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Director: Dr. John J. Qu 
 
 
 

The Pressure on global food system will increase and food production must 

increase as well to meet global demand for food. More food must be produced 

sustainably through implementation of existing knowledge, technology and best 

practice, and by investment in new science and innovation. Precision agriculture 

provides a means to monitor the food production chain and manage both the quantity 

and quality of agricultural product. Resource misallocation has serious impacts on 

sustainability and food security. One of the answers to this problem is the adoption of 

precision agriculture. This study deals with development and adaptation of precision 

agriculture tools for sustainable food production in Ethiopia, specifically to facilitate 

the production of existing tef crops and encouraging establishment of new ones. 

Geographic Information Systems provide ideal environment for spatial analysis to be 

performed. Ethiopia’s climate and environment conditions were aggregated and 

formed the basis of tef suitability mapping for respective data layers in the GIS 

system. Additional detailed local scale soil survey data were collected and entered 

into the GIS tool. These large data bases of information were collected from the 

Ethiopian Ministry of Water Resources and Ethiopian Institute of Agricultural 



xiv 
 

Research, Debre Zeit Agricultural Research Center (EIAR-DZARC). Soil sample and 

data were also collected and analyzed at approximately 50 sample sites in the study 

area. The analysis of all these data sets provided insights critical to farmers and 

politicians making decision on establishing new tef crops or choosing the most 

appropriate crop with respect to projected local conditions for maximum production of 

tef. Another part of this study used high spectral resolution imagery with Geoeye-1 

and Rapideye remote sensing systems to identify tef crop conditions. Using object-

based classification and change detection analysis of multi-temporal data, tef crops 

were mapped within the study area. This methodology showed the potential for 

regional scale mapping and analysis that are important for tef production estimation, 

planning and food security assurance. Recommendations were made for adapting 

this methodology to other areas of Ethiopia and implementing a tef crop monitoring 

system by integrating hyperspectral data analysis and field sampling to improve 

overall tef production within Ethiopia. 
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1. INTRODUCTION 

1.1. IMPORTANCE OF PRECISION AGRICULTURE  

A growing population reaching nine billion by 2050, intense land, water and 

energy competition and more evident effects of climate change will increase pressure 

on global food system over the next 40 years (Foresight, 2011). Crop yield has fallen 

in many areas and water scarcity has increased (Rosegrant & Cline, 2003). Global 

distribution of croplands during the twentieth century diminished greatly (from ~0.75 

ha/person in 1900 to ~0.35 ha/person in 1990) (Ramankutty & Olejniczak, 2008). 

Another challenge is the large, growing food security gap in certain places around the 

world. As much as half of the food grown and harvested in underdeveloped and 

developing countries never gets consumed (Floros et al., 2010). To meet global food 

demand 40 years from now, agricultural production must be 60 percent higher by 

weight compared to 2005 global food production (FAO, 2012).  

Undernourished people surpassed 1 billion in 2009 with a slight decline in 

2010 to 925 million (Global Hunger Index, International Food Policy research 

institute, 2010, FAO, 2010). In Sub-Saharan Africa around 239 million people suffer 

from hunger (Sasson, 2012). Ethiopia, historically one of the most affected countries, 

diminished its Global Hunger Index between 1990 and 2010 (Von Grebmer, et al, 

2010) and progressed from 71% malnourished people in 1990-92 to 44% 

(representing 35 million Ethiopians) in 2004-06. Nevertheless, the numbers are still 

considered unacceptable and hunger is a major challenge to be overcome (FAO, 

2009; FAO, 2010). 
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According to the British Government Office for Science more food must be 

produced sustainably through the spread and implementation of existing knowledge, 

technology and best practice, and by investment in new science and innovation. This 

is a substantial change in the food system if food security is to be provided for nine 

billion people (Foresight, 2011). In this sense, precision agriculture provides a means 

to monitor the food production chain and manage both the quantity and quality of 

agricultural produce. Optimizing production by accounting for variability and 

uncertainties within agricultural systems and adapting production inputs that are site-

specific within a field allows better use of resources to maintain the quality of the 

environment while improving the sustainability of the food supply (Gebbers et al., 

2010). Practices such as over-application of fertilizers, for example, results in input 

losses through leaching and runoff, generating adverse effects on resource quality 

(e.g. on soil and water). There are, in turn, consequential impacts for plants, 

ecosystems, the economy, and population. Resource misallocation, therefore, has 

serious implications for sustainability and food security. One answer to this problem 

is the adoption of precision agriculture (Tey & Brindal, 2012). 

In southern Africa initiatives of precision conservation agriculture (PCA) 

includes the precision application of small doses of inputs such as fertilizers. In this 

approach, soil and water conservation management practices are implemented by 

taking into account spatial and temporal variability across natural and agricultural 

landscapes (Berry et al., 2003). These technologies (amongst other practices) have 

demonstrated to be an important strategy for farmers in low potential zones, where a 

majority of the most resource‐poor and vulnerable farm households exist. Over four 

years PCA practices have consistently increased cereal yields by 50 to 300% in more 

than 50,000 farm households. Adoption of these practices every year leads to build 
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up of soil fertility and organic matter resulting in a more sustainable system 

(Twomlow et al., 2009).  

1.2. PROBLEM STATEMENT 

Ethiopia has a population of over 67 million, 84% of whom live in rural areas. 

Over half of the Ethiopian population lives on less than US$1 a day and over 80% of 

the population relies on agriculture for their livelihood. Around 35 million people in 

Ethiopia were hungry circa 2006 (Von Grebmer, et al, 2010). Main factors affecting 

food production in Ethiopia are related to poor climate (unreliable rainfall), lack of 

arable land, land degradation, and poor land management.  

Growing concerns about the need to increase crop productivity without 

causing environmental injury have led to the deployment of site-specific strategies in 

soil nutrient management. With the advancements in image processing and increase 

in computational power, the use of remote sensing and merging of satellite data to 

extract spatial and temporal information for precision agriculture is growing 

(Anderson et al., 2012).  

The need to increase production per field area optimizes use of inputs, 

maximizing output and minimizing environmental losses is urgent. Precision 

agriculture and associated technologies can provide the necessary tools for better 

decision making, policy planning and crop monitoring and management. Not only 

expansion of crop planted area is needed but also increased production per field is 

crucial, considering lack of agricultural production per/capita.  

Increasing production depends on many factors, including the knowledge of 

factors leading to low yield rates, inputs needed and appropriate application of crop 

management practices. The goal of this dissertation research is to develop an 
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integrated system that can provide such information leading to a solution for 

achieving sustainable production and food security. 

1.3. OBJECTIVES AND SCOPE 

Food safety and sustainable production of Eragrostis tef in Ethiopia are 

based on increasing yield rates and planted area. Planning new tef crops and 

management of crop production sustainablyy depends on crop and environment 

monitoring. The main goal of this dissertation research is stated as: 

Integration of remote sensing and GIS based methodologies for monitoring, 

estimate early assessment and maximizing production of tef while minimizing their 

environmental impacts. 

The first steps for applying remote sensing and GIS technologies for 

sustainable crop management depends largely on the construction of a database, 

integrating information from several aspects of tef cultivation related variables for 

precision agriculture management. The specific goals for this dissertation are: 

- To develop a database that integrates climate, topography, land use/land 

cover and soil information; 

- To demonstrate  tef crop mapping based on multi-temporal, multi-spectral 

and high spatial resolution image processing of a culturally important and 

threatened plant species; 

- To apply geographic information system incorporating soil, topography, 

climate and tef spatial information for suitable areas of tef production in 

Ethiopia; 
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1.4. ORGANIZATION OF THE REPORT 

This dissertation research summarizes the results from efforts directed to 

gathering information on physical environment and tef crops in Ethiopia. Chapter 1 

explains the importance of precision agriculture in sustainable crop management, 

presents the objectives and scope of this study summarizes discussion main results 

obtained from this research.  

The concept of precision agriculture is explained in Chapter 2. The important 

aspects on precision agriculture, remote sensing for crop estimation and monitoring 

as well as agronomic characteristics of tef crops are discussed. Detailed aspects 

important for future achievements planned for the continuation of this research 

project are also discussed. The relationship between crop, ground and satellite 

spectral data are discussed as well as techniques for hyperspectral data processing 

for tef crop characteristics estimation.  

Chapter 3 describes the development of geographic information system 

integrating climate data, topography, land use/land cover (LULC) and soil information 

is described. Methodology and results on local scale tef crop mapping using object-

based image classification and change detection technique are discussed in Chapter 

4.  

Conclusions of this research report and future achievements for crop 

estimation and management under a sustainable and precision agriculture 

perspective are presented in Chapter 5. 
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1.5. MAJOR DATA SOURCES 

Sources of data for geographic information system database and tef crop 

monitoring used in this report include: 

- climate data from FEWS (Famine Early Warning System);  

- topographic data from U.S. Geological Survey's EROS Data Center 

- land use land cover data from Ethiopian Institute of Agricultural Research, 

Debre Zeit Agricultural Research Center (EIAR-DZARC). 

- country scale soil data obtained from ETHIOGIS  

- local scale soil data from Ministry of Water Resources 

- Rapideye data (RapidEye Earth Imaging System) 

- Geoeye data (GeoEye Imaging System) 

- GPS field data acquired with navigation commercial equipment 

1.6. SUMMARY 

The fact that Agriculture in Ethiopia is diverse and widespread geographically, 

covering large tracts of land only understates the crucial need for use of geographic 

information systems (GIS) as a management tool that can be used to achieve food 

security. GIS is playing an increasing role in agriculture production throughout the 

world by helping farmers increase production, access information faster, reduce 

costs, and manage their land more efficiently. Administration and monitoring of farm 

subsidies management, inputs and farm operations can be facilitated by geographic 

information systems. 

The geographic information system we recently organized can be used in 

modeling for integrated regional agricutural planning for championing the security of 

land tenure and consolidation efforts. Acquisition of information and its organization 
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in a geographic information system allows spatial analysis needed for planning new 

tef crops according to suitability of climatic, topographic and edaphic conditions. 

Public policy making, however, needs to consider not only environmental 

characteristics of the land but human interaction with it as well. Land use/land cover 

mapping provides information on the current status of land use as well as future 

trends and scenario analysis.  

Achieving agricultural growth through optimum utilization of the land 

resources however is not enough to guarantee food security in Ethiopia. Although 

new crop implantation as well as optimal management of resources are important, 

increase yield and food shortages prevention are also key to sustainable farming. 

Remote sensing systems can provide necessary information for planning ahead and 

improving crop production. In this sense, results obtained with satellite image 

processing are considered a good first step to establish a monitoring system for tef 

production in Ethiopia. Identification of tef crops presented good results using change 

detection and object-based classification techniques. The use of multi-temporal 

images can be considered a good approach for tef mapping. Because tef is a fast 

growing crop, it can be easily identified before tef planting and at a time of machuring 

stage. 

This dissertation research is expected to provide advances in planning the 

establishment of new tef crops aided by GIS and identification of tef crops through 

Remote Sensing imagery and analysis. These techniques are the first steps for 

estimation of tef crop agronomical variables. Geospatial tools such as remote 

sensing, GPS and GIS are necessary to ultimately realize sustainable food security 

and optimum productivity of tef as a culturally important and threatened species. 
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2. LITERATURE REVIEW 

 

2.1. PRECISION AGRICULTURE DEFINITION 

Precision Agriculture (PA) is a management strategy that uses information 

technologies to combine data from multiple sources and support decisions related to 

crop production (Sonka et al., 1997). It is a system that involves crop management 

according to field variability and site-specific conditions (Seelan et al., 2003). The 

major difference between conventional crop management and PA would be the 

application of modern information technologies to collect process and analyze data 

from multiple sources at different spatial and temporal resolution (Sonka et al., 1997). 

Precision agriculture comprises a set of technologies that combines sensors, 

information systems, enhanced machinery, and informed management to optimize 

production by accounting for responding to variability and uncertainties within 

agricultural systems (Gebbers & Adamchuk, 2010). Adapting production site-specific 

inputs within a field allows for better use of resources to maintain the quality of the 

environment improving the sustainability of the food supply. Precision agriculture 

provides a means to monitor the food production chain and manage both the quantity 

and quality of agricultural produce. (Gebbers & Adamchuk, 2010). 

From these concepts and definitions, PA implementation can be initially 

translated into recognition of spatial variability and its interpretation followed by 

actions or procedures that are spatially varied. In other words, it allows for more 
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detailed identification of the differences within crops, understanding how these 

differences occur and the implication of this variability in the outcome. It also aids in 

planning actions taking into account the differences and seeking greater 

sustainability in all three dimensions - economic, environmental and consequently the 

social (Inamasu et al., 2011). 

PA has three main components: data acquisition on an appropriate scale and 

frequency, data analysis and interpretation, management and implementation of a 

response in an adequate spatial and temporal scale. It is likely that the most 

significant impact of PA on agriculture occurs in the way management decisions 

regarding the spatial and temporal variability of plant production system will be taken 

(Sonka et al., 1997).  

PA research started in the US, Canada, Australia, and Western Europe in 

mid-to late 1980s. Since then, its advantages are perceived and adopted around the 

world, not only in developed countries. Diverse types of PA technologies have been 

experimented throughout the world in developing countries as well, like China, Korea, 

Indonesia, Bangladesh, Sri Lanka, Turkey, Saudi Arabia, Australia, Brazil (Zhang et 

al., 2002).  

Rapid socio-economic changes in some developing countries are creating 

new scopes for the application of PA. The implications of dramatic shifts for 

economic development, poverty reduction and energy consumption, and urbanization 

in some developing countries are immense. Application of PA technologies based on 

the need of specific socio-economic condition of a country will make PA suitable not 

only for developed countries but also for developing countries and can work as a tool 

to reduce the gap between the developed world and the rest of the world (Mondal & 

Basu, 2009). 
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Factors in favor of  associated adoption of PA technologies (PATs) can be 

grouped in the following categories: (1) socio-economic  factors (farmers who are 

older and have higher education level), (2) agro-ecological factors (farmers whose 

farm has better soil quality, is self-owned, and is large), (3) institutional factors 

(farmers who face greater pressure for sustainability), (4) informational factors 

(farmers who have hired consultants and agreed on the usefulness of extension 

services), (5) farmer perception (farmers who perceived that PATs would bring 

profitability), and (6)  technological factors (farmers who have used computers) (Tey 

& Brindal, 2012). The impact of PA technologies on agricultural production is 

expected in two areas: profitability for the producers and ecological and 

environmental benefits to the public (Zhang et al., 2002). 

In Australia the adoption rate of PATs increased significantly to 20% in 2008 

compared to previous records of 2002 adaptation rates (Robertson et al., 2012). 

Estimated annual benefits showed that the initial capital was recovered within 2-5 

years of the outlay (Robertson et al., 2009). Grain growers in Australia consider that 

PA systems are profitable, can recover the initial capital outlay within a few years 

providing intangible benefits from the use of the technology (Robertson et al., 2007). 

Not only in developed countries PATs are showing good socio-economic 

impacts. Sugarcane, corn and soy production chains in Brazil were analyzed and a 

simulated of its adoption showed a 10% increase in productivity (common when 

PATs are successfully adopted) leading to an increase of 5 to 6 billion dollars impact 

on Brazilian Gross Domestic Product and more than 450 thousand new jobs (Costa 

& Guilhoto, 2011). Authors consider that if negative impacts on pollution caused by 

the excessive use of fertilizers were evaluated, impacts would be even greater. 

Sugarcane production by companies that adopt PA practices is about twice its size 

that of companies that do not adopt them, in Brazil. Not only higher yields were 
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gained, benefits are also associated with managerial improvements, lower costs, 

minimization of environmental impacts and improvements in sugarcane quality. 

There is a growing interest on the use of PA practices amongst sugarcane 

companies, considering that 96% of them reported interest on increasing its use. 

(Silva et al., 2011). 

Satellite imagery has one of the highest adoption rates (76%) amongst PA 

technologies among sugarcane producers in Brazil (Silva et al., 2011). Many farmers, 

especially in underdeveloped countries, are uncertain as to whether to adopt 

available PA technologies on their farms. Motivations for widespread uptake of PA 

technologies may come from strict environment legislation, public concern over 

excessive use of agro-chemicals, and economic gain from reduced agricultural inputs 

and improved farm management efficiency. Success of PA technologies will have to 

be measured by economic and environmental gains (Zhang et al., 2002).  

Remote sensing (RS) technology plays an important role in PA and its  

significance is increasing. Remote Sensing using space-borne sensors is a tool, par 

excellence, for obtaining repetitive (with a temporal resist from minutes to days) and 

synoptic scale (with local to regional coverage) observations on the spectral behavior 

of crops as well as their growing environment, i.e., soil and atmosphere (Seelan et 

al., 2003). 

Farmers throughout the world are constantly searching for ways to maximize 

their returns. Remote Sensing, Geographic Information Systems (GIS), and Global 

Positioning Systems (GPS) may provide technologies needed for farmers to 

maximize the economic and environmental benefits of precision farming (Seelan et 

al., 2003). 
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2.2. CHARACTERIZATION OF TEF AND VEGETATION SPECIES IN 

ETHIOPIA 

The new official classification of ecosystems in Ethiopia is as follows: 

Afroalpine and Sub-Afroalpine, Dry Evergreen Montane Forest and Grassland 

Complex, Moist Evergreen Montane Forest, Acacia-Comiphora Woodland, 

Combretum-Terminalia Woodland, Lowland Semi-Evergreen Forest, Desert and 

Semi-Desert Scrubland and Inland Waters (Institute of Biodiversity Conservation, 

2005) discussed below. 

2.2.1. Afroalpine and Subafroalpine Ecosystem 

Ethiopia has the largest extent of afroalpine and subafroalpine habitats in 

Africa. These environments are peculiar in that there are no seasonal variations in 

temperature, but rather pronounced diurnal variations with “summer every day and 

winter every night” with strong insolation and outward radiation, frequent frost 

heaving on bare soil all year round (Hedberg, 1995 apud Institute of Biodiversity 

Conservation, 2005). Until as recently as 10,000 years ago (Messerli et al., 1977 

apud Institute of Biodiversity Conservation, 2005), the highlands of Ethiopia were 

widely covered with Afroalpine moorlands and grasslands. But, man has altered large 

regions of the highlands for centuries, mostly through conversion to agriculture. The 

rate of change is very alarming. The conversion results in the reduction of the original 

species richness. Thus the original afroalpine and subafroalpine natural communities 

are now restricted almost entirely to scattered and not easily accessible areas, which 

are surrounded and isolated by agricultural areas. More attention is needed to stop 

further the threats and rate of destruction (Institute of Biodiversity Conservation, 

2005). 
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The ecosystem includes areas, which on the average are higher than 3200 m. 

The subafroalpine areas occur between 3200 and 3500 m, while the afroalpine areas 

occur between 3500 m and 4620 m. The ecosystem is characterized by the most 

conspicuous giant Lobelia, Lobelia rhynchopetalum, and evergreen shrubs including 

the heather, Erica arborea and perennial herbs such as Helichrysum species 

(Institute of Biodiversity Conservation, 2005). 

2.2.2. Dry Evergreen Montane Forest and Grassland complex 

This ecosystem represents a complex system of successions involving 

extensive grasslands rich in legumes, shrubs and small to large-sized trees to closed 

forest with a canopy of several strata occurring between (1600-) 1900-3300 m. This 

ecosystem covers much of highland areas and mountainous chains of Ethiopia in 

Oromia region (Shewa, Arsi, northern Bale and western Hararge), Amhara Region 

(Gojam, Welo, Gonder), Tigray Region (Tigray) and SNNP region (Shewa, Sidamo 

and Gamo Gofa). The areas with Dry Evergreen Afromontane forest have canopies 

usually dominated by Tid/Gatira (Juniperus procera) as a dominant species, followed 

by Weira/Ejersa (Olea europaea subsp. cuspidata), etc. Zigba/Birbirsa (Podocarpus 

falcatus) is also found in sheltered valleys. The areas with Afromontane woodland, 

wooded grassland and grassland include the natural woodlands and wooded 

grasslands of the plateau with Acacia abyssinica and A. negrii. The grasslands occur 

in the areas where human activity has been largest and most intense, and found at 

altitudes between 1500 and 3000 m. The montane grassland in most places is 

derived from forest and other woody vegetation types. There exists also some 

edaphic grassland. The evergreen scrub vegetation occurs in the highlands of 

Ethiopia either as an intact scrub in association with the dry evergreen montane 



14 
 

forest or usually as secondary growth after deforestation of the dry evergreen 

montane forest (Institute of Biodiversity Conservation, 2005).  

2.2.3. Moist Evergreen Montane Forest Ecosystem 

This ecosystem is in most cases characterized by one or more closed strata 

of evergreen trees, which may reach a height of 30 to 40 m. The vegetation type in 

this ecosystem can be further divided into two (Friis, 1992; Sebsebe Demissew et al. 

2004). One type includes what is traditionally referred as the Afro-montane rainforest. 

These forests occur in the southwestern part of the Ethiopian Highlands at between 

1500 and 2600-mm elevation and the Harenna Forest on the southern slopes of the 

Bale Mountains. The forests characteristically contain a mixture of Zigba 

(Podocarpus falcatus) and broadleaved species as emergent trees in the canopy 

including Kerero (Pouteria (Aningeria) adolfi-friederici). Kerkha (the mountain 

bamboo- Arundinaria alpina) is also one of the characteristic species, although not 

uncommon is found locally. There are also a number of medium-sized trees, and 

large shrubs. The second type includes the Transitional Rainforest, which includes 

forests known from the western escarpment of the Ethiopian Highlands, in Wellega, 

Illubabor and Kefa. The forest type occurs between 500 and 1500 m elevation. The 

characteristic species in the canopy includes Pouteria (Aningeria) altissima, 

Anthocleista schweinfurthii, Ficus mucuso and species of Garcinia, Manilkara and 

Trilepisium (Institute of Biodiversity Conservation, 2005).   

2.2.4. Acacia-Comiphora Woodland Ecosystem 

This ecosystem is characterized by drought resistant trees and shrubs, either 

deciduous or with small, evergreen leaves occurring between 900 and 1900 m. This 
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vegetation type occurs in the northern, eastern, central and southern part of the 

country mainly in Oromia, Afar, Harare, Somali, and Southern Nations, Nationalities 

and Peoples Regional States. The trees and shrubs form an almost complete stratum 

and include species of Grar/Lafto (Acacia senegal, A. seyal, A. tortilis), Bedeno 

(Balanites aegyptiaca), and Kerbe (Commiphora africana, C. boranensis, C. cilliata, 

C. monoica and C. serrulata). The ground cover is rich in sub-shrubs, including 

species of Acalypha, Barleria, Aerva, and succulents with a number of Ret/Argessa 

(Aloe) species. The characteristic mammals include African Wild Ass, Grevy’s Zebra 

and Black Rhinoceros. The characteristic birds include Hunter's Sunbird, Shining 

Sunbird, Somali Golden-breasted Bunting, Salvadori's Seedeater, Yellow-throated 

Serin, Ruppell's Weaver, White-headed Buffalo Weaver Golden-breasted Starling 

and Abyssinian Bush Crow (Institute of Biodiversity Conservation, 2005).  

