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ABSTRACT

A HARDWARE IMPLEMENTATION OF THE SOM FOR A NETWORK
INTRUSION DETECTION SYSTEM

Brent W. Roeder, B.S.
Virginia Tech, 2005

Thesis Director: Dr. Kris Gaj

This thesis describes the research and development of a hardware implementation of the
Self Organizing Map (SOM) for a network intrusion detection system. As part of the
thesis research, Kohonen’s SOM algorithm was examined and different hardware
implementations for the SOM were surveyed. This survey resulted in the design and
implementation of a conventional SOM, which was then modified for use as a detector of
anomalous network traffic as part of a network intrusion detection system. The resulting
implementation known as the port agent SOM is both smaller in area and supports higher
data throughput than the conventional SOM, as was quantified through post place and
route analysis. This thesis can serve as a tool for developing hardware implementations of

the SOM, especially if their intended application is anomaly detection.



1 INTRODUCTION

There is a critical need for the ability to detect malicious network intrusions. A novel
system known as the port agent architecture has been proposed that utilizes the Kohonen
Self Organizing Map (SOM) as a tool for detecting these intrusions [1]. However, in
order for this system to be realized, an efficient hardware implementation of the SOM
must be researched and developed. This thesis lays the groundwork for the design of a
hardware implementation of the SOM for the port agent architecture network intrusion

detection system.

The SOM is an unsupervised learning algorithm conceived by Teuvo Kohonen and others
in the early 1980’s. As depicted in Figure 1, the SOM takes as input higher dimensional
unlabeled feature vectors and produces a matrix of reduced dimensionality (typically 2D)

based on the similarities in the features of the input training vectors [2].
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Figure 1 SOM Concept — Source Note: [1]

To accomplish this, the SOM must first be trained. Training a SOM is a relatively simple
process. First, each element in the SOM matrix is assigned a random value or weight.
Second, a feature vector from the training data set is compared to every element in the
SOM matrix using a distance metric. Third, the element in the matrix with the smallest
computed distance to the input feature vector is selected as the Best Matching Unit
(BMU). Fourth, the BMU and elements in its neighborhood are updated to more closely
match the input feature vector. The amount by which the elements are updated is
dependent on the learning rate of the SOM and BMU’s neighborhood size. In a
conventional SOM, both of the learning rate and the neighborhood size decrease over
time as measured by the number of training vectors processed. Finally, if a termination

criterion is met (i.e. a sufficient number of vectors have been processed so that the



learning rate and neighborhood size are very small) the training is over, if not, steps two

through four are repeated.

Training in the SOM is different than many artificial learning algorithms because it learns
in an unsupervised fashion. That is, it does not require labeled data and requires no a
priori information about the data it is trying to understand. The advantage of an
unsupervised learning approach is that target outputs are not required. Because of this,
the SOM can cluster data without user interaction directly from the input data. Simply
put, the data to be clustered is the training data. Once trained, data can be presented to the
SOM and the BMU calculated. The location of the BMU can be used to classify the type
of data input and the distance between the input data and the BMU can be used to
measure the degree of anomalousness. The SOM’s ability to characterize data in this way
has led to its use in speech recognition and translation, image recognition, speaker

identification, radar target classification, and others [2].

Another application of the SOM’s classification and anomaly detection capability is
network intrusion detection. A system known as the port agent architecture is being
researched and developed that will use a system of SOM based port agents to detect
anomalous network traffic passing through the ports of an enterprise level network switch

(see Figure 2).
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Figure 2 Port Agent Architecture — Source Note: [1]

The port agent will use two nearly identical SOMs. The first level SOM will classify
network traffic and the second level SOM will detect anomalies in sequences of

classifications (see Figure 3).
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Figure 3 Port Agent Design — Source Note: [1]

The SOM design used for each of the levels in the port agent is based on a conventional
SOM architecture, but optimized for classification and anomaly detection by being
preloaded with an already trained matrix and using a constant learning rate and a constant
neighborhood size. As mentioned, when training a conventional SOM, the learning rate
and neighborhood size decease over time to zero until the SOM is no longer learning.

