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Abstract

HETEROSTRUCTURES OF TOPOLOGICAL INSULATORS AND SUPERCONDUC-
TORS

Mahmoud Lababidi, PhD

George Mason University, 2013

Dissertation Director: Dr. Erhai Zhao

Topological insulators (TI), such as Bi2Se3, are a new class of quantum materials dis-

covered recently. They are insulating in the bulk but can conduct on the surfaces. The

robust surface states of three-dimensional strong TIs form a unique two-dimensional system

of massless electrons, known as a helical metal, with a linear energy-momentum dispersion

and spin-momentum locking. While these surface modes alone have spurred great interest,

their interaction with superconductors (S) in close proximity has opened up opportuni-

ties to engineer topological superconductivity using TI-S heterostructures. This thesis is

a microscopic, self-consistent theoretical investigation of the interplay between TI and su-

perconductors. Three types of TI-based heterostructures with increasing complexity are

studied in detail.

We first present a detailed study of the coupling between a metal and a topological

insulator. We compute the spin-active scattering matrix for electrons coming from the

metal incident on the metal-TI interface. We find that there exists a critical incident angle,

where perfect spin-flip occurs as the incoming electron is reflected. We discuss the origin

of this phenomena and its potential implications in spintronics. We then compute the local

spectrum at the metal-TI interface, and examine its evolution from the tunneling limit



(bad contact) to the strong coupling limit (good contact). The calculations are done using

two complementary approaches; in a continuum model based on a k·p Hamiltonian a wave

function matching approach is taken and the lattice model requires the use of lattice Green’s

functions. The study of metal-TI interface lays the foundation for our subsequent theory of

S-TI interface.

Next we carry out microscopic, self-consistent calculations of the superconducting order

parameter and pairing correlations near a S-TI interface, where S is an s-wave supercon-

ductor. We discuss the suppression of the order parameter by the topological insulator and

show that triplet pairing correlations are induced by spin-flip scattering at the interface.

We verify that the interface spectrum at sub-gap energies is well described by the Fu-Kane

model even for strongly coupled S and TI. These sub-gap modes are interface states with

spectral weight penetrating well into the superconductor. We extract the phenomenological

parameters of the phenomenological Fu-Kane model from our microscopic calculations, and

find they are strongly renormalized from the bulk material parameters.

Building upon such understanding of single TI-S interface, we move on to examine a TI

surface in contact with two superconductors with a phase bias, namely a Josephson junction

patterned on the TI surface and mediated by the helical metal. A short Josephson junction

of this kind at a phase bias of ⇡ is known to give rise to exotic quasiparticle excitations

known as Majorana fermions with a linear dispersion, E ⇠ k. Our self-consistent calculation

of the Andreev bound states spectrum reveals, for the first time, a new regime with very

di↵erent physics in these devices. We show that the subgap spectrum becomes nearly flat at

zero energy when the chemical potential is su�ciently away from the Dirac point. The flat

dispersion is well approximated by E ⇠ kN , where N scales with the chemical potential.

We find a similar linear-to-flat dispersion evolution also occurs for the subgap spectrum

of a periodic superconducting proximity structure, such as a TI surface in contact with a

striped superconductor.

The systematic microscopic study of TI-S heterostructures helps interpret the data from

ongoing experiments on these structures. The formalism developed also forms the basis

for subsequent investigation of more complicated layered materials such as the periodic



array of magnetically doped TI and S which is argued to give rise to an exotic topological

superconductor known as Weyl superconductor.



Chapter 1: Introduction

This thesis presents a systematic theoretical study of the interaction and interplay between a

new class of materials named Topological Insulators (TIs) and superconductors. It consists

of five chapters. The first chapter contains a brief introduction to TIs and superconductors.

In addition, it describes basic concepts and notations used later in the bulk of the thesis.

These include the topological surface states of a TI, the spin texture of the TI surface,

phenomenological description of a superconductor coupled to a TI, exotic superconductors,

and a Josephson junction structure on a TI surface. The second chapter presents a study

of the interaction between metal and TI, and electron scattering at the M-TI interface.

This chapter provides insight into understanding the e↵ect of spin-orbit interactions on

incoming arbitrarily spin-polarized electrons. The third chapter is a microscopic study of a

heterostructure of a superconductor with a TI. The motivation is to understand the e↵ect

of a TI on an s�wave superconductor. The fourth chapter examines Josephson junctions

on a TI surface and delves into new aspects of the energy spectra in regimes not studied

before. Each chapter beyond Chapter 1 represents an original work published in Physical

Review B.

1.1 Topological Insulators

The field of condensed matter physics has a history of understanding phases of matter

that have been condensed. Where the early focus was on solids and liquids, the field has

transitioned into studying a rich variety of novel phases that are much more complex. A

result of the exploration of many of these novel phases, the concept of order arose, allowing,

not only the ability to categorize these phases by recognizing the type of order the system

had but the order is usually associated with symmetries of the system. This idea is clearly

1



seen in the phase transition of liquid atoms with rotational and translational symmetry

into a crystal with discrete symmetries (e.g. translational, discrete rotational, inversion,

etc.). An extension to this would be a paramagnet transitioning into a ferromagnet, thus

breaking time-reversal symmetry. While this study of symmetry breaking is at the heart of

condensed matter and allows for a deeper understanding, it is not the full story.

In 1980 Klaus von Klitzing et al performed an experiment measuring the Hall conduc-

tance of semiconductor heterostructures in a strong magnetic field[3]. What they found in

the experiment was that the measured Hall conductance came in exact quantized funda-

mental units of e2/h,

� = ⌫
e2

h
, (1.1)

where ⌫ is an integer value. The significance of this result was not only in the quantized

nature of the Hall conductance, but something a bit deeper. This integer quantum Hall

e↵ect was special because this result could not be described through the usual symmetry

breaking language. In the heterostructure used in the experiment, the internal “bulk” of

the system is e↵ectively a two dimensional electron gas exposed to a strong magnetic field.

The strong magnetic field puts the electrons in a cyclotron orbit and forces the electrons

into discrete energy levels, the Landau levels. This e↵ect is rather similar to a harmonic

oscillator where an electron is in a spatially quadratic electric potential well (V (x) / x2).

These separated energy levels allows for the system to be an insulator when the Fermi

energy is placed within the gap between two separate energy levels. While this system is

in an insulating state,the edge is still a host to electronic states that propagate in a chiral

manner. This discrepancy between the ability to describe bulk of the material and its edge

is the issue at hand.

The quantum Hall e↵ect (QHE) is actually a topological phase of matter, with its energy

bands described by topological invariants known as Chern numbers. An integer QH phase

protected from being deformed into a phase with di↵erent topology in the same way a

donut (torus) is protected from being deformed into a sphere. The only time such a change

2



Figure 1.1: (a) Energy spectrum of a trivial band insulator where two bands, conduction
and valence, are separated by an energy gap. (b) Energy spectrum of a quantum Hall state.
The gap now has one chiral edge state connecting the valence band to the conduction band.
(c) Energy spectrum of a 2D TI (QSH). The gap now has one pair of chiral edge states
connecting the valence band to the conduction band. One line is for the spin up state and
the other is for the spin down state. This essentially mimics two copies of the quantum Hall
state for each spin.

is possible is through a phase transition where the gap in the energy spectrum closes in a

critical fashion. More discussions on topological phases of matter can be found in literature.

We use the QHE as a lead-in for the topological insulator. By taking the QHE, we can

extend it in the following way. The QHE is a gapped system with chiral edge states that

depend on the applied magnetic field (see Fig. 1.1). The chirality of the edge states depend

on the direction of the magnetic field, i.e. positive (negative) chiral motion of the electrons

for positive (negative) out of plane magnetic field. If a system were to have both positive

and negative magnetic fields simultaneously for two di↵erent species of electrons, we would

see the electrons follow the two chiral motions simultaneously depending on their species.

The two di↵erent species of electrons are, of course, spin-up and spin-down electrons which

couple to the two magnetic fields. This system is a prototype of the quantum spin Hall

e↵ect. Kane and Mele first proposed the QSH to exist in graphene with spin-orbit coupling

[4]. Shortly afterwards, Bernevig, Hughes, and Zhang proposed a realistic experimental

setup to host the QSH e↵ect [5]. Their proposal, which was verified successfully in an
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experiment by Koenig’s group [6], exploited the spin-orbit coupling and band inversion in a

HgTe-CdTe-HgTe heterostructure to create pairs of counter-propogating edge states, which

are related to each other by time reversal symmetry. The QSH insulator is a 2D topological

insulator. An e↵ective Hamiltonian for the edge state can be written as

H = ~v
F

�
x

k
y

, (1.2)

where the basis is for spin up and spin down and the resulting eigen energies are E =

±~v
F

k
y

. v
F

is the Fermi velocity. This is a massless Dirac Hamiltonian and the spectrum

forms a Dirac crossing.

The existence of a surface state can be seen in the following manner. If a topological

insulator has a parameter that can be tuned to transition from topologically non-trivial to

trivial, the gap of the insulator must close. When a TI is interfaced with a trivial insulator,

such as the vacuum, the parameter e↵ectively causes the gap to close at the interface, which

gives rise to the gapless surface state.

In principle, by stacking sheets of the 2D TIs and forming a 3D structure, this would be

a “weak” topological insulator. The other extension of the TI from 2D to 3D is a “strong”

topological insulator. Here, there is also an insulating 3D bulk and the 2D surfaces interfac-

ing the vacuum are similar to the edge state of the 2D TI in their linear dispersing behavior,

but they allow momentum to be in any in-plane direction, ~k = (k
x

, k
y

) = (k cos(✓), k sin(✓)).

The e↵ective low-energy Hamiltonian for these surface states is

H = ~v
F

(�
x

k
y

� �
y

k
x

). (1.3)

The energies and their respective eigenvectors

E = ±~v
F

|~k| | ki = 1p
2

⇣

±ie�i✓| "i+ | #i
⌘

(1.4)
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where |~k| =
q

k2
x

+ k2
y

and | "i(| #i) is the spin up (down) state.

We plot the energy dispersion as a function of k
x

and k
y

to find a Dirac cone in Fig.

1.2. Any cut taken for some value of E 6= 0 produces a circle of states. The eigenstates are

always equal superpositions of spin up and down, meaning the spinor is pointing in the x-y

plane. The exact direction is dictated by the phase (iei✓). The spin is pointing at a ⇡/2

angle from the momentum direction at angle ✓, due to the extra i.

Figure 1.2: Dirac cone dispersion. Energy as a function of momentum, k
x

and k
y

.
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If we look closely at the spin-momentum relationship we see that it is not possible to

have arbitrary spin and momentum for an electron on the TI surface. Every direction of

momentum is locked to one direction of spin and vice versa. This surface is very di↵erent

from a normal metal where spin is arbitrary for any momentum and also di↵erent from a

ferromagnet where the spin of an electron is fixed but can have arbitrary momentum. This

coupling along with the relativistic energy dispersion is unique and provides a playground for

many exotic properties. These include Majorana fermions[7, 8, 9, 10], barrier transmission

[11], spin-currents [12, 13], Aharanov-Bohm oscillations [14], Shubnikov-de Haas oscillations

[15], Landau level quantization [16], massive relativistic Dirac fermions [17, 18], and exciton

condensation [19].

In 2008, Hassan’s group found a 3D TI in the form of Bi
.9Sb.1 by way of ARPES

measurements[20]. They found a linear dispersion, Dirac crossing, on the surface and while

the bulk has a gapped energy spectrum. This experiment was motivated by several theo-

retical predictions[21, 22] to find topological insulators in such a 3D binary compound due

to the spin-orbit coupling in the material. This led to the discovery of other TIs; Bi2Se3,

Bi2Te3, Sb2Te3; as well as finding topological properties of pure Sb[23, 24, 25, 26, 11]. Since

the discovery in 2008, there has been an explosion in research on topological insulators in

ArXiv.org, where in years 2009, 2010, 2011, 2012 there were 100, 235, 362, 421 papers on

topological insulators, respectively.

This concludes our basic description of the TI. We showed how a 2D TI was produced

using two copies of a QH system with opposite simultaneous magnetic fields. We then

extended the idea of a 2D TI to 3D “weak” and “strong” TIs. We then examined the

surface states to understand the relationship between the spin and momentum as well as

potential implications and applications.
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1.2 Superconductivity

1.2.1 Measurement

Superconductivity was discovered by Heike Kamerlingh Onnes in 1911. He found that the

resistance of mercury drops to zero as the temperature is lowered below 4.2K, a signature

of perfect conduction. An immediate question arises, if using a typical voltmeter, as used

in physics labs, and Ohm’s law, V = IR, how can resistance or voltage be measured if they

should both be zero? The answer is by using a four point probe. As seen in the diagram in

Fig. 1.3, the probe has four point of contact on the material. Two of the connections (1,4)

have a constant, controllable current flowing through them. The other two connections

(2,3), then probe the sample and measure the voltage drop. The voltage measurement

device has a high impedance to minimize any flow from the sample into it. The resulting

voltage drop, V, and driving current, I, then give the resistance, R = V/I, which along with

temperature results in a temperature dependent resistance. An example measurement of

Cu
.2Bi2Se3, a new superconducting material based on the topological insulator Bi2Se3, is

shown in Fig. 1.3. The plot shows a clear resistance drop at 3.5 Kelvin, the signature of

superconductivity.
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Figure 1.3: (left) Four probe measurement device. Probes 1 and 4 are used to flow a
current across a sample while probes 2 and 3 measure the voltage drop across the sample
where the current is flowing. (right) Resistance (⌦) vs Temperature (Kelvin) experiment on
Cu

.2Bi2Se3 from arXiv:1111.5805. The drop in resistance is a signature of superconductivity.
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1.2.2 BCS and Bogoliubov Theory

Bardeen, Cooper, and Schrei↵er (BCS) came up with a theory to explain the mechanism

behind superconductivity. We start with the Hamiltonian that represents a free electron

system with two-body electron interactions,

H =
X

k,�

(✏k � µ)c†k�ck� +
X

k,l0

Vk,k0 c†k"c
†
�k#c�k0"ck0# (1.5)

where c†k� (ck�) is the electron creation (annihilation) operator, the summations are over

spin (�)and momentum (k,k0), ✏k is the free electron energy, Vk,k0 is the electron-electron

interaction potential. The commutation relations for the fermion creation and annihilation

operators are

{c†k�, ck0
�

0}+ = �k,k0�
��

0 (1.6)

{c†k�, c†k0
�

0}+ = {ck�, ck0
�

0}+ = 0. (1.7)

In usual electron systems, the Coulomb interaction between electrons is repulsive, but

the e↵ective interaction can become attractive. As an electron passes through a lattice

of low-mobility nuclei, they actually cause the nuclei to shift causing a phonon interaction

with electron. This phonon interaction can be strong enough to e↵ectively attract, Vkk0 < 0,

two electrons with opposite momenta(k,�k). From the Pauli exclusion principle, we seek

a bound pair of electrons with zero total momentum and antisymmetric wave functions

known as a Cooper pair. When the electrons pair, they form a condensate of the bosons,

which supports superflow that is responsible for the lack of resistance. The electrons near

the Fermi energy are most susceptible to pairing, usually when they are within some Debye

energy cuto↵, ~!
D

. One way to describe the superconductor is through a condensate wave

function or more precisely the superconducting order parameter, �(x), or�k. This function
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is found by a mean field approach to the pairing potential, Vkk0 , through the gap equation

�k =
X

k0

Vkk0 c�k0"ck0# (1.8)

reducing the Hamiltonian down to

H =
X

k,�

(✏k � µ)c†k�ck� +
X

k

�k c
†
k"c

†
�k# + h.c. (1.9)

To diagonalize this Hamiltonian we change the basis, where rather than restricting our-

selves to operators of electrons, we use the Bogoliubov-de Gennes (BdG) transformation

to introduce the operators on quasiparticle excitations of particles and holes. This is done

through

ck� =
X

n

u
nk��nk + v⇤

nk��
†
nk, c†k� =

X

n

u⇤
nk��

†
nk + v

nk��nk (1.10)

where the quasiparticle operators fulfill the anti-commutation relations,

{�†k�, �k0
�

0} = �kk0�
��

0 , {�k�, �k0
�

0} = {�†k�, �†k0
�

0} = 0 (1.11)

and allow us to diagonalize the Hamiltonian as

H = E0 +
X

k,�

Ek�
†
k��k�. (1.12)

The quasiparticle (quasihole) wave function is uk� (vk�). Each electron creation/annihilation

operator is a superposition of a quasiparticle creation and annihilation operator. The inverse

of this transformation,

�k� =
X

n

u
nk�cnk � v⇤

nk�c
†
nk, �†k� =

X

n

u⇤
nk�c

†
nk � v

nk�cnk (1.13)
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leads to each quasiparticle operator being a superposition of the electron creation operator

and the hole creation operator. This physical interpretation allow us to see that there is

more to the story than just electrons and holes, but electron-like and hole-like quasiparticle

excitations.