2.2.5. Combretum-Terminalia Woodland Ecosystem 

This ecosystem is characterized by small to moderate-sized trees with fairly 

large deciduous leaves. These include Yetan Zaf (Boswellia papyrifera), Anogeissus 

leiocarpa and Stereospermum kunthianum and species of Weyba (Terminalia), 

Combretum and Lannea. The solid-stemmed lowland bamboo, Shimel 

(Oxytenanthera abyssinica) is prominent in river valleys [and locally on the 

escarpment] of western Ethiopia. 14 The vegetation type occurs along the western 

escarpment of the Ethiopian Plateau, from the border region between Ethiopia and 

Eritrea to western Kefa and the Omo Zone (in the SNNP Region); it is the dominant 

vegetation in Benshangul-Gumuz and Gambella Regions, and the Dedessa Valley in 

Wellega in Oromia Region, where it occurs between 500 and 1900 m. The vegetation 

in this ecosystem has developed under the influence of fire. The soil erosion rate is 
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very high especially at the onset of rains (Institute of Biodiversity Conservation, 

2005).  

2.2.6. Lowland, Semi-evergreen Forest Ecosystem 

This ecosystem includes forests that are restricted to the Lowlands of eastern 

Gambella Region in Abobo and Gog Weredas. They occur between 450 and 650 m 

on sandy soils. They are semi-deciduous, with a 15-20 m tall, more or less 

continuous canopy in which Baphia abyssinica is dominant, mixed with less common 

species including Celtis toka, Diospyros abyssinica, Malacantha alnifolia, and Zanha 

golungensis and species of Lecaniodiscus, Trichilia and Zanthoxylum (Institute of 

Biodiversity Conservation, 2005).  

2.2.7. Desert and Semi-desert Scrubland Ecosystem 

This ecosystem is characterised by highly drought tolerant species of 

Grar/Lafto (Acacia brichettiana, A. stuhlmanii and A. walawlensis), Etan (Boswellia 

ogadenenesis) Kerbe (Commiphora longipedicillata and C. staphyleifolia), as well as 

succulents, including species of Euphorbia and Aloe. The doum palm (Hyphaene 

thebaica), grasses such as Dactyloctenium aegyptim and Panicum turgidum are also 

characteristic species. The characteristic birds include Kori Bustard, Arabian Bustard, 

Blackhead Plover, Temminck's Courser, Two-banded Courser, Tawny Pipit, 

Chestnut-bellied Sandgrouse, Lichstenstien's Sandgrouse, Singing Bush Lark and 

Masked Lark. This ecosystem type occurs in the Afar Depression, the Ogaden, 

around Lake Chew Bahir and the Omo Delta below an altitude of 500 m. The semi-

desert parts are found in the northern western and Northeastern parts of the country 

(Amhara, Tigray and Afar), Southern (Oromia and Southern Nations and Nationalities 
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and Peoples Region) and the Southeastern and eastern (Somali) parts. The northern 

parts of Afar and northeastern Tigray are predominantly deserted. Fragmentation and 

overgrazing of the rangeland has also affected wild animals. In this ecosystem, Wild 

Ass is critically endangered and has appeared in the 1996 IUCN list of threatened 

animals (Institute of Biodiversity Conservation, 2005).  

2.2.8. Aquatic Ecosystem 

This ecosystem consists of both running (lotic) and standing (lentic) inland 

water bodies, including rivers, lakes, reservoirs, swamps, wetlands and aquatic 

bodies with transient water contents during some time of the year. The strict IUCN 

definition of wetlands has been slightly modified to include all types of lakes in this 

document. Although the floristic composition of the riverine vegetation varies 

depending on altitude and geographical location, in general it is mainly characterised 

by species of Celtis africana, Mimusops kummel, Tamarindus indica, etc. The 

swamps, reservoirs and shores of lakes are dominated by species of sedges and 

grasses. Aquatic resources in this ecosystem include over 180 fish species of which 

some 30 to 50 are endemic. In addition several invertebrates groups with variable 

endemicity are present (Golubstov and Mina, 2003 apud Institute of Biodiversity 

Conservation, 2005). In the rivers and lakes, numerous species of planktonic and 

bentic fauna have been reported. Moreover, the aquatic ecosystem harbours over 

200 species of phytoplankton, including many important Bluegreen algal species 

such as Spirulina (Arthrospira). Studies of the planktonc life forms started only 

recently. These diverse aquatic habitats serves as breeding, feeding and roosting 

sites for a large number of resident and migrant birds including the endemics such as 

Spot-breasted Plover, Blue-winged Goose and Rouget’s Rail and about 10 species 

that are globally threatened. Aquatic mammals that frequently use this ecosystem 
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include Hippopotamus, Nile Lechwe, Common Waterbuck and Bush Elephant. The 

habitat is also used by considerable species of reptiles such as the Nile crocodile. 

Some of the lakes harbour endemic fish species; for example Lake Tana is unique 

for its Barbus flock. This is the only remaining stock after the demise of similar 

population in Lake Lanao (Philippines). Thus this lake has international significance 

and serves as a natural laboratory for evolutionary investigation. Baro and Akobo are 

also ‘hotspot’ of aquatic biodiversity (Institute of Biodiversity Conservation, 2005).  

2.2.9. Tef species in Ethiopia 

Ethiopia has a very high genetic diversity in four of the world’s widely grown 

food crops (wheat, barley, sorghum, peas), in three of the world’s most important 

industrial crops (linseed, castor, and cotton), in the world’s most important cash crop 

(coffee), in a number of food crops of regional or local importance (tef, finger millet, 

cowpeas, lentil, enset, etc) and in a number of groups of forage plants of world 

importance (clovers, lucerns, oats, etc.). Ethiopia is one of the twelve Vavilov Centers 

of crop diversity. In this regard the contribution of Ethiopian farmers in generating and 

maintaining the diversity of many crop plants has been indispensable. Ethiopia is 

considered as the primary gene center for field crops such as Noun (Guizotia 

abyssinica), Tef (Eragrostis tef), and Ethiopian mustard (Brassica carinata). 

Introduced field crops have developed wide ranges of genetic diversity under local 

ecological conditions and agricultural practices (Institute of Biodiversity Conservation, 

2005). 

The species classification of the genus Eragrosis exhibit its taxonomic 

complexity; spike morphology, including size of palea and lemma, has been found to 

be the most useful feature for classifying the genus into broad groups of species 

(Phillips, 1995 apud Demissie, 2000). Nevertheless, it is estimated that the genus 
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contains about 350 species, which are widely spread throughout the tropical and 

subtropical regions of the world. Forty-three percent of the species are known to 

occur in Africa alone. South America, Asia, Australia, Central America, North 

America and Europe contribute e 18%, 12%, 10%, 9%, 6%, and 2% in that order 

(Costanza, 1974 apud Demissie, 2000). The reports in the number of Eragrostis 

species that were recorded in Ethiopia are not consistent except that both annual and 

perennial species exist as a culturally important and threatened species. According to 

Cufodontis (1974 apud Demissie, 2000) 54 species are found in Ethiopia, out of 

which 14 are said to be endemic. Recent estimates indicated that only 44 species are 

found in Ethiopia (Phillips, 1995 apud Demissie, 2000). Both figures indicate that 

there exists a considerable proportion of endemicity in the country, and thus a large 

gene pool that may be useful for tef improvement (Demissie, 2000).  

2.3. DROUGHT AND TEF CROP STRESS 

Rainfed farming is dominant in Ethiopia and has low productivity because of 

erratic and insufficient rainfall during the growing season (Gommes & Petrassi, 

1994). In Ethiopia, the 1984 drought caused the deaths of about 1 million people, 1.5 

million head of livestock perished, and 8.7 million were affected in all. In 1987, more 

than 5.2 million people in Ethiopia were severely affected. Rainfall records indicate 

that, in some parts of the sub-Saharan Africa, the drought in 2000 was worse than 

that experienced in 1984 (Drought Monitoring Center, 2000 apud Rojas et al., 2011). 

Rainfed farming is dominant in Ethiopia and has low productivity because of 

erratic and insufficient rainfall during the growing season (Meze-Hausken, 2004). Arid 

and semiarid regions of the world, such as Ethiopia, suffer much from this crop 

production constraint because of the inadequacy, irregularity or intensity of their 

natural rainfall patterns. Frequently recurrent droughts supplemented with lack of 
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efficient use of existing water resources have amplified the impact of drought on the 

livelihood of Ethiopian farmers (Mengistu, 2009). Widespread drought can lead to 

crop failures, with associated deterioration in food security (Senay & Verdin, 2003). 

The maximum yield of plants, determined by their genetic potential, is seldom 

achieved because factors such as insufficient water or nutrients, adverse climatic 

conditions, plant diseases, and insect damage will limit growth at some stage. Plants 

subjected to these biotic and abiotic constraints are said to be stressed. The term 

"stress" can be defined as any disturbance that adversely influences growth 

(Jackson, 1986).  

The lowlands of Ethiopia and the main productive areas of Kenya have been 

affected by the 1984 drought (Gommes & Petrassi, 1994). In Ethiopia, the 1984 

drought caused the deaths of about 1 million people, 1.5 million head of livestock 

perished, and 8.7 million were affected in all. In 1987, more than 5.2 million people in 

Ethiopia were severely affected. Rainfall records indicate that, in some parts of the 

sub-Saharan Africa, the drought in 2000 was worse than that experienced in 1984 

(Drought Monitoring Center, 2000 apud Rojas et al., 2011). 

Whether or not they are detectable by sight or touch, changes that take place 

as a result of stress affect the amount and direction of radiation reflected and emitted 

from plants. Reflectance of light from a plant canopy depends not only on the 

reflectance properties of individual leaves and stems but also on the ways in which 

they are oriented and distributed. Under stress it is likely that both of these factors 

will change. Changes that take place as a result of stress affect the amount and 

direction of radiation reflected and emitted from plants. Remote-sensing techniques 

are capable of measuring radiation and therefore offer the possibility of quantitatively 

assessing plant stress caused by biotic and abiotic factors (Jackson, 1986). 
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2.3.1. Crop and Soil Property within the Field 

Tef belongs to the grass family, Poaceae, sub-family Chloridoideae 

(Eragrostoideae), tribe Eragrostidae, sub-tribe Eragrostae, and genus Eragrostis. 

The genus Eragrostis comprises about 350 species (Watson and Dallawitz 1992). 

Although the crop species have had several synonyms previously used by several 

authors, its presently most accepted binomial nomenclature is E. tef (Zucc.) Trotter. 

In cultivation as a cereal, tef is the only species in the genus Eragrostis and together 

with finger millet (Eleusine crocana L.) they constitute the sole two species in the 

sub-family Chloridoideae cultivated for human consumption of the grains. (Assefa et 

al., 2011) 

According to the survey recently conducted by Mamush (2011, personal 

communication) tef is a staple food for at least 40% of the Ethiopians (34 million). 

However many agree that majority of the Ethiopians consume tef at least 3 times a 

week. In Ethiopia, tef grain is mainly used for food after baking the ground flour into 

pancake-like soft and sour bread, “injera”, which forms the major component of the 

favorite national dish of most Ethiopians. It is also consumed in the form of porridge, 

and slightly fermented or un-fermented non-raised breads (“kita” and “anebabero”) 

(Davison et al., 2004). Although recent economic feasibilities might have limited such 

uses, the grain is also used for brewing native beer, “talla”, and more alcoholic 

cottage liquor, “katikalla” or “arakie”. Tef is produced mainly for food but its straw is 

also used as animal feed and as construction material for houses. (Assefa et al., 

2011).  

Tef has higher market prices than the other cereals, for both its grain and 

straw. Tef grain is not attacked by weevils, which means that it has a reduced 

postharvest loss in storage and requires no pest-controlling storage chemicals. Tef is 
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also gaining popularity as healthy food (Spaenij- Dekking et al., 2005) in the western 

world menus. Tef is high in iron content and contains no gluten (Roseberg et al., 

2006). 

The long-sustained extensive cultivation of tef in Ethiopia can be attributed to 

its relative merits over other cereals both in husbandry and utilization (Ketema 1993). 

Of these, its merits in cultivation, include: (1) versatile adaptation 0– 3000 m above 

sea level; (2) resilience to both drought and water-logging stresses; (3) fitness for 

various cropping systems; (4) use as a catch and low-risk reliable crop especially in 

replacement cultures for failures of early sown long-season crops (e.g. maize and 

sorghum) due to environmental calamities or pests; and (5) little or no serious threats 

of disease and pest epidemics, at least, in its major production belts. (Assefa et al, 

2011). 

On the other hand, its beneficial features with respect to utilization involve: (1) 

best quality and most consumer-preferred injera of the grains; (2) high returns in flour 

(Ebba 1969) and in injera; (3) minimal post-harvest losses due to storage pests and 

diseases coupled with high storage longevity (storability); (4) importance of the straw 

mainly as fodder for cattle and as a binder of mud used for plastering walls of local 

houses; and (5) cash crop value owing to the high market prices of both the grains 

and the straw (Assefa et al, 2011). 

Tef performs well from 1800 up to 3000 Masl. An average rainfall of 300-700 

mm with enough distribution especially at early stage is good for tef. However in 

areas where 800-1200mm rainfall tef gives a good harvest. Tef performs well on 

various soil types (Mamo et al., 2000). Through implementation of appropriate or 

recommended technologies tef can be grown in different soil types. Loomy black 

soils (Vertisols) are the best for tef growing. Most tef growing areas of Ethiopia has 



23 
 

black soils. tef growth in those areas is preferred because of its improved 

development. However, water has to be drained out well in black soils. 

Production of Tef in Ethiopia is not mechanized yet. Plough is done by oxen. 

Oxen called “Maresha” are the only means of plough in almost all tef growing areas 

and this practice has been done since thousands of years ago. Tef fields have to be 

well ploughed 3 to 4 times before planting. Tef seeds are tiny, weight about 19-42 mg 

(Yifru, 1998). The conventional tillage by maresha includes a primary tillage, followed 

by repeated secondary shallow tillage, aiming at controlling weeds, conserving 

moisture and aerating the soil (Melesse et al., 2008). 

Planting of Tef is done by broadcasting the feeds by hand. Seed rate in most 

tef farmers of the country is 25-50 kg/ha. (MoARD, 2010). A new technology for 

transplanting seedlings is to be introduced in 90 farmers training centers. In this case 

seed rate is increased up to 400 gr/ha.  

Main weed species causing damages to tef plants are Cyperus spp, Sefaria 

spp. Guizofia spp, Convolvealas spp and Argemone spp. Mainly hand weed removal 

as weed control is applied but some areas are treated with chemicals. 

Tef is less attacked by diseases compared to cereals and grains however rust 

and damping off can attack the crop. No fungicides or chemicals are sprayed to tef 

crops. Tef is harvested by driving animals over the grass and the remaining threshing 

activities are carried by human labor. 

2.3.2. Crop Yield Management System 

Much of the increase in crop production in the past decade has been due to 

increases in area cultivated, although better yields also contributed to the augmented 

production in Ethiopia during 2004/05–2007/08 period (Table 1. Tef production and 
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productivity along years 1990 to 1994.) (MoARD, 2011). With little suitable land 

available for expansion of crop cultivation, especially in the highlands, future tef 

production growth will need to come from yield improvements. Current cereal yields 

are low, by international standards, indicating growth potential. Current use of inputs 

is at a low level, suggesting substantial scope for raising productivity through 

irrigation, improved seeds, and application of fertilizers (Taffesse et al., 2011). 

Poverty-reduction strategy adopted by Ethiopia seeks to achieve growth through the 

commercialization of smallholder agriculture (Gebreselassie & Sharp, 2008). 

 

Table 1. Tef production and productivity along years 1990 to 1994.  

Description 1990 1991 1992 1993 1994 Average 

Area (M.ha) 2.59 2.48 2.56 2.4 2.25 2.46 

Produce (M.Qts) 21.76 24.38 29.93 30.28 31.79 27.63 

Productivity (t ha) 9.69 10.14 11.67 12.2 12.28 11.2 

Proportion to 
cereals and 

grains in %  

Area 27.84 28.33 29.32 28.28 28.37 28.37 

Production 18.71 18.93 21.82 20.89 20.46 20.16 

Source: MoARD, 2011 

 

According to the Central Statistics Authority of Ethiopia (CSA, 2010) and the 

Ministry of Agriculture of the Federal Democratic Republic of Ethiopia (MOARO 2010, 

unpublished paper), Tef is cultivated on about 2.59 million hectares of land (Table 2. 

Area, production and yields of cereals in Ethiopia, 2003/04 and 2007/08). 

Covering around 30% of the total average of cereal and grain, its area 

showed 35% increase since the last ten years. Tef is grown at large in four regional 

states of Ethiopia, Tigray, Amhara, Oromia and South, with an average yield of 

10.86, 12.85, 12.15, 11.88 Quintals per hectare in that order. It fetches the highest 

market price of any food grain in Ethiopia (Gebreselassie and Sharp, 2008).  
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Table 2. Area, production and yields of cereals in Ethiopia, 2003/04 and 2007/08 

 2003/04 2007/08 Grow th rate (%) 

Cereal 
crop 

Area 

000 ha 

Production 

000 tons 

Yield 

Tons/ha 

Area 

share 
% 

Area 

000 ha 

Production 

000 tons 

Yield 

Tons/ha 

Area 

share 
% 

Area Production Yield 
Area 

share 
% 

Barley 911 1,071 1,2 13,4 985 1,355 1,4 11,4 8,1 26,5 
17,

0 
-14,9 

Maize 1,300 2,455 1,9 19,1 1,767 3,750 2,1 20,4 35,9 52,7 
12,

3 
6,8 

Millet 303 304 1,0 4,5 399 538 1,3 4,6 31,7 77,0 
34,

4 
2,2 

Sorghum 1,242 1,695 1,4 18,2 1,534 2,659 1,7 17,7 23,5 56,9 
27,

0 
-2,7 

Tef 1,985 1,672 0,8 29,1 2,565 2,993 1,2 29,6 29,2 79,0 
38,
6 

1,7 

Wheat 1,075 1,589 1,5 15,8 1,425 2,314 1,6 16,4 32,6 45,6 
10,

0 
3,8 

Other 35 44 1,3 0,5 55 108 2,0 0,6 57,1 145,5 
56,
1 

20,0 

Total 

Cereal 
6,816 8,786 1,3 100 8,675 13,609 1,6 100 27,3 54,9 

21,

7 
 

Source: Yu et al., 2010 

 

Yihun et al., (2013) observed that a maximum grain yield of 3.3 t/ha was 

obtained under irrigation when tef was not subject to any water stress. This is three 

fold the yield farmers currently harvest from rainfed agriculture. The yield and water 

productivity differences are insignificant between a full irrigation and a 25% deficit 

irrigation distributed throughout the growth period at seeding rates of 25 kg/ha and 10 

kg/ha. The authors recommend, when water is scarce and irrigable land is relatively 

abundant as is the case in Ethiopia, adopting the 25% water deficit irrigation with 10 

kg/ha seeding rate may be optional. A maximum water deficit of 50% during the late 

season stage has an insignificant impact on Tef yield and water productivity.  

Tef sensitivity to drought depends on the stage during which the stress 

occurs. The grain filling stage of tef was the most sensitive to water stress and 
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severe water stress caused significant reduction in physiological performance of tef 

(Mengistu, 2009; Mengistu & Mekonnen, 2012). This is probably the best time to 

provide sufficient water for tef optimum development and production from the existing 

lavel of waster stress. Tsegay et al., 2012 also noticed that water stress particularly 

at the later development stage of crops affected tef productivity as the result of earlier 

cessation of the rainfall. The authors observed an increase of 27% in reference 

harvest index of tef in response to mild water stress during the yield formation of up 

to 33%. 

Increased yield was also observed by Assefa et al., (2011) while studying the 

optimum tillage frequency, time and weeding frequency for tef production. Grain yield 

increased linearly as tillage frequency increased. Twice weeding increased yield by 

39% over un-weeded. The highest grain yield was obtained when seven times plow 

was combined with weeding twice which resulted in an increase of yield by 96% over 

the lowest yield treatment (one plow + roundup + un-weeded). However, three times 

plowing combined with hand weeding at tillering was found to be an economical 

practice with the highest marginal rate of return and net benefit. It is, therefore, 

recommended to small-scale farmers around as a way of promoting sustainable crop 

production with fewer unfavorable effects on the environment 

2.4. REMOTE SENSING FOR CROP MONITORING 

Remote sensing is the science and art of obtaining information about an 

object, area, or phenomenon, through the analysis of data acquired by a device that 

is not in contact with the object, area, or phenomenon under investigation (Lillesand 

& Kiefer, 1994). 
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The Sun is the main energy source for the entire solar system and generates 

a large amount of energy that is radiated to the entire space. The solar radiation 

reaches the Earth where it is partly reflected back to space and partly absorbed by 

terrestrial objects transformed into heat or other forms of energy. Radiant energy can 

also be generated on Earth by heated objects or by other physical phenomena 

(Stefen & Moraes, 1993). 

If we organize all our knowledge on different types of electromagnetic 

radiation, we have a graph like Figure 1, called electromagnetic spectrum, which was 

built based on the wavelengths (or frequencies) known radiation. The spectrum is 

divided into regions or bands whose names are related to the way in which radiation 

can be produced or detected (Stefen & Moraes, 1993). 

 

Figure 1. Electromagnetic spectrum. Source: http://www.redorbit.com 

 

When radiation interacts with an object, it can be reflected, absorbed or 

transmitted. In general the portion absorbed is transformed into heat or some other 

type of energy and the reflected spreads through space. The factor that measures 

the ability of an object to reflect the radiant energy indicates its reflectance, whereas 

the ability to absorb radiant energy is indicated by its absorbance and, likewise, the 

ability to transmit radiant energy is indicated by its transmittance (Jensen, 1986). 

http://www.redorbit.com/
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We can measure the reflectance of an object for each type of radiation that 

composes the electromagnetic spectrum and then realize, through this experience, 

that the reflectance of the same object can be different for each type of radiation that 

reaches it. The curve in Figure 2 shows how a green leaf has different values of 

reflectance for each wavelength, from the blue band to the near-infrared band. This 

type of curve, which displays the reflectance of an object for each wavelength, is 

called a spectral signature and depends on the properties of the object (Lillesand & 

Kiefer, 1994). 

