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ABSTRACT 

 

A HARDWARE IMPLEMENTATION OF THE SOM FOR A NETWORK 

INTRUSION DETECTION SYSTEM 

 

Brent W. Roeder, B.S. 

Virginia Tech, 2005 

Thesis Director: Dr. Kris Gaj 

 

This thesis describes the research and development of a hardware implementation of the 

Self Organizing Map (SOM) for a network intrusion detection system. As part of the 

thesis research, Kohonen’s SOM algorithm was examined and different hardware 

implementations for the SOM were surveyed. This survey resulted in the design and 

implementation of a conventional SOM, which was then modified for use as a detector of 

anomalous network traffic as part of a network intrusion detection system. The resulting 

implementation known as the port agent SOM is both smaller in area and supports higher 

data throughput than the conventional SOM, as was quantified through post place and 

route analysis. This thesis can serve as a tool for developing hardware implementations of 

the SOM, especially if their intended application is anomaly detection. 
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1 INTRODUCTION 

 

There is a critical need for the ability to detect malicious network intrusions. A novel 

system known as the port agent architecture has been proposed that utilizes the Kohonen 

Self Organizing Map (SOM) as a tool for detecting these intrusions [1]. However, in 

order for this system to be realized, an efficient hardware implementation of the SOM 

must be researched and developed. This thesis lays the groundwork for the design of a 

hardware implementation of the SOM for the port agent architecture network intrusion 

detection system. 

 

The SOM is an unsupervised learning algorithm conceived by Teuvo Kohonen and others 

in the early 1980’s. As depicted in Figure 1, the SOM takes as input higher dimensional 

unlabeled feature vectors  and produces a matrix of reduced dimensionality (typically 2D) 

based on the similarities in the features of the input training vectors [2].  
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Figure 1 SOM Concept – Source Note: [1] 

 

 

To accomplish this, the SOM must first be trained. Training a SOM is a relatively simple 

process. First, each element in the SOM matrix is assigned a random value or weight. 

Second, a feature vector from the training data set is compared to every element in the 

SOM matrix using a distance metric. Third, the element in the matrix with the smallest 

computed distance to the input feature vector is selected as the Best Matching Unit 

(BMU). Fourth, the BMU and elements in its neighborhood are updated to more closely 

match the input feature vector. The amount by which the elements are updated is 

dependent on the learning rate of the SOM and BMU’s neighborhood size. In a 

conventional SOM, both of the learning rate and the neighborhood size decrease over 

time as measured by the number of training vectors processed. Finally, if a termination 

criterion is met (i.e. a sufficient number of vectors have been processed so that the 
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learning rate and neighborhood size are very small) the training is over, if not, steps two 

through four are repeated. 

 

Training in the SOM is different than many artificial learning algorithms because it learns 

in an unsupervised fashion. That is, it does not require labeled data and requires no a 

priori information about the data it is trying to understand. The advantage of an 

unsupervised learning approach is that target outputs are not required. Because of this, 

the SOM can cluster data without user interaction directly from the input data. Simply 

put, the data to be clustered is the training data. Once trained, data can be presented to the 

SOM and the BMU calculated.  The location of the BMU can be used to classify the type 

of data input and the distance between the input data and the BMU can be used to 

measure the degree of anomalousness. The SOM’s ability to characterize data in this way 

has led to its use in speech recognition and translation, image recognition, speaker 

identification, radar target classification, and others [2]. 

 

Another application of the SOM’s classification and anomaly detection capability is 

network intrusion detection. A system known as the port agent architecture is being 

researched and developed that will use a system of SOM based port agents to detect 

anomalous network traffic passing through the ports of an enterprise level network switch 

(see Figure 2). 
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Figure 2 Port Agent Architecture – Source Note: [1] 

 

 

The port agent will use two nearly identical SOMs. The first level SOM will classify 

network traffic and the second level SOM will detect anomalies in sequences of 

classifications (see Figure 3). 
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Figure 3 Port Agent Design – Source Note: [1] 

 

 

The SOM design used for each of the levels in the port agent is based on a conventional 

SOM architecture, but optimized for classification and anomaly detection by being 

preloaded with an already trained matrix and using a constant learning rate and a constant 

neighborhood size. As mentioned, when training a conventional SOM, the learning rate 

and neighborhood size decease over time to zero until the SOM is no longer learning. 

Since the port agent SOM is preloaded with a trained map, it does not require this 
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capability. Rather than using a learning rate of zero in the port agent SOM, a small 

constant learning rate and neighborhood size is used so that small changes in the input 

data can be incorporated in the map while being processed for anomalies. This approach 

was validated in software in [3]. The modifications to the port agent SOM reduce its 

complexity in hardware and produce a design of reduced size and increased speed 

compared to a conventional SOM implementation. The objective of this thesis is to 

provide a design comparison between a conventional SOM and the port agent SOM.  

Both the conventional SOM and the port agent SOM designs will be fully implemented 

and the results will be used to show that the port agent SOM implementation is smaller 

than a conventional SOM implementation and can process data faster. 
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2 THE SOM ALGORITHM 

 

The network intrusion detection system known as the port agent architecture will consist 

of anomaly detectors known as port agents that are based on an unsupervised learning 

algorithm called the SOM.  Realizing the port agents in hardware requires an 

understanding of the computational requirements of the conventional SOM algorithm 

conceived by Kohonen. 

