1 noise

only term, 2 source-source cross terms and 4 source-noise cross terms.

Figure 4.7 shows the cumulative scanned response computed for a signal model using 2

source in the presence of spatially white noise, SNRdB = 10 dB for both sources and the

average is computed using 1, 000 snapshots. The presence of the source-noise and source-

source cross terms is evident in the plot and the decay is observed since the two sources are

uncorrelated. For the averaged result refer to Figure 4.8 which compares the first and last
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Cumulative average scanned response (CSA)
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Figure 4.7: Simulation of two sources in noise averaged over 1,000 snapshots, illustrating
the decay observed at the locations of the signal and noise cross terms. SNRdB = 10 dB
(both sources).

snapshot of the cumulative response, indicating the overall decay of the cross terms.

The CSA designs are more susceptible to the generation of source-source cross terms

as shall be observed in the next chapter. As both the CSA subarrays are undersampled

which produces grating lobes, although they do not intersect, but when one source aligns

with the grating lobe of one subarray and the second source aligns with the grating lobe of

the other subarray, the output received at the beamformer steered to the cross term peak

location will observe loud arrivals at these locations in the estimated spatial spectrum.

This however is not much of a huge concern for the NA designs since they employ the use

of a single undersampled subarray, the cross terms will put maximum energy outside the

bandwidth of the source when one source aligns perfectly with the grating lobe of the outer

subarray (aliased) and the other source falls in the mainlobe (wider mainlobe due to reduced

aperture) of the inner subarray. The possibility of such a situation occurring is quite low

[41].
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Figure 4.8: This figure illustrates that with averaging over snapshots the noise cross terms
and signal cross terms approach the final noise power predicted by the product of the weights
for the shared sensors between the two subarrays.

4.3 When does the min processor fail to eliminate the ambi-

guity due to undersampling?

The min processor combines the spectral estimates observed by the two subarrays indepen-

dently by taking the minimum at each directional cosine. Since the CSA makes use of two

undersampled subarrays the spectral estimates obtained by the two subarrays will consist

of the aliased copies of the source signal centered at the two distinct grating lobe locations.

Lets consider that the source signal is spatially bandlimited, i.e., it spans over a discrete

set of directional cosine values. The individual CSA subarrays will produce a spectral esti-

mate that consists of this bandlimited source signal centered at the grating lobe locations.

There exists a possibility that these aliased copies might overlap and the output of the min

processor at the overlap locations would not be able to eliminate these ambiguous terms.

Since the NA design makes use of one less undersampled subarray, the possibility of such
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an overlap is quite rare. Although there does exist a possibility if the source signal sensed

by the inner subarray (non-aliased, but wider mainlobe) has a spread that overlaps with

the copies of the source signal at the grating lobe locations predicted by the outer subarray

(aliased).

4.4 Summary

The spatial spectrum computed by a multiplicative processor using a coprime array intro-

duces loud arrivals/peaks due to the generation of cross terms at the output when compared

to a conventional ULA processor. For high values of SNR, the cross term peaks appear to

be a dominant factor in the multiplicative spectrum, which requires averaging the output

over a large number of snapshots in order to mitigate their effect. Analytical and simulated

results presented in this chapter are conclusive and show that the cross terms decay at a

rate of 5 dB per decade of snapshots averaged. Moreover, in cases where the two sources

are correlated these cross terms do not decay with any amount of averaging. The chapter

also identifies the case when the min processor is used to estimate the spectrum for spa-

tially bandlimited signals, there exists a possibility that it will not be able to eliminate the

ambiguity produced by the undersampled subarray(s) of the NA or CSA.
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Chapter 5: Analysis of the Elba data using CSA and NA

The previous chapter highlighted the issue of cross terms arising at the output of a mul-

tiplicative processor using a Gaussian signal model and derived the analytical cross term

decay at the location of the cross term peaks in the estimated spatial spectrum. The cross

term decay rate was verified using a numerical simulation. The analysis also identified the

worst case scenario when two correlated sources are present, demonstrating that the source-

source cross terms generated at the output of the multiplicative processor do not decay with

averaging in this case. This chapter analyzes the spatial spectrum estimates of the Elba

data using the CSA/NA beamformer designs as defined in Table 3.1. Section 5.1 estimates

the spatial spectrum at the center frequency of the RM2 signal, i.e., at 335 Hz, using the

multiplicative processors and addresses the issue of cross-terms. Section 5.2 provides the

results of estimating the spatial spectrum for the RM2 signal at the center frequency us-

ing min processing of the data. Section 5.3 compares the wavenumber-frequency plots to

provide a summarized view for each of the processors analyzing the spectrum for the Elba

RM2 data.

