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ABSTRACT 
 
 
 
 

APPLICATION OF A TOPOLOGICAL DESCRIPTOR FOR PROTEIN INTERFACE 
IDENTIFICATION AND PROTEIN BINDING PREDICTION 
 
Olivia J. Peters, PhD 
 
George Mason University, 2010 
 
Dissertation Director: Dr. Iosif Vaisman 
 
 
 
 
The identification of proteins which interact or form complexes is a critical step in 

advancing several aspects of computational biology, including intelligent protein design 

and functional prediction. Previous methods have focused primarily on sequence 

alignment or threading methods to accomplish this, requiring large libraries of sequences. 

This work is an attempt to advance the current field of protein prediction through the use 

of a structural geometry methodology proven successful for many other aspects of 

proteomic analyses. The method is extended in two ways; first, a classification approach  

is created to identify protein residues involved in the binding interface, with the intent of 

using this information to aid the prediction of protein complex formation. Results are 

promising, with better than eighty percent correct classification, comparable to the best 

techniques currently in use.   Second, a methodology was created to score potential 



 

 
 

docking conformations.  Of the 54 proteins in the test data set, 43 had a near-native 

structure in the top 100 positions, and a median ratio of successfully identified residue 

contacts of 0.57.  The structural geometry method has been successfully applied to these 

two problems to advance the state of the field of proteomics. 

 

 

 

 

 

 

 

 



 

1 
 

CHAPTER 1: INTRODUCTION 

 
 
 

Many biological processes depend on the formation and separation of protein 

complexes; one of the key current proteomics challenges right now focuses on 

determining the correct three-dimensional structure of two proteins upon joining.  

Predicting the final form of binding molecules enables better understanding of the protein 

complex formation process, in addition to facilitating the design of new molecules, such 

as drugs.  Frequently, biological information is used to constrain the docking search 

space in order to arrive more quickly at a viable solution.  Knowledge of the binding 

interface of the two proteins greatly simplifies the search and improves search results. 

In this work, two complementary studies are described.  The first outlines a new 

method to identify binding residues on a protein, while the second algorithm attempts to 

identify which of several potential docking solutions is the correct one.  The information 

from these studies together represents a significant advance of the field. 

 This report is laid out as follows.  The next chapter provides an overview of the 

state of research in both interface residue and interacting protein predictions.  Chapter 3 

discusses the methods used to achieve these goals.  The results are included in Chapters 4 

and 5, and the conclusion follows in Chapter 6. 
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CHAPTER 2: BACKGROUND 

Studies to identify potential interface residues began earlier than those to predict 

docking conformations, probably due to the computational complexity of docking 

prediction.  However, almost all current docking procedures make use of any available 

biological information, including knowledge of the binding interface.  This chapter will 

review the history of protein interface prediction in Sections 2.1 and 2.2, providing an 

overview of studies characterizing the protein interface, and algorithms developed to 

predict interface residues, respectively.  Section 2.3 will go into the current understanding 

of protein binding energetics.  The remainder of the chapter will cover the highlights of 

protein docking.  Section 2.4 overviews the basics of the docking algorithms, while 

Section 2.5 specifically discusses the algorithms used to score the population of potential 

conformations.  Finally, Section 2.6 describes data sets which have been developed to test 

docking and scoring methods. 

 

2.1 Protein Interface Characterization 

Analysis of protein interfaces to identify binding sites began in the mid 1970s [24, 

25]. This initial work consisted of characterizing the binding areas both quantitatively 

and qualitatively to attempt to identify rules that would lead to identification of binding 

surfaces in novel structures. Early work was done with very small sample sizes, leading 
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to a detailed understanding of a few protein interfaces, but little ability to generalize. 

Later work recognized the importance of larger data sets and attempted to reveal more 

general characteristics; thus far, few generalizations can be made across all protein 

interfaces.  The lack of common characteristics is perhaps a function of the different 

types of interface interactions; that is, that homodimers, enzyme inhibitors, 

heterocomplexes, and antibody-antigen interactions may have evolved their interfaces 

into an optimized form dependent on their varying functions. For example, transient 

proteins complexes have been observed to rely more on salt bridges and hydrogen bonds, 

while temporally stable complexes rely more on hydrophobic attractions [95]. It has more 

recently come to light that because of this, the data sets may need to be made up of a 

specific complex, e.g. including only homodimers for novel homodimer interface 

prediction.  Table 2-1 lists protein interface characteristics and the conclusions made by 

different studies; this is followed by Table 2-2, which outlines the data sets used in the 

studies summarized in Table 2-1. 
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Table 2-1: Protein interface characteristics summary. 

 Differentiates interface from surface Does not differentiate 
interface from surface 

Hydropho-
bicity 

[12, 38, 66, 68, 133, 134], for homodimers 
[33], hydrophobic core surrounded by more 
hydrophilic rim [79, 134], for large interfaces 
[108], hydrophobicity decreases as interface 
size decreases [2] 

[2, 61, 64, 67, 76, 91, 
100], for small globular 
proteins [87] 

Aromatic (His, 
Tyr, Phe) 

[61, 66, 79, 87, 100] Trp (possibly because of 
double aromatic) [67] 

Charged (Asp, 
Glu, His, Lys, 
Arg) 

[33, 66, 79] [121], except Arg [87] 

Polar (Asp, 
Glu, His, Lys, 
Asn, Gln, Arg, 
Ser, 
Thr, Tyr) 

[12, 29, 33, 61, 66, 91, 121], polarity of 
interface increases with decreasing interface 
size [2] 

[87], similar content, but 
clustered [100] 

Specific 
Residues 

[12], Ala [100], Arg [2, 66, 87], Cys [2, 100], 
Glu [100], His [2, 66, 100], Ile [134], Leu 
[134], Lys [100], Met [2, 91, 100, 134], Phe [2, 
66, 91, 134], Pro [39, 100], Thr [100], Trp [2, 
91], Tyr [2, 66, 100, 134], Val [134] 

[64], not for protease, 
inhibitor, and antigen [56], 
Val [91] 

Electrostatic [95, 133] [67], except enzymes [38] 
Hydrogen-
bonding 

[133] [38, 68] 

Evolutionary 
Conservation 

[3, 12, 19, 100] only in enzyme and enzyme 
protein-ligand interfaces [38], conservation of 
Trp, Phe and Met [91] 

not in protein-protein 
interfaces [19] 

Size largest cavity on the enzyme surface [91] [12, 67, 71], dimer 
indistinguishable [91] 
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Table 2-2: Data set summary (ordered from earliest to most recent).  Data sets labeled as 
a "mix of" complexes indicate that protein types were not considered individually, but 
that the study attempted to identify characteristics across all protein interfaces. 
 
Data Reference Data Set Description 
Chothia [24], 1975 59 protein-protein interfaces: 32 homodimers, 4 permanent 

complexes, 7 monomers, 10 enzyme-inhibitor complexes, 6 
antibody-protein complexes 

Janin [61], 1990 15 protease-inhibitors, 4 antibody-antigen complexes 
Young [133], 1994 mix of 38 enzyme and protein complexes 
Jones [67], 1995 32 protein dimer interfaces 
McCoy [95], 1997 mix of 12 protein-protein interfaces 
Tsai [121], 1997 mix of 362 protein-protein interfaces (subunit-subunit, 

receptor-ligand, and enzyme-inhibitor) and 57 symmetry-
related oligomeric interfaces 

Larsen [81], 1998 mix of 136 homodimeric proteins 
lo Conte [89], 1999 mix of 75 protein-protein complexes (24 protease-inhibitor, 

19 antibody-antigen and 32 other complexes) 
Gallet [43], 2000 mix of 80,000 sequences 
Hu [56], 2000 mix of 97 protein-protein interfaces 
Jones [63], 2000 mix of 46 monomers and mix of 105 oligomers or protein-

complexes 
Glaser [45], 2001 mix of 621 protein-protein interfaces 
Zhou [134], 2001 mix of 744 non-homologous protein-protein interfaces 

(hetero- and homo-dimers) 
Fariselli [34], 2002 226 heterodimers 
Ma [92], 2003 mix of 86 interfaces (obligate dimers, proteinase inhibitors, 

antigens, protease complexes, and hormones) 
Caffrey [20], 2004 64 protein-protein interfaces: mix of homodimers, 

heterodimers, transients 
Koike [73], 2004 324 heterocomplexes and 674 homocomplexes 
Neuvirth [100], 2004 57 non-homologous heteromeric, transient protein-protein 

interfaces 
Aytuna [3], 2005 6170 interfaces: mix of homodimers and heterodimers, 

monomerics and complexes 
Keskin [70], 2005 mix of 292 protein oligomers 
Burgoyne [19], 2006 97 pairwise non-obligate hetero-complexes (22 enzyme-

inhibitor complexes, 19 antibody-antigen complexes, 56 
other complexes) and 134 ligand-protein complexes (95 in 
enzymes, 39 not in enzymes) 

de Vries [31], 2006 1494 protein-protein interfaces: 518 homodimers, 114 
heterodimers, 862 multimers 
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 The two previous tables illustrate the difficulty of identifying distinguishing 

characteristics. The inability to draw general conclusions may be due to either the small 

number of sample points in the earlier data sets, or the composition of the data sets 

throughout the studies [73]. One of the few generalizations that appears to be consistent 

is that protein interfaces more closely resemble protein surfaces than protein cores [115, 

121], despite their becoming part of a core once the complex has been formed. 

 Some of the studies that have performed an in-depth analysis of single protein 

interfaces have observed that the structure of some protein interfaces seems to consist of 

a few critical residues, usually evolutionarily conserved [67, 81, 91], that contribute a 

large amount to the binding energies [19, 81, 91].  These key residues (and sometimes the 

structurally surrounding residues) are referred to as "hot spots," and may provide the 

interface scaffold [67, 70]. Observed characteristics of hot spots include: 

• enriched in Trp, Tyr, and Arg [2, 38, 91]; 

• a number proportional to the interface size [67]; 

• enclosed in protein pockets [19, 67, 81]; 

• tighter packing than the rest of the interface, possibly to facilitate the removal of 

water molecules upon binding [67]; 

• not favored to form hydrogen bonds [67]; and 

• no preference to be involved in charged electrostatic interactions [67]. 

If interfaces are characterized by a pattern of hot spots, surrounded by supporting 

residues, calculating properties by averaging across the entire interface would not be 

expected to provide accurate characteristics. 
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 In summary, several studies have been performed to determine the characteristics 

of protein interfaces, with contradictory results. This may be due to the small amount of 

data used, the lack of focus on a specific interface type, or possibly because the structure 

within the interface is averaged out when the entire interface is considered.  The 

investigated characteristics of protein-protein interfaces do not appear to give the ability 

to distinguish between the interface and the remainder of the protein surface, leading 

researchers to explore computational methods of interface prediction. 

 

2.2 Prediction of Binding Interface Residues 

A variety of algorithms have been developed in an attempt to accurately predict 

residues involved in the binding interface.  The most popular algorithms include: a 

weighted combination of chemical and physical properties of the residues [36, 38, 39, 63, 

65, 100], neural networks [33, 134], support vector machines [12, 13, 71, 131], and 

multiple sequence alignment [50, 91, 132]. These methods are summarized in Table 2-3, 

with a description of the data set used, the method of classification, and the reported 

results. 
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Table 2-3: Interface prediction result summary. 
 
Study Data Method Accuracy Results 
Jones& 
Thornton 
[66], 1996 

59 complexes: 32 
homodimers, 10 enzyme-
inhibitors, 6 antibody-
proteins, 4 permanent 
complexes, 7 monomers 

weighted combination of 
residue propensity, 
accessible surface area, 
protrusion index, planarity, 
and hydrophobicity 

>70% (unclear how 
much overlap is 
required to declare 
success) 

Jones & 
Thornton 
[64], 1997 

59 complexes: 28 
homodimers, 11 hetero-
complexes, 14 homo-
complexes, 6 antibody-
antigens 

weighted score of salvation 
potential, residue interface 
propensity, hydrophobicity, 
planarity, protrusion, and 
accessible surface area 

66% (groups 
considered 
separately) 

Gallet et al. 
[43], 2000 

818 and 136 non-
redundant sequences 

threshold: calculation of 
mean hydrophobic moment 
of residue and mean 
hydrophobicity of 11-
residue window 

59.1% and 80.1% 
(unclear if these are 
correct predictions 
or simply the 
amount of the 
sequence that is 
predicted to bind) 

Zhou & 
Shan [134], 
2001 

615 (training) and 129 
(testing) pairs of 
nonhomologous 
complex-forming homo- 
and hetero-dimers 

Neural network, input 
sequence profiles and 
solvent exposure of target 
and surrounding residues 

70% true positives, 
accounting for 65% 
of the true interface 
residues 

Fariselli et 
al. [34], 
2002 

226 protein heterodimers Neural network, input of 11 
residue structural neighbors: 
identity and conservation 

73% (considered 
only surface 
residues) 

Ma et al. 
[92], 2003 

86 obligate dimers, 
proteinase inhibitors, 
antigens, protease 
complexes, and hormones 

multiple structure alignment 
to detect recurring 
substructural motifs 

"higher correlation 
with experimental 
data" 

Yan et al. 
[131], 2003 

31 antibody-antigen and 
19 protease-inhibitor 

SVM, input of identity of 
target residue and 10 
sequence neighbors 

sensitivity: 82.3% 
and 78.5%; 
specificity: 81.0% 
and 77.6% 

Yao et al. 
[112], 2003 

79 proteins for each family, determine 
importance of residues 
through sequence alignment; 
new protein is aligned to 
correct family and 
conserved residues are 
predicted on binding surface 

"significant" overlap 
for 96% (no 
indication of  what 
this overlap is) 
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Koike & 
Takagi 
[73], 2004 

271 hetero-complexes, 
292 homo-complex 

svm, input sequence profiles 
of target and structural 
neighbors, relative 
accessible surface areas 

63.2%-73.5%, 
classification 
performed on whole 
group and sub-
groups 

Neuvirth et 
al. [100], 
2004 

57 transient protein-
protein heterocomplexes 
(required knowledge of 
both partners) 

Weighted combination of 
non-regular secondary 
structures length, atom 
distribution, amino acid 
pairs, evolutionary 
conservation, chemical 
character, water binding, 
sequence distance, 
hydrophobic patch rank, and 
secondary structure 

70% (50% overlap 
declared successful) 

Yan et al. 
[130], 2004 

77 (training) and 7 
(testing) heterocomplexes 

two stage: SVM followed by 
Bayesian classifier, input 
sequence 

72% 

Bordner & 
Abagyan 
[12], 2005 

518 homodimers, 114 
heterodimers, 862 
multimers 

SVM 97% (some overlap; 
22% of the surface 
residues were 
included in an 
average predicted 
patch) 

Bradford & 
Westhead 
[15], 2005 

180 transient and obligate 
complexes (made sure all 
occurred in vivo) 

SVM, inputs: surface shape, 
conservation, electrostatic 
potential, hydrophobicity, 
residue interface propensity, 
solvent accessible surface 
area 

64% for enzyme-
inhibitors, 85% for 
hetero-obligates, 
82% for obligates, 
63% for transients 

Chen & 
Zhou [23], 
2005 

798 homodimers and 458 
heterodimers 

Consensus neural networks 80% with 51% 
coverage 

Fernandez-
Recio et al. 
[37], 2005 

66 non-obligate, non-
homologous hetero-
complexes of known 
structure 

threshold: favorable energy 
change when buried upon 
complex formation 

80% (50% overlap 
declared successful) 

Burgoyne 
& Jackson 
[19], 2006 

134 protein-ligand 
complexes, 22 enzyme-
inhibitors, 19 antibody-
antigens, 56 other 
complexes  

weighted combination of 
hydrophobicity, desolvation, 
electrostatics, and 
conservation 

88% (25% overlap 
declared successful) 

Porollo & 
Meller 
[108], 2007 

262 heterocomplexes and 
173 homocomplexes 

Relative solvent 
accessibility 

74% 
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 Study comparison is difficult due to the various data sets used, inconsistent 

methods of data processing, and different definitions for both the interface itself and the 

success of the method are used.  For example, many of the patch methods declare success 

if at least 50% of the predicted patch overlaps with the actual patch. Adding further 

complication, different studies use varying data selection and processing methods, which 

may include limiting the sequence identity [12, 33, 38] (the acceptable percent similarity 

also differs by study), including a resolution threshold at which the complex has been 

characterized [2, 71], and excluding chains annotated with specific words or phrases, 

including: membrane peptides [33], small proteins [33], coiled coils [33], glycoproteins 

[2],  carbohydrates, [2], nucleic acids [2], etc. 

 Another discrepancy may result from dissimilar definitions of contacting residues. 

Residues are usually considered to be contacting if the difference between any two atoms 

of the residues is less than the sum of their van der Waals radii plus some small amount, 

usually 5 angstroms [3, 87], or the diameter of water, 2.8 angstroms [87].  

 

2.3 Energetics of Protein-Protein Binding 

Analogous to the studies attempting to identify binding sites, a similar analysis 

has been performed on interfaces known to interact in order to elucidate characteristics 

allowing differentiation of the most ideal conformation for two interacting proteins.  

Many of these characteristics have been investigated because of their contribution to the 

binding free energy of a complex.  Alone, none of the characteristics appears able to 
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differentiate which components will come together to form a complex, but the 

combination determines how proteins form complexes.  

 Molecular docking is hypothesized to occur in two stages [21].  In the first stage, 

molecules diffuse in close proximity until interface patches are close enough for the 

second stage, binding,  to begin, which results in modification of side chain and backbone 

conformations, and finishes with a high-affinity interaction.  The driving force for the 

first stage, association, is the hydrophobic effect, with the electrostatic and/or desolvation 

contributions conferring specificity [58].  Those complexes composed of oppositely 

charged molecules form in regions with favorable electrostatic potential, while 

complexes with weak charge complementarity favor regions of low desolvation energy 

[26].  Finally, any conformational change of the protein upon binding involves burial of 

hydrophobic surfaces (desolvation), which enhances binding, but a change in entropy 

resulting from conformational changes, which discourages binding [1].  Many of these 

characteristics have been studied to further understand binding energetics. 

 Characteristics which favor protein interface binding include:  regions of high 

surface complementarity interact [65, 81, 133, 135], charged residues pair with residues 

of complementary charge [2, 36, 54], and hydrophobic residues interact with each other 

[2, 43, 66, 121].  It has also been found that specific pairs of amino acids occur more 

frequently than others [29], including tryptophan and proline [2]; tryptophan and leucine 

[108]; phenylalanine and isoleucine [2]; and arginine and glutamic acid [2]. 
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 Unfavorable interactions include contacts between pairs of hydrophobic and polar 

residues [2, 108], contacts between pairs of hydrophobic and hydrophilic residues [2], 

and specifically contact between glycine and alanine [67].  

 Electrostatic complementarity has been found to differ in its impact with the type 

of complex, sometimes favoring binding [65, 115], sometimes indifferent [115], and 

sometimes opposing [115]. 

 Prediction of the final complex structure may also be affected by conformational 

changes upon binding.  It has been found that standard-size interfaces - 1600 + 400 Å2 - 

have small changes in conformation, such as shifts in surface loops, movement of short 

segments of polypeptide chain, or the rotation of side-chains, while large interfaces - 

2000 to 4660 Å2 - display large conformational changes [87], making their final 

conformation more difficult to predict. 

 

2.4 Protein Docking Background 

 Utilizing knowledge of the factors that affect protein complex formation, docking 

algorithms attempt to use the structures of two sub-parts of a protein and predict how 

they join to form the final complex.  This process is called docking, and offers the ability 

to predict the structure of both novel compounds and weak, transient complexes that are 

difficult to measure experimentally. Docking algorithms frequently have two phases, 

although they may be combined: candidate generation, and re-scoring of the docked 

candidates. 
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 Initial generation of the potential complexes is done by keeping one protein 

stationary, and moving the other protein around it, generating a population of theoretical 

conformations.  This is done using efficient mathematical algorithms, such as the fast 

Fourier transform, Monte Carlo simulations, or genetic algorithms.  The process is 

usually done using the rigid-body assumption, where proteins are treated as solid objects, 

an accurate assumption if the molecules undergo little conformational change upon 

binding.  However, if there is significant conformational change, the final structure of the 

complex can be more accurately predicted by incorporating side-chain or backbone 

flexibility into the docking algorithm.   

To account for conformational change, different levels of flexibility can be 

introduced to the docking procedure.  A minimal amount of flexibility results from the 

smoothing of protein surfaces or allowing some amount of overlap between the surfaces 

of the two proteins.  Flexibility can also be incorporated explicitly by allowing sidechain 

and/or backbone flexibility either during docking or during the refinement step [11]. 

There are a number of different approaches to docking, and each method brings 

something unique to the field.  Some of the more popular docking algorithms include:  

• AutoDock: small molecule-receptor binding predictor using a genetic algorithm 

and empirical energy function [97] 

• ClusPro: performs docking with PIPER, then clusters the top 1000 docked 

structures and selects the center as representative [27] 

• DOCK: incremental construction docking method [98] 
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• EUDOC: generates ligand-receptor complexes for computational screening of 

chemical databases [105] 

• FlexDock: predicts protein interactions with hinge motion in one of the docked 

molecules [114] 

• FlexX: protein-ligand prediction by sampling conformation space with a discrete 

model and then performing a tree-search technique for placing the ligand in the 

active site [55] 

• FTDOCK: rigid-body docking using Fourier correlation algorithm [42] 

• GOLD: genetic algorithm [62] 

• HADDOCK: allows both sidechain and backbone movements of the interface 

during the interface packing optimization stage [32] 

• ICM-DISCO: Monte Carlo rigid-body search followed by ligand interface side-

chain refinement [49] 

• PIPER: FFT-based rigid body global search with pairwise potentials [77] 

• RosettaDock: Monte Carlo simulation with explicit side chain flexibility [125] 

• SOFTDOCK: coarse-grained docking method using Voronoi molecular surface 

[86] 

• ZDOCK: FFT-based simulation [127] 

These docking procedures generate a large number of candidate associations; in 

the simplest case, these candidates are ranked with various criteria, including geometric 
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fit or surface complementarity.  The candidates may then be further refined using 

molecular dynamics or Monte Carlo simulations [114].   

 Biological information is almost always used to select the final docking 

candidates, including available interface data [51], biochemical data, information on 

sequence conservation in homologous proteins [84], interfacial statistics from known 

protein complexes, and binding free energy approximations [21]. 

 

2.5 Protein Docking Scoring Algorithms 

 Docking algorithms generate a large number of candidate conformations, and 

these potential solutions are ranked using a variety of methods, varying in complexity.  

Some of the most popular docking software programs (e.g. SOFTDOCK, FTDOCK, 

ZDOCK, PIPER) use only geometric or shape complementarity.  However, many 

methods re-score the population of conformations after this initial laddering.   

The majority of methods attempt to capture some or all of the features that 

comprise the complex physical chemistry that underlies the energetics of molecular 

binding.  The most rigorous methods, including free energy perturbation, require 

molecular dynamics simulation and are extremely time-consuming [117].  Simplified 

scoring functions approximate the free energy of binding with terms including solvation 

energy, van der Waals forces, electrostatics (Poisson-Boltzman), interaction energy, 

buried surface area, desolvation energy, hydrophobicity, hydrogen bonds, or pair 

potential energies  These empirical energy scoring functions attempt to calculate the 

binding energy and select the minimum as the correct solution.  Coefficients of these 
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equations are either taken from experimental values, if known, or through linear 

regression of known interactions.  This is problematic even if the minimum can be 

identified, because frequently the native solution is not the energy minimum.   

Some methods model the molecular mechanics of the interaction of the two 

molecules and attempt to predict the correct conformation through these characteristics.  

Another class of algorithms select informative features, frequently representing some 

aspect of the energetics of the system, and attempt to combine them in a meaningful way, 

often through classification.  A final group of algorithms, frequently called “knowledge-

based” scoring methods, calculate characteristics or compile statistics on the preferences 

of atoms or amino acids from known structures [124]. 

 A summary of scoring functions and the features or chemical properties they take 

into account is included in Table 2-4. 

Table 2-4: Scoring functions. 

Complementarity-based  
DOT-FADE [83] Shape complementarity 
Evolutionary Trace Method [69] Complementarity of electrostatic potential, 

hydrophobicity and shape 
Norel [102] Geometric complementarity, simple 

hydrophobicity feature 
Molecular Mechanics-like  
Chemscore [123] Hydrogen bond score, acceptor-metal 

interaction score, lipophilic score, 
conformational entropy 

Goldscore [123] Hydrogen bond score, van der Waals score, 
intramolecular ligand strain 

PROLEADS [7] Lipophilic score, metal-binding score, 
hydrogen bond score, ligand internal energy, 
user defined active site 
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Empirical Energy Approximation  
ASP Method [126] Desolvation energy 
ATTRACT [94] Pairwise interaction potentials 
CAMLab [55] Force field and solvation energies 
ClusPro [26] Desolvation, electrostatics 
ComScore [46] Atomic contact energy, van der Waals score, 

electrostatics 
DOCK [98] Electrostatics, van der Waals energy 
DOT [93] Electrostatic energy, van der Waals energy 
Fitzjohn [40] Electrostatics, van der Waals energy 
HADDOCK [30] Interaction restraint energy, buried surface 

area, desolvation energy 
ICM-DISCO [35] Van der Waals energy, electrostatics, hydrogen 

bonding energy, desolvation 
IFACE [127] Pair potentials 
Jackson [59] Electrostatic, van der Waals energy, 

hydrophobic 
Moont [96] Pair potential 
pyDock [107] Coulombic electrostatics, ASA-based 

desolvation, optional term for van der Waals 
energy 

RDOCK [85] Electrostatics and desolvation energies, shape 
complementarity 

RosettaDock [125] Van der Waals approximation, solvation 
energy, hydrogen bonding potential 

SCore-RPScore [78] Surface complementarity, pair potential score 
ZRANK [106] Van der Waals energy, electrostatics, 

desolvation 
Feature Based   
BiGGER [104] Neural network classifier: geometric 

complementarity, electrostatic interactions, 
desolvation energy, pairwise cross interface 
propensities 

CIRCLE [119] Regression: fraction of molecular surface area 
of the side-chain covered by polar atoms, 
fraction of side chain area buried by some other 
atom, secondary structure 

FunHunt [90] SVM classifier: docking environment score, 
energy decrease during Monte Carlo 
minimization, interface residue conservation, 
solvent accessible surface area, interface 
contact number, distance between two 
monomers centers of mass, number of 
unsatisfied hydrogen bond donors/acceptors 
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Feature Based (continued)  
Gottschalk [47] Regression: tightness of fit, frequency of 

atoms, characteristics of atoms, chemical 
character, secondary structure, hydrophobic 
patches, distribution of water molecules, 
evolutionary conservation.  Uses ProMate 
binding sites. 

REGINA [53] Multivariate analysis: correlation between 
molecular electric fields, number of different 
residue-residue interactions, interface 
conservation, surface shape complementarity, 
mean force potential, pair potentials, number of 
each type of residue in the interface along with 
their propensity to occur there 

Voronoi Method [10] Genetic algorithms: surface area, number of 
interface residues, fraction of interface residue 
type, interface residue Voronoi volume, 
fraction of pairs, centroid-to-centroid distance 

Knowledge Based  
FastContact [18] Electrostatic (classic distance dependent 

dielectric) and desolvation components (from 
PDB) 

Kortemme [75] Hydrogen bonding potential (derived from 
known structures) 

Qin [109] Interface prediction, experimental data 
Muegge [99] Protein-ligand atom pair interaction potentials 

calculated from known complexes 
 
 
 
 There are a few methods which don’t fall neatly within any of the categories 

previously described.  Kohlbacher et al. [72]  score conformations by computing a 

theoretical 1H-NMR spectrum for each structure and calculating the difference between 

the theoretical and calculated spectrum.  The absolute areas of the difference spectra are 

used to rank the conformations.  A consensus scoring method has been developed by 

Charifson et al. [22]; after comparing thirteen of the most popular scoring functions, the 

three found most effective on the dataset used (ChemScore, DOCK energy score, and 

Piecewise Linear Potential) were selected.  The intersection of the top 300 from each of 
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the three methods was used to produce a final ranking.  A final unique approach from 

Wang et al. [124] uses the information from all conformations generated by the docking 

method.  They theorize that if the near-native conformations are sampled accurately, the 

center of the cluster is where the most near-native conformations should reside.  

Consequently, the score is based on the Cartesian distance between each conformation 

and its neighbors. 

 

2.6 Protein Docking Data Sets 

 Several data sets for the entire docking process are available; most notably the 

CAPRI competition [60] that takes place two to four times per year since starting in 2001.  

