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ABSTRACT

DETECTION OF SMOKE AND DUST AEROSOLS USING MULTI-SENSOR 
SATELLITE REMOTE SENSING MEASUREMENTS

Yong Xie, Ph.D.

George Mason University, 2009

Co-Dissertation Director: Dr. John J. Qu ; Dr. Jack Xiong

Every year a large amount of aerosols released from wildfires and dust storms into 

the atmosphere may have potential impacts on the climate, environment, and air quality. 

Detecting smoke and dust aerosols and monitoring their movements and evolutions in a 

timely manner is a very meaningful task. Satellite remote sensing has been demonstrated 

as an effective means for the observation of these two kinds of aerosols. In this 

dissertation, an algorithm based on the multi-spectral technique for detecting smoke and 

dust aerosols is developed, by combining measurements of MODoderate resolution 

Imaging Spectroradiometer (MODIS) reflective solar bands and thermal emissive bands. 

Data from smoke/dust events occurred during last several years are collected 

visually as training data for spectral and statistical analyses. According to the spectral 

curves of various scene types (aerosols, cloud, vegetation, and water et al.), a series of 

spectral bands is selected jointly or separately and corresponding thresholds are defined 

for scene classification step by step. The multi-spectral algorithm is applied mainly to 

detect smoke plumes in the United States and dust storms in Asia. The detection results 



are validated not only visually with MODIS true color images, but also quantitatively 

with products of, Ozone Monitoring Instrument (OMI) and Cloud-Aerosol Lidar and 

Infrared Pathfinder Satellite Observation (CALIPSO). The validations show that this 

multi-spectral detection algorithm is suitable to monitor smoke and dust in the selected

study areas. The accuracy is quite good in most cases. Additionally, this algorithm can be 

used to detect smoke and dust aerosols at the areas near clouds even mixed with clouds. 

Detection of dust aerosol with multi-sensor satellite remote sensing measurements, 

MODIS and CALIPSO, is also performed tentatively in this dissertation. After spatial 

registration, the dust layers are identified combining CALIPSO Vertical Feature Mask 

product and measurements of MODIS brightness temperature difference between 12 and 

11-µm bands. Based on detecting results, the three-dimension information of dust 

aerosols is summarized. 

Additionally, the impacts of the mis-registration on the L1B data and dust aerosol 

detection results are assessed. The relative errors caused by mis-registration on L1B data 

are generally less than a few tenths of a percent. The impacts on dust detection results are 

relative large, usually has the trend as negligible at the homogeneous and 

semi-homogeneous areas, but large at the non-homogeneous areas.
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CHAPTER 1

INTRODUCTION

This dissertation is aiming to develop a multi-spectral algorithm for detecting smoke 

and dust aerosols in a timely manner with MODoderate resolution Imaging 

Spectroradiometer (MODIS) measurements. According to the spectral and statistical 

analyses, a new combination of multiple visible (VIS), near infrared (NIR), and short-

and long-wave infrared bands is selected for smoke and dust detections. The results are 

validated not only visually with MODIS RGB (Red, Green, and Blue) true color images, 

but also quantitatively with multi-sensor measurements, such as Ozone Monitoring 

Instrument (OMI) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation

(CALIPSO). On the other hand, detection of dust and smoke with multi-sensor 

measurements, MODIS and CALIPSO, is also executed in this dissertation. The three 

dimensional information of dust aerosol is obtained by combining both sensors’

measurements. Additionally, sensitivity analysis is performed to estimate the impact of 

MODIS spatial characterization change on Level 1B (L1B) measurements and dust 

detection results.
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1.1 Importance of Studying Smoke and Dust Aerosols

The study of atmospheric aerosols has become a very interesting topic in recent 

years because of the evidence of their impacts on climate change (Estelles et al., 2007).

The aerosol, deserving the same consideration as greenhouse gases, plays important roles 

in atmospheric chemistry, cloud microphysics, temperature, and radiation balance in the 

lower atmosphere (Li et al., 2001). Smoke from wildfires and dust storm are two kinds of 

frequently occurred natural phenomena over the continents. They may have potential 

impacts on the climate, environment, and air quality. Particulate matter from smoke is the 

major pollutant of concern, which is a general term for a mixture of solid particles and 

liquid droplets found in the air. 

Dust storm, usually aroused in arid and semi-arid regions, can carry large quantity 

of dust and move forward like an overwhelming tide to destroy crop plants, ruin the 

mining and communication facilities, weather vestiges, damage small villages, reduce 

visibility and human’s daily activity, and impact the aircraft and road transportation. It 

pollutes the atmosphere and air quality, influences cloud formation (James et al., 2007), 

obscures the sunlight, and reduces the temperature. Some dust storm can suspend on the 

air for several days and travel by the wind far from the place where it originated. Recently, 

several researches observed that the heavy dust storm can impact the formation and 

evolution of hurricane (Dunion and Velden, 2004; Wu et al., 2006).

1.2 Statement of Problems

Due to the importance of smoke and dust aerosols in climate, environment, air 
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quality, and daily life, detection of smoke and dust aerosols is a very meaningful task. In 

present, various satellite remote sensors were launched in the sky for diversities of 

applications. However, not all sensors are suitable for monitoring smoke and dust 

aerosols. MODIS is an instrument suitable for this task because of its good spectral, 

spatial, and temporal resolutions: 1) it observes the Earth using 20 Reflective Solar Bands 

(RSBs) and 16 Thermal Emissive Bands (TEBs) with wavelength range 0.4 ~ 14.2 μm; 2)

the spatial resolution is up to 1 km for most bands, which is high enough to monitor 

smoke from wildfires and dust storm events; 3) four measurements can be obtained for 

the same location every day except small gaps in the equatorial areas. Additionally, the 

MODIS Characterization Support Team (MCST) gives both financial and technical 

supports to study the correlation between measurements/products and MODIS sensor 

characterization. It is a great chance to evaluate the uncertainties from instrument itself. 

Consequently, MODIS is picked up as the major sensor for smoke and dust detection in 

this dissertation. 

Currently, several approaches have been developed for smoke and dust detections

using MODIS measurements. However, most of them detect smoke/dust aerosols only 

with measurements of either RSBs or TEBs. And in most of approaches, the cloud mask 

product (Ackerman et al., 2002) is used directly, which may misclassify smoke and dust 

as cloud in some conditions, hence leading to low quality detection results. The detail 

review of each approach is given in the chapter two. Therefore, I developed an approach 

based on the multi-spectral technique for detecting smoke and dust aerosols combining 

both MODIS RSB and TEB measurements.
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1.3 Objectives and Scopes

The main objectives of this dissertation are seeking to develop an approach for 

detecting smoke and dust aerosols at given areas (smoke plumes in USA and dust storms 

in Asia) based on the spectral and statistical analyses. The specific objectives are listed as 

follows:

1) To develop an approach based on multi-spectral technique for detecting smoke 

and dust aerosols combining measurements of both MODIS RSBs and TEBs. 

2) To detect dust storm using multi-sensor measurements. 

3) To assess the potential impact of MODIS spatial characterization change on the 

L1B measurement and smoke/dust detection results.

1.4 Organization of Dissertation

This dissertation consists of eight chapters. In order to better understand the study, 

the background and literature review are given in the first two chapters. The next five 

chapters present various works related to objectives of the dissertation. The summary and 

discussion of future directions are summarized in last chapter.

Chapter 1 gives the general introduction, including the importance of detecting 

smoke and dust aerosols, problems of detection approaches, research objectives, major 

data sources and principle results of the dissertation.

Chapter 2 reviews the approaches of smoke and dust detection used in past and 

present, as well as advantages and limitations of each approach. 

In Chapter 3, the spectral analysis on the basis of hyper-spectral measurements and 
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basic radiative transfer model is performed. According to spectral curves of various scene 

types, a multi-spectral algorithm for automated monitoring smoke is developed. The 

algorithm is applied to smoke plumes occurred from 2007 Georgia Fire and California 

Fire in United States. The observation of smoke movement and growth by combining two 

MODIS instruments is also presented in this chapter. 

The algorithm for monitoring Asian dust storms with MODIS measurements is 

discussed in Chapter 4. The whole process of algorithm development is similar to that of 

smoke detection.

Detecting dust aerosol with MODIS and CALIPSO measurements is given in 

Chapter 5. CALIPSO provides the vertical information about aerosols and clouds. It has 

the capability of separating aerosol from ground surface. Furthermore, it is easy to 

discriminate dust from cloud with MODIS thermal emissive bands. Therefore, with the 

cooperation of both sensors, the dust aerosol can be detected more accurately. 

In Chapter 6, the quantitative validation of smoke and dust detection with OMI and 

CALIPSO is executed.

The potential impacts on aerosol detection caused by MODIS on-orbit spatial 

characterization are introduced in Chapter 7. Mis-registration between MODIS bands and 

Focal Plane Assemblies (FPAs) has been observed, which can produce undesired impact 

on L1B measurements and aerosol detection. With on-orbit spatial characterization 

results, the sensitivity analysis is performed to investigate the impact of mis-registration 

on L1B and aerosol detection. 

Chapter 8 summarizes the results from the previous chapters and gives limitations, 
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originalities, and discussions of future directions.

1.5 Major Data Sources

The major datasets used in this dissertation include MODIS L1A Geolocation and 

MODIS L1B calibrated radiance, MODIS L2 aerosol product, MODIS L2 fire product, 

OMI Aerosol Index (AI), CALIPSO Lidar L1B profiles, CALIPSO L2 product, and 

Hyperion measurement. The usages of these datasets in the study are described in details

as follows:

1) MODIS L1A geolocation data

MODIS L1A file records geolocation data (latitude and longitude) at 1 km resolution

which is used for projecting the images. The land/sea mask, another important parameter 

in L1A file, is selected for identifying smoke over land and ocean.

2) MODIS L1B calibrated radiance

The L1B dataset contains calibrated radiances of 36 bands. Usually, the reflectance 

of RSBs is calculated from digital number with Solar Zenith Angle (SZA) correction, and 

the Brightness Temperature (BT) of TEBs is converted from radiance. The major MODIS 

measurements for detection of smoke and dust aerosols in chapter 3 and 4 are the Version 

5 L1B dataset.

3) MODIS L2 aerosol product

The MODIS aerosol product retrieves the Aerosol Optical Thickness (AOT) over the 

oceans and the continents. The resolution of daily product is 10 km (at nadir). Recently, 

the aerosol product adopts the deep-blue technique to get AOT over bright land areas. 
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The AOT product is selected for the comparison with detecting results. 

4) MODIS thermal anomalies, fires, and biomass burning product

The MODIS thermal anomalies product includes fire occurrence (day/night) and fire 

location, that are plotted in the smoke images for locating the origination of the plume. 

The fire product is retrieved daily at 1 km resolution. 

5) Hyperion measurement

Hyperion is a hyperspectral instrument with 220 spectral channels. The 

measurements from different channel are used for spectral analysis of smoke plume. 

6) OMI AI

The OMI UVAI is an effective index to reflect the presence of absorbing aerosols. 

Therefore, UVAI product is adopted for the quantitative validation of smoke and dust 

detection in Chapter 6.

7) CALIPSO dataset

The CALIPSO Lidar L1B profile (version 2.01) provids the total attenuated 

backscatter signal at 532 nm and 1064 nm, perpendicular attenuated backscatter signal at 

532 nm, aerosol type, geolocation, altitude, elevation of surface, temperature, pressure, 

calibration parameters, and so on. The VFM (Vertical Feature Mask) (Vaughan et al., 

2004), one of CALIPSO level 2 products, provides the scene classification in a 16-bit 

integer for each altitude resolution element. In Chapter 5, CALIPSO measurement is used 

for dust detection by jointing with MODIS. The quantitative validation of dust detection 

is also performed with CALIPSO in Chapter 6.
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1.6 Principal Results

The principle results of this dissertation include developing an algorithm based on 

multi-spectral technique for detecting smoke and dust aerosols combining MODIS RSBs 

and TEBs; discussing the feasibility of dust detection with multi-sensor measurements; 

and assessing the impact of sensor calibration and characterization on detection results.

1) The multi-threshold algorithm for automatically detecting smoke and dust 

aerosols is developed by combining measurements of both MODIS RSBs and TEBs. The 

spectral curves of various scene types are derived statistically from large amount of 

training dataset collected at the selected areas within last several years. With the spectral 

and statistical analyses, the appropriate bands are selected and proper thresholds are 

decided for eliminating unwanted pixels step by step. The algorithm is applied mainly to 

detect smoke plumes in USA and dust storms in Asia. The results are validated not only 

with MODIS true color images but also with products of OMI and CALIPSO, showing 

that the algorithm works well in the given areas with small errors. Pairs of measurements 

from both Terra and Aqua MODIS in consecutive days give the basic dynamic 

information about smoke and dust, which are helpful for estimating the spread direction, 

and magnitude change of these two types of aerosols. 

2) The tentative experiment for detecting dust aerosol with multi-sensor, CALIPSO 

and MODIS, is performed. Since both sensors are operated in the same orbit with similar 

local equatorial crossing time, the temporal mis-registration is ignored in this dissertation. 

With the spatial registration, the dust aerosol is accurately identified by jointing the 

vertical information of CALIPSO measurements with MODIS thermal emissive 
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measurements. 

3) Finally, the uncertainty from sensor spatial characterization on dust storm 

detection result is assessed. With the on-orbit spatial characterization, mis-registration 

has been observed between MODIS bands and FPAs. The mis-registration affects the 

quality of not only L1B measurements but also dust aerosol detection results. The 

impacts of mis-registration on L1B measurements are relative small, but large on dust 

aerosol detection, about 3% in select cases. This assessment is very valuable for sensors

without on-orbit spatial characterization capability.

Table 1.1: Datasets and Sources

Dataset Data Source Link

MODIS L1A geolocation LAADS1 http://ladsweb.nascom.nasa.gov/

MODIS L1B calibrated radiance LAADS1 http://ladsweb.nascom.nasa.gov/

MODIS L2 Aerosol EDG2 http://edcimswww.cr.usgs.gov/pub/imswelcome/

MODIS fire product EDG2 http://edcimswww.cr.usgs.gov/pub/imswelcome/

Hyperion data USGS3 http://eo1.usgs.gov/samplefire.php

OMI AI GES DAAC4 http://daac.gsfc.nasa.gov/Aura/OMI/index.shtml

CALIPSO dataset ASDC5 http://eosweb.larc.nasa.gov/JORDER/ceres.html

1 LAADS: Level 1 and Atmosphere Archive and Distribution System
2 EDG: Earth Observing System Data Gateway
3 USGS: U.S. Geological Survey
4 GES DAAC: Goddard Earth Science Distributed Active Archive Center
5 ASDC: Atmospheric Science Data Center
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CHAPTER 2

REVIEW OF APPROACHES FOR DETECTING SMOKE AND DUST 

AEROSOLS

In the past, several approaches for detecting smoke and dust aerosols using satellite 

remote sensing measurements have been developed, tested, and validated based on the 

different techniques. This chapter focuses on the review of different approaches so as to 

find their physical principles, and their advantages and limitations, which are beneficial 

for the development of a new robust algorithm.

2.1 Approaches of Smoke Aerosol Detection

Smoke plume from biomass burning can generate forcing of climate by changing 

cloud microphysics and reflectance of sunlight (Kaufman and Fraser, 1997). The smoke 

particle is a good scatter of sunlight in visible spectrum and therefore reduces the visual 

visibility. There are two kinds of climatic impacts by smoke: one is warming effect on the 

atmosphere because smoke acts like greenhouse gases, and the other is cooling effect 

because smoke particulate is an excellent absorber and scatter of incoming solar radiation 

(Li, 1998). 

Satellite remote sensing has been demonstrated as a feasible tool for the 
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identification of smoke plume (Chung and Le, 1984). Among various techniques, visible 

imagery approach is a fast and easy way to visually identify smoke, by assigning three

bands (or band combination) as the red, green, and blue channel respectively to generate 

either true color or false color images (Chung and Le, 1984; Kaufman et al., 1990;

Randriambelo et al., 1998; Chrysoulakis and Opie, 2004, Chrysoulakis and Cartalis, 

2003). For example, MODIS RGB true color images are generated with bands 1, 4 and 3 

jointly. On the other hand, the combination of several bands may act as one band to 

generate images. Christopher and Chou (1997) used the normalized ratio of Advanced 

Very High Resolution Radiometer (AVHRR) band 1 and 4 to represent the green channel 

to produce an image. Then this image was used to compute several textural measures for 

a 9×9- pixel window (Welch et al., 1988; Trovinkere et al., 1993; Christopher et al., 1996), 

to visually separate the smoke aerosols from the other scene types. However, these 

color-based approaches can provide only basic information about smoke and fail to 

provide automatic identification.