Since the port agent SOM is preloaded with a trained map, it does not require this



capability. Rather than using a learning rate of zero in the port agent SOM, a small
constant learning rate and neighborhood size is used so that small changes in the input
data can be incorporated in the map while being processed for anomalies. This approach
was validated in software in [3]. The modifications to the port agent SOM reduce its
complexity in hardware and produce a design of reduced size and increased speed
compared to a conventional SOM implementation. The objective of this thesis is to
provide a design comparison between a conventional SOM and the port agent SOM.
Both the conventional SOM and the port agent SOM designs will be fully implemented
and the results will be used to show that the port agent SOM implementation is smaller

than a conventional SOM implementation and can process data faster.



2 THE SOM ALGORITHM

The network intrusion detection system known as the port agent architecture will consist
of anomaly detectors known as port agents that are based on an unsupervised learning
algorithm called the SOM. Realizing the port agents in hardware requires an
understanding of the computational requirements of the conventional SOM algorithm

conceived by Kohonen.

As described in Chapter 1, in order for a SOM to be used it must first be trained. The first
step required when training the SOM is matrix initialization. Data is processed and
maintained by the SOM as n-dimensional weight vectors which have the form W; =
(w1, wy ...,wy). Initializing the matrix requires assigning a starting value (usually
random) to each of the weights in the matrix. Once initialized, training data can be
presented to the SOM. The second step in the algorithm is the feature vector distance
calculation. An input vector V; = (vq,v, ..., 1) is presented to the SOM and compared
to each of the weight vectors WW; in the matrix using a distance metric. A common metric

used in the SOM is the Euclidean norm [2].

Vi =W = V(w1 — w2+ (v — wp)? 4+ (v — wy)? (1)



The distance computed between the current weight of each element and the input vector

is used to determine the best matching unit (BMU).

The third step of the SOM algorithm is BMU selection. BMU selection is accomplished
by comparing the distance computed in the previous algorithm step for each element and
selecting the index of the element whose weight is the closest to the input vector. This is

formalized as

e = argmin; {[Ivi - W) @

by Kohonen in [2]. The BMU for each input feature vector V; is calculated to determine

the neighborhood in the matrix whose elements should be updated.

The fourth step of the SOM algorithm is the weight update calculation. Each element of

the SOM matrix is updated as a function of the discrete time coordinate t as

Wit +1) = W) + AW; = W;(t) + he; (O [Vi(6) — W; ()] 3)

where t is incremented for every input vector processed. The function h.;(t) is referred
to as the neighborhood kernel and is also a function of the discrete time coordinate. The
neighborhood kernel is typically computed as a Gaussian function [2] or a step function

[4]. The Gaussian function is



2
llrj=re

hes(6) = A(E) * exp(~ 50 (4

where A(t) is the learning rate and is a monotonically decreasing function of time,
|| — 7 || is the distance between the element to be updated and the best matching unit,

and o(t) is the neighborhood width (see Figure 4). Similar to A(t), a(t) is a

monotonically decreasing function of time.

An alternative to the Gaussian function is what is referred to as a step function [4]. The

step function is

_ (A i) € N
=l i) e v ©)

where N_(t) is a set of points within a boundary centered at the BMU c, and a radius

r = a(t), calculated as a monotonically decreasing function of time (see Figure 4).



Figure 4 BMU Neighborhood

Steps two through four are repeated until a termination criterion is met. In many cases
the criteria for termination is having the discrete time coordinate reach some threshold.
Usually this threshold is chosen so that the learning rate and neighborhood are
approaching zero and the SOM is no longer learning. As described in the previous
chapter, once trained the SOM can be used to classify input vectors and measure their
degree of anomalousness with the same computational steps as are used to determine the

BMU.
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3 SOM IMPLEMENTATION RESEARCH

The port agent architecture described in Chapter 1 requires a SOM implemented in
hardware that is small enough to be integrated into a network switch yet fast enough to
process 1 Gbps network traffic in real time. The design approach used to meet these
requirements was to research and develop a fully featured conventional SOM in hardware
and then optimize this design for minimal size and maximum throughput by simplifying
or altogether removing elements of the conventional SOM not required by the port agent
SOM. In order to understand the design tradeoffs for a conventional SOM hardware

design, a survey of previous hardware implementations of the SOM was performed.

