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ABSTRACT

‘The INLEN system combines database, knowledge base, and machine learning technologies to
provide a user with an integrated system of tools for conceptually analyzing data and searching for
interesting relationships and regularities in them. Machine learning techniques are used for
determining general descriptions from facts, creating conceptual classifications of data, selecting
the most relevant attributes, determining the most representative examples, and discovering
equations binding numeric variables, as well as formulating applicability conditions for these
equations.

1. Introduction

This paper briefly describes the goals and general design of the system INLEN (Inference and
Learning) for conceptually analyzing databases and discovering interesting relations and patterns
in them. -The system represents an extension and further development of earlier systems such as
QUIN (Query and Inference), which was designed as a database interface incorporating a number
of inductive learning techniques [Michalski and Baskin, 1983; AGASSISTANT [Katz, Fermanian
and Michalski, 1986], a shell for developing agricultural expert systems; and AURORA [INIS,
1988], a general-purpose PC-based expert system shell with learning and discovery capabilities,
designed by Michalski and Katz.

INLEN integrates a relational database, a rule base, and a number of machine learning capabilites.
The latter ones enable the system to create conceptual descriptions of facts in the database, propose
various classifications of data, discoveri rules and unknown regularities, formulate equations
together with the conditions of their applicability, as some other. We present here a general system
design and explain all basic functions.

2. INLEN System Design

INLEN combines expert database technology and machine learning systems in order to create an
environment in which different types of data analysis can be performed. It integrates several
-advanced machine learning capabilities which until now have existed only as separate experimental
programs. Many learmning systems are capable of but a narrow subset of what can be learned from
factual data. By integrating a variety of these tools, a user will have access 10 2 powerful and
versatile system.



INLEN evolved from the QUIN system [Michalski and Baskin, 1983; Spackman, 19821, a
combined database management and data analysis environment, which was designed both as a
stand-alone system and as a tool for incorporation into the ADVISE meta-expert system [Michalski
et al, 1987]. In the last few years, new tools have been developed and made available for
INLEN's use, both in inductive learning and in expert database management.

The general design of INLEN is shown in Figure 1. The INLEN system consists of a relational
database for storing known facts about a domain, and a knowledge base for storing constraints,
production rules, hierarchies, equations, behavioral knowledge, and triggers for functions which
are to be activated by certain conditions in the data or knowledge base. The knowledge base can
contain not only knowledge about the contents of the database, but also metaknowledge for the
dynamic upkeep of the knowledge base itself.

INLEN provides a user with three sets of functions (operators): data management operators,
knowledge management operators, and knowledge generation operarors. The data management
operators (DMO) are standard relational operators for accessing, retrieving and manually altering
the information in a relational database. The knowledge management operators (KMO) perform
similar tasks on the rules in the knowledge base for situations in which manual input, access or
adjustments are desired. The knowledge generating operators (KGO) interact with both the
database and the knowledge base; they are a collection of machine learning systems used to
generate or improve the system's knowledge base and the metaknowledge necessary for efficient
operation. Examples of some of the knowledge generating operators will be shown in the
following section.

A brief description of each of INLEN's DMO, KMO and KGO functions follows.
DMQO Functions

The DMO functions form a standard set of operations for the purpose of manipulating the system's
collection of known facts. They are listed here for the sake of completeness.

CREATE will generate a new relational table. It takes an attribute list as an argument.
APPEND adds a new tuple (row) to a relational table.
CHANGE alters some or all of the values in some or all of the tuples of a table.

DELETE removes rows or columns from a table, as specified respectively by SELECT-R
or SELECT-C operations. Alternatively, entire tables may be removed from the system.

SELECT-C selects a number of columns from a relational table, and retumns those columns
in the order desired. This is the equivalent to PROJECT operations in a standard relational
system.

SELECT-R performs in the manner of a relational SELECT operation. It chooses a subset
of the rows of a relational table based on some selection criteria.

JOIN, in its simplest form, creates the Cartesian product of two tables. A following
SELECT-R operation may then be embedded in the join. For example, the natural join of
two tables which have a column (or more) in common is the subset of the set of rows of the
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join in which the matching columns have the same value. When applied to an INLEN
database, JOIN will produce the join of two tables.

UNION, performed on two tables with the same set of attributes, returns the set of tuples
(rows) which appear in either of the two tables.

INTERSECTION, performed on two tables with the same set of attributes, returns the set
of tuples which appear in both of the input tables.

KMO Functions

These functions allow the INLEN knowledge base to be handled in the manner of any other data
set. A set of production rules can often be viewed a table; each rule is represented by a row, and
each attribute is represented as a column. The (i,j)th entry in the table would then be the legal
values of the ith attribute in the jth rule. Knowledge management operators permit manual
adjustments to the rule base, as well as queries for selective access.

