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ABSTRACT 

 

 

 

CLUSTER-LEVEL CORRELATED ERROR VARIANCE AND THE ESTIMATION 

OF PARAMETERS IN LINEAR MIXED MODELS 

 

Joseph N. Luchman, PhD. 

 

George Mason University, 2014 

 

Thesis Director: Dr.  Jose M. Cortina 

 

 

Multilevel theory is extended primarily through the evaluation of cross-level effects, or 

how some between-cluster predictor explains a within-cluster outcome.  Cross-level 

effects are often estimated using linear mixed models (LMMs).  LMMs are susceptible to 

a bias from correlated error variance, resulting from omitted predictors and correlated 

error variance or common method variance.  The effects of correlated error variance are 

well known in linear regression, but are relatively less understood in LMMs, an extension 

of LMM.  The current study extends previous research on correlated error variance on 

cross-level effect LMM parameter estimation by applying a tracing rule methodology to 

demonstrate the mathematical structure of the bias produced by correlated error variance.  

The current study shows that bias is mainly produced by omitted variable-between-

cluster predictor relationships paired with common method variance in the between-

cluster predictor.  In particular, both parameters can produce attenuation or accentuation 

of parameter estimates, depending on the magnitude and direction of the effects.  The 



study concludes by outlining remedial and preventative measures practicing researchers 

can take to remove correlated error from parameter estimates and, therefore, produce 

unbiased cross-level effect estimates. 
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CHAPTER ONE – INTRODUCTION 

 

 

 

Understanding the behavior of people, work teams, and organizations requires 

integration of theory explaining behavior at each level.  Organizational science benefits 

from theory using concepts at the between-cluster or macro-level (i.e., attributes of 

collections of units) and at the within-cluster or micro-level (i.e., attributes of individual 

units).  Integrating macro- and micro-level theory results in multilevel theory (House, 

Rousseau, & Thomas-Hunt, 1995).  However important, multilevel theorizing is less 

common, and arguably more difficult, than theory building at a single level (i.e., macro 

or micro).  Consequently, many have decried the underdeveloped state of multilevel 

theory in several fields such as sociology (Wiley, 1988), economics (Weintraub, 1979), 

and organizational behavior (Klein & Kozlowski, 2000).  

In recent years, organizational science has begun to devote more attention to 

developing multilevel theory.  Such multilevel theory development usually occurs 

through studies examining whether between-cluster attributes affect attributes within-

clusters.  For instance, some multilevel theory involves hypotheses positing that between-

cluster predictors affect the cluster means of within-cluster dependent variables—hence, 

between-cluster predictors affect between-cluster outcome means.  Such hypotheses are 

known as cross-level effect hypotheses.  Because cross-level hypotheses integrate the 
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effects of macro-level (i.e., between-cluster) and micro-level (i.e., within-cluster) theory, 

cross-level hypotheses represent an important and commonly used method for multilevel 

theory development and testing.  

Tests of multilevel theory often use survey or questionnaire designs, measuring 

between- and within-cluster attributes at single point in time (e.g., Ostroff, Kinicki, & 

Clark, 2002).  Single-source, cross-sectional designs are especially susceptible to 

measurement-related correlated error variance (e.g., Campbell & Fiske, 1959; Evans, 

1985).  Correlated error variance is also produced through the omission of relevant causal 

variables in a predictive model, when the omitted predictor is related to other predictors; 

a process that produces biased parameter estimates and statistical inference (Kim & 

Frees, 2006; Mauro, 1990).  Irrespective of its origin, correlated error variance is a threat 

to the validity of cross-level research. 

Research shows that parameter estimates from linear mixed models (LMM; 

Raudenbush & Bryk, 2002)—arguably the most common analysis tool for cross-level 

hypothesis tests—are biased when correlated error variance is present (e.g., Ebbes, 

Böckenholt, & Wedel, 2004; Lai, Li, & Leung, 2013).  Research on correlated error in 

LMMs is fragmented however, with much research in education, marketing, and 

economics focusing on omitted variables-related bias (e.g., Kim & Frees, 2006), whereas 

research in organizational science and psychology focuses on systematic measurement 

error (Lai et al., 2013).  Unfortunately, the overall effects of correlated error variance in 

LMMs in the measurement and predictive model are, currently, unknown and potentially 

greater than the effects of LMMs in the measurement or predictive model alone.  
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Additionally, research to date on bias in LMMs has relied on the use of computer 

simulation.  Although computer simulation can discern the effect of correlated error 

variance on parameter estimation, the conclusions from simulations are restricted to the 

conditions included in the simulation. By contrast, analytic methods such as tracing rules 

(Curran & Bauer, 2007; Duncan, 1966) provide more general conclusions regarding the 

effect of correlated error variance given a plausible causal model across many more 

possible LMMs – and can extend to evaluating extant LMM estimates when 

contaminated by correlated error variance. Taken together, the present work contributes 

to the literature by demonstrating that correlated error variance is a substantial validity 

threat which can affect parameter estimates through many more mechanisms than 

previously thought which threatens the development of multilevel theory testing research 

that organizational researchers cannot afford to ignore. 

The purpose of the present work is to examine the effect of between-cluster 

correlated error variance—owing to both omitted causal effects and systematic 

measurement error—on cross-level parameter estimates in LMMs using tracing rules.  To 

begin, I briefly review the conceptualization of the LMM model and provide a 

substantive example for use throughout the remainder of the paper.  Following the LMM 

review, I outline research examining how correlated error variance affects parameter 

estimates in both linear regression and LMMs.  I then outline a population causal model 

as well as the assumptions under which I apply tracing rules to the evaluation of 

correlated error in LMMs and examine the impact of the equation derived from the 

tracing rules on LMM estimates.  I conclude the present work by providing an example 
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derived from the extant literature in which correlated error could pose a substantial threat 

to the conclusions derived from the study.  Finally, I provide researchers and reviewers a 

comprehensive outline of issues to look for in evaluating the quality of research using 

LMMs as well as for use in planning studies which intend to utilize LMMs as an analytic 

tool. 

 

LMM: A Brief Review and Substantive Example 

In order to evaluate how correlated error variance affects cross-level parameter 

estimates, consider first the conceptual model represented in Figure 1.  Figure 1 contains 

3 variables of substantive interest.  The organizational climate variable is at the 

organizational or between-cluster level of analysis, whereas positive mood and job 

satisfaction are at the individual or within-cluster level of analysis.   