5.1 CSA/NA multiplicative processing of the Elba data

The CSA and NA designs provide a multiplicative beam pattern that achieves the peak

sidelobe level of −55 dB and attains equal resolution as the Elba ULA using a conventional

beamformer with peak sidelobes of −103 dB. Since our goal here is to achieve the spatial

Power Spectral Density (PSD) we will make use of the S-2 based normalization of the

subarray weights (refer to appendix B for details about normalizing for true PSD). Figure

5.1 shows the cumulative average of the spatial spectrum for the RM2 source signal at the

center frequency of 335 Hz, computed by the multiplicative processor using the CSA design
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(a) CSA-Multiplicative processor

Cumulative average of Elba spectrum using NA-MULT
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(b) NA-Multiplicative processor

Figure 5.1: Cumulative average of the spatial spectrum computed using a multiplicative
processor for the 335 Hz reception in the Elba data. The multiplicative processors make
use of, (a) CSA design with coprime factors (M,N) = (2, 3) and, (b) NA design using
(Q, c) = (3, 8). The CSA response contains high energy arrivals around endfire. The
cumulative average is performed for 1, 000 snapshots of Elba data.

58



-1 -0.5 0 0.5 1

u = cos(θ)

0

10

20

30

40

50

60

P
o

w
e

r 
(d

B
)

Elba spectrum

Subarray-A

Subarray-B

-1 -0.5 0 0.5 1

u = cos(θ)

0

10

20

30

40

50

60

P
o

w
e

r 
(d

B
)

Elba spectrum

Outer Subarray

Inner Subarray

(a) CSA-mult (b) NA-mult

Figure 5.2: Subarray beampatterns of the CSA and NA designs overlaid on top of the Elba
spectrum computed using the conventional ULA illustrating the generation of cross terms
due to the leakage observed through the grating lobes.

with coprime factors, (M,N) = (2, 3) and the NA design with parameters (Q, c) = (3, 8).

Although the plots reveal the general nature of the source signal around broadside, the

response from the CSA consists of high energy arrivals around endfire that do not decay

with averaging. It can be shown that the output at the endfire locations consists of coherent

cross terms.

To illustrate the behavior of cross terms at the output of multiplicative processor, con-

sider Figure 5.2 which shows the subarray beam patterns of the designed CSA and NA

steered to one of the locations of the loud arrivals overlaid on top of the Elba spectrum

computed using the ULA. The high energy endfire arrivals in the multiplicative spectra are

associated with the leakage observed through the grating lobes of the CSA and NA, since

they align perfectly with the source signal at broadside. Figure 5.2 also shows lower endfire

arrivals observed by the NA since it makes use of one less undersampled subarray. These

arrivals do not seem to reduce with averaging. By the analysis done in chapter 4, the cross

terms (if uncorrelated) must decay at a rate of 5 dB/decade of snapshots averaged, i.e., the

total decay if the cross terms are produced by uncorrelated sources should be down by −15

dB from the first snapshot. Clearly, that is not the case.
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Figure 5.3: Fourier transform of the modeshape of mode 12 shown in bold-black overlaid
on top of the subarray beampatterns of the CSA steered to endfire illustrating the effect of
coherent cross terms.

To provide more insight into why the cross terms do not average out, consider a model

for the propagation of sound in a shallow water column. The sound pressure observed by a

receiver in a waveguide can be represented using a weighted sum of the normal modes [37].

Appendix A provides a short description of the normal modes of propagation in the shallow

waters at the Elba site [42]. Figure 5.3 shows the Fourier transform of the modeshape of

mode number 12 overlaid on top of the individual subarray beampatterns of the CSA steered

to a direction around endfire. The two grating lobes align perfectly with the mainlobes of

the Fourier transform of the modeshape. Since a single mode is coherent with itself, the

output of the multiplicative processor at the endfire direction will consist of coherent cross

terms which do not decay with averaging in time. One motivation for considering the nested

configuration is that the cross terms are less of a problem for NA designs because only one

of the subarrays has a grating lobe, i.e., the maximum cross term for the NA design is
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Figure 5.4: Multiplicative Elba power spectrum computed using the designed CSA and NA.
The spectrum is averaged over 1,000 snapshots.

smaller than for the CSA design.

