
A HARDWARE IMPLEMENTATION OF THE SOM FOR A NETWORK�
INTRUSION DETECTION SYSTEM�

by�

Brent W. Roeder�
A Thesis�

Submitted to the�
Graduate Faculty�

of�
George Mason University�

in Partial Fulfillment of�
The Requirements for the Degree�

of�
Master of Science�

Computer Engineering�

Committee:

------'K'--~_· _ Dr. Kris Gaj, Dissertation Director

J~ -/-(~ Dr. Jens-Peter Kaps, Committee Member

Dr. Brian Mark, Committee Member

Dr. Andre Manitius, Department Chair

Dr. Lloyd J. Griffiths, Dean, Volgenau
School of Engineering

Date: ~ 2.Q,l 2.0 1\ Summer Semester 2011
George Mason University
Fairfax, VA

A Hardware Implementation of the SOM for a Network Intrusion Detection System

A thesis submitted in partial fulfillment of the requirements for the degree of Master of

Science at George Mason University

By

Brent W. Roeder

Bachelor of Science

Virginia Tech 2005

Director: Dr. Kris Gaj

Department of Electrical and Computer Engineering

Summer Semester 2011

George Mason University

Fairfax, VA

iii

Copyright 2011 Brent W. Roeder

All Rights Reserved

iv

TABLE OF CONTENTS

Page

TABLE OF CONTENTS ... iv

LIST OF TABLES ... vi
LIST OF FIGURES .. vii

ABSTRACT .. 2
1 INTRODUCTION ... 1
2 THE SOM ALGORITHM ... 7
3 SOM IMPLEMENTATION RESEARCH .. 11

3.1 Topology ... 12

3.2 Distance Metric ... 13

3.3 BMU Selection.. 14

3.4 Weight Update Function ... 17

3.5 Summary of Hardware SOM Designs Surveyed .. 18

4 PORT AGENT SOM IMPLEMENTATION .. 20

4.1 CONVENTIONAL SOM IMPLEMENTATION ... 22

4.2 PORT AGENT ARCHITECTURE SOM IMPLEMENTATION 33

5 PORT AGENT SOM DESIGN VERIFICATION .. 39
5.1 TEST VECTOR SELECTION ... 39

5.2 TEST VECTOR PROCESSING... 42

6 RESULTS AND ANALYSIS .. 48
6.1 IMPLEMENTATION RESULTS .. 48

6.2 IMPLEMENTATION ANALYSIS .. 51

v

7 FUTURE WORK ... 53
7.1 BMU Selection Time .. 53

7.2 Initial Matrix Weight Configuration ... 55

8 CONCLUSIONS.. 56
REFERENCES ... 58
CURRICULUM VITAE ... 61

vi

LIST OF TABLES

Table Page

Table 1 SOM Digital Hardware Implementations Surveyed .. 19

Table 2 Conventional SOM Top Level Signal Description .. 23

Table 3 Weight Update Validation Example .. 44

Table 4 Minimum Area Implementations for the Virtex-6 ... 49

Table 5 Maximum Throughput Implementations for the Virtex-6 49

Table 6 Minimum Area Implementations for the Stratix IV .. 50

Table 7 Maximum Throughput Implementations for the Stratix IV................................. 50

vii

LIST OF FIGURES

Figure Page

Figure 1 SOM Concept – Source Note: [1] .. 2

Figure 2 Port Agent Architecture – Source Note: [1] ... 4

Figure 3 Port Agent Design – Source Note: [1] .. 5

Figure 4 BMU Neighborhood ... 10

Figure 5 Interconnected Topology (left), Independent Topology (right) 12

Figure 6 BMU Binary Tree Search – Source Note: [4] .. 15

Figure 7 Kohonen's WTA Implementation – Source Note: [2] .. 16

Figure 8 Improved BMU Selection Circuit .. 17

Figure 9 SOM Hardware Architecture .. 21

Figure 10 Conventional SOM Top Level Architecture .. 23

Figure 11 Conventional SOM Datapath/Controller Architecture 24

Figure 12 Conventional SOM Datapath ... 25

Figure 13 Conventional SOM Parameter Scheduler ... 26

Figure 14 Conventional SOM Weight Update Logic ... 27

Figure 15 Conventional SOM Distance Calculation Logic .. 29

Figure 16 Conventional SOM Absolute Difference Logic ... 30

Figure 17 Conventional SOM WTA Logic .. 31

Figure 18 Conventional SOM Controller ASM .. 33

viii

Figure 19 Port Agent SOM Weight Update Logic ... 35

Figure 20 Port Agent SOM Datapath/Controller(top) and Datapath (bottom) 36

Figure 21 Port Agent Architecture SOM Controller ASM ... 37

Figure 22 Port Agent SOM Test Case 1 (left), 2 (middle), 3 (right) 40

Figure 23 Pre-trained Port Agent SOM Partial Map .. 41

Figure 24 Port Agent SOM Resulting from V1 ... 43

Figure 25 Port Agent SOM Resulting from V2 ... 45

Figure 26 Port Agent SOM Resulting from V3 ... 46

Figure 27 BMU Search Circuit ... 54

ABSTRACT

A HARDWARE IMPLEMENTATION OF THE SOM FOR A NETWORK

INTRUSION DETECTION SYSTEM

Brent W. Roeder, B.S.

Virginia Tech, 2005

Thesis Director: Dr. Kris Gaj

This thesis describes the research and development of a hardware implementation of the

Self Organizing Map (SOM) for a network intrusion detection system. As part of the

thesis research, Kohonen’s SOM algorithm was examined and different hardware

implementations for the SOM were surveyed. This survey resulted in the design and

implementation of a conventional SOM, which was then modified for use as a detector of

anomalous network traffic as part of a network intrusion detection system. The resulting

implementation known as the port agent SOM is both smaller in area and supports higher

data throughput than the conventional SOM, as was quantified through post place and

route analysis. This thesis can serve as a tool for developing hardware implementations of

the SOM, especially if their intended application is anomaly detection.