The form of the BdG Hamiltonian is

H
B

=

0

B

@

✏k � µ ��̂k i�y

�̂†
k i�y µ� ✏k

1

C

A

, (1.14)

in the basis of

 = (uk", uk#, vk", vk#)
T . (1.15)

The �̂k can come in a variety of forms, strictly depending on the pairing symmetry of the

superconductor. Generally it can be written as �k = �0(k) + d(k) · �, while in the BCS

case, we focus on �k = �0, a constant value, representing s-wave orbital pairing[27]. This

allows us to find the eigen values of the system,

Ek = ±
p

(✏k � µ)2 + |�|2. (1.16)

where the spectrum can be seen in the Fig. 1.4. There is now a finite gap of size 2�0 seen

centered about 0. The gap is a result of the pairing that occurs in the superconductor.

These paired states form the condensate and no low energy excitations can exist within

the energy gap in the spectrum. In order to have an excitation out of the condensate, you

would need 2�0 energy to break the pair.

This concludes the introduction to superconductivity. Here, we reviewed the BCS theory

on superconductivity to describe the mechanism behind the Cooper pairing, and diagonaliz-

ing the BCS Hamiltonian using a mean field approximation and the Bogoliubov-de Gennes

Transformation to obtain the energy spectrum. These are the building blocks for under-

standing the discussions on superconductivity in this thesis.
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Figure 1.4: Energy spectrum for a BCS superconductor with a gap of 2�0 and µ/�0 = 10.

1.3 Topological Superconductors and Superconductor-Topological

Insulator Heterostructures

This section presents two related condensed matter systems that have exotic properties

and the motivation for studying them. These are p
x

+ip
y

superconductors and topological

insulator-superconductor heterostructures that host Majorana Fermions. These systems

have implications in understanding the role of topology in superconducting systems as well

as the possibility of topological quantum computation through the Majorana Fermion. This

thesis can be viewed as a systematic deeper study of the latter systems beyond phenomenol-

ogy.
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1.3.1 p
x

+ip
y

superconductors

One kind of a superconductor that has exotic topological behavior is the p
x

+ip
y

super-

conductor. The symmetry of this paired spin-triplet state is of the form �̂
k

= �0(kx +

ik
y

)(�
x

+ i�
y

). If we apply this form of the pairing into (1.14), we can diagonalize the BdG

Hamiltonian and find eigenvalues of the form

Ek = ±
p

(✏k � µ)2 + (�0|k|)2. (1.17)

This di↵ers from the conventional s-wave eigen energies because the gap term now depends

on k. For values of µ >> 0, this doesn’t e↵ect the spectrum by any more then a negligible

change. The noticeable di↵erence, as described Read and Green[28], is when the Fermi

energy is reduced to a small value so that (✏k�µ) ! �µ. The spectrum then evolves into a

spectrum for a relativistic Dirac fermion with mass µ and speed of light �0. We also write

the BdG equations in the form of

Eu = �µu+�⇤i(@
x

+ i@
y

)v (1.18)

Ev = µv +�i(@
x

� i@
y

)u. (1.19)

This is a form of the Dirac equation, and the BdG equations allow for u = v⇤ through

charge conjugation symmetry, where at each k there is only one excitation mode. This

shows that the particles, u, are their own anti-particles, v. When a Dirac fermion has

this property, it is a Majorana Fermion. Now consider a setup for this system where the

mass term varies spatially through a a domain wall (µ(x) / sign(x � x0)), by tuning the

Fermi energy spatially. The requirement for the domain wall is due to the parameter (x)

dependent transition from a trivial state superconductor, µ < 0 to a non trivial topological

superconductor, µ > 0. One simple model to do this is by µ(x) = µ sin(2⇡x/L). We find

a spectrum with linear modes in Fig. 1.5. The linear Majorana modes are found to have

chiral propagation and reside at the centers of the domain walls. Another way to host a
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Majorana in a p-wave superconductor is by imposing a vortex through a magnetic field,

where at the core of the vortex reside the Majorana modes.

Figure 1.5: Energy spectrum for a p
x

±ip
y

superconductor with a chemical potential domain
wall, ensuring linearly dispersing Majorana modes.

1.3.2 Fu-Kane Superconductor/Topological Insulator Model

Fu and Kane were the first to describe the e↵ect of a superconductor in close proximity to

the surface of a TI[29]. The TI has the Hamiltonian in the form of H = v
F

(�
x

k
y

��
y

k
x

)�µ,
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where k
i

are the momenta, �
i

are the Pauli spin matrices, and v
F

is the Fermi velocity. If

an s�wave superconductor is brought to the surface of the TI, Fu-Kane argued that pairing

interaction between electrons will be induced on the surface.

This interplay between a TI and S presents many possibilities of various physical e↵ects.

This system can be seen to mimic a spin-less p
x

± ip
y

superconductor. Also, under certain

conditions where there is a domain wall through the superconductor order parameter, � or

a magnetic domain wall, it is expected to find a Majorana mode.

Fu-Kane argued that the form of the pairing term is consistent from the S side to the

TI side producing the following BdG Hamiltonian

H(k) =

0

B

@

H(k) i�
y

�

�i�
y

�⇤ �H⇤(�k)

1

C

A

= v
F

(�
x

k
y

� ⌧
z

�
y

k
x

)� ⌧
z

µ+ ⌧
y

�
y

�. (1.20)

The spectrum for this system is

E =
p

|�|2 + (v
F

|k| ± µ)2. (1.21)

This system is very analogous to the p-wave superconductor. If we take the limit µ ! 0

this dispersion is also relativistic where the mass term is � and the speed of light is v
F

.

The p
x

±ip
y

term is responsible for the resulting Majorana mode. In the superconductor-TI

heterostructure, this term is also, as we shall see soon, responsible for producing Majorana

modes. Since the mass term is parameter, it can be tuned to close the gap at one (or

an odd number of points) in the spectrum. The mass term in the S-TI system is the

gap parameter, �. If we allow � to flip sign spatially from a positive value, |�0|, to a

negative value, �|�0|, for example through �(x) = �0 tanh(x/L), we find a Majorana

mode localized at the point where �(x) = 0 (x = 0) with a linear dispersion that resembles

the spectrum of the p-wave superconductor edge-state in Fig. 1.5. One di↵erence is the

TI version is four-fold degenerate (particle/hole) of the E = 0 mode while the p-wave is
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two-fold degenerate (particle/hole). Both systems’ linear dispersing states are localized at

the domain wall, x = 0. This domain wall can be seen as a Majorana wire in the y-direction.

We’ve now shown some superconductors with exotic properties. We looked at the p-wave

superconductor and how it can be tuned to host Majorana modes along with its relativistic

Dirac-like energy dispersion. We also looked at the TI-S heterostructure proposed by Fu

and Kane which can be tuned to host Majorana modes. These systems are very analogous

to each other and show the potential of engineering topological superconductivity using the

hybrid structures of TI and s�wave superconductors. The Fu-Kane will be the starting

point for latter two thirds of the thesis where we study TI-S structures in greater detail.

16



Chapter 2: Metal to Topological Insulator Scattering

As described in Chapter 1, the topological insulator (TI) has a unique surface where the

spin and momentum of an electron are coupled such that the direction of the spin is equal

to the direction of the momentum plus ⇡/2. That is to say, the electron’s wave function,

| ki, is presented as

| ki = ±ie�i✓| "i+ | #i (2.1)

where ✓ = arctan (k
y

/k
x

) and | "i(| #i) is the spin up (down) state. It’s clear that the

phase ie�i✓ dictates the direction of the spin in the x� y plane. This special surface is the

motivation for the following chapter.

Since we understand the spin-momentum behavior of the electrons that reside on the

surface of the TI, a natural extension would be to understanding electrons that scatter o↵

the surface of a TI. Any incoming electron has an interaction with the spin-orbit coupling

of the TI. This interaction dictates the resulting spin of the reflected electron.

We find that for a certain critical angle, the electron’s spin will always flip, regardless

of its state before reflection (i.e. ↵| "i+ �| #i ! ↵| #i+ �| "i). This is very di↵erent from

reflection from a ferromagnetic insulator, where the spin directions of incoming polarized

electrons are rotated by the exchange field [30]. This clear di↵erence is unique and allows for

an ability to control electrons arbitrarily and perform NOT-gate like operations in binary

logic devices, (i.e. TRUE!FALSE and FALSE!TRUE).

To understand this spin dependent interaction we theoretically study a metal-TI inter-

face. The left half, spatially, is a metal and the right half is the TI. An incoming electron

comes from the metal side and travels to the TI surface. Since the TI is an insulator,

incoming electrons do not propagate through but rather reflect back to the metal side.
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We calculate the spin dependent reflection coe�cients of the reflected electron. This spin-

resolved reflection has implications in using TIs for spintronics because of the ability to

invert the spin direction, hence negate the information stored on there.

In addition to the scattering approach, we seek to understand what the combined e↵ect

is when a metal and TI are in contact with each other in a di↵erent perspective. We do this

by using a lattice Green’s function method to find the resulting spatially resolved energy

spectrum and to calculate the scattering coe�cients, also. We find that the local spectrum

has two limits depending on the strength of the tunneling between the metal and TI. For

good tunneling we find that the metal has a stronger influence on the spectrum near the

surface whereas for weak contacts the Dirac cone is clear and well-defined.

Lastly, we discuss the complex energy spectrum of the TI (E(kReal, kImag), kz ! kReal+

ikImag). It gives us insight into understanding the behavior of the surface localized wave

function of the Dirac electrons.

2.1 Introduction

Recently discovered three dimensional topological band insulators [31, 32, 33], such as

Bi1�x

Sb
x

[34] and Bi2Se3 [35, 36, 37], are spin-orbit coupled crystal solids with a bulk

gap but protected gapless surface states. The low energy excitations at the surface are

helical Dirac fermions, i.e., their spin and momentum are entangled (locked) [38]. The

charge and spin transport on the surface of a topological insulator are intrinsically coupled

[39]. This makes these materials a promising new platform for spintronics. In addition,

heterostructures involving topological insulator, superconductor, and/or ferromagnet have

been predicted to show a remarkable array of spectral and transport properties (for review

see Ref. [40, 41, 42]).

Electronic or spintronic devices based on topological insulators will almost inevitably

involve metal as measurement probes or functioning components [43]. This motivates us to

study the local spectrum near the interface between a metal (M) and a topological insulator
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(TI). For a metal-ordinary semiconductor junction with good contact, it is well known that

the metallic Bloch states penetrate into the semiconductor as evanescent waves localized at

the interface (for energies within the band gap). Such interface states are known as metal

induced gap states (MIGS) [44, 45]. They play an important role in controlling the junction

properties, e.g., by pinning the semiconductor Fermi level to determine the Schottky barrier

height [46], a key parameter of the junction.

The local spectrum at the M-TI junction is intimately related to the spin-active scatter-

ing of electrons at the M-TI interface. In this chapter, we systematically study the evolution

of the scattering matrix and the interface spectra with the junction transparency and metal

Fermi surface parameters. The scattering matrix [47] we obtain here also forms the basis to

investigate the details of the superconducting proximity e↵ect near the superconductor-TI

interface [48], which was shown by Fu and Kane to host Majorana fermions [29].

The scattering at the M-TI interface di↵ers significantly from its two dimensional ana-

log, the interface between a metal and a quantum spin Hall (QSH) insulator studied by

Tokoyama et al [43]. They predicted a giant spin rotation angle ↵ ⇠ ⇡ and interpreted the

enhancement as resonance with the one-dimensional helical edge modes. By contrast, for

M-TI interface we predict a critical incident angle at which complete spin flipping occurs

and the spin rotation angle jumps by ⇡. We will explain its origin, in particular its relation

to the surface helical Dirac spectrum, and discuss its spintronic implications.

This chapter is organized as follows. We will first compute the scattering matrix using a

k · p continuum model by matching the envelope wave functions at the M-TI interface. This

simple calculation is easy to understand, and it brings out the main physics of our problem.

Along the way, we will discuss the complex band structure of Bi2Se3, which describes the

decaying (rather than propagating Bloch wave) solutions of the crystal Hamiltonian. The

various caveats of this calculation are then remedied by considering a much more general

lattice model. Most importantly, it enables us to track how the scattering matrix and

interface spectrum change with interface transparency. It also sheds light on the origin of

perfect spin-flip scattering at the critical angle. We will show that the results obtained from
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these two complementary methods are consistent with each.

2.2 Model Hamiltonian and Complex Band Structure

We consider Bi2Se3 as a prime example of 3D strong topological insulators. Its low energy

k · p Hamiltonian was obtained by Zhang et al [36],

Ĥ
TI

(k) = ✏0(k)1̂ +
3

X

µ=0

d
µ

(k)�̂
µ

.

Here d0(k) = M � B1k
2
z

� B2(k2
x

+ k2
y

), d1(k) = A2kx, d2(k) = A2ky, d3(k) = A1kz, and

✏0(k) = C + D1k
2
z

+ D2(k2
x

+ k2
y

). The numerical values of M , A, B, C, D are given in

Ref. [36]. We choose the basis (|+ "i, |+ #i, |� "i,|� #i), where ± labels the hybridized

p
z

orbital with even (odd) parity [36]. The Gamma matrices are defined as �̂0 = ⌧̂3 ⌦ 1̂,

�̂
i

= ⌧̂1⌦ �̂
i

, with ⌧̂
i

(�̂
i

) being the Pauli matrices in the orbital (spin) space. The chemical

potential of as-grown Bi2Se3 crystal actually lies in the conduction band [38]. By hole

doping [38] or applying a gate voltage [49], the chemical potential can be tuned inside the

gap. The system is well described by H
TI

(note that energy zero is set as in the middle of

the band gap).

In this section, we first adopt a rather artificial model for metals with negligible spin-

orbit coupling. It is obtained by turning o↵ the spin-orbit interaction (setting d
µ

= 0

for µ=1,2,3) in H
TI

and shifting the Fermi level into the conduction band. The result is

spin-degenerate two-band Hamiltonian

Ĥ
M

(k) = [✏0(k)� E
F

]1̂ + d0(k)�̂0.

Its band structure, schematically shown in Fig. 1(b), consists of two oppositely dispersing

bands (the solid and dash line). E
F

is tuned to be much higher than the band crossing point,
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Figure 2.1: (a) Scattering geometry at a metal (M)-topological insulator (TI) interface. (b)

Schematic band structure of the metal (modeled by Ĥ
M

) and topological insulator.

so the scattering properties of low energy electrons near the Fermi surface are insensitive

to the band crossing at high energies. This claim will be verified later using a more generic

model for the metal. A similar model was used in the study of metal-QSH interface [43].

Matching the wave functions of two dissimilar materials (such as Au and Bi2Se3) at

interface is in general complicated within the k · p formalism, because the envelope wave

functions on either side are defined using di↵erent basis (see Ref. [50] and reference therein).

For the particular model H
M

, however, such complication is circumvented. Then, then

wave functions at the metal-TI interface (z = 0) satisfy the Ben-Daniel and Duke boundary

condition [51],

�̂
M

= �̂
TI

, v̂
M

�̂
M

= v̂
TI

�̂
TI

.

Here �̂
i

is the four-component wave function, and the velocity matrix v̂
i

= @Ĥ
i

/@k
z

, i 2
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Figure 2.2: The complex band structure of topological insulator described by Ĥ
TI

(k) for

k
y

= 0, k
x

= 0.02 (left) and 0.04 (right). E is measured in eV, and k in Å�1. Subgap states
with complex k

z

represent evanescent waves. The topology of real lines [1] changes as k
x

is
increased.

{M,TI}. Such boundary condition assumes good atomic contact between two materials.

We are interested in energies below the band gap of TI, so �̂
TI

is evanescent in nature

and only penetrates into TI for a finite length. Such localized (surface or interface) states

inside topological insulator can be treated within the k · p formalism using the theory of

complex band structures, pioneered by Kohn [52], Blount [53], and Heine [1] et al. The main

idea is to allow the crystal momentum to be complex and analytically continue H
TI

(k) to

the complex k plane. While the extended Bloch waves are the eigen states of H
TI

(k) for

real k, eigen functions of H
TI

(k) for complex k describe localized states. Together they

form a complete basis to describe crystals of finite dimension.

In our scattering problem, we have to find all eigen states of H
TI

(k) with energy E and

wave vector k = (k
x

, k
y

, k̃
z

), where k
x

and k
y

are given and real, but k̃
z

is complex and

unknown. For a general k · p Hamiltonian such as Ĥ
TI

, we follow Chang and Schulman
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[54] to rewrite it as

Ĥ
TI

= ĥ0(kx, ky) + ĥ1k̃z + ĥ2k̃
2
z

,

where ĥ1 = A1�̂3, and ĥ2 = �B1�̂0. Then the eigen equation (Ĥ
TI

� E1̂)�̂ = 0 can be

reorganized into an eigen value problem for k̃
z

,

0

B

@

0 1

�ĥ�1
2 (ĥ0 � E1̂) �ĥ�1

2 ĥ1

1

C

A

0

B

@

�̂

�̂0

1

C

A

= k̃
z

0

B

@

�̂

�̂0

1

C

A

.

Then all possible values of k̃
z

can be obtained for given incident parameter E, k
x

, and

k
y

. For the anisotropic Dirac Hamiltonian H
TI

(k), the energy eigenvalues can be obtained

analytically [55], which allows for an analytical solution of the complex band structure.

