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ON THE QUASI - MINIMAL SOLUTION OF THE GENERAL COVERING PROBLEM -

1. Introduotion

Tho eo-called oovering problem, which we take hore to mean
the general problem of "oovoring" a given set of objects with
nsome of ito eubsets so as to obtain the minimum of a cpeoified
“goot® funotional, 4s one of tho busio prodlems in tho synthe~
8is of switohing oirouite. A problom of this type arises in
the synthooiu of minimal one- or multiple-output couwbinational
awitohing oirouits, which aro oconetruoted with NOT-AND-OR, NOR,
RAND and other such elemunts. This problem is also important
for the synthesio of any kind of switohing oirouit, sinoe the
syntheoia of sequential owitohing oirculte is reduced at the
final stage to the oynthesis of oombinational oirouits. .

The covering problewm aluo oocurs in a number of arocas apart
from automata thoory, such us, e.g. technioal diagnostios,
oommunications networl contxol, operatione research .

Au indicated in rocont papers, o.g. 1), even for u omall
number of variables / about 10-11 / the number of operations
Tequired for an exuot solution of the covoring problem is not
feasible even with the fauteut ocomputors. Ao shown by Zhuravlev
(2] ,en exaot eolution requires, in tho gunoral ause, an inope-
otion of the irredundant covers / or oporations whioh in one
form or another are oquvalent to such an incpeotion /. However,
it is imown from estimatos that the maximum number Tim of
irredundant covers may beoome very large uven for relatively
few variablos, o.g. T(r) > 10'’ for n =8 and Tm ) 104
for n = 15 . Although inspection of vome of the irredundant
oovors may froquently be avoided, tho remainder may still be
too numeroun to be feasible,

. Contiequently, the present irend of rosearch 1s to ssek
mothods of obtaining approximate solutions, whioh involve a
draetic roduotion in the number of operations, Although soveral
such methods exist e.g.[3-5), they nevortheless have an intrinsic
drawback in that they do not yield an estimate of the “dietance®

" between the approximate solution and the minimal solution.

This papor prepente a new and the moet goneral formulation
of the covering problem, and an algorithm for its eolution.
This algorithm gives & so-called quasi-minimal cover, which is
obtained without inspeotion of the irredundant oovers and with
a amall total numder of operations. Such a ocover is either the
minimal one or approximately minimal. In the lattor case the
algorithm gives an estimate of the maximal “distance® / whioh
involvee the nweber of elements and tho cost / between the cover
obtained and the minimal one.

2, Statement of the General Covering Problem in Terms of a

Plane Geometrical MModel

The covering problem is usually stated as follows., Given
8 binary matrix:

(1)

containing at least one *1" in each column. Find the minima)
set of Tows R ¢ {1,..,p} such that for every 3
g:k.,, > (2)
In other words, the point is to.2ind the minimal subset of
rows which “oovers® &ll columns. In & moTe genoral statexent
of the problem, each row is assigned a natural number called

8 cost and then the prodlem is to find a subdset of rows which
satisfies condition (2) and has a minimuw total coet.

ement of the covering problem, howevor, has a dis-
advantage in that lmowledge of matrix A is assumed a priori.
This matriz may be very large in practical cases and then the
oaloulation af the matriz itself becomes a formidadle task,

It turns out that the ooverins prodlem oan be solved solely
on the basis of the knowledge 0f & rule whioh enables us to
genorate individual rows of the matrix, without previcusly have
ing to comstruct the .ntire matrix. Precisely such an approadh
to solving the coverirg problem is desoribed in this paper.
Consequently, the protlex itself is fornmlated in a differext
manner, use being mads of & plane geometriocal model.

Suppose we are giveu a ai-%rn wrioh is arbitrary reotangle
divided into rows and 2% oolumns, whers B] is the
integer part of the number 5 , and n is a specified matural
nunber. For definiteness , we assume that an elementary oell

of this diagram, formed by the utonut.in of any row with any
ooluxm, does not include the points belonging to may line, which
divides the rectangle or to its perimster., To cells of the dia~
gram we assign in lexical order the oonseoutive numbers 0,1,..
eess2P-1, as in the osse n = 6 illustrated in Fig.1. The pume
ber of cell o will be denoted by K(e) , snd oell o having
number § by + The set of numbers of cells ¢ ¢3 will be
denoted by ¥(E).

