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Abstract

This paper presents the TEXTRAL system,
used for determining structural visual properties
of textures through symbolic transformations.
The -method consists of two phases: one that
extracts information from raw textural images
by applying convolution operators and learns an
initial set of rules; and a second that iteratively
extracts symbolic information from the
transformed representation of initial image and
learns another set of rules. The transformed
symbolic representation is obtained by applying
previously learned rules to a new image location
and generating symbolic images based on rule
assertions.

1 Introduction

Among the most informative properties
in recognizing visual objects are their color and
texture. The different textures in an image are
usually very apparent to a human observer, but
an automatic description of these patterns has
proven to be complex. Texture provides very
useful information for the. automatic
interpretation and recognition of the image by a
computer. Textural features can be crucial for
the segmentation of an image and can serve as
the basis for classifying image parts. Many, if
not all, objects in one's familiar environment
can be recognized on the basis of just these two
properties; i.e., without information about their
shape, size or other characteristics. While
measuring color is relatively easy, "measuring”
texture is difficult. Texture may be described as
the pattern of the spatial arrangement of different
intensities (or colors) with two major
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characteristics: its coarseness and its
directionality.

Traditionally, all methods of textural
analysis have taken either the statistical approach
[Haralick, 1973.], in which the statistical
properties of the spatial distributions of the gray
levels are used as the texture descriptors, or the
structured [Rosenfeld, 1970] approach which
conceives texture as an arrangement of a set of
spatial subpatterns according to a certain
placement rules. The statistical approach is
usually motivated by a lack of strong regular
patterns that are obvious in natural textures, and
by a conjecture [Julesz, 1975] that second-order
probability distributions suffice for human
discrimination between two texture patterns.
The structural texture models are best suited to
situations in which complete descriptions of
individual texture primitives are derivable from
the image. This usually means that the texture
primitives consist of relatively large numbers of
pixels, and that the boundaries of the primitives
are consistently discernable.

This paper presents a method for visual
surface characterization and recognition based
on adaptive image transformations and
application of symbolic inductive learning.
Some ideas of the presented method are based
on [Michalski, 1972, 1973]. Our interest in this
work is to produce symbolic descriptions of
texture that are usable at the higher levels of a
symbolic reasoning based vision system. These
symbolic descriptions are used to isolate the
texture primitives themselves in the original
texture image. Once the texture primitives have
been isolated, we compute “placement rules” via
inductive learning techniques. These placement
rules are used to generate symbolic images by
labeling image elements (pixels) with class



names. The labeling process is performed by
. matching new texture primitives extracted at the
given image position with previously learned
rules. The new set of rules is learned and the
whole process is repeated until the desired
performance level is achieved. The method has
been tested on a number of different texture
images from the Brodatz Album of Textures
[Brodatz, 1966]. We present results .of
recognition for 12 homogeneous, noisy
textures. The results show that the low-level
vision symbolic computation can be
successfully performed even for such textures.

2 Previous Accomplishments

A learning-based technique for texture
domain was originally proposed by Michalski
[Michalski, 1972, 1973], and was tested using
ILLIAC III computer facilities. Early
experiments produced very good results in
discriminating even between very similar
structural textures. Subsequently, this approach
was applied to determine faults in laminates for
aircraft wings using ultra sound images
[Channic, 1989]. Recently, in different
experiments [Pachowicz, 1989, Bala, 1990) the
method was applied to raw, homogeneous,
noisy textural images.

In one of our experiments [Pachowicz,
1989], the system was able to improve the
average recognition rate (for six classes of
texture acquired from very poor image data)
from 70% of correct recognitions obtained for
the k-NN pattern recognition method, to 80%
for the symbolic machine learning approach,
and to 91% for the symbolic machine learning
approach incorporating optimization of texture
class descriptions. The decrease of the average
deviation of recognition rates has been observed
in this experiment, making the system more
stable for practical applications.