CREATE will generate a new rule set. The rule set will be empty until rules are added
using either an APPEND operation or one of the KGO techmiques.

APPEND may be used for the manual addition of a new rule to a rule set..

CHANGE is used for the manual alteration of some of the conditions of one or more rules
in the knowledge base.

DELETE may remove entire rules (for a "row delete™) or all references to certain attributes
(in the case of a "column delete") from a rule base. Alternatively, an entire rule base may
be erased by giving no qualifying conditions.

SELECT-C selects a number of columns from a knowledge base. If the rule base is
thought of as being in the form of a table with rules forming the rows and values of
variables in its conditions and actions forming the columns, this operation can be thought
of as generating partial rules consisting only of the selected variables.

SELECT-R generates a list of the rules which satisfy the given criteria.
JOIN, applied to two rule sets in a knowledge base, creates the Cartesian product of these

rule sets. For example, the natural join of two rule sets will consist of pairs of rules from
the rule sets which have a selected condition or action in common.

UNION will generate a list of all the rules present at least once in gach of the rule sets
supplied.

INTERSECTION generates a list of the rules common to both parameter rule sets.

KGO Functions

The KGO operations allow for inferences to be made on the data in the database and the rules
already present in the knowledge base. It should be noted that these may be applied in different
manners depending on the nature of their inputs and outputs (whether they are decision tables,
rules, or both.) In general, these operations may be thought of as mappings from the database
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and/or the knowledge base into the (new) database and/or knowledge base. The scope and use of
these functions are described below:

CLUSTER performs conceptual clustering in order to create logical groupings among a
collection of objects or events. The CLUSTER operation divides a group of examples
from the database into two or more subgroups, and returns this grouping and the system's
rationale for it. User-defined parameters may influence the selection of the groupings.
Detailed descriptions of the clustering algorithm may be found in [Michalski, Stepp and

Diday, 1981; Stepp, 1985 and Stepp, 1984].

RULESTRUCT creates groupings within a set of decision rules. For example, rules
diagnosing cancer of the liver and cirrhosis of the liver might be grouped together as rules
describing liver ailments. RULESTRUCT is another form of the clustering algorithm, this
time applied to the knowledge base, rather than to example data.

DIFF takes several groups of objects and attempts to find rules which define why the
objects belong to the groups they are in. The AQ system, which is capable of performing
this function, is described in [Michalski & Larson, 1983]. The rules produced will be
discriminant, ie, sufficient to explain what characteristics one class of objects contains that
are not present in others.

RULECON discovers descriptions which characterize a set of input examples. This
function also falls into the domain covered by AQ and similar systems. Here, the emphasis
is on finding specific characteristics present in all examples of a class of object, without
concern over whether they might be present in other classes.

ATEST [Reinke, 1984] tests a set of decision rules for consistency and completeness.
Consistency implies that no event in the example space is covered by two different rules.
Completeness refers to the condition that every possible example will be covered by the
conditions applying to at least one rule. In many cases, consistency and/or completeness in
some or all of the knowledge base will be desirable.

VARSEL [Baim, 1982] attempts to find attributes most likely to be important in
differentiating between several classes of events. By pruning the example descriptions in
such a manner, this can reduce the computation time required by the CLUSTER or DIFF
operator.

ESEL, like VARSEL, prunes an example set, but it operates on entire examples, rather than
their attributes. Promising examples are returned as output, while others are rejected.
[Cramm, 1983] describes ESEL in detail.

VARCON [Davis, 1979] attempts to use mathematical operators to combine variables into
useful composites. For example, there may be a case in which the sum of two variables is
more useful than either individual value.

TREECON [Michalski, 1978; Layman, 1979] takes a set of rules or decision exampies,
and organizes them into a decision tree, which may be a more efficient way to store the
knowledge.

EXCOR discovers correlations between the values of attributes in a set of examples. Itis
implemented using the AQ series of programs.
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EXMON seeks out monotonic relations between attributes in a set of examples, and in
doing so, may discover an interesting relationship within the data.

EXEQ discovers equalities that describe numeric data in a set of examples. ABACUS
[Falkenhainer and Michalski, 1986] is one example of a system that employs such a
methodology in order to discover relationships that hold among quantitative values.

STATANAL performs a statistical analysis of the data in order to find correlations and
simple causal effects.

3. An Illustration of Selected KGO Functions: CLUSTER, DIFF, EXEQ

We now demonstrate the capabilities of some the CLUSTER, DIFF and EXEQ operations in order
to present a representative example of KGO abilities.