 

Source: http://www.inpe.br/unidades/cep/atividadescep/educasere/apostila.htm  

 

Figure 2. Spectral signatures of vegetation.  

 

The term resolution in remote sensing unfolds in truth in three different (and 

independent) parameters: spatial resolution, spectral resolution and resolution 

radiometric (Crosta, 1993). 

Spatial resolution refers to the ability of the sensor system to distinguish and 

measure the targets. This ability is based on geometric projection of the detector onto 

http://www.inpe.br/unidades/cep/atividadescep/educasere/apostila.htm
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earth surface, defining the field of view area of the instrument at a certain altitude and 

at a specific time. The angle defined by this projection is called instantaneous field of 

view (IFOV). The IFOV defines the area of the land targeted to a given altitude by 

instrument sensor (Florenzano, 2002). It is related to the size of the smallest object 

that can be located in fields or detected in an image. The basic unit in an image is  

called a pixel. One-meter spatial resolution means each pixel image represents an 

area of one square meter. The smaller an area represented by one pixel, the higher 

the resolution of the image. 

Spectral resolution is a measure of the spectral bands width and sensor 

system sensitivity to distinguish between levels of intensity of signal return (Novo, 

1989). For a better understanding of this concept, Jensen and Jackson (2001) 

emphasize two important points: the wavelength detected by the sensor and the 

number of spectral bands. More bands and smaller band width means improved 

target discrimination and better spectral resolution (Melo, 2002). 

Radiometric resolution refers to the ability of the sensor system to detect 

variations in spectral radiance received. The radiance of each pixel goes through a 

digital encoding, obtaining a numerical value, expressed in bits, called Digital 

Number (DN). This value is easily translated into an intensity or a visual gray level 

located in a finite interval (0, K-1), where K is the number of possible values, called 

quantization levels (Schowengerdt, 1983). Spectral resolution refers to the number of 

bands and the wavelength width of each band. A band is a narrow portion of the 

electromagnetic spectrum. Shorter wavelength widths can be distinguished in higher 

spectral resolution images. Multispectral imagery can measure several wavelength 

bands, such as visible green or NIR. Landsat, Quickbird, and Spot satellites use 

multispectral sensors. Hyperspectral imagery measures energy in narrower and more 

numerous bands than multispectral imagery. The narrow bands of hyperspectral 
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imagery and more sensitive to variations in energy wavelengths and, therefore, have 

a greater potential to detect crop stress than multispectral imagery. Multispectral and 

hyperspectral imagery are used together to provide a more complete picture of crop 

conditions. 

The number of gray levels is expressed in bits, or in other words, expressed 

as a function of binary digits number needed to store, in digital form, the maximum 

gray level value. This value is always a power of 2, for example 8 bits mean 28, 

equals to 256 gray levels. The differences are larger in levels 2 and 4 than in levels 

256 and 2048, due to the fact that the human eye does not have sensitivity to 

changes in intensity above 30 gray levels (Crosta, 1993). 

Temporal resolution refers to the frequency at which the sensor passes the 

same place, in a specific period of time. This cycle is related to the orbital platform 

characteristics (height, speed, inclination), and the sensor total aperture angle. The 

temporal resolution is of great interest especially in studies related to changes in the 

Earth's surface and its monitoring (Lillesand & Kiefer, 1994).  

Rapid advances in remote sensing for precision agriculture have occurred 

over the last twenty five years. Satellite imagery has improved in spatial resolution, 

return visit frequency and spectral resolution. Aerial hyperspectral imagery has 

revolutionized the ability to distinguish multiple crop characteristics, including 

nutrients, water, pests, diseases, weeds, biomass and canopy structure. Ground-

based sensors have been developed for on-the-go monitoring of crop and soil 

characteristics such as N stress, water stress, soil organic matter and moisture 

content (Mulla, 2013). 
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2.4.1. Tef Reflectance Characterization Using Spectroradiometer 

2.4.1.1. Ground Measurements 

Field spectroscopy involves the study of the interrelationships between the 

spectral characteristics of objects and their biophysical attributes in the field 

environment (Milton, 1987). Spectroscopy can be considered a multichannel 

radiometry (Harris, 2005). Radiometry is the measurement of optical radiant energy. 

It also refers more generally to the principles and laws behind the generation, 

propagation, and detection of optical radiation (Wolfe, 1998). Although it is the 

science of measuring light in any portion of the electromagnetic spectrum, in practice, 

the term is usually limited to measurement of infrared, visible, and ultraviolet light 

using optical instruments (Ashdown, 2002). 

The most widely used methodology in field spectroscopy concerns 

measurement of the reflectance of composite surfaces in situ. Increasingly, spectral 

data are being incorporated into process-based models of the Earth's surface and 

atmosphere, and it is therefore necessary to acquire data from terrain surfaces, both 

to provide the data to parameterize models and to assist in scaling-up data from the 

leaf scale to that of the pixel (Milton et al., 2009). 

The radiation geometry of the field environment is shown in the Figure 3. 

Positions of the primary source of irradiation (the Sun) and the sensor are each 

defined by two angles, the angle from the vertical (the zenith angle, ) and the angle 

measured in the horizontal plane from a reference direction (the azimuth angle,  ). 

(Milton, 1987) 
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Figure 3. Radiation geometry of the field environment. Source: Milton, 1987.  

 

Ignoring skylight, the energy from the Sun and the energy reflected to the 

sensor can be thought of as being confined to two slender elongated cones, each 

subtending a small angle at the target surface, termed solid angles and measured in 

steradians (sr) (McCoy, 2005).  

Consider the incident solar energy (irradiance) and the reflected energy 

(radiance) as two elongated cones, each forming small solid angles at a point on the 

target surface (Figure 4). The reflectance of that particular point on the target can be 

expressed as a ratio of the radiance to the irradiance. The practical alternative to 

measuring the indicatrix is to measure samples of radiance from the target along with 

the radiance of a standard white reflectance panel to represent irradiance. In order to 

fully express the hemispherical reflection characteristics of an entire target, rather 

than only a point, it would be necessary to measure the irradiance and radiance at all 

possible sensor positions and all possible source positions. This hemisphere of 

reflected radiation within a specified spectral range is referred to as the target’s 
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spectral indicatrix (Goel, 1988; Curran, Foody, Kondratyev, Kozoderov, & 

Fedchenko, 1990) (McCoy, 2005). 

 

 

The practical alternative to measuring the indicatrix is to measure samples of 

radiance from the target along with the radiance of a standard white reflectance 

panel to represent irradiance (Figure 5). Reflectance ( ), then, is a ratio of target 

radiance to panel radiance. Reflectance ( ), then, is a ratio of target radiance to 

panel radiance. 

 
  (

                  

                 
)    

(1) 

The constant, k, a panel correction factor, is a ratio of solar irradiance to panel 

radiance and ideally should be near 1. We assume that the reference panel is a 

Lambertian reflector; hence, it would have the same correction constant regardless of 

variations in zenith or azimuth angles of the incident radiation (Nicodemus, 1977; 

Robinson & Biehl, 1979; Jackson, Clarke, & Moran, 1992) (McCoy, 2005).  

 

Figure 4. Direct irradiant flux and diffuse radiant flux. Source: McCoy, 2005 
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Figure 5. Instrument configuration for measurement. Source: Mac Arthur, 2011. 

 

A variety of passive remote sensors are used to obtain data of Earth surface 

materials, such as (Nasa, 2013):  

- Radiometer: an instrument that quantitatively measures the intensity of 

electromagnetic radiation in some band of wavelengths in the spectrum. 

Usually a radiometer is further identified by the portion of the spectrum it 

covers; for example, visible, infrared, or microwave. 

- Spectrometer: a device designed to detect, measure, and analyze the 

spectral content of the incident electromagnetic radiation is called a 

spectrometer. Conventional, imaging spectrometers use gratings or 

prisms to disperse the radiation for spectral discrimination. 

- Spectroradiometer: a radiometer that can measure the intensity of 

radiation in multiple wavelength bands (i.e., multispectral). Oftentimes the 

bands are of a high spectral resolution - designed for the remote sensing 

of specific parameters such as sea surface temperature, cloud 

characteristics, ocean color, vegetation, trace chemical species in the 

atmosphere, etc  

Field measurements are usually made using a mast or tripode to ensure a 

fixed geometry between the sensor, the standard panel and the target. Hand-held 
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measurements are less precise because of the variable geometry of the operator to 

the target and of the target to the instrument (Milton, 1987).  

According to McCoy (2005), the following field procedures are suggested for 

improving accuracy of field data collected:  

1. Maintain a consistent viewing geometry relative to the solar azimuth angle. 

This procedure assures that spectral samples are taken from the same portion of the 

target radiance hemisphere with each measurement. The operator must change the 

viewing azimuth through the course of the day as the solar azimuth angle changes. 

This is easy to do by standing with one’s back to the sun at every measurement site 

while measuring both the reference panel and the target. Of course, this position 

must be assumed in a way that does not cast the operator’s shadow on the reference 

panel or the target. Consistency in distance of the sensor from the target must also 

be maintained as a part of the viewing geometry.  

2. Determine that the reference panel and the target each overfill the FOV of 

the sensor while taking a measurement. This is a condition that must be considered 

in order to establish an appropriate distance from the sensor to either the panel or 

the target.  

3. Vehicles and persons other than the operator should be kept several 

meters away from the target. The operator should wear dark clothing and, as 

mentioned above, stand facing away from the sun. Tripods or truck-mounted booms 

should be painted flat black. These precautions will reduce the variability of 

measurements.  

4. Multiple measurements should be taken when measuring vegetation foliage 

in order to compensate for movement of the target by wind.  
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5. Measurements should be made at a time when direct solar flux is the 

dominant incident radiation. Ideally, there should be a perfectly clear sky with no 

haze, but in the real world this is an elusive condition.  

6. Field work should be limited to periods of high sun. Great variation in 

incident radiation occurs as sunlight passes through longer stretches of atmosphere 

with increasing path lengths through haze and dust. It is best to restrict 

measurements to a period about 2 hours before and after solar noon.  

2.4.1.2. Tef Reflectance Spectra 

The absorption and reflection of solar radiation is the result of many 

interactions with different plant materials, which varies considerably by wavelength. 

Water, pigments, nutrients, and carbon are each expressed in the reflected optical 

spectrum from 400 nm to 2500 nm, with often overlapping, but spectrally distinct, 

reflectance behaviors. Leaves vary widely in both shape and chemical composition 

(McCoy, 2005).  

Vegetation reflectance is known to be primarily a function of tissue (leaf, 

woody stem and standing litter) optical properties, canopy biophysical attributes (for 

example, leaf and stem are, leaf and stem orientation, and foliage clumping), soil 

reflectance, illumination conditions, and viewing geometry. Foliage interacts with 

radiation and processes of absorbance, reflection and transmittance occurs. Leaf 

optical properties are a function of leaf structure, water content and the concentration 

of biochemical (Asner, 1998).  

Relative concentrations of plant pigments such as chlorophyll, carotenoids, 

and anthocyanins vary significantly and influence vegetation reflectance at the same 

extent. Chlorophyll concentrations in leaves are broadly correlated with 

photosynthetic rates. Leaf pigments only affect the visible portion of the shortwave 
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spectrum (400 nm to 700 nm). Water features centered around 970 nm and 1190 nm 

are pronounced and can be readily measured from hyperspectral sensors. Plants of 

different species inherently contain different amounts of water based on their leaf 

geometry, canopy architecture, and water requirements. Leaf water affects plant 

reflectance in the near-infrared and shortwave infrared regions of the spectrum. 

Plants contain carbon in many forms, including sugars, starch, cellulose, and lignin. 

Cellulose and lignin display spectral features in the shortwave infrared range of the 

shortwave optical spectrum. Nitrogen concentrations in foliage are linked to 

maximum photosynthetic rate and net primary production. Some proteins that contain 

nitrogen affect the spectral properties of leaves in the 1500 nm to 1720 nm range 

(Asner, 1998). 

The amount of foliage and the architecture of the canopy are also meaningful 

in determining the scattering and absorption properties of vegetation canopies. 

Vegetation with mostly vertical foliage, such as grass, reflects light differently than 

foliage with more horizontally-oriented foliage, seen frequently in trees and tropical 

forest plants (Asner, 1998). 

Tef reflectance spectra of plants under water stress and unstressed plants 

grown in Blythe (California, U.S.) were measured using a field spectroradiometer 

(Hanna & Rethwisch, 2003). Although environmental conditions and plant response 

in U.S. are very different than those in arid climate Ethiopia, analysis of spectral 

behaviour of tef plant leaves and canopy is very important to understand tef 

reflectance in satellite imagery and as a comparison with future studies.  

Hanna & Rethwisch, (2003) considered that characteristics of tef plants such 

as the presence of culms, spikelets, lateral veins, pedicels, panicle, flowering scales 

and flower scale colors can affect the spectral signature of the crop collected at 

ground- and satellite-level. Additionally, appearance of the plant as a bunch of grass 
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with large crowns and many tillers could affect the spectral signature of the plant. The 

spectra of tef grass exposed to different types of water stress was evaluated and 

showed lower peaks in the reflectance in the stressed vegetation than the unstressed 

(Figure 6). For the authors, the reason may be the shape of leaves affected by stress 

and reduction in the greenish part rather than in the unstressed. Possibly 

photosynthesis chemical pigmentation and activity could be affected by plants 

suffering from water stress. The more greenish part could be seen in the range of 

700-1100-1350-1550nm in the spectra. The peaks of 750-900nm showed less 

reflectance (i.e. 0.45 % reflectance) in the stressed plants and the opposite in the 

less stressed plants (i.e. 0.55-0.80 %reflectance). 

 

Figure 6. Wavelength (nm) & reflectance in Tef Source: (Hanna & Rethwisch, 2003)  
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When t-test was used, in classifying the difference in radiometer reflectance, it 

showed that the two treatments were different in wavelength of 1150-1350 and 1350-

1550, which is in the range of water absorption. This is due to the impact of the 

water-stress treatment (t=14.25 and P<=0.044). 

Reflectance curves of these two treatments have the same pattern of 

characteristics. However, the less stressed Tef grass showed higher spectral 

reflectance in wavelength of 750-1200 and 1300-1500 than the stressed plants as 

shown in Figure 6. This is due to the differences in type of treatment impacted on leaf 

shapes. The less stressed plants were having more greenish surface area parts than 

the stressed plants. The more greenish surface in leaves will indicate less reflectance 

in the water absorption area in the spectra in the 900-1300 nm. In this respect, the 

reflectance response of both treatments on the Tef grass crop that were studied can 

be explained by the spectral absorptive of chlorophyll at the wavelength near 700-

750 nm and of leaves and chloroplast suspensions. The feature of water absorption 

has the characteristics to identify the different treatments applied to the same crop, 

which may affect the characteristic features of the leaves of the plants. This is shown 

in reflectance curves of Figure 6 (Hanna & Rethwisch, 2003). 

2.4.1.3. Relationship Between Satellite Data and Ground Measurements 

Several studies have shown good agreement between field spectral data and 

satellite data, in narrow bands hyperspectral sensors. Zhou et al. (2013), for 

example, compared field spectra with simulated Hyperion and real HJ-1A satellite 

data to estimate chlorophyll-a concentration. The same indices defined using field 

measured plant spectra were selected as the best predictors for pigment content 

showing a good correlation with actual leaf chlorophyll-a content (R2 = 0.8241). 
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Nidamanuri & Zbell, (2011) used field reflectance data to classify HyMap 

airborne hyperspectral images and found that field spectral signatures are similar to 

those acquired with airborne sensor for some crops but not for every crop studied.  

AVIRIS images from Blythe area, California, acquired in 1997 were compared 

with the ground-truth data collected on July 19 2000. Similarities for the spectra of tef 

grass crop extracted from both methods were found. This similarity allowed validating 

the spectra from images and field reflectance data. The peaks of spectral reflectance 

from AVIRIS and the spectroradiometer data are very similar and the most important 

region in the spectra is the region of 650-900, 900-1200, 1400- 1600 and 1600-2000 

nm.  

Field reflectance data collected for tef grass showed perfect match between 

the ground-truth spectral library and data extracted from AVIRIS especially for the 

two treatments (i.e. Tef exposed to less water stress and vise versa). This study 

showed that there is an excellent agreement between the predicted and the actual 

crop type and treatments (i.e. The correlation is between 85-90% match). The 

similarities are supported by the regression and correlation relationship between the 

reflectance obtained from AVIRIS images and the field reflectance data (R
2
=0.56-

0.98 and P<0.01) (Hanna & Rethwisch, 2003). 

2.4.2. Multispectral Remote Sensing   

With increasing population pressure throughout the world and the need for 

increased agricultural production, there is a definite need for improved management 

of the world's agricultural resources. To make this happen, it is first necessary to 

obtain reliable data on the types of resources and the quality, quantity and location of 

these resources. Satellite- or aerial-based remote sensing technologies will become 
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important tools in improving the present systems of acquiring and generating 

agricultural and natural resource data (Liaghat & Balasundram, 2010).  

Remote sensing technology is a key component of PA and is being used by 

an increasing number of scientists, engineers and large-scale crop growers. At 

present higher-resolution satellite imagery overcomes previous constraints and 

permits the use of such data as a quick and easy tool for territorial management, 

including agricultural analysis, statistics and subsidy control (Liaghat & Balasundram 

2010).  

Bhatti, Mulla, and Frazier (1991) were the first to demonstrate that Landsat 

remote sensing had significant capabilities for estimating spatial patterns in soil 

organic matter, soil phosphorus and crop yield potential for use in precision 

agriculture applications (apud Mulla, 2013). Satellite remote sensing has been widely 

applied and is recognized as a powerful and effective tool for estimating crop 

characteristics (ADAM et al., 2007; ZENEBE, 2012).  

Satellites have been used for remote sensing imagery in agriculture (Table 1) 

since the early 1970’s when Landsat 1 was launched in 1972. Multispectral Scanner 

System (MSS) sensors on Landsat 1 collected imagery in the green, red and two 

infrared bands at a spatial resolution of 80 m and a return frequency of 18 days 

(Mulla, 2013). 

These applications of remote sensing in conventional agriculture soon led to 

applications in precision agriculture. The first application of remote sensing in 

precision agriculture occurred when Bhatti et al., (1991) used Landsat imagery of 

bare soil to estimate spatial patterns in soil organic matter content, which were then 

used as auxiliary data along with ground based measurements to estimate spatial 

patterns in soil phosphorus and wheat grain yield (Mulla, 1997).  
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According to Mulla (2013), several trends are apparent in satellite based 

remote sensing (Table 3). Firstly, the spatial resolution of imaging systems has 

improved from 80 m with Landsat to sub-metre resolution with GeoEye and 

Worldview. Secondly, the return visit frequency has improved from 18 days with 

Landsat to 1 day with Worldview. Thirdly, the number of spectral bands available for 

analysis has improved from four bands (bandwidths greater than 60 nm) with 

Landsat to eight or more bands (bandwidths greater than 40 nm) with Worldview. 

 

Table 3. Satellite remote sensing platforms. 

 

Multispectral sensors are those that obtain image information in more than 

one band, up to several, say 20 or fewer, bands. Hyperspectral sensors are those 

that obtain image information in many, say 50 to several hundred, bands. The term, 

ultraspectral, has recently been coined to describe those sensors that obtain 

information in a very high number of bands, say several hundred or more 

(Thomasson, 2010).  

Multispectral remote sensing systems use parallel sensor arrays that detect 

radiation in a small number of broad wavelength bands. Most multispectral satellite 

systems measure between three and six spectral bands within the visible to middle 
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infrared region of the electromagnetic spectrum. There are, however, some systems 

that use one or more thermal infrared bands. (Smith, 2001a). Multispectral remote 

sensing allows for the discrimination of different types of vegetation, rocks and soils, 

clear and turbid water, and selected man-made materials (Smith, 2001a). To obtain 

data of a higher spectral resolution compared to multispectral data, hyperspectral 

sensors on board satellites or airborne hyperspectral imagers are used (Smith, 

2001b). 

2.4.3. Hyperspectral Remote Sensing 

Hyperspectral remote sensing collects reflectance data over a wide spectral 

range at small spectral increments (typically 10 nm). It provides the ability to 

investigate spectral response of soils and vegetated surfaces in narrow spectral 

bands (10 nm wide) across a wide spectral range. This is not possible with 

multispectral imaging that traditionally collects reflectance data in broadband (greater 

than 40 nm wide) centered in the B, G, R and NIR regions of the spectrum. When 

collected across large spatial extents at fine spatial resolution, hyperspectral imaging 

provides powerful insight into the spatial and spectral variability in reflectance for a 

bare or vegetated surface. 

Hyperspectral sensors are used to estimate spatial crop patterns biomass 

(Yang et al., 2000) and yield (Doraiswamy et al., 2003) using the Normalised 

Difference Vegetation Index (NDVI). Wu et al., 2010 used red edge reflectance 

based vegetation indices to estimate chlorophyll canopy content and leaf area index 

for several agricultural crops.  

Hyperspectral imaging differs from multispectral imaging in the continuity, 

range and spectral resolution of bands. In theory, it offers the capability of sensing a 

wide variety of soil and crop characteristics simultaneously, including moisture status, 
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organic matter, nutrients, chlorophyll, carotenoids, cellulose, leaf area index and crop 

biomass (Goel et al., 2003; Haboudane et al., 2002; Zarco-Tejada et al., 2005).  

Nidamanuri & Zbell, 2011 attempted to classify HyMap airborne hyperspectral 

images based on field reflectance spectra as the training data for crop mapping. 

Researchers found that there exists some crops whose spectral signatures are 

similar to characteristic spectral signatures with possibility of using them in image 

classification, but this is not true for every crop tested. 

Kumar et al., 2013 used hyperspecrtal data to identify plant type, age, growth 

stage, pruning, light conditions, and disease incidence in tea plantations. Using 

stepwise discrimant analysis (SDA) and principal component analysis (PCA) of 

hyperspectral data, authors found that the Green and near-infrared (NIR) were the 

best regions for discrimination of different types of tea plants as well as tea growing 

in sunlit and shade conditions. For discriminating age of plantation, growth stage, and 

diseased and healthy bush, Blue region was most appropriate. The Red and NIR 

regions were found suitable to discriminate pruned and unpruned tea.  

Adam et al., (2007) used multispectral imagery and hyperspectral ground-

based measurements for detection of spatial variation in nitrogen (N) status of the 

crop to allow more targeted N applications. Researchers also used thermal remote to 

identify spatial variations in crop water status. They concluded that this information 

could be used for irrigation scheduling whereas farmers in non-irrigated regions could 

use these data to avoid costly N applications on water-limited crops. 