Figure 1 shows that we are interested in using positive mood (i.e.,       ) to 

predict job satisfaction (i.e.,               ).  Moreover, we are interested in using 

organizational climate (i.e.,         ) for two purposes: to predict the organization (i.e., 

between-cluster) means of job satisfaction directly and also as a moderator of the positive 

mood - job satisfaction relationship.  Using Figure 1, we can set up the series of equations 

to be estimated using a LMM.  The model in Figure 1 suggests the following within-

cluster equation: 

                                         

In Equation 1, β1j is the regression weight for organization j predicting                

from       .  β0j is the intercept for the organization j                       
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relationship.      is a random error of prediction or disturbance in the organization j 

                      equation.  Importantly, the LMM treats Equation 1 as having 

one or more random coefficients.  That is, not only is the                variable 

represented as a random variable (as in linear regression), but in the present case the     

coefficients are also treated as random, normally distributed variables, at the between-

cluster level.  Hence, the LMM acknowledges that there are 2 sources of variability in the 

job satisfaction outcome: within-cluster person-to-person differences and between-cluster 

mean/intercept differences (i.e.,     variance).  In some cases, researchers are also 

interested in explaining and between-cluster predictive equation differences (i.e.,     

variance) through cross-level interaction estimates.  In the present study, I do not 

consider cross-level interactions, but rather assume that the                       

relationship is stable between-clusters.  Although I do not consider cross-level 

interactions in the present study, I will return to address the issue of cross-level 

interactions in the discussion—noting their similarity to cross-level effects for estimation 

purposes and the results derived from the present study. 

Figure 1 also implies that between-cluster effects are to be estimated in the LMM.  

The relationships implied by Figure 1 are captured in the following between-cluster 

equations: 

                                   

In Equation 2,     represents the average within-cluster        

               intercept,     represents the regression weight predicting the within-
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cluster                       intercepts from         , and     represents random 

errors of prediction for the between-cluster                       intercept equation.  

The LMM estimation equation integrates Equations 1 and 2 by substituting Equation 2 

into Equation 1 to produce:  

                                                           

Equation 3 shows more clearly the role of the within- and between-cluster predictors as 

they predict               .  Expanding Equation 3 I obtain: 

                                                        

The coefficient     carries the effect of the between-cluster          predictor on the 

outcome               .  As can be seen from Equation 3, the intercepts of the 

                      relationship are a function of         , mean intercept    , 

and the intercept error term    .   

Equation 4 represents the equation to be estimated to discern the magnitude of the 

effects implied in Figure 1.  In the section to come, I begin to discuss correlated error 

variance by reviewing previous research on the impact of correlated error variance on 

parameter estimates in linear regression and LMMs as well as provide an underlying 

causal model—including sources of correlated error—that could affect the estimation of 

parameters of Equation 4. 

 

Cluster-level Correlated Error Variance as Left Out Variables Error and Common 

Method Variance 

Omitted, yet relevant predictors are known to have an important influence on 

parameter estimation.  Omitted predictors in a predictive model create what Mauro 
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(1990) refers to as left out variables error (Mauro, 1990).  By contrast, omitted 

measurement parameters (i.e., multidimensional constructs in which some constructs are 

not modeled) produces what is known as common method variance (Podsakoff, 

MacKenzie, Lee, & Podsakoff, 2003).  Both left out variables error and common method 

variance are (some of the possible; see Ebbes et al., 2004 for others) sources of correlated 

error variance that could affect LMMs.  Correlated error variance is a non-0 correlation 

between outcome prediction error and a predictor in a statistical model—a violation of 

the strict exogeneity assumption common to most linear regression models (e.g., Berry, 

1993) 

Traditionally, correlated error variance sources in the organizational sciences have 

been examined in linear regression models.  Whereas both sources of correlated error 

have been the focus of study, past research has tended to focus on either left out variables 

error or common method variance sources of correlated error variance and not integrate 

both.  The first stream of research on left out variables error focuses on correlated error 

variance owing to the omission of relevant “third-variables” which are related to both the 

predictor and the outcome.   Such left out variables produce a non-0 relationship between 

the prediction error of the outcome and the predictor that results in the magnitude of the 

omitted variable’s effects being “absorbed” by the included predictor, thereby biasing 

parameter estimates (e.g., Mauro, 1990; Meade, Behrend, & Lance, 2009).  In particular, 

research on left out variables error demonstrates that, depending on the direction and 

magnitude of the omitted effects, as well as intercorrelations between the omitted 
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predictors, the resulting bias can be positive or negative and, under certain circumstances, 

can change the interpretation of an effect (Mauro, 1990, p. 316).   

By contrast, the second stream of research, focusing on measurement error, 

examines the effect of common method variance on measurement model coefficients.  

Common method variance is a form of systematic measurement error that can be 

conceptualized more broadly as correlated measurement error between two variables with 

methodological similarities (e.g., Bagozzi & Yi, 1991), though the term almost always 

refers to variables measured using self-report methods.  Common method variance 

produces correlated error variance as the omitted variable has a causal effect on the 

measure or the observed response (i.e., whether a respondent indicates they strongly 

disagree or disagree on a Likert-type opinion or attitude scale), but not the latent 

construct reflected by the observed response (i.e., whether a respondent’s opinion or 

attitude actually strongly disagrees or disagrees with a statement).  For instance, self-

presentation concerns could compel a respondent to report their task performance on their 

job as being “exceptional,” and their job satisfaction as “extremely satisfied,” even when 

their task performance is less-than exceptional and they are less-than satisfied.  Whereas 

such self-presentation concerns affect the observed response or measure of task 

performance and satisfaction (i.e., impacting the apparent predictive validity of the 

measure), self-presentation concerns may not have a causal effect on how a respondent 

actually accomplishes their task work or on how they actually feel about their job.  

Therefore, method variance driven by self-presentation has a causal effect on how an 

individual responds to measures (i.e., their response behavior), but not on their standing 
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on the constructs of interest (e.g., how their satisfaction cognitions impact their job 

performance behavior).  Consequently, common method variance produces a non-0 

correlation between measurement error in the predictor and measurement error in the 

outcome variable, i.e., correlated error variance.   

Organizational science has produced much research on the effects of common 

method variance and demonstrates that its effects on parameter estimates are complex.  In 

fact, studies show that, depending on the data analytic conditions (e.g., construct 

interrelationships, percentage of observed variance attributable to measurement method), 

common method variance, like left out variables error, can positively or negatively bias 

parameter estimates (e.g., Podsakoff et al., 2003; Williams & Brown, 1994).  Siemsen et 

al. (2010; Equation 9) show that the direction of the bias depends on the ratio of the 

common method variance in the outcome to that in the predictor.  When the ratio is 

greater than the true correlation between the outcome and the predictor, bias is positive 

(in this instance, referring to positive multiplicative bias or accentuation; effect 

strengthened by multiplying by some value greater than 1 in absolute value).  By contrast, 

when the ratio is lower than the true correlation between the outcome and predictor, bias 

is negative (i.e., negative multiplicative bias or attenuation; effect weakened by 

multiplying by some value less than 1 in absolute value).   

Taken together, research on correlated error variance from a left out variables 

error as well as a common method variance demonstrate that correlated error variance is 

an important issue for parameter estimation and can produce substantial bias in situations 

where omitted variables have causal effects on the latent variables of interest (i.e., left out 
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variables error) or the measures used to assess the latent variables of interest (i.e., 

common method variance). 