This competition releases the unbound structures of new complexes and offers 

participants the opportunity to test their docking and scoring algorithms on novel 

structures.  However, this competition (and many of the other data sets released) assume 

the use of a docking method to generate the population of conformations which are then 

rescored.  Consequently, they are not suitable for testing scoring methods.  A docking 

method can be selected and all scoring algorithms tested with that data, but different 

scoring algorithms perform differently with different docking data, as different docking 

methods utilize different energy minimization functions.  Those scoring functions which 

complement the docking method appear to have improved performance over scoring 

methods which use the same information as the docking method [85]. 

 In addition to the CAPRI competition dataset, additional data sets for testing 

docking algorithms in conjunction with scoring algorithms include: 
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• Protein-Protein Docking Benchmark, version 3 [57], contains 124 test cases: 88 

rigid-body cases, 19 medium difficulty cases, and 17 difficult cases 

• CCDC/Astex test set [101] contains 305 protein-ligand complexes 

• Dockground [44] contains 99 unbound-unbound and 134 unbound-bound 

complexes 

In recent years, decoy data sets have been developed to allow testing and comparison 

specifically of the scoring mechanisms.  These decoy data sets include: 

• Dockground [88]:  100 near-native decoys are calculated using Gramm-X for 99 

unbound-unbound and 143 unbound-bound complexes 

• CAPRI [60]: since round 10, putative solutions generated by participants using 

docking algorithms are available to other participants for re-ranking 

• Gray Docking Decoys [48]: 1000 decoys for 54 targets 

One of the biggest challenge in this area is the paucity of data, but recent efforts have 

made significant attempts to change this.  
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CHAPTER 3: METHODS 

 Related, but distinct methods were applied to the two studies addressed in this 

work.  The data sets used for each study are described in Section 3.1, with those used for 

interface prediction included in Sections 3.1.1 and 3.1.2, and the set used for docking re-

scoring given in Section 3.1.3.  Section 3.2 presents an overview of the topological 

descriptor used in both studies.  The final section, Section 3.3, focuses on the 

classification methods and metrics.  Sections 3.3.1 and 3.3.3 describe the classification 

techniques used for interface prediction and scoring, respectively.  The interface 

prediction classification metrics are included in Section 3.3.2, while measures of success 

for protein docking scoring are included in Section 3.3.4. 

 

3.1 Data Sets 

Most studies apply their method to a newly developed data set, resulting in an 

abundance of data sets, each with different characteristics.  Many more data sets exist for 

the prediction of binding sites than for the prediction of interacting proteins. Table 2-2 

summarizes the data sets for interface prediction; data sets for protein interaction are 

summarized in Section 2.6.   
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3.1.1 Interface Residue Prediction Proof of Concept Data Set 

The data set used to select features and perform the initial classification was 

modified from the one developed by Halperin et al. [52].  This data set consists of 253 

pairs of interacting interfaces; this included 439 proteins for which an interaction site 

could be predicted (some of the proteins had multiple partners in the data set).  Of these, 

many of the chains (126 of the 439 possible) were unable to be tessellated, usually 

because one or more of the residues was missing the label indicating the Cα, and were 

removed from consideration.  Chains with greater than 30% homology to another chain in 

the data set were removed (resulting in removal of an additional 193 chains).  Nine 

proteins were removed because conservation scores were not calculated if less than five 

homologs could be identified in UniProt [129] for sequence alignment.  The final data set 

was a mixed data set of 111 proteins; this data set consisted of 5,152 residues which 

interacted with another protein and served as positive examples, and 13,398 negative 

examples.  During testing, the data set was adjusted to have an equal number of positive 

and negative examples by using all the positive examples, and 5,152 randomly selected 

negative examples.  This resulted in a data set with a total of 10,304 samples, equally 

split between positive and negative.  Interacting residues were determined by those 

labeled as interacting with a partner in PDBsum [82], a database that has an overview of 

all structures deposited in the Protein Data Bank [8], including how the proteins bind to 

each other.   

In order to ensure that the training set was large enough, a learning curve 

experiment was conducted.  The data were divided into 10 parts randomly; the size of the 
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data set was varied and classification accuracy was measured.  This was repeated ten 

times; only the mean is reported here in Figure 3-1.  Classification accuracy plateaus 

around 7000 residues, but as including additional samples resulted in slightly better 

classification accuracy, all possible data were included. 

 

Figure 3-1: Classification accuracy as a function of data set size. 

3.1.2 Interface Residue Prediction Comprehensive Data Set 

After promising performance on the initial data set, a larger data set was required 

for more thorough testing.  Despite an abundance of data sets developed through various 

studies, the decision was made to create a new data set that incorporated the largest 

possible number of samples.  A search of the Protein Database [8] identified all multi-

chain structures that contained proteins but not DNA or RNA molecules.  After 

sequences with greater than 30% homology were removed, 4637 structures remained.  
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Following the same procedure outlined above, chains were removed if they could not be 

tessellated or if a conservation score could not be calculated.  The final data set contained 

1,476 chains, including 43,970 residues which interacted with another protein and served 

as positive examples, and 289,643 negative examples.  Because the data was skewed and 

a high accuracy could be gained by assigning all residues as negative samples, a cost 

matrix of 5:1 was used to balance class distribution.  PDBsum [82] was again used to 

identify interacting residues.  

 

3.1.3 Scoring Function Data Set 

 The data set used to test the scoring function was developed by the Gray Lab [48] 

and includes 1000 decoys and the native structure for each of 54 proteins.  Of these 

proteins, 22 are classified as enzyme/inhibitor complexes, 16 are antibody/antigen 

complexes, 6 are difficult complexes, and 10 are other complexes, distributed as shown in 

Table 3-1. 

Table 3-1: Gray data set summary. 

Enzyme / Inhibitor 
Complexes 

1ACB, 1AVW, 1BRC, 1BRS, 1CGI, 1CHO, 1CSE, 1DFJ, 1FSS, 1MAH, 
1PPE, 1STF, 1TAB, 1TGS, 1UDI, 1UGH, 2KAI, 2PTC, 2SIC, 2SNI, 
2TEC, 4HTC 

Antibody / Antigen 
Complexes 

1AHW, 1BQL, 1BVK, 1DQJ, 1EO8, 1FBI, 1IAI, 1JHL, 1MEL, 1MLC, 
1NCA, 1NMB, 1QFU, 1WEJ, 2JEL, 2VIR 

Difficult Complexes 1BTH, 1EFU, 1FIN, 1FQ1, 1GOT, 3HHR 
Other Complexes 1A0O, 1ATN, 1AVZ, 1GLA, 1IGC, 1MDA, 1SPB, 1WQ1, 2BTF, 2PCC 
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 A detailed description of the dataset is included in the original article [48].  The 

first stage of docking was performed using a rigid-body Monte Carlo search, rotating one 

partner around the other with 500 Monte Carlo move attempts.  Step sizes are continually 

adjusted to maintain a 50% move acceptance rate, with low-resolution, residue-scale 

interaction potentials based on a Bayesian expansion of the probability of the correctness 

of each decoy.  Subsequently, explicit side chains were added to the protein backbone 

using a backbone-dependent rotamer packing algorithm, and the rigid body displacement 

is optimized.  During this optimization, a full-atom scoring function is used with terms 

for van der Waals energy, solvation energy, hydrogen bonding energy, rotamer 

probabilities, residue-residue pair interactions, electrostatics, and surface area and atomic 

solvation. 

 

3.2 Applied Topological Descriptor 

Protein structures can be characterized using a computational geometry method 

based on three dimensional Delaunay tessellation. The use of statistical geometry to study 

the structure of disordered systems was introduced by Bernal [9], and further developed 

by Finney [38, 39] for Voronoi tessellation. Delaunay and Voronoi tessellations are duals 

of each other, as seen in Figure 3-2.  To perform the tessellation, each amino acid is 

represented by its Cα (as opposed to the Cβ or the center of mass of its side chain); it has 

been shown that this reduced representation allows accurate restoration to the full 

backbone structure [110].  The Delaunay tessellation divides the three dimensional space 

into convex polyhedra, with the four residues arranged at vertices of the tetrahedra. This 
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allows all sets of four nearest-neighbor points in space to be identified. The Delaunay 

simplex represents the ensemble of neighboring atoms, while the Voronoi polyhedron 

represents the environment of individual atoms. 

 

Figure 3-2: Representation of the Delaunay (solid lines) and Voronoi (dashed lines) 
tessellations in two dimensional  space. 

 

Figure 3-3:  For a representative protein (2JD3-A), (a) the protein backbone, (b) the 
protein tessellated, (c) the protein with the correct interface residues indicated in black, 
and (d) the protein with the predicted interface residues indicated in black. 
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The Delaunay tessellation results in a series of non-overlapping, irregular 

tetrahedra, with the four residues at the vertices representing a set of four nearest-

neighbor residues in structural space.  Each of the four residues (i, j, k, l) form a four-

body cluster in 3D space, but are separated by three distances (dij, djk, dkl) in sequence 

space.  The twenty naturally occurring amino acids are capable of yielding 8855 distinct 

quadruplets, but statistical analysis of the residue composition of these simplexes found 

nonrandom preferences for some amino acids to be clustered [116]. The simplexes can be 

classified into five nonredundant groups, shown in Figure 3-4, based on the relationship 

of the residues in the primary sequence: class {4}, where all four residues are consecutive 

in the primary sequence; class {3,1}, where three residues are consecutive, with the fourth 

removed; class {2,2}, in which two residues are consecutive, but separated from the other 

two, which are also consecutive; class {2,1,1}, with two consecutive residues and the 

other two distant from these two and each other; and class {1,1,1,1}, where none of the 

residues are consecutive.  When multiple proteins are tessellated together, for example 

during docking, there is an additional class – class 5 – that includes all tetrahedra that 

have vertices on both proteins.  The geometrical rules of tetrahedra, such as volume and 

tetrahedrality, can be used to characterize the simplexes using the equations 

 0
1 , and3V A h=  (1) 

 
22( ) /15 ,sT l l li ji j

= −∑
>

 (2) 

where A0 is the area of the tetrahedron base, h is the height from the base to the apex, li is 

the length of the i-th edge, and l  is the mean length of the simplex edges.  Tetrahedrality 
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provides a metric for the degree of difference between the simplex under consideration 

and the ideal simplex. 

 

Figure 3-4: Examples of each of the simplex types. 

 For each quadruplet, a log-likelihood score is calculated, defined as  

 log ,ijkl
ijkl

ijkl

f
q

p
=  (3) 

where fijkl is the frequency of the quadruplet containing residues i, j, k, l in a non-

redundant training set of high-resolution structures with low primary sequence identity 

obtained from the Protein Data Bank [8], and pijkl is the frequency of random occurrence 

of the quadruplet.  The log-likelihood score can be interpreted as the non-random bias for 

four amino acid residues to be found in the same Delaunay simplex; this value is also 

known as the four-body statistical potential energy function, and frequently reflects 

important features of the protein.  For example, the residues in local maxima values of 

the profile are frequently located in the hydrophobic core of the protein [12].  
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 A suite of programs has been developed in Java and Perl to take the PDB files and 

perform the data extraction and formatting prior to tessellation.  The Quickhull algorithm 

is then used to perform the protein tessellations.  Originally developed for game theory, 

the Quickhull algorithm is commonly accepted as the most computationally efficient 

method of calculating the convex hull of a surface in two or more dimensions. 

 This method has been used successfully to: prioritize SNPs according to the 

degree of their functional effect on proteins [5], measure quantitative similarity between 

protein pairs [14], study protein structure-function correlations through computational 

mutagenesis [92], evaluate sequence-structure compatibility for inverted structure 

prediction [116], analyze the patterns of spatial proximity of residues in known protein 

structures [122], predict secondary structure [118], and evaluate the quantitative 

structural similarity between protein pairs [13]. 

 

 

3.3 Classification Methods and Metrics 

 

3.3.1 Interface Prediction Classification Technique: Random Forests 

All classification tests and evaluation were performed using Weka software [128].  

Random Forest classification was chosen as the classification method that performed best 

for interface residue prediction after evaluation of several potential classifiers included 

within the Weka framework.  The Random Forest algorithm was originally developed by 

Breiman [16], but built on the idea of random forests first proposed by Ho [54]. In this 
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method, multiple different decision trees - a forest - are created using random subsets of 

the training data and random elements of the feature vector.  A novel residue is classified 

by presenting the feature vector to all of the trees, each of which votes, with the overall 

classification chosen as the one that has the most votes in all trees. 

 Random Forest classification has several advantages, which include estimating 

the importance of variables in determining classification, the ability to estimate missing 

data, and calculation of sample proximity. 

 

3.3.2 Interface Prediction Classification Metrics 

Because the interface residue prediction is a binary classification (either on the 

interface or not), several well known metrics can be used to assess classifier performance.  

Utilizing the number of True Positives (TP), True Negatives (TN), False Positives (FP), 

and False Negatives (FN), these metrics were used to evaluate classifiers, as laid out by 

Baldi et al. [4], including accuracy (Acc), sensitivity (Sen), specificity (Spec), False 

Alarm Rate (FAR), Matthews Correlation Coefficient (MCC), and Bit Error Rate (BER):  

 
TP TNAcc

TP TN FP FN
+

=
+ + +

 (4) 

 100 TPSen
TP FN

=
+

 (5) 
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+
 (7) 
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Each of these metrics brings additional information to assessing classifier performance.  

Accuracy indicates how close a measure is to the true value. Sensitivity, or recall, 

measures completeness; for these data, it represents the fraction of the interface correctly 

identified.  The Specificity, also known as precision, can be considered a measure of the 

repeatability of the classifier.  The False Alarm Rate indicates how frequently a residue is 

identified as on the interface when it is not.  The Matthews Correlation Coefficient is a 

measure of the quality of binary classification, accurate even when the classes are 

different sizes, as in most protein data sets.  This metric can be thought of as accuracy 

normalized to take into account different class sizes.  Finally, the Bit Error Rate is the 

percentage of residue classifications that have errors.  The function is a sum of the 

fraction of correct residues on the interface plus the fraction of correct residues 

everywhere but the interface.  By evaluating each of these metrics, a true understanding 

of the classifier’s strengths and weaknesses can be gained. 

 
 

3.3.3 Scoring Classification Technique: Least Median Squared Linear Regression 

 Again with the Weka software, the method chosen for classification when ranking 

the docking data was the Least Median Squared (LMS) Linear Regression technique.  

This algorithm had the highest accuracy of all classifiers tested; the Support Vector 
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Machine achieved a similar accuracy, but with a much higher computational time.  The 

Weka algorithm is based on the one described by Rousseeuw and Leroy [111], and 

generates least squared regression functions from random subsamples of the data.  The 

Least Squared Regression with the lowest median squared error is chosen as the final 

model.   

3.3.4 Protein Docking Measures of Success 

 Comparison of results from different docking and scoring algorithms is a 

challenge in itself.  Rarely is the correct confirmation chosen, and metrics of success for 

the conformations chosen differ by study.  The CAPRI competition has four classes into 

which predictions are placed: incorrect, acceptable (more than 10% of native residue-

residue pairs in contact and within 4 angstroms RMS), medium (more than 30% of native 

residue-residue pairs in contact and within 2 angstroms RMS), and high (more than 50% 

of native residue-residue pairs in contact and within 1 angstrom RMS).  Other 

investigations attempt to rank the correct solution in the top X conformations, where X 

varies from 50 to 2000 by study.  Another metric for comparison is the mean rank and 

mean RMS.  Some studies declare success if a near-native (instead of the native) 

conformation is found in the top X conformations.  As with the interface prediction 

methods, different metrics of success make comparison between methods a challenge. 
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CHAPTER 4: RESULTS FOR INTERFACE PREDICTION 

 

4.1 Interface Residue Prediction Feature Selection 

A wide variety of features were considered for inclusion in the classifier.  Several 

features were included from the topological descriptor, including: four-body statistical 

potential energy function (potential), the number of simplices of type [{1,1,1,1}, {2,1,1}, 

{2,2}, {3,1}, {4}] the residue participates in [T0, T1, T2, T3, T4], the sum of the 

volumes of the simplices the residue is part of (volume), and tetrahedrality (sT). 

In addition to the features taken from the topological descriptor, additional 

potentially informational features were evaluated, including:  

• Conservation (HSSP [113] and ConSurf [80]),  

• Electrostatic Potential (Protein Continuum Electrostatics [6]),  

• Secondary Structure (DSSP [68]),  

• Residue Interface Propensity [68] (propensities for: interior, interface, and 

surface),  

• Molecular Weight [17],  

• Hydrophobic Potential [120] (values: positive, philic, phobic, negative),  

• Side chain [74] (values: aliphatic, aromatic, neither),  

• Hydrogen bonding ability [68] (values: yes, no), and 
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• Hydropathy [79], which is indicative of the hydrophobic or hydrophilic properties 

of the amino acid side chain. 

In addition, the values of T0, T1, T2, T3, T4, Total, and Volume were normalized by 

protein to represent the percent instead of the absolute value, enabling comparison across 

proteins.  These values were included in addition to the non-normalized values (not as a 

replacement).  Those features which are consistent across amino acids are included in 

Table 4-1. 

Table 4-1: Values for some of the features considered. 

  

Molecular 
weight 

[17] 

Hydro 
[120] 

Side 
chain 
[74] 

Hydrogen 
bonding 

[68] 

residue propensity [68] Hydropathy 
[79] interior interface surface 

ALA  89.09 phobic aliphatic No 12.56 7.15 8.00 1.8 
ARG 174.20 pos Neither Yes 1.19 6.22 5.22 -4.5 
ASN 132.12 philic Neither Yes 2.19 5.44 5.74 -3.5 
ASP 133.10 neg Neither Yes 2.81 5.74 7.78 -3.5 
CYS 121.16 philic Neither No 2.85 1.26 0.89 2.5 
GLN 146.15 philic Neither Yes 1.30 3.44 4.85 -3.5 
GLU 147.13 neg Neither Yes 1.56 5.11 7.11 -3.5 
GLY 75.07 phobic aliphatic No 8.30 6.70 8.74 -0.4 
HIS 155.16 pos Neither Yes 1.67 2.74 2.59 -3.2 
ILE 131.17 phobic aliphatic No 10.59 5.26 3.44 4.5 
LEU 131.17 phobic aliphatic No 14.33 8.67 4.96 3.8 
LYS  146.19 pos Neither Yes 0.74 5.26 7.30 -3.9 
MET 149.21 phobic Neither No 3.41 2.41 1.33 1.9 
PHE 165.19 phobic aromatic No 7.30 4.52 2.89 2.8 
PRO 115.13 phobic Neither No 1.89 5.00 5.89 -1.6 
SER 105.09 philic Neither Yes 4.56 5.00 7.48 -0.8 
THR 119.12 philic Neither Yes 4.59 5.96 6.22 -0.7 
TRP 204.23 phobic Aromatic Yes 1.41 2.30 2.41 -0.9 
TYR 181.19 philic aromatic Yes 3.81 5.37 3.59 -1.3 
VAL 117.15 phobic aliphatic No 12.07 6.37 4.67 4.2 
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The features from the residue before and after the selected residue  in the primary 

amino acid sequence were included to see if these features improved classification.  

Including the residue before or the residue after significantly improved classification; a 

further significant improvement was achieved if both the before and after residues were 

included, so features from all three residues were included in the final feature set. 

Feature selection was done using RuleFit [41], an algorithm used with R [28].  

RuleFit implements an ensemble learning methodology, identifying linear combinations 

of simple rules derived from the data to identify variables that are strongly indicative of 

the correct classification.  The RuleFit algorithm provides a list of features in order of 

importance with a numerical value indicating the contribution to classification that each 

feature makes.  Features were added in order of importance until classification achieved a 

plateau, at which time the feature set was finalized. 

 

4.1.1 Proof of Concept Data Set 

 The feature selection procedure was applied to the Proof of Concept Data Set, and 

the results, a list of features with their corresponding importance in the data set, are 

summarized in Table 4-2.   
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Table 4-2: Importance from RuleFit for each feature. 

Feature RuleFit Importance 
sT 100.0 
Conservation 58.4 
Molecular Weight 30.4 
Volume 30.0 
Trailing Residue 29.7 
Trailing sT 27.8 
Preceding Conservation 25.7 
Preceding sT 23.6 
Trailing Conservation 15.5 
Potential 15.0 
T1 12.7 
Hydropathy 12.4 
Trailing Volume 9.4 
Trailing T3 8.7 
Preceding T4 8.3 
Preceding Hydropathy 7.9 
Preceding Molecular Weight 7.6 
Preceding T1 7.5 
Preceding Volume 6.8 
Trailing T4 6.3 
T0 5.1 
Trailing Hydropathy 5.0 
Preceding Residue 4.8 
Preceding Potential 3.7 
Trailing Potential 3.7 
T2 3.6 
T4 3.5 
Trailing T2 3.3 
Preceding T3 3.1 
Preceding T0 3.0 
Trailing Side Chain 2.7 
Trailing Molecular Weight 2.5 
Trailing T0 2.4 
Side Chain 2.0 
Trailing T1 1.8 
T3 1.8 
Preceding T2 1.3 
Preceding Side Chain 0.9 
Residue 0.1 
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Features were added in order of importance until performance stabilized, resulting in a 

final feature set for the Proof of Concept Data Set of: 

• From the residue being tested: potential, T0, T1, T2, sT, volume, conservation, 

molecular weight, hydropathy; 

• From the residue preceding: residue, potential, T1, T4, sT, volume, conservation, 

molecular weight, hydropathy; and 

• From the residue trailing: potential, T3, T4, sT, volume, residue, conservation, 

hydropathy. 

 

4.1.2 Final Data Set 

As described previously, feature selection was again performed using the RuleFit 

algorithm.  The features selected as informative for the Final Data Set included: 

• From the residue being tested: potential, total, volume, normalized volume, sT, 

conservation, molecular weight, hydropathy; 

• From the residue preceding: volume, normalized T4, normalized total, normalized 

volume, sT, conservation; and  

• From the residue trailing: volume, normalized total, normalized volume, sT, 

conservation, hydropathy. 

Across both the Proof of Concept data set and the final data set, it is interesting to note 

that for both data sets, many of the same features are selected as most informative.   

 Tetrahedrality (sT) is consistently the most important feature for interface 

prediction.  For a regular tetrahedron with four equilateral triangular faces, the 
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tetrahedrality is zero.  The larger the tetrahedrality is, the further the tetrahedron is from 

regular.  Internal residues demonstrate a lower value of the tetrahedrality, indicating more 

regularity, while those on the surface have higher values.  Interface residues have the 

tetrahedrality values between the higher ones on the surface and the lower ones in the 

protein core.  Since these residues begin on the protein surface, then become part of the 

core upon binding, this is reasonable. 

 Other consistently important features include the volume, the conservation, and 

the hydropathy.  The average value of interface residue volumes is higher than the 

volume of those residues not on the interface (there is no significant difference between 

surface and core residue volumes).  As expected, conservation is also a critical feature for 

interface residue classification.  Surface residues show a high conservation, while those 

buried inside have a very low conservation.  Interestingly, those surface residues not on 

the interface have, on average, a higher conservation than those on the interface.  This 

may be a result of a few key interface residues which are highly conserved, while the 

remainder are not, so when the average conservation is taken across the interface, the 

values are lower.  Hydropathy also adds significant information for residue classification.  

A higher values correlates to more hydrophobicity.  Not surprisingly, core residues have 

a much higher hydropathy than those on the surface.  As would be expected, those 

residues on the interface also have a higher hydropathy than those not on the interface, 

indicating their preference to be buried upon complex formation. 

Some measure of the tetrahedral class (T0, T1, T2, T3, T4 or total) appears for 

every residue, but interestingly, not the same measure.  Finally, the values for potential 
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show up in all of the residues for the proof of concept data set, but for only one of the 

residues for the comprehensive data set. 

 

4.2 Classification 

Classification tests and evaluation were performed using the Weka [128] software.  

Several of the classifiers included in the Weka framework were evaluated; performance 

of these classifiers on the Proof of Concept Data Set is included in Table 4-3.   
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Table 4-3: Performance of various classifiers on the proof of concept data set. 

Classifier Acc Sen Spec FAR 
Averaged One-Dependence Estimator 0.696 0.689 0.699 0.296 

Bayes Network Classifier 0.663 0.652 0.666 0.327 
Complement Class Naïve Bayes Classifier 0.604 0.437 0.656 0.229 

Naïve Bayes Classifier using Estimator Classes 0.633 0.449 0.709 0.184 
Naïve Bayes Multinomial 0.604 0.437 0.656 0.229 

Simple Naïve Bayes Classifier 0.633 0.452 0.709 0.185 
Updateable Naïve Bayes Classifier 0.633 0.449 0.709 0.184 

Multinomial Logistic Regression Model 0.697 0.660 0.712 0.267 
Multilayer Perceptron 0.677 0.670 0.680 0.316 

Radial Basis Function Network 0.653 0.564 0.686 0.258 
Logistic Regression Model with LogitBoost 0.693 0.668 0.704 0.281 

Support Vector Machine 0.695 0.648 0.715 0.258 
Voted Perceptron Algorithm 0.616 0.608 0.618 0.375 

Winnow and Balanced Winnow Algorithms 0.579 0.586 0.578 0.427 
IB1-type Classifier 0.604 0.602 0.605 0.394 

K-nearest neighbors classifier 0.604 0.602 0.605 0.394 
Instance-based Classifier 0.626 0.602 0.632 0.350 

Lazy Bayesian Rules 0.708 0.729 0.699 0.314 
Locally-weighted learning 0.643 0.827 0.604 0.542 

HyperPipe Classifier 0.502 1.000 0.610 0.006 
Voting Feature Interval Classifier 0.538 0.469 0.544 0.393 

Alternating Decision Tree 0.681 0.682 0.680 0.321 
Decision Stump 0.644 0.820 0.606 0.532 

Ld3 Decision Tree Classifier 0.637 0.632 0.627 0.358 
C4.5 Decision Tree 0.647 0.646 0.647 0.352 
Logistic Model Tree 0.708 0.742 0.695 0.326 

Naïve Bayes Tree 0.681 0.657 0.690 0.295 
Random Forest 0.716 0.711 0.718 0.279 
Random Tree 0.602 0.593 0.603 0.390 

Fast Decision Tree Learner 0.670 0.690 0.664 0.349 
User Defined Decision Tree 0.500 0.000 0.000 0.000 

Single Conjunctive Rule Learner 0.643 0.857 0.600 0.572 
Simple Decision Table Majority Classifier 0.665 0.711 0.651 0.381 

Repeated Incremental Pruning to Produce Error 
Reduction 

0.690 0.713 0.681 0.333 

Separate & Conquer 0.678 0.685 0.676 0.329 
Nearest-neighbor like using non-nested 

generalized exemplars 
0.623 0.634 0.621 0.388 

1R Classifier 0.515 0.529 0.514 0.500 
Partial Decision Trees Decision List 0.649 0.698 0.636 0.400 

Ripple-Down Rule Learner 0.647 0.668 0.640 0.375 
0-R Classifier 0.500 0.000 0.000 0.000 
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The protein residue classification technique chosen, based both on the results presented 

here and previous work indicating that the algorithm worked well, was the Random 

Forest technique.  All future training and testing performed on the interface classification 

data sets reported here were done using Random Forest classification. 

 

4.2.1 Proof-of-Concept Data Set 

As seen in Table 4.3, initial classification accuracy was 0.716, with a sensitivity 

of 0.711, a specificity of 0.718, and a false alarm rate of 0.279.  For each of several 

criteria, the entire data set was split into subsets by binning the data according to the 

value for the criteria being tested.  The performance on the data subset was compared to 

the performance on the data as a whole to understand if there was any benefit to 

performing training and testing on subsets of the data. 

The first criteria used to separate the data was protein chain length.  The data were 

split into smaller proteins, with a length of less than 46 residues, and larger proteins, with 

a length of 46 or more residues.  Accuracy on the dataset of smaller proteins was 0.709 if 

the training and testing sets both only had smaller proteins, versus an accuracy of 0.646 

when the test set contained the smaller proteins, but the training set included both small 

and large proteins.  Similarly, accuracy on the dataset of larger proteins was 0.706 if the 

training set consisted of only larger proteins, and 0.704 if the training set contained 

proteins of all sizes (in both cases, the testing set contained only the larger proteins). 

Next, the data were separated according to the amino acid of the sample.  For this 

classification, molecular weight and hydropathy, which are specific to the amino acid, 
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were removed.  Data for the classifiers designed for each amino acid are included in 

Table 4-4.  It is important to note that when the data sets were limited to those of only a 

specific amino acid, some of the data sets were quite small. 

Table 4-4:  Results when a classifier was designed for each amino acid.  For each 
classifier, the size of the data set used is listed, as well as the accuracy on a data set 
consisting of only the specific residue type (Specific Data Set), as opposed to the 
performance when the same size data set was taken from samples of the entire data set 
(Normal Data Set). 