 

As described in Chapter 1, in order for a SOM to be used it must first be trained. The first 

step required when training the SOM is matrix initialization. Data is processed and 

maintained by the SOM as n-dimensional weight vectors which have the form     

             . Initializing the matrix requires assigning a starting value (usually 

random) to each of the weights in the matrix.  Once initialized, training data can be 

presented to the SOM.  The second step in the algorithm is the feature vector distance 

calculation. An input vector                   is presented to the SOM and compared 

to each of the weight vectors    in the matrix using a distance metric. A common metric 

used in the SOM is the Euclidean norm [2]. 

 

‖     ‖   √                                             (1) 
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The distance computed between the current weight of each element and the input vector 

is used to determine the best matching unit (BMU). 

 

The third step of the SOM algorithm is BMU selection.  BMU selection is accomplished 

by comparing the distance computed in the previous algorithm step for each element and 

selecting the index of the element whose weight is the closest to the input vector.  This is 

formalized as 

 

          {‖     ‖}                                                 (2) 

 

by Kohonen in [2]. The BMU for each input feature vector    is calculated to determine 

the neighborhood in the matrix whose elements should be updated. 

 

The fourth step of the SOM algorithm is the weight update calculation. Each element of 

the SOM matrix is updated as a function of the discrete time coordinate t as  

 

                                                            (3) 

 

where t is incremented for every input vector processed.  The function        is referred 

to as the neighborhood kernel and is also a function of the discrete time coordinate. The 

neighborhood kernel is typically computed as a Gaussian function [2] or a step function 

[4].  The Gaussian function is  
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‖      ‖

 

      
                                                   (4) 

 

where       is the learning rate and is a monotonically decreasing function of time, 

‖      ‖ is the distance between the  element to be updated and the best matching unit, 

and      is the neighborhood width (see Figure 4).  Similar to     ,      is a 

monotonically decreasing function of time. 

 

An alternative to the Gaussian function is what is referred to as a step function [4].  The 

step function is  

 

        {
                           
                             

                                             (5) 

 

where       is a set of points within a boundary centered at the BMU c, and a radius 

       , calculated as a monotonically decreasing function of time (see Figure 4). 
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Figure 4 BMU Neighborhood 

 

 

Steps two through four are repeated until a termination criterion is met.  In many cases 

the criteria for termination is having the discrete time coordinate reach some threshold.  

Usually this threshold is chosen so that the learning rate and neighborhood are 

approaching zero and the SOM is no longer learning. As described in the previous 

chapter, once trained the SOM can be used to classify input vectors and measure their 

degree of anomalousness with the same computational steps as are used to determine the 

BMU.  
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3 SOM IMPLEMENTATION RESEARCH 

 

The port agent architecture described in Chapter 1 requires a SOM implemented in 

hardware that is small enough to be integrated into a network switch yet fast enough to 

process 1 Gbps network traffic in real time.  The design approach used to meet these 

requirements was to research and develop a fully featured conventional SOM in hardware 

and then optimize this design for minimal size and maximum throughput by simplifying 

or altogether removing elements of the conventional SOM not required by the port agent 

SOM. In order to understand the design tradeoffs for a conventional SOM hardware 

design, a survey of previous hardware implementations of the SOM was performed. 

 

Hardware designs for the SOM can be coarsely divided into two categories namely 

analog and digital [5].  While examples of the former were examined [2][6][7], an 

overwhelming number of  implementations found in the literature were for the latter. This 

is likely because it is more difficult to develop a SOM using analog circuitry that is 

sufficiently scalable for solving useful problems [8]. This, combined with the availability 

of high performance Field Programmable Gate Arrays [FPGAs] and their powerful 

development and simulation tools, eliminated analog implementations from consideration 

for the port agent SOM in favor of digital SOM implementations. Based on the survey 

performed, digital SOM implementations can be described and classified by their 
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topology, distance metric, BMU selection, and weight update function. The design 

tradeoffs for different SOM implementations are described in this context. 

 

3.1 Topology 

The majority of digital hardware implementations of the SOM in the literature are 

implemented as a matrix of processing elements or nodes with the distinguishing feature 

being whether the elements are interconnected with one another or not.  The two 

generalized topologies are show in Figure 5. 

 

 

 

Figure 5 Interconnected Topology (left), Independent Topology (right) 

 

 

Because SOMs are a form of competitive learning artificial neural network (ANN), some 

SOM implementations leverage an interconnected topology for their matrix. Two 
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examples of SOM implementations that use interconnected topologies are [9] and [10]. In 

[9], an existing hardware design used for ANNs known as MANTRA I is used for the 

SOM. In [10], a small SOM is developed using a traditional ANN interconnected 

architecture. Because interconnected topologies increase the hardware requirements of 

the SOM [8], most SOM implementations in the literature use an array of independent 

nodes where each node provides the distance metric and weight update functionality so 

that input vectors can be processed in parallel. 

 

3.2 Distance Metric 

While the Euclidean norm (see Equation 1) is often provided as the example distance 

metric in SOM algorithm descriptions, it is a hardware intensive function to implement 

because it involves the squaring of values and a square root. Therefore, most hardware 

implementations of the SOM use a computationally simpler function for calculating the 

distance between vectors. The most popular metric used based on the survey of available 

literature is the Manhattan distance.  The Manhattan distance is calculated as 

 

‖     ‖  |       |   |       |    |       |                 (6) 

 

and was used to replace the Euclidean norm in the majority of designs that were reviewed 

because it only requires the use of adders which can be implemented with a relatively 

simple digital circuit.  While the Manhattan distance was used most often, other metrics 

were used as well.  For instance, in [11], the Hamming distance was used. The Hamming 
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distance is calculated by counting the number of bit positions that are different between 

two values and like the Manhattan distance, requires fewer hardware resources than the 

Euclidean Norm.   