The averaged spatial spectrum for the reception of the RM2 source signal evaluated at the

center frequency of 335 Hz is shown in Figure 5.4. The response from the multiplicative

processors provide endfire arrivals that are higher by approximately 20−25 dB for the CSA

and 10 − 15 dB for the NA when compared to the ULA. These are associated with the

coherent cross terms due to the modal propagation in the Elba environment.

5.2 CSA/NA min processing of the Elba data

The output of the min processor, ymin can be obtained by taking a minimum of the two

subarray outputs, i.e.,

ymin = min(|yA|2, |yB|2). (5.1)

Since the CSA makes use of undersampled subarrays, the individual response of the two
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subarrays will consist of copies of the source signal to be present/centered at the correspond-

ing grating lobe locations. Although, the coprimality of the undersampling factors ensures

distinct grating lobe locations, the CSA-min processor will be successful in eliminating the

ambiguity as long as the aliased copies of source signal do not overlap. The NA-min pro-

cessor will eliminate the ambiguity produced by the outer subarray as long as the copies

of the source signal in the response of the outer subarray does not overlap with the source

signal sensed by the non-aliased inner subarray. We can estimate the spread of the source

signal over a discrete set of directional cosines by looking at the Fourier transform of the

modeshape corresponding to the last mode number (refer Appendix A). In this case, the

KRAKEN normal mode program provides the shapes for 18 propagating modes. Figure

5.5 looks at a selected few modeshapes by computing their Fourier transforms over the

directional cosine. The source signal spread is estimated to be in the range −0.3 ≤ u ≤ 0.3,
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Figure 5.6: Averaged power spectrum of the 335 Hz reception of the Elba data evaluated
for the CSA and NA designs using min processors. The averaged ULA spectrum (shown in
bold-black) is computed using a conventional processor.

consistent with the Elba spectrum computed using the ULA.

Figure 5.6 shows the average power spectrum of the Elba data at 335 Hz processed us-

ing min processors for the CSA and NA. The response from the two processing techniques

applied to the CSA and NA designs are compared to the response obtained from conven-

tional processing of the 48-sensor Elba ULA. The spectrum is averaged in time over 1, 000

snapshots. The response from the CSA-min processor fails to eliminate the overlapping

copies of the source signal present at the grating lobe locations. The NA-min processor

provides with a spatial spectrum that is similar to the ULA around broadside. The output

of the NA-min processor outside the bandwidth of the source signal is controlled by the

inner subarray. The spectral levels at these locations are higher by approximately 3−4 dB.

This can be explained by recalling that the inner subarray was restricted to span half the

aperture of the ULA, i.e., the inner subarray makes use of a wider mainlobe allowing for
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more signals and/or noise to leak through to the output.

5.3 Comparison of the k − Ω spectra using CSA/NA multi-

plicative and min processors

CSA-MULT, ELBA Island k-Ω spectra 

0 100 200 300 400

Frequency (Hz)

-1.5

-1

-0.5

0

0.5

1

1.5

W
a

v
e

n
u

m
b

e
r,

 k
z

10

20

30

40

50

60

dB

NA-MULT, ELBA Island K-Ω spectra 

0 100 200 300 400

Frequency (Hz)

-1.5

-1

-0.5

0

0.5

1

1.5
W

a
v
e

n
u

m
b

e
r,

 K
z

10

20

30

40

50

60

dB

(a) (b)

CSA-MIN, ELBA Island k-Ω spectra 

100 200 300 400

Frequency (Hz)

-1.5

-1

-0.5

0

0.5

1

1.5

W
a

v
e

n
u

m
b

e
r,

 k
z

10

20

30

40

50

60

dB

NA-MIN , ELBA Island k-Ω spectra 

0 100 200 300 400

Frequency (Hz)

-1.5

-1

-0.5

0

0.5

1

1.5

W
a

v
e

n
u

m
b

e
r,

 k
z

10

20

30

40

50

60

dB

(c) (d)

Figure 5.7: Comparison of the wavenumber-frequency (k −Ω) plots for the Elba data with
the source signal RM2 transmitting a pseudorandom sequence with center frequency and
bandwidth of 335± 15 Hz computed using (a) CSA-MULT, (b) NA-MIN, (c) CSA-MULT,
and (d) NA-MIN.