For E within the gap, there are in general 4 pairs of complex solution of k̃
z

, for if k̃
z

is a solution so is k̃⇤
z

. We label those with positive imaginary parts with {k̃⌫
z

}, and the

corresponding wave function {�̂⌫}, ⌫ = 1, 2, 3, 4. They are decaying solutions in the half

space z > 0. In our model, k̃
z

turns out to be doubly degenerate, as shown in Fig. 2. The

wave function inside TI (z > 0) then has the form

�̂
TI

=
X

⌫

t
⌫

eik̃
⌫

z

z�̂
⌫

.

2.3 Scattering Matrix from Wave-Function Matching

To set the stage for discussing scattering o↵ a topological insulator, it is instructive to

recall the generic features of elastic scattering of electrons by a heavy ion with spin-orbit

interaction. This classical problem was solved by Mott, and known as Mott scattering. The
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scattering matrix has the general form [56]

Ŝ
Mott

= u1̂ + w�̂ · (k
i

⇥ k

o

),

where k
i

and k

o

are the incident and outgoing momentum respectively, �̂ is the Pauli matrix,

and u,w depend on the scattering angle. It is customary to define the spin-flip amplitude

f = S21, and spin-conserving amplitude g = S11. Both f and g are complex numbers, their

relative phase defines the spin rotation angle ↵ = Arg(g⇤f). One immediately sees that for

back scattering, Ŝ
Mott

= u1̂, so there is no spin flip, f = 0. As we will show below, this also

holds true for scattering o↵ TI.

Now consider an electron coming from the metal with momentum k incident on the M-

TI interface located at z = 0, as schematically shown in Fig. 1(a). We assume the interface

is translationally invariant, so the transverse momentum kk = (k
x

, k
y

) is conserved, and

the energy E of the electron lies within the band gap of TI. Then, only total reflection

is possible, but the spin-orbit coupling inside TI acting like a k-dependent magnetic field

rotates the spin of the incident particle. The scattering (reflection) matrix has the form

Ŝ(k) =

0

B

@

g f̄

f ḡ

1

C

A

,

where |g|2 + |f |2 = 1. Our goal is to find the dependence of the scattering amplitudes f, g

on k, or equivalently, on energy E and incident angle ✓. From time-reversal symmetry,

f̄(E, ✓) = f(E,�✓) and ḡ(E, ✓) = g(E,�✓). We shall show that f(kk) = �f(�kk), g(kk) =

g(�kk). So f is an odd function of ✓, while g is even in ✓. Since our problem can be viewed

as coherent multiple scattering from a lattice array of Mott scatters occupying half the

space, we will refer to spin-active scattering at the metal-TI interface as Mott scattering.

Consider a spin up electron from the conduction band of the metal with momentum k

and energy E = ✏0(k) � E
F

� d0(k) lying within the band gap of TI. The wave function
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inside the metal (z < 0) has the form

�̂
M

= (r1e
�ik

0
z

z, r2e
�ik

0
z

z, eikzz + r3e
�ik

z

z, r4e
�ik

z

z)T,

up to the trivial ei(kxx+k

y

y) and renormalization factor. Here k
z

= ẑ · k, and {r
i

} are the

reflection amplitudes. We identify the spin flip amplitude f = r4 and the spin-conserving

amplitude g = r3. Note that there is no propagating mode at energy E available in the

valence band for the reflected electron. So k0
z

has an imaginary component. At such

energy, there is no propagating mode available in TI. We have discussed the evanescent

wave function �̂
TI

in the previous section. With �̂
M

and �̂
TI

, we solve the boundary

condition at z = 0 to obtain r
⌫

, t
⌫

and the scattering matrix S.

Fig. 3 shows the magnitude and phase of f and g versus the incident angle ✓ for

E = 0.1eV, with E
F

set to be 0.28eV. At normal incidence, ✓ = 0, spin flip scattering is

forbidden as in the single-ion Mott scattering. With increasing ✓ the magnitude of g drops

continuously. At a critical angle ✓
c

, |g| drops to zero and we have perfect (100%) spin flip

reflection. At the same time, the spin rotation angle ↵ (the relative phase between f and

g) jumps by ⇡.

It is tantalizing to think of what happens at ✓
c

as resonant scattering with the helical

surface mode of the TI. This however is problematic. We are considering good contacts at

which the wave functions of the two materials hybridize strongly. Surface mode is preempted

by MIGS. Indeed, we checked that the corresponding critical transverse momentum kk

depends only weakly on E. This is at odds with the linear dispersion of the TI surface

mode, E = A2kk [36]. To gain better understanding, we now switch to a lattice model to

systematically study the role of interface transparency and metal Fermi surface parameter

(E
f

, k
f

, v
f

) on the scattering matrix.
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Figure 2.3: The magnitudes (upper panel) and the phases (lower panel) of the spin-flip
amplitude f and spin-conserving amplitude g versus the incident angle ✓. E = 0.1eV,
E

F

=0.28eV. |g|2 + |f |2 = 1. Arg(g) and Arg(f) are shifted upward by ⇡ for clarity.
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2.4 Interface Spectrum and Scattering Matrix from Lattice

Green Function

We consider a simple lattice model for the M-TI junction. The topological insulator is

modeled by a tight binding Hamiltonian on cubic lattice,

H
R

=
P

k+,n

n

 ̂†
k+,n

(b1�̂0 � ia12 �̂3) ̂
k+,n+1 + h.c.

+  ̂†
k+,n

h

d(k+)�̂0 + a2(�̂1 sin kx + �̂2 sin ky)
i

 ̂
k+,n

o

.

Here  ̂ = ( +", +#, �", �#)T is the annihilation operator, d(k+) = M�2b1+2b2(cos kx+

cos k
y

� 2) with k measured in 1/a. The cubic lattice consists of layers of square lattice

stacked in the z direction, n is the layer index, and k+ is the momentum in the xy plane. The

isotropic version of H
R

, with a1 = a2, b1 = b2, was studied by Qi et al as a minimal model

for 3D topological insulators [55]. To mimic Bi2Se3, we set the lattice spacing a = 5.2Å,

which gives the correct unit cell volume, and a
i

= A
i

/a, b
i

= B
i

/a2 for i = 1, 2. Although a

crude caricature of the real material, H
R

yields the correct gap size and surface dispersion,

it also reduces to the continuum k · p Hamiltonian Ĥ
TI

in the small k limit, aside from the

topologically trivial ✏0(k) term.

As a generic model for metal, we consider a single band tight binding Hamiltonian on

cubic lattice,

H
L

=
X

k+,n,�

[h(k+)n
k+,n,�

� t
M

�†
k+,n,�

�
k+,n+1,� + h.c.]

where h(k+) = �2t
M

(cos k
x

+cos k
y

)�µ
M

. The Fermi surface parameters of the metal can

be varied by tuning t
M

and µ
M

. The metal occupies the left half space, n  0, and the TI

occupies the right half space n � 1. The interface domain consists of layer n = 0, 1. The
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Figure 2.4: The spectral function N(E, k
x

, k
y

= 0) at the interface of metal and topological
insulator. Left: good contact, J = t

M

, showing the continuum of metal induced gap states.
Right: poor contact with low transparency, J = 0.2t

M

, showing well defined Dirac spectrum
as on the TI surface. t

M

= 0.18eV , µ
M

= �4t
M

, a is lattice spacing.

coupling between metal and TI is described by hopping,

H
LR

= �
X

k+,`,�

J
`

 †
k+,n=1,`,��k+,n=0,� + h.c.

J
`

is the overlap integral between the p-orbital ` = ± of TI and the s-like orbital of metal.

For simplicity, we assume J
`

is independent of spin. Then, J+ = �J� = J . J can be tuned

from weak to strong. Small J mimics a large tunneling barrier between M and TI, and large

J (comparable to t
M

or B2) describes a good contact.

The lattice Green function of the composite system is computed via standard procedure

by introducing the inter-layer transfer matrix and the method of interface Green function

matching [57]. Fig. 4 shows two examples of the local spectral function (momentum-resolved
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Figure 2.5: The spin-conserving reflection amplitude |g| and spin rotation angle ↵ versus
the incident angle ✓ for increasing contact transparency, J/t

M

= 0.25, 1, 1.5, 2 (from left to
right). t

M

= 0.18eV , µ
M

= �4t
M

, E = 0.05eV, k
y

= 0. |f |2 = 1� |g|2.

density of states) at the interface,

N(E, k+) = �
X

n=0,1

ImTrĜ (E, k+)n,n,

where Ĝ (E, k+)
n,n

0 is the local Green function at the interface with n, n0 = 0, 1, and the

trace is over the spin and orbital space. In the tunneling (weak coupling, small J) limit,

the interface spectrum includes a sharply defined Dirac cone as on the surface of TI. As J

is increased, the linearly dispersing mode becomes ill defined and eventually replaced by a

continuum of metal induced gap states.

Once the lattice Green function is known for given incident E and kk, the scattering
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(reflection) matrix can be constructed from Ĝ by [57],

Ŝ(E, k+) = Ĝ (E, k+)0,0g
�1
M

(E, k+)� 1̂

where g
M

is the spin-degenerate bulk Green function of metal. Fig. 5 shows the evolution of

|g(✓)| and ↵(✓) for increasing J , where a level broadening of E/10 is used. Most importantly,

we observe that the existence of a critical angel ✓
c

, where complete spin-flip occurs and ↵

jumps by ⇡, is a robust phenomenon. It is independent of the details of the contact, the

metal Fermi surface, or other high energy features in the band structure.

To understand the perfect spin flip, we first focus on the tunneling limit, J ⌧ t
M

. In this

limit, the local spectrum at layer n = 1 as shown in the right panel of Fig. 4 approaches the

TI surface spectrum, namely the helical Dirac cone. An incident up spin tunneling across

the barrier will develop resonance with the helical mode, which is a quasi-stationary state

with long life time, if its momentum and energy satisfy kk = E/A2. Moreover, it has to

flip its spin, since only down spin can propagate in the k
x

direction (suppose k
y

= 0). The

⇡ jump in the phase shift is also characteristic of the resonance. Indeed, we have checked

that precisely at ✓
c

the resonance criterion, k
f

sin ✓
c

= E/A2, is met. We also varied µ
M

for

fixed J and t
M

, bigger µ
M

yields a bigger Fermi surface and a smaller ✓
c

. This is consistent

with the resonance criterion above.

As J is increased, the width of the resonance grows and eventually it is replaced by

a broad peak (dip) in |f | (|g|), but the vanishing of |g| and ⇡ shift in ↵ at ✓
c

persist to

good contacts, even though in this limit the interface is flooded by MIGS (left panel of

Fig. 4) and bears little resemblance to the Dirac spectrum. With all other parameters held

fixed, ✓
c

increases with J . Qualitatively, coupling to TI renormalizes the metal spectrum

near the interface, producing a smaller e↵ective k
f

(hence a larger ✓
c

) compared to its bulk

value. It is remarkable that perfect spin flip at the critical angle persists all the way from

poor to good contacts. Indeed, the main features observed here for for good contacts using

the lattice model agree well with the results obtained in previous section by wave function
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matching.

2.5 Discussions

We now discuss the experimental implications of our results. The M-TI interface spectrum

can be measured by ARPES (or scanning tunneling microscope) experiments on metal film

coated on a topological insulator. Our results also suggest that a topological insulator can

serve as a perfect mirror to flip the electron spin in metal. Such spin-active scattering

at the M-TI interface may be exploited to make novel spintronic devices. The magnitude

of g or f can be measured by attaching two ferromagnetic leads to a piece of metal in

contact with TI, forming a multi-terminal device. One of the ferromagnetic leads produces

spin-polarized electrons incident on the M-TI interface at some angle, while the other lead

detects the polarization of reflected electron, as in a giant magneto-resistance junction.

The spin rotation angle ↵ can be measured indirectly by comparing the predicted current-

voltage characteristics of M-TI-M or Superconductor-TI-Superconductor junctions, which

are sensitive the phase shift ↵. It can also be inferred from the spin transport in a TI-M-TI

sandwich, as discussed for QSH insulator in Ref. [43]. Detailed calculations of the transport

properties of these structured, using the scattering matrix obtained here, will be subjects

of future work.
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Chapter 3: Superconducting Proximity E↵ect

In the first chapter we described the topological insulator and it’s novel features. We also

described the exotic p�wave superconductor and along with the topological insulator in

proximity to an s�wave superconductor. We showed that these systems are topological

in the sense that there exist with gap-less modes localized near certain boundaries. These

edge states have linear dispersions.

In this chapter we focus on the superconductor-topological insulator heterostructure.

This structure is predicted by Fu and Kane to be a host to a Majorana fermion under

certain conditions. Our focus is not on the phenomenological properties of the Majorana

regime, but rather to understand the behavior of the system in a more realistic fashion.

We set up the Bogoliubov-de Gennes model for a TI and a superconductor to calculate the

eigensystem in a recursive, self-consistent manner. The eigen energies and wave functions

provide the framework we need to calculate several quantitative properties. These include

order parameter, �(z), spatially resolved spectral function, A(z, k, ✏), local density of states,

N(z, ✏). In addition we also find singlet (F"#(k, z)) and triplet (F""(k, z) F##(k, z)) pairing

correlations. We show that the energy spectrum does indeed host sub-gap states as predicted

by Fu-Kane with renormalized parameters. We also find triplet correlations, exhibiting

p
x

+ ip
y

behavior, consistent with previous studies of a similar system.

3.1 Introduction

Fu and Kane showed that at the interface between a three-dimensional topological band

insulator (TI) and an s-wave superconductor (S) forms a remarkable two-dimensional non-

Abelian superconductor [58]. It hosts Majorana zero modes at vortex cores, as in a p
x

+ ip
y

superconductor [59], but respects time-reversal symmetry. As argued in Ref. [58], the
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presence of superconductor induces a pairing interaction between the helical Dirac fermions

at the surface of the topological insulator, and gaps out the surface spectrum. Then, the

interface can be modeled elegantly by a simple matrix Hamiltonian in Nambu space (we

follow the convention of Ref. [60]),

H
FK

(k) =

0

B

@

h
s

(k) i�
y

�
s

�i�
y

�⇤
s

�h⇤
s

(�k)

1

C

A

, (3.1)

where k = (k
x

, k
y

) is the two-dimensional momentum in the interface plane, �
i

are the

Pauli matrices, h
s

(k) is the surface Hamiltonian for the topological insulator describing the

helical Dirac fermions [60, 41],

h
s

(k) = �µ
s

+ v
s

(�
x

k
y

� �
y

k
x

). (3.2)

Fu and Kane also proposed to use S-TI proximity structures to generate and manipulate

Majorana fermions which obey non-Abelian statistics and are potentially useful for fault

tolerant quantum computation [58]. This proposal and a few others that followed based

on superconductor-semiconductor heterostructures [61, 62, 63, 64, 65] have revived the

interest in superconducting proximity e↵ect involving insulating/semiconducting materials

with spin-orbit coupling. More complex S-TI proximity structures with ferromagnets [66, 67]

or unconventional superconductors [68] have been investigated.

Experiments are beginning to realize various S-TI proximity structures [69, 70, 71]. In

light of these developments, it is desirable to understand to what extent the e↵ective model

H
FK

holds, and what are the values of (�
s

, µ
s

, v
s

) for given materials. Answering these

questions is crucial for future experiments designed to probe and manipulate Majorana

fermions. As a first step in this direction, Stanescu et al considered a microscopic lattice

model for the TI-S interface [48]. In this model, TI and S are described by a tight binding

Hamiltonian defined on the diamond and hexagonal lattice respectively. The two materials
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are coupled by tunneling term in the Hamiltonian. These authors found that for small

k, H
FK

(k) is valid but its parameters are significantly renormalized by the presence of

the superconductor. This is supported by leading order perturbation theory in the weak

coupling (tunneling) limit. They also discussed the induced p-wave correlation within the

framework of perturbation theory. The p-wave correlation has also been noted in an anal-

ogous proximity structure in two dimension between a quantum spin Hall insulator and a

superconductor [72].

In this work, we consider S-TI proximity structures where S and TI are strongly cou-

pled to each other, rather than being separated by a tunneling barrier. This is the desired,

presumably the optimal, configuration to realize the Fu-Kane proposal, e.g. to achieve

maximum value of �
s

in H
FK

for given superconductor. In the strong coupling limit, the

modification of superconductivity by the TI becomes important. This includes the sup-

pression of the superconducting order parameter, the induction of triplet pair correlations

by spin-active scattering at the interface, and the formation of interface states below the

bulk superconducting gap. In order to accurately answer questions raised in the preceding

paragraph for strongly coupled S-TI structures, one has to self-consistently determine the

spatial profile of the order parameter near the interface.

Our work is also motivated by recent experimental discovery that Copper-doped topo-

logical insulator Cu
x

Bi2Se3 becomes superconducting at a few Kelvins [73, 74, 75]. It seems

possible then to combine such superconductors with topological insulator Bi2Se3 to achieve

strong proximity coupling. We set up microscopic, continuum models for the S-TI structures

and solve the result Bogoliubov-de Gennes (BdG) equation numerically. We first compute

the superconducting order parameter as a function of the distance away from the interface.