Hardware designs for the SOM can be coarsely divided into two categories namely
analog and digital [5]. While examples of the former were examined [2][6][7], an
overwhelming number of implementations found in the literature were for the latter. This
is likely because it is more difficult to develop a SOM using analog circuitry that is
sufficiently scalable for solving useful problems [8]. This, combined with the availability
of high performance Field Programmable Gate Arrays [FPGAs] and their powerful
development and simulation tools, eliminated analog implementations from consideration
for the port agent SOM in favor of digital SOM implementations. Based on the survey

performed, digital SOM implementations can be described and classified by their

11



topology, distance metric, BMU selection, and weight update function. The design

tradeoffs for different SOM implementations are described in this context.

3.1 Topology

The majority of digital hardware implementations of the SOM in the literature are
implemented as a matrix of processing elements or nodes with the distinguishing feature
being whether the elements are interconnected with one another or not. The two

generalized topologies are show in Figure 5.
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Figure 5 Interconnected Topology (left), Independent Topology (right)

Because SOMs are a form of competitive learning artificial neural network (ANN), some
SOM implementations leverage an interconnected topology for their matrix. Two

12



examples of SOM implementations that use interconnected topologies are [9] and [10]. In
[9], an existing hardware design used for ANNs known as MANTRA 1 is used for the
SOM. In [10], a small SOM is developed using a traditional ANN interconnected
architecture. Because interconnected topologies increase the hardware requirements of
the SOM [8], most SOM implementations in the literature use an array of independent
nodes where each node provides the distance metric and weight update functionality so

that input vectors can be processed in parallel.

3.2 Distance Metric

While the Euclidean norm (see Equation 1) is often provided as the example distance
metric in SOM algorithm descriptions, it is a hardware intensive function to implement
because it involves the squaring of values and a square root. Therefore, most hardware
implementations of the SOM use a computationally simpler function for calculating the
distance between vectors. The most popular metric used based on the survey of available

literature is the Manhattan distance. The Manhattan distance is calculated as

[Vi =Wl = 1(vy =w)l + [(wz = w)| + -+ | (v — ) (6)

and was used to replace the Euclidean norm in the majority of designs that were reviewed
because it only requires the use of adders which can be implemented with a relatively
simple digital circuit. While the Manhattan distance was used most often, other metrics

were used as well. For instance, in [11], the Hamming distance was used. The Hamming

13



distance is calculated by counting the number of bit positions that are different between
two values and like the Manhattan distance, requires fewer hardware resources than the

Euclidean Norm.

3.3 BMU Selection

BMU selection requires the implementation of a search algorithm to select the SOM node
whose weight vector is the smallest distance from the input vector (see Equation 2).
Based on the literature surveyed, two popular ways of accomplishing this are the binary

tree search and the bit serial search.

As the name suggests, the binary tree search finds the BMU by comparing the distance

computed at every node using a binary tree [10]. An example implementation from [4]

for a four element SOM is shown in Figure 6.

14
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Figure 6 BMU Binary Tree Search — Source Note: [4]

The binary tree search is relatively efficient for small maps. However, the number of
levels in the search hardware is the log, of the number of elements in the map.
Therefore, the path delay for large maps may be unacceptable. A more efficient method
employed by many SOM implementations is the bit serial solution as shown in Figure 7.

This is described in [2] as the optimal method for selecting a BMU.
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Figure 7 Kohonen's WTA Implementation — Source Note: [2]

In the implementation from [2] shown in Figure 7, each D is a representation of the

difference between the input vector and the current weight of a node in the SOM.

Initially, the flag for each difference, D, is set. The MSBs for all of the differences are

compared. If there is at least one MSB equal to zero amongst all of the MSBs, any D

with MSB of one has its flag reset. This process is iterated for all bits of D. Any D

whose flag is set after the process is complete is a winning BMU. Unfortunately, the

circuit as presented in [2] and shown in Figure 4 is flawed. Once a flag register is reset, it

is not a possible BMU. Therefore, it should not continue to be compared to the other

nodes’ D. However, this was not accounted for by the BMU selection circuit in [2]. An

additional OR gate is required to ignore all nodes that have been eliminated from the

WTA competition for BMU (see Figure 8).