Assume that we are given a mapping £ of the set ) - {0,4,
essey2-1} into set {0,1,#}® , that is into the set of all
sequences of n elements from the set {0,1,4} , whers » deno-
tes an unepecified / "don’t care® / valnes

£ ¥ {01, " (¢ }]

1f m«1, £ 45 said to be a one-output, and 1f = D> 1,

a multiple-output mapping. Now we assume that £ 4s a one-
output mappingi we shall consider the case of multiple-output
mapping later,

Lot us aseizn a value £ (MNe)) to sach cell e of the
diagram.

Definition 1 : The set of all cells of the diagram, along
with the valuer ‘nus assigned from the set {0,1,4}, we call
the image of muv)ying f and demots by T(f£).

The subscts of cells of image T(f) of values O0,1,# we
denote as 'n‘°. I‘. r”, respectively. A;mo that we are givem
& funotior ¥ whioh maps the family 2° of all subsets of
into {0,1} s

) 4
Y+ 2 —={0,1} )

Definition 2 1 Any eet of cells E such that Y(E) =1
1s called a complex of celle.

Covering problems in different areas are characterized by
different determination of the complex, For instance, 1in prob-
lems of synthesis of ewitching circuits o complex will be a set
of cells which ocorresponds to a switching function realized by
single functor / AND, LKAND, THRESHOLD etc. /. In problems of,
say, setting up diagnostio tests for machines, the complex will
be a set of cells corresponding to the set of machine elements,
whose operation can be checked by a single test.

To each ocomplexr E we eseign a naturel number z(E) called
‘e coet of E . The condition we ascsume in the cace of one—
o.itput mappings 1s that the cost of the complexes ordered by
the inclusion relation ¢ is decreasing. This means that if
By € By then 2(Ep D 2G5y .
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Definition J 1 A met of complexes D(T) {EJ)P . 18
called the gover of image T(f), 4f it satisfies )= the
oonditiont ?

x
P < uxjsr‘vr )
ks

This definition implies that if a sot of complexes is to
be a cover, its set-theoretio sum must complvtely cover the set
!‘ and may alsc oover some ocells of the set F', which acts as
a "margin®, It cannot, on the other hand, cover any cell of the
sot ¥° .
Definition 4 1 The cost of cover NT) = {EJ}T;-1 is
the sum: 4
(T = Z s(Ey) (6)
Il

Definition 5 t The minimal cover M(T} of image T(f) is
a oover which has the minimum number of elements and has a
minimum’ cost for that numbder.

Definition 6 3 A oomplex E satisfying the conditions:
s v, Ear’ 40 23]
where © 48 the empty set, is called the maximal oomplex
in the image T(f), if it is maximal urnder inclusion,

Maximal complexes in image T(f)will be denoted by Li'
i = 12,04+ o+ It 18 readly shown that each minimal oovexr
oconsists exclusively of maximal complexes. This statement
follows direotly from the assumption of the cost function,
which implies that a maximal complex has the least cost of
all complexes which are its subeets,

Definition 7 1 A maximal complex L, in image ‘l‘(f: is
called a core comple:, if there exists a cell e¢ Lin? »
which is not included in any other maximal complex in image
™.

Definition 8 ¢ The set of all core complexes in image T(I)

Since core complexes are the only complexes oovering
oertain oells of the set F', a core cust be contained within
each minimal cover of image T(fL).

Definition 9 3 A cover consisting of maximal complexes
end which is minimal under inclusion is ocalled an irredundant
oover .

In sccordance with definition 9, if any maximal complex
is removed from an irredundant cover it ceases be a ocover,

The minimal covers are amzong the irredundant covers.

The fundemental concept for the algorithm of the synthesis -
of covers, described in section 2 , is a star of a cell -er'.
Definition 10 3 The star G(e) of a cell e ¢ 7' 1a the

set of all waximal complexes covering cell e .

The set of all cells e,é ¥ covered by the maximal ocomple~
x08 of star G(e) will be denoted by G"(u). The nunber of
elements in any set, say K, will be denoted by o(X).