We then verify the validity of the Fu-Kane e↵ective model and extract its parameters from

the low energy sector of the energy spectrum. The emergence of H
FK

will be viewed as the

result of the “inverse proximity e↵ect”, namely strong modification of superconductivity by

the presence of TI. This is in contrast to the previous viewpoint of pairing between surface

Dirac fermions, which is a more proper description in the tunneling limit. The spectral
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weight of these low energy modes (with energy below the bulk superconducting gap) are

shown explicitly to peak near the interface but penetrate well into the superconductor. We

will also show analytically that the induced triplet pair correlations are of p
x

± ip
y

orbital

symmetry, and systematically study their spatial and momentum dependence. Our results

connect the phenomenological theory of Fu and Kane [58] to real materials. Our results

for continuum models and strong coupling limit are also complementary to the results of

Stanescu et al [48] for lattice models and tunneling limit.

In what follows, we first outline the formulation of the problem and then present the

main results. Technical details on numerically solving the BdG equation are relegated to

the appendix.

3.2 Model and Basic Equations

The band gaps of topological insulators are much larger than the superconducting gap of

all weak coupling s-wave superconductors. For the purpose of studying the proximity e↵ect

between such superconductors and topological insulators, it is su�cient to describe the

topological insulator using the low energy e↵ective k · p Hamiltonian. Following Zhang et

al [76], we model Bi2Se3 by

H
TI

(k) =

0

B

B

B

B

B

B

B

@

M(k) 0 A1kz A2k�

0 M(k) A2k+ �A1kz

A1kz A2k� �M(k) 0

A2k+ �A1kz 0 �M(k)

1

C

C

C

C

C

C

C

A

� µÎ. (3.3)

Here k± = k
x

± ik
y

, M(k) = M � B1k
2
z

� B2(k2
x

+ k2
y

), and Î is 4 ⇥ 4 unit matrix. The

numerical values of the parameters are obtained from first principle calculations [76, 77],

M = 0.28 eV, A1 = 2.2 eVÅ, A2 = 4.1 eVÅ, B1 = 10 eVÅ2, B2 = 56.6 eVÅ2. We work

in basis {|1 "i, |1 #i, |2 "i, |2 #i}, where 1 (2) labels the P1+
z

(P2+
z

) orbital [76]. Note that
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we have neglected the unimportant diagonal term ✏0(k) in Ref. [76] which only slightly

modifies the overall curvature of the band dispersion. We also keep the chemical potential

µ as a tuning parameter.

We consider a simple model of superconductor derived from a metallic state obtained

by turning o↵ the spin-orbit coupling (A1 = A2 = 0) in H
TI

and tuning the Fermi level

well into the conduction band [78]. The metal Hamiltonian

H
M

(k) = diag[M(k),M(k),�M(k),�M(k)]� E
f

Î , (3.4)

with E
f

> M . This mimics electron-doping the topological insulator [74] or equivalently

electrochemically shifting its chemical potential by applying a gate voltage [49]. As shown in

Fig. 3.1, the valence band (band 1 with dispersion M(k)�E
f

) is well below the Fermi level

and remains inert as far as superconductivity is concerned. Next, within the framework of

Bardeen-Cooper-Schrie↵er theory, we assume attractive interaction between the electrons in

the conduction band (band 2) near the Fermi surface described by the reduced Hamiltonian,

H
int

=
X

k

 †
2"(k) 

†
2#(�k)�+ h.c. (3.5)

Here � is the superconducting order parameter,  †
l�

is the electron creation operator for

orbital l = 1, 2 and spin � =", #. The superconductor is then described by

H
S

=
X

k,l,�

 †
l�

(k)H
M

(k)
l�,l�

 
l�

(k) +H
int

. (3.6)

Note that H
S

and H
TI

are in the same basis.

This model can serve as a generic model for s-wave superconductors with negligible

spin-orbital coupling. Whether it can actually describe the superconductor Cu
x

Bi2Se3 has

to be settled by future experiments. The transition temperature of Cu
x

Bi2Se3 at optimal
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Figure 3.1: Schematic (not to scale) band diagrams in a superconductor-topological insu-
lator (S-TI) proximity structure. E

f

is the Fermi energy of the metal described by H
M

measured from the band crossing point. µ is the chemical potential of TI measured from
the band gap center. The superconducting gap is much smaller than the band gap of TI.

doping x = 0.12 is T
c

= 3.8K, which corresponds to a zero temperature superconducting

gap � ⇠0.6meV [73, 74, 75]. The Fermi level is 0.25eV above the bottom of the conduction

band, and the Fermi wave vector k
f

⇠ 0.12Å�1. The pairing symmetry of Cu
x

Bi2Se3 is to

our best knowledge is unknown at present (it appears to be fully gapped from the specific

heat measurement [75] and might be a topological superconductor [74]). If it turns out to

be a conventional s-wave superconductor, its mains features will be captured by H
S

above

with suitable choice of E
f

and �.

Now consider a proximity structure consisting of a superconductor at z < d and a

topological insulator at z > d (Fig. 3.1). The interface at z = d is assumed to be specular,

so the momentum kk = (k
x

, k
y

) parallel to the interface is conserved. The Hamiltonian for
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the whole system

H =

Z

dkkdz
n

X

�

 †
1�(kk, z)[h0 � µ(z)] †

1�(kk, z)

�
X

�

 †
2�(kk, z)[h0 + µ(z)] †

2�(kk, z)

+�(z) †
2"(kk, z) 

†
2#(�kk, z) + h.c.

+A1(z)[ 
†
1"(�i@

z

) 2" +  †
1#(i@z) 2# + h.c.]

+A2(z)[ 
†
1"k� 2# +  †

1#k+ 2" + h.c.]
o

. (3.7)

Here h0(kk, @z) = M �B1@
2
z

�B2k
2
k, µ(z) and A

i

(z) are piece-wise constant,

µ(z) = E
f

✓(d� z) + µ✓(z � d), (3.8)

A
i

(z) = A
i

✓(z � d), i = 1, 2 (3.9)

in terms of the step function ✓. The order parameter obeys the gap equation

�(z) = g(z)

Z

dkkh 2"(kk, z) 2#(�kk, z)i. (3.10)

We assume g(z) = g✓(d� z), the coupling constant g determines the bulk gap.

To self-consistently solve Eq. (3.7) and (3.10), we introduce Bogoliubov transformation

 
l�

(kk, z) =
X

n

u
n,l�

(kk, z)�n,kk + v⇤
n,l�

(kk, z)�
†
n,kk

(3.11)

to diagonalize H as

H = E
g

+

Z

dkk
X

n

✏
n

(kk)�
†
n,kk

�
n,kk , (3.12)
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where E
g

is the ground state energy, and �†
n,kk

is the creation operator of Bogoliubov quasi-

particles with energy ✏
n

(kk). The wave function u and v satisfy the following Bogoliubov-de

Gennes (BdG) equation,

Ĥ
B

(kk, z)�̂n(kk, z) = ✏
n

(kk)�̂n(kk, z). (3.13)

Here, the BdG Hamiltonian

Ĥ
B

=

0

B

B

B

B

B

B

B

@

h0 � µ d · � 0 0

d · � �h0 � µ 0 �� i�
y

0 0 µ� h0 d · �⇤

0 �⇤ i�
y

d · �⇤ µ+ h0

1

C

C

C

C

C

C

C

A

, (3.14)

and the wave function (dropping the arguments)

�̂
n

= (u
n,1", un,1#, un,2", un,2#, vn,1", vn,1#, vn,2", vn,2#)

T. (3.15)

The vector d(kk, z) is defined as

d
x

= A1(z)kx, d
y

= A1(z)ky, d
z

= A2(z)(�i@
z

). (3.16)

Other quantities such as h0(kk, z), µ(z), and �(z) are defined above. In terms of the wave

functions, the zero temperature gap equation becomes

�(z) = g(z)

Z

dkk

0
X

n

u
n,2"(kk, z)v

⇤
n,2#(�kk, z), (3.17)

where the summation denoted by prime is restricted to 0 < ✏
n

< !
D

with !
D

being the

Debye frequency.
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We will exploit a particular symmetry of the BdG Hamiltonian to simplify calculations.

Define the polar angle '
k

for the in-plane wave vector kk,

k
x

+ ik
y

= kke
i'

k . (3.18)

Then the BdG Hamiltonian for arbitrary (k
x

, k
y

) is related to that for (k
x

= kk, ky = 0) by

unitary transformation

Û †(kk)ĤB

(k
x

, k
y

)Û(kk) = Ĥ
B

(kk, 0). (3.19)

Here U is a block diagonal matrix,

U(kk) = diag[e�i�

z

'

k

2 , e�i�

z

'

k

2 , ei�z

'

k

2 , ei�z

'

k

2 ]. (3.20)

Thus, the eigen energy ✏
n

only depends on the magnitude of kk. Once the wave function

for '
k

= 0 is known, the wave function for '
k

2 (0, 2⇡) can be obtained by simple unitary

transformation.

We solve the matrix di↵erential equation (3.13) by conserving it into an algebraic equa-

tion, following the treatment of superconductor-ferromagnet structure by Halterman and

Valls [79]. The whole S-TI proximity structure is assumed to have finite dimension L in

the z direction. The superconductor occupies the region 0 < z < d, while the topological

insulator occupies d < z < L. Hard wall boundary conditions are enforced at the end

points, z = 0 and z = L. The exact boundary conditions at the end points only a↵ect the

local physics there, provided that the boundaries are su�ciently far away from the S-TI
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interface. We expand the wave function and order parameter in Fourier series [79],

u
n,l�

(z) =
X

m

ul�
nm

�
m

(z), (3.21)

v
n,l�

(z) =
X

m

vl�
nm

�
m

(z), (3.22)

�(z) =
X

m

�
m

�
m

(z), (3.23)

�
m

(z) =
p

2/L sin(k
m

z). (3.24)

The integer m = 1, 2, ..., N labels the quantized longitudinal (along z) momentum k
m

=

m⇡/L. The cuto↵ N is chosen as [80]

B1k
2
N

= M + E
f

+ !
D

. (3.25)

By expansion Eq. (3.21)-(3.23), the BdG equation becomes an 8N ⇥ 8N matrix equation.

With a reasonable guess of the order parameter profile, the eigen energies and eigen wave

functions are obtained by solving the matrix eigen value problem. Then a new order param-

eter profile is computed from the gap equation. The procedure is iterated until convergence

is achieved. Relevant technical details can be found in the Fourier calculations section.

To analyze the spectrum of the system, it is convenient to define the retarded Green’s

function

GR

l�

(kk, z, t) = �i✓(t)h{ 
l�

(kk, z, t), 
†
l�

(kk, z, 0)}i (3.26)

where the time-dependent field operators are in Heisenberg picture. For given kk and z,

the spectral functions are defined as

N
l�

(kk, z,!) = �ImGR

l�

(kk, z,!), (3.27)

N(kk, z,!) =
X

l�

N
l�

(kk, z,!). (3.28)
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In terms of the wave functions and eigen energies,

N
l�

(kk, z,! > 0) =
X

n

|u
n,l�

(kk, z)|2�(! � ✏
n

). (3.29)

We also introduce the equal-time pair correlation functions for the conduction electrons

F
↵�

(kk, z) = h 2↵(kk, z) 2�(�kk, z)i. (3.30)

For example, at zero temperature we have

F""(kk, z) =
0

X

n

u
n,2"(kk, z)v

⇤
n,2"(�kk, z), (3.31)

F##(kk, z) =
0

X

n

u
n,2#(kk, z)v

⇤
n,2#(�kk, z). (3.32)

Triplet components of F will be induced near the S-TI interface by spin-active scattering

[78].

3.3 Fourier Expansion

We follow the numerical scheme of Halterman and Valls to solve the matrix BdG equation

[79]. The wave functions and the order parameter are expanded in the orthonormal basis

{�
m

(z)}, with m = 1, ..., N . For example, function u
n,1"(z) is represented by N numbers,

(u1"
n,1, u

1"
n,2, ...u

1"
n,m

..., u1"
n,N

).
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Accordingly, each term in Ĥ
B

is represented by a N ⇥N matrix with the matrix elements

given by

h0(kk, @z) ! �
mm

0(M �B1k
2
m

�B2k
2
k)

U(z) ! E
f

E
mm

0 + µF
mm

0

A2(z)@z ! A2G
mm

0

A1(z)k± ! A
z

k±F
mm

0

� ! D
mm

0 ⌘
X

m

00

J
m,m

0
,m

00�
m

00

where

E
mm

0 =

Z

d

0
�
m

(z)�
m

0(z)dz

F
mm

0 =

Z

L

d

�
m

(z)�
m

0(z)dz

G
mm

0 =

Z

L

d

�
m

(z)@
z

�
m

0(z)dz

J
m,m

0
,m

00 =

Z

d

0
�
m

(z)�
m

0(z)�
m

00(z)dz

These integrals can be evaluated analytically. Then the BdG equation becomes an 8N⇥8N

matrix equation. The gap equation can be rewritten as

�
m

= g

Z

dkk

0
X

n

X

m

0
,m

00

J
m,m

0
,m

00u2"
nm

0(kk)v
2#
nm

00(�kk)
⇤
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Figure 3.2: The superconducting order parameter �(z) near an S-TI interface at z =
d = 0.95L. The superconductor occupies 0 < z < d, and topological insulator occupies
d < z < L. L = 300 nm, µ=0, the bulk gap �0 =0.6meV.

The integral over kk is first simplified to an integral over kk by the symmetry Eq. (3.19)

and then evaluated numerically with high momentum cuto↵
p

(E
F

+ !
D

+M)/B2.

3.4 The Order Parameter

First we present the spatial profile of the superconducting order parameter �(z) after the

convergence is achieved. In all following calculations, E
f

is fixed at 0.4eV, which is modeled

after optimally doped Cu
x

Bi2Se3 [74]. And the Debye frequency is set as !
D

= 0.1E
f

[79].
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Fig. 3.2 shows an example with µ = 0, L = 300nm, d = 0.95L, and a bulk gap of 0.6meV

as found in Cu
x

Bi2Se3. Going from the superconductor into the topological insulator,

� first gets suppressed as the interface is approached before it drops to zero inside TI.

The suppression is roughly 20% at the interface. Note that the fine wiggles of � in the

simulation results are due to the finite momentum cuto↵ of the longitudinal momentum k
m

.

As previously discussed by Stojkovic and Valls [80], the number of oscillations is ⇠ N/2,

and the oscillation amplitude vanishes in the bulk as N is increased. In this case, N is

chosen to be 258 according to Eq. (3.25). So the matrix to be diagonalized is 2064 by 2064.

Fig. 3.3 show the result for µ = 0, d = 0.9L, and a superconductor with bulk gap �0 ⇠
2.4meV. Since the coherence length is much smaller than the previous example, it is su�cient

to consider L = 160nm, and correspondingly N = 138. The order parameter profile depends

weakly on µ, as shown in Fig. 3.4 for a superconductor with bulk gap ⇠ 5.2meV. From these

examples, one observes that the length scale over which � is significantly suppressed does

not scale with ⇠0, the zero temperature coherence length of the superconductor. Rather it

stays roughly the same, on the order of 30nm, as ⇠0 is varied over one decade from Fig.

3.2 to Fig. 3.4 (note the horizontal axis is z/L). This is not very surprising since ⇠0 is

not the only length scale at play here. The interface represents a strong (as compared to

�0) perturbation that significantly distorts the bulk wave functions. The self-consistent

microscopic BdG approach provides a reliable way to capture the details of �(z) near the

interface.

It is illuminating to compare the proximity e↵ect in S-TI structure with that in S-F

structure [30], where F stands for a ferromagnetic insulator. The presence of F breaks

time-reversal and spin rotation symmetry and significantly suppresses the order parameter.

The suppression is sensitive to the spin mixing angle which is related to the band gap and

exchange field of F [30]. In contrast, despite the spin-active scattering of electrons by TI

which introduces spin-flips and spin-dependent phase shifts [78], spin-orbit coupling is not

pair breaking. The suppression of � near the interface is to a large extent due to the

reorganization of local wave functions enforced by the boundary conditions at z = d for
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Figure 3.3: The order parameter �(z) near an S-TI interface at z = d = 0.9L. L = 160
nm, µ=0, �0 ⇠ 2.4meV.
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Figure 3.4: The order parameter profile for two di↵erent chemical potentials of the topo-
logical insulator, µ = �0.1eV and µ = 0.2eV. L = 160nm, �0 ⇠ 5.2meV.
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piece-wise potentials µ(z), A
i

(z), g(z). It depends on for example how the wave functions

decay inside the TI for given E
f

and µ, and involves “high-energy” physics beyond the scale

of � but below the scale of the band gap. To test this, we have investigated the proximity

e↵ect between the same superconductor and a hypothetical ordinary insulator modeled by

H
TI

with A1 = A2 = 0 and the same band gap. The suppression of � by such an ordinary

insulator turns out to be very similar.

3.5 The Interface Mode and the Fu-Kane Model

Next we analyze the energy spectrum of the system, ✏
n

(kk), obtained from the BdG calcu-

lation. Take the case of µ = 0, L = 160nm, d = 0.9L, �0 ⇠ 5.2meV as an example. Fig.

3.5 shows the first several energy levels of the composite system versus the transverse mo-

mentum kk. There are many continuously dispersing modes at energies above the bulk gap.

They are the usual Bogoliubov quasiparticles for di↵erent quantized longitudinal momenta.