 

3.3 BMU Selection 

BMU selection requires the implementation of a search algorithm to select the SOM node 

whose weight vector is the smallest distance from the input vector (see Equation 2). 

Based on the literature surveyed, two popular ways of accomplishing this are the binary 

tree search and the bit serial search. 

 

As the name suggests, the binary tree search finds the BMU by comparing the distance 

computed at every node using a binary tree [10]. An example implementation from [4] 

for a four element SOM is shown in Figure 6. 
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Figure 6 BMU Binary Tree Search – Source Note: [4] 

 

The binary tree search is relatively efficient for small maps.  However, the number of 

levels in the search hardware is the log2 of the number of elements in the map.  

Therefore, the path delay for large maps may be unacceptable. A more efficient method 

employed by many SOM implementations is the bit serial solution as shown in Figure 7.  

This is described in [2] as the optimal method for selecting a BMU. 
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Figure 7 Kohonen's WTA Implementation – Source Note: [2] 

 

 

In the implementation from [2] shown in Figure 7, each D is a representation of the 

difference between the input vector and the current weight of a node in the SOM.  

Initially, the flag for each difference, D, is set.  The MSBs for all of the differences are 

compared.  If there is at least one MSB equal to zero amongst all of the MSBs, any D 

with MSB of one has its flag reset.  This process is iterated for all bits of D.  Any D 

whose flag is set after the process is complete is a winning BMU.  Unfortunately, the 

circuit as presented in [2] and shown in Figure 4 is flawed.  Once a flag register is reset, it 

is not a possible BMU.  Therefore, it should not continue to be compared to the other 

nodes’ D.  However, this was not accounted for by the BMU selection circuit in [2].  An 

additional OR gate is required to ignore all nodes that have been eliminated from the 

WTA competition for BMU (see Figure 8). 
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Figure 8 Improved BMU Selection Circuit 

 

 

3.4 Weight Update Function 

Similar to the distance metric, most hardware implementations of the SOM simplify the 

weight update function used in the literature (see Equation 3) in order to eliminate the 

hardware required for multiplication.  Although alternative simplification methods exist 

such as the use of “Markov chains” [8][11], the solution encountered most often in the 

literature replaces the complex neighborhood kernel,       , with a negative power of 

two. Modifying the neighborhood kernel in this way replaces the multiplication required 

to implement the learning function with a divide by two implemented as a right bit shift 

[12] reducing the amount of hardware needed for the solution. 
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3.5 Summary of Hardware SOM Designs Surveyed 

The results of the SOM digital hardware design survey are summarized in Table 1. 

Where possible, each implementation is qualitatively classified based on the criteria 

described in this chapter (i.e. topology, distance metric, BMU selection, and weight 

update function). In addition, the number of elements implemented for each design is 

listed. In many cases, projections were made for the number of elements possible in the 

design.  However, only SOM element counts that appeared to be realized in hardware are 

reported. When a design could not be classified for a particular criterion, it is listed as 

indeterminate. 
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Table 1 SOM Digital Hardware Implementations Surveyed 

Ref. Topology Distance 

Metric 

BMU 

Selection 

Weight 

Update 

Number of 

Elements 

[4] Independent Manhattan 

/Chessboard 

Binary  

Tree 

Negative 

Power of Two 

25 

[5] Independent Euclidean Bit 

Serial 

Indeterminate 25 

[8] Independent Manhattan Binary 

Tree 

Markovian  Indeterminate 

[9] Interconnected Euclidean Bit 

Serial 

Indeterminate Indeterminate 

[10] Interconnected Indeterminate Binary  

Tree 

Indeterminate 16 

[11] Independent Hamming Binary 

Tree 

Markovian 60 

[12] Independent Manhattan Bit 

Serial 

Negative 

Power of Two 

16 

[13] Independent Manhattan Bit 

Serial 

Negative 

Power of Two 

Indeterminate 

[14] Independent Manhattan Indeterminate Negative 

Power of Two 

4 

[15] Independent Euclidean Linear 

Search 

Negative 

Power of Two 

25 
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4 PORT AGENT SOM IMPLEMENTATION 

 

The approach used to design a hardware implementation of the port agent SOM was to 

develop a fully featured conventional SOM in hardware and then optimize this design for 

minimal size and maximum throughput.  This was done by simplifying or altogether 

removing elements of the conventional SOM not required by the port agent SOM. The 

conventional SOM implementation that was developed and the modifications made for 

the port agent SOM implementation are described in the subsequent sections of this 

chapter. 

 

As with many of the SOM implementations researched, the throughput of a SOM can be 

maximized in hardware by taking advantage of its topologically fixed architecture to 

process each input vector in parallel using a topology consisting of an array of 

independent processing elements or nodes (see Figure 9) 
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Figure 9 SOM Hardware Architecture 

 

 

To achieve this, each node in the SOM must contain the logic required to calculate the 

distance between its own weight and each input vector as well as the amount that its 
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weight should be updated for each input vector. In addition, hardware must be 

implemented that can find the BMU based on the input weight distance produced by each 

of the SOM nodes. Based on the SOM implementation survey performed, a good choice 

for each of these functions is the Manhattan distance, the negative power of two based 

weight update function, and the bit serial BMU search respectively. By combining the 

distance and weight update implementation described in [4] with the BMU search 

implementation described in [2], these design choices can be realized. Therefore, this 

combination of designs was used when developing a conventional SOM implementation 

that served as the basis for the port agent SOM implementation. 