16
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shift D one bit left
} until all bits in D

Figure 8 Improved BMU Selection Circuit

3.4 Weight Update Function

Similar to the distance metric, most hardware implementations of the SOM simplify the
weight update function used in the literature (see Equation 3) in order to eliminate the
hardware required for multiplication. Although alternative simplification methods exist
such as the use of “Markov chains” [8][11], the solution encountered most often in the
literature replaces the complex neighborhood kernel, h.;(t), with a negative power of
two. Modifying the neighborhood kernel in this way replaces the multiplication required
to implement the learning function with a divide by two implemented as a right bit shift

[12] reducing the amount of hardware needed for the solution.

17



3.5 Summary of Hardware SOM Designs Surveyed

The results of the SOM digital hardware design survey are summarized in Table 1.
Where possible, each implementation is qualitatively classified based on the criteria
described in this chapter (i.e. topology, distance metric, BMU selection, and weight
update function). In addition, the number of elements implemented for each design is
listed. In many cases, projections were made for the number of elements possible in the
design. However, only SOM element counts that appeared to be realized in hardware are
reported. When a design could not be classified for a particular criterion, it is listed as

indeterminate.

18



Table 1 SOM Digital Hardware Implementations Surveyed

Ref. | Topology Distance BMU Weight Number of
Metric Selection Update Elements
[4] Independent Manhattan Binary Negative 25
/Chessboard Tree Power of Two
[5] Independent Euclidean Bit Indeterminate | 25
Serial
[8] Independent Manhattan Binary Markovian Indeterminate
Tree
[9] Interconnected Euclidean Bit Indeterminate | Indeterminate
Serial
[10] | Interconnected Indeterminate Binary Indeterminate | 16
Tree
[11] | Independent Hamming Binary Markovian 60
Tree
[12] | Independent Manhattan Bit Negative 16
Serial Power of Two
[13] | Independent Manhattan Bit Negative Indeterminate
Serial Power of Two
[14] | Independent Manhattan Indeterminate | Negative 4
Power of Two
[15] | Independent Euclidean Linear Negative 25
Search Power of Two

19




4 PORT AGENT SOM IMPLEMENTATION

The approach used to design a hardware implementation of the port agent SOM was to
develop a fully featured conventional SOM in hardware and then optimize this design for
minimal size and maximum throughput. This was done by simplifying or altogether
removing elements of the conventional SOM not required by the port agent SOM. The
conventional SOM implementation that was developed and the modifications made for
the port agent SOM implementation are described in the subsequent sections of this

chapter.

As with many of the SOM implementations researched, the throughput of a SOM can be
maximized in hardware by taking advantage of its topologically fixed architecture to
process each input vector in parallel using a topology consisting of an array of

independent processing elements or nodes (see Figure 9)
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Figure 9 SOM Hardware Architecture

To achieve this, each node in the SOM must contain the logic required to calculate the

distance between its own weight and each input vector as well as the amount that its

21



weight should be updated for each input vector. In addition, hardware must be
implemented that can find the BMU based on the input weight distance produced by each
of the SOM nodes. Based on the SOM implementation survey performed, a good choice
for each of these functions is the Manhattan distance, the negative power of two based
weight update function, and the bit serial BMU search respectively. By combining the
distance and weight update implementation described in [4] with the BMU search
implementation described in [2], these design choices can be realized. Therefore, this
combination of designs was used when developing a conventional SOM implementation

that served as the basis for the port agent SOM implementation.

4.1 CONVENTIONAL SOM IMPLEMENTATION

SOMs are specified by their dimensions (typically as X by Y) and the format of the
feature vectors they process. The specification provided for the port agent was for a 16
node by 16 node SOM with 8 x 8-bit (64-bit) feature vectors. The conventional SOM
implementation resulting from a combination of this specification and the background
research is described by starting with the top level view of the hardware architecture and

then delving into individual subsystems so that each functional unit can be explained.

The top level SOM architecture is shown in Figure 10.

22



clk —»
src_rdy ———
src_rd «+———
resetn ———
run ——»

64
v_in —
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Figure 10 Conventional SOM Top Level Architecture

There are seven input/output (1/0) signals used to interface with the SOM as described in

Table 2.