 
Amino Acid Data Set Size Specific Data Set Normal Data Set 

ALA 706 69.4 74.8 
ARG 718 64.6 60.3 
ASN 484 62.2 66.0 
ASP 542 63.0 62.4 
CYS 106 78.8 83.1 
GLN 480 65.9 65.9 
GLU 620 66.0 61.5 
GLY 510 66.0 70.4 
HIS 262 65.3 68.0 
ILE 572 74.4 76.9 
LEU 870 76.5 78.3 
LYS 552 61.6 64.9 
MET 304 73.3 73.3 
PHE 502 74.6 74.7 
PRO 428 64.3 63.9 
SER 640 66.0 69.4 
THR 604 67.5 67.3 
TRP 122 64.2 72.1 
TYR 568 68.0 67.8 
VAL 638 78.2 79.7 

 Next, the data were split by their values for the four-body statistical potential.  A 

threshold was set at 2.2, the value of the median plus one standard deviation.  The data 

set containing samples with a potential energy above 2.2 displayed an accuracy of 0.761, 

while a data set of the same size containing random samples achieved an accuracy of 
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0.844.   The data set containing samples with potential energy less than 2.2 had an 

accuracy of 0.707, while an equally sized normal data set had an accuracy of 0.676. 

 The data set was split into two subsets depending on their value for T0; those with 

a value less than the threshold of 13 were put in one data set, and those with values above 

the threshold were put in another.  The threshold was chosen as the average plus two 

standard deviations.  The data set with higher values of T0 achieved a classification 

accuracy of 0.725, versus 0.701 with a randomly selected normal data set, and the 

accuracy of the data set with the lower values was 0.712, while the randomly selected 

normal data set achieved an accuracy of 0.718. 

 Also considered was the volume of the tetrahedron the residue is involved in.  

Data were put into two different data sets depending on the value of the volume.  A 

threshold of 56.7, the mean plus two standard deviations, was chosen.  The data set with 

higher values had a classification accuracy of 0.643, while the normal data set 

demonstrated an accuracy of 0.568.  The classification accuracy of the data set with lower 

values was 0.709, as opposed to 0.707 for the normal data set. 

 Because of the critical role conserved residues have been found to play in protein 

interfaces, the data were split into three groups by their conservation values.  Residues 

with a conservation value less than the median were considered to have lower 

conservation values, and classification on this data set was 0.738, as compared to 0.718 

on the normal data set.  Those residues with a conservation value above the median plus 

one standard deviation are included in the group with higher conservation values, with a 

classification of 0.661 compared to 0.721 on the normal data set.  The remaining data 
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were grouped in the middle class, and demonstrated an accuracy of 0.667 for both the 

experimental group and the normal group. 

 The data were then separated into three groups according to their molecular 

weights.  The group with lower weights included Glycine (75.07), Alanine (89.09), and 

Serine (105.09); the middle weights included Proline (115.13), Valine (117.15), 

Threonine (119.12), Cysteine (121.16), Isoleucine (131.17), Leucine (131.17), 

Asparagine (132.12), and Aspartic Acid (133.1).  The group with higher weights included 

Glutamine (146.15), Lysine (146.19), Glutamic Acid (147.13), Methionine (149.21), 

Histidine (155.16), Phenylanine (165.19), Arginine (174.2), Tyrosine (181.19), and 

Tryptophan (204.23).  The low weight, middle weight, and high weight groups had 

accuracies of 0.680, 0.707, and 0.692, respectively, versus identical size normal groups 

that achieved accuracies of 0.719, 0.724, and 0.662, respectively. 

 Finally, the data were separated according to their values of hydropathy (which 

varied by amino acid).  Data with lower values (less than -1.5) had an accuracy of 0.769 

versus 0.637 for an equivalent normal data set; data with middle values, between -1.5 and 

1.5, had accuracies of 0.693 versus 0.690 for the equivalent normal data set.  The data 

with higher values (above 1.5) had an accuracy of 0.680, while the normal data set 

displayed an accuracy of 0.771. 

Unfortunately, none of these data subsets significantly improved classification, 

and since they required an increase in the complexity of the classifier, the data were not 

split into additional classifiers based on this information. 
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Another test included implementing a final filter that classified isolated residues 

similarly to their neighbors.  That is, if the residue was found to be on the interface when 

none of its surrounding members were on the interface, the residue was re-classified as 

not on the interface.  Similarly, a residue that was found not to be on the interface when 

all those surrounding were on the interface was re-classified as part of the interface.  

Since most of the classification errors occurred at the interface boundaries, this filter did 

not improve the classification, and was not included in the final algorithm. 

With the final feature list enumerated above, 10-fold cross validation was 

performed ten times.  Overall average performance was 0.721 accuracy, 0.717 sensitivity, 

0.723 specificity, and false alarm rate of 0.275.  To gain further understanding of the 

limitations of the classification method, a leave-one-out training and testing technique 

was used to evaluate the data set.  Average performance for the leave-one-out set was 

0.697 accuracy, 0.792 sensitivity, 0.500 specificity, and a false alarm rate of 0.381 (the 

entire analysis of the data set is included in Appendix A). 

Figure 4-1 shows examples of the best (a and b), middle (c and d), and worst (e 

and f) attempts at classification in the Halperin data set.  In each sub-figure, there are four 

pictures.  The top two are different views of the protein with the correct interface residues 

colored; the bottom two are the same views of the protein, but with the predicted 

interface residues colored.  In sub-figures a and b, examples of the best performance, the 

predicted interface residues (the bottom two pictures) are very close to the actual 

interface residues (the top two pictures).  Similarly, for sub-figures e and f, the predicted 

interface residues do not accurately reflect the true interfaces shown in the top pictures. 
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Figure 4-1: Examples of performance of the classifier on different protein chains.  (a) 
1C8O-B, (b) 2SNI-E, (c) 1AKJ-E, (d) 1BH8-A, (e) 1B35-B, and (f) 1KQL-B. 
  

(b) (a) 

(c) 

(e) 

(f) 

(d) 
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 4.2.2 Final Data Set 

A summary of the classification results (on the Final Data Set) is included in 

Table 4-5, and an example is provided in Figure 3-3, where the correct and predicted 

residues can be compared for protein 2JD3.  Tests were done using 10-fold cross 

validation (CV), 66%-34% data split (DS), and leave-one-out (LOO) training and testing 

methods.  The analysis of the entire LOO data set is included in the Appendix B; Figure 

4-2 shows the range of distributions for the accuracies calculated for each of the 1476 

proteins. 

Table 4-5: Summary of classification results. 

 Accuracy Sensitivity Specificity FAR 

Cross Validation 0.836 0.355 0.37 0.091 

Data Split 0.862 0.198 0.43 0.039 

Leave-One-Out 0.858 0.240 0.43 0.049 

 
 
 

 
Figure 4-2: Range of classification accuracies for each protein in the data set using 
leave-one-out testing. 
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As seen in Figure 4-2, the range of accuracies is large, but the majority are in the 

0.7 to 0.9 range.  There are a small number of proteins (11 of the 1476) who have 

accuracies less than 0.5, indicating that performance on these proteins is worse than 

random. The size of either the protein or the binding interface may possibly have an 

impact on the classifier performance; many of the poorly classified chains were smaller 

proteins or had larger binding interfaces.  To further investigate this, the data were binned 

by either the length of the chain (Table 4-6a, top of Figure 4-3), the number of residues 

on the interface (Table 4-6b, middle of Figure 4-3), or the ratio of interface to total 

residues (Table 4-6c, bottom of Figure 4-3).  The size of the bins was selected to include 

approximately the same number of proteins per bin, while still maintaining a reasonable 

range for the bins to span.  By binning the data in this way, overall trends of the data 

could be investigated without the noise included when each data point is considered.  In 

Figure 4-3, the accuracy is plotted against the length of the protein, the number of 

residues in the interface, and the percent of residues involved in the interface.   

Table 4-6a: Binning of data by length of protein. 

Bin (L = Chain 
Length) 

Median 
Length 

Mean  
Accuracy 

Accuracy Standard 
Deviation 

Number of 
Proteins 

1: L < 120 89.5 0.702 0.11 348 
2: 120 < L < 185 149.0 0.812 0.09 377 
3: 185 < L < 300 239.0 0.859 0.09 380 

4: L > 300 402.0 0.895 0.07 371 
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Table 4-6b: Binning of data by number of interface residues. 

Bin (N = Number of 
Interface Residues) 

Median 
Number 

Mean  
Accuracy 

Accuracy Standard 
Deviation 

Number of 
Proteins 

1: N < 12 6.0 0.891 0.11 358 
2: 12 < N < 24 17.0 0.841 0.10 372 
3: 24 < N < 39 30.0 0.793 0.11 365 

4: N > 39 55.0 0.755 0.10 381 

Table 4-6c: Binning of data by the ratio of residues on the interface to the total number 
of residues. 
 

Bin (R = Ratio of Interface 
to Total Residues) 

Median 
Ratio 

Mean  
Accuracy 

Accuracy Standard 
Deviation 

Number of 
Proteins 

1: R < 4.25 1.9 0.925 0.07 297 
2: 4.25 < R < 10 7.3 0.891 0.06 300 
3: 10 < R < 17 13.1 0.836 0.06 307 
4: 17 < R < 29 22.1 0.768 0.07 306 

5: R > 29 40.4 0.659 0.08 266 
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Figure 4-3:  Classification accuracy plotted against:  length of protein (top), number of 
residues on the interface (middle), and percent of residues involved in the interface 
(bottom). 

It appears that the classifier may not perform as well on smaller proteins.  To test 

this, the data were split by amino acid length into three groups: large proteins (L-492), 
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medium length proteins (M-494), and small proteins (S-490).  Because the number of 

proteins was split relatively evenly between the groups, the total number of residues 

varied.  To compensate for this, decoy data sets (D-492, D-494, and D-490) were created 

by randomly selecting the same number of positive and negative residues as found in the 

corresponding data set.  The results are reported in Table 4-7 below.   

Table 4-7:  Summary results if data sets are created with only small, medium, or large 
proteins. 
 

Data Set Accuracy Sensitivity Specificity FAR 

L-492 0.894 0.134 0.398 0.022 
D-492 0.895 0.149 0.420 0.023 
M-494 0.871 0.075 0.451 0.013 
D-494 0.861 0.119 0.514 0.018 
S-490 0.724 0.479 0.448 0.195 
D-490 0.740 0.537 0.479 0.193 

 

While the size of the protein seems to correlate with lower accuracy values, it 

doesn’t appear that the smaller size causes them.  The smaller proteins were further 

investigated to understand why classification performance was lower.  It was observed 

that many of the proteins fell into certain classes, and these classes were more highly 

represented in the proteins with lower classification accuracies than across the entire data 

set, as seen in Table 4-8.  It can be seen that the general classifier does not perform as 

well on some specific types of proteins.   
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Table 4-8: Representation of classes of protein. 

Category % of proteins below 50% 
accuracy in category 

% of proteins below 60% 
accuracy in category 

% of category in 
entire data set 

DNA/RNA 
binding 

9.1% (1/11) 21.9% (16/73) 9.5% (140/1476) 

Viral 18.2% (2/11) 15.1% (11/73) 6.4% (94/1476) 
Cell Cycle 9.1% (1/11) 2.7% (2/73) 1.2% (17/1476) 
Coiled Coil 27.3% (3/11) 6.8% (5/73) 0.3% (5/1476) 
Mitochondrial 18.2% (2/11) 13.7% (10/73) 2.0% (29/1476) 

4.3 Comparison with Other Methods 

In order to compare the newly developed method to similar methods, a subset of 

the data set was randomly selected and used to test four other interface prediction 

methods: cons-PPISP, SPPIDER, PPI-Pred, and ProMate; these methods were chosen 

because they are also structural-based methods.  The data subset consisted of 55 proteins, 

with a total of 11,794 residues.  The mean number of residues per protein is 216.3, with a 

mean of 27.0 residues on the interface.  All results are included in Appendix C, and are 

summarized below in Table 4-9. 

Table 4-9: Comparison of several methods of interface identification. 

 Acc Sen Spec FAR MCC BER 

Topological 0.867 0.284 0.442 0.051 0.28 0.38 
PPI-PRED 0.769 0.302 0.294 0.135 0.15 0.42 
cons-PPISP 0.803 0.288 0.347 0.106 0.18 0.41 
ProMate 0.810 0.075 0.269 0.045 0.06 0.48 
SPPIDER 0.768 0.526 0.315 0.229 0.25 0.35 
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As shown in Figure 4-3, the Topological Description Classifier demonstrates 

better performance on proteins which are larger and have fewer residues on the interface.  

In order to investigate if there is a specific class of proteins for which the Topological 

Description Classifier performs better than other classifiers, the data subset was further 

broken down.  First, a subset was created on which the Topological Descriptor Classifier 

would be expected to perform well: proteins larger than 300 residues and with an 

interface smaller than 24 residues.  This data set had 13 proteins with 4,660 residues, and 

a mean number of 359.8 residues, of which 11.2 were interface residues.  Results on this 

data set are included in Table 4-10. 

Table 4-10: Method comparison on a data set with larger proteins and smaller 
interfaces. 
 

 Acc Sen Spec FAR MCC BER 

Topological 0.944 0.069 0.074 0.028 0.20 0.48 
PPI-PRED 0.859 0.400 0.092 0.126 0.14 0.36 
cons-PPISP 0.936 0.193 0.132 0.041 0.13 0.42 
ProMate 0.958 0.048 0.109 0.013 0.05 0.48 
SPPIDER 0.918 0.400 0.164 0.065 0.22 0.33 

Alternatively, a data set was considered with smaller proteins, with 200 or fewer 

residues, and interfaces with 24 or more residues.  These are the characteristics of the 

proteins on which the Topological Descriptor Classifier has the worst performance.  This 

data set contained 18 proteins, with a total of 2,283 residues.  There was a mean of 126.8 

residues per protein, and 37.4 of those residues on the protein.  Analysis of this data set is 

included below in Table 4-11. 
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Table 4-11: Method comparison on a data set with smaller proteins and larger 
interfaces. 
 

 Acc Sen Spec FAR MCC BER 

Topological 0.727 0.325 0.564 0.105 0.27 0.39 
PPI-PRED 0.710 0.289 0.532 0.109 0.22 0.41 
cons-PPISP 0.726 0.357 0.570 0.115 0.28 0.38 
ProMate 0.703 0.125 0.520 0.050 0.13 0.46 
SPPIDER 0.706 0.704 0.507 0.293 0.38 0.29 

Finally, a data set was developed with the remainder of the data subset, consisting 

of those proteins that are either small with small interfaces or large with large interfaces.  

This set consisted of 23 proteins with a total of 4,743 residues, and a mean length of 

206.2 and a mean interface size of 28.8 residues.  Table 4-12 has a summary of the results 

on this data set. 

Table 4-12: Method comparison on a data set of proteins that are either small with small 
interfaces or large with large interfaces. 
 

 Acc Sen Spec FAR MCC BER 

Topological 0.854 0.291 0.458 0.056 0.29 0.38 
PPI-PRED 0.803 0.290 0.292 0.114 0.18 0.41 
cons-PPISP 0.834 0.238 0.358 0.069 0.20 0.42 
ProMate 0.839 0.042 0.178 0.032 0.02 0.49 
SPPIDER 0.809 0.599 0.382 0.157 0.37 0.28 

From these data, it can be seen that the new method performs comparably to other 

methods on all types of proteins.  There does not appear to be a specific subset of protein 

types that the Topological Description Classifier performs significantly better or 
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significantly worse on when compared to other classifiers; rather it appears to 

consistently perform slightly better on all protein types.   

For the Topological Description Classifier, both the training and the testing set 

could be controlled, but for the other classifiers, only the testing set could be determined.  

It is possible that the training sets specified by the other classifiers had homologous, or 

even identical, proteins included.  To test this, a data set was developed with additional 

homologous proteins, for a total of 6,091 proteins (1,283,795 residues).  On this data set, 

the Topological Description Classifier achieved 0.902 accuracy, with sensitivity of 0.753, 

specificity of 0.688, and FAR of 0.068.  The addition of homologous data significantly 

improves performance of the new classifier. 

In order to investigate if the data classification would improve by further 

subdividing the types of proteins, the data set from Guharoy and Chakrabarti [50] was 

analyzed; these data included 15 obligate homodimers, and 114 nonobligate 

heterodimers.  The nonobligate data was further split into 31 chains with only a single 

partner, and 83 chains with more than one partner.  The classifier accuracy results are 

included below in Table 4-13; ten trials were averaged for the results displayed. 

Table 4-13: Accuracy results on data split into obligate and non-obligate subsets. 
 

All Data Obligate 
Data 

All Non-
obligate Data 

Non-obligate 
nmers (n=2) 

Non-obligate 
nmers (n>2) 

0.737 0.757 0.739 0.680 0.759 
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The results of this test indicate that performance may be improved by splitting the data 

into separate subsets including only obligate or non-obligate proteins.   

A further test was performed using a data set of proteins that bind with DNA to 

see if the same classifier could be trained to predict those residues which bound to DNA.  

The data set [103] used had 693 proteins.  Of these proteins, 91 were missing a Cα, and 

couldn’t be tessellated, and one of the listed proteins (1AN2-C) didn’t have the chain 

listed, only A and B.  54 proteins did not have enough homologous proteins in UniProt or 

SwissProt to achieve results from ConSurf.  This left 547 proteins, with 10,512 residues 

that bound to DNA, and 79,957 that did not.  All the residues that bound to DNA were 

included in the data set, and 10,512 of the residues that were not on the interface were 

randomly selected to be included in the data set.  10-fold cross validation was repeated 10 

times using Random Forest classification, resulting in an average accuracy of 0.902.  The 

unusually high accuracy of the classifier is probably due to a high degree of redundancy 

in the data set used, but these results at least suggest that the method described here could 

be used to predict those residues which bind to DNA as well as those residues which bind 

to other proteins. 
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CHAPTER 5: RESULTS FOR DOCKING RE-SCORING 

 While the underlying methodology for the docking scoring and interface 

prediction classifiers is the same, there are differences in both the features selected as 

informative and the classifiers themselves.  This chapter discusses the features selected 

(Section 5.1), the performance of the classifier (Section 5.2), and a comparison of the 

new docking re-scoring method with others (Section 5.3). 

 

5.1 Dock Scoring Feature Selection 

As with the interface prediction classifier feature selection process, several 

features were considered for incorporation into the final scoring classifier.  In this 

instance, features were not calculated for individual residues (as in the interface 

prediction feature selection), but for the entire protein conformation.  From the 

topological descriptor, features considered included:  

• Mean volume for each of the six simplex types (as described in Section 3.2) – 6 

features 

• Total four-body statistical potential energy function for the whole complex – 1 

feature 

• Mean four-body statistical potential energy function over all residues – 1 feature 
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• Mean four-body statistical potential energy function for interface residues – 1 

feature 

• Ratio of mean four-body statistical potential energy function for interface residues 

to mean four-body statistical potential energy function for all residues – 1 feature 

• Mean value of each simplex type (T0, T1, T2, T3, T4, T5) for interface residues – 

6 features 

• Ratio of mean value of each simplex type (T0, T1, T2, T3, T4, T5) for interface 

residues to mean value of each simplex type (T0, T1, T2, T3, T4, T5) for all 

residues – 6 features 

• Mean total number of simplices interface residues participate in – 1 feature 

• Ratio of mean total number of simplices interface residues participate in to mean 

total number of simplices all residues participate in – 1 feature 

• Mean volume of interface simplices – 1 feature 

• Ratio of mean volume of interface simplices to mean volume of all simplices – 1 

feature 

• Mean tetrahedrality of interface residues – 1 feature 

• Ratio of mean tetrahedrality of interface simplices to mean tetrahedrality of all 

simplices – 1 feature 

• Mean volume of simplices which cross the interface – 1 feature 

• Ratio of mean volume of simplices which cross the interface to mean volume of 

all simplices – 1 feature 
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A number of additional features were considered for inclusion in the classifier that were 

thought to potentially be informative: 

• Number of residues on the interface for each protein – 2 features 

• Fraction of residues on the interface for each protein – 2 features 

• Total number of interface residues – 1 feature 

• Ratio of total interface residues to total residues in the complex – 1 feature 

• For each of the 20 amino acids, ratio of number of amino acids on the interface to 

total count of that amino acid in the protein – 20 features 

• For each of 6 categories (hydrophobic, aromatic, positively charged, negatively 

charged, polar, and small), the ratio of each pair of interface interactions to the 

total number of interface interactions – 15 features 

• Mean conservation of interface residues – 1 feature 

• Ratio of mean conservation of interface residues to mean conservation of all 

residues – 1 feature 

 

5.1.1 Initial Feature Selection 

As with the feature selection for the interface selection method, the features were 

selected using the RuleFit algorithm.  Table 5-1 has a list of the top 25 features (all 

features are included in Appendix D) and the mean importance over the ten trials. 
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Table 5-1:RuleFit importance of scoring features on original data set. 

Feature RuleFit Importance 
Mean interface residue tetrahedrality 100.0 
Mean interface residue tetrahedrality / mean residue tetrahedrality 46.7 
Ratio of interactions of class aromatic-small 44.2 
Mean interface residue T5 42.1 
Number of interface residues for protein A 41.8 
Total number of interface residues 38.7 
Ratio of interface / total residues for protein B 34.8 
Ratio of interactions of class hydrophobic-aromatic 33.9 
Mean interface residue volume / mean residue volume 33.2 
Mean interface residue potential 30.6 
Mean conservation of interface residues 26.7 
Ratio of interface to total number of CYS residues 24.3 
Mean interface residue potential / mean residue potential 21.9 
Raton of interactions of class positively charged-negatively charged 21.7 
Mean volume for T0 simplices 20.4 
Number of interface residues for protein B 20.2 
Total volume of simplices that cross interface / total volume of both 
chains 

18.8 

Ratio of interface to total number of SER residues 17.4 
Ratio of interface to total number of TRP residues 17.4 
Ratio of interface to total number of PRO residues 17.2 
Ratio of interface to total number of VAL residues 15.1 
Mean interface residue conservation / mean conservation of all residues 14.5 
Mean interface residue T4 14.4 
Ratio of interface to total number of LEU residues 13.6 
Ratio of interface to total number of GLN residues 13.4 

Features were added one at a time until classification accuracy reached a plateau 

(trials were repeated three times).  The ideal number of features for this data set is 18, and 

includes: 

• Mean interface residue tetrahedrality 

• Mean interface residue tetrahedrality / mean residue tetrahedrality 

• Ratio of interactions for classes aromatic-small, hydrophobic-aromatic, and positively 

charged-negatively charged (3 features) 
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• Mean interface residue T5 

• Number of interface residues for each protein (2 features) 

• Total number of interface residues 

• Ratio of interface / total residues for protein B 

• Mean interface residue volume / mean residue volume 

• Mean volume for T0 simplices 

• Total volume of simplices that cross interface / total volume of both chains 

• Mean interface residue potential 

• Mean interface residue potential / mean residue potential 

• Mean conservation of interface residues 

• Ratio of interface to total number for cysteine and serine residues (2 features) 

 

5.1.2 Feature Selection after Addition of Data 

 After the addition of more randomly selected data, the feature selection algorithm 

was run again, and another list of features were selected for this data set.  The same 

features were used after the addition of homologous data.  Again, the top 25 features are 

included in Table 5-2, with the entire results included in Appendix D. 
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Table 5-2:RuleFit importance of scoring features on data set with additional data. 

Feature RuleFit Importance 
Mean interface residue tetrahedrality 100.0 
Mean interface residue tetrahedrality / mean residue tetrahedrality 46.9 
Mean interface residue T5 42.7 
Number of interface residues for protein A 40.8 
Ratio of interactions of class aromatic-small 38.3 
Ratio of interactions of class hydrophobic-aromatic 34.4 
Total number of interface residues 33.0 
Mean interface residue potential 31.8 
Ratio of interface / total residues for protein B 31.3 
Mean conservation of interface residues 26.5 
Mean interface residue volume / mean residue volume 25.8 
Number of interface residues for protein B 25.5 
Ratio of interface to total number of CYS residues 24.9 
Mean interface residue potential / mean residue potential 19.3 
Ratio of interface to total number of PRO residues 18.6 
Mean volume for T0 simplices 18.0 
Ratio of interactions of class positively charged-negatively charged 17.5 
Ratio of interface to total number of TRP residues 17.3 
Ratio of interface to total number of SER residues 16.7 
Mean interface residue T4 15.2 
Ratio of interface to total number of GLN residues 13.0 
Ratio of interface to total number of VAL residues 12.8 
Total volume of simplices that cross interface / total volume of both 
chains 

12.8 

Ratio of interface to total number of GLY residues 11.8 
Volume of simplices that cross interface 11.8 

 On this dataset, the ideal number of features is 14, with the final feature list for 

the data set supplemented with additional data including: 

• Mean interface residue tetrahedrality 

• Mean interface residue tetrahedrality / mean residue tetrahedrality 

• Mean interface residue T5 

• Number of interface residues for each protein (2 features) 

• Total number of interface residues 
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• Ratio of interface / total residues for protein B 

• Ratio of interactions for classes aromatic-small and hydrophobic-aromatic (2 

features) 

• Mean interface residue potential 

• Mean interface residue potential / mean residue potential 

• Mean conservation of interface residues 

• Mean interface residue volume / mean residue volume 

• Ratio of interface to total number of cysteine residues 

 

5.1.3 Feature Selection for Antibody-Antigen Data Subset 

 A subset of the overall data set was created for just the antibody-antigen 

complexes.  The results of the RuleFit algorithm on these data are included below in 

Table 5-3 for the top 25 features, and in Appendix D for all features. 
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Table 5-3:RuleFit importance of scoring features on antibody-antigen data subset. 

Feature RuleFit Importance 
Ratio of interactions of class aromatic-small 98.9 
Ratio of interface to total number of ASN residues 87.8 
Mean interface residue tetrahedrality 71.4 
Mean conservation of interface residues 69.3 
Mean interface residue tetrahedrality / mean residue tetrahedrality 62.9 
Mean interface residue conservation / mean conservation of all residues 61.0 
Ratio of interface to total number of ILE residues 60.8 
Ratio of interface to total number of ASP residues 51.8 
Ratio of interface to total number of GLU residues 51.2 
Ratio of interface to total number of GLN residues 47.4 
Mean volume for T1 simplices 47.1 
Mean volume for T2 simplices 44.7 
Ratio of interface to total number of PRO residues 42.1 
Ratio of interface to total number of THR residues 36.8 
Ratio of interface to total number of VAL residues 32.6 
Ratio of interaction of class aromatic-negatively charged 31.7 
Ratio of interface to total number of TRP residues 30.8 
Total volume of simplices that cross interface / total volume of both 
chains 

27.7 

Total number of interface residues 25.8 
Ratio of interactions of class aromatic-positively charged 25.7 
Ratio of interface to total number of PHE residues 25.4 
Ratio of interface to total number of TYR residues 24.7 
Ratio of interface to total number of SER residues 23.1 
Mean interface residue T5 22.6 
Number of interface residues for protein B 20.6 

 The ideal number of features, 24, on the antibody-antigen data subset included: 

• Ratio of interactions for classes aromatic-small, aromatic-negatively charged, and 

aromatic-positively charged (3 features) 

• Ratio of interface to total number of residues for asparagine, aspartic acid, 

glutamic acid, glutamine, isoleucine, phenylalanine, proline, serine, threonine, 

tryptophan, tyrosine, and valine (12 features) 

• Mean interface residue tetrahedrality 
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• Mean interface residue tetrahedrality / mean residue tetrahedrality 

• Mean conservation of interface residues 

• Mean interface residue conservation / mean conservation of all residues 

• Mean volume for T1 and T2 simplices (2 features) 

• Total volume of simplices that cross interface / total volume of both chains 

• Total number of interface residues 

• Mean interface residue T5 

 

5.1.4 Feature Selection for Enzyme-Inhibitor Data Subset 

 Another data subset was developed for just the enzyme-inhibitor data.  The top 25 

features that were found using RuleFit for this data set are included in Table 5-4; the 

entire table can be found in Appendix D. 
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Table 5-4:RuleFit importance of scoring features on enzyme-inhibitor data subset. 