1

1 INTRODUCTION

There is a critical need for the ability to detect malicious network intrusions. A novel

system known as the port agent architecture has been proposed that utilizes the Kohonen

Self Organizing Map (SOM) as a tool for detecting these intrusions [1]. However, in

order for this system to be realized, an efficient hardware implementation of the SOM

must be researched and developed. This thesis lays the groundwork for the design of a

hardware implementation of the SOM for the port agent architecture network intrusion

detection system.

The SOM is an unsupervised learning algorithm conceived by Teuvo Kohonen and others

in the early 1980’s. As depicted in Figure 1, the SOM takes as input higher dimensional

unlabeled feature vectors and produces a matrix of reduced dimensionality (typically 2D)

based on the similarities in the features of the input training vectors [2].

2

Figure 1 SOM Concept – Source Note: [1]

To accomplish this, the SOM must first be trained. Training a SOM is a relatively simple

process. First, each element in the SOM matrix is assigned a random value or weight.

Second, a feature vector from the training data set is compared to every element in the

SOM matrix using a distance metric. Third, the element in the matrix with the smallest

computed distance to the input feature vector is selected as the Best Matching Unit

(BMU). Fourth, the BMU and elements in its neighborhood are updated to more closely

match the input feature vector. The amount by which the elements are updated is

dependent on the learning rate of the SOM and BMU’s neighborhood size. In a

conventional SOM, both of the learning rate and the neighborhood size decrease over

time as measured by the number of training vectors processed. Finally, if a termination

criterion is met (i.e. a sufficient number of vectors have been processed so that the

3

learning rate and neighborhood size are very small) the training is over, if not, steps two

through four are repeated.

Training in the SOM is different than many artificial learning algorithms because it learns

in an unsupervised fashion. That is, it does not require labeled data and requires no a

priori information about the data it is trying to understand. The advantage of an

unsupervised learning approach is that target outputs are not required. Because of this,

the SOM can cluster data without user interaction directly from the input data. Simply

put, the data to be clustered is the training data. Once trained, data can be presented to the

SOM and the BMU calculated. The location of the BMU can be used to classify the type

of data input and the distance between the input data and the BMU can be used to

measure the degree of anomalousness. The SOM’s ability to characterize data in this way

has led to its use in speech recognition and translation, image recognition, speaker

identification, radar target classification, and others [2].

Another application of the SOM’s classification and anomaly detection capability is

network intrusion detection. A system known as the port agent architecture is being

researched and developed that will use a system of SOM based port agents to detect

anomalous network traffic passing through the ports of an enterprise level network switch

(see Figure 2).

4

Figure 2 Port Agent Architecture – Source Note: [1]

The port agent will use two nearly identical SOMs. The first level SOM will classify

network traffic and the second level SOM will detect anomalies in sequences of

classifications (see Figure 3).

5

Figure 3 Port Agent Design – Source Note: [1]

The SOM design used for each of the levels in the port agent is based on a conventional

SOM architecture, but optimized for classification and anomaly detection by being

preloaded with an already trained matrix and using a constant learning rate and a constant

neighborhood size. As mentioned, when training a conventional SOM, the learning rate

and neighborhood size decease over time to zero until the SOM is no longer learning.

Since the port agent SOM is preloaded with a trained map, it does not require this

6

capability. Rather than using a learning rate of zero in the port agent SOM, a small

constant learning rate and neighborhood size is used so that small changes in the input

data can be incorporated in the map while being processed for anomalies. This approach

was validated in software in [3]. The modifications to the port agent SOM reduce its

complexity in hardware and produce a design of reduced size and increased speed

compared to a conventional SOM implementation. The objective of this thesis is to

provide a design comparison between a conventional SOM and the port agent SOM.

Both the conventional SOM and the port agent SOM designs will be fully implemented

and the results will be used to show that the port agent SOM implementation is smaller

than a conventional SOM implementation and can process data faster.

7

2 THE SOM ALGORITHM

The network intrusion detection system known as the port agent architecture will consist

of anomaly detectors known as port agents that are based on an unsupervised learning

algorithm called the SOM. Realizing the port agents in hardware requires an

understanding of the computational requirements of the conventional SOM algorithm

conceived by Kohonen.

As described in Chapter 1, in order for a SOM to be used it must first be trained. The first

step required when training the SOM is matrix initialization. Data is processed and

maintained by the SOM as n-dimensional weight vectors which have the form

 . Initializing the matrix requires assigning a starting value (usually

random) to each of the weights in the matrix. Once initialized, training data can be

presented to the SOM. The second step in the algorithm is the feature vector distance

calculation. An input vector is presented to the SOM and compared

to each of the weight vectors in the matrix using a distance metric. A common metric

used in the SOM is the Euclidean norm [2].

‖ ‖ √ (1)

8

The distance computed between the current weight of each element and the input vector

is used to determine the best matching unit (BMU).

The third step of the SOM algorithm is BMU selection. BMU selection is accomplished

by comparing the distance computed in the previous algorithm step for each element and

selecting the index of the element whose weight is the closest to the input vector. This is

formalized as

 {‖ ‖} (2)

by Kohonen in [2]. The BMU for each input feature vector is calculated to determine

the neighborhood in the matrix whose elements should be updated.