 

Correlated Error Variance in Multilevel Research 

 Although most research on correlated error variance in the organizational sciences 

has evaluated its effects in linear regression without considering between-cluster effects, 

the biasing effects of correlated error variance are not restricted to single-level situations.  

In fact, situations where omitted between-cluster predictors might be relevant are not 

difficult to generate.  Imagine, for instance, for the actual underlying causal model in 

Equation 4 that a policy-related variable, such as flextime benefits or teleworking 

capabilities, has a causal effect on both positive organizational climate as well as the 

mean of job satisfaction for each organization.  Because flextime/teleworking benefits are 

not modeled in Equation 4, yet is a component of the true causal model for satisfaction, 

the effect of flextime/telework benefits will result in correlated error variance owing to 

left out variables error and will bias the positive organizational climate parameter 

estimate.  The effects of left out variables on LMM estimation has been the subject of 

past research.  In fact, Raudenbush and Bryk (2002; Chapter 9) demonstrate that 

misspecification, in terms of omitted, relevant predictors at the within- and between-

cluster level do produce inaccurate coefficients (see also Ebbes et al., 2004; Kim & Frees, 

2006, 2007).  In fact, previous research finds that even with modest predictor between-

cluster predictor-error variance correlations (i.e., .3) that fixed effect estimates, such as 

cross-level effect parameters, can be severely biased (i.e., by about 25%; Ebbes et al., 

2004).    
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Additionally, Ostroff, Kinicki, and Clark (2002), have shown that common 

method variance from aggregated survey responses (e.g., composition models; Chan, 

1998) appear to produce a positive bias in cross-level correlations similar to the bias 

found in correlations of variables within-cluster.  Other research agrees that common 

method variance biases parameter estimates and also, consequently, increases Type I 

error rates.  Situations in which common method variance could also have an impact on 

between-cluster measurement models such as composition models, are also not hard to 

imagine.  For example, a situation in which between-organization differences in response 

style to a survey effort occurs owing to different levels of familiarity with surveys—and 

thus use of the response options—across the two organizations.   

Although research on the correlated error variance-producing factors of left out 

variables error and common method variance have historically been separate concepts in 

organizational science, both causes of correlated error variance are similar conceptually 

(i.e., related to omitted causal effects) and functionally (i.e., parameter bias producing).  

Additionally, both sources of correlated error could operate in tandem, either 

independently of one another or interacting with one another to produce magnitudes of 

bias in LMM parameter estimates that have been, to this point, ignored.  In the current 

study, I explore the implications of both sources of correlated error variance on parameter 

estimates in a LMM in an effort to more fully outline the potential bias such correlated 

error can produce.  To explore the implications of correlated error variance on the 

estimation of parameters in Equation 4, I construct an underlying causal model to 

represent the causal effects between the latent variables as well as the measurement 
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models—represented in Figure 2.  The situation represented in Figure 2 is intended to be 

a worst case scenario in which an omitted, between-cluster variable not only affects all of 

the measures involved in Equation 4 (i.e., produces common method variance), but also 

affects the latent variables involved in Equation 4 (i.e., produces left out variables error).  

The depiction of the Figure 2 structural and measurement model aspects follow from 

suggestions offered by Curran and Bauer (2007) for depicting multilevel models 

graphically. 

In Figure 2, each of the solid lines (i.e., “—“) represent the effects of interest that 

are represented in Equation 4.  Figure 2 also shows all the ways in which correlated error 

variance is introduced into the model to estimate in Equation 4.  Specifically, the paths 

from the omitted variable    to each of the other latent variables are represented using 

double-dotted and dashed lines (i.e., “∙∙-∙∙-“) and are the left out variables error effects 

that produce correlated error variance.  The paths from the omitted variable    to each of 

the other measured variables are represented using dotted lines (i.e., “∙∙∙∙∙∙”) and are the 

common method variance factors that produce correlated error variance.  Intercepts at the 

within- and between-cluster level are indicated in Figure 2 by triangles.  Triangle 11 

represents within-cluster intercepts and triangle 12 represents between-cluster intercepts.  

The randomly varying between-cluster intercepts are represented by latent variable 

situated in the middle of the path from triangle 11 to     (represented by   ). The meaning 

for each of the variables included in Figure 2 is discussed in the following section. 

Introducing sources of correlated error variance into a LMM. The model 

implied by Figure 2 has many components dealing with both underlying causal 
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relationships between latent variables and measurement models of those latent variables.  

I begin by outlining the measurement models for each of the observed variables 

              ,         , and       , separating or decomposing each observed 

variable into between- and within-cluster components and, subsequently, into focal 

construct-related and error-related variance.  My presentation of the decomposition of 

each of the measured variables follows loosely from previous research on left out 

variables error (e.g., Mauro, 1990; Siemsen et al., 2010), but is primarily derived through 

the application of tracing rules (e.g., Curran & Bauer, 2007) applied to Figure 2.  In 

Figure 2, and thus all the equations to come, I define all the exogenous latent variables to 

be distributed unit multivariate normally (i.e., mean of 0 and variance of 1).  Therefore, 

all of the between-cluster exogenous variables in Figure 2   ,    ,     ,    , and    each 

have a mean of 0 and variance of 1 across all j organizations and i individuals.  In 

addition, each exogenous within-cluster variable in Figure 2 is distributed unit 

multivariate normally.  Thus,     ,    ,     , and     have also have a mean of 0 and 

variance of 1 across all i individuals—however, because of the relationship of     with    

and   , both                and        are endogenous. 

The measurement model decompositions of each of the observed variables are as 

follows: 

                                       (           )  (          )         

                                           

                              (           )  (          )         
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Where                is the satisfaction score for person i in organization j,        is 

the mood score for person i in organization j, and          is the climate score for 

organization j. 

 Equations 5-7 all begin by breaking each observed variable into components or 

parts that are attributable to different, independent variables at the between- (i.e., “Btw_”) 

vs. within-cluster (i.e., “W/in_”) level.  Focusing on Equation 5, notice first that 2 

components comprise           , specifically       and      .        represent the 

component of            that derives from focal construct-related between-cluster 

differences in satisfaction (e.g., differences that might be due to different organizational 

policies that foster satisfaction), with     representing the factor loading of    onto the 

observed variable               .  By contrast,       represents the component of 

           that corresponds to measurement contamination or common method variance 

with the extent of contamination by the omitted factor represented by the factor loading 

   .  If      , then            reduces to only include focal construct-related 

between-cluster differences in satisfaction 

Equation 5 also shows that                has 2 components that comprise 

           , specifically        and    .          represents the component of   

          that derives from focal construct-related within-cluster differences in 

satisfaction (e.g., differences due to variability in mood states that foster satisfaction), 

with     representing the factor loading of     onto the observed variable               .  