In a different experiment [Bala, 1990] a
combination of structural and statistical features
was used to tune the extraction and learning
algorithm to produce acceptable rules. The
structural features were derived for each pixel
from a small neighboring area, and the statistical
texture features were derived from co-
occurrence matrices calculated in a larger
neighborhood area. The experiment showed the
capabilities and effectiveness of inductive
learning techniques in a low-level vision
domain.

3 Machine Learning Approach to
Texture Recognition

This section describes the main idea of a
symbolic learning approach to texture
recognition (Figure 1).

Given a series of images classified by a
human tutor into named surface and textural
regions (module 1), the system (Figure 1)
generates a procedure for classifying pixels into
these regions.
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Figure 1. Texture recognition by machine
learning.

Such a procedure consists of a sequence of
operators that transform any given texture into a
uniform set of labels characterizing the
individual texture type. The major step in the
procedure is the formulation of rules
characterizing spatial properties of a texture.
This is performed by the inductive learning
algorithm (AQ method) [Michalski, 1986]. The
system extracts a set of spatial texture samples,
called events, from different texture regions
(module 2). These events are input into the
learning program (module 3) that formulates
rules (covers).

The concept descriptions learned by the
AQ algorithm are represented in VLi, whichis a



simplified version of the Variable-Valued Logic
System VL [Michalski, 1972], and are used to
represent attributional concept descriptions. In
the application of machine learning described in
this paper, a concept represents a single texture
class. A description of a concept is a disjunctive
normal form which is called a cover. A cover is
a disjunction of complexes. A complex is a
conjunction of selectors. A selector is a form:

[L#R] )

L is called the referee, which is an
attribute.

R is called the referent, which is a set
of values in the domain of the attribute
L.

# is one of the following relational
symbols: =, <, >, >=, <=, <>,

In this learning method, each generated complex
is associated with a pair of weights: total (t-
weight) and unique (u-weight). In the
experiments described in this paper we used a
program called NEWGEM to generate rules.
NEWGEM is one of the learning modules from
the AQ family of learning programs. The
following is an example of a NEWGEM
complex (equality is used as a relational
symbol):

[x1=1.3][x2=1][x4=0][x6=1..7][x8=1]
(t:6, u:2) )]

If this complex represents some textural
information, x/..x8 represent attributes
extracted from a local area of a given texture
class. The t-weight of a complex is the number
of positive examples (examples from the class
for which cover is generated) covered by the
complex, and the u-weight is the number of the
positive examples that are covered only by this
complex. The complexes are ordered according
to decreasing values of the t-weight. The
following is an example of a cover generated by
the AQ module

1. [x1=5..10] [x2=5..13] [x3=13..54]
[x4=3 [x6=0.4] [x7=6] (t: 6, u:5)

2. [x1=10.54] [x2=20..28] [x3=18..54]
[x5=11..17] [x6=0..6] (1.5, u:5)

3. [x3=18.54] [x4=16..54] [x5=0..6]
[x6=0..6] [x7=5..12] (15, u:5)

Learned rules (covers) are used to classify
unknown instances. There are two methods for
recognizing the concept membership of an
instance: the strict match and the flexible match.
In the strict match, one tests whether an instance
strictly satisfies the condition part of a rule (a
complex). In the flexible match, one determines
the degree of closeness between the instance and
the condition part. Such closeness is represented
by a coefficient that can vary in range from O.
(does not match) to 1.0 (matches). In the strict
matching one recognizes an instance if it is
covered by the concept description. In the
flexible matching, one determines the most
closely related concept description. Given a
selector in some attribute x whose domain is
ordered list <aj,as,...,a,>, and an event where
x=ayp , the normalized value for the selector

[x=a;j] is
I-(/aj-ak//n) €)

If the selector has several values on its right
hand side, the value closest to ak is used. The
complex is evaluated as an average value of
evaluations of its selectors. The total evaluation
of a class description for a given testing
example is equal to the evaluation value of the
best matching complex (the complex with the
highest evaluation value).

Since an evaluation of an event to a
cover is important in the regeneration phase of
our method (this evaluation is used to determine
class membership and to substitute pixel gray
level value in the original textural area by the
symbolic value that represents a class name).