One also sees a series of avoided level crossings. At small kk emerges a well-defined mode

below �0. We will identify it as the interface mode first discussed by Fu and Kane [58].

The Fu-Kane model Eq. (3.1) predicts the dispersion

E(k) =
p

|�
s

|2 + (v
s

k ± µ
s

)2. (3.33)

We fit the very low energy portion of the spectrum to this prediction to extract the phe-

nomenological parameters in the Fu-Kane model. The result is shown in Fig. 3.5. We

find that, not surprisingly, �
s

= 1.8meV which is much smaller than �0 = 5.2meV, and

v
s

= 2.7eVÅ which deviates significantly from A2 = 4.2eVÅ predicted for the surface dis-

persion of TI. Moreover, µ
s

= 7.5meV despite that the chemical potential of TI is µ = 0.

Therefore, our results show that the values of (�
s

, v
s

, µ
s

) are strongly renormalized by the

presence of the superconductor. This is consistent with the findings of Stanescu et al for

weakly coupled S-TI structures [48].
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Figure 3.5: The lowest few energy levels ✏
n

(kk). µ = 0, L = 160nm, and the bulk super-
conducting gap �0 ⇠5.2meV. A well-defined interface mode is clearly visible at sub-gap
energies. Solid lines show a fit to the Fu-Kane model, with �

s

= 1.8meV, v
s

= 2.7eVÅ,
and µ

s

= 7.5meV.
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We have checked the validity of the Fu-Kane model for a variety of chemical potentials.

Representative examples are plotted in Fig. 3.6. In each case, the sub-gap mode can be well

accounted by the Fu-Kane model with suitable choice of parameters. While µ
s

is always

di↵erent from µ, numerically we find it scales linearly with µ. At the same time, �
s

and v
s

show no strong dependence on µ for this set of parameters. To make sure that the sub-gap

mode is indeed localized near the interface, we plot in Fig. 3.7 the z dependence of the

spectral function N(kk, z,!). The spectral weight of the sub-gap mode is peaked near the

interface and decays over a length scale ⇠ ⇠0 into the superconductor. This result clearly

shows that for strongly coupled S-TI interfaces, the Fu-Kane model actually describe a

rather “fat” interface mode. Note that the spectral weight on the TI side (not shown in the

figure) is finite, but it is much smaller in magnitude and decays very fast inside TI. Finally,

Fig. 3.8 shows the local density of states near the interface. The interface mode leads to

finite density of states below the bulk gap, but the spectral weight is very small.

We have carried out similar analysis for superconductors with larger coherence length.

Fig. 3.9 shows the evolution of the sub-gap mode with µ for �0 = 2.4meV. In this case, the

values of (�
s

, v
s

, µ
s

) all varies with µ. Superconductors with larger ⇠0 and smaller �0 are

thus more sensitive to changes in µ and other microscopic details near the interface. The

exact values of the e↵ective parameters in the Fu-Kane model in general depend on such

microscopic details.

3.6 Triplet Pair Correlations

It is well known that in heterostructures of s-wave superconductors, pairing correlations

in other orbital channels, e.g. p-wave correlations, will be induced by scattering at the

interfaces [81, 82]. For example, inversion/reflection symmetry (z $ �z) is lost in an

S-TI proximity structure, and the appearance of p-wave correlations seems natural from

partial wave analysis. Moreover, scattering by a topological insulator is spin-active. The

spin-orbit coupling inside a TI acts like a momentum-dependent magnetic field to flip the
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Figure 3.6: The dispersion of the lowest energy level for di↵erent µ (in eV). Other parameters
are the same as in Fig. 3.5, L = 160nm and �0 ⇠5.2meV. Fu-Kane model well describes
the lowest energy mode. As µ is increased, �
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and v
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stay roughly the same, while µ
s

scales
linearly with µ.
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Figure 3.8: The local density of states N(E, z) at z = 0.8d and z = 0.85d (the interface
is at z = 0.9d). µ = 0, L = 160nm, and �0 ⇠5.2meV. The subgap states are due to the
interface mode. A level broadening ⇠ 0.01�0 is used.
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Figure 3.9: The lowest energy level of an S-TI structure with L = 160nm, d = 0.9L,
�0 = 2.4meV. µ is the chemical potential of the TI and measured in eV.
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electron spin and introduce di↵erent phase shifts for spin up and down electrons. The

scattering matrix has been worked out by us previously [78]. Thus, a singlet s-wave Cooper

pair can be converted into a pair of electrons in spin-triplet state at the S-TI interface.

However, it is important to recall that by assumption attractive interaction only exists

(or is appreciable) in the s-wave channel. There is no binding force to sustain a triplet

Cooper pair or a triplet superconducting order parameter. Similar (but di↵erent) pairing

correlations in superconductor-ferromagnet hybrid structures have been extensively studied

[81]. The appearance of p-wave correlations in S-TI systems has been pointed out previously

by Stanescu et al using a perturbative analysis [48].

We focus on the equal-time pair correlation functions defined in Eq. (3.30). By exploit-

ing the symmetry of the BdG Hamiltonian, Eq. (3.19), we are able to find analytically the

orbital structure of the triplet correlation functions. The unitary transformation Eq. (3.20)

yields

u2"(kx, ky) = u2"(kk, 0)e
�i'

k

/2,

u2#(kx, ky) = u2#(kk, 0)e
+i'

k

/2,

v2"(kx, ky) = v2"(kk, 0)e
+i'

k

/2,

v2#(kx, ky) = v2#(kk, 0)e
�i'

k

/2. (3.34)

Using these relations, we find

F""(kk, z) = F""(kk, z)e
�i'

k , (3.35)

F##(kk, z) = F##(kk, z)e
+i'

k . (3.36)

Namely F"" (F##) has p
x

� ip
y

(p
x

+ ip
y

) orbital symmetry. Finally, the remaining triplet
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Figure 3.10: The imaginary part of triplet pair correlation function F""(kk, z). The S-TI
interface is at d = 0.9L. µ = 0, L = 160nm, �0 = 5.2meV.

correlation function

h 2"(kk, z) 2#(�kk, z) +  2#(kk, z) 2"(�kk, z)i (3.37)

turns out to be zero. Note that the so-called odd-frequency paring correlations [81, 82, 83],

which vanishes in the equal-time limit, are also interesting in S-TI structures, but we will

not discuss their behaviors here.

We find that F""(kk, z) is purely imaginary and identical to F##(kk, z). The results for
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µ = 0, L = 160nm, d = 0.9L, �0 = 5.2meV are plotted in Fig. 3.10. F"" vanishes at kk = 0

as well as for large kk, namely when kk >
p

(E
F

+ !
D

+M)/B2. This is consistent with

lack of pairing in both limits. The behavior of F"" for small kk is illustrated in Fig. 3.11 for

µ = 0, L = 300nm, d = 0.95L, �0 = 0.6meV. As comparison, we also plotted the singlet

pair correlation function

F"#(kk, z) =
0

X

n

u
n,2"(kk, z)v

⇤
n,2#(�kk, z) (3.38)

which is s-wave and purely real.

3.7 Summary

In summary, we have investigated the proximity e↵ect between an s-wave superconductor

and a topological insulator using a microscopic continuum model. Strong coupling between

the two materials renders the surface state of TI a less useful concept for this problem.

Our focus has been on the various modifications to superconductivity by the presence of

TI. These include the suppression of the order parameter, the formation of interface modes

below the bulk superconducting gap, and the induction of triplet pairing correlations. It is

gratifying to see the Fu-Kane e↵ective model emerges in the low energy sector albeit with

a set of renormalized parameters. Our results are complementary to previous theoretical

work on the proximity e↵ect [58, 48] and confirm the validity of the Fu-Kane model.

We made a few simplifying assumptions in our calculation. The superconductor is

described by a two-band model with the valence band well below the Fermi level. Since

only electrons near the Fermi surface are relevant for weak coupling superconductivity, we

believe our main results are general. As idealizations, the chemical potential, the spin-orbit

coupling, and the attractive interaction are assumed to be step functions with a sudden jump

at the interface. More elaborate and realistic models can be considered within the framework

of BdG equations. For example, one can add a tunneling barrier between S and TI, or
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include a Rashba-type spin-orbit coupling term (due to the gradient of chemical potential)

at the interface. We will not pursuit these generalizations here. Finally, the approach

outlined here can be straightforwardly applied to study non-Abelian superconductivity in

other superconductor-semiconductor heterostructures where spin-orbit coupling also plays

a significant role [61, 62, 63, 64, 65].

59



Chapter 4: Josephson Junction on TI Surface

So far, we have found that the regions near the interface, between the topological insulator

and a superconductor, is an exotic playground to interesting phenomena, namely a subgap

energy state localized near the interface. This two dimensional interface considered to be

the Fu-Kane superconductor and modeled by a Dirac-like relativistic equation

H = �i~v
F

(�
x

@
y

� ⌧
z

�
y

@
x

) + ⌧
z

µ+ ⌧
y

�
y

� (4.1)

is good up to some renormalization of the constants, v
F

, µ, � as found in the previous

chapter. This model was used in the first chapter to illustrate the existence of Majorana

bound states localized where the e↵ective mass term, �, changes sign (� ! ��) as in

a Josephson ⇡ junction. This Majorana mode has a linear dispersion, E / ±k. In this

chapter we explore this ⇡ junction further, in particular for µ 6= 0, where we find an energy

dispersion that is flat and follows as E / kN , where N scales with µ. An extension of

the the ⇡ junction is a periodic ⇡ junction where alternating (... ��,�,��,�...) stripes

of superconductors are placed in one direction. We find that this system also hosts the

flat dispersion. We also find that the dispersion has “wiggles” when the spectrum is really

closely analyzed.

4.1 Introduction

Moving at “the speed of light”, v
F

, massless Dirac electrons on the surface of a three-

dimensional Z2 topological insulator (TI) can not be localized by scattering from nonmag-

netic impurities [8, 10], nor can they be easily confined by electrostatic potentials due to

Klein tunneling [84]. Proximity coupling to ferromagnetic or superconducting order can
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however open up a gap in the spectrum, thus rendering excitations massive [8, 10]. An

intriguing possibility is to engineer new massless excitations by confining and coherently

mixing Dirac electrons and holes using two or more superconductors with definite phase dif-

ference [7]. For example, Fu and Kane showed that a Josephson junction on the surface of a

TI with a phase bias of ⇡ is a one-dimensional quantum wire for Majorana fermions, which

can be further manipulated by using tri-junctions [7]. Signatures of Majorana fermions in

such structures have been reported in recent experiments [85, 86].

In this Letter, we demonstrate a drastically di↵erent regime for the same, albeit slightly

more general, Josephson structures considered by Fu and Kane. This regime features mass-

less zero energy excitations that are almost dispersion-less, i.e. with vanishing group velocity

(@E/@k ' 0). We elucidate the scattering kinematics behind the nearly flat dispersion at

zero energy using simple models, and verify the results with self-consistent calculations. We

find it striking that in such simple structures, which are now available in experiments, the

low energy excitation can be easily tuned all the way from E ⇠ k to E ⇠ kN , where N

is large, by increasing the chemical potential. By extending such junctions into a class of

periodic superconductor-TI proximity structures, we further show that these states become

a flat band near zero energy.

4.2 Model

The Josephson junction is schematically shown in Fig. 4.1a). Two s-wave superconductors

are patterned on the TI surface. Due to the proximity e↵ect, the S-TI interface becomes a 2D

superconductor (S). The S-TI-S junction can be well described by the following Bogoliubov-

Dirac Hamiltonian introduced in Ref. [7],

H = ~v
F

(�
x

k
y

+ i⌧
z

�
y

@
x

) + ⌧
z

µ(x) + ⌧
y

�
y

�(x). (4.2)

Here ⌧
i

(�
i

) are the Pauli matrices in the particle-hole (spin) space. The system is transla-

tionally invariant in the y direction, and k
y

is the momentum along y. In the TI region of
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Figure 4.1: (color online) a) Schematic of a Josephson junction on the surface of a topological
insulator (TI). The two superconducting leads (S) have a phase di↵erence ⇡. � is the
superconducting gap, and w is the junction width (not to scale). b) Specular Andreev
reflection in the regime E > µ. c) Retro-reflection for E < µ. d) Dark lines show the (k

y

, µ)
values for the zero energy Andreev bound states for w = 10~v

F

/� and L ! 1. k
y

is in
unit of �/~v

F

.

length w, the superconducting order parameter �(x)=0, while it is constant � deep into

the superconductor. The chemical potential µ can be tuned by applying a gate voltage.

In general, its value can di↵er in the TI and S region, but for simplicity, we assume it is

uniform in all regions. Also, we will focus on the case of phase di↵erence of ⇡ across the

junction.

We first give a heuristic argument for the existence of two regimes. A Dirac electron in

the TI region incident on S will be Andreev reflected into a hole if its energy is below the

superconducting gap (E < �). In the context of graphene [87, 88], Beenakker pointed out
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that in addition to the familiar Andreev retro-reflection where the reflected hole has a group

velocity opposite to the incident electron when E < µ, there is also the case of specular

Andreev reflection where the reflected hole’s group velocity is in the specular direction for

E > µ. Typical scattering trajectories in these two regimes are contrasted in Fig. 4.1b) and

4.1c). For µ = 0 as considered in Ref. [7], the Majorana fermion excitation with linear

dispersion is associated with the specular Andreev reflections in Fig. 4.1b). For large µ, as

in the case of as grown Bi2Se3 crystals, one expects very di↵erent behaviors at low energies.

For the E < µ case, it can be shown analytically that the phase of the retro-reflected hole

is equal to the incident angle of an incoming electron at zero energy, ✓ = arcsin(~v
F

k
y

/µ).

This is unique to TIs because the wavefunction of a Dirac electron [or hole], (1,±ei✓, 0, 0)

[(0, 0, 1,±ei✓)], is determined by the angle ✓, or k
y

. The resultant hole incident on the

opposite S with phase of ⇡ retro-reflects into an electron. This electron has exactly the

same phase as it started with, thus forming an Andreev bound state.

The remaining key question is whether there will be any states at or near zero energy

when µ is finite. We can answer the question by solving Eq. (4.2) for an idealized, step

function profile of �(x),

�(x) = �[✓(�x)� ✓(x� w)]. (4.3)

The dark lines in Fig. 4.1d) shows the zero energy solution in the (µ, k
y

) plane, with fixed �

and the junction length w = 10~v
F

/�. In general, there exist multiple zero energy bound

states at discrete k
y

values {ki
y

} for finite µ. For increasing µ and w, these solutions become

increasingly close-packed. This nontrivial result has important implications for experiments.

The Majorana quantum wire is only ideal in the limit of µ,w ! 0. As µ is tuned away

from the Dirac point, the single zero energy state at k = 0 will be replaced by multiple zero

energy solutions along the k
y

axis, and eventually a nearly flat dispersion at zero energy.

To unambiguously establish this claim, we solve the di↵erential equationH(x, k
y

) (x, k
y

) =

E (x, k
y

) numerically for a finite size system, x 2 [0, L] as shown in Fig. 4.1a), with

open boundary conditions at x = 0, L [89]. Here the quasiparticle wave function  =
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(u", u#, v", v#)
T , with the label (x, k

y

) omitted. To fully describe the proximity e↵ect in-

cluding the induced superconducting correlations in the TI region and the suppression of

superconductivity near the TI-S boundary, we determine the order parameter profile �(x)

self-consistently through the gap equation

�(x) = g(x)
X

✏

n

<!

D

Z

dk
y

u
n,"(x, ky)v

⇤
n,#(x, ky). (4.4)

Here n labels the eigenstates with energy ✏
n

, g is the e↵ective attractive interaction, and

!
D

is the Debye frequency. We assume g is zero in the TI region and constant inside S.

We expand  (x, k
y

) and �(x) in Fourier series and convert the di↵erential equation into

an algebraic equation [90, 91]. Starting with an initial guess of �(x) which features phase

di↵erence ⇡, the iterative procedure is repeated until desired convergence is achieved. Note

that the phase di↵erence ⇡ is self-maintained throughout and not fixed by hand after every

iteration. Then, the local spectral function,

A
�

(E, k
y

, x) =
X

n

�(E � ✏
n

)|u
n�

(x, k
y

)|2, (4.5)

and the local density of states (LDOS),

N(E, x) =

Z

dk
y

X

n,�

�(E � ✏
n

)|u
n�

(x, k
y

)|2, (4.6)

can be computed for � =", #. The calculation is checked to reproduce known results, e.g.,

the linearly dispersing Majorana spectrum at µ = 0 predicted in Ref. [7].
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Figure 4.2: (color online) The local spectral function A"(E, k
y

, x) (upper panel) and local
density of states N(E, x) (lower panel, red solid line) at the center of the junction, x =
0.5L. One sees “flat” Andreev bound states near zero energy for �k

F

< k
y

< k
F

, and
correspondingly a pronounced peak at zero energy in the LDOS in the lower panel. The
lower panel also shows di↵erent LDOS away from the center, for x from 0.52L to 0.58L.
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4.3 Flat Bands in Spectrum

The upper panel of Fig. 4.2 shows the spectral function at the center of the junction,

A"(E, k
y

, x = 0.5L) (A# is the same for this value of x), with µ=20meV, � = 5.5meV,

w = 0.04L, L = 2576nm, ~v
F

=4.1 ÅeV, and the Fermi momentum k
F

= µ/(~v
F

). In

contrast to the E ⇠ ~v
F

k
y

mode for µ = 0, we see Andreev bound states (ABS) near zero

energy within a wide region�k
F

< k
y

< k
F

, where the slope ~v
y

= @E/@k
y

approaches zero.