 

4.1 CONVENTIONAL SOM IMPLEMENTATION  

SOMs are specified by their dimensions (typically as X by Y) and the format of the 

feature vectors they process.  The specification provided for the port agent was for a 16 

node by 16 node SOM with 8 x 8-bit (64-bit) feature vectors. The conventional SOM 

implementation resulting from a combination of this specification and the background 

research is described by starting with the top level view of the hardware architecture and 

then delving into individual subsystems so that each functional unit can be explained. 

 

The top level SOM architecture is shown in Figure 10. 
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Figure 10 Conventional SOM Top Level Architecture 

 

 

There are seven input/output (I/O) signals used to interface with the SOM as described in 

Table 2.   

 

 

Table 2 Conventional SOM Top Level Signal Description 

Signal Width Description 

clk 1 Clock source for the SOM 

src_rdy 1 Indicates the user is ready to input v_in 

src_rd 1 Indicates the SOM is ready for v_in to be input 

v_in 64 Training feature vector input 

resetn 1 Asynchronous reset 

run 1 Initiates execution of the SOM algorithm 

done 1 Indicates the SOM execution is complete 
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The next level down in the conventional SOM hardware architecture is the 

datapath/controller (see Figure 11).  The datapath contains all of the processing elements 

of the SOM. The controller manages the operation of the datapath and its functional units. 

Figure 11 shows the I/O signaling described previously as well as the signals that 

communicate information between the controller and the datapath.  The purpose of each 

of these will be made clear later when the datapath’s architecture is deconstructed. 

 

 

 

Figure 11 Conventional SOM Datapath/Controller Architecture 

 

 

The datapath for the SOM contains the topologically fixed architecture of 16 x 16 

processing nodes along with a WTA and parameter scheduler as shown in Figure 12. 
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Figure 12 Conventional SOM Datapath 

 

 

The purpose of the parameter scheduler logic (see Figure 13) is to maintain three counters 

i, α, and β used by the weight update function.  The i counter keeps track of how many 

feature vectors the SOM has processed and can be thought of as the discrete time 

coordinate described in Chapter 2. The α and β counters maintain a count of the number 
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of feature vectors processed using the present α and β parameter values. The scheduler 

utilizes comparators to set flags to indicate to the SOM controller that 2,000 feature 

vectors have been processed with the present value of β, 4,000 feature vectors have been 

processed using the present value of α, and 18,000 feature vectors have been processed in 

total and the SOM processing is complete. 

 

 

 

Figure 13 Conventional SOM Parameter Scheduler 

 

 

The α and β parameter values are maintained by each of the nodes in their weight update 

logic and are used to calculate the neighborhood kernel (see Figure 14). 
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Figure 14 Conventional SOM Weight Update Logic 

 

 

As shown in Equation 3 in Chapter 2, the weight update logic in each node calculates the 

offset                         to apply to the weight of the node. To eliminate the 
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need for multiplication logic while still allowing for a monotonically decreasing learning 

rate and neighborhood size, a negative power of two implementation of the neighborhood 

kernel        from [4] was selected. This function is shown in Equation 7. 

 

        {
(
 

 
)
 

                                 

(
 

 
)
   (      )  

            
                                      (7) 

 

 

In Equation 7,    represents the BMU,   represents the node being updated, and  

 (      ) represents the Manhattan distance between the two nodes (see Equation 6). 

 (      ) is labeled as dist_to_bmu in Figure 14. Because the parameter scheduler 

increases the value of α and β over time,        monotonically decreases over time as 

desired. 

 

The Manhattan distance is also used to determine the distance between the input vector 

presented to the SOM and the weight of each element in the SOM for determining the 

BMU. This logic is shown in Figure 15. 
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Figure 15 Conventional SOM Distance Calculation Logic 
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The Manhattan distance between the input vector and the node weight is stored in the 

Parallel In Shift Out (PISO) register labeled distance_reg in Figure 15.  This register 

allows the distance calculated at each node to be processed serially (one MSB at a time) 

by the WTA circuit. 

 

The distance calculation requires as intermediate values absolute difference and signed 

difference values using the absolute difference logic as shown in Figure 16. 

 

 

 

Figure 16 Conventional SOM Absolute Difference Logic 
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The value calculated by the distance logic and stored in the distance register in each of 

the 256 SOM nodes is processed by the WTA logic (see Figure 17) to search for a BMU. 

 

 

 

Figure 17 Conventional SOM WTA Logic 

 

 

The WTA logic is based on the improved BMU selection circuit shown in Figure 8 and 

described in Chapter 3 but with additional logic added to count the number of bits 
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processed and to randomly select a BMU when there are ties. Because the Manhattan 

distances calculated at each node are eleven bits wide (see Equation 6 and Figure 15), the 

WTA circuit is clocked eleven times with the signal labeled run_wta in Figure 17 set. 

After all eleven MSBs for each node have been processed; a node is indicated as a BMU 

if its flag in the BMU flags register is set. Because there is an opportunity for ties where 

more than one BMU flag is set, tie breaking logic was designed.  The tie breaking logic 

in the WTA circuit is a random number generator consisting of an 8-bit Linear Feedback 

Shift Register (LFSR).  The LFSR is used to select a starting point to find a BMU flag 

that is set.  This value is stored and then incremented until a set BMU flag is found.  This 

may require up to 256 attempts to find a BMU flag that is set.  Once a set BMU flag is 

found the BMU search is complete as indicated by the signal labeled is_bmu being set. 