Finally,     represents random measurement error in the observed                
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measure. Equation 7 follows the exact same structure as does Equation 5 save for the 

components of Equation 7 are related to the components of       .   

 Moving to Equation 6 I begin by noting that          is an observed variable that 

only varies at the between-cluster level, thus          produces no within-cluster 

variance component.  Unlike               ,          has 3 components that comprise 

its between-cluster component          :       ,       and   .        represents the 

component of           that derives from focal construct-related between-cluster 

differences in organizational climate (e.g., different organizational policies that impact 

shared sense of climate), with     representing the factor loading of    onto the observed 

variable           Similar to               ,       represents the component of 

          that corresponds to common method variance with the extent of 

contamination represented by the factor loading    .  The third and final component of 

          is   , or random measurement error at the between-cluster level (e.g., 

disagreement between employees about organizational climate owing to transient 

factors).   

 Separate from the measurement models outlined above, the model in Figure 2 also 

implies a set of structural relationships between each of the latent constructs.   I begin by 

considering the relationships between the between-cluster constructs and, similar to the 

decomposition of the measured variables above, I decompose each of the endogenous 

variables in terms of their causal model.  I begin by decomposing the endogenous latent 

organizational climate factor,   .   
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 Equation 8 shows that    is a function of 2 components,       and     .  The first 

component      , represents the causal effect, carried by    , of the exogenous, yet 

omitted, contaminating variable   , on   .  The second component    , represents 

independent or exogenous variance in    produced through other means, but not 

explainable by or related to variables in Figure 2. 

 Figure 2 shows that    has a causal effect on   , the between-cluster mood 

construct, which can be decomposed as follows: 

                            (         )              

Equation 9 shows that    is a function of 3 components      ,      , and     .  

The first component      , produces the causal effect,    , of the contaminating 

variable   , on   .  The second component is more complex, as it is a function of a 

function.  To be precise,       represents the causal effect,    , of both components of 

   on   .  As the far right hand side of Equation 9 shows,          is the indirect causal 

effect of the contaminating variable   ,  through   , whereas        represents the direct 

causal effect of    on   .  The third, and final, component    , like the similar 

component in   , represents independent or exogenous variance in    produced through 

other means, but not explainable by or related to variables in Figure 2. 

Figure 2 also shows that both    and    have a causal effect on   , the between-

cluster satisfaction construct, which can be decomposed as follows: 
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           (         )     (         [         ]     )

            

Equation 10 shows that    is a function of 4 components      ,     ,      , and  

   .  The first component     , produces the causal effect,    , of the contaminating 

variable   , on   .  The second component, as with the decomposition of   , is more 

complex.  Here, as in   ,       represents the causal effect,    , of both components of 

   on   —         as the indirect causal effect of   ,  through   , and        represents 

the direct causal effect of    on   .  The third component of    is even more complex, 

containing several indirect causal effects.  Specifically,       can be divided into 4 

separate effects: i]          is the indirect causal effect of the contaminant    through 

  , ii]             is the “once-removed” indirect effect of the contaminant    through 

both    and   , iii]           is the indirect causal effect of    on   , and iv]        is 

the direct causal effect of    on   .  The final component    , like the other latent 

constructs, represents independent or exogenous variance in    produced through other 

means, but not explainable by or related to variables in Figure 2. 

 In addition to relationships between between-cluster latent constructs, Figure 2 

also shows relationships between within-cluster constructs.  Most importantly, Figure 2 

shows that the latent within-cluster satisfaction construct    , independent of the between-

cluster construct   , is endogenous.   The within-cluster satisfaction construct     is 

decomposed as follows: 
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Equation 11 shows that     is a function of 2 components        and     .  The 

first component       , represents the causal effects,    , of     on    .  The final 

component of the within-cluster satisfaction construct,     , is the independent or 

exogenous variance in     produced through other means, but not explainable by or 

related to variables in Figure 2. 

The measurement and structural decompositions in Equations 5-11 allow for a 

more thorough delineation of how and where correlated error variance (i.e., any 

component of Equations 7-13 containing   ), affects the observed measure of the 

outcome,               .  Most importantly, the decompositions contained in Equations 

5-11 can show more clearly how and why correlated error variance affects LMM 

parameter estimates.  Going forward, I assume that the factor loadings for all components 

of the observed variable, save for the omitted, contaminating factor   , are 1—dropping 

out of the equation.  Focal construct-related variable factor loadings are set to 1 as an 

important aspect of evaluating common method variance is the proportion of the measure 

comprised by method variance, which can be most easily manipulated through a single 

factor loading, the factor loading with the contaminant variable   .  Additionally, I rename 

the coefficients attached to the omitted factor from     and     to    and    to simplify 

subscripting in the equations to come.  I will also note that the same simplification 

applies to the outcome (i.e.,     will be renamed   ).  In the coming section, I outline 
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how Equation 4 will be evaluated in order to extract how and why correlated error affects 

parameter estimation in LMMs. 
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CHAPTER TWO - EXAMINING THE EFFECT OF CLUSTER-LEVEL 

CORRELATED ERROR VARIANCE ON PARAMETER ESTIMATES 

 

 

 

LMM is an extension of traditional linear regression and, under certain 

conditions, the LMM estimation process simplifies to a set of 2 linear regressions.  More 

generally, the process through which LMMs operate is in generating a set of parameters 

to optimally explain variance at both the between- and within-cluster level, of an outcome 

variable using a set of predictors at both the within- and between-cluster level.  LMMs 

then estimate parameters based on variances of and covariances among the predictor and 

outcome variables (Raudenbush & Bryk, 2002).   

Most parameter estimates in an LMM approach estimation by weighting the 

contribution of each cluster to the parameter estimate by the between- and within-cluster 

variance for that cluster (Raudenbush & Bryk, 2002, pp. 42–43)—clusters with smaller 

within-cluster variance contribute relatively more to the parameter estimate than clusters 

with greater within-cluster variance.  Although an LMM tends to be estimated using 

numerical methods such as maximum likelihood, the LMM model has, historically, not 

used numerical methods but a strong set of assumptions to derive parameter estimates 

(i.e., the “between-effects” estimator: Cameron & Trivedi, 2005).  In particular, under the 

assumption that each cluster is the same size and that the distribution of the within-cluster 

predictors is equal across each cluster, the within-cluster residuals will be equal (or 
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balanced) across all clusters.  Because obtaining an estimate of within-cluster residual 

variance is one of the most problematic aspects of LMM estimation, the LMM estimation 

process simplifies greatly when balanced into a “2-step” ordinary least squares (OLS) 

linear regression.  The first step constitutes a series of separate regressions for each 

cluster using the within-cluster predictors to predict the outcome.  The second step then 

involves using the obtained parameter estimates from the first step (i.e., regression slopes, 

intercepts) as dependent variables in a between-cluster regression in which the between-

cluster predictors are used to explain between-cluster variance in the first-step’s 

estimated parameters. 