The fourth step of the SOM algorithm is the weight update calculation. Each element of

the SOM matrix is updated as a function of the discrete time coordinate t as

 (3)

where t is incremented for every input vector processed. The function is referred

to as the neighborhood kernel and is also a function of the discrete time coordinate. The

neighborhood kernel is typically computed as a Gaussian function [2] or a step function

[4]. The Gaussian function is

9

‖ ‖

 (4)

where is the learning rate and is a monotonically decreasing function of time,

‖ ‖ is the distance between the element to be updated and the best matching unit,

and is the neighborhood width (see Figure 4). Similar to , is a

monotonically decreasing function of time.

An alternative to the Gaussian function is what is referred to as a step function [4]. The

step function is

 {

 (5)

where is a set of points within a boundary centered at the BMU c, and a radius

 , calculated as a monotonically decreasing function of time (see Figure 4).

10

Figure 4 BMU Neighborhood

Steps two through four are repeated until a termination criterion is met. In many cases

the criteria for termination is having the discrete time coordinate reach some threshold.

Usually this threshold is chosen so that the learning rate and neighborhood are

approaching zero and the SOM is no longer learning. As described in the previous

chapter, once trained the SOM can be used to classify input vectors and measure their

degree of anomalousness with the same computational steps as are used to determine the

BMU.

11

3 SOM IMPLEMENTATION RESEARCH

The port agent architecture described in Chapter 1 requires a SOM implemented in

hardware that is small enough to be integrated into a network switch yet fast enough to

process 1 Gbps network traffic in real time. The design approach used to meet these

requirements was to research and develop a fully featured conventional SOM in hardware

and then optimize this design for minimal size and maximum throughput by simplifying

or altogether removing elements of the conventional SOM not required by the port agent

SOM. In order to understand the design tradeoffs for a conventional SOM hardware

design, a survey of previous hardware implementations of the SOM was performed.

Hardware designs for the SOM can be coarsely divided into two categories namely

analog and digital [5]. While examples of the former were examined [2][6][7], an

overwhelming number of implementations found in the literature were for the latter. This

is likely because it is more difficult to develop a SOM using analog circuitry that is

sufficiently scalable for solving useful problems [8]. This, combined with the availability

of high performance Field Programmable Gate Arrays [FPGAs] and their powerful

development and simulation tools, eliminated analog implementations from consideration

for the port agent SOM in favor of digital SOM implementations. Based on the survey

performed, digital SOM implementations can be described and classified by their

12

topology, distance metric, BMU selection, and weight update function. The design

tradeoffs for different SOM implementations are described in this context.

3.1 Topology

The majority of digital hardware implementations of the SOM in the literature are

implemented as a matrix of processing elements or nodes with the distinguishing feature

being whether the elements are interconnected with one another or not. The two

generalized topologies are show in Figure 5.

Figure 5 Interconnected Topology (left), Independent Topology (right)

Because SOMs are a form of competitive learning artificial neural network (ANN), some

SOM implementations leverage an interconnected topology for their matrix. Two

13

examples of SOM implementations that use interconnected topologies are [9] and [10]. In

[9], an existing hardware design used for ANNs known as MANTRA I is used for the

SOM. In [10], a small SOM is developed using a traditional ANN interconnected

architecture. Because interconnected topologies increase the hardware requirements of

the SOM [8], most SOM implementations in the literature use an array of independent

nodes where each node provides the distance metric and weight update functionality so

that input vectors can be processed in parallel.

3.2 Distance Metric

While the Euclidean norm (see Equation 1) is often provided as the example distance

metric in SOM algorithm descriptions, it is a hardware intensive function to implement

because it involves the squaring of values and a square root. Therefore, most hardware

implementations of the SOM use a computationally simpler function for calculating the

distance between vectors. The most popular metric used based on the survey of available

literature is the Manhattan distance. The Manhattan distance is calculated as

‖ ‖ | | | | | | (6)

and was used to replace the Euclidean norm in the majority of designs that were reviewed

because it only requires the use of adders which can be implemented with a relatively

simple digital circuit. While the Manhattan distance was used most often, other metrics

were used as well. For instance, in [11], the Hamming distance was used. The Hamming

14

distance is calculated by counting the number of bit positions that are different between

two values and like the Manhattan distance, requires fewer hardware resources than the

Euclidean Norm.

3.3 BMU Selection

BMU selection requires the implementation of a search algorithm to select the SOM node

whose weight vector is the smallest distance from the input vector (see Equation 2).

Based on the literature surveyed, two popular ways of accomplishing this are the binary

tree search and the bit serial search.

As the name suggests, the binary tree search finds the BMU by comparing the distance

computed at every node using a binary tree [10]. An example implementation from [4]

for a four element SOM is shown in Figure 6.

15

Figure 6 BMU Binary Tree Search – Source Note: [4]

The binary tree search is relatively efficient for small maps. However, the number of

levels in the search hardware is the log2 of the number of elements in the map.

Therefore, the path delay for large maps may be unacceptable. A more efficient method

employed by many SOM implementations is the bit serial solution as shown in Figure 7.

This is described in [2] as the optimal method for selecting a BMU.

16

Figure 7 Kohonen's WTA Implementation – Source Note: [2]

In the implementation from [2] shown in Figure 7, each D is a representation of the

difference between the input vector and the current weight of a node in the SOM.

Initially, the flag for each difference, D, is set. The MSBs for all of the differences are

compared. If there is at least one MSB equal to zero amongst all of the MSBs, any D

with MSB of one has its flag reset. This process is iterated for all bits of D. Any D

whose flag is set after the process is complete is a winning BMU. Unfortunately, the

circuit as presented in [2] and shown in Figure 4 is flawed. Once a flag register is reset, it

is not a possible BMU. Therefore, it should not continue to be compared to the other

nodes’ D. However, this was not accounted for by the BMU selection circuit in [2]. An

additional OR gate is required to ignore all nodes that have been eliminated from the

WTA competition for BMU (see Figure 8).