The value labeled bmu_coord contains the coordinates of the BMU. 

 

All of the functional units that comprise the datapath are controlled by an algorithmic 

state machine (ASM).  The detailed ASM implemented in the conventional SOM 

controller is shown in Figure 18. 
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Figure 18 Conventional SOM Controller ASM 

 

 

4.2 PORT AGENT ARCHITECTURE SOM IMPLEMENTATION 

The port agent SOM is a modified version of the conventional SOM that has been 

optimized for area and speed by simplifying the weight update logic. The conventional 

SOM implementation weight update function is dependent on a neighborhood size that 

decreases monotonically over time making for a relatively complex weight update circuit 

(see Figure 14). However, the port agent SOM is initialized with weights from a trained 
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map so that it can use a neighborhood function that stays constant over time as shown in 

Equation 8. 

 

        

{
 
 

 
 (

 

 
)
 

                (      )    

(
 

 
)
 

                (      )    

                     (      )   

                                (8) 

 

The port agent SOM’s neighborhood function (Equation 8) is derived from the 

conventional SOM’s neighborhood function (Equation 7) by assuming the maximum 

values of α and β in the conventional SOM implementation (two and three respectively). 

Because α and β are not required in the port agent SOM’s neighborhood function, the 

parameter scheduler can be eliminated from the implementation and the complexity of 

the weight update logic is reduced significantly (see Figure 19).  
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Figure 19 Port Agent SOM Weight Update Logic 
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Many levels of the SOM architecture were affected by the removal of the parameter 

scheduler. For instance, signaling was removed between the datapath and controller (see 

Figure 20) that was previously required to maintain the values of i, α, and β.   

 

 

 

Figure 20 Port Agent SOM Datapath/Controller(top) and Datapath (bottom) 
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With the removal of a significant amount of logic from the datapath, the ASM controller 

for the port agent SOM was able to be simplified as well (see Figure 21). 

 

 

 

Figure 21 Port Agent Architecture SOM Controller ASM 
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The optimizations made to the conventional SOM architecture provided a significantly 

smaller and faster implementation for the port agent SOM. Quantitative evidence of this 

is provided in the next chapter. 
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5 PORT AGENT SOM DESIGN VERIFICATION 

 

After the port agent SOM design was complete it was implemented in VHDL and 

verified through simulation using Aldec Active-HDL 8.3 SP1. Design verification was 

accomplished by first preloading the port agent SOM matrix with a map generated using 

the software implementation from [3] and then presenting vectors to the SOM for 

processing.  The map updates produced from these vectors were validated with results 

from a software implementation of the weight update function. 

 

5.1 TEST VECTOR SELECTION 

The test vectors presented to the port agent SOM were chosen to verify the three 

scenarios possible when processing input vectors with the port agent SOM (see Figure 

22). 
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Figure 22 Port Agent SOM Test Case 1 (left), 2 (middle), 3 (right) 

 

 

Because the neighborhood size in the port agent SOM has a constant radius of one, the 

neighborhoods that result from an input vector can contain 4, 6, or 9 elements depending 

on where the BMU is found. Based on the pre-trained map that was loaded into the port 

agent SOM, three specific test vectors were chosen to ensure each of these cases was 

tested. 

 

As described in the previous chapter, the SOM that was instantiated for simulation was 

composed of a 16 node by 16 node matrix designed to process 8 x 8-bit (64-bit) feature 

vectors.  Because of the size of the map and its feature vectors, it is difficult to display the 

entire port agent SOM matrix. However, for the verification process it is only necessary 

to display the portions of the map that were affected by the input vectors.  Figure 23 

shows the subset of the port agent SOM that was exercised during validation after being 

initialized with a pre-trained map. 
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Figure 23 Pre-trained Port Agent SOM Partial Map 

 

 

In order to ensure the three cases in Figure 22 were tested, the test vectors chosen were 

  : X"cb0233740f556551",   : X"2b432a8253ca0ebb", and   : X"a76a1bed183c73d9" 

for test case one, two, and three respectively. These vectors correspond to the initial 



42 

 

values for nodes (0,0), (1,0), and (1,1) guaranteeing they would be the BMU for each 

vector allowing each of the three cases in Figure 22 to be tested.   

 

5.2 TEST VECTOR PROCESSING 

The vector   : X"cb0233740f556551" was presented as the first test vector to the port 

agent SOM.  As predicted, the BMU was determined by the port agent SOM to be node 

(0,0) and its neighborhood included nodes (0,0), (1,0), (0,1), and (1,1). The map that 

resulted from this test vector is shown in Figure 24. 
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Figure 24 Port Agent SOM Resulting from V1 

 

 

It is evident from Figure 24 that the nodes in the neighborhood around the BMU node 

(0,0) changed from their initial value and all nodes outside of the neighborhood remained 

unchanged. Recall from the previous chapter that in the port agent SOM, each node in the 
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neighborhood is updated by adding         when the node being updated is the 

BMU;         when the node is a distance of one from the BMU; and zero when 

the node being updated is greater than a distance of one from the BMU.  For instance, the 

updated value of node (1,0) is X”2d412a8151c80fb9” from its initial value of 

X"2b432a8253ca0ebb" for the input vector   : X"cb0233740f556551".  Because node 

(1,0) is a distance of one from the BMU for   ,         must be added to the initial 

value of node (1,0) to obtain its new weight. The calculations performed by the port agent 

SOM are shown in Table 3 for test vector   . 