Multi-threshold approach is one of effective tools to detect smoke based on the 

physical property difference between smoke and other scene types, such as cloud, 

vegetation, water, snow, ice, and soil. Generally, the algorithm employs a set of threshold 

tests to check all image pixels simultaneously to separate smoke from other scene types

step by step. In each test, the particular thresholds, either static or dynamic, are calculated 

generally by the statistical analysis of training data. Baum and Trepte (1999) proposed a 

grouped threshold method for scene identification with AVHRR measurements. In their 

method, the smoke was classified by smoke module consisted with several thresholds test 



12

cooperatively: the reflectance at 0.63 µm and 3.7 µm channel, the Bright Temperature 

(BT) difference between 3.7 µm and 11 µm channel, and the BT difference between 

anticipated clear-sky value and measured value at 11 µm channel. Li et al. (2001) 

presented a multi-threshold method for automated smoke plume detection using AVHRR 

measurements based on the neural networks. The shortcoming of using AVHRR is that 

AVHRR has only five channels, which is inefficient for smoke detection.

Chrysoulakis et al. (2007) proposed a multi-temporal change detection approach 

using two images at the same target area on the different time. By comparing two images 

(one is acquired during the fire event and the other is acquired before fire event), the 

important anomalies in NDVI and infrared radiances were detected hence to detect the 

core of plume. Then the plume core was enlarged to include the complete smoke area 

through identifying a pixel as plume pixel if it located spatially and spectrally at the 

neighborhood of the initial plume core. The new developed one offers a novel ways for 

smoke monitoring. However, this approach need find a clear day before the occurrence of 

smoke. The Bidirectional Reflectance Distribution Function (BRDF) issue is also need to 

be taken into account.

The current MODIS aerosol retrieval algorithm uses the dark target approach 

(Kaufman et al. 1997, Kaufman et al. 1997) with two assumptions: 1) the aerosol is 

transparent to most aerosol types (except dust) at 2.1 µm so that this channel can be used 

to detect dark surface targets; 2) the surface reflectance at 0.47 µm and 0.64 µm channel 

could be retrieved by that at 2.1 µm with the ratio 0.25 and 0.5. With the assumptions, the 

Aerosol Optical Thickness (AOT) and particle size parameters were retrieved at 0.47 µm
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and 0.66 µm wavelengths and then interpolated to derive AOT at 0.55 µm. Therefore, 

smoke aerosols can be identified based on their size differences and absorption if smoke 

optical thickness is up to 3 (Kaufman et al. 2003). Although the assumptions are valid for 

most vegetated land surfaces (Chu et al. 2003), land surface reflectance may significantly 

deviates from this assumption over some bright surface regions. Hsu et al. (2004)

proposed a Deep Blue algorithm suitable for aerosol identification over brightly 

reflecting surfaces because the surface reflectance at the deep blue channel is low enough 

to make such retrievals possible. In the algorithm, a maximum likelihood method is used 

to find the best match between the measured reflectance and the one stored in 

look-up-table at three blue channels to determine aerosol mode and the mixing ratio, 

hence to calculate aerosol optical thickness and Ångström exponent. However, several 

key parameters are based on surface albedo database and model simulation, further 

investigations and improvements are still needed.

2.2 Approaches for Dust Aerosol Monitoring

Similar to smoke detection, color imagery technique is the primary tool for dust 

storm monitoring in the past. Earlier researchers used visible spectrum to monitor dust 

outbreaks as well as to estimate dust optical depth over oceanic regions (Carlson, 1978; 

Norton et al., 1980). Dust was detected and its evolution followed by its yellow color on 

SeaWiFS satellite images. Some researchers also apply color enhancement techniques 

(Miller, 2003) to differentiate dust, ocean surface, and cloud. 

Spectral indices based on dust characteristics over VIS/NIR/IR regions may provide 
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more information about dust characteristics. Qu et al. (2006) used Normalized Difference 

Dust Index (NDDI), a normalized ratio of 2.1µm band and blue band, to detect dust 

storms and monitor the moisture change of dust. NDDI has advantages because of the 

high sensitivity of MODIS 2.1µm band to moisture content. Recently, several studies 

show that it is feasible to detect Saharan dust over land using BT in thermal infrared 

spectra (Cavtenet et al., 1992; Legrand et al., 1987; Legrand et al., 1989; Legrand et al., 

1992; Legrand et al.,2001) Hao et al, (2007) proposed a thermal infrared index to detect 

Saharan dust storms by combining fours MODIS TEBs. A correlation of the BT between 

11 µm and 3.7 µm bands for dust outbreaks was proposed by Ackerman (1989). He 

developed a tri-spectral (8, 11 and 12 µm) technique later for detecting dust over water 

and for distinguishing dust plumes from water/ice clouds (Ackerman, 1997). An 

automatic multi-spectral approach for detection of dust storm in the northwest of China is 

developed by Han et al. (2005). In his approach, a set of indices were used to separate 

dust from cloud, snow, and land with several RSB measurements. However, most of 

approaches for dust (also for smoke) detection chooses either RSB measurements or TEB 

measurements.

For retrieval of dust parameters such as aerosol optical thickness, current algorithm 

works only over dark surface. The reason is that the algorithm is based on the empirical 

relationship between MODIS VIS bands and Small Wavelength Infrared (SWIR) bands 

(Kaufman 1997).
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2.3 Chapter Summary

This chapter reviewed the approaches for detecting smoke and dust aerosols in past 

and present. Although visual identification of aerosol can provide quick identification, 

this technique only gives very limit information about smoke and dust aerosols. And this 

approach cannot offer automated detection of smoke and dust aerosols, which is not 

suitable for processing large amount of remote sensing measurements timely. Although 

current MODIS operational product provides aerosol classification based on dark target 

approach and deep blue approach, it misclassified most smoke/dust events near or mixed 

with cloud since it adopted cloud mask product directly which has strict standard to filter 

out all suspicious pixels. Moreover, the 10 km2 spatial resolution is also relatively coarse. 

The physical principle of multi-spectral method is to find the spectral feature difference 

between several major kinds of scene types in VIS/NIR/IR even in microwave spectra. As 

discussed above, most multi-spectral approaches use the combination of the bands either 

in the solar spectrum or thermal spectrum. Similarly, most approaches can detect smoke 

or dust only at those areas away from cloud. 

Based on the review of the physical bases, advantages, and limitations of above 

approaches, the multi-spectral approach is selected for smoke and dust aerosol detection 

in this dissertation by combining measurements of both MODIS RSBs and TEBs. The 

major goal of this algorithm is to detect smoke and dust aerosols over both dark and 

bright surfaces. Moreover, the algorithm is aim to avoid the misclassification over the 

areas close to or mixed with cloud.
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CHAPTER 3

SMOKE AEROSOL DETECTION WITH MODIS MEASUREMENTS

Smoke aerosol from wildfires is a mixture of gases, organic compounds and 

particles, including carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides 

(NOx), sulfur dioxide (SO2), and so on (Austin and Goyer, 2007). The mixing level of 

these components varies with the types of burning wood and vegetation so that smoke 

aerosol has no stable spectral characteristic. Therefore, a multi-spectral method 

combining both MODIS RSBs and TEBs is developed in this chapter (Xie et al., 2007). 

The smoke is identified by filtering out other scene types step by step, according to their

reflectance differences in solar spectrum and their BTD in thermal spectrum. The bands 

are selected and thresholds are decided on the basis of spectral and statistical analyses, as 

well as basic radiative transfer model. The algorithm works well on detection of smoke 

plumes occurred in the United States. The validation of results with MODIS true color 

images is also presented in this chapter.
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3.1 MODIS Instrument

MODIS, one of key sensors of the National Aeronautics and Space Administration 

(NASA) Earth Observing System (EOS), was launched onboard the Terra spacecraft on 

December 18, 1999 and the Aqua spacecraft on May 4, 2002 (Barnes et al., 2002;

Salomonson et al., 2002). Both Terra and Aqua MODIS are operated in a 

sun-synchronous orbit at the altitude of 705 km. Terra descends southwards with the local 

equatorial crossing time 10:30 a.m. and Aqua ascends northwards with the local 

equatorial crossing time 1:30 p.m. respectively. The MODIS has been widely used for the 

study of land, ocean, atmosphere, and solid earth etc. (Justice et al., 1998; Esaias et al., 

1998; King et al., 2003; Parkinson, 2003).

3.1.1 MODIS spectral band

The MODIS makes the Earth observations with 36 bands, covering the wavelength 

range from 0.4 to 14.2 μm. The 20 RSBs and 16 TEBs are arranged in four FPAs: VIS, 

NIR, Short- and Middle- Wavelength Infrared (SMIR), and Long- Wavelength Infrared

(LWIR), shown in Fig. 3.1 (Che et al., 2005). Three different spatial resolutions are 

designed according to the band specifications and science applications: 250 m (band 1-2), 

500 m (band 3-7), and 1 km (band 8-36). The number of detectors of each band is 40, 20, 

and 10 respectively corresponding to its spatial resolution (Barnes et al., 2002; 

Salomonson et al., 2002). The specifications of all spectral bands are listed in Table 3.1.

Among these bands, band 1 (red), band 4 (green), and band 3 (blue) are usually used for 

constructing RGB true color image. The MODIS is a cross-track scanning radiometer 
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with a two-side scan mirror which rotates over a scan angle range of ±55o, producing a 

swath of 2330 km in scan direction and 10 km in track direction each scan (Xiong et al., 

2007).

Figure 3.1: The layout of the MODIS FPAs. All 36 MODIS bands are separated into four 
FPAs: VIS, NIR, SMIR, and LWIR. The number of detectors of each band varies with the 
spatial resolution: 40 detectors for 250 m bands, 20 detectors for 500 m bands, and 10
detectors for 1 km bands (Source: Che et al., 2005).
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Table 3.1: Specifications of MODIS spectral bands.
FPA Band CW Bandwidth1 Ltyp2 Primary Use

R

S

B

1 645 nm 620-670 21.8 Land/Cloud/Aerosols Boundaries

2 858 nm 841-876 24.7 Land/Cloud/Aerosols Boundaries

3 469 nm 459-479 35.3 Land/Cloud/Aerosols Properties

4 555 nm 545-565 29.0 Land/Cloud/Aerosols Properties

5 1240 nm 1230-1250 5.4 Land/Cloud/Aerosols Properties

6 1640 nm 1628-1652 7.3 Land/Cloud/Aerosols Properties

7 2130 nm 2105-2155 1.0 Land/Cloud/Aerosols Properties

8 412 nm 405-420 44.9 Ocean Color/ Phytoplankton/Biogeochemistry

9 443 nm 438-448 41.9 Ocean Color/ Phytoplankton/Biogeochemistry

10 488 nm 483-493 32.1 Ocean Color/ Phytoplankton/Biogeochemistry

11 531 nm 526-536 27.9 Ocean Color/ Phytoplankton/Biogeochemistry

12 551 nm 546-556 21.0 Ocean Color/ Phytoplankton/Biogeochemistry

13 667 nm 662-672 9.5 Ocean Color/ Phytoplankton/Biogeochemistry

14 678 nm 673-683 8.7 Ocean Color/ Phytoplankton/Biogeochemistry

15 748 nm 743-753 10.2 Ocean Color/ Phytoplankton/Biogeochemistry

16 869 nm 862-877 6.2 Ocean Color/ Phytoplankton/Biogeochemistry

17 905 nm 890-920 10.0 Atmospheric Water Vapor

18 936 nm 931-941 3.6 Atmospheric Water Vapor

19 940 nm 915-965 15.0 Atmospheric Water Vapor

26 1375 nm 1360-1390 6.0 Cirrus Clouds Water Vapor

T

E

B

20 3.75 μm 3.660-3.840 300 Surface/Cloud Temperature

21 3.96 μm 3.929-3.989 335 Surface/Cloud Temperature

22 3.96 μm 3.929-3.989 300 Surface/Cloud Temperature

23 4.05 μm 4.020-4.080 300 Surface/Cloud Temperature

24 4.47 μm 4.433-4.498 250 Atmospheric Temperature

25 4.52 μm 4.482-4.549 275 Atmospheric Temperature

27 6.72 μm 6.535-6.895 240 Water Vapor

28 7.33 μm 7.175-7.475 250 Water Vapor

29 8.55 μm 8.400-8.700 300 Water Vapor

30 9.73 μm 9.580-9.880 250 Ozone

31 11.03 μm 10.78-11.28 300 Surface/Cloud Temperature

32 12.02 μm 11.77-12.27 300 Surface/Cloud Temperature

33 13.34 μm 13.18-13.48 260 Cloud Top Altitude

34 13.64 μm 13.48-13.78 250 Cloud Top Altitude

35 13.94 μm 13.78-14.08 240 Cloud Top Altitude

36 14.24 μm 14.08-14.38 220 Cloud Top Altitude
1 The unit of bandwidth in this table for RSB is nm and for TEB is μm
2Ltyp is the typical value for RSB in the unit of W/m2/sr/μ and for TEB in the unit of K

Source: http://modis.gsfc.nasa.gov/about/specifications.php
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3.1.2 MODIS data

The 550 scan angle of MODIS enables it to achieve almost daily global coverage 

except for some small gaps in equatorial areas. Each MODIS sensor passes the same site 

twice a day: one in the daytime orbit for all thirty-six bands and the other in the nighttime 

orbit only for the TEBs (bands 20-25 and 27-36). Totally, four measurements can be 

collected every day with two MODIS sensors. The data used in this dissertation is the 

version 5 L1B measurements issued by NASA. Each MODIS file (referred to as a 

“granule”) collects consecutive measurements within five minutes, typically 203 scans, 

covering an area with 2030 km (along-track) by 2330 km (cross-track) (Nishihama et al., 

2000; Isaacman et al., 2003). In each scan, 1,354 data frames are recorded for each 

detector. For 500 m resolution band, 2 sub-frames or samples per frame (1 km) are 

recorded for its 20 detectors, and 4 sub-frames for each 250 m band and its 40 detectors

(Xiong et al., 2003). Thus, each granule typically contains 2030 rows (along-track) × 

1354 columns (along-scan) for 1 km resolution bands, 8120 rows × 5416 columns for 250 

m resolution bands, and 4060 rows × 2708 columns for 500 m resolution bands. The 

geolocation data (latitude and longitude) in L1A are used to find the selected site 

automatically. The land/sea mask dataset assists users to quickly separate land from 

ocean (water). In L1B, the stored data format is digital number, which is generally 

converted into the reflectance or the radiance for RSBs and the radiance for TEBs with 

carefully calibrated scale and offset. Moreover, 250 m (band 1-2) and 500 m (band 3-7) 

resolution measurements can be aggregated to match 1 km resolution band for further 

spectral arithmetic (Nishihama et al., 1997).
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3.2 Physical Principle of Smoke Aerosol Detection

The primary physical principle of multi-spectral algorithm for smoke/dust detection 

is to find the spectral difference between smoke/dust and other scene types. Generally, 

each scene type has its unique spectral characteristics. In some spectra (or bands), its 

spectral characteristics is significantly different from that of other scene types. Those 

bands, usually sensitive or insensitive to certain scene types, are picked up for the 

classification. The precision of classification depends mainly on the proper band selection

and threshold definition of each test. The spectral analysis based on radiative transfer 

model and large amount of training data is performed in the following chapter.

3.2.1 Radiative transfer model

In solar spectrum, the signal received by MODIS sensor is reflected by the surface 

in a clear sky. It becomes relatively complicate, however, if there is an aerosol layer 

floated between sensor and ground surface, due to multiple scattering. In the radiative 

transfer model shown in Fig 3.2, part of sunlight is reflected by smoke (or dust) layer and 

then reaches to the sensor. Other lights are reflected by the surface after penetrating

through smoke layer and then received by the MODIS sensor.
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Figure 3.2: Basic radiative transfer model

Based on the fundamental radiative transfer model (Liou, 2002; Li et al., 2001), the 

reflectance at TOA viewed from a satellite can be expressed as in Eq. 3.1.
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where λ is the wavelength and τ is optical depth of smoke layer. Two parameters, μo and

μ are the cosine of the solar zenith angle and view angle. t (λ, μo) is the transmittance 

from the top of atmosphere to smoke and t (λ, μ) is the transmittance in inverse direction 

in the view direction of satellite. Two azimuth angles, фo and ф, are viewed from sun and 

satellite, respectively. In Eq. 3.1, the notation asterisks indicate that these quantities are 

 

Ground

Smoke (dust)

rg

rs

Sun Satellite



23

for upwelling radiation. The plane albedo of ground surface r (λ,μo,фo) is given by the 

corresponding bidirectional reflectance r (λ;μo,,фo;μ,,ф) via the following relationship in 

Eq. 3.2, and the spherical albedo of the ground surface is given by Eq. 3.3.
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Similarly, rs (λ;μo,,фo;μ,,ф) is the bidirectional reflectance of smoke layer for the 

incidence radiation. 
*( )sr  is the spherical albedo of the smoke for upwelling radiation. 