2.4.4. Comparison on Hyperspectral and Multispectral Data 

Thenkabail et al. (2000) compared broad band Landsat TM band indices and 

hyperspectral narrow band indices for cotton, potato, soybeans, corn and sunflower 
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crop variables estimation. Observed crop characteristics included wet biomass, leaf 

area index, plant height and yield. It was found that narrow band OMNBR models 

were able to explain additional 3% to 40% when compared to broad band NDVI-type 

models and two-band narrow models explained additional 3% to 6% variability. They 

concluded that narrow band models perform significantly better than broad bands.  

Thenkabail et al., (2004) compared field reflectance acquired with a 

spectroradiometrer to Hyperion data of shrubs, grasses, weeds, and agricultural crop 

species from the four ecoregions of African savannas. The results showed that the 

band centers of 13 of the 22 wavebands were within ±0.017  m of the band centers 

of Hyperion best bands. Authors consider that a significant number of wavebands 

have similar or near-similar waveband centers across vegetation types. 

2.4.5. Change Detection for Tef Crop Inventory 

Landscape spatial pattern is dependent driven by interacting physiographic 

and physiological processes, and are characterized by the temporal and spatial 

scales at which the resulting patterns are assessed (Hall & Hay, 2003). 

Timely and accurate change detection of Earth's surface features is extremely 

important for understanding relationships and interactions between human and 

natural phenomena in order to promote better decision making. Remote sensing data 

are primary sources extensively used for change detection in recent decades. In 

general, change detection involves the application of multi-temporal datasets to 

quantitatively analyse the temporal effects of the phenomenon. (Lu et al., 2004). 

Many change detection techniques have been developed. Image differencing, 

principal component analysis and post-classification comparison are the most 

common methods used for change detection. More recently, spectral mixture 
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analysis, artificial neural networks and integration of geographical information system 

and remote sensing data have become important tools for change detection 

applications (Lu et al., 2004). 

The current study adopted a change detection technique involving an object-

oriented approach for post-classification comparison. The underlying premise for 

using remote sensing data is that a change in the status of an object must result in a 

change in radiance values. However, variables such as atmospheric condition, solar 

angles, misregistration, and phenology reduce the ‘signal-to-noise ratio’. Moving from 

pixel level to object level image processing allows change detection at their 

characteristic scales of expression (Hall & Hay, 2003). 

Modern classification techniques can be applied to more efficiently extract 

information from traditional remote-sensing sources. Pixel based and object-based 

classification techniques were successfully combined to increase change detection 

accuracy from 0.81 to 0.88 (Aguirre-Gutiérrez et al., 2012).  

While assessing, evaluating and monitoring the nature and extent of land 

cover changes in an urban environment in Egypt, Afify (2011) examined the 

effectiveness change detection techniques. Change detection techniques namely; 

post-classification, image differencing, image rationing and principal component 

analysis were applied. The results indicated that the post classification change 

detection technique provided the highest accuracy while the principal component 

analysis technique gave the least accuracy. For both the generated 

change/unchange and classified change images the post-classification change 

detection technique has provided the highest overall accuracy (73.90%, 66.70%) and 

kappa coefficient of agreement (0.48, 0.45). 

Results such as those obtained in above mentioned studies encouraged 

adoption of object-based post-classification change detection approach for tef 
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detection and monitoring. Some advantages of this method, as proposed by Hussain 

et al. (2013) include: 1) all the available objects could be used for object-based 

change detection; 2) allows thematic, geometric and topological change measure; 3) 

changes are based on classification comparison; 4) completer “from-to” change 

matrix. Limitations of the technique are related to: 1) difference in sizes and 

correspondence of image objects from multi-temporal images because of 

segmentation; 2) when searching for objects extracted from one image in a second 

image, locational error can cause incorrect change results; 3) dependent on the 

accuracy of the segmentation; 4) classification accuracy influences the change 

detection accuracy. To overcome these limitations, classification accuracy must be 

carefully controlled.   

2.4.6. Vegetation Indices 

The basic understanding of leaf reflectance has led to the development of 

various vegetation indices to quantify various agronomic parameters, e.g. leaf area, 

crop cover, biomass, crop type, nutrient status, and yield. These tools are still being 

developed as we learn more about how to use the information contained in 

reflectance’s from a range of different sensors. Early assessment of yield reductions 

could avert a disastrous situation and help in strategic planning to meet the 

demands. (Gitelson, 2013).  

The usefulness of optical indices from hyperspectral remote sensing in the 

assessment of vegetation biophysical variables both in forestry and agriculture have 

been demonstrated (Haboudane et al., 2002). For example in semi-arid regions, 

Groten (1993) observed that the seasonal accumulated NDVI values are correlated 

well with the reported crop yields. 
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Spectral indices are often used to assess various attributes of plant canopies, 

such as leaf area index (LAI), biomass, chlorophyll content or N content. Those 

indices are, however, the combined response to variations of several vegetation and 

environmental properties, such as Leaf Area Index (LAI), leaf chlorophyll content, 

canopy shadows, and background soil reflectance. Of particular significance to 

precision agriculture is chlorophyll content, an indicator of photosynthesis activity, 

which is related to the nitrogen concentration in green vegetation and serves as a 

measure of the crop response to nitrogen application (Mulla, 2013). 

Many broadband spectral indices (Table 5) other than NDVI are available for 

use in precision agriculture, as reviewed by Mulla (2013). These indices reflect two 

historical trends in remote sensing for crop characteristics; namely, the prediction of 

ratios of reflectance in the red (R) and NIR bands versus ratios in the green (G) and 

NIR bands. The normalized red (NR) index focuses on the portion of the spectrum 

where chlorophyll strongly absorbs radiation. In contrast, the normalized green (NG) 

index focuses on the portion of the spectrum where pigments other than chlorophyll 

(carotenoids, anthocyanins, xanthophylls) absorb radiation. Similarly, there are two 

forms of the ratio vegetation index (RVI), one that consists of the ratio of NIR to R 

reflectance, the other green red vegetation index (GRVI) that consists of the ratio of 

NIR to G reflectance. Two forms of the NDVI exist, one that involves NIR and R 

reflectance, the other green normalized difference vegetation index (GNDVI) involves 

NIR and G reflectance (Mulla, 2013).  
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Table 4. Multi-spectral broad-band for precision agriculture. Source: Mulla (2013). 

 

Brogea & Leblanc (2001) used broadband and hyperspectral vegetation 

indices for estimation of green leaf area index and canopy chlorophyll density. 

Hansen & Schjoerring (2003) used hyperspectral reflectance data to estimate canopy 

biomass and nitrogen status in wheat crops using normalized difference vegetation 

indices and partial least squares regression. Wu et al. (2008) successfully estimated 

chlorophyll content from hyperspectral vegetation indices.  

Hyperspectral vegetation indexes are increasingly being applied to crop 

variables estimation, accompanying the growing availability of ground- and satellite 

based hyperspectral sensors (Haboudane et al., 2004; Thenkabail et al., 2004). Tian 

et al., 2011 applied newly developed vegetation indices for estimating rice leaf 

nitogren content concentration and pointed three narrow band indices with excellent 

performance for the task ahead.  

Thenkabail et al., (2000) considers that hyperspectral data can be used to 

construct three general categories of predictive spectral indices, including 1) optimal 

multiple narrow band reflectance indices (OMNBR), 2) narrow band NDVI, and 3) 

SAVI. Only two to four narrow bands were needed to describe plant characteristics 
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with OMNBR. This method of selecting optimal narrow bands to estimate crop 

variables will be further discussed in Chapter 5.  

Tian et al., (2011) derived new spectral narrow band indices that he found 

useful for estimating leaf nitrogen concentration in rice. Regions of the 

electromagnetic spectrum with special interest for this purpose are between 401-

496nm; 550–600nm and 705-717nm.  

A variety of narrow band hyperspectral indices (Table 5) are available for use 

in precision agriculture as reviewed by Mulla (2013). Many of these have the same 

form as broadband spectral indices, but differ in that the reflectance bands for 

hyperspectral indices are narrow (10 and 20 nm wide) bands centered around a 

single specific wavelength. These indices variously respond to canopy or leaf scale 

effects of leaf area index, chlorophyll, specific pigments, or nitrogen stress. Simple 

ratios (SR) 1 through 7 and normalized difference indices (NDI) 1 through 3 typically 

respond to leaf level changes in chlorophyll. In contrast, NDVI responds to canopy 

scale changes in leaf area index and chlorophyll. GNDVI, modified chlorophyll 

absorption in reflectance index (MCARI), transformed chlorophyll absorption in 

reflectance index (TCARI), MCARI2, Optimized Soil-Adjusted Vegetation Index 

(OSAVI), and MSAVI respond to canopy scale changes in chlorophyll, with the latter 

two indices being designed to compensate for soil reflectance effects. (Mulla, 2013). 
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Table 5. Hyperspectral narrow-band for precision agriculture. Source: Mulla (2013). 

  

Structural indices are derived from the reflectance of near infrared (NIR) and 

red wavelengths. The reflectance in NIR region is primarily controlled by the internal 

leaf structure. Multiple reflections in the internal mesophyll structure, caused by the 

differences in the refractive index of the cell walls and the inter-cellular air cavity, 

result in high reflectance in NIR region. Hence, these indices, which use NIR and red 

reflectance, are called structural indices. The spectral region of the red-NIR transition 

(700–750 nm) is known as the red edge, and it has been shown to have large 

information content for vegetation spectra. This region is influenced by the combined 

effects of strong chlorophyll absorption in the red wavelengths and large reflectance 

in the NIR wavelengths. The slope of this region is a strong indicator of crop health 

(Jian et al., 2007). 
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2.4.7. Combining GIS and GPS with Remote Sensing 

Ma et al. (2006) consider that remote sensing knowledge and techniques 

integration with GIS and GPS technologies provides quick data acquisition needed 

for PA helping farmers manage their crops. This is in fact the main contribution for 

increasingly usage of PA. 

Precision agriculture has generated a very high profile in the agricultural 

industry over the last decade of the second millennium, but the fact of within-field 

spatial variability, has been known for centuries. With the advent of the satellite-

based Global Positioning System, farmers gained the potential to take account of 

spatial variability (Sttaford, 2000). The global positioning system (GPS) makes 

possible to record the in-field variability as geographically encoded data. It is possible 

to determine and record the correct position continuously. This technology considers 

the agricultural areas, fields more detailed than previously; therefore, a larger 

database is available for the user (Neményi et al., 2003). 

According to Zhang et al. (2002), monitoring the crops variability can be 

achieved by two approaches: the map-based approach and the sensor-based 

approach. With available technologies of GPS, remote sensing, yield monitoring, and 

soil sampling, the map-based approach is generally easier to implement. This 

approach requires the following procedure: grid sampling a field, performing 

laboratory analyzes of soil samples, generating a site-specific map, and, finally, using 

this map to control a variable-rate applicator. A positioning system, such as a GPS, is 

usually required for this approach. The sensor-based approach, on the other hand, 

measures the desired properties, such as soil and plant properties, using real-time 

sensors in an ‘on-the-go’ fashion and controls variable-rate applicator based on the 
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measurements. For the sensor-based approach, a positioning device is not always 

needed.  

Most experimental precision-agriculture systems are map-based systems, 

because most on-the-go sensors for monitoring the field, soil, and field variability are 

too expensive, not sufficiently accurate, or not available. Spatial databases have 

been generated using various GIS systems by integrating maps derived from remote 

sensing, soil sampling, yield monitoring, and various sensors. Advanced geo-

statistical methods are used to analyze the spatial and temporal variability (Pena-

Yewtukhiw et al., 2000). Crop-modeling techniques have been incorporated to 

develop yield potential maps as a base for fertilizer prescription (Werner et al., 2000). 

These maps can be used to predict variability in crop growth and crop disease based 

on projected climatic conditions. Thus, PA provides an ideal tool for agricultural risk 

assessment and rational farm-work scheduling. 

When using management zones for site-specific applications, remote sensing 

is used to delineate the homogeneous zones and GPS is involved to control the 

application or to guide the implement (Zhang et al., 2002).  

While remote sensing provides data for accessing crop variables (Gitelson, 

2013; Haboudane et al., 2002; Broge & Leblanc, 2001; Wu et al. 2008), GIS allows 

spatial analysis and planning even at field-level (Runquist et al., 2001; Ess et al., 

1997) while GPS equipment close the circle (Sttaford, 2000), providing geographical 

positioning for variable-rate applications .  
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2.4.8. Tef Crop Yield profile estimation 

The techniques to estimate crop yield and production include statistical 

sampling methods, agro-climate models, crop growth models, remote sensing, and 

integrated methods (Chen et al., 2008).  

Because of the seasonal rhythm of vegetation, the micro-structure of plant 

cells and the macro-structure of vegetation canopies changes accordingly and the 

spectral response of individual vegetation types or of a population also changes 

periodically (Chen et al., 2008).  

Crop yield and production data are key indicators for national food security 

and sustainable development of society (Chen et al., 2008). Monitoring agricultural 

crop conditions during the growing season and estimating the potential crop yields 

are both important for the assessment of seasonal production. Accurate and timely 

assessment of particularly decreased production caused by a natural disaster, such 

as drought or pest infestation, can be critical for countries where the economy is 

dependent on the crop harvest (Doraiswamy et al., 2003). 

In Ethiopia, characterised by climatic uncertainties, forecasting tef crop yield 

well before harvest is crucial. Given that drought is a common occurrence in the 

country, timely and quantitative information on expected tef crop yield will improve 

food production and country’s food security. A timely assessment of emergency 

situation will also allow government to intervene with specific measures that support 

local farmers (Zenebe, 2012).  

The use of remote sensing to estimate variations in crop yield is very common 

in agricultural research (Thomasson, 2003). Ferencz et al., (2004) used models for 

estimating the yield of different crops in Hungary from satellite remote sensing and 

field data. The correlation between the remote sensing estimated and classical yield 



55 
 

data for eight crops was found to be more than 99%. Wheat, corn, sugar beet, barley, 

alfalfa, rye and maize for silage and pea yield could accurately be estimated for 

operational use for county-, region- and country-level. The authors stated that not 

only the methods proved to be an effective tool in regional yield estimation, but also 

can be applicable in developing countries, because use only relatively simple 

technology and are not expensive. 

The only work found relating remote sensing data and tef crop variables is the 

one developed by Hanna & Rethwisch in 2003. Data from a farm in California, U.S. 

for soil water content (WC), pH, organic matter (OM) and nitrogen (N%) were 

collected. Yield was also evaluated using statistical data from several years. 

Spectroradiometer and AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) 

sensors were used, showing that there is an excellent agreement between the 

predicted and the actual crop variable (i.e. the correlation is between 85 – 90% 

match). 

Remote sensing images are capable of identifying crop health as well as 

predicting its yield. In this study, Normalised Difference Vegetation Index (NDVI) 

calculated from remote sensing images will be used to monitor crop growth and 

relate to crop yield. The satellite data will be validated using ground truth in farmer’s 

field (Zenebe, 2012). 

2.4.8.1. Performance in Remote Sensing Technique 

Moriondo et al. (2007) used NDVI data and CROPSYST model to estimate 

above-ground biomass and ultimately, wheat yield. The results obtained showed the 

high accuracy of the method in estimating wheat yield at the provincial level. 

Correlation coefficients equal to 0.77–0.73 were obtained between measured and 
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simulated crop yield, with corresponding root mean square errors (RSME) of 0.47 

and 0.44 Mg/ha for Grosseto and Foggia, respectively. 

Doraiswamy et al. (2003) used the crop model EPIC (Erosion Productivity 

Impact Calculator) to estimate crop parameters including yield. Remote sensing data 

was used to assess crop condition parameters and use these parameters as an input 

to the model. Authors found that results of the simulations with and without the use of 

remote sensing data suggest that remotely sensed data improves the consistency of 

the predictions, and that significantly better yields can be determined prior to crop 

harvest using remote sensing data. 

Two methods for estimating the yield of different crops in Hungary from 

satellite remote sensing data were adopted by Ferencz et al. (2004). In the first 

method developed for field level estimation, reference crop fields were selected by 

using Landsat Thematic Mapper (TM) data for classification. A new vegetation index 

(General Yield Unified Reference Index (GYURI)) was deduced using a fitted double-

Gaussian curve to the National Oceanic and Atmospheric Administration (NOAA) 

Advanced Very High Resolution Radiometer (AVHRR) data during the vegetation 

period. The correlation between GYURI and the field level yield data for corn for 

three years was R2=0.75. The county-average yield data showed higher correlation 

(R2=0.93). The second method presented uses only NOAA AVHRR and officially 

reported county-level yield data. The county-level yield data and the deduced 

vegetation index, GYURI, were investigated for eight different crops for eight years. 

The obtained correlation was high (R2=84.6–87.2). The developed robust method 

proved to be stable and accurate for operational use for county-, region- and country-

level yield estimation. The method is simple and inexpensive for application in 

developing countries, too.  
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As for tef yield remote sensing based yield estimation, no results are available 

so far. However, Zenebe (2012) presented a method that will be performed involving 

NDVI derived from remote sensing images to monitor crop growth and relate to crop 

yield in Tigray, Ethiopia.  

This dissertation intends to collect field data, use RS data as ground truth and 

relate results to remote sensing image providing methods for remote yield estimation. 

The main idea is to use imagery with lower spatial resolution and higher spectral 

resolution than the ones used so far, such as Hyperion sensor. Unavailability of 

Hyperion data for the study area prevented conclusion of this step. Use of the 

Moderate Resolution Imaging Spectroradiometer (MODIS) data was considered not 

feasible given its best spatial resolution of 250m. As discussed elsewhere, 

agricultural fields in Ethiopia are characteristically small areas, incompatible with 

MODIS spatial.  

2.4.8.2. Remote Estimation of Tef production 

According to Chen et al. (2008) generally, there are three categories of 

models based on remote sensing: empirical models, physiological models and crop 

growth models. Empirical models are based on the hypothesis that biophysical crop 

parameters or ecological environmental parameters of the land surface such as 

biomass, LAI, temperature are correlated to final crop yield or production and remote 

sensing data are correlated to these above parameters of critical growth stages. 

Empirical relationships of yield estimation are simple to use, few ground-

measurements are sufficient for model validation and accuracy is higher especially in 

homogeneous areas. Since a link between crop biomass and remote sensing is 

necessary, lacks flexibility and stability. Results at different stages may vary 

drastically. 
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A physiology-based model is based on crop physiological functions and 

assumes that crop production results from photosynthesis through which a fraction of 

incident solar radiation is converted into biomass. The simple model for crop yield 

estimation can be written as follows (Chen et al., 2008): 

 
   ∫              

  

  

 
(1) 

             (2) 

where DM is dry matter production in a time period t2 −t1, ε is light use 

efficiency, PAR (MJ m
−2

) is the incoming photosynthetically active radiation for the 

wave bands between 0.4 and 0.7μm. PAR is part of the short wave solar radiation 

(0.3–3μm) and is absorbed by chlorophyll for photosynthesis in the crop. fPAR is the 

fraction of the photosynthetical radiation absorbed by the canopy. HI is the harvest 

index which means the ratio of grain mass to aboveground biomass. It is a universal 

model, suitable for more crop types and it only needs a relatively simple data set 

such as solar radiation and fPAR. Light use efficiently, in other hand, depends on the 

phonological state and environment conditions such as temperature and rainfall. 

Crop growth model describes the primary physiological mechanisms of crop 

growth such as phenological development, photosynthesis and dry matter artitioning, 

and their interactions with the underlying environmental factors using mechanistic 

and sometimes empirical equations. Using crop growth models to estimate crop yield 

requires a lot of inputs that are specific to the crop, soil characteristics, management 

practices and local climate conditions. So it has limitations to use this kind of models 

in large regions because fewer inputs are generally available at this scale (Chen et 

al., 2008).  
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Empirical relationships for crop yield monitoring and prediction are widely 

used for its simplicity. But its shortcoming is also obvious, the unstableness and 

sometimes site-specific relationship between yield and remote sensing data. 

Physiology-based models are mainly based on crop physiological functions, which is 

its strong point. But some parameters are not consistent over a large region and/or 

for different crops and sometimes not easily acquired by remote sensing or an in situ 

survey. Crop growth models have a long history and extensive use for crop growth 

monitoring, yield prediction and farm management around the world. Huge work of 

data collection and preparation hampered its good performance at a regional scale. 

During recent years, crop growth models with remote sensing data assimilation have 

been improved greatly at regional scales for better estimation of crop parameters 

(Chen et al., 2008).  

Ji-hua & Bing-fang (2008) and Bing-fang & Ji-hua (2010) reported that 

limitations on applying remote sensing in crop field level and environment information 

monitoring to support precision farming are related to: temporal and spatial resolution 

combined in one sensor, accuracy and information releasing channel. Especially due 

to complexity of agricultural landscapes in China, this is probably the same situation 

in developing and under-developed countries.  

Crop yield was computed by estimating crop biomass and crop Harvest Index 

(HI) respectively. In crop biomass estimation, a process oriented model CASA (Field, 

1995) was used. CASA model estimates biomass based on the vegetation 

characteristics and the environmental variables such as temperature, precipitation, 

are also considered. In harvest index (HI) estimation, the ratio between NDVI 

cumulated post-anthesis and that cumulated from emergence to maturity (fNDVI) 

was assumed to be indirectly related to HI. A model was developed based on this 
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assumption. The final crop yield could be gotten by multiplying crop biomass and HI 

(Bing-fang & Ji-hua, 2010) 

2.4.8.3. Band Selection to Determine Optimal Number of Bands for Tef crop 

variables estimation 

Hyperspectral data are extremely large and of high dimensionality. Many 

hyperspectral features are redundant due to the strong correlation between 

wavebands that are adjacent. Hence, the analysis of hyperspectral data is complex 

and needs to be simplified by selecting the most relevant spectral features (Abdel-

Rahman et al., 2013). 

Several studies presented algorithms, models and indices for hyperspectral 

band selection such as regression algorithms, principal component analysis, 

correlation analysis, narrow band optimal combination indices, derivative greenness 

vegetation indices (Broge e Leblanc, 2001; Thenkabail et al., 2002; Thenkabail et al., 

2004a; Chauhan et al., 2012; Abdel-Rahman et al., 2013; Mahlein et al., 2013), 

amongst others.  

Thenkabail and collaborators (2000, 2002 & 2004a) described in their articles 

approaches involving selection of narrow band optimal vegetation indices and their 

correlation with crop variables to determine and recommend number of hyperspecrtal 

bands, their centers and width in the visible and NIR regions of the spectrum. Their 

rigorous and exhaustive approach will be adopted as band optimization method in 

this study and will be reviewed in this section.  