The following is an example of an
evaluation of the event < 2,4, 2, 1,6, 10,7, 5>
to the complex presented in (2):

Given:
complex:

- [xI1=1.3][x2=1][x4=0][x6=1..7][x8=1]
testing event:

event ==<2,4,2,1,6,10,7,5,>
Number of possible levels per attribute:

L=55
Selector evaluations are:
eval(l)=1 (an attribute value is covered by

the corresponding selector).
eval(2)=1-/14//55=0.945
eval(3)=1 (selector for x3 is not present in
the complex).
eval(4)=1-10-11/55=0.981
eval(5)=1 (same as for x3)
eval(6)=1-/7-10//55=0.945



eval(7)=1 (same as for x3)
eval(8)=1-/5-1//55=0.927
and complex evaluation is:

8
Eval= ( 2 eval(i))/8=0.974

i=1

The total evaluation of a class

description for a given testing example is equal
to the evaluation value of the best matching
complex, i.e. the complex with the highest
evaluation value. The final recognition decision
is made for a test dataset based on the
classification of each instance from this set. The
measure of recognition effectiveness is given as
the percentage of the number of correctly
classified test instances to the total number of
instances of a dataset.

4 Learning Texture Concept in the
TEXTRAL System

The learning method used by the
TEXTRAL system consists of two basic phases
(Figure 2). The first phase represents an
application of various extraction operators used
to learn the first set of rules. In this phase Law's
masks [Laws, 1980] were used as the
convolution operators to extract events that
represent the energy content of the textural
image. The second phase is the iterative process
of the symbolic image regeneration (based on
the assertion of rules learned in the previous
iteration step) and learning a new set of rules by
extracting symbolic events and applying AQ
inductive method.

Before a learning process can take place,
an experimenter outlines an area of the image
that will be used for training (the training area).
Within this area, the experimenter indicates sub-
areas corresponding to the surfaces, whose
identity the system is supposed to learn. The
initial information is extracted from each textural
class by applying a set of Law's convolution
operators. This initial information is represented
as the set of training events. A training event is
a vector of values of characteristic attributes
determined over the pixels in the training area.
The Law's convolution operators were used in
the TEXTRAL system in all experiments
presented in this paper. These operators are
shown in Figure 3. They are defined as follows:

R5R5 High frequency spot operator.

E5L5 Edge operators (vertical and horizontal).

E5S5 V-shape operators (vertical and
horizontal).
L5S5 Line operators (vertical and horizontal).

Since three of these operators are directional,
two versions, horizontal and vertical, of these
directional operators were used to give a total
number of seven attributes per event.

Initial Classes Acquisition
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Stop if
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(Store Current Rules Matrix)

Figure 2. Learning Algorithm in the TEXTRAL
system (k is the class index, i is the iteration
index, shaded lines depict the regeneration
process).

Before the extraction process each image
is histogram-equalized. The extraction area of a
given texture class is convoluted by each of the
7 operators yielding seven different convoluted
areas. Each pixel in one of the 7 convoluted
areas is replaced by an average of the absolute
values in a local macrostatic window (10 by 10
pixels).
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Figure 3. Operators used in initial extraction
process.

The events are extracted only from a certain
randomly chosen number of pixel positions for
a given learning area. Each event has 7 attributes
which represent pixel gray level values derived
from 7 different areas (at the same <x,y>
location of a given area). The extracted events
from each class are input into the AQ learning
module. Generated rules describe discriminatory
properties of a given set of classes and are
stored in a rule matrix as Rf/1..k][1] (withi
index equal 1, Figure 2). These rules form the
first column of this matrix. They are used to
regenerate a symbolic representation of a given
textural class.