In Eq. (3.1), t (λ;μo,,фo) and t* (λ;μ,,ф) are diffused transmittances of the smoke for 

downward and upwelling radiation, respectively.

Set the spectral bandwidth as Δλ for a given band with the Center Wavelength (CW)

at λo and let the instrument Relative Spectral Response (RSR) function be RSR(λ). 

Integrate the product of each quantity in Eq. 3.1 and RSR with respect to λ. The average 

reflectance is given by Eq. 3.4a

0 0 0

0 0

0 0 0 , 0 0

0 0 , 0 0

( , ; , ) ( ; ) ( , ; , )

( , ; , ) ( , ; , )

s

g

r T r

b r

  

 

         

       




              (3.4a)

where

0

0
0

/ 2

0 0/ 2

1
( ; ) ( , ) ( , ) ( )T t t RSR d

 

  
       






 

          (3.4b)



24

0

0
0

/2

0 0 1 0 0/2
0

*
2

0
*

1
( , ; , ) exp ( ; , )

exp ( ; , )

( ; ) ( ; )
( )

1 ( ) ( )

s

s

s g

b k t

k t

t t
RSR d

r r

 

  

      
 

   


   
 

 





           
       

   







          (3.4c)
00100(;,)(;,;,) ggrkr

                                (3.4d)
200 () (;,;,) ggrkr 

                               (3.4e)

In Eq. 3.4a, it is reasonable to say that the signal received by the sensor come from 

two parts: one is reflected by the aerosol layer directly and the other is contributed from 

the ground surface.

3.2.2 Smoke spectral feature

The continuous measurements of Hyperion, a hyperspectral sensor, are collected for 

analyzing the spectral characteristics of the smoke. The Fig. 3.3 show the smoke plume

originated from the Aspen fire in Arizona on July 7, 2003. The first subplot is the true 

color image and rest of eight subplots are derived from measurements of eight typical 

bands with CW 447, 549, 600, 651, 752, 854, 1044, and 1245 nm. Those eight bands are 

chosen because they have the similar CW to those corresponding bands in MODIS. In the 

figure, the smoke plume has the strong reflectivity in the short wavelength bands but 
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become more transparent in the long wavelength bands. This phenomenon illustrates that 

the short wavelength bands are more sensitive to smoke than the long wavelength bands.

According to the radiative transfer model, the signal received by sensor is comprised 

of two parts (Eq. 3.4a). In the short wavelength range, the smoke obscures the surface so 

that the signal is contributed largely from the smoke layer. The contribution to signal 

from the ground surface increases in the long wavelength range because of the 

transparency of smoke layer. Therefore, the short wavelength bands such as blue band are 

very critical for the detection of smoke plume. Consequently, in solar spectrum choosing 

at least a short wavelength band in each test is the prerequisite to increase the quality of 

algorithm. It is worth noting that some bands located in the spectral window of water 

vapor or ozone can be used solely, such as band 26, a water band for measuring high 

cirrus cloud Gao et al., 1993; Gao et al., 2002).

Figure 3.3: Images with smoke plume generated from eight Hyperion bands to show the 

transparency feature from short wavelength to long wavelength.

447 nm    549 nm  600 nm    651nm    752 nm   854 nm   1044 nm  1245 nm
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3.2.3 Training data collection

Surface geology and wood species, two key parameters affecting the spectral

response of smoke received by sensor, vary with site by site. The geology decides the 

reflectivity of the surface and the wood species determines the component of smoke 

plume. The amount of training data in given area determines the applicability of the 

algorithm. In this manner, eighteen smoke plumes with various intensities occurred in 

USA during last five years (2000-2005) are selected as training data to perform the 

statistical analysis. Around 200,000 smoke pixels are collected with visual identification, 

and separated into two classes using MODIS land/sea mask product: smoke pixels over 

land and ocean respectively. Moreover, bright land pixels, dark land pixels, and cloud 

pixels are also colleted for deciding the bands and thresholds of each index.

3.2.4 Spectral curves

The spectral responses of several major scene types are calculated statistically from 

training data, given in Figs. 3.4 and 3.5. The spectral responses at ten bands are plotted in 

these two figures since those bands are usually used for aerosol detection. The spectral

response at each band is the mean value of all training data for each scene type with the 

standard deviation. Since part of smoke events occurred in eastern or western USA may 

spread over the oceans, the spectral curves of smoke are separated into two classes: 

smoke over land and smoke over ocean. For easily comparison, spectral curves of smoke 

(both over land and ocean) and cloud are plotted in Fig. 3.4. The curves of smoke (over 

land only) and land (both dark and bright surfaces) are plotted in Fig. 3.5. The abscissa of 
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both figures stands for the MODIS band number. The vertical axes is the responses of 

different scene types in each band; the reflectance for RSBs in the left side and the BT for 

TEBs in the right side. 

3.2.5 Band selection

Generally, the Normalized Difference Vegetation Index (NDDI) (Rouse et al., 1973; 

Huete et al., 1994) is an ideal index for vegetation classification. However, the 

conclusion in chapter 3.2.2 illustrates that the short wavelength band is sensitive to 

smoke and at least one short wavelength band is selected in each test. Consequently, a 

pseudo-NDVI, the normalized ratio of band 2 and band 3 (469 nm), is introduced to 

discriminate vegetation and smoke pixels. The reason is that smoke has high reflectivity 

in band 3 than that in band 1 due to Rayleigh scattering while the vegetation appears dark 

either in band 3.

The NDDI, the normalized ratio of band 7 (2130 nm) and band 3, is an index 

developed for dust detection (Qu et al., 2006). It is also suitable for soil classification 

(namely brightly reflecting surface). Normally, the NDDI value is positive for soil or dust 

but negative for smoke. The inverse value of NDDI is applied for the differentiation

smoke from soil surface according to the spectral signature difference.
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Figure 3.4: Response curves of smoke and cloud pixels.

Figure 3.5: Response curves of smoke and land pixels.
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The BT of the 11 µm band (band 31) and the BTD between the 11 µm band and the 

3.7 µm band (band 20) (Ackerman et al., 2002) are used to separate smoke aerosol from 

cloud, as well as the reflectance at the 1.38 µm channel, a spectrum window of water 

vapor useful for detecting high cirrus cloud (Gao et al., 1993; Gao et al., 2002). 

The normalized ratio of two blue bands, (R3 - R8) / (R3 + R8), and the single 

reflectance of band 8 (412 nm) are proposed to filter out the noise pixel (mainly water 

pixels and coastline pixels). Band 8, the shortest wavelength band within MODIS, is 

strongly sensitive to the smoke aerosol because of Rayleigh scattering. The average 

geometrical radii of smoke particle are in the range of 0.01 - 0.05 µm, largely satisfying 

the Rayleigh scattering limit (Wong and Li, 2002; Remer et al., 2002). Rayleigh 

scattering is wavelength dependence. Its intensity is inversely proportional to the fourth 

power of the wavelength. As a result, this ratio of two blue bands is very sensitive to 

aerosol. Two examples with smoke plumes are shown in Fig. 3.6. The normalized ratio of 

two blue bands for smoke plumes in both images is relative higher than vegetated and 

water areas, and the ratio values increases with the plume intensity. 

For the convenient expression in this dissertation, the single reflectance of certain 

band is expressed with R (reflectance) plus band number. The BT of certain band is 

denoted with BT plus CW. The normalized ratio of two bands has the formula like Ratio 

(Ra, Rb) = (Ra - Rb) / (Ra + Rb), where a and b are band number. The BTD between two 

bands is given in BTD (CWa, CWb) = BTCWa –BTCWb, where CWa and CWb are CW

of band a and band b.
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Figure 3.6: The normalized ratio of band 3 and band 8 used for identifying smoke plume 
and corresponding RGB images. The upper row is the case on May 10, 2007, and the 
bottom row is the case on May 24, 2001.
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3.3 Methodology

3.3.1 Threshold and accuracy analysis

To decide threshold of each test, the scatter plots of several major scene types is given 

in Figs. 3.7(a-h). Each data point is the average value of all smoke pixels in one smoke 

events, along with standard deviation.

In each subplot, a pair of scene types is displayed for clear comparison. Figs. 3.7(a) 

and 3.7(b) give the pseudo-NDVI values and single reflectance of band 8 for smoke and 

dark pixels. Vegetation pixel has high pseudo-NDVI value but low reflectance in deep 

blue spectrum. The comparisons between smoke and cloud over land and ocean are 

plotted in Figs. 3.7(c) - 3.7(f). The cloud usually has a very low BT in the LWIR. Since 

the long wavelength is insensitive to smoke, the temperature changes very lightly at the 

smoke area. Therefore, the BT11 and BTD (3.7, 12) have large difference between cloud 

and smoke. In Fig. 3.7(g), NDDI values of smoke are mostly larger than 0.1 while that of 

bright pixels are less than 0.1. The Ratio (B3, B8) in Fig. 3.7(f) is effective to separate 

smoke from dark land, as well as water which has very low reflectance.

The threshold of each index is decided with the statistical calculation to ensure the 

minimum error of each test. The error is a statistical parameter to reflect how many 

smoke pixels are not identified with corresponding defined threshold. The threshold 

which produces minimum error is picked up by adjusting the threshold itself.

The detail thresholds of each index are summarized in Table 3.2. The NDDI and 

pseudo-NDVI applied only to pixels in the land branch. The rest of indices are applied to 
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all pixels over both land and ocean. The threshold values of BTD (3.7, 12) are 15 K over

land and 9 K over ocean. The total errors for land and ocean branches are estimated. It is 

worth noting that the total error is not equal to the summation of errors from each test 

because the overlap exists among some index tests. The accuracy of algorithm over land 

is much higher than that over ocean. The large errors over ocean are mainly attributed to 

the undetected thin smoke pixels. In fact, it is very difficult to detect those smoke pixels 

whose magnitude is relatively low. The smoke plume usually originates from fires in land 

areas and the plume magnitude becomes weaker and weaker during the motion from land 

to ocean. Therefore, the probable reason is that there are much more thin smoke pixels 

over ocean than over land to reduce the algorithm precision.



33

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R8

N
D

V
I

NDVI value for smoke and dark land pixel

Smoke pixel
Dark land pixel

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

NDVI

R
8

R8 value for smoke and dark land pixels

Smoke pixel
Dark land pixel

0 10 20 30 40 50 60 70 80
200

220

240

260

280

300

320

BT3.7 - BT12

B
T

11

BT11 value for smoke pixel over land and cloud pixel

Smoke pixel over land
Cloud pixel

0 10 20 30 40 50 60 70 80
200

210

220

230

240

250

260

270

280

290

300

BT3.7 - BT12

B
T

11

BT11 value for smoke pixel over ocean and cloud pixel 

Smoke pixel over ocean
Cloud pixel

200 220 240 260 280 300 320
0

10

20

30

40

50

60

70

80

BT11

B
T

3.
7 

- 
B

T
12

BTD (3.7, 12) for value smoke pixel over land and cloud pixel

Smoke pixel over land
Cloud pixel

210 220 230 240 250 260 270 280 290 300
0

10

20

30

40

50

60

70

80

BT11

B
T

3.
7 

- 
 B

T
12

BTD (3.7, 12) value for smoke pixel over ocean and cloud pixel

Smoke pixel over ocean
Cloud pixel

a b

c d

e f



34

Figure 3.7: Statistical analyses of training data for deciding the threshold.

Table 3.2: The threshold tests and thresholds used for classification of four surface types 
and sensitivity analysis based on the selected cases in Georgia area during last five years.
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Total 4.656%2 34.577%2

1 The threshold of BTD (3.7, 12) is 15 K for pixels over land and 9 K for pixels over 
ocean.
2 The total errors of both over land and over ocean are not equal to the summation of 
errors from each test because the overlap exists among tests.
3 The pseudo-NDVI and NDDI is only applied over land.

3.3.2 Flowchart

Fig. 3.8 is the flowchart of smoke detection algorithm. The whole swath of L1B 

measurements is input and divided into two branches with land/sea mask product stored 

in L1A file: smoke over land and smoke over ocean. In land branch, the process is 

comprised with four tests, orderly for classifying vegetation, soil, cloud, and noise 

(including water). The first test employs a pseudo-NDVI to examine vegetated pixel. The 

NDDI is applied in the second test for differentiating smoke from bright surface. In the 

third test, the BT11 and BTD (3.7, 11) are used to discriminate smoke from cloud, as well 

as the reflectance at the 1.38μm band. The goal of last module is to filter out the noise 

pixels (mainly water pixels) with the normalized Ratio (R3, R8) and single of reflectance 

of band 8. In ocean branch, the process is relatively easy, which is comprised of two steps 

only. At the end of process, an additional test named “noise-elimination test” is executed 

to further filter noise pixels. In view of the smoke continuity, although a pixel is 

identified as smoke pixel but it is not close to other smoke pixels, this pixel will be 

considered as noise pixels and deleted from smoke images.
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Figure 3.8: Flowchart of the multi-threshold method for smoke detection.
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3.4 Results

3.4.1 Georgia 2007 fire

Smoke plumes caused by major wildfires in Georgia started on April 16, 2007 

greatly impacted the local air quality, the public health, and even the climate to some 

extent. The Sweat Farm Road Fire, located ten miles southwest of the city of Waycross, 

Georgia, was caused by a tree limb suddenly fell down on a power line and, fanned by 

strong winds, quickly became a major fire. Prolonged drought conditions and record low 

water levels in the Okefenokee Swamp expedited this big wildfire burning with diversity 

of woods and vegetations. The Big Turnaround Fire was an extension of the Sweat Farm 

Road Fire, located 8 miles west of Folkston, Georgia and 10 miles south of Waycross, 

Georgia. The total burned areas of two major wildfires reach to 389,722 acres including

330,114 acres in the wildlife refuge (http://inciweb.org/incident/675/). Due to the danger 

from the rapidly growing blaze, thousands of residents in and around the town of 

Waycross were evacuated during the early days of this Georgia fire.

The consecutive smoke images of Georgia wildfires during April 19 to May 21 are 

generated at 1 km spatial resolution (http://eastfirelab.gmu.edu/gafire/). Several examples 

at different time and under different condition are displayed in Figs. 3.9 and 3.10. The 

smoke pixels are marked in blue color. 

The MODIS has the capability of generating RGB true color image which could be 

used for validation. The true color images of 04/29/07 and 05/20/07 are also plotted in 

Fig. 3.9 and Fig. 3.10, respectively. Comparing smoke images with true color images, it 
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is clear that most of smoke plumes have been detected. In these smoke images, most 

smoke pixels are identified except some missing pixels located at the fire spots in which 

the temperature is abnormal. Some pixels located at the edge of plume with very weak 

magnitude are also missed. 

The MODIS AOD product in MOD04 file is also shown in Figs 3.9 and 3.10 for the 

comparison. The spatial resolution of AOD product is 10 km. In the AOD images, the 

AOD values were accurately retrieved with current algorithm over thin smoky area. 

However, the AOD results are not suitable for those areas under heavy smoke layer, with 

invalid values in selected cases. Since AOD retrieval algorithm is performed after cloud 

mask, some smoke areas close to cloud or mixed with cloud may masked out so that 

smoke areas in these areas are missed. 

Based on the resulting smoke images, the spread direction and growth of smoke 

plumes could be monitored by combining consecutive measurements from both Terra and 

Aqua MODIS; one is in the morning time and the other is in the afternoon time. An 

example with six smoke images (from Fig. 3.11a to Fig. 3.11f) at the same resolution and 

cover area, display the dispersion and magnitude of smoke plumes during three 

consecutive days, from day April 21 to April 23. In the first day (April 21), the smoke is 

fairly strong and spread directly towards southwest in the morning, and became weaker at 

the same spread direction in the afternoon. The dispersion direction changed from 

southwest to northwest and the magnitude of smoke plume became weaker and weaker 

with small fluctuation during the following two days.