Three distinct types of narrow band indices were computed by Thenkabail et 

al., 2000: 1) all possible two-band combination indices involving 490 narrow bands 

measured with field spectroradiometer; 2) stepwise linear regression indices 
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involving one, two, three and four or combinations all bands (optimum multiple 

narrow band reflectance (OMNBR) approach); 3) soil-adjusted narrow band indices. 

The first type of indices, two-band NDVI combinations, was evaluated against 

crop biophysical variables using regression coefficients R2. Contour plots of the R2 

values were used to identify seven most correlated indices to LAI (leaf area index), 

WBM (wet biomass), grain yield and plant height. This procedure also allowed 

determination of band centers and band widths best correlated to cotton, potato, 

soybeans, corn and the poolled data for all crops. Two-band NDVI models explained 

between 64% to 88% variability in different crop variables. 

The second type, OMNBR vegetation indices, was used as dependent 

variables of stepwise linear regression analysis while crop variables were used as 

independent ones. Highest R2 value for one, two, three and four band OMNBR 

models were determined. Thenkabail et al (2000) found that optimal information on 

crops is not necessarily concentrated in the red and NIR wavelengths. Longer 

wavelength portion of red (651nm to 700nm), moisture-sensitive NIR (951nm to 

1000nm), shorter wavelength portion of green (501nm to 550 nm) and longer 

wavelength portion of NIR (900 to 940nm) were identified as best predictors. Four-

variable OMNBR models explained between 64% to 92% variability in different crop 

variables. 

The band centers and widths determined by linear relationships were used to 

establish non-linear exponential models. The seven best hyperspectral models 

explained 65% to 92% variability for WBM and LAI of crops. Authors found that 

except in a few cases, nonlinear models performed better than linear model.  

The third type, soil-adjusted vegetation indices analysis, reviewed that TSAVI 

performed better than other soil-adjusted indices. However, the increase in R2 value 
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in soil-adjusted models over the other narrow band NDVI models was insignificant in 

most cases (5% increases being the exception) (Thenkabail et al., 2000).  

Thenkabail et al. (2002) studied and optimal hyperspectral indices selection 

for barley, wheat, lentil, cumin, chickpea and vetch and their correlation to leaf area 

index, wet biomass, dry biomass, plant height, plant nitrogen and canopy cover. They 

found that simple narrow-band two-band vegetation indices (TBVI) and the optimum 

multiple-band vegetation indices (OMBVI) (a similar approach to OMNBR indices) 

provided best results. Compared to Landsat TM broadband indices, TBVI explained 

up to 24 % greater variability and OMBVI explained up to 27 % greater variability in 

estimating different crop variables. Linear and non-linear models were fitted to obtain 

TBVI R2 relation to crop variables. OMBVI were computed using the following model 

equation:  

 
       ∑     

 

   

 
(1) 

Where        is the crop variable  ,    is the reflectance in bands   (j=1 to N 

with N = number of bands), and     is the coefficient for reflectance in band   for the 

crop variable  . Piecewise linear regression model based on stepwise MAXR 

procedure was used for them to calculate R2 coefficient of determination values.  

Thenkabail et al. (2004a) adopted a similar approach to determine optimal 

wavebands that best describe vegetation characteristics based on a comprehensive 

analysis using principal component analysis (PCA), lambda–lambda    models (LL 

R2M), stepwise discriminant analysis (SDA) and derivative greenness vegetation 

indices (DGVI). These techniques will further described in the following.  

The wavebands that provided best results using PCA, LL R2M and SDA were 

pooled together to determine their frequency of occurrence in the 0,395-2.500 m 
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range used by the authors. For Thenkabail et al. (2004), the four methods provide 

complimentary and supplementary information. PCA explains variability in data and 

reduces data redundancy. LL R2M eliminates all redundant bands and provides 

wavebands that best model vegetation characteristics. SDA tests the strength of data 

in separating or discriminating species types. DVGI integrates the near-continuous 

data over a region of wavelength highlighting how spectral slopes are sensitive to 

changes in biophysical and biochemical properties of vegetation and crops 

(Thenkabail et al., 2004a).  

The four methods (PCA, LL R2M, SDA, and DGVI; Sections 3.1, 3.2, 3.3, and 

3.4) provide complimentary and supplementary information. The PCA explains 

variability in data and reduces data redundancy; LL R2M eliminates all redundant 

bands and provides wavebands that best model vegetation characteristics; and the 

SDA tests the strength of data in separating or discriminating species types. DGVI 

integrates the near-continuous data over a region of wavelength highlighting how 

spectral slopes are sensitive to changes in biophysical and biochemical properties of 

vegetation and crops. In the process, each one of the methods highlights wavebands 

that are most sensitive. By pooling the wavebands from these methods, we 

determine the frequency of occurrence of wavebands leading to a recommendation 

of 22 optimal wavebands.  

2.4.8.3.1. Principle Component Analysis (PCA) 

While there are a multitude of dimension reduction techniques for 

hyperspectral imaging data that have appeared in the literature, the principal 

component (PC) transform [also called principal component analysis (PCA)] is 

arguably the most popular (Li & Yeh, 1998). In hyperspectral imaging exploitation, 

PCA offers a straightforward approach for computation and is optimal in a statistical 
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sense of preserving a maximal amount of the variability (i.e., energy) present in the 

original data. PCA does not take into account any information about noise or the 

target signal of interest in the case of detection applications (Farrell Jr., 2005).  

PCA is a feature extraction process that first transforms the original image 

into a principal component (PC) image through principal component transformation 

(PCT), and then extracts informative features from the principal component bands. 

For each pixel, every band of the PC image is a linear combination of the original 

bands from that same pixel. The transformation uses the global covariance or 

correlation matrix from the original image, whose image bands normally correlate 

with each other. After the transformation, every dimension is orthogonal to each other 

with no correlation among the PC bands. The total variance of the PC image equals 

the total variance in the original image, thus preserving the original data information 

after transformation. However, the first several bands in the PC image contain the 

majority of the variance in the original image. Most of the total variance from the 

original image is mapped to the first component with decreasing variance in the 

following bands. Image analysis can be implemented using features extracted from 

the variance ranked PC bands rather than from all image bands. A standard principal 

component transformation (STD-PCT) uses all spectral bands for transformation 

(Haibo & Tian, 2003).  

The first principal component stores the maximum contents of the variance of 

the original data set. The second principal component describes the largest amount 

of the variance in the data that is not already described by the first princ ipal 

component, and so forth (Taylor 1977). Although n number of principal components 

may be acquired in the analysis, only the first few principal components account for a 

high proportion of the variance in the data. In some situations, almost 100 per cent of 

the variance can be captured by these few components. Fung and LeDrew’s study 
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(1987) indicates that the first four components can contain more than 95 per cent of 

the total variance and the other remaining components have little useful information 

for land use change (Li & Yeh, 1998).  

Thenkabail et. al, 2004 performed principal component analysis (PCA) using 

the PROC PRINCOMP algorithm in SAS and observed that the first five principal 

components (PCs) explained 93–95% of the variability in the various weed species 

and agricultural crop species studied. The author could reduce data dimensionality 

from 168 to 5 bands only. The order in which bands were listed indicates the 

magnitude or ranking for that band based on its factor loadings.  

The procedure for principal component vegetation indices established by 

Thenkabail et al. (2002) will be adopted in the future steps of this study. The authors 

used weightings of the first principal component to calculate new principal component 

band 1 brightness values (PCA1BV). Similarly, using the weightings of the second 

principal component, new principal component band 2 brightness values (PCA2BV) 

were calculated. Using the new principal component bands 1 and 2, a principal 

component vegetation index was computed using the following equation:  

 
     

               

               
 

(2) 

2.4.8.3.2. Lambda-Lambda R2 models (LL R2M) Model 

Thenkabail et al., (2000) used normalized difference vegetation index (NDVI) 

in all possible combinations of hyperspectral narrow bands in an investigation of 

agricultural crop biophysical variables estimation. Using lambda (  ) vs. lambda (  ) 

   models (LL R2M) and plots of    values they were able to select wavelengths best 

suited for predicting biophysical quantities. Crop characteristics included wet 

biomass, leaf area index, plant height, and yield. Ground-level hyperspectral 
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reflectance measurements of cotton, potato, soybeans, corn, and sunflower. 

Regression coefficients R2 between all possible two-band narrow band vegetation 

indices and crop biophysical variables were determined. An example of these 

contour plots of the R
2
 values is shown in Figure 6. Based on the results shown in 

the Figure 6, band centers and band widths that combine to form the best indices 

were determined.  

Figure 7. Contour plot NDVI values Source: Thenkabail et al. (2000).  

 

Thenkabail et al., 2004a also used the lambda (  ) vs. lambda (  )  
  models 

(LL R2M) to provide a rigorous search criterion or data-mining technique to highlight 

redundant wavebands from wavebands with unique information content (where i, j = 

168 wavebands used in their study). A 168 (ki)168 (kj) band correlation (r) matrix was 

developed. The correlation ( ) values were converted to    and reported. The 

correlation coefficients (  ) involving all possible combination of wavebands 
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calculated resulted in lambda-vs.-lambda plots, as described by Thenkabail et al. 

(2000). The areas of lowest correlation between wavebands indicate that the two 

bands contained unique information about the species (Thenkabail et al., 2004a). 

Center and widths of wavebands with the least redundancy were identified.  

2.4.8.3.3. Stepwise Discriminate Analysts (SDA) 

Discriminant function analysis is a statistical analysis to predict a categorical 

dependent variable (called a grouping variable) by one or more continuous or binary 

independent variables (called predictor variables). Thenkabail (2002) and Thenkabail 

et al. (2002) used SDA to discriminate or separate vegetation and crop species using 

Wilk’s lambda, Pillai trace, and average squared canonical correlation. At each step, 

if a band in the model failed to meet the criterion (f-test), the worst variable is 

removed. Otherwise, the band that contributed most to the discriminatory power of 

the model is entered. When all variables in the model met the criteria and the 

remaining variables are excluded, the stepwise selection process is stopped. The 

resulting output has a Wilk’s lambda, Pillai trace, and average squared canonical 

correlation. The values of Wilk’s lambda were indicative of separability or 

discriminatory power of spectral bands (i.e., the less the value of Wilk’s lambda, the 

greater spectral differentiation between the species types) (Thenkabail et. al, 2004a).  

2.4.8.3.4. Derivative Greenness Vegetation indices 

A first-order DGVI is computed by taking near-continuous spectra along 

regions where there is significant or rapid change in slope of spectra per unit change 

in wavelength. Based on the observation of the spectra and literature Thenkabail et 

al., (2004) decided to use selected regions were located in 0.515–0.535 Am (DGVI1), 

0.540–0.560 Am (DGVI2), 0.560–0.580 Am (DGVI3), 0.650–0.670 Am (DGVI4), 
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0.700–0.740 Am (DGVI5), 0.626–0.795 Am (DGVI6), 1.500–1.650 Am (DGVI7), and 

2.080–2.350 Am (DGVI8). The chlorophyll red-edge portion is considered to have 

maximum sensitivity to changes in green vegetation per unit change in wavelength in 

the electromagnetic spectrum. The first-order DGVI (Elvidge & Chen, 1995) was 

computed using the equation:  

 

      ∑
[         (  )]

   

  

  

 

(1) 

where    and    are the wavelengths at the midpoints of bands   and  ,    is 

the first derivative of the reflectance,    is the start of a DGVHI waveband, and    is 

the end of a DGHVI waveband. Where   and   are band numbers,   = center of 

wavelength, and    = first derivative reflectance (Thenkabail et. al, 2004).  

2.4.8.4. Accuracy Assessment of crop characteristics estimation 

The performance of seven vegetation indices in estimating the vegetation 

fraction in maize and soybean crops was studied. For assessing the accuracy of 

vegetation fraction estimation, noise equivalent metric was applied. Noise equivalent 

takes into account not only the RMSE of the vegetation fraction estimation but also 

accounts for the sensitivity of the vegetation index to vegetation fraction, thus 

providing a metric accounting for both scattering of the points from the best-fit 

function and the slope of the best-fit function. Although all indices examined showed 

a close relationship with vegetation fraction, some are more accurate than others. 

These are the enhanced vegetation index (EVI2), wide dynamic range vegetation 

index (WDRVI), green- and red-edge normalized difference vegetation index (NDVI). 

(Gitelson, 2013).  
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To assess the performance of different vegetation indices in estimating 

vegetation fraction, the determination coefficient (R2) or root mean square error 

(RMSE) was used. The R2 values, as well as RMSE, represent the dispersion of the 

points from the best-fit lines. They constitute measures of how good the best-fit line is 

in capturing the relationship between vegetation index and vegetation fraction. 

However, when the best-fit function is nonlinear, the R2 and the RMSE values may 

be misleading because sensitivity of the vegetation index to vegetation fraction does 

not remain constant. Thus, for nonlinear relationships, vegetation index (VI) versus 

vegetation fraction (VF), sensitivity of vegetation index to VF should be taken into 

account. To determine the accuracy of vegetation fraction estimation, we employed 

the noise equivalent (NE) of vegetation fraction (Viña and Gitelson 2005 apud 

Gitelson, 2013). 

The accuracy of a method to estimate the variability of cropland is affected by 

lots of factors, such as the data used, scale, crop type, etc. There are lots of 

researches on it in the past years. Agricultural land use has as specific characteristic 

that the surface reflectance changes regularly in time with the growth of a crop. This 

may cause it difficult to calculate accurately the total sown area of a specific crop in 

case of different types of cropping systems (Chen et al., 2008). 

The crop parameters for monitoring the key crop and environment informaly 

include crop biophysical parameters (leaf area index, vegetation coverage), crop bio-

chemical parameters (nitrogen/chlorophyll content, etc.) and crop growing 

environment parameters (such as soil moisture, surface temperature). In addition to 

the spatial and temporal resolution problem, the accuracy of remote sensing 

derivation of field parameters is also a major problem. The accuracy was affected by 

spatial resolution, noise, atmospheric conditions, as well as other factors such as the 

accuracy of model inversion. Generally the inversion accuracy of crop biophysical 
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parameters, biochemical parameters and environment parameters can only achieve 

an accuracy of 85%, 80% and 90%, which cannot meet the need of operation and 

monitoring (Bing-fan & Ju-hua, 2010). 

Thenkabail et al. (2004) used error matrices generated from the discriminant 

analysis model (SAS algorithm PROC DISCRIM) to access classification accuracy. 

The classification criterion was based on either the individual within-group covariance 

matrices or the pooled covariance matrix; it also accounted for the prior probabilities 

of the groups. Each observation, from an independent dataset, was placed in the 

class from which it has the smallest generalized squared distance. DISCRIM was 

also used to compute the posterior probability of an observation belonging to each 

class. The generalized squared distance (D) function for crop types is: 

   
     (   ̅ ) 

          ̅    (2) 

where   is the vector of observations for a given pixel,  ̅  is the mean of all 

observations for crop type  , and     is the covariance matrix: 
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Error matrices were generated for different hyperspectral wavebands. This 

enabled us to see how the overall accuracies and Khat (Thenkabail et al., 2002; 

Thenkabail et al., 2004a) values increase with increases in input wavebands. 

Overall accuracies were computed based on correctly classified pixels along 

the diagonal of an error matrix. Errors of commission and errors of omission were 

computed. The Khat was then computed so as to normalize the accuracy 

assessments between datasets and data types as follows: 
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where   is the number of rows in the matrix;     is the number of observations 

in row   and column  ;     and     are the marginal totals of   and column  , 

respectively; and   is the total number of observations. Overall accuracies and Khat 

were calculated for the best 1 band, best 2 bands, and so on, to all bands. The best 

bands were decided based on their frequency of occurrence.  

Same method of accuracy assessment evaluation was compared with 

accuracy assessments of independent datasets. The accuracy assessment approach 

adopted by Thenkabail et al., (2002; 2004a) will be adopted in next steps of this 

study.  

 

2.5. CHAPTER SUMMARY  

In this literature review, it has been showed that precision agriculture and its 

supporting technologies, such as remote sensing, GIS and GPS are becoming 

available, with better spectral and spatial resolution, at more frequent revisits and 

lower prices. Techniques and algorithms for data processing and analysis also 

improved, to be used for improvement of crop management, allowing for yields 

forecast and higher quality crops, while reducing inputs costs and environmental 

impacts. Precision agriculture applications, techniques, adoption rates, benefits and 

future achievements were referred to under the perspective of crop production. 

The most important factors of Eragrostis tef crop production in Ethiopia as a 

culturally important and threatened species were highlighted and related to crop 
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management improvement using precision agriculture tools. Stresses such as 

drought and nutrient shortages were demonstrated to be remotely detectable through 

satellite imagery, allowing for better decision making process aidded by geographic 

information systems. Applications of precision agriculture methods involving GPS for 

site-specific and variable-rate crop management were also discussed, completing the 

scenery of precision farming of cereal crops.  

The feasibility of remote estimation of plant production was demonstrated. 

Performance of yield remote estimates was shown from literature examples. 

Techniques and methods were exemplified and models used by other authors to 

estimate crop conditions were reviewed. This chapter provided an overview on 

current remote sensing techniques for remote yield estimation and crop condition 

monitoring, with potential to be applied in sustainable agricultural development in 

Ethiopia.  

As stated by Zenebe (2012), the importance of forecasting tef crop yield well 

before harvest is crucial in Ethiopia, characterized by climatic uncertainties. Besides 

improving food production and country’s food security, providing timely and 

quantitative information on expected tef crop yield, that’s improving Ethiopia's food 

scarcity problem could also benefit from the biological diversity of the flora, as 

pointed out by Asfaw & Tadesse (2001). According to the authors, several species 

endangered and threatened with extinction would be further threatened if they are left 

on their own without measures for conservation, cultivation and promotion.  

Techniques for crop yield estimation based on hyperspectral and multispectral 

have shown reasonable results, especially with the newly developed vegetation 

indices for narrow band data. In addition to yield several crop characteristics such as 

estimated leaf area index (LAI), biomass, chlorophyll content or N content are under 

investigation for its remote estimation.  
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Approaches for tef yield estimation in Ethiopia were selected for analyzing the 

adapting of PA. The idea is to adopt waveband optimization for bands selection used 

for Thenkabail et al., (2000, 2002; 2004a) to estimate tef yield using Hyperion and 

ground truth data for crops grown in the study area. It include a comprehensive 

analysis on participation of hyperspectral bands in crop spectral behavior at satellite-

level composition.  

Although crops analyzed were located in California (U.S.), the work published 

by Hanna & Rethwisch (2003) revealed that tef crop variables can also be estimated 

using hyperspectral data. Their research not only opens the way for tef crop variables 

and spectra evaluation on its origin, Ethiopia, but alsopropose to build a spectral 

library to be used in future works. 

Improved tef crop management practices directed to higher yield production 

and reduction of plant stress are currently under development in Ethiopia. According 

to Dejene & Lemlem (2012), integrating sowing date, selection of tolerant varieties, 

spate irrigation and maintaining soil fertility will undoubtedly ensures sustainable 

production of tef even under terminal drought and reduces the vulnerability due to 

community’s settlement in terminal drought prone areas of Ethiopia. 

Following these recommendations and other practices presented in literature 

review, constraints, recommendations and advantages of tef production can be 

summarized as follows.  

Main constraints for tef production are: 

 inadequate seed bed preparation, 

 planting harvesting and threshing operations are not mechanized yet, 

 low productivity; 

Principal recommendations for optimal tef crop production are: 
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 prepare detailed mechanization package for tef, 

 support breeding programs for productivity, 

 use of biotechnology for improvement of tef cultivars, 

 preparation of appropriate fertilizer package. 

The main economic reason of tef production to Ethiopia are:  

 prices for its grain and straw are higher compared to other cereals,  

 opportunity to be an export crop to Europe and Americas, mainly due to 

the absence of gluten in tef,  

 performs better than other cereals (maize, sorghum, wheat, barley) under 

low moisture stress conditions,  

 often it’s shown as a rescue crop as it survives and produces grain even 

when other cereals have failed due to moisture shortage, 

 tef has a high recovery potential when subjected to water logged 

conditions,  

 gains of tef can be stored in any kind of locally available material without 

being attacked by weevils, 

 no epidemic disease has threatened its performance so far, 

 the straw is a nutritious and highly preferred feed for cattle compared to 

other cereals, 

 the straw is also used as a sticking material for construction of farmer’s 

houses and livestock shelters. 

Being an endangered species, Eragrostis tef growth and sustainable 

cultivation should be encouraged and its use promoted among people. Tef crop yield 

estimation and use of precision agriculture for increasing production could serve as 

an incentive for convincing farmers of new crop establishment.  
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3. TEF SUITABILITY ANALYSIS 

 

 

For this analysis, data for precipitation, topography, soil, and land use land 

cover will be combined to provide a preliminary suitability model that can be 

improved upon with higher resolution data.  

The first step for tef suitability analysis is the calculation of rainfall data from 

May to September per dekad. After this, each averaged dekad during May to 

September is added to attain total average Kremt rainfall using raster calculator. 

Values are then regrouped dividing values of the totals as 300, 600, 800, 1600. 

Sources of data for geographic information system database and tef crop monitoring 

used in this report include: 

- climate data from FEWS (Famine Early Warning System);  

- topographic data from U.S. Geological Survey's EROS Data Center 

- land use land cover data from Ethiopian Institute of Agricultural 

Research, Debre Zeit Agricultural Research Center (EIAR-DZARC). 

- country scale soil data obtained from ETHIOGIS  

- local scale soil data from Ministry of Water Resources 

- Rapideye data 

- Geoeye data 

- GPS field data acquired with navigation commercial equipment 
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The workflow graphically describes activities developed within the scope of 

this research project in order to acquire process and analyze information related to 

tef crops monitoring, production optimization and new crops establishment planning. 

Information on climate, topography, Land Use/Land Cover (LULC) and soil (country 

and local scale detail levels) were gathered and organized into a Geographic 

Information System (GIS), composing a database for spatial analysis as showing in 

Figure 8. Workflow of research activities developed within the project.. Tef suitability 

maps were produced based on the environmental and LULC information, resulting in 

indication of optimal, sub-optimal and excluded areas of tef production. Remote 

Sensing data acquired before tef crops planting and during crop maturity periods 

were processed. Object-based image classification and change detection techniques 

were used in order to produce tef maps, identifying locations of crops cultivated in the 

main growing season for 2011. Maps produced were included in GIS for further 

improvement of tef suitability maps as well as further spatial analysis . 



77 
 

Figure 8. Workflow of research activities developed within the project. 