The same extraction process is repeated,
but this time to different pixel positions of the
learning area. Each extracted event is evaluated
by flexibly matching with Rf1..k][1] (rules
learned from the initial extraction process). The

result of this evaluation is used to determine the
class membership of a given extracted event.
The determined class name (symbolic value) is
used as a pixel value in a transformed symbolic
representation of a given textural area. Each
pixel position in the learning area is assigned its
symbolic value based on the dominant symbolic
value assigned by the evaluation process in the
neighborhood of this position. To accomplish
this, a small window (e.g. 5 by 5 pixel
positions) is scanned through the learning area,
and the central pixel position in this window is
substituted by the dominant symbolic value
inside the 5 by 5 area. This operation of the
"symbolic images smoothing" is necessary since
not all pixel positions of the learning area are
extracted for evaluation. This symbolic image
represents a classification (or mis-classification)
of the spatial characteristics of the first
extraction and learning process ( i=1).

A different extraction process (than the
one used for the initial image) is used to derive
event sets for the next iteration of the signature
learning algorithm. The extraction operator is a
simple window, 5 by 5 pixels wide, which
extracts symbolic values of neighboring pixels
(x1.x2,..,x8) as depicted in Figure 4.

x1 x2 x3

x8 * x4

x7 x6 x5

Figure 4. An operator used for the extraction
process applied to the symbolic representation
of the textural image area.

This operator is used in each subsequent
learning and regeneration processes. Let us
suppose that we have four classes (A,B,C.D).
The extracted symbolic event might look like
this:

<xl, x2, x3, x4, x5, x6, x7, x8> =
<A,B,B,C,D,D, A, D> 4)

As we can see the extracted volume of
information from symbolic representation is
substantially reduced. As the attributes values in
symbolic representations we used linear types of
attributes. Possible values of these attributes
were chosen inside the range from 1 to 55 and
the total number of these values is equal to the



number of classes. The extracted symbolic event
presented in (4) as input to a learning module
might look like this:

<xl, x2, x3, x4, x5, x6, x7, x8> =
<2, 10, 10, 20, 30, 30 2, 30> &)

where value 2 represents class A, 10 class B, 20
class C, and 30 class D.

The following shows an example of a 5-

classes rule matrix (E denotes an empty entry
(“no rules”) in the matrix):

R(1,1) R(1,2) E E
R(2,1) E E E
R3,1) R@3.2) R33) E
R@.1) R@4.2) R@3) R@4)
RG,1) R(5.2) E E

Each next iteration adds one column to the rule
matrix. After each new symbolic image
regeneration process is completed we compute
statistics for all classes in form of a confusion
matrix and estimate how well each class is
represented by pixels with this class name
value. A threshold value is introduced to
determine how well a given class is represented
in a transformed form by its name in a symbolic
image. Let us say, if more than 90% of pixel
location of a given class are assigned (by the
matching process) its name we do not proceed
with the next iteration step for this class. If more
than 90% of the pixels are properly assigned,
we say that this class is strongly represented by
the rules derived from the previous extraction
process. This also means that a given extraction
process is relevant to the discriminatory
characteristic of a given class. If less than 90%
of pixel locations are assigned the name of the
class, the iteration process is repeated. If a class
is mis-represented in its symbolic representation
(majority of pixels are assigned other class
name) the next step of the learning algorithm has
to proceed (probably yielding correct
classification results in the next regeneration
process). The ability to “force” the correct
classification results by generating the next rule
description of a given class (next step of
regeneration and learning processes) is an
important and novel feature of our method. This
feature provides immunity to the extraction
method chosen.

§ Using Surface Signatures in the
Recognition Phase

The rule matrix is used to recognize
unknown textural areas. The same sequence of
extraction operators is used as describe
previously (first convolution operators, as in
Figure 3, followed by extraction window, as in
Figure 4). The extraction events are flexibly
matched against the first column of rule matrix.
Based on matching results, the unknown
textural image is transformed into its symbolic
representation. The extraction process is
repeated, but this time using a different
extraction operator. During each iteration step
there may be fewer classes to be matched with
the still unknown class. The determination of
class membership can be made during each
iteration step depending on the matching results.
In the case of the five class example (see rule
matrix in the previous section), if the unknown
class is matched strongly (some threshold value
is established) to the second class of the first
column of the signature matrix, the next iteration
of the recognition algorithm is not needed.