The appearance of numerous crossings at exact zero energy for finite k
y

also agrees with the

model calculation above in Fig. 4.1d). Beyond this range, e.g. for k
y

> k
F

, the spectrum is

reminiscent of the particle-hole folded dispersion of the helical metal, E ⇠ ±~v
F

(k
y

� k
F

).

As an approximate ansatz to describe the almost flat dispersion, we introduce the fol-

lowing phenomenological model for the ABS for large µ � �,

E/� = c(k/k
F

)N , (4.7)

where c is a constant and N is a large number. To fix N , we demand that the slope of the

dispersion at energy E ⇠ � coincides with that of the bare dispersion, i.e., @E/@k
y

|
E=� =

~v
F

. This gives an estimate of N ,

N ' µ/�. (4.8)

Note that we are only concerned with the ABS dispersion near zero energy and its continu-

ation beyond k
F

. For wider junctions, additional subgap ABS appear at finite energies, and

they are not described by Eq. (4.7). Our ansatz is inspired by the mathematical theory of

Dirac points with multiple topological charge N as found in multi-layered system discussed

in Ref. [92].

The flat dispersion implies a peak at zero energy in the local density of states. The lower

panel of Fig. 4.2 shows the LDOS at the center of the junction, at the S-TI boundary, and

slightly into the superconductor for the same junction parameters given above. While the

zero energy peak becomes less pronounced when away from the junction center, it remains
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clearly visible and persists even into the superconductor. Thus, the predicted flat ABS has

a clear experimental signature in the tunneling conductance measurements.

The existence of two regimes including the flat Andreev bound states near zero energy is

a general feature. We have carried out systematic, self-consistent simulations for the general

case of an inhomogeneous chemical potential, e.g., µ(x) = µ
TI

within the TI region and

µ(x) = µ
S

6= µ
TI

inside the superconductors. The movie in the Supplementary Material

shows the evolution of a typical spectrum for fixed µ
S

with µ
TI

gradually being increased

from zero to µ
S

[93]. We see the linear Majorana mode changing into the flat ABS. Select

frames from a similar movie are layed out in figures 4.4 and ??. These frames show the

evolution from Majorana to flat band as the chemical potential goest from µ = 0eV to

µ = .014eV in the spectral function, A(x = .5L, k
y

, E) and DOS, N(x = .5L,E).

4.4 Periodic ⇡ Junction

Having established the existence of nearly flat ABS around zero energy, now we systemat-

ically trace the evolution from the infinitesimal µ, linear dispersing (Majorana) regime to

the large µ flat ABS regime. Also we would like to understand the details of ABS within its

narrow “band width”. To this end, we will consider a simple model which generalizes the

⇡ Josephson junction to periodic systems. Namely, in Eq. (4.2), the order parameter mod-

ulates sinusoidally in the x-direction with period 2a as schematically shown in the upper

panel of Fig. 4.3,

�(x) = � sin(⇡x/a). (4.9)

The sign of the order parameter alternates. Thus the structure is e↵ectively a periodic

array of the ⇡ junctions discussed above in the limit w ! 0. One also recognizes that �(x)

describes a stripe or Larkin-Ovchinnikov superconductor [94]. While such superconduc-

tors are hard to find, one may imagine bringing them in contact with a TI to realize the

model consider here. Now the Hamiltonian H has discrete translational symmetry in the

x-direction, H(x) = H(x + 2a). We can apply the Bloch-Floquet theorem and introduce
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quasi-momentum k
x

living in the Brillouin zone of (�⇡/2a,⇡/2a). For the prescribed �(x),

the energy spectrum E(k
x

, k
y

) can be obtained by diagonalizing H in k-space. Note that

the TI (non-superconducting) region is shrunk to a point, only the homogeneous µ is left

as tuning parameter.

The lower panel of Fig. 4.3 shows the spectrum E(k
x

= 0, k
y

) for a = 24~v
F

/�,

µ = 4�. These flat ABS at zero energy do not show significant variation with k
x

. We have

checked that the wave function of these zero energy states are localized at the domain wall

boundaries of the order parameter field, i.e., at x = ma (red curve in the upper panel of

Fig. 4.3). For example, the wave function of the k
y

= 0, k
x

= 0, E ⇡ 0 mode can be fit

well with periodic Gaussian functions |u(x)| / exp(�1.85(⇡x/
p
2a)2). Since a is large in

this case, these results agree well with the single junction result before. The dispersion, for

example, can be fit well using the ansatz in Eq. (4.7). The vanishing band width is, of

course, only valid on coarse scales. Closer inspection, by blowing up the spectrum near zero

as illustrated in Fig. 4.5, reveals the busy life of the ABS with N
c

crossings at zero energy,

where N
c

scales linearly with µ, in agreement with Fig. 4.1d). Remarkably, all these fine

details are compressed within a small energy range.

Fig. 4.5 illustrates the evolution of the ABS at low energies for the periodic structure

as µ is increased from zero. For small value of µ = 0.83�, the linear Majorana dispersion

splits into two, each developing a curvature, as the zero energy crossings move to finite k
y

values. Further increasing µ, these two crossings are stretched further outward, while the

dispersion within k
y

2 (�k
F

, k
F

) begin being bent and stretched to form the precursor of

the flat band. At the same time, addition of new crossings introduces more twists. The

number of crossing scales with N
c

⇠ µ/�. The spaghetti now becomes a rope, and looking

from afar, it appears as a thin thread.
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4.5 Summary

Flat bands are more novelties than the norm in condensed matter [95]. Recently, several

authors have demonstrated that surface Andreev bound states with flat dispersion arise in

certain topological superconductors, for example Cu
x

Bi2Se3 [96] and non-centrosymmetric

superconductors [97, 98]. Their existence can be traced back to the nontrivial topology

associated with the gapped bulk, and thus are topologically protected. This mechanism

giving rise to flat bands, via the bulk-boundary correspondence, di↵ers from what is con-

sidered here. For example, in Ref. [96], a robust crossing at k = 0 is a crucial point in the

argument, and the total number of zero energy crossings is guaranteed an odd number. In

our case, states at k
y

= 0 are gapped for finite size systems (or finite period 2a). Despite

these di↵erences, the zero modes share the common trait that they are associated with the

sign change of the order parameter when electrons are reflected at the surface or interface.

Several groups have successfully fabricated Josephson structures on Bi2Se3 of various

length using a variety of superconducting materials including Al, Al/Ti, W, Nb, and Pb

etc. [99, 100, 101, 102, 103]. Gate tunable supercurrent has been observed and argued to

be due to the TI surface state [99]. Superconducting quantum interference devices based on

such junctions have also been demonstrated [104, 102]. Thus the flat Andreev bound states

at zero energy, and the zero bias conductance peak in the local density of states, predicted

here should be experimentally accessible. Future work will explore control of these slowly

dispersing Andreev levels working as qubits [105] when confinement in the y direction is

also introduced. Our work also suggests the ac dynamics of the S-TI-S junctions will likely

to be very complex featuring di↵erent regimes. The flat ABS at zero energy predicted for

periodic junction arrays may potentially find technological applications. For example, a

diverging density of states at the midgap may be used to generate microwave resonances.

We would like to thank Noah Bray-Ali, Liang Fu, and Takuya Kitagawa for helpful

discussions.
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Figure 4.3: (color online) Upper panel: Schematic of the periodic proximity structure with
�(x) = � sin(⇡x/a). The wave function |u(x)| for the zero energy states are peaked at the
domain wall boundaries, x = ma. Lower panel: Energy spectrum for a = 24~v

F

/� and
µ = 4� is flat at zero energy, which has fine structures upon closer inspection.
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Figure 4.4: (color online) Spectral density function, A(x = .5L, k
y

, E), for values of µ from
0 eV to .14 eV. This images are used in a movie found online[2]. The linear dispersion
(E ⇠ k) transitions to a flat band (E ⇠ kN ) as µ increases. This flat band is responsible
for the peak in DOS in figure 4.2.
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Figure 4.5: Fine structures in the energy spectrum of the periodic proximity structure
with fixed a = 12~v

F

/� and increasing µ. The linearly dispersing Majorana spectrum at
µ = 0 splits and develops curvature to eventually become nearly flat within (�k

F

, k
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). The
number of zero energy crossings increases with µ.
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Chapter 5: Summary and Outlook

Thus far, we have delved into the physics of heterostructures of superconductors and topo-

logical insulators, starting with the TI’s interaction with a metal and ending with a Joseph-

son junction on the surface of the TI.

We found that electrons traveling from the metal to the surface of the TI can have

a perfect spin flip under certain conditions. In addition we found that there occurs a

hybridization between the metal and the surface of the TI, where the spectrum near the

surface of the TI resembles that of the metal when the metal is strongly in contact with

the TI. One possibility to extend the spin-flip mechanism found would be to have two

surfaces of TIs sandwiching a metal. This flat 2D quantum device could have implications

in spintronics applications.

In the study of the heterostructure of a superconductor and TI, we found that there

does exist a subgap mode that penetrates deep into the superconductor. The parameters

that describe this mode are renormalized from the respective bulk values of the individual

materials due to the interplay between the TI and superconductor. A serious possibility

on continuing this focus of microscopic simulation of a S-TI heterostructure is by simulat-

ing, more realistically, a Weyl superconductor, a periodic array of S-TI heterostructures

with magnetic doping on the TI segments. The Weyl superconductor is an exotic gap-

less superconductor[106]. This prospective direction has experimental implications due to

experimental realizations in magnetically doped TIs[17, 107, 108].

The Josephson junction on the surface of the TI gives rise to some very unique phe-

nomena. The energy spectrum shows that when the junction’s phase is ⇡, the linear energy

dispersion morphs into a flat, zero-slope dispersion as the chemical potential is tuned away

from zero. This dispersion also presents a strong peak in the density of states. The progres-

sion from this study has a few directions. The flat band, illustrates that the quasiparticle
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excitations have “low” kinetic energy and therefore secondary interactions, if they can be

induced, can lead to new phases. And lastly, the ground state of the junction can be de-

termined by comparing the free energy for di↵erent phase biases. This realistic study could

precipitate further experiments to find the zero-energy Majorana mode.
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Chapter A: Additional Papers
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Anomalous edge states and topological phases of a kicked quantum Hall system

Mahmoud Lababidi, Indubala I. Satija, and Erhai Zhao
School of Physics, Astronomy, and Computational Sciences, George Mason University, Fairfax, VA 22030

Periodically driven quantum Hall system at a fixed flux is found to exhibit a series of phases fea-
turing anomalous edge modes with the “wrong” chirality. This leads to pairs of counter-propagating
chiral edge modes at each edge, in sharp contrast to stationary quantum Hall systems. We show that
these anomalous edge modes are robust against weak disorder. They are essential in distinguishing
phases with the same Chern and winding numbers. Their existence thus challenges the existing
framework describing the topological properties of driven systems. We explore their origin using a
simplified model and discuss their experimental signatures.

PACS numbers:

Cyclic time-evolutions of quantum systems are known
to have interesting topological properties [1, 2]. Several
groups recently showed that periodic driving can turn
an ordinary band insulator (superconductor) into a Flo-
quet topological insulator (superconductor) [3–10]. This
provides a powerful way to engineer e↵ective Hamilto-
nians that stroboscopically mimic stationary topological
insulators [4, 5]. Moreover, a large class of topological
phenomena in periodically driven many-body systems are
unique and have no stationary counterparts. An early ex-
ample is Thouless’s one-dimensional charge pump, where
he showed that the charge transport is quantized and re-
lated to a topological invariant [11]. Other topological in-
variants for the time evolution operator in two and three
dimensions have been constructed recently [3, 5, 10]. Yet
a systematic classification of these invariants analogous
to the periodic table of symmetry protected topological
phases [12, 13] is still to be achieved.

In this paper, we identify new topological phenom-
ena in a lattice integer quantum Hall (QH) system un-
der cyclic driving with period T . For fixed magnetic
flux, variations of the driving parameter induce topolog-
ical phase transitions where the Chern numbers of the
quasienergy bands change. We find multiple phases of
the driven QH system featuring counter-propagating chi-
ral edge modes at the each edge, and show they are robust
against disorder. In particular, there appear “⇡-modes”,
pairs of edge modes with opposite chirality at quasienergy
⇡/T . These anomalous edge modes di↵er from those
found previously in other driven two-dimensional (2D)
lattice models, where the edge modes at quasienergy
⇡/T all propagate in the same direction and subsequently
their number can be inferred either from the Chern num-
ber or the winding number [5, 10]. Here, these known
topological invariants can not predict the number of edge
modes of each chirality, but only their di↵erence. For ex-
ample, we find two phases (phase B and D below) having
the same set of Chern and winding numbers but very dif-
ferent edge state spectra. New theoretical framework is
needed to fully characterize and understand the the topo-
logical properties of such deceivingly simple systems.

Our work is motivated by recent experimental achieve-

ments of artificial magnetic field for ultracold atoms
[14, 15] and temporal modulation of optical lattices
[16, 17]. We consider a model consisting of (spinless)
fermionic atoms loaded onto a square optical lattice.
Each site is labeled by vector r = nx̂ + mŷ, where n,
m are integers, x̂ (ŷ) is the unit vector in the x (y) di-
rection, and the lattice spacing a is set to be the length
unit. The tight binding Hamiltonian has the form

H = �J
x

X

r

|r+x̂ihr|�J
y

X

r

|r+ ŷiei2⇡n↵hr|+h.c. (1)

Here, |ri is the Wannier state localized at site r. J
x

(J
y

)
is the nearest neighbor hopping along the x (y) direction.
We assume a uniform synthetic magnetic field B is ap-
plied in the �z direction, and work in the Landau gauge,
A

x

= 0, A
y

= �Bx. The flux per plaquette, in units
of the flux quantum �

0

, is ↵ = �Ba2/�
0

. Field B gives
rise to the Peierls phase factor ei2⇡n↵ in the hopping. For
static J

x

, J
y

, H is the well known Hofstadter model [20].
We investigate a class of periodically driven quantum

Hall systems described by H above, but with J
x

and J
y

being periodic functions of time t. We will focusing on
the following driving protocol

J
x

(t) = J
x

, J
y

(t) = 0. 0 < mod(t, T ) < ⌧

J
x

(t) = 0, J
y

(t) = J
y

. ⌧ < mod(t, T ) < T (2)

Namely, within one period T , the hopping along x is
turned on during the interval (0, ⌧), while the hopping
along y is turned on during the interval (⌧, T ).We then
have two independent driving parameters,

✓
x

= J
x

⌧/~, ✓
y

= J
y

(T � ⌧)/~.

While it is hard to achieve in solid state systems, tem-
poral modulation of J

x

or J
y

is straightforward to im-
plement for cold atoms in optical lattices, e.g., by simply
tuning the intensity of the laser. In the limit ⌧ ! T and
(T � ⌧)J

y

!const, the driving protocol becomes

J
x

(t) = J
x

, J
y

(t) = J
y

T
X

j

�(t� jT ), (3)
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2

i.e., the y hopping is only turned on when t = jT , with j
any integer. In this limit, ✓

x

= J
x

T/~, ✓
y

= J
y

T/~. We
will simplify refer to systems described by (2) or (3) as
kicked quantum Hall systems, because (3) resembles the
well studied kicked rotors.

The time evolution operator of the system, defined
by | (t)i = U(t)| (0)i, has the formal solution U(t) =

T exp[�i
R

t

0

H(t0)dt0], where T denotes time-ordering and
we set ~ = 1 throughout. The discrete translation sym-
metry H(t) = H(t+T ) leads to a convenient basis {|�

`

i},
defined as the eigenmodes of Floquet operator U(T ),

U(T )|�
`

i = e�i!

`

T |�
`

i.
Here the quasienergy !

`

, by definition, is equivalent
to !

`

+ 2p⇡/T for any integer p and lives within the
quasienergy Brillouin zone (QBZ), ! 2 [�⇡/T,⇡/T ). For
rational flux ↵ = 1/q, U is a q ⇥ q matrix in momentum
space and there are q quasienergy bands. For conve-
nience, we label the lowest band within the QBZ with
` = 1, and the subsequent bands at increasingly higher
quasienergies with ` = 2, 3, ..., q. Correspondingly, we
call the gap below the `-th band the `-th gap. For ex-
ample, the gap around ±⇡/T is the first gap. The Chern
number for the `-th quasienergy band can be defined
analogous to the stationary case [21]

c
`

=
i

2⇡

Z

dk
x

dk
y

⇥

@
k

x

�⇤
`

(k)@
k

y

�
`

(k)� c.c.
⇤

,

where the integration is over the magnetic Brillouin zone,
and �

`

(k) is the `-th eigenwavefunction of U(k, T ).
Figure 1 displays four representative quasienergy spec-

tra of a finite slab of length L in the x direction under
periodic driving (2). As in static QH systems, we observe
edge states forming within the quasienergy gaps. Con-
sider the left edge (x = 0) and let us denote the number
of chiral edge modes propagating in the ŷ (�ŷ) direction
by n+

`

(n�
`

). For driven 2D systems, the Chern numbers
are generally insu�cient to predict (n+

`

, n�
`

). Instead, as
shown by Rudner et al [10], the net chirality of the edge
modes inside the `-th quasienergy gap, w

`

⌘ n+

`

� n�
`

, is
given by the following winding number

w
`

=

Z

dk
x

dk
y

dt

24⇡2

✏µ⌫⇢Tr
⇥

(u�1@
µ

u)(u�1@
⌫

u)(u�1@
⇢

u)
⇤

.