Figure 3.9: Smoke images 
true color image at 1 km resolution

a

b

c
b
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Smoke images on 04/29/07 (a) Smoke image at 1 km resolution
km resolution; (c) MODIS AOD image at 10 km resolution

km resolution; (b) MODIS 
10 km resolution.
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Figure 3.10: Smoke images on day 05/20/07 (a) Smoke image at 1km resolution (b)
MODIS true color image at 1 km resolution; (c) AOD image at 10 km resolution.
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Figure 3.11: The example with six smoke images is used to investigate the dispersion of 
smoke plume in consecutive three days, from day April 21 to April 23. (a) Smoke on 
April 21 (Terra); (b) Smoke on April 21 (Aqua); (c) Smoke on April 22 (Terra); (d) 
Smoke on April 22 (Aqua); (e) Smoke on April 23 (Terra); (f) Smoke on April 23 (Aqua).

e f

c d
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3.4.2 California 2007 fire

The 2007 California wildfires, stated on October 20, was a major wildfire that 

burned across Southern California. The fires brought significant economic and vital loss

to the society. At least 1,500 homes were destroyed (Flaccus, 2007) and over 500,000 

acres of land were burned. Nine people died and 85 others were injured, including at least 

61 firefighters (CNN, 2007). The Witch fire and the Harris fire are the two biggest 

located in San Diego County of all the fires. The Witch Creek Fire, the largest of the 

October 2007 wildfires, started in Witch Creek Canyon and quickly spread to other areas 

with strong wind. Strong Santa Ana winds, over 100 mph (160 km/h), pushed the fires 

west towards the coast (martinez et al., 2007). Many major roads were also closed as a 

result of fires and smoke

(http://en.wikipedia.org/wiki/California_wildfires_of_October_2007).

The detected smoke plumes of California fire on October 22 at UTC time 19:20 

(Terra) and on October 23 at UTC time 21:40 (Aqua) are plotted in the Fig. 3.12, as well 

as the true color images. The detection results clearly show the huge smoke plume is 

floated over Pacific Ocean. Although the accuracy of detection results over ocean (dark 

surface) is not as good as that over land according to the Table 3.2, the algorithm

observes most areas covered with dense smoke plume.
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Figure 3.12: Smoke images of 2007 California Fire on October 22 captured by Terra

MODIS (upper row) and on October 23 captured by Aqua MODIS (bottom row). The left 

column is the MODIS true color images and the right column is the smoke images.

3.5 Chapter Summary

Large scale smoke plume from wildfires is a frequently occurred phenomenon in the 

nature, releasing large amount of harmful gases and matters into the air. Detecting smoke 

plume timely using satellite remote sensing measurements is explored. An algorithm 

based on multi-spectral technique is developed combining measurements of both MODIS 

RSBs and TEBs, aiming to detect smoke plumes over both land and ocean.

In the algorithm, the process is divided into two branches, smoke over land and 

smoke over ocean. The tests and thresholds of each branch are decided based on the 

spectral and statistical analyses of training data. In the algorithm, several blue bands are 

used jointly or separately since they are sensitive to smoke. On the other hand, cloud 

module is introduced to mask cloud to observe smoke located close to cloud or mixed 

with cloud. 
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The multi-spectral approach is tested and validated with plumes from major 

wildfires in Georgia and California. The resulting smoke images are compared with 

MODIS true color images. In these smoke images, most smoke pixels are identified 

correctly except some missing pixels. Since smoke plumes over ocean usually become 

weaker during their transportation from land, the accuracy over the ocean is lower than 

over land. 

Pairs of smoke images generated from both Terra and Aqua measurements in

consecutive days provide a good opportunity to monitor the characteristics change of the 

smoke. These continuous smoke images give the general information about smoke, such 

as spread direction and distance, shape, and intensity change. It is valuable to perform 

further dynamic analysis of smoke aerosol in the future by combining the real time wind 

information. Additionally, the results of smoke detection have been applied to other 

applications, such as detecting cooling fires in the southeastern United States (Wang et al, 

2007).
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CHAPTER 4

DUST AEROSOL MONITORING WITH MODIS MEASUREMENTS

Asian dust storm, originates in Mongolia and northern China and Kazakhstan, is a 

seasonal meteorological phenomenon. Every year, thousands of tons of dust are 

transported by the prevailing winds in springtime into eastern China, North and South 

Korea, and Japan, and Pacific Ocean. Sometime, these airborne dust particulates 

impacted the air quality as far as the North American. The severe dust storms transported

by wind great impact the financial trade, industrial production, transportation, daily 

activity, and endanger human’s life. Detection dust storm in a timely manner can give 

alarm to people to take measures to avoid economic even vital loss. The detecting results 

are also very useful for the atmospheric modeling and simulation. An algorithm based on 

multi-spectral technique is developed combining measurements of six MODIS RSBs and 

TEBs. Similar to the development of smoke detection algorithm, the bands are selected 

according to the spectral analysis and the thresholds of each test are decided with the 

statistical analysis. Several dust storm events are selected as example cases to test the 

algorithm. The results are validated with MODIS true color images in this chapter and 

validated quantitatively with multi-sensor measurements in chapter six. 
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4.1 Physical Principle of Dust Aerosol Detection

4.1.1 Data collection

In order to accurately decide the bands and thresholds in the algorithm of dust 

aerosol detection, more than fifty dust storm events occurred in China during 2001- 2007 

(2001-2007 for Terra MODIS and 2002-2007 for Aqua MODIS) are collected as training 

data for spectral analysis. The detail information of each selected dust storm event is 

listed in Table 4.1, including the sensor, year, day, and UTC time. Cloud pixels and clear 

pixels are also collected, written in Tables 4.2 and 4.3, based on the MODIS cloud mask 

product. 

Table 4.1: Dust storm events selected as training data for spectral and statistical analyses.
MODIS Year Julian/Calendar UTC MODIS Year Julian/Calendar UTC

Aqua 2002 234-08/22 06:50 Terra 2001 096-04/06 03:40

Aqua 2002 239-08/27 07:10 Terra 2001 098-04/08 05:05

Aqua 2002 290-10/17 07:40 Terra 2001 100-04/10 06:30

Aqua 2002 299-10/26 07:50 Terra 2002 106-04/16 05:15

Aqua 2003 107-04/17 07:00 Terra 2002 113-04/23 05:20

Aqua 2003 108-04/18 07:45 Terra 2002 114-04/24 06:05

Aqua 2004 120-04/30 07:40 Terra 2003 107-04/17 05:25

Aqua 2005 030-01/30 07:15 Terra 2004 329-11/24 05:05

Aqua 2005 118-04/28 06:25 Terra 2004 330-11/25 05:45

Aqua 2005 173-06/22 06:30 Terra 2005 030-01/30 05:35

Aqua 2005 176-06/25 07:00 Terra 2005 155-06/04 05:05

Aqua 2006 100-04/10 06:05 Terra 2005 17606/25 05:25

Aqua 2006 101-04/11 06:50 Terra 2006 045-02/14 05:05

Aqua 2006 103-04/13 06:40 Terra 2006 100-04/10 04:30

Aqua 2006 113-04/23 07:15 Terra 2006 101-04/11 05:10

Aqua 2006 207-07/26 07:30 Terra 2006 102-04/12 04:15
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Aqua 2007 089-03/30 06:00 Terra 2006 105-04/15 04:45

Aqua 2007 090-03/31 05:00 Terra 2006 120-04/30 05:40

Aqua 2007 106-04/16 08:20 Terra 2006 124-05/04 05:20

Aqua 2007 113-04/23 06:45 Terra 2007 090-03/31 03:20

Aqua 2007 113-04/23 08:25 Terra 2007 091-04/01 05:45

Aqua 2007 130-05/10 07:30 Terra 2007 092-04/02 04:50

Aqua 2007 131-05/11 08:10 Terra 2007 106-04/16 05:00

Terra 2001 061-03/02 06:25 Terra 2007 113-04/23 05:05

Terra 2001 064-03/05 03:40 Terra 2007 120-04/30 03:30

Terra 2001 094-04/04 05:30 Terra 2007 130-05/10 05:50

Terra 2001 096-04/06 03:35 Terra 2007 131-05/11 04:55

Table 4.2: Cloud events selected as training data for spectral and statistical analyses.

MODIS Year Julian/Calendar Time MODIS Year Julian/Calendar Time

Aqua 2002 239-08/27 07:10 Terra 2001 064-03/05 03:40

Aqua 2003 107-04/17 07:00 Terra 2001 094-04/04 05:30

Aqua 2003 108-04/18 07:45 Terra 2001 096-04/06 03:35

Aqua 2004 070-03/10 04:35 Terra 2001 096-04/06 03:40

Aqua 2004 087-03/27 05:15 Terra 2001 09704/07 02:40

Aqua 2004 087-03/27 05:20 Terra 2001 098-04/-8 03:25

Aqua 2004 119-04/28 05:20 Terra 2001 238-08/26 05:25

Aqua 2004 120-04/29 07:40 Terra 2002 006-01/06 05:40

Aqua 2005 118-04/28 04:45 Terra 2002 097-04/07 02:00

Aqua 2005 118-04/28 06:25 Terra 2002 097-04/07 03:40

Aqua 2005 119-04/29 03:50 Terra 2002 113-04/23 05:20

Aqua 2005 119-04/29 05:20 Terra 2002 120-04/30 05:25

Aqua 2005 120-04/30 02:55 Terra 2004 330-11/25 04:10

Aqua 2005 121-05/01 03:35 Terra 2004 330-11/25 05:45

Aqua 2005 173-06/22 04:55 Terra 2005 118-04/28 04:45

Aqua 2006 043-02/12 06:10 Terra 2005 119-04/29 02:10

Aqua 2006 096-04/06 04:45 Terra 2005 119-04/29 03:50

Aqua 2006 100-04/10 06:05 Terra 2005 120-04/30 01:15



49

Aqua 2006 102-04/12 04:15 Terra 2005 120-04/30 02:25

Aqua 2006 107-04/17 04:35 Terra 2005 173-06/22 03:15

Aqua 2006 108-04/18 05:15 Terra 2005 177-06/26 06:05

Aqua 2006 109-04/19 04:20 Terra 2005 198-07/17 04:45

Aqua 2006 113-04/23 07:15 Terra 2005 310-11/06 03:05

Aqua 2006 149-05/29 05:10 Terra 2006 091-04/01 03:00

Aqua 2006 149-05/29 05:15 Terra 2006 097-04/07 02:15

Aqua 2007 083-03/24 04:55 Terra 2006 102-04/12 04:15

Aqua 2007 089-03/30 05:55 Terra 2006 107-04/17 02:55

Aqua 2007 089-03/30 06:00 Terra 2006 120-04/30 05:40

Aqua 2007 090-03/31 05:00 Terra 2006 124-05/04 05:20

Aqua 2007 106-03/16 08:20 Terra 2007 090-03/31 03:20

Aqua 2007 113-03/23 06:45 Terra 2007 091-04/01 05:45

Terra 2001 106-03/16 06:25 Terra 2007 120-04/30 01:55

Terra 2001 061-03/02 03:40 Terra 2007 120-04/30 03:30

Table 4.3: Clear scene selected as training data for spectral and statistical analyses.

Dark clear pixels Bright clear pixels

MODIS Year Julian/Calendar Time MODIS Year Julian/Calendar Time

Aqua 2004 087-03/27 05:15 Aqua 2002 239-08/27 07:10

Aqua 2004 119-04/28 05:10 Terra 2001 238-08/26 05:25

Aqua 2006 097-04/07 05:35 Terra 2001 298-10/25 05:50

Aqua 2006 098-04/08 04:40 Terra 2001 300-10/27 05:35

Aqua 2006 149-05/29 05:10 Terra 2002 006-01/06 05:40

Terra 2001 079-03/20 02:55 Terra 2002 120-04/30 05:25

Terra 2001 107-04/17 03:20 Terra 2006 119-04/29 05:00

Terra 2002 091-04/01 02:40 Terra 2006 124-05/04 05:20

Terra 2005 118-04/18 03:10 Terra 2006 133-05/13 05:10

Terra 2005 119-04/19 02:10 Terra 2007 113-04/23 05:05

Terra 2005 173-06/22 03:15 Terra 2007 130-05/10 0550

Terra 2005 310-11/06 03:05 Terra 2007 131-05/11 04:55

Terra 2007 120-04/30 03:30
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4.1.2 Spectral curves

According to selected cases, most Asian dust storms originate and dissipate within 

the inland areas. In this manner, the dust events selected as training data are roughly 

divided into two categories using land surface types dataset: dust storm over bright 

surface and over dark surface. The spectral curves of these two categories of dust are 

shown in Fig. 4.1, as well as those of clouds and clear scenes. The spectral response at 

each band is the statistical mean value of all training data, and the standard deviation as 

well. In Fig. 4.1, cloud shows a high reflectivity in band 3 and low reflectivity in band 7,

while dust displays a reverse trend. In thermal spectrum, cloud has much lower BT than 

dust. This difference assists their separation significantly. In Figs. 4.2 and 4.3, the 

relatively large response difference between dust and clear scene over both dark and 

bright surfaces is found at the band 1 (red channel). Additionally, the BTD (3.7, 11) value 

of dust is larger than that of clear scenes.

4.1.3 Band selection

The BT in LWIR between dust and cloud is obviously different. Ackerman (1997) 

proposed an “IR split windows” technique to discriminate the dust storm layer from 

cloud using the brightness temperature difference between the 11 and the 12μm regions 

of the spectrum. As illustrated in smoke detection section, the BTD (12, 11) value is 

negative for cloud. The BTD (12, 11) value is positive for dust based on the Ackerman’s 

conclusion and also spectral curves in Fig. 4.1. 
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The dust has a high reflectivity at band 7 but a low reflectivity at band 3 (blue band). 

Contrarily, blue band is sensitive to cloud but band 7 is insensitive to cloud. This inverse 

spectral feature helps greatly for distinguishing dust and cloud. Qu et al. (2006) raised 

NDDI to detect dust, with the formula NDDI = (R3 − R7) / (R3 + R7). 

The BTD (3.7, 11) is selected to separate dust from surface scenes. Both dust and 

surface scenes have a similar BT at the band 20 (3.7μm) but dust has much lower BT at 

the LWIR than surface scenes. Among bands in LWIR, the BTD of band 31 (11μm)

relative to band 20 has the largest statistical difference between dust and surface scenes.

Moreover, in reflective solar spectrum the relative large reflectance difference 

between dust and surface scenes (both bright and dark surfaces) is found at band 1. 

Therefore, the single reflectance of band 1 is picked up to differentiate dust from surface 

scenes.

Overall, the BTD (12, 11) and NDDI are chosen for discriminating dust and cloud, 

while BTD (3.7, 11) and the single reflectance of band 1 are chosen for identify dust over 

both dark and bright surfaces. In each branch, both RSBs and TEBs are used. 
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Figure 4.1: Response curves of dust and cloud.

Figure 4.2: Response curves of dust and clear dark pixels.
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Figure 4.3: Response curves of dust and clear bright pixels.
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values of dark surface is smallest, generally less than 20 K. In Figs. 4.4d and 4.4f, the 

logarithm of single reflectance of red band is introduced to separate dust from surface

scenes. Using logarithm can enhances the resolving power of this index, especially in 

small reflectance range. Obviously, the Ln (R1) of most dust pixels is larger than -1.2 

over bright surface, and -1.6 over dark surface.

The detail thresholds of each index are summarized in the Table 4.4. The thresholds

are calculated statistically from all training data, namely selected dust events in China 

during 2001-2007. The errors caused by using the defined thresholds of each test are also

listed in Table 4.4. The largest error is appeared at the separation of dust from cloud over 

dark surface in reflective solar spectrum, which is up to 12.484%. This big error caused 

possibly by light dust pixels suspended over water. Considering that some pixels can be 

counted repeatedly, the total errors of both over bright and dark surfaces are not equal to 

the summation of errors from each test.

4.2.2 Flowchart

The flowchart of dust detection algorithm is shown in Fig. 4.5. The L1B 

measurements are input into cloud module to filter out cloud first by employing BTD (12, 

11) and NDDI. The remaining pixels are then divided into two branches based on 

pre-stored surface type information: dust over bright surface and over dark surface. The 

BTD (3.7, 11) and the logarithm of reflectance at band 1 are applied in both branches 

with respective thresholds. At the end, a same “noise-elimination” process is executed to 

filter out discrete pixels.
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Figure 4.4 Statistical analyses of training data for deciding thresholds. (a)BTD (12, 11) 
values for dust and cloud; (b) NDDI values for dust and cloud; (c) BTD (3.7, 11) values 
for dust and clear pixels over bright surface; (d) Ln (R1) values for dust and clear pixels 
over bright surface; (e) BTD (3.7, 11) values for dust and clear pixels over dark surface; 
(f) Ln (R1) values for dust and dark pixels over dark surface. 
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Figure 4.5: The flowchart of the dust storm detection

Table 4.4: The tests and thresholds used for detecting dust storm; and sensitivity analysis 
based on the selected dust storm events in China during years 2001-2007.