CLUSTER

CLUSTER is capable of creating groupings of objects or events, and when used recursively, can
generate an entire taxonomy. Unlike traditional clustering methods, CLUSTER also returns the
rules which define its grouping. One example of conceptual clustering is shown in [Michalski &
Stepp, 1983}, involving the classification of microcomputers. Variables considered include the
type of processor, the amount of RAM, the ROM size, the type of display, and the number of keys
on the keyboard. Dividing the examples into two groups, the system grouped them according to
RAM size and keyboard, while clustering into three groups was based on the other three variables.
Table 1 demonstrates this example of CLUSTER's performance. In both experiments, the input to
CLUSTER was a table of the characteristics of the microcomputers, and the output consisted of the
groupings, plus rules and cross-reference tables to be added to the knowledge base.

DIFF

The DIFF operator is based on the AQ learning method which has been effectively used for many
rule learning tasks in areas such as medicine, agriculture, physics, computer vision,chess, etc.
One recent application to diagnose potential breast cancers given a few training examples is
described in [Michalski, Mozetic et al, 1986]. The rules generated were found to satisfactorily
encapsulate expert knowledge in the domain. A DIFF application to concisely describe the groups
created by the clustering algorithm in Table 1 is demonstrated in Table 2. The groups, without any
explanation are given as input, and DIFF creates rules which discriminate between these groups.
Note that while not all of the rules are identical to what CLUSTER found, they are equally valid,
an% tgat a redundant condition (the processor type of the third group of the 3-grouping) is not
included.

While this example showed an application of DIFF to create the discriminant rules for groups of
examples, DIFF may also be used to determine characteristic rules that describe classes of events
[Michalski, 1983]. It will then return optimized rules, which will highlight the differences between
the classes. In larger example sets, there may be large differences between characteristic and
discriminant rules.

EXEQ

Two numerical discovery systems are incorporated into the EXEQ modules, ABACUS and
FAHRENHEIT. The first version of ABACUS, described in [Falkenhainer & Michalski, 1986],



[ NPUT W ARSEE
Microcomputer | Display |RAM | ROM IPIOCE:SSDI' No_XKeys|| 2-Group i 3-Group
Apple I Color_TV | 48K | 10K 6502 52 1 1
Atari 800 Color_TV | 48K | 10K 6502 57-63 1 1
Comm. VIC 20 | Color TV | 32K { 11-16K| 6502A | 64-73 1 2
Exidi Sorceror | B/W_TV | 48K [ 4K 730 57-63 1 2
Zenith 118 Builtin | 64K | 1K 8080A | 64-73 2 3
Zenith 1189 Built_in | 64K | 8K 730 64-73 2 3
HP 85 Built_in | 32K | 80K HP 92 1 5)
Horizon Terminal | 64K | 8K 780 57-63 1 2
Challenger B/W_TV | 32K [ 10K 6502 53-56 1 1
O-S 11 Series | B/W_TV | 48K | 10K 6502C | 53-56 | 1 2
TRS-30 I B/W_TV | 48K { 12K 780 53-56 1 1
TRS-80 II Built in | 48K | 14K 730 64-73 1 1

CLUSTER operator takes as the input the relational table, marked INPUT, and a parameter

requiring it to partition the rows in the table into 2- and then into 3- group clusterings. The
two rightmost columns show the partitions generated. The CLUSTER also generates rules
describing the groups, stored in the KB:

2=Group clustering:
[Group 1] <==[RAM = 16K..48K] or [No_Keys < 63]
[Group 2] <== [RAM = 64K] & [No_Keys > 63]

3-Group clustering:

[Group 1] <== [Processor =

[Group 2] <== [Processor = 6502A v 6502C v HP] or [ROM
[Group 3] <== [Processor = 6502 v 8080A v Z8(0] & [ROM = 1K..8K] & [Display = Built-in]

Table 1. Example of a CLUSTER Operation

6502 v 8080A v Z80] & [ROM = 10K..14K]}
= 1K..8K] & [Display # Built_in]
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Microcomputer | Display |RAM | ROM |Processor | No_Keys}2-Group | 3-Group
Apple II Color_TV | 48K | 10K 6502 52 1 1
Atari 800 Color_TV | 48K | 10K 6502 57-63 1 1
Comm. VIC20 | Color_ TV | 32K | 11-16K | 6502A 64-73 1 2
Exidi Sorceror | B/W_TV | 48K } 4K Z80 57-63 1 2
Zenith 118 Built_in 64K | IK 8080A 64-73 2 3
Zenith 1189 Built_in 64K | 8K ZR0 64-73 2 3
HP 85 Built_in 32K | 80K HP 62 1 2
Horizon Terminal | 64K | 8K Z80 57-63 1 2
Challenger B/W_TV | 32K { 10K 6502 33-56 1 1
O-S 11 Series | B/W_TV | 48K | 10K 6502C 53-56 1 2
TRS-80 1 B/W_TV | 48K | 12K Z80 53-56 1 1

__’I_'_IE}S-SO I Built_in 48K | 14K . Z80 64-73 1 1

DIFF takes as input a relational table in which the last column indicates group (class) membership.
The DIFF operator tries to rediscover the rules, invented by CLUSTER, from the examples of

groups:

Rules for 2-Group differentiation:

[Group 1] <== [Display # Built_in] or [ROM 2 14K]

[Group 2] <==[RAM = 64K] & [No_Keys = 64-73]

Rules for 3-Group differentiation.