Feature RuleFit Importance 
Ratio of interface to total number of SER residues 96.8 
Ratio of interface / total residues for protein B 85.0 
Mean interface residue tetrahedrality 85.0 
Ratio of interface to total number of CYS residues 80.4 
Mean interface residue T4 71.1 
Mean conservation of interface residues 69.0 
Total number of interface residues 68.2 
Ratio of interactions of class hydrophobic-aromatic 60.7 
Mean interface residue T5 53.8 
Mean interface residue T4 / mean residue T4 51.6 
Ratio of interface to total number of PHE residues 47.8 
Mean interface residue T5 / mean residue T5 43.2 
Mean interface residue tetrahedrality / mean residue tetrahedrality 38.7 
Ratio of interface to total number of GLN residues 32.2 
Ratio of interface to total number of TRP residues 28.8 
Mean interface residue T3 26.0 
Ratio of interface to total number of ARG residues 25.2 
Mean volume for T0 simplices 24.6 
Number of interface residues for protein A 23.8 
Ratio of interface to total number of HIS residues 21.6 
Mean interface residue volume / mean residue volume 19.5 
Mean interface residue conservation / mean conservation of all residues 18.5 
Volume of simplices that cross interface 18.1 
Mean interface residue potential 15.9 
Mean volume for T5 simplices 15.6 

The ideal number of features for this data set is 15, and includes: 

• Ratio of interface to total number of residues for cysteine, glutamine, 

phenylalanine, serine, and tryptophan (5 features) 

• Ratio of interface / total residues for protein B 

• Total number of interface residues 

• Mean interface residue tetrahedrality 

• Mean interface residue tetrahedrality / mean residue tetrahedrality 
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• Mean interface residue T4 and T5 (2 features) 

• Mean interface residue / mean residue for T4 and T5 (2 features) 

• Mean conservation of interface residues 

• Ratio of interactions of class hydrophobic-aromatic 

 

5.1.5 Selected Feature Comparison 

 When comparing the features selected for the different subsets of data, the 

original data set and the data set supplemented with additional data identified many of the 

same features as important, although in a slightly different order.  In fact, the original 

feature set is a superset of the supplemented data feature set, with the addition of four 

more features: the impact of ionic interactions, the mean volume of T0 simplices, the 

percent of the total complex volume that the interface takes up, and the percent of serine 

residues on the interface. 

 Those features which are represented in both data sets reveal characteristics of the 

protein complex formations.  As with the prediction of interface residues, the 

tetrahedrality plays the most critical role in definition of the correct docking 

conformations.  Also important are the interactions across the interface of two classes: 

aromatic and small residues, and aromatic and hydrophobic residues.  This is not 

surprising as aromatic residues have been found to facilitate differentiation of the binding 

interface from the remainder of the protein interface [61, 66, 79, 87, 100].  Another 

critical feature is the mean number of the T5 residues for the complex.  The T5 residues 

are those which cross the interface, and can be considered a measure of the size of the 
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protein interface.  There are several other features which also indicate the size of the 

protein interface, including the number of interface residues for each chain of the protein, 

the total number of interface residues, the percent of volume for a protein that the 

interface takes, and the mean size of the interface residue volumes as compared to the 

mean size of all residues.  Two features focus on the four-body statistical potential: the 

mean interface residue potential, and the ratio of this value to the mean potential for all 

residues.  On average, the potential and the ratio are lower for the native conformations 

than for non-native ones.  This indicates there is a higher bias for four residues to occur 

together in a simplex away from the interface than on the interface.  Another informative 

feature is the conservation; this was seen in the interface prediction feature selection as 

well and is not surprising.  The final feature is the ratio of interface to total number of 

cysteine residues; as cysteine normally has a very low representation on the protein 

interface, this is expected. 

 The antibody-antigen data subset feature list has some interesting differences 

from the feature list developed when considering all of the data.  Most of the features are 

identical or related to those from the full feature set except there is no inclusion of the 

four-body statistical potential, indicating that there is no pattern to the occurrence of 

amino acids in the simplices.  However, two related metrics, the mean volume for the T1 

simplices and for the T2 simplices appear in this feature list but not the other, so the 

primary sequence relationship does have some impact on the correct conformation.  This 

happens because the different conformations result in different tessellations of the 

interface residues, impacting the tetrahedra surrounding the interface residues.  So those 
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surrounding tetrahedral volumes indicate whether the protein is in the correct 

conformation or not.  Finally, while the percent of cysteine residues in the interface is not 

included, the percent of several other amino acids is, including asparagine, aspartic acid, 

glutamic acid, glutamine, isoleucine, phenylalanine, proline, serine, threonine, 

tryptophan, tyrosine, and valine.  The specific amino acid composition of the interface for 

antibody-antigen complexes has more of an impact than when the entire data set is 

considered. 

 The final feature list developed was for the enzyme-inhibitor data subset.  The 

differences from both the total data set and the antibody-antigen data set are interesting.  

As with the antibody-antigen set, all of the features from the total data set are included 

except for the four-body statistical potential.  And, similar to the antibody-antigen data 

set, a type of simplex has shown as informative; in this case, the mean interface residue 

and ratio of mean interface residue to mean residue for T4 type simplices.  Finally, 

several of the amino acid residue type were important in classification: cysteine, 

glutamine, phenylalanine, serine, and tryptophan.  It appears that if the data are separated 

by the type of interaction, the type of amino acid plays a far more crucial role in 

determining the correct conformation. 

 While the features were not selected to approximate the terms of the energetic of 

binding, several of the terms relate to them.  The interface area, which was selected in 

some form for all data sets, is linearly related to the free enthalpy contribution of the 

hydrophobic effect [10].  The residue volumes describe the atomic packing, which is 

directly related to the van der Waals energy [10].  The amino acid percents, selected as 
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informative for both the antibody-antigen and enzyme-inhibitor data subsets, distinguish 

the interface from the rest of the protein surface and correlate with the desolvation free 

energy [10]. 

 

5.2 Docking Conformation Scoring Classifier 

 While the same Weka software was used for classification, the classifiers for 

interface prediction and docking scoring were quite different.  The most significant 

difference is that a binary classifier is used for interface prediction, and a continuous 

classifier is used for the docking.  As described in the Chapter 3, all classification for the 

docking re-scoring work was done using the Least Median Square Linear Regression 

classifier.  The correct output of this classifier can be set as either the Root Mean Square 

(RMS) from the native conformation or the correct rank of the conformations.  The first 

classification test involved determining if the classifier should be trained to output the 

RMS value or the rank value.  Performing a simple 3-fold cross validation test (the 

proteins were randomly split into 3 groups of 18 proteins each), the mean position of the 

native conformation when RMS was used was 142.8, while when rank was used, the 

mean position was 161.1, so all future tests used RMS. 

 

5.2.1 Classification Results on Original Data Set 

 With the exception of the test selecting RMS or rank, all testing was done using 

leave-one-out classification, where the data from all proteins except the one being tested 

were used to train the classifier (all results are included in Appendix E, and the best 
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results for all proteins are included in Section 5.2.4).  On the original data set, the median 

position of the native conformation is 110.5 (out of approximately 1000), while the 

median RMS of the predicted top conformation is 13.97 angstroms.  The median fraction 

of correct interface residues identified on the larger molecule was 0.611, with a median 

fraction of 0.620 for the smaller molecule.  The median highest ranked near-native 

conformation (less than 5 angstroms from the native) is in position 21.5.  

 These data were then re-ranked to see if performance could be improved: the top 

200 predicted conformations from each protein were used to create a new training and 

testing dataset.  The complete results are included in Appendix E, but there was no 

improvement in performance.  Fifteen of the 54 proteins did not have the native 

conformation in the top 200, so re-ranking did not offer the opportunity for the native 

conformation rank to be improved.  Considering only those proteins which had the native 

conformation in the top 200, the median rank of the native conformation after re-ranking 

was 50, while before re-ranking it was 49.  If the top ranked conformation of the 

predicted top 200 conformations is used (for both the original results and the re-ranked 

results), the median rank of the top conformation is 95 before re-scoring, and 96.5 after 

rescoring.  Since re-ranking the proteins did not improve the performance, this step was 

not used. 

 

5.2.2 Classification Results after Addition of Data 

 Next, additional correct conformations were selected to supplement the data.  The 

supplemental data were put in two groups.  First, 207 proteins were randomly selected 
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and included as samples with an RMS of 0 to give the classifier more correct instances.  

In a second test, 44 proteins which were homologous to one of the proteins in the dataset 

were included.  Table 5-5 has the results of these tests, and includes the position of the 

native conformation with the addition of the first set of non-homologous data and then 

the addition of the second set of homologous data (in addition to the non-homologous 

data).  The number of homologs for each protein that was added with the second data set 

is also listed. 

Table 5-5:Scoring Results After Inclusion of Additional Data. 

Protein 
Position of Native 

Conformation with 
Non-Homologous Data 

Position of Native Conformation 
with Homologous and Non-

Homologus Data 

Number of 
Homologs 

Added 
1A0O 550 571 4 
1ACB 137 141 

 1AHW 46 43 3 
1ATN 350 346 

 1AVW 47 37 2 
1AVZ 260 259 1 
1BQL 293 285 

 1BRC 329 344 
 1BRS 292 292 
 1BTH 46 50 1 

1BVK 219 215 
 1CGI 63 61 
 1CHO 192 197 1 

1CSE 54 40 
 1DFJ 1 1 4 

1DQJ 2 1 
 1EFU 1 1 2 

1EO8 208 227 
 1FBI 94 88 
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1FIN 7 9 
 1FQ1 329 336 
 1FSS 118 115 4 

1GLA 601 573 4 
1GOT 113 117 2 
1IAI 7 11 

 1IGC 219 223 2 
1JHL 165 149 

 1MAH 50 53 4 
1MDA 421 373 

 1MEL 1 1 
 1MLC 178 180 
 1NCA 3 3 
 1NMB 144 153 
 1PPE 7 7 
 1QFU 64 67 
 1SPB 2 2 
 1STF 137 136 2 

1TAB 146 139 5 
1TGS 7 9 

 1UDI 116 117 
 1UGH 15 15 
 1WEJ 53 56 
 1WQ1 1 1 
 2BTF 199 181 1 

2JEL 17 16 
 2KAI 254 249 
 2PCC 518 522 
 2PTC 170 178 
 2SIC 156 167 2 

2SNI 67 63 
 2TEC 155 163 
 2VIR 48 47 
 3HHR 1 1 
 4HTC 34 35 
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The mean position of the native conformation after addition of the non-homologous data 

is 142.7 (versus 143.9 without this data).  The further addition of the homologous data 

improved performance again to a mean rank of 142.0.  For the proteins which had 

homologs that were added, mean performance went from 169.5 to 168.4; the proteins 

which did not have homologs added had a mean performance improvement of 0.6 (rank 

of the native conformation went from 130.4 to 129.8).  Further study of the data set found 

that of the 131 chains that make up the data set, only 32 of those chains did not have 

homologs (BLAST E value < 0.0001) already existing in the data.  The proteins that did 

not have homologs, but had homologs added through the second data increment included: 

1A0O, 1AHW, 1AVW, 1AVZ, 1DFJ, 1EFU, 1GLA, 1GOT, 1IGC, 1STF, 1TAB, and 

2BTF.  Performance on these proteins went from a median conformation of 141.5 

without the homologous data to 137.5 after inclusion of the homologous data.  However, 

performance on the remainder of the data (without new homologous data) went from 80.5 

to 77.5.  So it appears that the improvement in performance is from the addition of data, 

not the specific addition of homologous data. 

 

5.2.3 Classification Results after Splitting out Enzyme-Inhibitor and Antibody-Antigen 

Data 

 Results may potentially be improved by splitting out the data into subsets.  This 

was checked by splitting out both the enzyme-inhibitor and the antibody-antigen classes 

from the main data set (Table 3-1 shows which proteins are included in each class).  
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Training and testing were performed on just these subsets of data using the features 

selected specifically for these data sets (described in Sections 5.1.4 and 5.1.5).   

 For the enzyme-inhibitor data subset, which included 22 proteins, the median rank 

of the native conformation is 81.5, and the median RMS of the top ranked conformation 

from the true native conformation is 11.6 angstroms.  This is an improvement on the 

performance on these same proteins using all of the data for training, which results in a 

median rank for the top conformation of 106.0 and a median RMS of 12.4 angstroms. 

 Finally, the 16 proteins of the antibody-antigen data set had a median rank for the 

native conformation of 95.5, and an RMS of 15.2.  This contrasts with a median rank of 

61.5 and median RMS of 18.3 if all of the data are used for training.  Interestingly, 

separating out the antibody-antigen proteins actually decreases performance on the native 

conformation rank, but improves performance for the RMS. 

 

5.2.4 Final Scoring Results 

 Included in Table 5-6 is a list of the best performance on each protein in the 

dataset.  For all proteins except the enzyme-inhibitor complexes, the data used for 

training was the original data set with the addition of both the non-homologous and the 

homologous data.  The enzyme-inhibitor complexes (the proteins which are included in 

Table 5-6 in boldface) used a classifier trained using only the data from other enzyme-

inhibitor complexes.  The median position of the native conformation for all proteins is 

96; however, the median position of the highest ranked near-native conformation (less 

than 5 angstroms RMS) is 10.  The median number of correctly identified residues on the 
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larger and smaller sub-proteins is 0.595 and 0.534, respectively.  The median RMS of the 

top prediction is 13.635 angstroms.   

Table 5-6:Final Results. 

Protein 
Position of 

Native 
Conformation 

RMS of 
Predicted Top 
Confirmation 

Fraction of 
Correct Receptor 

Residues 

Fraction of 
Correct 
Ligand 

Residues 

Highest Ranked 
Confirmation 

with RMS < 5 Å 

1A0O 554 12.59 0.63 1.00 149 
1ACB 68 11.03 0.73 0.82 2 
1AHW 44 15.7 0.70 0.50 17 
1ATN 380 18.08 0.56 0.14 217 
1AVW 95 20.98 0.38 0.36 7 
1AVZ 203 16.43 0.42 0.50 153 
1BQL 306 23.19 0.40 0.29 210 
1BRC 192 15.51 0.69 0.90 112 
1BRS 172 12.22 0.40 0.31 5 
1BTH 27 18.3 0.75 0.60 27 
1BVK 265 19.77 0.40 0.31 11 
1CGI 58 1.89 0.81 0.70 1 
1CHO 52 16.33 0.75 0.46 18 
1CSE 97 14.42 0.64 1.00 22 
1DFJ 49 2.34 0.90 0.86 1 
1DQJ 7 7.31 0.53 0.22 7 
1EFU 1 0 1.00 1.00 1 
1EO8 237 16.89 0.63 0.45 237 
1FBI 71 16.82 0.40 0.22 3 
1FIN 9 12.02 0.57 0.53 5 
1FQ1 305 18.43 0.68 0.67 38 
1FSS 177 9.76 0.57 0.75 25 
1GLA 496 29.41 0.80 0.40 346 
1GOT 100 13.68 0.47 0.31 88 
1IAI 13 4.97 0.88 0.84 1 
1IGC 251 23.64 0.19 0.25 69 
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1JHL 201 20.49 0.08 0.77 153 
1MAH 122 12.7 0.45 0.47 4 
1MDA 410 13.06 0.57 0.53 55 
1MEL 2 7.93 0.17 0.10 2 
1MLC 175 16.73 0.38 0.25 113 
1NCA 2 22.26 0.47 0.47 2 
1NMB 142 14.91 0.71 0.13 56 
1PPE 40 0.74 0.91 0.92 1 
1QFU 64 10.89 0.30 0.50 23 
1SPB 18 9.92 0.68 0.31 18 
1STF 105 1.12 1.00 0.77 1 
1TAB 127 6.69 0.76 0.90 3 
1TGS 10 16.38 0.33 0.60 9 
1UDI 221 6.06 0.82 0.53 2 
1UGH 43 7.77 0.60 0.64 3 
1WEJ 111 14.43 0.64 0.45 111 
1WQ1 1 0 1.00 1.00 1 
2BTF 178 9.29 0.59 0.76 5 
2JEL 11 23.21 0.07 0.18 3 
2KAI 36 12.13 0.40 0.42 8 
2PCC 487 13.8 0.89 0.90 208 
2PTC 177 13.59 0.36 0.69 83 
2SIC 29 22.07 0.29 0.17 4 
2SNI 31 5.38 0.76 0.80 8 
2TEC 170 15.64 0.35 0.58 33 
2VIR 49 25.93 0.44 0.57 14 
3HHR 1 0 1.00 1.00 1 
4HTC 42 5.87 0.70 0.88 3 
 

 Figures 5-1 and 5-2 include plots of the predicted rank as a function of the RMS 

for each of the proteins.  Ideally these scores would fall in a straight diagonal line, with 

increasing RMS values assigned an increasing score.  Performance on the proteins with 

data along a straight line is better than performance on the proteins with non-linear plots.  
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Figure 5-1:  Sub plots for the first half of the proteins.  Each plot is the predicted score as 
a function of the RMS, where each conformation is represented by a single point. 
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Figure 5-2:  Sub plots for the remainder of the proteins.  Each plot is the predicted score 
as a function of the RMS, where each conformation is represented by a single point. 
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5.2.5 Analysis of Scoring Results 

 There is a wide variability in the performance of the classifier on different 

proteins, from selection of the correct native structure for three of the proteins, to ranking 

the native confirmation at position 554 for protein 1A0O.  The remainder of this section 

discusses factors that may have impacted the classifier performance for specific proteins. 

 Different protein classes, such as enzyme/inhibitor and antibody antigen 

complexes, may impact classifier performance.  Enzymes and their inhibitors have co-

evolved to form an interface with a high degree of surface complementarity, while the 

immune system produces many different antibodies in response to an antigen with 

varying degrees of success, so that some antibodies bind strongly to their antigen, while 

others do not.  So a specific antibody/antigen complex does not necessarily have the best 

potential binding interface [42].  This may explain why separating the enzyme/inhibitor 

complexes improves their performance, while separation of antibody/antigen complexes 

does not. 

 Table 5-7 breaks the entire data set into subsets according to the type of protein: 

enzyme/inhibitor, antibody/antigen, other, or difficult to compare the performance on 

different classes.  Despite the class labels, the classifier developed here demonstrated the 

best performance on the “difficult” class, while maintaining acceptable performance for 

both the antibody/antigen and enzyme/inhibitor classes.  Interestingly, the class which 

provided the most challenge was the “other” data subset.  Because these complexes are so 

different from the other proteins in the training data set, performance suffered. 
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Table 5-7:Results on when Data are Split by Type. 

Data Subset 

Median 
Position of 

Native 
Conformation 

Median RMS 
of Predicted 

Top 
Confirmation 

Median 
Fraction of 

Correct 
Receptor 
Residues 

Median 
Fraction of 

Correct 
Ligand 

Residues 

Median 
Highest 

Ranked Near 
Native (RMS 

< 5 Å) 
Conformation 

Antibody / 
Antigen 

67.5 16.8 0.42 0.38 15.5 

Enzyme / 
Inhibitor 

91.5 11.6 0.66 0.70 4.5 

Other 315.5 13.4 0.61 0.50 109.0 
Difficult 18.0 12.9 0.72 0.63 16.0 

 Most proteins in the data set had homologs within the data set even before 

inclusion of the additional homologous data.  Of the 54 proteins in the data set, only 8 

(1A0O, 1ATN, 1BRS, 1GLA, 1GOT, 1MDA, 1STF, and 3HHR) did not have homologs 

for at least one molecule of the complex within the original data set.  Another category of 

interest are those proteins which had a homolog for one molecule of the complex, but not 

the other.  These complexes included: 1AHW, 1AVW, 1AVZ, 1DFJ, 1EFU, 1FIN, 1FQ1, 

1IGC, 1PPE, 1SPB, 1TAB, 1WQ1, 2BTF, and 2JEL.  Finally, there were some 

complexes that had one or more proteins for which the entire protein (both molecules) 

was homologous: 1BQL, 1BRC, 1BVK, 1CGI, 1CHO, 1CSE, 1DQJ, 1FBI, 1FSS, 1JHL, 

1MAH, 1MEL, 1MLC, 1NCA, 1NMB, 1QFU, 1TGS, 1UDI, 1UGH, 2PCC, 2PTC, 2SNI, 

2TEC, and 2VIR.  Performance on each of these data subsets in included in Table 5-8. 
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Table 5-8:Results on Data Subsets with Varying Degrees of Homology. 

Data Subset 

Median 
Position of 

Native 
Conformation 

Median RMS 
of Predicted 

Top 
Confirmation 

Median 
Fraction of 

Correct 
Receptor 
Residues 

Median 
Fraction of 

Correct 
Ligand 

Residues 

Median 
Highest 

Ranked Near 
Native (RMS 

< 5 Å) 
Conformation 

No 
Homologs 

276.0 12.8 0.63 0.38 71.5 

Homolog 
for One 
Molecule 

46.5 11.0 0.68 0.60 5.0 

Homolog 
for Both 
Molecules 

109.5 14.7 0.46 0.55 16.0 

 The inclusion of homologous data may have been advantageous for some 

proteins, but disruptive for others.  Frequently, close homologs interact in similar 

orientations, but there are also examples of homologous proteins associating in different 

orientations [51].  For these data, the inclusion of homologous data was found to improve 

the overall performance of the classifier. 

 

5.3 Comparison with Other Methods 

 As discussed in the background, comparison between specific methods is 

something of a challenge, especially when only the scoring methods are being compared.  

Results of alternative methods are included in Table 5-9, and it can be seen that the 

method developed and reported here performs admirably. 
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Table 5-9:Results of Other Scoring Methods. 

Study Results 
Li 2007 Correct solutions ranked within top 2000 for 66 out of 83 complexes.  Average 

rank of near-native solutions for 83 complexes was 1018 and the average rmsd 
11.003 angstroms. 

Mandell 2001 Geometry very close to crystallographic orientation within the best 266 
minimum energies for all systems 

Gray 2003 25 of 54 in the top 20 with 50% of contacts and 31 of 54 with 25% contacts 
Comeau 2004 Successful if a certain number of the top clusters include at least one 

conformation with less than 10 angstroms RMSD from the native 
Baster 1998 PRO_LEADS accurately predicted the binding mode of 86% of the complexes 
Palma 2000 Near-native docked geometries were found with RMS < 4 angstroms in 22 out 

of 25 complexes, and 14 of those were in the top 20 
London 2007 FunHunt developed to distinguish between energy funnels – able to choose 

near-native funnel from the set of all 10 funnels with accuracy 72% 
Qin 2007 Near-native poses were found for 23 of the 24 targets, but the poses with the 

lowest RMSD were ranked among the top 100 only for seven of the targets 
Moont 1999 For all the systems, a correct docking was placed within the top 12% of the 

pair potential score ranked complexes 

A direct comparison can be made between the method described here and the study by 

Gray et al. [48], as both methods used the same data set.  Gray et al. were able to predict 

conformations for 32 of the 54 proteins, with 7 demonstrating at least 75% of the correct 

interface contacts; 23 predicting at least 50% of the contacts, and 28 predicting 25% or 

more.  Comparatively, the method described here was able to rank the conformations for 

all 54 proteins; of these, 16 had 75% or more of the correct interface contacts, 30 proteins 

demonstrated at least 50% of the contacts, and 49 predicted 25% or more of the protein 

contacts. 
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CHAPTER 6: CONCLUSION 

Two new procedures are presented in this work, both based on a topological 

descriptor.  The method is applied first to identification of binding interface residues, 

and then to score different docking conformations.  The two studies presented in this 

work have demonstrated two additional areas in which the topological descriptor can 

advance the current state of the field, and the success is viewed as promising. 

In the first process, a new method to identify residues involved in protein-

protein interactions is described.  This method uses structural information to classify 

whether a specific residue is on the interaction interface or not.  The random forest 

classifier was used to achieve a classification accuracy of 0.836 on a data set of 1476 

non-homologous proteins, results which are comparable to other popular methods for 

protein-protein interface prediction.  The classification algorithm could be further 

improved through: (1) inclusion of additional data, even if homologous, to give more 

redundant examples, and (2) identification and inclusion of additional features.   

The topological descriptor was then used to develop a method of ranking 

docking conformations, and the method performed exceptionally well, placing the 

native structure within the top 100 for 29 of the 54 proteins, with an overall median 

position of 96.  Additionally, 43 of the 54 proteins had a near-native structure (less than 

5 angstroms from the native) in the top 100 positions.  The median ratio of correctly 



 

85 
 

identified residue contacts is 0.57.  Improvement for this work will result from 

inclusion of additional data, splitting the data into further appropriate subsets, and 

development of additional informative features. 
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APPENDIX 

Appendix A: Leave-one-out analysis for proof-of-concept data set (described in Section 
4.2.1) 
 

Protein Chain Accuracy Sensitivity Specificity FAR 
1A8M B 0.671 0.591 0.448 0.296 
1AE1 B 0.647 0.607 0.175 0.348 
1AKJ E 0.711 0.680 0.405 0.281 
1AL2 3 0.651 0.757 0.617 0.450 
1AOH B 0.728 0.571 0.190 0.256 
1AOI A 0.673 0.934 0.671 0.757 
1AOI B 0.747 0.887 0.758 0.500 
1AOI C 0.600 0.965 0.556 0.759 
1AOI D 0.657 0.949 0.644 0.775 
1AR8 1 0.643 0.908 0.548 0.552 
1AVP A 0.721 0.500 0.193 0.253 
1AZD A 0.747 0.610 0.362 0.224 
1B35 B 0.400 0.592 0.179 0.646 
1B35 C 0.603 0.873 0.473 0.550 
1B48 A 0.751 0.739 0.258 0.247 
1B67 A 0.603 0.786 0.512 0.525 
1BH8 A 0.711 0.840 0.700 0.450 
1BH8 B 0.472 0.929 0.366 0.738 
1BQP A 0.641 0.565 0.772 0.247 
1BZX I 0.707 0.500 0.353 0.239 
1C14 A 0.750 0.526 0.303 0.211 
1C2Y A 0.684 0.630 0.475 0.294 
1C72 A 0.714 0.708 0.236 0.285 
1C8O A 0.720 0.720 0.340 0.280 
1C8O B 0.938 0.938 1.000 0.000 
1CDO A 0.818 0.639 0.295 0.163 
1CJQ B 0.663 0.750 0.341 0.358 
1CYD A 0.715 0.555 0.805 0.130 
1D3B B 0.617 0.643 0.462 0.396 
1D3B C 0.704 6.745 0.667 0.250 
1D5S A 0.701 0.673 0.311 0.294 
1D5S B 0.780 0.970 0.800 1.000 
1DCI A 0.767 0.829 0.553 0.256 
1DEE D 0.659 0.557 0.410 0.302 
1DIR A 0.742 0.568 0.318 0.226 
1DPS A 0.730 0.574 0.673 0.173 
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Protein Chain Accuracy Sensitivity Specificity FAR 
1EJB A 0.696 0.604 0.516 0.261 
1EOB B 0.584 0.627 0.398 0.436 
1F2D D 0.777 0.593 0.372 0.188 
1F2E A 0.761 0.732 0.448 0.231 
1F4M B 0.679 0.793 0.657 0.444 
1FNT A 0.790 0.814 0.606 0.220 
1FNT C 0.817 0.855 0.663 0.200 
1FZA A 0.647 0.894 0.627 0.658 
1FZA B 0.645 0.766 0.388 0.394 
1G1K A 0.804 0.813 0.342 0.197 
1G3I G 0.809 0.805 0.569 0.189 
1G8Q A 0.778 0.895 0.486 0.254 
1GCQ A 0.643 0.467 0.778 0.154 
1GCQ C 0.652 0.481 0.565 0.238 
1GEG A 0.788 0.627 0.592 0.154 
1GK4 A 0.532 0.953 0.539 0.972 
1GL2 C 0.683 0.976 0.690 0.947 
1GNW A 0.681 0.333 0.098 0.286 
1GO4 H 0.516 0.977 0.494 0.898 
1GWC C 0.734 0.905 0.250 0.284 
1H59 B 0.711 0.600 0.400 0.257 
1H5Q A 0.746 0.701 0.557 0.235 
1HEZ A 0.603 0.560 0.303 0.378 
1HEZ E 0.721 0.760 0.633 0.306 
1HFO A 0.708 0.761 0.614 0.328 
1HG3 A 0.817 0.442 0.528 0.094 
1HRI 2 0.643 0.595 0.419 0.337 
1HZD B 0.687 0.536 0.947 0.052 
1I8F B 0.653 0.647 0.629 0.342 
1IC2 B 0.545 1.000 0.541 0.897 
1IJD A 0.556 1.000 0.500 0.800 
1IRJ B 0.643 0.600 0.568 0.327 
1IRU F 0.744 0.729 0.548 0.250 
1IRU G 0.784 0.838 0.602 0.240 
1IRU H 0.752 0.710 0.579 0.229 
1IRU I 0.809 0.855 0.703 0.219 
1IRU J 0.760 0.513 0.765 0.094 
1IRU K 0.789 0.746 0.644 0.191 
1IRU L 0.776 0.657 0.667 0.164 
1IRU M 0.798 0.671 0.721 0.136 
1IRU N 0.811 0.822 0.682 0.194 
1JFI B 0.422 0.977 0.353 0.837 
1JH5 A 0.667 0.735 0.391 0.355 
1JK8 B 0.521 0.782 0.352 0.585 
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Protein Chain Accuracy Sensitivity Specificity FAR 
1JLV A 0.845 0.893 0.463 0.162 
1JXZ B 0.725 0.747 0.522 0.284 
1KIL A 0.769 0.918 0.804 0.688 
1KIL B 0.831 0.958 0.852 0.727 
1KIL D 0.682 0.952 0.678 0.792 
1KKQ A 0.625 0.889 0.139 0.394 
1KQL B 0.370 1.000 0.320 0.895 
1LJR A 0.738 0.833 0.298 0.276 
1LLD A 0.738 0.588 0.118 0.253 
1MR8 A 0.567 0.889 0.302 0.514 
1OTG A 0.760 0.907 0.708 0.279 
1PD2 1 0.578 0.857 0.228 0.343 
1PMA B 0.818 0.845 0.636 0.193 
1PPF I 0.411 0.364 0.133 0.578 
1PSR B 0.730 0.846 0.489 0.311 
1QD9 A 0.806 0.667 0.703 0.129 
1QGH A 0.773 0.618 0.723 0.137 
1RVF 1 0.652 0.905 0.556 0.535 
1RVF 4 0.750 1.000 0.750 1.000 
1SCJ B 0.789 0.706 0.545 0.185 
1TAF A 0.647 0.933 0.560 0.579 
1TAF B 0.486 0.719 0.460 0.711 
1TME 2 0.643 0.565 0.390 0.328 
1YDV A 0.793 0.690 0.323 0.194 
2AAI A 0.685 0.235 0.121 0.249 
2AAI B 0.817 0.793 0.354 0.180 
2SIC I 0.710 0.667 0.229 0.284 
2SIV A 0.889 0.939 0.939 0.667 
2SIV B 0.588 0.900 0.600 0.857 
2SNI E 0.891 0.190 0.235 0.051 
2SNI I 0.734 0.909 0.385 0.302 
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 Appendix B: Leave-one-out Results for Final Data Set (described in Section 4.2.2) 
 