 

 

Table 3 Weight Update Validation Example 

V1 (hex) cb 02 33 74 0f 55 65 51 

W (hex) 2b 43 2a 82 53 ca 0e bb 

V (dec) 203 2 51 116 15 85 101 81 

W (dec) 43 67 42 130 83 202 14 187 

V – W (dec) 160 -65 9 -14 -68 -117 87 -106 

V – W >> 6 (dec) 2 -2 0 -1 -2 -2 1 -2 

W’ = W +[(V-W) >> 6] (dec) 45 65 42 129 81 200 15 185 

W’ = W +[(V-W) >> 6] (hex) 2d 41 2a 81 51 c8 0f b9 
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The remaining two cases were run similarly. Test vector   : X"2b432a8253ca0ebb" was 

presented as the second test vector to the port agent SOM that resulted from test vector 

  . As expected, the BMU was determined by the port agent SOM to be node (1,0) and 

its neighborhood included nodes (0,0), (1,0), (2,0), (0,1), (1,1), and (2,1). The map that 

resulted from this test vector is shown in Figure 25. 

 

 

 

Figure 25 Port Agent SOM Resulting from V2  
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The final test vector presented was   : X"a76a1bed183c73d9" and was presented to the 

map resulting from   . The BMU was determined by the port agent SOM to be node (1,1) 

and its neighborhood included nodes (0,0), (1,0), (2,0), (0,1), (1,1), (2,1), (0,2), (1,2), and 

(2,2). The map that resulted from this test vector is shown in Figure 26. 

 

 

 

Figure 26 Port Agent SOM Resulting from V3 
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The port agent SOM values resulting from the three test vectors for the three different test 

cases were confirmed with a software implementation of the weight update function 

validating the port agent SOM design. 
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6 RESULTS AND ANALYSIS 

 

In order to demonstrate the improvements in size and speed achieved by optimizing the 

conventional SOM design for the requirements of the port agent SOM, both designs were 

described with VHDL, implemented, and optimized.  Both designs were targeted for the 

Xilinx Virtex-6 and Altera Stratix IV FPGA parts. The toolset used for implementation 

was the Xilinx ISE version 12.4 for the Virtex-6 and Altera Quartus II version 10.1 for 

the Stratix IV. The Automated Tool for Hardware EvaluatioN (ATHENa) version 0.6.1 

was used to optimize both implementations [16][17]. 

 

6.1 IMPLEMENTATION RESULTS 

The smallest and fastest implementations produced by ATHENa for both designs for the 

Virtex-6 xc6vlx760 are compared in Table 4 and Table 5 respectively.  
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Table 4 Minimum Area Implementations for the Virtex-6 

Resource Conventional SOM Port Agent SOM Delta 

LUTs 123,962 91,832 -32,130 (-26%) 

Slices 41,696 25,565 -16,131 (-39%) 

Flip Flops 23,620 23,575 -75 (-0.3%) 

Max Frequency 46.1 MHz 105.3 MHz +59.72 MHz (+128%) 

 

 

 

Table 5 Maximum Throughput Implementations for the Virtex-6 

Resource Conventional SOM Port Agent SOM Delta 

LUTs 127,318 91,832 -35,486 (-28%) 

Slices 45,909 25,565 -20,344 (-44%) 

Flip Flops 23,624 23,575 -49 (-0.2%) 

Max Frequency 51.6 MHz 105.3 MHz +53.7 MHz (+104%) 

 

 

 

In addition to being targeted for the Virtex-6 xc6vlx760, the conventional SOM and the 

port agent SOM were implemented for the Stratix IV GT ep4s100g4f45i1. The results for 

the smallest and fastest implementations produced by ATHENa for both designs for the 

Stratix IV GT ep4s100g4f45i1 are shown in Table 6 and Table 7 respectively. 
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Table 6 Minimum Area Implementations for the Stratix IV 

Resource Conventional SOM Port Agent SOM Delta 

ALUTs 122,186 82,863 -39,323 (-32%) 

Logic Util 145,447 88,774 -56,673 (-39%) 

Flip Flops 19,529 19,482 -47 (-0.2%) 

Max Frequency 105.2 MHz 160.1 MHz +54.9 MHz (+52%) 

 

 

 

Table 7 Maximum Throughput Implementations for the Stratix IV 

Resource 
Conventional SOM Port Agent SOM 

Delta 

ALUTs 124,611 82,863 -41,748 (-34%) 

Logic Util 156,035 88,774 -67,261 (-43%) 

Flip Flops 19,529 19,482 -47 (-0.2%) 

Max Frequency 116.3 MHz 160.1 MHz +43.8 MHz (+38%) 

 

 

 

Clearly the port agent SOM was significantly smaller and faster than the conventional 

SOM implementation on the Virtex-6 and Stratix IV. This is largely due to the 

improvements made to the SOM node implementation. Since there are 256 nodes in the 

implementation, small reductions in each node produced a large overall improvement in 

the size and speed of the design. 
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6.2 IMPLEMENTATION ANALYSIS 