 

 

Combination of data layers is done by reclassifying data layers and assigning 

optimal, possible, excluded classification ranges as prime numbers 2, 3 or 5 and then 

1 and 0 respectively for each of the categories of data. For example, in the elevation 

classes equals to 1800-2200masl could be assigned value 2 as the optimal range, 0-

1800masl and 2200-2600 masl is assigned value 1 as the possible range, and above 

2600masl would be assigned 0 as a range excluded for tef production. In this way 

scenarios can be distinguished to see which factor is limiting. Using raster calculator, 

raster layers were multiplied and classes obtained with optimal combinations of 

possible ranges. 
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3.1. CLIMATE 

Precipitation and temperature data were downloaded from FEWS (Famine 

Early Warning System) for 5 years (2006-2010). Precipitation data was downloaded 

in dekads. A dekad is a unit of time defined as follows: there are three dekads in a 

calendar month. The first ten days of a month constitute the first dekad of the month. 

The second ten days constitute the second dekad of the month, and the remaining 

days (8 to 11 days, depending upon the month) constitute the third dekad. Rainfall 

data was averaged from May to September per dekad. 

For temperature, growing degree days and sunlight hours were downloaded. 

Rainfall data used to create the estimated average rainfall for the period of July 11 to 

October 10 is presented in Figure 9.  
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Figure 9. Average rainfall from July 11 to October 10 during 2006-2010.  

 

3.2. TOPOGRAPHY 

Topographic data was downloaded from U.S. Geological Survey's EROS 

Data Center, which provides global digital elevation model (DEM). USGS product is 

called GTOPO30, which is a global data set covering the full extent of latitude from 

90 degrees south to 90 degrees north, and the full extent of longitude from 180 
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degrees west to 180 degrees east. The horizontal grid spacing is 30-arc seconds, 

resulting in a DEM having dimensions of 21,600 rows and 43,200 columns. The 

horizontal coordinate system is decimal degrees of latitude and longitude referenced 

to WGS84. The vertical units represent elevation in meters above mean sea level. 

The elevation values range from -407 to 8,752 meters. Minimal and maximum 

elevations from downloaded DEM were reclassified into 0-1800, 1800-2200, 2200-

2600, 2600- 6000, No data and -9999 elevation classes. Optimal elevation used for 

tef in this study was between 1800-2200masl. The highest elevation used was 

2600masl.  

Topography data from FEWS (Famine Early Warning System) was used to 

create an elevation range map, presented in Figure 10.  
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Figure 10. Elevation range map suitable for tef growing.  
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3.3. LAND USE/LAND COVER 

Land use land cover data was obtained from Ethiopian Institute of Agricultural 

Research, Debre Zeit Agricultural Research Center (EIAR-DZARC). Land should 

only include that which is available for cultivation or other deemed available areas. 

We are using the dominant available area of land use land cover pixels and ignoring 

not relevant ones. This would exclude areas that are afro-alpine (Erica, grassland), 

bare land (exposed sand, exposed rock), forest (riparian, mountain mix, mountain 

broadleaf, bamboo, semi-evergreen), grassland, shrub land, urban, open water, 

wetland (seasonal swamp, perennial swamp), and woodland (dense, open). 

The vector format maps were converted to raster format using grid size 

equals to 1000m. Land use/land cover classes were grouped in similar classes, such 

as forests, grasses, woodlands. Afro-alpine, bare land, forest, grassland, shrub land, 

urban, open water, wetland, and woodland classes were excluded. 

Land Use/Land Cover generated using Ethiopian Institute of Agricultural 

Research; Debre Zeit Agricultural Research Center (EIAR-DZARC) data is presented 

in Figure 11.  
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Figure 11. Cultivated land in Ethiopia.  
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3.4. COUNTRY SCALE SOIL INFORMATION 

Country scale soil data were also obtained from ETHIOGIS. All classes 

corresponding to soil types like yermisols, xerosols, arenosols, and acrisols were 

excluded for suitability analysis. Soil type information collected from Ethiopian 

Institute of Agricultural Research, Debre Zeit Agricultural Research Center (EIAR-

DZARC) was used to create the soil map presented in Figure 12.  

 

Figure 12. Soil types in Ethiopia.  
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3.5. LOCAL SCALE SOIL SURVEY AND MAPPING 

Local scale soil sampling and survey along with laboratory analysis were 

performed by technicians and consultants under supervision of the Ministry of Water 

Resources, Federal Democratic Republic of Ethiopia. Field and analysis results were 

organized in a GIS allowing database integration and generation of soil mapping 

under the scope of this research project. These data will be used in the future to 

improve tef suitability maps.  

The approach followed for the Ada’a soil survey has been based on feasibility 

level soil survey that intended to map the soils at 1:10,000 scales and identify 

potential areas for developent under different land use types. 

The Ada’a-debrezeit area is located in central highland of Ethiopia (in Oromia 

Regional State) between Debrezeit and Mojo towns at an elevation of about 1800 to 

2160 m.a.s.l (within the co-ordinates of 8030’N to 8053’N and 38050’E to 39015’E). 

The area is traversed by the main Addis Ababa to Djibouti highway. Location of the 

study area is shown on Figure 13. 
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Figure 13. Location of the local scale soil survey and mapping study area. 

 

3.5.1. Pre-Fieldwork 

Activitites were commenced with a review of available reports and maps of 

the study area. Review of previous studies were concentrated on the evaluation of 

their objectives and methodology and output in terms of data, maps and findings. 

Field visit was made (together with the WWDSE soil survey technicians) 

before the start of actual soil suvey to design and properly organize the activities and 

to evaluate the nature of the land escape. At this stage the soil survey technicians 

and the consultant have made thorough discussion on the approach to be followed 

for common understanding and uniformity. Before embarking the field work, required 

soil survey field equipment were properly checked; field description sheets for auger 
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boring, profile pits, hydraulic conductivity and infiltration rate tests formats were 

prepared and produced in a sufficient quantities. 

3.5.2. Field Survey 

Field survey conducted by a team of five groups under close supervision of 

the consultant  Auger observations was done up to 1.2m or impenetrable material 

and pit descriptions to at least 2.0m (extending by augering 3.0 to 5.0m). Location of 

all pits and auger sites were recorded using GPS showing in Figure 14. Tef field soil 

pit surveyed area below. 

 

 

Figure 14. Tef field soil pit surveyed area 

 

Survey followed a basic 300m x 500m grid along transect (i.e., one auger site 

per 15 ha). Accessible areas were surveyed using 4WD vehicles and the 

inaccessible mudy areas (due to heavy rain) sarveyed on foot. Progress along poorly 

maintained tracks was slow. A total of 667 auger hole observations were done for the 

actual grid survey. 
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Where impenetrable material occurred at shallow depth, mostly < 50 cm, 

three auger borings were made to exclude localized stone, rock or root. At each 

observation and description point, important site characteristics such as : site 

coordinates and number, location, landform and micro-topography, slope, position, 

parent material, surface stones and rockout crops, drainage, degree and type of 

erosion, land use, vegetation, and human influence were recorded. Soil profile 

characteristics such as depth, colour, texture, mottling, consistency, roots, presence 

of clay cutans, carbonates, mineral nodules and coarse fragments were also 

recorded. 

Standard soil survey procedures were followed. Soils were described and 

classified according to the FAO “guidelines for soil description” (1990) and “world 

Reference base for Soil Resources” (1998). A total of 114 soil samples were 

collected and sent to the WWDSE for chemical and physical parameters analyses. 

Infiltration (double-ring infiltrometer) and hydraulic conductivity (inverse auger 

hole method) measurements were conducted at representative soil pits (at least one 

per major soil type) thrice replicated. For infiltaration, some tests were carried out on 

disturbed soil to more approximate irrigation on prepared land. . 

For the available water content (AWC) undisturbed core samples were 

collected from the sampled profile pits and sent to the National Soil Research Center 

Laboratory (through WWDSE laboratory unit) in Addis Ababa for the moisture content 

analyses. 

3.5.3. Soil Laboratory Analysis 

The soil samples were collected from 21 representative profile pits and 

analysed in WWDSE Laboratory after the results for all soil samples were recieved, 
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compiled, encoded and analysed. Samples analysed in the laboratory were carried 

out on air dried fine earth fraction (<2mm). Each parameter analyzed was based on 

standard methods and proedures. The following parameters were carried: 

 soil particle size distribution (texture) following hydrometer procedure, 

 bulk density (gm/cm3), on dry weight basis from pF ring samples. 

 soil pH in H2O and 1M KCl at a soil to solution ratio of 1:2.5, 

 EC (ms/cm) at a soil to water ratio of 1:2.5 using EC meter. 

 exchangeable Na, K, Ca, Mg (meq/100gm of soil) following ammonium 

acetate leachete using Atomic Absorption Spectrophotometer (AAS), 

 cation exchangeble capacity (CEC) (meq/100gm of soil) following 

ammonium acetate method at pH 7, 

 organic carbon (%) (walkley and Black method), 

 total nitrogen, N (kjeldahl method) , 

 available phosphrous, p (Olson) mg p2O5 kg/soil, 

 free CaCO3 (by acid nutralization method), 

 field capacity and permanenet wilting points (at 1/3 and 15 atm using 

pressure plate extraction). 

Reults of the analyses are used in the classification and description of the 

major soils and soil mapping unit. 

3.5.4. Post field Work Activities 

3.5.4.1. Data Compilation and Analysis 

All the physical data (collected in the field) and results from laboratory 

analysis were compiled, encoded and transformed to generate statistical and 

cartographic information. Databases were etablished for: 
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 Auger hole and profile location points; 

 Soil profile and site description; 

 Soil auger and site observation; 

 Soil laboratory analytical results; 

 Soil physics (i.e. hydraulic conductivity and infiltration tests) data; and 

 Identified soil types and soil mapping unit. 

3.5.4.2. Soil Classification and Mapping 

Based on field soil survey information, laboratory analyses and other relevant 

features soil types and mapping units were delineated, classified, characterized and 

mapped. Soil profile descriptions and auger observations in the field enabled to 

identify and delineate primary soil types. Laboratory results were used to confirm 

preliminary results of field obsevations. 

soils of the survey area were classified on the basis of the revised 

FAO/UNESCO-ISRIC legend of the soil map of the world (1990) and world reference 

base for soil resources (1998). 

Soil texture, topography, effective depth, colour, mottling, presence of clay 

cutans, mineral nodules, drainage characteristics and profile development were the 

major physical properties of the soil used as a basis of classification; and 

CEC, base saturation, organic matter, exchangeable sodium percentage, free 

carbonates, pH, electrical conductivity, tec., were the important chemical 

chracteristics of the soil used for classification of the major groups and soil units. 

3.5.4.2.1. Soil Genesis 

Soil forming factors, such as parent material, climate, topography, organisms 

(fauna and flora) and time were considered to be independent from each other but 
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can have simultaneous interactions. The stated soil forming factor would result in soil 

development of the area. Therefore, the genesis of the soils identified in the survey 

area was the result of interactions between the soil forming factors. Climate 

influences soil development by affecting the degree of weathering. 

Climate and time effects are most pronounced on stable surfaces. On such 

surfaces past climate instead of the present climates may account for the soil 

conditions. In some crest areas weathering and decomposition are pronounced 

giving rise to deep and slightly well developed soils (such as Luvisols). Topography 

plays an important role in soil genesis, primarily through modification due to the 

impact of climate. Thus, on steeper slopes (close to mountains and hills) water runs 

rapidly retarding soil development. Where topography is steeper, soils are shallower, 

because erosion has not give them time to develop. Soils developed on recent 

alluvial and colluvial deposites are at the moderate stage of development, which 

were evidenced by their moderate to weak structure.In most of the flat, nearly flat and 

gradually undulating topography in the lower landscale positions, imperfectly to 

poorly drained soils are formed. 

Parent material is important in soil development because different rocks are 

composed of different minerals which breaks under weathering to various soil 

minerals. Basalt and other basic rocks are rich in ferromagnesian minerals which 

breakdown to clay minerals, resulting to clay textured soils. 

3.5.4.2.2. Soil Morphology 

Soil morphology is described using soil characteristics such as soil depth, 

colour, texture, consistence, structure, drainage, etc. Summary of the dominant 

morphological characteristics for major soils identified in the Ada’a plains are given in 

Table 6. 
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Table 6. Summary Characteristics of Control Morphological of the Ada’a Soils 

Soil group Depth Colour Texture Structure Consistency Drainage 

Vertic 
Cambisols 
(CMvr) 

(sometimes 
found in 
association 
w ith 

Luvisols 
and 
associated 

vertic 
integrade) 

Deep to very 
deep With 
vertic horizon 

starting 
betw een 
20/25 and 
90/100cm 

below  the 
surface 

Dark gray to 
dark grayish 
brow n; 

yellow ish brown  

Clayloam, 
sandy/silty 
loam, clay 

(most soil 
texture is 
loamy to 
clayey); clay 

illuviation in 
the cambic 
horizon) 

Moderate 
f ine and 
medium 

angular and 
subangular 
blocky, 
prismatic, 

structure  

Friable, 
sticky and 
plastic  

imperfect 
and 
Imperfect to 

poor  

Chromic 

Luvisols 
(LVcr) 
(mostly 

found on 
the crest 
slope) 
 

Deep to very 

deep 
 

Brow n to dark 

brow n surface 
horizon over a 
(greyish) brown 

to strong brown 
or red argic sub 
surface horizon 

Clay, clay 

loam, silty clay 
loam, loam, 
silty loam 

 

Weak friable 

to strong f ine 
and medium 
granular, 

angular and, 
sub-angular 
blocky  

Very friable 

to friable, 
slightly to 
modertaely 

sticky and 
plastic 

Moderate to 

w ell 

Pellic and 
chromic 

Vertisols 
(VRpe and 
VRvr) found 
in 

depressions 
and level to 
gradually 
undulating 

areas 

Deep to very 
deep (form 

w ide and deep 
cracks up on 
drying) 

Grayish brow n, 
dark brow n to 

very dark gray, 
blak, dark 
grayish brown, 
etc 

(colour 
differences 
betw een 
vertisols are 

often indicative 
of differences in 
drainage 

status) 

Clay, heavy 
clay, clay 

loam, silty 
clay, sity clay 
loam 

Fine to 
coarse 

moderate to 
strong sub-
angular and 
angular 

blocky 
structure. In 
some cases 
massive 

and/or 
prismatic 
structure is 

developed in 
the sub-soil 

Dry vertisols 
have a very 

hard and f irm 
consistent; 
w et vertisols 
are (very) 

plastic and 
sticky and 
friable only 
over a 

narrow  
moisture 
range. 

Imperfect, 
poorl and 

very poorly 
 

 

3.5.5. Description of the Major Soil Types of the Survey Area 

Soils of the survey area were categorized with the individual soil type specific 

criteria. The texture ranges from sandy loam, through silty loam, and silty clay loam, 

clay to heavy clay. In most cases there were good correlation between land form and 

soil texture. The clayey texture soils have moderetly wider cracks. Mostly vertisols 

contain calcium carbonate concretion and gravels in depth. In where it was observed 
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that there exist compact and hard layers with in the soil profiles. Some major features 

and description of the identified soils characteristics are highlighted as follows: 

3.5.5.1. Luvisols 

This soil has an increase clay content within a profile depth. There exist clay 

skins at least 3 to 5 percent of both horizontal and vertical ped faces. 

Luvisols are soils having an argllic horizon, which has a base saturation of 

50% or more at least in the lower parts of the B-horizons. These soils are derived 

from colluvial and alluvial parent material. It is observed that sub-surface horizon has 

distinct higher clay content than the overlying horizon. 

Concentration of clay in the B horizon, removal of carbonates from the initial 

material of that horizon (i.e., soil shows marked textural differentiation within its 

profile, due to top layer clay depeletion and accumulation of clay in sub-surface 

horizons). Gradual textural change noted within the profile and unconsolidated 

material of alluvial and colluvial deposits are parent material. 

Luvisols are potentially suitable for a wide range of agriculture due to thier 

favorable physical properties. A typical pedon belonging to the luvisols has the 

following profile characteristics. 

0 – 15 :Dark reddish brown (7.5YR 3/2, moist sandy loam, no mottle, weak 

friable granular structure. Slightly hard when dry, friable when moist, 

none to slightly sticky and slightly plastic when wet; common fine and 

medium random tubular pores, common fine and medium, few 

coarse roots, rare to few termite galleries; non-calcareous, smooth 

gradual boundary: 

15 – 80 :reddish brown (7.5YR 3/3) moist, clay loam; no Mottles; moderately 

strong medium angular blocky structure, hard when dry, friable when 
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moist, common fine and medium random tubular pores, few fine, 

medium and coarse pores; rare termite galleries, non-calcareous, 

smooth gradual boundaries. 

80 – 150 :red (5YR 4/6), moist, light clay, no mottles, mmoderately fine 

angular blocky structure, hard when dry, friable when moist common 

very fine random tubular pores, few fine, very few medium and 

coarse roots, few soft black manganese nodules, non-calcareous, 

wavy abrupt boundary . 

150 – 180: yellowish red (5YR 5/6), slightly moist, very fine clay loam, no 

mottle; weak medium angular block structure, hard when dry, friable 

when moist, slightly sticky and slightly plastic when wet, many fine 

random tubular pores; very few fine and medium roots, rare termite 

galleries, rare calcareous; abrupt wavy boundary with. 

180 – 200: red (2.5 YR 4/8), slightly moist, grit, no mottles, weak Sub-angular 

blocky, rare pores, very rare fine roots, slightly calcareous. 

3.5.5.2. Cambisols 

Soils with fine earth clay fraction (between 25-30 and 100cm) texture of sandy 

loam or finer. It has stronger chroma, redder hue and higher clay content than the 

underlying horizon. The soil has less carbonate than the underlying horizon. 

The soils are structured as grayish brown to black in colour, the texture is 

loamy to clayey, the begining of clay illuviation was detected in the horizon and more 

clay conent is normally detected in the upper horizon. Some of its profiles have 

slightly to modrately calcareous as the profile depth increases. It is a soil with 

begining horizon differentiation evident from changes in colour, structure, etc. 
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Parent material of the soil was noted as medium to fine structured material 

drived from colluvial and alluvial deposits. Sign of beginning clay illuvation was 

detected in the cambic horizon but the clay content was higher in the upper horizon. 

By and large, cambisols make a good agricultural land and are intensively used, 

when properly managed. 

Pedon belonging to cambisols has the following profile characteristics: 

0 – 20: light brownish gray (10YR 6/2), moist; silty clay loam; no mottle; 

weak fine sub angular blocky structure, friable when most; slightly 

sticky and plastic, few fine random tubular pores; many fine and 

medium, few coarse roots; non calcarous, distinct straight boundary 

with: 

20 – 35: gray (10YR 6/1), moist; sandy clay; no mottle, weak sub angular 

blocky structure; hard when dry, firm when moist, few to rare fine 

random tubular pores, many fine and medium rare coarse roots, 

slightly calcareous; gradual boundary with: 

35 – 90:  very dark gray (10YR 3/1), moist; clay, few rare yellowish red 

mottle; weak coarse prismatic breaking to coarse angular blocky 

structure; very hard when dry; very firm when moist, rare fine random 

tubular pores; few fine and medium roots, clear/gradual boundary. 

90 - 150 :  Dark brown (10YR 3/3), clay loam, calcareous very fine clay 

loam, yellowish red mottle; weak medium angular block structure, 

hard when dry, friable when moist, slightly sticky and slightly plastic 

when wet, many fine random tubular pores; very few fine and 

medium roots, rare termite galleries, rare calcareous; diffuse wavy 

boundary with. 
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150 – 200: dark gray (10YR 4/6), moist, clay loam, massive, very hard 

when dry, very firm when moist, very few fine pores, very slightly 

calcareous; sharp boundary with rocks of basement complex. 

3.5.5.3. Vertisols 

Vertisols have high clay content in all horizons, which develop cracks from the 

soil surface downward and have one or more of the following: gilgai, mico-relief, 

intersecting slikensides or wedge shaped structure at some depth between 25/30 to 

90/100cm from the surface. Vertisols are deep to very deep, imperfectly to poorly 

drained, formed on flat to almost flat topography in the lower landscape positions. 

Vertisols are very hard to extremely hard when dry, and very sticky and 

plastic when wet, which reflects poor workability. Vertislos are productive soils if 

properly managed. 

Colour differences noted between Vertisols (i.e., pellic and chromic), which 

are often indicative of differences in drainage status. The more reddish hue or 

stronger croma of relatively better drained vertisols reflect higher contents of free iron 

oxides. Poorly drained vertisols are low in Kaolinite and have less free ferric iron; 

their hue are less red and chromas are weaker. A pedon belong to the vertisols has 

the following profile characteristics: 

0 – 25: Very dark grayish brown (10YR 3/2), moist, silty clay, no mottles, 

moderately strong subangular blocky structure; hard when dry, firm 

when moist, sticky and plastic when wet, many fine random tubular 

pores; common fine and medium roots, non calcarous, gradually 

wavey boundary.  Black (10YR2/1) moist, very firm, very sticky, very 

sticky and very plastic; moderate, medium, angular/sub angular 
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blocky structure; common, fine and medium, pores, common fine and 

medium roots, diffused, smooth horizon boundary. 

25 – 65: very dark gray (10YR 2/2), Slightly moist, clay, few to common 

reddish brown mottles, strong very coarse prismatic structure 

breaking to medium and coarse angular bocky, hard when dry firm 

when moist, sticky and plastic when wet, common fine random 

tubular pores, common fine and medium roots, gradually wavey 

boundary with: 

65 – 120:very dark gray (10YR 2/1), Slightly moist, clay, common reddish 

brown and yellowish red mottle, strong course angular blocky to 

prismatic, extremely hard when dry, extremely firm when moist, 

sticky and plastic when wet, few very fine random tubular pores; 

common fine and few medium roots, slightly , calcaous, clear 

irregular boundary with: 

120 – 160 : very dark gray (2.5Y 3/0), slightly moist, silty clay, common 

yellowish brown mottle, very weak medium angular blocky/prismatic, 

extremely hard when dry, extremely firm when moist, sticky and 

plastic when wet, few very fine medium tubular pores, very rare fine 

roots, strongly calcarous, clear irregular boundary. Dark grayish 

brown (1oYR4/2) moist, firm, very sticky and very plastic moderate, 

coarse, wedged shaped structure, common distinct slikenside, 

common hard, black iron manganese noules; common faint brownish 

mottles; moderately to extremely calcareous; few, fine and medium 

pores. 

160 – 200: dark grayish brown (2.5Y 4/2) moist, few fine mottles, clay loam to 

clay, structureless/massive, very hard when dry, friable when moist, 
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slightly stick and plastic when wet, no pores, no roots, extremely 

calcarous, and extreme compacted. 