Figure 5.7 compares the wavenumber-frequency (k − Ω) spectrum obtained from mul-

tiplicative processing and min processing of the designed CSA and NA. The spectrum
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estimated using the multiplicative processors reveal the effect of cross terms. The cross

terms move out of the visible region as the frequency is reduced. The spectrum estimate

obtained using the CSA-min processor illustrates the overlap between the aliased copies

of the signal at the grating lobe locations. The NA-MIN processor provides with a k − Ω

spectrum (shown in Figure 5.7 (d)) that is comparable to the ULA spectrum.

The Mean Squared Error (MSE) is computed as mean squared error of the difference in

the spectral levels of the estimated spatial spectrum obtained using the designed CSA and

NA when compared to the spectrum computed using the conventional processor. Figure

5.8 shows the MSE computed as a function of the temporal frequency. Due to the dynamic

range of the signal powers in the Elba data the squared error at each spatial frequency

is comparatively high providing with similar MSE profiles. The multiplicative processors

provide with a higher MSE than the min processors.
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Figure 5.8: Comparison of the squared error of the spatial power spectral density obtained
by the CSA and NA when compared to the ULA. The average is taken over the spatial
frequencies and computed for the center frequency and bandwidth of the source signal 335
Hz ±15 Hz.

65



5.4 Summary

This chapter analyzed the performance of each of the designed CSA and NA beamformers

in estimating the spatial power spectrum of the Elba data set corresponding to the RM2

source signal. The estimated spatial power spectrum for the receptions of the RM2 signal

at the center frequency of 335 Hz was analyzed. Unexpected loud arrivals at endfire hinted

towards the possibility of cross terms at the output corrupting the spectrum. To analyze

that further, the beam patterns overlaid on top of the true Elba spectrum (as sensed by the

ULA) provided a strong indication of the generation of source-source cross terms, as seen in

the narrowband simulations. To further support the evidence a normal mode model shows

that as even a single mode is coherent with itself, the source-source cross terms generated

at the output are highly correlated and do not decay with averaging. The CSA and NA

using multiplicative processors provided an averaged spatial spectra with endfire arrivals

approximately 30 dB and 20 dB higher than the ULA, respectively.

The KRAKEN normal mode program provided with only 18 propagating modes which

span only a small subset of the angle space. The min processor applied to the NA design

provided with the best spectral estimate making most out of the spatially bandlimited

signal. The CSA-min however fails to get rid of the ambiguity as there was significant

overlap between the aliased copies of the source signal.

66



Chapter 6: Conclusion

6.1 Summary

This thesis approached the problem of designing coprime and nested arrays that would

provide with suitable sensor savings compared to the 48−sensor Elba ULA. The Elba Island

data was first analyzed using a conventional ULA beamformer to obtain clear understanding

of the design requirements. The beampattern parameters (resolution and peak sidelobe

level) of the ULA were used as a benchmark to compare the beam patterns obtained by

applying multiplicative and MIN processing to the individual subarrays of the CSA and

NA. The chosen CSA and NA designs require 32 sensors, i.e., a savings of 33% in the cost

and maintenance of the sensors. The CSA design used coprime factors, (M,N) = (2, 3)

where the subarrays are extended to span the aperture of the ULA. The NA design made

use of the design parameters (Q, c) = (3, 8). All the designs attained the minimum desired

peak sidelobe level and had similar resolution.

Cross terms observed at the output of the multiplicative processors were identified to

be a cause for concern as they may produce ambiguities in the spatial spectrum. Averaging

in time helps to compensate for the effect of incoherent cross terms. The 335 Hz reception

of the Elba data was analyzed using multiplicative processing of the designed CSA and NA

subarrays. The spectrum was averaged over 1, 000 snapshots. The averaged CSA spectrum

consisted of high energy arrivals near endfire, which did not decay. A normal mode model

showed that even a single mode is coherent with itself, the output of the multiplicative

processors at the endfire direction consisted of cross terms that are highly correlated. The

NA performs fairly better since it makes use of one less undersampled subarray. The

averaged spectrum computed using the CSA-MIN processor consists of the ambiguities in

the spectrum around endfire, as there is significant overlap between copies of the source
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signal generated from the two undersampled subarrays. The NA-MIN processor provides

with a response that is comparable to the ULA.