17

Figure 8 Improved BMU Selection Circuit

3.4 Weight Update Function

Similar to the distance metric, most hardware implementations of the SOM simplify the

weight update function used in the literature (see Equation 3) in order to eliminate the

hardware required for multiplication. Although alternative simplification methods exist

such as the use of “Markov chains” [8][11], the solution encountered most often in the

literature replaces the complex neighborhood kernel, , with a negative power of

two. Modifying the neighborhood kernel in this way replaces the multiplication required

to implement the learning function with a divide by two implemented as a right bit shift

[12] reducing the amount of hardware needed for the solution.

18

3.5 Summary of Hardware SOM Designs Surveyed

The results of the SOM digital hardware design survey are summarized in Table 1.

Where possible, each implementation is qualitatively classified based on the criteria

described in this chapter (i.e. topology, distance metric, BMU selection, and weight

update function). In addition, the number of elements implemented for each design is

listed. In many cases, projections were made for the number of elements possible in the

design. However, only SOM element counts that appeared to be realized in hardware are

reported. When a design could not be classified for a particular criterion, it is listed as

indeterminate.

19

Table 1 SOM Digital Hardware Implementations Surveyed

Ref. Topology Distance

Metric

BMU

Selection

Weight

Update

Number of

Elements

[4] Independent Manhattan

/Chessboard

Binary

Tree

Negative

Power of Two

25

[5] Independent Euclidean Bit

Serial

Indeterminate 25

[8] Independent Manhattan Binary

Tree

Markovian Indeterminate

[9] Interconnected Euclidean Bit

Serial

Indeterminate Indeterminate

[10] Interconnected Indeterminate Binary

Tree

Indeterminate 16

[11] Independent Hamming Binary

Tree

Markovian 60

[12] Independent Manhattan Bit

Serial

Negative

Power of Two

16

[13] Independent Manhattan Bit

Serial

Negative

Power of Two

Indeterminate

[14] Independent Manhattan Indeterminate Negative

Power of Two

4

[15] Independent Euclidean Linear

Search

Negative

Power of Two

25

20

4 PORT AGENT SOM IMPLEMENTATION

The approach used to design a hardware implementation of the port agent SOM was to

develop a fully featured conventional SOM in hardware and then optimize this design for

minimal size and maximum throughput. This was done by simplifying or altogether

removing elements of the conventional SOM not required by the port agent SOM. The

conventional SOM implementation that was developed and the modifications made for

the port agent SOM implementation are described in the subsequent sections of this

chapter.

As with many of the SOM implementations researched, the throughput of a SOM can be

maximized in hardware by taking advantage of its topologically fixed architecture to

process each input vector in parallel using a topology consisting of an array of

independent processing elements or nodes (see Figure 9)

21

Figure 9 SOM Hardware Architecture

To achieve this, each node in the SOM must contain the logic required to calculate the

distance between its own weight and each input vector as well as the amount that its

22

weight should be updated for each input vector. In addition, hardware must be

implemented that can find the BMU based on the input weight distance produced by each

of the SOM nodes. Based on the SOM implementation survey performed, a good choice

for each of these functions is the Manhattan distance, the negative power of two based

weight update function, and the bit serial BMU search respectively. By combining the

distance and weight update implementation described in [4] with the BMU search

implementation described in [2], these design choices can be realized. Therefore, this

combination of designs was used when developing a conventional SOM implementation

that served as the basis for the port agent SOM implementation.

4.1 CONVENTIONAL SOM IMPLEMENTATION

SOMs are specified by their dimensions (typically as X by Y) and the format of the

feature vectors they process. The specification provided for the port agent was for a 16

node by 16 node SOM with 8 x 8-bit (64-bit) feature vectors. The conventional SOM

implementation resulting from a combination of this specification and the background

research is described by starting with the top level view of the hardware architecture and

then delving into individual subsystems so that each functional unit can be explained.

The top level SOM architecture is shown in Figure 10.

23

Figure 10 Conventional SOM Top Level Architecture

There are seven input/output (I/O) signals used to interface with the SOM as described in

Table 2.

Table 2 Conventional SOM Top Level Signal Description

Signal Width Description

clk 1 Clock source for the SOM

src_rdy 1 Indicates the user is ready to input v_in

src_rd 1 Indicates the SOM is ready for v_in to be input

v_in 64 Training feature vector input

resetn 1 Asynchronous reset

run 1 Initiates execution of the SOM algorithm

done 1 Indicates the SOM execution is complete

24

The next level down in the conventional SOM hardware architecture is the

datapath/controller (see Figure 11). The datapath contains all of the processing elements

of the SOM. The controller manages the operation of the datapath and its functional units.

Figure 11 shows the I/O signaling described previously as well as the signals that

communicate information between the controller and the datapath. The purpose of each

of these will be made clear later when the datapath’s architecture is deconstructed.

Figure 11 Conventional SOM Datapath/Controller Architecture

The datapath for the SOM contains the topologically fixed architecture of 16 x 16

processing nodes along with a WTA and parameter scheduler as shown in Figure 12.

25

Figure 12 Conventional SOM Datapath

The purpose of the parameter scheduler logic (see Figure 13) is to maintain three counters

i, α, and β used by the weight update function. The i counter keeps track of how many

feature vectors the SOM has processed and can be thought of as the discrete time

coordinate described in Chapter 2. The α and β counters maintain a count of the number

26

of feature vectors processed using the present α and β parameter values. The scheduler

utilizes comparators to set flags to indicate to the SOM controller that 2,000 feature

vectors have been processed with the present value of β, 4,000 feature vectors have been

processed using the present value of α, and 18,000 feature vectors have been processed in

total and the SOM processing is complete.

Figure 13 Conventional SOM Parameter Scheduler

The α and β parameter values are maintained by each of the nodes in their weight update

logic and are used to calculate the neighborhood kernel (see Figure 14).