Table 2 Conventional SOM Top Level Signal Description

Signal Width Description
clk 1 Clock source for the SOM
src_rdy 1 Indicates the user is ready to input v_in
src_rd 1 Indicates the SOM is ready for v_in to be input
v_in 64 Training feature vector input
resetn 1 Asynchronous reset
run 1 Initiates execution of the SOM algorithm
done 1 Indicates the SOM execution is complete

23




The next level down in the conventional SOM hardware architecture is the
datapath/controller (see Figure 11). The datapath contains all of the processing elements
of the SOM. The controller manages the operation of the datapath and its functional units.
Figure 11 shows the I/O signaling described previously as well as the signals that
communicate information between the controller and the datapath. The purpose of each

of these will be made clear later when the datapath’s architecture is deconstructed.

clk

64

vin L - > [«————— resetn
reset_som * it
Id_diff e————src_rdy
inc_p
inc_a
Id_w

reset_wta
run_wta

sel_rand_bmu
inc_rand_bmu
reset_[B _count
inc_B _count
reset_o_count

A A A A A A 44 )

datapath controller

inc_a_count
reset_i_count

A 4 4 4 )

inc_i_count

wta_done

is_bmu
inc_p _rdy

inc_a_rd
—a_rdy ——— src_rd

som_done
= - ——» done

Figure 11 Conventional SOM Datapath/Controller Architecture

The datapath for the SOM contains the topologically fixed architecture of 16 x 16

processing nodes along with a WTA and parameter scheduler as shown in Figure 12.

24
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Figure 12 Conventional SOM Datapath

8 x_coord ||
y_coord

The purpose of the parameter scheduler logic (see Figure 13) is to maintain three counters

i, o, and B used by the weight update function. The i counter keeps track of how many

feature vectors the SOM has processed and can be thought of as the discrete time

coordinate described in Chapter 2. The a and B counters maintain a count of the number

25



of feature vectors processed using the present o and B parameter values. The scheduler

utilizes comparators to set flags to indicate to the SOM controller that 2,000 feature

vectors have been processed with the present value of B, 4,000 feature vectors have been

processed using the present value of a, and 18,000 feature vectors have been processed in

total and the SOM process

+1

11

reset_B8 _count——[rst
B_count_
inc_B _count——»=|en reg

>= 2000

\_L

ing is complete.

reset_o_count —»|

inc_a_count——|

Figure 13 Conventional SOM Parameter Scheduler

+1
11 15 15
Y
reset_i_count ——{rst
iteration_
inc_i_count—=|en reg
=
<= 6000 ==18000 >= 8000
and
L i
inc_6 _rdy som_done
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The a and B parameter values are maintained by each of the nodes in their weight update

logic and are used to calculate the neighborhood kernel (see Figure 14).
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Figure 14 Conventional SOM Weight Update Logic

As shown in Equation 3 in Chapter 2, the weight update logic in each node calculates the

offset AW; = h.;(t)[V(¢) — W;(t)] to apply to the weight of the node. To eliminate the
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need for multiplication logic while still allowing for a monotonically decreasing learning
rate and neighborhood size, a negative power of two implementation of the neighborhood

kernel h.;(t) from [4] was selected. This function is shown in Equation 7.

1 (24 . . %
() JI=T
hcj(t) = 1 a+D(Rj,Rj*)+ﬁ e o . % (7)
! ifj#]j

In Equation 7, j* represents the BMU, j represents the node being updated, and
D(Rj,Rj *) represents the Manhattan distance between the two nodes (see Equation 6).
D(Rj,R- *) is labeled as dist_to_bmu in Figure 14. Because the parameter scheduler
increases the value of a and B over time, h;(t) monotonically decreases over time as

desired.
The Manhattan distance is also used to determine the distance between the input vector

presented to the SOM and the weight of each element in the SOM for determining the

BMU. This logic is shown in Figure 15.
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Figure 15 Conventional SOM Distance Calculation Logic
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The Manhattan distance between the input vector and the node weight is stored in the
Parallel In Shift Out (PISO) register labeled distance_reg in Figure 15. This register
allows the distance calculated at each node to be processed serially (one MSB at a time)

by the WTA circuit.

The distance calculation requires as intermediate values absolute difference and signed

difference values using the absolute difference logic as show