6.2 Suggestions for Further Research

This thesis implemented coprime and nested arrays for the Elba ULA using both multi-

plicative and min processors. Comparison with the conventional processing of the Elba

data highlighted significant effects of coherent cross terms. The derivation of the cross term

decay relied on the law of large numbers. For an exact analysis, a moment generating func-

tion is required to analyze the pdf of the moving average of the complex double Gaussian

terms.

The co-array based beamforming approach makes use of the estimated covariance ma-

trix and does not require the multiplication of the beamformed outputs. Also the estimated

covariance matrix could be used to analyze the performance of using the linear non-uniform

array designed with the coprime and nested design framework by applying adaptive pro-

cessing techniques. The presence of cross terms in the estimated covariance matrix based

approaches needs to be examined.

The estimates of the mode powers obtained using multiplicative processors are similar

to the ULA. However it is difficult to retain the correlation structure of these estimated

mode powers. Further research could be focused on obtaining the mode powers using the

multiplicative processors and analyzing the reconstruction of the power spectrum using

correlated and uncorrelated modes.
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Appendix A: Normal modes of propagation in a shallow

water column

The homogeneous Helmholtz equation described in three dimensions using, r = {r, φ, z} ∈

cylindrical coordinate system can be given as [37]

∇2p(r) + k2(r)p(r) = 0, (A.1)

where k(r) = 2πf
c(r) acoustic wavenumber. The thesis makes use of a linear array and the

equation can be simplified for the two dimensions (range and depth)

1

r

∂

∂r

(
r
∂p

∂r

)
+ ρ(z)

∂

∂z

(
1

ρ(z)

∂p

∂z

)
+

(2πf)2

c2(z)
p = −δ(r)δ(z − zs)

2πr
, (A.2)

where r is the range of the source in meters. ρ and c are the density and sound speed

depending only on depth z. The frequency of the propagating signal is given by f in Hertz.

Using a technique of separation of variables the modal equation is a classical Sturm-Liouville

eigenvalue problem [43]. The ideal eigenvalue problem yields an infinite number of solutions

(similar to the modes of a vibrating string). Assuming the density and sound speed are real

functions of depth z, the depth dependent eigenfunction equation can be given as

d2

dz2
Ψm(z) + k2zm(z)Ψm(z) = 0, (A.3)

where Ψm(z) are the eigenfunctions or modeshapes for mode m at depth z. The vertical

wavenumber of mode m is given as, kzm(z) =
√
k2(z)− k2rm and krm is the horizontal

wavenumber of mode m. This thesis makes use of the normal modes to study the prop-

agation of sound by modeling the pressure received at a given depth z and range r in an
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underwater environment with well specified boundary conditions, sound speed profile, den-

sity measurements, description of the point source location in range and depth and the

propagation of the narrowband signal (center frequency of the Elba source). The pressure

received can be modeled as

p(r, z) =
∑
m

am(r)Ψm(z), (A.4)

where am(r) is the the mode coefficient at range r.

am(r) =
i

4ρ(zs)
Ψm(zs)H

(1)
0 (krmr), (A.5)

where H
(1)
0 is the zero-order Hankel function of the first kind. The pressure received at a

single point at (z, r) in the bounded space can be given as,

p(r, z) =
i

ρ(zs)
√

8πr
e−iπ/4

∞∑
m=1

Ψm(zs)Ψm(z)H
(1)
0 (krmr). (A.6)

KRAKEN is a normal mode program that can be used to obtain the solutions of the modal

equation [42]. The program provides the user with the modeshapes and mode coefficients

using an input environmental file which consists of the parameters required to compute the

modal equation as described above. The sound speed profile at the Elba array site is as

shown in the left panel of Figure A.1. The modeshapes computed at the Elba VLA site is

shown in the right panel of Figure A.1. The point source at 74 m depth from the surface

and at 5400 m from the Elba VLA using a 335 narrowband frequency provides with only

18 propagating modes. The rest of the modes are evanescent, i.e., vertical wavenumbers of

these modeshapes are imaginary.
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Figure A.1: The left panel indicates the sound speed profile measured during the experiment
and the right panel shows the modeshapes corresponding to the 18 modes of propagation
of the Elba environment computed using the KARKEN normal mode program.