Class Type Threshold test
Bright surface Dark surface

Value Error (%) Value Error (%)

Dust over land 
BT 3.7 –BT 11  

& Ln (R1)

25 K

-1.2

2.843

2.294

20 K

-1.6

2.623

4.416

Cloud
(B7-B3) / (B3+B7) 

& BT 12 –BT 11

0.0

0 K

1.886

0.334

0.0

0 K

12.484

0.845

Total 15.976 117.717
1 The total errors of both over bright and dark surface are not equal to the summation of errors from 
each test because the overlap exists among tests.

Dust aerosol over dark surface

Ln(R1)≤-1.2  
& BT20-BT31≥25K
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4.3 Results

Three dust events occurred in different locations are shown in Figs. 4.6, 4.7, and 4.8, 

separately. In Fig. 4.6, the dust storm is floated above the Takalimakan Desert, captured 

by Terra MODIS on June 25, 2005. The dust storm is blown in a long-narrow shape. The 

detected dust marked with black color in Fig. 4.6b has a good agreement with MODIS 

true color image (Fig. 4.6a). The dust in Fig. 4.7 is a large dust storm covered most part 

of northeastern China, captured by Terra MODIS on April 7, 2001. The dust storm mixed 

with cloud. With the NDDI and BTD (12, 11), the dust pixels (Fig. 4.7b) are separated 

obviously from cloud by comparing with MODIS true color image (Fig. 4.7a). Only 

small part of dust aerosol pixels over ocean (left bottom corner) is missed in that the 

algorithm is mainly focused on the land area. The dust storm in Fig. 4.8 spreads cross two 

countries, Pakistan and Afghanistan, on August 10, 2008. Two strings of dust plumes in 

the middle of image are identified successfully. Another small dust storm in the right 

upper corner is also detected. 

The MODIS AOD images at the same region are displayed for the comparison, 

shown in Figs. 4.6c, 4.7c, and 4.8c. The spatial resolution of AOD product is 10 km. In 

the AOD images, the AOD is not accurately retrieved for the areas with heavy dust 

loading. Therefore, in this condition, the detecting results of this algorithm can provide 

more accurate information about the dust aerosol than the MODIS AOD product.
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Figure 4.7: Dust storm in the 
northeastern China on April 7, 2001.
(a) MODIS true color image; (b) dust 
image; (c) AOT image.

c c

Figure 4.6: Dust storm over 
TAKLIMAKAN Desert on June 25, 
2005. (a) MODIS true color image; (b) 
dust image; (c) AOT image.
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Figure 4.8: Dust storm cross Pakistan and Afghanistan on August 10, 2008. (a) MODIS 
true color image; (b) dust image; (c) AOT image.

c

a b
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4.4 Chapter Summary

In this chapter, the algorithm based on multi-spectral technique for detecting Asian 

dust aerosol is developed; combining measurements of six MODIS spectral bands in both 

solar and thermal spectrum. The algorithm is only focusing on dust storms over land 

areas so that it is roughly divided into two branches: dust over dark and bright surfaces. 

The identification of dust aerosol is performed by a series of threshold-test to filter out 

non-dust pixel step by step. 

The spectral curves of several major scene types are obtained statistically with the

large amount of training data collected from Asian dust storm events occurred during last 

several years. According to spectral curves, the dust displays unique features different 

from those of cloud and surface scenes. The NDDI and BTD (12, 11), two 

well-developed indices, are adopted directly for separating dust and cloud, because the 

values of these two indices are opposite for dust and cloud. To distinguish dust from 

surface scenes, the BTD (3.7, 11) and logarithm of reflectance of band 1 is introduced 

according to spectral analysis. The thresholds of these tests are defined with statistical 

analysis to seek the minimum error. 

The algorithm is applied to several Asian dust events occurred in different areas. 

The resulting dust images are compared with MODIS true color images, showing a good 

agreement over both dark and bright surfaces. In these dust images, most dust pixels are 

identified correctly except some dust pixels which have relatively low magnitude. 

Moreover, the algorithm works well in the areas close to cloud even mixed with cloud.
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CHAPTER 5

AEROSOL DETECTION BY COMBINING CALIPSO AND MODIS

MEASUREMENTS

Multi-sensor remote sensing, by its global and repetitive measurement capability, 

provides a large amount of valuable information for solving problems in various Earth 

observation applications. This massive amount of data allows the same features on the 

Earth to be observed by the several different sensors, yielding complementary 

information for more accurate measurements.

CALIPSO mission studies the role of aerosols and cloud in the Earth’s climate 

system (Winker et al., 2003). It provides the vertical information about aerosols and cloud.

The CALIPSO level 2 Vertical Feature Mask (VFM) (Vaughan et al., 2004) product 

provides detail vertical information about aerosol and cloud layer. It is easily used to 

separate dust from ground surface. However, limited by its spectral coverage, the 

misclassification may appear by labeling heavy dust aerosols as cloud in VFM product

and reported by recent data quality statement (CALIPOS Lidar Level 2 Vertical Feature 

Mask products Version 2.01, January 25, 2008). The possible reason is that the intrinsic 

scattering properties of dust layers are similar to those of cloud in certain conditions. The 

Aqua MODIS has good spatial resolution and spectral coverage for detection large scale 

aerosol. It can provide the planar information about the dust storm. Both sensors are 
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operated in the A-train orbit with similar local equatorial crossing time. To fully take 

advantages of multi-sensor system, these two sensors, MODIS and CALIPSO, are 

combined together for Asian dust detection.

5.1 CALIPSO Instrument and Measurements

CALIOP is a lidar (LIght Detection And Ranging) sensor, namely a laser radar, 

providing information on the vertical distribution of aerosols and cloud as well as their 

optical and physical properties (Winker et al., 2003). Current remote sensing capabilities 

can be enhanced by the CALIPSO by providing global, vertically-resolved measurements

of aerosol distribution. Cloud and aerosol layers can be discriminated easily using the 

magnitude and spectral variation of the lidar backscatter (Liu et al., 2004).

5.1.1 CALIPSO instrument

The CALIPSO mission was launched on April 28, 2006. It is flying at the same orbit 

as Aqua spacecraft with 1 minute and 15 seconds behind. The CALIPSO payload consists 

of three instruments: a two-wavelength, polarization-sensitive lidar (CALIOP), the Image 

Infrared Radiometer (IIR) and the Wide Field Camera (WFC) (Winker et al., 2003). The 

CALIPO is a two-wavelength polarization-sensitive lidar. It is designed to acquire the 

vertical profiles of aerosols with backscatter signal at 532 nm and 1064 nm in both 

daytime and nighttime, as well as profiles of linear depolarization at 532 nm. The IIR 

with three channels in the infrared window region is optimized for retrievals of cirrus 

particle size. The WFC has one visible channel that provides meteorological context and 

a means to accurately register CALIPSO observations to those from MODIS on the Aqua 
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satellite (Winker et al., 2004). The instrument performance parameters are given in Table 

5.1, and the vertical and horizontal resolutions of the data products are shown in Table 

5.2.

Table 5.1: Payload parameters

Payload Characteristic Value

CALIPSO

wavelengths 53 2nm & 1064 nm

polarization 532 nm

pulse energy 110 mJ

footprint 70 m

WFC

wavelength 645 nm

spectral bandwidth 50 nm

IFOV / swath 125 / 61 km

IIR

wavelength 8.65 μm, 10.6 μm , 12.0 μm

spectral bandwidth 0.6μm ~ 1.0μm

IFOV / swath 1 km / 64 km

Table 5.2: Spatial resolution of CALIPSO data

Altitude Range (km) Horizontal Resolution (km) Vertical Resolution (km)

30.1 ~ 40.0 5.00 0.30

20.2 ~ 30.1 1.67 0.18

8.2 ~ 20.2 1.00 0.06

-0.5 ~ 8.2 0.33 0.03

-2.0 ~ -0.5 0.33 0.30



66

5.1.2 CALIPSO measurements and VFM product

The measurements of CALIPSO are free to public, from June 2006 to present. The 

size of each file (version 2.01) of daytime is around 500 Mb. The data provide such 

parameter as total attenuated backscatter at 532nm and 1064nm, perpendicular attenuated 

backscatter, height, elevation, latitude, longitude, and so on. Table 5.2 gives the 

measurable height relative to sea level. The vertical and horizontal spatial resolution 

varies with the height. 

In CALIPSO measurements, total attenuated backscatter at 532nm and 1064nm and 

perpendicular attenuated backscatter at 532nm directly provide vertical information about 

aerosols. Fig.5.1 is an example to show CALIPSO attenuated backscatter signal at 

1064nm on March 30, 2007. The horizontal axis stands for the geolocation of sample 

point and vertical axis represents the height relative to sea level. Usually, the value of 

attenuated backscatter is from 0.0001 ~ 0.1. 

Fig. 5.1 displays the CALIPSO attenuated backscattering signal at 1064 nm in the 

northwest China on July 26, 2006 at the UTC time 07:30. In the figure, the red solid line 

in horizontal direction is the elevation of the ground surface. A heavy aerosol (or cloud) 

over Taklimakan Desert is captured by CALIPSO, floating at the height of 2 -3 km from 

38.270 N to 40.30 N. Heavy clouds are floating at the height of 7 ~ 8 km in the south side 

of desert and at the height of 5 km in the north side of desert.

The VFM, level-2 product of CALIPSO, reports the scene classification based on 

the physical feature differences of aerosols and clouds. With the SCA (Scene 

Classification Algorithm), the atmospheric features are classified as either clouds or 
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aerosols and then the clouds and aerosols are separated into different subclasses (Omar et 

al., 2003). The VFM product can be shown in a two dimensional color-coded image,

displaying the vertical and horizontal distribution of cloud and aerosol layers. The VFM 

product for the same region is given in Fig. 5.2. The colors stand for different scene 

features, listed as follow; 1: invalid (bad or missing data); 2: “clear air”; 3: cloud; 4: 

aerosol; 5: stratospheric feature; polar stratospheric cloud or stratospheric aerosol; 6: 

surface; 7: no signal (Currey et al., 2007).

Figure 5.1: CALIPSO attenuated backscatter signal at 1064 nm on July 26, 2006.
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Figure 5.2: CALIPSO VFM data product on July 26, 2006.

Figure 5.3: MODIS BTD (12, 11μm) values over the CALIPSO footprint on July 26, 

2006.
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5.2 Detecting Dust Storm with CALIPSO and MODIS Measurements

CALIPSO measures the vertical distribution of aerosols and clouds as well as their 

optical and physical properties, such as altitude, location, and aerosol optical depth. It is 

capable of separating airborne dust from ground dust. MODIS has been demonstrated as 

an effective sensor suitable for detecting dust aerosol. Since both Aqua MODIS and 

CALIPSO are operating in the A-train orbit with similar local equatorial crossing times, 

the temporal mis-registration between measurements of two sensors is quite small. The 

temporal registration is ignored in this dissertation. After spatial registration, 

three-dimensional information of dust can be obtained by combining MODIS and 

CALIPSO measurements.

5.2.1 Methodology

The MODIS BTD (12, 11) can be used to differentiate dust aerosol and cloud in both 

day and night time based on their physical feature difference in thermal spectrum.

Generally, the values of BTD (12, 11) are positive for dust aerosol and are negative for 

cloud (Ackerman, 1997). 

Due to the different field of view, the Aqua MODIS has much larger swath than 

CALIPSO. The footprint of CALIPSO is generally located in the near nadir of the 

MODIS swath. The spatial resolution is 1 km for Aqua MODIS, and 333 m for CALIPSO. 

Because of the spatial resolution is different between two sensors, the spatial mapping is 

performed firstly.
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After spatial registration, the overlapped areas (namely over CALIPSO path) can be 

divided into two categories according to MODIS BTD (12, 11) values: BTD (12, 11) > 0 

and BTD (12, 11) < 0. The comparison between measurements of two sensors is 

performed. If a layer is labeled as cloud in CALIPSO VFM product but it located in the 

area having positive BTD (12, 11μm) values, it is identified as dust aerosol.

5.2.2 Results

The same region is also observed by Aqua MODIS and shown with MODIS true 

color image in Fig. 5.4(a). The image is generated with measurements extracted from two 

swaths at UTC time 7:25 and 7:30. The dust aerosol is located at the eastern desert. The 

blue dash line is the footprint of CALIPSO in this area. It is clear that CALIPSO passes 

cross the dust aerosol. The BTD (12, 11μm) values of the same region is given in Fig. 

5.4(b). And the BTD (12, 11μm) values over the CALIPSO footprint is given in Fig. 5.3.

Obviously, the BTD (12, 11μm) values is larger than zero in the area having the latitude 

from 36.750 N - 40.800 N, which means dust aerosol is dominated in this area. Therefore, 

the dust aerosol in that area is identified and marked with dark circle in Fig. 5.2. 

Fig. 5.5 gives the MODIS true color image of another case in which the dust aerosol 

aroused in the northeast China on March 30, 2007. The footprint of CALIPSO is plotted 

in blue dash line from equator to North Pole. The corresponding measurements of images 

are extracted partly from two MODIS swaths at the UTC time 05:55 and 06:00. The 

MODIS BTD (12, 11μm) image is plotted in Fig. 5.5(b) and corresponding BTD (12, 

11μm) over CALIPSO footprint is given in Fig. 5.6. The CALIPSO is just passing 

through this dust storm. From MODIS true color image, the dust aerosol is overlapped 
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with cloud in some areas along the CALIPSO path. In the Fig. 5.6, the BTD (12, 11μm) is 

positive at three peaks with latitude 36.590 N - 39.790 N, 41.040 N - 44.020 N, and 44.640 

N - 45.750 N, which is corresponding to dust aerosol areas. Between three peaks, the 

BTD (12, 11μm) is negative which corresponding to cloud. Therefore, four dust aerosol 

layers are found and marked with black circle in Fig. 5.7.  

After the successful detection, the detail information about dust aerosol could be 

further retrieved. Fig. 5.8 shows the total attenuated backscatter signal profile at 532 nm 

in two locations: (400N, 109.160E) and (420N, 108.510E). The vertical profile for specific 

location gives more detail and accurate values about dust aerosols. At the first location, 

cloud (in dashed line rectangular) floated about 10.5 km above the sea level. At the 

latitude 420N, a large backscatter value at the altitude 2.5 km is corresponding to the dust 

storm. By integrating the measurements of both sensors, the vertical and horizontal 

information about dust aerosol can be retrieved. Table 5.3 summarized the vertical and 

horizontal information about dust aerosols occurred in 2008 spring season in northwest 

China, including height, averaged depth, width, and coverage.
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Figure 5.4(a) The MODIS true color image of dust storm in Taklimakan Desert on July 
26, 2006. The blue solid line is the footprint of CALIPSO; (b) The corresponding BTD 
(12, 11μm) image of dust on July 26, 2006.
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Figure 5.5(a) The MODIS true color image of dust storm in northeast China on March 30,
2007. The blue solid line is the footprint of CALIPSO; (b) The corresponding BTD (12, 
11μm) image of dust on March 30, 2007.
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Figure 5.6: MODIS BTD (12, 11μm) values over the CALIPSO footprint on March 

30, 2007.

Figure 5.7: CALIPSO VFM data product on March 30, 2007.
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Figure 5.8: The total attenuated backscatter signal profile at 532 nm in two locations.

Table 5.3: Vertical and horizontal information about dust aerosols occurred in 2008 spring 
season.