Because LMMs can be estimated using a 2-step OLS regression when balanced, 

LMMs do not require the use of simulations in order to derive the impact of different 

input population causal models on parameter estimation (see Raudenbush & Bryk, 2002, 

p. 43). In fact, given that OLS can be applied to LMM estimation, many useful methods 

applied to linear models also apply to LMMs such as tracing rules (Duncan, 1966; 

Equation 5; Wright, 1934).  Tracing rules are derived from path analysis and involve 

partitioning the covariance between two variables into components.  Specifically, there 

are 5 main rules for partitioning a covariance: a] the researcher can trace backward up an 

arrow and then forward along the next, or forwards from one variable to the other, but 

never forward and then back; b] the researcher can pass through each variable only once 

in a given chain of paths; c] no more than one bi-directional arrow (i.e., unanalyzed 

path/covariance) can be included in each path-chain, d] at any change of direction (i.e., 

exogenous variable) in a tracing route which is not a bi-directional arrow connecting 
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different variables in the chain (i.e., unanalyzed path/covariance), the variance of the 

variable at the point of change is included in the product of path coefficients; and e] when 

deriving variances, the path from a dependent variable to an independent variable and 

back to itself is only counted once. Covariances are then computed by multiplying all the 

coefficients in a chain and summing over all possible chains. Chains are considered 

independent/different if: i] they don't have the same coefficients, or ii] the coefficients are 

in a different order.  Residual variances are included as unanalyzed paths/covariances in 

the tracing rules.   

Because Figure 2 outlines a full path model depicting the underlying population 

causal model, the paths in Figure 2 can be used in the tracing rules analysis to derive 

variances and covariances to be “tracing rule” decomposed.  Tracing rules can then 

extend past research on correlated error in LMM estimation by providing information 

about the mathematical form of the parameter estimate result—as opposed to just the end 

value result that computer simulations provide.  Knowing of the mathematical form of a 

result has been helpful in situations such as Siemsen et al. (2010) who show that the 

effect of having common method variance in only the outcome on a linear regression 

coefficient is multiplicative—always attenuating the magnitude of the estimated 

coefficient effect toward 0 (whether positive or negative).  Knowing the form of the 

effect is important both for remedial action for the analyst as well as an informed 

evaluation of the conclusions that can be drawn from a parameter estimate. In the section 

to come I evaluate LMM parameter estimates, under the assumption of balanced clusters, 

using tracing rules.   
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CHAPTER THREE - BETWEEN-CLUSTER CORRELATED ERROR 

VARIANCE AND CROSS-LEVEL EFFECT ESTIMATION
i
 

 

 

 

 Because the clusters in the present work are assumed to be balanced, estimating 

the effect of the between-cluster predictor on within-cluster intercepts can be conducted 

using the OLS estimator.  The OLS estimator for a parameter is the covariance between 

the predictor and  outcome divided by the variance of the predictor (see Cohen, Cohen, 

West, & Aiken, 2003).  Because the cross-level effect parameter estimate is a ratio of a 

covariance to a variance, the tracing rule methodology can be applied to decompose the 

covariance and variance separately.  In particular, the cross-level effect parameter 

estimate     will be a ratio of the covariance between the within-cluster intercepts of the 

                      relationship and the between-cluster predictor,         , over 

the variance of         . The tracing rule paths derived for the decomposition of the 

OLS estimator of the cross-level effect parameter are outlined in Table 1.  Representing 

the tracing rules derived in Table 1 as the covariance to variance ratio:  
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Equation 12 is the most basic result for the effect of correlated error variance on the 

estimation of cross-level effects parameters.  Equation 12 is subdivided into the sum of 3 

fractions, each of which represents conceptually different contributions to the cross-level 

effect.  The first summand of Equation 12 represents the effect of latent         -related 

variance components on the cross-level effect.  The second summand represents the 

effects related to left out variables error.  Finally, the third summand represents common 

method variance.   

The estimate for the cross-level effect has a great many ways in which to be 

biased (i.e., all of the second and third summands in Equation 12), and does not lend 

itself to a simple evaluation of trends.  Hence, to elucidate the effect of correlated error 

variance on cross-level effect estimation, I graph Equation 12 in Figure 3 to more easily 

discern trends in Equation 12 based on several parameters which are likely to have 

important effects.  Figure 3 depicts the relationship between the magnitude of the 

common method variance effect on the x-axis and the difference between the estimated 

parameter and the actual parameter for the cross-level effect on the y-axis.  The latent 
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variances in Figure 3 (i.e.,    [  ] and    [   ]) were set at 1 (i.e., the latent variances 

were standardized), the     parameter was set to .1 and the    [  ],    ,   ,     and     

parameters were set to 0.  Figure 3 is divided into 4 lines by crossing levels of the     

parameter at 2 settings: present at .1 and absent at 0, with levels of the     parameter at 2 

settings: present at.1 and absent at 0—as the     (relationship between omitted variable 

on latent         ) and     (causal effect of omitted variable on latent, between-cluster 

              ) parameters are likely to be important contributors to bias. 

 The trends outlined in Figure 3 show that additive accentuation or inflation only 

occurs primarily under 2 conditions, both of which include situations where there is an 

omitted cross-level effect: a] when the omitted variable has a relationship with latent 

        , and b] when common method variance is present in the                

measure.  In fact, the magnitude of the accentuation is in upwards of 25% the magnitude 

of the actual latent          effect (when the proportion of the variance in the predictor 

is near 25% common method variance).  Perhaps most notable about the findings outlined 

in Figure 3 is how it reflects the second or left out variables error summand of Equation 

12 in that even in the absence of common method variance.  Specifically, an omitted 

effect with omitted variable-latent          variable relationship produces a baseline 

10% accentuation bias for the cross-level effect.  Therefore, Figure 3 shows that even 

with relatively modest correlated error, the bias in LMM parameter estimation can be 

quite large—consistent with the finding by Ebbes et al. (2004) and Lai et al. (2013). 
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By contrast, Figure 3 shows that, in the absence of an omitted cross-level effect, 

the general trend is toward an attenuated estimate of the cross-level effect.  The level of 

attenuation of the cross-level effect is rather severe at high levels of common method 

variance, nearing a 25% underestimate of the cross-level effect near 35% common 

method variance contamination in the          measure.  Importantly, across all 

conditions, Figure 3 shows that common method variance produces a non-linear or 

multiplicative trend on the estimation of the cross-level effect.  To be specific, when there 

is an omitted variable effect, introducing common method variance—and thus, increasing 

the proportion of common method variance in the          measure—the accentuation 

effect reaches maximum at around 25% common method variance contamination and 

then begins to drop.  In fact, the attenuation effect when an omitted variable effect is 

absent is similar, save that under such conditions the attenuation increases at a faster rate 

as common method variance increases.  The nature of the non-linear common method 

variance effect occurs as a result of the denominators of the 3 summands in Equation 

12—attributable to the “extra” variance produced in the           measure that doesn’t 

correlate with within-cluster intercept variance and, therefore, doesn’t contribute to the 

covariance between the           measure and within-cluster intercepts.  With 

increasing common method variance contamination, the size of the denominator (which 

contains several    terms) begins to outpace the magnitude of the parameters in the 

numerators of Equation 12, producing a net attenuation effect in the cross-level effect 

estimate.  Hence, Figure 3 also shows that in the absence of any left out variables error, 

common method variance in the predictor alone can produce substantial bias which, on 
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top of random measurement error, can severely underestimate the size of a cross-level 

effect and potentially affect the conclusions from hypothesis tests. 