6 Experimental Results

Using the method described in the
previous sections we performed experiments
with twelve textural classes (Figure 5). All
textural classes were acquired from the Brodatz
album of textures [Brodatz, 1966]. o

Figure 5. Samples of twelve texture classes
(Approximately 50 by 50 pixels samples).



The learning area for each class was
chosen to be a 100 by 100 square. From each
class 100 events were derived to learn the rules
in each iteration step. For each regeneration
process 500 events were randomly chosen
inside the learning areas. After completing the
matching process, a 5 by 5 window was
scanned through all pixel positions (100 by 100)
of the learning area and the dominant recognized
class inside this window was used as the
symbolic value of the pixel represented by the
central position inside this window (see section
5). By using this technique all 100 by 100 pixel
positions were assigned their symbolic value
(although only 500 had been used for
regeneration/matching process).

Graph 1 presents the results of the 12
textures experiments. Testing area (different
than learning area) in each texture class was
used to extract 200 testing events. In each
iteration these events were mached to the rule
matrix (as described in section 5). Each class
was correctly recognized in each of four
iterations. The average recognition rate was
increased from 48% to 58%. At the same time,
standard deviation decreased from above 20 to
15. Minimum recognition rate increased from
21% to 36%. All these significant changes were
obtained in only four iterations.

70 21
SN / g 3
P 21\
QE y B
O é
& [—=— Average g ]
§ T|—e— Minimum|] | \
A / 16
30 7
| ¥ |v \T’*"
Py it S N R —
1 Iterations 4 1 Iterations 4
Graph 1. Recognition rates and standard
deviation.

The obtained results are in accordance with the
standard evaluation criteria for the recognition
system that require: (i) an increase of the
classification confidence when matching a class
description with data belonging to this class, (ii)
a decrease of the classification confidence when
matching data with other class description, and

(iii) perform on the similar confidence level for
all classes when data is matched with their class
descriptions. We express these criteria by an
average recognition rate computed through
testing all twelve texture classes (we require the
highest averaged recognition rate), a standard
deviation measuring the distribution of
recognition rates from their mean value (this
system stability criteria prefers the minimum
value of standard deviation), and a recognition
rate for the worst performing concept
description (we seek the improvement of the
minimum recognition rate, searched through all
classes of texture considered in the learning
process).

7 Conclusion

Learning mechanism in the TEXTRAL system
is based on the following elements:

@) extraction of information form raw
textural images by applying
convolution operators.

(ii) extraction of symbolic information
from the transformed representation of
initial data.

(ili)  generation of class description by
applying the AQ inductive learning
methodology.

(iv)  regeneration of symbolic representation
by flexibly matching extracted
information to learned rule descriptions
from the previous iteration of the
algorithm.,

Experiments presented in this paper show the
capabilities and effectiveness of inductive
learning techniques in a low-level vision
domain. The most important conclusion drawn
from these experiments is that the presented
method is unsusceptible to the attributes
extraction process (see results from the twelve
textures experiment). For a given extraction
process, there might always be some texture
classes learned that cannot be used for the
recognition because of incorrect classification
results. The relevant/discriminatory information
derived from these classes is not captured by the
extraction process. Choosing other extraction
process may help to generate better descriptions
for these classes, but there might still be a
different subset of an unknown class set that
cannot be used for recognition. To alleviate this



problem in the TEXTRAL system,
correct/incorrect classification results are used as
the essential class dependent information that
help to discriminate between different classes by
learning the next set of rules. This approach
differs from traditional approach which tries to
improve the effectiveness of recognition by
designing more sophisticated extraction methods
and which applies classifiers in such a way that
they are adapted on the feature set to take
optimal advantage of the extracted information.
Such an approach belongs to the class of feature
extraction oriented methods, where an extraction
of relevant feature plays a very important role.
The main problem with traditional approaches is
the lack of a universal extraction method that
works effectively with noisy data.