Case Date (UTC time) Height 

(km)

Width

(km)

Average depth

(km)

Coverage

(km2)

1 Mar 29, 2008, 7:05 1.6 ~ 4.7 200 1.2 239113

2 Mar 30, 2008, 7:45 1.4 ~ 3.2 330 1.2 184081

3 Apr 19, 2008, 7:20 3.2 ~ 5.0 161 1.8 240236

4 Apr 20, 2008, 8:05 1.7 ~ 4.7 400 0.9 301729

5 Apr 28, 2008, 7:15 1.4 ~ 5.0 313 1.4 206002

6 May 5, 2008, 7:25 2.9 ~ 6.1 280 1.3 117019

5.3 Chapter Summary

The dust aerosol detection with multi-sensor measurements, such as MODIS and 

CALIPSO, is performed in this chapter. Since both CALIPSO and Aqua MODIS operated 
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in the same A-train orbit with similar local passing time, the mis-registration of temporal 

is quite small and ignored in the algorithm. A simple approach is developed combining 

the CALIPSO VFM product and MODIS BTD (12, 11) measurements. With the 

CALIPSO VFM product, the aerosol and cloud layer are easily separated from ground 

scene types. Then dust aerosol is further separated from cloud with MODIS BTD (12, 11) 

values, since dust aerosol and cloud have opposite values. After spatial registration, those 

layers labeled as cloud in CALIPSO VFM but having positive BTD (12, 11) values are 

identified as heavy dust aerosol. Several cases are selected to test the algorithm; the 

accuracy is quite good by compare with true color images. Based on this approach, 

several dust storms occurred during spring season in northwest China is summarized. A

few important parameters of dust aerosol are retrieved, including the altitude, thickness, 

location, and spatial coverage and distribution.
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CHAPTER 6

VALIDATION OF SMOKE AND DUST AEROSOLS DETECTION 

WITH MULTI-SENSOR

In Chapters three and four, the detection of smoke and dust aerosols is performed by 

combining MODIS RSB and TEB measurements based on the multi-spectra technique.

The detection results are validated roughly with MODIS true color images. Visual 

validation provides, however, only basic verification. Validating results with the same 

sensor offers relatively low confidence. The further quantitative validation with other 

sensors, such as OMI and CALIPSO, is executed in this chapter.

6.1 Validation of Aerosol Detection with OMI

OMI onboard EOS AURA is one of key instruments designed for monitoring the 

ozone and other atmospheric species including aerosols. It is a hyperspectral sensor, 

observing the solar backscatter radiation in the ultraviolet (UV) and visible spectrum

(Ahmad et al., 2003; Levelt et al., 2000). The wavelengths and algorithms used for 

retrieving OMI aerosol parameters are significantly different from those of MODIS. 

These differences produce some advantages, such as the high sensitivity of the OMI UV 

retrieval algorithm to aerosol absorption and the ability to retrieve aerosol information 

over bright surfaces and clouds (Livingston et al., 2007). Moreover, both AURA and 
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Aqua spacecrafts are operated in the A-train orbit. Therefore, OMI is selected for 

validating smoke and dust detection derived with MODIS measurements.

6.1.1 OMI sensor

OMI was launched successfully on July 15, 2004 onboard Aura. The Aura 

spacecraft is rotating in a 705 km sun-synchronous polar orbit (98.20 inclination angle) 

with a period of approximate 100 minutes. The local equatorial crossing time is 1:45 p.m. 

in the ascending mode. The OMI views the Earth with a wide view angle, ±570 relative to 

nadir. The large swath, up to 2600 km in scan direction, enables OMI to achieve almost 

daily global coverage in 14 orbits. OMI instrument employs hyperspectral imaging in a 

push-broom, nadir-viewing mode to measure the solar backscatter radiation in the 

wavelength range from 270 to 500 nm, at a spectral resolution about 0.5 nm (Levelt et al., 

2006). OMI instrument characteristics (Ahmad et al., 2003) are given in Table 6.1. 

Table 6.1: OMI instrument characteristics
Item Parameter

Wavelength

range

Visible 365 - 500 nm

UV-1 270 to 310 nm

UV-2 310 to 365 nm

View angle 1140 (±570)

Swath 2600 km

IFOV 3 km, binned to 13 x 24 km
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6.1.2 OMI UVAI

The OMI instrument can distinguish between aerosol types, such as smoke, dust, 

and sulfates. The UVAI is an index to measure how much the wavelength depend on the 

backscattered UV radiation from an atmosphere containing aerosols (Mie scattering, 

Rayleigh scattering, and absorption) differs from that of a pure molecular atmosphere 

(pure Rayleigh scattering). It is a qualitative indicator of the presence of the absorbing 

aerosols, defined to be (Herman et al., 1997; Torres et al., 2007)

UVAI = -100 log10 ( I360Meas / I360Calc ) 

where I360Meas is the measured 360 nm OMI radiance and I360Calc is the calculated 360 

nm OMI radiance for a Rayleigh atmosphere. 

Since the UVAI is sensitive only to absorbing aerosols, it is able to identify 

absorbing aerosols (dust, smoke) from weakly or non-absorbing particles. Usually, the 

aerosols that absorb in the UV yield the positive UVAI values. The near-zero UVAI 

values appear when the sky is clear or there are large non-absorbing aerosols and clouds 

which have nearly zero Angstrom coefficient. The non-absorbing small particle aerosols 

are the main source of negative UVAI values due to their non-zero Angstrom coefficients 

(Torres et al., 2007). 

6.1.3 Validation of smoke detection with OMI UVAI

The OMI UVAI product is a valuable tool for the validation of smoke detection

because the short wavelength band is sensitive to smoke. The OMI UVAI image of 

smoke plume from 2007 California Fire on October 23 at UTC time 21:40 is displayed in 
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the Fig. 6.1a. For easy comparison, the MODIS true color and smoke images of same 

region are plotted in Figs. 6.1b and 6.1c. The smoke originated from west coast of 

California and spread over the Pacific Ocean covering a large area, which satisfies the 

OMI relatively coarse spatial resolution.

Figure 6.1: Validation of smoke image on October 23, 2007 with OMI UVAI. (a) OMI 

a

b c
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UVAI image; (b) MODIS true color image; (c) Smoke image.

According to the procedure of aerosol selection presented in OMAERUN README 

file (http://daac.gsfc.nasa.gov/documents/OMAERUV_README_File_v3.doc), the 

aerosol associated with biomass burning usually has the UVAI values larger than 0.7. 

Therefore, the OMI UVAI images with the UVAI values larger than 0.7, 1.0, and 1.2 are 

displayed respectively in Fig. 6.2, for multiple comparisons with smoke image derived 

with multi-spectral algorithm using MODIS measurements. Some obviously 

misclassifications (bad or low quality data) in OMI UVAI product, are filtered out to 

improve the accuracy of comparisons. 

The distributions of identified, unidentified, and misidentified pixels in three 

comparisons are given in Fig. 6.2. In the first comparison (UVAI > 0.7; Figs. 6.2a and 

6.2b), there are 513,582 pixels are identified correctly (labeled as smoke in both images), 

listed in Table 6.2. About 365,853 pixels are unidentified (detected by OMI only) and 

1,563 pixels are misidentified (detected by MODIS only) in MODIS smoke image. The 

percentage of identified smoke pixels increases to 73.78% with acceptable 4.34%

misidentification in second comparison (UVAI > 1.0; Figs. 6.2c and 6.2d). In the third 

comparison (UVAI > 1.2; Figs. 6.2e and 6.2f), the unidentified smoke pixels decreases 

further to 11.18% but around 19.05% pixels are labeled as smoke in the smoke image 

which is labeled as nonsmoker pixel in OMI UVAI image. 

Overall, the core part of smoke is explicitly detected by MODIS smoke image in all 

three comparisons. The major difference exists at the edge of plume, which may attribute 

to the different spatial resolutions between two sensors. Because of different spatial 
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resolutions, the number of smoke pixels in MODIS smoke image (1 km) is not enough to 

aggregate a corresponding pixel in OMI UVAI image (10 km). In another word, some 

smoke pixels in OMI UVAI image are not filled with smoke pixels in MODIS smoke 

image. 

a b

c

d

e
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Figure 6.2: The UVAI images and the 
difference between UVAI and smoke images. (a) UVAI image (UVAI > 0.7); (b) The 
difference of first comparison; (c) UVAI image (UVAI > 1.0); (d) The difference of 
second comparison; (e) UVAI image (UVAI > 1.2); (f) The difference of third 
comparison.

f
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6.1.4 Validation of dust monitoring with OMI UVAI

The dust storm in center China was captured by Aqua MODIS on October 23, 2007

at UTC time 04:55. The MODIS true color image is shown in Fig. 6.3a and 

corresponding dust image generated with algorithm illustrated in Chapter 4 is shown in 

Fig. 6.3b. The UVAI values associated with dust aerosol are usually larger than 1.2 

according to the procedure of aerosol selection in OMAERUN README file. Therefore, 

only the areas with UVAI values larger than 1.2 in OMI UVAI image are shown in the 

Fig. 6.3c. With comparison, totally about 187,472 pixels are labeled as dust with OMI 

UVAI product. Among these pixels, 137,554 pixels are labeled as the dust either in 

MODIS dust image, but 49,918 pixels are undetected. About 3.67% (6,871 pixels) are 

identified as dust in MODIS dust image but labeled as non-dust pixel in OMI UVAI 

image. Fig. 6.3d gives the spatial distribution of all identified, unidentified, and 

misidentified pixels. The center part of the dust storm is detected by both images. The 

major difference is appeared at the front of dust storm (southeast part) where many pixels 

are labeled as dust aerosol in OMI UVAI image. Statistically, at the margin area, more 

than 5% difference can be attributed to the spatial resolution differences between two 

sensors. Moreover, the small clouds floated above the dust storm contribute another 

around 3% errors, which is too small to be detected by OMI sensor. 
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Figure 6.3 Validation of dust image with OMI UVAI on October 23, 2007 at UTC time 
04:55. (a) RGB image; (b)Dust image; (c) OMI UVAI image; (d) The difference between 
UVAI and dust image.

Table 6.2 The error analysis in the comparisons between MODIS smoke image and OMI 
UVAI images with different UVAI values.

MODIS smoke image

Non-smoke pixels Smoke pixels

OMI

UVAI 

image

Non-smoke

pixels

UVAI > 0.7 1,563

UVAI > 1.0 28,634

UVAI > 1.2 110,502

Smoke

pixels

UVAI > 0.7 365,853 513,582

UVAI > 1.0 144,287 486,511

UVAI > 1.2 64,862 404,643
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6.2 Validating Dust Detection with CALIPSO

The CALIPSO is an effective tool for validating the dust detection. It is capable of 

separating airborne dust from ground dust with the vertical information of aerosol and 

cloud layers. As illustrated in Chapter five, the CALIPSO VFM classifies various scene 

features into several types. Therefore, the VFM product is used for the quantitative 

validation of dust detection results.

Fig. 6.4 shows a dust storm event over Taklimakan Desert captured by Aqua 

MODIS on July 26, 2006. The image is generated with measurements extracted from two 

swaths at UTC time 7:25 and 7:30. The dust aerosol is located at the eastern desert. The 

blue dash line is the footprint of CALIPSO in this area. The dust image generated from 

multi-spectral approach is displayed in Fig. 6.5. The VFM product of the region marked

by blue dash line in Fig. 6.4 is shown in Fig. 6.6. The validation is executed by matching 

pixels from two sensors with their geolocation measurements in the overlapping region. It 

is worth noting that the misclassification of labeling dust aerosol over desert area as cloud 

is observed which is mentioned in Chapter five. The dust aerosol layer marked in the 

black circle is misclassified as cloud in Fig. 6.6. 

The error analysis is performed to count the number of pixels identified (pixel is 

labeled as dust aerosol with both sensors), unidentified (pixel is labeled as dust aerosol 

with only CALIPSO but undetected with MODIS), and misidentified (pixel is labeled as 

non-dust aerosol pixel with CALIPSO but detected with MODIS). According to spectral 

curves of dust aerosol in Figs. 4.2 and 4.3, red band is a key spectral band able to reflect 

the intensity of dust aerosol loading. Usually, the stronger the dust storm is the higher
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reflectance in red band. Therefore, the dust aerosol pixels are sorted into several 

categories according to their reflectance at the red band, given in Fig. 6.7. There are 204 

pixels identified and only 18 pixels unidentified. About 91.89% dust aerosol pixels 

obtained from proposed multi-spectral detection algorithm are correctly identified by 

comparing with CALIPSO VFM data product. Additionally, there are 21 pixels 

misidentified. Actually, the statistical analysis shows that most heavy dust aerosol pixels 

are identified. Unidentified and misidentified dust aerosol pixels are mostly concentrated 

in the low reflectance range at the red band, namely low dust aerosol loading. Fig. 6.8

displays the profile of dust storm in the sensor motion direction using the reflectance at 

the red band. In the image, the errors (unidentified or misidentified) are located only at 

the margin of the dust storm with light aerosol loading. Consequently, the multi-spectral 

algorithm for dust aerosol detection by MODIS works fairly well over bright surface, 

based on the validation with the CALIPSO VFM data product.
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Figure 6.4: The MODIS true color image of dust storm over Taklimakan Desert on July 
26, 2006. The blue solid line is the footprint of CALIPSO.  

Figure 6.5: The Dust image of dust storm in Taklimakan Desert on July 26, 2006  
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Figure 6.6: CALIPSO VFM data product on July 26, 2006 at UTC time 07:30.

Figure 6.7: The error statistics of validating MODIS dust aerosol detection results with 
CALIPSO VFM data product
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Figure 6.8: The profile of dust storm in the sensor motion direction

6.3 Undetected Smoke Plume

Although MODIS is a good sensor for detection of large scale smoke and dust 

aerosols, it is limited to detect small scale aerosol layer due to its moderate spatial 

resolution. The Aspen fire, located immediately northeast of Tucson, Arizona (32.40N, 

110.70W), started on June 17, 2003. The fire burned over 84,000 acres and destroyed 333 

structures. The fire was contained on July 12, 2003. The smoke plume was captured by 

both Hyperion and ASTER sensors on July 7, 2003, shown in Figs. 6.9a and 6.9b 

respectively. The Hyperion swath width is 7.6 km. The ASTER image covers an area of 

41.2 x 47.3 km. However, it is difficult to find the smoke plume in MODIS true color 
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image at the same location. The reason of this undetected smoke plume may attribute 

probably to the moderate spatial resolution of MODIS instrument rather than algorithm 

itself. 

  

a
b

c d
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Figure 6.9: Smoke plume from Aspen fire observed by both ASTER and Hyperion on 
July 7, 2003. (a) Aspen fire captured by Hyperion sensor; (b) Aspen fire captured by 
ASTER sensor; (c) MODIS true color image at the same region; (d) Smoke image at the 
same region.

6.4 Chapter Summary

In this Chapter, the quantitative validation of smoke and dust detection using 

MODIS measurements is performed with OMI UVAI and CALIPSO VFM products. By 

comparing the smoke/dust images with OMI UVAI and CALIPSO VFM products, the 

number or the percentage of identified, unidentified, and misidentified smoke/dust pixels

are counted.

The OMI UVAI, a qualitative indicator of the presence of the absorbing aerosols, is 

very sensitive to smoke/dust aerosols. According to statistical comparison results, more 

than 70% smoke/dust aerosol pixels are identified correctly. The spatial distribution 

difference images explicitly show that the core part of smoke/dust is detected. The 
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accuracy could be increased further if the uncertainties caused by the spatial resolution 

difference are subtracted. 

Currently, the identification and validation of aerosols over bright surface is still a 

challenge issue. However, CALIPSO is a good sensor for detecting aerosols over bright

surface, even for separating airborne dust from ground dust, with its vertical measuring 

capability. By comparing with the CALIPSO VFM data product, the dust aerosol 

detection works well over bright surface. More than 90% dust aerosol pixels are 

identified correctly in the select case. Although there are some pixels misclassified, most 

of them concentrate at the edge of dust storm with light dust aerosol loading. Those 

pixels with heavy dust aerosol loading are generally well detected. 

Furthermore, the MODIS sensor is not very suitable for detecting small scale smoke 

according to the comparison with ASTER and Hyperion observations.

CHAPTER 7

IMPACT ASSESSMENT OF MODIS SPATIAL 

CHARACTERIZATION ON DETECTION RESULTS

The mis-registration, or the Band-to-Band Registration (BBR) shift, has been 

observed between the MODIS bands and FPAs by the Spectro-Radiometric Calibration 

Assembly (SRCA) and by the ground target approach. On-orbit results show that the 



95

mis-registration for Terra MODIS is generally less than tenth of a pixel. But for Aqua 

MODIS, it is relatively large especially between the bands located on the warm FPAs and 

the cold FPAs. Because of the mis-registration, measurements over slightly mismatched 

areas from different spectral bands may produce undesired effects when used together, 

and consequently lead to less accurate data products (Xie et al., 2008). In this chapter, the 

impacts of the BBR shift on the L1B measurements and dust detection are assessed.