3. Algorithm 1 6f Synthesis of Quasi-Minimal Covers

In this section we shall briefly desoribe an algorithm a8
for the synthesis of covers of image T(f) of one-output mapping.
A full description of this algorithm is givem im 6 . This algo-
rithm yielde a cover M‘G‘). oalled & Quasi-minimal cover, along
with an estimate of the maximum possible difference betwean this
cover and the minimal cover, expressed in terms of the number
of elements A and cost § ¢

oMY - o) € A 8)
CaofT) - emm) € F 3)

The theoretical possidility of determining the maximum
d1fference between the pumber of alements in any arbitrary oover
and in the minimal cover ies & comsequence of the following theo~
Tem., Assume that we are given a family ¢* of stare of cells
e € P' such that any two stars chosen from it are disjoint
sets,

Theorem 1 o The number of elements c¢(M(T)) of the minimal
cover of image T(f) satisfies the relation:

oMy 2 ¢ (10}
where ¢ = o(¢T).
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The proof of this theorez can be found in [6]. The family
6% will be referred to as a family of disjoint atars. The theow
rom impliesthat if we have a cover D(T) and inow the number
] of elements in a family of disjoint otars, the difference
A (DT - § can be treated as an estimate of the maximum
difference between the number of elements in this cover and in
the minimal one. in algorithm B for synthesis of a family of
disjoint stars is presented in Pig.2. The etars determined while
the execution of the algorithm constitute a family of disjoint
stars, which is maximsl under inclusion.

The sign t= 18 used as in AIGOL / it denotes that a varis-
ble on the left side of the sign takes a new value resulting
from the operation written on the right/ . The variable ? is
an suxiliaxry variable whose values sare sets, By °p< 7}7' 01) we
denote the operation of choosing the cell with smallest number
from the set specified by the current value of » Joriefly, from
1ae set FP/ and assigning the notation e, 4o that cell.

In the elgorithm R 1t is ascumed that the mode of gene-
rating stars of given cells is known. If we have a concrete
covering problem, then we "know what is meant by & complex and
an algorithn for the generation of sters oan always be oon-
structed. If the algerithm R 18 repeated, generating stars
of cells other than those with the smallest number, a value
of ¢ may turn out to be larger. Theorem 1 8till holds for
the new value of ¢ , thus making it poseidble to improve the
previous estimate of 4 .

The algorithm 4% coneists of two perts.
Part I .

We sBuccessively gemerate disjoint stars according to the
algorithm B . During this process we determine for each star
a marximal complex 1‘.“, called a qQuasi-extremal /see def. 9/
and then perform the following operations:
¥ e TV, R e el (1)
Here ?1,7',)1“ denote variables whoee values are sets. The
starting values of 31 and P"Are the sets previously defined
ag P and P*, and that of M1 is the empty set. Then the value
of M at any given stage of this process is a set oontaining
all the quasi-extremals which have been determined up to that
stage. The performance of operations (11) means that once
the complex 1% has veen incorporated into the set Mq. the
cells of F’. covered by that complex can henceforth be treated
as cells of value ¥ , that is cells of the set 1” + The com-
plexes subsequently chosen may, but do not have to, cover these
ocells.

Definition 9 3 A guasi-extremol of star G(e) 15 & maximal
complex e G(e) which covers the maximum number of cells
1in the eet coneti‘uting the current value of variable F' and
has the minimnl :ost of all the complexes of G(e) covering the
same pumber o sells in this set,

Pl PN,

IL & given star contains more then one quasi-extremal, any
0f them may be chosen. This part of the algorithm ends when
we. exeoute these operationc for the last disjoint star. If
after the first part has been executed, the set F' is empty,
then the set M1 is a quasi-minimal cover of image I(f),
Otherwise, we proceed to exeoute Part II of the algoritha.

Part II .

In the first step of this part the star of the cell witnh the
smallest number in the set ' 1s determined, a quasi-extremal
1s ohosen from 1t and operations (11) are performed. The mext
steps are oarried out in & sicilar fashion until *' = 9 .

The set IR then obtained is the quusi-minimal cover 1&‘( T) of
image T(f).The number of steps performed in this part deter-
mines the parameter A inzq. 8 .