ACKNOWLEDGEMENTS

This research was supported in part by the
Office of Naval Research under grants No.
NO00014-88-K-0397 and No. N00014-88-K-
0226, and in part by the Defense Advanced
Research Projects Agency under the grant
administered by the Office of Naval Research
No. N00014-K-85-0878.

The authors wish to thank Dr Gheorghe Tecuci,
Dr Bradley Kjell, Dr Arun Sood, and Dr Peter
Pachowicz for valuable comments and
discussion, and Janet Holmes for editing
suggestions.

REFERENCES

(11  Brodatz, P., "A Photographic Album for Arts and
Design", Toronto, Dover Publishing Co., 1966.

[2] Bala, J. "Combining Structural and Statistical
Features in a Machine Learning Technique for
Texture Classification”, The Third International
Conference on Industrial and Applications of
Artificial Intelligence and Experts Systems,
Charleston SC, July 1990.

[31 Bala, J. and K. De Jong,"Generation of Feature
Detectors for Texture Discrimination by Genetic
Search", The Second International Conference -
IEEE Tools for Al, Washington D.C., November
1990.

4] Bala, J.W. and Pachowicz, P.W., "Application of
Symbolic Machine Learning to the Recognition
of Texture Concepts" The Seventh IEEE
Conference on Artificial Intelligence Applications,
Miami Beach FL, February 1991.

[5]1 Bala, J.W. and Pachowicz, P.W., "Recognizing
Noisy Patterns of Texture via Iterative

(6]

8]

1

(10]

{11]

[12]

[13]

(14]

[15]

(16]

Optimization and Matching of Their Rule
Descriptions” Report of Machine Learning and
Inference Laboratory, MLI-90-12, Center for
Artificial Intelligence, George Mason University,
1990.

Channic, T., "TEXPERT : An Application of
Machine Learning to Texture Recognition”, A
publication of the Machine Learning and Inference
Laboratory; MLI 89-17, George Mason
University, Fairfax, Virginia.

Haralick, R. M., K. Shanumugam, and I.
Dinstein, "Textural features for image
classification”, IEEE Trans. Syst., Man, Cybern.,
vol. SMC-3, pp 610-621, Nov. 1973.

Julesz, B., "Experiments in a visual perception of
texture”, Sci. Amer., vol. 232, Apr. 1975, pp 34-
43.

Laws, K.I.,, "Textured image segmentation”,
Ph.D. dissertation, Dept. of Engineering, Univ. of
Southern California.

Michalski, R. S., "A Variable-Valued Logic
System as Applied to Picture Description and
Recognition"”, in Graphic Languages, Nake, F.
and Rosenfield, A. [Eds.], North Holland, 1972.
Michalski R. S. "AQVAL/1--Computer
Implementation of a Variable-Valued Logic
System VL1 and Examples of Its Application to
Pattern Recognition”, First International Joint
Conference on Pattern Recognition, October 30,
1973, Washington D.C.

Michalski, R. S., "A Theory and Methodology of
Inductive Learning”, in Machine Learning: An
Artificial Intelligence Approach, TIOGA
Publishing, Palo Alto, CA, pp 83-134.
Michalski, R.S., Mozetic 1., Hong J.R., Lavrac
N., "The AQ15 Inductive Learning System",
Report No. UIUCDCS-R-86-1260, Department of
Computer Science, University of Illinois at
Urbane-Champaign, July, 1986.

Pachowicz, P.W., "Low-level Numerical and
Inductive Learning Methodology in Texture
Recognition”, IEEE International Workshop on
Tools for AI, Washington, D.C. October 1989.
Reinke R. E., "Knowledge Acquisition and
Refinement Tools for the Advice Meta-Expert
System", ISG 84-4, Department of Computer
Science, University of Illinois at Urbana-
Champaign, July 1984,

Rosenfeld, A., and Lipkin, B.S. “Texture
analysis”, in Picture processing and
psychopictorics, Academic Press, 1970, pp 300-
322.