7.1 MODIS Sensor Spatial Calibration and Characterization

Before its launch, system level spatial characterization was performed with a ground 

calibration device called integration alignment calibrator by the instrument vendor

(Barnes et al., 1998). Although MODIS Band-to-Band Registration (BBR) was carefully 

characterized pre-launch, mis-registration between the spectral bands and FPAs still exist 

or occur during its on-orbit operation. On-orbit, the MODIS has a unique device, the 

SRCA, operated bi-monthly or tri-monthly for monitoring and tracking the BBR change 

of all 35 bands relative to band 1. The quality of measurements is quite good. On the 

other hand, the ground target approach serves as an alternative means for observing the 

on-orbit BBR change with specific ground scenes located in Libyan Desert (Xie et al., 

2006). The ground target approach provides frequent measurements for more than half of 

MODIS bands. 

7.1.1 Mis-registration

Consistent with the pre-launch spatial characterization, relatively large spatial 

mis-registrations are observed for Aqua MODIS between its spectral bands on the warm
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FPAs and cold FPAs (because of different temperature, VIS and NIR FPAsare called 

warm FPAs and SMIR and LWIR FPAs are named cold FPAs) (Xie et al., 2006). An 

example on Jan 4, 2003 at the UTC time 11:50 with 500 m spatial resolution

measurements shows that the mis-registration exists between the warm and cold FPAs in 

both track and scan directions. Theoretically, the measurements of different spectral 

bands over the same target should match perfectly if there is no mis-registration. In the 

example (Fig. 7.1), a dark target located at the center of the selected area produces a 

lower signal than that of its neighboring pixels. In the along-track direction bands 1 and 4 

on the warm FPAs scan the dark target at pixel number 11 while band 7 on the cold SMIR 

FPA crosses the same target at pixel number 10, about one pixel earlier (Fig. 7.1(a)). 

Likewise, in the scan direction, bands 1 and 4 scan the dark pixel at pixel number 10 

while band 7 about one pixel later, at pixel number 11 (Fig. 7.1(b)). It indicates that the 

relative mis-registration is approximately one pixel, or 500 m, between cold and warm 

FPAs. 
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Figure 7.1: The example of mis-registration between MODIS VIS and SMIR FPAs. (a) 
Mis-registration between MODIS VIS and SMIR FPAs in track direction; (b) 
Mis-registration between MODIS VIS and SMIR FPAs in scan direction

7.1.2 Spatial characterization with SRCA

The Spectro-Radiometric Calibration Assembly (SRCA), a unique device within 

MODIS, is designed for sensor calibration and characterization in three modes: 

radiometric, spatial, and spectral. When it is configured in spatial mode, the SRCA is

capable of tracking the BBR shifts periodically of all other 35 bands relative to band 1

from pre-launch to on-orbit and throughout the MODIS lifetime (Montgomery et al., 

2000 and Xiong et al., 2005). To our best knowledge, tracking the spatial (also spectral) 

performance changes is unique because there was previously no device on remote sensing 

instruments to monitor these parameters over such a long period of time. This tracking 

provides valuable information to the remote sensing community and is beneficial for the 
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development of future remote sensing systems. Fig. 7.2 is a layout of the SRCA (Xiong et 

al., 2006). It consists of three subassemblies: a light source (VIS/NIR and infrared IR), a 

monochromator/optical relay, and a collimator. The VIS/NIR source is a spherical 

integration source (SIS) with four 10-W lamps and two 1-W lamps (one of the 10-W 

lamps and one of the 1-W lamps are backups) to provide multiple levels of illumination 

for the RSB characterization. A thermal source provides IR energy. The multi-lamp 

configurations allow each band to be operated at a good SNR level. When the SRCA is in 

spatial mode, a beam combiner on the filter wheel is used. The light coming out of the 

SIS passes through it while the IR beam is reflected from its surface. The combined 

beams provide illumination for all 36 bands. The light passes through the beam combiner 

and is focused onto the monochromator’s entrance slit. After reflection by a collimating 

mirror, the beam passes onto a mirror or grating (the grating is used for the spectral 

characterizations). The beam is then refocused onto an exit slit (or various 

interchangeable reticles) by the focusing mirror. The follow-up Cassegrain telescope 

system expands and collimates the beam before it exits the SRCA and is viewed by the 

MODIS scan mirror. The SRCA spatial mode was originally performed bi-monthly. 

When the scan mirror is viewing the SRCA, the Earth scene illumination can pass 

through the MODIS system and interfere with the measurement. In order to minimize this 

effect, the SRCA is only operated in the night portion of the orbit.

When the SRCA is operated in spatial mode, an entrance slit equivalent to a 5 km 

(scan direction) 12 km (track direction) nadir Instantaneous Field Of View (IFOV) (Fig.

7.3a) is used (Xiong et al., 2005). The mirror is set up in position so that the 
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monochromator functions as a simple optical relay system. Located at the exit position 

are two reticles: one for along-scan, which is identical to the entrance slit (Fig. 7.3a), and 

the other for along-track (Fig. 7.3b) with stepped openings. The two reticles are 

positioned in turn to measure MODIS spatial response in both directions. The SRCA 

collimator and the MODIS optics image the reticles onto the FPAs. In the spatial mode, 

the IR source is on, and the lamps inside the SIS are turned on in sequence of three 10 W, 

two 10 W, one 10 W, and 1 W. Each band utilizes one light source configuration to assure 

an adequate SNR. Since the lamps need warm up time, both the along-scan and 

along-track measurements are performed at each lamp configuration before it is changed.

Figure 7.2: The layout of the SRCA (Source: Xiong et al., 2006).
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Figure 7.3: SRCA spatial mode reticles. (a) reticle along-scan; (b) reticle along-track
(Source: Xiong et al., 2005).

7.1.3 MODIS spatial characterization using ground target approach

Not all sensors, however, have an onboard calibrator like the SRCA that provides 

instrument on-orbit spatial calibration and characterization. Using ground measurements 

over specific sites for sensor on-orbit spatial characterization is one of the alternative

approaches (Xie et al., 2008). For example, two targets including burning areas in the 

agricultural fields at the Maricopa Agricultural Center, Arizona and the Lake 

Pontchartrain Causeway, Louisiana are applied for spatial characterization of the NASA 

EO-1 advanced land imager sensor by Schowengerdt et al. (2002). Moreover, he and his 

coworkers selected Mackinaw Straits Bridge in Michigan and the Chesapeake Bay 

Bridge at Annapolis, Maryland to measure spatial characterization for HYDICE 

(Schowengerdt et al, 1996). The same ground target, Pontchartrain Causeway, was 

applied to spatial characterization by the Landsat sensor (Storey, 2001). Nelson et al. 

(2001) used several ground scenes including edges from glaciers as well as several 
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bridges to determine the modulation transfer function for the Hyperion sensor. 

Nevertheless, these kinds of small ground targets are not appropriate for the MODIS 

spatial characterization in view of its moderate spatial resolution. Consequently, a desert 

area with a series of regularly arranged dark targets is chosen in this study for the MODIS 

on-orbit spatial characterization. Compared to the approach of using its on-board 

calibrator, this approach can provide more frequent characterization of the MODIS BBR 

as it requires no light sources. The deficiency is that it cannot provide spatial 

characterization for all bands, only for some RSBs (bands 1-11 and 17-19) and TEBs 

(bands 20, 22, 23, 29, 31, and 32).

7.1.3.1 Site for Spatial Characterization Using Ground Measurements

The ground targets selected for sensor spatial characterization must have high 

contrast features. Therefore, different types of ground targets could be used for measuring 

the BBR shift, such as a dark target, water body, coastline, snow coverage, and island. 

The site selected for the MODIS on-orbit spatial characterization is located at the Sahara 

desert in Libya, Africa. The latitude of this site is from 26.50 North to 28.00 North and the 

longitude is from 21.50 East to 22.50 East. Within this area, more than one hundred dark 

targets are arranged regularly in several rows. Each dark target has a circular shape with a

diameter of approximately 1 km. The RGB image of this site from MODIS remote 

sensing measurements is shown in Fig. 7.4(a). The other three images, Figs. 7.4(b), (c), 

and (d), are taken from Google images with different spatial enlargements.
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7.1.3.2 Date Source

MODIS L1B data at three spatial resolutions are used to calculate the spatial 

deviation: 250 m for band 2 (40 detectors / band), 500 m for band 3-7 (20 detectors /

band), and 1 km for other bands (10 detectors / band). The L1B data used is the version 5 

issued by NASA. Each MODIS L1B data set (referred to as a “granule”) collects 

consecutive measurements within five minutes, typically 203 scans. In each scan, 1,354 

data frames are recorded for each detector. For 500 m resolution band, 2 sub-frames or 

samples per frame (1 km) are recorded for its 20 detectors, and 4 sub-frames for each 250

m band and its 40 detectors (Xiong et al., 2003). Thus, each granule typically contains 

2030 rows (along-track) × 1354 columns (along-scan) for 1 km resolution bands, 8120 

rows × 5416 columns for 250 m resolution bands, and 4060 rows ×2708 columns for 500

m resolution bands.
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Figure 7.4: The color images of selected site for spatial characterization. (a) The MODIS 
RGB image (Latitude: 26.50N-28.00N, Longitude: 21.50E-22.50E) with 500 m resolution 
measurement; (b), (c), and (d) are Google images with difference enlargements for the 
same site (Courtesy of Google).

The consecutive measurements over the selected targets with high contrast features 

can be used to track the BBR shifts for MODIS spectral bands during the entire mission. 

Only daytime measurements are used in this spatial characterization study for both RSB 

and TEB. Not all the measurements, however, are qualified for the sensor spatial 

ENVI RGB image (500m spatial resolution)

(a) (b)

(c)(d)
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characterization. Only the measurements that satisfy two basic requirements are selected 

in this study for calculating the band-to-band spatial deviation. One requirement is that 

the measurements are from a clear scene free of clouds, dust storms, and snow in order to 

improve the accuracy. The other requirement is that the selected site must be located at 

the nadir area (sensor scan angle less than ±15 degrees) in the images. Otherwise there 

will be large distortion of the shape of circular dark targets due to the bowtie effect 

(Wolfe et al., 2002).

7.1.3.3 Algorithm

The same target will be mapped by each band at different positions in the MODIS 

images because of the mis-registration between bands. The location difference of the 

same target between two bands is equivalent to the spatial deviation. Therefore, the core 

process of this ground target approach is to find the discrepancy of centroid locations of 

the same dark target observed by different spectral bands. When the scan mirror scans 

across the selected dark targets, the response of each band will change rapidly and form a 

series of signal valleys. Only those valleys with high signal contrast are collected for the 

determination of the spatial shift in order to improve the accuracy of the algorithm. For a 

given valley, the centroid position difference between band a and b, ΔPab, can be 

computed using Eq. 7.1.
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where p(i) is the position given in pixel number, R(v,p(i)) is the response at the 

position p(i) for a given band and valley v, k is the total pixels of one valley used for 

calculation. The spatial shift, Pab between band a and band b is the average of all the 

centroid location differences, ΔPab, within defined time range, expressed in Eq. 7.2.

ab
N M

ab

P
P

NM





                                       (7.2)

where M is the total number of the valleys in one qualified L1B measurement (one 

event or one pass) and N is the total events in defined time range such as one day, one 

month, or one year. The value of M varies from event to event due to the fixed threshold.

Instead of using the number of pixels or the fraction of a pixel, the distance given in

meters is adopted for expressing spatial shift, which is equivalent to the spatial shift 

multiple with spatial resolution.

7.1.3.4 Results

The average spatial deviations, from launch till the end of year 2007, for both 

reflective solar bands and thermal emissive bands relative to band 1 are calculated with 

qualified L1B measurements, and listed in the Table 7.1. However, not all bands can be 

used to retrieve spatial shift with this approach such as some ocean color bands, water 

vapor bands, cloud bands, and ozone bands. Most ocean color bands need the high scene 

contrast, or signal-to-noise ratio, so that they are normally in the saturation status. Some 

TEBs primarily focused on the properties of atmosphere, clouds, water vapor, and ozone 

may not have enough response to the ground targets. Consequently, only the BBR shift of 
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these bands, including reflective solar bands 1-11 (excluding Aqua band 6 due to a 

number of inoperable detectors) and 17-19 and thermal emissive bands 20, 22, 23, 29, 31, 

and 32 are listed in Table 7.1. 

All the values represent the BBR shifts relative to band 1 in two directions. The 

positive spatial shift means that certain band observes the same Earth target earlier than 

band 1, while the negative sign indicates the reverse case. In the table, bands located in 

the same NIR FPA as band 1 have small spatial shifts. The spatial shift of the VIS FPA is 

also small except for bands 8-11 whose shifts are up to108 m in scan direction for Terra 

MODIS. For the cold FPA, the maximum spatial shift of Terra MODIS is 85 m 

along-scan and 122 m along-track while it is 277 m along-scan and 270 m along-track for 

Aqua MODIS. The standard deviation varies significantly with the spatial resolution of 

each band. The higher resolution bands have smaller standard deviation, consequently, 

higher accuracy of results. The results in Table 7.1 clearly show that the BBR shifts are 

much larger in Aqua MODIS for any band pair with one on the cold FPA and the other on 

the warm FPA. For example, the BBR shift between Aqua band 5 and band 4 in track 

direction is estimated to be 333m. 

Table 7.1: The average spatial deviation for Terra and Aqua MODIS during sensor 
operation year (year 2000-2007 for Terra MODIS and year 2002-2007 for Aqua MODIS). 

All values are given in meters.
Band Terra Aqua

Track std1 Scan std Track std Scan std

2 6 8 -2 5 -5 5 3 4
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3 6 11 -25 7 -59 10 -7 10

4 3 5 -18 3 -63 6 -24 6

5 38 18 9 10 270 31 -277 12

6 48 10 16 8 N.A.2 N.A. N.A. N.A.

7 53 12 16 9 251 29 -240 11

8 43 55 -108 55 29 52 84 61

9 41 40 -92 27 31 33 71 26

10 22 76 -78 74 1 78 58 77

11 -4 91 -53 124 -27 105 38 135

17 3 37 37 22 -13 27 -27 27

18 -4 54 3 24 -30 62 -32 37

19 -2 45 -4 18 -29 34 -40 27

20 21 76 -88 87 170 94 -208 110

22 -6 87 -122 93 136 122 -204 116

23 -26 90 -116 89 116 124 -159 114

29 38 118 -99 108 253 133 -78 133

31 -85 115 -94 136 146 135 -235 152

32 -67 111 -32 135 168 131 -198 127

1. std: stands for Standard Deviation
2. Not applicable for Aqua band 6 because of striping phenomena

7.2 Impact Assessment of MODIS Spatial Characterization

Based on the theoretical analysis, mis-registration or the BBR shift could impact the 

quality of MODIS L1B measurements and dust detection results. If measurements of 
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different spectral bands are slightly mismatching, it will lead to undesired effects when 

they are combined together and consequently less accurate data products.

7.2.1 Impact on the L1B measurements

7.2.1.1 Uncertainty from SZA correction

Solar Zenith Angle (SZA) is the angle between the local zenith and the line of sight 

to the sun. As one of important parameters in MODIS Level 1A (L1A) geo-location 

measurement (MOD03 for Terra/MODIS and MYD03 for Aqua/MODIS), SZA is usually 

used for L1B response (radiance or reflectance) correction of RSBs. The SZA is the 

function of latitude and longitude, not identical in scan and track directions. Fig. 7.5

provides a case to describe the model of the SZA change, in which the first, middle, and 

last row/column are selected as representative for scan/track direction. In the Fig., the 

SZA changes non-linearly with the frame in scan direction because of bow-tie effect

(Wolfe et al., 2002); rapidly at both ends while slowly in the middle frame. On the other 

hand, the SZA change shows a proximately linear model for all rows in track direction.

The correction is executed by dividing the cosine of SZA with original L1B 

measurement for corresponding pixel in one granule (Barbieri et al., 1997), given in Eq. 

(7.3)

/ cos( )R R SZA                                         (7.3)

where R and R’are the response of given RSB before and after correction respectively, 

and SZA’is the s corresponding SZA stored in MODIS L1A dataset. However, SZA’is a 

incorrect angle due to the mis-registration. The real response R’’should be computed 
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with Eq. (7.4) in which the symbol SZA’’assumes to be the correct SZA,

/ cos( )R R SZA                                       (7.4)

Therefore, the relative error between two responses R’and R’’could be calculated with 

Eq. (7.5).

cos( ) cos( )
1 1 1

cos( ) cos( )

R R R SZA SZA

R R SZA SZA SZA

    
     

     
           (7.5)

where ΔSZA is the difference between two solar zenith angles SZA’’and SZA’. 