Equation 12 reveals many other potential situations in which attenuation, or 

accentuation, of the cross-level parameter could occur as well.  Although not depicted in 

Figure 3, 2 potentially important ones are the       effect as well as      effect.  Both 

effects stem from between-cluster common method variance in the                

measure—an effect which could occur for reasons similar to those that could produce 

between-cluster common method variance in the          measure.  Whereas      is a 

situation outlined by Lai et al. (2013),       is a very new concept in which the omitted 

factor has a relationship with the latent predictor and also produces common method 

variance in the outcome.  The potential for such effects in LMM parameter estimation 

have not been appreciated in past research but constitute a plausible and potentially 

important source of bias for cross-level effects.   

Whereas other parameter products are clearly present in Equation 12, their likely 

influence on the final parameter estimate are likely to be relatively smaller as all other 

effects are triple or quadruple products, that are likely to diminish the overall magnitude 

of the impact on the parameter estimate.  To conclude, the results obtained in Equation 12 

shows that the effect of correlated error variance on the magnitude of the obtained cross-

level effect is can be complex and can, as is predicted in Figure 3, produce both 

potentially accentuating or attenuating (depending on the sign of the parameters) additive 

and attenuating, multiplicative bias.  In the section to come, I move beyond Figure 3 to 

apply the results of Equation 12 to real examples found in the literature in which 
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correlated error is likely to have affected the results of studies utilizing LMM.  In 

addition, I provide both reviewers and researchers a set of suggestions for planning and 

evaluating LMM-based research in light of the findings outlined in Equation 12. 

 

The Real Impact of Between-cluster Correlated Error: Illustrations and Suggestions 

An Empirical Example 
The results from Equation 12 provide a mechanism for examining the effect of 

correlated error on parameter estimates in LMM analysis which can and should be 

evaluated in terms of how correlated error affect the final parameter estimate of research 

study.  Hence, the results of Equation 12 can be used to examine whether the results from 

articles published in well-respected journals, with many citations, are trustworthy.  In the 

paragraphs to follow, I select the influential Ilies and Judge (2002) study from 

Organizational Behavior and Human Decision Processes which has a high number of 

citations (i.e., 99 according to PSYCinfo as of 2/3/2014).  Ilies and Judge focus on the 

examination of between-person positive affect and between-person job satisfaction in an 

LMM for their Hypothesis 1a.  Their Hypothesis 1a states that average positive affect 

will result in higher for positive average job satisfaction.  For the present work, I focus on 

the estimates provided in Table 2, Model 1, which shows a statistically significant 

estimate of .37 of average positive affect on average job satisfaction. 

One important point to note about their Model 1 is that it is a very simple 

predictive model – job satisfaction is a function of average positive (and negative) affect 

only.  Such a small model is highly restrictive and makes the strong assumption that no 

other variables are relevant to the prediction of average, or between-person, job 
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satisfaction, for their estimate to be unbiased.  However, as Ilies and Judge note, such 

average positive and negative affect are thought to reflect trait positive affectivity and 

negative affectivity.  A great deal of research exists which links positive affectivity to 

myriad other variables—many of which are also considered to be predictors of between-

person job satisfaction.  For example, meta-analytic research shows that supervisor 

support has a .22 correlation with positive affectivity, as well as many cogent theoretical 

reasons for being related to supervisor support (Ng & Sorensen, 2009).  Additionally, 

supervisor support has been shown to have a relationship with job satisfaction (i.e., r = 

.48; Ng & Sorensen, 2008).  Therefore, supervisor support is a strong candidate for an 

omitted variable which is likely to bias the positive affectivity coefficient.   

Consequently, Ilies and Judge’s obtained estimate of .37 can, assuming for the 

current illustration that no common method variance is present in their measure and 

ignoring that negative affectivity was included in the LMM, as Equation 13.  

     
   [   ]             [  ]     

       [  ]

   [  ]   
     [   ]     [  ]

     

 As is outlined above, it is very likely the case that     (in this instance, the 

relationship between positive affect and supervisor support) and     (in this instance, the 

relationship between job satisfaction and supervisor support) are non-0.  Moreover, it is 

very likely that both that     and      are positive based on extant research and 

theorizing.  Therefore, the obtained estimate of .37 is very likely to be an overestimate of 

   (i.e., the relationship between positive affectivity and job satisfaction), assuming that 

random measurement error    [  ] is not substantially downwardly biasing the estimate 
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(which the coefficient alpha reported of .93 reveals it not likely to be).  Although the data 

are not available to estimate actual magnitude of the overestimation, it is clear that 

between the          [  ] and    
       [  ] terms that the magnitude could be 

substantial simply from leaving out the single supervisor support variable.  However 

unlikely, as positive affectivity does have strong conceptual reasons to be related to job 

satisfaction, depending on how upwardly biased the estimate of .37 is, the estimate could 

have produced a spuriously statistically significant estimate.  Taken together, Equation 13 

shows that the potential for Ilies and Judge’s estimate of the effects of positive affectivity 

to be contaminated by correlated error, and thus be a—possibly substantial—

overestimate, is likely. 

 

What to Look for in LMM Research 

 As the previous example reveals, there are important issues reviewers and 

researchers planning a study should take into account when considering the quality of an 

LMM estimate presented by a research study. 

 Left out variables. As was outlined in the above example, variables that are 

known to share a strong relationship with both a predictor as well as the outcome in a 

study, but that are omitted in an LMM, are likely to produce parameter estimate bias.  

Left out variables error is not a common criticism of research studies in the 

organizational sciences (see Antonakis et al., 2012 for a similar view), yet occurs 

whenever a known predictor is excluded without a good conceptual reason. As is 

demonstrated in Equation 12, cross-level effects can be strongly biased by omitted 

predictors, therefore I urge reviewers evaluating LMM-based research to utilize their 
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knowledge of a domain to ensure that important effects that are likely to produce 

correlated error are addressed either through a compelling theoretical argument that it 

should not be impactful, or methodologically through experimental design or statistical 

control or treatment.  Left out variables error, left undetected or corrected, could be 

highly misleading changing the conclusions drawn by the study. In fact, given some 

known omitted variable, I recommend setting up an equation similar to Equation 13 from 

which the plausible effect of correlated error could be estimated, provided trustworthy 

data such as meta-analytic or other high quality parameter estimates are available to 

provide at least a likely direction for the bias.    