Protein Chain Accuracy Sensitivity Specificity FAR 
12AS A 0.899 0.525 0.600 0.049 
1A0C A 0.817 0.452 0.838 0.035 
1A12 A 0.898 0.000 0.000 0.045 
1A3A A 0.869 0.333 0.462 0.055 
1A4I B 0.851 0.267 0.267 0.083 

1A4M A 0.971 0.000 0.000 0.006 
1A6J A 0.833 0.417 0.476 0.087 
1AD3 A 0.843 0.338 0.533 0.057 
1AHS A 0.722 0.424 0.467 0.172 
1AIH A 0.694 0.686 0.369 0.304 
1AJO A 0.854 0.333 0.069 0.131 
1AJY A 0.493 0.950 0.352 0.686 
1AOC A 0.720 0.077 0.026 0.228 
1ASH A 0.849 0.000 0.000 0.139 
1ASO A 0.931 0.100 0.042 0.054 
1ATZ A 0.918 0.143 0.100 0.051 
1AUU A 0.673 0.846 0.407 0.381 
1AUY A 0.730 0.000 0.000 0.264 
1AVO A 0.600 0.821 0.653 0.810 
1AVO B 0.614 0.444 0.696 0.206 
1AVQ A 0.859 0.381 0.296 0.092 
1B35 A 0.692 0.500 0.538 0.213 
1B35 B 0.514 0.204 0.105 0.413 
1B35 C 0.667 0.618 0.534 0.306 
1B3U A 0.838 0.364 0.054 0.164 
1B5E A 0.793 0.304 0.438 0.092 
1B5Q A 0.858 0.344 0.208 0.104 
1B67 A 0.588 0.786 0.500 0.550 
1B77 A 0.829 0.053 0.045 0.100 
1B9L A 0.790 0.750 0.702 0.187 
1BEB A 0.846 0.300 0.150 0.116 
1BG8 A 0.684 0.706 0.387 0.322 
1BGF A 0.642 0.000 0.000 0.347 
1BGV A 0.902 0.333 0.111 0.075 
1BH9 B 0.652 0.967 0.492 0.508 
1BJA A 0.611 0.533 0.211 0.375 
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Protein Chain Accuracy Sensitivity Specificity FAR 
1BO4 A 0.752 0.656 0.477 0.219 
1BOU A 0.659 0.500 0.511 0.256 
1BOU B 0.829 0.294 0.870 0.013 
1BRT A 0.964 0.000 0.000 0.029 
1BSL A 0.879 0.412 0.424 0.066 
1BYF A 0.756 0.300 0.273 0.155 
1BYK A 0.910 0.480 0.545 0.043 
1BYR A 0.908 0.000 0.000 0.080 
1C4Q A 0.623 0.700 0.412 0.408 
1C5E A 0.684 0.536 0.469 0.254 
1C7N A 0.886 0.190 0.421 0.031 
1C8N A 0.778 0.324 0.367 0.123 
1C8U A 0.786 0.319 0.341 0.122 
1C9K B 0.800 0.381 0.258 0.145 
1CBY A 0.806 0.667 0.087 0.190 
1CCW A 0.825 0.143 0.333 0.052 
1CCW B 0.886 0.220 0.733 0.010 
1CFZ A 0.802 0.333 0.333 0.116 
1CG2 A 0.907 0.474 0.529 0.046 
1CHK A 0.916 0.000 0.000 0.056 
1CHM A 0.908 0.672 0.707 0.050 
1CI9 A 0.966 0.167 0.111 0.022 
1CJX A 0.892 0.310 0.333 0.056 
1CKM A 0.836 0.313 0.250 0.105 
1CMC A 0.750 0.862 0.532 0.293 
1COL A 0.898 0.000 0.000 0.043 
1COZ A 0.738 0.235 0.167 0.183 
1CP2 A 0.907 0.400 0.381 0.052 
1CQ3 A 0.884 0.421 0.348 0.073 
1CQX A 0.849 0.000 0.000 0.109 
1CRU B 0.920 0.048 0.059 0.038 
1CSH A 0.855 0.333 0.033 0.138 
1CTF A 0.824 0.500 0.083 0.167 
1CTT A 0.918 1.000 0.077 0.082 
1D0C A 0.834 0.491 0.397 0.114 
1D0Q A 0.725 0.357 0.208 0.216 
1D1G A 0.750 0.323 0.333 0.150 
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Protein Chain Accuracy Sensitivity Specificity FAR 
1D2N A 0.866 0.000 0.000 0.116 
1D2O A 0.888 0.400 0.211 0.085 
1D2Z B 0.753 0.500 0.378 0.189 
1D3B A 0.653 0.677 0.583 0.366 
1D3B B 0.531 0.643 0.391 0.528 
1D9C A 0.620 0.667 0.627 0.431 
1DAA A 0.892 0.436 0.680 0.034 
1DAB A 0.852 0.667 0.030 0.147 
1DCE B 0.830 0.238 0.652 0.030 
1DCI A 0.764 0.447 0.596 0.116 
1DJ0 A 0.902 0.346 0.500 0.038 
1DK0 A 0.850 0.200 0.455 0.041 
1DL5 A 0.868 0.091 0.030 0.105 
1DM9 A 0.558 0.267 0.103 0.393 
1DMH A 0.816 0.607 0.529 0.133 
1DP4 A 0.913 0.118 0.083 0.054 
1DPG A 0.880 0.349 0.349 0.071 
1DQE A 0.854 0.200 0.143 0.094 
1DQN A 0.817 0.333 0.355 0.102 
1DQZ A 0.893 0.214 0.136 0.071 
1DRW A 0.801 0.667 0.036 0.197 
1DZK A 0.892 0.214 0.375 0.037 
1E0B A 0.443 0.692 0.231 0.625 
1E19 A 0.827 0.255 0.387 0.071 
1E6U A 0.892 0.500 0.029 0.105 
1EAJ A 0.815 0.643 0.333 0.164 
1EBF A 0.891 0.429 0.343 0.070 
1ECE A 0.961 0.267 0.571 0.009 
1ECM A 0.670 0.921 0.565 0.509 
1ECS A 0.758 0.667 0.474 0.215 
1EDZ A 0.896 0.000 0.000 0.098 
1EE8 A 0.906 0.000 0.000 0.069 
1EER A 0.783 0.515 0.459 0.150 
1EER B 0.737 0.286 0.128 0.214 
1EEX A 0.746 0.299 0.809 0.029 
1EEX B 0.809 0.346 0.346 0.112 
1EEX G 0.672 0.509 0.587 0.226 
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Protein Chain Accuracy Sensitivity Specificity FAR 
1EFD N 0.916 0.000 0.000 0.077 
1EH9 A 0.961 0.500 0.048 0.046 
1EI7 A 0.703 0.167 0.023 0.276 
1EI9 A 0.943 0.000 0.000 0.051 
1EJ2 A 0.862 0.000 0.000 0.117 
1EJ6 D 0.854 0.150 0.474 0.028 
1EJE A 0.781 0.500 0.048 0.213 
1EJF A 0.655 0.364 0.114 0.313 
1EKJ A 0.714 0.597 0.548 0.231 
1EL6 A 0.688 0.671 0.606 0.301 
1ELK A 0.856 0.500 0.045 0.139 
1ELU A 0.861 0.288 0.607 0.034 
1EM8 A 0.844 0.154 0.143 0.090 
1EM8 B 0.736 0.462 0.214 0.227 
1EM9 A 0.762 0.667 0.108 0.234 
1EPA A 0.750 0.214 0.094 0.199 
1ES9 A 0.858 0.000 0.000 0.133 
1ETE A 0.828 0.188 0.231 0.085 
1EV0 A 0.517 0.875 0.457 0.735 
1EX2 A 0.822 0.364 0.133 0.149 
1EXT A 0.675 0.565 0.236 0.307 
1EYQ A 0.807 0.118 0.071 0.133 
1EYV A 0.809 0.588 0.357 0.158 
1EZ0 A 0.883 0.412 0.389 0.055 
1EZG A 0.695 0.400 0.174 0.264 
1F06 A 0.828 0.438 0.429 0.103 
1F0K A 0.900 0.111 0.036 0.079 
1F15 A 0.694 0.636 0.259 0.296 
1F1M A 0.735 0.500 0.488 0.183 
1F2N A 0.746 0.265 0.281 0.148 
1F2T B 0.685 0.477 0.488 0.222 
1F2V A 0.823 0.750 0.077 0.176 
1F3U A 0.644 0.717 0.585 0.415 
1F46 A 0.705 0.357 0.135 0.256 
1F7D A 0.542 0.571 0.073 0.459 
1F86 A 0.791 0.737 0.424 0.198 
1F8M A 0.796 0.503 0.864 0.043 
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Protein Chain Accuracy Sensitivity Specificity FAR 
1F8Y A 0.827 0.333 0.500 0.070 
1FC3 A 0.706 0.476 0.294 0.245 
1FCD A 0.903 0.167 0.636 0.011 
1FCD C 0.839 0.161 0.714 0.014 
1FE0 A 0.652 0.500 0.217 0.321 
1FGJ A 0.868 0.071 0.026 0.090 
1FGU A 0.764 0.111 0.020 0.211 
1FIP A 0.589 0.893 0.481 0.600 
1FJR A 0.814 0.538 0.194 0.166 
1FLC A 0.803 0.527 0.443 0.139 
1FLC B 0.512 0.442 0.551 0.408 
1FLM A 0.738 0.318 0.292 0.170 
1FN9 A 0.893 0.333 0.300 0.062 
1FP2 A 0.788 0.500 0.014 0.210 
1FPO A 0.661 0.429 0.107 0.318 
1FPZ A 0.858 0.000 0.000 0.137 
1FSE A 0.522 0.579 0.314 0.500 
1FTR A 0.733 0.291 0.581 0.086 
1FUI A 0.831 0.218 0.607 0.031 
1FVK A 0.846 0.063 0.067 0.081 
1G0S B 0.757 0.605 0.708 0.151 
1G2C B 0.750 0.964 0.750 0.750 
1G31 A 0.617 0.548 0.386 0.355 
1G3K A 0.855 0.556 0.370 0.110 
1G5B A 0.918 0.429 0.375 0.049 
1G5Q A 0.845 0.500 0.259 0.125 
1G5T A 0.752 0.500 0.026 0.245 
1G61 A 0.951 0.125 0.200 0.018 
1G6G A 0.827 0.111 0.067 0.119 
1G8E A 0.531 0.795 0.486 0.685 
1G8K A 0.887 0.125 0.600 0.010 
1G8K B 0.684 0.311 0.560 0.125 
1G8Q A 0.789 0.737 0.500 0.197 
1GD8 A 0.610 0.571 0.273 0.381 
1GL4 A 0.901 0.412 0.292 0.066 
1GL4 B 0.708 0.722 0.382 0.296 
1GME A 0.647 0.730 0.386 0.381 
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Protein Chain Accuracy Sensitivity Specificity FAR 
1GMU A 0.681 0.389 0.175 0.275 
1GO3 F 0.766 0.771 0.614 0.236 
1GPE A 0.947 0.130 0.600 0.005 
1GQ6 B 0.864 0.238 0.526 0.035 
1GSA A 0.901 0.333 0.069 0.088 
1GU2 A 0.750 0.667 0.229 0.241 
1GU7 A 0.901 0.238 0.200 0.058 
1GUQ A 0.818 0.506 0.609 0.093 
1GUT A 0.791 0.897 0.778 0.357 
1GVJ A 0.660 0.560 0.275 0.319 
1GVN A 0.920 0.533 1.000 0.000 
1GVN B 0.868 0.100 0.036 0.103 
1GWY A 0.897 0.250 0.143 0.072 
1GXC A 0.784 0.000 0.000 0.188 
1GXJ A 0.783 0.370 0.357 0.134 
1GXM A 0.886 0.000 0.000 0.068 
1GXY A 0.937 0.000 0.000 0.041 
1GY7 A 0.760 0.435 0.385 0.163 
1GYG A 0.905 0.375 0.091 0.083 
1GYT A 0.837 0.387 0.518 0.075 
1H2I A 0.613 0.545 0.732 0.289 
1H3L A 0.520 0.600 0.231 0.500 
1H3O A 0.729 0.897 0.722 0.526 
1H4R A 0.840 0.125 0.024 0.140 
1H6D A 0.723 0.292 0.559 0.096 
1H7E A 0.849 0.308 0.296 0.087 
1H8U A 0.661 0.333 0.026 0.330 
1H97 A 0.952 0.200 0.250 0.021 
1HBN B 0.719 0.228 0.733 0.041 
1HBN C 0.789 0.516 0.873 0.045 
1HCN A 0.576 0.725 0.537 0.556 
1HCN B 0.500 0.676 0.368 0.589 
1HF2 B 0.777 0.294 0.313 0.128 
1HF8 A 0.932 0.333 0.059 0.062 
1HI9 A 0.876 0.242 0.471 0.037 
1HJR A 0.734 0.370 0.286 0.191 
1HKQ A 0.632 0.278 0.132 0.308 
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Protein Chain Accuracy Sensitivity Specificity FAR 
1HO1 C 0.880 0.273 0.125 0.091 
1HQZ 1 0.835 0.333 0.150 0.131 
1HST A 0.500 0.857 0.143 0.537 
1HTW A 0.785 0.310 0.391 0.109 
1HUL A 0.694 0.833 0.615 0.417 
1HUX A 0.923 0.556 0.238 0.064 
1HW1 A 0.819 0.667 0.392 0.158 
1HW5 A 0.731 0.333 0.191 0.210 
1HWX A 0.824 0.423 0.550 0.075 
1HXR B 0.817 0.333 0.050 0.170 
1HYN P 0.829 0.431 0.512 0.087 
1HYO A 0.877 0.423 0.512 0.058 
1I0R A 0.801 0.558 0.649 0.110 
1I4U A 0.818 0.429 0.414 0.111 
1I52 A 0.822 0.200 0.027 0.164 
1I58 A 0.762 0.071 0.030 0.183 
1I6A A 0.863 0.000 0.000 0.129 
1I6P A 0.706 0.500 0.032 0.290 
1IA9 B 0.771 0.588 0.411 0.188 
1IBY A 0.750 0.750 0.587 0.250 
1IDP A 0.653 0.316 0.324 0.229 
1IG0 A 0.899 0.367 0.458 0.045 
1IG3 A 0.846 0.370 0.313 0.097 
1IGQ A 0.481 0.778 0.368 0.667 
1II7 A 0.862 0.188 0.083 0.104 
1IIE A 0.600 0.833 0.603 0.697 
1IJY A 0.754 0.364 0.148 0.207 
1IK9 C 0.607 0.882 0.625 0.818 
1ILK A 0.437 0.833 0.056 0.579 
1IN0 A 0.759 0.545 0.150 0.225 
1INL C 0.775 0.224 0.517 0.062 
1IO0 A 0.849 0.500 0.040 0.146 
1IQ4 A 0.732 0.308 0.093 0.235 
1IQ8 A 0.913 0.333 0.556 0.031 
1IR6 A 0.927 0.000 0.000 0.068 
1ITH A 0.851 0.364 0.222 0.108 
1ITU A 0.886 0.195 0.471 0.027 
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Protein Chain Accuracy Sensitivity Specificity FAR 
1IU4 A 0.843 0.316 0.133 0.125 
1IU8 A 0.893 0.500 0.364 0.074 
1IUJ A 0.706 0.679 0.475 0.284 
1IV2 A 0.720 0.237 0.409 0.116 

1IWM A 0.887 0.000 0.000 0.082 
1IYK A 0.872 0.622 0.390 0.101 
1IZC A 0.776 0.500 0.045 0.218 
1IZN A 0.822 0.768 0.616 0.160 
1IZN B 0.585 0.474 0.421 0.354 
1IZO A 0.959 0.000 0.000 0.037 
1J1J A 0.774 0.438 0.311 0.168 
1J1N A 0.911 0.333 0.063 0.070 
1J24 A 0.827 0.000 0.000 0.160 
1J2G A 0.765 0.523 0.727 0.106 
1J2R A 0.856 0.489 0.846 0.028 
1J3W A 0.866 0.692 0.643 0.093 
1J5S A 0.829 0.182 0.500 0.039 
1J6R A 0.782 0.308 0.105 0.185 
1J9I A 0.382 0.500 0.119 0.638 
1JB3 A 0.772 0.500 0.034 0.224 
1JCL A 0.924 0.111 0.083 0.045 
1JDW A 0.939 0.000 0.000 0.056 
1JEK A 0.400 0.789 0.429 0.952 
1JFL A 0.838 0.269 0.280 0.089 
1JFM A 0.747 0.154 0.057 0.205 
1JFR A 0.977 0.333 0.200 0.016 
1JFU A 0.909 0.000 0.000 0.059 
1JG5 A 0.711 0.767 0.575 0.321 
1JH6 A 0.840 0.200 0.235 0.081 
1JHF A 0.792 0.375 0.162 0.171 
1JHG A 0.406 0.667 0.033 0.602 
1JI1 A 0.959 0.000 0.000 0.035 
1JIH A 0.835 0.294 0.079 0.138 
1JKE A 0.793 0.612 0.732 0.115 
1JKM A 0.902 0.103 0.250 0.027 
1JKX A 0.818 0.000 0.000 0.123 
1JLY A 0.732 0.224 0.208 0.168 
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Protein Chain Accuracy Sensitivity Specificity FAR 
1JMV A 0.779 0.625 0.405 0.190 
1JNR B 0.624 0.637 0.716 0.397 
1JO0 A 0.711 0.846 0.297 0.310 
1JOC A 0.528 0.694 0.347 0.540 
1JOY A 0.313 0.750 0.120 0.746 
1JPY A 0.669 0.730 0.667 0.397 
1JQE A 0.932 0.200 0.063 0.055 
1JR2 A 0.812 0.273 0.068 0.165 
1JR8 A 0.695 0.609 0.378 0.280 
1JT6 A 0.731 0.059 0.100 0.118 
1JU2 A 0.969 0.143 0.125 0.016 
1JYO A 0.669 0.429 0.686 0.149 
1JYO E 0.578 0.774 0.569 0.633 
1K04 A 0.479 1.000 0.051 0.536 
1K12 A 0.854 0.500 0.043 0.141 
1K1E A 0.785 0.314 0.842 0.024 
1K2E A 0.678 0.640 0.286 0.315 
1K3R A 0.821 0.313 0.286 0.109 
1K3Y A 0.887 0.536 0.556 0.062 
1K4Z A 0.739 0.667 0.136 0.257 
1K8Q A 0.926 0.000 0.000 0.054 
1K9X A 0.871 0.140 0.194 0.063 
1KA8 A 0.630 0.467 0.194 0.341 
1KAF A 0.713 0.182 0.083 0.227 
1KBP A 0.887 0.200 0.077 0.088 
1KDG A 0.917 0.118 0.074 0.060 
1KGN A 0.838 0.537 0.558 0.095 
1KHI A 0.653 0.500 0.020 0.345 
1KHV B 0.883 0.333 0.085 0.101 
1KLO A 0.753 0.500 0.025 0.244 
1KMT A 0.783 0.636 0.212 0.205 
1KNC A 0.707 0.362 0.600 0.121 
1KNQ A 0.836 0.333 0.217 0.115 
1KNY A 0.818 0.536 0.600 0.102 
1KO6 A 0.743 0.636 0.167 0.248 
1KOL A 0.909 0.133 0.080 0.060 
1KQ1 A 0.700 0.710 0.710 0.310 
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Protein Chain Accuracy Sensitivity Specificity FAR 
1KQF B 0.785 0.549 0.643 0.121 
1KQF C 0.718 0.563 0.277 0.255 
1KQP A 0.838 0.472 0.610 0.073 
1KTG A 0.847 0.000 0.000 0.147 
1KWG A 0.921 0.300 0.075 0.087 
1KXU A 0.870 0.500 0.028 0.128 
1KZQ A 0.830 0.300 0.171 0.124 
1L0W A 0.802 0.414 0.387 0.125 
1L3A A 0.602 0.580 0.392 0.388 
1L5A A 0.892 0.571 0.085 0.103 
1L5J A 0.945 0.000 0.000 0.039 

1L6W A 0.745 0.384 0.718 0.075 
1L7A A 0.925 0.200 0.333 0.027 
1L8D A 0.495 0.429 0.120 0.494 
1LB6 A 0.794 1.000 0.030 0.208 
1LC5 A 0.927 0.333 0.040 0.068 
1LDD A 0.635 0.500 0.259 0.333 
1LF6 A 0.967 0.000 0.000 0.019 
1LGP A 0.434 1.000 0.045 0.582 
1LI4 A 0.874 0.500 0.111 0.115 
1LJ2 A 0.594 0.741 0.580 0.558 
1LJ9 A 0.688 0.622 0.500 0.283 
1LKT A 0.683 0.659 0.587 0.302 
1LLF A 0.949 0.000 0.000 0.023 
1LO7 A 0.707 0.333 0.025 0.285 
1LQ9 A 0.750 0.781 0.543 0.263 
1LR5 A 0.769 0.481 0.361 0.173 
1LTL A 0.799 0.769 0.182 0.199 
1LVF A 0.651 0.571 0.205 0.337 
1LVM B 0.822 0.200 0.286 0.079 
1LZL A 0.950 0.500 0.063 0.048 
1M0D A 0.620 0.621 0.571 0.380 
1M1C A 0.896 0.167 0.098 0.090 
1M1L A 0.852 0.292 0.280 0.085 
1M1N A 0.816 0.429 0.639 0.064 
1M1N B 0.791 0.418 0.676 0.067 
1M2D A 0.842 0.667 0.400 0.135 
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Protein Chain Accuracy Sensitivity Specificity FAR 
1M3Y A 0.855 0.417 0.086 0.132 
1M4I A 0.746 0.304 0.189 0.190 
1M4R A 0.768 0.190 0.200 0.132 
1M55 A 0.829 0.188 0.130 0.113 
1M70 A 0.905 0.000 0.000 0.080 
1M98 A 0.883 0.261 0.231 0.068 

1MBM A 0.864 0.190 0.286 0.056 
1MBY A 0.493 0.840 0.382 0.680 
1MK4 A 0.782 0.381 0.276 0.156 
1MKA A 0.871 0.694 0.694 0.081 
1MKK A 0.495 0.667 0.321 0.576 
1MN8 A 0.632 0.522 0.333 0.333 
1MO9 A 0.835 0.333 0.422 0.068 
1MP9 A 0.808 0.500 0.324 0.148 
1MPG A 0.911 0.000 0.000 0.069 
1MPY A 0.837 0.308 0.533 0.055 
1MSC A 0.473 1.000 0.029 0.535 
1MT5 A 0.916 0.162 0.400 0.023 
1MTY B 0.729 0.405 0.827 0.056 
1MTY D 0.752 0.276 0.654 0.057 
1MTY G 0.815 0.579 0.846 0.057 
1MV8 A 0.814 0.534 0.708 0.082 