27

Figure 14 Conventional SOM Weight Update Logic

As shown in Equation 3 in Chapter 2, the weight update logic in each node calculates the

offset to apply to the weight of the node. To eliminate the

28

need for multiplication logic while still allowing for a monotonically decreasing learning

rate and neighborhood size, a negative power of two implementation of the neighborhood

kernel from [4] was selected. This function is shown in Equation 7.

 {
(

)

(

)
 ()

 (7)

In Equation 7, represents the BMU, represents the node being updated, and

 () represents the Manhattan distance between the two nodes (see Equation 6).

 () is labeled as dist_to_bmu in Figure 14. Because the parameter scheduler

increases the value of α and β over time, monotonically decreases over time as

desired.

The Manhattan distance is also used to determine the distance between the input vector

presented to the SOM and the weight of each element in the SOM for determining the

BMU. This logic is shown in Figure 15.

29

Figure 15 Conventional SOM Distance Calculation Logic

30

The Manhattan distance between the input vector and the node weight is stored in the

Parallel In Shift Out (PISO) register labeled distance_reg in Figure 15. This register

allows the distance calculated at each node to be processed serially (one MSB at a time)

by the WTA circuit.

The distance calculation requires as intermediate values absolute difference and signed

difference values using the absolute difference logic as shown in Figure 16.

Figure 16 Conventional SOM Absolute Difference Logic

31

The value calculated by the distance logic and stored in the distance register in each of

the 256 SOM nodes is processed by the WTA logic (see Figure 17) to search for a BMU.

Figure 17 Conventional SOM WTA Logic

The WTA logic is based on the improved BMU selection circuit shown in Figure 8 and

described in Chapter 3 but with additional logic added to count the number of bits

32

processed and to randomly select a BMU when there are ties. Because the Manhattan

distances calculated at each node are eleven bits wide (see Equation 6 and Figure 15), the

WTA circuit is clocked eleven times with the signal labeled run_wta in Figure 17 set.

After all eleven MSBs for each node have been processed; a node is indicated as a BMU

if its flag in the BMU flags register is set. Because there is an opportunity for ties where

more than one BMU flag is set, tie breaking logic was designed. The tie breaking logic

in the WTA circuit is a random number generator consisting of an 8-bit Linear Feedback

Shift Register (LFSR). The LFSR is used to select a starting point to find a BMU flag

that is set. This value is stored and then incremented until a set BMU flag is found. This

may require up to 256 attempts to find a BMU flag that is set. Once a set BMU flag is

found the BMU search is complete as indicated by the signal labeled is_bmu being set.

The value labeled bmu_coord contains the coordinates of the BMU.

All of the functional units that comprise the datapath are controlled by an algorithmic

state machine (ASM). The detailed ASM implemented in the conventional SOM

controller is shown in Figure 18.

33

Figure 18 Conventional SOM Controller ASM

4.2 PORT AGENT ARCHITECTURE SOM IMPLEMENTATION

The port agent SOM is a modified version of the conventional SOM that has been

optimized for area and speed by simplifying the weight update logic. The conventional

SOM implementation weight update function is dependent on a neighborhood size that

decreases monotonically over time making for a relatively complex weight update circuit

(see Figure 14). However, the port agent SOM is initialized with weights from a trained

34

map so that it can use a neighborhood function that stays constant over time as shown in

Equation 8.

{

 (

)

 ()

(

)

 ()

 ()

 (8)

The port agent SOM’s neighborhood function (Equation 8) is derived from the

conventional SOM’s neighborhood function (Equation 7) by assuming the maximum

values of α and β in the conventional SOM implementation (two and three respectively).

Because α and β are not required in the port agent SOM’s neighborhood function, the

parameter scheduler can be eliminated from the implementation and the complexity of

the weight update logic is reduced significantly (see Figure 19).

35

Figure 19 Port Agent SOM Weight Update Logic

36

Many levels of the SOM architecture were affected by the removal of the parameter

scheduler. For instance, signaling was removed between the datapath and controller (see

Figure 20) that was previously required to maintain the values of i, α, and β.

Figure 20 Port Agent SOM Datapath/Controller(top) and Datapath (bottom)

37

With the removal of a significant amount of logic from the datapath, the ASM controller

for the port agent SOM was able to be simplified as well (see Figure 21).

Figure 21 Port Agent Architecture SOM Controller ASM

38

The optimizations made to the conventional SOM architecture provided a significantly

smaller and faster implementation for the port agent SOM. Quantitative evidence of this

is provided in the next chapter.

39

5 PORT AGENT SOM DESIGN VERIFICATION

After the port agent SOM design was complete it was implemented in VHDL and

verified through simulation using Aldec Active-HDL 8.3 SP1. Design verification was

accomplished by first preloading the port agent SOM matrix with a map generated using

the software implementation from [3] and then presenting vectors to the SOM for

processing. The map updates produced from these vectors were validated with results

from a software implementation of the weight update function.

5.1 TEST VECTOR SELECTION

The test vectors presented to the port agent SOM were chosen to verify the three

scenarios possible when processing input vectors with the port agent SOM (see Figure

22).

40

Figure 22 Port Agent SOM Test Case 1 (left), 2 (middle), 3 (right)

Because the neighborhood size in the port agent SOM has a constant radius of one, the

neighborhoods that result from an input vector can contain 4, 6, or 9 elements depending

on where the BMU is found. Based on the pre-trained map that was loaded into the port

agent SOM, three specific test vectors were chosen to ensure each of these cases was

tested.

As described in the previous chapter, the SOM that was instantiated for simulation was

composed of a 16 node by 16 node matrix designed to process 8 x 8-bit (64-bit) feature

vectors. Because of the size of the map and its feature vectors, it is difficult to display the

entire port agent SOM matrix. However, for the verification process it is only necessary

to display the portions of the map that were affected by the input vectors. Figure 23

shows the subset of the port agent SOM that was exercised during validation after being

initialized with a pre-trained map.