The port agent SOM must be able to process 2,976,190 vectors/second in order to detect 

anomalies in 1 Gbps Ethernet traffic.  This equates to 336 ns of allowable latency for 

each vector [2]. The latency in the port agent SOM is calculated by multiplying the 

number of clock cycles required to process each vector with the clock period for the 

implementation. On average, each vector processed by the port agent SOM requires 142 

clock cycles to produce a result.  The majority of the clock cycles are needed to randomly 

select a BMU.  Recall from Chapter 4 that the WTA circuit requires 11 clock cycles to 

determine one or more BMUs for an input vector and may require up to 256 clock cycles 

to randomly select a BMU if there is a tie.  However, if we assume that on average it 

requires 128 clock cycles to break a tie, BMU selection requires 139 clock cycles.  The 

remaining three clock cycles are used to read the input vector, initialize the WTA 

circuitry, and then store the updated node weights (see Figure 21).  Based on the number 

of clock cycles required to process each vector and the maximum frequency for the 

Virtex-6 and Stratix IV implementations, the time required to process each input vector 

on the targeted devices is 1,349 ns and 887 ns respectively. This equates to 741,549 

vectors/second for the Virtex-6 and 1,127,464 vectors/second on the Stratix IV. In both 

cases the performance of the port agent SOM implementation does not meet the 

requirement to process 1 Gbps Ethernet traffic due in large part to the latency incurred 

when finding a random BMU.  A solution to this problem has been devised and will be 

discussed in more detail in the next chapter.  
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Although the port agent SOM hardware implementation cannot process 1 Gbps Ethernet 

traffic without additional research and development, it is significantly closer to meeting 

the requirement than the software implementation described in [3] that was used to 

validate the approach even when running on a high performance platform. The software 

implementation of the port agent SOM was evaluated on a Linux Fedora Core 13 Virtual 

Machine (VM) on an eight core Dell T7400 with 6GB of memory.  The VM was 

configured to have two CPUs and 2GB of memory, and each CPU in the VM was a four 

core E4520 running at 2.5 GHz.  Using this hardware, the software port agent SOM 

application was demonstrated to process one million feature vectors in 13.9 seconds or 

71,942 vectors/second. This is less than 1/10
th

 the performance of the SOMs 

implemented in hardware for this thesis and highlights the need for a hardware 

implementation of the SOM for the network intrusion detection application. 
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7 FUTURE WORK 

 

Although the port agent SOM shows promise for use in the intended network intrusion 

detection system, the design must be improved somewhat before it can be deployed. At a 

minimum, the port agent SOM must be improved so its WTA logic can find the BMU 

faster and it must allow for its initial map to be externally configurable. Both of these 

improvements will be described in more detail in the subsequent sections. 

 

7.1 BMU Selection Time 

Much of the latency in both the conventional SOM implementation and the port agent 

SOM implementation described in Chapter 4 is the number of cycles required to 

determine the coordinates of the BMU once they have been calculated. This is because 

the BMU is stored in a 256-bit flag register that must be serially searched over 256 clock 

cycles for the winner once it has been calculated (see Figure 27). 
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Figure 27 BMU Search Circuit 

 

 

While this simple calculation can be performed very quickly by inspection using a 256 

input multiplexer, it is currently clocked at the same speed as the rest of the SOM 

circuitry.  Static timing analysis has demonstrated that the BMU search circuitry can be 

clocked at 517 MHz on the Virtex-6 which significantly reduces the penalty paid for 

clocking the circuit up to 256 times to determine the coordinates of the BMU. If the 

BMU search circuit was clocked at this rate for the 128 cycles it requires on average to 

find a BMU, the time required to process each input vector would be reduced from 1,349 

ns to 381 ns on the Virtex-6. Assuming that the BMU search circuit can be clocked as 

fast as the Virtex-6 on the Stratix IV, as was the trend with the other port agent SOM 

circuitry, the time required to process each input vector would be reduced from 887 ns to 

335 ns, allowing for 2,985,074 vectors/second and making it possible for the port agent 

SOM to process 1 Gbps Ethernet traffic as required for the network intrusion detection 

application. 
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7.2 Initial Matrix Weight Configuration 

The first step in the SOM algorithm is to establish the initial weights for every element in 

the SOM matrix. In a conventional SOM this is accomplished by setting each weight to a 

random value. As described in Chapter 4, the port agent SOM is preloaded with an 

already trained matrix so that its weight update logic can be simplified significantly. 

Once realized and tested, the port agent SOM can only be preloaded with one set of 

weight values. It is evident from the top level architecture (see Figure 20) that there is no 

I/O port for loading initial weights. In order to support the ability to preload an initial set 

of weights representing an already trained matrix, I/O ports must be added and the 

associated logic must be developed for the port agent SOM.   
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8 CONCLUSIONS 

 

This thesis described the research and development of a hardware implementation of the 

SOM for a network intrusion detection system. A survey of conventional SOM 

implementations in hardware resulted in the design of a conventional SOM, which was 

then modified for use as a detector of anomalous network traffic. The resulting 

implementation known as the port agent SOM was validated with software and fully 

implemented along with the conventional SOM for the Xilinx Virtex-6 and Altera Stratix 

IV FPGA devices. Comparison of the two implementations demonstrated that the port 

agent SOM required significantly less resources than the conventional SOM and could 

process input vectors much faster. Additionally, the port agent SOM was demonstrated to 

process input vectors more than 10 times as fast as a software implementation that 

provided the same functionality. Based on the number of clock cycles required to process 

each vector and the clock frequency compatible with the port agent SOM implementation 

on the Virtex-6 and Stratix IV, the time required to process an input vector on the 

targeted devices is 1,349 ns and 887 ns respectively. This equates to 741,549 

vectors/second for the Virtex-6 and 1,127,464 vectors/second on the Stratix IV. While the 

current port agent SOM implementation cannot process the 2,976,190 vectors/second 

required to detect anomalies in 1 Gbps Ethernet traffic, it was shown that with the 

addition of a faster clock for the BMU search circuit this requirement can be met. 
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Although work remains to realize a deployable port agent SOM, the research performed 

for this thesis has succeeded in laying the groundwork for the design of a viable hardware 

implementation of a SOM for a network intrusion detection system.  