1MWW A 0.717 0.596 0.705 0.191 
1MXR A 0.844 0.390 0.575 0.061 
1MY7 A 0.598 0.615 0.174 0.404 
1N0E A 0.688 0.592 0.547 0.261 
1N2Z A 0.833 0.250 0.121 0.127 
1N62 A 0.702 0.306 0.792 0.051 
1N62 B 0.866 0.371 0.433 0.042 
1N62 F 0.878 0.378 0.538 0.048 
1N69 A 0.603 0.864 0.404 0.500 
1N71 A 0.722 0.300 0.353 0.157 
1N81 A 0.769 0.500 0.023 0.228 
1N8V A 0.683 0.308 0.148 0.261 
1N97 A 0.917 0.000 0.000 0.078 
1NBA A 0.711 0.429 0.712 0.110 
1NBC A 0.897 0.375 0.214 0.075 
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Protein Chain Accuracy Sensitivity Specificity FAR 
1NC5 A 0.956 0.000 0.000 0.039 
1NCN A 0.661 0.300 0.091 0.303 
1ND4 A 0.925 0.167 0.067 0.056 
1ND6 A 0.851 0.356 0.421 0.074 
1NEI A 0.433 0.870 0.392 0.838 
1NF2 A 0.895 0.077 0.059 0.063 
1NF9 A 0.903 1.000 0.091 0.098 
1NG7 A 0.283 0.909 0.192 0.857 
1NJF A 0.820 0.414 0.316 0.124 
1NKS A 0.768 0.143 0.250 0.094 
1NLN A 0.837 0.130 0.188 0.072 
1NLT A 0.719 0.000 0.000 0.278 
1NLX A 0.596 0.423 0.289 0.346 
1NNW A 0.888 0.056 0.083 0.047 
1NO4 A 0.610 0.914 0.542 0.643 
1NO5 A 0.620 0.125 0.031 0.337 
1NOX A 0.705 0.400 0.034 0.287 
1NP6 B 0.775 0.630 0.580 0.171 
1NQJ B 0.737 0.615 0.242 0.248 
1NRZ A 0.779 0.200 0.067 0.183 
1NTH A 0.932 0.200 0.037 0.060 
1NTV A 0.836 1.000 0.038 0.166 
1NUY A 0.881 0.600 0.075 0.115 
1NVM A 0.824 0.238 0.556 0.043 
1NVM B 0.875 0.516 0.400 0.085 
1NYC A 0.636 0.909 0.204 0.394 
1O0W A 0.797 0.238 0.135 0.148 
1O26 A 0.803 0.591 0.709 0.105 
1O5L A 0.636 0.333 0.022 0.357 
1O7D B 0.907 0.957 0.944 0.800 
1O7I A 0.765 0.375 0.120 0.206 
1O7Q A 0.909 0.105 0.182 0.034 
1O91 A 0.809 0.590 0.719 0.098 
1O9I A 0.654 0.503 0.892 0.099 
1O9Y A 0.690 0.913 0.700 0.720 
1OA8 A 0.836 0.594 0.704 0.083 
1OCY A 0.485 0.583 0.067 0.522 
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Protein Chain Accuracy Sensitivity Specificity FAR 
1OGD A 0.748 0.400 0.200 0.207 
1OH0 A 0.744 0.407 0.407 0.163 
1OHF A 0.768 0.308 0.343 0.128 
1OHV A 0.859 0.434 0.827 0.027 
1OJL B 0.793 0.485 0.314 0.161 
1OK7 B 0.792 0.400 0.141 0.179 
1OMO A 0.878 0.286 0.571 0.032 
1ON2 A 0.644 0.407 0.256 0.296 
1ON3 A 0.760 0.356 0.578 0.081 
1ONR A 0.949 0.000 0.000 0.048 
1OOE A 0.787 0.147 0.192 0.104 
1OOH A 0.872 0.308 0.364 0.063 
1OPO A 0.861 0.400 0.242 0.101 
1OPO C 0.847 0.286 0.188 0.105 
1OQJ A 0.600 0.643 0.225 0.408 
1OR4 A 0.799 0.324 0.500 0.081 
1OR7 C 0.773 0.809 0.864 0.316 
1ORJ A 0.778 0.417 0.417 0.137 
1ORR A 0.870 0.209 0.474 0.034 
1OSD A 0.653 0.000 0.000 0.338 
1OTG A 0.720 0.596 0.739 0.176 
1OTK A 0.881 0.308 0.167 0.087 
1OTV A 0.811 0.400 0.400 0.112 
1OU8 A 0.679 0.500 0.265 0.284 
1OV9 A 0.578 0.917 0.564 0.810 
1OYJ C 0.863 0.556 0.441 0.095 
1P0Y B 0.800 0.444 0.241 0.161 
1P1J A 0.825 0.434 0.569 0.069 
1P1M A 0.918 0.250 0.032 0.075 
1P35 A 0.863 0.385 0.132 0.115 
1P6O A 0.808 0.258 0.533 0.056 
1P94 A 0.408 0.800 0.381 0.848 
1P9E A 0.881 0.581 0.595 0.068 
1P9Y A 0.590 0.500 0.021 0.409 
1PB6 A 0.773 0.436 0.425 0.145 
1PBE A 0.921 0.750 0.091 0.078 
1PBW A 0.837 0.091 0.048 0.116 
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Protein Chain Accuracy Sensitivity Specificity FAR 
1PC6 A 0.546 0.686 0.422 0.533 
1PCF A 0.470 0.724 0.438 0.730 
1PD3 A 0.611 0.864 0.514 0.563 
1PEA A 0.957 0.000 0.000 0.041 
1PF5 A 0.731 1.000 0.054 0.273 
1PFO A 0.877 0.000 0.000 0.112 
1PGW 1 0.730 0.513 0.392 0.212 
1PGW 2 0.812 0.239 0.262 0.102 
1PIX A 0.816 0.371 0.523 0.056 
1PKH A 0.742 0.688 0.208 0.253 
1POI B 0.831 0.309 0.739 0.029 
1PPR M 0.862 0.176 0.094 0.098 
1PUC A 0.426 1.000 0.033 0.586 
1PXZ A 0.962 0.000 0.000 0.023 
1PYA A 0.716 0.746 0.914 0.500 
1Q08 A 0.649 0.780 0.639 0.500 
1Q0Q A 0.905 0.212 0.368 0.033 
1Q2H A 0.619 1.000 0.579 0.800 
1Q4U A 0.807 0.588 0.606 0.123 
1Q5Y A 0.738 0.625 0.667 0.192 
1Q6O A 0.873 0.533 0.552 0.071 
1Q7F A 0.882 0.000 0.000 0.061 
1Q7L A 0.750 0.582 0.754 0.133 
1Q7L B 0.807 0.820 0.893 0.222 
1Q88 B 0.763 0.125 0.024 0.211 
1QBE B 0.462 0.722 0.165 0.579 
1QC7 A 0.604 0.091 0.032 0.333 
1QD6 C 0.767 0.234 0.355 0.104 
1QFT A 0.846 0.500 0.148 0.138 
1QGT A 0.585 0.486 0.293 0.383 
1QHD A 0.798 0.333 0.053 0.187 
1QHX A 0.837 0.000 0.000 0.153 
1QKS A 0.912 0.133 0.182 0.044 
1QL0 A 0.900 0.063 0.100 0.040 
1QLM A 0.946 0.000 0.000 0.048 
1QLW A 0.833 0.414 0.558 0.073 
1QMG A 0.885 0.178 0.400 0.031 
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Protein Chain Accuracy Sensitivity Specificity FAR 
1QMH A 0.919 0.267 0.200 0.050 
1QMY A 0.846 0.091 0.067 0.097 
1QQP 3 0.686 0.615 0.308 0.298 
1QQR A 0.688 0.690 0.370 0.312 
1QRE A 0.819 0.500 0.053 0.175 
1QS1 A 0.920 0.375 0.100 0.069 
1QSD A 0.676 0.588 0.278 0.306 
1QSM A 0.793 0.608 0.738 0.111 
1QU7 A 0.612 0.474 0.440 0.315 
1QW9 A 0.928 0.300 0.214 0.053 
1QWD A 0.856 0.250 0.045 0.129 
1QWG A 0.936 0.500 0.125 0.057 
1QWJ A 0.811 0.553 0.542 0.122 
1QWT A 0.820 0.615 0.174 0.168 
1QXN A 0.693 0.606 0.408 0.279 
1QYN A 0.649 0.344 0.297 0.255 
1QYR A 0.861 0.000 0.000 0.114 
1QZ9 A 0.906 1.000 0.050 0.095 
1R0V A 0.758 0.294 0.395 0.119 
1R1T A 0.582 0.757 0.467 0.525 
1R30 A 0.913 0.227 0.333 0.034 
1R31 A 0.755 0.374 0.493 0.123 
1R44 A 0.901 0.000 0.000 0.057 
1R45 A 0.851 0.111 0.125 0.077 
1R46 A 0.895 0.231 0.222 0.058 
1R6R A 0.800 0.958 0.605 0.268 
1R6R B 0.675 1.000 0.480 0.464 
1R77 A 0.687 0.800 0.216 0.326 
1R7J A 0.567 0.500 0.026 0.432 
1R89 A 0.831 0.500 0.027 0.166 
1R9D A 0.976 0.632 0.706 0.012 
1R9D B 0.976 0.706 0.706 0.012 
1RA0 A 0.849 0.667 0.061 0.149 
1REG X 0.697 0.182 0.067 0.252 
1RFY A 0.528 0.462 0.146 0.461 
1RGX A 0.573 0.735 0.463 0.527 
1RH5 B 0.536 0.929 0.520 0.857 
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Protein Chain Accuracy Sensitivity Specificity FAR 
1RH5 C 0.594 0.900 0.621 0.917 
1RJD A 0.875 0.161 0.250 0.051 
1RJJ A 0.649 0.679 0.388 0.361 
1RKI A 0.535 0.000 0.000 0.419 
1RKQ A 0.919 0.000 0.000 0.064 
1RKU A 0.810 0.200 0.208 0.106 
1RP0 A 0.734 0.552 0.208 0.245 
1RSO A 0.650 0.806 0.674 0.583 
1RTQ A 0.969 0.000 0.000 0.024 
1RVE A 0.795 0.476 0.204 0.175 
1RW6 A 0.708 0.250 0.019 0.282 
1RWZ A 0.889 0.000 0.000 0.107 
1RY9 A 0.707 0.536 0.366 0.248 
1S0P A 0.864 0.250 0.100 0.107 
1S1D A 0.915 0.067 0.071 0.043 
1S3E A 0.872 0.227 0.435 0.033 
1S3M A 0.842 0.182 0.105 0.110 
1S3Z A 0.753 0.676 0.510 0.220 
1S4C B 0.781 0.348 0.296 0.144 
1S5U A 0.744 0.657 0.523 0.223 
1S7I A 0.581 0.500 0.019 0.418 

1S7M A 0.658 0.663 0.711 0.348 
1S98 A 0.742 0.870 0.476 0.297 
1S9R A 0.917 0.240 0.286 0.039 
1SAC A 0.853 0.321 0.450 0.063 
1SC3 A 0.763 0.500 0.659 0.118 
1SC3 B 0.693 0.717 0.760 0.343 
1SEF A 0.808 0.500 0.021 0.190 
1SEI A 0.769 0.000 0.000 0.200 
1SFK A 0.603 0.719 0.535 0.488 
1SG4 C 0.876 0.219 0.538 0.028 
1SGM A 0.815 0.419 0.448 0.105 
1SH0 A 0.882 0.000 0.000 0.093 
1SHS A 0.635 0.500 0.714 0.218 
1SJW A 0.824 0.500 0.120 0.162 
1SMO A 0.611 0.769 0.196 0.410 
1SQU A 0.849 0.333 0.533 0.055 
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Protein Chain Accuracy Sensitivity Specificity FAR 
1SSE B 0.349 0.500 0.071 0.667 
1SSQ A 0.842 0.571 0.200 0.141 
1STM A 0.645 0.174 0.114 0.263 
1STZ A 0.814 0.419 0.340 0.125 
1SU1 A 0.793 0.324 0.480 0.088 
1SU8 A 0.946 0.000 0.000 0.053 
1SUM B 0.871 0.000 0.000 0.109 
1SUR A 0.860 0.500 0.033 0.136 
1SVB A 0.737 0.125 0.010 0.251 
1SVM A 0.787 0.312 0.500 0.084 
1SVP A 0.750 0.125 0.029 0.217 
1SW5 A 0.893 0.111 0.133 0.052 
1SWV A 0.903 0.077 0.071 0.053 
1SZ9 A 0.797 0.150 0.200 0.098 
1SZH A 0.728 0.167 0.063 0.222 
1T06 A 0.877 0.476 0.357 0.084 
1T0B A 0.817 0.433 0.722 0.056 
1T0F A 0.765 0.111 0.185 0.100 
1T0I A 0.832 0.417 0.370 0.106 
1T0T V 0.770 0.368 0.658 0.074 
1T15 A 0.853 0.000 0.000 0.139 
1T16 A 0.913 0.100 0.034 0.067 
1T1D A 0.720 0.700 0.219 0.278 
1T1V A 0.677 0.500 0.200 0.296 
1T2B A 0.899 0.118 0.074 0.066 
1T2W A 0.772 0.071 0.048 0.153 
1T33 A 0.814 0.444 0.556 0.091 
1T4B A 0.801 0.414 0.475 0.108 
1T4O A 0.506 0.875 0.152 0.534 
1T56 A 0.860 0.250 0.040 0.127 
1T6S A 0.679 0.793 0.333 0.346 
1T71 A 0.890 0.500 0.032 0.108 
1T77 A 0.889 0.333 0.045 0.103 
1T7R A 0.876 0.000 0.000 0.120 
1T92 A 0.685 0.654 0.405 0.305 
1TAF A 0.603 0.867 0.531 0.605 
1TAF B 0.514 0.750 0.480 0.684 
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Protein Chain Accuracy Sensitivity Specificity FAR 
1TE5 A 0.846 0.280 0.250 0.092 
1TH0 A 0.912 0.250 0.056 0.077 
1TH7 A 0.564 0.410 0.593 0.282 
1TH8 B 0.817 0.313 0.333 0.101 
1THF D 0.933 0.500 0.059 0.064 
1TJL A 0.524 0.414 0.188 0.448 
1TJV A 0.768 0.423 0.663 0.091 
1TKV A 0.652 0.563 0.273 0.329 
1TO6 A 0.881 0.320 0.229 0.078 
1TOA A 0.845 0.250 0.194 0.099 
1TR0 A 0.613 0.473 0.684 0.235 
1TTW A 0.669 0.846 0.229 0.352 
1TU1 A 0.755 0.667 0.511 0.215 
1TUW A 0.604 1.000 0.045 0.404 
1TVF A 0.894 0.000 0.000 0.093 
1TVX A 0.578 0.655 0.528 0.486 
1TX9 A 0.759 0.458 0.344 0.179 
1TXG A 0.893 0.286 0.476 0.037 
1TY9 A 0.797 0.564 0.646 0.116 
1TZJ C 0.837 0.160 0.381 0.045 
1U07 A 0.622 0.727 0.364 0.412 
1U19 A 0.851 0.154 0.047 0.122 
1U1I A 0.865 0.348 0.697 0.031 
1U1S A 0.712 0.867 0.634 0.417 
1U20 A 0.750 0.355 0.275 0.176 
1U2W B 0.654 0.765 0.609 0.446 
1U55 A 0.830 0.500 0.219 0.144 
1U6M A 0.820 0.250 0.208 0.112 
1U6Z A 0.861 0.444 0.129 0.129 
1U7P A 0.805 0.227 0.250 0.106 
1U8V A 0.776 0.320 0.635 0.057 
1U9L A 0.544 0.200 0.036 0.429 
1UB9 A 0.590 1.000 0.047 0.418 
1UC2 A 0.933 0.167 0.167 0.036 
1UCR A 0.419 0.471 0.190 0.596 
1UF2 E 0.736 0.300 0.764 0.046 
1UFH A 0.748 0.125 0.030 0.218 
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Protein Chain Accuracy Sensitivity Specificity FAR 
1UFI A 0.563 0.960 0.545 0.870 
1UJ2 A 0.840 0.111 0.100 0.092 
1USR A 0.866 0.108 0.133 0.065 
1UTC A 0.855 0.176 0.075 0.110 
1UTY A 0.654 0.550 0.386 0.310 
1UUN A 0.658 0.550 0.328 0.313 
1UW4 A 0.670 0.583 0.412 0.299 
1UW4 B 0.794 0.359 0.350 0.124 
1UWC A 0.969 0.000 0.000 0.023 
1UWK A 0.906 0.333 0.500 0.027 
1UXZ A 0.802 0.143 0.048 0.161 
1UYP A 0.889 0.143 0.091 0.073 
1UZ3 A 0.588 0.773 0.315 0.463 
1V37 A 0.813 0.000 0.000 0.120 
1V3E A 0.893 0.250 0.267 0.055 
1V4P A 0.821 0.273 0.136 0.136 
1V70 A 0.686 0.500 0.030 0.311 
1V74 A 0.720 0.333 0.250 0.202 
1V7L A 0.784 0.000 0.000 0.170 
1V7Z A 0.728 0.195 0.652 0.044 
1V8H A 0.764 0.571 0.296 0.207 
1V8Q A 0.515 0.688 0.289 0.540 
1V96 B 0.799 0.238 0.278 0.106 
1VBK A 0.801 0.200 0.058 0.168 
1VC1 A 0.818 0.583 0.318 0.153 
1VC4 A 0.957 0.000 0.000 0.028 
1VDM G 0.684 0.432 0.452 0.213 
1VDR A 0.828 0.182 0.100 0.123 
1VE9 A 0.912 0.286 0.444 0.032 
1VF7 A 0.650 0.500 0.217 0.323 
1VH5 A 0.774 0.556 0.441 0.173 
1VHM A 0.818 0.333 0.381 0.096 
1VHW A 0.797 0.367 0.688 0.056 
1VJ0 A 0.858 0.290 0.692 0.026 
1VJ2 A 0.675 0.600 0.477 0.291 

1VKC A 0.651 0.417 0.100 0.328 
1VKI A 0.873 0.667 0.444 0.102 
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Protein Chain Accuracy Sensitivity Specificity FAR 
1VLG C 0.829 0.523 0.767 0.058 
1VLG H 0.823 0.690 0.500 0.148 
1VMO A 0.804 0.125 0.038 0.161 
1VPS A 0.642 0.374 0.430 0.232 
1VSG A 0.751 0.317 0.433 0.121 
1VYB A 0.928 0.500 0.235 0.057 
1VZ0 A 0.661 0.551 0.606 0.259 
1VZI A 0.728 0.500 0.441 0.200 
1VZY A 0.814 0.250 0.143 0.135 
1W18 A 0.955 0.200 0.056 0.039 
1W1H A 0.748 0.500 0.135 0.234 
1W23 A 0.894 0.289 0.684 0.019 
1W33 A 0.751 0.615 0.444 0.211 
1W61 A 0.887 0.300 0.321 0.059 
1W6S A 0.931 0.661 0.911 0.011 
1W6S B 0.639 1.000 0.527 0.605 
1W6S C 0.919 0.649 0.740 0.034 
1W6S D 0.639 0.964 0.519 0.568 
1W79 A 0.918 0.500 0.028 0.080 
1W8S A 0.752 0.063 0.667 0.011 
1W91 A 0.838 0.397 0.500 0.067 
1W9C A 0.829 0.235 0.087 0.138 
1W9Z A 0.739 0.423 0.536 0.140 
1WA8 A 0.455 0.639 0.359 0.651 
1WA8 B 0.589 0.800 0.467 0.533 
1WAP A 0.647 0.650 0.722 0.357 
1WCV 1 0.909 0.000 0.000 0.083 
1WDJ A 0.715 0.085 0.286 0.072 
1WHI A 0.762 1.000 0.065 0.242 
1WKO A 0.842 0.000 0.000 0.120 
1WKQ B 0.600 0.413 0.688 0.200 
1WLE B 0.827 0.283 0.278 0.102 
1WLG A 0.826 0.143 0.022 0.157 
1WLZ A 0.612 0.400 0.129 0.360 
1WMH A 0.627 0.385 0.179 0.329 
1WMH B 0.622 0.600 0.182 0.375 
1WMI A 0.614 0.489 0.697 0.244 
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Protein Chain Accuracy Sensitivity Specificity FAR 
1WMW A 0.866 0.200 0.529 0.028 
1WMX A 0.798 0.500 0.143 0.184 
1WO8 A 0.738 0.343 0.545 0.110 
1WOL A 0.779 0.000 0.000 0.208 
1WOM A 0.922 0.167 0.154 0.043 
1WOQ A 0.877 0.240 0.333 0.053 
1WP1 A 0.783 1.000 0.048 0.229 
1WPV A 0.721 0.429 0.154 0.248 
1WR8 A 0.883 0.176 0.188 0.061 
1WS8 A 0.721 0.071 0.059 0.178 
1WSP A 0.410 0.714 0.096 0.618 
1WTJ A 0.831 0.414 0.522 0.080 
1WU9 A 0.661 0.967 0.604 0.655 
1WUI S 0.760 0.260 0.741 0.037 
1WUR A 0.692 0.500 0.421 0.241 
1WW7 A 0.794 0.286 0.250 0.129 
1WWH A 0.568 0.357 0.161 0.388 
1WWJ A 0.586 0.471 0.410 0.354 
1WWL A 0.896 0.462 0.194 0.085 
1WWZ A 0.873 0.444 0.211 0.101 
1WXC A 0.894 0.040 0.167 0.020 
1WY5 A 0.791 0.297 0.220 0.142 
1WYU B 0.734 0.377 0.836 0.044 
1WZ3 A 0.655 0.745 0.732 0.517 
1WZC B 0.918 0.000 0.000 0.067 
1WZD A 0.900 0.286 0.111 0.079 
1X1N A 0.868 0.500 0.016 0.140 
1X2I A 0.544 0.500 0.452 0.425 

1X6M A 0.806 0.412 0.200 0.156 
1X89 A 0.810 0.125 0.037 0.157 
1X8D A 0.788 0.722 0.684 0.176 
1X8L A 0.953 0.000 0.000 0.044 
1X9V A 0.244 1.000 0.190 0.919 
1X9X A 0.548 0.636 0.226 0.471 
1XCR A 0.930 0.000 0.000 0.027 
1XEQ A 0.551 0.735 0.446 0.564 
1XEY A 0.808 0.545 0.516 0.129 
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Protein Chain Accuracy Sensitivity Specificity FAR 
1XFK A 0.935 0.714 0.208 0.060 
1XG7 B 0.874 0.053 0.077 0.055 
1XHX A 0.890 0.375 0.083 0.077 
1XM5 A 0.763 0.682 0.341 0.223 
1XOD B 0.686 0.500 0.081 0.304 
1XPJ A 0.774 0.596 0.757 0.117 
1XRK A 0.717 0.656 0.477 0.261 
1XRS A 0.946 0.500 0.280 0.043 
1XT5 A 0.748 0.000 0.000 0.241 
1XTE A 0.629 0.400 0.048 0.360 
1XTT A 0.800 0.446 0.676 0.075 
1XU1 A 0.693 0.354 0.607 0.124 
1XVA A 0.795 0.512 0.361 0.157 
1XWR A 0.646 0.889 0.490 0.481 
1XX1 A 0.909 0.238 0.333 0.038 
1XZO A 0.872 0.083 0.083 0.069 
1Y0H A 0.733 0.739 0.447 0.269 
1Y1L A 0.806 0.273 0.429 0.078 
1Y1P A 0.921 0.133 0.125 0.043 
1Y23 A 0.633 0.571 0.600 0.316 
1Y37 A 0.918 0.167 0.500 0.015 
1Y56 B 0.904 0.207 0.316 0.038 
1Y60 B 0.631 0.301 0.667 0.116 
1Y6V A 0.849 0.229 0.864 0.008 
1Y96 A 0.581 0.579 0.524 0.417 
1Y96 B 0.659 1.000 0.453 0.475 
1Y9W A 0.679 0.741 0.563 0.360 
1YAC A 0.765 0.130 0.097 0.155 
1YAV A 0.746 0.704 0.422 0.243 
1YB0 A 0.898 0.462 0.400 0.063 
1YBI A 0.820 0.500 0.118 0.165 
1YCD A 0.911 0.250 0.053 0.077 
1YCO A 0.888 0.520 0.406 0.076 
1YEW A 0.767 0.437 0.592 0.111 
1YEW B 0.647 0.522 0.778 0.192 
1YF2 A 0.776 0.438 0.075 0.210 
1YFU A 0.776 0.500 0.026 0.221 
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Protein Chain Accuracy Sensitivity Specificity FAR 
1YGT A 0.596 1.000 0.045 0.412 
1YK3 A 0.798 0.240 0.222 0.121 
1YKI A 0.796 0.603 0.667 0.124 
1YKU A 0.841 0.500 0.429 0.105 
1YL7 A 0.763 0.585 0.551 0.172 
1YLK A 0.736 0.636 0.766 0.174 
1YN9 B 0.905 0.333 0.143 0.074 
1YNB A 0.677 0.426 0.500 0.204 
1YOC A 0.841 0.593 0.571 0.102 
1YPY A 0.857 0.100 0.056 0.099 
1YQF A 0.725 0.560 0.500 0.212 
1YQZ A 0.876 0.380 0.452 0.059 
1YRL A 0.901 0.222 0.174 0.045 
1YT5 A 0.832 0.429 0.308 0.118 
1YTL B 0.842 0.071 0.077 0.083 
1YUM A 0.915 0.583 0.350 0.065 
1YXY A 0.887 0.143 0.048 0.090 
1YY7 A 0.835 0.417 0.333 0.110 
1YZY A 0.908 0.125 0.031 0.077 
1Z0S A 0.843 0.422 0.594 0.064 
1Z2L A 0.866 0.475 0.358 0.092 
1Z2W A 0.841 0.400 0.417 0.089 
1Z3E A 0.678 0.222 0.143 0.240 
1Z3E B 0.537 0.231 0.125 0.389 
1Z4E A 0.713 0.460 0.590 0.160 
1Z56 A 0.545 0.939 0.484 0.750 
1Z6N A 0.831 0.000 0.000 0.159 
1Z9H A 0.836 0.323 0.294 0.099 
1Z9M A 0.654 0.133 0.080 0.258 
1ZA7 A 0.715 0.476 0.238 0.246 
1ZB1 A 0.907 0.000 0.000 0.075 
1ZCD A 0.830 0.000 0.000 0.106 
1ZCZ A 0.765 0.400 0.458 0.132 
1ZH1 A 0.632 0.412 0.123 0.342 
1ZHS A 0.735 0.640 0.727 0.190 
1ZHV A 0.657 0.000 0.000 0.328 
1ZHX A 0.894 0.500 0.022 0.104 
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Protein Chain Accuracy Sensitivity Specificity FAR 
1ZJ9 A 0.908 0.182 0.059 0.075 
1ZKE A 0.481 0.586 0.362 0.577 
1ZKK A 0.781 0.526 0.278 0.184 
1ZL8 B 0.463 0.778 0.359 0.694 
1ZLP A 0.803 0.450 0.167 0.170 
1ZMT A 0.766 0.372 0.744 0.057 
1ZOS A 0.857 0.415 0.654 0.048 
1ZPS A 0.718 0.704 0.413 0.278 
1ZRN A 0.886 0.500 0.040 0.110 
1ZS3 A 0.673 0.280 0.412 0.165 
1ZT2 A 0.820 0.417 0.182 0.149 
1ZT2 B 0.841 0.400 0.200 0.125 
1ZTD A 0.720 0.375 0.194 0.229 
1ZV1 A 0.593 0.913 0.488 0.611 
1ZVP D 0.771 0.622 0.590 0.170 
1ZVT B 0.862 0.500 0.412 0.092 
1ZX0 A 0.934 0.000 0.000 0.045 
1ZXA A 0.278 1.000 0.133 0.813 
1ZXX A 0.893 0.000 0.000 0.095 
1ZZ1 A 0.924 0.378 0.737 0.015 
1ZZW A 0.844 0.200 0.118 0.109 
2A01 A 0.761 0.000 0.000 0.236 
2A10 A 0.740 0.545 0.774 0.117 
2A15 A 0.805 0.500 0.077 0.186 
2A1K A 0.647 0.462 0.080 0.342 
2A2L A 0.724 0.447 0.472 0.178 
2A6P A 0.881 0.238 0.417 0.041 
2A6S A 0.530 0.571 0.195 0.478 
2A7K B 0.835 0.162 0.462 0.036 
2A7U B 0.762 0.500 0.240 0.204 
2ADL A 0.444 0.897 0.413 0.860 
2AEB A 0.917 0.375 0.125 0.069 
2AFF A 0.653 0.379 0.407 0.232 
2AG4 A 0.665 0.000 0.000 0.314 
2AGH B 0.632 0.792 0.413 0.429 
2AHF A 0.947 0.100 0.500 0.006 
2AHM A 0.623 0.667 0.585 0.415 
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Protein Chain Accuracy Sensitivity Specificity FAR 
2AHM E 0.632 0.816 0.383 0.427 
2AJT A 0.849 0.472 0.446 0.081 
2AN7 A 0.349 0.900 0.257 0.825 
2ANE A 0.727 0.545 0.375 0.227 
2AO3 A 0.869 0.000 0.000 0.096 
2ASK A 0.614 0.743 0.464 0.455 
2ASW A 0.357 0.500 0.250 0.711 
2AUK A 0.624 0.260 0.277 0.245 
2AZ4 A 0.899 0.000 0.000 0.071 
2AZE A 0.738 0.846 0.655 0.345 
2AZE B 0.673 0.833 0.714 0.629 
2AZK A 0.877 0.226 0.412 0.041 
2B0J A 0.794 0.250 0.014 0.200 
2B30 A 0.884 0.091 0.133 0.050 
2B3F A 0.888 0.170 1.000 0.000 
2B5A A 0.610 0.647 0.314 0.400 
2B7F A 0.741 0.634 0.634 0.200 
2B82 A 0.768 0.333 0.225 0.168 
2B98 A 0.695 0.410 0.444 0.196 
2B9D A 0.365 0.625 0.143 0.682 
2BA2 A 0.654 0.915 0.642 0.706 
2BAY A 0.661 0.667 0.348 0.341 
2BB6 A 0.911 0.455 0.139 0.077 
2BEM A 0.900 0.200 0.182 0.056 
2BF5 A 0.772 0.583 0.304 0.200 
2BGR A 0.911 0.286 0.250 0.043 
2BGX A 0.787 0.250 0.019 0.204 
2BH1 A 0.866 0.444 0.414 0.081 
2BH1 X 0.603 0.733 0.324 0.434 
2BH8 A 0.706 0.889 0.667 0.500 
2BHW A 0.583 0.565 0.135 0.415 
2BIW A 0.935 0.000 0.000 0.036 
2BJI A 0.923 0.227 0.556 0.016 