3.5.6. DESCRIPTION OF THE SOIL MAPPING UNITS 

Soil units were defined based on stable characteristics of soils and their 

environment. In distinguishing criteria for mapping units balanced approach was used 

to maintain clear information, that can be identified as soil mapping units and be 

mapped with an acceptable degree of accuracy. There are different forms of soil 

mapping units. The major ones are: 

 Simple mapping unit: in which identification and a boundary delineation 

consist mainly a single soil type or very similar to it. In soil nature it is very 

difficult to get uniform mapping unit at any large scale. 

 Soil association mapping units: different soil types that occur together and 

differ in characteristics relating to local variations. Here the dominant soil is 

mainly described and mapped. Proportion of the dominant, associated and 

inclusion soils are dependent on the complexity of the specific soil mapping 

unit. In most of the cases inclusion soils constitute less than 15% of the soil 

mapping unit, while associated and dominant soils have more proportion. 

For the survey area soil association mapping unit of FAO/UNESCO-ISRIC 

1998 was adopted based on charcteristics of the dominant soil units. Soils of the 

surveyed area were categorized into 14 groups (i.e., 13 soil mapping units and 1 

miscellaneous type). Coding of soils mapping unit was based on specific criteria of 

each soil and land forms observed. 
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3.5.6.1. Mapping Unit Representation 

Legends to the soil-mapping units were structured at three level of 

generalization in hierarchical order, namely: texture (level 1), soil unit (level 2) and 

slope class (level 3). A serial numbers, upper, and lower case letters designated the 

mapping unit symbols represents the three elements. The following general 

examples illustrated how mapping codes were constructed: 

 First serial number shows the first level of generalization (texture, Table 7), 

  Second (upper and lower case) letters show second level of generalization 

(soil type), 

 Third upper case letter shows third level of generalization (slope class) 

Example: 

 

Table 7. Categorized soil textural classes for the soil mapping unit 

Textural groups Texture 

1 Heavy clay 

2 Clay 

3 Clay loam 

4 Silty clay 

5 Loam 

6 Silt clay loam 

7 Sandy loam 

 

 

Based on the land form the landscape of the project area is grouped into 

three (i.e., lower plain, piedmont and upper plain (see Table 8). See soil mapping unit 

on Figure 15. 
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Table 8. Categorized slopes classes for the soil mapping unit 

Code Slopes Classes Land form 

A 0-1% Lower Plain 

B 1-2% Piedmont Plain 

C 1-2% Upper Plain 

 

3.5.6.2. Soil Mapping Unit Description 

14 soil mapping units are identified, as indicated above. Soil were mapped 

and described based on observed and analysed characteristics of dominant 

parameters. Summary descriptions of the soil mapping units are given in Table 9 and 

Table 10. Summary information of area coverage by each soil unit is indicated in 

Table 11. See Figure 16 for soil mapping discription categories. 

 

 

 

 

 

 

 

 

 

 

 

 



101 
 

Table 9. Description of soil legend  

S/no 
Soil Mapping 

Unit 
Description 

1 5CMvrA 

(358.50ha) 

Very deep, grayish brown,clayloam to clay, imperfeectly to poorly drained, non-
calcareous, developed on low er plain (slope 0 – 1%) 

2 3VRpeA 

(517.30ha) 

Very deep, very dark gray, clay loam to clay, imperfect to poorly drained, 
calcareous developed on piedmont plain (slope 1 – 2%) 

3 2VRpeB 

(327.70ha) 

very deep, black, clay, imperfectly to poorly drained, slightly calcareous, 
developed on piedmont plain (slope 1 – 2%) 

4 3VRpeCe 

(241.80ha) 

Very deep, very dark gray, clay loam, imperfectly drained, s lightly calcareous, 

eroded phase, developed on upper plain (slope 1 – 2%) 

5 6VRpeCe 

(963.10ha) 

very deep, very dark gray, silty clay, poorly drained,slightly calcareous, eroded 

phase, developed on upper plains (slope 1 – 2%) 

6 3VRpeC 

(593.0ha) 

Very deep, black, clay loam, imperfectly to poorly drained, calcareous, 
developed on upper plain (slope 1 – 2%) 

7 1VRpeA 

(2237.0ha) 

Very deep, black, heavy clay, poorly drained, slightly calcareous, moderately 
compacted, developed on upper plain (slope 1 – 2%) 

8 3VRcrA 

(1374.0ha) 

Very deep, very dark grayish brow n, clay loam, poorly drained, slightly 
calcareous, developed on low er plain (slope 0 – 1%) 

9 6LVcrA 

(1271.0ha) 

Very deep, dark reddish brow n, silty clay loam, w ell drained, slightly calcareous, 
developed on upper plain (slope 1 – 2%) 

10 1VRcrB 

(2514.0ha) 

Very deep, very dark brow n, heavy clay, poorly to poorly drained, slightly 
calcareous, compacted, developed on piedmont plain (slope 1- 2 %) 

11 2VRpeA 

(492.40ha) 

Very deep, black, heavy clay, poorly to very poorly drained, strongly compacted, 

slightly calcareous, developed on low er plain (slope 0 – 1%) 

12 2VrpeC 

(849.90ha) 

very deep, very dark gray, clay, poorly to very poorly drained, extremely 

compacted, developed on upper plain (slope 1-2%) 

13 

 

6VRcrB 

(571.40ha) 

very deep, very dark brow n, Silty clay loam, imperfectly to poorly drained, 
extremely compacted, moderately calcareous, developed on upper plain (slope 

1-2%) 

14.Miscell. 
land 

  

 Hi 708 ha Hill 

 Sw 369. 0ha Sw ampy 



 

 

 

1
0
2
 

Table 10. Indicative physical and chemical properties of the Ada’a mapping units   
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5CMvrA 358.5 2.68 200 L 1.7 0.93 0.094 170.78 6.35 25.35 76.9 0.97 0.05 0.05 7.40 Tra Imp to poor 0-1 2.34 N N AP-04 

2 3VRpeA 517.30 3.86 200 CL 1.8 0.93 0.094 204.91 6.69 34.4 105.0 0.95 0.08 0.07 10.50 5.8 Imp to Poor 1-2 2.69 N N AP-03 

3 2VRpeB 327.70 2.45 200 C 1.4 0.93 0.094 172.45 6.8 36.4 107.0 1.33 0.05 0.06 44.0 8.4 Imp.to poor 1 -2 1.3 N N AP- 01 

4 3VRpeCe 241.80 1.81 200 CL 1.8 0.93 0.094 204.91 6.83 47.35 90.4 0.04 0.08 0.07 10.5 5.0 Imp. 1-2 0.51 N N AP- 07 

5 6VRpeCe 963.10 7.19 200 SiC 1.87 1.16 0.12 241.27 7.0 56.4 79.4 0.84 0.07 0.04 39.0 6.25 Imp 1-2 0.75 N N AP- 06 

6 3VRpeC 593.00 4.43 200 CL 1.6 1.44 0.16 204.91 6.4 36.4 127.0 1.23 0.11 0.06 23.2 Tra Imp to poor 1-2 0.71 N N AP- 08 

7 1VRpeA 2237.00 16.71 200 C 1.66 0.28 0.14 296.41 7.9 70.3 101.0 0.70 0.10 0.10 25.4 4.2 Poor 1-2 0.67 N N AP- 40 

8 3VRcrA 1374.00 10.26 200 CL 1.6 1.44 0.17 296.41 7.6 61.2 80.4 0.61 0.09 0.01 31.6 6.3 Poor 0-1 0.78 N N AP- 15 

9 6LVcrA 1271.00 9.49 200 SiL 1.66 5.29 0.13 273.34 6.8 56.0 87.1 0.90 0.09 0.08 13.7 9.00 Well 1-2 0.43 N N AP- 27 

10 1VRcrB 2514.00 18.78 200 HC 1.8 1.2 0.12 352.26 6.8 46.4 126.07 0.92 0.1 0.05 21.10 7.98 Poorly to v. 
poorly 

1-2 1.48 N N AP - 22 

11 2VRpeA 492.40 3.68 200 HC 1.8 0.22 0.24 352.26 6.6 64.1 109.5 0.93 0.07 0.10 26.3 Tra Poor to 
v.poor 

0-1 0.57 N N AP - 48 

12 2VRpeC 849.90 6.35 200 C 1.64 0.22 0.24 352.26 7.95 63.0 102.0 1.03 0.14 0.05 49.5 3.9 Poor to 
v.poor 

1-2 0.35 N N AP – 32 

13 6VRcrB 571.40 4.27 200 SiCL 1.9 0.93 0.094 241.27 7.20 57.4 104.4 0.07 0.17 0.07 39.0 8.41 Imp to poor 1 -2 0.37 N N AP-19 

14. miscellaneous land                       

- Hills (369ha 

- swamp(708 ha)  

 

1,077.0 

 

8.05  
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Table 11. Major soils of the study area and their distribution 

Major soil types Identified soil unit code Area 
(ha) 

Area 
(%) 

Cambisols (CM) Vertic cambisols CMvr 358.5 2.68 

Luvisols (LV) Chromic luvisols 
 

LVcr 1271.0 9.50 

Vertisols (VC) Chromic vertisols 
Pellic vertisols 

VRcr 
VRpe 

4459.40 
6222.20 
10,681.60 

 
79.78 

Hills, swampy area  H, S 1077.0 8.04 
Total   13,388.10 100 
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Figure 15. Adaa soil mapping unit 
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Figure 16. Ada’a Soil Map 
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3.6. TEF SUITABLITY 

The classification scheme for raster calculation used to generate tef suitability 

map (shown in Figure 17) is presented in Table 12. Values presented here were 

based on literature review and experts consultation in Ethiopian Ministry of Water 

Resources to establish class limits for a modeling scenario where a chosen set of 

soils is deemed optimal for tef cultivation. 

 

Table 12. Raster calculation values used to generate tef suitability map. 

Elevation Rain Soil Result Result 

2 3 5 30 Optimal 

1 3 5 15 optimal rainfall and soil, elevation possible 

2 1 5 10 optimal elevation and soil, rainfall possible 

2 3 1 6 optimal elevation and rainfall, soil possible 

1 1 5 5 optimal soil, possible elevation and rainfall  

2 1 1 2 optimal elevation, rainfall and soil possible 

   

0 excluded (for any of the three factors) 
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Figure 17. Estimated suitability map for tef production.  
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3.7. CHAPTER SUMMARY 

In this chapter it was shown how data on climate, topography, land use/land 

cover and country scale soil information were collected and organized in a 

Geographic Information System. Ranges of optimal, sub-optimal and critical 

environmental and climatic conditions for new tef crops establishment were defined 

and applied through spatial analysis. Resulting tef suitability maps can be used by 

farmers interested in growing tef as an aid to decide on optimal locations for crop 

growing or on whether to grow tef or other crops on their lands. Politicians and 

decision makers can use these results to guide public policy and actions directed to 

increase tef sustainable production.  

Soil local scale mapping provided more detailed information on soil 

characteristics that are important for tef development. This information will be 

incorporated into the GIS to improve tef suitability maps. Definition of optimal and 

critical ranges of soil characteristics related to tef development is necessary.  
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4. TEF LOCAL SCALE MAPPING 

 

 

Although land use/land cover data is available from above mentioned 

ETHIOGIS in a country scale, more accurate tef mapping is considered necessary for 

crop management and production planning. For this reason, adaptation of 

methodologies for accurate tef mapping using high spatial resolution multi-spectral 

data is discussed in this section.  

Remote sensing applications for agricultural areas monitoring have 

demonstrated the importance of temporal coverage for consistent and accurate crop 

identification and analysis of vegetative growth since the 70’s (National Research 

Council, 2007). Tef grows rapidly (varies from 60 to 120 days) mainly between July 

and November (Ketema, 1989), which makes it an ideal candidate for crop 

identification through change detection techniques.  

Tef is grown by smallholder farmers with properties smaller than 2.5 ha, which 

accounts for 96 percent of total area cultivated. Only 40 percent of the smallholders 

cultivate more than 0.90 ha (Taffesse et al., 2011). These characteristics of cultivated 

areas determine the need for high spatial resolution satellite data, for an accurate 

crop identification and mapping.  

A survey of commercially available satellite systems providing high spatial 

resolution multi-spectral data was accomplished, considering tef growing season. 

Most common high spatial resolution commercial satellites and their characteristics 
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are shown in Table 13. Decision on image selection was mainly defined by 

availability of data acquired before the growing season and during crop maturity, 

allowing identification through change detection techniques. Selected satellite data 

providers for this research are highlighted in light gray on Table 13.  

 

Table 13. Most common high spatial resolution commercial satellites 

 QuickBird IKONOS GeoEye-1 WorldView-2 Rapideye-1 

Spatial 
Resolution 

0.6m (P
1
) 

2.4 (M
2
) 

0.82m (P
1
) 

3.2 (M
2
) 

0.5m (P
1
)  

1.65m (M
2
) 

0.46 to 0.5m (P
1
) 

1.84 to 2.08m 
(M

2
) 

5m (M
2
 only) 

Swath Width 16.5 km 11 km 15 km 16.4 km 20 km 

Multi-
Spectral

3
 

4 bands 
(R,G,B,NI) 

4 bands 
(R,G,B,NI) 

4 bands 
(R,G,B,NI) 

8 bands (Coastal, 
R, Y,G, B, RE, 

NI1, NI2) 

5 bands (RGB, 
RE, NI) 

Average 
Revisit Time 

3-4 days 2-3 days 2-3 days 2- 3 days 
Daily to 5.5 

days 

Mapping 
Accuracy 

20-meter 10-meter 2-meter 6.5 meter 50m 

Pricing 
U$/km

2
 

(archive) 
14-17 10-45 12.5 - 50 14-17 

1.28 (500km2 
Pricing 
U$/km

2
 (on 

demand) 
20-23 20-45 25-50 20-23 

1 - letter P denotes images acquired in panchromatic mode 

2 - letter M denotes images acquired in multispectral mode 
3 - letters R, G, B, NI and RE denotes w avelengths of the electromagnetic spectrum in w hich image is acquired, 

corresponding to Red, Green, Blue, Near-infrared and Red-edge regions respectively. 
 

 
 

4.1. STUDY AREA 

Activities related to tef mapping at a local scale are concentrated on East 

Shewa, one of the Zones of the Ethiopian Region of Oromia. The area was selected 

giving its concentration of tef fields and easy access. Location of image collection 

within Oromia, East Shewa and its placement within Ethiopia are shown in Figure 18.  
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Figure 18. Study area and image acquisition location maps.  

4.2. SATELLITE DATA 

The selection of Image availability for the period before tef sowing was based 

on Geoeye-1 data. GeoEye Imaging System sensor onboard Geoeye-1 satellite 

specifications and image characteristics are shown in Table 14. Image acquisition 

date was 28 July 2011, 07:52 GMT (Greenwich Mean Time).  
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Table 14. Parameter specification of the GIS instrument onboard Geoeye-1 satellite. 

Imager type Pushbroom imager. Line scan imaging system with TDI 
(Time Delay Integration) capability 

Imaging mode Panchromatic (Pan) Multispectral (MS) 

Spectral range 

450-900 nm 

450-510 nm (blue) 
520-580 nm (green) 

655-690 nm (red) 
780-920 nm (near infrared) 

Spatial resolution at nadir 0.41 m GSD
1
 1.64 m GSD

1
 

Swath width 15.2 km (multiple adjoining paths can be imaged in a target 
area in a single orbit pass due to S/C agility) 

Detectors Pan: Si CCD array (8 µm pixel size) with a row of > 35,000 
detectors 

MS: Si CCD 4 arrays (32 µm pixel size) with a row of > 9,300 
detectors 

Data quantization 11 bit 

Geolocation accuracy of 
imagery 

≤ 3 m (using a GPS receiver, a gyroscope and a star tracker) 
without any GCP (Ground Control Points) 

Optics TMA telescope (5-element modified Cassegrain optical 
design) 

Aperture diameter of 1.1 m, focal length = 13.3 m, f/12 

FOV (Field of View) > 1.28º 

Instrument size 3 m tall (the volume is 5.3 m
3
) 

Total instrument mass 452 kg 

1-GSD (Ground Sample Distance) 

Source: Earth Observation Portal (2012).  

 

 

The Rational Polynomial Camera (RPC) model relates the object space 

(latitude, longitude, height) coordinates to image space (line, sample) coordinates 

(Grodecki and Dial, 2001). Geoeye-1 image was provided with a file containing RPC 

information, used to orthorectify the image along with ground control points and the 

USGS GTOPO30 DEM. Resulting image is presented in Figure 19 in Geographic 

coordinates, datum WGS-84.  
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Figure 19. Geoeye-1 image bands 3, 2 and 1 on R, G and B channels, repectively.  

 

Tef field sampling data was collected over October 2011 growing season. 

During crop maturity period only Rapideye image was available. The image was 

acquired on 27 October 2011, 08:59:15.55 GMT. REIS (RapidEye Earth Imaging 

System) characteristics are presented on Table 15. 

.  
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Table 15. Parameter specification of the REIS instrument onboard Rapideye satellite. 

Imager type Pushbroom imager. CCD linear array with 12 k pixels (5 arrays in 
parallel, 1 for each spectral band), use of triple line CCDs with 3 x 

12 k pixels in a ceramics baseplate, pixel size = 6.5 µm  

Imaging mode Multispectral (MS) 

Spectral range 

Band name 
Spectral 

coverage (nm) 
Center wavelength 

(µm) 

Blue 

Green 

Red 

Red edge 

NIR (Near Infrared) 

440-510 

520-590 

630-685 

690-730 

760-850 

475.0 

555.0 

657.5 

710.0 

805.0 

IFOV
1
 6.5 m (spatial resolution), orthorectified pixel size = 5 m  

Swath width 77 km 

Imager CCD detector Linear array, 12 k pixel 

Data quantization 12 bit 

Optics, aperture, f/No, focal 
length 

TMA (Three Mirror Anastigmatic) design, 145 mm diameter, f/4.3, 
Effective focal length = 633 mm 

FOV
2
 ± 6.75º about nadir, corresponding to a swath of > 70 km at an 

orbital altitude of 620 km 

MTF (Modulation Transfer 
Function) 

≥ 0.25 in along-track, ≥ 0.11 in cross-track 

Instrument size Imager: 656 mm x 361 mm x 824 mm 
Payload Electronics Unit (PEU): 280 mm x 242 mm x 260 mm  

Total instrument mass 43 kg (imager+ electronics box) 

1-IFOV (Instant Field of View) 

2-FOV (Field of View) 

Source: Earth Observation Portal (2012).  

 

Rapideye Ortho image product is radiometric, sensor and geometrically 

corrected and aligned to a cartographic map projection. The images are provided as 

25 by 25 kilometer tiles referenced to a fixed, standard image tile grid system. Four 

sections of image tiles were delivered to compose an image of 500km2. No mosaic 

was performed before image processing, to avoid alteration on pixels values. Figure 

20 presents an image mosaic result generated for visual analysis and display.  
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Figure 20. Rapideye image bands 3, 2 and 1 on R, G and B channels, repectively. 

 

4.3. GPS DATA  

Field samples were collected delineating tef fields in the study area. A hand-

held GPS was used. GPS data collected in October 2011 are shown in Figure 21. 

Some tef crops had their limits defined through cinematic GPS survey as shown by 

the yellow rectangles over-layed in the image. These ground samples were used for 

image classification.  
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Figure 21. Field samples collected in October 2011 using a hand-held GPS.  

 

4.4. IMAGE CLASSIFICATION 

Geoeye-1 and Rapideye images were classified using example based feature 

extraction workflow available on Envi 5.0 software. This software tool includes image 

segmentation and supervised classification routines.  
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Supervised classification can be performed using one of the three 

classification algorithms available and all of them were applied to image 

segmentation objects (Envi 5.0 User’s Guide, 2011): 

 KNN: This method classifies segments based on their proximity to 

neighboring training regions. It is a more rigorous method compared to 

PCA that more accurately distinguishes between similar classes.  

 PCA: This method assigns segments to classes using a principal 

components analysis.  

 SVM: This is the most rigorous of the three classification methods. It is 

based on Support Vector Machine algorithm. 

Samples of segmented image objects were collected using Region of Interest 

tool for spectral classes occurring in each image. Spectral classes collected samples 

were analyzed using Envi n-D Visualizer, wich allows for n-dimension space sample 

data visualization and outliers removal. Regions of interest were used for 

segmentation-based image classification.  

Rapideye data was a non-mosaic format, so each of the four images were 

treated separately to avoid differences in spectral response occurring in different 

parts of the image caused by sensor angle viewing and also avoiding image pixel 

resampling necessary during mosaicking procedures. Mosaicking was performed 

after image classification.  

Spectral, texture and spatial attributes of image objects resulting from image 

segmentation were included in classification for an increased discrimination between 

spectral classes. All attributes included in image classification are described in Table 

16. 
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Table 16. Spectral, texture and spatial attributes of image objects.  

Spectral Attributes : Spectral attributes are computed on each band of the input image. The attribute value for a 
particular pixel cluster is computed from input data band w here the segmentation label image has the same value 

(i.e., all pixels in the same pixel cluster contribute to the attribute calculation). 

Attribute Description 

Spectral Mean Mean value of the pixels comprising the region in band x 

Spectral Max Maximum value of the pixels comprising the region in band x 

Spectral Min Minimum value of the pixels comprising the region in band x 

Spectral STD Standard deviation value of the pixels comprising the region in band x 

Texture Attributes : are computed on each band of the input image. Texture attribute computation is a tw o-step 
process where the f irst pass applies a square kernel of pre-defined size to the input image band. The attributes are 

calculated for all pixels in the kernel w indow  and the result is referenced to the center kernel pixel. Next, the 
attribute results are averaged across each pixel in the pixel cluster to create the attribute value for that band’s 

segmentation label. 

Attribute Description 

Texture Range 
Average data range of the pixels comprising the region inside the kernel (w hose size you 
specify with the Texture Kernel Size parameter in segmentation) 

Texture Mean Average value of the pixels comprising the region inside the kernel 

Texture 
Variance 

Average variance of the pixels comprising the region inside the kernel 

Texture Entropy Average entropy value of the pixels comprising the region inside the kernel 

Spatial Attributes: are computed from the polygon defining the boundary of the pixel cluster, so band information 

is not required. 

Attribute Description 

Area Total area of the polygon, minus the area of the holes. Values are in map units  

Length 
The combined length of all boundaries of the polygon, including the boundaries of the holes. 