  



58 

 

 

 

REFERENCES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



59 

 

 

 

REFERENCES 

 

1. P. Kohlbrenner, B. Roeder, K. Gaj, “Design of a Self Organizing Map (SOM) Based 

Anomaly Detector for Distributed Network Intrusion Detection,” Technical Report, 

George Mason University, 2001. 

 

2. T. Kohonen, Self-Organizing Maps, New York: Springer, 2001. 

 

3. P. Kohlbrenner, “Self Organized Maps Verses Off-line Discord Detection for Network 

Intrusion Detection,” CS 795 Project Report, George Mason University, 2011. 

 

4. J. Pena, M. Vanegas, A. Valencia, “Parallel FPGA implementation of self-organizing 

maps,” Microelectronics, 2004. ICM 2004 Proceedings. The 16th International 

Conference on, vol., no., pp. 709- 712, 6-8 Dec. 2004. 

 

5. K. Khalifa, B. Girau, F. Alexandre, and M.H. Bedoui, “Parallel FPGA implementation 

of self-organizing maps,” Microelectronics, 2004. ICM 2004 Proceedings. The 16th 

International Conference on, vol., no., pp. 709- 712, 6-8 Dec. 2004. 

 

6. B. Hochet,  V. Peiris, G. Corbaz,  M. Declercq, “Implementation of a neuron dedicated 

to Kohonen maps with learning capabilities,” Custom Integrated Circuits Conference, 

1990., Proceedings of the IEEE 1990 , vol., no., pp.26.1/1-26.1/4, 13-16 May 1990. 

 

7. D. Macq, M. Verleysen, P. Jespers, J. Didier-Legat, “Analog implementation of a 

Kohonen map with on-chip learning,” Neural Networks, IEEE Transactions on , vol.4, 

no.3, pp.456-461, May 1993. 

 

8. M. Melton, T. Phan, D. Reeves, D. Van den Bout, “The TInMANN VLSI chip,” 

Neural Networks, IEEE Transactions on , vol.3, no.3, pp.375-384, May 1992. 

 

9. P. Ienne, M. Viredaz,, “Implementation of Kohonen's self-organizing maps on 

MANTRA I,” Microelectronics for Neural Networks and Fuzzy Systems, 1994., 

Proceedings of the Fourth International Conference on, vol., no., pp.273-279, 26-28 Sep 

1994. 

 

10. M. Perez, W. Luque, F. Damiani, “Design of a 4×4 Kohonen neural net-VHDL 

description,” Devices, Circuits and Systems, 1995. Proceedings of the 1995 First IEEE 

International Caracas Conference on, vol., no., pp.135-138, 12-14 Dec 1995. 



60 

 

11. K. Appiah, A. Hunter, M. Hongying, Y. Shigang, M. Hobden, N. Priestley,P. 

Hobden, C. Pettit, “A binary Self-Organizing Map and its FPGA implementation,” 

Neural Networks, 2009. IJCNN 2009. International Joint Conference on , vol., no., 

pp.164-171, 14-19 June 2009. 

 

12. M. Porrmann, U. Witkowski,  U. Ruckert, “A massively parallel architecture for self-

organizing feature maps,” Neural Networks, IEEE Transactions on, vol.14, no.5, pp. 

1110- 1121, Sept. 2003. 

 

13. H. Onodera, K. Takeshita, K. Tamaru, "Hardware architecture for Kohonen network," 

Circuits and Systems, 1990., IEEE International Symposium on, vol., no., pp.1073-1077 

vol.2, 1-3 May 1990. 

 

14. A. Rajah, M. Khalil Hani, "ASIC design of a Kohonen neural network microchip," 

Semiconductor Electronics, 2004. ICSE 2004. IEEE International Conference on, vol., 

no., pp. 4 pp., 7-9 Dec. 2004. 

 

15. A. Tisan, S. Oniga, C. Gavrincea, A. Buchman, "FPGA implementation of a self-

organized map with on-chip learning," Optimization of Electrical and Electronic 

Equipment, 2008. OPTIM 2008. 11th International Conference on, vol., no., pp.81-86, 

22-24 May 2008. 

 

16. K. Gaj, J.P. Kaps, V. Amirineni, M. Rogawski, E. Homsirikamol, B.Y. Brewster, 

“ATHENa – Automated Tool for Hardware EvaluatioN: Toward Fair and Comprehensive 

Benchmarking of Cryptographic Hardware using FPGAs,” 20th International Conference 

on Field Programmable Logic and Applications, Milano, Italy, Aug. 31st - Sep. 2nd, 

2010. 

 

17. About ATHENa. [Online]. Available: http://cryptography.gmu.edu/athena/ 

  



61 

 

 

 

CURRICULUM VITAE 

 

Brent W. Roeder graduated from W.T. Woodson High School, Fairfax, Virginia, in 1995.  

He received his Bachelor of Science in Mathematics from Virginia Tech in 2000 and his 

Bachelor of Science in Computer and Electrical Engineering from Virginia Tech in 2005.  

He is currently employed as an engineer by McQ Inc. in Fredericksburg Virginia.  