Here µ, ⌫, ⇢ = 1, 2, 3 corresponds to k
x

, k
y

, t respectively,
and u(k, t) is a smooth extrapolation of U(k, t) [10]

u(k, t) = U(k, 2t)✓(T/2� t) + e�iH (k)2(T�⌧)✓(t� T/2),

where H (k) = �(i/T ) logU(T ) is the e↵ective Hamil-
tonian with the branch cut of the logarithm chosen at
quasienergies within the `-th gap. In fact, as shown in
Ref. [10], the Chern numbers can be inferred from the
winding numbers by the relation c

`

= w
`+1

� w
`

.
Applying the theoretical analysis outlined above, we

obtain Fig. 2, the zero temperature “phase diagram”

FIG. 1: (color online) Quasienergy spectra of a finite (in the
x-direction) slab of periodically driven quantum Hall system
at flux �1/3 and fixed ✓

x

= ⇡/3. The four panels, ✓

y

=
0.5⇡, ⇡, 1.2⇡, and 1.5⇡, correspond to phase A, B, C, and D,
respectively, shown in Fig. 2. Edge states localized on the
left (right) edge are shown in blue (red).
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FIG. 2: (color online) Phase diagram of a periodically driven
quantum Hall system in the plane spanned by driving param-
eter ✓

x

and ✓

y

at flux ↵ = �1/3. Each phase (A, B, C, and D)
is characterized by {(n+

`

, n

�
`

)}, the number of modes within
the `-th gap and propagating along ±ŷ at the left edge. The
winding number of the `-th gap w

`

= n

+
`

�n

�
`

, and the Chern
number of the `-th band c

`

= w

`+1 � w

`

(see main text).
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of the kicked quantum Hall system in terms of two in-
dependent driving parameters, ✓

x

and ✓
y

. It show-
cases four representative phases, labelled by A to D, for
flux ↵ = �1/3. All of them feature three well defined
quasienergy bands and three gaps, while the spectrum in
the rest of the phase diagram is largely gapless. The cor-
responding spectrum of each phase in the slab geometry
can be found in Figure 1. The table in Fig. 2 summa-
rizes what we know about each phase: the number of
edge modes on the left edge propagating in the ±ŷ direc-
tion, (n+

`

, n�
`

), inside the `-th gap; the winding number
w

`

of the `-th gap; and the Chern number c
`

of the `-th
band. Note that w

`

and c
`

are calculated independently
from the bulk spectrum. We also note that at the phase
transition points where the gap closes, the Chern num-
bers always change by a multiple of 3, consistent with the
Diophantine equation [18]. In what follows, we discuss
in turn each of these phases.

(A). The main features of phase A can be understood
by considering the fast driving limit, ✓

1

, ✓
2

⌧ 1. The ef-
fective Hamiltonian H , takes the same form of H in Eq.
(1), only with the bare hopping replaced by the e↵ective
hopping J

x

! J
x

⌧/T, J
y

! J
y

(1 � ⌧/T ). The driven
system in phase A stroboscopically mimics a static QH
system with the same flux but renormalized hopping. In
particular, there is no edge state crossing the gap cen-
tered round ±⇡/T .

(B). Phase B highlights a remarkable consequence of
periodic driving: there are now two chiral edge modes in-
side the second and third gap. This is in sharp contrast
to phase A, not only in the number of edge modes, but
also in their chirality. Thus, simple periodic modulations
of hopping proposed here is su�cient to change both the
number and the chirality of edge states. More impor-
tantly, phase B contains a pair of counter-propagating
edge modes, dubbed “⇡-modes”, inside the first gap at
the QBZ boundary ±⇡/T . Note that the net chirality is
zero, w

1

= n+

1

� n�
1

= 0. Previous work on driven 2D
systems [5, 10] also found chiral edge modes at ±⇡/T .
However, there the ⇡-modes all have the same chirality,
and the nearby bands are trivial with zero Chern number.
Then the following two questions naturally arise. What
is the origin of such pairs of ⇡-modes? Are they robust
against perturbations? Counter-propagating chiral edge
modes at the same edge are usually argued to be un-
stable, because backscattering may couple them leading
to the opening of a gap. However, a closer inspection re-
veals that the two ⇡-modes of opposite chirality (shown in
blue for the left edge) cross the QBZ boundary at ka

y

and

kb
y

= ka
y

+⇡ respectively, where the precise value of ka
y

de-
pends on ✓

x,y

. Thus backscattering, k
y

! �k
y

, does not
directly hybridize them. We have verified the stability
of the ⇡-modes against disorder by numerically solving
for the spectra of finite systems of dimension L

x

⇥L
y

in
the presence of static on-site disorder potential, �µ(r) 2
(��,�). To resolve the number of edge states within
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FIG. 3: (color online) Left: Robust edge states in the presence
of disorder � = 0.3J

x

. The two peaks in the spectral function
for ! = 0.95⇡/T (circle) and 0.85⇡/T (filled square) suggest
two ⇡-modes at the left edge, consistent with Fig. 1B. Right:
Winding of the quasienergy spectrum of a two-leg ladder. Red
(blue) indicates the eigenstate is predominantly on the right
(left) leg. ↵ = �1/3, ✓

x

= ⇡/3, ✓
y

= ⇡.

the first gap, we define spectral function ⇢(k
y

,!) =
P

n,x<L

x

/2

�(!�E
n

)|P
y

 
n

(x, y)e�ik

y

y/L
y

|2, where the
sum over x is restricted to the left half of the slab, E

n

and  
n

are the n-th quasienergy and the correspond-
ing eigenwavefunction, respectively. As shown in Fig. 3,
⇢(k

y

,!) for � = 0.3J
x

is peaked at two di↵erent k
y

val-
ues, with separated approximately by ⇡, suggesting two
edge modes near ⇡/T . These evidences indicate that the
⇡-modes are stable against weak disorder.

(C) Phase C is very similar to phase B. The only dif-
ference is that there are 4 (instead of 2 in phase B) chiral
edge modes propagating in the same direction inside the
second and third gap. This is yet another example that
Chern numbers of the quasi-energy bands can be con-
trolled by periodic driving.

(D) Phase D is qualitatively di↵erent from all other
phases. Firstly, near the QBZ boundary, there are two
pairs of counter-propagating ⇡-modes, n+

1

= n�
1

= 2.
Secondly, the edge states within the second and third
gap also contain counter-propagating modes: two of the
edge modes propagate in the same direction, but the re-
maining one propagates in the opposite direction. For
example, n+

2

= 1, n�
2

= 2. Although phase D has ex-
actly the same set of {w

`

} and {c
`

} as phase A, it has
counter-propagating edge modes in all three quasienergy
gaps that are robust against weak disorder. The exis-
tence of phase D thus demonstrates unequivocally that
neither the winding numbers or Chern numbers give a
complete characterization of the driven QH system.

Below we shed more light on the anomalous edge
modes, and the successive phase transitions between the
phases, using a simple model which allows analytical
analysis. Consider a two-leg ladder extending infinitely in
the y direction. The ladder spectrum already contains all
the essential features of edge states found in large systems
as shown in Figure 1. For flux 1/3, the Floquet operator

of the ladder is U(k
y

, T ) = ei✓y [� cos k

y

+�

z

p
3 sin k

y

]ei✓x�x ,
where the �’s are Pauli matrices in the orbital space. It
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follows that the e↵ective Hamiltonian of the ladder

H (k
y

)T = ✓
y

cos k
y

+ � · h(k
y

),

with h(k
y

) = |h| =arccos[cos ✓
x

cos(✓
y

p
3 sin k

y

)]. Thus,
the quasienergy spectrum has two bands (branches),

!±(ky)T = ✓
y

cos k
y

± h(k
y

), (mod 2⇡).

Figure 3 shows the ladder spectrum for ✓
x

= ⇡/3 and
✓
y

= ⇡ (phase B). For vanishingly small ✓
y

, the bands
are almost flat, !± ' ±✓

x

/T . As ✓
y

is increased, the
curvature and the width of both bands increase. Be-
yond a critical value ✓

y

' 0.57⇡, the top of the !
+

band
(and the bottom of the !� band) grows beyond the QBZ,
and re-enters from the opposite side of the QBZ. Conse-
quently, the number of states crossing the QBZ boundary,
n+

1

+ n�
1

, jumps from 0 to 4, marking a transition from
phase A to phase B. From this perspective, the pair of
⇡-modes results from the winding of quasienergy across
the QBZ boundary as driving in the y-direction (✓

y

) is
increased. Similarly, for ✓

y

> 1.33⇡, both the top and
bottom of !± exceed the QBZ, giving rise to two pairs of
⇡-modes at each edge in phase D. When folded into the
QBZ, they intrude into the second and third bulk gap,
leading to the anomalous edge mode propagating in the
“wrong” direction. Remarkably, the chirality of the edge
modes in Fig. 1 agrees with the predictions of the ladder
model in Fig. 3. That the ⇡-modes always appear in
pairs is guaranteed by a “hidden” symmetry of U(T ),

U(k
y

+ ⇡, T ) = �
z

U⇤(k
y

, T )�
z

.

Accordingly, a quasienergy eigenvalue of U(k
y

, T ) at ⇡/T
implies another eigenvalue at k

y

+ ⇡ with quasienergy
�⇡/T which is equivalent to ⇡/T . Therefore the edge
states can only cross ±⇡/T even number of times at k

y

values di↵ering by ⇡ [25] Such pairs of ⇡-modes are rem-
iniscent of, and of course fundamentally di↵erent from,
the counter-propagating edge modes protected by time-
reversal symmetry in quantum spin Hall e↵ect [22].

The anomalous edge modes unique to periodically
driven QH system can be detected experimentally by
momentum-resolved radio-frequency spectroscopy [23],
which measures the spectral function ⇢(k

y

,!). Atoms
occupying the ⇡-mode at quasienergy ! absorb radio-
frequency photon and undergo a vertical transition to an
empty hyperfine state which can be subsequently imaged.
For example, in phase B, the measured spectral function
will feature peaks at ka,b

y

and energy E
n

= (2n+ 1)⇡/T .
This method can also be used to observe chiral edge
states within the second and third quasienergy gap. Al-
ternatively, the edge currents can be probed by quantum
quenches that convert them into density patterns [24].

The static QH system is home to the Hofstadter butter-
fly, with an intricate band structure whose Chern num-
bers are given by the Diophantine equation. Periodic

driving gives rise to new e↵ective Hamiltonians and a rich
landscape of phases which not only have new Chern num-
bers but also anomalous edge states and demands new
ways to characterize topology of exotic states of matter.
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monet, J. Struck, M. Weinberg, P. Windpassinger,
K. Sengstock, M. Lewenstein, et al., Phys. Rev. Lett.
109, 145301 (2012), URL http://link.aps.org/doi/

10.1103/PhysRevLett.109.145301.
[18] I. Dana, Y. Avron, and J. Zak, Journal of Physics

C: Solid State Physics 18, L679 (1985), URL http:

//stacks.iop.org/0022-3719/18/i=22/a=004.
[19] Y. Hatsugai and M. Kohmoto, Phys. Rev. B 42,

8282 (1990), URL http://link.aps.org/doi/10.1103/

PhysRevB.42.8282.
[20] D. R. Hofstadter, Physical Review B 14, 2239 (1976),

URL http://link.aps.org/doi/10.1103/PhysRevB.

14.2239.

[21] D. J. Thouless, M. Kohmoto, M. P. Nightingale,
and M. den Nijs, Physical Review Letters 49,
405 (1982), URL http://link.aps.org/doi/10.1103/

PhysRevLett.49.405.
[22] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95,

226801 (2005), URL http://link.aps.org/doi/10.

1103/PhysRevLett.95.226801.
[23] J. T. Stewart, J. P. Gaebler, and D. S. Jin, Nature

454, 744 (2008), URL http://dx.doi.org/10.1038/

nature07172.
[24] M. Killi and A. Paramekanti, Physical Review A

85, 061606 (2012), URL http://link.aps.org/doi/10.

1103/PhysRevA.85.061606.
[25] The argument can be generalized to slab of any size L.

80



PHYSICAL REVIEW A 84, 042335 (2011)

Robustness of single-qubit geometric gate against systematic error

J. T. Thomas, Mahmoud Lababidi, and Mingzhen Tian
School of Physics, Astronomy and Computational Sciences, George Mason University, Fairfax, Virginia 22030, USA

(Received 30 June 2010; revised manuscript received 4 August 2011; published 24 October 2011)

Universal single-qubit gates are constructed from a basic Bloch rotation operator realized through nonadiabatic
Abelian geometric phase. The driving Hamiltonian in a generic two-level model is parameterized using
controllable physical variables. The fidelity of the basic geometric rotation operator is investigated in the presence
of systematic error in control parameters, such as the driving pulse area and frequency detuning. Compared to a
conventional dynamic rotation, the geometric rotation shows improved fidelity.
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I. INTRODUCTION

In the implementation of scalable quantum information
processing, a key challenge is to achieve controlled quantum
state preparation and manipulation with high fidelity in the
presence of imperfections. In the commonly adapted quantum
computing circuit model [1], this requires a set of robust
universal quantum gates. Quantum gates degrade due to both
imperfections in the control Hamiltonian and decoherence in
the physical qubit system during the gate operation. When
the operation time is kept much shorter than the qubit
coherence time, the systematic error and random noise in
the control Hamiltonian become the dominant causes for
the operation error [2]. The quality of a quantum gate is
usually characterized by gate fidelity or error rate per gate. A
scalable computation can be achieved through quantum error
correction [3], provided the error rate is smaller than a certain
threshold, usually 10−4, or a fidelity above 99.999% [2,4].

In recent years various all-geometric schemes based on
quantum holonomy have been considered effective ways to
minimize the operation errors caused by random noise. A
control Hamiltonian is designed to drive a qubit along a
specific path so that the resulting state transformation is
affected only by the global geometry of the quantum system,
not by the details of the evolution paths that are usually
fluctuating due to noises in the control Hamiltonian [5–13].
The all-geometric approaches existing so far utilize either
Abelian- or non-Abelian holonomy, which results in the state
transformation expressed as a phase change or a unitary
matrix, respectively. The non-Abelian geometric approach,
usually called holonomic quantum computation [5], has been
considered as a novel quantum computation model and proven
fault tolerant under the adiabatic condition [14]. In the circuit
model, holonomic quantum gates have been investigated for
robustness against random parametric noise, most of them in
adiabatic cases [15], which requires a long operation time.
Breaking the adiabatic limit to shorten the operation time
brings the quantum gates into no pure-geometric regimes [16].
Non-Abelian quantum gates have not been experimentally
demonstrated mainly due to the difficulties in manipulation
and measurement of multiple degenerate quantum states.
On the other hand, the Abelian all-geometric approach is
relatively simple since the gate operations are performed on
nondegenerate two-level qubits through either Berry’s phase
[17] in an adiabatic evolution or Aharonov-Anandan (A-A)
phase [18] in a nonadiabatic process. Abelian geometric gates

have been proposed and demonstrated in almost all viable qubit
systems so far, including [8–13] NMR, cold atoms or ions,
photons, superconducting circuits, quantum dots, cavity QED,
and atomic ensembles in solids. The fault tolerance against
errors in the control Hamiltonian is still under investigation,
and fidelity analysis has been focused on the effect of the
random error [19–22]. The results, however, are still less
conclusive for a general two-level system. In addition, the
effects from seemingly simple systematic errors have not yet
been addressed.

In this paper we focus on the robustness of a type
of nonadiabatic Abelian geometric gates against systematic
errors in the control parameters. Based on A-A phase,
two noncommutable basic Bloch rotations were previously
proposed and experimentally demonstrated, which can be
used to compose any universal single-qubit gate [12]. The
Hamiltonians controlling the rotations are made of a special
type of composite pulses that drive the eigenvectors of the
system through closed paths in the projective Hilbert space
(a Bloch sphere), eliminating the dynamic phase. This paper
generalizes the basic rotations as a rotation operator that
suffices for making any single-qubit gates. Since the two-level
qubit and the driving Hamiltonian are parameterized as a Bloch
vector and a torque vector, respectively, evolving on the Bloch
sphere this scheme is applicable to a generic two-level qubit.
We are able to use the rotation operator to analyze the gate
fidelity, which is independent of the qubit state. The fidelity is
calculated in the presence of systematic errors in the control
parameters, such as pulse area and frequency detuning. The
geometric rotation is compared with conventional dynamic
rotation. The link between the geometricity and high operation
fidelity is discussed.