2BKM A 0.727 0.500 0.229 0.241 
2BKX A 0.934 0.222 0.182 0.039 
2BL2 A 0.667 0.383 0.605 0.156 
2BL8 B 0.741 0.444 0.421 0.175 
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Protein Chain Accuracy Sensitivity Specificity FAR 
2BM5 A 0.858 0.529 0.333 0.108 
2BNM A 0.716 0.606 0.323 0.261 
2BO4 A 0.816 0.155 0.300 0.065 
2BPS A 0.700 0.846 0.333 0.328 
2BSF A 0.676 1.000 0.034 0.328 
2BSK A 0.575 0.909 0.517 0.700 
2BVF A 0.934 0.143 0.043 0.051 
2BVU A 0.642 0.500 0.159 0.339 
2BWR A 0.945 0.211 0.364 0.018 
2BYC A 0.757 0.231 0.115 0.187 
2C0A A 0.887 0.136 0.375 0.026 
2C0G B 0.747 0.267 0.082 0.218 
2C12 A 0.830 0.357 0.612 0.055 
2C1V A 0.854 0.250 0.242 0.083 
2C2U A 0.848 0.364 0.167 0.120 
2C81 A 0.944 0.500 0.087 0.052 
2C92 A 0.721 0.409 0.545 0.146 
2CB8 A 0.605 0.375 0.094 0.372 
2CBI A 0.923 0.800 0.114 0.072 
2CC3 A 0.681 0.688 0.212 0.320 
2CC6 A 0.438 0.625 0.132 0.589 
2CCM A 0.942 0.000 0.000 0.048 
2CHC A 0.631 0.333 0.319 0.260 
2CHG A 0.857 0.231 0.120 0.105 
2CJG A 0.901 0.500 0.023 0.097 
2CJP A 0.919 0.000 0.000 0.049 
2CLY A 0.476 0.709 0.500 0.780 
2CLY B 0.625 0.877 0.568 0.603 
2CLY C 0.530 0.935 0.500 0.829 
2CMG A 0.874 0.321 0.391 0.060 
2CMZ A 0.719 0.400 0.277 0.215 
2CN3 A 0.966 0.000 0.000 0.023 
2CNT A 0.768 0.476 0.294 0.185 
2CS7 A 0.611 0.783 0.529 0.516 
2CU2 A 0.910 0.000 0.000 0.084 
2CUA A 0.795 0.500 0.080 0.195 
2CW6 A 0.885 0.241 0.368 0.045 
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Protein Chain Accuracy Sensitivity Specificity FAR 
2CXN A 0.844 0.449 0.727 0.043 
2CZQ A 0.956 0.000 0.000 0.039 
2CZS A 0.300 1.000 0.020 0.710 
2D00 A 0.633 0.741 0.606 0.473 
2D0O A 0.861 0.469 0.326 0.077 
2D0O B 0.806 0.636 0.519 0.151 
2D3Q A 0.945 0.000 0.000 0.031 
2D73 A 0.927 0.161 0.294 0.030 
2D7E A 0.590 0.620 0.564 0.436 
2D8D A 0.750 0.881 0.712 0.395 
2DBB A 0.685 0.597 0.638 0.250 
2DC4 A 0.841 0.438 0.292 0.115 
2DDR C 0.946 0.000 0.000 0.041 
2DDZ A 0.819 0.556 0.750 0.075 
2DE3 A 0.953 0.000 0.000 0.032 
2DF7 A 0.726 0.318 0.337 0.166 
2DFJ A 0.936 0.200 0.182 0.035 
2DG1 A 0.894 0.200 0.032 0.095 
2DI3 A 0.810 0.444 0.400 0.123 
2DJ6 B 0.765 0.606 0.588 0.171 
2DLA A 0.847 0.750 0.341 0.144 
2DPF A 0.649 0.731 0.373 0.376 
2DR3 D 0.851 0.385 0.556 0.059 
2DRW A 0.928 0.087 0.286 0.015 
2DS2 B 0.627 0.852 0.523 0.525 
2DS5 A 0.442 0.933 0.378 0.821 
2DSC A 0.744 0.525 0.585 0.162 
2DSJ A 0.939 0.438 0.292 0.042 
2DSK A 0.930 0.222 0.125 0.048 
2DSN A 0.951 0.250 0.133 0.034 
2DT5 A 0.776 0.582 0.571 0.155 
2DT7 B 0.424 0.700 0.132 0.613 
2DTJ A 0.787 0.674 0.580 0.174 
2DUR B 0.864 0.000 0.000 0.077 
2DVM A 0.760 0.252 0.491 0.081 
2DVT A 0.778 0.169 0.619 0.032 
2DVY A 0.852 0.804 0.607 0.136 
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Protein Chain Accuracy Sensitivity Specificity FAR 
2DXN A 0.841 0.538 0.596 0.087 
2DY0 A 0.786 0.320 0.267 0.140 
2DYJ A 0.648 0.429 0.200 0.312 
2DYR C 0.595 0.322 0.578 0.188 
2DYR D 0.632 0.670 0.726 0.434 
2DYR E 0.619 0.489 0.564 0.283 
2DYR F 0.673 0.691 0.717 0.349 
2DYR H 0.544 0.750 0.462 0.596 
2DYR J 0.534 0.844 0.551 0.846 
2DYR L 0.630 0.853 0.707 1.000 
2DYU A 0.795 0.383 0.660 0.066 
2E0Z A 0.750 0.355 0.220 0.190 
2E11 A 0.887 0.532 0.758 0.037 
2E12 A 0.548 0.600 0.070 0.455 
2E1M B 0.722 0.838 0.803 0.636 
2E1M C 0.563 0.543 0.829 0.371 
2E1N A 0.664 0.636 0.326 0.330 
2E2A A 0.721 0.556 0.606 0.191 
2E2X A 0.852 0.400 0.114 0.129 
2E5F A 0.886 0.509 0.711 0.040 
2E5Y A 0.774 0.579 0.333 0.193 
2E67 A 0.905 0.130 0.375 0.021 
2E6F A 0.875 0.488 0.553 0.063 
2E79 A 0.704 0.231 0.120 0.232 
2E7D A 0.767 0.615 0.267 0.214 
2E8G A 0.888 0.000 0.000 0.097 
2E8Y A 0.954 0.667 0.100 0.041 
2E9X A 0.556 0.468 0.627 0.338 
2E9X B 0.663 0.323 0.541 0.150 
2EAB A 0.974 0.000 0.000 0.009 
2EBY A 0.657 0.783 0.375 0.380 
2ECU A 0.846 0.560 0.966 0.010 
2ED6 A 0.771 0.467 0.583 0.120 
2EGJ A 0.762 0.789 0.366 0.243 
2EGV A 0.856 0.310 0.409 0.065 
2EIX A 0.872 0.444 0.133 0.111 
2EIY B 0.845 0.290 0.265 0.092 
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Protein Chain Accuracy Sensitivity Specificity FAR 
2EJN A 0.800 0.652 0.417 0.172 
2EJQ A 0.561 0.417 0.111 0.421 
2EJW A 0.858 0.190 0.381 0.045 
2EK0 A 0.600 0.529 0.243 0.384 
2ELC A 0.918 0.095 0.200 0.026 
2EQ5 A 0.842 0.269 0.318 0.079 
2ERB A 0.789 0.154 0.118 0.136 
2ERV A 0.760 0.800 0.103 0.241 
2ET1 A 0.701 0.500 0.017 0.296 
2ETX B 0.841 0.091 0.045 0.114 
2EX0 A 0.946 0.000 0.000 0.036 
2EX2 A 0.895 0.250 0.022 0.102 
2EZ9 A 0.880 0.069 0.067 0.069 
2F01 B 0.633 0.421 0.421 0.268 
2F07 A 0.763 0.500 0.304 0.193 
2F23 A 0.773 0.579 0.289 0.200 
2F2H A 0.922 0.508 0.780 0.024 
2F48 A 0.917 0.344 0.423 0.037 
2F5G A 0.738 0.638 0.638 0.205 
2F5K A 0.494 0.765 0.255 0.576 
2F5V A 0.877 0.500 0.016 0.143 
2F6M A 0.554 0.706 0.558 0.613 
2F6M B 0.645 0.767 0.426 0.403 
2F8B A 0.518 0.944 0.395 0.684 
2F8J B 0.829 0.339 0.568 0.059 
2F9D A 0.649 0.571 0.444 0.316 
2FAO A 0.908 0.350 0.333 0.051 
2FB2 A 0.859 0.172 0.179 0.077 
2FB5 A 0.770 0.333 0.068 0.210 
2FD5 A 0.811 0.500 0.029 0.185 
2FDV A 0.908 0.238 0.179 0.055 
2FE1 A 0.762 0.000 0.000 0.227 
2FE8 A 0.816 0.341 0.311 0.113 
2FF4 A 0.860 0.286 0.136 0.106 
2FGQ X 0.833 0.333 0.019 0.162 
2FHZ A 0.792 0.500 0.636 0.103 
2FHZ B 0.710 0.636 0.424 0.268 



 

118 
 

Protein Chain Accuracy Sensitivity Specificity FAR 
2FI2 A 0.596 0.771 0.474 0.508 
2FIA A 0.822 0.250 0.136 0.131 
2FIP A 0.757 0.579 0.355 0.208 
2FJR A 0.804 0.182 0.174 0.114 
2FK5 A 0.856 0.000 0.000 0.112 
2FL4 A 0.664 0.750 0.059 0.338 
2FLH B 0.739 0.280 0.241 0.172 
2FMY A 0.784 0.414 0.286 0.159 
2FN9 A 0.900 0.500 0.036 0.097 
2FNU A 0.887 0.431 0.629 0.040 
2FP8 A 0.917 0.000 0.000 0.048 
2FQL A 0.607 0.000 0.000 0.382 
2FQM A 0.677 0.932 0.695 0.857 
2FR5 A 0.779 0.646 0.705 0.148 
2FSD A 0.718 0.545 0.188 0.263 
2FT0 A 0.793 0.125 0.107 0.126 
2FT1 A 0.654 0.521 0.380 0.300 
2FUG A 0.826 0.299 0.523 0.059 
2FUG B 0.674 0.388 0.605 0.153 
2FUG G 0.662 0.459 0.596 0.204 
2FV2 A 0.846 0.200 0.192 0.087 
2FY9 A 0.796 0.854 0.875 0.385 
2FYZ A 0.719 0.949 0.725 0.778 
2FZF A 0.848 0.381 0.421 0.080 
2G0B B 0.831 0.444 0.414 0.105 
2G30 A 0.850 0.200 0.115 0.106 
2G38 A 0.636 0.758 0.556 0.455 
2G38 B 0.711 0.415 0.395 0.197 
2G3M A 0.881 0.228 0.433 0.045 
2G7O A 0.191 0.500 0.018 0.818 
2GAG B 0.816 0.139 0.647 0.019 
2GAG C 0.774 0.380 0.613 0.086 
2GAG D 0.538 0.595 0.500 0.510 
2GD7 A 0.514 0.878 0.483 0.793 
2GDG A 0.772 0.630 0.763 0.132 
2GDQ A 0.879 0.154 0.148 0.066 
2GE7 A 0.645 0.638 0.685 0.347 
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Protein Chain Accuracy Sensitivity Specificity FAR 
2GEC A 0.761 0.778 0.326 0.242 
2GFI A 0.871 0.264 0.438 0.047 
2GFP A 0.877 0.667 0.043 0.121 
2GFT A 0.959 0.000 0.000 0.034 
2GGS A 0.901 0.067 0.071 0.050 
2GH8 A 0.818 0.422 0.244 0.151 
2GHT A 0.822 0.375 0.100 0.157 
2GHV C 0.836 0.722 0.342 0.152 
2GIA B 0.589 0.459 0.298 0.367 
2GIB A 0.629 0.721 0.564 0.444 
2GIY A 0.804 0.583 0.359 0.161 
2GJ2 A 0.557 0.556 0.139 0.443 
2GLD A 0.477 0.636 0.117 0.541 
2GLX A 0.898 0.083 0.143 0.039 
2GMF A 0.818 0.667 0.087 0.178 
2GMH A 0.924 0.000 0.000 0.042 
2GMN A 0.962 0.250 0.333 0.016 
2GOY A 0.748 0.200 0.250 0.132 
2GR8 A 0.654 0.620 0.795 0.286 
2GRU A 0.929 0.286 0.571 0.018 
2GSC B 0.744 0.512 0.710 0.122 
2GT1 A 0.876 0.273 0.086 0.103 
2GTD A 0.847 0.532 0.786 0.048 
2GU9 A 0.694 0.536 0.417 0.253 
2GUD B 0.760 0.543 0.758 0.107 
2GUZ A 0.620 0.686 0.600 0.444 
2GUZ F 0.631 0.722 0.650 0.483 
2GW6 A 0.642 0.400 0.146 0.324 
2GZ1 A 0.826 0.417 0.481 0.091 
2GZ4 A 0.750 0.511 0.471 0.176 
2GZB A 0.847 0.286 0.211 0.101 
2H0Q A 0.828 0.256 0.385 0.072 
2H1C A 0.734 0.444 0.229 0.223 
2H1E A 0.614 0.520 0.200 0.369 
2H3H B 0.938 0.333 0.462 0.024 
2H6B B 0.745 0.687 0.541 0.232 
2H6F A 0.832 0.672 0.534 0.132 
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Protein Chain Accuracy Sensitivity Specificity FAR 
2H88 B 0.674 0.333 0.625 0.121 
2H88 C 0.612 0.868 0.495 0.547 
2H88 D 0.683 0.963 0.456 0.419 
2H8G A 0.862 0.531 0.472 0.089 
2H9A A 0.859 0.368 0.318 0.087 
2H9A B 0.893 0.372 0.727 0.023 
2H9D C 0.622 0.632 0.692 0.390 
2HBA A 0.365 0.846 0.262 0.795 
2HBV A 0.879 0.340 0.640 0.032 
2HCV A 0.812 0.346 0.766 0.035 
2HDW A 0.850 0.244 0.370 0.061 
2HEK A 0.911 0.429 0.300 0.060 
2HF9 A 0.877 0.300 0.333 0.063 
2HFN A 0.711 0.200 0.421 0.101 
2HH7 A 0.400 0.750 0.057 0.617 
2HJ3 A 0.713 0.600 0.364 0.259 

2HMV A 0.799 0.594 0.559 0.140 
2HNU A 0.630 0.471 0.276 0.328 
2HOX B 0.817 0.318 0.574 0.058 
2HQS E 0.738 0.500 0.357 0.207 
2HQT B 0.725 0.348 0.308 0.186 
2HQX A 0.544 0.125 0.029 0.415 
2HRA A 0.789 0.286 0.125 0.169 
2HRV A 0.748 0.211 0.167 0.167 
2HU9 A 0.785 0.333 0.273 0.143 
2HY5 A 0.769 0.438 0.538 0.122 
2HY5 B 0.621 0.233 0.206 0.265 
2HY5 C 0.703 0.259 0.412 0.135 
2I0X A 0.571 0.500 0.056 0.425 
2I1O A 0.846 0.556 0.082 0.147 
2I2Q A 0.721 0.500 0.029 0.275 
2I39 A 0.690 0.433 0.406 0.221 
2I46 A 0.651 0.480 0.231 0.315 
2I74 A 0.761 0.063 0.034 0.171 
2I79 A 0.719 0.225 0.346 0.130 
2I7D A 0.850 0.333 0.318 0.087 
2I8T A 0.725 0.217 0.179 0.183 
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Protein Chain Accuracy Sensitivity Specificity FAR 
2I99 A 0.881 0.267 0.348 0.053 
2I9U A 0.912 0.222 0.471 0.023 
2IB0 A 0.704 0.250 0.083 0.254 
2IC6 A 0.338 0.500 0.085 0.683 
2ICY B 0.894 0.000 0.000 0.103 
2ID5 B 0.833 0.194 0.137 0.110 
2IG3 A 0.764 0.533 0.258 0.205 
2IG8 A 0.676 0.489 0.511 0.232 
2IGI A 0.817 0.387 0.462 0.094 
2II3 D 0.829 0.709 0.619 0.134 
2IMI A 0.873 0.367 0.550 0.047 
2INC A 0.772 0.198 0.526 0.054 
2INC B 0.773 0.375 0.566 0.095 
2INC C 0.627 0.708 0.415 0.407 
2INP A 0.755 0.297 0.541 0.086 
2INP C 0.777 0.375 0.766 0.050 
2INP E 0.771 0.605 0.722 0.133 
2IP2 A 0.767 0.492 0.382 0.173 
2IPB A 0.831 0.241 0.318 0.079 
2IPI B 0.919 0.185 0.278 0.032 
2IRU A 0.881 0.538 0.200 0.103 
2ISK A 0.685 0.505 0.771 0.143 
2IU5 A 0.771 0.278 0.152 0.174 
2IU8 A 0.676 0.535 0.445 0.267 
2IUM A 0.791 0.308 0.414 0.099 
2IUT A 0.824 0.174 0.070 0.138 
2IVF A 0.900 0.206 0.542 0.029 
2IVF B 0.757 0.370 0.741 0.061 
2IVF C 0.893 0.563 0.360 0.081 
2IWV A 0.679 0.500 0.079 0.312 
2IXD A 0.866 0.407 0.423 0.073 
2IYG A 0.706 0.471 0.258 0.250 
2IYK A 0.768 0.333 0.029 0.224 
2IZW A 0.775 0.406 0.382 0.144 
2IZZ A 0.716 0.409 0.590 0.137 
2J04 A 0.862 0.308 0.145 0.114 
2J0N A 0.754 0.214 0.231 0.140 
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Protein Chain Accuracy Sensitivity Specificity FAR 
2J1N A 0.734 0.229 0.296 0.138 
2J2J A 0.692 0.328 0.618 0.110 
2J4D A 0.913 0.105 0.091 0.048 
2J5D A 0.333 1.000 0.286 0.909 
2J6L B 0.853 0.263 0.600 0.026 
2J6P A 0.759 0.387 0.429 0.140 
2J9O A 0.928 0.333 0.188 0.051 
2JBV A 0.947 0.053 0.111 0.019 
2JCB B 0.868 0.000 0.000 0.094 
2JD3 A 0.700 0.833 0.678 0.452 
2JD4 B 0.907 0.167 0.032 0.081 
2JDA A 0.820 0.100 0.059 0.124 
2JE0 A 0.872 0.333 0.118 0.105 
2JEE A 0.615 0.791 0.618 0.600 
2JIG A 0.870 0.278 0.250 0.076 
2JOD A 0.604 0.615 0.333 0.400 
2JRA A 0.418 0.857 0.407 0.897 
2JSC A 0.656 0.852 0.442 0.420 
2JWA A 0.295 0.889 0.211 0.857 
2JWK A 0.595 0.688 0.306 0.431 
2K29 A 0.740 0.946 0.761 0.846 
2NLU A 0.590 0.827 0.573 0.667 
2NN4 A 0.710 0.818 0.360 0.314 
2NNU A 0.725 0.500 0.109 0.261 
2NP9 A 0.835 0.286 0.348 0.082 
2NPI C 0.864 1.000 0.850 0.600 
2NQ2 C 0.753 0.373 0.388 0.150 
2NQR A 0.800 0.509 0.341 0.155 
2NT0 A 0.926 0.143 0.235 0.032 
2NTE A 0.829 0.000 0.000 0.121 
2NTK B 0.842 0.290 0.474 0.058 
2NTP A 0.883 0.167 0.028 0.104 
2NW8 A 0.778 0.519 0.459 0.156 
2NWI A 0.713 0.379 0.282 0.214 
2NX4 A 0.658 0.235 0.308 0.190 
2NYA A 0.962 0.231 0.214 0.026 
2NYG A 0.848 0.222 0.231 0.082 
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Protein Chain Accuracy Sensitivity Specificity FAR 
2NYT B 0.726 0.261 0.146 0.210 
2NZX C 0.823 0.200 0.080 0.139 
2O09 A 0.857 0.000 0.000 0.109 
2O1C A 0.653 0.000 0.000 0.284 
2O3S A 0.845 0.250 0.057 0.135 
2O4V A 0.786 0.341 0.452 0.103 
2O5F B 0.858 0.364 0.200 0.106 
2O70 A 0.800 0.103 0.300 0.051 
2O7G A 0.659 0.692 0.257 0.347 
2O7M A 0.732 0.400 0.216 0.218 
2O8M B 0.688 0.333 0.263 0.226 
2O8X A 0.508 0.889 0.364 0.651 
2OAR A 0.672 0.890 0.663 0.635 
2OAU A 0.614 0.622 0.397 0.389 
2OCT A 0.629 0.900 0.529 0.561 
2ODD A 0.420 0.833 0.270 0.711 
2ODF A 0.905 0.143 0.143 0.050 
2OFK A 0.896 0.300 0.200 0.070 
2OGK B 0.799 0.364 0.160 0.164 
2OHC A 0.820 0.424 0.298 0.129 
2OHW A 0.914 0.000 0.000 0.056 
2OKX A 0.926 0.250 0.227 0.041 
2OMD A 0.763 0.621 0.462 0.198 
2OPE A 0.700 0.250 0.192 0.210 
2OQ2 C 0.899 0.308 0.500 0.035 
2OQY A 0.826 0.103 0.316 0.041 
2OR2 A 0.902 0.100 0.105 0.048 
2ORM A 0.612 0.692 0.659 0.500 
2ORY B 0.904 0.214 0.353 0.035 
2OSZ A 0.523 0.714 0.446 0.608 
2OU1 C 0.425 0.759 0.386 0.795 
2OWA A 0.734 0.389 0.233 0.209 
2OX6 A 0.747 0.444 0.205 0.215 
2OXG F 0.752 0.636 0.583 0.197 
2OYY A 0.549 0.792 0.413 0.574 
2P04 A 0.757 0.905 0.442 0.279 
2P0M A 0.923 0.100 0.087 0.050 
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Protein Chain Accuracy Sensitivity Specificity FAR 
2P1J A 0.738 0.761 0.522 0.271 
2P1M B 0.869 0.520 0.217 0.114 
2P2O A 0.761 0.000 0.000 0.000 
2P38 A 0.710 0.500 0.133 0.273 
2P3R A 0.884 0.300 0.343 0.058 
2P4W A 0.624 0.662 0.485 0.397 
2P4Z A 0.902 0.318 0.368 0.047 
2P54 A 0.891 0.300 0.120 0.086 
2P5T A 0.674 0.667 0.636 0.320 
2P6P A 0.919 0.200 0.462 0.020 
2P90 A 0.822 0.488 0.447 0.115 
2PA7 A 0.689 0.556 0.435 0.263 
2PA8 D 0.750 0.464 0.203 0.216 
2PA8 L 0.728 0.697 0.605 0.254 
2PBX A 0.817 0.400 0.323 0.122 
2PD2 A 0.778 0.000 0.000 0.184 
2PEZ A 0.858 0.467 0.292 0.106 
2PGD A 0.797 0.667 0.029 0.157 
2PI2 E 0.692 0.594 0.452 0.271 

2PKD D 0.673 0.538 0.378 0.284 
2PL2 A 0.804 0.500 0.132 0.179 

2PMV B 0.869 0.120 0.188 0.054 
2POK B 0.857 0.466 0.466 0.082 
2POS A 0.745 0.250 0.100 0.209 
2PQR A 0.622 0.471 0.457 0.297 
2PR1 A 0.757 0.471 0.222 0.207 
2PS1 A 0.835 0.406 0.419 0.094 
2PSO A 0.650 0.125 0.016 0.328 
2PT7 A 0.827 0.474 0.692 0.065 
2PT7 G 0.745 0.667 0.391 0.237 
2PTT A 0.631 0.643 0.214 0.371 
2PTT B 0.676 0.444 0.242 0.278 
2PUZ A 0.891 0.353 0.353 0.059 
2PVP A 0.811 0.423 0.190 0.156 
2PWJ A 0.840 0.320 0.471 0.066 
2PX0 A 0.837 0.200 0.444 0.046 
2PYG A 0.898 0.000 0.000 0.064 
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Protein Chain Accuracy Sensitivity Specificity FAR 
2PYW A 0.856 0.143 0.143 0.079 
2PZH C 0.735 0.639 0.511 0.229 
2Q00 B 0.787 0.182 0.105 0.153 
2Q0O A 0.774 0.380 0.463 0.119 
2Q0O C 0.640 0.743 0.542 0.431 
2Q2I A 0.661 0.550 0.524 0.278 
2Q46 A 0.877 0.000 0.000 0.119 
2Q52 A 0.893 0.375 0.150 0.086 
2Q7A A 0.829 0.667 0.074 0.168 
2Q7M A 0.683 0.500 0.523 0.226 
2Q87 A 0.757 0.250 0.150 0.179 
2Q8N C 0.802 0.167 0.027 0.167 
2QBU A 0.842 0.525 0.553 0.090 
2QCU A 0.898 0.083 0.029 0.078 
2QCX B 0.858 0.333 0.280 0.088 
2QDL A 0.786 0.600 0.250 0.194 
2QEB A 0.889 0.333 0.143 0.087 
2QEE G 0.824 0.268 0.629 0.039 
2QF4 A 0.800 0.000 0.000 0.150 
2QFC A 0.736 0.632 0.150 0.257 
2QFD A 0.727 0.308 0.143 0.222 
2QFI A 0.703 0.000 0.000 0.287 
2QJT B 0.881 0.636 0.298 0.102 
2QKL B 0.744 0.750 0.455 0.257 
2QKP C 0.507 0.521 0.357 0.500 
2QLC A 0.786 0.280 0.438 0.089 

2QMM A 0.846 0.276 0.471 0.054 
2QT3 A 0.880 0.205 0.320 0.047 
2QTS A 0.729 0.438 0.416 0.184 
2QU7 B 0.876 0.179 0.313 0.045 
2QUL A 0.914 0.394 0.722 0.019 
2QV6 A 0.779 0.457 0.640 0.098 
2QVJ A 0.774 0.402 0.418 0.136 
2QXV A 0.858 0.100 0.115 0.071 
2QYA A 0.722 0.483 0.452 0.198 
2QYX A 0.864 0.278 0.227 0.084 
2QZ8 A 0.712 0.656 0.656 0.247 
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Protein Chain Accuracy Sensitivity Specificity FAR 
2R0H A 0.788 0.185 0.294 0.090 
2R15 A 0.749 0.286 0.087 0.218 
2R4F A 0.750 0.412 0.553 0.124 
2R5O B 0.795 0.516 0.457 0.141 
2R5U A 0.694 0.556 0.319 0.274 
2R6J A 0.887 0.083 0.040 0.081 
2R7A A 0.882 0.375 0.375 0.065 
2RCF A 0.598 0.688 0.489 0.460 
2RDE A 0.732 0.345 0.196 0.210 
2RE9 A 0.665 0.509 0.482 0.261 
2RJI A 0.726 0.364 0.200 0.219 
2RJZ A 0.726 0.676 0.500 0.255 
2RL8 B 0.795 0.263 0.227 0.129 
2SCP A 0.851 0.150 0.250 0.058 
2SPC A 0.604 0.860 0.551 0.625 
2SQC A 0.963 0.200 0.214 0.026 
2TBV B 0.797 0.417 0.185 0.168 
2UUZ A 0.539 0.719 0.418 0.561 
2UVL A 0.670 0.682 0.385 0.333 
2UWI A 0.630 0.500 0.128 0.357 
2UX0 A 0.679 0.524 0.244 0.293 
2UXU A 0.743 0.326 0.368 0.147 
2V0O A 0.718 0.443 0.723 0.108 
2V1O A 0.745 0.625 0.521 0.211 
2V2G A 0.832 0.482 0.771 0.049 
2V3S A 0.677 0.250 0.074 0.284 
2V66 B 0.595 0.750 0.687 0.743 
2V76 C 0.706 0.400 0.069 0.278 
2VE3 A 0.926 0.267 0.160 0.050 
2VEO A 0.967 0.167 0.333 0.010 
2VG0 A 0.828 0.343 0.429 0.083 
2VHH B 0.810 0.452 0.758 0.055 
2VL6 A 0.753 0.510 0.385 0.190 
2VLB A 0.877 0.174 0.286 0.047 
2VLG C 0.608 0.529 0.220 0.376 
2VLQ A 0.643 0.650 0.361 0.359 
2VLQ B 0.664 0.000 0.000 0.219 
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Protein Chain Accuracy Sensitivity Specificity FAR 
2VO9 A 0.723 0.182 0.059 0.234 
2VOK A 0.823 0.071 0.048 0.116 
2VOU A 0.934 0.300 0.136 0.050 
2VQ7 A 0.903 0.351 0.433 0.043 
2VSG A 0.791 0.453 0.582 0.103 
2VUG A 0.839 0.381 0.320 0.103 
2XAT A 0.731 0.500 0.018 0.267 
2YVA A 0.751 0.500 0.354 0.195 
2YVD A 0.884 0.026 0.071 0.033 
2YVE A 0.760 0.387 0.343 0.160 
2YVR A 0.489 0.700 0.259 0.571 
2YVS A 0.849 0.667 0.429 0.125 
2YXO A 0.901 0.050 0.125 0.029 
2YXZ A 0.836 0.418 0.561 0.072 
2YY0 A 0.605 0.957 0.611 0.933 
2YY7 A 0.897 0.056 0.063 0.051 
2YYS A 0.901 0.133 0.118 0.056 
2YYV A 0.870 0.053 0.083 0.054 
2YYY A 0.880 0.263 0.435 0.043 
2Z0A A 0.597 0.739 0.425 0.469 
2Z0J A 0.861 0.036 0.143 0.029 
2Z0T A 0.697 0.059 0.056 0.185 
2Z15 A 0.782 0.421 0.348 0.150 
2Z1Y B 0.810 0.263 0.513 0.060 
2Z5A A 0.621 0.451 0.371 0.310 
2Z5A B 0.800 0.396 0.288 0.142 
2Z69 B 0.767 0.611 0.512 0.184 
2Z6R A 0.841 0.432 0.528 0.077 
2Z73 A 0.803 0.143 0.016 0.184 
2Z8F A 0.973 0.167 0.143 0.015 
2ZBT A 0.833 0.567 0.630 0.093 
2ZBT C 0.793 0.238 0.294 0.105 
2ZBT D 0.828 0.571 0.519 0.116 
2ZDH A 0.925 0.333 0.500 0.027 
2ZFZ A 0.584 0.217 0.263 0.259 
2ZGY A 0.881 0.444 0.222 0.093 
2ZIH A 0.798 0.447 0.404 0.132 
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Protein Chain Accuracy Sensitivity Specificity FAR 
2ZJD A 0.711 0.700 0.179 0.288 
3B42 A 0.651 0.744 0.460 0.391 
3B4R A 0.697 0.227 0.093 0.250 
3B5H A 0.768 0.273 0.188 0.164 
3B8F A 0.730 0.581 0.556 0.204 
3B9O A 0.871 0.308 0.645 0.030 
3BBZ A 0.438 0.500 0.148 0.575 
3BF7 A 0.898 0.000 0.000 0.050 
3BFQ G 0.750 0.281 0.474 0.100 
3BJK A 0.793 0.579 0.629 0.127 
3BK6 A 0.665 0.667 0.299 0.336 
3BLJ B 0.818 0.278 0.179 0.128 
3BOF A 0.911 0.000 0.000 0.048 
3BPJ A 0.657 0.956 0.662 0.880 
3BQS A 0.671 0.500 0.143 0.312 
3BRV A 0.641 1.000 0.641 1.000 
3BRV B 0.590 0.886 0.596 0.808 
3BS7 A 0.560 0.857 0.158 0.471 
3BU8 A 0.711 0.258 0.182 0.208 
3BY6 A 0.627 0.605 0.442 0.363 
3C7B A 0.739 0.470 0.700 0.112 
3C7B B 0.763 0.530 0.832 0.075 
3C8I A 0.732 0.455 0.152 0.241 
3C9H B 0.900 0.222 0.069 0.082 
3C9U A 0.814 0.625 0.493 0.143 
3CHB D 0.650 0.563 0.643 0.273 
3CJH A 0.712 0.917 0.733 0.750 
3CJH B 0.559 0.875 0.560 0.815 
3CJS B 0.653 0.667 0.276 0.350 