 In addition to known omitted variables, models involving a small number of 

predictors are likely to be too simple to accurately represent reality, especially for 

outcomes such as job performance, satisfaction, or intentions to quit which have many 

known predictors and extensive research literatures.  In particular, very simple statistical 

models are likely to be affected by correlated error variance as it is almost undoubtedly 

the case some predictors of the outcome is omitted, and that at least some subset of the 

omitted predictors correlate with one or more of the included predictors. Whereas I 

recognize that any one model cannot possibly represent reality fully, reality still produced 

the data.  As a consequence, without some experimental or statistical control or 

remediation, the parameter estimates from smaller predictive models could very well be 

so biased as to be completely uninformative.  Hence, I urge reviewers evaluating LMM 

research in which there are relatively few predictors to request the authors make a strong 
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case that the few predictors included are not subject to between-cluster correlated error—

in essence, small predictive models should be subject to extra scrutiny.   

 Common measurement sources. In situations where a between-cluster predictor 

and the outcome are measured from the same source, the likelihood of common method 

variance-related bias is higher than when measured from separate sources.  In the present 

study, the mechanisms that produce common method variance are identical to those that 

produce left out variables error (i.e., they’re the same variable/their correlation is 1).  

Although in reality left out variables error and common method variance may be 

produced through different mechanisms, if these mechanisms are at all correlated, many 

of the paths that link left out variables to common method variance will produce 

additional correlated error variance beyond that of left out variables error and common 

method variance alone.   

Whereas many reviewers look for what they might call “very high” correlations as 

an indication of common method variance (see Pace, 2010), the current work as well as 

Siemsen et al. (2010) demonstrate that common method variance is more complicated 

than simply inflating relationships.  Unfortunately, there is no simple way to discern 

whether a study has or has not been affected by common method variance-related bias 

and, consequently, it may be safest to assume that any same-source study has to some 

degree been affected.   Hence, authors of studies utilizing same source, between-cluster 

predictors must make strong arguments as to how or why their measure is free of or, 

alternatively, that their measure is contaminated to a negligible extent by common 

method variance.  Moreover, if the author does not provide a convincing rationale or 
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methodology for why the estimate is not also free of left out variables error, the 

possibility of both sources of correlated error variance combining in LMM parameter 

estimates increases the likelihood of severe bias as is observed in the results outlined in 

Figure 3.   

 I mention above that small predictive models tend to have a higher likelihood of 

being biased due to left out variables error.  Owing to the findings by Siemsen et al. 

(2010) as well as Lai et al. (2013) that when fewer common method variance 

contaminated variables are included in a predictive model that each variable 

contaminated is biased to a greater extent.  Therefore, the advantages of building a larger 

predictive model not only for left out variables error reasons, but also for common 

method variance reasons, are compelling.  In sum, small predictive LMMs are 

parsimonious, yet without adequate experimental or statistical control, both left out 

variables error as well as common method variance are could produce severely 

misleading estimates. 
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CHAPTER FOUR – DISCUSSION AND CONCLUSIONS 

 

 

 

 The purpose of the present work was to evaluate the effects of between-cluster 

correlated error variance in the estimation of cross-level effect parameters in LMMs.  To 

do so, I evaluated the tracing rules implied by Figure 2 for the regression of a between-

cluster predictor (i.e.,         ) on the within-cluster intercept of the        

               relationship.  The current study shows that LMM parameter estimates are 

a complicated combination of the parameters outlined in Figure 2.  My findings show that 

correlated error variance can produce substantial bias in terms of cross-level effects 

parameter estimates, which depend primarily on the magnitude of the common method 

variance contamination of the          measure and the relationship between the latent 

         and the omitted variable.  

Additionally, I use an empirical example, published in a well-respected journal 

with an impressive citation count, is potentially contaminated with correlated error 

variance and could very well be a substantial overestimate of the effect of positive 

affectivity on job satisfaction.  Deriving from the empirical example, I also demonstrate 

how to evaluate cross-level effect research in terms of examining the likely effects of left 

out variables error-related bias and provide several suggestions for reviewers of studies 

using LMMs to look for in terms of evaluating the trustworthiness of the cross-level 

effect estimates provided.   
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The findings from my analysis contribute to the literature in 4 ways.  First, my 

findings unequivocally demonstrate the importance of preventing and controlling for 

correlated error variance in cross-level estimates using LMMs.  Correlated error variance, 

when ignored, can produce substantial bias in parameter estimates (i.e., 30%; see Figure 

3).  Thus, the present work joins that of Lai et al. (2013) as well as Ostroff et al. (2002) in 

showing that reviewers and researchers can simply afford to ignore correlated error from 

left out variables or common method variance if the organizational sciences are to have a 

cumulative knowledge base. 

Second, the present work provides reviewers several suggestions related to how to 

evaluate cross-level effect research using LMMs in order to gauge the likelihood of their 

having correlated error variance-related bias.  Missing known predictors, small predictive 

models, and same source data are all issues that are likely to produce correlated error 

variance.  Thus, a reviewer can and should use all 3 criteria to request an author provide 

evidence or a conceptual argument that their cross-level estimates are not (substantially) 

biased.  Additionally, researchers estimating cross-level effects should use these points as 

important issues to address in their manuscript and methodology in order to demonstrate 

the validity of their estimates. 

Third, the present study generalizes mathematical results obtained for the linear, 

additive effect results of Siemsen et al. (2010) to the case in which a the researcher is 

examining mixed effects—allowing the relationship between 2 variables to vary 

randomly within a clustering variable (i.e., the within-cluster intercepts for the        

               relationship within an organization) and estimating the extent to which a 
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between-cluster predictor explains variation in the within-cluster intercepts.  Therefore, 

given a plausible causal model, any researcher could use Equation 12 to evaluate the 

likely effect left out variables error or common method variance would have on estimates 

and, moreover, provides important information on the trustworthiness of estimates from 

LMMs suspected of having correlated error variance. 

Finally, my findings extend other research on linear regression as well as LMMs 

by integrating two forms of correlated error variance, left out variables error-related 

effects, and common method variance-related effects, into a single set of findings to show 

how both combine in a LMM analysis to affect parameter estimation.  Correlated error 

variance is a single problem and, consequently, the conclusions derived from LMM 

analysis should be evaluated considering both simultaneously.  Specifically, my analysis 

reveals that under certain conditions in a LMM, correlated error variance effects both 

cross-level effects in a way similar to that of a traditional linear regression—by changing 

the magnitude of main effect estimates and, when common method variance is 

substantial, attenuating estimates toward 0 (see Figure 3). 