II. UNIVERSAL QUANTUM GATES AND BASIC BLOCH
ROTATION

The quantum state of a qubit |ψ〉 = cos α
2 |0〉 +

eiβ sin α
2 |1〉 can be represented by a Bloch vector #r =

(sin α cos β, sin α sin β, cos α) on the Bloch sphere as shown
in Fig. 1(a). The polar angle α varies from 0 to π and the
azimuthal angle β from 0 to 2π . A rotation on the Bloch sphere
represents a universal quantum gate that can be expressed as

U#n(θ ) = exp(−i #σ · #nθ/2) = cos(θ/2)I − i sin(θ/2)#σ · #n,

(1)

042335-11050-2947/2011/84(4)/042335(6) ©2011 American Physical Society

81



J. T. THOMAS, MAHMOUD LABABIDI, AND MINGZHEN TIAN PHYSICAL REVIEW A 84, 042335 (2011)

FIG. 1. (Color online) (a) Bloch vector #r rotates around Rabi
vector #' on the Bloch sphere. (b) Geometric paths A and B for basis
vectors |+〉ϕ and |−〉ϕ , respectively, to accomplish rotation U (θ,ϕ)
in Eq. (2), where #n is the rotation axis and θ the rotation angle.

where θ is the angle of rotation around axis #n, and I and #σ =
(σx,σy,σz) are the identity and Pauli matrices, respectively.

Since a rotation around an arbitrary axis can be made
by rotations around two unparallel axes in the x-y plane,
the problem of making a universal set of single-qubit gates
reduces to making rotations around #n = (cos ϕ, sin ϕ,0) in the
x-y plane, where ϕ is the angle between the x axis and the
rotation axis #n. The rotation operator becomes

U (θ,ϕ) = cos(θ/2)I − i sin(θ/2)(cos ϕσx + sin ϕσy), (2)

where ϕ defines the rotation axis and θ the rotation angle.
Any single-qubit gate can be made of at most three rotations
characterized by such an operator with controllable ϕ and
θ [23].

In a generic two-level model, the motion of the Bloch
vector obeys the Bloch equation [24], d#r/dt = #' × #r , where
the Bloch vector represents the quantum state and the
driving Hamiltonian H = (h̄)/2)σz + (h̄'0/2)(cos ϕσx +
sin ϕσy) in the rotating frame is parameterized by the torque
given by the Rabi vector #'. As shown in Fig. 1(a), the
Bloch vector rotates around the driving torque by an angle
of the pulse area θ = 'τ , where τ is the duration for a
constant torque acting on the Bloch vector. The evolution
of a two-level system, such as an atom or spin-1/2 particle,
can be modeled as an effective dipole moment driven by an
effective field near the resonance of the transition between
the two energy levels of the qubit [24]. The driving field,
F (t) = '0 cos(ωt + φ), determines the Rabi vector to be
' = (−'0 cos φ, − '0 sin φ,)). The field amplitude '0 is
defined as Rabi frequency and takes into account the effective
dipole moment; φ is the phase of the field; and ) is the
frequency detuning between the driving field and the resonance
of the two-level system. These are the parameters that define
the quantum gate operation and control the motion of the Bloch
vector.

Conventionally, to make the rotation around an axis #n =
(cos ϕ, sin ϕ,0) in the x-y plane as in Eq. (2), a pulse of an
on-resonance field with constant amplitude '0, phase (ϕ + π ),
and duration τ is applied. A pulse with such parameters sets
the Rabi vector ' = ('0 cos ϕ,'0 sin ϕ,0) along the desired
rotation axis and the pulse area to the rotation angle θ = '0τ .
The dynamic evolution driven by a simple pulse is ideal with

100% operation fidelity if the control parameters, including
the Rabi frequency, phase, pulse length, and detuning, are
perfect. However, when there is systematic error or random
noise in the control parameters, this conventional simple
pulse scheme may result in a high error rate and low
fidelity.

III. SYSTEMATIC ERROR AND GATE FIDELITY

In the presence of error in the control parameters, an ideal
operator U, such as in Eq. (2) turns into an imperfect operator
V with erroneous rotation axis, angle, or both. Fidelity, usually
used to evaluate the closeness of the two operators, is defined
as [23,25,26]

F = |Tr(V U †)|/2. (3)

This allows us to study the fidelity of any quantum gate
independent of the qubit state.

Systematic errors in the control parameters that affect the
operation in Eq. (2) can be mainly categorized as pulse area
error and frequency detuning error. The error in the pulse area
θ = 'τ is usually caused by inaccuracy in the Rabi frequency
and the pulse duration. These result in an erroneous rotation
angle. The detuning error due to the frequency difference
between the driving pulse and the qubit resonance causes errors
in the rotation axis and angle. Similar to the treatment for the
composite pulse in NMR [27–29], we consider the pulse area
and detuning errors separately.

The pulse area θε = θ (1 + ε) with a percentage error
ε corresponds to the operator V (θ,ϕ) = exp(−i #σ · #nθε/2).
Using Eq. (3) the fidelity of such an operator is calculated
to be

Fsε = cos(εθ/2), (4)

in which the fidelity degrades with the pulse area error and the
rotation angle in the range of [−π,π ]. The error affects a large
rotation angle more than a small angle. The fidelity is uniform
for all rotation axes at a given error level and rotation angle.

In most of the cases the percentage error in pulse area is
expected to be small, where |ε| % 1 holds and the fidelity
approximates to

Fsε ≈ 1 − 1
2

(
θ

2

)2

ε2. (5)

In the presence of the frequency detuning ), the Rabi
frequency is generalized as ' =

√
'2

0 + )2 = '0

√
1 + f 2,

where '0 is on-resonance Rabi frequency and f = )/'0
is the relative detuning with respect to '0. The detuning
affects both the rotation angle and the direction of the
rotation axis. The ideal rotation angle θ turns into θ

√
1 + f 2

and the rotation axis #n = (cos ϕ, sin ϕ,0) shifts to #nf =
( 1√

1+f 2
cos ϕ, 1√

1+f 2
sin ϕ, f√

1+f 2
). The rotation operator be-

comes

V (θ,ϕ) = cos
(

θ
√

1 + f 2

2

)
I − i sin

(
θ
√

1 + f 2

2

)
#σ · #nf .

(6)
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The corresponding fidelity is calculated to be

Fsf = cos
θ
√

1 + f 2

2
cos

θ

2
+ 1

√
1 + f 2

sin
θ
√

1 + f 2

2
sin

θ

2
.

(7)

Under the small error approximation |f | % 1,

Fsf ≈ 1 − 1
2

sin2
(

θ

2

)
f 2. (8)

Equations (7) and (8) show that the detuning degrades the
fidelity with a large effect at large rotation angle. The fidelity
does not depend on ϕ, which means uniformity for all rotation
axes in the x-y plane.

IV. GEOMETRIC ROTATION

In this section a geometric rotation is designed using A-A
phase [18]. The rotation defined in Eq. (2) can be rewritten
using a pair of orthogonal states |±〉ϕ as

U (θ,ϕ) |±〉ϕ = e∓iθ/2 |±〉ϕ , (9)

where |±〉ϕ = 1√
2
( 1

±eiϕ ) are the eigenstates of operator #σ · #n
represented by a pair of basis vectors parallel to the rotation
axis #n defined by angle ϕ in the x-y plane as shown in
Fig. 1(b). An all-geometric scheme realizes the operation
in Eq. (9) by making the two basis vectors go through
closed loops to acquire the required phase terms. In order
to ensure the phases are purely geometric in this process
where the dynamic phase vanishes, the evolution loop for each
of the basis vectors has to consist of segments of great circles on
the Bloch sphere [20,30]. There are infinite options to design
the loops to perform a given rotation, since the number of
segments could be any value from 2 to infinity while making
the solid angle enclosed by the loop to be the rotation angle
θ . We focus our study on a three-segment loop, which is the
simplest that an on-resonant field can drive. The loops for
|+〉ϕ and |−〉ϕ are marked by the shaded areas A and B,
respectively in Fig. 1(b), where every segment of the loops
is made on a geodesic and the solid angle enclosed by the
loop is the desired rotation angle. The field that drives the
eigenvectors through the loops has three segments as well,
with corresponding parameters denoted as (π/2,ϕ + π/2),
(π,ϕ − π/2 − θ/2), and (π/2,ϕ + π/2), where the first value
in each parenthesis denotes the pulse area and the second value
the phase. Driven by this field, basis vectors |+〉ϕ and |−〉ϕ go
through their closed loops A and B in Fig. 1(b), respectively.
While state |+〉ϕ gains a geometric phase of −θ/2 becoming
e−iθ/2 |+〉ϕ , state |−〉ϕ gains an opposite phase and turns into
eiθ/2 |−〉ϕ . Under such an operation an arbitrary qubit state

|ψ〉 = ( c0

c1
) turns into

(
cos θ

2 c1 − ie−iϕ sin θ
2 c0

−ieiϕ sin θ
2 c1 + cos θ

2 c0

)

.

This is equivalent to applying a rotation operator in Eq. (2)
to the initial state. On this geometric path the operation is
accomplished by three consecutive rotations as

U (θ,ϕ) = U (π/2,ϕ + π/2)U (−π,ϕ

+π/2 + θ/2)U (π/2,ϕ + π/2). (10)

Throughout the path the Rabi vectors are always perpendicular
to the basis vectors, which nulls the dynamic phase change in
the process.

In the presence of systematic errors in the pulse area and
frequency detuning, the ideal operator in Eq. (10) turns into

V (θ,ϕ) = V (π/2,ϕ + π/2)V (−π,ϕ

+π/2 + θ/2)V (π/2,ϕ + π/2). (11)

This operator is calculated by plugging in the imperfect pulse
areas and/or axes in each of the segments. Then the fidelity
can be calculated according to Eq. (3).

For the same percentage pulse area error ε as for the
simple pulse operator, the fidelity of the geometric operator
is calculated to be

Fgε = sin2 πε

2
cos

θ

2
+ cos2 πε

2
cos2 θ

2
+ cos

πε

2
sin2 θ

2
.

(12)

The fidelity is a function of both pulse area error and rotation
angle while the rotation axis is not involved. When the error is
small,|ε| % 1, Eq. (12) approximates to

Fgε ≈ 1 − 1
2

1
4

(πε)2
[

cos
θ

2
− 1

]2

. (13)

By comparing Eqs. (5) and (13), one can conclude, under
the small error approximation, that the fidelity of the geometric
operator is always equal to or better than the simple pulse
operator. Both operators have 100% fidelity at θ = 0, and a
minimum fidelity, 1 − 1

2
1
4 (πε)2, at |θ | = π . Other than those

two points, the geometric operator always yields better fidelity.
Beyond the small error regime, the comparison of the exact
fidelities of the two operators is plotted in Fig. 2. The fidelity
difference Fgε − Fsε as a function of the percentage error and
the rotation angle is plotted in Fig. 2(a) and the average of
the fidelity over all rotation angles in Fig. 2(b). The results
show that the geometric operator holds equal or higher fidelity
compared to the simple pulse operator for all rotation angles
and all values of pulse area error between 0 and 100%. As a
result, the geometric operator has higher average fidelity than
the simple pulse operator.

Similarly, the fidelity of the geometric operator is calculated
in the presence of the frequency detuning error as

Fgf = 1
1 + f 2

cos2 θ

2
+ f 2

1 + f 2
cos

θ

2
+ 1

√
1 + f 2

sin2 θ

2
.

(14)

The small error approximation leads to

Fgf ≈ 1 − 1
2
f 2

(
cos

θ

2
− 1

)2

. (15)
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FIG. 2. (Color online) (a) Fidelity difference between geometric
and simple pulse operators as a function of pulse area error and
rotation angle. (b) Fidelities affected by pulse area error for geometric
and simple pulse operators averaged over rotation angles from
−π to −π .

Under the condition |f | << 1, we compare the simple
pulse operator in (8) and geometric operator in (15). For the
rotation angle in the range of 0 < |θ | < π , Fgf > Fsf holds
true with the maximum fidelity Fgf = Fsf = 1 at θ = 0, and
the minimum fidelity Fgf = Fsf = 1 − 1

2f 2 at |θ | = π . The
comparison of the two operators for large detuning range is
presented in Fig. 3. The fidelity differenceFgf − Fsf is plotted
in Fig. 3(a). Fgf from Eq. (14) and Fsε from Eq. (7) averaged
over all rotation angles are plotted in Fig. 3(b). The results
show that the geometric operator holds equal or higher fidelity
compared to the simple pulse operator against the frequency
detuning for all rotation angles.

The geometric operator, however, is not entirely immune
to the systematic errors in the pulse area and detuning: the
fidelity decreases when an error increases. Two consequences
of a system error are noncyclic paths for the eigenvectors and
nonvanishing dynamic phases. For practical reasons we keep
to the small error regime so that the evolution paths for the
eigenvectors |±〉ϕ can still be approximated as closed loops.
As a result, the degradation of the operation fidelity caused
by the erroneous Hamiltonian should be attributed to the
dynamic phase. We calculated the dynamic phase according
to αd = − i

h̄

∫
〈χ (t)|H |χ (t)〉ϕdt , where |χ (t)〉ϕ represents the

states evolving from the initial state |+〉ϕ on path A shown in

FIG. 3. (Color online) (a) Fidelity difference between geometric
and simple pulse operators as a function of frequency detuning
and rotation angle. (b) Fidelities affected by frequency detuning for
geometric and simple pulse operators averaged over rotation angles
from −π to −π .

Fig. 1(b). Under small pulse area error, |ε| % 1, the dynamic
phase was calculated to be

αdε ≈
(π

2

)2
ε sin

θ

2

(
2 − cos

θ

2

)
. (16)

This adds an extra angle 2 |αdε±| to the desired rotation.
Comparing Eqs. (13) and (16) reveals the relationship between
the fidelity degradation and the dynamic phase as,

Fgε = 1 − 2
π2

1 − cos θ
2(

1 + cos θ
2

) [
2 − cos θ

2

]2 α2
dε. (17)

The second term shows the fidelity decreases quadratically
with the dynamic phase caused by the pulse area error. A
fidelity of 100% is achieved for a pure geometric operator,
corresponding to a vanishing dynamic phase.

The fidelity degradation caused by the detuning was studied
in a similar way. Under small error approximation, we
calculated the dynamic phase as a function of the detuning
and the rotation angle as

αdf ≈ π

2
f

(
cos

θ

2
− 1

)2

. (18)
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Comparing the dynamic phase in (18) and the fidelity in
(15), one can see the fidelity degradation is linked to the
dynamic phase as

Fgf = 1 − 2
π2

1
(
cos θ

2 − 1
)2 α2

df, (19)

which shows a similar relationship: the fidelity degrades
quadratically with the dynamic phase caused by the frequency
detuning.

While the rotation operator in Eq. (10) is all geometric under
the ideal condition, systematic errors cause the eigenvectors
to evolve on non-purely geometric paths. This is manifested
as a nonvanishing dynamic phase. As a result, the operation
fidelity decreases. This is consistent with the conclusion that
the geometric path yields the highest fidelity.

V. CONCLUSION

A Bloch rotation operator based on nonadiabatic Abelian
geometric phase has been designed and analyzed using a
general model for a two-level qubit driven by a parameterized
Hamiltonian. This operator is sufficient to make a set of
universal single-qubit gates by setting the parameters such as
pulse area, frequency, and phase of the effective control field.
The fidelity of the geometric operator was analyzed against
the systematic errors in the pulse area and the frequency
detuning. An operator-based fidelity definition was used so
that the results are independent of the qubit state. The geo-
metric rotation operator was compared with the conventional
simple pulse dynamic rotation. The systematic error degrades
both types of operations with low fidelity at large rotation
angle. The geometric operator shows overall improved fidelity
over the simple pulse rotation. The reason for the degradation
of the geometric operation is that the operator is no longer
purely geometric when the systematic errors in both pulse area
and frequency detuning cause the evolution path to deviate
from the geometric path. As a result, the decrease in the
fidelity is related to a nonvanishing dynamic phase. Further
investigation is needed on the origin of the robustness of the

geometric rotation against systematic errors compared with
the dynamic operator.

Since our analysis is based on a generic nondegenerate
two-level qubit model, the method and results in this paper
are applicable to a variety of physical qubit systems, such
as: NMR, atoms, ions, photons, superconducting circuits, and
quantum dots. The model is suitable for both single-entity and
ensemble qubits. When the inhomogeniety exists in the pulse
area error or the frequency detuning in an ensemble, the fidelity
calculation should be averaged over the entire ensemble. Geo-
metric two-qubit gates, such as controlled-not and controlled-
phase gates, can be analyzed in a similar way by introducing
a qubit-qubit coupling term to the driving Hamiltonian.

While systematic control errors that can be parameterized
into effective pulse area and frequency detuning errors exist
in realistic systems, stochastic random fluctuation in the
Hamiltonian is equally important. Both the dynamic and
geometric operators discussed in this paper can be studied
through numerical calculation of the fidelity according to
Eq. (3), which is quite straightforward. However, the results
will depend on the noise model, which could be quite different
for the parameterized effective field in different physical
systems and needs further investigation.

Our results on systematic errors are obtained for the
simplest geometric path driven by an on-resonance effective
field. More geometric paths can be designed by including
off-resonance fields. For the practical purpose of achieving
maximal gate fidelity, the path design should be optimized
against both systematic and stochastic errors. The composition
of the set of universal gates could play an important role as
well in the optimization process.
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