41

Figure 23 Pre-trained Port Agent SOM Partial Map

In order to ensure the three cases in Figure 22 were tested, the test vectors chosen were

 : X"cb0233740f556551", : X"2b432a8253ca0ebb", and : X"a76a1bed183c73d9"

for test case one, two, and three respectively. These vectors correspond to the initial

42

values for nodes (0,0), (1,0), and (1,1) guaranteeing they would be the BMU for each

vector allowing each of the three cases in Figure 22 to be tested.

5.2 TEST VECTOR PROCESSING

The vector : X"cb0233740f556551" was presented as the first test vector to the port

agent SOM. As predicted, the BMU was determined by the port agent SOM to be node

(0,0) and its neighborhood included nodes (0,0), (1,0), (0,1), and (1,1). The map that

resulted from this test vector is shown in Figure 24.

43

Figure 24 Port Agent SOM Resulting from V1

It is evident from Figure 24 that the nodes in the neighborhood around the BMU node

(0,0) changed from their initial value and all nodes outside of the neighborhood remained

unchanged. Recall from the previous chapter that in the port agent SOM, each node in the

44

neighborhood is updated by adding when the node being updated is the

BMU; when the node is a distance of one from the BMU; and zero when

the node being updated is greater than a distance of one from the BMU. For instance, the

updated value of node (1,0) is X”2d412a8151c80fb9” from its initial value of

X"2b432a8253ca0ebb" for the input vector : X"cb0233740f556551". Because node

(1,0) is a distance of one from the BMU for , must be added to the initial

value of node (1,0) to obtain its new weight. The calculations performed by the port agent

SOM are shown in Table 3 for test vector .

Table 3 Weight Update Validation Example

V1 (hex) cb 02 33 74 0f 55 65 51

W (hex) 2b 43 2a 82 53 ca 0e bb

V (dec) 203 2 51 116 15 85 101 81

W (dec) 43 67 42 130 83 202 14 187

V – W (dec) 160 -65 9 -14 -68 -117 87 -106

V – W >> 6 (dec) 2 -2 0 -1 -2 -2 1 -2

W’ = W +[(V-W) >> 6] (dec) 45 65 42 129 81 200 15 185

W’ = W +[(V-W) >> 6] (hex) 2d 41 2a 81 51 c8 0f b9

45

The remaining two cases were run similarly. Test vector : X"2b432a8253ca0ebb" was

presented as the second test vector to the port agent SOM that resulted from test vector

 . As expected, the BMU was determined by the port agent SOM to be node (1,0) and

its neighborhood included nodes (0,0), (1,0), (2,0), (0,1), (1,1), and (2,1). The map that

resulted from this test vector is shown in Figure 25.

Figure 25 Port Agent SOM Resulting from V2

46

The final test vector presented was : X"a76a1bed183c73d9" and was presented to the

map resulting from . The BMU was determined by the port agent SOM to be node (1,1)

and its neighborhood included nodes (0,0), (1,0), (2,0), (0,1), (1,1), (2,1), (0,2), (1,2), and

(2,2). The map that resulted from this test vector is shown in Figure 26.

Figure 26 Port Agent SOM Resulting from V3

47

The port agent SOM values resulting from the three test vectors for the three different test

cases were confirmed with a software implementation of the weight update function

validating the port agent SOM design.

48

6 RESULTS AND ANALYSIS

In order to demonstrate the improvements in size and speed achieved by optimizing the

conventional SOM design for the requirements of the port agent SOM, both designs were

described with VHDL, implemented, and optimized. Both designs were targeted for the

Xilinx Virtex-6 and Altera Stratix IV FPGA parts. The toolset used for implementation

was the Xilinx ISE version 12.4 for the Virtex-6 and Altera Quartus II version 10.1 for

the Stratix IV. The Automated Tool for Hardware EvaluatioN (ATHENa) version 0.6.1

was used to optimize both implementations [16][17].

6.1 IMPLEMENTATION RESULTS

The smallest and fastest implementations produced by ATHENa for both designs for the

Virtex-6 xc6vlx760 are compared in Table 4 and Table 5 respectively.

49

Table 4 Minimum Area Implementations for the Virtex-6

Resource Conventional SOM Port Agent SOM Delta

LUTs 123,962 91,832 -32,130 (-26%)

Slices 41,696 25,565 -16,131 (-39%)

Flip Flops 23,620 23,575 -75 (-0.3%)

Max Frequency 46.1 MHz 105.3 MHz +59.72 MHz (+128%)

Table 5 Maximum Throughput Implementations for the Virtex-6

Resource Conventional SOM Port Agent SOM Delta

LUTs 127,318 91,832 -35,486 (-28%)

Slices 45,909 25,565 -20,344 (-44%)

Flip Flops 23,624 23,575 -49 (-0.2%)

Max Frequency 51.6 MHz 105.3 MHz +53.7 MHz (+104%)

In addition to being targeted for the Virtex-6 xc6vlx760, the conventional SOM and the

port agent SOM were implemented for the Stratix IV GT ep4s100g4f45i1. The results for

the smallest and fastest implementations produced by ATHENa for both designs for the

Stratix IV GT ep4s100g4f45i1 are shown in Table 6 and Table 7 respectively.