[Group 1] <== [Processor = 280 v 6502] & [ROM = 10K..14K]

[Group 2] <==[Processor = 6502C v 6502A v HP] or [ROM = 4K..8K] & [Display = B/W_TV v Termin:
[Group 3] <==[ROM = 1K..8K] & [Display = Built-in}

The above rules were generated by DIFF directly from examples. They are similar, but not identical
to the rules created originally by CLUSTER. They provide an alternative, logically consistent,
characterization of individual groups.

Table 2. Example of a DIFF Operation
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is capable of learning equations which fit a set of tabular data. It is also capable of subdividing a
set of examples into partitions in which different rules apply, and of coping with noisy data. The
recent version, ABACUS-2 [Greene, 1988], has expanded the capabilities of ABACUS; non-linear

regularities may now be discovered.

ABACUS has discovered equations to describe such things as planetary motion, the distances
between atoms in a molecule, and Stoke's Law of falling bodies, which computes the velocity of
an object falling through different media. Stoke's Law is demonstrated in Table 3. As Table 3
indicates, the velocity of an object falling through a fluid is governed by an equation much different
from the equation which describes its velocity falling through a vacuum. ABACUS will be able to
find the equations from both classes.

Another system planned for incorporation into the EXEQ module of regularity inference is
FAHRENHEIT [Koehn & Zytkow, 1986; Zytkow, 1987]. It conducts its own experiments in the
effort to discover regularities in a data set. While experimentation can be replaced by database
queries, this strategy does not promise success because the data within databases are sparse and
most queries will produce no answer. The problem can be bypassed by the use of an additional
module that selects data from the database and organizes them into a tree structure.
FAHRENHEIT does not really care about making experiments. It only cares that enough data
were collected so that its partitioner and curve-fitter receive enough datapoints.

FAHRENHEIT is capable of performing several tasks. First, it can find a multidimensional
numerical regularity (law). If the sequence of data cannot be surnmarized by a single regularity, the
system can partition the data and find a number of regularities in result. Second, FAHRENHEIT
finds the scope of any regularity it discovers. The scope of a law is described by boundaries that
separates situations that obey the law from the situations that do not. Third, FAHRENHEIT 1s
able to find an area in which no regularity has been detected yet, and conduct a search for regularity
in such area. It continues in that manner until the whole space spanned by the independent
variables is covered with regularities. All these capabilities are accompanied by data structures for
the storage of detected regularities. The system can be used as a whole, or in separate parts in
order to perform smaller tasks. This may be especially useful if the human operator wishes to
develop insights into a system's operation or wishes to approve results before going on to the next
step.

4. Conclusion

INLEN provides an integrated system capable of performing a wide variety of inductive leaming
techniques in order to analyze data in a relational database. Knowledge can be extracted from
qualitative data, quantitative data, and the knowledge base itself. In addition, INLEN provides
functions which facilitate manipulation of both the data and the knowledge base.

Many of INLEN's modules have already been implemented, as stand-alone systems or as parts of
larger units. Other tools and the general integrated interface are under development. Future work
will involve bringing these systems together and completing the control system to facilitate access
to them in the form of simple, uniform commands.



Substance | Radius (m) { Mass (kg) |Height (m) [Time (s) |:elocity (m/s)
| E—— E— SRS
Vacuum 0.05 1 6 0.1 (0.98453
Vacuum 0.05 2 2 0.4 3.93812
Yacuum 0.10 1 3 0.5 2.95359
Vacuum 0.10 2 7 0.1 0.98453
Glycerol 0.05 1 5 0.1 19.112
Glycerol 0.05 2 8 0.3 38.224
‘Glycerol 0.10 1 6 0.5 9.556
Glycerol 0.10 2 7 0.2 19.112
CastorQil 0.05 1 9 0.4 14.672
. CastorQil 0.05 2 3 0.1 29.344
CastorOil 0.10 1 5 0.3 7.336
CastorOil | 0.10 2 8 0.5 14.672

ABACUS searches for relationships among the data objects. It discovers that equations for
the ball's velocity exist, but they depend on the medium through which the ball is falling.

Here are the rules ABACUS discovered:

If [Substance = Vacuum] then v=9.8175*t

If [Substance = Glycerol] then v *r=0.9556* m
If [Substance = CastorQil] then v*r=0.7336*m

Table 3. ABACUS Discovers Stoke's Law
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