The theoretical impact of mis-registration on L1B measurement for both directions is 

plotted in Fig. 7.6, with one, two, or three -pixel BBR shift. In scan direction, the impact 

changes rapidly at both ends but slowly in the middle. Since the change of SZA is 

quasi-linear in track direction, the impact of BBR shift along-track on L1B measurement 

has almost the same quasi-linear trend. 

The SZA in one granule is different with geo-location and seasons, the largest relative 

error could be estimated with the curves in Fig. 7.7 by defining the largest SZA of one 

granule and corresponding BBR shift. The curves computed with Eq. (7.5) by setting 

ΔSZA as 0.01o, 0.03o, 0.05o, or 0.1o show that the relative error increases with the positive 

ΔSZA and decreases with negative ΔSZA. The curve changes slowly at the small SZA 

range while rapidly at the large SZA range. The relative error could reach to 0.5%, if 

there is 0.1o ΔSZA, when SZA is about 65o.
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Figure 7.5: TOP: the change of SZA with frame in scan direction; Bottom: the change of 
SZA with sub-scan in track direction
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Figure. 7.6: The relative change of L1B measurements with different BBR shift (1, 2, and 
3 pixels).

Figure. 7.7: The relative change of L1B measurement in the percentage with various SZA 
shift (left image: positive SZA shift; right image: negative SZA shift)
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7.2.1.2 Real Impact on L1B Measurement

The SZA science dataset in the L1A file usually has a 1 km spatial resolution. The

interpolation is necessary because on-orbit BBR shifts of all bands are less than one pixel 

in both MODIS instruments. The simplest method, linear interpolation, is adopted. The

relative errors of L1B dataset caused by using uncorrected SZA for all Aqua MODIS 

RSBs except band 1 are listed in Table 7.2, where the largest SZA is up to 680. The third 

and fourth columns provide the relative errors in scan or track direction individually, and 

the last column presents the relative errors by combining errors in two directions together. 

Since the relative error is proportional to the spatial BBR shift, those SMIR bands which 

have larger BBR shifts also have larger relative errors. The relative errors of Terra 

MODIS bands are less than those of Aqua MODIS bands due to their smaller BBR shifts. 

The largest relative error of L1B dataset is less than 0.1%. The error is small enough to be 

ignored, so far, in real applications for both MODIS instruments. 

7.2.2 Impact analysis of mis-registration on science data products

The MODIS is of great importance in science research field, widely used for 

applications in atmosphere, land, ocean, biosphere, and solid earth (Justice et al., 1998; 

Esaias et al, 1998; King ea al., 2003; Parkinson et al., 2003). A series of data products 

have been developed so far for various applications including a bunch of normalized 

indices and products generated with the linear or non-linear combination of responses 

from several spectral bands. The spatial mis-registration between different bands or FPAs 

impacts obviously the precision of science data products when several bands combined 
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together in the algorithm, especially at the boundary of mixed scene types where the

response may change rapidly so that the mismatching response will be used in the 

algorithm (Xie et al, 2007; Wang et al., 2007). 

Table 7.2: The largest impact of all Aqua RSBs based on the on-orbit results from the 
SRCA with the largest SZA up to 680.

Band FPA Scan (%) Track (%) Scan/Track (%)

2 NIR 1.5×10-3 6.0×10-4 2.0×10-3

3 VIS 5.8×10-3 3.0×10-4 7.4×10-3

4 VIS 8.4×10-3 3.0×10-4 7.2×10-3

5 SMIR 7.3×10-2 9.8×10-2 8.6×10-2

6 SMIR 8.0×10-2 9.7×10-2 8.9×10-2

7 SMIR 6.3×10-2 9.4×10-2 7.8×10-2

8 VIS 2.4×10-3 5.1×10-3 5.6×10-3

9 VIS 4.0×10-4 7.9×10-3 7.2×10-3

10 VIS 2.2×10-3 1.5×10-2 1.4×10-2

11 VIS 1.0×10-2 1.5×10-2 1.9×10-2

12 VIS 1.3×10-2 2.0×10-2 2.4×10-2

13 NIR 2.2×10-3 3.9×10-3 4.5×10-3

14 NIR 1.5×10-3 1.2×10-3 2.1×10-3

15 NIR 1.9×10-3 1.8×10-3 3.0×10-3

16 NIR 4.5×10-3 3.9×10-3 6.8×10-3

17 NIR 2.6×10-3 6.0×10-4 3.3×10-3

18 NIR 4.1×10-3 2.7×10-3 5.8×10-3

19 NIR 3.2×10-3 8.2×10-3 8.5×10-3

26 SMIR 6.6×10-2 8.2×10-2 7.5×10-2
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7.2.2.1 Theoretical impact analysis of science data products by mis-registration

The normalized indices (NI) are the normalization of two or more spectral bands. 

They are usually used for the scene identification with general formula shown in Eq. (7.6), 

where Ra and Rb are responses of bands a and b respectively. Commonly, one band in NI

is sensitive to a given matter class and the other band is insensitive to it, such as 

Normalized Difference Vegetation Index (NDVI) (Rouse et al., 1973; Huete et al., 1994), 

Normalized Difference Snow Index (NDSI) (Hall et al., 2002), Normalized Difference 

Water Index (NDWI) (Gao, 1996), and Normalized Difference Dust Index (NDDI) (Qu et 

al., 2006). In some indices, Ra or Rb can be the response combination of several spectral 

bands, such as Normalized Multi-band Drought Index (NMDI) (Wang et al., 2007).

a b

a b

R R
NI

R R





                                           (7.6)

If there is a small response deviation of two bands, ΔRa and ΔRb, the change of NI

value, ΔNI, is approximately equal to the first order partial derivative with respect to two 

variables, Ra and Rb. Practically, one of bands is designated as reference band in most 

cases to simplify the calculation by setting ΔRa=0 (or ΔRb=0). The ΔNI can be computed 

with Eq. (7.7)

'
2

2

( )
a

b
a b

R
NI R

R R


  


                                   （7.7）

where ΔRb’is the minute response change of band b caused by its spatial mis-registration 

relative to band a.
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Fig. 7.8 shows that the NI value varies with the reflectance of two bands at a given 

reflectance change of band b. The x and y axes represent the reflectances of bands a and 

b, and z axis (vertical axis) stands for the variation of index value. The change of NI

value decreases with the increasing difference between Ra and Rb. The maximum 

variation of NI value is up to 0.0527 if Rb has a negative ten percent response shift. The 

NI value change could reach to 0.1779 if there is a negative 30% response shift of Rb.

Figure 7.8: NI change with negative 10% response change of band b

7.2.2.2 Impact on detection of dust aerosol

The NDDI is an index proposed for the identification of dust aerosol. It is the 

normalized ratio of band 3 and band 7, in which the former band is located on the warm 

FPA and the latter one is located on the cold FPA. With the results of the SRCA on-orbit 
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spatial characterization, the biggest mis-registration is observed between the warm FPA 

and the cold FPA. The existence of spatial shift between these two bands, up to 320 m 

along-track and 265 m along scan, will produce undesired effects, and consequently, lead 

to less accurate NDDI value and dust aerosol detection product. 

If the NDDI is calculated with 500 m resolution measurements, the mis-registration 

between two bands is up to 0.64 pixels in track direction and 0.53 pixels in scan direction. 

The tentative correction is performed by shifting one pixel in track direction while keep 

unchanged in scan direction since the mis-registration is more serious along-track. A dust 

storm is displayed in Fig. 7.9 (only part of dust storm) by MODIS true color image. The 

dust storm is prevalent in the left and right sides of the image, divided by the cloud in the 

middle. Fig. 7.10 and Fig. 7.11 present the difference of NDDI values and dust aerosol 

detection. The three subplots in Figs. 7.10 and 7.11, from left to right, are the results with 

and without correction and their comparison difference.

In Fig. 7.11, the total number of dust aerosol pixels detected is 15,622 in the 

sampled area, listed in Table 7.3. After correction, the number of detected dust aerosol 

pixels decrease to 15,455. There are 15,270 pixels are labeled as dust aerosol in two

results, equaling 97.747%. About 185 non-dust aerosol pixels (cloud and other pixels) are 

labeled as dust aerosol pixels after correction, and correspondingly 352 dust aerosol 

pixels are identified as non-dust pixels in the corrected results. The difference is up to 3%.

The correlation coefficients, r2, of all three surface scenes increase after spatial correction. 

This increase demonstrates that the quality of science data products can be improved by 

spatial correction.
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It is worth mentioning that the difference (or uncertainty) varies with the coverage of 

selected area. The differences are relative small at the homogenous or semi-homogenous 

area, and large at the non-homogenous areas. Based on this analysis, it is reasonable to 

conclude that the impacts on most of science products caused by spatial mis-registration 

are concentrated in the non-homogenous areas or mixed areas. 

Table 7.3: The difference between dust aerosol detection results with and without spatial 
correction

No correction With correction
Dust Cloud Others Dust Cloud Others

Classification 15,622 10,697 3,681 15,455 10,721 3,824
r2 0.9825 0.5636 0.9700 0.9831 0.5811 0.9706

N
O

 
co

rr
ec

ti
on

With correction
Dust Cloud Other

Dust 15,270 0 352
Cloud 0 10,475 222
Other 185 246 3,250

Figure 7.9: The MODIS true color image of selected case with dust plume.
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7.3 Chapter Summary

The mis-registration, or the BBR shift, has been observed between the bands and 

FPAs by the ground target approach and by the Spectro-Radiometric Calibration 

Assembly (SRCA). The impact analysis of MODIS BBR shift on MODIS L1B data and 

science data products is performed based on the SRCA on-orbit spatial characterization 

results. The quality of L1B data could be lessened by executing the SZA correction using 

mismatch SZA due to mis-registration. The impacts are different between two directions 

due to the strong bow-tie effect in scan direction. The practically largest relative errors of 

all RSBs for Aqua MODIS are less than 0.1% in the select case, which are negligible in 

actual applications. The spatial correction of L1B data is necessary if the BBR shift is too 

large to reduce the data quality significantly.

The theoretical analysis shows that the influence of mis-registration on science data 

products is generally larger than that on L1B data. The NDDI, an index for dust aerosol 

identification, is selected to estimate the impact of mis-registration on science data 

product since. The influence on dust aerosol detection results is small at the homogenous 

or semi-homogenous areas but relative large at the mixed areas. The increase of 

correlation coefficient demonstrates that the quality of science data product can be 

improved by shifting a pixel in track direction. 

This study provides valuable information for sensors without spatial characterization 

capability and also for the specification design of future sensors.
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CHAPTER 8

CONCLUSIONS AND DISSCUSIONS

8.1 Conclusions

In this dissertation, the multi-spectral algorithm for observing and monitoring smoke 

and dust aerosols over both bright and dark surfaces is developed by combining 

measurements of MODIS solar and thermal bands. Since the algorithm uses its own cloud 

module to separate the cloud, the algorithm can detect the smoke/dust at the areas close to 

or mixed with clouds. In the algorithm, the spectral curves of several major scene types in 

both solar and thermal spectrum, such as smoke, dust, cloud, and vegetated surface and 

non-vegetated surface, are derived statistically from large quantity of training data.

According to spectral analysis, the algorithm is divided into land and ocean branches for 

smoke detection, and into bright surface and dark surface branches for dust detection. In 

the algorithm, the thermal bands are mainly used for filter out cloud, as well as a water 

vapor band, while the RSBs are selected for separating smoke/dust from other scene 

types. Some indices well developed in others previous studies are adopted directly. And 

some tests are proposed first time, including the pseudo-NDVI, the reflectance of blue 

band, and the normalized of two blue bands used for smoke detection; and the reflectance 

of red band used for dust detection. The spatial resolution of smoke/dust detection results 
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is up to 1 km. By comparing with MODIS true color image, the core part of smoke/dust 

pixels are identified correctly except some missing pixels which have relatively low 

intensity. Since the quality of MODIS AOD products is not good enough for validating 

products in sample areas, measurements of multiple other sensors operated in the A-train 

orbit are selected for quantitative validation. Validated with OMI UVAI product, most 

smoke plumes are detected accurately. One main factor impacting the accuracy of 

algorithm may attribute to the spatial resolution difference between two sensors. The 

validation of dust aerosol monitoring with CALIPSO VFM product is also performed. 

More than 90% dust aerosol pixels are identified correctly in the select case. Although 

there are some pixels misclassified, most of them concentrate at the edge of dust storm 

with light dust aerosol loading. The algorithm also works well in the areas close to cloud 

or mixed with cloud. On the other hand, the deficiency of detecting small smoke aerosol 

by MODIS is found by comparing with ASTER and Hyperion measurements. 

Since both CALIPSO and Aqua MODIS are operated in the A-train orbit with 

similar local equatorial crossing time, a simple approach is developed to detect dust 

aerosols combing their measurements. The MODIS BTD (12, 11) is an effective index 

that can be used for differentiating dust aerosol and cloud in both day and night time. 

After spatial registration, the overlapped areas are divided into two categories according 

to MODIS BTD (12, 11) values. With the comparison between measurements of two 

sensors, if a aerosol layer is labeled as cloud in CALIPSO VFM product it located in the 

area having positive BTD (12, 11μm) values, it is corrected and identified as dust aerosol. 
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Based on the detection results, the vertical and horizontal information about several dust 

aerosols occurred in 2008 spring season are summarized. 

The MODIS spatial characterization with the SRCA and ground target approach is 

introduced and the impact of BBR shift, or mis-registration, on MODIS L1B 

measurements and dust aerosol detection is assessed. The impacts on L1B are generally 

small and are different in both directions due to the strong bow-tie effect in scan 

directions. The largest relative error of all RSBs in Aqua MODIS is less than 0.1% in the 

select case, which is negligible in real applications. The theoretical analysis shows that 

the influence of mis-registration on dust detection is larger than on L1B measurements.

The influence on dust aerosol detection results is small at the homogenous or 

semi-homogenous areas but relative large at the mixed areas. The increase of correlation 

coefficient demonstrates that the quality of science data product can be improved by 

shifting a pixel in track direction. This study provides valuable information for the 

sensors without spatial characterization capability and also for the specification design of 

future sensors.

8.2 Limitations

This dissertation is executed in some limited condition due to the data availability in 

time and space. In the absence of suitable laboratory and field data, such as the spectral 

curves of the smoke, some results are thus mainly based on the model simulation and 

limited available datasets. Statistical analysis of the training data is a primary ways in this 

research to achieve the desired spectral features of the smoke/dust. Although the 
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statistical can provide reasonable results, its accuracy depends on the number of training 

data. Moreover, the thresholds used in the algorithm are usually site-specific, which limit 

the application of the algorithm. 

One of the significant achievements of this dissertation is to assess the impacts on 

the L1B measurements and corresponding science data products caused by the instrument

itself. However, only the influence from the spatial characterization change is performed 

in this dissertation. It is very beneficial to estimate the impacts from all three kinds of 

characterization changes. 

8.3 Future Works

The approach for detecting smoke and dust aerosol with satellite remote sensing 

could be enhanced with further studies. Recommendations for future researches fall into 

four categories, showing as follow: 

1) Adding more precise site-specific information. Currently, the surface is only 

separated into land and ocean for smoke detection, and divided into dark and bright 

surface for dust storm monitoring. The more strict classification of surface features and 

site-specific thresholds can enhance the accuracy of algorithm significantly. It is very 

valuable to build up a lookup table to store the site-specific thresholds for whole global. 

2) Enhancing the algorithm by using multi-sensor measurements. In this dissertation, 

only CALIPSO and MODIS are combined for dust detection. Integrating more sensors 

can enhance the detection approach and improve the detection accuracy. 
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3) Validating aerosol detection quantitatively with ASTER measurements and 

ground measurements. Since ASTER instrument is boarded on the Terra spacecraft, same 

platform as MODIS, it can provide more rigorously quantitative validation. Additionally, 

the sunphotometer offers trustable ground measurements for validation.

4) Assessing the impact of sensor radiometric and spectral characterization on 

aerosol detection. After a long term operation in its orbit, the radiometric and spectral 

characterization of instrument may have small changes which could cause uncertainties 

on L1B data and consequently on science data products. Sensitivity analysis helps us 

understand more about the impact from instrument itself. 

On the other hand, some useful researches need to be implemented based on this 

dissertation in near future include: 1) tentative retrieving the AOD based on the detection 

results; 2) gathering the smoke/dust information in a long time range. With long term 

aerosol information, it is feasible to analyzing their distribution, the motion, height, and 

width, even the seasonal variation.
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