50

Table 6 Minimum Area Implementations for the Stratix IV

Resource Conventional SOM Port Agent SOM Delta

ALUTs 122,186 82,863 -39,323 (-32%)

Logic Util 145,447 88,774 -56,673 (-39%)

Flip Flops 19,529 19,482 -47 (-0.2%)

Max Frequency 105.2 MHz 160.1 MHz +54.9 MHz (+52%)

Table 7 Maximum Throughput Implementations for the Stratix IV

Resource
Conventional SOM Port Agent SOM

Delta

ALUTs 124,611 82,863 -41,748 (-34%)

Logic Util 156,035 88,774 -67,261 (-43%)

Flip Flops 19,529 19,482 -47 (-0.2%)

Max Frequency 116.3 MHz 160.1 MHz +43.8 MHz (+38%)

Clearly the port agent SOM was significantly smaller and faster than the conventional

SOM implementation on the Virtex-6 and Stratix IV. This is largely due to the

improvements made to the SOM node implementation. Since there are 256 nodes in the

implementation, small reductions in each node produced a large overall improvement in

the size and speed of the design.

51

6.2 IMPLEMENTATION ANALYSIS

The port agent SOM must be able to process 2,976,190 vectors/second in order to detect

anomalies in 1 Gbps Ethernet traffic. This equates to 336 ns of allowable latency for

each vector [2]. The latency in the port agent SOM is calculated by multiplying the

number of clock cycles required to process each vector with the clock period for the

implementation. On average, each vector processed by the port agent SOM requires 142

clock cycles to produce a result. The majority of the clock cycles are needed to randomly

select a BMU. Recall from Chapter 4 that the WTA circuit requires 11 clock cycles to

determine one or more BMUs for an input vector and may require up to 256 clock cycles

to randomly select a BMU if there is a tie. However, if we assume that on average it

requires 128 clock cycles to break a tie, BMU selection requires 139 clock cycles. The

remaining three clock cycles are used to read the input vector, initialize the WTA

circuitry, and then store the updated node weights (see Figure 21). Based on the number

of clock cycles required to process each vector and the maximum frequency for the

Virtex-6 and Stratix IV implementations, the time required to process each input vector

on the targeted devices is 1,349 ns and 887 ns respectively. This equates to 741,549

vectors/second for the Virtex-6 and 1,127,464 vectors/second on the Stratix IV. In both

cases the performance of the port agent SOM implementation does not meet the

requirement to process 1 Gbps Ethernet traffic due in large part to the latency incurred

when finding a random BMU. A solution to this problem has been devised and will be

discussed in more detail in the next chapter.

52

Although the port agent SOM hardware implementation cannot process 1 Gbps Ethernet

traffic without additional research and development, it is significantly closer to meeting

the requirement than the software implementation described in [3] that was used to

validate the approach even when running on a high performance platform. The software

implementation of the port agent SOM was evaluated on a Linux Fedora Core 13 Virtual

Machine (VM) on an eight core Dell T7400 with 6GB of memory. The VM was

configured to have two CPUs and 2GB of memory, and each CPU in the VM was a four

core E4520 running at 2.5 GHz. Using this hardware, the software port agent SOM

application was demonstrated to process one million feature vectors in 13.9 seconds or

71,942 vectors/second. This is less than 1/10
th

 the performance of the SOMs

implemented in hardware for this thesis and highlights the need for a hardware

implementation of the SOM for the network intrusion detection application.

53

7 FUTURE WORK

Although the port agent SOM shows promise for use in the intended network intrusion

detection system, the design must be improved somewhat before it can be deployed. At a

minimum, the port agent SOM must be improved so its WTA logic can find the BMU

faster and it must allow for its initial map to be externally configurable. Both of these

improvements will be described in more detail in the subsequent sections.

7.1 BMU Selection Time

Much of the latency in both the conventional SOM implementation and the port agent

SOM implementation described in Chapter 4 is the number of cycles required to

determine the coordinates of the BMU once they have been calculated. This is because

the BMU is stored in a 256-bit flag register that must be serially searched over 256 clock

cycles for the winner once it has been calculated (see Figure 27).

54

Figure 27 BMU Search Circuit

While this simple calculation can be performed very quickly by inspection using a 256

input multiplexer, it is currently clocked at the same speed as the rest of the SOM

circuitry. Static timing analysis has demonstrated that the BMU search circuitry can be

clocked at 517 MHz on the Virtex-6 which significantly reduces the penalty paid for

clocking the circuit up to 256 times to determine the coordinates of the BMU. If the

BMU search circuit was clocked at this rate for the 128 cycles it requires on average to

find a BMU, the time required to process each input vector would be reduced from 1,349

ns to 381 ns on the Virtex-6. Assuming that the BMU search circuit can be clocked as

fast as the Virtex-6 on the Stratix IV, as was the trend with the other port agent SOM

circuitry, the time required to process each input vector would be reduced from 887 ns to

335 ns, allowing for 2,985,074 vectors/second and making it possible for the port agent

SOM to process 1 Gbps Ethernet traffic as required for the network intrusion detection

application.

55

7.2 Initial Matrix Weight Configuration

The first step in the SOM algorithm is to establish the initial weights for every element in

the SOM matrix. In a conventional SOM this is accomplished by setting each weight to a

random value. As described in Chapter 4, the port agent SOM is preloaded with an

already trained matrix so that its weight update logic can be simplified significantly.

Once realized and tested, the port agent SOM can only be preloaded with one set of

weight values. It is evident from the top level architecture (see Figure 20) that there is no

I/O port for loading initial weights. In order to support the ability to preload an initial set

of weights representing an already trained matrix, I/O ports must be added and the

associated logic must be developed for the port agent SOM.