A flow dlagram of the algorithm 12 presented in Pig.3 . In
order to determine § in Eq. 9 we perform the following
operations. In PartIve celculate for each disjoint star the
differezce detween the cost of the chosen quasi-extremal and
the mini- . cost complex 1% of that star, and then sum over all
disjoint cters, Then to this sum we add the sum of the costs

1/ Henceforts in the description of the algorithm, the &
ets
which corstitute the current values of,th, 1 o
will be referred to briefly as seta 11,r=,l;&f avies FL.¥ 'Kq



of the quasi-extrexals chosen in Part II and thus obtaining the
vslue of & . The final vulues of the parameters § and 3
deteruine a namber of slezents and & cost, respectively, which
are lower bounds for the minimal cover. Then % and -y >ro-
vide an estimate for maximum pocsible relative defference be-
tusen the quzsi-minimal and minimsl covers,

It A and 3 are considered to be too largs after the
first exscution of the algorithm, then the algor/‘ thm may be
repeated with other choices of the quesi-extremals or disjoint
stars can be generated for cells other than the cells with
soallest number in the sets specified dy the consecutive wvaluos
of Fp, ac is dome in the first execution. If & = 0, 5§ . 0,
the quasi-minimal cover is certainly a minimal cover.

It 1s noteworthy that the core need not be determined at the
beginning of the algorithm,

2. Zxtension of the Algorithm A to Multiple-Output Mappings

Yow, et f be an m-output mapping / m > 1 /. Then to each
cell of the diagram there corresponds a sequence of m elements.
from the set {0,1,%}, Therefore, let us divide every cell e
in the diagram into m smaller cells e'", k=1,2,..,m, which
.2 ehall call subcells / Fig.4. /. The index j which previo-
usly was called the number of the cell 03 is now called the
nunber of the suboell OJ“. and index k . the subaumber of the
subeoll. Function £ in the case m > 1 may be treated as
& set of functions {fx}, Xe1,2,00,m mapping the set ¥ into
the set {0,1,*}, that 1s the funotions considered previously.
Let us assign the value tx(J) to each subosll n"k .

The imecge T(f) of mapoing f will be the name given to
all subcells of the disgram with values 8o assigned.

As before, by !', !‘°. F* we ehsll denote sets of sudbcells
with values of 1,0,% , respectively. All oconcepta = oomplex,
maximal complex, cover, cost of cover, irredundant end minimal
cover, star and quasi-extremal - introduced before remain un-
changed, except that here we are considering subcells instead
of gells. In addition we introduce the concepts of subimages
T4, ke1,2,..,m and their covers. A subimage T<¥)is a set
of subcells of image T(f) which have the subnumber k . A cover
of cubimare r(t'k) is the name given to a set of complexes
p(2°) - {sﬁ?_l which eatisfies the condition:

1.k 7
kg | By ¢ PRy gk 12y
i
where RI¥ , % are suvsets of sets l“, r consisting
of oells with subnumber X .

The minimal cover of subimage mr") is the cover M(I'k),
which 18 a subset of the cover M(T) and has minimum number
of elemente and the minimum cost for that number of elements.

The algorithm 8 ocan be used directly to determine the

cover MNUT) of image T(f) . In order to specify the covers
of subimages T(fl.‘), when the algorithm A% 1s being execu-

A3=-2

ted there chould be assigned to caoh conseocutive quasi-extre-
mal & set I¢{1,2,..,m} ocontaining all the subnumbers of
its subcells. The set of quasi-extremals with subnumber k
in their set I oonstitutes the cover L:‘u-") of the
inage T(£5),

4. Conclussons

We have presented here an algorithm for the general solu-
tion of the oovering problem. In order to apply this algorithm
to a concrete covering problem, it is necessary to have a rule
for determining the oomplexes and a method based on this rule
for generating stars.

In refirence {6) , such & rule 1e given e.g. for the case
of the synthesing of minimal switching circuite. There wvas
possible to interpret the dlagram in such a way that the com-
plaxes have & very simple geometrioal representation, which
is useful for hand realization of the algorithm. In machine
realization it is not necessary to use this interpretation
and the stars can be obtained using ornly the numbers of cells
of ¥ and ¥°. This means that we don't need to record in
a nachine all of the image T(f) / as a mstrix /, bat omly to
zTeuord these sets. It allows us to realise the algorithm even
for very large number of variables.

The algorithm A nas been used as a basis of an automatioc
design system for the symthesia of switching oirouits. The
program wae written in the LYAPAS langusge for the Odra 1204
computer in the Computer Center of the Polish Academy of
Soiences. The system presently operational gives Qquasi-minimal
covers in the eynthesis of one- or multiple-output ewitohing
oirouits with up to 31 input variables. :

Experiments have shown this system to work satisfactorily
evan for very complex covering problems. A detailed desorip-
tion of thie system and the experiments will be p ted in
o separate paper,-
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