3CLW B 0.907 0.083 0.077 0.058 
3EIP A 0.607 0.889 0.200 0.427 
3GRS A 0.848 1.000 0.016 0.140 
3TDT A 0.752 0.500 0.044 0.243 
7AHL A 0.744 0.513 0.756 0.107 
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Appendix C: Classifier Accuracy Comparison for Several Methods (described in Section 
4.3) 
 

Protein Topological Cons-PPISP SPPIDER PPI-Pred Promate 
1A0C-A 0.789 0.751 0.801 0.664 0.712 
1B67-A 0.561 0.515 0.456 0.588 0.544 
1CHK-A 0.924 0.903 0.962 0.807 0.971 
1DCI-A 0.711 0.778 0.771 0.749 0.724 
1EEX-G 0.681 0.745 0.759 0.613 0.642 
1F1M-A 0.750 0.691 0.802 0.846 0.741 
1FSE-A 0.754 0.552 0.567 0.731 0.761 
1GU7-A 0.928 0.953 0.909 0.780 0.945 
1HF8-A 0.962 0.867 0.897 0.905 0.962 
1IGQ-A 0.635 0.667 0.648 0.741 0.593 
1J2R-A 0.801 0.814 0.830 0.761 0.723 
1JOC-A 0.661 0.707 0.715 0.537 0.650 
1KMT-A 0.846 0.870 0.877 0.920 0.920 
1LJ2-A 0.606 0.613 0.585 0.547 0.566 

1MKK-A 0.604 0.699 0.656 0.645 0.753 
1NC5-A 0.983 0.989 0.994 0.882 0.978 
1O5L-A 0.780 0.806 0.488 0.837 0.876 
1ORJ-A 0.782 0.825 0.762 0.802 0.802 
1PIX-A 0.837 0.836 0.800 0.853 0.831 

1QLM-A 0.984 0.930 0.915 0.883 0.981 
1R9D-A 0.994 0.950 0.968 0.887 0.969 
1S1D-A 0.943 0.905 0.934 0.858 0.946 
1SU1-A 0.813 0.766 0.799 0.821 0.761 
1T56-A 0.937 0.933 0.617 0.731 0.922 
1U1S-A 0.734 0.712 0.712 0.652 0.652 
1UYP-A 0.935 0.926 0.882 0.843 0.912 
1VLG-H 0.840 0.787 0.835 0.841 0.768 
1WHI-A 0.883 0.803 0.656 0.844 0.984 
1WWL-A 0.935 0.893 0.847 0.701 0.909 
1XT5-A 0.932 0.837 0.896 0.778 0.881 
1YF2-A 0.882 0.932 0.920 0.892 0.962 
1Z6N-A 0.939 0.988 0.976 0.873 0.940 
1ZVT-B 0.873 0.858 0.862 0.833 0.886 
2ASK-A 0.657 0.614 0.485 0.653 0.663 
2BJI-A 0.919 0.920 0.901 0.909 0.927 

2CHC-A 0.711 0.708 0.667 0.732 0.702 
2DDR-C 0.970 0.956 0.919 0.842 0.980 
2DYJ-A 0.820 0.615 0.527 0.648 0.780 
2EAB-A 0.986 0.983 0.990 0.920 0.992 
2F6M-B 0.676 0.682 0.664 0.617 0.710 
2FNU-A 0.892 0.898 0.901 0.861 0.869 
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Protein Topological Cons-PPISP SPPIDER PPI-Pred Promate 
2GE7-A 0.590 0.645 0.794 0.579 0.542 
2GUZ-F 0.556 0.738 0.646 0.631 0.523 
2HMV-A 0.803 0.856 0.647 0.806 0.806 
2IG3-A 0.832 0.882 0.732 0.661 0.811 
2IZW-A 0.841 0.702 0.539 0.803 0.820 
2NNU-A 0.818 0.870 0.645 0.830 0.940 
2OAU-A 0.734 0.713 0.535 0.697 0.709 
2P04-A 0.848 0.822 0.645 0.897 0.776 
2PTT-A 0.792 0.650 0.767 0.670 0.757 
2QFD-A 0.798 0.860 0.843 0.851 0.851 
2RJI-A 0.841 0.679 0.798 0.738 0.786 

2VO9-A 0.877 0.899 0.791 0.743 0.824 
2Z15-A 0.838 0.790 0.849 0.790 0.807 
3BS7-A 0.822 0.907 0.867 0.773 0.800 
1A0C-A 0.789 0.751 0.801 0.664 0.712 
1B67-A 0.561 0.515 0.456 0.588 0.544 
1CHK-A 0.924 0.903 0.962 0.807 0.971 
1DCI-A 0.711 0.778 0.771 0.749 0.724 
1EEX-G 0.681 0.745 0.759 0.613 0.642 
1F1M-A 0.750 0.691 0.802 0.846 0.741 
1FSE-A 0.754 0.552 0.567 0.731 0.761 
1GU7-A 0.928 0.953 0.909 0.780 0.945 
1HF8-A 0.962 0.867 0.897 0.905 0.962 
1IGQ-A 0.635 0.667 0.648 0.741 0.593 
1J2R-A 0.801 0.814 0.830 0.761 0.723 
1JOC-A 0.661 0.707 0.715 0.537 0.650 
1KMT-A 0.846 0.870 0.877 0.920 0.920 
1LJ2-A 0.606 0.613 0.585 0.547 0.566 

1MKK-A 0.604 0.699 0.656 0.645 0.753 
1NC5-A 0.983 0.989 0.994 0.882 0.978 
1O5L-A 0.780 0.806 0.488 0.837 0.876 
1ORJ-A 0.782 0.825 0.762 0.802 0.802 
1PIX-A 0.837 0.836 0.800 0.853 0.831 

1QLM-A 0.984 0.930 0.915 0.883 0.981 
1R9D-A 0.994 0.950 0.968 0.887 0.969 
1S1D-A 0.943 0.905 0.934 0.858 0.946 
1SU1-A 0.813 0.766 0.799 0.821 0.761 
1T56-A 0.937 0.933 0.617 0.731 0.922 
1U1S-A 0.734 0.712 0.712 0.652 0.652 
1UYP-A 0.935 0.926 0.882 0.843 0.912 
1VLG-H 0.840 0.787 0.835 0.841 0.768 
1WHI-A 0.883 0.803 0.656 0.844 0.984 
1WWL-A 0.935 0.893 0.847 0.701 0.909 
1XT5-A 0.932 0.837 0.896 0.778 0.881 
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Appendix D: RuleFit Feature Selection 
 
Feature Importance for initial feature selection for docking algorithm (described in 
Section 5.1.1) 
 
Feature RuleFit Importance 
Mean interface residue tetrahedrality 100.0 
Mean interface residue tetrahedrality / mean residue tetrahedrality 46.7 
Ratio of interactions of class aromatic-small 44.2 
Mean interface residue T5 42.1 
Number of interface residues for protein A 41.8 
Total number of interface residues 38.7 
Ratio of interface / total residues for protein B 34.8 
Ratio of interactions of class hydrophobic-aromatic 33.9 
Mean interface residue volume / mean residue volume 33.2 
Mean interface residue potential 30.6 
Mean conservation of interface residues 26.7 
Ratio of interface to total number of CYS residues 24.3 
Mean interface residue potential / mean residue potential 21.9 
Raton of interactions of class positively charged-negatively charged 21.7 
Mean volume for T0 simplices 20.4 
Number of interface residues for protein B 20.2 
Total volume of simplices that cross interface / total volume of both 
chains 

18.8 

Ratio of interface to total number of SER residues 17.4 
Ratio of interface to total number of TRP residues 17.4 
Ratio of interface to total number of PRO residues 17.2 
Ratio of interface to total number of VAL residues 15.1 
Mean interface residue conservation / mean conservation of all residues 14.5 
Mean interface residue T4 14.4 
Ratio of interface to total number of LEU residues 13.6 
Ratio of interface to total number of GLN residues 13.4 
Ratio of interface to total number of PHE residues 13.1 
Mean interface residue T5 / mean residue T5 11.6 
Ratio of interface to total number of TYR residues 11.6 
Ratio of interface to total number of GLY residues 11.6 
Ratio of interactions of class hydrophobic-small 10.4 
Ratio of interface to total number of ASN residues 10.3 
Ratio of interactions of class positively charged-small 10.2 
Ratio of interface to total number of LYS residues 9.6 
Ratio of interactions of class aromatic-polar 9.5 
Ratio of interactions of class polar-small 9.4 
Ratio of interface / total residues for protein A 8.7 
Mean interface residue T3 8.4 
Mean interface residue T4 / mean residue T4 8.3 
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Feature RuleFit Importance 
Ratio of interactions of class hydrophobic-positively charged 8.3 
Ratio of interactions of class positively charged-polar 7.5 
Mean volume for T2 simplices 7.4 
Volume of simplices that cross interface 6.6 
Ratio of interaction of class hydrophobic-polar 6.3 
Ratio of interface to total number of ARG residues 6.3 
Ratio of interface to total number of GLU residues 6.1 
Mean interface residue T1 / mean residue T1 6.0 
Ratio of interface to total number of THR residues 5.5 
Ratio of interface to total number of ASP residues 5.1 
Ratio of interactions of class aromatic-positively charged 5.1 
Mean potential for the conformation 4.9 
Mean interface residue T3 / mean residue T3 4.7 
Mean interface residue T2 / mean residue T2 4.4 
Mean volume for T5 simplices 4.1 
Mean volume for T3 simplices 4.1 
Mean volume for T1 simplices 4.1 
Total potential 4.0 
Mean number of simplices interface residues participate in 4.0 
Ratio of interactions of class negatively charged-small 3.7 
Mean volume for T4 simplices 3.4 
Ratio of interactions of class hydrophobic-negatively charged 3.4 
Mean interface residue T1 3.3 
Ratio of interface to total number of ALA residues 2.8 
Mean interface residue T0 / mean residue T1 2.7 
Mean interface residue Total / mean residue Total 2.5 
Ratio of interface to total number of ILE residues 2.5 
Ratio of interface / total residues for the conformation 2.4 
Mean interface residue Volume 2.0 
Ratio of interaction of class aromatic-negatively charged 1.9 
Mean interface residue T2 1.8 
Ratio of interface to total number of MET residues 1.6 
Ratio of interactions of class negatively charged-polar 0.8 
Ratio of interface to total number of HIS residues 0.7 
Mean interface residue T0 0.1 
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Feature Importance for docking algorithm on data set with additional data (described in 
Section 5.1.2) 
 
Feature RuleFit Importance 
Mean interface residue tetrahedrality 100.0 
Mean interface residue tetrahedrality / mean residue tetrahedrality 46.9 
Mean interface residue T5 42.7 
Number of interface residues for protein A 40.8 
Ratio of interactions of class aromatic-small 38.3 
Ratio of interactions of class hydrophobic-aromatic 34.4 
Total number of interface residues 33.0 
Mean interface residue potential 31.8 
Ratio of interface / total residues for protein B 31.3 
Mean conservation of interface residues 26.5 
Mean interface residue volume / mean residue volume 25.8 
Number of interface residues for protein B 25.5 
Ratio of interface to total number of CYS residues 24.9 
Mean interface residue potential / mean residue potential 19.3 
Ratio of interface to total number of PRO residues 18.6 
Mean volume for T0 simplices 18.0 
Raton of interactions of class positively charged-negatively charged 17.5 
Ratio of interface to total number of TRP residues 17.3 
Ratio of interface to total number of SER residues 16.7 
Mean interface residue T4 15.2 
Ratio of interface to total number of GLN residues 13.0 
Ratio of interface to total number of VAL residues 12.8 
Total volume of simplices that cross interface / total volume of both 
chains 

12.8 

Ratio of interface to total number of GLY residues 11.8 
Volume of simplices that cross interface 11.8 
Ratio of interactions of class positively charged-small 10.7 
Ratio of interface to total number of LEU residues 10.6 
Ratio of interface to total number of ASN residues 10.3 
Mean interface residue T4 / mean residue T4 10.2 
Mean interface residue T3 10.1 
Ratio of interactions of class hydrophobic-small 9.4 
Mean interface residue T5 / mean residue T5 9.4 
Mean interface residue conservation / mean conservation of all residues 8.6 
Mean volume for T5 simplices 8.5 
Ratio of interface to total number of PHE residues 8.3 
Ratio of interactions of class polar-small 7.7 
Ratio of interface to total number of TYR residues 7.0 
Mean interface residue T1 / mean residue T1 6.9 
Ratio of interactions of class positively charged-polar 6.6 
Total potential 6.3 
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Feature RuleFit Importance 
Ratio of interface to total number of ASP residues 6.2 
Ratio of interactions of class hydrophobic-positively charged 6.2 
Ratio of interface to total number of LYS residues 6.1 
Ratio of interface / total residues for protein A 5.7 
Mean potential for the conformation 5.2 
Ratio of interactions of class aromatic-polar 5.2 
Ratio of interface to total number of THR residues 5.1 
Mean volume for T2 simplices 5.0 
Ratio of interactions of class aromatic-positively charged 5.0 
Mean interface residue T3 / mean residue T3 4.6 
Ratio of interface / total residues for the conformation 4.0 
Ratio of interaction of class hydrophobic-polar 3.8 
Ratio of interface to total number of ARG residues 3.6 
Mean interface residue Volume 3.5 
Ratio of interactions of class hydrophobic-negatively charged 3.5 
Mean volume for T1 simplices 3.5 
Mean volume for T3 simplices 3.4 
Ratio of interface to total number of GLU residues 3.1 
Mean interface residue T2 / mean residue T2 2.8 
Mean interface residue T1 2.6 
Mean interface residue Total / mean residue Total 2.4 
Mean interface residue T0 / mean residue T1 2.4 
Mean volume for T4 simplices 2.3 
Mean number of simplices interface residues participate in 2.1 
Ratio of interface to total number of ILE residues 1.8 
Ratio of interface to total number of ALA residues 1.6 
Ratio of interface to total number of HIS residues 1.6 
Ratio of interactions of class negatively charged-small 1.3 
Ratio of interaction of class aromatic-negatively charged 1.1 
Ratio of interactions of class negatively charged-polar 0.7 
Ratio of interface to total number of MET residues 0.7 
Mean interface residue T0 0.6 
Mean interface residue T2 0.5 
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Feature Importance for docking algorithm on data subset with enzyme-inhibitor data 
(described in Section 5.1.3) 
 
Feature RuleFit Importance 
Ratio of interface to total number of SER residues 96.8 
Ratio of interface / total residues for protein B 85.0 
Mean interface residue tetrahedrality 85.0 
Ratio of interface to total number of CYS residues 80.4 
Mean interface residue T4 71.1 
Mean conservation of interface residues 69.0 
Total number of interface residues 68.2 
Ratio of interactions of class hydrophobic-aromatic 60.7 
Mean interface residue T5 53.8 
Mean interface residue T4 / mean residue T4 51.6 
Ratio of interface to total number of PHE residues 47.8 
Mean interface residue T5 / mean residue T5 43.2 
Mean interface residue tetrahedrality / mean residue tetrahedrality 38.7 
Ratio of interface to total number of GLN residues 32.2 
Ratio of interface to total number of TRP residues 28.8 
Mean interface residue T3 26.0 
Ratio of interface to total number of ARG residues 25.2 
Mean volume for T0 simplices 24.6 
Number of interface residues for protein A 23.8 
Ratio of interface to total number of HIS residues 21.6 
Mean interface residue volume / mean residue volume 19.5 
Mean interface residue conservation / mean conservation of all residues 18.5 
Volume of simplices that cross interface 18.1 
Mean interface residue potential 15.9 
Mean volume for T5 simplices 15.6 
Ratio of interface to total number of LEU residues 15.4 
Ratio of interface to total number of GLY residues 14.9 
Ratio of interface to total number of LYS residues 14.5 
Ratio of interface to total number of ASN residues 14.2 
Ratio of interface to total number of GLU residues 14.0 
Mean interface residue T1 / mean residue T1 14.0 
Total volume of simplices that cross interface / total volume of both 
chains 

13.9 

Ratio of interface to total number of ALA residues 13.6 
Mean volume for T1 simplices 13.1 
Raton of interactions of class positively charged-negatively charged 12.9 
Ratio of interface to total number of ILE residues 12.9 
Mean interface residue T3 / mean residue T3 10.9 
Ratio of interactions of class hydrophobic-small 10.5 
Total potential 9.5 
Ratio of interactions of class aromatic-small 9.1 
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Feature RuleFit Importance 
Ratio of interactions of class polar-small 8.8 
Ratio of interface to total number of ASP residues 8.7 
Ratio of interface to total number of MET residues 8.1 
Ratio of interaction of class hydrophobic-polar 7.6 
Mean number of simplices interface residues participate in 6.3 
Ratio of interactions of class aromatic-positively charged 6.1 
Mean interface residue potential / mean residue potential 6.0 
Mean volume for T2 simplices 6.0 
Ratio of interactions of class hydrophobic-positively charged 5.7 
Ratio of interactions of class aromatic-polar 5.6 
Ratio of interactions of class positively charged-small 5.6 
Ratio of interactions of class hydrophobic-negatively charged 5.1 
Mean volume for T3 simplices 4.9 
Number of interface residues for protein B 4.8 
Mean interface residue T1 3.8 
Ratio of interaction of class aromatic-negatively charged 3.6 
Ratio of interface to total number of PRO residues 3.5 
Ratio of interface to total number of THR residues 3.4 
Ratio of interactions of class positively charged-polar 2.8 
Mean interface residue Total / mean residue Total 2.6 
Mean interface residue Volume 2.6 
Mean interface residue T2 2.5 
Ratio of interactions of class negatively charged-small 2.2 
Ratio of interface / total residues for protein A 2.2 
Mean volume for T4 simplices 2.0 
Mean interface residue T2 / mean residue T2 1.8 
Ratio of interface to total number of VAL residues 1.7 
Mean potential for the conformation 1.6 
Ratio of interface to total number of TYR residues 1.6 
Mean interface residue T0 1.1 
Mean interface residue T0 / mean residue T1 0.6 
Ratio of interactions of class negatively charged-polar 0.5 
Ratio of interface / total residues for the conformation 0.5 
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Feature Importance for docking algorithm on data subset with antibody-antigen data 
(described in Section 5.1.4) 
 
Feature RuleFit Importance 
Ratio of interactions of class aromatic-small 98.9 
Ratio of interface to total number of ASN residues 87.8 
Mean interface residue tetrahedrality 71.4 
Mean conservation of interface residues 69.3 
Mean interface residue tetrahedrality / mean residue tetrahedrality 62.9 
Mean interface residue conservation / mean conservation of all residues 61.0 
Ratio of interface to total number of ILE residues 60.8 
Ratio of interface to total number of ASP residues 51.8 
Ratio of interface to total number of GLU residues 51.2 
Ratio of interface to total number of GLN residues 47.4 
Mean volume for T1 simplices 47.1 
Mean volume for T2 simplices 44.7 
Ratio of interface to total number of PRO residues 42.1 
Ratio of interface to total number of THR residues 36.8 
Ratio of interface to total number of VAL residues 32.6 
Ratio of interaction of class aromatic-negatively charged 31.7 
Ratio of interface to total number of TRP residues 30.8 
Total volume of simplices that cross interface / total volume of both 
chains 

27.7 

Total number of interface residues 25.8 
Ratio of interactions of class aromatic-positively charged 25.7 
Ratio of interface to total number of PHE residues 25.4 
Ratio of interface to total number of TYR residues 24.7 
Ratio of interface to total number of SER residues 23.1 
Mean interface residue T5 22.6 
Number of interface residues for protein B 20.6 
Mean volume for T0 simplices 19.1 
Mean interface residue T2 19.0 
Ratio of interactions of class aromatic-polar 18.6 
Mean volume for T5 simplices 17.9 
Ratio of interactions of class hydrophobic-aromatic 16.9 
Mean interface residue T1 16.7 
Ratio of interactions of class positively charged-polar 16.3 
Ratio of interactions of class negatively charged-polar 16.1 
Ratio of interface to total number of MET residues 16.0 
Ratio of interface to total number of HIS residues 15.9 
Raton of interactions of class positively charged-negatively charged 14.8 
Mean interface residue T2 / mean residue T2 14.6 
Ratio of interactions of class hydrophobic-small 14.4 
Ratio of interface to total number of LEU residues 14.3 
Ratio of interactions of class negatively charged-small 14.2 
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Feature RuleFit Importance 
Ratio of interactions of class polar-small 14.0 
Mean interface residue T1 / mean residue T1 13.7 
Number of interface residues for protein A 13.2 
Mean interface residue T5 / mean residue T5 12.6 
Mean interface residue volume / mean residue volume 11.6 
Mean interface residue T0 / mean residue T1 11.4 
Ratio of interactions of class hydrophobic-positively charged 11.2 
Mean interface residue Total / mean residue Total 10.7 
Mean interface residue T4 10.6 
Ratio of interface to total number of ALA residues 10.0 
Ratio of interactions of class hydrophobic-negatively charged 9.7 
Mean volume for T4 simplices 9.7 
Ratio of interface to total number of GLY residues 9.2 
Mean number of simplices interface residues participate in 8.5 
Mean interface residue T4 / mean residue T4 8.4 
Ratio of interface to total number of LYS residues 8.1 
Ratio of interface to total number of ARG residues 7.6 
Mean interface residue T3 / mean residue T3 5.9 
Mean interface residue T0 5.8 
Mean interface residue potential / mean residue potential 5.3 
Ratio of interaction of class hydrophobic-polar 5.2 
Ratio of interactions of class positively charged-small 4.9 
Ratio of interface to total number of CYS residues 4.6 
Mean volume for T3 simplices 4.1 
Mean potential for the conformation 3.6 
Ratio of interface / total residues for protein B 3.4 
Mean interface residue potential 2.7 
Mean interface residue T3 2.5 
Ratio of interface / total residues for protein A 2.5 
Total potential 2.2 
Mean interface residue Volume 2.0 
Ratio of interface / total residues for the conformation 0.9 
Volume of simplices that cross interface 0.1 
 
 
 
  



 

139 
 

Appendix E: Classification Results 
 
Classification performance for docking algorithm on initial data set (described in Section 
5.2.1) 
 

Protein 
Position of 

native 
conformation 

RMS of 
predicted top 
confirmation 

fraction of 
correct receptor 

residues 

fraction of 
correct ligand 

residues 

Highest ranked 
confirmation 

with RMS < 5 Å 

1A0O 553 12.59 0.400 0.667 149 
1ACB 158 15.41 0.500 0.417 52 
1AHW 42 31.3 0.700 0.350 12 
1ATN 375 18.08 0.647 0.238 214 
1AVW 41 20.98 0.333 0.286 29 
1AVZ 206 16.43 0.500 0.833 156 
1BQL 316 23.19 0.688 0.308 193 
1BRC 364 12.31 0.625 0.556 298 
1BRS 316 17.41 0.867 0.714 21 
1BTH 24 18.3 0.464 0.900 24 
1BVK 237 19.77 0.769 0.143 13 
1CGI 64 1.89 0.889 0.875 1 
1CHO 197 15.22 0.588 0.615 77 
1CSE 52 13.58 0.360 0.667 30 
1DFJ 1 0 1.000 1.000 1 
1DQJ 8 5.23 0.800 0.750 8 
1EFU 1 0 1.000 1.000 1 
1EO8 241 16.89 0.800 0.688 241 
1FBI 88 21.12 0.611 0.143 3 
1FIN 9 12.02 0.767 0.467 5 
1FQ1 297 18.43 0.353 0.478 38 
1FSS 134 14.14 0.400 0.688 35 
1GLA 573 29.41 0.846 0.625 341 
1GOT 105 13.68 0.034 0.333 90 
1IAI 14 4.97 0.842 1.000 1 
1IGC 221 23.64 0.214 0.462 75 
1JHL 203 20.49 0.769 0.182 139 
1MAH 47 15.11 0.500 0.706 6 
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Protein 
Position of 

native 
conformation 

RMS of 
predicted top 
confirmation 

fraction of 
correct receptor 

residues 

fraction of 
correct ligand 

residues 

Highest ranked 
confirmation 

with RMS < 5 Å 

1MDA 394 13.06 1.000 0.667 51 
1MEL 2 7.93 0.154 0.100 2 
1MLC 165 16.73 0.250 0.400 122 
1NCA 2 22.26 0.619 0.813 2 
1NMB 146 14.91 0.556 0.538 55 
1PPE 7 6.92 0.682 0.917 2 
1QFU 59 10.89 0.611 0.750 19 
1SPB 20 9.92 0.353 0.824 20 
1STF 126 0.89 0.952 0.933 1 
1TAB 155 6.69 0.579 0.900 5 
1TGS 8 7.09 0.417 0.467 6 
1UDI 86 3.61 0.714 0.875 1 
1UGH 9 0.48 0.952 0.895 1 
1WEJ 116 14.43 0.769 0.545 116 
1WQ1 1 0 1.000 1.000 1 
2BTF 185 9.29 0.571 0.762 9 
2JEL 30 23.21 0.588 0.467 7 
2KAI 231 12.13 0.650 0.429 23 
2PCC 507 13.8 0.778 0.900 220 
2PTC 187 12.44 0.600 0.231 151 
2SIC 162 15.21 0.571 0.167 41 
2SNI 81 15.82 0.286 0.545 22 
2TEC 143 21.51 0.333 0.583 27 
2VIR 50 25.93 0.294 0.571 16 
3HHR 1 0 1.000 1.000 1 
4HTC 13 5.87 0.382 0.593 2 
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Classification performance for docking algorithm after re-ranking top 200 conformations 
(described in Section 5.2.1) 
 

Protein RMS of predicted top 
conformation after re-ranking 

highest 
confirmation 

position after 
re-ranking 

original 
position 

1A0O 12.59 16 160 149 
1ACB 15.41 1 158 158 
1AHW 31.3 1 40 42 
1ATN 18.08 114 193 198 
1AVW 20.98 1 37 41 
1AVZ 16.43 11 153 156 
1BQL 23.19 31 180 193 
1BRC 17.06 195 191 186 
1BRS 17.41 2 114 132 
1BTH 18.3 1 28 24 
1BVK 19.77 3 82 65 
1CGI 1.89 1 63 64 
1CHO 15.22 1 177 197 
1CSE 13.58 1 49 52 
1DFJ 0 1 1 1 
1DQJ 5.23 1 5 8 
1EFU 0 1 1 1 
1EO8 16.89 17 161 165 
1FBI 21.12 1 70 88 
1FIN 12.02 1 9 9 
1FQ1 18.43 8 173 181 
1FSS 14.14 1 184 134 
1GLA 29.41 88 160 164 
1GOT 13.68 1 118 105 
1IAI 4.97 1 13 14 
1IGC 23.64 3 173 166 
1JHL 20.49 14 128 139 
1MAH 15.11 1 64 47 
1MDA 14.66 29 185 181 
1MEL 7.93 1 3 2 
1MLC 16.73 1 173 165 
1NCA 22.26 1 3 2 
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Protein RMS of predicted top 
conformation after re-ranking 

highest 
confirmation 

position after 
re-ranking 

original 
position 

1NMB 14.91 1 138 146 
1PPE 6.92 1 8 7 
1QFU 10.89 1 61 59 
1SPB 9.92 1 15 20 
1STF 0.89 1 130 126 
1TAB 6.69 1 148 155 
1TGS 7.09 1 12 8 
1UDI 3.61 1 86 86 
1UGH 0.48 1 10 9 
1WEJ 14.43 1 104 116 
1WQ1 0 1 1 1 
2BTF 9.29 1 182 185 
2JEL 23.21 1 22 30 
2KAI 12.13 2 151 150 
2PCC 13.8 28 179 168 
2PTC 19.16 1 183 187 
2SIC 15.21 1 155 162 
2SNI 15.82 1 80 81 
2TEC 21.51 1 152 143 
2VIR 25.92 1 46 50 
3HHR 0 1 1 1 
4HTC 5.87 1 18 13 
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