56

8 CONCLUSIONS

This thesis described the research and development of a hardware implementation of the

SOM for a network intrusion detection system. A survey of conventional SOM

implementations in hardware resulted in the design of a conventional SOM, which was

then modified for use as a detector of anomalous network traffic. The resulting

implementation known as the port agent SOM was validated with software and fully

implemented along with the conventional SOM for the Xilinx Virtex-6 and Altera Stratix

IV FPGA devices. Comparison of the two implementations demonstrated that the port

agent SOM required significantly less resources than the conventional SOM and could

process input vectors much faster. Additionally, the port agent SOM was demonstrated to

process input vectors more than 10 times as fast as a software implementation that

provided the same functionality. Based on the number of clock cycles required to process

each vector and the clock frequency compatible with the port agent SOM implementation

on the Virtex-6 and Stratix IV, the time required to process an input vector on the

targeted devices is 1,349 ns and 887 ns respectively. This equates to 741,549

vectors/second for the Virtex-6 and 1,127,464 vectors/second on the Stratix IV. While the

current port agent SOM implementation cannot process the 2,976,190 vectors/second

required to detect anomalies in 1 Gbps Ethernet traffic, it was shown that with the

addition of a faster clock for the BMU search circuit this requirement can be met.

57

Although work remains to realize a deployable port agent SOM, the research performed

for this thesis has succeeded in laying the groundwork for the design of a viable hardware

implementation of a SOM for a network intrusion detection system.

58

REFERENCES

59

REFERENCES

1. P. Kohlbrenner, B. Roeder, K. Gaj, “Design of a Self Organizing Map (SOM) Based

Anomaly Detector for Distributed Network Intrusion Detection,” Technical Report,

George Mason University, 2001.

2. T. Kohonen, Self-Organizing Maps, New York: Springer, 2001.

3. P. Kohlbrenner, “Self Organized Maps Verses Off-line Discord Detection for Network

Intrusion Detection,” CS 795 Project Report, George Mason University, 2011.

4. J. Pena, M. Vanegas, A. Valencia, “Parallel FPGA implementation of self-organizing

maps,” Microelectronics, 2004. ICM 2004 Proceedings. The 16th International

Conference on, vol., no., pp. 709- 712, 6-8 Dec. 2004.

5. K. Khalifa, B. Girau, F. Alexandre, and M.H. Bedoui, “Parallel FPGA implementation

of self-organizing maps,” Microelectronics, 2004. ICM 2004 Proceedings. The 16th

International Conference on, vol., no., pp. 709- 712, 6-8 Dec. 2004.

6. B. Hochet, V. Peiris, G. Corbaz, M. Declercq, “Implementation of a neuron dedicated

to Kohonen maps with learning capabilities,” Custom Integrated Circuits Conference,

1990., Proceedings of the IEEE 1990 , vol., no., pp.26.1/1-26.1/4, 13-16 May 1990.

7. D. Macq, M. Verleysen, P. Jespers, J. Didier-Legat, “Analog implementation of a

Kohonen map with on-chip learning,” Neural Networks, IEEE Transactions on , vol.4,

no.3, pp.456-461, May 1993.

8. M. Melton, T. Phan, D. Reeves, D. Van den Bout, “The TInMANN VLSI chip,”

Neural Networks, IEEE Transactions on , vol.3, no.3, pp.375-384, May 1992.

9. P. Ienne, M. Viredaz,, “Implementation of Kohonen's self-organizing maps on

MANTRA I,” Microelectronics for Neural Networks and Fuzzy Systems, 1994.,

Proceedings of the Fourth International Conference on, vol., no., pp.273-279, 26-28 Sep

1994.

10. M. Perez, W. Luque, F. Damiani, “Design of a 4×4 Kohonen neural net-VHDL

description,” Devices, Circuits and Systems, 1995. Proceedings of the 1995 First IEEE

International Caracas Conference on, vol., no., pp.135-138, 12-14 Dec 1995.

60

11. K. Appiah, A. Hunter, M. Hongying, Y. Shigang, M. Hobden, N. Priestley,P.

Hobden, C. Pettit, “A binary Self-Organizing Map and its FPGA implementation,”

Neural Networks, 2009. IJCNN 2009. International Joint Conference on , vol., no.,

pp.164-171, 14-19 June 2009.

12. M. Porrmann, U. Witkowski, U. Ruckert, “A massively parallel architecture for self-

organizing feature maps,” Neural Networks, IEEE Transactions on, vol.14, no.5, pp.

1110- 1121, Sept. 2003.

13. H. Onodera, K. Takeshita, K. Tamaru, "Hardware architecture for Kohonen network,"

Circuits and Systems, 1990., IEEE International Symposium on, vol., no., pp.1073-1077

vol.2, 1-3 May 1990.

14. A. Rajah, M. Khalil Hani, "ASIC design of a Kohonen neural network microchip,"

Semiconductor Electronics, 2004. ICSE 2004. IEEE International Conference on, vol.,

no., pp. 4 pp., 7-9 Dec. 2004.

15. A. Tisan, S. Oniga, C. Gavrincea, A. Buchman, "FPGA implementation of a self-

organized map with on-chip learning," Optimization of Electrical and Electronic

Equipment, 2008. OPTIM 2008. 11th International Conference on, vol., no., pp.81-86,

22-24 May 2008.

16. K. Gaj, J.P. Kaps, V. Amirineni, M. Rogawski, E. Homsirikamol, B.Y. Brewster,

“ATHENa – Automated Tool for Hardware EvaluatioN: Toward Fair and Comprehensive

Benchmarking of Cryptographic Hardware using FPGAs,” 20th International Conference

on Field Programmable Logic and Applications, Milano, Italy, Aug. 31st - Sep. 2nd,

2010.

17. About ATHENa. [Online]. Available: http://cryptography.gmu.edu/athena/

61

CURRICULUM VITAE

Brent W. Roeder graduated from W.T. Woodson High School, Fairfax, Virginia, in 1995.

He received his Bachelor of Science in Mathematics from Virginia Tech in 2000 and his

Bachelor of Science in Computer and Electrical Engineering from Virginia Tech in 2005.

He is currently employed as an engineer by McQ Inc. in Fredericksburg Virginia.