 

Limitations and Future Directions 

 The present work suffers from several limitations that warrant mention.  Firstly, 

the focus of the present study centers on the estimation of cross-level effects only without 

consideration of cross-level interactions.  Although cross-level interactions differ 

conceptually from cross-level effects, how they are treated in estimation is actually rather 

similar and many of the conclusions reached regarding bias related to left out variables 

error especially, but many related to common method variance as well, apply to cross-
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level interaction estimation as well.  Generally speaking, explaining variance in random 

effects is agnostic to the source of the random effect—that is, the estimator is fairly 

agnostic as to between-cluster variability being explained stems from slopes or intercepts 

(see Raudenbush & Bryk, 2002, chap. 3).  Hence, given the same causal structure as 

applied to cross-level interaction estimation, similar conclusions will hold
ii
. 

Additionally, the present study is restricted to the examination of LMMs without 

examining the role of correlated error variance in parameter estimation in multilevel 

structural equation modeling (MSEM)—an increasingly influential analysis for 

behavioral and organizational science data (e.g., Rabe-Hesketh, Skrondal, & Pickles, 

2004).  As previously noted LMMs are more commonly used and, arguably, better 

understood analysis procedures in the organizational sciences, a growing number of 

studies are showing advantages that MSEM has over LMMs for the estimation of more 

complex statistical models such as mediation effects (Preacher, Zyphur, & Zhang, 2010; 

Zhang, Zyphur, & Preacher, 2009).  Importantly however, MSEMs are a flexible analysis 

framework of which LMMs are a special case (Muthén, 2002; Rabe-Hesketh et al., 

2004), thus I expect that the findings obtained in the present work should generalize to 

the MSEM broadly. 

 In addition, I make several assumptions about the nature of the measurement 

model. Whereas random measurement error is modeled and shows an attenuating effect 

on parameter estimation, as expected (i.e., random measurement error in Equation 12 is 

only in the denominators), some methodologists may disagree with the treatment of 

correlated measurement error or common method variance.  In fact, some research shows 
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that common method variance is, fundamentally a multiplicative effect on correlations 

between measures (Campbell & O’Connell, 1967).  In particular, the multiplicative 

common method variance effect produces a higher correlation between measures of two 

constructs when the true relationship between two constructs is high than when the true 

relationship between the constructs is low—hence, a multiplicative “common method” 

effect.   Although most studies assume linear common method variance effects, and 

empirical evidence suggests many studies are accurately characterized by linear effects, 

there is evidence for multiplicative effects in some studies (Bagozzi & Yi, 1990).  

Incorporation of the multiplicative common method variance effects in future research on 

correlated error variance could be quite informative and would certainly affect parameter 

estimation for cross-level (and single-level) interactions. 

 The analysis conducted in the present study did make other important 

assumptions about the effect of correlated error variance across levels.  Specifically, I 

assume that correlated error variance is present only between- and not at within-cluster.  I 

acknowledge that examining the role of correlated error variance at both levels is 

important and is a potential future direction for the present research, however the only 

instance in which correlated error variance would affect cross-level effects would be 

when between-cluster and within-cluster correlated error variance are correlated.  

Whereas such cross-level correlated error variance effects do have additional, complex 

biasing effects on LMMs (e.g., Ebbes et al., 2004), cross-level correlated error variance 

suggests that the variances of each of the j groups depends on the Level of the between-

cluster correlated error variance factor and thus closed form solutions using OLS 
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estimation will not produce best linear unbiased estimates of population parameters.  

Rather, in such instances iterative estimation methods such as iterated generalized least 

squares or maximum likelihood must be employed which are more appropriately 

addressed using simulation methods.   

 

Conclusion 

 Interest in correlated error variance as a source of bias in parameter estimation is 

increasing in recent years as is evidenced by the coverage the topic has received both in 

major academic journals (i.e., volume 13[3] of Organizational Research Methods) as 

well as in academic conferences (i.e., Society for Industrial and Organizational 

Psychology, Academy of Management).  Most scholars agree that correlated error 

variance is a substantive problem, stemming from omission of relevant causal factors or 

other methodological artifacts (e.g., Podsakoff et al., 2003).  Whereas scholars can agree 

on the nature of the correlated error variance issue, there is relatively less agreement over 

the extent to which correlated error variance (and common method variance in particular) 

is an issue in research practice (Pace, 2010; Spector, 2006).  In the present study I build 

on prior research evaluating the extent and magnitude of correlated error variance-related 

effects in LMM when the correlated error variance factor exists only at the cluster-level.  

Through my analysis I show that both LMM can produce biased estimates in the presence 

of correlated error variance.  Moreover, my analysis provides insight as to the 

mathematical structure of the bias imparted by correlated error variance.  Understanding 

such structure can provide insight to practicing researchers as to how to avoid correlated 

error variance related bias through experimental control or statistical remediation. 
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Figure 1. Estimated Linear Mixed Model 
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Figure 3. Effect of Omitted Variables and Common Method on Cross-level Effect 

Estimate Bias 
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Table 1. Tracing Rules for Paths Comprising Cross-level Effect (γ10) 

 Pathways Summand Designation Effect Type 

1       [   ]            [   ] Construct Direct 

2       [   ]                    [   ] Construct Indirect 

3       [  ]                    [  ] Omitted 

Spurious-

indirect 

4 
      [  ]           

     
            [  ] Omitted 

Spurious-

indirect 

5 
      [  ]            

    
   
       [  ] Omitted 

Spurious-

indirect 

6 
      [  ]           

          
   
          [  ] Omitted 

Spurious-

indirect 

7       [  ]                  [  ] 
Omitted & 

Method 

Spurious-

indirect 

8      [  ]                   [  ] 
Omitted  & 

Method 

Spurious-

indirect 

9 
     [  ]           

     
           [  ] 

Omitted & 

Method 

Spurious-

indirect 

10 
     [  ]            

    
           [  ] 

Omitted & 

Method 

Spurious-

indirect 

11      [  ]                          [  ] Omitted & Spurious-
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         Method indirect 

12      [  ]                 [  ] Method 

Spurious-

indirect 

13 ↕    [   ]           [   ] Construct Direct 

14 ↕       [  ]           
    [  ] Omitted Spurious 

15 

                 [  ]  

       

& 

             [  ]      

       

         [  ] 
Omitted & 

Method 

Spurious-

indirect 

16 ↕      [  ]          
    [  ] Method Spurious 

17 ↕    [  ]           [  ] 
Measurement 

Error 

Direct 

Note:      = Climatej.  ↕ = Unanalyzed path applied to exogenous variances (i.e., 

“self”-causation path).   
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ENDNOTES 

                                                 
i
 All tracing rules results were confirmed using asymptotic theory (Cameron & Trivedi, 2005; Appendix A). 

Asymptotic theory results are available upon request from the author.  
ii
 Derivations regarding cross-level interactions are available upon request from the author. 
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