This is dif ferent than the Major Length attribute. Values are in map units 

Compactness 

A shape measure that indicates the compactness of the polygon. A circle is the most compact 
shape w ith a value of 1 / pi. The compactness value of a square is 1 / 2(sqrt(pi)). 

Compactness = Sqrt (4 * Area / pi) / outer contour length 

Convexity 

Polygons are either convex or concave. This attribute measures the convexity of the polygon. 
The convexity value for a convex polygon with no holes is 1.0, w hile the value for a concave 

polygon is less than 1.0.  

Convexity = length of convex hull / Length 

Solidity 

A shape measure that compares the area of the polygon to the area of a convex hull 
surrounding the polygon. The solidity value for a convex polygon w ith no holes is 1.0, and the 
value for a concave polygon is less than 1.0.  

Solidity = Area / area of convex hull  

Roundness 

A shape measure that compares the area of the polygon to the square of the maximum 

diameter of the polygon. The "maximum diameter" is the length of the major axis of an oriented 
bounding box enclosing the polygon. The roundness value for a circle is 1, and the value for a 
square is 4 / pi.  

Roundness = 4 * (Area) / (pi * Major Length2)  

Form Factor 

A shape measure that compares the area of the polygon to the square of the total perimeter. 

The form factor value of a circle is 1, and the value of a square is pi / 4.  

Form Factor = 4 * pi * (Area) / (total perimeter)2  

Elongation 

A shape measure that indicates the ratio of the major axis of the polygon to the minor axis of 
the polygon. The major and minor axes are derived from an oriented bounding box containing 
the polygon. The elongation value for a square is 1.0, and the value for a rectangle is greater 

than 1.0.  

Elongation = Major Length / Minor Length 

 

file:///C:/Program%20Files/Exelis/envi50/help/Content/Resources/Snippets/FxSegmentImages.flsnp%23texture_kernel_size
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Table 16. Spectral, texture and spatial attributes of image objects (continuation) 

Spatial Attributes: are computed from the polygon defining the boundary of the pixel cluster, so band information 
is not required. 

Attribute Description 

Rectangular Fit 

A shape measure that indicates how  w ell the shape is described by a rectangle. This attribute 
compares the area of the polygon to the area of the oriented bounding box enclosing the 
polygon. The rectangular f it value for a rectangle is 1.0, and the value for a non-rectangular 
shape is less than 1.0.  

Rectangular Fit = Area / (Major Length * Minor Length)  

Main Direction 
The angle subtended by the major axis of the polygon and the x-axis in degrees. The main 
direction value ranges from 0 to 180 degrees. 90 degrees is North/South, and 0 to 180 degrees 
is East/West. 

Major Length 
The length of the major axis of an oriented bounding box enclosing the polygon. Values are 
map units of the pixel size. If the image is not georeferenced, then pixel units are reported. 

Minor Length 
The length of the minor axis of an oriented bounding box enclosing the polygon. Values are 

map units of the pixel size. If the image is not georeferenced, then pixel units are reported. 

Number of 
Holes 

The number of holes in the polygon. Integer value.  

Hole Area/Solid 
Area 

The ratio of the total area of the polygon to the area of the outer contour of the polygon. The 
hole solid ratio value for a polygon w ith no holes is 1.0.  

Hole Area/Solid Area = Area / outer contour area  

 

 

Spectral classes used in image classification were combined into 4 main land 

cover/land use classes: 1) exposed soil, 2) crops, 3) trees and shrubs and 4) urban 

areas (includes buildings, roads, and urban areas itself).  

Results from classification of the four Rapideye images were mosaicked. 

Change detection based tef identification was performed. Geoeye-1 classified image 

was used as the initial state, representing the period in which soil is bare prior to tef 

sowing. The final state Rapideye classified image mosaic represents the period of 

crop maturity. Everything classified as exposed soils in the initial state image and 

classified as crops in the final state image were considered as tef, since no other 

crop is grown at the same time window as tef.  
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Object-based classification of Geoeye-1 image is presented in Figure 22. 

When comparing this initial state change detection map and original image (shown in 

Figure 198) it can be noticed a good performance of segmentation based feature 

extraction algorithms used. Exposed soils dominate the landscape this time of year, 

before tef planting. Urban areas, crops and trees and shrubs classes are well defined 

as well.  

 

Figure 22. Geoeye-1 resulting object-based image classsification.  
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Rapideye image classification results visual analysis revealed a good 

classification for the main classes of interest, exposed soils and crops (Figure 23). 

On the other hand, more classification mistakes could be noticed for urban areas and 

trees and shrubs.  

 

Figure 23. Rapideye resulting object-based image classsification. 
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Even without statistics evaluation one can infer that poorer results obtained 

for Rapideye classification are related to spatial resolution. Coarser resolution 

images presents higher levels of pixel impurity, especially on objects boundaries or 

when small objects occur inside bigger ones, such as trees in a field. In Geoeye-1 

image trees are clearly defined, whereas some smaller trees almost disappear in 

Rapideye image, having its spectral response mixed to those of surrounding fields.  

Edge detection algorithm and full lambda schedule merging sets were 

adopted for image segmentation. Scale level equals to 25, merge settings equals to 

10 and the default texture kernel size (equals to 3) was adopted after careful visual 

analysis of segmentation results. Performance of SVM algorithm was superior to 

other algorithms and this is the one adopted in this study. These segmentation 

parameters were used for both images. 

Due to insufficient field sampling for classification verification, it was not 

possible to estimate final map accuracy. This task will be accomplished in a simpler 

manner in the future, using sample points over the original image itself, when 

statistics for image classification will be presented.   

4.4.1. Change Detection 

When comparing the final change detection maps to the original images, it 

can be argued that this is the appropriate technique for tef mapping at local scales. 

Taking advantage of the pronounced differences in multi-temporal images caused by 

characteristics of a rapidly growing crop such as tef is probably the best approach 

available for this kind of target detection.  

As can be seen in Figure 24, no exposed soils remained in the final change 

detection image, indicating good classification results of feature extraction 
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techniques. Even for the poorly Rapideye classified class “trees and shrubs” 

demonstrated good agreement between image classifications. As it could be 

expected from a good change detection result, steady targets such as trees should 

appear as “no change” class.  

On the other hand, a great amount of urban areas appear in the final change 

detection map. This error might be due to proximity of exposed soils and roads or 

urbanized areas and differences in image pixel sizes. Since Rapideye is a 5m spatial  

resolution image, many of the pixels that should receive roads or exposed soil 

spectral responses are mixed or mistakenly captured while image is acquired. Use of 

same sensor or same spatial resolution images would avoid some of these errors.  

 

Figure 24. Change detection final map, exposed soil mask.  
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Results of change detection are presented in Table 17 in pixels, Table 18 in 

precentual values and Table 19 in square meters. The tables list the Initial State 

classes in the columns, represented by classification of Geoeye-1 image acquired 

before tef planting, and the Final State classes, represented by Rapideye image 

classification in the rows. The Class Total row indicates the total number of pixels in 

each Initial State Class, and the Class Total column indicates the total number of 

pixels in each Final State Class. The Row Total column is a class-by-class 

summation of all Final State pixels that fell into the selected Initial State classes. 

Class Changes row indicates the total number of Initial State pixels that changed 

classes. The Image Difference row is the difference in the total number of 

equivalently classed pixels in the two images, computed by subtracting the Initial 

State Class Totals from the Final State Class Totals. An Image Difference that is 

positive indicates that the class size increased. 

 

Table 17. Change detection results in pixels 

Initial State 
Geoeye-1 

Final State Rapideye 

Urban Exposed soil Crops Trees and shrubs Row  Total Class Total 

Urban 59.016 51.894 21.877 15.862 148.649 149.159 

Exposed 123.897 816.116 102.616 55.244 1.097.873 1.103.579 

Crops 63.377 519.600 25.470 30.836 639.283 640.161 

Trees 4.306 14.584 11.499 63.378 93.767 94.045 

Class Total 250.596 1.402.194 161.462 165.320 0 0 

Class Changes 191.580 586.078 135.992 101.942 0 0 

Image Difference -101.437 -298.615 478.699 -71.275 0 0 

 

 

 

The most part of pixels initially classified as Urban Areas in the Initial State 

image were classified as Exposed Soil in the final State image (49.44%). Part of the 

Urban areas initially identified were later classified as crops (25.29%). Only 23.55% 
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of the urban areas remained unchanged. These results can be attributed to 

misclassification of urban areas, especially in the final state image.  

 

Table 18. Change detection percent (%) results.  

Initial State 
Geoeye-1 

Final State Rapideye 

Urban Exposed soil Crops Trees and shrubs Row  Total 
Class 
Total 

Urban 23,55 3,70 13,55 9,60 99,66 100,00 

Exposed 49,44 58,20 63,55 33,42 99,48 100,00 

Crops 25,29 37,06 15,78 18,65 99,86 100,00 

Trees 1,72 1,04 7,12 38,34 99,70 100,00 

Class Total 100,00 100,00 100,00 100,00 0,00 0,00 

Class Changes 76,45 41,80 84,23 61,66 0,00 0,00 

Image Difference -40,48 -21,30 296,48 -43,11 0,00 0,00 

 

 

Areas initially classified as Exposed Soil were mostly classified as crops in the 

final state image (37.06%). These areas can be considered as tef crops due to the 

previously mentioned difference of tef planting dates in this region of Ethiopia.  

As for crop areas, 63.55% were identified as exposed soil in the final state 

image whereas 1578% of the areas remained crops. Trees and shrub vegetation 

areas remained mostly unchanged (38.34%) and a large percentage were later 

classified as exposed soil (33.42%). Some significant change for this class into crop 

areas can also be observed (18.65%).  
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Table 19. Change Detection square meters results 

Initial State 
Geoeye-1 

Final State Rapideye 

Urban Exposed soil Crops 
Trees and 

shrubs 
Row  Total Class Total 

Urban 1.475.400,00 1.297.350,00 546.925,00 396.550,00 3.716.225,00 3.728.975,00 

Exposed 3.097.425,00 20.402.900,00 2.565.400,00 1.381.100,00 27.446.825,00 27.589.475,00 

Crops 1.584.425,00 12.990.000,00 636.750,00 770.900,00 15.982.075,00 16.004.025,00 

Trees 107.650,00 364.600,00 287.475,00 1.584.450,00 2.344.175,00 2.351.125,00 

Class Total 6.264.900,00 35.054.850,00 4.036.550,00 4.133.000,00 0,00 0,00 

Class Changes 4.789.500,00 14.651.950,00 3.399.800,00 2.548.550,00 0,00 0,00 

Image 
Difference 

-2.535.925,00 -7.465.375,00 11.967.475,00 -1.781.875,00 0,00 0,00 

 

 

It can be noticed that crops class presents the highest positive change from 

initial to final state, as expected. This class suffered a 296.74% change and 

a11.967.475 square meters increase area. 

Negative changes of around 40 percent are also observed for urban and trees 

and shrubs classes, probably due to differences in pixel size between images, as 

well as misclassification. Although changes for exposed soils account for only -21.30 

percent, absolute pixel values demonstrate this is the class that lost more pixels (-

298.615) and crops gained the most (478.699). This can be considered a reasonable 

result since crop planting occurs after first image was acquired. 

4.4.2. Accuracy Evaluation 

The amount of data regarding tef field sampling using GPS was considered 

insufficient for accuracy verification of the tef crops map generated by image 

classification and change detection techniques. Difficulties related to ground data 

collection required adoption of an alternative tef field sampling technique for accuracy 

verification.  
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Networks of random points were established over the study area, including 

100 points at least 200m from each other. These points were used as an 

independent ground truth data for accuracy evaluation. Visual analysis by an 

interpreter was adopted for tef field’s identification within the sample points. Figure 25 

shows location of the sample points over Geoeye-1 image.  

The Overall Accuracy for Geoeye-1 image classification resulted in 88.00% 

and calculated Kappa Coefficient was equal to 0,6964. Confusion matrix for Geoeye-

1 image classification accuracy verification is shown in Table 20. Classes with higher 

classification accuracy were exposed soils (92.31%) and trees (81.82%). Urban 

areas were classified with 66.67% accuracy and crops classification accuracy equals 

62.50%. Urban areas were mostly misclassified as exposed soil (33.33%) and crops 

were mostly misclassified as trees (25%) and exposed soil (12.5%). Other classes’ 

misclassification was less than 10%. These values are considered acceptable for a 

reasonable image classification. 
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Figure 25. Samples points for accuracy verification of Geoeye-1 image classification.  

 

Table 20. Confusion matrix of accuracy verification of Geoeye-1 classification result  

Classes 

Ground Truth 

Number of pixels Percent (%) 

Urban Exposed Crops Trees Total Urban Exposed Crops Trees Total 

Urban 2 5 0 0 7 66,67 6,41 0 0 7,00 

Exposed 1 72 1 1 75 33,33 92,31 12,50 9,09 75,00 

Crops 0 1 5 1 7 0 1,28 62,50 9,09 7,00 

Trees 0 0 2 9 11 0 0 25,00 81,82 11,00 

Total 3 78 8 11 100 100 100 100 100 100 
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An independent set of sample points were collected for Rapideye image 

classification accuracy verification, similarly as the procedure adopted for Geoeye-1 

classification evaluation. Points used for accuracy verification are shown in Figure 

26.  

 

Figure 26. Samples points for accuracy verification of Rapideye image classification 

 

The Overall Accuracy for Rapideye image classification resulted in 74.00%, 

and Kappa Coefficient equals to 0.5668 was calculated. These results are inferior to 

those obtained for the Geoeye-1 image classification. Considering that Rapideye 

image spatial resolution is coarser than 1meter of Geoeye-1 image, higher values of 

misclassification were expected. Another consideration to be made is the season for 

image acquisition. Geoeye-1 was acquired before crops planting and most of the 

image is covered with bare soil. Rapideye was acquired during tef crops growing 
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season, and different levels of crop development are observed. This factor certainly 

increases misclassification, especially for crops not fully grown, where bare soil is 

mixed with plant spectral response.  

Confusion matrix for Geoeye-1 image classification accuracy verification is 

shown in Table 21. Exposed soils and trees were mostly correctly classified, 

presenting more than 80% correct classification (86.67% and 83.33% repectively). 

Trees were confused with exposed soils in an order of 16.67%. The urban areas 

presented highest values of misclassification, since 77.78% of the samples were 

misclassified as exposed soil, giving the similarities of spectral response and the 

occurrence of exposed soil within urban areas. Crops and trees were also 

misclassified as exposed soil in 30% and 16.67% respectively.  

 

Table 21. Confusion matrix of accuracy verification of Rapideye classification result  

Classes 

Ground Truth 

Number of pixels Percent (%) 

Urban Exposed Crops Trees Total Urban Exposed Crops Trees Total 

Urban 2 1 0 0 2 22,22 2,22 0,00 0,00 3,00 

Exposed 7  39  12 1 7 77,78 86,67 30,00 16,67 59,00 

Crops 0 4  28 0 0 0,00 8,89 70,00 0,00 32,00 

Trees 0 1 0 5 0 0,00 2,22 0,00 83,33 6,00 

Total 9  45  40 6 9 100,00 100,00 100,00 100,00 100,00 

 

4.5. CHAPTER SUMMARY 

A methodology of object-based image classification and change detection 

was demonstrated. Geoeye-1 image collected before tef crop planting and Rapideye 

image collected right before tef harvest composed the multitemporal database used 

to identify tef crops.  
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Object-based image classification has shown its potential for image 

classification and tef crop identification. Problems identified in image classification 

procedure were related to insufficient field data to separate classes, especially to 

diascriminate grasses from tef crops. This problem was overcome with application of 

change detection post-classification technique. Most exposed areas classified in 

Geoeye-1 image were classified as crops in Rapideye image. The fact that most 

exposed soils were later classified as crops is related to the tef planting season, 

which helped discriminate crops.  

Visual analysis of resulting map and verification accuracy demonstrates the 

potential of this technique in discriminating tef crops from other land use/land cover 

types. Ground truth data on tef crop is necessary for further accuracy evaluation.  
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5. CONCLUSIONS AND FUTURE DIRECTION 

 

5.1. CONCLUSIONS 

Information gathering was the focus on initial phase of this research. A 

database includes data of climate, soil, topography, land use/land cover and tef crop 

location was created to support a geographic information system (GIS). The GIS is 

used as a basis for spatial analysis and established as a helpful tool in further studies 

involving tef crops monitoring, productivity and condition estimation and 

establishment.  

This database was used to create tef suitability maps. Information collected 

made possible achievement of initial goals, allowing production of a map of suitable 

areas for tef cultivation. Adjustments could easily be made on the final map in case 

more detailed information is obtained or whether different class limits are found for 

suitable cultivation areas.  

Soil mapping at a local scale provided important information that can be used, 

for sampled area, to produce more detailed suitability maps not only for tef but for 

other crops as well. This information will be an important part of the Tef GIS and will 

be included in future analysis of tef production management and development.  

Local scale tef mapping preliminary results indicate that the right path is 

pursued in the goal of identifying and mapping accurate tef. High spatial resolution 

has proven to be an important requirement for crop discrimination, especially as 
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reflected by that Geoeye-1 performed better than Rapideye. This result is directly 

related to the first image spatial resolution.  

Change detection technique has also been proven to be the best approach for 

tef mapping, as well feature extraction, image segmentation and object-based 

classification. These techniques applied to the selected images have given promising 

results for local scale tef mapping. 

Object-based image classification has shown its potential for image 

classification and tef crop identification. Problems identified in image classification 

procedure were related to insufficient field data to separate classes, especially to 

separate grasses from tef crops. This problem was overcome with application of 

change detection post-classification technique. Most exposed areas classified in 

Geoeye-1 image were classified as crops in Rapideye image. The fact that most 

exposed soils were later classified as crops is related to the tef planting season, 

which helped discriminate crops. Visual analysis of resulting map and verification 

accuracy demonstrates the potential of this technique in discriminating tef crops from 

other land use/land cover types.  

As stated by Thenkabail et al. (2009), some of the main goals realized in the 

development of poorer nations over the last century were the attainment of food 

security, satisfaction of individual livelihoods, and the reduction of poverty. 

Agricultural sustainability has the highest priority in all countries, whether developed 

or developing. Remote Sensing and GIS technology are gaining importance as useful 

precision farming tools in sustainable agricultural management and development. 

This research is intended to demonstrate the applicability of these tools in suitability 

zoning, information extraction and mapping for agricultural development of tef crops 

in Ethiopia.  
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The solution for providing food security to all people of the world without 

affecting the agroecological balance lies in the adoption of new research tools, 

particularly from aerospace Remote Sensing, and combining them with conventional 

as well as frontier technologies like Geographic Information Systems (GIS). The 

broad objective of sustainable agriculture is to balance the inherent land resource 

with crop requirements, paying special attention to optimization of resource use 

towards achievement of sustained productivity over a long period (Lal and Pierce, 

1991). Sustainable agricultural development / sustainable increase in crop production 

could be achieved by adopting a variety of agricultural technologies (Bhan et al., 

1996).  

Along with tef crops development and increased production, an important 

secondary goal will be addressed. Encouraging tef establishment in suitable areas 

and providing tools for profitable and sustainable production, protection of tef as a 

culturally important and threatened species will be achieved.  

5.2. APPLICATIONS OF THIS RESEARCH 

Results of this research demonstrate how geospatial information on 

environmental and climatic conditions can be used to guide the establishment of new 

tef crops in Ethiopia. Results from this research can be used by farmers to decide on 

best crop planting in their fields and best places to grow tef. Decision makers and 

politicians can also use these results in a decision-making process to develop public 

policy guidelines to improve food security and sustainable production of tef.  

This study using remote sensing showed that tef crop identification and 

mapping are feasible when multi-temporal imagery is adopted, considering that tef is 

a fast growing crop usually cultivated at the end of the season.  
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5.3. LIMITATIONS OF THIS WORK 

Regarding tef suitability analysis, limitations of this work are related to 

definition of optimal environmental and climatic ranges for tef crop development. 

Refinement of limits for these ranges can improve suitability maps, especially with 

the inclusion of detailed soil information into the GIS database.  

Remote sensing results were considered promising for tef crop identification 

and mapping but no accuracy assessment was performed giving insufficiency of field 

data for classification results verification. Field data is also necessary for tef crop 

condition and yield estimation. 

Another gap identified in this study regarding remote sensing is acquisition of 

hyperspectral data, both at field- and satellite-level. Spectroradiometer 

measurements of leaf and canopy reflectance would provide valuable data for 

spectral behavior of tef crops and studies on vegetation indices for tef characteristics 

estimation. Acquisition of Hyperion data during crop season would also provide 

information on these aspects at regional level. One difficulty related to satellite image 

acquisition for tef crops is the need of planning for it and possibly rapid adjustments 

would have to be made regarding data collection. Tef is sometimes planted when 

other crops fail so there is no well-defined date for its maturity.  

5.4. FUTURE WORKS 

As mentioned before, suitability analysis seems to have achieved the 

objective of this study. Improvements would be related to new discoveries on 

limitations for tef growing abiotic factors, such as different and expanded elevation 

ranges or soil adaptation. In the case of cultivars development or genetic 

improvements, new maps could be easily generated altering threshold for suitable 



 

136 
 

areas mapping. The most important change in the suitability analysis would be 

inclusion of biotic and socio-economic information not available at the present time. 

Occurrence of pathogens, parasite and beneficial organisms could radically change 

the suitability map as well as information on cultural, political and marketing factors 

that affect crop performance or commercialization of production.  

Another front for advances within the scope of this research study is related to 

tef mapping. Different satellites and sensors could be investigated for regional scale 

mapping, such as the hyperspectral image provider Hyperion sensor. Detailed 

spectral information such as those acquired by Hyperion could improve mapping at 

smaller scales, allowing information extraction for the entire Ethiopia. This is another 

step to be taken in case of image availability over tef growing areas. The only 

datasets currently available are located in southern Ethiopia, in areas where tef is not 

massively grown. Contact with Earth Observing branch of US Geological Survey has 

been made to order image acquisition on demand over tef growing areas.  

Still in the remote sensing front, future achievements are certainly related to 

improvement of image classification through use of sample points for checking image 

accuracy. New maps will be created after sample collection using information on the 

main errors found in image classification. This will, in consequence, generate better 

change detection mapping as well as tef growing area maps.  

Further steps to be taken in development of remote sensing techniques for 

sustainable tef production in Ethiopia are estimation of tef production using multi- 

spectral sensors as well as hyperspectral ones, correlating these data with mode 

detailed spectroradiometert acquired data and crop biophysical variables. The final 

goal would be development of an operational system for tef production estimation. 

The system would include remote sensing data, spatial data collection added by GPS 



 

137 
 

equipment and GIS spatial analysis as a support for decision making process, crisis 

mitigation and drought assessment.  
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