The vector of pressures measured by an N-element linear array can be modeled as



p(z1)

p(z2)

...

p(zn)


=



ψ1(z1) ψ2(z1) . . . ψm(z1)

ψ1(z2) ψ2(z2) . . . ψm(z2)

...
...

. . .
...

ψ1(zn) ψ2(zn) . . . ψm(zn)





a1

a2
...

am


+



n(z1)

n(z2)

...

n(zn)


, (A.7)

where n is the observation noise and z1, z2, . . . , zn are the locations of the hydrophones.
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Appendix B: Normalizing the weights for PSD estimation

Heinzel et al. suggests normalizing the weights of a spatial filter is done to satisfy one of

two constraints [32]:

S-1 - To obtain unity gain in the source direction,

S-2 - To obtain the true Power Spectral Density (PSD).

For most of the thesis, we have made use of the S-1 normalization scheme for its simplicity

in design. For example, consider the designed spatial filter for a L-sensor ULA, w. The S-1

normalization is achieved by normalizing the spatial filter/ weight vector by its L1 norm,

(S-1)
w

||w||1
=

w∑L
i=1 |w(i)|

. (B.1)

In chapter 5 we consider estimating the power spectrum using the multiplicative and

min processors, which requires the use of the S-2 normalization. For the same L-sensor

ULA, we can obtain the true PSD estimates by normalizing the weight vector by its L2

norm, i.e.,

(S-2)
w

||w||2
=

w√∑L
i=1 |w(i)|2

. (B.2)

When the subarrays of a multiplicative or min processor are normalized using the S-2 scheme

the spectral density estimate at the output of the processors requires to be corrected for a

bias. This is done to ensure that comparisons between the spectral estimates obtained from

multiplicative, min and conventional beamformers, the spectral levels are consistent for er-

ror analysis (the error analysis is one of the suggested future directions for this research).

The bias correction factor for the multiplicative processor considering a S-2 based normal-

ization scheme for two basic signal models:
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• Noise only: when the input is white noise, the output of the multiplicative processor

averaged over a number of snapshots K can be given as,

E[|yK |] = σ2n

∣∣∣∣ ∑
i=shared

w∗A(i)wB(i)

∣∣∣∣
||wA||2||wB||2︸ ︷︷ ︸

=β

= σ2nβ. (B.3)

The output power received using the ULA does not require normalization. The out-

put power obtained using the product processor needs to overcome the bias issue by

dividing the averaged spectrum by β.

• 1 source: The signal model chosen here makes use of one source at direction u1 with

signal power σ21. The peak power of the source signal using the conventional processor

normalized for PSD can be predicted to be,

|yula(u1)|2 = σ21

( ∑
w

||w||2

)2

. (B.4)

Similarly, the CSA response at the peak of the source signal can be predicted by,

|y(u1)| = σ21

( ∑
wA

||wA||2
×
∑

wB

||wB||2

)
. (B.5)

We propose correcting for the bias using the factor ζ, which is defined as,

ζ =

( ∑
w

||w||2

)2
∑

wA

||wA||2 ×
∑

wB

||wB||2

,

=

( ∑
w

||w||2

)2

× ||wA||2∑
wA
× ||wB||2∑

wB
.

(B.6)

73



Therefore, applying the constant ζ to the estimate of the output power obtained using

the multiplicative processor provides with same peak level as predicted by the ULA,

ζ × |y(u1)| = σ21

( ∑
w

||w||2

)2

= |yula(u1)|2. (B.7)

Similarly, for the min processor, Liu and Buck propose a bias correction factor (γ) when the

two subarrays make use of the unity gain normalization (S-1) [44]. But when the subarrays

are normalized for true PSD (S-2), the bias correction for the two cases discussed above,

• Noise only: No bias correction is required since both the subarrays provide with

similar estimate of the noise power.

• 1 source: The bias correction needs to be applied to each of the subarrays as it is

processed independently, i.e.,

E[ymin(u1)] = min(|ηA × yA(u1)|2, |ηB × yA(u1)|2). (B.8)

Where,

ηA =

∑
w

||w||2
× ||wA||2∑

wA
,

ηB =

∑
w

||w||2
× ||wB||2∑

wB
.

(B.9)
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